

 i

Distributed Slide Show Tool

Elizabeth Daly

A dissertation submitted to the University of Dublin in partial fulfilment

of the requirements for the degree of Master of Science in Computer

Science

September 16, 2002

 ii

Declaration

I declare that the work described in this dissertation is,
except where otherwise stated, entirely my own work and
has not been submitted as an exercise for a degree at this or
any other university.

Signed: ___________________

 Elizabeth Daly

Date: September 16, 2002

 iii

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this
dissertation upon request.

Signed: ___________________

 Elizabeth Daly

Date: September 16, 2002

 iv

Abstract

The growing use of the Internet has increased connectivity and allowed users to

communicate in a more interactive manner. This had lead to a growing use of E-

Learning and Collaborative tools. But one of the biggest challenges that applications

need to overcome is the increased use of Firewalls. A number of current web

technologies allow communication through a firewall, however this communication is

still restricted to basic request/reply functionality. This reduces the interaction a node

behind a firewall can have with distributed applications.

This thesis aims to evaluate the current Internet technologies, and devise a design of a

distributed slide show presentation tool, that will overcome the hurdle of firewalls and

allow all nodes to interact in an equal manner.

JXTA has been presented as a solution to this problem, and this thesis outlines the

design and implementation of the distributed slide show presentation tool using

JXTA. JXTA is evaluated, and suggestions are described to improve JXTA’s

performance.

 v

Acknowledgements

I would like to thank my supervisor Alexis Donnelly for his unending faith and

support. Thanks to the M.Sc. NDS class, who have made this year an experience to

remember, who would have thought you could have so much fun with a bunch of

computer heads. Thanks as always to my parents for their constant love and support.

I would also like to thank Anne-Marie her eagle-eyed proof reading skills

 i

Contents

Chapter 1 1

Introduction 1

1.1 Motivations 1

1.2 Client/Server Architecture and its drawbacks 3

1.2.1 Request/Reply 3

1.2.2 Applets 4

1.3 Objectives 5

1.4 Document Structure 5

Chapter 2 7

State of the Art 7

2.1 Introduction to Internet Technologies 7

2.2 Server Push 7

2.2.1 Server Push Introduction 7

2.2.2 Mime Multipart Server Push 8

2.2.3 Server-Side Callbacks 11

2.2.4 Server Push Evaluation 12

2.3 SOAP 13

2.3.1 Introduction to SOAP 13

2.3.2 SOAP Message Structure 14

2.3.3 SOAP Request 15

2.3.4 SOAP Response 16

2.3.5 SOAP in a Peer2Peer Application 17

2.3.5 Evaluation of SOAP 18

2.4 XML-RPC 19

2.4.1 XML-RPC Introduction 19

2.4.2 XML-RPC Method calls 19

2.4.3 XML-RPC Method Responses 20

 ii

2.4.4 Evaluation of XML-RPC 21

2.5 JXTA 21

2.5.1 Overview Of JXTA 22

2.5.2 How JXTA Works 27

2.5.2.1 Communication 27

2.5.2.2 Group Management 29

2.5.2.3. Message Format 30

2.5.2.4 Security 30

2.5.3 Evaluation of JXTA 31

2.6 Conclusion 32

Chapter 3 Requirements and Design 33

3.1 Introduction 33

3.2 Requirements 33

3.2.1 Connectivity 33

3.2.2 Interoperability 33

3.2.3 Group Management 34

3.2.4 Slide Show Mechanism34

3.2.5 Chat mechanism 34

3.2.6 Visual Display of Slides 35

3.2.7 GUI 35

3.2.8 Security 35

3.3 Design 36

3.3.1 Underlying Transport Mechanism 36

3.3.2 Network Overview 36

3.3.3 Interoperability 36

3.3.4 Group Management 36

3.3.5 Slide Show Mechanism 38

3.3.5.1 Slide Format 38

3.3.5.2 Slide Show Format 38

3.3.5.3 Slide Transmission Format 40

3.3.5.4 Slide Transmission Protocol 41

 iii

3.3.5.5 Slide Transmission Protocol Optimisations 42

3.3.6 Chat Mechanism 43

3.3.7 Security 43

3.3.7.1 Username and Password 43

3.3.7.2 Encryption of messages 44

3.3.7.3 Data Integrity Check 44

3.3.8 Visual Display of Slides 45

3.3.9 GUI Design 45

3.4 Conclusion 46

Chapter 4 47

Implementation 47

4.1 Overall Architecture 47

4.2 Flow of Events 48

4.2.1 StartUp 49

4.2.2 Joining Group 50

4.2.3 Sending a Slide 51

4.2.4 Receiving a Slide 52

4.2.5 Group Messaging 52

4.2.6 Change of Control 53

4.3 Comments on Implementation 55

Chapter 5 56

Evaluation 56

5.1 JXTA 56

5.1.1 Overview of JXTA 56

5.1.2 Problems 57

5.2 XML 57

5.2.1 Overview of XML 57

5.2.2 Problems with XML 58

5.3 Base64 Encoding 58

5.4 Conclusion 59

5.5 Future Work 59

 iv

5.5.1 Research 59

5.5.2 Implementation 60

Chapter 6 61

Conclusion 61

6.1 Overview 61

6.2 Review Of Dissertation 61

6.3 Conclusion 62

References: 63

XML 65

DTDs 65

Elements 65

Attributes 66

Three Phase Commit Protocol 67

Bully Algorithm 68

Election Procedure 68

 v

Table of Figures

Figure 1. Request/Reply Architecture__ 3

Figure 2. Applet Architecture ___ 4

Figure 3. Mime Multipart Server Push multipart/mixed ________________________ 9

Figure 4. Mime Multipart Server Push multipart/x-mixed-replace________________ 10

Figure 5. SOAP Message Structure __ 14

Figure 6. SOAP Request ___ 15

Figure 7. SOAP Response__ 16

Figure 8. SOAP in a peer2peer application __________________________________ 17

Figure 10. XML-RPC Method Response ____________________________________ 20

Figure 11. JXTA Platform [8] __ 22

Figure 12. JXTA Core Transport Bindings [8] _______________________________ 25

Figure 13. JXTA Standard Protocols [8] ____________________________________ 25

Figure 14. JXTA Peer Discovery __ 28

Figure 15. JXTA Communication __ 29

Figure 16. JXTA Advertisement ___ 30

Figure 17. SlideShow Format ___ 39

Figure 18. SlideShow DTD___ 40

Figure 19. Slide Transmission Format ______________________________________ 41

Figure 20. Optimised Slide Transmission Format_____________________________ 42

Figure 21.GUI Architecture __ 45

Figure 22 Application Architecture __ 47

Figure 23. Start Up___ 49

Figure 24.Joining Group __ 50

Figure 25. Sending a Slide ___ 51

Figure 26. Receiving a Slide ___ 52

Figure 27. Group Messaging ___ 53

Figure 28. Change of Control___ 54

 vi

 1

Chapter 1

Introduction

1.1 Motivations

The World Wide Web opened new possibilities for people to collaborate, as the Internet

can be used as the basic means of connectivity between users. This communication need

not end with email or browsing static web pages, but should grow to a fully interactive

experience with shared control of information, applications and resources. This trend has

been recognised by the Computer Science community leading to collaborative and E-

Learning tools becoming a popular medium for helping users work together in a group

environment. There is a demand for such technologies, which allow interaction

regardless of the users location, or the type of device they are using, all that should be

required is an Internet connection. However with the current selection of such tools, this

is not the case. Many applications such as JETS[1] use solutions that cannot function

once a firewall exists between the server and the user. This limits the interaction of users

inside firewalls, and there is also a single point of control, which affects scalability and

performance.

Currently, developers struggle to make their distributed applications work across the

Internet while firewalls get in the way. Since most firewalls block all but a few ports,

such as the standard HTTP port 80, all of today's distributed object protocols like DCOM

suffer because they rely on dynamically assigned ports for remote method invocations. If

you can persuade your system administrator to open a range of ports through the firewall,

 2

you may be able to get around this problem as long as the ports used by the distributed

object protocol are included.

To make matters worse, clients of your distributed application that lie behind other

corporate firewalls suffer the same problems. If they don't configure their firewall to open

the same port, they won't be able to use your application. Making clients reconfigure their

firewalls to accommodate an application is not practical.

Despite the increased connectivity of users to the Internet, necessary roadblocks have

been put up preventing interaction to reach its full potential. Security risks have made it

vital for a company and sometimes even personal users to run a firewall thus protecting

their devices from malicious connections. Network Address Translation (NAT) is a

technique used to map a set of private IP addresses within an internal network to another

set of external IP addresses in a public network. It is used in many networks to eliminate

the need for global unique IP addresses for every workstation within a corporation; it also

protects the network by providing a single point of entry into the internal network. This

prohibits connection initiated by networks outside the internal network.

The key to collaborative and E-Learning tools is that they can be made available to any

user, on any platform, in any network environment. In describing an E-Learning tool the

‘Bergen Webucator’[2], the designers cited that the inability for their tool to traverse

firewalls to be the key reason why the tool could not function at full capacity, certain

students were unable to participate in group discussions or receive any information while

using the tool and were restricted to email. The purpose of this thesis is to research and

utilise the emerging Internet technologies in order to produce a distributed E-Learning

tool that is freed from the classic client/server architecture and works regardless of

network architecture or location. The example tool that is implemented here is a

distributed slide show presentation tool.

 3

1.2 Client/Server Architecture and its drawbacks

The client/server architecture works in two fashions

1. The basic request/reply

2. The request/reply results in the downloading of an applet or some other

mechanism that then opens a TCP connection to allow bi-directional

communication.

1.2.1 Request/Reply

The diagram below illustrates how a normal web server is used to distribute information.

Figure 1. Request/Reply Architecture

As can be seen, the information only flows from the server to the client when requested.

This means that the server cannot instigate updates to the client. The only other

alternative is to have the client making regular requests to the server to obtain updates,

this is undesirable solution for three main reasons:
� Generates a large amount of network traffic
� Slow response time to updates
� A connection to the server for every user is made and hence will not scale

well

 4

However this solution over comes the firewall problem.

1.2.2 Applets

Applets work by the user sending a request to the server for the applet, which is then

downloaded and executed on the client’s machine. This applet then opens a tcp socket to

communicate with the server. Using this tcp connection the client can relay updates to

the server to be propagated to the other users.

This solution allows for the server to instigate updates on the clients, hence improving the

propagation time for changes. However this solution has a number of disadvantages:
� Most firewalls will not permit the new tcp connection to the server.
� Connections can only be made to the server that the applet is download from,

hence is a central point of failure
� Will not scale for two reasons:

o A permanent connection is needed for each user

o All updates must be propagated to each user in a unicast fashion

Web Server

Server
Web

client

Applet

running

Download applet

Send update

Propagate update

Web

client

Applet

running

Download applet
Client A Client B

Figure 2. Applet Architecture

 5

1.3 Objectives

This section describes the objectives and the scope of the project.

1. The design and implementation of a distributed slide show presentation tool.

This tool should be run on both the presenter and the clients’ machine. Using this

tool the presenter will change the slides and this change will then be propagated to

all connected clients.

2. A simple messaging facility should be implemented to enable users to

communicate both during and after the presentation.

3. The control of the presentation should not rest purely with the presenter. It

should be possible for a client to be able to take control of the slides after the

presenter has relinquished control, but the presenter must be able to regain control

if necessary.

4. The application must over come the firewall issue to allow users behind

firewalls to interact with the application in order to be of maximum value.

1.4 Document Structure

This section outlines the chapters of the thesis, the contents of which are listed below.

Chapter 1: Introduction describes the motivation behind the project and makes an

introduction into the existing concepts in use.

Chapter 2: State of the Art looks at relevant material in the area on Internet technologies

 6

Chapter 3: Requirements and Design discusses in depth the requirements of the

application. It then follows on to describe the design of the various element of the system

in order to meet the requirements

Chapter 4: Implementation describes the key algorithms used in the application.

Chapter 5: Evaluates a number of decisions made during the implementation and their

effects on the application. It also outlines future work that could be carried out in this

area.

Chapter 6: Conclusion summarises the details of the dissertation and how well the aims

of the dissertation were met.

 7

Chapter 2

State of the Art

2.1 Introduction to Internet Technologies

The Internet community has been attempting to enhance the services provided by the

web, the original design supported the request of static text and then the response of this

text, whereas now the move is toward a more dynamic and interactive service. The aim

of these enhanced services is to take advantage of the increased connectivity and change

the experience of viewing static data to a more interactive experience. Here will be

presented a number of current facilities that are being used to do this.
� Server Push
� SOAP
� XML-RPC
� Peer2Peer JXTA technology

2.2 Server Push

2.2.1 Server Push Introduction

Browsers in general have always been driven by user input, a link is clicked, a request is

sent to the server and the server responds, the data is received and displayed. Once users

became familiar with this mode of operation, a desire arises for the server to be able push

data onto the client side, without client initiation.

Netscape Navigator [3] implemented two means for making this possible:

 8

Server push - the server sends down a chunk of data; the browser display the data

but leaves the connection open; whenever the server wants it sends more data and

the browser displays it, leaving the connection open; at some later time the server

sends down yet more data and the browser displays it.

Client pull - the server sends down a chunk of data, including a directive (in the

HTTP response or the document header) that says "reload this data in 5 seconds",

or "go load this other URL in 10 seconds". After the specified amount of time has

elapsed, the client does what it was told -- either reloading the current data or

getting new data.

Client pull as seen in the introduction is not a viable solution, as it does not scale well, it

consumes a large amount of bandwidth and has a slow response time to update.

2.2.2 Mime Multipart Server Push

In server push, a HTTP connection is held open for an indefinite period of time (until the

server knows it is done sending data to the client and sends a terminator, or until the

client interrupts the connection). Server push is accomplished by using a variant of the

MIME message format "multipart/mixed", which lets a single message (or HTTP

response) contain many data items.

The obvious major advantage of this is that the server has total control over when and

how often new data is sent down. Also, this method can be more efficient, since new

HTTP connections don't have to be opened each time. The disadvantage is that the open

connection consumes a resource on the server side while it's open.

 9

The MIME message format is used by HTTP to encapsulate data returned from a server

in response to a request. Typically, an HTTP response consists of only a single piece of

data. However, MIME has a standard facility for representing many pieces of data in a

single message (or HTTP response). This facility uses a standard MIME type called

"multipart/mixed"; a multipart/mixed message looks something like:

The above message contains two data blocks, both of type "text/plain". The final two

dashes after the last occurrence of "ThisRandomString" indicate that the message is over

and there is no more data.

For server push we use a variant of "multipart/mixed" called "multipart/x-mixed-replace".

The "x-" indicates this type is experimental. The "replace" indicates that each new data

block will cause the previous data block to be replaced -- that is, new data will be

displayed instead of (not in addition to) old data.

Content-type: multipart/mixed;boundary=ThisRandomString

--ThisRandomString

Content-type: text/plain

Data for the first object.

--ThisRandomString

Content-type: text/plain

Data for the second and last object.

--ThisRandomString--

Figure 3. Mime Multipart Server Push multipart/mixed

 10

Here is an example of "multipart/x-mixed-replace":

Figure 4. Mime Multipart Server Push multipart/x-mixed-replace

The key to the use of this technique is that the server does not push the whole

"multipart/x-mixed-replace" message down at once but rather sends each successive data

block whenever it sees fit. The HTTP connection stays open all the time, and the server

pushes down new data blocks as rapidly or as infrequently as it wants, in between data

blocks the browser simply sits and waits for more data in the current window. The user

can even go off and do other things in other windows; when the server has more data to

send, it just pushes another data block down the pipe, and the appropriate window

updates itself.

The flow of what happens is:
� Following in the tradition of the standard "multipart/mixed", "multipart/x-mixed-

replace" messages are composed using a unique boundary line that separates each

data object. Each data object has its own headers, allowing for an object-specific

content type and other information to be specified.
� The specific behaviour of "multipart/x-mixed-replace" is that each new data

object replaces the previous data object. The browser replaces the existing data

object with the new data object and then displaying.

Content-type: multipart/x-mixed-replace;boundary=ThisRandomString

--ThisRandomString

Content-type: text/plain

Data for the first object.

--ThisRandomString

Content-type: text/plain

Data for the second and last object.

--ThisRandomString--

 11

� A "multipart/x-mixed-replace" message doesn't have to end. That is, the server

can just keep the connection open forever and send down as many new data

objects as it wants. The process will then terminate if the user is no longer

displaying that data stream in a browser window or if the browser severs the

connection (e.g. the user presses the "Stop" button). We expect this will be the

typical way people will use server push.
� The previous document will be cleared and the browser will begin displaying the

next document when the "Content-type" header is found, or at the end of the

headers otherwise, for a new data block.
� The current data block (document) is considered finished when the next message

boundary is found.
� Together, the above two items mean that the server should push down the pipe: a

set of headers (most likely including "Content-type"), the data itself and a

separator (message boundary). When the browser sees the separator, it knows to

sit still and wait indefinitely for the next data block to arrive.

2.2.3 Server-Side Callbacks

Pushlets are a servlet-based mechanism where data is pushed directly from server-side

Java objects to (Dynamic) HTML pages within a client-browser without using Java

applets or plug-ins [4]. This allows a web page to be periodically updated by the server.

The underlying mechanism uses a servlet HTTP connection over which JavaScript code

is pushed to the browser. Through a single generic servlet (the Pushlet), browser clients

can subscribe to subjects from which they like to receive events. Whenever the server

pushes an event, the clients subscribed to the related subject are notified. Event objects

can be sent as either JavaScript (DHTML clients), serialized Java objects (Java clients),

or as XML (DHTML or Java Clients). In principle the framework could run within any

servlet-supporting server and behind firewalls.

 12

On the server side, a JSP executes when the page is requested. This JSP pushes

JavaScript over to the client when notified by the server to do so. When the server

receives the JavaScript command such as :
 <script language=JavaScript >parent.push('Page 4')</script>

the browser JavaScript engine executes the command and displays the page.

2.2.4 Server Push Evaluation

1. Efficiency: A connection is held open over time, even when no data is being

transferred, the server must be willing to accept dedicated allocation of a TCP/IP port,

which may be an issue for servers with a limited number of TCP/IP ports. There is one

distinct connection for each instance of server push in use.

2. Network Compatibility: Though message will traverse firewalls and make dynamic

changes at the client side, a new problem emerges; that solution will not work if a proxy

server lies between the web client and server. Another consideration is that some web

servers such as Apache buffer responses and hence waits for the buffer to fill up before

returning the partial response.

3. Control of Information Exchange: The server alone controls the flow of

information; hence, in the case of this thesis’ example, the presenter would have to

control server responses. Though this will allow the presenter to control the information

viewed by the users, it does not allow change for control of the information, and the users

would not be able to exchange information with the server, which means that it fails to

meet a number of the requirements.

 13

2.3 SOAP

2.3.1 Introduction to SOAP

SOAP is a lightweight protocol for the exchange of information in a decentralized,

distributed environment [6]. It is a method for performing RPC (Remote Procedure

Call). The XML based protocol consists of three parts:

1. An envelope that defines a framework for describing what is in a message and

how to process it.

2. A set of encoding rules for expressing instances of application-defined data

types

3. A convention for representing remote procedure calls and responses.

SOAP can potentially be used in combination with a variety of other protocols; however,

the only bindings defined in the specifications describe how to use SOAP in combination

with HTTP and HTTP Extension Framework. SOAP sits on top of existing HTTP

connections and, as most companies have Web servers configured for HTTP connections

on standard port 80, so SOAP fits right in without the complex changes to the network or

firewalls that many other protocols require.

The body of the message contains the name of the method that's being accessed and any

parameters being passed in. SOAP is very much like DCOM in that it can serialize

entire objects and pass them to another application where they're deconstructed and acted

upon.

 14

2.3.2 SOAP Message Structure

SOAP messages are encoded as XML documents that consist of a mandatory SOAP

envelope, and optional SOAP header, and a mandatory SOAP body. For example:

Figure 5. SOAP Message Structure

The SOAP envelope element is required as the first element in the SOAP message. The

SOAP envelope is analogous to the envelope of an actual letter. It supplies information

about the message that is being encoded in a SOAP payload, including data relating to the

recipient and sender, as well as details about the message itself. For example, the header

of the SOAP envelope can specify exactly how a message must be processed. This means

that before an application goes forward with processing a message, the application can

determine information about a message, including whether it can process the message.

Distinct from the situation with standard XML-RPC calls, where each message would

have to be fully processed in order to determine whether the message should be processed

by us, or simply forwarded, with SOAP the header can indicate whether to process the

message by looking at the header, avoiding parsing the payload before acting.

<SOAP-ENV:Envelope

xmlns=SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

SOAP EncodingSytle=”http://schemas.xmlsoap.org/soap/encoding/”/>

<SOAP-ENV:Header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 15

2.3.3 SOAP Request

Figure 6. SOAP Request

First, note how the SOAP document is neatly organized into an Envelope (the root node),

a header section, and a body. The body section contains the method-specific information.

Second, note the heavy use of XML namespaces. SOAP-ENV maps to the namespace

http://schemas.xmlsoap.org/soap/envelope/, xsi maps to http://www.w3.org/1999/-

XMLSchema-instance, and xsd maps to http://www.w3.org/1999/XMLSchema. Those

are standard namespaces that all SOAP documents have.

Finally, the interface name (i.e., Hello) refers to a namespace, ns1. Also, along with the

parameter value, the type information is also sent to the server. Note the value of the

envelope's encodingStyle attribute. It is set to http://schemas.xmlsoap.org/soap/encoding/.

That value informs the server of the encoding style used to encode (i.e., serialize) the

<SOAP-ENV:Envelope xmlns:SOAP-ENV="

http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="

http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<ns1:sayHelloTo xmlns:ns1="Hello" SOAP-ENV:encodingStyle="

http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:string">John</name>

</ns1:sayHelloTo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 16

method; the server requires that information to successfully de-serialize the method. As

far as the server is concerned, the SOAP document is completely self-describing.

2.3.4 SOAP Response
The response to the preceding SOAP request would be as follows:

Figure 7. SOAP Response

Above is similar to the request message. In the code above, the body contains the return

value; which in this example is the personalized "Hello" message.

The document's format has flexibility built in. For example, the encoding style is not

fixed but instead, specified by the client. As long as the client and server agree on this

encoding style, it can be any valid XML.

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:sayHelloToResponse xmlns:ns1="Hello" SOAP-ENV:encodingStyle

="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:string">Hello John, How are you

doing?</return>

</ns1:sayHelloToResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 17

2.3.5 SOAP in a Peer2Peer Application

In a peer2peer application the SOAP client and SOAP server must be one. Running a full

off-the-shelf web server such as apache is an impractical solution, therefore when using

SOAP in a peer2peer environment, it is more sensible to write a custom made, light-

weight web server that simply processes SOAP requests.

Another problem arises in regards to group management, there needs to be some form of

presence server to register the SOAP node into the network.

Figure 8. SOAP in a peer2peer application

The node is responsible for registering itself with a presence service, and each node can

pole the presence service to get an up-to-date list of connected nodes. The main problem

with this approach is that if a node crashes and is not present on the network, but is still

published with the presence service, other peers will try to connect to it. This mean that

there needs to be some form of removal service so that peers can notify the presence

HTTP/SOAP
Server

Client GUI

HTTP/SOAP
Server

Client GUI

Presence
Service

1. registers
2. gets list of
participants

3. announces join
4. any SOAP operations
6. announces quit

5. unregisters

 18

service when they notice that a node has failed. Though this architecture has improved

on the client/server model, where now each node can interact with each other, we still

have the notion of a server, a single point of failure, a bottleneck and synchronisation of

information difficulties.

2.3.5 Evaluation of SOAP

1. Efficiency: SOAP still relies on a request/reply architecture, meaning that if there are

a large amount of users trying to communicate with the same node at once, a large

amount of connections will have to be opened. To allow group communication, if a

message needs to be sent to every member of the group, a connection will have to be

opened on the sending node, for every member of the group. This means that this

solution will not scale well for large groups.

2. Network Compatibility: Since SOAP relies on HTTP as the transport mechanism,

and most firewalls allow HTTP to pass through, it is possible for our application to plug

into most network set-ups. As discussed above it is possible for SOAP to be used in a

peer2peer manner, however this is only possible if the firewall allows each of the users to

run a small web/SOAP server, which will not necessarily be the case in may networks.

3. Control of Information Exchange: This is an improvement of the client/server set-

up and allows more interaction between the nodes. So this system will allow the role of

presenter to be carried out by any node. But a new problem emerges; the presence

information is replicated across many nodes and may result in an inconsistent state across

the system.

 19

2.4 XML-RPC

2.4.1 XML-RPC Introduction

It is remote procedure calling using HTTP as the transport and XML as the encoding.

XML-RPC is designed to be as simple as possible, while allowing complex data

structures to be transmitted, processed and returned.

XML-RPC has defined simple goals in order to avoid a complex, heavyweight solution.

It doesn't set out to be the solution to every problem. Instead it seeks to be a simple and

effective means to request and receive information. This has an advantage over SOAP in

regards to its simplicity, and reduced overhead. XML-RPC defines the format of method

calls and responses as well as some tags for common data types, such as integers and

strings. It also defines tags for more complex data structures. The implementation

details of how the data types are defined are outside the scope of this dissertation, for the

moment it is sufficient to assume that XML-RPC can be used to define most data types

that are needed to carry out remote procedure calls.

2.4.2 XML-RPC Method calls

Method calls are represented by the <methodCall> tag, inside the <methodCall> tag the

name of the method to be called is specified in the <methodName> child element.

Because XML-RPC works over HTTP, the usual HTTP header information needs to be

included in the call. Below is an example of a request:

User-Agent: XMLRPClient
Host: localhost:8888
Content-Type : text/xml
Content-Length: 100
<methodCall>
 <methodName>echo</methodName>
 <params>
 <param>
 <value>
 <string> Hello World</string>
 </value>
 </param>
 </params>
</methodCall>

Figure 9. XML-RPC Method Call

 20

As can be seen in figure 9, requesting to execute a method named echo, with a single

parameter ‘Hello World’.

2.4.3 XML-RPC Method Responses

Method responses are represented by the <methodResponse> tag. A method response

can return the value of the call or return a <fault> indicating that an exception has

occurred somewhere during the execution of the method.

If no errors occurred, the return format of the response must be a single

<methodResponse> tag followed by a <params> tag, and the values of the response must

be represented by the <value> and data-type tag. Again the standard HTTP header

information must be included.

Figure 10. XML-RPC Method Response

XML-RPC can either be used with a custom server, or incorporated into an existing web

server such as Apache using Java Servlets or JSPs.

HTTP 200 OK
Content-Type:
Content-Length: 100
<methodResponse>
<params>
<param>
<value><string> Echo Text</string></value>
</param>
</params>
</methodResponse>

 21

2.4.4 Evaluation of XML-RPC

This is a more lightweight solution than SOAP and hence has less overhead associated

with it. It is a stable protocol, which is fairly user friendly with simple interfaces. It is

operating system independent and also programming language independent. However it

still has the same problems that seen using SOAP:

1. Efficiency: Relies on request/reply architecture. Meaning this solution will not scale

well for large groups.

2. Network Compatibility: Each node must be allowed to run a server of some sort to

allow bi-directional communication and not restrict the node to a request/reply scenario.

This means that firewall traversal will still be a problem in most networks.

3. Control of Information Exchange: This allows interaction between the nodes. So

this system will allow the role of presenter to be carried out by any node. But a similar

problem as in SOAP in regards to presence information replicated across different nodes

still exists.

 2.5 JXTA

The JXTA protocols are a set of six protocols that have been specifically designed for ad

hoc, pervasive, and multi-hop peer2peer network computing. Using the JXTA protocols,

peers can cooperate to form self-organised and self-configured peer groups independently

of their position in the network (edges, firewalls), and without the need of a centralized

management infrastucture [13].

 22

2.5.1 Overview Of JXTA

Figure 11. JXTA Platform [8]

“ JXTA technology is a set of open, generalized peer-to-peer (P2P) protocols,

defined as XML messages, that allow any connected device on the network

ranging from cell phones and wireless PDAs to PCs and servers to communicate

and collaborate in a P2P manner ”

Project JXTA is an open-source project (www.jxta.org) originally conceived by Sun

Microsystems, Inc. and designed with the participation of a small but growing number of

experts from academic institutions and industry [8]. Project JXTA was initiated to

standardize a common set of protocols for building peer2peer applications.

JXTA has the technology needed to write interoperable peer2peer distributed applications

that can easily provide:

� Platform Independence – use of JXTA is not only limited to desktop personal

computers or laptops but can be portable to other devices like PDA’s etc. Though

JXTA implementation is in Java, it provides API’s so that a user can build on top

of JXTA in C, C++ or Java.

� Basic peer and service discovery mechanisms – It enables us to discover peers

and services using advertisements, which a user publishes to notify others of his

 23

presence, and offered services.

� Uniform peer addressing – The peer Ids used in JXTA are 128-bits.

The basic concepts used to communicate in JXTA are:

� Advertisements

Peers advertise their services in an XML document called an "advertisement".

Advertisements enable other peers on the network to learn how to connect and

interact with the peer's services. They can be used to pipes, peer groups etc.

� Messages

Peers exchange information using JXTA messages. These are simple XML

documents that includes routing, digest and credential information.

� Peer Groups

Set of co-operating peers providing a common set of services or sharing a common

set of interests.

� Pipes

They are virtual communication channels, which can be used to connect to one or

more peer endpoints

There are two modes of communication in JXTA:

1. Point-to-point pipes

Unidirectional channel in which one input pipe is connected to one output pipe

2. Propagate pipes

They are also unidirectional but here one output pipe is connected to multiple

input pipes.

 24

Pipe end-points are dynamically bound to a peer end-point at run time via Pipe

Binding Protocol. An example of pipes is JXTA Unicast secure pipes which we

are using in our communication.

JXTA Core Protocols

� Peer Resolver Protocol

The Peer Resolver Protocol (PRP) permits the dissemination of generic queries to one

or multiple handlers within the group and match them with responses. Each query is

addressed to a specific handler name. This handler name defines the particular

semantics of the query and its responses, but is not associated with any specific peer.

It provides the essential generic query/response infrastructure for building high-level

peer resolver services.

� Endpoint Routing Protocol

The Endpoint Routing Protocol provides a set of request/query messages, which are

processed by a routing service to help a peer route, a message to its destination. The

Endpoint Router is responsible for exchanging messages between peers that do not

have a direct connection between each other. The Endpoint Router provides a virtual

direct connection to the Endpoint Service. The protocol provides a set of

request/query messages, which are processed by a routing service to help a peer route,

a message to its destination.

Core Transport Bindings

� Endpoint Service

The Endpoint Service is responsible for performing end-to-end messaging between

two peers using underlying JXTA transport protocols like JXTA TCP or HTTP

bindings. The Endpoint Service is primarily used by other services or applications

 25

that need to have an understanding of the network topology, such as the Resolver

Service or the Propagation Service.

� Endpoint Router Transport Protocol

The Endpoint Router Transport Protocol is responsible for exchanging messages

between peers that do not have a direct connection between each other.

Figure 12. JXTA Core Transport Bindings [8]

JXTA Standard Protocols:

Figure 13. JXTA Standard Protocols [8]

Peer Endpoint
Protocol

Rendezvous
Protocol

Peer Resolver Protocol

Peer Discovery
Protocol

Pipe Binding
Protocol

Peer Information
Protocol

Endpoint
Router

JXTA TCP
Binding

JXTA HTTP
Binding

Endpoint Service

Network

 26

� Rendezvous Protocol

Rendezvous Protocol is responsible for propagating messages within a JXTA

PeerGroup. A Simple protocol that allows:

o Peers to connect to services.

o Control propagation of messages.

� Peer Discovery protocol

The Peer Discovery Protocol consists of only 2 messages that define all the elements

required to perform a discovery transaction between peers:
� Discovery Query Message - a request format that discovers advertisements. It

specifies a number of parameters like type, number, attribute and value pair of

advertisements to be searched for.
� Discovery Response Message - a response format for responding to a

discovery request.

� Peer Information Protocol

This protocol is used to monitor the status of a remote peer in order to obtain

information that will help to leverage the resources of the peer-to-peer network.

Depending upon the network traffic and the remote peer’ s load it may decide whether

to use it as a source of services. This protocol also defines a Peer Information Query

Message and a Peer Information Response Message to handle the details of sending a

query and generating responses.

� Pipe Binding Protocol

Before a pipe can be used it must be bound with a peer endpoint that provides access

to the transport layer protocols and provide network connectivity. And this process of

binding a pipe to an endpoint is defined as the pipe binding protocol. It defines the set

of messages a peer can use to query remote peers to find an appropriate endpoint and

respond to binding queries from other peers.

 27

2.5.2 How JXTA Works

The following section explains how JXTA works in practise by utilising the JXTA
protocols.

2.5.2.1 Communication

In JXTA there are three types of peers:
� Simple peer
� Rendezvous peer
� Router peer

Simple peers serves a single end user, this usually would define a peer located behind a

firewall, which is essentially separated from the outside network by the firewall.

A rendezvous peer provides peers with a network location to use to discover other peers

and peer resources. Peers issue discovery queries to a rendezvous peer, and the

rendezvous provides information on the peers it is aware of on the network. Caching is

used on the Rendezvous peers and discovery queries are forwarded to other Rendezvous

peers. These are in an attempt to improve responsiveness, reduce network traffic and

provide better service to simple peers. A rendezvous peer is usually located outside the

firewall however is may be located inside the firewall if the connection is allowed by the

firewall or it uses a router that is outside the firewall. The diagram below illustrates how

discovery of peers may be accomplished.

 28

Figure 14. JXTA Peer Discovery

A is a simple peer behind a firewall that wants to communicate with D. A knows about B

which is a rendezvous peer and C, another rendezvous peer, knows about D. A opens a

HTTP connection to B and requests information for D. B does not know about D so it

propagates the request onto C. C sends back the information to B and then in turn B

returns the information to A.

A router peer provides a mechanism for peers to communicate with other peers

separated from the network by firewall or Network Address Translation (NAT)

equipment. A router peer provides a go-between that peers outside the firewall can use to

communicate with a peer behind the firewall, and vice versa. To send a message to a

peer via a router, the peer sending the message must first determine which router peer to

use to communicate with the destination peer. This routing information provides a

mechanism in peer2peer to replace traditional DNS, enabling an intermittently connected

device with a dynamic IP address to be found on the network. Similar to DNS, routing

information provides a mapping between a unique identifier specifying a remote peer on

the network and a representation that can be used to contact the remote peer via a router

peer. In a simple system the routing information may be simply a matter of resolving an

IP address and a TCP port for the unique identifier, more complex systems may contain

an ordered list of routers for peers to use to route a message to a peer.

Internet

Firewall

Simple Peer

Simple Peer
Router Peer
Rendezvous Peer

Simple Peer
Router Peer
Rendezvous Peer

Simple Peer

Simple Peer
A

B C D

 29

The Diagram below illustrates how communication can be establishes between two peers

behind firewalls on separate networks.

Figure 15. JXTA Communication

A needs to send a message to D. A has previously used a discovery to find D and knows

how to route information to it, but A and D are both behind a firewall. A opens a HTTP

connection to B, B opens a TCP connection to C. D polls C and is told there is a message

waiting for it and opens a HTTP connection to C. A virtual connection is then created

between A and D using B and C as routers.

2.5.2.2 Group Management

Most Peer2Peer solutions use their own specialised protocol, Gnutella for file sharing

uses one protocol, ICQ for chatting uses another. Because JXTA is attempting to enable

all peer2peer application to run over the JXTA network and interact, the partition needs

to be introduced to enable different applications to interact with each other, and not

interfere with other applications. This is were the notion of peer groups is used. Peer

groups can be divided based on the following:

o The application the peers are using.

o The security requirements of the peers, for example some groups require

authentication to join, others are open to all.

Internet

Firewall

Simple Peer

Simple Peer
Router Peer
Rendezvous Peer

Simple Peer
Router Peer
Rendezvous Peer

Simple Peer

A

B C

D

Firewall

 30

o Possibly only that group of peers are of interest to you, for example the node

is only interested in communicating with peers from a certain company, so a

peer group is created for all of the nodes to communicate in.

Essentially when a peer joins the JXTA network, it is a member of what is called the

NetPeerGroup. This is the basis for all communication, and any group message sent

while connected to this group is propagated to every member of the NetPeerGroup.

When a peer joins a new group, the peer becomes a member of new newly joined group,

and creates a pipe in order to receive messages for that peer group.

2.5.2.3. Message Format

All aspects of in JXTA builds on XML to structure data such as advertisements,

messages, and protocols. Below shows an example of a JXTA peer advertisement:

Figure 16. JXTA Advertisement

JXTA does not specify a format for payload of JXTA messages. It is left up to the

developer whether to use binary or XML data.

2.5.2.4 Security

The need to support different levels of authentication and resource access in the ad hoc

Project JXTA network leads to a role-based trust model in which a peer will typically act

under the authority granted to it by another trusted peer. Peer relationships may change

quickly and the policies governing access control need to be flexible in allowing or

denying access. The Project JXTA message format allows the addition of a variety of

<Peer>MyPeer</Peer>

<keywords> NetPeerGrooup by default</keywords>

<PeerId>urn:jxta:uuid-59617899A7800987790D80958D</PeerId>

<TransportAddress>tcp://asterix:9701/</TransportAddress>

<TransportAddress>http//JXTAHttpClientuuid-

68580719A829370803920</TransportAddress>

 31

metadata information to a message, such as credentials, digests, certificates, public keys,

etc. Every message contains a credential. A credential is a token that, when presented in a

message body, is used to identify a sender, and can be used to verify the sender's rights to

send the message. The credential is an opaque token that is validated by the receiving

end. The sending address placed in the message envelope is cross-checked with the

sender's identity in the credential. Each credential's implementation is specified as a plug-

in configuration, allowing multiple authentication configurations to co-exist on the same

network. Message digests guarantee the data integrity of messages. Messages may also be

encrypted and signed for confidentiality, integrity, and irrefutability. It is the intent of the

JXTA network to be compatible with widely accepted transport-layer security

mechanisms for message- based architectures such as Secure Sockets Layer (SSL),

Transport Layer Security (TLS), and Internet Protocol Security (IPSec) [9].

2.5.3 Evaluation of JXTA

JXTA provides an abstract language for peer communication enabling a wide variety of

services, devices and network transports to be used in peer2peer networks. The

employment of XML provides a standards-based format for structured data that is well

supported and easily adapted to a variety of transport protocols. XML also has the

advantage that it is a human readable format, making it easy for developers to

comprehend and debug.

1. Efficiency: JXTA has been designed for peer2peer communication; hence to

communicate with an entire peer group, the sending node only needs to transmit one copy

of the message. It only needs to have one connection opened in order to receive

messages from the whole group. This means that it scales well compared to the previous

solutions outlined.

2. Network compatibility: JXTA provides us with a mechanism for traversing NAT

networks and Firewalls. It also handles group management allowing for the creation,

 32

joining and interacting with peer groups. And hence solves the group management and

data replication problems discussed previously.

3. Control of Information: JXTA is short for Juxtapose, as in it was design for each

peer to be equal. The result is that any node as necessary can hold the control of

information.

One aspect of concern is that JXTA is a relatively new technology and is still undergoing

analysis. Another question that arises is bandwidth usage, because though we now have a

means for traversing firewalls, this is done by polling rendezvous peers outside the

firewall. A possible solution to this is to have a rendezvous peer inside the firewall

network, but capable of accepting outside connections, this means instead of waiting for

the peer to pole it, the peer can be notified by the rendezvous peer. This also means that

only one node on the network needs access to the outside network, and the rest of the

nodes can be safely behind a firewall.

2.6 Conclusion

In this chapter we reviewed a number of existing technologies that attempt to push the

boundaries of the Internet to provide new and innovative services that go beyond the

original design of displaying static text. An evaluation of push technologies, SOAP,

XML-RPC and JXTA lead to the conclusion that, though push technologies, SOAP, and

XML-RPC do improve services on the web, the firewall problem would still remain an

issue preventing them from reaching their full potential. JXTA is the only technology

reviewed that attempted to deal with this issue. JXTA also provides protocols for the

basic functions of creating groups, discovery of groups, the joining and leaving of groups,

monitoring of groups, and inter peer and group communication.

 33

Chapter 3 Requirements and
Design

3.1 Introduction

The following chapter analyses the requirements of the system. It then goes into the

design considerations for each requirement.

3.2 Requirements

The functionality can be broken into several subsections:
� Connectivity
� Interoperability
� Group Management
� Slide Show Mechanism
� Chat Mechanism
� Visual Display of Slide
� GUI
� Security

3.2.1 Connectivity

The user needs to be able to connect to remote users regardless of network configuration.

3.2.2 Interoperability

The application should be operating system independent and device independent,

meaning the end user may use a PC, PDA or any other web capable technology.

 34

3.2.3 Group Management

The group management must allow: the ability to create new groups and join new groups

in a distributed fashion. Any end user to should be able to assume to role of presenter.

The changing of presenter should not require the creation of a new group. For example, a

company may have a scheduled daily meeting at a given time, where a number of people

may want to present different topics and issues, meaning any user can be a presenter

therefore, group management should have some mechanism for determining who is the

presenter at a given time.

Another aspect to the group management is that a user should be able to join and leave

the presentation as needed. The application should be able to deal with a changeable

group structure, and not be hindered if a non-presenter node fails. It should be also

possible to have a reasonably up-to-date view of the participants, which means that some

form of user presence needs to be established.

3.2.4 Slide Show Mechanism

The application needs to be able to transmit slides to all members of the group. The

initial control of the slides is performed by the presenter, however the presenter should

have the ability to unlock the slide show, and other members of the audience can take

control of changing the slides, possibly to illustrate a point, or ask a question regarding a

certain slide. The control should never be fully taken away from the presenter however,

and at any time they should be able to lock the show again.

3.2.5 Chat mechanism

Along with the functionality to receive, send and display slides, a feature to enable a

group discussion to be carried out during the presentation is required. This should be

simple and unobtrusive so as not to inhibit the presentation, that is, it can be ignored

when required, while being an integral feature when needed.

 35

3.2.6 Visual Display of Slides

A format needs to be defined for the storage of slides and their transmission format. A

means of visually displaying the slides is also required. It was decided that the

application should support more than just simple text, but images and rich text format.

3.2.7 GUI

The GUI should consist of three main components: the current slide of the presentation,

the general char forum for discussion, and a list of on-line users.

3.2.8 Security

It is desirable to not restrict the security mechanisms for the presentation. The solution

should provide varying degrees of security:

High Username and password required to join the group

 Payload of message encrypted during transmission

 Integrity check of messages

Medium Username and password required to join the group

 Payload of message encrypted during transmission

 No integrity check of messages

Low Username and password required to join the group

 Payload of message transmitted in the clear

 No integrity check of messages

None No username or password required to join the group

 Payload of message transmitted in the clear

 No integrity check of messages

 36

3.3 Design

3.3.1 Underlying Transport Mechanism

JXTA was selected as the underlying transport mechanism; the reason for this is because

it already handles connectivity, peer discovery, group management, and a certain amount

of security.

3.3.2 Network Overview

It was assumed that this application could take advantage of the existing JXTA

infrastructure. Using the JXTA libraries the peer connects to the JXTA network, this

means that each peer on this network has to able to act as a simple peer, rendezvous peer

or a router peer, depending on the way the peer is configured on start up.

3.3.3 Interoperability

JXTA was designed to work with any device with a digital heartbeat, which means that it

meets our requirement for device independence. Java was also selected so as to meet the

requirement of operating system independence, this means that the application will

operate on any internet capable device with a Java Virtual Machine.

3.3.4 Group Management

The requirements brought out three key aspects of the group management.

1. The creation and joining of peer groups.

JXTA provides the mechanism for the creation and joining of groups. When a user

creates a new group, it creates a JXTA peer group advertisement. This advertisement is

propagated through out the JXTA network. When a user wishes to join a peer group, is

searches for the group by name and as was discussed in section 2.5.2.1. a discovery query

 37

is sent out through the JXTA network. Once the group advertisement has been found, the

user can join the group by binding to the peer group pipe.

2. A distributed means of determining the current presenter.

When the user joins the group and wishes to become a presenter, it sends a request to see

if anyone else is a presenter yet. After a timeout period, it sends a notification that it is

about to become a presenter. After another timeout period, if there is no response to

inform the user that there is already a presentation running, it sends a message saying ‘I

am the presenter’, again if no one response with a problem, it sets itself to presenter.

From then on if anyone asks is there a presenter, the presenter responds with the current

slide of the slide show.

Once the current presenter has finished, it sends a group message informing all peers that

it is finished. At this point if a new peer wishes to become the presenter, the same

algorithm as described above is executed to determine the new presenter.

If a conflict arises and while peers are in the process of requesting presenter status they

compare their peer id number with the peer id number of the other peer requesting

presentation status, if their number is smaller, they back off. This means that the peer

with the highest id number will gain control. If the node that should get control gets

disconnected from the group during the discussion process, and no final ‘presenter’

notice arrives, the peers who previously wanted to become presenters restart the election

process after a given timeout.

These algorithms are a combination of the Three Phase Commit protocol and the Bully

algorithm. The design however is a variant of the three phase commit protocol due to the

changeable state of the network, we can never be 100% certain of the number of

members in the group. The result is that we cannot wait for all peers on the network to

reply with commit messages, since we don’ t know how many there are. So in this case,

we assume a timeout is in essence an acknowledge to commit on the part of the other

peers.

 38

3. Coping with a changeable group.

When a peer leaves a group the JXTA network propagates this information to other nodes

in the group. A member can also join a group at any time during the presentation. If a

node is disconnected without notification, this causes no problems to the group due to the

fact that none of the design requires complete information pertaining to the state of the

group.

3.3.5 Slide Show Mechanism

The issues that need to be addressed in the slide show mechanism are the format of the

slide itself, the format of the slide show, and how the slides can be transmitted from the

presenter to the receiving nodes.

3.3.5.1 Slide Format

The slide format must have to support rich text and images. HTML was selected as the

format due to the fact it is a widely used and is an accepted format that could support

these requirements. So essentially, a single html file represents each slide.

3.3.5.2 Slide Show Format

It was desirable to keep the format of the slide show as simple as possible to allow any

user with little or no programming knowledge the ability to define new slide shows.

XML was used for the slide show format, as it is human readable and can be written

using any text editor. The presenter simply follows the guidelines for defining a new

slide show.

 39

The slide show is represented in an XML file. The slideshow is the root node and each

slide is a child node. Each slide node must contain a list of all files that are required to

render the html slide, including Cascading Style Sheets and images. The figure below

illustrates and example of this.

Figure 17. SlideShow Format

The order of the slides is declared using the <number> tag, and because some slides may

contain more that one html file if the user is using frames, we need to declare that actual

file to be rendered which is declared using the <titleFile> which contains the relative path

to the file (relative to where the xml file is stored on the users machine), the same goes

for all files references in the slideshow xml document. Any additional files needed are

defined by the <contentFile> tag and all image files and declared using the <imageFile>

tag.

Figure 18. shows the DTD that the slideshow XML document must conform to in order

to be considered valid.

<slideshow>
<slide>
 <number>1</number>
 <titleFile>slide1.html</titleFile>
 <contentFile>frame.htm</contentFile>
 <contentFile>hii.htm</contentFile>
 <contentFile>hii.css</contentFile>
 <contentFile>frame.css</contentFile>
 <imageFile>blue+white.gif</imageFile>
 </slide>
<slide>
 <number>2</number>
 <titleFile>slide2.html</titleFile>
 <contentFile>frame.htm</contentFile>
 <contentFile>board.htm</contentFile>
 <contentFile>hii.css</contentFile>
 </slide>
 </slideshow>

 40

Figure 18. SlideShow DTD

3.3.5.3 Slide Transmission Format

Each slide transmitted across the network contains the full information needed to display

the slide. This means that not just the data from the main htlm file needs to be sent, but

also any additional content files or image files that will be needed. A few problems arose

when encapsulating the data through XML, as html uses < > symbols to define tags XML

tries to parse these as elements. XML does allow character data to be defined:

 <![CDATA[data that the parser should not try and parse]]>

This has the problem that the body cannot contain the termination string “]]>” otherwise

the parser will consider it the end of the character data and not be able to parse the

document correctly. To solve this problem all file data, such as the html file, and the

image files are Base64 encoded before sending, which guarantees that it will not contain

the termination string. The format of the slide transmitted to the recipients is shown in

figure 19.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE slideshow[
<!ELEMENT slideshow (slide*)>
<!ELEMENT slide (number+, titleFile+, contentFile*,
imageFile*)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT titleFile (#PCDATA)>
<!ELEMENT contentFile (#PCDATA)>
<!ELEMENT imageFile (#PCDATA)>
]>

 41

Figure 19. Slide Transmission Format

3.3.5.4 Slide Transmission Protocol

When the presenter changes the slide, all the files specified for the new slide in the XML

slide document are formatted into an XML document as shown in the previous section.

This slide is then sent to all members of the group using JXTA as the transportation

mechanism.

On the receivers slide, the slide is added to a local copy of the slideshow. This means

that when the slide show is completed all participants should have a complete

representation of the slide show presentation. So when the presenter releases control of

the presentation, the same protocol is used to distribute the slides through out the group.

All the information needed to display the slide is transmitted every time a slide is

changed. In order to deal with a constantly changing network, where some users will not

have been present for the beginning of the presentation. This will allow all users to

<application:newSlide xmlns:application="http://jxta.org">
<slide>
<number>1</number>
 <titleFileName>slide1.html</titleFileName>
<titleFile>DQo8aHRtbD4NCg0KPGhlYWQ+DQoNCjx0aXRsZT5Vbml2ZbG1lIHNy
Yz0iaGlpLmh0bSIgbmFtZT0iZnJtYWluIiB0YXJnZXQ9Im1haW4iPg0KPC9mcmFt
ZXNldD4NCjwvaHRtbD4NCg==</titleFile>
 <contentFiles>

<contentFileName>frame.htm</contentFileName>
<contentFile>PGh0bWw+DQoNCg0KDQo8aGVhZD4NCg0KDQoNCjx0aXRs
ZTJhbWUuY3NzIi8 +DQoNCg==</contentFile>

 </contentFiles>
 <images>

<imageFileName>blue+white.gif</imageFileName>
<imageFile>R0lGODlhUwBrAPf/AP///xgYGDk5OZycnFJKSntKShAICH
M5OZRCQs5SUkIYGMZCQrUxMdY5OcYxMc4pKcYhI5COb0xKaUpIdYhGIwI
AGspIVopIbVjSsaEa+djMb1KIa17UI0k0ZnZTTTgEICAA7</imageFile
>

 </images>
 </slide>
 </application:newSlide>

 42

receive the full slide data, and they need not have been present earlier in the presentation.

However this causes redundancy of data transmitted and received.

3.3.5.5 Slide Transmission Protocol Optimisations

As can be seen from the above protocol, there is a large amount of overhead associated in

regards to redundant data with assuming a user may not have been present from the

beginning of the presentation. Every time a new slide is shown, the background image

which is present in all slides, for example, will be retransmitted. Also even though by the

end of the slide show, most participants have all the data needed to show the slide, the

complete slide is sent again over the network.

To improve on this performance, one possible optimisation is to transmit all the files one

by one before the presentation begins. This means that all members present before the

presentation begins will have all the data needed to display the slides, and will simply

have to notified when to change the slide, and what files are required to display it, so the

message would now look like this:

Figure 20. Optimised Slide Transmission Format

However, the question still remains on how to cope with latecomers, or users who did not

receive all the required files. When the user receives the slide, with the list of required

files needed to view the slide, it checks to see if all the required files have been received.

If not, it sends a query to the group requesting the required file. It is not appropriate for

all users in the group to reply with the file, as this would quickly flood the network. The

solution is to implement a random back off time that the node waits before replying.

<application:newSlide xmlns:application="http://jxta.org">
<slide>
 <number>1</number>
 <titleFileName>slide1.html</titleFileName>

<contentFileName>frame.htm</contentFileName>
<imageFileName>blue+white.gif</imageFileName>

 </slide>
 </application:newSlide>

 43

The node sees that a request for a file has been received, it checks to see if it has the file.

If it does not have the file, it does nothing. If it has the file, it waits a random amount of

time and if it sees that no one has responded during that timeout period, it them sends the

slide. Though this does not guarantee that only one node replies to the request, it will

vastly reduce the amount of replies generated. And since more than one reply is not a

serious problem in this case, it is not necessary to implement a more serious solution like

the Three Phase Commit illustrated earlier, as this would required a lot of overhead and

provided minimal benefits.

3.3.6 Chat Mechanism

The chat mechanism is handled by binding to the group pipe using the JXTA protocol. It

is kept relatively simple, with every message sent being propagated to every user in the

group. The messages are then displayed using a simple message board type GUI. There

is no assurance that the chat messages will be received in the same order by all users.

Due to the dynamic, and casual nature of chat it was felt that it did not warrant the

overhead that would be required to guarantee consistency

3.3.7 Security

There are three key security aspects that needed to be designed:
� Password and username needed to join group
� Encryption of messages
� Data integrity check

3.3.7.1 Username and Password

JXTA includes a mechanism, whereby on creation of a group a username and password is

required to join the group. This username and password is the same for all members of

the group.

 44

As seen in section 2.5.2.4. JXTA has the functionality to run over TSL to provide secure

communication, however this is only available in one to one communication in JXTA,

and our application uses group messaging, therefore in order to provide an encryption

feature it is necessary for us to implement encryption at the application layer.

3.3.7.2 Encryption of messages

Because in a secure group a user needs a password to join the group, and there are no

individual passwords, we will use symmetric (single key) encryption with the password

as the key. Therefore, before sending a message on the group pipe, AES encryption will

be performed on the message payload and then decrypted on the other side using the

password as the key. AES was selected, as it has become a recognised standard for

encryption. This means that a malicious user sniffing the network, who is not entitled to

join the group, will not be able interpret the messages.

3.3.7.3 Data Integrity Check

The next concern is that the message sent, is actually the message that has been received.

This is done by separately transmitting the MD5 hash of the message. An MD5 hash is

where the contents of a file is put through a one way hash, with a key as the defining

function input. The idea is that the same data, put through the same one-way hash will

yield the same result. This MD5 hash data will be sent before the actual message,

followed by in a separate message, the actual data to be sent. Once the node receives the

MD5 hash, it waits for the complete data and then performs the MD5 hash itself and

compares the two, thus assuring that the messages are correct. If they did not receive the

MD5 has for some reason, it sends a request to the nodes to obtain it. The same is done if

the MD5 hash has been received and no data follows.

 45

3.3.8 Visual Display of Slides

Once the slides are available, some form of HTML rendering engine needs to be

incorporated into the application in order to display the slides properly. This engine

should be able to deal with some of the main features of HTML but not all. The key

features to be supported are: relative links, Cascading Style Sheets (CSS), frames, and

images.

3.3.9 GUI Design

Any functionality that the tool offers to the user is only available through the GUI. The

processing layer that sits under the GUI processes all the requests made by the user

channeling them to the underlying communication layer. The GUI also needs to display

communication events that occur at the underlying layer.

Event Management

GUI

Underlying Transport Mechanism

User generated Group generated

events

Figure 21. GUI Architecture

 46

From the required features there were three key events that needed to be displayed

through the user interface :

Slide Display Needs to be the main focus of attention

Uncluttered by additional info

Chat Message Board Simple

Unobtrusive

Easily accessible from main presentation page

Group View Unobtrusive

Should not affect view of presentation

3.4 Conclusion

We have outlined the key feature of the application and how they function. The design

above has considered how each requirement can be fulfilled integrating a number of

technologies. The JXTA protocols are used for group communication and the basic

group management functionality. XML has been used as the data format, due to its

usability and simplicity. The presentation may provide different levels of security in

order to provide privacy when necessary.

 47

Chapter 4

Implementation
The following chapter outlines the application that was implemented. The application

was written using Java and the Eclipse 2.0 Java compiler, on the Windows 2000

professional platform. One piece of software that was integrated into the application was

the Jazilla web browser. The Jazilla project is an open-source attempt to implement a

Mozilla type browser using Java. The Jazilla HTML rendering engine proved to be

suitable for applications requirements.

4.1 Overall Architecture

The architecture is essentially a 3-tier architecture :

Figure 22 Application Architecture

Transport
Layer

Application
Layer

Group
Management

SlideShow GroupChat GUI

Group
Management

Discovery Group
Chat

Group
Presentation

JXTA Transport Layer

 48

4.2 Flow of Events

The following section shows a number of the key events to help illustrate the

implementation.

The events are:

StartUp – when the application is first run. This includes to initialisation of the

connection to the JXTA network.

Joining a Group – when the user selects a group to join from the list of JXTA

groups.

Sending a Slide – when the presenter sends a slide to the peer group. This

includes how the message is formatted for transmission.

Receiving a Slide – when a user in the group receives a slide. It describes how

the slide is decoded and also how the users begin to build a copy of the slide show

locally.

Group Messaging – how the messages are taken from the user and distributed

throughout the group. It also explains how the messages are processes once

received.

Change of Control – how the presenter releases control of the presentation to

other users, and how the presenter then can regain control when needed.

 49

4.2.1 StartUp

PeerGroupMan
ager

Main Discover JXTA

getNet PeerGroup()
return JXTAPeerGroup

waitForRendezvous(JXTAP eerGroup p) Rendezvous Found()

return JXTARendezvous

PeerGroupManager(JXTAPeerGroup p)

Discover(JXTAPeerGroup p, PeerGroupManager mg)

getDiscoveryService()
return JXTADiscoveryService

discoverPeers() peerFound()
return peerAdvertisement

addToPeers(JXTAAdvert isement a)

Figure 23. Start Up

On start up we get an instance of the JXTANetPeerGroup. Once it has this, it waits

for a connection from a JXTARendezvous peer for this group. A

PeerGroupManager is instantiate using the JXTANetPeerGroup and invokes the

Discover class. The Discover class then uses JXTA to get a reference to the

JXTADiscoveryService for this group, and sends a request for peers. The

Discover class receives advertisements through the JXTADiscoveryService and

adds them to a list of known peers. The PeerGroupManager is notified when new

advertisements arrive.

Searching for Peer Groups follows essentially the same step; instead of requesting peer

advertisements in the JXTADiscoverService we declare we are requesting groups.

 50

4.2.2 Joining Group

PeerGroupMan
ager

Discover GroupMessagin
g

GroupPresDispl
ay

JXTAGroupChat

JXTAPeerGroup(Advertisement a)

return JXTAPeerGroup

groupChanged(JXTAPeerGroup p)
discoverPeers()

groupChanged(JXTAPeerGroup p)
groupChanged(JXTAPeerGroup p)

JXTAPipe(JXTAPeerGroup p)

return JXTAPipe

JXTADiscoveryService(JXTAPeerGroup p)

return JXTADiscoveryService

Figure 24.Joining Group

User selects from the groups displayed in GUI. The GUI notifies the

PeerGroupManager and passes the Advertisement of the group selected. The

Advertisement is used to instantiate a new JXTAPeerGroup, the Discover class

is notified and a new search for peers and groups is performed as before. The Group-

Messaging and the GroupPresDisplay implements a listener for group changes,

and they call the setGroup() method in the GroupChat class. At this point the

GroupChat class binds itself to the JXTAPipe, and to the

JXTADiscoveryService, for that group. This means that any messages sent will

now be sent through the new JXTAPipe for that group, and that the GroupChat class

is listening to the new JXTAPipe connecting the group.

 51

4.2.3 Sending a Slide

GroupPresDispl
ay

SlideShow Slide GroupChat JXTAEncodedSlide

getCurrentSlide()

return Slide Object

getEncodedSlide()
EncodedSlide()

return EncodedSlide Object

send EncodedSlide
send EncodedSlide using JXTAPipe

Figure 25. Sending a Slide

The GUI notifies the GroupPresDisplay class, the GroupPresDisplay requests

the currentSlide from the SlideShow class. The SlideShow class returns a Slide

object representing the currentSlide, this slide is the requested to return the

EncodedSlide class that represents that slide. This EncodedSlide is then sent to

the GroupChat along with a String that represents a tag. This tag represents whether

the message is from the GroupPresDisplay or the GroupMessaging as both

classes receive their messages through the JXTAPipe the GroupChat class listens to.

The GroupChat then sends the EncodedSlide along with the tag using the

JXTAPipe.

Because we are also a member of this JXTAPeerGroup, we receive the same message

we sent a few moments later on the JXTAPipe. The events that follow are illustrated in

the next section.

 52

4.2.4 Receiving a Slide

GroupPresDispl
ay

SlideShow Slide EncodedSlide GroupChat JXTAMessageParser

message received on JXTAPipeSend String representing Message

getType()

type = Slide

EncodedSlide(String msg)

return EncodedSlide

encodedSlide.getSlide()

Slide(EncodedSlide e)

return Slide
return Slide

addSlide(Slide s)

setCurrentSlide(s)

Figure 26. Receiving a Slide

The GroupChat class receives the message on the JXTAPipe. It extracts a tag from

the message to determine whether the message is of type ‘Chat’ or type ‘Pres’ (ie whether

the message is intended for the GroupMessaging or GroupPresDisplay). Once it

extracts the tag and finds that it is of type ‘Pres’ , the message is sent to the

GroupPresDisplay class. This message is sent to the MessageParser class in

order to determine what type of instruction the message contains. If the message type is

determined to be of type Slide, an EncodedSlide object is instantiated using the

String that represents the message as the constructor. This EncodedSlide is then

requested to return the Slide object representation of itself.

The user maintains a local version of the SlideShow object, this Slide is added to the

local version of the SlideShow, and set to the currentSlide. The Slide is then passed

to the BrowserFrame class for rendering.

4.2.5 Group Messaging

 53

GroupMess agin
g

GroupChat JXTA

sendMessage(String msg, S tring "Chat")

sendMessage(String msg)

receivedMessage()

t ype = 'C hat'

prepend senderName

displayMsg(String msg)

Figure 27. Group Messaging

The GUI notifies the GroupMessaging class with the String contained in the

messageBox, which is of type TextFeild. The GroupMessaging class sends the

GroupChat class the message along with the tag ‘Chat’ to notify it that the message is

coming from GroupMessaging. The GroupChat sends the message using the

JXTAPipe.

The message is received on the JXTAPipe by the GroupChat class. The

GroupChat class determines whether the message is of type ‘Chat’ or ‘Pres’ . When it

determines it is of type ‘Chat’ , it gets the sending Peer username and adds it to the

beginning of the String containing the message. This new String representing the

message is sent to the GroupMessaging class. The GroupMessaging class

appends this String to the messageBoard which is of type TextArea.

4.2.6 Change of Control

 54

GroupPresDispl
ay

MessageParser GroupChat JXTA

createMsg(String "unlockSlideShow"

return String msg

sendMsg(String msg, String "Pres")
sendMessage(String msg)

receivedMessage()String msg

getType(msg)

Type = "unlockSlideShow"

enableControlButtons()

Figure 28. Change of Control

By default, unless you are the presenter, the functionality to change the slides is locked.

This means that the GUI buttons are disabled. When the presenter unlocks the slide show

using the Unlock Slide Show button on the GUI, the GroupPresDisplay class is

notified. The GroupPresDisplay class creates a String using the MessageParser

class with the input “unlockSlideShow”. The MessageParser class returns a String

that represents a simple XML document with the instruction enclosed. This String is then

sent to the GroupChat class along with the ‘Pres’ tag. The GroupChat sends the

message using the JXTAPipe. [For an example format of the XML encoded instructions

see Appendix]

The message is received on the JXTAPipe by the GroupChat class. The

GroupChat class determines whether the message is of type ‘Chat’ or ‘Pres’ . When it

 55

determines it is of type ‘Pres’ , the message is sent to the GroupPresDisplay class.

This message is sent to the MessageParser class in order to determine what type of

instruction the message contains. If the message type is “unlockSlideShow”, the Slide

Show control buttons are then enabled on the GUI and any member of the group can

changes the slides as outlined previously.

The process is the same to lock the slide show, unless you are the presenter, the

functionality to lock the slide show is disabled. When the presenter locks the slide show,

the instruction is passed on to the entire group member as before.

4.3 Comments on Implementation

The resulting implementation was a functional application that met most of the

requirements outlined in chapter 3. However there were a number of features not fully

implemented due to time constraints.

1. Slide Transmisstion Protocol Optimisations

The optimisations were not implemented, however a functional solution was presented in

the section 3.3.5.5. and given time could be implemented fully. However the application

functioned at an acceptable speed for small scale peer groups.

2. Security

The low level security feature outlined in section 3.3.7.1. was implemented, but the high

level and medium level security features were not implemented. This was again due to

time constraints.

 56

Chapter 5

Evaluation

The following chapter examines some of the implementation choices made. It outlines

the advantages, and the drawback of these choices. It also discusses possible future work

for this project.

5.1 JXTA

5.1.1 Overview of JXTA

JXTA was chosen as the underlying protocol because of the many benefits it offers : it

allows the use of different transport layers for communication, including TCP/IP and

HTTP, and deals with issues related to firewalls and NAT. JXTA sits on top of the

operating system, or virtual machine and below the actual peer2peer services gives

developers the ability to build any peer2peer application on top of the JXTA layer.

Essentially JXTA tries to do for peer2peer communication, what Java did for code

portability.

The aim of the JXTA community is to expand the use of JXTA to eventually form the

JuxtaNet. But as with many open standards, its success depends on developers’ use of

the technology. Currently many projects are planning on using the JXTA platform for

peer2peer communication. This means that any application built on the JXTA platform

has an instant user base.

 57

5.1.2 Problems

The Scalability of the peer2peer approach becomes questionable, as the network grows

larger. As the earlier development of Gnutella has shown, finding a peer in a completely

decentralized approach requires hopping through many nodes, which often cripples the

overall performance of the network. Although good peer2peer design, such as caching,

minimizing discovery and search time, can go a long way, the inefficiency and latency of

using large peer groups remains.

Another issue is that nodes behind a firewall are connected to the JXTA network through

a rendezvous peer. It has been found during the implementation of this project that

rendezvous peers drop packets when the network is heavily loaded. The hope is that this

problem will decrease with more nodes acting as rendezvous peers on the network.

5.2 XML

5.2.1 Overview of XML

XML was a good choice for the format for message passing due to the fact it provides

interoperability and is human-readable. XML can provide a standard, easily agreed upon

format to transfer data over the Internet. As a data representation format XML, is also

much more flexible than old formats such as binary, because it can carry just about any

kind of data. XML provides flexibility and the ability to send multiple files encoded in

one XML file. It is easy to add new functionality without breaking compatibility with

existing clients. Old and new functionality can coexist with the same data structures

without breaking either version of a protocol. Older clients simply don't include the new

data, and an application can handle this accordingly, while a newer client can use the

additional data as needed.

 58

5.2.2 Problems with XML

XML also has a few disadvantages:

Performance

XML conversion can be very resource intensive, especially with large data sets. Current

XML parsers are fairly slow. In short, XML conversion is very resource intensive both

in terms of CPU resources and to marshal XML into native data as well the actual data

size.

Data Size

Size is also an issue for XML. XML documents can bloat data considerably. When

sending data over the wire this can be a problem if data is not compressed The start and

end tags cause significant bloat of the data being sent over the wire. Additionally binary

formats like numerics must be converted to human readable string to be embedded in an

XML document. In many cases this string is larger than the original data format. On the

other hand XML can strip out trailing spaces that are embedded in string fields, thus

saving some memory. XML data size can be significantly reduced by using compression

of some sort, since much of the data is highly repetitive.

Binary Data

XML has issues with binary data as described in Chapter 3.

Though XML is an appropriate choice the use of compression may be a feature for

further development.

5.3 Base64 Encoding

Base64 Encoding was performed on all binary files enclosed in the XML documents.

Though this was necessary in order to allow the XML parser to parse the document

correctly there were a few disadvantages to this design decision. The first aspect is

 59

packet size; since it encodes three data bytes using four characters the resulting encoded

document is 33 % larger than the original binary document. Another disadvantage is the

loss of human readable XML documents, which is one of the advantages of using XML.

However, the document structure created is still human readable.

5.4 Conclusion

The resulting application was a relatively successful design. The problems encountered

using JXTA were inherent drawback of using new and evolving technology. However as

with all new technologies, the platform will only improve with growing support,

development and evaluation. Many of the drawbacks discussed are more optimisation

concerns to improve the performance and scalability of the solution, which could be

resolved by implementing a number of optimisations such as that outlined in section

3.3.5.5. and the further investigation of implementing sub-peer groups to improve the

scalability of JXTA.

5.5 Future Work

5.5.1 Research

JXTA scalability. The present research of JXTA’ s scalability is mainly speculative. An

in depth analysis and experimentation would be interesting. One suggestion is to

examine the possibility of using the JXTA network as a more Grid-like network. For

example, once a peer group becomes very large, new sub-peer groups could be created

with each peer from the original group acting as a manager for the new underlying sub-

peer groups.

 60

JXTA security. Again due to JXTA’ s relative infancy a complete evaluation of the

security protocols does not exist as a result of this, further investigation into the security

needs to be carried out.

JXTA is designed to run on any device with a digital heartbeat. It is the hope that this

application could be ported to a mobile device such as a PDA.

5.5.2 Implementation

The implementation of the optimisation algorithms described in section 3.3.5.5 should be

considered in order to increase the scalability of the application.

The implementation of the security algorithms outlined in section 3.3.7 should be

considered in order to increase privacy and security of the application.

The implementation of the distributed algorithm to determine the presenter discussed in

section 3.3.4.2 needs to be implemented.

 61

Chapter 6

Conclusion
6.1 Overview

The growth of the Internet has provided a means for connecting users all over the world

and increased the possibilities of communication. This has lead to the use of E-Learning

and collaborative tools over the net. These applications go far beyond the original scope

of the Internet, however as a result roadblocks are preventing these tools from reaching

their full potential. These roadblocks include the inherent request/reply structure of

communication, the use of firewalls and Network Address Translations (NAT) schemes,

which both reduce the intercommunication between users.

6.2 Review Of Dissertation

The main goal of this dissertation was to design and implement a distributed slide show

presentation tool. It was required to transmit slides to members of a group, as dictated by

a presenter. It had to allow a mechanism for allowing different members of the group to

take control of a presentation. It also had to provide a chat forum to allow discussion

during a presentation. Another identified aim was that, in order to allow the application

to reach its full potential, it should be able to traverse firewalls.

An investigation of the current Internet technologies was performed focusing on:
� Server Push Technology
� SOAP
� XML-RPC
� JXTA

 62

This research lead to the discovery that very few of the current technologies deal with the

difficulties associated with traversing firewalls, as seen in Chapter 2. The main solution

being presented at the moment to the Internet community is the JXTA platform.

The use of the JXTA platform in the design, lead to achieving the goal of overcoming the

firewall issue. This choice brought advantages and disadvantages, which are outlined in

Chapter 5. Chapter 3 outlined the design of the application; it tackled the issues of

security, group management, and message passing protocols for the application. Chapter

4 provided a description of the implementation of the functional solution.

Chapter 5 evaluated some of the main design choices made, and their benefits and

drawbacks. Overall, the design was evaluated as being appropriate and that the main

areas for improvement were optimisations, and the possibility of porting the solution to

mobile devices such as PDAs.

6.3 Conclusion

This project has succeeded in most of the primary goals set for it. It provided a design,

and an implementation for a distributed slide show presentation tool, that included

distributed control of slides and a simple chat functionality. The other key requirement to

allow the application to traverse firewalls was achieved through the JXTA platform. This

design will allow for E-Learning and collaborative tools to make full use of the

connectivity possible with the Internet and allow it to transcend the features of the

Internet that were restricting its use.

 63

References:
[1] JETS: a Java-Enabled TeleCollaboration System

Shervin Shirmohammadi and Nicolas D. Georganas

Multimedia Communications Research Laboratory

[2] Bergen Webucator: Web-based tools for distributed learning

Khalid A. Mughal, Sigmund Nysæter, Espen Haagensen

Department of Informatics, University of Bergen, POB 7800, N-5020 Bergen,

[3] An Exploration of Dynamic Documents

http://wp.netscape.com/assist/net_sites/pushpull.html

[4] Pushlets – Whitepaper

Author: Just van den Broecke

[5] An Extensible and Interoperable Event System Architecture Using SOAP

Aleksander Slominski, Madhusudhan, Govindaraju, Dennis Gannon, Randall Bramley

[6] Simple Object Access Protocol (SOAP) 1.1 W3C Specifications

W3C Note 08 May 2000

http://www.w3.org/TR/SOAP/

[7] SOAP: The Simple Object Access Protocol

by Aaron Skonnard

[8] Project JXTA: A Technology Overview

by Li Gong

Sun Microsystems, Inc.

 64

[9] A Distributed Trust Model for Peer-to-Peer Networks

Rita Chen and William Yeager, Poblano

[10] The Juxtaposition Between Hype and Reality

By David Fox

[11] The Trouble with JXTA

by Adam Langley 05/02/2001

[12] JXTA Takes Its Position

by Rael Dornfest 04/25/2001

[13] JXTA v1.0 Protocols Specification, Revision 1.1.1, 12/6/2001

Sun Microsystems, Inc.

[14] JXTA: Java P2P Programming

Daniel Brookshier, Darren Govoni, Navaneeth Krishnan

[15] The JXTA Book

Brendon Wilson

[16] Java XML

Akif, Borhead, Cioroianu, Hart, Jung, Writz

 65

Appendix A

XML

XML is subset of the Standard Generalized Markup Language (SGML) defined in ISO
standard 8879:1986 that is designed to make it easy to interchange structured documents
over the Internet.

XML is based on the concept of documents composed of a series of entities. Each
entity can contain one or more logical elements. Each of these elements can have
certain attributes (properties) that describe the way in which it is to be processed.
XML provides a formal syntax for describing the relationships between the entities,
elements and attributes that make up an XML document.

DTDs
The role of each element of text in a formal model is defined using a Document Type
Definition (DTD), users of XML can check that the document is valid if it complies to
the DTD. If no DTD is available an XML system can assign a default definition for
undeclared components of the markup.

Elements
Elements and their attributes are entered between matched pairs of angle brackets (<...>)
while entity references start with an ampersand and end with a semicolon (&...;).
An XML memo might be coded as:

<memo>
<to>All staff</to>
<from>Martin Bryan</from>
<date>5th November</date>
<subject>Cats and Dogs</subject>
<text>Please remember to keep all cats and dogs indoors
tonight.</text>

</memo>
Below is an example of the accompanying DTD:
<!DOCTYPE memo [
<!ELEMENT memo (to, from, date, subject?, para+) >
<!ELEMENT para (#PCDATA) >
<!ELEMENT to (#PCDATA) >
<!ELEMENT from (#PCDATA) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
]>

This model states a memo consists of a sequence of header elements, <to>, <from>,
<date> and, optionally, <subject>, which must be followed by the contents of the memo.
The contents of the memo defined in this simple example is made up of a number of
paragraphs, at least one of which must be present (this is indicated by the + immediately
after para). In this simplified example a paragraph has been defined as a leaf node that
can contain parsed character data (#PCDATA), i.e. data that has been checked to ensure
that it contains no unrecognized markup strings. In a similar way the <to>, <from>,

 66

<date> and <subject> elements have been declared to be leaf nodes in the document
structure tree.

Some elements do not require any contents as such. They are simply placeholders that
indicate where a certain process is to take place. A special form of tag is used in XML to
indicate empty elements that do not have any contents, and therefore have no end-tag.

Attributes
Where elements can have variable forms, or need to be linked together, they can be given
suitable attributes to specify the properties to be applied to them. For example, it might
be decided that the <subject> field of a memo could optionally be printed in bold or
italics. A suitable attribute list declaration might, in this case, be:
<!ATTLIST subject form (bold|italic|normal) "normal" >
This defines that the <subject> start-tag can be amended to read <subject form="bold">
or <subject form="italic"> if a variant font is required. If no such change is requested the
program is to use the default value to make the tag read <subject form="normal">.

 67

Appendix B

Three Phase Commit Protocol

The Basic Idea is that before the commit protocol begins, all the sites are in state q. If the
coordinator fails while in state q1, all the cohorts perform the timeout transition, thus
aborting the transition. Upon recovery, the coordinator performs the failure transition.

Phase I
During the first phase, the coordinator is in state w1, and each cohort is either in state a
(in which case the site has already sent an abort message to the coordinator) or w or q
depending on whether it has received the Commit_Request message or not. If a cohort
fails, the coordinator times out waiting for the agreed message from the failed cohort. In
this case, the coordinator aborts the transaction and sends abort messages to all the
cohorts.

Phase II
In the second phase, the coordinator sends a Prepare message to all the cohorts if all the
cohorts have sent Agreed messages in Phase I. Otherwise, the coordinator will send an
Abort message to all the cohorts.On receiving a Prepare message, a cohort sends an
acknowledge message to the coordinator. If the coordinator fails before sending Prepae
messages (i.e., in state w1), it aborts the transaction upon recovery, according to the
failure transition. The cohorts time out waiting for the prepare message, and also abort
the transaction as per the timeout transition.

Phase III
In the third phase, on receiving acknowledgements to the Prepare messages from all the
cohorts, the coordinator sends a Commit message to all the cohorts. A cohort, on
receiving a Commit message, commits the transaction. If the coordinator fails before
sending the commit message (i.e., in state p1), it commits the transaction upon recovery,
according to the failure transition from state p1. The cohorts time out waiting for the
Commit message. They commit the transaction according to the timeout transition from
state pi. However, if a cohort fails before sending an acknowledgement message to a
Prepare message, the coordinator timesout in state p1. The coordinator aborts the
transaction and sends Abort messages to all the cohorts. The failed cohort, upon recovery,
will abort the transaction according to the failure transaction from state wi.

 68

Appendix C

Bully Algorithm

The Bully algorithm is used to choose coordinators in centralized distributed systems (i.e.
systems where there is a central authority in decision making). Elections are required to
select a new coordinator when the current coordinator .

Election Procedure

The election procedure is run whenever there is a need for a new central authority, known
as the coordinator, in a distributed system. The election procedure is run from a specific
node and goes through a number of phases.

PHASE 1: it checks if there are higher ID nodes that are active. If yes, the current node
knows that it is not going to be the coordinator and stops its active involvement in the
election. Otherwise it carries on tentatively as the new coordinator.

PHASE 2: it informs all lower ID nodes that an election is in progress, that it is the new
coordinator, and collects the identity of the nodes that are active.

PHASE 3: it makes sure that all the active nodes now agree that SELF is the new
coordinator. If they don't the election is restarted.

PHASE 4: it distributes to the active nodes information for recovery from failure; if there
has been any change in the active nodes since phase 2, the election is restarted.

