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A Framework for Establishing the Technical Efficiency of Electricity 50 

Distribution Counties (EDC) based on Data Envelopment Analysis 51 

 52 

ABSTRACT 53 

European Energy market liberalization has entailed the restructuring of electricity 54 

power markets through the unbundling of electricity generation, transmission and 55 

distribution, supply activities and introducing competition into electricity generation. 56 

Under these new electricity market regimes, it is important to have an evaluation tool 57 

that is capable of examining the impacts of these market changes. The adoption of 58 

Data Envelopment Analysis as a form of benchmarking for electricity distribution 59 

regulation is one method to conduct this analysis. This paper applies a Data 60 

Envelopment Analysis framework to the electricity distribution network in Ireland to 61 

explore the merits of using this approach, to determine the technical efficiency and 62 

the potential scope for efficiency improvements through reorganizing and the 63 

amalgamation of the distribution network in Ireland. The results presented show that 64 

overall grid efficiency is improved through this restructuring. A diagnostic parameter 65 

is defined and pursued to account for aberrations across Electricity Distribution 66 

Counties as opposed to the traditionally employed environmental variables. The 67 

adoption of this diagnostic parameter leads to a more intuitive understanding of 68 

Electricity Distribution Counties. 69 

 70 

Key Words: Data Envelopment Analysis; Technical efficiency; performance 71 

measurement/evaluation, Electricity Distribution. 72 

 73 
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1. Introduction 75 

The structural adjustment of Electricity Power Systems (EPS) liberalisation over the 76 

last 20 years worldwide has seen a significant shift in focus from regulated to a 77 

deregulated environment to enhance technical efficiency, financial viability and guard 78 

against the threat dwindling fossil fuel resources coupled with increasing fuel prices. 79 

The underlying rational behind these reforms is to foster a shift from an inefficient 80 

monopolized vertically-integrated industry to an efficient competitive electricity 81 

market environment (Trevino, 2008). The transmission and distribution networks of a 82 

nation’s electricity system are natural monopolies, and as such are less affected by the 83 

recent EPS deregulation. However, as electricity policy thinking has altered with 84 

private sector participants in the generation sector,  regulatory reform and incentive 85 

regulation of electricity distribution utilities have become more common (Farsi et al., 86 

2007). Implementing benchmark performance measurement and assessing technical 87 

efficiency of electricity distribution utilities1 has seen extensive research in recent 88 

years with DEA at the forefront of this research. Effective regulation in terms of 89 

electricity distribution, network access, network interconnection and delivery prices, 90 

network investment and network service quality are paramount components of 91 

successful EPS liberalisation programs worldwide (Joskow, 2008). Data Envelopment 92 

Analysis (DEA) concepts were first introduced by Farrell (1957) but later the 93 

approach was pioneered Charnes et al., (1978) that has led to the foundations of a 94 

literature field that has formed at the interface of operational research and economics. 95 

This paper employs a DEA non-parametric methodology to establish a frontier or best 96 

practice benchmark measure of the relative performance of twenty-six Electricity 97 

                                                             
1 We adopt the umbrella term utilities to refer to electricity distribution organizations, companies, 
districts, centers, zones, areas, regions, counties and operators. 
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Distribution Counties (EDC)2 in Republic of Ireland (ROI). The aims and objectives 98 

of this research are: 1) to establish technical efficiency and differentiate between 99 

efficient and inefficient EDCs by implementing the DEA benchmarking approach to 100 

electricity distribution in the ROI; 2) to propose specific directions to enhance 101 

operational management and to improve the utilisation of resources within the 102 

inefficient EDCs and 3) to investigate the possibility of reorganising and 103 

amalgamation of existing EDCs to improve efficiency of electricity supply networks 104 

distribution system based on geographical convenience.  105 

The research conducted in this paper adds to the field of research in evaluating 106 

the technical efficiency of power systems. Firstly, in its application to the test system 107 

- all island SEM, secondly, in its employment of input-output parameters and 108 

alternative combinations to develop new models based on the DEA techniques for the 109 

efficiency assessment. The input-output parameters, alternative combinations and 110 

constructed DEA models are the salient contributions of the paper. A significant 111 

contribution of the current research is the wind generating regional DEA model 112 

employed in the National level efficiency context as it provides a new framework for 113 

evaluating wind generation on a regional basis. 114 

 115 

 116 

2. Single Electricity System 117 

 118 

Since 1988, the Irish electricity market has adopted a process of liberalization, prior to 119 

this Electricity Supply Board (ESB) operated as a vertically integrated state owned 120 

monopoly. The liberalization process has occurred in phases with sections of the 121 

                                                             
2 Electricity Distribution Counties refer to autonomous regions, or municipalities located on the island 
of Ireland. 



 6

market being progressively opened for competition, with the market entirely open 122 

since 2004. The Northern Ireland Authority for Utility Regulation (NAIRU) and the 123 

Commission for Energy Regulation (CER) commenced on the 1st November 2007 124 

governance of the Single Electricity Market (SEM). The SEM is an All-Island cross-125 

border electricity market incorporating both the Republic of Ireland (ROI) and 126 

Northern Ireland (NI). The SEM initiative established a wholesale electricity market 127 

for the island, which subsequently formed the All-Island Market for Electricity 128 

(AIME). In 2008, it had 2.5 million electricity customers in total, 1.8 in ROI and 0.7 129 

million in NI (Conlon, 2010). As a centralized gross mandatory pool, all electricity in 130 

SEM is traded through a market clearing mechanism based on generators bidding 131 

their Short Run Marginal Cost (SRMC) and receiving the System Marginal Price 132 

(SMP) (Nepal and Jamasb, 2011). The SEM is operated and administered by the 133 

Single Electricity Market Operator (SEMO), which is a contractual joint venture 134 

between Eirgrid and the Systems Operator for Northern Ireland (SONI), the 135 

transmission system operators in the ROI and NI respectively (both are Independent 136 

System Operators (ISO)).  The distribution systems operators (DSO) of ROI and NI 137 

are owned and operated by ESB Networks and Northern Ireland Electricity (NIE) 138 

respectively. The SEM market design has features reminiscent of markets in other 139 

jurisdictions (most notably Nordpool, the Eastern Australian market and the former 140 

British pool) but is a unique dual currency inter-jurisdictional market (Conlon, 2010). 141 

The SEM represents the first synchronous system of electricity system of its kind in 142 

the world. The transmission network consists of 6529 km of 400/220/110kV overhead 143 

lines and 1083 km of 220/110/38kV underground cables. Due to ROI widely 144 

dispersed and significant rural population, the electricity distribution network is 145 

typically characterised by long length of 38kV (138977km) and medium voltage 146 
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(20600km) overhead lines with low customer density of 12 per km (Walsh, 2006). 147 

These unique characteristics provide an interesting market to study in terms of 148 

efficiency. 149 

 150 

 151 

 152 

 153 

 154 

 155 

Table 1 Overview of the Electricity Sector market operators in the ROI and NI  156 

 Republic of 

Ireland 

 Northern  

Ireland 

 

Market 

Segment 

Owner Operator Regulator Owner Operator Regulator 

Generation ESB and 

others 

ESB and 

others 

CER ESB 

and 

others 

ESB and 

others 

NIAUR 

Transmission  

System 

ESB Eirgrid CER NIE SONI NIAUR 

Distribution 

System 

ESB 

Networks 

ESB 

Networks 

Ltd 

CER NIE NIE NIAUR 

Suppliers N/A Various CER N/A Various NIAUR 

 157 
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The EU Third Energy Package under Directive 2009/72/EC provides three 158 

unbundling models for achieving the separation of transmission from generation and 159 

supply activities (Groenendijik, 2009). Ireland currently does not comply with any of 160 

the proposed models as Eirgrid is licensed by the CER to act as transmission system 161 

operator (TSO) and is responsible for the operation and development of the 162 

transmission grid while ownership of the transmission asset remains with ESB, 163 

responsible for the maintenance and construction of the system. The restructuring of 164 

the Irish electricity market is inevitable under the EU Directive 2009/72/EC. Further 165 

restructuring of the distribution network is anticipated with ESB networks National 166 

plan envisaging the disentanglement of the national electricity distribution network 167 

into 26 zones (ESB, 2009). As of 2012, data relating to the technical efficiency of 168 

electricity distribution is only available on a county basis. The registered capacity of 169 

the SEM is 11,388MW with thermal plants contributing 84% (9,535MW), wind 11% 170 

(1,331MW), pumped storage 3% (292MW) and hydro 2% (216MW). The All-Island 171 

fuel mix for 2008 consisted of 61% Gas, 7% Peat, 11% Renewables, 17% coal, 4% 172 

Oil, and 1% other. There is a growing trend evident since 2005 of an increase in 173 

contributions of Peat, Gas and Renewables at the expense of Oil and Coal (CER, 174 

2009). The Annual Energy Flow of the SEM in GWhs for 2008 consisted of 29,981 175 

generated, 26,677 from the transmission system, with the distribution network 176 

consuming 18714. The total customer sales for 2008 were 26,194, with DSO 177 

contributing 24,043 and TSO 2150 (Niall, 2012). ESB Networks is the licensed owner 178 

of the electricity distribution system assets whilst ESB Networks Limited is the 179 

licensed distribution system operator responsible for the planning, development, 180 

construction, operation, maintenance and connection to the electricity distribution 181 

system.  ESB Networks Limited is also responsible for the installation, maintenance 182 
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and reading of electricity meters. Numerous countries are employing incentive 183 

regulation to promote efficiency improvement in electricity transmission and 184 

distribution utilities (Jamasb and Pollitt, 2001). 185 

 186 

3. Literature Review on Electricity Distribution Efficie ncy Measurement 187 

DEA has long been established as an advanced mathematical methodology for 188 

benchmarking and measuring efficiency a set of homogenous entities called Decision 189 

Making Units DMUs (Emrouznejad et al., 2008; Zhou et al., 2008, Cook and Seiford, 190 

2009). DEA models have been adopted and effectively to assess the optimal 191 

production of a wide variety of goods and and services including agriculture, 192 

transport, waste management and in particular the energy sector (Sarkis and 193 

Weinrach, 2001; Bevilacqua and Braglia, 2002; Vázquez-Rowe et al., 2012; Lui and 194 

Wen, 2012; Simões et al., 2012; Caulfield et al., 2013; Zhou et al., 2014; Omrani et 195 

al., 2015). Since the 1980’s DEA has been used to measure the relative performance 196 

of electricity utilities. The adoption of DEA to electricity power systems has been 197 

extensive as it accommodates the efficiency measurement of multiple outputs and 198 

multiple inputs without pre-assigned weights and where no functional form is pre-199 

established but one is calculated from the sample observations in an empirical way 200 

(Murillo-Zamorano, 2004). These characteristics are particularly relevant when 201 

investigating, evaluating and modelling the performance of electricity distribution 202 

utilities. Fare et al., (1983) pioneered research in this area when they measured the 203 

efficiency of electric plants in Illinois (USA) between 1975 and 1979, in order to 204 

relate the efficiency scores obtained to the regulation of the sector. Their findings 205 

indicate that regulation does not automatically result in efficient operation of electric 206 

utilities, nor does it result in consistent performance across plants. The relative 207 
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efficiency of electricity distribution utilities has seen extensive research worldwide in 208 

the last decade due to the restructuring of electricity energy markets, particularly with 209 

the introduction of regulation, privatisation and trade liberalisation in numerous 210 

countries (Santos et al., 2010). Weyman-Jones, (1991, 1995) measured the productive 211 

efficiency of 12 area electricity boards in England and Wales before and after their 212 

privatization in 1990. Less than half of the area boards were technical efficient and 213 

wide divergences exist in their performance. Weyman-Jones (1995) finds there are 214 

numerous practical issues need to be resolved dangers of market collusion, regulatory 215 

commitment exist. Militios (1992) employed DEA to evaluate the efficiency of 45 216 

distribution districts of the Greek Public Power Corporation (PPC), adopting various 217 

models to explore the effects of geographic region, size and grid sparsity on the 218 

results, concluding urban areas attain higher efficiency scores than sparse populated 219 

regions. Numerous studies have focused attention on the impact of ownership on the 220 

efficiency of distribution utilities with conflicting results. Pollitt (1995), Hjalmarsson 221 

and Veiderpass (1992) conclude there exists no significant difference between public 222 

and privately owned electricity distribution utilities in terms of technical efficiency. In 223 

contrast to this Bagdadioglu et al., (1996) and Kumbhakar and Hjalmarsson (1998) 224 

find private ownership of electric utilities leads to greater efficiency performance as 225 

opposed to public ownership. Lo et al., (2001) and Chien et al., (2003) investigate the 226 

efficiency of electricity distribution districts and service centers associated with the 227 

Taiwan Power Company (TPC) respectively. Both studies propose district and service 228 

center reorganization to increase efficiency. In both cases higher efficiency is 229 

attainable through reorganization. Yang and Lu (2006), Chen (2002) also investigate 230 

Taiwan’s electricity distribution sector in a rural versus urban setting find on average 231 

technical efficiency to be greater for urban areas as a result of the geographical 232 
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dispersion of customers. They recommend including an environmental variable in the 233 

DEA analysis to account for these differing electricity distribution environments (i.e. 234 

environmental variable)3. Jha et al, (2011) analyze the performance of the electricity 235 

distribution system in Nepal using weight restriction DEA techniques to measure 236 

efficiency. Again as with previous examples in the literature electricity distribution 237 

centre reorganization and directions for improvement are put forward. Pahwa et al, 238 

(2003) present a method for benchmarking the performance of the 50 largest electric 239 

distribution utilities in the U.S based on DEA. The results analyze performance 240 

efficiency, inefficient utilities, input-output variables and sensitivity-based 241 

classification of utilities. They conclude inefficient utilities can adopt and develop 242 

strategic plans to improve performance. For an extensive review on applications of 243 

DEA on electricity distribution systems the reader is referred to (Santos et al., 2010; 244 

Jamasb and Pollitt, 2001; Reyes and Tovar, 2009; Doraisamy, 2004; Kherikhah et al., 245 

2013; de Souza et al., 204). 246 

 247 

4. Non-Parametric Data Envelopment Analysis (DEA) Efficiency Measurement 248 

DEA is a mathematical programming non-parametric technique, applied in 249 

performance measurement and benchmarking (Liu and Wen, 2012). It has been 250 

applied in a range of empirical settings to identify technical inefficiencies of DMUs 251 

and provide targets for improvement for inefficient DMUs. Charnes et al., (1978) 252 

pioneered the DEA approach, entitled Charnes-Cooper-Rhodes (CCR) model where a 253 

frontier based efficiency measurement is developed under Constant Returns to Scale 254 

(CRS). DMU’s operating on the constructed efficiency frontier are Pareto-optimal 255 

efficient units and DMU’s not on the efficiency frontier are inefficient. The 256 

                                                             
3 Environmental variables refer to environmental influences, non-discretionary, exogenously fixed 
input or output factors that affect DEA efficiency. 



 12

formulation of the primal form of the CCR linear programming model to measure 257 

total technical efficiency (TTE) for each DMU is given as: 258 

 259 

Equation 1 260 

MAX DMU k =θk =
urk yykr=1

m

∑

vjkx jkr=1

n

∑

Subject to: 
urkyrzr=1

m

∑

vjk xjzr=1

n

∑
≤1;  z=1,............, s;

urkvjk ≥ 0;  r = 1,........m; j = 1,......, n;

 261 

 262 

 263 

In this formulation, there are m outputs produced, n input resources, and s DMUs or 264 

EDCs. kth DMU being evaluated in the set of z = 1,……, s DMU’s, with an efficency 265 

measure of θk rated relative to all other DMU’s.  The output data yrk is the value of 266 

output r for DMUk, while xjk  is the input j for DMUk during the period of observation. 267 

urk is the coefficient or weight assigned to outputs r computed in the solution to the 268 

DEA model, similarly vrk is the coefficent of weight assigned to inputs j computed in 269 

the DEA model.  All weights are restricted and non-negative".  The measure of 270 

efficiency is defined as the maximisation of the ratio of weighted linear combinations 271 

of outputs to the weighted linear combinations of inputs, subject to the constraint that 272 

the efficency score obtained for each DMU cannot exceed one.  The efficiency score 273 

is bounded between zero and one.  The above CCR model is a fractional 274 

programming model and can be transformed to a linear programming problem if 275 

either the denominaror or numerator  of the rairo is forced to equal one (Ramanathan, 276 

2005).  277 
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Equation 2 278 

Max DMUk =θk =
r=1

m

∑ urk yrk

Subject to: urkyrz − vjkx jz ≤ 0;
r=1

n

∑
r=1

m

∑  z = 1,......,s;

vjkx jk =1
r=1

n

∑

µr,vj ≥ ε > 0;r = 1,......,m; j = 1,..., n;

 279 

where ε is an infinitesimal positive number. This form is known as the multiplier form 280 

of the linear programming problem.  The dual problem of the multiplier is solved for 281 

computational convenience and examining the slack variables.  282 

Equation 3 283 

Min θk −ε(
j=1

n

∑ sjk +
r=1

m

∑ s rk

+
)

Subject to: 
z=1

s

∑ x jzλz + sjk

−
=θx jk   j = 1, 2,......, n;

z=1

s

∑ yrzλz − s rk

+
= yrk  r = 1, 2,......, m;

λz,s jk

−
,s rk

+
≥ 0 z = 1, 2,......,s. 

 284 

where θk is the scalar efficiency measure of DMY “k” rate relative to all other DMU’s 285 

 slack variable for input constraint, slack variables output constraints, which 286 

are both constrained and to be non-negative, and λz is the dual coefficient or weight 287 

assigned to DMU’s. Efficiency scores are constructed by measuring how far a DMU 288 

is from the frontier. DEA establishes an efficiency score for each DMU relative to 289 

other DMUs in the database that demonstrates what the “most efficent” DMUs are 290 

and by how much less efficent DMUs fall short (Onut and Soner, 2007). Banker et al, 291 

(1984) constructed the Banker-Charnes-Cooper (BCC) model under Variable Returns 292 

to Scale (VRS) environment producing an efficiency frontier measure of technical 293 

efficiency.  The formulation of the BCC model is achieved by adding the convexity 294 

constraint λz =1
z=1

s

∑  to (3).  The BCC model allows for further analysis of the CCR. 295 

s jk srk
+
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efficiency score by decomposing it into technical and scale efficiency components 296 

thereby permitting an investigation of scale effects (Thakur et al., 2006). Scale 297 

efficiency is a ratio of the two efficiency scores obtained in the CCR and BCC models 298 

and is not greater than one (Cooper et al., 2007).   299 

Equation 4 300 

Scale efficiency = θCCR /θBCC θCCR/θBCC  301 

where θCCR and θBCC are CCR and BCC efficiency scores of DMU respectively. The 302 

scale efficiency represents the proportion of inputs that can be further reduced after 303 

pure technical in efficiency is eliminated if scale adjustments are possible.  304 

Environmental, exogenous or non-discretionary variables are those that are not under 305 

the direct discretionary control of the DMUs or EDCs in this case.  The previous 306 

illustrated DEA procedures implicity assume DMUs control all variables, failing to 307 

account for environmental variable influences.    308 

 309 

Examples from DEA electricity distribution literature include inverse density index, 310 

customer and network density, customer dispersion. Banker and Morey (1986) whose 311 

formulation follows, develop a single stage approach to account for non-discretionary 312 

environmental variables (quasi-fixed inputs and/or outputs whose magnitured are 313 

temporarilly constrained by contractual arrangements).  314 

Equation 5 315 

Min θk −ε( s jk

−
+ s rk

+

r=1

m

∑
j∈I D

n

∑ )

Subject to: x jzλz + s jk

−
=θ xjk  j ∈ I Dz=1

s

∑ ;

xjzλz +
z=1

s

∑ s jk

−
= xjk   j ∈ I ND;

yrzλz − s rk

+
= yrk  r=1,2,.....m;

z=1

s

∑

λz,s jk

−
,s rk

+
≥ 0   z = 1, 2,...., s. 

 

316 
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The software package DEA-Solver version 11 was used to estimate the DEA models 317 

presented in this paper. 318 

  319 

5. Research Framework and Data Selection 320 

Ireland is 81,638 km2 separated politically into the Republic of Ireland (ROI) and 321 

Northern Ireland (NI). The island of Ireland consists of 32 counties4, 26 in the ROI 322 

and 6 in NI. These counties are further divided into four provinces Leinster, Munster, 323 

Connaght and Ulster (see map Figure 1). This paper utilizes a dataset of 26 Electricity 324 

Distribution Counties (EDC) associated with ESB networks company in the ROI. Our 325 

empirical study analyses the technical efficiency of ESB networks interconnected 326 

distribution system, each EDC responsible for medium and low voltage electricity 327 

distribution to a particular geographic region in the ROI.  328 

                                                             
4 Counties of the island of Ireland refer to sub-national divisions adopted for the purpose of geographic 
demarcation and local government. 
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 329 

Fig. 1 Electricity Distribution Counties (EDCs) in the Republic of Ireland 330 

 331 

Each EDC, autonomous region, or municipality is considered as a Decision Making 332 

Unit (DMU) under DEA analysis. The year under observation is 2008, the first full 333 

operational year of the All-Island Single Electricity Market (SEM). The use of annual 334 

data reduces the influence of seasonal effects. Five inputs and four outputs 335 

extensively used in similar studies that use DEA are employed in this study. The input 336 

and output variables adopted in this study are all expressed in physical units. Keeney 337 

and Rafiffa (1993) state a desirable set of measurement factors should be complete, 338 

decomposable, operational, non-redundant, and minimal. The adopted five model 339 

analysis incorporates internationally recognized variables judiciously to capture the 340 

essence of the electricity distribution process associated with ESB networks. The 341 

database developed for DEA analysis in this study has been sourced predominately 342 
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through collaborating and consultation with ESB networks. Other sources of variable 343 

information include public sector databases SEAI, (2008), and central statistics 344 

database (CSO, Ireland). The definition and descriptive statistics of the variables 345 

adopted in the analysis are given in Tables 2 and 3. 346 

 347 

Table 2 Definition of Variables Inputs (X) Outputs (Y) 348 

Inputs (X) Outputs (Y) Measurement 

X1: Labour Numerical Number 

X2:Distribution Length Kilometre (km) 

X3: Transformer Capacity Megavolt Ampere (MVA) 

X4: Categorical Variable [0, 1] 

Y1: Gross Energy Consumption Megawatt Hour (MWh) 

Y2: Net Energy Consumption Megawatt Hour (MWh) 

Y3: No of Customers Numerical Number 

Y4: Service Area ��
� 

Y5: Diagnostic Parameter (Industrial Output) Numerical Number 

Y6: Environmental Variable (Customer Line 

Density) 

Numerical Number/per km 

 349 

X1 Labour – This incorporates only the number of ESB network employees within 350 

each EDC irrespective of their status. It includes operation and maintenance, 351 

technical, non-technical as well as administrative employees. 352 

X2 Distribution Network Length – This represents the 38kV, Medium (MV) and 353 

Low Voltage (LV) distribution network measured in (km) per EDC. 354 
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X3 Transformer Capacity – It is the total capacity of transformers connected to the 355 

distribution system for the distribution purpose. This is measured in MVA. 356 

X4 Categorical Variable – Use of categorical variable (0, 1) to represent if EDC is 357 

composed of a city or urban centre. 358 

Y1 Gross Energy Consumed – This represents the total energy utilized or consumed 359 

within the EDC area. It is expressed in (MWhs). 360 

Y2 Net Energy Consumed – This is Y1 Gross Energy Consumed less the 361 

distribution losses incurred within the area served by the EDC. Losses are included as 362 

a proxy for the technical quality of the grid or the service quality of the grid. It is 363 

expressed in (MWhs). 364 

Y3 Number of Customers – It is the total number of connection points to supply the 365 

customers. Customers are not differentiated based upon their categories. The number 366 

of customers captures the number of nodes the utility must supply. 367 

Y4 Service Area (���) – The service area encapsulates the geographical differences 368 

among electricity distribution counties. Both the number of customers and the ��� of 369 

service area represent customer area density. The service area is employed an output 370 

variable to reflect the difficulty of meeting customer services over a less densely 371 

populated area. 372 

Y5 Diagnostic Parameter – The industrial output per EDC represents the selling 373 

value of goods actually produced in the year, as reported by the businesses 374 

themselves, irrespective of whether sold or put into stock (CSO, 2008).  375 

Y6 Environmental Variable – The customer line density defined as the number of 376 

customers per (km) length of distribution network.  377 

 378 

Table 3 Descriptive Statistic of Variables of the EDCs 379 
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Inputs (X) 

Outputs 

(Y) 

Number of 

EDCs 

Mean Standard 

Deviation 

Minimum 

Value 

Maximum 

Value 

X1 26 167 102 58 536 

X2 26 6186.84 3793.21 2145 19858 

X3 26 22699.79 29495.09 4826.05 157025.8 

Y1 26 306753.9 398582.3 65217 2121970 

Y2 26 284054.13 369087.18 60390.94 1964944.22 

Y3 26 84099 106846.7 17925 565110 

Y4 26 2703.46 1727.09 826.13 7499.95 

Y5 26 3670943.07 6659936.3 161190 31274436 

Y6 26 12.69 10.26 7 62 

 380 

Model Orientation 381 

DEA efficiency analysis can be determined by adopting input-minimizing or output-382 

maximizing models. Input oriented model - model whose objective is to minimize 383 

inputs while producing at least the given output levels. Output oriented model - model 384 

that attempts to maximize outputs while using no more than the observed amount of 385 

any input (Cooper et al., 2007). Traditionally, efficiency analyses in the electricity 386 

sector assume the output fixed in a market with the legal duty to serve all customers 387 

in a predefined service territory (Von Hischhausen et a.l, 2009). Because EDCs are 388 

unable to control the amount of energy consumed (consumer demand) and the 389 

environmental factors, and because the researchers wanted to assess the technical 390 

efficiency of EDC’s under the objective of minimizing the amount of resources 391 

utilised, input-oriented models were adopted. 392 
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 393 

Model 1 (Comprehensive): This is the base model and all other models are a 394 

variation the inputs and outputs employed. This model is designed to encapsulate the 395 

overall variables impacting on the technical efficiency of electricity distribution in 396 

ROI. This is an extensive model including four inputs and three outputs. This model 397 

is an amalgamation of the first two models to represent the overall operational 398 

characteristic of EDC’s under analysis. Table 4 outlines the various models employed 399 

in the analysis. 400 

 401 

Model 2 (Basic Traditional): From the extensive DEA literature, the choice of 402 

input/output variables for electricity distribution benchmarking needs to account for 403 

international experience and data availability. Jamasb and Pollitt (2003) review 20 404 

benchmarking studies in terms of electricity distribution efficiency establishing the 405 

number of employees5 (labour), network length6 (capital) and transformer capacity 406 

(peak load) the most frequently used input variables while output measures being 407 

energy delivered, number of customers. There is no pre-defined set of variables to 408 

assess the performance of electricity distribution utilities and each study is case 409 

specific (Giannakis et al., 2005). The basic model incorporates the above mentioned 410 

variables. Similar input/output combinations have been employed by (Azadeh et al., 411 

2009a, 2009b, Sadjadi and Omrani, 2008). 412 

 413 

Model 3 (Quality Service): The inclusion of distribution losses as a proxy for the 414 

technical quality of the grid or the service quality of the grid establishes the quality of 415 

                                                             
5 Using the number of employees imposes an implicit assumption that the average number of working hours 
is similar across firms. Therefore, total hours worked may be a better measure for labor input. However, data 
availability required the use of this variable 
6 Estache et al, 2004 state network length can be employed as an input or output variable, but the author uses it as a 
measure of input capital. 
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electricity distribution service offered within each EDC’s. Distribution losses are a 416 

source of inefficiency and are the difference between the electricity required and the 417 

electricity distributed to end-users. These losses can be of technical and non-technical 418 

nature (measurement error and unmetered supplier). A reduction in costs to the 419 

consumer requires a reduction in both forms of losses and contributes to a reduction 420 

in CO2 emissions (Ramos-Real et al., 2009). The Gross energy consumption less the 421 

distribution losses gives Net energy consumption (MWh). The input/output 422 

combinations in model 3 have been successfully adopted by (Ramos-Real et al., 2009, 423 

Pacudan and de Guzman, 2002, Von Hirschhausen, 2006). 424 

 425 

Discretionary models of DEA assume that all inputs and outputs are discretionary, 426 

i.e., controlled by the management of each DMU and varied at its discretion. In any 427 

realistic situation, however, there exists external exogenously fixed factors or non-428 

discretionary inputs/outputs that are beyond the control of a DMUs management that 429 

influence the performance of EDCs. The final two models attempt to acknowledge 430 

and account for these influential factors. EDCs may not be operating under equivalent 431 

environmental conditions; that is certain EDCs may operate in a more favorable 432 

position in terms of population density, topography, geography, industrialized area. 433 

 434 

Model 4 (Urban): Adapted from (Miliotis, 1992), a categorical variable is introduced 435 

to account for EDCs that contain an urban centre/city. Two groups are formed Urban 436 

Distribution Counties (UDC) that contain Irish cities and Rural Distribution Counties 437 

(RDC) that do not. Two DMU groups are formed one containing all 26 EDCs and 438 

from this group the DEA efficiency scores of UDCs containing a city are calculated; 439 

the second group excludes the UDCs containing a city leaving 21 RDCs. The DEA 440 
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efficiency scores of the remaining RDCs without a city are calculated. This is 441 

equivalent to introducing a categorical variable (Cooper et al., 2007). 442 

 443 

Model 5 (Diagnostic): Given the nature of the Irish Electricity market and the 444 

variance in usage across the country, a diagnostic parameter was chosen to highlight 445 

county differences. Non-discretionary models with traditional environmental 446 

variables such as inverse density index, customer and network density, and customer 447 

dispersion were employed with conflicting results. The industrial output variable was 448 

incorporated into Non-discretionary model to account for differences amongst EDCs 449 

in terms of electricity characteristics, geography. To the authors knowledge this 450 

variable has not been employed in DEA literature in a similar context to this research. 451 

This model incorporates all the variables in the comprehensive model whilst adding a 452 

non-discretionary variable to measure each EDC’s Industrial output. This additional 453 

variable is in thousands of Euro and represents the selling value of goods produced 454 

within EDCs, as reported by the businesses themselves, it is thought this variable will 455 

represent the different geographical energy configuration across EDC Electricity 456 

Distribution Counties of ESB networks. This data was extract from a CSO7 (2008) 457 

survey entitled “Census of Industrial Production”. 458 

 459 

Model 6 (Environmental) This model includes non-discretionary models employing 460 

the traditional environmental variable customer density, to account for differences 461 

across EDCs. This model is similar to model 5 in terms of inputs/outputs employed 462 

differing only in the variable included to account for different electricity distribution 463 

characteristics across EDCs. A comparison with model 5 is therefore sought. 464 

                                                             
7 The Central Statistic Office perform the duties of collection, compilation, extraction and 
dissemination for statistical purposes of information relating to economic, social and general activities 
and conditions in the Republic of Ireland. 
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  465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

Table 4 Model specification and variables employed for analysis 483 

 Model 

1 

Model 2 Model 

3 

Model 4 Model 5 Model 6 

Inputs       

X1: Labour ���� ���� ���� ���� ���� ���� 

X2:Distribution 

Length 

���� ���� ���� ���� ���� ���� 
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X3: Transformer 

Capacity 

���� ����  ���� ���� ���� 

X4: Categorical 

Variable 

   ����   

Outputs       

Y1: Gross Energy 

Consumption 

 ����     

Y2:  Net Energy 

Consumed 

����  ���� ���� ���� ���� 

Y3: No of 

Customers 

���� ���� ���� ���� ���� ���� 

Y4: Service Area ����  ���� ���� ���� ���� 

Y5: Diagnostic 

Parameter 

    ����     

Y6: 

Environmental 

Variable 

        ����    

 484 

Correlation analysis of input and output variables 485 

The relationship between inputs/outputs should be positively correlated (Luo and 486 

Donthu, 2001). The correlation relationship between input/output variables is 487 

statistically verified using Pearson’s correlation. The greater the value of the 488 

correlation coefficient, the stronger the relationship between two variables is. The 489 

correlation coefficients from the input/output matrix are presented in Table 5.  It can 490 

be concluded that there is a strong relationship between labour and distribution length 491 



 25

with Pearson’s of 0.974 similarly the Tables illustrates there is a weak relationship 492 

between labour and customer density 0.152. The assumption of an “isotonicity” 493 

relationship between input and output factors is satisfied (Charnes, 1985). That is, a 494 

requirement that the relationship between inputs and outputs not be erratic. Increasing 495 

the value of any input while keeping other factors constant should not decrease any 496 

output but should instead lead to an increase in the value of at least one output. Dyson 497 

et al., (2001) state this is achieved when increased inputs reduces efficiency whilst 498 

increased output increases efficiency. Also, a desirable property of evaluation method 499 

is its discriminating power as a summary measure. Data selection and model 500 

validation according to Boussofiane et al., (1991) requires that the minimum number 501 

of DMU observations (EDCs) is equal to, or larger than, the product of the number of 502 

inputs and outputs. Cooper et al., (2001), Golany and Roll, (1989) also state the 503 

number of DMU’s should be three times the sum of the input/output factors. All the 504 

models adopted, in this paper satisfy both of these conditions 26 EDCs ≥ (3 x 4) or 505 

3(3 + 4). Therefore the proposed DEA models are of high construct validity. 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 
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Table 5 Correlation Coefficient between input and output variables 517 

 X1: 

Labo

ur 

X2: 

Distrib

ution 

Length 

X3: 

Transfor

mer 

Capacity 

Y1:  

Gross 

Energy 

Consu

med 

Y2:  

Net 

Energy 

Consu

med 

Y3:  

No of 

Custom

ers 

Y4:  

Serv

ice  

Area 

Y5: 

Indust

rial 

Outpu

t 

Y6: 

Custo

mer 

Densit

y 

X1: Labour 

 

-         

X2:Distribut

ion Length 

.974*

* 

-        

X3:Transfor

mer 

Capacity 

.901*

* 

.90** - 

 

      

Y1:GrossEn

ergy 

Consumed 

.961*

* 

.951** .969** -      

Y2: Net 

Energy 

Consumed 

.961*

* 

..961** .969** .958** -     

Y3: No of 

Customers 

.969*

* 

.969** .958** .995** .997** -    

Y4: Service 

Area 

.934*

* 

.934** .785 .840 .840 .857 -   

Y5: 

Industrial 

.790*

* 

.790** .871** .904** .904** .888** .573

* 

-  
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Output 

Y6: 

Customer 

Density 

.571* .571* .729** .702** .702** .703** .490 .644* - 

Note: ** Denotes Correlation is significant at the 0.01 level, * Denotes Correlation is 518 

significant at the 0.05 level 519 

 520 

 521 

6. Empirical Results and Discussion 522 

Model 1 (Comprehensive): Analysis and Improvement Directions for Inefficient 523 

EDCs 524 

The relative efficiency value of the CCR model is the overall efficiency of the EDCs. 525 

If the efficiency value equals 1, the DMU is efficient; if it is less than 1, the evaluated 526 

EDC is inefficient (Cooper et al., 2007). The CCR model exhibits constant returns to 527 

scale assumption and measures the overall efficiency for each unit, specifically by 528 

aggregating pure technical efficiency and scale efficiency into one value. The BCC 529 

model with variable returns to scale relates to pure technical efficiency accountable to 530 

management skills and establishes scale effects. These results are discussed in the 531 

next section. The dual linear programming formulations of the CCR and BCC models 532 

were run 26 times, i.e one for each DMU or EDC. The results of CCR model analysis 533 

indicate that 21 EDCs are inefficient, with only 5 EDCs operating on the efficiency 534 

frontier (Westmeath, Offaly, Laois Dublin, Letrim).  535 

 536 

 537 

 538 
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Table 6 Individual efficiency scores of EDCs and returns to scale: Model 1 539 

EDC 

County 

Regions 

TT

E 

PTE TTE/P

TE 

RTS % % % % % % 

     X1 X2 X3 Y2 Y3 Y 

Donegal 

91 99 91 DRS -

9.04 

-

9.04 

-

9.04 

21.0

6 

0 0 

Cavan 

63 67 94 DRS -

37.0

1 

-

37.0

4 

-

37.0

1 

0 0 1.9 

Monagh

an 

71 96 74 IRS -

28.5

8 

28.7

1 

-

28.5

8 

41.3

1 

0 0 

Letrim 

10

0 

100 100 CRS 0 0 0 0 0 0 

Sligo 

95 96 99 DRS -

5.27 

-

4.92 

-

4.92 

19.2

6 

0 0 

Roscom

mon 

86 90 96 DRS -

14.2

5 

-

14.1

8 

-

47.4

0 

0 5.7

1 

0 

Mayo 

98 100 98 DRS -

1.68 

-

1.81 

-

1.68 

58.4

6 

32.

7 

0 

Galway 

82 100 82 DRS -18 -

18.0

3 

-

33.8

6 

1.35 0 0 



 29

Clare 

93 99 94 DRS -

7.13 

-

7.27 

-

47.7

5 

4.89 0 0 

Limeric

k 

72 76 92 DRS -

27.5

3 

-

27.6

3 

-

35.2

8 

0 0 0 

Tippera

ry 

74 84 88 DRS -

26.0

7 

-

26.0

7 

-

26.0

7 

17.2

5 

0 0 

Kerry 

83 90 92 DRS -

16.7

9 

17.0

5 

18.1

4 

20.1

3 

0 0 

Cork 

70 100 70 DRS -

30.0

5 

-

30.1

5 

30.0

5 

7.21 0 0 

Waterfo

rd 

89 90 98 DRS -

11.7

2 

-

11.4

9 

-

11.4

9 

5.14 0 0 

Carlow 

73 100 73 IRS -

26.8

2 

-

26.8

1 

-

26.8

1 

0 2.8

9 

0 

Dublin 

10

0 

100 100 CRS 0 0 0 0 0 0 

Kildare 

65 65 100 DRS -

34.7

-

34.7

-

43.0

4.83 0 0 
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5 5 2 

Kilkenn

y 

80 87 92 DRS -

20.3

3 

-

20.1

3 

-

20.1

3 

0 5.8

8 

3.5 

Laois 

10

0 

100 100 CRS 0 0 0 0 0 0 

Longfor

d 

74 96 77 IRS -

25.9

5 

-

25.9

5 

-

25.9

5 

41.0

4 

0 0 

Louth 

60 80 75 IRS -

39.7

0 

39.8

4 

-

69.1

2 

14.1

4 

0 0 

Meath 

78 81 96 DRS -

21.5

2 

-

21.7

3 

-

52.0

7 

33.9

9 

0 0 

Offaly 

10

0 

100 100 CRS 0.29 0 -

33.2

7 

6.30 0 0 

Westme

ath 

10

0 

100 100 CRS 0 0 0 0.81 0 0 

Wexfor

d 

70 78 90 DRS -

29.8

1 

-

29.6

5 

-

29.6

5 

0.81 0 0 

Wicklo

w 

91 99 91 DRS -

8.93 

-

9.11 

-

8.93 

0 13 20.

3 
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Average 83 91 91      0 0 

Total Technical Efficiency (TTE); Pure Technical Efficiency (PTE); Scale Efficiency 540 

(TTE/PTE); (RTS) Returns to Scale; X1: Labour; X2:Distribution Length; X3: 541 

Transformer Capacity; X4: Distribution Losses; Y1: Energy Consumed; Y2: No of 542 

Customers; Y3: Service Area 543 

 544 

The average overall efficiency score of all the EDCs is 83%, with 14 EDCs scoring 545 

below this average value. This implies that the resource utilization of electricity 546 

distribution counties is suboptimal with considerable room for improvement. In order 547 

to identify, establish targets and indicate the improvement directions necessary for 548 

inefficient EDCs a slack analysis is employed to establish if additional specific output 549 

amounts or a decrease in specific input amounts leads to improvements in efficiency 550 

ratings. The input slack values represented in Table 6 highlights the necessary 551 

reductions of the corresponding input factors to become technically efficient 552 

generating units. It can be observed that slacks for efficient plants with an efficiency 553 

score of 100% are zero (Dublin).  The potential for improvement of inefficient EDCs 554 

is also presented in Table 6. (X1, X2, X3, Y2, Y3, Y4) show the potential 555 

improvements that are attainable by inefficient EDCs, if inputs and outputs are 556 

adapted accordingly. For example, the inefficient Sligo EDC can decrease employees 557 

(X1) by 5.27%, distribution length (X2) by 4.92%, transformer capacity (X3) by 558 

4.92% and allow for an increase in energy consumption (Y1) of 19.26%. This means 559 

Sligo EDC is over utilizing its inputs at current levels and can be as efficient as its 560 

peer group. However, the differences between efficient and inefficient EDCs in terms 561 

of distributions losses are not significant. It is clear from the analysis that inefficient 562 

EDCs are predominantly associated with medium and large sized service areas. The 5 563 
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efficient EDCs are all small sized service areas meaning that these small EDCs are 564 

more efficient at integrating their resources. The majority of EDCs present decreasing 565 

returns to scale characteristics. 566 

 567 

Technical and Scale Efficiency Analysis 568 

The BCC model was adopted to establish technical and scale efficiency of the 569 

electricity distribution counties studied. These results indicate the sources of 570 

inefficiency amongst the EDCs. When interpreting the BCC scores or pure technical 571 

efficiency, the number of efficient EDC rises to 9 with the average pure technical 572 

efficiency (PTE) of all the EDCs 91%. EDCs that have a scale efficiency score less 573 

than one are scale inefficient. A scale inefficient EDC that exceeds the most 574 

productive scale size (MPSS) will present decreasing returns to scale. Alternatively, a 575 

scale inefficient EDC that is smaller than the most productive scale size will present 576 

increasing returns to scale. MPSS is the optimal operational performance of plants. 577 

The EDCs Westmeath, Offaly, Laois, Dublin, Letrim operate on both the CCR and 578 

BCC efficiency frontier displaying 100% efficiency, exhibiting constant returns to 579 

scale characteristics, and hence are Pareto-Koopmans efficient. Mayo, Galway, Cork, 580 

and Carlow, exhibit 100% BCC efficiency but a lower score in CCR, hence are 581 

operating locally efficiently but not overall efficiently due to the scale size. They first 582 

three EDCs are scale inefficient and should decrease the operation scales to improve 583 

overall efficiency as they present decreasing returns to scale with the exception of 584 

Carlow. Carlow should increase operational scales. Donegal, Monaghan, Clare, 585 

Longford, Louth, and Wicklow all have pure technical efficiency (PTE) scores greater 586 

than their corresponding scale efficiency scores. The EDCs of Monaghan, Longford 587 

and Louth should increase their operation scales as they exhibit increasing returns to 588 
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scale to improve overall efficiency. Clare and Wicklow display decreasing returns to 589 

scale indicating these EDCs have considerable scope for improvements in their 590 

overall efficiency by resizing (decreasing) there scales of operation to the optimal 591 

scale MPSS. The remaining nine EDCs all display overall and local technical 592 

inefficiency, with a relatively high scale efficiency score. These EDCs could improve 593 

their technical efficiency by altering their resource allocation and utilization which 594 

would increase their overall efficiency score. Individual efficiency results suggest that 595 

the EDCs operating at the relatively more developed eastern part of Ireland have 596 

noticeably higher average relative efficiency scores, with performance of EDCs 597 

deteriorating towards rural and the western parts of Ireland. This would be due to 598 

increased population in Dublin’s surrounding EDCs with 40% of Ireland’s population 599 

residing in the East region (CSO, 2011), resulting in a more densely populated 600 

distribution network. 601 

 602 

Comparison and Discussion of Models 603 

The six adopted models employ constant returns to scale technologies to establish 604 

total technical efficiency (TTE) for each of EDCs under analysis. The numerical 605 

efficiency scores attained for the models are given in Table 7. The main study is the 606 

comprehensive model against which all other models are compared. Efficiency of 607 

each EDC is scored out of 100. The average efficiency of all the models are given. 608 

The spearman correlation coefficients are calculated to establish and assess the impact 609 

of omitting/including certain variables on the results obtained from the 610 

comprehensive model. A spearman correlation coefficient of 100% illustrates the 611 

dropped variable(s) have no significant effect on the results obtained from the 612 

comprehensive model. The adoption of model 2 reflects the basic structural model for 613 
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efficiency analysis of electricity distribution utilities extensively used in the literature. 614 

The low correlation coefficient of 39% in relation to model 1 suggests omitting (I) 615 

distribution losses and (O) service area has a significant effect on the results. This 616 

trend of a very low correlation coefficient (35%) is also seen when comparing model 617 

4 with model 1. This implies that establishing two DMU groups reflecting Rural 618 

Distribution Counties (RDCs) and Urban Distribution Counties (UDCs) has a 619 

significant effect on efficiency scores obtained. However, dropping the variable 620 

transformer capacity and including service area in the analysis has considerably less 621 

effect on the results, represented by the correlation coefficient of 87%.  Comparing 622 

the spearman correlation coefficient results obtained for models 5 and 6, it can be 623 

seen that the inclusion of industrial output is statistically more significant (0.74) than 624 

the inclusion of the environmental variable customer density (0.78). 625 

 626 

Table 7 Efficiency scores of all models adopted 627 

EDC Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

Donegal 91 64 91 95 91 91 

Cavan 63 63 61 69 71 63 

Monaghan 71 70 55 72 84 71 

Letrim 100 58 100 100 100 100 

Sligo 95 84 92 100 95 95 

Roscommon 86 40 86 86 88 86 

Mayo 98 67 91 98 100 98 

Galway 82 51 82 82* 83 82 

Clare 93 43 93 94 94 93 
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Limerick 72 54 72 72* 100 72 

Tipperary 74 64 72 78 82 74 

Kerry 83 57 83 86 83 83 

Cork 70 60 69 70* 100 70 

Waterford 89 71 88 89* 96 93 

Carlow 73 58 73 89 73 100 

Dublin 100 100 100 100* 100 100 

Kildare 65 47 65 100 72 67 

Kilkenny 80 80 64 80 80 80 

Laois 100 100 99 100 100 100 

Longford 74 69 67 82 77 83 

Louth 60 31 60 100 70 96 

Meath 78 44 78 100 78 78 

Offaly 100 55 100 100 100 100 

Westmeath 100 100 72 100 100 100 

Wexford 70 70 62 86 70 70 

Wicklow 91 91 78 100 97 91 

Mean 

efficiency 

Score 

83 65 79 91 88 86 

SCC with 

Model 1  

- .39 .87 .35 .74 .78 

Minimum 

efficiency 

60 31 55 68 70 63 
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Score 

Number of 

efficient 

EDCs 

4 3 3 10 8 6 

*Denotes UDCs Urban Distribution Counties; EDCs Electricity Distribution Counties 628 

SCC – Spearman Correlation Coefficients 629 

 630 

The inclusion of environmental and categorical variables to account for differences 631 

across EDCs has significant effects on efficiency scores. The descriptive statistics for 632 

the comprehensive model accounting for EDCs that contain an urban center (City) are 633 

presented in Table 8. The comprehensive model was adopted as the full sample of 634 

variables was sought for analysis. The total comprehensive efficiency scores are given 635 

in Table 7 (model 1). The impact of including environmental categorical variable in 636 

model 4 greatly influences the efficiency scores RDCs. Comparing with model 1 637 

average efficiency score increases from 83 -91% with the number of efficient EDCs 638 

rising from 5 to 8. When observing all 26 EDCs scale efficiency TTE is relatively low 639 

at 83% with scale efficiency being quite high at 91%. The UDC mean scale efficiency 640 

is quite close to this at 89% with RDCs scoring a little higher at 94%. When two 641 

DMU groups are formed relating to rural and urban electricity distribution centers, it 642 

is the former than out performs the latter in terms of total, pure technical and scale 643 

efficiency. Similarly the inclusion of a non-discretionary environmental variable in 644 

model five increases efficiency for all EDCs with UDCs greatly influenced (Cork, 645 

Limerick, Waterford and Galway). Comparing with model 5 with model 1 in terms of 646 

average efficiency score, an increases from 83 -88% with the number of efficient 647 

EDCs rising from 4 to 10. This is intuitively what one would expect with UDCs 648 
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producing greater industrial output than RDCs. All EDCs see an increase in 649 

efficiency. Non-discretionary models employing the traditional environmental 650 

variables inverse density, customer density and customer dispersion were pursued. 651 

The model incorporating the customer density variable was most significant. A direct 652 

comparison can therefore be made with our constructed diagnostic model employing 653 

non-discretionary industrial output (model 5) in place of the traditional environmental 654 

variable customer density (model 6). In terms of average overall efficiency model 5 655 

returns a higher efficiency of 88% as opposed to model 6 with 86%. Also the number 656 

of efficient EDCs in model 5 is 8, this falls to 5 when observing model 6 in Table 7. 657 

All EDCs obtain a higher efficiency score in diagnostic model 5 when compared with 658 

the environmental model 6. The diagnostic parameter industrial output has more 659 

explanatory power when attempting to account for differing electricity distribution 660 

characteristics across EDCs when compared with traditional environmental variables 661 

that have been extensively adopted in the DEA literature. 662 

 663 

Table 8 Descriptive statistics of EDCs divided into categories of RDCs and UDCs 664 

Model 1 Number 

of 

EDCs 

Mean 

Efficiency 

Score 

Standard 

Deviation 

Minimum  

Value 

Maximum 

Value 

No of 

Efficient 

EDCs 

All 

EDCs 

      

TTE 26 0.83 0.126 0.60 100 4 

PTE 26 0.91 0.106 0.65 100 9 

SE 26 0.91   100 6 
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RDCs       

TTE 21 0.91 0.099 0.69 100 9 

PTE 21 0.96 0.068 0.71 100 14 

SE 21 0.94   100 9 

       

UDCs       

TTE 5 0.83 0.126 0.72 100 1 

PTE 5 0.93 0.175 0.76 100 3 

SE 5 0.88   100 1 

SE = TTE/PTE; EDC = Electricity Distribution Counties; RDCs – Rural Distribution 665 

Counties; UDCs – Urban Distribution Counties. 666 

 667 

 668 

 669 

 670 

Efficiency Improvement through Reorganization of EDCs 671 

In this study, we investigated possible reorganisation alternatives to reduce the 672 

number of EDCs to improve resource utilization and promote efficiency are 673 

investigated.  Reorganisation and operational mergers are feasible methods to increase 674 

efficiency. Thus, the objective of EDC reorganisation was focused on improving 675 

overall efficiency. Based on geographical convenience, a restructuring and 676 

amalgamation of the current 26 EDCs within ESB Networks distribution framework 677 

has been hypothesized. Ireland with its relatively small size, sparse population and 678 

installed capacity would benefit from the aggregation of the 26 EDCs to 11 more 679 

efficient and manageable Electricity distribution Zones (EDZ’s). This would also 680 
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greatly reduce duplication of services between EDCs. Due to geographical 681 

limitations, only adjacent EDCs are combined to form EDZs. To examine the 682 

reorganization alternatives, the CCR and BCC models were applied to establish total 683 

technical efficiency (TTE) and pure technical efficiency (PTE) along with scale 684 

efficiency (SE). Due to the reduction in number of DMUs employed comparisons are 685 

only made with the original basic and quality models (2 and 3) These models have 686 

been extensively adopted in the literature. The results of the restructuring are 687 

displayed in Table 9. For example EDCs Offaly, Laois and Kilkenny can combine to 688 

form the Central Electricity Distribution Zone. 689 

 690 

Fig. 2 Electricity Distribution Zones (EDZs) 691 

In terms of the basic model both cases, the efficiency results obtained are significantly 692 

higher after TTE increasing 15% from 65-80% whilst PTE efficiency increased 14% 693 

from 79% to 93% after reorganization of EDCs. A similar trend is observed when 694 
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comparing the quality model before with both the TTE and PTE score higher after 695 

restructuring. TTE increases by 6% to 85% PTE and increases by 10% to 95%. When 696 

observing all eight models under constant and variables returns to scale, comparing 697 

pre and post electricity distribution restructuring, little variation is shown amongst the 698 

number of efficient DMUs but efficiency is gained when employing the Electricity 699 

Distribution Zones concept for distribution. 700 

 701 

 702 

Table 9 Reorganization of EDCs into EDZs to improve efficiency 703 

EDC Model 2 CCR-I BCC-I Scale Efficiency 

Donegal 64 72 88 

Letrim 58 100 58 

Sligo 84 91 92 

North West Zone 94 98 96 

    

Mayo 67 98 68 

Galway 51 57 89 

West Zone 76 82 93 

    

Clare 43 49 88 

Limerick 54 55 98 

Central West Zone 57 86 66 

    

Kerry 57 63 90 
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Cork 60 75 80 

South West Zone 74 80 93 

    

Roscommon 40 54 74 

Longford 69 96 72 

Westmeath 100 100 100 

North Central Zone 91 99 92 

    

Offaly 55 76 72 

Laois 100 100 100 

Kilkenny 80 85 94 

Central Zone 100 100 100 

    

Tipperary 64 83 77 

Waterford 71 80 89 

South Central Zone 92 94 98 

    

Cavan 63 65 97 

Monaghan 70 96 73 

Louth 31 80 39 

North East Zone 50 86 58 

    

Kildare 47 56 84 

Meath 44 53 83 
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Central East Zone 47 95 49 

    

Dublin East Zone 100 100 100 

    

Carlow 58 100 58 

Wexford 70 76 92 

Wicklow 91 97 94 

South East Zone 100 100 100 

 CCR-I BCC-I 

Basic Model 2 65 (3) 79 (5) 

Reorganised Model 2 80 (3) 93 (3) 

   

Quality Model 3 79 (3) 85 (7) 

Reorganised Model 3 85 (2) 95 (5) 

Note Figures in the parenthesis represent efficient DMUs 704 

 705 

 706 

 707 

7. Conclusions 708 

This study has extended the literature on efficiency analysis to the electricity 709 

distribution sector in the Republic of Ireland. The employment of the Irish electricity 710 

distribution system and Electricity Distribution Counties (EDC) as the main research 711 

focus has never been done. The paper provides a DEA framework to measure 712 

technical efficiency; to establish if empirical efficiency gains were possible, and to 713 

investigate the reorganisation of the electricity distribution network for efficiency 714 
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gains. The paper has explored the efficiency and benchmarks of the EDCs from a 715 

comprehensive viewpoint with the employment of five differing models to capture the 716 

characteristics of EDCs. Analysis, discussion and presentation of key findings 717 

comparing all five models are presented. External factors that are not controllable by 718 

EDCs can inhibit efficiency. This was accounted for by adopting a categorical 719 

variable to account for urban/rural environments and a diagnostic parameter to 720 

account for differing electricity distribution characteristics across EDCs, comparisons 721 

were made with employing traditional environmental variables. The adoption of the 722 

diagnostic parameter proves to be a superior variable. The proposed reorganization 723 

alternative of employed Electricity Distribution Zones (EDZ) achieved higher 724 

efficiency scores of up 10%. The results of this paper can assist ESB networks to 725 

improve the operational management of EDCs. Also, this empirical analysis can 726 

provide useful information to the policy makers responsible for electricity distribution 727 

regulation under changing market regimes. The DEA benchmark approach employed 728 

here offers an alternative form of electricity distribution regulation open to the 729 

Commission for Energy Regulation (CER) in Ireland as opposed to the status quo of 730 

OPEX and CAPEX regulation. This alternative approach can be adopted by other 731 

countries with similar electricity distribution environments. 732 
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