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Abstract—In this article we propose a novel framework —
Heterogeneous Multiconstraint Application Partitioner (HMAP)
for exploiting parallelism on heterogeneous High performance
computing (HPC) architectures. Given a heterogeneous HPC
cluster with varying compute units, communication constraints
and topology, HMAP framework can be utilized for partition-
ing applications exhibiting task and data parallelism resulting
in increased performance. The challenge lies in the fact that
heterogeneous compute clusters consist of processing elements
exhibiting different compute speeds, vector lengths, and com-
munication bandwidths, which all need to be considered when
partitioning the application and associated data. We tackle this
problem using a staged graph partitioning approach. Experi-
mental evaluation on a variety of different heterogeneous HPC
clusters and applications show that our framework can exploit
parallelism resulting in more than 3x speedup over current
state of the art partitioning technique. HMAP framework
finishes within seconds even for architectures with 100’s of
processing elements, which makes our algorithm suitable for
exploring parallelism potential.

Keywords-Graph partitioning, vectorization, data paral-
lelism, heterogeneous architectures, clusters.

I. INTRODUCTION

High performance computing (HPC) clusters increasingly
consist of large numbers of heterogeneous processing ele-
ments such as CPUs, graphics processing units (GPUs), field
programmable gate arrays (FPGAs), low-power processors
intended for digital signal processing (DSP), etc. By com-
bining heterogeneous processing units it may be possible
to divide the work so that different types of computation
in the application are run on different types of units. This
can result in significant speed-ups, lower hardware costs
and/or reduced power consumption by the HPC system. For
example, if a computation contains the right patterns of data
parallelism it may run dozens or even hundreds of times
faster on a GPU than on a CPU that has similar cost and
power consumption. On the other hand, computations with
less data parallelism and more complex control flow may
run faster on CPUs. Matching the type of computation to
the processor can yield significant benefits. Although the
potential of heterogeneous computing is great, exploiting
that potential is more difficult.

In this paper we consider the streaming [1] model of
computation. Streaming is a popular model for programs
such as image and signal processing, financial applica-

tions, networking, telecommunications, etc. In the streaming
model statements (also called filters/actors/tasks or kernels)
execute iteratively, processing the incoming tokens of data.
Given such a stream application, it is difficult to partition
the available parallelism onto the hardware. For example,
how does one decide which parallel filters should run on
which type of execution unit? Given a system with dozens
or hundreds of CPUs, GPUs and other units, how does one
divide the work between them? There are several conflicting
factors. For example, one wants to allocate filters to the type
of execution unit that will execute it most efficiently. On
the other hand, one wants to achieve a good load balance
by dividing the work evenly across the units.We want to
allocate the filters to reduce communication costs while at
the same time taking account of all the other factors.

We consider the problem of partitioning stream graphs
onto heterogeneous HPC computing systems. This problem
has been studied extensively for homogeneous architectures
where all processing elements are the same. Although the
homogeneous case is NP-hard [2], several heuristic solutions
have been found that work well in practice. However, ex-
tending these solutions to the heterogeneous case is difficult
for two reasons.

In the heterogeneous case some processing elements are
more powerful than others, so achieving a good load balance
usually involves distributing the work unevenly.

A second reason why it can be difficult to extend algo-
rithms for homogeneous architectures to the heterogeneous
hardware relates to the strengths and weaknesses of differ-
ent types of processors. When considering heterogeneous
architectures, it is tempting to think of some processing
elements simply being more powerful than others. A GPU
is not simply a more powerful CPU. In fact, some types
of computation run better on CPUs and some on GPUs.
For a partitioning algorithm to work well, it needs to take
account of the strengths and weaknesses of different types
of processing elements. In this paper we present an approach
to partitioning parallel tasks to heterogeneous architectures
that addresses both of these concerns.

Our main contributions are as follows:

e We present a novel approach to characterizing the

type of processing elements based on their level of
vector parallelism which, allows us to distinguish the



suitability of different types of units to different filters.

o We provide a novel algorithm for partitioning task and
data parallelism to heterogeneous architectures based
on hierarchical graph partitioning.

The rest of this paper is organized as follows. Section II
formalizes the problem statement and defines the objective
function. Next, in Section III, we provide a detailed de-
scription of our framework. Section IV gives the quantita-
tive comparisons of our approach against other approaches.
Section V describes the related work and positions our
approach in comparison to these works. Finally, we conclude
in Section VI.

II. PRELIMINARIES

We now present a formal description of the problem along
with the notations used.

A. Execution model

Consider the Jacobi example and its filter graph in Fig-
ure 1. The Jacobi algorithm is used in fluid dynamics and
heat transfer problems. We consider every statement (marked
1 to 4) in this example to be a filter that can be run in a
software pipelined [3] manner on a given architecture. An
example execution trace of the Jacobi example is shown
in Table I for some arbitrary value of computation and
communication latency of statements.

PO | 1o 11 12
PI 20 | 30 21 31 22
P2 [ 1) 1 1A
P3 do T4 4 [ 4

Table I: Example execution trace of the Jacobi kernel

In a software pipelined model, the different iterations of
the filters are run in parallel, e.g., 1y is the 15t iteration of
statement 1 in the Jacobi example, while 1; is the second it-
eration and so on and so forth. The period of the application
is the time period where all filters of the stream graph run
simultaneously, shown within the double lined columns in
Table I. In such a model, the resource allocation (rather than
dependencies) determines the application period, especially
without back-edges in the filter graph (as is the case with
our model). In Table I, the resource allocation on process-
ing element P1 and P3 determines the application period,
because it is the maximum of the four allocation latencies.

B. Task and Data parallelism

1) Task parallelism: Task parallel filters are the branches
connected to a split node. These filters can be run in parallel
provided enough resources are available. For example, in
Figure 1(b) statements 1 and 2 are task parallel filters
connected to the split node start. The execution trace
shown in Table I exploits this task parallelism by excuting
statements 1 and 2 on processors PO and P1 concurrently.
This type of concurrent execution of different task parallel
filters is ususally termed as Multiple Instruction Multiple
Data (MIMD) parallelism.

2) Data Parallelism: Data parallelism is the ability to
exploit the parallelism hidden in stateless filters. As shown
in Figure 1(b), statement 1 is a stateless filter. Two copies of
this stateless filter are run concurrently on processors P0 and
P1 thereby reducing the overall period as shown in Table I.
The best allocation for a stateless filter is a vector processor
with the ability to execute large number of concurrent copies
— ususally termed Single Instruction Mutiple Data (SIMD)
parallelism.

C. Notations

We refer to our application graph, as a Stream Graph
defined formally as a weighted directed graph: G¢(V¢, Ey),
where V; is the set of all filters in the stream graph and
E, represents the communication buffers between these
filters. The system resources are represented by a weighted
undirected graph G, (V,, E,.) where V, represents a set
of processing elements (PEs), which can have different
processing capabilities and F,. represents the communica-
tion links between these PEs with differing communication
bandwidths.

D. Problem Definition

Given a graph G¢(V;, E}), each vertex in the filter graph,
t; € V; has a set of associated requirements represented by
T]? where j = 0...ny_; with ny_; being the number of re-
quirements. These requirements represent the computational
requirements of the filter. Namely, T¢ represents the scalar
requirements, while 77 represents the vector requirements.

The communication edges are represented with e € Ey,
which denotes the data(in bytes), the filter requires for
processing. Each resource node r; € V, has a number
of computational capabilities, represented by R; where
j = 0..n,_;1. For each resource node, capability: R
represents the frequency of the PE or how many scalar
instructions the PE can perform in one second (the Million
Instructions Per Second (MIPS) count). Capability : Rli
denotes the maximum number of parallel vector operations
it can perform (the vector length). Each edge e € E,. has a
weight which represents the bandwidth between two PEs r;
and r; which is denoted by E°.

The problem at hand is to effectively partition the stream
graph G, onto given resource graph G,. This problem is
known to be NP-Hard [2].

(T{/R x T)/R) + (/B e = (t, i) tu # i, ()
Vir € Vi, c' = (rj,ri),r #rj,Vr € Vi

P
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//Task and data-parallel
for (int i=0;1<999; ++1i){
for (int 3j=0;3<999; ++7){
1: A[i][J] = (i*3+2.0+2.0/1000)
2: B[1][3j] = (i*3+3.0+3.0/1000)
}
}
for (int k=0;k<1000; ++k) {
for (int i=1; 1<998; ++1i)
for (int j=1; 3<998; ++7)
3: B[1][J] = 0.2% (A[1]1[J1+A[1]113-1]
FA[L] [J+11+A[1-11[3])

//Data-parallel

for (int i=1; 1i<999; ++1)
for (int j=1; 3<999; ++3)
4: A[11[3] = B[i1[3]

(a) Example 2-dimensional Jacobi application

250K Split Statements
o0 E/obitcast = bitcast [2 x <2 x float>]* %A to <4 x ﬂoat>a )

Data Store
Start A[ 1000, 1000 ]
e =7:8125KB
Data Store 1: (Ali,j) =ixj+ 2.0+ 2.0x0.001
1. . 1.
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Ay 3 Task parallel statements
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(b) The filter graph for the Jacobi example !

Figure 1: Jacobi example and its filter-graph

Given some filter ¢; € V; partitioned onto some resource
r; € V., the computation latency for that node is computed
by Equation (1). In this formulation for some filter ¢; being
partitioned onto some resource r;, we first calculate the
number of vectorized instructions that can be executed in
parallel (by dividing the required vector length by the vector
capacity of r; represented by R}). We then multiply this by
the number of iterations in the loop to get the total number
of instructions to be performed by that filter-graph node.
For example, for statement 4 in Figure 1(b), T;f = 999 and
Tyt = 998001, respectively. This in-turn indicates that state-
ment 4 requires 998001 way vector parallelism (also termed
data-parallelism) and each of these vector instructions are
carried out 999 times. If we assume a processor (most likely
a GPU) is able to provide 998001 way vector-parallelism,
then the result of Equation (1) is: 35001 x 999.

Once we have this number, we calculate latency of
execution of this filter-graph node ¢; on this resource r; by
dividing it with the MIPS value of the resource denoted by
R}. Calculation of the communication latency requires di-
viding the number of bits to be transferred by the bandwidth
of the shortest path.

Given the filter-graph and the resource-graph, let P be
some partition of the application on the resource-graph. For
a particular allocation onto some resource node r; € V.,
we define its computation and communication latency as
in Equation (2). Finally, the complete application period
is defined in Equation (3) and is the map of all latencies
calculated using Equation (3) as shown in Table I.

The objective of our framework is to find a partition P that
minimizes the total application period as in Equation (3).

III. HMAP FRAMEWORK

A common approach to solving the homogeneous
case is to partition the graph across the processing
elements [4]-[6]. However, we have found that such
heuristic partitioning approaches do not work well for

heterogeneous architectures. Instead, we propose a novel
approach where the architecture is hierarchically partitioned
into sub-clusters. Our heuristic algorithm does this in such a
way that the sub-cluster at the same level of the architecture
hierarchy has approximately the same computing capability
and has relatively local communication. This allows us to
use existing approaches that work well for the homogeneous
case to partition heterogeneous architectures across the
sub-clusters at each level of the hierarchy. We show that
this is an effective approach if the sub-clusters are well
balanced at each level of the hierarchy.

Our heuristic HMAP consists of two important concepts
that need description. First, we describe how the topology
clusters are formed from the resource graphs accounting for
communication and heterogeneity of the topology. Secondly,
given a stream graph with data parallel filters, task parallel
filters, and communication extracted as shown in Figure 1(b)
how the partitioning is performed.

A. Clustering the resource graph

The resource graph represents the cluster of compute
nodes on which the filter graph will be executed. A sample
resource graph is shown in Figure 2 at level 0. The resource
graph that is shown is heterogeneous in both computation
and communication. The properties of the resource graph
are described below:

o Compute nodes: The compute nodes (PEs) are as-
sumed to belong under two categories of processing
units, mainly CPUs and GPUs. Following the current
trend, the CPUs have a larger MIPS count. The MIPS

Ellipses represent data stores. Rectangles represent filter nodes.
Rounded rectangle represents data parallel nodes. The dots represent other
data parallel nodes not shown in the figure. Dashed arrows represent
communication between data stores and execution statements. Solid arrows
represent dependence edges. Task parallel statements: 1, 2 and data parallel
statements: 1, 2, and 4 are marked for convenience.



capacity of a PE is denoted by the first constraint
RE,Vi € V,.. The GPU nodes have a lower MIPS count,
but have a large vector length, denoted by the second
constraint R},Vi € V;.. For example, the fifth PE (EO,
Figure 2) at level 0 is a CPU, since it has a small vector
count and a large MIPS count, the first PE (A0) on the
other hand is a GPU, since the capabilities are reversed.

o Communication links: The resource graph shown in
Figure 2 at level 0, follows a 2D mesh topology. In
this topology the PEs are connected in a grid with
individual communication links between them. The
bandwidth of these links is non uniform. The different
bandwidths on the communication links is represented
by the constraint £¢. Our framework can handle any
kind of topology, the 2D mesh shown in Figure 2, is
just an example topology.

1) Clustering the topology: The main idea behind our
partitioning approach is to first hierarchically cluster the
nodes in the heterogeneous architecture provided by the
designer, thereby forming clusters. The application is then
partitioned in stages (levels) onto the resulting hierarchy.
The intuition behind this approach is two fold:

o Heterogeneous K-way partitioning: The process of par-
titioning an application onto a given architecture is
equivalent to a heterogeneous K-way partitioning prob-
lem. Hierarchically clustering a heterogeneous topology
such that the resulting hierarchy consists of clustered
PEs with balanced compute capabilities can reduce
the heterogeneous K-way partitioning problem to a
homogeneous one.

o Considering communication links: The communication
can be considered into the equation, while building
the hierarchical cluster using the min-cut technique.
Thus, a min-cut load-balancing of the PEs in a topology
intuitively means: we are clustering together PEs, which
have large bandwidth together into a single cluster,
while making an attempt to load balance the two
capabilities: MIPS and vector lengths.

The hierarchical cluster built for the synthetic topology at
level O of Figure 2, is shown in the levels 1-3. The stages
used to build the hierarchy are as follows:

o Effective computation during clustering: Given a topol-
ogy graph with |V,.| resources, we cluster the PEs in
levels, whereby the height of the cluster is logs|V|.
For example, consider the PEs at level O in Figure 2.
Clustering from level 0 to level 1 results in 4 PEs
at level 1, where the two capabilities, R’g, R’f for
each cluster £ = {i,j},3 € V., A3Jj € V, is
computed as: RE = R} + R}, and RY = R} + R].
Without loss of generality we assume this for any
k = {i,4,..,n},¥n € V.. This process is continued
until we reach the top-level with just 1 cluster. We
end up with a load-balanced hierarchy, with each level

showing a larger amount of homogeneity, and a smaller
number of clustered PEs. The reason for a level based
clustering, instead of clustering all nodes into a single 2
node partition, is that when partitioning the application
on the resulting top-down cluster, we have fine grained
details within each of the cluster.

o Effective communication during clustering: When clus-
tering nodes, the effective communication between two
such clusters is hard to determine. This is because the
clustering itself is a virtual representation of the actual
nodes. Moreover, there might be multiple unique paths
between two nodes across different clusters. Choosing
a suitable path is a routing problem and its beyond the
scope of this paper. In this paper we take a pessimistic
approach to calculating the effective communication
bandwidth between clustered nodes, because this gives
us the lower bound on communication. We assume
that in the worst case scenario the link(between any
two nodes) with the least bandwidth would act as
the bottleneck. These unique links are determined for
all the nodes in the cluster. Then to get the effective
bandwidth between these clusters we aggregate these
bandwidths. The algorithm to calculate the effective
communication between clusters is outlined below:

1) We use the all-pair Floyd-Warshall [7] algorithm
to calculate the shortest path, in terms of commu-
nication latency of data-transfer, for every com-
munication link in the topology. From this we
calculate the bandwidth of these links by inverting
its communication latency. This creates a list,
which contains all of the best case bandwidths
between any two nodes.

2) For any two clusters, we choose a source node
in one cluster and determine all the paths to all
the nodes in the connecting cluster. From this we
choose the link with the least bandwidth.

3) Next, we repeat the above step for the other source
nodes and end up with the paths, which would act
as a bottleneck for any given unique source and
destination pair.

4) Addition of these resultant bandwidths is the
effective bandwidth between the two clusters.

The purpose of calculating this effective bandwidth is
that during clustering of the nodes at each level we would
like to balance the nodes not only based on their compute
capabilities but also their communication potential. This
would give us more balanced clusters with both computation
and communication taken into account. For the topology,
at level 0, in Figure 2, we first calculate the best possi-
ble paths between every pair of nodes (i,5) € (V; x ;).
Now let us consider the example of the clustered nodes
Bl and C1. Node Bl is a cluster of the set of children
nodes {C0, HO, F'0} and C1 is the cluster of the node set



{BO0, A0}, respectively. Being an undirected graph with loss
of generality we can consider B1 to be the source and C1
to be the destination. Hence, the worst path, in terms of
communication latency of data-transfer, following the all-
pair Floyd-Warshall algorithm, between nodes C0 and B0
within the clustered nodes is given by the maximum com-
munication latency path amongst the memoized best edges:
max((C0, BO), (HO0, B0), (F0, B0)). Similar computation
is carried out for all link pairs in the clustered node with A0
as the destination node to find the minimum communication
latency path. Finally, the reciprocal of these two latencies
and its addition gives us the effective bandwidth between
the two clusters. This effective bandwidth represents the
communication link between the two clustered nodes.

Level 3
Level 2
Ry7 = 601K Ry =141
57— 1005 R =17M
ap| RIT=1005 al B
¢ =69K ~Fc =38K ‘E" =121K
RG5O~ 154 F 26K R = 618K
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g ! p1l
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Ry =96 |p =506 R =31 | 168 R§ = 481K |pc —457¢] R = 120K
R} = 791K R} = 301K R} =487 R} =518
Aol ! col 1 go| ¢ Go| 177
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Figure 2: Clustering of a resource graph
B. Filter graph partitioning

The filter partitioning on the resulting hierarchical cluster
takes a top-down approach. We start with the filter graph ex-
tracted from the application (Figure 1). We then recursively
partition the filter graph (using K-way partitioning) on the
hierarchical cluster of the resource-graph. For the example
cluster in Figure 2, we start by partitioning the filter graph
in Figure 1, first into two (K=2) partitions considering two
equally weighted compute nodes at level 2. Once a partition
is obtained for this level, we move onto the next level (level
1), whereby all the filter graph nodes allocated onto node
A2 are further partitioned onto the nodes A1 and C1 (again
K=2), which are coupled into the cluster A2. This process
is continued recursively for all clusters until the final level
(level 0). During each partition we make sure that the filter
node requirements are closely matched to the resource node
capabilities.

Doing it in this top down manner has two important
consequences.

o Increase in the time complexity: As stated previously,
the partitioning problem is equivalent to the K-way par-
titioning problem. The multi-level K-way partitioning
results in the worst cast time complexity of O(|E:| x
log2|V:.|) [8]. Our algorithm gives a worst case com-
plexity of logs|Vy| x O(|E¢| X loga|Vy|) when using
the multi-level K-way partitioning. But, in the average
case we ask for a balanced 2-way partition at all levels,
which results in a complexity of logz|V;| x O(E;) in
the average case.

o Refined partitioning: By dividing the partitioning on
to several levels we can achieve much better load
balancing by considering only fewer nodes to partition
than if we were to do it directly on to the resource
graph.

IV. EXPERIMENTS AND RESULTS
A. Our implementation

We use the Metis [9] graph partitioning library in the im-
plementation of our partitioning algorithm. We are not tied
to Metis and any other graph partitioner such as Zoltan [10]
or Scotch [11] can be used for implementing our algorithm.

We now describe how we used Metis to implement the
graph partitioning. The resource graph is represented in
the Metis graph format. We represent the PEs’ capabilities
as constraints of the nodes and the links’ bandwidths as
communication weight on the edges. We then construct our
clustered structure (Figure 2) by asking for a 2-way partition
at each level of the logz|V;| height. Metis partitions the
graph by load balancing the constraints and performing a
minimum edge cut. In partitioning the filter graph, we need
to distribute the constraints on to the available partitions
such that capability and requirement is balanced. Metis
offers the ability to load balance multiple constraints on
to different partitions based on the metric ‘tp-weight’. This
metric basically represents the ratio between a given type of
constraint across the different partitions. We calculate the
ratios between the capabilities of different partitions and
represent them as this metric in order to load balance on
to the available partitions.

B. The experimental set-up

The experimental set-up consists of the resource graph
generation and the filter graph generation. Herein, we de-
scribe the two set-ups.

1) The resource graph set-up: The experimental set up
consists of the following.

1) An interconnection network with |V,.| nodes. |V;|
varies from 64 to 4096 PEs. A node can be just a
multi-core CPU or a multi-core CPU with an attached
GPU.



2) A set of Ng GPUs where Ng is at most |V,.|. The
GPUs are connected in the network at locations,
chosen randomly in the normal distribution of 25%
to 75% of |V,|.

3) Aset G = {Gl,GQ,Gg, G\G|} Every GPU in this
experiment has a vector length of G; where G; is
sampled randomly from the set G. The elements of
set G are chosen from a normal distribution ranging
from: 10000 to 100000.

4) A set C = {C1,C3,C3,...C¢} Every CPU in
this experiment has C; cores where C; is sampled
randomly from the set C.

5) A set M = {My, Ms, M3,...Mpq} Every C; € C
and GPU in this experiment has a MIPS count of
M; where M; is sampled randomly from the set M.
The elements of set M are chosen from a normal
distribution ranging from: 1000 to 100000.

6) A set B = {B, By, Bs,...B|g|} Every |E,| edge in
this experiment has a bandwidth of B; in MB/s where
B; is sampled randomly from a normal distribution
ranging from: 100 to 100000

For given values of |V.|, Ng, G, C, M and B and
a given application, let the k-th trial be defined as one
execution of the following sequence of steps.

e For each GPU G,, sample G and M randomly to
determine its vector length V; and MIPS count ;.

o For each CPU P;, sample C' randomly to determine the
number of cores C; in the processor P;.

o For each core C; in the processor P; sample V; and M;
randomly from set G and M.

o Use our framework to extract data and filter parallelism
that is best utilizable by the heterogeneity created by
parameters in items 1, 2, and 3 above. Determine the
execution time PP.

An experiment, E (|V,.|, Ng, G, C M, B), consists of
conducting enough of the above trials so that width of the
95% confidence interval on the average value of P is less
than 10% of the average value. This results in a variable
number of trials with different experimental set-ups. Note
that two trials differ from each other only in the seed for
the random number generator. This reduces the dependence
of our results on a lucky sequence of numbers from the
random number generator.

2) Random application graph generation: We built a
random graph generator to test our partitioning methodology
rigorously. The random graph generator takes as input the
following parameters:

e Number of nodes (n) - Total number of nodes to be
present in the filter graph

o Indegree (¢) - Average indegree of every vertex

o Outdegree (0) - Average outdegree of every vertex

o Communication to Computation Ratio - CCR (c¢) - It
is the ratio of the average communication cost of an

out-edge the average computation cost of the vertex
itself. If a application graph’s c is low, then it can
be called a computation intensive application and if
it is greater than 1 it can be called a communication
intensive application

o Structure of the graph («) - We generate the height of
the graph based on « as % This implies the width of
the graph becomes /n x «. Higher values of a give
wider graphs, which means the graph has more inherent
task parallelism, while lower values give taller graphs,
which means the graph is inherently serial

« Beta (8) - We use this parameter to decide if an actor
in the filter graph is CPU intensive or GPU intensive.
Smaller values of S makes actors CPU intensive (by
making first constraint larger than the second), while
larger values make it GPU intensive (by making the
second constraint larger than the first). This essentially
means that smaller values of (3 creates filters, which
require lot more non-vectorized units, whereas larger
values would result in filters with larger vector require-
ment.

o Skewedness factor (v) - This parameter dictates how
computation is spread across the graph. Smaller val-
ues of v give uniformly distributed values for the
constraints of the actors while larger values produces
skewed graphs

For our experiments, random graphs are generated by choos-
ing values for the input parameters from the following sets:

o xn = {128,256,512,1024, 4096, 8192, 16384}
o Xo=1{2,4,8}

e x. = {0.0001,0.001,0.01,0.1,1}

e Xo ={0.1,1.0,10.0}

e x5 = {5,25,50,75,95}

e Xy = {5,25,50,75,95}

We generated one graph per combination for a total of 7875
application graphs. Since the random graph generator has a
variety of inputs and these inputs are filled in from a large
set of possible values, a diverse set of application graphs are
generated with various characteristics.

We have varied the structure of the random application
graphs from more CPU intensive to more GPU (vector)
intensive, more task-parallel to sequential and a combination
of these (see Section IV-B1) and hence, tried to encapsulate
all different possibilities. Also instead of choosing a simple
application such as Jacobi example as shown in Figure 1,
experiments based on such diverse set of application graphs
prevents biasing towards a particular partitioning algorithm.
This allows us to evaluate how our HMAP heuristic performs
for different category of application graphs. The real work-
load characterization for a certain domain of applications
(e.g., scientific computing) is out of the scope of this paper
and remains as future research.
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Figure 3: Experimental Results
Each graph shows the application period P for a given class of application, on architecture consisting of various |V;.| nodes

C. Experimental Results

The experimental set-up consists of a dual socket system
consisting of Intel Xeon E5620 CPU running at 2.4Ghz with
24GB DDR3 RAM. The system is running Linux kernel ver
3.0.40-1. The HMAP heuristic was compiled using GCC
version 4.7.1 with *-O3’ optimization flag.

We ran over 100,000 experiments, using the random
application graphs and our HMAP heuristic and K-way
partitioning for seven resource architectures. Overall it took
us 74 sec on average for the biggest architecture of 4096
nodes to determine a partition of the application graph
onto the given heterogeneous architecture, which is 50 sec
more than Metis. The results comparing K-way partitioning
using Metis [9] and our HMAP framework are shown in
Figure 3. Once the partitioning of the application graph
for the given architecture is determined, we calculate the
application period using Equation (3).

The results are divided into five graphs, each representing
a common class (based on section IV-B2) of application
graphs. The final bar in each graph represents the average
application period for that class of application over the
different architectures.

Figures 3(a) and 3(b) represent application graphs that
consists of proportionally larger non-vectorized and vector-
ized requirements, respectively. The application graphs with
values of § = 5, 25, and 50 are more non-vectorized and
require a higher MIPS count. Whereas the application graphs
with = 50, 75, and 95 are those that require a higher
vector count. On resource architecture of size 64 nodes,
Metis results in an application partition with the period
being 1.2x faster than the one obtained by our scheme. But,

for the rest of the architectures we outperform the partition
obtained by standard Metis. For example, in the case of 4096
node architecture, the resultant application period from our
HMAP scheme is 3x faster compared to the one obtained
via Metis.

In the case of Figures 3(c) and 3(d), which represent
more serial and task-parallel application graphs, respectively
we notice a similar trend. Metis outperforms the HMAP
scheme for smaller architectures but HMAP outperforms the
partition obtained via Metis in all other cases.

We attribute such behavior to the following; for smaller
architectures, the variation (in terms of MIPS and vector
lengths) in the underlying physical architecture can be easily
captured in standard Metis using its so called constraints ‘tp-
weights’. For larger architectures with a very large number
of nodes as in our HPC case, these variations in the underly-
ing architecture cannot be expressed in Metis in the form of
constraints. We alleviate this inexpressibility by clustering
the large number of heterogeneous nodes into a smaller
number of homogeneous clusters as shown in Figure 2.

Figure 3(e) shows the result of partitioning communica-
tion intensive application graphs on the same set of heteroge-
neous HPC physical architectures. We perform significantly
better in comparison to Metis for larger archtiectures. This
is due to our clustering approach that ensures topology
nodes that communicate with high bandwidths are combined
together at each level. Moreover, Metis is unaware of the
communication between nodes in the topology as it only
performs a min-cut when partitioning the application graphs.
Our framework on the other hand, takes into account the
communication in the topology and indirectly matches heavy



edges from the filter graph onto high bandwidth edges in the
topology graph.

Figure 3(f) shows the average application period based on
all the input graphs. HMAP performs better than standard
metis on all architectures bigger than 64 nodes with an
average speedup of more than 1.5x and for the largest
resource architecture of 4096 nodes, HMAP performs 3Xx
better than standard metis.

Finally, HMAP does not perform as well on physical
topologies wherein the clustering of the resource graph
does not result in clusters with equal number of nodes. For
example, consider the 2048 node cluster, which is a 64 x 32
2D mesh. In such cases, clustering the given topology into
virtual clusters (see Figure 2) results in clusters without
equal number of nodes. Improving performance, further still,
in such topologies remains an open question, which we plan
to deal with in the future.

Moreover it is well known that data transfers between
RAM and GPU memory are expensive and we would like
to extend our heuristic to take into account the additional
latency encountered during partitioning the application. In
the future, we would also like to build a system capable
of generating and executing the application based on the
partition provided by our heuristic on a given architecture.

V. RELATED WORK

A significant amount of existing research aims to ex-
tract parallelism from programs [12]-[14]. The polyhedral
optimization model [12] concentrates on automatically ex-
tracting data parallelism from loops operating on arrays.
The polyhedral optimization community has addressed par-
allelization for CPUs and GPUs separately, but to our
knowledge has not explored the combination of the two.

Carpenter et. al [15] provide a heuristic algorithm for par-
titioning stream programs onto heterogeneous architectures.
However, the heterogeneity of processors is represented
purely by their clock speed. No distinction is made between
processors with differing amounts of vector parallelism.

The Streamlt [16] community also address the problem of
scheduling and partitioning stream programs onto homoge-
neous parallel hardware, such as the RAW [17] architecture.
Streamlt can exploit data parallelism, by replicating stateless
filters, but it does not exploit vector parallelism.

Classical algorithms such as critical path scheduling [18]
and list scheduling [19] are used for scheduling task par-
allelism onto homogeneous architectures. The list schedul-
ing techniques targeting heterogeneous architectures such
as [20] do not exploit vector SIMD parallelism. Declus-
tering [14], is another technique for partitioning tasks to
parallel hardware, which again does not consider vector
parallelism.

Cluster based partitioning techniques [21] consider only
independent tasks without communication. The proposed
heuristics for partitioning data-parallel applications onto

clusters [22], [23] do not consider vectorization potential
available on the compute clusters and only concentrate on
partitioning task parallel processes.

Heuristic optimization techniques such as genetic algo-
rithms (GA) and Simulated annealing [24], [25] and local
search methods [26] use a semi-random search of the space
of possible partitions filters on to execution resources. The
effectiveness of these techniques often depends on choosing
good values for parameters to the algorithm. Determining
good values for these parameters is a difficult problem that
often requires trial and error.

Malik et al. 2012 [27], similar to our technique partitions
stream graphs onto heterogeneous architectures consisting
of CPUs and GPUs based on a mathematical integer linear
programming formulation (ILP) to provide optimal solutions
but, does not scale well to large architectures or stream
graphs. Hence, ILP is more suitable for small embedded
systems, whereas our work is more suited for HPC sys-
tems. Sui et al. 2010 [28] focus on extracting amorphous
parallelism, which occur in irregular algorithms working
on graph data-structures similar to Metis [9]. We on the
other hand target streaming applications, and extract data
and task-parallelism, which are commonly occurring forms
of parallelism on SIMD and MIMD architectures. Thus, our
work is orthogonal to that of Sui et al. Same can be stated
about Catalyurek et al. 2001 [29].

VI. CONCLUSION

In this paper we have described a novel staged graph
based partitioning heuristic to partition and schedule stream
graphs onto heterogeneous execution architectures called
HMAP. Our HMAP heuristic is able to exploit both multiple
instruction multiple data and single instruction multiple
data parallelism from stream graphs by allocating the task
and data parallel actors to appropriate computation units
— primarily CPUs get allocated the task parallel compute
intensive filters, while GPUs get allocated the data parallel
filters. HMAP is able to detect the strengths and weaknesses
of the varying compute units in the given architecture and
perform (if required) an uneven load balance to achieve
maximum throughput. Moreover, our HMAP framework also
deals with the varying bandwidth in the underlying topology.

We tested HMAP on a statistically significant 100,000
different experiments, by differing the features in the stream
graph and the underlying architecture, with success. HMAP
outperforms the current state of the art Metis partitioner by
providing a stream graph partition that outperforms Metis
by around 1.5x on average and by around 3x for large
architectures. Finally, partitioning results even for large
architectures and stream graphs are obtained within seconds,
thereby making our heuristic suitable fo both off-line and
on-line partitioning.
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