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Abstract—We present a simulated annealing based partition-
ing technique for mapping task graphs, onto heterogeneous
processing architectures. Task partitioning onto homogeneous
architectures to minimize the makespan of a task graph, is
a known NP-hard problem. Heterogeneity greatly complicates
the aforementioned partitioning problem, thus making heuristic
solutions essential. A number of heuristic approaches have
been proposed, some using simulated annealing. We propose a
simulated annealing method with a novel NEXT STATE function
to enable exploration of different regions of the global search
space when the annealing temperature is high and making the
search more local as the temperature drops. The novelty of
our approach is two fold: (1) we go a step further than the
existing scientific literature, considering heterogeneity at levels
of task parallelism, data parallelism and communication. (2) We
present a novel algorithm that uses simulated annealing to find
better partitions in the presence of heterogeneous architectures,
data parallel execution units, and significant data communication
costs. We conduct a statistical analysis of the performance of
the proposed method, which shows that our approach clearly
outperforms the existing simulated annealing method.

I. INTRODUCTION AND RELATED WORK

Hardware manufacturers in their eagerness to overcome
the limits of silicon have introduced heterogeneous execution
architectures. There is evidence [1] of software/compiler de-
velopers catching up by inventing techniques for automatic
parallelisation of programs onto this heterogeneous hardware.
Task graph partitioning and scheduling, onto a heterogeneous
architecture, to reduce the overall application latency is a
well studied problem [2], [3]. Different approaches have
been proposed, some that give optimal solutions for two-
processor systems [4], while others that are heuristics for
generic hardware topologies [5]. Task graph partitioning and
scheduling being NP-hard [6], [7] in the general case, requires
one to search for good heuristics that can efficiently utilize
the underlying execution architecture (unless P=NP). There
are two facets that any heuristic task-partitioning technique
needs to consider: (1) correct and efficient modelling of the
application to extract the parallelism from the underlying
execution architecture and (2) a quick algorithm that can
provide close to optimal solutions.

Usually, the algorithm designers concentrate on the second
facet; providing an efficient heuristic algorithm (normally

some kind of meta-heuristic optimization technique [2]), with
the first one taking a back-seat. This observation is based
on the fact that none of the proposed heuristic techniques,
targeting partitioning and scheduling of task-graphs on het-
erogeneous hardware explicitly specify the different types of
potential parallelism available in the underlying heterogeneous
hardware. For example, if we consider Graphical processing
units (GPUs) in conjunction with the standard Central process-
ing units (CPUs), we can identify at least three forms of paral-
lelism; (1) multi-core parallelism suitable for graphs composed
of independent tasks, (2) short vector parallelism available
on CPUs and (3) very large vector parallelism available on
GPUs. None of the work to date [3], [8], [9], [2] explicitly
tries to extract these different types of parallelism together.
Sanyal et al. [9] and Braun et al. [2] consider heterogeneous
architectures with different cores running at different speeds.
However, they do not target vector parallelism.

In this paper we use a simulated-annealing approach to par-
tition and schedule applications modelled as task-graphs onto
heterogeneous architectures addressing the above mentioned
gaps in the current literature on task-graph partitioning on
heterogeneous hardware.

Our key contributions in this paper are:
• Mechanisms to exploit data parallelism within tasks and

map the parallelism to processing elements with matching
vector capacity.

• A simulated annealing approach to partition the task level
parallelism and data level parallelism across heteroge-
neous multi-core architectures.

• We consider communication costs between heterogeneous
units and our technique also allocates the so called data-
stores indicating placement of variables on the correct
processor memory.

• We present a novel adaptation of the METIS graph
partitioner tool to the problem of partitioning task graphs
onto heterogeneous architectures.

• An experimental evaluation of our approach, comparing
it with three established approaches: k-way partition,
heterogeneous bin packing, and the existing simulated
annealing-based approach.

• Experimental results showing that our approach performs



well in practice, and in general produces superior results
compared to the existing approaches.

The rest of the paper is arranged as follows. Section II,
formalizes the problem statement. Section III, first describes
the established Simulated Annealing approach and then ex-
plains our contributions and improvements to this approach.
Next, we perform experiments to quantitatively validate our
SA approach in Section IV and discuss the related work and
position our work in comparison to the currently available
techniques in Sections IV-C2 and IV-D respectively. Finally,
we conclude in Section V.

II. NOTATIONS AND FORMALIZATION OF THE PROBLEM
STATEMENT

The overall application partitioning problem onto a hetero-
geneous execution architecture can be formulated in terms of a
graph partitioning problem. An application can be represented
as a task graph as discussed in Section II-A. We can represent
the underlying parallel execution framework as a resource
graph. The nodes in this graph are processing units and the
communication links are represented by the edges, which is
discussed in Section II-B. Given these two graphs, how does
one partition the former and map it onto the latter? To answer
this question, we extend the execution model presented by
Sanyal et al. [9], [10] to accommodate the three kinds of
parallelisms mentioned in Section I.

A. Formalizing the task graph

A task graph is a weighted directed graph Gt(Vt, Et), such
that each vertex Vt is a program statement in the application,
and Et ⊆ (Vt × Vt), shows the communication edges between
the vertices. Each vertex Vt is decorated with n weights (n = 2
in the case of the experiments conducted): wt0 : i→ N,∀i ∈ Vt
and wt1 : i → N,∀i ∈ Vt. Weight wt0 is a function on some
vertex i ∈ Vt, that maps the amount of work to be carried out
at node i (represented as Units of Work (UoW)) to an integer
value. Similarly, wt1 is a function on some vertex i ∈ Vt that
maps the vector length that is required by the node i again to
an integer value.

Each edge is decorated by a weight we : e → N,∀e ∈ Et,
where we represents the number of bytes that need to be
transferred from the location of the data-store (i) to the
utilization node (j). Data-stores are special nodes, one per data
variable, that indicate where the data resides. These special
nodes (that have their weights set to zero; thereby making
them dummy nodes) are inserted into the task graph wherever
reader and writer tasks require access to the corresponding
data. The introduction of these nodes however, are done ex
post facto. Hence the original dependence amongst tasks in the
application graph are preserved by inserting out and in edges
to read and write tasks respectively. The edges that existed
between tasks in the graph before the introduction of these
special nodes are preserved. The allocation of data-stores on
a heterogeneous resource graph plays an important role, since
we consider CPU-GPU architectures that do not have shared
memory. This implies there is a significant memory latency

associated with data transfer between these compute units.
Hence the placement of the data-store nodes plays a vital role
in minimizing data transfer on these expensive communication
links.

B. Formalizing the resource graph

The system resources are represented by a weighted undi-
rected graph Gr(Vr, Cr). Where Vr represents a processing
element in the underlying resource graph, while the edge Cr ⊆
(Vr×Vr), represents the communication links. Each vertex is
decorated with weights W r

0 : i→ N and W r
1 : i→ N,∀i ∈ Vr.

W r
0 maps the amount of work that this resource is capable

of doing represented by Units of Work (UoW) to an integer
value and W r

1 maps the vector capacity of that vertex to an
integer domain. Every communication link is weighted with
the bandwidth capacity denoted by W c : c→ N,∀c ∈ Cr. For
convenience we use the notation wt0(i) for function application
in the rest of the paper, same for all other functions.

C. Formalizing the objective function

As stated earlier, we extend the objective function from
Sanyal et al.’s work [9], [10] to accommodate the vector
parallelism that is now exposed because of the multi-constraint
representation of the task and resource graph we employ.
Given some application node i ∈ Vt mapped to some resource
j ∈ Vr. The latency for that node is computed as

Latency(i) =
((wt1(i)/W

r
1 (j)× wt0(i))/W r

0 (j)) +
∑

(we/W c)
e = (i, k), k ∈ succ(i)

(1)

where succ(i) represents the successors of the task i; c
represents the communication link in the underlying hardware
topology which connects PE j to the PE onto which the task
k is mapped onto. In this formulation for some given task
graph node i, we first calculate the number of vectorized
instructions that need to be performed (by diving the required
vector length with the vector capacity of the resource node).
This gives us the total number of vector instructions that would
be performed on the resource node j. Next, we multiply the
number of vector instructions to be performed by the UoW
required, this in turn gives us the total amount of work to
be performed by that task graph node. Finally, we find the
computation cost by dividing this total UoW value with the
UoW of the resource vertex. For communication on the other
hand, we calculate the cost, by dividing the number of required
bits to be transferred to the successors of the task by the
bandwidth of the resource(s).

Given the task graph and the resource-graph, let ζ be all
possible mappings of the application on the resource-graph.
We extend the formulation from eq. 1 to find how heavily
loaded each PE is. In order to do this, we simply add the
latencies of all the tasks scheduled on this PE. This necessi-
tates a sequential execution of all the tasks assigned to this
PE. Although this formulation doesn’t take the dependencies
of tasks that are mapped onto other PEs into account, it still



forms a lower bound for the makespan. Accounting for the
completion times of all the parents and data transfer time from
their PEs to this PE increases the makespan, thereby making
our estimate a tight lower bound. In our formalization and our
experiments we are only concerned about the mapping and
not the schedule. Once an effective mapping has been found,
a schedule can easily be derived from it using a simple list
scheduler.

Let ζM be the mapping under consideration and ζM(i)
represent the PE to which the task i has been mapped to.
Let s be the processor under scrutiny, then we define the load
for such a processor as:

LoadζM(s) =∑
∀i | ζM(i)=s(((w

t
1(i)/W

r
1 (s)× wt0(i))/W r

0 (s))

+
∑
we/W c)

s.t., s ∈ Vr ∧ {∀i ∈ Vi ∧ ζM(i) = s}
and e = (i, k) : {k ∈ succ(i)}∧
{c = (s, l) : ζM(k) = l,∀l ∈ Vr}

(2)

Finally, we define the objective function as the most heavily
loaded PE according to eq. 2. More formally, the complete
objective function can be defined as:

ObjectiveζM = maxs∈Vt
(LoadζMs ) (3)

The goal of our framework is to minimize the total objective
function value as described in Equation (3).

asdasd asd asd asd asd asd

III. SIMULATED ANNEALING

Simulated Annealing [11] is an adaptation of the
Metropolis-Hastings algorithm for solving the problem of
locating a good approximation of the global optimum of a
given function, F : R → R, which has a large search space.
In the context of the problem at hand, we have a 2-dimensional
search space, where one axis represents the task ID and the
other represents the resource ID. Each point in this 2-D space
represents a {task,resource} pair which implies this task is
mapped onto this resource. We define a state to be a collection
of |Vt| points such that each task is mapped to exactly one
resource. The total number of possible states in this discrete
space is |Vr||Vt| which is exponential. The large number of
states make exhaustive enumeration to find optimal solutions,
infeasible. Please note that we will use the term resource and
processing element (PE) interchangeably. The same applies for
task graphs and application graphs.

SA is a heuristic algorithm that explores the search space
by inspecting one valid state at each iteration. Each of these
inspected states are evaluated by an objective function which
tells us how good or bad this state is. The goodness in an SA
algorithm is problem dependent and in our case it is given by
the metric defined in Equation 3, Section II-C. The algorithm
progresses by inspecting a candidate state at each iteration and
it either accepts it as its current state or discards the state and
moves on to another state. We define a move as the generation
of the next candidate state and this progress is governed by

Input: Initial Mapping ζ0 and Starting and Final Temperatures T0, Tf
Output: Best Mapping ζbest
ζcurrent ← ζ0 ;
Ccurrent ← OBJECTIV E FUNCTION(ζ0); //calculate initial
objective function value;
ζbest ← ζcurrent;
Cbest ← Ccurrent;
R← 0;
for i← 0 to ∞ do
Tcurrent ← NEXT TEMPERATURE(T0, i);
ζnew ← NEXT STATE(ζcurrent, T );
Cnew ← OBJECTIV E FUNCTION(ζnew);
∆C ← Cnew − Ccurrent;
r ← RAND();
p← ACCEPTANCE PROBABILITY (∆C, Tcurrent);
if ∆C < 0 or r < p then

if Cnew < Cbest then
ζbest ← ζnew; Cbest ← Cnew; ζcurrent ← ζnew;
Ccurrent ← Cnew;
R← 0;

end
end
else

if Tcurrent ≤ Tf then
R← R+ 1;
if R ≥ Rmax then

break
end

end
end

end
return ζbest

Algorithm 1: The Conventional Simulated Annealing Algo-
rithm

a global time-varying parameter called the temperature which
changes based on an annealing schedule.

The algorithm always accepts a move to a better solution,
i.e. whenever a new state which has a better objective function
value than the current state, the SA algorithm accepts it.
When this value is worse however, the SA algorithm accepts
this move with a certain acceptance probability, that changes
with the current temperature. When the temperature is high,
the algorithm accepts moves to a worse solution with a
higher probability; as the temperature reduces over time, this
probability decreases as well.

A. Conventional Simulated Annealing : From the mapping
problem standpoint

The algorithm employed by Orsila et al. [8] is given in
Algorithm 1. This algorithm takes as input an initial (random)
mapping (ζ0), the starting temperature T0 and the final tem-
perature Tf , all of which are set by the user. ζbest holds the
best mapping found after the algorithm halts. ζcurrent and
Tcurrent are the current mapping and the current temperature,
respectively. The NEXT STATE function moves a random task
to a random processing element (PE). For further information
about this algorithm, we encourage the readers to read Sections
II.B and III from Orsila et al.’s paper [8].

B. Our Improved SA Approach

Simulated annealing is a generic framework that is charac-
terized by the definition of few of its parameters and functions.
In this section, we discuss our adaptation of Orsila et al.’s



Application Vector strip size
10 20 30 40 50

|Vt| |Et| |Vt| |Et| |Vt| |Et| |Vt| |Et| |Vt| |Et|
Binomial option pricing 82 206 102 306 122 406 142 506 162 606

Convolution 79 143 89 173 99 203 109 233 119 263
Gram Schmidt 228 443 838 1653 1848 3663 3258 6473 5068 10083
Gauss-Seidel 227 531 837 2041 1847 4551 3257 8061 5067 12571

Jacobi 48 130 78 240 108 350 138 460 168 570

TABLE I: The task graph setup

work [8] to suit the heterogeneity in our multi constraint
representation of task and resource graphs. We also discuss
the rationale behind the generation of next candidate states
based on the temperature parameter.

Orsila et al.’s paper [8] primarily dealt with parametriz-
ing the Simulated Annealing algorithm. The authors demon-
strated that their heuristic for setting the initial and final
temperatures in the annealing schedule was sufficient for
the algorithm to produce a good quality result. However,
the authors do not mention how the NEXT STATE func-
tion is computed, i.e. how the SA method finds the next
candidate state. Our NEXT STATE function is one of the
most important contributions of this paper.

In conventional SA, temperature is used only in the ac-
ceptance probability function to accept worse states as a way
of escaping local minimums, which we have retained in our
implementation. Additionally, we incorporate temperature in
the generation of the next candidate state (the next probable
move of the SA algorithm). When the temperature is high, we
allow a higher proportion of the elements in this mapping of
the form tk → ri for some tk ∈ Vt and ri ∈ Vr to change.
We denote this proportion by,

Tscaled =
Tcurrent
T0 − Tf

(4)

where Tcurrent is the current temperature, T0 is the initial
temperature and Tf is the final temperature.
|Vt| ∗ Tscaled gives us an estimate of how many tasks we

can migrate in order to generate the next candidate state. As
is evident from eq. 4, the scaled temperature factor allows a
lot of tasks to migrate to different processing elements when
the temperature is high. As the temperature decreases, we
restrict the motion of these tasks, meaning we allow only fewer
tasks to migrate to different processing elements and enforce
a condition on the rest of the tasks to stay at the processing
element they are currently on. Note that during every iteration,
the tasks that are allowed to move are selected at random
while the number of tasks that have to be moved is given by
|Vt| ∗ Tscaled.

This is in contrast to the conventional simulated annealing
algorithm where only the acceptance probability is affected
by temperature. Although the acceptance probability decreases
with temperature, the annealing schedule generates candidate
states which are distributed randomly throughout the search
space. In our method, as the temperature drops, the next
candidate state is generated closer to the current best solution.

This enables us to fine-tune the current best solution in order to
only move tasks that give us better objective function values.
This idea of letting temperature influence the generation of the
next state opens up a range of optimizations that can be in-
corporated into the NEXT STATE function. This is something
that we plan to explore in our future work.

We have also changed the starting point, ζ0 of the annealing
process. In the conventional algorithm a random starting point
is chosen by mapping each task to a random PE. We maintain
the randomness in the starting solution, but we mandate all
tasks to be mapped onto a single random PE. This puts tightly
coupled tasks, i.e. tasks that communicate heavily, onto the
same PE and moving them onto different PEs would only
incur more communication costs and would thus lead to a
worse objective function value.

We use the value for the initial and final temperature for the
annealing schedule same as Orsila et al. [8]. To accommodate
the multiple-constraint representation model with theirs, we
calculate the fastest and slowest processors by multiplying
each processor’s capabilities (the PE’s UoW capability and
vector width) and sorting them in non-descending order.

IV. EXPERIMENTS AND RESULTS

Although several list-scheduling heuristics for the prob-
lem exist [12], [5], [13], [14], we focus our comparison of
the proposed solution against the conventional SA approach
in [8]. Furthermore, we also compare our technique with
two state of the art heuristic algorithms for allocation of
task graphs onto heterogeneous architectures: one based on
K-way partitioning [15] and other based on heterogeneous
bin-packing [16]. Statistical analysis is performed on a large
set of randomly generated set of heterogeneous execution
architectures (resource graphs) and real-world applications
(task graphs).

We show the speedup obtained using our improved heuris-
tics against the conventional heuristics for SA as prescribed
by [8]. We also compare the results we obtain against the K-
way graph partitioning algorithm [15] and heterogeneous bin
packing heuristic [16].

A. K-way graph partitioning

Graph partitioning plays an important role in the multi-
processor and VLIW scheduling and partitioning algo-
rithms [17]. K-way graph partitioning is an important algo-
rithm, which partitions a given graph into K or less parts,
resulting in load balanced allocations. K-way partitioning
mixed with min-edge cuts can form a good tool to partition
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(a) Binomial Option Pricing
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(b) 2 Dimensional Convolution
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(c) Gram Schmidt linear-algebra kernel
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(d) 2 Dimensional Seidel stencil computation
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(e) 2 Dimensional Jacobi stencil computa-
tion

Fig. 1: Comparison of ObjectiveζM from eq. 3 : Our SA approach vs standard SA

a task-graph onto a multi-processor system, resulting in equal
utilization of PEs and reduced communication costs. We have
utilized the METIS [18] graph partitioning tool to perform a
K-way graph partitioning onto heterogeneous multi-processor
architectures for comparison purposes.

METIS is a graph partitioner, which implements K-way
partitioning with min-edge cut as the primary objective. The
weights on the graph nodes are represented as constraints.
Each graph node can have multiple-node weights representing
different criteria. The edges between nodes can be weighted
themselves, but as opposed to nodes, edges can only be
decorated with a single weight. Moreover, in METIS one
can use a concept called tp-weights, which gives preference
to different node constraints when performing load-balancing
during K-way graph partitioning [18].

The gist of our K-way task partitioning approach onto a
heterogeneous multi-core architecture is as follows:
• Our resource graph is first described as a simple graph in

METIS. In this description each of the two capabilities
W i

0 and W i
1 are described as two constraints for each

node in the graph. The communication bandwidth is
described as edge weights in METIS.

• Once we have the resource graph in the METIS format
we calculate the tp-weights. There are two tp-weights
generated, one for each of the resource node capabilities.
For each processor the UoW tp-weight is calculated by
the formula: W i

0/
∑
∀i∈Vr

(W i
0). Similarly, we can easily

calculate the tp-weight metric for each PEs vector length
capability as: W i

1/
∑
∀i∈Vr

(W i
1). These fractions give

a relative approximation of the capabilities of each PE
compared to the other. For example, given two nodes
with W 0

0 = 100 and W 1
0 = 50, then the first node has a

tp-weight of, 0.667, while the second has a tp-weight of,
0.333.

• The nodes in our task graph are described as graph nodes
in the METIS format. The two requirements (Ri0 and Ri1)
for each task node are described as two constraints in the
METIS node format. The edge weights in our task graph
are described as edge weights in the METIS graph format.

• Once we have the task graph described in the METIS
format along with the tp-weight metric for each PE in the
resource graph. We ask for a |Vr| partition from Metis,
giving the tp-weight metric for each constraint of the task
graph.

• The resultant partition is then used to calculate the
objective in Equation (3).

B. Heterogeneous bin packing heuristic

Heuristic bin packing solutions have given good results in
the general case [19]. Comparing with the heterogeneous bin
packing heuristic [16] allows us to gauge the effectiveness of
our algorithm against a standard technique.

Let I be the items to be accommodated into the bins and
let K be the set of bins available. From the standpoint of the
mapping problem, I refers to the set of task graph nodes (|Vt|)
and K refers to the nodes in the resource graph (|Vr|). Similar
to the Knapsack problem [20], by which A-BFD (Adaptive
Best First Decreasing) is inspired, each element i ∈ I, K
has two constraints on them represented by ci (cost), which
translates to the PE capability W i

0 and Vi (volume), which
translates to the capability W i

1, respectively. A-BFD proceeds
to sort I according to non-increasing order of their volume and
sorts K according to non-increasing order of the ratio ci/Vi.
Then, it proceeds to allocate items from I into best bins b ∈ S.



Application Max objective value Min objective value Better (%)
K-way Our SA K-way Our SA Our SA vs K-way

Bin. option pricing 79947.2 53404.8 11218.1 10975.5 94
Convolution 52.85 124.309 19.64 19.64 12

Gram Schmidt 54.13 2.96 1.33 0.91 64
Gauss-Seidel 542.44 32.99 9.67 9.67 68

Jacobi 16 14.69 0.95 0.89 32

(a) Statistics comparing our SA approach and K-way graph partitioning. Our SA
algorithm was run for 10 minutes per simulation run

Application Max objective value Min objective value Better (%)
HBP Our SA HBP Our SA Our SA vs HBP

Convolution 215741 124.309 98.45 19.64 92
Gram Schmidt 3169.72 2.96 2947.65 0.91 92

Jacobi 4653.66 14.69 1.69 0.89 92

(b) Statistics comparing our SA approach and heterogeneous bin packing. Our SA
algorithm was run for 10 minutes per simulation run

Application Max objective value Min objective value Better (%)
Std. SA Our SA Std. SA Our SA Our SA vs Std. SA

Bin. option pricing 219230 53404.8 25967.5 10975.5 95
Convolution 220525 124.31 50.34 19.64 76

Gram Schmidt 10.04 2.96 0.96 0.91 92
Gauss-Seidel 14607.8 32.99 9.07 9.67 72

Jacobi 3504.44 14.69 0.95 0.89 88

(c) Statistics comparing our SA approach and the standard SA. Both algorithms were run
for 10 minutes per simulation run

TABLE II: Statistical comparisons of ObjectiveζM from equation (3) for different benchmarks

A best bin, i.e., the bin with maximum free space, is defined
as the bin volume minus the sum of volumes of the items
loaded into it.

The post pass in A-BFD chooses every bin that has at least
one item allocated to it and tries to find an empty bin, that
has a higher or equal volume than the allocated volume on the
chosen bin but also has a lower cost. If it finds such an empty
bin, then it transfers all the items allocated to the chosen bin to
the newly found empty bin which is cheaper. One of the main
advantages of A-BFD is that it is very fast with a best case
complexity of O(NI) without the post pass, where NI is the
number of items (number of tasks |Vt| in the application graph
Gt). Including the post pass, the best case complexity becomes
O(NI+NK) where NK is the number of bins (number of PEs
|VR| in the resource graph Gr).

C. The experimental setup

We set up the resource graphs and the task graphs for
performing the experiments as follows.

1) The resource graph setup: The experimental setup con-
sists of the following:

1) A multi-core system with |Vr| nodes. A node could be
just a multi-core CPU or a multi-core CPU with a GPU
attached to it. |Vr| varies in a normal distribution from
2 to 32.

2) The bandwidth is selected from a set
B = {B1, B2, ..., B|B|}. Every communication link
weight (W c) is selected from the set B. The elements
of the set B varies in the normal distribution: 1 GB/s
to 10 GB/s, representative of the multi-core connection
networks in today’s machines.

3) A set of NG GPUs where NG is at most |Vr|. The
GPUs are connected in the network at pre-determined
locations, chosen randomly in the normal distribution of
25% to 75% of |Vr|.

4) A set V = {V1, V2, V3, ...V|V |} where Vi is a power of
2. Every GPU in this experiment has a vector length of
Vi where Vi is sampled randomly from the set V . The
elements of set V are chosen from a normal distribution
ranging from 2 to 32.

5) A set M = {M1,M2,M3, ...M|M |} where Mi is a
power of 2. Every Ci ∈ C and GPU in this experiment
has a UoW value of Mi where Mi is sampled randomly
from the set M . The elements of set M are chosen
from a normal distribution ranging from 27 to 220.

For given values of |Vr|, NG, V , C, and M and a given
application, let the k-th trial be defined as one execution of
the following sequence of steps.
• For each GPU Gi, sample V and M randomly to

determine its vector length Vi and UoW count Mi.
• For each CPU Pi, sample C randomly to determine the

number of cores Ci in the processor Pi.
• For each core Ci in the processor Pi sample Vi and Mi

randomly from set V and M .
• Use our framework to extract data and task parallelism

that is best utilizable by the heterogeneity created by
parameters in items 1, 2, and 3 above. Determine the
execution time ObjectiveζM using eq. 3.

An experiment, E (|Vr|, NG, V , C, M ), consists of
conducting enough of the above trials so that width of the 95%
confidence interval on the average value of ObjectiveζM is
less than 10% of the average value. This results in a variable
number of trials with different experimental setups. Note that
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(a) Binomial Option Pricing
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(b) 2 Dimensional Convolution
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(c) Gram Schmidt linear-algebra kernel
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(d) 2 Dimensional Seidel stencil computa-
tion
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(e) 2 Dimensional Jacobi stencil computa-
tion

Fig. 2: Comparison of ObjectiveζM from eq. 3 : Our SA approach Vs K-way graph partitioning

two trials differ from each other only in the seed for the
random number generator. This reduces the dependence of
our results on a lucky sequence of numbers from the random
number generator.

2) The task graph setup: We chose 5 applications: bi-
nomial option pricing (a financial derivatives application),
2-dimensional convolution (for image processing), Gram
Schmidt linear algebra kernel, 2-dimensional Gauss-Seidel
stencil computations, and finally our motivating example itself
the 2-dimensional Jacobi stencil computation.

The compiler first collapses all the nested loops and vec-
torizes the resultant statement to the largest possible vector
length, if it is able to do so. Once vectorized to a large vector
of some length N (N can be of length 1 million in some
cases) we strip this vector, breaking it into multiple nodes
requiring N/(vector strip size) each. The resultant nodes are
then allocated onto the heterogeneous processor. We take this
approach to increase the exploitation of parallelism; especially
taking into consideration the GPUs that provide the ability to
perform large vector operations at once.

For the 5 aforementioned applications we vary the vector
strip from 10 to 50, which results in graphs varying from
around 50 to 5000 nodes and with 23 to 12,000 edges. A
detailed description of the applications and their features is
shown in Table I. The vector requirement of applications in
our benchmark suite varies from 1000 to 1 Million elements.
The UoW count varies from around 1 to 0.3 billion. The edge
weights depicting the amount of data transfer on the other
hand varies from 3000 bytes to almost 4.8 Mega byte.

D. Experimental results
The comparison of our simulated annealing approach with

other techniques are described in the next sub sections. In all
the upcoming comparisons we set the value of q = 0.75(which

controls how fast the temperature drops) in our SA and
standard SA techniques. This value of q is a good compromise
between a slow running SA heuristic vs objective function
value, since a bigger value of q, results in larger explored state
space. For the aforementioned experimental setup the standard
SA and our SA techniques were run for 10 minutes.

1) Comparison with K-way partitioning: The K-way graph
partitioning algorithm uses the METIS [21] graph partitioner
to solve the problem of mapping task graphs onto hardware
topologies. We discuss the adaptation of the METIS graph
partitioner to suit the multi constraint representation model in
Section IV.A of our previous work [15]. The major statistics
comparing the two approaches is provided in Table IIa. In
Table IIa, The Max objective and the Min objective columns,
provide the maximum and minimum application latencies for
each of the applications. The last column gives the % of
instances our SA technique performed better than K-way graph
partitioning, in the experiments conducted. The METIS project
has been under development for the past ten years and is
extremely well suited for performing min-cuts of large graphs
and minimizing cross partition communication. This is clearly
reflected in the results of two data intensive benchmarks,
namely Convolution (better in 88% of the experiments) and 2D
Jacobi Stencil computation (better in 68% of the experiments).

2) Comparison with heterogeneous bin packing heuristic:
Comparison of our SA technique with heterogeneous bin
packing heuristic is shown in Table IIb. Unlike, K-way graph
partitioning, the bin packing heuristic could not partition the
binomial option pricing and Gauss-Seidel examples for any
vector strip size, because the algorithm terminates if there is
no underlying PE that can support the required vector tile size.
Our SA heuristic runs a part of the vector on the underlying
PE and then iterates in a loop until all vector computations



are finished. For example, if the task graph requires a 1000
vector elements that need to be processed at once, and the
largest vector capability in the resource graph is a 100, then,
our heuristic will allocate a 100 vector elements onto the
underlying hardware and then increase the UoW count by 10.

Heterogeneous bin packing prioritizes volume (vector
length) over cost (UoW count; see Section IV-B) thereby
performing much worse compared to our approach. It packs a
large number of task nodes from the application graph into a
single large vector PE, including those task nodes, which have
a small vector count (wi1), but a large UoW count (wi0).

3) Comparison with conventional SA: The table showing
the comparison of our approach with the established SA
approach of [8] is shown in Table IIc. There is not a single case
where our SA approach is worse than the current established
technique. The reasons for this are two fold,
• We change the annealing schedule such that the search

exploration is global initially, i.e. high temperatures, and
it becomes local to the current best solution as tempera-
ture drops.

• The greedy phase in our annealing schedule helps us fine
tune our best solution

In all the figures and statistics presented, we ran the conven-
tional SA and our improved SA approach with a time limit of
10 minutes, i.e. SA will terminate after 10 minutes irrespective
of whether it has already found an acceptable solution. The
experiments were performed on a quad-core dual processor
system with 24 gigabytes of RAM.

V. CONCLUSION

In this paper we have described a novel Simulated Annealing
(SA) heuristic for mapping applications with task and data
level parallelism onto heterogeneous execution architectures.
We partition and schedule such applications onto hetero-
geneous architectures with differing compute costs, vector
lengths, and communication bandwidths. To our knowledge
we are the first to utilize SA for extracting different kinds
of parallelism (task and data) directly from compilers onto
heterogeneous architectures.

Our SA approach guides the movement of the partition
using temperature itself, as opposed to others, where such
movement occurs randomly. Moreover, a guided movement
allows for faster identification of good solutions, resulting
in faster runtime for the SA algorithm, making it scalable
to larger applications and larger number of processor cores.
Experimental results show that our SA approach outperforms
the existing SA technique in 84% of the instances. Moreover,
for all these instances it has a better objective function
value. We also compared our SA technique with the well
established K-way graph partitioning and heterogeneous bin
packing heuristics. Our SA approach out performs the former
in 54% of the instances and the latter in 92% of the instances.
As part of the future work, we intend to run some instances
of the applications on partitions suggested by our method to
confirm the validity of the results as the objective function is
an approximate estimation of the real runtime.
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