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ABSTRACT 24 

This paper is part of a special issue of Applied Geochemistry focusing on reliable 25 

applications of compositional multivariate statistical methods. This study outlines the 26 

application of compositional data analysis (CoDa) to calibration of geochemical data and 27 

multivariate statistical modelling of geochemistry and grain-size data from a set of 28 

Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two 29 

decades, understanding near-continuous records of sedimentary sequences has required 30 

the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and 31 

marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, 32 

requiring data processing in order to remove instrument bias, as well as informed 33 

sequence interpretation. The applicability of these conventional calibration equations to 34 

core-scanning XRF data are further limited by the constraints posed by unknown 35 

measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio 36 

based calibration schemes have been developed and applied to clastic sedimentary 37 

sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This 38 

study has applied high resolution core-scanning XRF to Holocene sedimentary sequences 39 

from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The 40 

Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and 41 

conventional ED-XRF data to quantify elemental composition. This provides a robust 42 

calibration scheme using reduced major axis regression of log-ratio transformed 43 

geochemical data. Through partial least squares (PLS) modelling of geochemical and 44 

grain-size data, it is possible to derive robust proxy information for the Sundarbans 45 

depositional environment. The application of these techniques to Holocene sedimentary 46 
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data offers an improved methodological framework for unravelling Holocene 47 

sedimentation patterns. 48 

 49 

1. GEOCHEMISTRY OF HOLOCENE SEDIMENTARY ENVIRONMENTS 50 

The composition and physical properties of sediments and sedimentary rocks are for the 51 

most part controlled by chemical processes taking place during weathering, transport, and 52 

burial (diagenesis) (Bjørlykke, 2010). Thus, understanding the physical properties of 53 

sediments and sedimentary rocks requires an understanding of the chemical processes 54 

underlying sedimentary deposition. The formation of clastic sediments is a result of the 55 

erosion and weathering of source parent rocks. The dissolved fraction of this clastic 56 

sediment flows into seas or lakes, with subsequent precipitation as biological or chemical 57 

sediments. During transport, grains continue to undergo weathering and abrasion, with 58 

resultant sediments potentially undergoing repeated cycles of deposition and erosion prior 59 

to final deposition. In order to establish the origin of these sediments, and to gain an 60 

understanding of the processes that have operated prior to their deposition, there is a need 61 

to analyse their geochemistry. For Holocene sediments (i.e., those deposited within the 62 

last 11.7 ka), environmental geochemistry offers a series of approaches to analyse 63 

sediment geochemistry. For example, the identification of minerals in soils and sediments 64 

usually involves high powered electron microscopy to image crystal forms, and 65 

diffraction and vibrational spectroscopy to determine crystallographic structures (Ryan, 66 

2014). Understanding the elemental composition of sediment usually involves the 67 

analysis of elemental absorbance, emission, fluorescence or mass (Ryan, 2014). These 68 

approaches to elemental analysis fall into two groups: destructive and non-destructive. 69 
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The former involve the dissolution of minerals into an aqueous solution, whilst the latter 70 

are characterised by the analysis of mineral powders (Ryan, 2014). These non-destructive 71 

approaches include X-ray fluorescence (XRF) which this study will examine for the 72 

purposes of the chemometric calibration of element geochemistry from the Sundarbans, 73 

West Bengal, India. This paper provides a background to XRF, XRF core-scanning and 74 

calibration through compositional data analysis (CoDa), with a focus on the sediments of 75 

the Sundarbans, to demonstrate the usefulness of the techniques. Through the application 76 

of CoDa, a number of calibration coefficients can be derived for key proxy geochemical 77 

indicators and used to study sedimentary provenance and depositional processes. The 78 

objective of the study is to investigate how the application of LRCE & PLS to Holocene 79 

sediments of a Delta environment can improve interpretation of geochemical indicators 80 

of grain-size variability. 81 

 82 

2. BACKGROUND TO THE INDIAN SUNDARBANS 83 

The Sundarbans is one of the largest coastal wetland sites in the world (~ 1 million 84 

hectares) covering the western delta of the Ganges and Brahmaputra (G-B) rivers (Fig. 85 

1). The Sundarbans is a complex network of tidal creeks and deltaic islands with most 86 

sediment arriving indirectly from the G-B river systems (which drain the Himalayas). 87 

The Indian Sundarbans comprises just over 400,000 hectares in the western sector of the 88 

G-B delta, and is cross-cut by a number of approximately north-south estuarine channels 89 

(Fig. 2). Overall, the G-B delta is generally divided into two sub-systems of fluvially and 90 

non-fluvially dominated depositional environments (Fig. 1) (Rogers et al., 2013). The 91 

eastern sector of G-B delta comprises the fluvially dominated system, whilst the older 92 
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abandoned part of the delta, in the west, comprises the non-fluvially dominated 93 

environment that is no longer directly linked to the G-B river sources (Fig. 1). This 94 

western part of the delta (which underlies the present day Indian Sundarbans) was 95 

fluvially abandoned prior to c. 5000 cal yr BP, as the Ganges River migrated eastward 96 

towards its present position (Goodbred and Kuehl, 2000). Shoreline progradation in the 97 

eastern delta complex following the joining of the Ganges and Brahmaputra rivers in the 98 

Meghna Estuary is considered to be fluvially-dominated (Allison, 1998a).  99 

The western extent of the G-B delta is now thought to be undergoing net delta 100 

front erosion (Allison, 1998b; Allison et al., 2003), likely reflecting an eroding 101 

environment in areas distal to areas of contemporary fluvial-deltaic deposition (Allison 102 

(1998b).  As the Ganges river shifted from its former western discharge channel (i.e., 103 

Hoogly River) to its current position in the east, a series of palaeo-distributary channels 104 

were left abandoned (Allison, 1998b). These channels reflect an almost exclusively tidal-105 

driven geomorphology, with sediments and discharge from the main G-B rivers no longer 106 

entering the western delta front (Allison, 1998b; Bhattacharyya et al., 2013).  107 

In order to fully explore the processes of sedimentation and the potential sources 108 

of variance in sediment composition during the late-Holocene (post Ganges shift), high 109 

resolution data analysis is required. Such analysis has never been performed on 110 

sedimentary cores from the Sundarbans, and this study represents the first attempt at 111 

characterising the sedimentary facies using high-resolution core-scan XRF and 112 

establishing variation in sediment deposition. 113 

 114 

3. INTRODUCTION TO XRF CORE-SCANNING 115 
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The application of X-ray fluorescence (XRF) to geological materials is well established, 116 

and recognised as a conventional technique for deriving elemental composition (Ramsey 117 

et al., 1995; Jenkins, 1999; De Vries and Vrebos, 2002; Weltje and Tjallingii, 2008). The 118 

underlying principle of XRF analysis is that excitation of electrons by incident X-119 

radiation (X-rays) leads to the ejection of electrons from the inner ring of an atomic shell. 120 

This ejection results in a vacancy, which is filled by cascading electrons from the outer 121 

shells, which, in turn, leads to the emission of energy (Weltje and Tjallingii, 2008). The 122 

emitted energy and wavelength spectra are atomically indicative of particular elements, 123 

allowing relative abundances of elemental compositions to be derived (Weltje and 124 

Tjallingii, 2008).  125 

In the 1990s, the development of a non-destructive core logging technique which 126 

applies XRF for the determination of major-element concentrations in split sediment 127 

cores was first utilised by the Royal Netherlands Institute for Sea Research (NIOZ) 128 

(Jansen et al., 1998). The most advantageous surface for XRF sample determination is 129 

homogeneous, dry, and smooth (Jansen et al., 1998). Using split-cores surfaces provides 130 

comparable geochemical data to powder samples (Jensen et al., 1998). This is due to the 131 

response depths that vary between elements. However, it has been found problematic that 132 

larger particles tend to attenuate the fluorescent radiation of elements more than fine 133 

particles (Jansen et al., 1998). The ‘ideal’ homogeneity of a sample occurs when the 134 

majority of the material can pass through a 70-mm sieve (Potts, 1987; Jansen et al., 135 

1998), with ‘ideal’ results derived from silts and clays, rather than from sands (which 136 

require careful interpretation of results) (Jansen et al., 1998). The key advantages of XRF 137 

core-scanning over conventional geochemical analysis of discrete specimens is that 138 
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element intensities are obtained directly at the surface of a split sediment core (allowing 139 

for the extraction of near-continuous records of element intensities), and the spatial 140 

resolution of ED-XRF core-scanning is much higher than conventional discrete sampling 141 

destructive methods (Weltje and Tjallingii, 2008). However, one of the main drawbacks 142 

of the approach has been the conversion of element intensities measured by ED-XRF 143 

core-scanners to element concentrations (Weltje and Tjallingii, 2008). Thus, the results 144 

obtained by ED-XRF core-scanning are generally presented in the form of count rates 145 

(counts per unit time per unit area), or as ratios of counts, count rates, or intensities of 146 

elements (Richter et al., 2006; Rothwell et al., 2006; Thomson et al., 2006; Weltje and 147 

Tjallingii, 2008). Within regular calibration schemes, measurement geometry and 148 

specimen homogeneity is very poorly constrained due to the inhomogeneity of samples 149 

and the irregular surface of a split-core (Weltje and Tjallingii, 2008; Weltje et al., 2015). 150 

In addition, in some instances, spatial variations in the thickness of an adhesive pore-151 

water film which forms directly below a protective polyester film covering the split core 152 

surface should be considered a further constraining factor on measurement geometry 153 

values in the calibration equation (Weltje and Tjallingii, 2008). Due to these poorly 154 

constrained and uncontrollable variations in the experimental setup, the measurement 155 

geometry becomes an ‘unknown’ in the calibration equation and renders its solution 156 

intractable within reasonable limits of uncertainty (Weltje and Tjallingii, 2008). As a 157 

result of this uncontrollable variable in the calibration equation, the experimental setup of 158 

quantitative XRF core-scanning must incorporate control specimens of known intensities 159 

(Weltje and Tjallingii, 2008). However, such calibration approaches often possess 160 

inherent intractability which can make the exercise inappropriate for fully quantifying 161 
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core-scan ED-XRF intensities. As a result, calibration requires an alternative approach 162 

within the scope of CoDa in the form of the Log-Ratio Calibration Equation (LRCE): a 163 

univariate log-ratio calibration (ULC) approach that combines conventional calibration 164 

approaches in ratio form (Weltje et al., 2015). 165 

The primary justification for the application of the LRCE and calibration in this 166 

study is outlined by Bloemsma (2015) in terms of deriving meaningful data. Essentially, 167 

the reason why calibration of core-scan derived XRF data is that if calibration is not 168 

performed, no actual useful information other than noise and ‘presence/absence’ of 169 

particular elemental data can be discerned. Calibrating the data in the manner outlined in 170 

this manuscript actually shows robustly both the relative elemental composition present, 171 

but also that the elements that are calibrated are actual signal as opposed to noise. 172 

 173 

4. METHODOLOGY 174 

4.1. Quantification of core-scan derived XRF through the LRCE 175 

The LRCE works by using the relationship between elements derived from core-scan and 176 

conventional ED-XRF. Core-scan ED-XRF cannot be calibrated in standard equations 177 

due to unknown coefficients of such models, as it is not possible to correct for grain-size, 178 

water content etc., on a split core log without altering the sample. In principle, calibration 179 

of conventional ED-XRF faces the problems of being a closed dataset (i.e., appropriate 180 

data for compositional data analysis), but still representative of relative quantities of 181 

elements in a sample. However, although core-scan ED-XRF is semi-quantitative (i.e., 182 

data are in form of counts per second) there are also relative abundances of elements (i.e., 183 

core-scan ED-XRF counts are relative to the sum-total of counts that are present between 184 
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each element). If a series of points is measured using core-scan ED-XRF and 185 

subsequently sub-sampled and processed with conventional ED-XRF, then there are two 186 

datasets for the same sample: conventional ED-XRF and core-scan ED-XRF.  187 

The two datasets that are modelled in the LRCE are the core-scan ED-XRF counts 188 

(i.e., intensity data) for which the concentration is unknown, and the concentration values 189 

(e.g., %, ppm, etc.) dataset from the same set of samples as the intensity data, that form 190 

the reference dataset in the calibration procedure. The way in which the LRCE works is 191 

that the empirical model coefficients α and β are the log-ratio equivalents of the matrix 192 

effect and detection efficiency (this is true in the case of single-element XRF 193 

spectrometry), respectively (Weltje and Tjallingii, 2008). The LRCE uses a number of 194 

independent models for the binary sub-compositions of a given set of elements to the 195 

spectrum of relative XRF intensity data by using major axis regression based on singular 196 

value decomposition (SVD) (Weltje and Tjallingii, 2008). 197 

The LRCE can be considered a form of additive log-ratio transformation (alr) 198 

(Aitchison, 1982; 1986), whereby the transformation is performed on every linear 199 

combination of the sub-compositions examined (Weltje and Tjallingii, 2008). The key 200 

principle however is that the calibration functions in log-ratio space and that these are 201 

linear. After which, inverse log-ratio transformation and closure, the same data can be 202 

expressed in relative intensities against concentrations in binary composition (Weltje and 203 

Tjallingii, 2008). Predictions of the most optimum log-ratio denominator are allowed for 204 

in this approach which reduces any non-linearity introduced by matrix effects (Weltje and 205 

Tjallingii, 2008). Although the calibration process is carried out in log-ratio space it is 206 

possible to inverse-transform the results using the inverse-alr function, giving 207 
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compositional data as output (Weltje and Tjallingii, 2008; Bloemsma, 2010). The LRCE 208 

derives multiple element composition estimates from XRF core-scanner output by fitting 209 

a series of mutually independent models for binary sub-compositions of elements to the 210 

spectrum of (relative) intensities (Weltje and Tjallingii, 2008). The variables are only 211 

considered in the form of dimensionless log-ratios, which implies that normalisation prior 212 

to analysis is not relevant, and this is consistent with the key tenets of the CoDa approach 213 

(Weltje and Tjallingii, 2008). With this in mind, the model is unconstrained from the 214 

unit-sum and non-negativity problems imposed by a closed dataset (Weltje and Tallingii, 215 

2008). A full derivation of the LRCE is given in Weltje and Tjallingii (2008) and Weltje 216 

et al. (2015). 217 

In this study the prediction of the ED-XRF core-scan sub-composition was carried out 218 

according to the following scheme: 219 

• The core-scan intensity ED-XRF data and the percentage (%) concentration 220 

PXRF data are examined for the α and β model parameters through major axis 221 

regression by SVD (Press et al., 1994). 222 

• Binary sub-compositions between intensity ED-XRF (core-scan) and % 223 

concentration PXRF are plotted (i.e., the optimum log-ratio denominator that 224 

gives the best linear fit is derived and a series of alr-transformations are used 225 

employing this optimum log-ratio denominator, to derive a linear relationship 226 

between % concentration data and intensity data). 227 

• The best fit model for intensity ED-XRF – the ED-XRF data from both the % 228 

concentration and predicted concentration are permuted and calculated for each 229 

log-ratio pair of linear distances, which derives the best fit for the intensity ED-230 
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XRF sub-composition (Weltje and Tjallingii, 2008). This is empirically quantified 231 

by taking the median of the squared discrepancies between the predicted and the 232 

% concentration geochemical composition with discrepancies calculated through 233 

the use of a ‘leave-one-out-cross-validation’ (LOOCV) (Bloemsma et al., 2012). 234 

• The Aitchison distance between predicted and reference composition is used as 235 

the determinant for the optimal denominator element in the sub-composition (i.e., 236 

the residual variance between measurements in both the regression and predicted 237 

models) (Bloemsma et al., 2012). 238 

• The goodness-of-fit of the optimum log-ratio denominator is derived from the 239 

residual variance and the total variance (Weltje and Tjallingii, 2008). 240 

• The relative abundance of each element in the sub-composition from the predicted 241 

weights is determined through an inverse alr-transformation, with data expressed 242 

in a conventional (closed) form (Weltje and Tjallingii, 2008). 243 

Data from core-scan derived ED-XRF are now calculated based on the relative 244 

abundances of the sub-composition. However, to perform any further statistical analysis 245 

of the data, they are required to be subjected to further log-ratio transformation (e.g., alr-, 246 

centred log-ratio (clr), or isometric log-ratio (ilr) transformation). As the LRCE is 247 

founded on the CoDa principles, the use of a common log-ratio denominator is 248 

unrestricted and functions as a normalisation approach (Weltje and Tjallingii, 2008). The 249 

use of a common log-ratio denominator in the calibration model is generally independent 250 

of any environmental or sedimentological considerations (i.e., the log-ratio denominator 251 

is independent of any physical reasoning for use in the calibration model) (Weltje and 252 

Tjallingii, 2008). 253 
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4.3 Joint geochemical and grain-size modelling 254 

Grain-size and geochemical composition of clastic sediments have been found to be 255 

highly correlated as a result of the processes that control the generation of sediment from 256 

crystalline rocks (Bloemsma et al., 2012). The composition of modern sediments and 257 

their grain-size variation is due to four key factors: (i) contributions of mineralogically 258 

and texturally distinct grains from a number of divergent sources (ii) rock fragments 259 

being mechanically weathered into a finer composition, (iii) labile grains being more 260 

susceptible to chemical weathering and (iv) transport associated sorting of 261 

compositionally distinct grains (Whitmore et al., 2004). 262 

Bloemsma et al. (2012) have expanded on this relationship between geochemical 263 

and modal grain-size variation, as geochemical variation is generally considered to reflect 264 

the pervading environmental conditions of sediment genesis. In terms of relating grain-265 

size variation to bulk geochemical composition, it may be postulated in terms of the 266 

chemical weathering of crystalline rocks, in which the release of unstable elements as 267 

solutes takes place, whereas elements such as Al remain in the solid phase (Nesbitt and 268 

Young, 1984; Bloemsma et al., 2012). 269 

The development of the PLS modelling approach for joint geochemical and grain-270 

size relationships is premised on whether in a series of sediment samples derived from a 271 

source area that, over time the extent of chemical weathering was static, then the bulk 272 

geochemical variation may be attributed to; selective entrainment, transport, and 273 

deposition (Bloemsma et al., 2012). In a sedimentological context, such a one-to-one 274 

relationship between grain-size and geochemistry is rare with geochemical variability 275 

being a function of: chemical weathering; hydraulic/aerodynamic sorting; mixing; and 276 
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diagenesis (Bloemsma et al., 2012). In these regards, the variability between grain-size 277 

and geochemistry is considered as being what is shared and what is unshared, in which 278 

case if the former is removed from the data and the residuals calculated, then unknown 279 

trends such as provenance may be distinguished as a result (Bloemsma et al., 2012). 280 

The partial least squares (PLS) modelling approach was developed by Bloemsma 281 

et al. (2012) and has two key assumptions: (1) that there is a monotonic relationship 282 

between grain-size and geochemical composition, and; (2) grain-size distributions and 283 

geochemical compositions are both compositional in nature, necessitating the use of 284 

models in log-ratio space (Bloemsma et al., 2012).  285 

Effectively, geochemical data are considered to contain two parts, with one part 286 

that is correlated with grain-size, and a second part which varies independently from 287 

grain-size (Bloemsma et al., 2012). The model is carried out by finding a basis for which 288 

maximizes the geochemical variance explained by the grain-size (Bloemsma et al., 2012). 289 

If then, the mean is subtracted from these geochemical and grain-size data matrices, the 290 

values of the residuals are provided (Bloemsma et al., 2012). If there is significantly high 291 

correlation found in the projection of both datasets onto the basis vectors, then these are 292 

considered to be the ‘shared signals’ (Bloemsma et al., 2012). The residual signal is then 293 

calculated by subtraction of the shared signals from the raw data, giving the variability 294 

unique to each dataset (Bloemsma et al., 2012). Taking Fig. 3 for example where X\Y 295 

could be considered to represent grain-size variability and Y\X representative of 296 

geochemical variability, the variability shared by both data sets is indicated by X∩Y, 297 

which is highlighted in grey (Bloemsma et al., 2012). In contrast to this shared 298 

variability, the variability that is then unique to the geochemical data that potentially 299 
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holds relevant signals (e.g., provenance) is shown by Y\X, representing the residual 300 

geochemical variability (Bloemsma et al., 2012). 301 

The implementation of the PLS modelling approach follows on from the work of 302 

Bloemsma et al. (2012) in which: 303 

• clr-transformation of both the grain-size and geochemical data. 304 

• Derive the basis Q (i.e., clr-transformed geochemical solution space) in ℝD that 305 

can maximise the geochemical variance explained by the grain size through the 306 

Partial Least Squares (PLS) (Wold et al., 1982). 307 

• Fit a model onto data matrices X* (where X = L grain size classes) and Y* (where 308 

Y = D variables). 309 

• Subtract the mean from the X* and Y* to derive Xc
* and Yc

* through the SIMPLS 310 

algorithm (de Jong, 1993) and calculate the PLS matrix decomposition. 311 

• Orthogonalise the bases (i.e., the loadings) through SVD with the score matrices 312 

recalculated. 313 

• Test the significance of correlation between geochemistry and grain-size 314 

distribution scores on the k-th basis vector using the Kendall and Stuart (1973) 315 

test. 316 

• Derive r for any order of k, where r is the Pearson’s correlation coefficient 317 

between the k-th column and the previously orthogonalised bases. 318 

• With a confidence level of α and p = 1- α , the first k of shared signals is removed 319 

if for the k the Kendall and Stuart (1973) criterion is established. 320 
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• The model is applied to all grain-size and geochemical data as the transpose of the 321 

bases are orthonormal, thus the scores of all observed grain-size distributions and 322 

geochemical compositions may then be derived by the matrix product. 323 

• Reduced-rank approximation is used to derive the shared signal in both the grain-324 

size and geochemistry datasets. 325 

• Residuals calculated and subtracted from the common variability for both the 326 

GSDs and geochemistry input data. 327 

• Mean added, such that the residual signals centre around the mean of their 328 

corresponding raw data matrix (Bloemsma et al., 2012). 329 

Through this algorithm implementation it may be possible to derive the grain-size 330 

dependent and independent geochemical components from the dataset. The reader is 331 

referred to Bloemsma (2010), Bloemsma et al. (2012), and Bloemsma (2015) 332 

publications for a more exhaustive discussion on the PLS algorithm. However, it is only 333 

through utilising the calibrated geochemical data presented here that proxy information 334 

for environmental change may be derived, in this case for grain-size variability and the 335 

depositional environment for the Dhanchi Island site. Grain-size data was gathered from 336 

the Dhanchi Island core samples prior to PXRF analysis, following the methodology of 337 

Flood et al. (2015). 338 

 339 

4.3. Data acquisition: Grain-size analysis 340 

GSDs were analysed following Flood et al. (2015) using a MalvernMastersizer 2000 341 

instrument. Data were aggregated into quarter phi intervals (φ scale) over the range of 342 

0.02 – 2000 µm, following collection of measurements from the instrument. The centred 343 
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log-ratio transformation (clr-transformation) was implemented on all grain-size classes 344 

with any zero-valued bins of quarter phi intervals removed (i.e., where entire column 345 

vectors consisted of 0 row values). Classes of the grain-size distribution containing a zero 346 

in any of the observations (i.e., columns where only some of the row values are > 0), 347 

were amalgamated and the arithmetic mean calculated (cf. Bloemsma et al., 2012). This 348 

process was carried out on the 62.50 µm to 2000 µm fraction (i.e., 4.00 φ to –1.00 φ) for 349 

the Dhanchi Island GSD data. 350 

 351 

4.3. Data acquisition: ITRAX™ core-scanning 352 

Coring was carried out at Dhanchi, Bonnie Camp, and Sajnekhali in November 2011 353 

(sites shown in Fig. 2). Three cores (one from each site) were extracted using a motor 354 

driven percussion coring device. These cores were analysed using the ITRAX™ core-355 

scanner (Cox Analytical Systems, Mölndal, Sweden) housed at the School of Geography, 356 

University College Dublin. This is a non-destructive analytical approach which provides 357 

ED-XRF elemental profiles along with optical imagery and micro-density (X-358 

radiography) information (Croudace et al., 2006). The geochemical data were acquired 359 

through an ED-XRF spectrometer consisting of a molybdenum cathode (Croudace et al., 360 

2006). The voltage and current of the X-ray source was the 3kW Mo tube set to 30 kV 361 

and 50 mA respectively, with a measurement step-size of 300 µm and exposure time of 362 

16 seconds. The latter setting was employed for expedience, to provide high-resolution 363 

scanning of all the cores (c. 25 m of material length). The element data (table of elements 364 

shown in Table 1) were processed using fitting procedures in the Q-Spec spectral analysis 365 

package in order to extract the individual elemental intensities from the spectra output 366 
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(Croudace et al., 2006). Operation of the software involved selecting elements to be 367 

extracted from the XRF spectra, with any spurious or unnecessary elemental choices or 368 

incorrect fitting parameters adjusted post hoc through a batch-controlled post-processing 369 

of the spectra (Croudace et al., 2006). Invalid readings were noted and not employed in 370 

any post-hoc processing (i.e., invalid readings were not used in the LRCE). The scan-371 

lengths from each of the cores were 666 cm for Dhanchi-2 (hole-depth of 728 cm), 923.2 372 

cm for Bonnie Camp (hole-depth of 1022 cm), and 639.4 cm for Sajnekhali Island (hole-373 

depth of 791 cm). The total number of readings from each core were Dhanchi-2 with n = 374 

22,129 valid readings from a total output of 22,201 readings (72 invalid readings), 375 

Bonnie Camp with n = 30,517 valid readings from a total output of 30,773 readings (256 376 

invalid readings), and Sajnekhali with n = 23,822 valid readings from a total output of 377 

24,201 (379 invalid readings). 378 

The LRCE was applied to the global discrete sampling dataset collected (n=568) 379 

with the model then unfolded onto the elemental data from the high-resolution ITRAX™ 380 

ED-XRF (n=76,468). The alpha (α) and beta (β) slope and intercept regression 381 

parameters derived from the LRCE were used to predict the relative concentration of a 382 

sub-composition of elements (see section 5 results of this study), for this higher 383 

resolution dataset.  384 

 385 

4.4. Data acquisition for calibration: portable X-ray fluorescence spectrometry of 386 

reference samples 387 

Data acquisition using ED-XRF was undertaken using a Bruker S1 TURBO SD portable 388 

X-ray fluorescence (PXRF) spectrometer (Bruker Corporation, Massachusetts, USA) 389 
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consisting of a 10 mm X-Flash® SDD Peltier-cooled detector with a 4-watt (W) X-ray 390 

tube consisting of an Ag target and a maximum voltage of 40kV. Analysis was carried 391 

out on discrete samples collected from the Dhanchi-2, Bonnie Camp and Sajnekhali 392 

Island cores. In order to ascertain major and trace element composition, the elemental 393 

suite was generated using two analytical settings for each sample analysed. Major 394 

elements were acquired using a vacuum-pumped, low-energy and high current setting of 395 

15kV and 55µA instrument setting with no filter. The vacuum-pump was used to remove 396 

air from between the sampling window and the detector and allowed for improved 397 

analysis of the material, in particular increased sensitivity to light major elements, below 398 

and including iron (Fe). The other analytical setting was used for trace element analysis 399 

and acquired without a vacuum-pump and employed a yellow filter (Ti and Al), high-400 

energy instrument setting of 40kV and 19.60µA. With these instrument settings, 401 

elemental data are acquired for heavier elements with little sensitivity for those elements 402 

below calcium (Ca). The filter used consists of a 0.001” Ti and 0.012” Al and is already 403 

present in the instrument. Using the portable XRF, high and low energy data were 404 

acquired for each sample. Unknown samples from the Sundarbans were each measured 405 

for 16 seconds, with a set of 22 international geochemical reference standards (shown in 406 

Table 1) measured for 120 seconds, this was carried out so as to develop a robust 407 

calibration line for the PXRF instrument specific calibration. Since the Bruker software is 408 

proprietary, a full disclosure and discussion of the calibration routine is not possible in 409 

this study (cf. Rowe et al., 2012). 410 

The calibration models used in this research depend on the estimation of error of 411 

the covariance matrices, where the magnitude of the uncertainty in the measured 412 
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variables is accounted for (Bloemsma 2015; Weltje et al., 2015). With this in mind, due 413 

to lack of a priori knowledge concerning these uncertainties, replicated analysis is 414 

required in order to estimate these uncertainties (Bloemsma 2015). Repeated 415 

measurements were carried out on a total of 9 samples (3 per core) with 30 additional 416 

measurements on each of these samples (n = 270 repeated measurements in total) using 417 

the portable ED-XRF. 418 

 419 

4.5. Data acquisition – portable ED-XRF spectra calibration 420 

The raw spectra obtained from the Bruker S1 TURBO SD portable ED-XRF require a 421 

calibration to convert the data into quantitative weight percentages. The calibration for 422 

the portable ED-XRF unit is matrix-specific, so a calibration for major and trace elements 423 

of sediments and soils was developed using a suite of 22 reference materials. The 424 

calibration of the ED-XRF spectra was carried out using the Bruker AXS calibration 425 

software S1CalProcess Version 2.2.32 with the reference concentrations for the low and 426 

high energy calibrations produced for each element being evaluated against the 427 

concentration of the element as derived from the slope and baseline corrected peak 428 

heights. Linear regression analysis of the elemental concentrations quoted by the 429 

manufacturers for the international geochemical reference standards are examined along 430 

with elemental composition derived from the Bruker AXS S1CalProcess. 431 

 432 

5. RESULTS 433 

The results presented in this section reflect the data processing and outline how the LRCE 434 

was applied to the integrated core-scan ED-XRF data along with the discrete samples 435 
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analyzed using conventional ED-XRF and grain-size analysis. The LRCE model depends 436 

on comparability of the intensity measured elemental composition (i.e., data from the 437 

core-scan ITRAX™ data) along with the % elemental composition (i.e., conventional 438 

XRF data) a sub-composition of the elements were examined for these modelling 439 

purposes. 440 

The LRCE model was applied to all of the integrated core-scan samples from the 441 

cores. These input data consisted of the total sample population from the three cores 442 

(Dhanchi, n = 163; Bonnie Camp, n = 228; Sajnekhali, n = 176; with a total sample 443 

population, n = 567) with fifteen outliers removed. These outliers were removed as they 444 

deviated substantially from the general spread of data points and would bias the 445 

prediction of the model. Fig. 4 shows the cross plot of results from the closed, inverse 446 

transformed sub-composition of elements with calcium (Ca), iron (Fe), and potassium 447 

(K) depicted in the top row (a-c) and rubidium (Rb), titanium (Ti), and zirconium (Zr) 448 

shown in the bottom row (d-f). The conventional weighted (reference) ED-XRF 449 

composition is on the x-axis with the integrated ITRAX™ derived intensity (predicted) 450 

ED-XRF on the y-axis. 451 

The lack of a full suite of elemental output is due to the fact that the majority of 452 

these elements correspond to the lower energy, and thus atomically lighter, end of the 453 

spectrum with poorer excitation efficiency and detection. Data derived from these lighter 454 

elements are more difficult to calibrate as there tend to be more peak-overlaps. Finally, as 455 

the penetration depth of ED-XRF for the light elements (e.g., Si, Al etc.,)  tends to be ~ 456 

hundreds of µm, there is a risk of not actually measuring sediment (i.e., with core scan 457 

derived ED-XRF, it is possible to measure water pooled under the Mylar® polyester 458 
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film). The efficacy of the LRCE is illustrated in Fig. 4, where data appears to be well 459 

spread along the model, with calcium, iron and titanium representing the best spread of 460 

data points. There appears to be some bias in the potassium modelled output where a 461 

number of sample points deviate from the model. This bias may be attributed to the 462 

measurement of potassium in ED-XRF (both core-scan and conventionally derived ED-463 

XRF), where potassium appears close to calcium and in some cases there may be some 464 

peak overlap if the count time is low (Bloemsma 2015). However, given that the 465 

potassium is spread along the x-axis of the known weighted elemental composition, such 466 

an artefact of analysis may be attributed to the conventional ED-XRF. Rubidium data 467 

points appear to be spread across the regression and derive a reduced correlation. There is 468 

also a clustering of the data points from the regression model applied to zirconium. 469 

The calibration coefficients, α and β, for the LRCE model are shown in Table 2 470 

and Table 3, respectively. These coefficients can be considered to reflect the matrix effect 471 

(i.e., scattering, absorption and enhancement effects introduced during measurement, 472 

caused by the presence of other elements) and detection efficiency (i.e., sensitivity of the 473 

ED-XRF data after pre-processing) in a single-element from ED-XRF derived output 474 

(Weltje and Tjallingii, 2008). The LRCE removes the specimen effects, which relate to 475 

the deviations of measurement from ideal conditions, however not all of these effects are 476 

fully removed (Weltje and Tjallingii, 2008).  The α and β regression parameters reflect 477 

physical parameters such as grain-size, core-surface elevation, and water content (Weltje 478 

and Tjallingii, 2008), and are the main criteria used in the LRCE for calculating the best 479 

model fit for each of the elements (i.e., what is the ‘best’ log-ratio denominator for each 480 

of the elements in the dataset) (Weltje and Tjallingii, 2008).  481 
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In Table 4 and Table 5 the residual variances of the regression and prediction of 482 

the dataset used in the LRCE are shown. The residual variance refers to noise as it does 483 

not correlate with the compositional variations in a specimen (Bloemsma, 2010). This 484 

variance is quantified by taking a clr-transformation of a set of measurements from the 485 

same core-locations (i.e., replicate measurements) with the Euclidean distance between 486 

the observations measured in order to calculate error estimation (Bloemsma, 2010). Thus, 487 

the residual variance effectively quantifies the level of relative ‘noise’ that may be 488 

derived from the regression and prediction. The residual variance for both the regression 489 

and prediction reveal that calcium accounts for the most consistent variance. 490 

The α and β parameters from the log-ratio transformed dataset shown in Fig. 5 (a-491 

e) with Ca found to be  the best fitting denominator for Fe, K, Rb, Ti, and Zr. The R2 492 

values of goodness-of-fit in the LRCE denominator are shown in Table 6. The non-493 

linearity found in the original back-transformed data (Fig. 5, Rb and Zr) along with bias 494 

(Fig. 5, K) is now removed. Ca is found to be the optimal denominator using the 495 

Aitchison distance between the predicted and reference composition. Table 4 shows the 496 

median variances and Table 5 depicts the 95% confidence limits corresponding to these 497 

residual variances. The non-linearity introduced by the matrix effects has been greatly 498 

reduced with log-ratio intensities now distributed linearly with the log-ratio relative 499 

concentration (cf. Weltje and Tjallingii, 2008). As a consequence, the elemental 500 

concentration can now be derived from any of the intensity observations based on the 501 

linear model (black line intersecting the point clouds in Fig. 5) (cf. Weltje and Tjallingii, 502 

2008). 503 
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Using the residual variance of the prediction and the regression (Table 4 and 504 

Table 5), the sub-composition closure of the high-resolution dataset from the ITRAX™ 505 

ED-XRF has been estimated from the lower resolution calibration dataset. As a result, it 506 

is now possible, through the calibrated intensity derived ED-XRF with the weighted ED-507 

XRF, to interpolate the high resolution intensity ED-XRF. 508 

Shown in Fig. 6a is the PLS model output for the Dhanchi Island core with the 509 

PLS-coefficients of c. 0.3 for grain-size depicted by negative values corresponding to the 510 

coarse-clay to coarse-silt size fractions. Positive PLS coefficients of c. +0.3 are indicated 511 

by coarse-silt to sand sized. The PLS-scores for grain-size indicate positive score 512 

fluctuations appear to correspond to coarser sediment coefficients with negative scores 513 

found to correspond to that of finer sediment coefficients. The PLS-coefficients for 514 

geochemistry (Fig. 6b) show positive values for zirconium and calcium, with the highest 515 

negative values found for iron, potassium, rubidium, and titanium. Calcium and 516 

zirconium indicate the highest PLS coefficients at c. 0.4 and 0.3 respectively. In contrast, 517 

iron, potassium, rubidium and titanium are negatively correlated with PLS-coefficient 518 

values of between -0.3 and -0.4. The PLS-scores show a decline in grain-size with a 519 

concomitant decline in PLS-scores for geochemistry (calcium and zirconium) (Fig. 6c & 520 

d). Furthermore there is an apparent trend found in the PLS-scores for grain-size, firstly a 521 

trend consisting of a form of oscillation taking place from c. 787 cm to 491 cm that is 522 

superseded by a second trend of PLS-score decline. These trends in light of the PLS-523 

scores may be interpreted as a form of grain-size variability, in which oscillations in 524 

grain-size appear to correlate with oscillation in zirconium, while a decline in zirconium 525 

is reflected in a decline in grain-size. When the PLS-data are considered along with the 526 
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PC1-scores and PC1-coefficients for residual geochemistry (Fig. 6e & f), it is evident that 527 

throughout the Dhanchi Island core there is a consistent decline of calcium taking place. 528 

This can be discerned through the PC1-coefficients for residual geochemistry which 529 

depict positive values driven most strongly by calcium at c. 0.7 with negative values 530 

being concomitantly driven by zirconium at just over -0.6. Furthermore, negative PC1-531 

coefficient values may be discerned for the rubidium and titanium compositions, with 532 

potassium and iron represented by positive coefficient values. 533 

 534 

6. DISCUSSION 535 

6.1 Reconstructing Late Holocene environmental change from sediments in the West 536 

Bengal Sundarbans, India  537 

The objective of the study is to investigate how the application of LRCE & PLS to 538 

Holocene sediments of a Delta environment can improve interpretation of geochemical 539 

indicators of grain-size variability. The geochemistry derived from the application of the 540 

LRCE to Holocene sediments in the present study illustrates the efficacy of these subset 541 

of elements as useful indicators of environmental change. The LRCE shows that, in the 542 

case of the Sundarbans, K, Rb, Fe, Ti, Zr, and Ca can be calibrated, with Ca found to be 543 

the best-fit denominator. The utility of these elements for interpreting environmental 544 

change within the Sundarbans can be explored by examining the Dhanchi Island core and 545 

how these calibrated data may be employed in order to interpret the depositional 546 

environment through grain-size variability. However, in order to understand the data 547 

generated in this study, there is a requirement to place into the context the key aspects of 548 

deltaic environments and how these aid in the interpretation of facies variability derived 549 
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through the LRCE & PLS models for the case study of the Dhanchi Island core. The role 550 

of this discussion is to outline a potential set of circumstances that may characterise a 551 

depositional model for this particular site in the Sundarbans. 552 

 553 

6.2 Use of Sundarbans elemental log-ratios as environmental proxies 554 

River deltas develop as coastal ‘protuberances’ as a result of high sediment availability 555 

with variability in ocean hydrodynamics and localised coastal progradation (cf. Elliott, 556 

1986; Wright, 1978; Hanebuth et al. 2012). A dynamic relationship exists in terms of 557 

laterally graded intensity between sediment discharge along defined channels 558 

counterbalanced with the influence of tides, waves and longshore currents (Hanebuth et 559 

al., 2012). Differentiation of external forces in this manner leads to more diverse 560 

organisation of deltaic environments that are more locally segmented and temporally 561 

complex (Hanebuth et al., 2012). This study attempts to apply this approach to 562 

considering the Sundarbans in this manner of localised variability in terms of sedimentary 563 

deposition as opposed to applying a generalised model over the entirety of the Ganges-564 

Brahmaputra delta. Modern Holocene delta development is understood to have 565 

commenced between 9 and 7.5 cal ka BP associated with the deceleration of sea-level 566 

rise (Stanley and Warne, 1994). In terms of sediment supply, it has been found that the 567 

occurrence of coastal-shelf deposits, are indicative of the provenance of sediment (Gao 568 

and Collins, 2014). If the supply of sediment is ‘small’, then the seabed may consist only 569 

of bedrock, relict sediment or reworked materials, this is known as “sediment starved” 570 

(Gao and Collins, 2014, pp. 270). Conversely, thick Holocene deposits covering a large 571 

area are indicative of an abundant supply of sediment (Gao and Collins, 2014). Sediment 572 
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supply is principally provided by rivers, and dependent on geographical variability at the 573 

global scale (Milliman and Farnsworth, 2011). Grain-size compositions examined with an 574 

experimental microdelta by Endo et al. (1996) have found that these compositions are 575 

strongly controlled by the textural composition of source sand, analogous to a real-world 576 

river system. These results indicate that textural composition of a depositional system is 577 

primarily determined by the textural composition of sediment input (Swift et al., 1971; 578 

Liu et al., 2000). With this the observed grain-size variability are a result of the transport 579 

and deposition processes of sediment delivery to a system, with subsequent reworking of 580 

sediments already deposited (Liu et al., 2000). Thus, the nature and amount of sediment 581 

input can therefore determine the textural characteristics of a depositional system in 582 

receipt of these sediments (Liu et al., 2000). It is now possible to fully consider the data 583 

from the Dhanchi Island core and what may be gleaned from the geochemical and grain 584 

size variability found and how these fit into the present understanding of deltaic 585 

environments. 586 

The calcium variability in the Dhanchi Island sediments may therefore be 587 

understood as declining from a depth of approximately 500 cm to the core surface. This 588 

decline in calcium with the subsequent increase in zirconium, titanium, potassium, and 589 

rubidium composition may be interpreted as terrestrial sediment flux with diminished 590 

marine deposition. This calcium signal is pervasive in the four log-ratio pairs and does 591 

not appear to lend to the interpretation of grain size variability per se in the depositional 592 

characteristics of the Dhanchi Island site. It may be discernible that terrestrial sediment 593 

flux appears to be uncorrelated with calcium, thus, sediment provenance for the fine and 594 

coarse sediment appears to be independent of a marine or a tidally driven source. 595 
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In this context, the Dhanchi Island sediments exhibit a predisposition to 596 

terrigenous sediments, in agreement with Rogers et al. (2013) that geographical distance 597 

is not necessarily a limiting factor on sedimentation taking place (assuming the 598 

predominance of terrigenous sediment in the Dhanchi Island sediments). One of the key 599 

trends in all of these log-ratio pairs with calcium as the denominator, is that there appears 600 

to be a non-stationarity signal present, in which although the variability between log-ratio 601 

values appears to indicate some form of oscillation throughout the sequence, in each log-602 

ratio pair however the overall behaviour as noted is an increase in the numerator value at 603 

the expense of the calcium denominator (Fig. 7). Non-stationary signals, in the case of 604 

these log-ratio pairs, implies that the depositional processes taking place are drifting in 605 

time, in particular the increase in zirconium relative to calcium may be derived from the 606 

aggradation of the island surface. 607 

Grain size variation delivered by rivers has also been found to become finer in the 608 

seaward direction and this is more pronounced in an aggradational environment 609 

(Dalrymple and Choi, 2007). However, given that this part of the Sundarbans is an 610 

‘abandoned’ deltaic-estuarine site, it may be classed as being part of the ‘middle estuary’ 611 

which occupies effectively the same environmental location within an estuary as active 612 

delta-plain distributary channels within a delta (Dalrymple and Choi, 2007). In terms of a 613 

deltaic system such an abandoned set of distributary channels are thought of as estuarine 614 

due to the fact that they do not carry as much river discharge and also experience 615 

reworking by tidal currents (Dalrymple, 2006; Dalrymple and Choi, 2007). These areas 616 

experience net landward transportation of sediment from the seaward margin, which is 617 

contrast to that of active delta channels that experience a reverse (Dalrymple and Choi, 618 
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2007). It has also been noted that in terms of evidence for river action in the physical 619 

structures present, there tends to be almost no evidence for seasonality in fluvial 620 

discharge (Dalrymple and Choi, 2007). Along with this, there tends to be a case in 621 

abandoned channels of such delta plain estuaries that sediments from somewhat older 622 

distributary-mouth-bar deposits experience reworking within these systems (Dalrymple 623 

and Choi, 2007). The overarching presence of silt and clay would suggest a muddy 624 

depositional environment. 625 

As identified by Goodbred and Saito (2011) such environments are generally 626 

made of what are termed ‘sand-mud alterations’ consisting of flaser, lenticular and wavy 627 

laminations or bedding. Furthermore, such tidal flat environments are composed of 628 

bidirectional sedimentary structures such as sand-layer stacking, cross-laminations, mud-629 

drapes, and potentially, double mud-drapes (Goodbred and Saito, 2011). These 630 

depositional features are usually indicative of tidal depositional constraints on a 631 

sedimentary system (Goodbred and Saito, 2011). In this regard, although such 632 

sedimentary structures are difficult to discern from a discrete number of grain size 633 

samples, it is possible to elucidate such a depositional environment, potentially through 634 

high-resolution core-scanning as shown in Fig. 7. However, without having a robust 635 

chronology, it is still difficult to discern such tidal sedimentary structures. In a study of 636 

grain size characteristics of tidal-bore deposition in the Qiantang Estuary by Fan et al. 637 

(2014), GSDs are found to be composed of a principal coarse and secondary fine 638 

component. The modal size, sorting, and proportions found in these coarse and fine 639 

components are ascribed to different depositional processes on the tidal flats (Fan et al., 640 
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2014). Sandy laminae were found to be well sorted compared to those of muddy laminae, 641 

reflecting disparate depositional stages of waning flow and slack tides (Fan et al., 2014). 642 

The dominant, upward-fining in GSDs as shown in Fig. 6 & 7 may be attributed 643 

to what Dalrymple et al. (1992) refer to as ‘lateral shifting of channel bedforms’. Such 644 

lateral shifting leads to this trend in grain size as currents tend to be higher at greater 645 

depths and weaker when over bar crests (Dalrymple et al., 1992). These fining-up 646 

sequences comprising muddy tidal flats may actually cap subtidal sand ridges (Wells, 647 

1995). A similar model of facies succession has been proposed by Goodbred and Saito 648 

(2011), where the migration of tidal channels and creeks across tidal flats, contribute to 649 

this fining up facies succession. The clay fraction elucidated from the first and second 650 

principal components may represent the mud-drapes and fluid-muds which may be 651 

attributed to slack water or poor water flows (cf. Wells, 1995).  652 

In Marine sediments, the element profile of Ca is generally considered to reflect 653 

the predominant abundance of biogenic calcite (Arz et al.,1998; Tjallingii et al., 2010). 654 

There is known to be poor preservation of CaCO3 in the Sundarbans progradational lower 655 

delta plain sequence relative to the marsh and mangrove deposits of other deltaic systems 656 

around the world (Allison et al., 2003). 657 

There appears to be greater agreement found between sediment provenance 658 

proposed by Rogers et al. (2013) and sediment depositional model outlined here in terms 659 

of distal sediment transport from fluvial sources, reflected in the log-ratio pairs discussed. 660 

The non-stationary signals found in elemental log-ratio pairs may be attributed to tidal 661 

processes in the manner described by Dalrymple and Choi (2007). However, what is 662 

further elucidated through the joint geochemical and grain-size analysis approach is tha 663 
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the Sundarbans, through the Dhanchi Island example presented in this study reflects a 664 

locally segmented & temporally complex system that does not fall into a singular regime 665 

classification given the complex relationship that is exhibited by tidal variability 666 

(Hanebuth et al., 2012). Furthermore, although sediments may undergo reworking, what 667 

has been found is a predominantly terrestrial source for sediments present in the 668 

Sundarbans; this does not fit closely with the implication that the Sundarbans are 669 

‘sediment starved’ as outlined by Gao and Collins (2014). Rather, geographically 670 

(Milliman and Farnsworth, 2011) and climatically (Liu et al., 2000; Gao and Collins, 671 

2014) variable processes operate in producing a complex depositional environment. 672 

Sedimentary facies variability in the form of tidal processes can only be inferred in this 673 

study by the diminished calcium variability found. These tidal processes do not appear to 674 

operate in isolation and may be coupled to some form of monsoonal variability in the 675 

manner proposed by Liu et al. (2000) for Asia and by Rogers et al. (2013) more 676 

specifically applied to the Sundarbans. 677 

The utility of these calibrated geochemical proxies from the Sundarbans is 678 

illustrated in Fig. 7 from the Dhanchi Island core. Through plotting the log-ratio pairs 679 

there appears to be some oscillating trend throughout the core, in particular with log-680 

transformed Zr and Rb (see Fig. 7). There is a steady decline in Zr nearer to the top of the 681 

core (from a depth of 450 cm to the core surface). This indicates a decline in zirconium, 682 

and potentially an increase in rubidium. It is only through CoDa however that such a 683 

trend can be illustrated in the first place as ratios by themselves possess the undesirable 684 

property of asymmetry, meaning that conclusions based on evaluation of the ratio of two 685 

elements (e.g., A/B), cannot be directly translated into equivalent statements about B/A 686 
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(Weltje, 2012; Weltje et al., 2015). Taking this approach further, the Rb and K log-687 

transformed data shown in Fig. 7, appear to reflect the trend found in rubidium and 688 

zirconium; with an oscillating trend throughout the core. However, there does not appear 689 

to be any discernible increase or decrease in rubidium up core, with the log-ratio data 690 

remaining somewhat unvarying. 691 

The overarching trend would suggest a strong relationship between zirconium and 692 

coarse grained sediment, as these sites are considered to reflect upward fining sequences 693 

(e.g., Allison et al., 2003; Flood et al., 2015). In particular the trend consists of 694 

coarse/very coarse-silt and sand with a concomitant relationship between coarse clay and 695 

medium/coarse-silt for rubidium. Furthermore, the variability of rubidium with potassium 696 

would suggest an unvarying relationship between the fine-grained sediments. This might 697 

indicate that fine-grained provenance is tied to rubidium and potassium, with coarse 698 

grained sediment provenance strongly linked to zirconium. Ca geochemistry (shown in 699 

Fig. 6 & 7) may be linked to some external environmental control, such as sea-level or 700 

tidal inundation as calcium is generally only present in liquid form in the marine 701 

environment. Ca appears to correlate negatively with Zr, Ti, K, and Rb in the Dhanchi 702 

Island core. This decline in Ca with concomitant increases in Zr, Ti, K, and Rb (Fig. 7) 703 

may be interpreted as reflecting terrestrial derived sediment flux with diminished marine 704 

or carbonate deposition (or at least a marine source of variability). Terrestrial sediment 705 

flux therefore appears to be uncorrelated with Ca, implying that sediment provenance is 706 

independent of a marine or tidally driven source. 707 

 708 

7. CONCLUSION 709 
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Through CoDa it has been possible to calibrate core-scan derived XRF data, and produce 710 

useful elemental proxies for analysing a clastic sedimentary environment. When using the 711 

LRCE calibration model coefficients to examine such clastic sedimentary environments 712 

in the Indian Sundarbans quantified data outputs are possible, and combined with grain-713 

size data a broader understanding of the depositional environment is possible. The lack of 714 

a full elemental suite, attributed to a poorer linear fit between weighted concentration and 715 

intensity data, does not detract from the approach to XRF core-scan calibration. The 716 

elements that have been calibrated through the LRCE in this study may be used to 717 

demonstrate provenance (e.g., Zr, Rb, Ti, etc.) and processes of sedimentation (e.g., Ca) 718 

in this area of the G-B delta. Ca has been found to be the optimum log-ratio denominator, 719 

and when examined in a log-ratio framework, it may be used to distinguish between 720 

marine-terrestrial sediment fluxes in a high-resolution XRF dataset. Grain-size variability 721 

modelled with calibrated geochemistry has shown that Zr and Rb are interpreted as robust 722 

proxies for coarse and fine sediment deposition, respectively. A potential sedimentary 723 

facies model for the Sundarbans through the PLS modelling approach allows 724 

investigators to incorporate both depositional and provenance variability. Future research 725 

should focus on building a more constrained calibration model for the G-B delta, with 726 

more sedimentary cores from different facies sequences and employing other 727 

geochemical analyses tools (e.g., ICP-OES/MS). The LRCE & PLS approaches applied 728 

in this study for calibration of sediments represent a robust application of the principles 729 

of CoDa, and it is recommended that future studies in the G-B delta and other delta 730 

environments should seek to refine core-scanning XRF and grain-size analysis in light of 731 

the approaches outlined in this study. 732 
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International geochemical reference standard
Alternative 
Reference

Origin Issuing Body Description K Ca Ti Fe Rb Zr K Ca Ti Fe Rb Zr K Ca Ti Fe Rb Zr
GSD-1 GBW 07310 China IGGE IRMA IGGE Stream Sediment 2.770 4.600 0.980 7.350 0.116 0.310 0.514 4.174 0.567 6.396 0.114 0.324 2.628 4.523 0.870 6.681 0.127 0.334
GSD-2 GBW 07302 China IGGE Stream Sediment 5.190 0.250 0.230 1.890 0.470 0.460 3.064 0.405 0.128 3.046 0.477 0.434 5.469 0.438 0.281 3.122 0.510 0.461
GSD-3 GBW 07303 China IGGE Stream Sediment 2.460 0.220 1.060 6.510 0.079 0.220 0.689 0.276 0.842 6.194 0.085 0.205 2.626 0.350 1.091 6.878 0.087 0.245
GSD-4 GBW 07304 China IGGE Pond Sediment 2.230 7.520 0.890 5.900 0.130 0.188 0.559 6.792 0.522 5.583 0.130 0.178 2.260 7.260 0.828 6.129 0.137 0.195
GSD-5 GBW 07305 China IGGE Pond Sediment 2.100 5.340 0.900 5.860 0.118 0.220 0.739 4.937 0.570 5.482 0.115 0.198 2.248 5.386 0.832 6.133 0.120 0.211
GSD-6 GBW 07306 China IGGE Stream Sediment 2.440 3.870 0.780 5.880 0.107 0.170 0.745 3.628 0.434 5.590 0.116 0.192 2.425 4.007 0.700 5.915 0.122 0.204
GSD-7 GBW 07307 China IGGE Stream Sediment 3.550 1.660 0.750 6.490 0.147 0.162 0.738 1.589 0.484 6.355 0.142 0.157 3.523 1.743 0.764 6.644 0.155 0.178
GSD-8 GBW 07308 China IGGE IRMA IGGE Steam Sediment 142308 2.830 0.250 0.310 2.200 0.132 0.490 1.584 0.272 0.509 2.754 0.122 0.454 3.242 0.387 0.686 3.260 0.156 0.504
GSD-9 GBW 01309 China IGGE IRMA IGGE Sediment 300603 1.990 5.350 0.920 4.860 0.080 0.370 0.669 5.463 0.565 4.921 0.079 0.360 2.180 5.996 0.847 4.943 0.094 0.375
GSD-10 GBW 07310 China IGGE Stream Sediment 0.125 0.700 0.210 3.860 0.009 0.070 0.216 0.722 0.080 3.062 0.010 0.066 0.551 0.915 0.289 4.352 0.016 0.096
GSD-11 GBW 07311 China IGGE Stream Sediment 3.280 0.470 0.350 4.390 0.408 0.153 1.354 0.533 0.189 3.497 0.350 0.138 3.313 0.578 0.399 3.692 0.396 0.157
GSD-12 GBW 07312 China IGGE Stream Sediment 2.910 1.160 0.250 4.880 0.270 0.234 1.149 1.064 0.070 4.088 0.250 0.207 2.915 1.223 0.291 4.462 0.266 0.235
GSS-1 GBW 07401 China IGGE Dark Brown Soil 2.590 1.720 0.810 5.190 0.140 0.245 1.173 1.588 0.620 4.986 0.145 0.252 2.597 1.804 0.854 5.511 0.152 0.276
GSS-2 GBW 07402 China IGGE Chestnut Soil 2.540 2.360 0.450 3.520 0.088 0.219 1.586 1.990 0.305 3.771 0.101 0.209 2.710 2.495 0.496 3.893 0.104 0.240
GSS-3 GBW 07403 China IGGE Yellow Brown Soil 3.040 1.270 0.370 2.000 0.085 0.246 2.128 1.207 0.316 2.905 0.096 0.275 3.427 1.388 0.453 3.045 0.102 0.313
GSS-4 GBW 07404 China IGGE Limy Soil 1.030 0.260 1.800 10.300 0.075 0.500 0.094 0.255 1.568 10.848 0.055 0.418 1.365 0.351 1.874 11.194 0.075 0.463
GSS-5 GBW 07405 China IGGE Yellow Red Soil 1.500 0.095 1.050 12.620 0.117 0.272 ND 0.160 0.796 12.240 0.063 0.144 1.774 0.189 1.140 12.979 0.069 0.176
GSS-6 GBW 07406 China IGGE Yellow Red Soil 1.700 0.220 0.730 8.090 0.237 0.220 0.517 0.266 0.592 8.941 0.184 0.161 1.955 0.316 0.841 9.236 0.205 0.185
GSS-7 GBW 07407 China IGGE Laterite Soil 0.200 0.160 3.360 18.760 0.016 0.318 ND 0.125 2.848 17.128 0.008 0.265 0.594 0.224 3.342 18.074 0.014 0.304
GSS-8 GBW 07408 China IGGE Loess 2.240 8.270 0.630 4.480 0.096 0.229 0.790 7.925 0.266 4.433 0.102 0.217 2.481 8.408 0.562 4.827 0.106 0.241
JSD-1 Geological Survey of Japan GSJ Stream Sediment 2.190 3.070 0.650 5.110 0.065 0.000 1.002 2.769 0.469 5.274 0.077 0.158 2.283 3.063 0.687 5.283 0.084 0.177
MAG-1 U.S. Dept. of the Int. Geo. Survey USGS-AEG Marine mud (Gulf of Maine) 3.550 1.370 0.751 6.800 0.149 0.126 1.412 0.369 0.266 3.958 0.149 0.114 2.971 0.531 0.625 4.476 0.173 0.136

ND: No data

Accepted values (% concentration) for international geochemical 
reference standards used in the Bruker AXS S1CalProcess calibration 
software and subsequent LRCE.

Minimum values (following Mudrock calibration of PXRF) Maximum values (following Mudrock calibration of PXRF)
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ACCEPTED MANUSCRIPTCa Fe K Rb Ti Zr
Ca 0 0.8436 0.8486 0.9553 0.8735 0.8917
Fe 0.8436 0 1.2911 -10.2447 0.5525 0.8518
K 0.8486 1.2911 0 27.9561 6.2592 1.1371
Rb 0.9553 -10.2447 27.9561 0 42.3024 1.2566
Ti 0.8735 0.5525 6.2592 42.3024 0 1.1717
Zr 0.8918 0.8518 1.1371 1.2566 1.1717 0
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ACCEPTED MANUSCRIPTCa Fe K Rb Ti Zr
Ca 0 1.626 -0.4527 0.8188 0.7702 0.082
Fe -1.626 0 -3.5275 51.179 0.1718 -1.5035
K 0.4527 3.5275 0 -37.787 -0.445 -0.0172
Rb -0.8188 -51.179 37.787 0 46.9791 -1.0694
Ti -0.7702 -0.1718 0.4449 -46.9791 0 -1.2133
Zr -0.082 1.5035 0.01717 1.0694 1.2133 0
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ACCEPTED MANUSCRIPTCa Fe K Rb Ti Zr
Ca 0 0.00945 0.00793 0.01423 0.00697 0.01032
Fe 0.00945 0 0.00192 0.00872 0.00167 0.01209
K 0.00793 0.00192 0 0.00892 0.00119 0.00984
Rb 0.01423 0.00872 0.00892 0 0.00829 0.00914
Ti 0.00697 0.00167 0.00119 0.00829 0 0.01067
Zr 0.01032 0.01209 0.00984 0.00914 0.01067 0
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ACCEPTED MANUSCRIPTCa Fe K Rb Ti Zr
Ca 0 0.00951 0.00798 0.01435 0.00704 0.01044
Fe 0.00951 0 0.00194 0.00881 0.00168 0.01217
K 0.00798 0.00194 0 0.00909 0.0012 0.00987
Rb 0.01435 0.00881 0.00909 0 0.00833 0.0092
Ti 0.00704 0.00168 0.0012 0.00833 0 0.01068
Zr 0.01044 0.01217 0.00987 0.0092 0.01068 0
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ACCEPTED MANUSCRIPTCa Fe K Rb Ti Zr
Ca 0 0.9399 0.9602 0.9122 0.9593 0.9104
Fe 0.9399 0 0.5076 0.2524 0.4248 0.6758
K 0.9602 0.5076 0 0.3844 0.0773 0.7085
Rb 0.9122 0.2524 0.3844 0 0.4952 0.7768
Ti 0.9593 0.4248 0.0773 0.4952 0 0.6912
Zr 0.9104 0.6758 0.7085 0.7768 0.6912 0
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Highlights 

• Multivariate statistical modelling of grain-size and geochemistry from the 

Holocene Ganges-Brahmaputra delta 

• Compositional data analysis through log-ratio calibration and partial least 

squares modelling approaches for proxy depositional information 

• Methodological framework for unravelling Holocene sedimentation patterns 

in the Ganges-Brahmaputra delta 


