*Revised Manuscript with no changes marked
Click here to view linked References

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A Framework for Establishing the Technical Efficiencyof Electricity

Distribution Counties (EDC) using Data Envelopment Analysis

Dr Shane Mullarkey

Department of Civil, Structural and Environmental Engineering
Trinity College Dublin

Ireland

Tel: + 353 1 896 1440

Fax: + 3531 677 3072

Email: smullark@tcd.ie

Dr Brian Caulfield (Corresponding Author)

Assistant Professor

Department of Civil, Structural and Environmental Engineering
Trinity College Dublin

Ireland

Tel: + 353 1 896 2534

Fax: + 3531 677 3072

Email: brian.caulfield@tcd.ie



http://ees.elsevier.com/ecm/viewRCResults.aspx?pdf=1&docID=16398&rev=1&fileID=407560&msid={5D233487-1761-438E-9DB3-F911353D2FF6}

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Dr Sarah McCormack

Assistant Professor

Department of Civil, Structural and Environmental Engineering
Trinity College Dublin

Ireland

Tel: + 353 1 896 3321

Fax: + 3531677 3072

Email: sarah.mccormack@tcd.ie

Prof Biswajit Basu

Professor and Head of Civil Engineering

Department of Civil, Structural and Environmental Engineering
Trinity College Dublin

Ireland

Tel: + 353 1 896 2389

Fax: + 3531677 3072

Email: basub@tcd.ie



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

A Framework for Establishing the Technical Efficiencyof Electricity

Distribution Counties (EDC) based on Data Envelopment Analys

ABSTRACT
European Energy market liberalization has entailed thieuotgring of electricity
power markets through the unbundling of electricity generation, niiaa®n and
distribution, supply activities and introducing competition intacteleity generation.
Under these new electricity market regimes, it is impdrta have an evaluation tool
that is capable of examining the impacts of these marlkeiges. The adoption of
Data Envelopment Analysis as a form of benchmarking for @ggtdistribution
regulation is one method to conduct this analysis. This pappliea a Data
Envelopment Analysis framework to the electricity distribntnetwork in Ireland to
explore the merits of using this approach, to determine timital efficiency and
the potential scope for efficiency improvements through reorgagniand the
amalgamation of the distribution network in Ireland. The tequesented show that
overall grid efficiency is improved through this restructuridagdiagnostic parameter
is defined and pursued to account for aberrations across Etgc@istribution
Counties as opposed to the traditionally employed environment@ébles. The
adoption of this diagnostic parameter leads to a more intuitiverstadding of

Electricity Distribution Counties.

Key Words: Data Envelopment Analysis; Technical efficiency; perfaroea

measurement/evaluation, Electricity Distribution.
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1. Introduction

The structural adjustment of Electricity Power SysteniBSHiberalisationover the
last 20 years worldwide has seen a significant shiftocug from regulated to a
deregulated environment to enhance technical efficiencyjdiabviability and guard
against the threatwindling fossil fuel resources coupled with increasing fuedgsti
The underlying rational behind these reforms is to foster afshift an inefficient
monopolized vertically-integrated industry to an efficient cetitive electricity
market environment (Trevino, 2008). The transmission and distributiororiet of a
nation’s electricity system are natural monopolies, and asaedess affected by the
recent EPS deregulation. However, as electricity poliigking has altered with
private sector participants in the generation sectegulatory reform and incentive
regulation of electricity distribution utilities have becomere common (Farsi et al.,
2007). Implementing benchmark performance measurement angiagseshnical
efficiency of electricity distribution utiliti€shas seen extensive research in recent
years with DEA at the forefront of this researd&ffective regulation in terms of
electricity distribution, network access, network intercatine and delivery prices,
network investment and network service quality are paramount comigoié
successful EPS liberalisation programs worldwide (Joskow, 2008).Ebeelopment
Analysis (DEA) concepts were first introduced by Farrell (1964 later the
approach was pioneered Charnes et al., (1978) that has led flutttations of a
literature field that has formed at the interface ofrafyenal research and economics.
This paper employs a DEA non-parametric methodology to establisimtier or best

practice benchmark measure of the relative performandsverity-six Electricity

1 We adopt the umbrella term utilities to refer teatticity distribution organizations, companies,
districts, centers, zones, areas, regions, couatidoperators.
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Distribution Counties (EDG)in Republic of Ireland (ROI). The aims and objectives
of this research arel) to establish technical efficiency and differentiate betwe
efficient and inefficient EDCs by implementing the DEA benarking approach to
electricity distribution in the ROI; 2) to propose specific dii@ns to enhance
operational management and to improve the utilisation of reseungthin the
inefficient EDCs and 3) to investigate the possibility oforganising and
amalgamation of existing EDCs to improve efficiency lectricity supply networks
distribution system based on geographical convenience.

The research conducted in this paper adds to the fieldedHnasin evaluating
the technical efficiency of power systems. Firstly, snapplication to the test system
- all island SEM, secondly, in its employment of input-outpatameters and
alternative combinations to develop new models based on tAedaBniques for the
efficiency assessment. The input-output parameters, alternadivdinations and
constructed DEA models are the salient contributions of tiperpaA significant
contribution of the current research is the wind generatiggpmal DEA model
employed in the National level efficiency context as it pies a new framework for

evaluating wind generation on a regional basis.

2. Single Electricity System

Since 1988, the Irish electricity market has adopted a profdiseralization, prior to
this Electricity Supply Board (ESB) operated as a velyidategrated state owned

monopoly. The liberalization process has occurred in phaglssections of the

2 Electricity Distribution Counties refer to autonous regions, or municipalities located on the iglan
of Ireland.



122 market being progressively opened for competition, with the mamkigtely open
123 since 2004. The Northern Ireland Authority for Utility Regulati®AIRU) and the
124 Commission for Energy Regulation (CER) commenced on thaldvember 2007
125 governance of the Single Electricity Market (SEM). The SEMnN All-Island cross-
126  border electricity market incorporating both the Republic elalhd (ROI) and
127  Northern Ireland (NI). The SEM initiative established a whalle electricity market
128 for the island, which subsequently formed the All-Island Market Electricity
129  (AIME). In 2008, it had 2.5 million electricity customerstotal, 1.8 in ROl and 0.7
130  million in NI (Conlon, 2010). As a centralized gross mandapayl, all electricity in
131 SEM is traded through a market clearing mechanism based orageaebidding
132 their Short Run Marginal Cost (SRMC) and receiving the eésgsMarginal Price
133  (SMP) (Nepal and Jamasb, 2011). The SEM is operated and aeéngididy the
134  Single Electricity Market Operator (SEMO), which is a caatual joint venture
135 between Eirgrid and the Systems Operator for Northern nleléSONI), the
136 transmission system operators in the ROl and NI respéciiveth are Independent
137  System Operators (ISO)). The distribution systems amsrdDSO) of ROI and NI
138 are owned and operated by ESB Networks and Northern Irelaudrigity (NIE)
139  respectively. The SEM market design has features recemisof markets in other
140  jurisdictions (most notably Nordpool, the Eastern Australianketaand the former
141  British pool) but is a unique dual currency inter-jurisdictionatkat(Conlon, 2010).
142  The SEM represents the first synchronous system of elégtsiggtem of its kind in
143  the world. The transmission network consists of 6529 km of 400/220/140kViead
144  lines and 1083 km of 220/110/38kV underground cables. Due to ROI widely
145 dispersed and significant rural population, the electricityridigion network is

146  typically characterised by long length of 38kV (138977km) and medialtage



147  (20600km) overhead lines with low customer density of 12 per kasfwy 2006).
148 These unique characteristics provide an interesting markstutty in terms of
149  efficiency.

150

151

152

153

154

155

156  Table 1 Overview of the Electricity Sector market operatos in the ROl and NI

Republic of Northern

Ireland Ireland
Market Owner | Operator | Regulator | Owner | Operator | Regulator
Segment
Generation ESB anc| ESB anc CER ESB | ESB anc| NIAUR

others others and others

others
Transmission ESB Eirgrid CER NIE SONI NIAUR
System
Distribution ESB ESB CER NIE NIE NIAUR
System Networks| Networks
Ltd

Suppliers N/A Various CER N/A Various NIAUR

157



158 The EU Third Energy Package under Directive 2009/72/EC providese thr
159 unbundling models for achieving the separation of transmission desmaration and
160  supply activities (Groenendijik, 2009). Ireland currently does aotply with any of
161 the proposed models as Eirgrid is licensed by the CER tasatansmission system
162  operator (TSO) and is responsible for the operation and developofetiie
163  transmission grid while ownership of the transmission assefins with ESB,
164  responsible for the maintenance and construction of the sy$temrestructuring of
165 the Irish electricity market is inevitable under the EWebiive 2009/72/EC. Further
166  restructuring of the distribution network is anticipated WEBB networks National
167  plan envisaging the disentanglement of the national elegtdgstribution network
168 into 26 zones (ESB, 2009). As of 2012, data relating to ttlenieal efficiency of
169 electricity distribution is only available on a county baSise registered capacity of
170 the SEM is 11,388MW with thermal plants contributing 84% (9,535MW), Witih
171 (1,331MW), pumped storage 3% (292MW) and hydro 2% (216MW). The lalhdis
172 fuel mix for 2008 consisted of 61% Gas, 7% Peat, 11% Renewabféscdal, 4%
173 Oil, and 1% other. There is a growing trend evident since 20@ ancrease in
174  contributions of Peat, Gas and Renewables at the expense ahdiCoal (CER,
175  2009). The Annual Energy Flow of the SEM in GWhs for 2008 consisted 8829,
176  generated, 26,677 from the transmission system, with theibdison network
177  consuming 18714. The total customer sales for 2008 were 26,194, with DSO
178  contributing 24,043 and TSO 2150 (Niall, 2012). ESB Networks is¢kaded owner
179  of the electricity distribution system assets whilst ES8tworks Limited is the
180 licensed distribution system operator responsible for the pignmdevelopment,
181  construction, operation, maintenance and connection to the @tgctistribution

182 system. ESB Networks Limited is also responsible foriris&allation, maintenance
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and reading of electricity meters. Numerous countries are ogimgl incentive
regulation to promote efficiency improvement in electriciyansmission and

distribution utilities (Jamasb and Pollitt, 2001).

3. Literature Review on Electricity Distribution Efficie ncy Measurement

DEA has long been established as an advanced mathemagthbdology for
benchmarking and measuring efficiency a set of homogenous eadllied Decision
Making Units DMUs (Emrouznejad et al., 2008; Zhou et al., 2008, @adkSeiford,
2009). DEA models have been adopted and effectively to askes®ptimal
production of a wide variety of goods and and services includgrgudture,
transport, waste management and in particular the energiors(Sarkis and
Weinrach, 2001; Bevilacqua and Braglia, 2002zquez-Rowe et al., 2012; Lui and
Wen, 2012; Simdes et al., 2012; Caulfield et al., 2013; Zhou et al., 2014; Omrani et
al., 2015). Since the 1980’s DEA has been used to measure the egi@tiformance
of electricity utilities. The adoption of DEA to elecitic power systems has been
extensive as it accommodates the efficiency measurenmenultiple outputs and
multiple inputs without pre-assigned weights and where no functional s pre-
established but one is calculated from the sample observaticars émpirical way
(Murillo-Zamorano, 2004). These characteristics are pdatity relevant when
investigating, evaluating and modelling the performance lettricity distribution
utilities. Fare et al., (1983) pioneered research in this &rem they measured the
efficiency of electric plants in Illinois (USA) between 19&bd 1979, in order to
relate the efficiency scores obtained to the regulatioth@fsector. Their findings
indicate that regulation does not automatically result iiciefft operation of electric

utilities, nor does it result in consistent performance acpdasts. The relative
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efficiency of electricity distribution utilities has seertensive research worldwide in
the last decade due to the restructuring of electricityggnaarkets, particularly with
the introduction of regulation, privatisation and trade hheation in numerous
countries (Santos et al., 2010). Weyman-Jones, (1991, 1995) metheupedductive
efficiency of 12 area electricity boards in England and Whéfsre and after their
privatization in 1990. Less than half of the area boarde weghnical efficient and
wide divergences exist in their performance. Weyman-J¢h@g5) finds there are
numerous practical issues need to be resolved dangerslatroallusion, regulatory
commitment exist. Militios (1992) employed DEA to evaluate éffeciency of 45
distribution districts of the Greek Public Power Corporation (PRAJpting various
models to explore the effects of geographic region, size addspgarsity on the
results, concluding urban areas attain higher efficiencyesabian sparse populated
regions. Numerous studies have focused attention on the infpaenhership on the
efficiency of distribution utilities with conflicting result®ollitt (1995), Hjalmarsson
and Veiderpass (1992) conclude there exists no significant diffedeetween public
and privately owned electricity distribution utilities in ternfigexhnical efficiency. In
contrast to this Bagdadioglu et al., (1996) and Kumbhakar and &fisdon (1998)
find private ownership of electric utilities leads to grea#iciency performance as
opposed to public ownership. Lo et al., (2001) and Chien et al., (2003jigate the
efficiency of electricity distribution districts and servicenters associated with the
Taiwan Power Company (TPC) respectively. Both studies propss&dand service
center reorganization to increase efficiency. In both cdsgher efficiency is
attainable through reorganization. Yang and Lu (2006), Chen (2002nhaésiigate
Taiwan’s electricity distribution sector in a rural versusaur setting find on average

technical efficiency to be greater for urban areas aesaltrof the geographical

10
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dispersion of customers. They recommend including an environmentglean the
DEA analysis to account for these differing electricitytibution environments (i.e.
environmental variablé) Jha et al, (2011) analyze the performance of the igiectr
distribution system in Nepal using weight restriction DEA techesqto measure
efficiency. Again as with previous examples in the literarieetricity distribution
centre reorganization and directions for improvement are putafdrwahwa et al,
(2003) present a method for benchmarking the performance of tlaedge@t electric
distribution utilities in the U.S based on DEA. The resatslyze performance
efficiency, inefficient utilities, input-output variables andensitivity-based
classification of utilities. They conclude inefficientlities can adopt and develop
strategic plans to improve performance. For an extensiwiew on applications of
DEA on electricity distribution systems the reader isrrefitto (Santos et al., 2010;
Jamasb and Pollitt, 2001; Reyes and Tovar, 2009; Doraisamy, 208dkikah et al.,

2013; de Souza et al., 204).

4. Non-Parametric Data Envelopment Analysis (DEA) EfficiencyMeasurement
DEA is a mathematical programming non-parametric technicumplied in
performance measurement and benchmarking (Liu and Wen, 2012). hekas
applied in a range of empirical settings to identify tecaininefficiencies of DMUs
and provide targets for improvement for inefficient DMUs. @bkaret al., (1978)
pioneered the DEA approach, entitled Charnes-Cooper-Rhodes (Giie) where a
frontier based efficiency measurement is developed under &wrigéturns to Scale
(CRS). DMU’s operating on the constructed efficiency frontiez Pareto-optimal

efficient units and DMU’s not on the efficiency frontier amefficient. The

3 Environmental variables refer to environmentalusfices, non-discretionary, exogenously fixed
input or output factors that affect DEA efficiency.

11
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formulation of the primal form of the CCR linear programmimgdel to measure

total technical efficiency (TTE) for each DMU is givest a

Equation 1
MAX DMU , =6, =

m
Z _lurkyrz <

In this formulation, there anmm outputs produced; input resources, areiDMUs or
EDCs.kth DMU being evaluated in the setofE 1,...... , S DMU'’s, with an efficency
measure oby rated relative to all other DMU’s. The output dgfais the value of
outputr for DMUy, while X is the inpuf for DMUy during the period of observation.
Uik is the coefficient or weight assigned to outputs r computddersolution to the
DEA model, similarlyvi is the coefficent of weight assigned to input®mputed in
the DEA model. All weights are restricted and megativé. The measure of
efficiency is defined as the maximisation of the ratiavefghted linear combinations
of outputs to the weighted linear combinations of inputs, sulypebiet constraint that
the efficency score obtained for each DMU cannot exceed one.eflibiency score
is bounded between zero and one. The above CCR model is aorahcti
programming model and can be transformed to a linear programmafdemr if
either the denominaror or numerator of the rairo is fotoegtjual one (Ramanathan,

2005).

12
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Equation 2
m
Max DMU, =6, =3, U,V

Subject tOZLUrkyrz —Z?_lvjksz <0;z=1,...S;

n
2 VX =1

U,y Ze>0r=1,...m;j=1..n;
whereg is an infinitesimal positive number. This form is known asnthutiplier form

of the linear programming problem. The dual problem of theiptieitis solved for

computational convenience and examining the slack variables.

Equation 3

m +

Min 8, -e , St 2., S
Subject to:z; X, A, 48, =0X, [= 1,2, I

Z; VoA, =S =Yu r=1,2,..... ,m;

- +

23818 202=1,2,.......s.
wherebis the scalar efficiency measure of DMY “k” rate relatto all other DMU’s
sj_k slack variable for input constrairg, slack variables output cains{ which

are both constrained and to be non-negative,Aansl the dual coefficient or weight
assigned to DMU'’s. Efficiency scores are constructed bgsoméang how far a DMU
is from the frontier. DEA establishes an efficiency sdoreeach DMU relative to
other DMUs in the database that demonstrates whdtnbset efficent” DMUs are
and by how much less efficent DMUs fall short (Onut and Soner, 2B@rker et al,
(1984) constructed the Banker-Charnes-Cooper (BCC) model under Va&etoiens
to Scale (VRS) environment producing an efficiency frontier nmeasf technical
efficiency. The formulation of the BCC model is achievedaldding the convexity

constrainty* 4 =1 to (3). The BCC model allows for further analysis of tHeRC

13
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efficiency score by decomposing it into technical and scaleieggity components
thereby permitting an investigation of scale effects Kuhaet al., 2006). Scale
efficiency is a ratio of the two efficiency scores afta in the CCR and BCC models
and is not greater than one (Cooper et al., 2007).

Equation 4

Scale efficiency H.cq/ Gaee T

whereb6ccr and®®© are CCR and BCC efficiency scores of DMU respectivEhe
scale efficiency represents the proportion of inputs thathe further reduced after
pure technical in efficiency is eliminated if scale adpetts are possible.
Environmental, exogenous or non-discretionary variables are thosareéhabt under
the direct discretionary control of the DMUs or EDCs in ttase. The previous
illustrated DEA procedures implicity assume DMUs contrblvatiables, failing to

account for environmental variable influences.

Examples from DEA electricity distribution literature includeerse density index,
customer and network density, customer dispersion. Banker and K1&&§) whose
formulation follows, develop a single stage approach towdcdfor non-discretionary
environmental variables (quasi-fixed inputs and/or outputs whose tmaghiare

temporarilly constrained by contractual arrangements).

Equation 5

. n - m *
Min Hk_g(szIDsjk-l-zr:lsrk)
Subject to:z;sz/lﬁsj; =6x, j Olp;

s - .
zzzlsz/lzﬂjk =X ) O lp;
- +
2381820 z2=1,2,...,s.

14
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The software package DEA-Solver version 11 was useditoastthe DEA models

presented in this paper.

5. Research Framework and Data Selection

Ireland is 81,638 kfseparated politically into the Republic of Ireland (ROI) and
Northern Ireland (NI). The island of Ireland consists of 32 tiegh 26 in the ROI
and 6 in NI. These counties are further divided into four prosgiheenster, Munster,
Connaght and Ulster (see map Figure 1). This paper utilidataget of 26 Electricity
Distribution Counties (EDC) associated with ESB networks compathe ROI. Our
empirical study analyses the technical efficiency of ESBvosks interconnected
distribution system, each EDC responsible for medium and low voékegpricity

distribution to a particular geographic region in the ROI.

4 Counties of the island of Ireland refer to sub-oai divisions adopted for the purpose of geog@phi
demarcation and local government.

15
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Fig. 1 Electricity Distribution Counties (EDCSs) in the Republic of Ireland

Each EDC, autonomous region, or municipality is consideredZecesion Making
Unit (DMU) under DEA analysis. The year under observatio20i38, the first full
operational year of the All-Island Single Electricity MarkBEM). The use of annual
data reduces the influence of seasonal effects. Five inmds faur outputs
extensively used in similar studies that use DEA are employinis study. The input
and output variables adopted in this study are all expresggd/gical units. Keeney
and Rafiffa (1993) state a desirable set of measurementdatiould be complete,
decomposable, operational, non-redundant, and minimal. The adoptedhdidel
analysis incorporates internationally recognized variables mudity to capture the
essence of the electricity distribution process assaciaith ESB networks. The

database developed for DEA analysis in this study has beecedopredominately

16
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354

through collaborating and consultation with ESB networks. Other easwifcvariable
information include public sector databases SEAI, (2008), andatestatistics

database (CSO, Ireland). The definition and descriptivéstitat of the variables

adopted in the analysis are given in Tables 2 and 3.

Table 2 Definition of Variables Inputs (X) Outputs (Y)

Inputs (X) Outputs (Y)

Measurement

X1: Labour

Numerical Number

X2:Distribution Length

Kilometre (km)

X3: Transformer Capacity

Megavolt Ampere (MVA)

X4: Categorical Variable

[0, 1]

Y1: Gross Energy Consumption

Megawatt Hour (MWh)

Y2: Net Energy Consumption

Megawatt Hour (MWh)

Y3: No of Customers Numerical Number

Y4: Service Area km?

Y5: Diagnostic Parameter (Industrial Outj Numerical Numbe

Y6: Environmental Variable (Customer Li Numerical Number/per k

Density)

X1 Labour — This incorporates only the number of ESB netwenkployees within
each EDC irrespective of their status. It includes ommsraand maintenance,
technical, non-technical as well as administrative employees

X2 Distribution Network Length — This represents the 38kV, Medium (MV) and

Low Voltage (LV) distribution network measured in (km) per EDC

17
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X3 Transformer Capacity — It is the total capacity of transformers connected to the
distribution system for the distribution purpose. This is measursty/i.

X4 Categorical Variable —Use of categorical variable (0, 1) to represent if EBC
composed of a city or urban centre.

Y1 Gross Energy Consumed This represents the total energy utilized or consumed
within the EDC area. It is expressed in (MWhs).

Y2 Net Energy Consumed —This is Y1 Gross Energy Consumed less the
distribution losses incurred within the area served by th€.HDsses are included as
a proxy for the technical quality of the grid or the sendoelity of the grid. It is
expressed in (MWhs).

Y3 Number of Customers -t is the total number of connection points to supply the
customers. Customers are not differentiated based upon dtegodes. The number
of customers captures the number of nodes the utility must supply.

Y4 Service Area gm?) — The service area encapsulates the geographical diffsrence
among electricity distribution counties. Both the number of custerand thém? of
service area represent customer area density. Theesanda is employed an output
variable to reflect the difficulty of meeting custom@&mnagces over a less densely
populated area.

Y5 Diagnostic Parameter —The industrial output per EDC represents the selling
value of goods actually produced in the year, as reported bybukaesses
themselves, irrespective of whether sold or put into stocko(@808).

Y6 Environmental Variable — The customer line density defined as the number of

customers per (km) length of distribution network.

Table 3 Descriptive Statistic of Variables of the EDCs

18



380

381

382

383

384

385

386

387
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392

Inputs (X) | Number of Mean Standard | Minimum Maximum

Outputs EDCs Deviation Value Value
(Y)
X1 26 167 10z 58 53¢
X2 26 6186.8: 3793.2: 214¢ 1985¢
X3 26 22699.79 29495.09 4826.05 157025|8
Y1l 26 306753.9 398582.3 65217 2121970
Y2 26 284054.13 369087.18 60390.94 1964944.22
Y3 26 84099 106846.7 17925 565110
Y4 26 2703.46 1727.09 826.13 7499.95
Y5 26 3670943.07 6659936.3 161190 31274436
Y6 26 12.69 10.26 7 62

Model Orientation

DEA efficiency analysis can be determined by adopting inpotanizing or output-
maximizing modelslnput oriented modet model whose objective is to minimize
inputs while producing at least the given output lev@lsput oriented modelmodel
that attempts to maximize outputs while using no more than theveldsamount of
any input (Cooper et al., 2007). Traditionally, efficiency gsa$ in the electricity
sector assume the output fixed in a market with the kgl to serve all customers
in a predefined service territory (Von Hischhausen et a.l, 2B3j)ause EDCs are
unable to control the amount of energy consumed (consumer deraadd)he
environmental factors, and because the researchers wantss$dss the technical
efficiency of EDC’s under the objective of minimizing the amt of resources

utilised, input-oriented models were adopted.

19



393

394 Model 1 (Comprehensive): This is the base model and all other models are a
395 variation the inputs and outputs employed. This model is designedapsilate the
396 overall variables impacting on the technical efficiencyelsctricity distribution in
397 ROIL. This is an extensive model including four inputs and thréeutas This model
398 is an amalgamation of the first two models to represhkat averall operational
399 characteristic of EDC’s under analysis. Table 4 outlihesvarious models employed
400 in the analysis.

401

402 Model 2 (Basic Traditional): From the extensive DEA literature, the choice of
403 input/output variables for electricity distribution benchmarking needsctount for
404 international experience and data availability. Jamasb andt R2003) review 20
405 benchmarking studies in terms of electricity distribution &fficy establishing the
406 number of employeéglabour), network lengfh(capital) and transformer capacity
407 (peak load) the most frequently used input variables while outgaisumes being
408 energy delivered, number of customers. There is no pre-defeeof variables to
409 assess the performance of electricity distribution uslittend each study is case
410  specific (Giannakis et al., 2005). The basic model incorporageatiove mentioned
411 variables. Similar input/output combinations have been emplbyg@zadeh et al.,
412 2009a, 2009b, Sadjadi and Omrani, 2008).

413

414  Model 3 (Quality Service): The inclusion of distribution losses as a proxy for the

415 technical quality of the grid or the service quality af trid establishes the quality of

5 Using the number of employees imposes an implistiemption that the average number of working hours

is similar across firms. Therefore, total hours keat may be a better measure for labor input. Howelsga
availability required the use of this variable

® Estache et al, 2004 state network length can Ipdoged as an input or output variable, but the autises it as a
measure of input capital.

20



416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

electricity distribution service offered within each EBCDistribution losses are a
source of inefficiency and are the difference between lgadrieity required and the
electricity distributed to end-users. These losses ca teefmical and non-technical
nature (measurement error and unmetered supplier). A reduaticosts to the
consumer requires a reduction in both forms of losses and corgrilougereduction
in CO? emissions (Ramos-Real et al., 2009). The Gross energy coisungss the
distribution losses gives Net energy consumption (MWh). Thputioutput
combinations in model 3 have been successfully adopted by (RarabstRé, 2009,

Pacudan and de Guzman, 2002, Von Hirschhausen, 2006).

Discretionary models of DEA assume that all inputs and ougmetdiscretionary,
i.e., controlled by the management of each DMU and vatiéd discretion. In any
realistic situation, however, there exists external exogendixglgt factors or non-
discretionary inputs/outputs that are beyond the control of a DMdJgmgement that
influence the performance of EDCs. The final two modésngpt to acknowledge
and account for these influential factors. EDCs may not be apgraider equivalent
environmental conditions; that is certain EDCs may operata more favorable

position in terms of population density, topography, geography, indirgtdarea.

Model 4 (Urban): Adapted from (Miliotis, 1992), a categorical variable isaduiced
to account for EDCs that contain an urban centre/city. @maps are formed Urban
Distribution Counties (UDC) that contain Irish cities and Riiatribution Counties
(RDC) that do not. Two DMU groups are formed one containing alER€s and
from this group the DEA efficiency scores of UDCs containirgityaare calculated;

the second group excludes the UDCs containing a city leavingDZls RThe DEA
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441  efficiency scores of the remaining RDCs without a city eadculated. This is
442  equivalent to introducing a categorical variable (Cooper e2@0.7).

443

444  Model 5 (Diagnostic): Given the nature of the Irish Electricity market and the
445  variance in usage across the country, a diagnostic parawaterhosen to highlight
446  county differences. Non-discretionary models with traditionavirenmental
447  variables such as inverse density index, customer andretensity, and customer
448  dispersion were employed with conflicting results. The indaistutput variable was
449  incorporated into Non-discretionary model to account for diffees amongst EDCs
450 in terms of electricity characteristics, geography. Me authors knowledge this
451  variable has not been employed in DEA literature in alaimontext to this research.
452  This model incorporates all the variables in the compretemsodel whilst adding a
453  non-discretionary variable to measure each EDC’s Industrigubuthis additional
454  variable is in thousands of Euro and represents the selling shlgeods produced
455  within EDCs, as reported by the businesses themselusghdught this variable will
456  represent the different geographical energy configuration de@¥C Electricity
457  Distribution Counties of ESB networks. This data was extnachfa CSO (2008)
458  survey entitled “Census of Industrial Production”.

459

460 Model 6 (Environmental) This model includes non-discretionary models employing
461 the traditional environmental variable customer density, to acdoundifferences
462  across EDCs. This model is similar to model 5 in termspfitis/outputs employed
463  differing only in the variable included to account for diffgrelectricity distribution

464  characteristics across EDCs. A comparison with modetierefore sought.

7 The Central Statistic Office perform the dutiecollection, compilation, extraction and
dissemination for statistical purposes of informatielating to economic, social and general agivit
and conditions in the Republic of Ireland.
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Table 4 Model specification and variables employed for analysis

Model | Model 2 | Model | Model 4 | Model 5| Model 6
1 3
Inputs
X1: Labour v v v v v v
X2:Distribution v v v v v v

Length
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484

485

486

487

488

489

490

491

X3: Transformer v v 4 v v

Capacity

X4: Categorical v

Variable

Outputs

Y1: Gross Energy v

Consumption

Y2: Net Energy v v v v v

Consumed

Y3: No of v v v v v v

Customers

Y4: Service Area v v v v v

Y5: Diagnostic v

Parameter

YG6: v
Environmental

Variable

Correlation analysis of input and output variables

The relationship between inputs/outputs should be positively cedel@iuo and

Donthu, 2001). The correlation relationship between input/output blesiais

statistically verified using Pearson’s correlation. Theatgr the value of the
correlation coefficient, the stronger the relationship betw®en variables is. The
correlation coefficients from the input/output matrix are preskm Table 5. It can

be concluded that there is a strong relationship between labdwlistribution length
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514
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516

with Pearson’s of 0.974 similarly the Tables illustratesethis a weak relationship
between labour and customer density 0.152. The assumption G§adonicity”
relationship between input and output factors is satisfied (€bad985). That is, a
requirement that the relationship between inputs and outputs nofbie.éncreasing
the value of any input while keeping other factors constant shotildecoease any
output but should instead lead to an increase in the valtdedst one output. Dyson
et al., (2001) state this is achieved when increased inputsee@dficiency whilst
increased output increases efficiency. Also, a desirabjgepty of evaluation method
is its discriminating power as a summary measure. Datctes and model
validation according to Boussofiane et al., (1991) requires thahitienum number
of DMU observations (EDCs) is equal to, or larger thanptioeuct of the number of
inputs and outputs. Cooper et al.,, (2001), Golany and Roll, (1989) aiwo tke
number of DMU’s should be three times the sum of the input/outptdréa All the
models adopted, in this paper satisfy both of these conditions 26 E&x 4) or

3(3 + 4). Therefore the proposed DEA models are of high consalidity.
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517

Table 5 Correlation Coefficient between input and outputariables

X1: X2: X3: Y1 Y2: Y3: Y4: | Y5: YG6:
Labo | Distrib | Transfor | Gross | Net No of | Serv | Indust | Custo
ur ution mer Energy | Energy | Custom|ice | rial mer
Length | Capacity | Consu | Consu | ers Area | Outpu | Densit
med med t y

X1: Labour -

X2:Distribut | .974* -

ion Length *

X3:Transfo | .901* | .90** -

mer *

Capacity

Y1:GrossEn| .961* | .951** .969** -

ergy *

Consumed

Y2: Net 961* | ..961** | .969** .958** -

Energy *

Consumed

Y3: No of .969* | .969** .958** .995*%* | 997** -

Customers *

Y4: Service | .934* | .934** .78~ .84C .84C .857 -

Area *

Y5: .790* | .790** 871** .904** | .904** | .888** | 573 -

Industrial * *
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519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

Output

Y6: b71* | .571* 729%* 702%* | 702** | .703** | .490| .644*
Customer

Density

Note: ** Denotes Correlation is significant at the 0.01 lev¥&enotes Correlation is

significant at the 0.05 level

6. Empirical Results and Discussion
Model 1 (Comprehensive): Analysis and Improvement Direction$or Inefficient
EDCs
The relative efficiency value of the CCR model is theraWefficiency of the EDCs.
If the efficiency value equals 1, the DMU is efficieift is less than 1, the evaluated
EDC is inefficient (Cooper et al., 2007). The CCR model exhdatsstant returns to
scale assumption and measures the overall efficiencyafdr anit, specifically by
aggregating pure technical efficiency and scale efficientty one value. The BCC
model with variable returns to scale relates to pure teahefficiency accountable to
management skills and establishes scale effects. Thea#israre discussed in the
next section. The dual linear programming formulations of thB @ BCC models
were run 26 times, i.e one for each DMU or EDC. The resti®CR model analysis
indicate that 21 EDCs are inefficient, with only 5 EDCs apeg on the efficiency

frontier (Westmeath, Offaly, Laois Dublin, Letrim).
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539

Table 6 Individual efficiency scores of EDCs and return$o scale: Model 1

EDC TT | PTE | TTE/P | RTS| % % % % |% |%
County E TE
Regions
X1 X2 X3 Y2 | Y3| Y
91| 99 91 DRS - - - 210 O 0
Donegal 9.041 9.04| 9.04| 6
63 | 67 94 DRE - - - 0 0 |1.c¢
37.0| 37.0| 37.0
Cavan 1 4 1
71 96 74 IRS - | 28.7 - 41.3| O 0
Monagh 285 1 285 1
an 8 8
10 | 100 100 | CR§ O 0 0 0
Letrim 0
95 | 96 99 DRS| - - - 1921 0 | O
Sligo 5271 492|492| 6
86 | 9C 96 DRS| - - - 0 |57] 0
Roscom 142 14.1| 47.4 1
mon 5 8 0
98 | 100 98 DRS - - - 58.4132.| 0
Mayo 1.68| 181|168 6 | 7
82 | 100 82 DRS -18 - - 135| O 0
18.0| 33.8
Galway 3 6
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93 | 99 94 DRS - - - 1489| 0
7.13| 7.27 | 47.7
Clare 5
72 | 7€ 92 DRS - - - 0 0
Limeric 275| 276| 35.2
Kk 3 3 8
74 | 84 88 DRS - - - 172, O
Tippera 26.0| 26.0| 26.0| 5
ry 7 7 7
83| 90 92 DRS - 170(18.1| 20.1| O
16.7| 5 4 3
Kerry 9
70 | 10C 7C DRS - - 30.C| 7.21| O
30.0 30.1| 5
Cork 5 5
89| 90 98 DRS - - - 514 O
Waterfo 11.7| 114 | 114
rd 2 9 9
73 | 100 73 IRS - - - 0 2.8
26.8| 26.8 | 26.8 9
Carlow 2 1 1
1C | 10C 10C CRS| O 0 0 0 0
Dublin 0
65| 65 100 | DRS - - - 1483 0
Kildare 34.7| 34.7| 43.0
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5 5 2
80 | 87 92 DRS - - - 0 |58]35
Kilkenn 20.3| 20.1| 20.1 8
y 3 3 3
10 | 10C 10 |CRE| O 0 0 0 0|0
Laois 0
74 | 96 77 IRS - - - |[41C] 0| O
Longfor 259|259 259, 4
d 5 5 5
60 | 80 75 IRS - 1398| - 1411 0 | O
39.7| 4 |69.1| 4
Louth 0 2
78 | 81 96 DRS - - - |39 0] O
215]21.7|52.0| 9
Meath 2 3 7
10 | 10C 10 |CRE|0.2¢| O - 6.3C| 0 | O
0 33.2
Offaly 7
Westme | 10 | 100 100 | CR§ O 0 0| 0.8
ath 0
70 | 78 90 DRS - - - (081 0| O
Wexfor 29.8| 29.6 | 29.6
d 1 5 5
Wicklo | 91 | 99 91 DRS| - - - 0 13 | 20.
w 8.93] 9.11| 8.93 3
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542
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544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

Average | 83| 91 91 0 0

Total Technical Efficiency (TTE); Pure Technical Efficign®TE); Scale Efficiency
(TTE/PTE); (RTS) Returns to Scale; X1: Labour; X2:DistribntLength; X3:
Transformer Capacity; X4: Distribution Losses; Y1: Energn§umed; Y2: No of

Customers; Y3: Service Area

The average overall efficiency score of all the EDC83%, with 14 EDCs scoring
below this average value. This implies that the resourdeation of electricity
distribution counties is suboptimal with considerable room for impneve. In order
to identify, establish targets and indicate the improvemeasttilins necessary for
inefficient EDCs a slack analysis is employed to estalfliatiditional specific output
amounts or a decrease in specific input amounts leads to impeote in efficiency
ratings. The input slack values represented in Table 6 highlightsndeessary
reductions of the corresponding input factors to become techniedligient
generating units. It can be observed that slacks for effipiants with an efficiency
score of 100% are zero (Dublin)The potential for improvement of inefficient EDCs
is also presented in Table 6. (X1, X2, X3, Y2, Y3, Y4) shtwe potential
improvements that are attainable by inefficient EDCsinguts and outputs are
adapted accordingly. For example, the inefficient Sligo EDCdscrease employees
(X1) by 5.27%, distribution length (X2) by 4.92%, transformepacaty (X3) by
4.92% and allow for an increase in energy consumption (Y1) @B6%8. This means
Sligo EDC is over utilizing its inputs at current levels @ath be as efficient as its
peer group. However, the differences between efficientragfticient EDCs in terms
of distributions losses are not significant. It is clear fitbe analysis that inefficient

EDCs are predominantly associated with medium and lazge service areas. The 5
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588

efficient EDCs are all small sized service areasmmgathat these small EDCs are
more efficient at integrating their resources. The majofityDCs present decreasing

returns to scale characteristics.

Technical and Scale Efficiency Analysis

The BCC model was adopted to establish technical and stfadeerey of the
electricity distribution counties studied. These results atdicthe sources of
inefficiency amongst the EDCs. When interpreting the BG&@escor pure technical
efficiency, the number of efficient EDC rises to 9 with theerage pure technical
efficiency (PTE) of all the EDCs 91%. EDCs that have aesefficiency score less
than one are scale inefficient. A scale inefficient EBf@t exceeds the most
productive scale size (MPSS) will present decreasing retorssate. Alternatively, a
scale inefficient EDC that is smaller than the mostdpctive scale size will present
increasing returns to scale. MPSS is the optimal operatar&brmance of plants.
The EDCs Westmeath, Offaly, Laois, Dublin, Letrim operah both the CCR and
BCC efficiency frontier displaying 100% efficiency, exhibitingnstant returns to
scale characteristics, and hence are Pareto-KoopmacismtfiMayo, Galway, Cork,
and Carlow, exhibit 100% BCC efficiency but a lower score irRC8ence are
operating locally efficiently but not overall efficiently duethe scale size. They first
three EDCs are scale inefficient and should decrease thatiopescales to improve
overall efficiency as they present decreasing returnsate seith the exception of
Carlow. Carlow should increase operational scales. Donegaha@ghan, Clare,
Longford, Louth, and Wicklow all have pure technical efficie(leJE) scores greater
than their corresponding scale efficiency scores. The ED@G4oobkghan, Longford

and Louth should increase their operation scales as they exiaiigifising returns to
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613

scale to improve overall efficiency. Clare and Wicklow digptlecreasing returns to
scale indicating these EDCs have considerable scope for impeat@nn their
overall efficiency by resizing (decreasing) there scafesperation to the optimal
scale MPSS. The remaining nine EDCs all display overall lagdl technical
inefficiency, with a relatively high scale efficiency seofhese EDCs could improve
their technical efficiency by altering their resourceoedition and utilization which
would increase their overall efficiency score. Individualoggiicy results suggest that
the EDCs operating at the relatively more developed eagnt of Ireland have
noticeably higher average relative efficiency scoresh vpérformance of EDCs
deteriorating towards rural and the western parts ofriceld@his would be due to
increased population in Dublin’s surrounding EDCs with 40% of Irelapofsilation
residing in the East region (CSO, 2011), resulting in a morsede populated

distribution network.

Comparison and Discussion of Models

The six adopted models employ constant returns to scale techisotogestablish
total technical efficiency (TTE) for each of EDCs underlgsia. The numerical
efficiency scores attained for the models are given ineT@blThe main study is the
comprehensive model against which all other models are comzifedency of
each EDC is scored out of 100. The average efficiency adh@lmodels are given.
The spearman correlation coefficients are calculatedtabksh and assess the impact
of omitting/including certain variables on the results obtainedm the
comprehensive model. A spearman correlation coefficient of 10D0%irates the
dropped variable(s) have no significant effect on the resultasingldl from the

comprehensive model. The adoption of model 2 reflects the &tasatural model for
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627

efficiency analysis of electricity distribution utilitiextensively used in the literature.
The low correlation coefficient of 39% in relation to modelubgests omitting (1)
distribution losses and (O) service area has a significagttedin the results. This
trend of a very low correlation coefficient (35%) is alsers when comparing model
4 with model 1. This implies that establishing two DMU group$ectihg Rural
Distribution Counties (RDCs) and Urban Distribution CountieD@d) has a
significant effect on efficiency scores obtained. Howewlrgpping the variable
transformer capacity and including service area in theysisahas considerably less
effect on the results, represented by the correlationiceesif of 87%. Comparing
the spearman correlation coefficient results obtained for rmdsleind 6, it can be
seen that the inclusion of industrial output is statidficalore significant (0.74) than

the inclusion of the environmental variable customer density (0.78)

Table 7 Efficiency scores of all models adopted

EDC Model 1 | Model 2| Model 3| Model 4| Model 5| Model 6
Donegal 91 64 91 95 91 91
Cavan 63 63 61 69 71 63
Monaghan 71 7C 55 72 84 71
Letrim 10C 58 10C 10C 10C 10C
Sligo 95 84 92 10C 95 95
Roscommon 86 40 86 86 88 86
Mayo 98 67 91 98 100 98
Galway 82 51 82 82* 83 82
Clare 93 43 93 94 94 93
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Limerick 72 54 72 72* 100 72
Tipperary 74 64 72 78 82 74
Kerry 83 57 83 86 83 83
Cork 70 60 69 70* 100 70
Waterford 89 71 88 89* 96 93
Carlow 73 58 73 89 73 100
Dublin 100 100 100 100~ 100 100
Kildare 65 47 65 100 72 67
Kilkenny 80 80 64 80 80 80
Laois 100 100 99 100 100 100
Longford 74 69 67 82 77 83
Louth 60 31 60 10C 70 96
Meath 78 44 78 10C 78 78
Offaly 10C 55 10C 10C 10C 10C
Westmeath 10C 10C 72 10C 10C 10C
Wexford 70 7C 62 86 70 70
Wicklow 91 91 78 100 97 91
Mean 83 65 79 91 88 86
efficiency

Score

SCC with - .3€ .87 3k 74 TE
Model 1

Minimum 60 31 55 68 70 63
efficiency
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648

Score

Number of 4 3 3 10 8 6

efficient

EDCs

*Denotes UDCs Urban Distribution Counties; EDCs Electriciigtiibution Counties

SCC - Spearman Correlation Coefficients

The inclusion of environmental and categorical variables toumtcfor differences
across EDCs has significant effects on efficiency scdres descriptive statistics for
the comprehensive model accounting for EDCs that contain an unbizn (@ity) are
presented in Table 8. The comprehensive model was adopted &dl sample of
variables was sought for analysis. The total comprehensie&affy scores are given
in Table 7 (model 1). The impact of including environmental categl variable in
model 4 greatly influences the efficiency scores RDCs. @Goimgp with model 1
average efficiency score increases from 83 -91% with the nuafiledficient EDCs
rising from 5 to 8. When observing all 26 EDCs scale efficy TTE is relatively low
at 83% with scale efficiency being quite high at 91%. The Wi¥an scale efficiency
is quite close to this at 89% with RDCs scoring a likigher at 94%. When two
DMU groups are formed relating to rural and urban electrigyribution centers, it
is the former than out performs the latter in termsotdilt pure technical and scale
efficiency. Similarly the inclusion of a non-discretionamywvionmental variable in
model five increases efficiency for all EDCs with UDQeajly influenced (Cork,
Limerick, Waterford and Galway). Comparing with model 5 witbdel 1 in terms of
average efficiency score, an increases from 83 -88% wé&htimber of efficient

EDCs rising from 4 to 10. This is intuitively what one would etpeith UDCs

36



649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

producing greater industrial output than RDCs. All EDCs seeinarease in
efficiency. Non-discretionary models employing the traditionalvirenmental

variables inverse density, customer density and customer simpavere pursued.
The model incorporating the customer density variable was ngosficant. A direct

comparison can therefore be made with our constructed diagnustiel employing
non-discretionary industrial output (model 5) in place of the tmadit environmental
variable customer density (model 6). In terms of averageativefficiency model 5
returns a higher efficiency of 88% as opposed to model 6 with 8&%¥%.the number
of efficient EDCs in model 5 is 8, this falls to 5 when obsgr model 6 in Table 7.
All EDCs obtain a higher efficiency score in diagnostic mé&deihen compared with
the environmental model 6. The diagnostic parameter industriputolias more
explanatory power when attempting to account for differing &gt distribution

characteristics across EDCs when compared with tradition@loemental variables

that have been extensively adopted in the DEA literature.

Table 8 Descriptive statistics of EDCs divided into categies of RDCs and UDCs

Model 1 | Number Mean Standard | Minimum | Maximum No of
of Efficiency | Deviation Value Value Efficient

EDCs Score EDCs

All

EDCs

ITE 26 0.83 0.126 0.60 100 4

PTE 26 0.91 0.106 0.65 100 9

SE 26 0.91 100 6
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666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

RDCs
TITE 21 0.91 0.099 0.69 100 9
PTE 21 0.96 0.068 0.71 100 14
SE 21 0.94 100 9
UDCs

I1TE 5 0.83 0.126 0.72 100 1
PTE 5 0.93 0.175 0.76 100 3
SE 5 0.88 100 1

SE = TTE/PTE; EDC = Electricity Distribution Counties; B®— Rural Distribution

Counties; UDCs — Urban Distribution Counties.

Efficiency Improvement through Reorganization of EDCs

In this study, we investigated possible reorganisation alteesato reduce the
number of EDCs to improve resource utilization and promote i@ifiy are
investigated. Reorganisation and operational mergersasible methods to increase
efficiency. Thus, the objective of EDC reorganisation @sused on improving
overall efficiency. Based on geographical convenience, druoctsring and
amalgamation of the current 26 EDCs within ESB Networksibligion framework
has beerhypothesized. Ireland with its relatively small sizearsp population and
installed capacity would benefit from the aggregation ef 26 EDCs to 11 more

efficient and manageable Electricity distribution Zones (EPZThis would also
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greatly reduce duplication of services between EDCs. Duegdographical
limitations, only adjacent EDCs are combined to form EDZs. examine the
reorganization alternatives, the CCR and BCC models weresdppliestablish total
technical efficiency (TTE) and pure technical efficiencyTEp along with scale
efficiency (SE). Due to the reduction in number of DMUspéoyed comparisons are
only made with the original basic and quality models (2 andh@sd models have
been extensively adopted in the literature. The resultshef réstructuring are
displayed in Table 9. For example EDCs Offaly, Laois aitkeliny can combine to

form the Central Electricity Distribution Zone.

LEGEND

Electricity Distribution Zone Boundaries

[ nNorthern Ireland

CENTRAL WEST

I

i

0 15 30 60 90

- Kilometers

Fig. 2 Electricity Distribution Zones (EDZs)
In terms of the basic model both cases, the efficienajtsesbtained are significantly
higher after TTE increasing 15% from 65-80% whilst PTE efficy increased 14%

from 79% to 93% after reorganization of EDCs. A similar trendbserved when
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comparing the quality model before with both the TTE and Rddteshigher after
restructuring. TTE increases by 6% to 85% PTE and increase3d%yo 95%. When
observing all eight models under constant and variables returssate, comparing
pre and post electricity distribution restructuring, litterigtion is shown amongst the
number of efficient DMUs but efficiency is gained when éying the Electricity

Distribution Zones concept for distribution.

Table 9 Reorganization of EDCs into EDZs to improve efficienc

EDC Model 2 CCR-I BCC-I Scale Efficiency
Donegal 64 72 88
Letrim 58 100 58
Sligo 84 91 92
North West Zone 94 98 96
Mayac 67 o8 68
Galway 51 57 8¢
West Zone 76 82 93
Clare 43 49 88
Limerick 54 55 98
Central West Zone 57 86 66
Kerry 57 63 90
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Cork 60 75 80
South West Zone 74 80 93
Roscommon 40 54 74
Longford 69 96 72
Westmeath 100 100 100
North Central Zone 91 99 92
Offaly 55 76 72
Laois 100 100 100
Kilkenny 80 85 94
Central Zone 100 100 100
Tipperan 64 83 77
Waterforc 71 8C 89
South Central Zone 92 94 98
Cavan 63 65 97
Monaghan 70 96 73
Louth 31 80 39
North East Zone 50 86 58
Kildare 47 56 84
Meath 44 53 83
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705
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712

713

714

Central East Zone 47 95 49
Dublin East Zone 100 100 100
Carlow 58 100 58
Wexford 70 76 92
Wicklow 91 97 94
South East Zone 100 100 100
CCR-I BCC-I

Basic Model 2 65 (3) 79 (5)

Reorganised Model 2 80 (3 93 (3

Quality Model 3 79 (3 85 (7

Reorganised Model 3 85 (2 95 (5

Note Figures in the parenthesis represent efficient DMUs

7. Conclusions

This study has extended the literature on efficiency analysishe electricity

distribution sector in the Republic of Ireland. The employmenh@firish electricity

distribution system and Electricity Distribution Counties (EDE€}t&e main research

focus has never been done. The paper provides a DEA framework asunme

technical efficiency; to establish if empirical efeaicy gains were possible, and to

investigate the reorganisation of the electricity distrdutnetwork for efficiency
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gains. The paper has explored the efficiency and benchroértke EDCs from a
comprehensive viewpoint with the employment of five difigrmodels to capture the
characteristics of EDCs. Analysis, discussion and presamtatff key findings
comparing all five models are presented. External factatsatte not controllable by
EDCs can inhibit efficiency. This was accounted for by adgpt categorical
variable to account for urban/rural environments and a diagnostaampter to
account for differing electricity distribution characteristacross EDCs, comparisons
were made with employing traditional environmental variablé& adoption of the
diagnostic parameter proves to be a superior variable. Tpoged reorganization
alternative of employed Electricity Distribution Zones (ED&ghieved higher
efficiency scores of up 10%. The results of this paperassmst ESB networks to
improve the operational management of EDCs. Also, thipirgal analysis can
provide useful information to the policy makers responsible &mtectity distribution
regulation under changing market regimes. The DEA benchmarkagpemployed
here offers an alternative form of electricity distributicegulation open to the
Commission for Energy Regulation (CER) in Ireland as opposé#tetstatus quo of
OPEX and CAPEX regulation. This alternative approach can be extityyt other

countries with similar electricity distribution environments.
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