Real-time sensor signal capture from a harsh environment

Mark Purcell
IBM Research - Ireland
mark_purcell@ie.ibm.com

Abstract—Understanding the baseline underwater acoustic
signature of an offshore location is a necessary, early step
in formulating an environmental impact assessment of wave
energy conversion devices. But in order to even begin this
understanding, infrastructure must be deployed to capture
raw acoustic signals for an extended period of time. This
infrastructure is comprised of at least four distinct components.
Firstly, a hydrophone, deployed underwater, which is capable
of operating at a high sampling rate: 500,000 16-bit samples
per second. Secondly, an analog/digital converter (ADC), to
which the hydrophone transmits raw voltages. Thirdly, a
communications infrastructure for bridging the gap from the
ADC to shore. And finally, an onshore base-station for receiving
the signals and presenting them to a remote analytic or
simulation infrastructure for further processing.

Attempting this signal capture in real-time poses many
problems. On a practical level, deploying cabled infrastructure
to deliver power and communications to the offshore compo-
nents may be prohibitively expensive. However, reliance on
solar power may result in interruptions to real-time wireless
transmission. Additionally, a high sampling rate will require
significant base-station memory/storage/processing capabilities
as well as potentially high costs of delivery to a remote
infrastructure, part of which could be alleviated by real-
time signal compression. This paper discusses our attempts
at implementing such a system which would reliably acquire
real-time data and scale with growing demands.

Keywords-Real-Time; Data Acquisition Infrastructure;

1. MOTIVATION

Underwater acoustics is the study of the prop-
agation of sound in water. Continuous monitoring
of underwater sounds has important applications
in diverse fields such as ocean wildlife and the
engineering of renewable energy systems based on
wave and tidal power. The resulting information
can be used to monitor phenomena such as un-
derwater animal presence, the impact of shipping
and other traffic and the effects of equipment such
as wave energy converters [1, 2] on underwater
sound levels [16]. The resulting data can be used
as input to simulations which are used to make
good engineering and policy decisions about the
likely impact of renewable energy systems in the
ocean.

Aravind Vasudevan
Trinity College Dublin
vasudeva@scss.tcd.ie

David Gregg
Trinity College Dublin
dgregg @scss.tcd.ie

Figure 1. A buoy during calm conditions - note solar panels and
communications antennae

This paper describes the on-shore base station
used to collect data from an off-shore underwater
acoustic monitoring system. The system is used
to collect underwater acoustic information in real
time for a protracted period. The raw data is
collected using hydrophones, which are underwa-
ter microphones. The hydrophones are attached
to buoys which float in the ocean up to sev-
eral kilometers from the coast, and continuously
monitor underwater sound. Raw data from the
hydrophones is sent by wireless connection to the
base station which is on shore. The base station
receives the data, compresses it, and sends it on
to the data processing centre where it is stored or
used for real-time analysis or simulation. A single
base station may receive data from multiple buoys
on the ocean, therefore the base station must be



capable of receipt and compression of very large
amounts of raw hydrophone data in real time.
Both the buoys and the base station are based
in a remote location, which makes on-site main-
tenance time-consuming and costly. Furthermore,
if the system fails, the opportunity to collect
data in real-time will be lost, and there will be
gaps in the record of sensor data. Therefore, the
system is designed to be highly reliable, and to
work autonomously for months or years at a time
without human intervention.
The main contributions of this paper are:

o We describe our experience of engineering a
base station for real-time processing of ocean
hydrophone data.

« We provide a multi-threaded model of parallel
receipt, compression and retransmission of
sensor data in real time.

o We describe a novel multithreaded mechanism
for safely queuing data between threads.

« We experimentally evaluate the scalability of
our system, and show that a single base station
can scale to receive data from many remote
buoys in real time.

« We provide preliminary results on compres-
sion of acoustic data in real time.

The rest of this paper is organized as follows.
Section II provides an overview of the system used
to collect data for analysis and simulations. In Sec-
tion III the off-shore hydrophone and data capture
system is described. Section IV provides details
of our on-shore base station and in particular
discusses measures to improve reliability and real-
time data capture. In Section V we present an ex-
perimental evaluation of our data capture system,
and investigate scalability and data compression.
Finally, Section VI describes applications of our
system, and discusses plans for future work.

II. SYSTEM OVERVIEW

The capture of signals from sensors located
in real world environments, as seen in figure 1,
necessitates the deployment of additional hard-
ware(base station) to bridge the gap between the
sensor and back haul network and also possibly to
aggregate the sensor data into a more consumable

(o)

eth1

aseStation FTP Server
1113 (eth1 — buoy)
X XXX.XXX.XXX (eth0 — Internet)

BUOY

Connect

ADC

192.168.18.13:1234

8 Mbps Stream

Simulation System

500k

16-bit 1BM 3250 M3 &7

samples

Figure 2. Overall System Architecture

format. It is therefore likely that this base station
will also reside in a remote and perhaps inhos-
pitable location. Hence, the administration of this
machine may prove to be difficult and at times
impossible. In order to ensure continuous, real-
time capture of the sensor signals it is therefore
imperative that the base station machine be as self-
sufficient as possible, it must “stay up”. However,
it must also be sufficiently streamlined to be able
to “keep up” with the stream of signals originating
from the sensors and scalable enough to handle
the real-time signal streams from several sensors
in parallel.

In broad terms, there are three main compo-
nents to the architecture of the system as seen
in figure 2. First, the data acquisition system
which in our case is the offshore hardware which
consists of an underwater sound recorder called
the hydrophone and an analog to digital converter
to transmit the values recorded by the hydrophone.
This is explained in further detail in section III.
The second important component of the system is
the base station which is an IBM server residing
in some remote location. The server is responsi-
ble for the receipt and compression of the data
from the analog to digital converter. Since the
hydrophone produces data at a high rate (8Mbps),
the server employs a three threaded model to
keep up with the data influx which is further
explained in section IV-D. The data is then stored



on an FTP file store with a very large storage
capacity which further sends the compressed file
onto an information system or simulation system
of choice. These systems either try to simulate the
conditions underwater or predict something based
on real time data. Therefore the goal of the overall
system is to provide a reliable and scalable way
to acquire and send data to these analysis engines.

III. OFFSHORE HARDWARE - ANALOG TO DIGITAL
CONVERTER

To ascertain the acoustic signature of an off-
shore location, a hydrophone is used to record
the raw acoustic signals. These signals can be
sampled at various rates, but for this application,
the highest sampling rate was selected, which is
500,000 samples per second of 16-bit depth. These
raw voltage signals will be converted to a digital
stream of 16-bit integers by an analogue to digital
converter (ADC) housed on a buoy. This system
takes as input the raw hydrophone signals and
outputs a converted stream of integers over an
ethernet port. In TCP terms, the resulting packet
stream is 8Mbps and a consuming application (on
the base station), opens a TCP socket connection
to a well known port on the ADC. Each connected
hydrophone will have a corresponding and unique
port number, so multiple hydrophone streams can
be captured in real-time and in parallel.

Ethernet and the TCP protocol in particular
were chosen primarily for its robust nature and
prevalence, with very good software tools avail-
able both for monitoring and software develop-
ment. This lends itself well to deployment in
inhospitable environments, and in this case the
use of wireless data transmission, with the base
station software written to be able to react to
communications interruptions.

A. Data Format

The structure of the header is as follows:

magic number - 64 bits - always 0zc0c0c0c0c0c0c0c0
hydrophone id - 64 bits - unique id for each hydrophone
version number - 64 bits - software version number
timestamp - 64 bits - current ADC time stamp

sampling rate - 64 bits - current sampling rate

One issue with the data stream generated by
the ADC is that the 16-bit integers are in big-
endian format whereas commodity x86 hardware
(base station) is a little-endian architecture. This
places additional processing requirements on the
ADC to convert these integers to little-endian prior
to insertion into the TCP stream. Additionally,
it may be necessary for a consuming applica-
tion/simulations system to be able to analyze the
signals in the time-domain (as compared to signal
processing in the frequency domain). Therefore
it is important that the ADC’s clock time be
also transported in the headers within the data
stream. To this end, a data header is added to the
stream every second, and is prefixed by a magic
number: 02c0c0c0c0c0c0c0c0. This number is a
marker to the analysis or simulation system that
date/time/sampling rate information is available
which can then be used to modify the simulation.

IV. BASE STATION

The base station software scaling is one pro-
cess per known sensor. But within each process,
there are a number of challenges in keeping up
with the real-time capture of the data stream.
Due to the harsh nature of the environment, it is
expected that communications between the buoy
and the base station will be sporadic. When com-
munications have been established, signal capture
commences and will continue while the connec-
tion persists. The captured signals must then be
presented to a consuming application or simulation
system, which will likely be in a remote location,
possibly in a data center. As such, just streaming
bytes directly through a standard wired back-haul
network connection to the remote processing/sim-
ulation location may prove costly, which can be
mitigated by having a compressed signal stream,
as well as requiring constantly available reception
hardware at the remote site. A better solution
would be to present the signal data in a way that
a remote application can pull the signal data when
it wants, ideally through FTP. The use of FTP
however requires files to transport not at real-time.
So to support this, firstly the signal stream must
be converted into a series of files. Again, the same



constraints apply, i.e. file creation/writing must
keep up with the real-time stream and must be
robust.

This means there are four distinct operations
that the base station process must perform. Firstly,
it must monitor the network connection to the
sensor/ADC. Secondly, it must capture the signal
stream. Thirdly, the stream must be written to disk
and stored in a series of files. And finally, these
files must be compressed. The base station must
also provide a single standalone FTP server that
can host access to these files.

A. Reliability

As the base station machine is expected to
be available for capturing signals for an extended
period of time, several important factors must be
taken into account to achieve this up time. The
physical hardware to be used is an important
consideration: a commodity laptop would be less
suitable than an IBM x3250 server in a lockable
cabinet. An equally important decision is the se-
lection of an operating system (OS) to run on
this hardware. A minimal OS distribution will
have fewer software components that are prone
to failure. In particular there is no requirement at
all for a windowing system, which greatly reduces
the complexity of the system software. Ultimately,
a stable OS distribution with a modern networking
stack 1s the most suitable. For this reason, Ubuntu
server edition was chosen, and two versions, 10.04
LTS and 12.04 LTS were evaluated. Due to the
much improved networking backed by the later
kernel (3.2), Ubuntu 12.04 LTS was chosen.

Just as important, is the architecture of the cap-
turing software. A multi-threaded approach, with
a dedicated thread spawned to handle each stream
for individual sensors was investigated. In theory,
this will work, but the overhead in managing many
threads when the number of sensors increases
starts to become a factor in ensuring application
stability. If one sensor stream causes problems
in one thread it may affect all other streams in
all other threads. The base station is designed to
be deployed in a remote location, which makes
restarting the data capture application more diffi-
cult, which could result in signal loss for hours or

days. For this reason, a single sensor stream per
process approach was selected. This removes the
possibility of stream cross-over effects and ensures
a more robust application architecture.

B. Scalability

The software architecture for the base station
was designed with reliability in mind, but scala-
bility is also an important design issue. As with
reliability, there can be significant disadvantages to
servicing all sensors using multiple threads within
a single OS process. Within a single process, mul-
tiple threads interact through shared variables and
are synchronized with primitives such as locks.
However, the interactions of threads and syn-
chronization can result in unexpected performance
behaviour where some threads can become starved
of work or CPU time. This is particularly true
when threads are shared among different streams,
for example where a single thread might do data
compression for all streams. Furthermore, within
a single process multiple threads share resources,
particularly data structures for memory manage-
ment. As the number of threads rises, contention
for shared resources such as memory management
can result in poor scaling.

The balance between many threads per process
and more processes with less threads is often
difficult to arrive at. With more threads per process
there is potentially a performance boost if the
threads share data. With more processes there is
better reliability, with problems in one thread not
having the potential to spill over to another.

With one process per sensor approach, a single
application instance is responsible for capturing
the sensor signal, storing it and compressing it.
This scales to multiple sensors in two differ-
ent ways. Firstly, additional application instances
(processes) can be executed, with each process
dedicated to a single sensor signal stream. In this
way, a single base station machine can handle
multiple sensor streams in parallel. When the
processing capabilities of the hardware, in terms
of keeping up with the signal rate, have been
exhausted, additional base station machines can be
added. Each additional base station machine can
serve a different set of sensors.



C. Queuing

Main Thread

Sensor Stream
Connected?

yes

Compression Thread

Start Capture Thread
4 no)
File Available? ||

[ no k‘w
Buffer /
Available?
Write Buffer to File

1

Capture Thread

I Read Buffer
Push Buffer

sem_wait

sem_waif

Compress

sem_post

I

comms down

|

Interaction of different threads in the basestation

yes - sem_post

Figure 3.

At the heart of this thread interaction is a
producer-consumer style queuing system. Due to
the critical positioning of this, it is imperative
that it does not impose any significant run time
overhead on the application and that it is thread-
safe. There are two main features of the queue that
reduce the run time overhead. Firstly, it is thread-
safe, but lock-less, meaning that no unnecessary
system calls are required to synchronize access to
the queue elements. Secondly, element insertion
and retrieval are zero-copy operations, removing
the need to invoke an expensive memory copy.

The queue allocates a ring-buffer and is built
by using two semaphores to control access, a
“push” semaphore to control adding elements to
the queue and a “pop” semaphore to control re-
moving elements. The “push” semaphore is ini-
tialized to the number of available spaces in the
queue, e.g. 16. The “pop” semaphore will be
initialized to zero, i.e. there is currently nothing
in the queue. Two additional variables “push_at”
and “pop_at” refer to the exact position in the ring-
buffer for pushing and popping elements.

When a producer wants to add to the queue,
it first checks for available space by calling
sem_wait on the “push” semaphore. This blocks
until there is space available. It then uses the
“push_at” queue space, increments “push_at” and
calls sem_post on the “pop” semaphore to alert
consumers that there is a new item in the queue.

struct queue {
sem_t push;
sem_t pop;

int push_at;

int pop_at;

int length;

size_t elem_size;
void *data;}

This decrements the number of available spaces
in the queue. When a consumer wants to re-
move something from the queue, it checks for an
entry in the queue by calling sem_wait on the
“pop” semaphore, which will block if there are
no elements, pulls the queue item as referenced
by “pop_at” and calls sem_post on the “push”
semaphore to notify producers that there is an
extra available space in the queue.

D. Thread Interactions

As described in Figure 3 there are two distinct
thread interactions. The main thread is a consumer
of buffers produced by the data capture thread and
also a producer of file descriptors for use by the
compression thread. It establishes communication
with the buoy’s ADC by using standard TCP
sockets. When it detects that the communications
link is up, it spawns a capture thread to handle this
communication stream and capture the signals. It
will then use a capture queue to wait for buffers
to be produced by the capture thread. The capture
thread receives bytes from the socket and stores
them in a temporary buffer. When this buffer is
full, it posts the buffer to the capture queue and
continues to receive data from the socket. The
main thread will be notified of the new buffer
and will write this buffer to a file. When the file
has reached a pre-determined maximum size, it
will be flushed and its file descriptor added to the
compression queue. The compression thread will
in turn be notified and will start to compress the
file by shelling out to invoke a compression script.
This multi-producer-consumer model enables the
base station process to keep up with the real-time
sensor signal stream whilst in parallel preparing a
compressed file of sensor signals for download by
a remote application/simulations system.



V. EXPERIMENTAL RESULTS
A. Scalability

In order to understand the scaling character-
istics of the capture application it is necessary to
create a simulation environment which can mimic
the traffic generated by multiple hydrophones.
This environment is an extra application running
on independent hardware that generates 8Mbps of
data. Throttling the traffic to 8Mbps is achieved
by surrounding the network calls by gettimeofday
calls and sleeping by the number of microseconds
in which they differ.

A number of instances of this hydrophone
simulation application and the capture application
are executed in parallel, to help ascertain the scal-
ability of the capture application. From the graph
in Figure 4, as the number of parallel capture
processes increases, the amount of time spent in
userspace/system calls and the available CPU idle
time start to converge.

100.00
9000 4 e
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00 -

..
..
.o
..

Percentage (%)

4 8 16 32 64

Number of Sensors

== Cpu user % « <l -Cpu kernel % ++A-+Cpuidle %

Figure 4. Scaling characteristics of the application

The graph in figure 4 shows that a significant
amount of time is spent in the Linux kernel, in fact
the system profiler reports that 56% of the per—
process run time for the capture process is spent
in the select system call. This is consistent with
the software architecture which yields CPU time
in an operating system friendly manner. There
is no busy waiting within the application, with
all blocking performed via system calls, namely
select for incoming network packets and sem_wait
for incoming messages from other threads.

For this simulation, the capture application
ran on a quad core, hyper threaded Lenovo D20
Intel(R) Xeon(R) CPU (E5640) @2.67GHz with
6GB of RAM. The operating system was Ubuntu
Server 12.04 64-bit with a 3.2.0-24-generic Linux
kernel. The traffic generator ran on a Lenovo
S10 Intel(R) Core(TM)2 Quad CPU (Q6700)
@2.66GHz with 2GB of RAM. The operating
system was Ubuntu Server 12.04 64-bit with a
3.2.0-23-generic Linux kernel.

B. Compression Statistics

0.65 -+
0.60 -~
0.55 A
0.50 -
0.45 -+
0.40 -+
0.35 A

0.30 T T )
60 350 900

Duration of Data Input in Seconds (1s=1Million Bytes)

Compression Ratio

—&— Bzip2-Best coom-er Lzma-1 - & —Lzma-9
Figure 5.

methods

Comparison of Compression Ratios across the 3 compression

In keeping with the theme of “Staying up and
keeping up is critical” as discussed in section
2, some tests were performed to see how well
the compression thread keeps up. This section
describes these compression statistics. The ob-
jective of performing these tests was two—fold.
One was to find out which compression algorithm
would be best suited for the output data from the
hydrophones and in choosing this algorithm, will
the compression thread fail to keep up at any point
in time including the worst case input?

The output from a hydrophone as described
in the previous sections, is the measure of the
acoustic intensity in the area around the hy-
drophone. It is expected that for significant periods
of time (calm waters) that there will not be sig-
nificant variation in the signal. With this in mind,
three compression schemes were chosen, Bzip2-
best[8], Lzma-1 and Lzma-9[9]. Three tests(60s,



350s and 900s) were performed on each of these
compression schemes with different transmission
time(which effectively means different filesizes
to compress). Each second of data transmission
corresponds to 500,000 samples of 2 bytes each.
This implies each second of data transmission
corresponds to 8Mbps(Mega bits per second).

= e
N »
1 J
\

/’
4

=
o
1
Ay
N
4
4

Compression Time (*10E-07 Seconds)

60 350 900
Duration of Data Input in Seconds (1s=1Million Bytes)
—&— Bzip2-best :--m:-- Lzma-1 =-k=--Lzma-9

Figure 6.  Comparison of Compression Time per byte across the 3
compression methods

Figure 5 shows the compression ratio offered
by the three compression schemes for the different
inputs given to them and its very evident that
lzma-9 performs worse than lzma-1 and Bzip2-
best. It can also be observed that the compression
ratios offered by 1zma-9 and Bzip2-best are about
the same. But the difference arises in the time
required to complete the same workload. Figure
6 shows how much time each algorithm takes to
compress one byte, for three different workloads.
The scale of the y axis in this figure is in the
order of 10~". As is evident, Bzip2-best performs
the best in these test conditions which are very
close to the deployment environment.

For this simulation, the compression thread (all
three compression schemes) ran on a quad core,
hyper threaded Lenovo D20 Intel(R) Xeon(R)
CPU (E5640) @2.67GHz with 6GB RAM.

VI. APPLICATIONS AND FUTURE WORK

Hydrophones can operate over a wide range
of frequencies, both low and high. Shipping is
an example of low frequency underwater noise

and with the raw acoustic signals available in
real-time a shipping simulation application could
predict the course of various ships overlaying
this with weather information to predict course
corrections. Similarly, dolphin echolocation clicks
are an example of high frequency noise and a
dolphin tracking application could use the real-
time signals to identify the presence of dolphins
nearby and attempt to estimate the population for
the locality. For the deployment of wave energy
converters, we can also quantify the converters add
a significant amount of acoustic noise to the sites
underwater acoustic signature.

At present the base station software is a packet
listener only. In other words, it establishes a con-
nection to the ADC and then just receives pack-
ets, there is no protocol involved for “chatting”.
An interesting addition would be to add such a
capability, allowing for a command and control
style communications with the ADC. It could be
instructed to change the sampling rate or to power
down wireless communications for “x” hours if it
is winter time. Furthermore, the current compres-
sion algorithms (bzip2, 1zma) could be replaced
with a more suitable high frequency audio com-
pression algorithm. As the range of frequencies is
quite large ("500kHz), standard mp3 techniques
are insufficient as consuming applications may
require a loss-less algorithm for more accurate
species/engine noise identification.

VII. CONCLUSION

In this paper we have described the design
and implementation for an on-shore base station
that collects very large amounts of underwater
acoustic data from off-shore buoys. The data is
collected in real time, and can be used for analysis
and simulation of underwater ocean environments,
and in particular for monitoring underwater animal
activity, and understanding the effects of bringing
renewable energy technologies such as wave en-
ergy capture systems into the environment.

Our base station system is designed to receive
and process large amounts of sensor data in real
time, and a single base station can receive data
from many buoys in the ocean. Our scalability



tests show that our system easily scales to handle
64 separate streams of sensor data. We capture,
compress, and retransmit data in separate threads
ensuring high performance capture and compres-
sion that reaches real-time requirements. Finally
we present experimental measurements of data
compression rates on sensor data which suggests
that high levels of compression are possible, at
least during the majority of time when there is
little more than general background noise.

Our base station will soon be deployed on the
west coast of Ireland, where it will be used to col-
lect raw underwater acoustic data in the Atlantic
Ocean in real time over the course of a full year
at a rate of 500,000 16-bit samples per second.
This is equivalent to 8Mb/s or around 28.8TB of
data over the course of a year. By sampling at
a high rate, i.e. 500,000 samples per second we
give marine biologists or analytic engines a very
fine grained input which may ultimately result
in more accurate population counts for specific
marine species.

ACKNOWLEDGEMENT

This work was supported by the Sustainable
Energy Authority of Ireland (SEAI) and the Ma-
rine Institute of Ireland. Aravind Vasudevan’s re-
search is supported by the IRCSET Enterprise
Partnership Scheme in collaboration with IBM
Research Dublin, Ireland. David Gregg’s research
is supported in part by Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software
Engineering Research Centre (www.lero.ie).

REFERENCES

[1] Nolan et al., “Design and Control Consider-
ations for a Wave Energy Converter”, Irish
Signals and Systems Conference ISSC 2004,
Belfast. pp. 475-480. ISSN 0537-9989.

[2] Aaron Zettler-Mann, “The Effects of Wave
Energy Converters on a Monochromatic
Wave Climate”, Honors Thesis at University
of Colorado Boulder.

[3] Stevens et al., “UNIX Network Program-
ming, Volume 1: Networking APIs: Sockets
and XTI”, 2nd Ed., Prentice-Hall, Inc., 1998.

[4] Provos et al., “Scalable Network I/O in
Linux”, USENIX Annual 2000 Technical
Conference.

[5] Metz, “Protocol Independence Using the
Sockets API”, USENIX Annual 2000 Tech-
nical Conference.

[6] Rago, “UNIX System V network program-
ming”, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1993.

[7] J. Seward. bzip2, version 1.0.5 http://www.
bzip.org/1.0.5/bzip2.txt

[8] Lzma, version 4.32.7 http://tukaani.org/lzma/

[9] Bryant et al., “Scaling linux to the extreme”,
In Proceedings of the Linux Symposium
2004, pages 133-148.

[10] Kleen, “Linux multi-core scalability”, In Pro-
ceedings of Linux Kongress , October 2009.

[11] Yan et al.,, “OSMark: A benchmark suite
for understanding parallel scalability of op-
erating systems on large scale multi-cores”,
2nd International Conference on Computer
Science and Information Technology, pages
313-317, 20009.

[12] Yan et al.,, “Scaling OLTP applications
on commodity multi-core platforms”, IEEE
International Symposium on Performance
Analysis of Systems & Software (ISPASS),
pages 134-143, 2010.

[13] Kolar et al., “Complex Real-Time Environ-
mental Monitoring of the Hudson River and
Estuary System.” IBM Journal of Research
and Development, vol. 53, no. 3, Paper 4,
2009.

[14] Kolar et al.,, “Stream analytical processing
of acoustic signals for cetacean studies and
environmental monitoring of ocean energy
conversion devices”, Proceedings Oceans 11
— IEEE-OES Santander 2011

[15] Richardson et al., “Marine Mammals and
Noise”, San Diego, CA: Academic Press,
1995.

[16] “Conservation Plan for Irish Cetaceans”, De-
partment of Environment, Heritage and Local
Government, Public Consultation Draft, Oc-
tober 2009.



