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Summary

Pro|)ouoiits of AsjX'ct-Orioiitod Prograiiiiiiiiig (AOP) claim that it iiiiprovos maiiitaiiiahil- 

ity over 01)J('(‘t-Ori('iitod Programming (OOP) by enhancing tlu' degree to which conc'crns 

an ' s('])arated in software'. M aintainability is measurcxl indirectly through a S ( 't  of key 

indicators: analysability. changeability, stability and testability. To confirm th a t AOP 

im])roves maintainability, ('vicU'nce of tlu' coni])arativ(' effect of AOP and OOP on eacfi 

indicator is ne('d('d. Such evidencc' is re(|uired to objectively consider the adoption of 

AOP.

Em])irical studies have contributed ('vidence of the comi)arative effect of AOP and 

OOP on analysability, changeability and stability. When analysed together this evidence 

indicates that AOP does ini))rove this subset of maintainability indicators. However, these 

studi('s do not coniirm that AOP imj)roves maintainability as there is no comparative 

study of the effect of AOP and OOP on testability.

This thesis addresses this gaj) through an empirical study to (luantify the comparative 

('ffect of AOP and OOP on testability. In the study, a series of maintenance activities 

are cumulatively appli('d to e(juivalent AOP and OOP im])lenientations of a j)rograni. 

The effects of AOP and OOP on testability are measured by a])j)lying M utation Analysis 

(MA) to both implementations after each maintenance activity. In MA, a set of tests are 

('xecuted against nm tants of the ini))lem('ntation. A nm tant is a <‘opy of an implementation 

that contains a fault. Testability is measured as the rate at which faults are exposed 

through t('st failure. TIk' coniy)arative effect is (juantified by applying binomial regression 

(13P) to thes(! measun's.

Any comparative study of this kind faces challenges of maximising the degn'e to which

V
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the resuhs can be generahsed and ensuring vahdity. Maximising tlu^ genc'ralisabiiity of 

the results is achievt'd in this tlu'sis by selecting study inputs that are r('|)resentative of 

the general case. T Ik' measure of tlu^ comparative effect of AOP and OOP on testability 

is valid if it is unbiased. Validity is ensured by designing the study such that somc(!s of 

bias are controlled and ini)uts that are unbiased towards AOl’ or OOP are selected.

The contribution of this study is evidence of the coni])arativ(' (effect of AOP and OOP 

on testability. The evidence suggests that coni])art'd to OOP, AOP may increase testal)il- 

ity. Although the study is based on inputs that are repn'sentative of tlu' general cas( ,̂ t h(' 

evidence is hard to generalise outside of the context from whic'h it is derived. Although 

more studies are reciuired to provide a more generally acceptable evick'nce, t his ('vid('uc(' 

of the coni]^arativ(' ('fleet of AOP and OOP on testability j)rovides the first st('p toward 

tilling the gaj) in the existing evidence of the effect of AOP on maintainability and ('uabling 

the ado])tion of AOP to be more objectively consid('red.
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Chapter 1 

Introduction

P r0])0iierits of Aspect-Oriented Progrannning (AOP) claim that it improves maintainabil­
ity over Object-Oriented Programming (OOP) by enhancing the degree to which concerns 
are sej)arated in software [84, 83, 50, 68, 125, 89, 40]. The key indicators of maintainability 
are analysability, changeability, stability and testability [73]. This chapter provides the 
background from which this claim has emerged by describing why AOP is expected to 
ini])rove them.

Studies consistently show that maintenance accounts for the largest proportion of a 
l)rograms total cost [154, 96, 22, 51]. Making programs easier to change reduces this 
cost. Improving modularity has been shown to make programs more maintainable [42]. 
OOP was a major ini])rovenient on modularity and is currently the defacto ai)proach for 
ini])lementing ])rograms [136].

The claim that AOP inij)roves maintainability and consequently reduces costs over 
OOP, has led organisations using OOP to consider adopting AOP [39, 2]. However, for 
tlie adoption of AOP to be objectively considered, confirmation of this claim is required 
[39, 25]. To confirm that AOF  ̂ improves maintainability, evidence of the comparative 
effect of AOP and OOP on each indicator of maintainability is needed [129|.

'Fhis chapter presents the existing evidence of the comparative efi'ect of AOP and OOP 
on some of the key indicators of maintainability [149, 14, 88, 66, 92, 97, 54, 87, 63]. It 
shows a gap in this evidence, ĉis there is no empirical evidence of the testability of AOP. 
Testability is a key component of maintainability [33, 22, 141]. W ithout evidence of the 
comparative effect of AOP and OOF  ̂ on testability the confirmation of any claim related 
to maintainability is superficial [129, 25]. The adoption of AOP, therefore, cannot be 
objectively considered [39].

This thesis addresses this gap through an emi)irical study to quantify the comparative 
effect of AOP and OOP on testability. In the study, a series of maintenance activities are 
cumulatively a])plied to eciuivalent AOP and OOP inii)lementations of a program. The 
testability of both implementations is measured after each maintenance activity and these
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CHAPTER 1. INTRODUCTIO N

measures are tlien analysed to cjuantily the eom parative eflect. This chapter introduces 

how the testability  is m easured using nnitation analysis [45]; how measures of testability  

are gathered to ensure th a t the testability  m easurem ents for the AGP and O O P ini])le- 

m entations are directly compai'able; and how binomial regression [52] is used to m easure 
the com parative effect of AOP and 001^ on testability.

This study, like similar studies [24], faces a fundam ental challenge of maximising the 

degree to which the results can be generalised. To nuiximise the degree to which evidence 

gathered from a single study can be generalised, the iu])uts on which the study is based 

nnist be re])resentative of the general case. This chapter describes the inputs selected for 

this study and shows th a t they are representative of the general case.

The chapter concludes by presenting the contributions of the study and outlining the 

rem aining chapters of this thesis.

1.1 B ackground

T his section outlines the l.iackground from which the claim th a t AOP imi)roves m aintain­

ability over OOP has emerged and describes why AOP is ex})ect('d to ini])rove the key 

indicators of m aintainability.

1.1.1 M aintainability

M aintainability is a measure of the ease with which a ])rograni’s im plem entation can 

be changed [73]. Applying a change to a ])rogram is made in four stei)s [129]. The 
m aintainability of an im plem entation is based on the ease with which each stej) is taken 

[153, 129],
The first step  is to understand and identify w^hat [)arts of the im[)lenieiitation need 

to be changed. An understanding of the ini])lenientation is needed before the code can 

be analysed to identify the parts  the change is a])plicable to. The easier the code is to 

understand and analyse, the easier it is to change.

The second step is to implement the change. The ease w ith a change can be imple­
m ented is a measure of the size of the imi)act it will nuike [8]. The im pact is m easured 

as the effort needed to implement the change. The smaller the impact is, the easier the 

change is to make.

I'h e  tliird step is to address the ripple effect of the change. A change to a module 

can propagate through its efferent dependencies causing the effect of the change to be 

amplified. Minimising these dependencies makes the system  more stable and resistant to 
ripple effects. The more stable an ini{)lementation is, tlie easier a change is to ap[)ly [129].

'I'he fourth and final step is to expose faults that are introduced into the iini)lenien- 

ta tion  during the change. Faults in an im plem entation m’e exposed through test failure

10



1.1. BACKGROUND

[110]. The irnpleineiitatioii can hide faults by allowing tests to ])ass when faults are present 
[148]. An imi)lenientation that exposes more faults introduced through change is more 
testable and easier to change.

Measiu'es of the ease with which each step can be made are key indicators of a pro­
grams maintainability. These key indicators are analysability, changeal)ility, stability and 
testability [73]. Analysability is the ease with which the j^rogram’s code can be under­
stood and analysed. Changeability and stability are indicators of the ease with which a 
programs implementation can be changed. Testability is the ease with which faults can 
be exposed through testing [148].

1.1.2 C rosscutting  C oncerns

Since the inception of software engineering, increasing modularity has been recognised 
[9, 46, 138, 120, 27, 28, 13, 32] as a way to improve the separation of concerns in programs 
and improve maintainability. Concerns are the behaviours or features that make up a 
program [82, 84, 48].

In a well modularised object-oriented ])rogram, each concern is inij:)lemented in a 
module. The module enca])sulates the concerns implementation. Some concerns can be 
separated into modules in well modularised object-oriented programs. There are however 
other concerns that cannot be cleanly encapsulated as modules. When the implementation 
of a concern cannot be encapsulated within one module, it becomes scattered across other 
program modules. W ithin these modules, this implementation becomes entangled with 
the implementation of the primary concern. Scattered and tangled concerns are said to 
crosscut the program and are called crosscutting concerns [82, 84, 48].

Claims that AOP improves maintainability over OOP are based on the improved 
separation of crosscutting concerns that AOP supports [82, 84]. It is expected that 
this improvement will result in improvements in the key indicators of maintainability. 
The negative eflects of crosscutting concerns on analysal)ility, changeability, stability and 
testability are the basis for the claims. The negative efi’ects on each are outlined in this 
subsection.

Analysability

Decomposing a problem into its constituent parts makes each part and the problem itself 
easier to understand [123]. In OOP, the program is made easier to understand by decom­
posing each concern into a module. Crosscutting concerns have a scattering and tangling 
effect that make the program harder to understand [48]. Scattering increases the number 
of modules that need to be examined to understand a concern. Tangling makes it difficult 
to understand one concern in isolation from other entangled concerns. These issues con­
spire to make it harder to identify the parts of a crosscutting concern’s implementation

11
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to  whicli a  change is apphcable .

Changeability

C hange is easier to  im plem ent w hen its  im pact is sm all [8]. In  O O P  th e  goal is to  m inim ise 

a change’s im pact by localising th e  change to  one m odule. However, w hen a  concern  is 

c ro sscu ttin g  th e  im pact of th e  change can  increase [92], as it can  have an  im})act on all of 

the  m odules across w hich it is sca tte red . T h e  po ten tia l im pact is com pounded  by tangling  

because a  change applied  to  one concern, can  have an  im pact the  o th ers  w ith  which it is 

en tang led .

Stability

W hen a program  is resistan t to  th e  ripple effec-t of change it is m ore s tab le  and  ejisier 

to  change [101|. In O O P, th is effect is reduced by m inim ising the  ra tio  of ou tgoing  to 

incom ing dependencies for each m odule [101]. C ro sscu tting  concerns can  reduce s tab ility  

by in troduc ing  outgoing  dependencies in to  the  m odules they  crosscut. A higher num ber 

of ou tgo ing  dependencies per m odule increases po ten tia l of ri[>ple effec'ts of cliange. If a 

p rogram  is not res is tan t to  ripple effec'ts it is harder to  change.

Testability

A p ro g ram  th a t  exposes m ore fau lts  is m ore tes tab le  and  easier to  change. F au lts  cU-e 

exposed th ro u g h  testing . A fau lt in behav iour can only be exi)osed if it is executed . 

W hen a beliav iour is sc a tte re d  and  tangled  it is m ore difficult to  selc(;t te s ts  th a t  w\\\ 

g u aran tee  execu tion  of th e  behaviour. Also, m ore fau lts are found to  occur a t these 

sca tte red  and  tang led  behav iours [48]. T ogether, these issues m ake the  fau lts a t sca tte red  

and  tan g led  behav iours difficult to  ex})ose [48].

1.1 .3  A sp ect-O rien ted  Program m ing

A spect-O rien ted  P ro g ram m in g  (A O P) im proves the  degree to  which crosscu ttin g  concerns 

are se])arated  in softw are over O b jec t-O rien ted  P rog ram m ing  (O O P ) [82, (53]. A O P in­

tro d u ces a  new aspect m odule th a t  can  be used to  encapsu la te  c rosscu tting  concerns. 

By m odu larising  c ro sscu ttin g  concerns th e  am oun t of sca tte rin g  and  tang ling  caused by 

c ro sscu ttin g  is reduced. C ro sscu ttin g  concerns have a  negative effect on analysability , 

changeability , s tab ility  and  testab ility . T h e  ex p ec ta tio n  th a t  A O P will lead to  im prove­

m en ts in th e  key ind ica to rs of m a in ta in ab ility  is based on the  im proved m odu larity  of 

c ro sscu ttin g  concerns fac ilita ted  by A O P [84, 83, 50, G8, 125, 89, 40].

12
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1.2 M otivation

"I'his section outlines the evidence of the comparative effect of AOF and 001^ on analysabil- 
ity, changeabihty and stal)ihty contributed by existing empirical studies. A clear gap is 
identified in the empirical evidence of the comparative effect of AOl^ and OOP on testa­
bility.

1.2.1 A nalysability

Contributions to tiie evidence of the comparative effect of AGP and OOP on analysability 
have been made through empirical studies carried out l)y Murphy et al. [109], Walker et 
al. [149] and Bartsch and Harrison [14]. Analysability is mecisured a.s the time taken to 
identify the parts of each implementation that will be affected for a specific change by 
Murphy et al., Walker et al. and Bartsch and Harrison. The findings of Murphy et al. 
and Walker et al. suggest that. AOP results in slightly higher analysability while Bartsch 
and Harrison fhid no significant difference between AOP and OOP.

1.2.2 C hangeability

l']vidonce of the comparative effect of AOP and OOP on changeability have been con­
tributed by a number of studies including Walker et al. [149], Bartsch and Harrison [14], 
Li et al. [92] and Lopes and Bajracharya [97]. In these studies, changeability is measured 
by ai)plying the same change(s) to AOP and OOP implementations and measuring the 
difference betw'cen tlie impacts the change has on each. Walker et al. and Bartsch and 
Harrison measure the size of the impact as the time taken to implement the change. Li et 
al. measure the size of the impact by counting the number of modules that are affected 
by a change. Lopes and Bajracharya measure the impact in terms of its effect on design 
options. The findings of I^opes and 13ajracliarya, Li et al. and Walker et al. consistently 
suggest that AOP can lead to imi)roved changeabihty over OOP. Bartsch and Harrison 
find no significant difference in the effects of AOI^ and OOP on changeability.

1.2.3 Stability

I'^mpirical studies of the comparative effect of AOP and OOP on stability have been carried 
out by Figueiredo et al. [54], Kulesza et al. [87] and Greenwood et al. [63]. In these 
studies, stability is measured as the resistance of AOP and OOP implementations to ripple 
effects when the same change(s) are applied to each. This resistance is measured using 
a suite of metrics that measure coupling, size and other quality indicators and analysing 
how much these indicators are affected over maintenanc:e activities [49]. The results of 
these studies indicate that AOP can lead to improved stal)ility over OOP.

13
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1.2.4 T estab ility

There are no eniphical studies of’ Ifie com parative effect of AOl^ and 001^ on testability. 

Testai)inty can have a significant effect on m aintenance costs [33, 22, 14Ij. One cause of 

this is th a t new faults cU’e introduced into the inij)lenientation when changes are aj)plied. It 

is estim ated th a t 40% of changes introduce new faults [124]. This indicates th a t testab ility  
is the most significant indicator of rnaintainabihty.

It has been shown th a t crosscutting concerns are more likely to contain faults [48]. 

AGP reduces the crosscutting of concerns over OOP. This indicates th a t there is ])otential 

for AOP to improve testability. The reduction in crosscutting is based on the introduction 

of a com position mechanism th a t can introduces a range of new ty})es of faults. It has 
been oi)served th a t these new types of fauUs can be more diffic-uK to expose through 
testing [2], deflating the potential of AOP to improve testability  somewhat.

1.2.5 E videntia l Gap

The existing studies provide a significant am ount of evidence to suggest th a t AOP can 

improve analysability, changeability and stability. A lthough more studies are needed to 
fully validate the benefits of AOP, the existing evident'e is encouraging for those con­

sidering the adoption of AOP to reduce m aintenance costs. However, due to the high 
proportion of the m aintenance costs a ttrib u ted  to testing, the confirmation of this claim, 

w ithout evidence of the com parative effect of AOi^ and OOP on testability, is su{)erficial. 

Considering the adoption of AOP based on a su[)crficial confirmation cannot be objective 
[39, 25].

1.3 Study

This thesis addresses the evidential gap through a study to gather empirical evidence of 

the com parative effect of AOP and OOP on testability. In the study, a series of m ainte­

nance activities ai’e cunmlatively applied to  e(iuivfilent AOP and OOP im plem entations 

of a program . The testability  of bo th  im plem entations is m easured after each m ainte­
nance activity. These measures are then analysed to (|uantify the com parative effect, 

'rh is  (luantification is empirical evidence of the com parative effect of AOP and O O P on 

testability.

This section introduces how the testability  is m easured using nnitation analysis [45], 

how measures of testability  are gathered, and how these measures are analysed to quantify 
the com parative effect of AOP and OOP on testability.



1.3. STUDY

Fault E xposureM utant O u tcom es

N ot Exe

Fault Execution Infection and P ropagation

Figure 1.1; Fault Exposure: Outcomes and Rates 

1.3.1 M utation Analysis

Faults in a program’s implementation are exposed through testing. The implementation 
can hide faults by allowing tests to pass when faults are present [128, 148, 60]. A program 
that does not hide faults has high testablility

M utation Analysis (MA) [45] measures the testability of an implementation as its 
rate of fault exposure under testing. In MA, tests are executed against m utants of the 
implementation. A mutant is a version of the implementation that contains a fault. 
Examples of m utants and details of how they are automatically generated are presented 
in Chapter 4.

The rate of fault exposure is based on the outcomes of executing tests against mutants. 
F^art A of Figure 1.1 shows that there are three possible outcomes for each test-m utant 
execution. The test executes a path through the mutant implementation. The fault 
contained in the mutant may or may not be executed on this path. Chapter 3 demonstrates 
that if the fault is executed, then the state directly after that can become infected and this 
state infection can be propagated [128, 148, 146, 147, 76, 1], which in turn results in a fail 
outcome. A fail outcome indicates fault exposure. Infection occurs when the execution 
of the fault results in a state that differs from the state that would occur if the fault was 
not present [128, 148]. The infected state is propagated if it causes the output of the 
implementations execution to differ from the output of the normal execution [128, 148]. 
If the state directly after the faults execution does not become infected or propagated, 
then the resulting outcome is a pass.

Part B of Figure 1.1 illustrates a simple example in which one test is executed against 
20 m utants of the implementation. Of the 20 mutants executed, the fault contained is 
not executed in 6 of them. This means that there are 14 m utants in which the fault is 
executed. Of these 14 fault executions, 10 do not cause state infection and propagation 
and result in pass outcomes. There are 4 out of the 14 fault executions that do cause 
state infection and propagation and result in fail outcomes.
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CHAPTER 1. INTRODUCTION

V ersion Prc>qram

AOP I OOP

T .
a >  I

A" = M ain tenance  Activity

< >
Im plem entation  E qu ivalence

Figure 1.2: Measurement Metiiodology

Fart C of Figure 1.1 demonstrates iiow tliese outcomes are used to calculate a rate of 
fault exposure for an implementation. The rate of fault exposure in this simple example 
is based directly on the rates of fault execution an<l in­
fection and propagation, ^  ^  x The rate of fault execution is ^  =  jaU+put+notexe•
The rate of infection and propagation is

1.3.2 M easurem ent M ethodology

The goal of this study is to compare the effects of AOP and OOP on testability, as an 
indicator of maintainability. To ensure that this goal was achieved, the study followed a 
measurement methodology widely used in existing studies [149, 14, 92, 54, 87, 63] that 
compare the effects of AOP and OOP on analysability, changeability and stability. The 
basis for this measurement methodology is illustrated in Figure 1.2 and is detailed in 
Chapters 2 and 4.

In the methodology, maintenance activities are cumulatively applied to AOP and 
OOP implementations of a program. The initial AOP and OOP implementations of a 
program are equivalent in that they differ only in the approach used for their development. 
Equivalence is assured by fixing all other factors that can cause the implementations to 
differ. Examples of these factors are the expertise used in developed of both AOP and 
OOP implementations and the requirements they satisfy. They are fixed by ensuring that 
these factors are equivalent for each pair of AOP and OOP implementations. As will be 
detailed in Chapters 2, 4 and 5, the implementations were developed to the same level of 
expertise, satisfy the same requirements, expose the same interface and produce the same 
outputs for a given input [63].
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The same iiiaiiiteiiaiice activities are cunmlatively apphed to each pair of equivalent 
AOF and OOP implementations. After each maintenance activity is applied to both 
implementations, new versions of these implementations result. The new versions of these 
implementations are equivalent because the same maintenance activity is applied to both 
implementations [63]. This means that the respective versions of the AOF and OOF 
implementations are also equivalent. When all maintenance activities are applied, the 
only difference between each respective version of the AOf^ and OOF implementations is 
the maintenance activity.

Following this methodology ensures that the measures gathered represent tlie eflects 
of the implementation approach (AOF or OOF) and maintenance factors on the measure. 
The use of MA within this methodology does however, require some additional factor 
fixing. This is because MA introduces new test and nuitant factors that can afl'ect eacli 
mecisure. The application of MA to the AOF and OOF implementations of each version 
of the program requires the execution of tests against m utants generated from the im­
plementation. To preserved equivalence, these factors are fixed. They are fixed by using 
the same set of tests and m utant generation approach in the api)lication of MA to each 
implementation. Further details of this methodology are presented in Chapter 4.

1.3.3 A nalysis A pproach

The result of applying nnitation analysis to each AOF and OOF implementation over 
versions of the program are numbers of not exc, pass and fa.il outcomes for each irn[)le- 
nientation. These outcomes are used to derive rates of fault exposure, fault execution and 
infection and propagation for each implementation. As demonstrated in Chapter 4, these 
rates are informally analysed by interpreting graphs to identify if these rates are higher 
or lower for AOF compared to OOF.

Binomial Regression Analysis (BRA) [52] is also applied to the outcomes for each 
implementation to quantify precisely how nuich higher or lower the effects AOF on rates 
are compared to OOF. BRA is a formal statistical technique for analysing the causal 
relationship between a binomial response and explanatory factors. In this study, tliere 
are three applications of BRA, one for each rate. In these applications of BRA, the 
rate is the response and the explanatory factors are the implementation approach and 
maintenance version. The causal relationship between the binomial response and the 
explanatory factors is defined in a regression model [52]. To measure the effects of these 
factors on a rate, the model is fitted to the outcomes. In the fitting process the effects are 
measured based on the correlation between each factor and the rate [52]. The comparative 
effect of AOF and OOF on each rate is measured as the difi'erence between the effects of 
AOF and OOF on the rate.
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1.4 C hallenge

This study, hke siriiilai’ studies [24, 79], faces the fundamental challenge of maximising the 
degree to which the results can be genertilised. To maximise the degree to which evidence 
gathered from a single study can be generalised, the inputs on which the study is based 
must be representative of the general case. This section shows that implementation, tests 
and nnitants selected for this study are representative of the general case.

1.4.1 Im plem en tation s

The ini])lementations of the health watcher [87, 63, 55] ])rogram were selected from a i)ool 
of candidates, Hsted in Chapter 5, that fit the methodology presented in I'igure 1.2. These 
implementations were selected because the health watcher program and the maintenance 
activities associated with it were the most rei)resentative of the generfil case.

The health watcher is a public health system that supports the registration, tracking 
and resolution of health complaints. This program is a relatively large, database-driven, 
distributed system with a web front-end anti is made uj) of a set of concerns generally 
found in a wide range of contemi)orary programs [87, 63].

The })rograin was deployed for use in 2001 [63] and since its deployment, a number of 
adaptive, corrective and perfective changes have been a])plied to it [63]. The maintenance 
activities selected for use in this study are based on these and have been selected because 
they are rej)resentative of the typical distribution of maintenance activity types [124].

The AGP and OOP languages used to develop the implementations are Asj)ectJ and 
Java. Aspect.! is currently the most widely used AOP language [106]. Aspect,J is an 
extension of Java, which is currently the most widely used OOP language [136].

1.4.2 T ests and M u tan ts

The test set used in this study is the product of a use case driven test selection process 
[74, 75]. In this process, use cases are used as the basis for test case selection [5, 23]. As is 
detailed in Chapter 5, this approach was selected over others because it is representative 
of the type of approach used to select tests for an implementation in practice. Testing 
professionals applied the approach to the health watcher use cases to ensure that the 
application of the approach and the resulting tests were highly representative of practice.

The types of faults generated in mutants for the study are rej)resentative of those 
observed in practice. These m utants are generated using MuJava [98], a tool that generates 
nnitants for Java implementations. MuJava has been widely used to generate nm tants that 
contain recilistic faults in testing related research [151, 122, 133, 104, 103, 102, 105, 130, 
134]. As part of this work, the tool was extended to generate AspectJ specific mutants.
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Fault Exposufe] A s p e c t J  - 5 - 9 %  

AspecU -1 8 —20%

Java -1 1 —16%

m Fault Execution Infection and Propagation

Figure 1.3: Contributions

The extension introduces tlie types of faults observed to occur in AspectJ implementations 
[53] and allows nuitants containing these types of faults to be generated.

1.5 Contributions

The primary contribution of the study presented in this thesis is evidence to indicate 
that the effect of AOP is to increase testability over OOP. The results of the study are 
illustrated in Figure 1.3. This shows that the odds of fault exposure are between 5 and 
9% higher for the Asp)ectJ implementations of the health watcher program. This means 
that, for the health watcher program, faults are easier to expose in AspectJ compared to 
Java implementations. This is evidence to indicate that the effect of AOP is to increase 
testability over OOP. Testability can have a significant effect on maintenance costs [33, 
22, 141] and for those considering the adoption of AOP to reduce maintenance costs [39], 
this evidence is encouraging.

A secondary contribution of the study, also presented in Figure 1.3, is to identify 
the causes of the 5-9% difference in the effects of AspectJ and Java on the odds of fault 
exposure. Fault exposure is a direct consequence of fault execution and state infection and 
propagation. If more faults are executed, then there are more chances for state infection

Figure 1.4: Causation
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and ])ropagation, resulting in fault exposure. The more executed faults that cause state 
infection and j)ropagation, the more faults that are ex])osed. If more faults are exposed, 
then the odds of fault exposure increase.

Figure 1.3 shows that the odds of fault execution are between 18-20% higher in the 
AspectJ implementations and that the odds of state infection and propagation are be­
tween 11-16% lower in the AspectJ implementations. This means that in the AspectJ 
implementations there are more faults executed. However, it also means that compared 
to Java implementations, proj)ortionally less of the executed faults cause state infection 
and propagation, resulting in lower odds of fault exposure.

This is explained further through the illustration in Figure 1.4. The boxes nuu'ked 
AspectJ and Java rei)resent the total number of test-m utant executions for AspectJ and 
Java imj)lementations, respectively. The circles in these boxes represent the number of 
faults executed by tests in AspectJ and Java mutants. This reijresentation shows that 
there are more faults executed in AspectJ compared to Java mutants. This difference is the 
cause of the 18-20% higher odds of fault execution for Asj)ectJ. The number of executed 
faults that result in pass and fails are rei)resented inside the circle. This representation 
shows that there are proportionally less fails for AspectJ, indicating that less of the faults 
executed in AspectJ mutants result in infection and prof)agation. This difference is the 
cause of the 11-16% lower odds of infection and propagation for AspectJ.

Figure 1.4, indicates that even though there is ])roi)ortionally less fail to pass outcomes 
from AspectJ test-m utant executions, the odds of fault exposure is 5-9% higher because 
the volume of fail outcomes is higher for AspectJ. The volume is higher because the 
number of faults executed in nuitants (or pass and fail outcomes) is higher for Asj)ectJ 
compared to Java.

1.6 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents a review of the 
studies that compare the effects of AOF and OOP on indicators of maintainability to 
demonstrate the evidential gap addressed by this thesis. Chapter 3 describes the factors 
that affect fault exposure. Chapter 4 details tlie methodology followed in the study. 
Chapter 5 describes the implementations, tests and mutants on which the study is l)ased. 
Chapter 6 presents the results of the study and Chapter 7 draws conclusions from these 
results.
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Chapter 2

R elated Studies

Studies consistently show that maintenance accounts for the largest proportion of a p ro  
gram ’s total cost [154, 96, 22, 51]. OOP is currently the defacto implementation ai)proach 
with more new projects using it than any other api)roach [136]. The claim that AGP im­
proves maintainability and consequently reduces costs over OOP has lead organisations 
using OOP, to consider adopting AOP [39, 2]. However, for the adoption of AOP to be 
ol)jectively considered, empirical evidence of the comparative effects of AOP and OOP on 
maintainability is required [39, 25, 2j.

Maintainability is a measure of the ease with which a program can be changed [73]. 
Applying a change to a program is made in four steps [129, 153]. The first step is to 
understaiui and analyse the program and iflentify what parts of the implementation need 
to be changed (analysability). The second step is to implement the change (changeability). 
The third step is to address the ripple effects of the change (stability) and tlie fourth step 
is to expose faults that are introduced into the program during the change (testability).

Measures of the ease with which each step can be made are key indicators of a pro­
gram ’s maintainability. These key indicators are analysability, changeability, stability and 
testability [73]. To confirm that AOP improves maintainabihty, empirical evidence of the 
comparative effect of AOP and OOP on each indicator of maintainability is needed [129]. 
Studies have contributed empirical evidence of this comj)arative effect for some of these 
indicators [149, 14, 92, 97, 54, 87, 63].

The primary goal of this chapter is to review these studies to demonstrate the eviden­
tial gap left by them, illustrated in Figure 2.1. This is achieved in two steps. The first 
step is to identify the empirical evidence of the comparative efiect of AOP and OOP gath­
ered by each study and the indicator of maintainability the evidence to which it relates. 
The second step is to show that although there is empirical evidence of the comj)arative 
effect of AOI^ and OOP on analysability, changeability and stability, there has been no 
empirical evidence of the comparative efifect on testability published in English in a major 
academic journal or conference.
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M aintainability

E v id en ce  ex is ts  Evidential g ap

Figure 2.1; Evidential Gap

Testability can have a significant effect on maintenance costs [33, 22, 141]. This makes 
testability an im portant indicator of maintainability. W ithout evidence of the comparative 
effect of AOP and OOP on testability, the maintainability claim cannot be either rejecttxl 
or confirmed [129, 25]. The adoption of AOP, therefore, cannot be objectively considered 
|39|.

The secondary goal of this chapter is to review how these studies gather empirical 
evidence and id en tify  a n  a p p ro a c h  to  g a th e r in g  ev idence  th a t  can  b e  u sed  in 
th e  s tu d y  p re s e n te d  in  th is  th es is . This is achieved in two steps. The first step 
is to identify how empirical evidence is gathered by each study. The second step is to 
identify an approach used in these studies that can be used to gather empirical evidence 
of comparative effect of AOP and OOP on testability.

The first section of this chapter justifies the focus on empirical studies. In the body of 
the chapter eacli of the studies that contributes empirical evidence is described. For each 
study, the way in which it gathers evidence and the empirical evidence it contributes are 
identified. The chapter is concluded by identifying an approach that is used consistently 
to gather evidence for of the comparative effect of AOP and OOP on the key indicators of 
maintainability and with a discussion of the applicability of this approach to this study. 
The empirical evidence contributed by each study is also collated to show that there is no 
empirical evidence of the comparative effect of AOP and OOP on testability.

2.1 Empirical Evidence

Only studies that have contributed empirical evidence of the comparative effect of AOP 
and OOP on the key indicators of maintainability are considered in this chapter. There are 
other studies that provide evidence of this comparative effect based on predictive metrics 
[144, 143, 108]. These studies typically use object-oriented metrics [144, 143, 108, 62] to 
predict, rather than observe, the ease with which an AOP and OOP implantation can be 
analysed, changed or tested.
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2.2. WALKER ET AL. AND MURPHY ET AL.

2.1.1 Object Oriented M etrics

The predictions made by applying object-oriented metrics are based on assumed cor­
relations between object-oriented features and the ease of analysis, change or testing. 
Although there is evidence to validate some of these correlations for OOP [38, 93, 4, 15, 
81, 29, 30], there is no empirical evidence that these correlations are valid for AOP.

This means that some confidence can be associated with the accuracy of maintain­
ability measures derived from applying object-oriented metrics to OOP implementations. 
It also means that less confidence can be asvsociated with the accuracy of maintainal)ility 
merisures derived from applying object-oriented metrics to AOP implementations.

2.1.2 Comparing Object Oriented M etrics

If the object-oriented metrics do not provide accurate measures when ai)plied to AOP, then 
this makes the comparison of measures that result from applying these metrics to AOP 
and OOP implementations inaccurate [34, 66, 88, 35, 144]. Object-oriented metrics are 
based on features of OOP and do not incorporate AOP specific features. Bias is introduced 
when comparing measures based on these metrics when they are not equally applicable to 
AOP and OOP. There are adaptations of these metrics that capture the effects of some, 
but not all AOP specific features [144, 108, 35, 34]. Although the adaptations reduce bias, 
they do not mitigate it because they do not capture the effects of all AOP features.

2.1.3 Focus on Empirical Evidence

Measuring the observed impacts of applying maintenance activities to AOP and OOP 
imj)lementations of a program is the only way to gather accurate measures of maintain­
ability. This is because these measures are direct observations rather than inaccurate 
predictions. Measuring the observed impact is an approach that is equally applicable to 
AOP and OOP implementations. This means that the measures of impact are directly 
comi)arable.

2.2 W alker et al. and M urphy et al.

Two experiments are carried out in a study by Walker et al. [149] and Murphy et al. [109]. 
In these experiments, empirical evidence of the comparative effect of AOP and OOP on 
analysability and changability is gathered.

2.2.1 Study

Figure 2.2 shows the three phases of the study. It begins with group assignment, in which 
participants are grouped for each experiment. In experiments 1 and 2 the participants are
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Group Assignment

Experinf^ent 1

Experiment 2

12 Students/Academics

L ib rary

AspectJ

AspectJ tm « ra k ]

Figure 2.2: Walker et al. and Murphy et al. Experiments

asked to complete analytical tasks and perform tasks in which changes are applied to an 
implementation. During the tasks, the performance of the participants is measured and 
these measures are analysed.

Group Assignment

In this study, twelve computer science graduate students and academics were asked to 
carry out maintenance activities on OOP and AOP implementations of a trivial library 
program. Each participant was assigned to work on either the OOF or AOP implemen­
tation. At the end of the group assignment there were two groups of six, one group was 
assigned to the OOF implementation and the other to the AOF  ̂ implementation. Figure 
2.2 illustrates this process.

Experiment 1

In tlie first experiment, illustrated in Figure 2.2, three pairs of similar ability were formed 
out of each group. These pairs were then asked to analyse the Java and AspectJ imple­
mentations of the library program to which they were assigned. The goal of this analysis 
was to identify three cascading synchronisation faults. These faults were cascading in 
that symptoms of the first fault hid symptoms of the second, and so on. Each pair was 
videotaped and measures of the time taken to identify each fault, the amount of switching 
between files and the number of instances of semantic analysis were recorded.

Experiment 2

In the second experiment, also illustrated in Figure 2.2, the participants in each group 
were asked to cumulatively apply three changes to Emerald [21] (an OOP language) and 
AspectJ implementations to which they were assigned. Two changes were adaptive and
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one change was perfective in nature. The time spent applying these changes and the 
proportion of time used for analysis and coding was recorded.

Analysis

The data  gathered in both experiments is analysed graphically. The time taken, the 
number of switched between files less and number of semantic analyses recorded for each 
fault in the first experiment are analysed in separate graphs where the pairs assigned to 
the AOP and OOP implementations are directly compared.

The time each participant took to complete each change and the percentage of that 
time spent on coding and analysis identified in the second experiment are also presented 
in separate graphs. These graphs allow the individual ]>articipants assigned to the AOP 
and OOP implementations to be directly compared.

To identify causation for the interpreted differences between the AOP and OOP im­
plementations, interviews with participants after the experiment were held, hi these in­
terviews the experience of the participants are recorded. These recorded interviews were 
then transcribed and used to identify causation of the graphed data.

2.2 .2  E m pirical E vidence

The results of the first experiment indicated that the Aspect.! implementation was more 
analysable. The pairs who aruilysed the AspectJ implementation took less time to identify 
faults, switched between files less and performed more semantic analysis. These results 
suggest that the AspectJ implementation was easier to analyse than the Java implemen­
tation. Transcriptions of interviews with participants after the experiments identify that 
the localisation of synchronisation behaviour in the AspectJ implementation made the 
analysis easier.

The results of the second experiment indicated that the AspectJ implementation wcis 
less changeable. The graphical analysis suggests that overall, the changes took more time 
to implement using AspectJ. However, analysis of the proportions indicate that more 
time is spent on analysis in the Emerald implementation and more time was spent on 
implementation in the AspectJ. This again implies that AspectJ is more analysable but 
it also indicates that the AspectJ imj)lementation is harder to change.

2.3 Bartsch and Harrison

Bartsch and Harrison [14] present a similar study to Walker et al [149]. Their study 
gathers empirical evidence of the comparative effect of AOP and OOP on analysability 
and changeability.
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Phase 1; j 

Group Assignment |

Phase 2: ' 
Questionnaire i

Figure 2.3: Bartsdi and Harrison Experiment

2 .3 .1  S tu d y

Figure 2.3 shows the two phases of the study. In the first phase, study participants are 
assigned into groups to work on AOP and OOP implementations of an simplified version 
of an online shop program. In the second phase, participants of each group were asked 
to answer a questionnaire. The questionnaire defined both analytical tasks and a task in 
wliich clianges are applied to the implementation.

G roup A ssignm ent

Eleven professional software engineers with between two and five years experience took 
part in this study. None of the participants had any prior experience of AOP. To ensure 
that these professionals were equally able to understand and apply changes to both As- 
pectJ and Java implementations of a program, a series of five introductory sessions in 
an online tutorial based on AspectJ was used. Each participant was randomly assigntKi 
to an AspectJ or Java implementation of an highly simplified version of an online shop 
program.

Q uestionnaire

Based on their assigned implementation, each participant was then asked to fill in a 
questionnaire which asked the participant to: identify all classes and aspects in the source 
code (Q l); identify the output of the software (Q2); implement a new requirement (Q3); 
and rate the understandability on a scale of 1 to 5 (Q4). This questionnaire was based on 
refinements of an initial questionnaire use in a pilot and pre-pilot tests.

A nalysis

The answers to Q l, Q2 and Q3 were compared for both Java and AspectJ implementations 
based on measures of the time taken to answer each question and the accuracy of answer.

Professionals

AOP OOP

^  '—XO  Online Shop O

"■"■ I
■1 AspectJ Java f

t
Q uestiunndire |
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2.4. LOPES AND BAJRACHARYA

V ersion
1

W inery
i

Initial Program "
J

1
h

Jdva

2 Java

M ain tenance 3 Java
Activities 4 AspectJ ;

5 AspecU 1

6 AspectJ i

M easu re  option 
value

Igure 2.4: Lopes and Bajracharya S tudy

Tlie comparison of the answers for Q 1-3 indicated that there were very few differences 

in tlie accuracy of the answers hut siiowed there was a large amount of variation in the 

amount of time taken to answer these questions. For this reason the accuracy was dro{)ped 

as a point of comparison. For Q3 an additional point of comparison is the number of lines 
of code that  needed to be changed to implement a new requirement. The ratings in 

response to Q4 were directly compared for l)oth Java and AspectJ implementations.

Statistical sunnnaries represented as numeric tables and boxplots of tliese measures 

for Q l-4 are presented to facilitate ease of comparison. The significance of observed 

differences between measures for AspectJ and Java is tested using tlie MaimWhitney and 

V tests 1121, 41|. The MannW hitney and T  tests indicate whether the two median or mean 
values for these measures are significantly different for Aspect.! and Java implementations.

2.3.2 Em pirical E vidence

For Q l,  the median and mean time taken to identify all classes and aspects is the same for 
both Aspect.) and .lava implementations. For Q2, there is no significant difference between 

the median and mean time taken identify the ou tpu t  of the software for the Aspect.l and 

Java implementations. Similarly for Q3, the median and mean time taken and lines of code 

changed to implement a new requirement were not significantly higher for the AspectJ 

implementation. For Q4, the medians are the same but there is a iiigher level of variation 

in the ratings for AspectJ. These comparisons suggest that  there is no significant difi’erence 

between the effects of AOP and O OF on analysability and changeability.

2.4 Lopes and Bajracharya

Lopes and Bajraciiarya [97] present a study that  focuses on comparing the changeal)ility of 

AOF and OOF implementations in terms of their value. The value of an implementation 

is measured in terms of the options it provides for extension and refactoring. The less 
dependent the modules that comprise an implementation are on one another tlie more 

extension and refactoring options there are and more valuai)le the implementation is.
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2.4.1 Study

111 tliis study five iiiaintenaiice activities are applied to a web-based winery locator iinple- 

nientation. Figure 2.4 illustrates the six versions of the iinplenientation th a t result. The 
inaiiitenaiice activities differ in their goals but also in the prograniniing language used to 

a])ply each m aintenance activity.

P ro g ra m  and M a in ten a n ce  A c tiv it ie s

The initial im plem entation provides very basic features of the winery locater program  

and is w ritten  in Java. The first two inaintenance activities extend the set of features 

provided by the initial im plem entation. These extensions are applied using Java. The 

first m aintenance activity  adds new features. The second inaintenance activity  introduces 

a logging st^rvice.

The next three m aintenance activities refactor the extended version of the winery 
locater. These extensions are applied using A spectJ. In the first refactoring, aspects are 

introduced to decou])le core modules in the im plem entation. In the second refactoring, 
logging and an authentication feature are refactored using aspects. In the th ird  and final 

refactoring, the web front for the program  is refactored to introduce aspects to decouple 
the web front from the core apj)lication.

M ea su rem en t and A n a ly s is

For each version of the im plem entation, a design structure m atrix  is constructed. This 

m atrix  represents the depentlencies between the modules and interfaces th a t make up 

the im plem entation. The value of the im plem entation is cjilculated based on the options 
available for replacing modules and extending. These options are identified by analysing 

the design structu re m atrix  and their value is measured using a model typically used in 
financial context. The im pact of a m aintenance activity is m easured by calculating the 

difiereiice in the value of the im plem entations before and after the m aintenance activity 

is applied.

T he analysis approach in th is study is ra th er simple. The im pacts of ecich m aintenance 

activity  is deemed positive if the value of the im jjlem entation increases and negative if it 

decreases. The efiects of the Java and Aspect J based m aintenance activities are com pared 

based on whether they result in positive or negative effects.

2.4.2 Empirical Evidence

In this study, the extensions to  the Java im plem entation both  increase its vjiliie. T he 
first two of the three A spectJ based refactorings increase the value over the Java bcised 

extensions to the im plem entation. This comparison provides evidence to indicate th a t
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Version Java  Email Server

Initial Programr

M aintenance'
Activities

1 1 Java i AspectJ

2 1 Java  ̂ AspectJ

3 1 Java 1 AspectJ

4 1 Java 1 AspectJ

M easure num ber of 
changed lines of 
code & com ponents

I'igure 2.5; Li et al. Study

AOP lias the potential to improve the vahie of the options to facihtate ciiange. This 

evidence suggests tiiat changeabiHty is improved using AOP. The final AspectJ based 

refactoring decreases the implementations value. This refactoring illustrates the misuse 
of AOP constructs and provides heuristics to aid developers using AOP to avoid similar 

misuse.

2.5 Li et al.

Li et al. [92] present a study that gathers empirical evidence of the comparative effect of 
AOl^ and OOP on changeability.

2 .5 .1  S tu d y

The s tudy is based on measuring the size of the impact of applying three maintenance 

activities to AOP and OOP implementations of a program. Figure 2.5 illustrates the three 

maintenance activities cumulatively applied to initial AspectJ and Java implementations 

of .Java Email Server.

Program  and M aintenance A ctiv ities

'This is an open source email server written in Java which has 21 classes and 1400 Lines 

Of Code (LOG). The first of the three maintenance activities adds a spam filtering feature 

to the email server. The second change refactors the logging system and the third  change 

replaces the implementation of the spam filtering feature.

M easurem ent and A nalysis

The impact of each maintenance activity is measured by counting the number of modules 

and lines of code tha t  are changed when a maintenance activity is applied. Changeability 

is indicated by these measures. Tlie lower the measure the easier it is to apply the 

maintenance activity. The measures for each maintenance activity are simply compared 

to assess the differing effects of AOP and OOP on changeability.
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Modules LOC
AspectJ Java AspectJ Java

Extension 1 2 44 36
Change 1 12 162 184
Change 1 1 15 15

Table 2.1: Li et al. Change Impacts

Version Health Watcher

Initial Program •

New use cases-

J
1 Java AspectJ i

2 Java AspectJ i
M e a su re  s iz e ,

3 Java AspertJ 1 cou p lin g ,

4 Java AspectJ I in h er ita n ce  and

5 Javd AipectJ I
c o h e s io n

Figure 2.(5: Kulesza et al. Study

2 .5 .2  E m p ir ica l E v id e n c e

'iable 2.1 illustrates the number of modules and LOC changed when ap[)lying each main­
tenance activity for the Aspect.! and .Java ap{)roach. Tins table shows that fewer modules 

and LOC need to be changed in the Aspect.1 implementation. Based on this table, Li et 

al. conclude that using AOP to apply changes can improve changeability over OOP.

2.6 Kulesza et al.

Kulesza et al. [87] present a s tudy based on comparing the effects of AOP and OOP on 

stability.

2 .6 .1  S tu d y

As illustrated in Figure 2.G, in this study five maintenance activities are a{)plied to 

AspectJ- and Java-based implementations of an online public health care system, called 
the Health Watcher (IIW)

Program  and M aintenance A ctiv ities

The initial IIW program is based on thirteen use cases and is comprised of a rich set of 

general concerns including, distribution, persistence and concurrency and is 5K LOC in 

size. In each of the five maintenance activities, an additional use cj^e is implemented, 

extending the fe^atures of the IIW.

^The Health Watcher is also the program on which the study presente<l in this thesis is based
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The same level of expertise in designing the implementation is used to show that the 
only differences between these implementations is the approach used to develop them. 
The IIW implementations were developed independently of this study and were selected 
to mitigate any bias towards either implementation.

M easurem ent and A nalysis

The metrics were applied to tlie initial and final versions of the Aspect.! and .lava im­
plementations of the IIW. The levels of coupling, inheritance, coliesion, concern diffusion 
and the size of each implementation is measured. The measures taken from the AspectJ 
and .Java implementations of the initial and final versions of the IIW are comparatively 
analysed i)y calculating the percentage difference between the measures gathered from 
implementations of both versions. Tliese percentage differences are graphed for l)oth ini­
tial and final versions of the IIW. Those graphs are compared manually by identifying 
changes in the percentage difference for both initial and final versions of the IIW.

2 .6 .2  E m p ir ica l E v id en ce

The resulting measures from the initial implementations indicate the Aspect.] implemen­
tation is smaller in size but is dispersed across more modules, its modules are 4% less 
coupled, has a 2% smaller inheritance hierarchy and is 8% less cohesive. The measures 
from the imj)lementations after the maintenance indicate the only notable change in size 
is a decrease in the relative number of attributes by 3% in the Aspect.) implementation. 
The only other changes are that coupling in the Aspect,! implementation decrea«es by a 
further 2% to 6% and cohesion is further decreased by 7% to 15%.

Before the maintenance activities are applied, the Aspect.! implementation is smaller, 
less coupled and has a smaller inheritance hierarchy than the .lava implementation. These 
are interpreted as indications that the Aspect,! implementation is of higher quality. Af­
ter the maintenance activities are applied to the Aspect,! implementation, each of these 
indicators are improved indicating that over these maintenance activities the (quality of 
the Aspect,! implementation improves relative to the ,!ava implementation. Based on 
these observations, Kulesza et al. conclude that the effect of using AOP is to increase 
changeahility and stability compared to OOP.

Cohesion is the only measure that is worse for AspectJ both before and after the 
maintenance activities. Kulesza et al. claim that the measure of cohesion they use is 
not representative of how functionally cohesive modules are in an implementation. They 
argue that this measure of cohesion, which is based on the density of the relationships 
between methods and attributes in a module, does not capture functional cohesion.

To fully capture cohesion they use concern diffusion measurements that identify the 
extent to w'hi(;h cx^ncerns are diffused over modules, methods and lines of code. These mea-
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Version Health W atcher

Initial Program

Maintenance
Activities

J - ~  —  

1 Java ; AspPCtJ CaesarJ

2 Java : AspectJ C a e s a rl

3 Java 1 A sp ect) CaesarJ

4 Java I AspectJ C a e s a rl

5 Java ! A specU CaesarJ

6 Java I AspectJ CaesarJ

7 Java ; A s p e a J CaesarJ

8 Java ; AspectJ CaesarJ

9 Java : AspectJ CaesarJ

10 Java I A s p e a J CaesarJ

M easure size, 
coupling, 
inheritance, 
cohesion and 

.diffusion

fig u re  2.7: S tudy o f Greenwood et al.

sures are ca lcu lated by n ia ru ia lly  inspecting the source code and ide n tify in g  or shadowing 

the modules, methods and lines o f code th a t im i)lem ent eacii concern. IMiese measures 

are gathered for d is tr ib u tio n , persistenc-e and concurrency crosscutting  concerns in both  

im p len ien ta tions to  ide n tify  how cohesively these functions ar<' implem ented in the As­

pect.) and Java im p lem enta tion , 'i'he  resu lting  concern d iffus ion  measures silow th a t these 

concerns are im{)leniented more cohesively in the Aspect.) im p lem enta tion .

2.7 Greenwood et al.

CJreenw'ood et al. present a s tudy  s im ila r s tudy  to  Kulesza et al. [87], which is biised 

on com paring the effects o f AO i^ and OOP on s ta b ility .

2.7.1 Study

As illu s tra ted  in T'igure 2.7, nine maintenance ac tiv ities  are applied to Caesar.)-, AspectJ- 

and .lava-based im p lem enta tions o f the same Health  W atcher ( ) IW ) program .

Program and M aintenance Activities

)n th is  study. Greenwood et al. ind icate  th a t the reason th a t they also focus on the 

H ealth  W atcher is because i t  was developed using a liigh  level o f expertise to  ensure 

s ta b ility . I t  was also used by Kulesza et al. and o tlie rs a llow ing  the results o f the s tudy  

to  be correlated w ith  the results o f these previous studies. Greenw'ood et al. also reveal 

th a t the H ealth  W atc lie r had been def)loyed in M arch 2001 and since then a num ber o f 

increm enta l corrt'c tive , adaptive  and perfective maintenance ac tiv ities  have been applied 

to  the IIW . 'I'he maintenance ac tiv itie s  in th is  s tudy  were based on the real maintenance 

ac tiv itie s  applied to  the deployed Ilesalth W atcher in i{)len ienta tion.



2.8. FIG U E IR E D O  ET AL.

M easurem ent and A nalysis

"I'he level of coupling, cohesion and concern diffusion for Aspect.I, CaesarJ and Java 
implementations over each versions of the IIW are measured. For each measure, a grapli 
plotting each measure is provided. These graphs enable the changes in the measure for 
the Aspect,], Caesar.J and Java implementations to be directly compared over the nine 
maintenance activities. Based on these graphs, the impacts the maintenance activities 
have on the implementation can be determined and compared. Higher levels of impact 
imply a less stable implementation.

2 .7 .2  E m p ir ica l E v id e n c e

The graphs show that tlie stal)ility of the AspectJ and CaesarJ implementations was 
similar to the Java implementations in terms of size. Although all three implementations 
consistently increase in size over the maintenance activities, the increases in the size of 
AspectJ and CaesarJ implementations where consistently smaller in terms of their lines 
of code. Greenwood et al. interpret this difference as not being significant.

The stability of the AspectJ and CaesarJ implementations wjis very different to the 
.lava implementations in terms of coupling and cohesion. The overall trend for all three 
implementations is an increase in coui)ling and cohesion. Over the maintenance activities, 
the Aspect.! and CaesarJ ini])lementations are more stable because the levels of coupling 
and cohesion do not change as much as they do in the Java implementation. This in­
dicates tha t the impact in terms of coupling and cohesion on the AspectJ and Caesar.J 
implementations is lower than the Java implementation, which suggests that the AspectJ 
and Caesar.J implementations are more stable.

Staliility is also compared in terms of concern diffusion. To compare the im{)acts 
on concern diffusion over the maintenance activities the changes in the level of diffusion 
for crosscutting and non-crosscutting concerns are compared. The level of change in the 
diffusion of both types of concerns varied. Some crosscutting concerns were more stable in 
tlie AspectJ and CaesarJ implementations, but no stability gains were ol^served for other 
crosscutting concerns.

Based on comparing each measure talcen from Aspect.J, CaesarJ and Java implemen­
tations over maintenance activities. Greenwood et al. conclude that when conij)ared to 
OOP the effect of AOP is to increase stability.

2.8 F igueiredo et al.

Figueiredo et al. [.54] compare the effects of AOF and OOF on stability in a software 
product line context.
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Version Mobile Media Best Lap

Initial Program *

New features

1 Java AspectJ ; Java AspectJ

2 Java AspectJ 1 Java AspectJ

3 Java
i

AspectJ j Java AspectJ

4 Java AspectJ j Java AspectJ

5 Java AspectJ 1 Java AspectJ

6 Java AspectJ j Java AspectJ

7 Java Aspect) j

8 Java Aspect)

9 Java Aspect) i

Measure size, 
coupling, 
inheritance and 
cohesion

Figure 2.8: S tudy o f F igueiredo et al.

2 .8 .1  S tu d y

In t ii is  study, t iie  s ta b ility  o f Aspect.! and .Java im plem entations o f tw o heterogeneous 

p roduct lines are compared.

P ro g ra m  and M a in ten a n ce  A c tiv it ie s

The firs t p roduct line, called M obile  M edia, is for . . ' c-ations w ith  .‘?K L 0 ( ’ th a t m anip­

u late photo, music, and video on m obile devices, such as m obile phones. M ob ile  Media 

was independently developed and used in o tlie r  research studies. The second, called Ik 's t 

Lap, is for m obile game app lica tions w ith  lOK LOG which can be de[)loyed on a mun- 

ber o f d ifferent m obile devices. Best Lap was developed in industry. Bo th  Aspect.) and 

Java im p lem enta tions o f the M obile  M edia and Best Lap product lines were developed 

fo llow ing  best practice  to  ensure a liigh  level o f s tab ility .

As illu s tra te d  in F igure 2.8, there were a num ber o f maintenance ac tiv itie s  defined for 

b o th  product lines. These involved the in tro d u c tio n  o f new features in to  the p roduct line. 

For the M ob ile  M edia product line, there were eight maintenance ac tiv ities  and there were 

five maintenance a c tiv itie s  for Best Lap.

M ea su rem en t an d  A n a ly sis

The level o f coup ling, cohesion, concern d iffusion and the size o f each both  im plem en­

ta tions  o f each version o f the two programs are measured. S im ila r to  Greenwood et al., 

g rap lis  are provided in which these measures are p lo tted . These graphs enable the changes 

in the measure for the AspectJ and Java im {)lem entations to  be d ire c tly  compared over 

the nine maintenance activ ities .

The im pact is analysed from  tw o perspectives. The firs t perspective compares the 

im pacts o f m aintenance a c tiv itie s  applied to  both  AspectJ and Java im plem entations. 

T lie  num ber o f modules, methods, lines o f code and feature com position  specifications
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2.9. EVIDENTIAL GAP

Analysability Changeability Stability Testability

Walker and Murphy ct al. A V
Bartsch and Harrison O O

Lopes and Bajracharya A
Li et al. A

Kulcsza ct al. A A
Greenwood et al. A
Figneiredo ct al. A

Table 2.2: Indicator Coverage

that are changed for each maintenance activity are counted and compared. The second 
is based on inejisuring tlie impact on the diffusion of features over modules, methods and 
lines of code in both implementations for both implementations.

2.8 .2  E m pirical E vidence

The Aspect.] and Java implementations of the Mobile Media product line are analysed 
from the first perspective. Of the maintenance activities defined for this product line, 
two are applied to m andatory features, three are apj^lied to optional features and two are 
applied to alternative features. For each maintenance activity, the number of modules, 
methods, lines of code and feature composition specifications tha t are changed are counted 
and compared. The results show that the impact on the Aspect,! implementation is 
lower when changes are applied to optional and alternative features, but higher when 
applied to m andatory features. This is because the se])aration of concerns in the Aspect.! 
implementation makes it easier to localises the effects of change.

Analysis from the second perspective focuses first on analysing features in both the 
Mobile Media and 13est I.ap product lines. Specific features are analysed in terms of tlieir 
diffusion in the Aspect.! and Java implementations. I3iffusion is measured over modules, 
methods and lines of code. This shows AspectJ provides superior stability for features 
with no shared implementation.

Based on the measure of impact taken from the AspectJ and Java implementations 
over maintenance activities, Figneiredo et al. conclude that when compered to OOP the 
effect of AOl^ is to increase stability.

2.9 E videntia l Gap

The primary goal of this chapter is to demonstrate the evidential gap left by identifying 
the evidence contril)uted by existing studies. In this section, the contributed evidence 
identified for eacli study is summarised. J'his summary is used to demonstrate the evi­
dential gaj).
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2.9.1 E x istin g  E vidence

Table 2.2 lists the studies th a t provide empirical evidence of the com parative efl'ects of 

AOP and O O P on m aintainability indicators. These studies provide evidence to suggest 

th a t AOP can improve analysability, changeability and stability over OOP. The cU’rows 

used in the table indicate whether the evidence indicated th a t AOP lead to inijH'ovenients 

in a m aintainability  indicator and the circle indicates th a t no (significant) difference l)e- 
tween tiie effects of AOP and OOP was identified.

A lthough more studies <u’e needed to fully validate this existing evidence, it is en­
couraging for those considering the adopting AOP to ini])rove m aintainability and reduce 

m aintenance costs.

2.9 .2  T estab ility  Gap

However, Table 2.2 clearly shows th a t these studies do not provide any evidence of the 
com parative effect of AOP and OOP on testability, 'lestab ility  is the most im portant 
indicator of m aintainability, as it is can have a significant effect on m aintenance costs 

[33, 22, f4f]. The claim th a t AOP ini])roves m aintainability cannot be tested w ithout 
evidence of the com parative effect of AOP and OOP on testability. C’onsidering the 

adoption of AOP based on an untested claim cannot be ol)jective [39, 25]. The study 
presented in this thesis, provides evidence of testability  enabling the adoi>tion of AOP to 
be more objectively considered.

2.10 Com m on Evidence G athering Approach

The secondary goal of this chai)ter is to identify an approach to gathering evidence th a t 

is a]:)plicable to the study jjresented in this thesis. In this section, an approach th a t is 
commonly used to gather evidence of the effects of AOP and OOP on the key indicators 

of m aintainability  is identified and its applicability to this study  is discussed.

The goal of each study  described in this chapter is to  gather evidence of the effects of 

AOP and OOP on analysability, changeability an d /o r stability over m aintenance activi­
ties. Figures 2.9 and 2.10 illustrate the connnonly used approach to gather this evidence.

2.10.1  E quivalence

In this ai)proach, m aintenance activities are cunuilatively applied to  AOP and OOP im­

plem entations of a program . The initial AOP and OOP im plem entations of a program  are 

ecjuivalent in th a t differ only in the approach used for their development, hxiuivalence is 

assured by fixing all o ther factors th a t can cause the im plem entations to differ. For etiuiv- 

alence to  be assured, the im plem entations are developed to the same level of exj)ertise.
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Version
M e a su r e s  - Fault E x p o su re

A O P+A ‘ B OOP+a‘

AOP+A-^ B  OOP+A’‘=

rMiTibcfA" = M a in te n a n c e  Activity

Im p lem en ta tio n  E q u iv a le n c e  <■

Figure 2.9; Approach Figure 2.10: Measures Figure 2.11: Result

satisfy the same requirements, expose the same interface and produce the same outputs 
for a given input [63].

The same maintenance activities are cumulatively applied to both AOF  ̂ and OOP 
implementations. After each maintenance activity is applied to both implementations, a 
new version of these implementations results. The new version of these implementations 
are equivalent because the maintenance activity is applied to both implementations to the 
same level of expertise. This means that the versions of the AOP and OOF implementa­
tions are also equivalent. When all maintenance activities are applied, the only difference 
between each respective version of the AOP and OOP implementations is a maintenance 
activity.

2 .10 .2  Effects

Figure 2.10 illustrates the measures taken from the AOP and OOP implementations of 
each version of the program. Because each pair of AOP and OOP implementations are 
equivalent, the difference between each pair of AOP and OOP measures represents the 
difference in the effects of AOP and OOP of the implementation factor on the measure. 
Because each respective version of the program is equivalent, the difference between the 
AOf^ and OOP measures for each version represents the effects of the maintenance factor 
on these measures.

Figure 2.11 illustrates the typical result (as identified in Section 2.9) of analysing 
the measures gathered by the studies that follow this approacli. This shows that AOP 
improves maintainability over OOP. In this analysis the effects of AOP and OOP on 
maintainability are identified by observing the difference in the measures for AOP and 
OOP over versions of the program.
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Graphical and statistical analysis approaches are used to identify these effects in the 
studies presented in this chapter. Graphical analysis enables a more intuitive but inaccu­
rate comparison while statistical analysis enables a more formal and accurate quantitative 
comparison. As will be detailed in Section 4.3, these analysis approaches are good at iden­
tifying a difference l)etween combined effects. They do not separate combined effects and 
provide means to accurately quantify these effects.

2 .10 .3  A pp licab ility

The goal of the study study presented in this thesis is to gather evidence of the effects of 
AOP and OOP on testability over maintenance activities. The connnonly used approach, 
outlined in this section, can be used to achieve this goal. The application of this approach 
enables the testability of equivalent AOP and OOP implementations of a program over 
ecjuivalent maintenance activities to be gathered and analysed to identify and compare 
the effects of AOP and OOP on testai)ihty over maintenance activities.

2.11 C hapter  Sum m ary

The first section of this cliapter justified the focus on empirical studies by identifying the 
inaccuracies of using ])redictive object oriented metrics. In the body of the cha])ter, each 
of the studies that contributes empirical evidence was descrifjed. For each study, the way 
in which it gatiiers evidence and the empirical evidence it contributes were identified. The 
chapter was concluded by collating the empirical evidence contril)uted by e^icli study to 
show that there is no empirical evidence of the comparative effect of AOP and OOP on 
testability. This evidential gap motivates tlie study presented in this thesis.

This chapter also identified an approach that is commonly used to gather evidence 
for of tlie comparative efi’ect of AOP and OOP on the key indicators of maintainability 
and discussing the applicability of this approach to this study. The approach is the basis 
for the approach used in this study, presented in this thesis, to gather evidence for of the 
comparative efl’ect of AOP and OOP on testability.
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Chapter 3

Testability

'lesting is tiie process of executing the implementation of a program witli the intent of 

exposing faults [110]. A fault is a deviation from the intended program, and is exposed 

through test failure [110]. A [)rogram can hide faults by not causing tests to fail when 

faults are present [148]. Tlie testability of an implementation is the ease with which faults 

can be exposed through testing [148].
l'’igure 3.1 asks three cjuestions tlie answers to which are the basis for methodology 

and motivation of the study presented in this thesis. This chapter answers these three 

(luestions.

To answer the first question, how are faults exposed?, a model to explain the conditions 
tha t  cause fault exposure is presented. This model is used as a bjisis for determining the 

causation of observed rates of fault exposure in the next chapter.

To answer the second question, what are the factors that influence fault exposure?, 

each factor is identified and its influence on fault exposure is demonstrated. These factors 
are the basis of the measurement approach and design used in this study, also presented 

in Chapter 4.

1c) answer the third and final question, what evidence has been contributed by existing  

studies o f testability?, an overview of the studies and the evidence they contribute is 

presented. This overview reaffirms the gap identified in the pervious chapter.

1. M odel -  
How a re  fau lts  e x p o se d ?

T estab ility
3. S tu d ie s -2. F a c to r s -  i_

W hat fac to rs  influence fault e x p o su re ?  W hat e v id en ce  ex is ts  ?

Figure 3.1: Testability
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1 public class Stack {
2 int size = 0;
3 static final int max = 5;
4 public int get Si ze ( ){
5 return t h i s . size;
6 }
7 public void se tS ize (in t size) {
8 if(size >= 0){
9 t h i s .size = size ; // fault si ze=size -
10 if(size > S t a c k .max ){
11 t h i s . size = Stack.max;
12 }
13 ]■ else {
14 throw new 11 1 e g a l A r g u m e n t E x c e p t i o n  ( )
15 }
16 >
17 >

Listing 3.1: Fault

3.1 Fault E xp osu re M odel

A fault exposure model identifies the conditions in which tests expose faults in an imple­
mentation. This model is used to analyse and compare the causes of fault exposure for 
AGP and OOP implementations in this study.

Listing 3.1 illustrates the Java code based on a S tack class exani])le used by Ma et al. 
[98]. Listing 3.2 illustrates tests to validate the correctness of the imj)lementation of the 
S tack class. The connnent on Line 9 of Listing 3.1 of the listing illustrates a fault. In this 
section, this example is used to demonstrate a model of fault exposure through testing.

3.1.1 Faults

Listing 3.1 shows the source code of the S tack class with two accessor methods. In the 
s e tS iz e  method, at line 9, there is an assignment to the stack’s s iz e  attribute. In the 
assignment, the s iz e  parameter to the s e tS iz e  method is assigned to the s iz e  attribute. 
To difi'erentiate with the parameter, the a ttribute is referenced using the t h i s  keyword.

In a new version of the Stack, a fault is deliberately created in the se tS iz e  method, 
for the purpose of analysing how easy the fault is to expose and therefore how testable the 
Stack class is. The fault is illustrated in the connnent on line 9 of the listing. The fault 
occurs when the t h i s  keyword is deleted. Deleting the t h i s  keyword makes the target 
of assignment the s iz e  param eter rather than the s iz e  attribute. This fault is likely to 
lead to an incorrect value for the s iz e  attribute, declared at line 2 of the listing.

Figure 3.2 illustrates a control flow graph of the s e tS iz e  method. The nodes in 
the control-flow graph represent locations, or lines of source code, of the S tack class 
presented in Listing 3.1. The location containing the fault is coloured rod. The directed
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setS ize<size)

j ) lf(size>=0)

Legend

lf(size > Stack.m ax)', I-------------------------------------------1

Location0
Location containing 
fault

1 Control flow
I
A Return flow

throw new  lllegalStateException()

Figure 3.2: Control-flow graph for s e t S i z e  method

arrows between nodes represent the flow of execution between nodes. Arrows with a solid 
line represent control-flow and arrows with a broken line represent a return of control. 
This type of control-flow graph is used and described in detail by Ammann and OfFutt 
[5].

Location 2 in Figure 3.2 shows a precondition that needs to be met before the body 
of the method executes. This defines zero as the minimum size the stack can be. If the 
value of the s i z e  f>arameter is less than zero then this results in the execution of location 
6, where an exception is thrown. If the value of the s i z e  parameter is greater than or 
equal to zero, then location 3 is executed. Location 3 is where the t h i s  deletion fault 
occurs. Location 4 is executed after location 3. Location 4 defines a condition defining 
the maximum size of the stack to be five. If the value of the s i z e  parameter is greater 
than five then then the s i z e  attribute is reset to a value of five by executing location 5 
and returning. If the value is less than or equal to five the method returns.

3.1.2 Tests

Listing 3.2 shows four tests (1, 2, 3 and 4) to expose this fault. Each test calls the s e t S iz e  

method to set the size of the stack and the g e t S iz e  method to ensure that the size has 
been properly set. The goal of the combined set of tests is to ensure the correctness of 
the code. If the program is testable, then the fault at location 3, illustrated in Figure 3.2, 

will be exposed by the tests.

Figure 3.3 illustrates the execution of each test against the s e t S iz e  method on an 
instance of the Stack class. The top of Figure 3.3 illustrates the values for the s i z e  

parameter (p:size) and attribute {a:size) before each test executes the s e t S i z e  method 
on an instance of the Stack class. All tests execute an instance of the Stack class in 
which the s i z e  attribute is initialised to zero. The value of the s i z e  parameter differs 
for each test.
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1
2
3
4
5
6
7
8 
y

10
11
12
13
14
15
16
17
18
19
20 
21

S t a c k  s t a c k  = new S t a c k O  ; 
p u b l i c  v o i d  t e s t l ( ) {  

t r y {

p u b l i c  v o i d  t e s t 2 ( ) {  
s t a c k . s e t S i z e  ( 0 )  ;
a s s e r t E q u a l s ( 0 , s t a c k . g e t S i z e  ( ) )  ;

a s s e r t E q u a l s ( 5 , s t a c k . g e t S i z e  ( ) )  ;

a s s e r t E q u a l s ( 1 , s t a c k . g e t S i z e  ( ) )  ;

Listing 3.2: Tests 1 - 4

Tests 1 

a;size= 0  p :size—1

Tests 2 

a :size= 0  p s ize = 0

Tests 3 

a size= 0  p .size=11

T ests 4 

a ;size= 0  p:size=1

intended faulty

(f
(S

intended faulty

X1 > !X
s ‘  '

a :s ize = o ||^ :s iz e= 0(* ■■

intended faulty

(f:

a :slze= 111 a :slze= 0

(?)

intended faulty

i
a;size=1 1 a :s ize= 0

(4 )

excep tion  exception 0 5 5 1 0

■ ■ 1

F^igure 3.3: Control-flow paths through se tS iz e  method for tests 1 - 4

The middle of Figure 3.3 illustrates the control-flow path through the s e tS iz e  method 
exercised by each test. This shows whether the location containing the fault, location 3 
is executed by the test or not.

For the tests that do execute this location, two values of the s iz e  attribute, aisize, are 
shown directly after the execution of the location. On the left hand side of the control-flow 
path, the value of the s iz e  attribute is shown when the se tS iz e  method does not contain 
the fault at location 3. On the right hand side of the control-flow path, the value of the 
s iz e  a ttribu te  is sliown when the s e tS iz e  method contains the fault at location 3.
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A coinparisoii of these vahies shows whether the fault results in an incorrect value 
for the s iz e  a ttribu te  at this stage of execution for each test. If the value for the s iz e  
attribute is correct at this stage, the fault will not cause the actual output of the test to 
differ from the expected output. If it is incorrect, then this may cause the actual output 
to differ from the exf>ected output. I'he bottom of tlie figure presents the expected and 
actual outcomes for each test. If the actual outcome differs from the expected outcome, 
the test fails and the fault is exposed.

Test 1

Test 1 sets the value of the s iz e  parameter to minus one. This is below the rnininnim 
size which results in a control-flow path that does not execute the faulty location. 'I'liis 
ensures that the state  of the S tack class is correct. The outcome of test execution is that 
an exception is thrown, as expected. The test passes and the fault is not exposed.

Test 2

Test 2 sets the value of the s iz e  ])arameter to zero. This is not below the minimum size 
which results in a control-flow path that does execute the faulty location.

In the test, the s iz e  attribute is initialised to zero. Because the input to the s e t  S ize 
method is also zero, the fault does not cause the state of the s iz e  a ttribu te  to become 
incorrect. This is illustrated where the value of the s iz e  a ttribu te is ])resented after the 
intended and faulty version of location 3 is executed. This shows that when the fault is 
absent or present the value of s iz e  a ttribute is zero after location 3 is executed.

The value of the s iz e  parameter does not exceed the maximum size and (is such 
returns after location 4 is executed. The output of the test execution is zero which is as 
expected. The outcome is that the test passes and the fault is not exposed.

Test 3

Test 3 sets the value of the s iz e  parameter to eleven. This is above the rnininnim size 
which results in a control-flow path that executes the faulty location.

The fault causes the parameter value of eleven to not be assigned to the s iz e  attribute. 
This causes the state  of the s iz e  a ttribu te to become incorrect directly after the faulty 
location is executed. This is illustrated in the figure where the value of the s iz e  attribute 
is presented after the intended and faulty version of location 3 is executed. This shows 
that when the fault is absent value of the s iz e  a ttribute is eleven after location 3 is 
executed and when it is present the value of the s iz e  a ttribu te is zero.

The value of the s iz e  parameter does exceed the maximum size and as such location 
5 is executed. Location 5 resets the s iz e  attribute to a value of 5, masking the fault and
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siihseqiioiit incorrect value of the size a ttribu te . The ou tpu t of the tests execution is 5 
which is as expected, the outcome of which is test passing.

Test 4

Test 4 sets the value of the size param eter to one. This is above the m inim um  size which 
results in a control-flow path th a t executes the faulty location.

T he fault causes the param eter value of one to not to be assigned to the size attribu te . 

T his causes the s ta te  of the size a ttrib u te  to become incorrect directly after the faulty 

location is executed. This is illustrated  in Figure 3.3 where the value of the size a ttrib u te  

is presented after the intended and faulty version of location 3 is executed. This shows 

th a t when the fault is absent, the value of the size a ttrib u te  is one after location 3 is 
executed and when it is present, the value of the size a ttrib u te  is zero.

T he value of the s i z e  param eter does not exceed the maximum size and returns after 
lo(!ation 4 is executed. 'I'he ou tpu t vahie of the tests execnition is zero, which differs from 

the expected value of one. This causes the test to fail.

3.1 .3  M odel

T his simple example is used to illustrate the model for fault exposure which was j)reviously 
identified in the Relay [128] and later in the PH'] models [148, 14G, 1| of testability. This 

model specifies th a t for a fault to be exposed througli testing, a test input must cause 

the location a t which the fault occurs to be executed. The execution of the fault nm st 

cause the sta te  after the location’s execution to become infected. S tate is infected when it 

deviates from w hat it would be a t this j)oint of execution in the intended im plem entation. 

T his infected sta te  nmst then be propagated into the outpu t. If the te s t’s o u tpu t deviates 

from w hat it is expected to be the test fails exi)osing the fault.

Table 3.1 illustrates the model by showing whether tests 1 to 4 executed the location 
containing the fault; caused the value of the s iz e  a ttrib u te  of the S tack  class to  become 

infected; caused the infected state  to l)ecome propagated; and w hether or not the test 

exj)osed the fault through test failure.

Test 1 does not execute the location a t which the fault occurs and as such, cannot 
cause infection or propagation, resulting in a pass. A lthough Test 2 does cause execution, 

it does not cause the sta te  of the S tack  class to become infected. This is because value 

of the s i z e  a ttrib u te  is the same as when the fault does not occur. As there is no state  

infection caused by Test 2, the infection cannot be propagated and the test does not expose 

the fault. In contrast. Test 3 does cause execution and infection, bu t not propagation and 

as such, does not expose the fault. Test 4 does expose the fault because it is the only test 
to cause execution of the fault, infection of the sta te  directly after the fault is executed 

and propagation of this infected sta te  to the tests ou tpu t.
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Test Execution Infection Propagation Exposure
1 o o o no
2 o o no
3 • • o no
4 • • • yes

Table 3.1: Requirements for Fault Exposure

This model is used to demonstrate the conditions that result in the exposure of a fault 
through testing. The model can be used to explain the rCcisons why faults are exposed. 
For example, a rate of execution of locations in an implementation containing faults can be 
used to explain a high rate of fault exposure for the implementation. This model is useful 
when analysing the causes of observed rates of fault exj)Osure for an implementation.

3.2 Factors of Testability

'Inhere are three factors that have an efft'ct on testability: fault type, tests and implemen­
tation [76]. In this section, an extension of the Stack class, used in the previous section, 
is used to illustrate each of these factors.

3.2 .1  Fault T ype

The accidental deletion of the this keyword is an instance of a type of fault observed in 
practice. In the example, the fault type is the accidental deletion of the this keyword. 
The instance of this type of fault is its occurrence in the setSize method of the Stack 
class.

Listing 3.3 extends the number of faults identified in the setSize method of the 
Stack class in Listing 3.1. In this listing, there are five faults identified in the setSize 
method in connnents. These faults are of two difi’erent types: insertion and deletion of the 
this keyword. The same four tests ( 1 - 4 )  illustrated in Listing 3.2 are executed against 
implementations of the Stack class each containing one of the five identified faults.

The outcomes of applying each test to each faulty version of the Stack are illustrated 
in Figure 3.4. Table 3.2 sunnnarises the outcomes illustrated in Figure 3.4 by identifying 
the instances of each fault type and the rate of exposure for these fault instances.

The first row of the table shows that the faults where the progrannner inserts a t h i s  
keyword in error are fully exposed. The second row shows th a t 0.67 of the faults where 
the programmer deletes a t h i s  keyword in error are exposed. This shows that in this 
trivial example, faults of the insertion type of fault is easier to expose than faults of the 
deletion type.

Tlie third and final row shows that when the faults of both types are considered the 
rate of exposure is 0.8. These different rates of exposure for the different fault types show
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public class Sta ck { 
int size = 0; 
static final int max = 5; 
public int g e t S iz e () { 

return  t h i s . size;
}
public void se t Si z e( i nt  size) {

if (size >= 0){ // if( t hi s .s i ze  >= 0) fault 1 insertion
t h i s .s i z e = s i z e ; // si ze =si ze fault 2 deletion

// t h i s .s i z e = t h i s .size fault 3 ins ertion 
i f ( s i z e > S t a c k .m a x ) { // t h i s. s iz e > fault 4 insertion 

t h i s .s i z e = S t a c k .m a x ; size= // fault 5 de letion 
}

)■ else {
throw new I l l e g a l A r g u m e n t E x c e p t i o n  () ;

}
}

/isting 3.3: This Insertion and Deletion Faults

Tcit 1

Test 2

Test 3

Test A

both

this insertion

this deletion

Legend

Figure 3.4: Fault Factors

F ault T y p e F aults E xposure
insertion
deletion

1,3
2,4^5

'2

3
b oth 1 - 5 4

R

Table 3.2: Effects of Differences in Fault Factor

that fault type is a factor that influences the rate of exposure in an implementation. 

3.2.2 Tests

The tests illustrated in Listing 3.2 and described in Section 3.1 each execute the s e tS iz e  
method of the S tack class with an input selected from tlie domain of all possible inputs 
to this method. The full set of all possible inputs is tlie set of all integer values. The 
inputs are selected from this set to exercise each control-flow path through the method. 

Figure 3.3 shows the control-flow paths through the s e tS iz e  method executed by each
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fa u lt  1 F a u lt2  Fault 3 F a u lt s  F a u lt s

Fdult 1 Fault 2  Fault 3 Fault 4  F a u lt s
L e g e n d

T e s ta Fault 1 Fault 2 Fault 3 Fault 4  Fault 5

Fault 1 Fault 2 Fault i Fault 4  Fault 5

Figure 3.5: I ’est Factor

Tests Tests Exposure
A 2 - 4
B 1 - 3
C 1 - 4 i

5

Table 3.3: Effects of Differences in Test Factor

test. Figure 3.5 illustrates the outcome of applying these tests to each faulty version of 
the Stack class. To illustrate the effect of using different sets of tests on the rate of fault 
exposure, the rate of exposure of three sets of tests A, B and C are compared. Sets A and 
B are subsets of the set of all four tests illustrated in Listing 3.2, which is set C.

The outcomes illustrated in Figure 3.5 are summarised Table 3.3. This summary 
identifies the tests in each set and tlieir associated rates of exposure. The Tests column of 
this table shows that set A is comprised of tests 2 - 4 ,  set B is comprised of tests 1- 3 and 
set C is comprised of tests 1- 4. The Exposure column shows the rate of fault exposure for 
each set. It shows that set A exposes 0.6 of the faults, set B exposes .4 of faults and set 
C exposes 0.8 of faults. These results imply that set C, containing the full of four tests, 
expose more faults than sets B or C. This means that set C maximises the testability of 
the Stack class.

These different rates of exposure for each set show that the tests selected to assert 
correctness of the implementation influence the rate of exposure. This identifies the tests 
used to assert correctness as a factor of testability.

3.2.3 Im plem entation

The implementation of the Stack class illustrated in Listing 3.3 is one of many possible 
implementations of this class. For example, the pre- and post-conditions which identify 
maximum and minimum sizes for the stack, defined in the setSize method, could be 
removed as illustrated in Listing 3.5 or re-implemented using AspectJ as illustrated in 
Listing 3.4.

In the AOP re-implementation, a new implementation of the stack is created that 
provides precisely the same behaviour as the original. The only difference is that in the 
AspectJ implementation the pre- and post-conditions are implemented in aroiind advice.
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1 public class Stack {
2 int size = 0;
3 static final int max = 5;
4 public int getSize(){
5 return this.size;
6 }
7 public void setSize(int size) {
8 this.size=size; // size=size fault 2 deletion
9 // this.size=this.size fault 3 insertion
10 >
11 }
12 public privileged aspect StackAspectPrePost {
13 void around(int size, impl2.Stack stack) :
14 execution(void impl2.Stack . setSize(int))
15 && args(size) && target(stack){
16 if ( size >= 0) {
17 proceed(size , stack);
18 if(size > Stack.max)
19
20 stack.size = Stack.max;
21 >
22 } else {
23 throw new IllegalArgumentException();
24 }
25 }
2() }

Listing 3.4: AspectJ Refactored

public class Stack { 
int size = 0; 
public int getSize(){ 

return this.size;
}
public void setSize(int size) {

if(size >= 0){ // ifCthis.size >= 0) fault 1 insertion
this.size=size; // size=size fault 2 deletion

// this.size=this.size fault 3 insertion 
} else ■[

throw new IllegalArgumentException () ;
}

}
}

Listing 3.5: Condition Removal Refactored

The around advice is executed in the place of the s e tS iz e  method. The pre- and ])ost- 
conditions are executed relative to a call to proceed. This proceed call executes the 
s e tS iz e  implementation.

Moving the implementation of these conditions into advice means that faults in which 
this is inserted or deleted are no longer relevant l)ecause the t h i s  keyword cannot be used 
in asjjects. Of course moving the implementation of the conditions into advice means that 
new AspectJ specific faults can occur. These types of faults and their effects on the rate
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AspectJ Refactor Removal Refactor
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Test 1 

Test 2 

Test 3 

Test 4

Figure 3.6: Im plem entation Factors

Implementation Tests Faults Exposure
Original 1-5 1-5 4

5
AOP Refactor 1-4 2,3 2

2
Removal Refactor 1,2,4 1,2,3 3

3

Table 3.4: Effects of Differences in Im plem entation Factor

of fault exposure are presented later in Section 4.2.2. For the sake of illustration purposes 

only, these types of faults are not considered in this dem onstrative example.

Figure 3.6 illustrates the outcom e of executing the tests th a t are relevant for each 

im plem entation against the faults contained in each im plem entation. This figure and Ta­

ble 3.4 show th a t the ra te of exposure for the original im plem entation is 0.8, 1 for the 

A spectJ refactored im plem entation and 1 for the im plem entation in which the pre- and 
post-conditions are removed. The differences in these rates show th a t different implemen­

ta tions do have an effect on fault exposure.

3.2.4 Factors

Table 3.6 presents an overview of examples used to  identify and illustrate the three factors 

of testab ility : fault type, test and im plem entation. In the left most column, nam ed Factor, 

the factor being illustrated is identified. In the next three columns (Fault Type, Tests 

and Im plem entation) illustrate the levels of each factor used to derive the fault exposure 

rate, in the right most column.

T he levels of each factor are identified in Table 3.5. The differences in each factor are 

used to dem onstrate  the influence fault type, test and im plem entation factors have on the 

rate of fault exposure. For example, three different sets or levels of tests ( 1- 3 , 2-4 and 

1- 4 ) are used to  dem onstrate the influence of the test factor on testability.

T he effects of the different levels in one factor can be isolated by fixing the other two

Fault 2 Fault ^

T estl Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Legend

Test 2 Fdull 1 Fault 2 T dultJ Fault 4 F aults

Testa Fault 1 Fault 2 Fault 3 Fault 4 Foult

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5
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Factor Levels

f a u lt  Type
th is insertion
this deletion

both

t e s t s
1-3
2-4
1-4

Im plem entation Original
A O P

Removal

Table 3.5: Factor Levels

Factor Fault Type I ’csts Im plem entation Exposed

f a u lt  Type th is insertion
1 - 4 Original

1
this deletion 0.67

both 0.8

t e s t both
2 - 4

Original
0.()

1 - 3 0.4
I - 4 0.8

im plem entation both 1 - 4 Original 0.8
A O P 1

Removal 1

Table 3.6: Overview

factors when deriving the ra te  of fault exposure. This pattern  is ini])ortant because it is 

the basis for the designs used in all em pirical studies of testability. The pattern  is also 
used in this tliesis.

In this example, there are three instance of factor fixing. This first is where the 

different levels of the test factor are isolated by fixing the levels of the im plem entation 

and fault type factors. In this case, the original level of the im plem entation factor and 

the })otb level of fault type factor are fixed for the derivation of tlie fault exposure rate at 

each level of the test factor.

Tlie second (;xani])le of this i)attern  is illustrated  by looking a t the fault type fcictor in 
the Table 3.6. The different levels of the fault type fac;tor are isolated by fixing the levels of 

the im plem entation and test factors. In this case, the original level of the im i)lem entation 
factor and the 1-4 level of the test factor are fixed for the derivation of the fault exposure 

ra te  a t each level of the fault type factor.

The tliird and final example of this pa tte rn  is illustrated by looking a t the implemen­

tation  factor in Table 3.6. The different levels of the im plem entation factor are isolated 

l)y fixing the levels of the fault type and test factors. In this case, the both  level of tlie 

fault type factor and the 1-4 level of the test factor are fixed for the derivation of the fault 
exposure ra te  at each level of the fault type factor.

The S tack  class example shows th a t different levels of each factor have an effect 
on the rate of fault exposure and consequently testability. In each case, the effects of 

different levels in one factor are isolated by fixing the other two factors. This pa tte rn
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Figure 3.7: Designs of Testability Studies

is an important observation that is used as the foundation for the design of the study 
presented in Chapter 4.

3.3 Comparative Studies of Testability

There are a number of empirical studies that compare the effects of differences in the 
three factors of testability: fault type, test and implementation. This section shows that 
these studies do not provide evidence of the effects of AOP and OOP on testability and 
illustrates the use of the factor fixing pattern.

3.3.1 Fault T ype

Tliere are relatively few studies that compare the effects of different fault types on testa­
bility. However, the rates of exposure for faults of different types have been comp)ared 
(112, 111]. In these studies, the rates of exposure for faults of different types are com­
pared. The goal of these studies is to identify types of faults that have a significant effect 
on testability, so that the implementation or testing process can be streamlined. For ex­
ample, the implementation or testing processes can be altered to ensure specific types of 
fault are easier to expose [60].

Although much larger in scale, these studies are similar in design to the trivial example 
presented in Section 3.2.1, where the rates of exposure for three different sets of fault types 
are compared. The studies ensure that only the effects of the different fault type sets are 
compared the same implementation and test set are used to calculate each rate. Using 
the same implementation and test set ensures that these factors are fixed.

The left hand side of figure 3.7 illustrates the design of studies that compare the effects 
of different fault types on testability. These studies are designed to isolate the effects of 
the fault type on testability. This is done by fixing the test and implementation factors. 
This ensures that the differences in the resulting rates are caused only by differences in 
test set.
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3.3 .2  T est

I 'lie  m ajority  of tlie com parative studies of testai)ility are based on com paring different 

test selection criteria [24, 132, 19]. Test selection criteria are rules to guide the selection 

of test sets, to maximise the ra te  of fault exposure. The criteria com pared in these studies 
are typically based on control- and data-flow analysis [59, 58, 72, 7],

Control-flow analysis, identifies the paths of execution through an im plem entation. 

Data-flow analysis is an extension of control flow analysis in which the flows of d a ta  along 

the paths of execution are identified. Test selection criteria based on these flow analyses 

identify the  paths through the im plem entation th a t need to be exercised by a test set for 
it to be considered adequately tested.

In these studies, sets of test are selected to satisfy each criterion. The num ber of tests 

selected to  satisfy each criterion is used as an indicator of the cost of testing with th a t 
criterion. The ra te  of faults exposed when the selected tests are executed against faulty 
iin[)lementations is used as a measure of tc'st efficiency [59, 58, 72, 7[. I ’hese measures are 

then used together to (juantify the cost-benefit effects of different criteria on testability.

The middle of Figure 3.7 illustrates the typical design of these studies. These studies 
are designed to isolate the effects of the test sets selected to satisfy each criteria. 'I’his is 
done by fixing the fault type and im plem entation factors. The use of this pattern  ensures 

th a t the differences in the resulting rates are caused only by the different tests selected to 
satisfy each criterion.

3 .3 .3  Im plem en tation

T here is only one study th a t compares the effects of using different im plem entation ap­

proaches on testability. In tliis empirical study, Voas et al. [147] com pare the effects of 

O bject Oriented and Procedural Program m ing (OOP and P P ) on testability.

This is done by developing OO P and P P  im plem entations of a program . Tests, equally 

applicable to  both  im plem entations, are executed against both  im plem entations to ex])ose 

faults. The result of this study is a com parison of the ra te  of exposure for bo th  imple­
m entations. It showed th a t the inform ation hiding associated with O OF had the effect of 

reducing testability.

The right hand section of Figure 3.7 illustrates the design of this study. It is designed 
to isolate the effects of the im plem entation on the rate of fault exposure. This is done by 

fixing the test set and fault type factors. This ensures th a t the differences in the resulting 

ra tes are caused only l)y differences between OOF and F F  approaches to ini[)lementation.
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3.3.4 Evidential Gap

T he m ajority  of coiiij)arative studies on testab ih ty  are focused on identifying test selection 
criteria th a t yield the best cost-beneRt balance. Tlie fault type factor is of some interest 

and there is very little evidence of the effects of different im plem entation approaches on 

testability. The only study th a t compares the effects of using different im plem entation 

approaches on testab ih ty  com pares the effects of OO P and FF  on testab ih ty  and provides 

no evidence of com parative effect of AOI^ and OOF.

3.4 C hapter Sum m ary

This chapter has described a model of fault exposure, it has identified the factors in th a t 

model th a t have an effect on testability  and reviews the studies on the effects of differences 

in these factors on testai)ility. Tlie model and factors and factor fixing pattern  provide 
a foundation for describing the m easurem ent, design and analysis approaches used in the 

study, in the next chaj)ter.
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Chapter 4

Study M ethodology

'This thesis gathers empirical evidence of the com parative efi’ect of AO F and O OF on 

testab ility  tlirough a study. This study  is conducted in two phases. In the first phase, 

illustrated  in Figure 4.1, the testability  of equivalent AOF and O O F im plem entations is 

m easured for each version of the program . AOF and O O F im plem entations are e(iuivalent 
if they differ only in the a|)proach used for their development. The results of this phase 
are i)airs of AOF and OOF im plem entation testability  measures, one pair for ccicli version 
of the program , a.s illustrated in Figure 4.2. These measures are analysed in the second 

phase, illustrated in Figure 4.3. This analysis quantifies the (x^mparative effects of AO I’ 

and O O F on testability.

T he graph j)resented in Figure 4.4 illustrates the result of the m easurem ent and anal­
ysis phases for the S tack  class example. The lines in this graph represent the generalised 

effects of AOI^ and OOF on testability  over m aintenance activities. T he difference l>e- 

tween these lines is the com parative effect of AOF and OO F on testab ility  for the trivial 

S ta ck  class example.

The first and second sections of this chapter describe the m ethodology followed in the 

mefisurement phase and the th ird  section describes m ethodology followed in the analysis 

phase. The first section describes the approach used to measure testability . The second 

section describes how this approach is applied to ensure the resulting pairs of measures iso­
late the combined effects the im plem entation and m aintenance factors. T he third section 

describes how the com parative effects of AOF and O O F are analysed and quantified.

4.1 T estability  M easurem ent

in  the m easurem ent pliase of the study, illustrated in Figure 4.1, the testab ility  of the 

AOF and O O F im plem entations are measured. There are two approaches to m easuring 

the testability  of an im plem entation. Tlie selection of the approach th a t best meets defined 

selection criteria is described and the selected approach is detailed.
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P rog ram  

Version Im plem enta tions '
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Figure 4.1: Measurement Figure 4.2: Factors

P rog ram  

Version M easu re s

AOP OOP

AOP OOP

AOP OOP

AOP OOP

analysis

Figure 4.3: Analysis Figure 4.4: Stack Result

4.1 .1  M easurem ent A pproach S election

The review of the empirical studies of testability is presented in Section 3.3 illustrate 
there are two main approaches to measuring testability. The first measurement approach 
uses mutation analysis to measure the rate of fault exposure in an implementation through 
testing. The second approach measures the rumiber of tests tha t are needed to adec(uately 
test an implementation. Here, these approaches are compared against the testability 
selection criterion.

Selection Criterion

Testability is the ease with which faults can be exposed through testing [148]. Measures 
of testability are approximations of this ease [121, 24]. The goal is to select tlie approach 
that provides the most accurate approximation. This is because the more accurate the 
measures of testability are, the more accurate the comparison of the effects of AOP and 
OOP on testability will be.

The rate at which faults in an implementation are exposed through testing is used as a 
measure of testability [59, 58, 72, 7, 85, 150, 117, 147]. Mutation analysis [45, 31) derives

56



4.1. TESTABILITY M EASUREM ENT

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

Fault 1 Fault 2 Fault 3 Fault 4 F a u l ts
L e g e n d

Test 3 Fault 1 fau lt  2 Fault 3 Fault 4  F a u lts

Fault 1 F a u lts  Fault 3 Fault 4  F a u l ts

Figure 4.5; Measuring testability as the rate of fault exposure

this measure using faulty versions of the implementation. In each faulty implementation, 
a fault is introduced at a location. A location is a line of the implementation’s source 
code. A set of tests is executed against each of these faulty implementations. Test 
failure indicates fault exposure. Non-failure of a test indicates that fault contained in the 
implementation is not exposed.

The rate of fault exposure can be measured in two ways. The first is to identify the 
proportion of faults exposed. The second is to identify the proportion of fails over the 
total number of test executions. In both cases, the higher the proportion is, the easier it 
is to expose faults. The top part of Figure 4.5 illustrates this approach. It presents the 
outcomes of executing the four tests, shown in Listing 3.2, against five faulty implemen­
tations of the setSize method of the Stack class. Each of these faulty implementations 
contains one of the five faults illustrated in Listing 3.3.

In this example, the rate of fault exposure can be measured as the number of faults 
exposed taken as a proportion of the total number of faults in the implementation, which 
is The numerator of 4 is obtained by counting the number of faults exposed in Figure 
4.5. The denominator of 5 is the number of faults in Figure 4.5. Fault exposure can also 
be measured as a proportion of the total number of faults in the implementation, which 
is The denominator of 20 is the total number of test-m utant executions illustrated in 
Figure 4.5.

Both measures reflect the ease with which faults are exposed through testing. Higher 
proportions suggest that faults in the implementation are easier to expose. In a context 
in which the testability of implementations is compared the latter measure is preferred 
because it provides a more detailed measure of fault exposure.

Num ber of Tests

The second approach to testability measurement is based on counting the number of tests 
needed to adequately test an implementation [59, 58, 72, 7, 85, 150, 117]. The key to 
deriving this measure is establishing when a test set is adequate.

Adequacy is determined by identifying the paths of execution through the implemen­
tation that must be exercised through testing. These paths are typically identified using
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F'igure 4.6: Measuring Testability as the Number of Tests Needed for Fault Exposure

control- or data-flow analysis. In these analyses, tlie source code of the application is 
analysed and a graph representing the paths througli the implementation is created. A 
test set is considered adequate if it exercises all of the unique and complete paths through 
this graph.

Fart A of Figure 4.6 illustrates a control-flow graph representation of the source code 
of the se tS ize  method. Part B identifies all three of the unique and complete paths 
through this graph. For this method to be adequately tested, a set of tests that exercise 
all of these paths is required. Table 4.1 identifies w^hich of the paths, identified in part 
B of Figure 4.6, are executed by the test set (illustrated in Listing 3.2). This test set is 
considered adequate because all of the paths are exercised by at least one test. In this 
Cfise, the measure of testability is four.

This approach is based on the assumption that if a set of tests is adequate, then the 
faults in an implementation will be exposed. This assumption is based on the observa­
tion, demonstrated in Section 3.1, that execution is the primary requirement for fault 
exposure. However, Section 3.1 also demonstrates that although execution is the primary 
requirement, fault exposure also requires state infection and propagation of an infected 
state.

Figure 4.5 shows the outcome of executing the test set, identified in Table 4.1, against 
faulty versions of se tS ize  method. Although Table 4.1 shows that these tests are con­
sidered adequate, this figure shows that only  ̂ of the faults contained in these faulty 
implementations are exposed. This demonstrates the weakness of the correlation between 
the number of tests in a test set and fault exposure. The weakness of this correlation 
has been documented through empirical studies [72, 7j. This weakness suggests that the 
number of tests needed to adequately test an implementation is not an accurate measure 
of tlie ease with which faults in an implementation are exposed through testing.
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P a th
T e s ts

1 2 3 4
1 • o o o
2 o • ♦ o
3 o o o •

Table 4.1: Test Path  Execution

Selection

The descriptions of the two approaches to measuring testability indicate that the rate 
of fault exposure, derived using mutation analysis, is a more accurate approximation of 
the ease with which faults are exposed through testing. The mutation analysis approach 
provides a measure of testability of | ,  which is accurate. The number of tests required 
to exposed is 4 based on the approach based on excessing control-flow paths. This is 
inacciu’ate because this number of tests does not result in full fault exposure. M utation 
analysis is selected because analysis of the accurate measures of testal)ility it provides 
result in an accurate comparison of the effects of AGP and OOP on testability.

4 .1 .2  M u tation  A nalysis

In M utation Analysis (MA) [45], the rate of fault exposure of an implementation is derived 
by executing a set of tests against mutants of the implementation. In this subsection, 
nnitants are described, the three phases of MA: mutant generation, location execution 
and fault exposure are outlined, and each phase is described in detail through simple 
examples.

M utants

A m utant is version of an imi^lementation that contains a fault. The fault contained in a 
nnitant is a small deviation from the intended implementation. M utants are created by 
generating a copy of the implementation and introducing a deviation into the copy.

Two examples of the deviations used to generate m utants are presented in Listing 
4.1. This listing shows the implementation of the S tack  class. Lines 9 and 11 of the 
source show two deviations from the intended program in which the t h i s  keyword is 
deleted. M utants are created by making two copies of the S tack class implementation 
and introducing one of these deviations into each copy.

As will be illustrated in Chapter 5, there are different types of deviation. The type 
illustrated in Listing 4.1 is where the t h i s  keyword is deleted. This type of deviation is 
representative of the type of fault that occurs when a developer forgets to use the t h i s  
keyword where its use is intended. Each deviation in which the t h i s  keyword is deleted 
is representative of a fault of this type.

59



C H A PTER 4. STUDY METHODOLOGY

public class Stack { 
int size = 0; 
static final int max = 5; 
public int g et Siz e() { 

return t h i s . size;
>
public void s et Si ze( int  size) { 

if(size >= 0){
t h i s . s i z e = s i z e ; / / d e v i a t i o n  size= "this" is deleted 
if(size > St a ck . ma x ){  

t h i s . size = S t a c k .m a x ;//d ev ia t io n  size= "this" is deleted 
}

} else {
throw new I l l e g a l A r g u m e n t E x c e p t i o n  () ;

}
>

}

Listing 4.1: t h i s  keyword deletion deviants

Overview of MA process

An overview of the IMA process is presented in Figure 4.7. This provides a high level view 
of the inputs and outi)uts of the three phases of AlA.

The first phase of MA is iiiutHiit generation. In this phase, nnitants of an iniple- 
nientation are generated. An implementation is taken as inj)ut. The implementation is 
analysed to identify locations at which deviations can be created and nnitants generated. 
The outputs of this ])hase are the generated mutants and the locations at which they were 
generated.

The second phase of MA is location execution. The goal of this phase is to reduce 
the number of m utants tliat need to be executed to improve the efficiency of applying 
nmtation analysis. The inputs to this phase are a test set and the locations identified in 
the nmtant generation phase and the implementation, hi this phase, each test is executed 
against the implementation to identify which of the locations are executed. This enables 
the identification of mutants that contain faults at locations that are not executed by each 
test. If the location at which a fault is contained is not executed then the fault cannot 
be exposed. The output of this phase is a list of mutants generated at locations tha t m’e 
executed by each test.

Fault exposure is the third and final phase of MA. The inputs to this phase are the 
test set used in the location execution phase and the list of nnitants generated at locations 
that are executed by each test in that set. In this phase, tests are executed against the 
m utants generated at the executed locations. The output of this phase is the pass and 
fail outcomes from executing tests against mutants. A fail outcome is indicative of fault 
exposure.
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Figure 4.8; M utation Operators Applied at Locations

M utant Generation

M utant generation is the first phase of MA. In this phase, m utants  are generated i)y 

analysing the source code of an implementation to identify locations at whicli to apply 

nuitation operators. Mutation operators create deviations at tliese locations and these 
deviations are used to generate nuitants. Each mutation operator is used to create a 

specific type of deviation or fault. As will be demonstrated later in Section 5.2, there are 

mutation operators defined for different languages. The mutation operators defined for a 

specific language are used to generate the types of faults that  occur in practice when tha t 

language is used. The output of this phase is a set of nuitants of the implementation tha t 
contain faults at specific locations.

M utant Generation Example

Tlie process of m utan t generation is demonstrated using the S ta ck  class example. In this 

example, two Java mutation operators [98], the Java t h i s  Deletion (JTD ) and Java t h i s  

Insertion (JTI) operators are ; , "od to the source code of the S ta ck  class.

The JT D  operator is applicable to locations which contain the t h i s  keyword. When 
applied to these locations, the o[>erator creates deviations by deleting the t h i s  keyword. 

The result of applying the JT D  operator to the S tack  class is illustrated in the comments
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1
2
3
4
5
6
7
8 
9

10
11
12

this"
" t h i st h i s .s i z e = s i z e ;/ / d e vi a ti o n

t h i s
t h i s .s i z e = S t a c k .m a x ;

14
15
16 
17

throw new 11 1 e g a l A r g u m e n t E x c a p t i o n  () ;

Listing 4.2: t h i s  keyword insertion deviants

at lines 9 and 11 in Listing 4.1. Each of these locations contain a reference to the t h i s  
keyword. In each deviation the keyword is deleted.

The JT I operator is applicable to locations which contain references to method pa­
rameters that have the same name as a method attribute. An example of such a location 
occurs at line 8 of Listing 4.2. At this line, the s iz e  parameter of the s e tS iz e  method 
is referenced. There is also an attribute in the S tack with the name s iz e . By default, 
a reference to s iz e , is a reference to the ])arameter. To reference the s iz e  attribute can 
only be made by prefixing the reference with tlie t h i s  keyword.

When applied to these locations, the operator creates deviations by inserting the t h i s  
keyword as a prefix to parameter references. The result of applying the JTI operator to 
the S tack  class is illustrated in the comments at lines 8, 9 and 10 in Listing 4.2. At each 
of these locations, the operator creates deviations in which the t h i s  keyword is inserted.

The output of the iiiutant generation phase, after being ai)plied to the S tack class 
example, is illustrated in Figure 4.8. This shows that five mutants are generated at four 
locations at lines 8, 9, 10 and 11 by the JTD and JT I operators.

Location Execution

The second phase of MA is location execution. The goal of this jjhase is to reduce the 
number of m utants that need to be executed by each test in the fault exposure phase.

In the fault exposure phase, tests are executed against mutants. The fault exposure 
phase can be computationally expensive [31, 116, 114]. This is because every test needs 
to be executed against every m utant. If there are a large number of tests and/or nni- 
tants, then the number of test-m utant executions is large. A large number of test-m utant 
executions requires a large amount of computational resources, which may be infeasible.
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Legend

I Test execution 

Location

I  Control flow
I

i  Return flow

setSize(size)

lf(size>=0)

, lf(size > Stack.max)'

\  this.slze=Stack.max

throw new lllegalStateExceptionO

Figure 4.9: Locations Executed by Test 1

The need for a large amount of computational resources can be reduced by reducing the 
number of test-m utant executions in the fault exposure phase. The goal of the test-m utant 
executions in the fault exposure phase is to identify the outcome of each test-m utant 
execution. This reduction is made possible by identifying the m utants that contain faults 
at locations that are not executed by tests. Section 3.1 demonstrates that the execution 
of the location at which the fault occurs is the primary requirement for fault execution. If 
a test does not execute the location at which a fault occurs, then the test cannot expose 
the fault.

In this phase of MA, the locations executed by each test are identified by executing 
each test against the original version of the implementation. By identifying the locations 
executed by each test, the locations that are not executed are determined. The m utants 
at the locations that are not executed by a test, do not need to be executed to identify the 
outcome as it is known to be a pass. The output of this phase of MA is a reduction in the 
number of m utants that must be executed by each test. For each test, only the m utants 
that contain faults at locations that are executed by the test need to be executed.

Location Execution Example

The process of identifying the locations executed by each test is demonstrated using the 
Stack class example. This demonstration focuses on Test 1 from Listing 3.2. In this 
phase, this test is executed against the original version of the Stack class to identify 
which of the locations, identified in Figure 4.8, are executed by the test.

In Figure 4.9, the path of execution exercised by Test 1 through the setSize method 
of the Stack class is highlighted in red. This figure identifies the relevant locations^ and 
shows tliat Test 1 executes location 8. Because locations 9, 10 and 11 are not executed 
by Test 1, the outcome of executing Test 1 against mutants that contain faults at these

'These locations are identified in the mutant generation phase
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i Test 2

JTI (this insertion)

JTD  (this deletion)

Fault 1

Fault 1 Fault 2 Fault 3 Fault 4

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

Fault 1 Fault 2 F a u lts Fault 4

Locations 10

Legend
Test 1

Test 2

Test 3

Test 4

JTI (this insertion)

JTD  (this deletion)

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

Fault 1 Fault 2 Fault 3 Fault 4 F a u l ts

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

Fault 1 F a u lt?  F a u l ts  Fault 4 F a u l ts

T
10 11

Legend

Figure 4.10: Faults Execution Figure 4.11: Fault Exposure

OutcomesMutant

1̂
no

Not Exe

EffectsFault Exposure

4 /2 0 Rate

FailPass

Fault Execution Infection and Propagation

F^igure 4.12: Fault Exposure: Model, Rates and Effects of Sub-Rates

locations is a pass, indicating that these faults are not exposed.
Based on this, the number of mutants that need to be executed in the fault exposure 

phase of MA is reduced from five to one. Figure 4.10 presents the output of this phase 
for the four tests presented in Listing 3.2. The figure identifies for each test, the mutants 
that contain faults at locations that will be exercised by the test.

Fault E xposure

The third and final phase of MA is fault exposure. In this phase, each test is executed 
against the m utants that contain faults, at locations that are executed by the test. When 
the execution of a test against a mutant results in failure, the fault is exposed . When 
the execution of a test against a mutant results in a pass, the fault is not exposed .

This model of fault exposure is illustrated in Part A of F'igure 4.12. Tliis sliows the 
causes of the observed outcomes. If a test does not execute the fault contained in the
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iiiiitant, then a not exe outcom e results. If a test does execute the fault contained in 

the nu itan t, then the s ta te  directly after the execution may become infected and this 

infected s ta te  can be propagated into the ou tpu t of the nn itants execution. If infection 

and propagation occurs, then this results in a fnil outcome. If not, then a puss outcome 

results.

Figure 4.11 illustrates the outcomes of executing each of the four tests, presented 
in Listing 3.2, against the m utants of the S tack  class identified in Figure 4.10. These 

outcomes arc the basis for calculating the ra te  of fault exposure. To calculate the rate, 

the num ber of not exe, })nss and fnil outcomes are counted. Based on these counts, the 

ra te  of fault exposure is calculated as rate  =  -j—r,— — 7— • T he outcom es of test-
^ J ( i l l - \ - i ) f i s s - \ -n o te xe

m utan t execution, illustrated in Figure 4.11 are sunm iarised in P a rt B of Figure 4.12, 

which shows th a t there are 6 not cxe outcomes for test-nm tan t execution. There are 10 

/xis.s and 4 fnil outcomes. Based on these counts, the ra te  of fault exposure is calculated 
to be ^  as illustrated  in P a rt C of Figure 4.12.

P art C of Figure 4.12 indicates th a t the ra te  of fault exposure  is caused by two sul)-

rates. The first is the rate of fault execution. As illustrated, in the figure this ra te  is
calculated as ra te  =  . —  or M =  The second is the ra te  of infectionI (u l - h i> ( J s s - ^ n o te x e  20  4 - 1- 1 0 - 1-6

and propagation. As illustrated, this ra te  is calculated as rate  =  or ^  =  4: ^ -

The effects of these sub-rates on the ra te of fault exposure is illustrated  in Part D of 

Figure 4.12. T he relationship between the rates of Fault eXecution (FX)  and Infection and  
Propagation (IF) and the ra te  of Fault Exposure (FE)  is nm ltiplicative F E  =  F X  x IF .  

This is dem onstrated  by the rates derived from the S tack  example, ^  ^  The
ra te  of fault execution  represents the proportion of m utants th a t are executed. If this 

ra te  is high, then the num ber of potential fail outcomes is high. T he ra te  of infection and 

propagation  represents proportion of the executed m utants th a t result in a fail outcome. 

If this ra te  is high, then the num ber actual fail outcomes is high, which ensures a high 
ra te  fault exposure.

4 .1 .3  Sum m ary

Figure 4.1 shows th a t in the first phase of the study, the testab ility  of im plem entations 

are m easured. In this section, nm tation analysis was selected as the api)roach used to 

m easure the testab ility  of im plem entations. It is selected because it results in a measure 
th a t is more reflective of the ease of fault exposure than  other approaches. The m utation 

analysis approach was also described in detail.
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4.2 G ath erin g  M easures o f  T estab ility

In the nieasiireiiieiit phase of the study, ihustrated in Figure 4.1, nnitation analysis (MA) 
is apphed to AOP and OOP iniplementations of different versions of a program. The goal 
of this phase is to gather testability measures from these implementations that can be 
analysed to identify the comparative effect of AOP and OOP on testability over mainte­
nance activities, as illustrated in Figure 4.4.

To jjerform this analysis requires pairs of AOP and OOP measures, one jjair for each 
version of the program. Elach measure must represent the combined effects of two factors: 
iin{)lementation and maintenance. Section 2.10, identifies an approach used in studies, 
similar to this study, that compare the effects of AOP and 001^ on the other indicators 
of maintainability that result in measures that meet these requirements.

One challenge to overcome in following this approach was the integration of mutation 
analysis. Typically, when this approach is ai)plied result in measures that cU-e solely 
representative of the combined effects of two factors: implementation and maintenanc:e. 
The measure of testability, derived using nnitation analysis, introduces two other factors, 
tests and mutants. To overcome this, an extension is introduced, as outlined in Section 
3.2.4, to fix these factors over measurements. Fixing these factors for each measurement, 
ensures that the resulting measures are solely re[)resentative of the combined effects of 
two factors: implementation and maintenance.

4.2 .1  Follow ing th e  C om m on A pproach

Section 2.10, outlines an approach commonly used in similar studies, that compare the 
effects of AOP and OOF* on the other indicators of maintainability, that result in measures 
that are solely representative of the combined effects of two factors: implementation and 
maintenance. The foundation of this aj)proach is im p le m e n ta tio n  an d  m a in te n a n c e  
equ ivalence , which me ex])lained and illustrated through the Stack class example.

Im p le m e n ta tio n  a n d  M a in te n a n c e  E qu ivalence

In the common approach, illustrated in Figure 4.13, maintenance activities are cunnila- 
tively applied to AOP and OOP implementations of a program. The initifil AOP and 
OOi^ implementations of a program are equivalent in that they differ only in tlie ap­
proach used for their development. I']quivalence is assured by fixing all other factors that 
can cause the implementations to differ. For example, the implementations are developed 
to the same level of expertise, are based on the same style of programming, satisfy the 
same requirements, expose the same interface and produce the same outjjuts for a given 
input etc.

The same maintenance activities are cunnilatively a])plied to both AOP and OOP
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Figure 4.14: Factors

implementations. After eacli maintenance activity is applied to both implementation, 
a new version of these implementations result. The new versions of these implementa­
tions are equivalent because the maintenance activity is applied to both implementations. 
This means th a t the respective versions of the AOP and OOF implementations are also 
equivalent. When all maintenance activities are applied, the only difference between each 
respective version of the AOP and OOP implementations is a maintenance activity.

Stack Example

To demonstrate equivalence, Java and AspectJ implementations of the Stack class are 
illustrated in Listings 4.3 and 4.4. Both implementations are developed by a progammer 
proficient in both Java and AspectJ, are based on the same style of programming, satisfy 
the same requirements, expose the same interface and produce the same outputs for a given 
input. Specifically, both implement a setSize in which the pre- and post-conditions are 
defined that identify minimum and maximum sizes for the Stack. The only difference 
between these implementations is that Listing 4.3 is implemented in Java and Listing 4.4 
is implemented in AspectJ. They are equivalent in that they diff"er only in the approach 
used in their development.

As illustrated in Figure 4.15, one maintenance activity is then applied to both im­
plementations of the Stack class. In this maintenance activity, the post-condition that 
identifies a maximum and size for the Stack is removed. The results of applying this 
maintenance activity are illustrated in Listings 4.5 and 4.6. The only difference between 
Listings 4.3 and 4.4 and Listings 4.5 and 4.6 is that the post-condition is removed. This 
means that the Java implementations for the Stack in Listings 4.3 and 4.4 are mainte­
nance equivalent, in that the only difference between these implementations is the effect
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1 public class Stack {
2 int size = 0;
3 static final int max = 5;
4 public int getSize(){...}
5 public void setSize(int size) {
6 if(size >= 0){
7 this.s ize = s ize;
8 if(size>Stack.max){
9 t h i s .size=Stack.m a x ;
10 >
11 } else {
12 throw new IllegalArgumentException () ;
13 }
14 }
15 }

Listing 4.3: Java S tack - Initial Iniplenientation

1 public class Stack {
2
3
4

int size = 0;
static final int max = 5;
public int getSize(){...}

5 public void setSize(int size) {
6 this.size=size;
7 }
8 }
9 public privileged aspect StackAspectPrePost {
10 void around(int size, impl2.Stack stack) :
11 executionCvoid impl2.Stack.setSize(int))
12 && args(size) && target(stack){
13 if ( s ize >= 0) {
14 proceed(si z e , stack);
15 if(size > Stack.max){
1() stack.size = Stack.max;
17 >
18 )■ else {
19 throw new 111egalArgumentException();
20 }
21 }
22 }

Listing 4.4; AspectJ S tack - Initial Implementation

1 public class Stack {
2 int size = 0;
3 public int getSize(){...}
4 public void setSize(int size) {
5 if(size >= 0){
6 t h i s .size=size;
7 } else {
8 throw new IllegalArgumentException () ;
9 }
10 }
11 }

Listing 4.5: Java Stack - Maxinnini Condition Removed
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18

e x e c u t i o n ( v o i d  i mp1 2 . S t a c k . s e t S i z e ( i n t ) )

throw new I 1 1 e g a l A r g u m e n t E x c e p t i o n ();

Listing 4.6: AspectJ S tack - Maximum Condition Removed
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S tack
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C Ig. 
<u >

■■ . . .  ^

1

A ' = R em o v e  m axim um  condition

Im plem entation  E qu ivalence

Figure 4.15: Stack Example

of applying the maintenance activity.

4.2.2 Integrating M utation Analysis into the Approach

The measurement approaches used when this approacli is applied result in measures that 
are solely representative of the combined effects of two factors: implementation and main­
tenance. An example of a typical measurement approach is to measure the size of each 
implementation. As illustrated in Figure 6.5, this measurement is based solely on the 
implementation from which it is taken. When this measurement approach is applied to 
implementations that are equivalent, the resulting measures are solely representative of 
the effects of the implementation and maintenance factors.

F'igure 4.14 illustrates the result of applying MA to the implementations. There are 
measures for AOP and OOP implementations of each version of the program. p]ach mea­
sure is representative of the combined effects of four factors: test, m utant, implementation
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Figure 4.16: Size Figure 4.17; Mutation Analysis

and maintenance. As illustrated in Figure 4.17, the application of MA to each implemen­
tation requires the generation of mutants of the implementation and the execution of tests 
against those nuitants, the outcomes of which are used to derive a measure of testability. 
The test and m utant factors are an issue because their uncontrolled presence introduces 
the effects of these factors into the measures and has the potential to confound the com­
parison of the effects of AOP and OOP on testability.

To address this problem, and ensure that each measure is representative of the com­
bined effects of only implementation and maintenance, the effec*ts of test and mutant 
factors must be neutralised. Section 3.2.4 outlines an approach to neutralise the effects of 
these factors, which is to fix the test and mutant factors for each application of nuitation 
analysis.

Fixing the M utant Factor

The m utant factor is fixed by ensuring that the nmtants generated for each implementation 
are (implementation and maintenance) eciuivalent. Figure 4.18 illustrates the m utants 
generation phase of MA. In this phase, mutants are generated for the AOP and OOl^ 
implementations of each version of the program.

Tlie types of faults that are generated in the mutants of the AOP and OOP implemen­
tations liave to differ, as they are based on the types of faults that are observed in practice. 
Different types of faults occur in AOP and OOP implementations, and as such the types 
of faults generated in m utants of these implementation also differ [53, 26, 36, 156].

To fix the fault type factor, this study ensures that the m utants generated for each 
pair of equivalent AOP and OOP implementations are also equivalent. That is, the only 
difference between AOP and OOP mutants is based directly on the difference between the 
AOP and OOP implementations from which they are generated.

To ensure that the fault type factor is fixed, the same process is used to generate mu­
tants in both implementations. Although mutants that contain different types of faults are 
generated for the AOP and OOP implementations, the resulting mutants are equivalent 
and the m utant factor is fixed.
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Fixing the Test Factor

Figure 4.19 illustrates the application of the location execution phase to the AOP and 
OOP implementations. In this phase, tests are executed against the implementation that 
to identify the locations that are executed by each test. To fix the test factor in this 
phase, the same set of tests are executed against the AOP and OOP implementations of 
each version of the program. This ensures that the only difference in the results of this 
phase is the difl'erence between the AOP and OOP implementations.

Figure 4.20 illustrates the application of the fault exposure phase. In this phase, tests 
are executed against mutants. To fix the test factor in this phase, the same set of tests 
are executed against the m utants of the AOP and OOP implementations of each version 
of the program. This ensures that the only difference between outcomes for each set of 
m utants is based on the difference between the AOP and OOP implementations.
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Figure 4.21: M utant Gen Figure 4.22: Location Exe Figure 4.23: Exposure

The integration of the measurement gathering and mutation analysis approaches used 
in this study is demonstrated using the Stack class example. In this example, mutation 
analysis is applied to the implementation and maintenance equivalent Java and AspectJ 
implementations of the Stack class, illustrated in Listings 4.3, 4.4, 4.5 and 4.6.
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M utant Generation for Stack Implementations

Figure 4.21 illustrates application of a nuitant generator to the Java and AspectJ imple­
mentations of versions 1 and 2 of the S tack class. The mutant generator applies different 
m utation operators to each implementation. The AspectJ nuitation operators rU’e applied 
to locations that contain AspectJ features and Java nmtation operators are applied to 
locations that contain Java features. In this example, two Java mutation operators, the 
Java t h i s  Deletion (JTD) and Java t h i s  Insertion (JTI) operators are applied to the 
As])ectJ and Java versions of the S tack class. The Around Proceed Statement Removal 
(APSR) operator is also applied to the AspectJ implementation. These o])erators repre­
sent a subset of the types of faults observed to occur in .Java and As])ectJ inij)lementations 
[98, 53]. The complete set of oi)erators are detailed in Section 5.2 of the next chapter.

The JTD operator is applicable to locations that contain the t h i s  keyword. When 
a])plied to such a location, the operator creates a deviation or fault by deleting the t h i s  
keyword. The JTI operator is applicable to locations that contain references to method 
parameters that have the same name as a method attribute. When applied to such a 
location, the operator creates a fault by inserting the t h i s  keyword. The APSR operator 
is applicable to locations that contain a call to proceed. W^hen applied to such a location, 
the operator creates a fault by deleting the proceed call.

In this application of m utant generation, the generator analyses the code to identify 
all of the locations that meet these criteria. The mutation o])erators are then applied to 
the appropriate locations. The results of this process are illustrated in Listings 4.7, 4.8, 
4.9 and 4.10. In each listing, the comments identify faults generated in m utants and the 
mutation operators that created them.

The only difference in each set of generated nuitants is based solely on the implemen­
tation for which they are generated. For exam])le. Listings 4.7 and 4.8 contain equiv^ilent 
Java and AspectJ implementations of the first version of the S tack class. The nnitants 
generated for the Java and AspectJ implementations differ, l '̂ive mutants of the Java 
implementation are generated by the JT I and JTD operators. Three nm tants of the 
AspectJ implementation are generated by the JTI, JTD and APSR operators. They 
are imj)lementation equivalent becau.se they represent the faults that can occur in both 
implementations.

Another example of nnitant equivalence is observed in Listings 4.7 and 4.9. These 
contain the Java implementations of the first and second versions of the S tack  class. 
JJiese are equivalent in that the only difference betw^een tiiese ini[)leinentations is the 
maintenance activity applied to the first Java implementation to create the second. Dif­
ferent m utants are generated for each implementation. In the implementation of the first 
version, there are five faults and in the second there are three. They are maintenance 
ecjuivalent because the only difference between these mutants is directly based on the
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public class Stack { 
int size = 0; 
static final int max = 5; 
public int getSize(){ 

return this.size;
}
public void setSize(int size) {

if(size >= 0){// if(this.size >= 0) fault 1-JTI 
this . size = size;// size=size faults 2-JDT 3-JTI 
i f (s ize>Stack.max){// this.size> fault 4-JTI 

t h i s .size=Stack.m a x ;// size= fault 5-JDT 
}

} else {
throw new I11egalArgumentException();

>
>
}

Listing 4.7: Java Stack - Initial Implementation Mutants

public class Stack { 
int size = 0; 
static final int max = 5; 
public int getSize(){...} 
public void setSize(int size) {

t h i s .size= size;// size=size fault 2-JTD 3-JTI
}

>
public privileged aspect StackAspectPrePost { 
void aroundCint size, impl2.Stack stack) : 
execution(void imp12.S t a c k .setSize(int))
&& args(size) && target(stack){ 
if(size >= 0){

proceed(si z e , stack);// fault 6-APSR 
ifCsize > Stack.max){ 

stack.size = Stack.max;
}

)■ else {
throw new I11egalArgumentException();
}
}
}

Listing 4.8: Aspect.! Stack - Initial Implementation Mutants

difference between the Java implementations.

By ensuring that each set of mutants are implementation and maintenance equivalent, 
the mutant factor is fixed. The generated mutants do not impose any influence on the 

measures derived from executing tests against these to produce outcomes, from which 

faidt exjjosure rate measures can be derived.
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1
2
3
4
5
6
7
8 
9

10
11

t h i s .s i z e = s i z e ;

throw new I l l e g a l A r g u m e n t E x c e p t i o n ();

Listing 4.9: .Java S tack  - Maxiniuin Condition Removed M utants

public class Stack { 
int size = 0;
public int getSize (){...} 
public void s e t Si z e( in t  size) {

t h i s .s i z e = s i z e ;// siz e=size fault 2-JTD 3-JTI
}

}
public pri vi le g ed  aspect S t a c k A s p e c t P r e P o s t  { 
void ar ou nd ( in t  size, i m p l2 . St a ck  stack) : 
e xe c u t i o n C v o i d  i m p l 2 .St a c k . s e t S i z e ( i n t ) )
&& args(si ze ) && t a r g e t (s t a c k ) { 
if(size >= 0){

p r o c e e d (s i z e , stack);// fault 6-APSR 
} else ■[
throw new I I 1 e g a l A r g u m e n t E x c e p t i o n ();

}
}

}

Listing 4.10: Aspect.J S tack - Maxiiniini Condition Removed M utants

L o ca tio n  E x ecu tio n  and F au lt E x p o su re  for S tack  Im p lem en ta tio n s

Figures 4.22 and 4.23 illustrate the location execution and fault exposure phases of MA. 
Both of these phases use the four tests developed for the Stack, illustrated in Listing 3.2. 
In the location execution ])hase, they are executed against each implementation to identify 
the locations executed by each test. In the fault exposure phase, they are executed against 
each mutants of executed locations in each implementation. In both phases, the test factor 
is fixed. The only difl'erence in the outcomes for each implementation, are due solely to 
the difference between each implementation.

The outcomes of both phases for the Java and AspectJ implementations of versions 1 
and 2 of the S tack  are illustrated in Figures 4.24 and 4.25 respectively. These outcomes 
are summarised in Table 4.2. For each implementation of both versions, this table counts 
the number of m utants that were not executed, m utants that were executed resulting in 
a pass and m utants that were executed resulting in a fail . Based on these counts, the



4.2. GATHERING M EASURES OF TESTABILITY

Version
Java A spectJ

n o t  e x e fa/-/ r a t e n o t  e x e /Jil.S.S liiil r a t e
1 6 lU 4 U.2U 3 4 3 0.30
2 2 4 3 0.33 3 3 3 0.33

Table 4.2: Mutation Analysis Outcomes

J a i lrate of exposure is calculated s rate  =
Each measure represents the combined effects of two factors: implementation and 

maintenance. The rate of fault exposure for the Java implementation at version 1 is 
0.20. This represents the effects of Java at the initial maintenance version. The rate for 
the Java implementation at version 2 is 0.33. This represents the effects of Java at the 
second maintenance version. The rate of fault exposure for the AspectJ implementation 
at version 1 is 0.30. This represents the effects of AspectJ at the initial maintenance 
version. The rate for the AspectJ implementation at version 2 is 0.33. This represents 
the effects of AspectJ at the second maintenance version.

I

les t 4

Locations

JTI (this insertion} APSR (proceed deletion)

JTD (this deletion)

Fdult 1 F ju tt 2 F ju lt3  Fault 4 F au lts
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Test 2 1

Test 3
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Test 2
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Test 4
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Fault 2 Fault 3

Fault 2 Fault 3

Locations

Figure 4.24: Java Figure 4.25: AspectJ

4 .2 .3  Sum m ary

In the measurement phase of this study, mutation analysis (MA) is applied to AOP and 
OOP implementations of different versions of a program. This section has outlined an 
approach for gathering testability measures from implementations that can be analysed to 
identify the comparative effect of AOP and OOP on testability over maintenance activities. 
The approach ensures that the gathered measures represent the combined effects of only 
two factors: implementation and maintenance. Each measure gathered, represents the 
effects of either AOP or OOP at each maintenance version of the program. In the next 
section, the approach to analyse these measures is outlined.
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V ersion
Java A.spcctJ

n o t  cxc j i l l S S fnil n o t  cxc fail
1 6 10 4 A 4 3
2 2 4 3 3 3 3
3 4 16 10 7 13 3
4 6 18 8 8 12 4
5 6 20 14 10 12 3
6 8 22 16 14 16 6
7 10 22 18 16 14 6
8 12 26 18 18 18 5
9 IG 26 20 20 22 10
U) 10 20 16 14 16 8

Table 4.3: M utation Analysis Outcomes

4.3 A n alysin g  M easures o f T estab ility

In the measm’cment phase of the study, measures are gathered that represent the combined 
effects of two factors: implementation and maintenance. Eacli measure represents the 
effects of either AOP or OOP at each maintenance version of the {)rogram. In this section, 
the approach to analysing these measures is outlined. This section shows how a mixture 
of informal graphical comparison and formal regression analysis approaches are used to 
compare the effects of AOP and OOP on the rate of fault exposure and understand the 
causes for differences in those effects. The first part of this section, sliows how measures 
are graphed to illustrate the difference between the effects of AOP and OOP on rates and 
the second part shows how regression analysis is used to quantify the difference between 
these effects on rates.

4 .3 .1  G rap h ica l A n a ly s is

Graphical analysis [149, 14, 92, 97, 54, 87, 63] is a typical approach to analysing the 
measures collected in comparative studies of the effects of OOP and AOP on indicators 
of maintainability. Grai)hical analysis is widely used because it is an intuitive way to 
understand and compare measures.

O utputs o f M utation  A nalysis for Stack exam ple

To demonstrate this it is applied to an extension of the S tack example used in Section
4.2.2 that are presented in Table 4.3. In this extension, nnitation analysis is applied to 
a further eight versions of the Java and Asj)ectJ implementations, illustrated in Listings 
4.7 and 4.9. Table 4.3 presents the resulting counts of not exc, pass and fnil outcomes for 
the Java and AspectJ implementations at a specific maintenance version of the program.
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outcome
notexe

g.

knpl
• AspectJ

' ^  S  <y &O T CT r  <J

Figure 4.26: Visualising Outcomes Figure 4.27: Fault Exposure

8

I
' AspectJ

s. impi
■* AspectJ

Figure 4.28: Fault Execution Figure 4.29: Infection and P ropagation

Visualising Results

Figure 4.26 presents a bar chart th a t visualises num ber of not exe, pass and fail outcomes 

for each im plem entation in Table 4.3. Each bar in this chart represents the outcomes 

of the test-m utan t executions for a specific im plem entation. The bars for the Aspect.) 

and .Java im plem entations of each version are placed directly beside one another to make 

com jjaring the num ber of not exe, pnss and hiil outcomes easier. This chart provides an 
easily com parable representation of the num bers of not exe, ])a.s.s and ihi] outcomes for 

each ])air of Aspect.! and .Java im plem entations.

77



C H A P T E R  4. S T U D Y  M E T H O D O L O G Y

For instance, from this chart it is clear that there are consistently less test-nm tant 
executions for Aspect.! compared to Java. This is because there are less nnitants generated 
for the AspectJ implementations, as indicated in Figures 4.24 and 4.25. A trend of an 
increasing number of test-nm tant executions up to version 9 of the stack can also be seen. 
tYom this graph, it is however more difficult to estimation of the rates of fault exposure, 
fault execution and infection and propagation.

This chart also enables the rates of fault exposure, fault execution anti infection and 
propagation over versions to roughly estimated and compared. For example, at version 

9, the rate of fault exposure {rate =  /•„̂ 7-|-y,/ss+no êje) ^^ems to be higher for AspectJ. 
The rate of fault execution {rate =  f„n+p!,t^^+notexe) higher and the rate of
infection and propagation {rate — J  filso seems to be higher.

A n a ly s in g  R a te s

Figures 4.27, 4.28 and 4.29 cU'e graphs that illustrate the rates of fault exposure, fault 
execution and infection and propagation, respectively. In these graphs the x-tixis repre­
sents the version and the y-axis re])resents the rate. Each point on the grai)h re])resents a 
rate for each an AspectJ or Java imj)lenientations of each version of the IIW. The points 
are differentiated by colour and a line connecting the points for AspectJ and Java imple­
mentations is provided to highlight the changes in the rate over versions of the IIW for 
each.

Fault E x ecu tio n

Figures 4.28 and 4.29 show the rates of fault execution and infection mid propagation for 
each AspectJ or Java imj)lementation. Figure 4.28 shows that rate of fault execution is 
consistently higher for Java implementations. The rate starts at 0.7 and ends at 0.63 for 
AspectJ and starts at 0.7 and ends at 0.79 for Java. This means that when the same tests 
are executed against Java and AspectJ S tack imi)lenientations there were more faults 
executed in the Java implementation.

In fec tio n  and  P ro p a g a tio n

Figure 4.29 shows that rate of infection and propagation is higher for Java implementa­
tions. The rate starts at 0.43 and ends at 0.33 for AspectJ and starts at 0.29 and ends 
at 0.44 for Java. Besides versions 1 and 2 the rate of infection and propagation for Java 
are consistently higher compared to AspectJ. This means that when the same tests are 
executed against the faults in nm tants of the Java and AspectJ S tack implementations, 
more faults iire exposed in the Java ini])lenientation.
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Fault Exposure

As (ieiiioiistrated in Section 4.1.2, the relationship between the rates of fault execution 
and infection and propagation and the rates of fault exposure is nniltiplicative. That is 
the rate of Fault Exposure (FE) is the product of the rates of Fault eXecution (EX)  and 
Infection and Propagation (IP), F E  — F X  X IP.  Figure 4.27 shows that the rates of 
fault exposure for Aspect.! and Java implementations difTer. Each of these rates is l)ased 
on the i)roduct of the rates, illustrated in Figures 4.28 and 4.29.

Figure 4.27 shows that the rate of fault exposure for the Aspect.] implementation at 
version 1 is 0.3 =  0.7 x 0.43 and decreases to 0.21 =  0.63 x 0.33 at version 10. The rate 
of fault exposure for .Java implementation at version 1 is 0.3 =  0.7 x 0.29 and increases 
to 0.35 =  0.79 X 0.44 at version 10. The calculation of these rates shows that higher rates 
show that higher rates of fault execution and infection and propagation result in higher 
rates of fault exposure.

In Figure 4.27 the rate fault exposure is consistently higher for .Java from version 3 to 
10. This is because the rate fault execution and infection and propagation are consistently 
higher for .Java over these versions. This means that in the .Java implementations of 
versions 3 to 10, more faults are executed by tests and when these faults are executed 
more of them are exi)Osed.

'I'he figure shows that the rate at version 1 is higher for Aspec^t.J and at version 2 
the rate is the same for .Java and Asi)ect,J. The rate at version 1 is higher because the 
rate of fault execution is the same for both AspectJ and .Java at version 1 but the rate 
of infection and propagation is higher for Aspect.J. This means tha t in the Asj)ect.J and 
.Java implementations of versions 1 the same proportion of faults are executed by tests 
but more these faults are exposed when executed in the Asj)ect.J implementation.

The rate at version 2 is equal because rate of fault execution is higher for the .Java 
implementation but the rate of infection and propagation is higher for Aspect.J. This means 
that although there are more faults executed in the Java implementation of versions 2, 
less of these faults are exposed when executed compared to the AspectJ implementation. 
These differences cancel one another out and result in an equal rate of fault exposure for 
the AspectJ and Java implementations of version 2.

Conclusions from Graphical Analysis

From the analysis of the bar chart in Figure 4.26, it can be concluded that there are 
more test-nnitants executions for the Java implementations compared to the Asi>ect.J 
ini{)lementations. The reason for this is that there are more m utants generated for the 
Asj)ect.J implementation. The same number of tests are executed against the nnitants 
of each implementation, w'hich means that the only cause of the difference is due to the 
number of nnitants generated.
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Graphical Analysis Regression Analysis

Rate .0 8 9 %

29%

Rate I O j a v a

Fault Execution Infection and Propagation

Figure 4.30: Conclusions of Analysis for Stack

The left hand side of Figure 4.30 illustrates the conclusions drawn from the analysis 

o f the rates o f fau lt execution, infection and propagation and fault exposure presented in 

Figures 4.27, 4.28 and 4.29. I t  indicates that the rate of fault exposure or tes tab ility  is 

higher for the Java implementations of the Stack. It also illustrates that the reason for the 

observed difference is tha t over the different versions of the Stack, there are more faults 

executed by tests and more o f these executed faults result in infection and propagation 

resulting in test failure and fault exposure for the Java implementations.

Graphical analysis, as has been demonstrated, allows conclusions to  be drawn about 

tlie  comparative effect, or differences in the efiects, of AspectJ and Java on the testab ility  

o f the stack. It also allows conclusions to be drawn about tlie  comparative effect o f 

AspectJ and Java on the determinants testability, the rates of fau lt execution and infection 

and propagation. As w ill be detailed next, binomial regression analysis [52], is used to 

quantify  the comparative effects of AspectJ and Java on the testab ility  o f the stack and 

its determinants.

4.3.2 B inom ial Regression Analysis

Binom ial Regression Analysis (BR A) [52] is used quantify the difference in the effects 

o f OOP and AOP on the rates of fau lt exposure, fau lt execution and infection and 

propagation. BRA is a statistica l technique for analysing the relationship between a 

binom ial response and explanatory factors. In this application of binomial regression, 

the binomial response is tlie  rate and the explanatory factors are tlie  implementation 

and maintenance version. The relationship between between these factors and the re­

sponse is defined in a model. This relationship is captured in the regression model, 

ra te  ~  im p lem enta tion  +  version, which indicates that each rate is caused by both the 

implementation and version of the program. This is the standard way in which a binomial 

regression model is specified [52]. In this case, there are three models specified, one for 

each rates of fau lt exposure, fau lt execution and infection and propagation.

80



4.3. ANALYSING M EASURES OF TESTABILITY

model specification
1 Fault Exposure im p le m e n ta t io n  +  vers ion
2 Fault eXecution  ~  im p le m e n ta t io n  +  vers ion
3 Infection and Propagation  ^  im p lem en ta t io n  +  vers ion

Table 4.4: Models

M odel Fitting

The relationship between each rate and the factors in each model is measured by fitting 
the model over the measures in Table 4.3. In the model fitting process, the correlation 
between the effects of AspectJ and Java implementation approaches and each version on 
the observed rate is measured [52]. These correlations are used to measure the generalised 
effects of each factor on the rate of fault exposure [52].

Table 4.31 presents the results of fitting three models for the effects of the Version and 
Iinplcinentation factors on the rates of Fault Exposure, Fault eXecution and Infection and 
Propagation. These models are ])resented in Table 4.4.

The first two columns of the table are Version and Implementation. The rows within 
these columns represent the specific versions (1-10) and implementations (AspectJ or 
Java) for to which the measures in Table 4.3 relate. For each model, the model fitting 
j)rocess analyses the strength of the correlation between each version and implementation 
a])proacli on the rate. The resulting correlation measures for each of the three models are 
presented in rows in the cohmms labelled Fault Exposure, Fault eXecution and Infection 
and Propagation. Each measure represents the strength of the correlation between the 
observed rate and a specific version (1-10) and implementations (AspectJ or Java).

Comparative Effects

As detailed by Faraway [52], the measures of the effects presented in Table 4.31 are used 
to construct the graphs of the generalised effects of AspectJ and Java on the rates of 
fault exposure, fault execution and infection and propagation, presented in Figures 4.32, 
4.33 and 4.34, respectively. In each of these figures, the difference between the Java and 
AspectJ lines is the measure of the comparative effect of AspectJ and Java. The measures 
of the diflFerence between the AspectJ and Java lines is marked in r('d in Table 4.31. These 
are the measures of the comparative effect of AspectJ and Java on each rate. Tliese are 
on the log odds scale [52] and need to be transformed by taking the exj)onent of each 
measure [52]. This results in a measure of the difference in the odds of AspectJ and Java 
exposing faults, executing faults and causing infection and propagation.
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Version Implementation Fault E xposure (FE) Fault execu tio n  (FX) Infection and Propagation (IP )
1 AspectJ -1.8963U -U.529032 -1.352227

.Ja\'a 0.r>;-!(i24 0.256460 0.3S 1.11 r.
2 0.45421 0.069907 0.371564
3 0.07626 0.144253 -0.078863
4 -0.04978 0.088373 -0.150122
5 0.10965 0.078850 -0.009129
6 0.17326 0.063659 0.090059
7 0.19977 0.009482 0.165758
8 0.03550 0.001137 0.012562
9 0.17010 0.003726 0.155845
10 0.25076 0.045131 0.192354

Figure 4.31: Correlations between each Rates and versions and implementation fac­
tors

Figure 4.32: FE Figure 4.33: FX Figure 4.34: IF

C on c lu sio n s from  R eg ress io n  A nalysis

The left hand side of Figure 4.30 illustrates the results of these transformations. Its 
shows that, based on the results of binomial regression, that the odds of fault exposure 
are 89%(1.889364 =  ea:p(0.63624)) higher for Java. It shows that the odds of fault execu­
tion are 29% (1.292347 =  ea:p(0.256460)) higher for Java and that odds of infection and 
propagation are 46% (1.464355 =  ea:;;(0.381415)) higher for Java.

This is explained further through the illustration in Figure 4.35. The boxes marked 
AspectJ and Java represent the total number of test-nm tant executions for AspectJ and

Java

( C  V‘« < . ^r  r
AspectJ

*P9% FK'7
N ot Exe Pass I Fail

Figure 4.35: Causation for Comparative Effects
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.Java iinplenientations, respectively. The circles in these boxes represent the niuiiber of 
faults executed by tests in Aspect.! and Java mutants. This representation shows that 
there are more faults executed in Java compared to AspectJ mutants. This difference is 
the cause of the 29% higher odds of fault execution for Java. The number of executed 
faults that result in pass and fails are represented inside the circle. This representation 
shows that there are proportionally less fails for AspectJ, indicating that less of the faults 
executed in AspectJ nuitants result in infection and propagation. This difference is the 
cause of the 46% higher odds of infection and propagation for Java.

4.3.3 Threats to Analysis Validity

4.3.4 Sum m ary

In the analysis phase of this study, the measures gathered from apj)lying nmtation analysis 
to AOP and OOP implementations of different versions of a program are analysed. This 
section has shown how a mixture of graphical and binomial regression analysis are used 
to analyse these measures and cjuantify the comparative effect of AGP and OOP on 
testability.

4.4 C hap ter  Sum m ary

This chapter described the methodology followed in the measurement and analysis i)hase 
of tiie study. Tlie first section selected and described mutation analysis as the apj)roacli 
used to measure testability. The second section described how this approach is applied 
to ensure the resulting pairs of mea.sures isolate the combined effects the implementation 
and maintenance factors. The third section described how the effects of AOP and OOP 
are generalised and the comparative effect on testability is measured and how causation 
for this comparative is determined.

The methodology describes how the study will be carried out and outlines the ap­
proaches th a t will be used in the measurement and analysis phases of the study. The next 
chapter describes tlie inputs selected to fit into this methodology and as a basis for the 
study.
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Chapter 5

Study Inputs

The previous chapter presents the methodology on which this study is based. The method­
ology describes how measures of testability are gathered and analysed to produce evidence 
of the comparative effect of AOF and OOP on testability.

The quality of this evidence is based on the implementations, m utants and tests used 
to gather eacli measure of testability. For evidence to be of high quality, the evidence 
must be generalisable [79]. Generalisablility is the ability to draw general conclusions 
from evidence gathered in a specific context. General conclusions can be drawn from 
evidence gathered in contexts that are representative of the general case [79]. The first 
goal of this chapter is to show that the implementations, mutants and tests that form 
the context in which measures of testability are gathered, are selected because they are 
representative of the general case.

V ersion

Program 

Version Implementations

Program

Mutants'erslon

A '' » W ain len an ce  Activity "»*« ' M u ta n t

irnTatnr
Im ptem en ta tion  E qu ivalence

Figure 5.1; Program Figure 5.2: M utants Figure 5.3: Tests

The second goal of this chapter is to show that the selected implementations, m utants 
and tests fit into the measurement gathering approach prescribed by the methodology. 
As explained in Section 2.10, the AOP and OOP implementations from which measures 
of testability are gathered must be implementation and maintenance equivalent. As illus-
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I,rated in Figure 5.1, equivalence is assured by cumulatively aj)plying the same mainte­
nance activities to AGP and OOP implementations of a program that differ only in the 
approach used in their development. Figures 5.2 and 5.3 show that to measure the testa­
bility of each implementation using nuitation analysis, nm tants of each implementation 
must be generated and a set of tests nmst be executed against each implementation and 
m utants of each implementation.

The first section of this chapter describes the programs for which AOP and OOP 
implementations exist and the maintenance cictivities that have been cunnilatively applied 
to these implementations to create several maintenance versions of both implementations. 
It describes the selection of a program which is representative of the general case and 
describes the selected program, maintenance activities and implementations in detail.

'riie second section of this chapter identifies the ap{)roach used to generate the mutants 
for each AOP and OOP implementation. It shows that the nmtant generation approach is 
based on AOP and OOP fault models that are rej)resentative of the types of faults that cU'e 
generally observed to occur in practice. The fault model is the basis for nuitation operators 
that are used to generate mutants. The mutation operators defined for the AOP and OOP 
fault models are identified and described. The tool that implements these operators, and 
that is used to generate the mutants for each AOP and OOP inii)lenieiitation is also 
described.

The third section of this chapter identifies the approach used to select and autom ate 
tests that are executed against each implementation and m utants of each implementation 
in the study. The section outlines the different available test selection approaclies and 
justifies the selected approacii. It also describes the approach used to autom ate the 
execution of tests against inij)lementations and mutants.

This chapter is concluded by summarising the selections made. This summary com­
ments on how these selections impact on the degree to which general conclusions can be 
drawn from evidence gathered in the study.

5.1 Im plem entations

The section lists a set of candidate programs that have the potential to be used in the 
measurement gathering approach prescribed by the methodology. These are programs 
for which AOP and OOP iiiiplementations exist and maintenance activities have been 
cumulatively applied to these implementations to create several maintenance versions of 
both iini)lementations. This section describes the approach used to select of the most 
representative implementations and describes the program and JMaintenance Activities 
(MAT) on which they are based.
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program studies deployed
m aintenance activities

adaptive perfective corrective

Health Watchcr [87, (53, 55] yes 1 7 1
Online Shop [14] no 1 - -

Library [149] no 2 1 3
Email Server [92] yes 2 1 -

Best Lap [54] yes 5 - -
M obile Media [54] no 8 - -

Table 5.1: Candidates for Selection

5.1.1 S election  o f  Im plem en tation s

Table 5.1 lists the candidate programs that have the potential to be used in the mea­
surement gathering aj)proach i)rescribed by the methodology. This section describes the 
selection of the one that is most representative of the general case.

S e lec tion  C r ite r ia

I'br each program, Table 5.1 identifies the studies which are based on the AGP and OOP 
implementations of the {)rogram. It identifies whether the program has been deployed and 
shows the distribution of iiminteimnce activities api)lied to the AOP and OOP ini])lemen- 
tations of the {)rogram. These characteristics are used as indicators of how rejjresentative 
each candidate is of the general ca.se.

S tu d ie s  - The number of empirical studies in which the program’s AOP and OOP 
implementations is used as an indicator of representativeness. This is bcised on the cis- 
sumi)tion that these studies are based on implementations that are representative of the 
general case to ensure generalisability. It also assumes that if AOP and OOP imj)lemen- 
tations of a program are used across a number of empirical studies, then this indicates 
that they are representative of the general case.

D eployed  - The intended audience of this thesis are industrial practitioners who 
are considering the adoption of AOP. For evidence to be generalisable for this audience, 
the program and the MATs on which these studies are based nnist be representative of 
the general industrial case. The fact that a program has been deployed indicates th a t it 
is a real program and that it contains the concerns such as a GUI, exception handling, 
persistence, concurrency, and distribution that are generally present in an industrial pro­
gram. It implies that the program implements the diverse set of concerns, encomitered in 
the industrial case, that nuist be addressed to ensure a robust program. The usage and 
deployment of a program are used as indicators that the program is representative of the 
general case and are used as criteria for selecting candidate implementations on which to 
base this study.

M a in te n a n c e  a c tiv itie s  - The MATs are more representative if the types of activi­
ties a{)i)lied follow the distribution of types of MATs applied in general j)ractice.There are
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t,hree main types of MAT; perfective, adaptive and corrective. Perfective MTAs ini])rove 
the qiiahty of an implementation. Corrective MATs fix faults in the implementation and 
adaptive MATs implement new requirements. There is evidence [95, 96, 94, 124] to sug­
gest that the general distribution of MAT types is that there are more pefective MATs 
applied to implementations in practice than corrective and adaptive MATs.

S e lec tion

The Health Watcher (11W) program is the only candidate in Table 5.1 that matches the 
criteria defined for selection.

S tu d ie s  - It has been used in three empirical studies that compare the efiects of 
AGP and OOP on maintainability indicators. Each of the other candidates are used in 
one study. More confidence can be associated with the representativeness of the HW as 
it is used in more empirical studies than the other programs.

D eployed  - The HW has been deployed in a real-world context since 2001.The 11W 
contains concerns, such as view (view is a GUI concern), exception handling, persistence, 
concurrency, and distribution, which are generally present in an industrial jjrogram. Sim­
ilar to all of the candidates, the AGP and OOP implementations of the HW are developed 
using the AsjjectJ and Java languages. AspectJ is the most popular [106] AOP language. 
It is an extension of Java, which is the most })opular OOP language [136]. Asi)ectJ extends 
Java through the introduction of new constructs such as pointcuts, advice and inter-tyi)e 
declarations to realise AOP concepts. The HW implementations me based on technolo­
gies, such as Servlets [71], RMl [65] and JDBC [126] that generally used in Java based 
implementations.

M a in te n a n c e  a c tiv itie s  - Since its deployment a number of MATs were applied to 
the initial deployed implementation. Nine MATs are selected based on those applied to the 
deployed implementation. These MATs are applied ciunulatively to the initial equivalent 
implementations if the AOP and OOP implementations, resulting in ten releases of each 
implementation. The types of MAT also roughly follow the general distribution of MATs 
over types [124].

5.1.2 H ealth W atcher - U se Cases and M aintenance A ctivities

The purpose of the Health Watcher (HW) system is the registration and f^ulministration 
of complaints to the public health system. The initial release of the HW is based on 
sixteen use cases [74, 75]. These use cases are identified in Table 5.2 and detailed in 
full at the TAO website This website provides open access to the AspectJ and Java 
implementations of all ten versions of the Health W^atcher aufl the use cases on which

^http ://w w w .co inp .larics.ac.iik / gree iiw op /tao /
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Use C ase T ype T arget

1 Em ployee Login
2 C om plain t
:i List C om plain ts
4 L ist H ealth  U nits
5 Search H ealtli U nits by Specialty
6 L ist Specialties
7 Specialties by H ealth  U nit
8 D isease T yp e
9 L ist D isease T ypes
10 Em ployee
11 A nim al C om plain t
12 Food C om plain t
13 Special C om plain t
14 Em ployee
15 U p d ate C om plain t
16 H ealth  U nit

Table 5.2: Health Watcher Version 1: Use Cases [87]

Use C ase T ype T arget

17 Speciality
18 Sympjtoms
19 H ealth  U nit
20

Insert S ym ptom s
21 Speciality
22 D isease T yp e
2:i
24 U p d ate Speciality

Sym iitom s

Table 5.3: Health Watcher Version 9: Use Ccises [87]

ID M ain tenance  A ctivity T ype Im pact
1 F ac to r o u t m u ltip le  S ervlets to  im prove ex tensib ility Perfective View
2 E nsure  th e  com plain t s ta te  caim ot be u p d a ted  once closed 

to  p ro tec t com plain ts from m ultip le  u p d a tes .
C orrective V iew /B usiness

3 pjiicapsulate u p d a te  o p era tions to  im prove m ain ta inab ility  
using  com m on softw are engineering  practices.

Perfective B usiness/V iew

4 Im prove th e  encapsu lation  of th e  d is trib u tio n  concern for 
b e tte r  reuse and  custom ization .

Perfective V iew /D is trib u t io n /B usiness

5 G eneralize th e  persis tence m echanism  to  im prove reuse and  
ex tensib ility .

Perfective B u s in e ss /D a ta

6 Rem ove dependencies on Servlet response and  request ob­
jec ts  to  efuse th e  process of add ing  new G U I.

Perfective View

7 G eneralize di.stribution m echanism  to  im prove reu.se an d  ex- 
tensi bility.

Perfective B u s in ess /V iew /D istr ib u tio n

8 New fim ctionality  added  to  su p p o rt querying of m ore d a ta  
ty p es

A dditive B u s in ess /D a ta /V iew

9 M odularize exception  handling  and  include m ore effect e rro r 
recovery behav iou r in to  handlers

Perfcctive Busi n e ss /D a ta /V ie w

Table 5.4: Health Watcher Versions 2 - 10: Maintenance Activities

these implementations are l)fXsed.

To summarise, the HW enables different types of complaints to be registered, each 
complaint details the symptoms of the person registering the complaint, the health system 
emi)loyees to be assigned to deal with the complaints at specific health units or clinics, all
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tSx C om ponent 
ad d ed  ir Scenario x

Sx C om ponent 
rem oved  in See naria

n i s T r f c i i f i o n l f l y ^ r

-iConclaniRep 'pibmcioyeeHep yiu^tnptofrHcp
kmptoYMKep

yiHcaUhJr^Hcp

~S8

ComplairtRecord

■ MeahhWaMi^^Mide

D a ta U y er

Figure 5.4: Object Oriented Ileciltli Watcher [03]

of which specialise in treating different types of diseases. Each use case does one of the 
following actions: secU’cli, insert and u])date. The table shows which actions are a.ssociated 
with each use case.

Table 5.4 lists each MAT cumulatively ai)plied to the initial IIW program. The table 
provides a brief descrii)tion of the MAT, its tyj)C and the layers to whicli it api)lies. The 
majority of the MATs are perfective, one is corrective and one is adai)tive. The eighth 
MAT is adaptive and implements five new use cases, these are listed in Table 5.3.

5 .1 .3  H ealth  W atcher - Java and A sp ectJ  Im plem en tation s

Figures 5.4 and 5.5 present overviews of the Java and Aspect.) implementations of the 
initial IIW. They identify the architectural layers in both implementations and the core 
modules that implement each layer.

M aintenance A ctivity Impacts

Each figure identifies the impacts of each MAT (or scenario as termed in the legends of 
these figures) on the implementation. As illustrated in the legends, Sx identifies a MAT, 
where x identifies the specific MAT. These numbers are placed in the core modules of each
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Figure 5.5: Aspect Oriented H ealth W atcher [87]

iniplenientation to dem onstrate the im pact of the MAT. If the im pact is the addition of a 

module, then a +  symbol is prefixed to the MAT identifier. The ~  symbol indicates th a t 

the MAT alters the module and the — indicates th a t the im pact is to remove the module.

For example, at the toj) of Figure 5.4 the Command module is added in the first MAT 

(S1+)  and altered in the n in th  (S9 ) and the O p S e rv le ts  module is removed in the first 
MAT (S1-) .

Client

The figures show th a t both implement view, d istribu tion , exception handling, concurrency, 

business, d a ta  and persistence concerns. B oth  im plem entations follow client-server and 

layered architectural styles where the view, d istribu tion , business and d a ta  concerns are 

structu red  as architectural layers. They also show th a t for bo th  im plem entations, the 

view layer is a web client im plemented using Java Servlets [71]. This layer accepts h ttp  

requests and re turns h ttp  responses. W hen a request is m ade, the corresponding com m and 
is called on the server through the distribution layer. This call is relayed to  the server 

using RM I [65].
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Server

On the server, a client request is invoked on the business layer. The business layer contains 
the business logic, which manages the data  layer by creating, inserting, updating and 
deleting instances of entities under the management of the HW. 'i'he data layer defines 
entities represented by the system. These entities include complaints, symptoms, health 
system employees, health imits, specialities, disease types and are mapped to {>ersistent 
database storage. To ensure that the IIW can handle many concurrent users, access to 
entities is managed by the concurrency concern. The imi)lementation of this concern is 
based on the standard Java blocking mechanism. Once access to an entity is granted and 
a change is applied, the change must be persisted. The persistence concern manages this 
process and is implemented using JDBC [126].

During the execution of IIW, there are many points of failure at which exceptions 
are thrown. To handle these failure cases gracefully, the IIW implements an exception 
handling concern. This concern provides facilities to throw exceptions where a failure is 
recognised, and to catch and deal with these exceptions.

D ifferences and Equivalence

In the Asi^ectJ imi)lementation, the concurrency, exce])tion handling, distribution and 
persistence concerns are implemented separately in asi)ect modules. In the Java ini])le- 
mentation these concerns are scattered and tangled across the modules that conijwise the 
Java implementation. This is the only significant difference between these im[)lementa- 
tions. The initial AspectJ implementation is a refactoring of the Java implementation in 
which these concerns are aspectised [63].

5 .1 .4  S u m m ary

The section listed the programs that have the potential to be used in the measiu'ement 
gathering approach i)rescribed by the methodology. These are programs for which AOP 
and OOP implementations exist and MATs have been cmnulatively ap])lied to these imple­
mentations to create several maintenance versions of both implementations. It described 
the program selected as most representative of the general case. It also detailed the im­
plementations and maintenance activities associated with the program through their use 
in empirical studies.

5.2 M utants

The testability of the IIW imi)lementations is measured by applying nnitation analysis to 
each implementation. M utation analysis measures the testability of an implementation as
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the rate at which it exposes faults under testing. This rate is derived by executing tests 
against nnitants generated from the implementation. This section describes the ai)proach 
used to generate the m utants for each Aspect.! and Java implementation.

'I’he generation of m utants is based on a fault model. The fault model specifies a list 
of the types of faults that occur at features of a language [100, 20]. The first part of this 
section describes the Aspect.! and ,!ava fault models on which nnitant generation is based 
in this study.

M utation operators specify how to generate these types of faults. The second part of 
this section presents the nmtation operators that are used to generate nm tants of Aspect.! 
and .lava implementations of the IIW of the types specified in the fault model.

Mutation operators are applied to implementation through a nm tant generation tool, 
'['he third and final part of this section describes the m utant generation tool that applies 
these oi^erators to the As])ect.! and .!ava implementations in the study.

5 .2 .1  F au lt M o d e l

in nmtation analysis, the rate of fault exposure for an implementation is the proportion 
of faults ex])Osed when tests are executed against m utants generated from the implemen­
tation. The generated nm tants are approximations of the tyi)cs of faults that occur in 
practice. These nm tants are the bcisis for the fault exposure rate derived from aj)ply- 
ing mutation analysis to an ini])lementation. Because the nmtants are approximations, 
the resulting rate of fault exposure is also an approximation. The more representative 
the generated nmtants are of the types of faults that occur in j^ractice, the more the 
aj)j)roximated rate of fault exposure is.

Here, the Aspect J and ,!ava fault models are selected as a basis for m utant generation 
that match indicators that these fault models contain the types of faults that occur in 
practice.

Indicators

There are two ways in which the representativeness of a fault model can be indicated. The 
first is by tracing its evolution. A fault model defines the types of faults that are observed 
to occur at features of a language. As languages evolve so too do fault models. When a 
new language such as .!ava evolves, the language introduces some new features but inherits 
many of the features from the languages from which it has evolved. Fault models evolve 
in the same way. When a new language evolves from older languages, the fault types 
dissociated with the inherited features are also inherited into the fault model for the new 
language. I'hese can be refined in the inheritance process. I'or the new features, various 
fault types are proposed based on empirical studies or through retrospective observation. 
These are then amalgamated through convergence. Convergence occurs when a set of
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inclepeiideiit researchers converge on the same set of fault tyj)es for new language features. 
If a fault model is highly evolved, then this indicates that the fault types in the model 
have undergone generations of refinement to ensure that tliey are highly representative of 
the types of faults that really do occur in practice.

The second indicator that a fault model specifies the types of faults that are repre­
sentative, is based on how often used it is. If the fault model is the basis for nnitaiit 
generation in a large number of scientific studies, then this indicate^s a pragmatic accep­
tance by consensus that the fault types specified in this model are representative of tlie 
types of faults that occur in practice.

F au lt M odel S e lec tion

The Java fault model, introduced by Ma et al [98], and the AspectJ fault model, introduced 
by Ferrari et al [53] were chosen. These fault models are selected because they are the 
most evolved and contain the most refined set of fault types for the features defined the 
Java and AspectJ languages. The fault types specified in this model are also accepted by 
consensus to be rejjresentative of the types of faults that occur in practice.

J a v a  F a u lt M odel - The Java language is based on features inherited from imjjer- 
ative languages and new object oriented features.

The types of faults defined for the imperative features of Java have evolved from fault 
models defined for Ada, C and FORTRAN [98, 8G, 127, 44, 118]. The C language is a pre­
decessor of Ada and FORTRAN can be seen as the basis for C [IG]. As these imperative 
languages evolved, the elements of older languages that were considered useful were used 
as the basis for new languages. The types of faults associated with these elements were 
also brought forward into the newer fault models. The FORTRAN fault model was de­
rived from studies of programmer errors and corresponds to simple errors that competent 
programmers typically make [86]. The C fault model is an evolution and refinement of 
the FORTRAN fault model [127] and the Ada fault model is a further refinement of both 
the C and FORTRAN fault models [118], In both cases, these refinements were designed 
to ensure that the fault models were representative of those observed in practice. The 
fault types in these models are further refined by Offutt et al [114] for use in the Java 
fault model [98],

The types of faults defined in the Java fault model [98] are based on a number of 
fault models that liave been refined over time [56, 77, 78, 115, 37, 99, 98]. Kim et al. 
[77, 78[ identify a number of studies in which specific types of faults occur in practice at 
object-oriented featm'es of the Java language. They combine these into an initial Java 
fault model based on object-oriented specific elements including dynamic binding and 
inheritance related types of fault. Offutt et al. also identify an initial fault model based 
on the same object-oriented features. Firesmith [56] and Chevalley [37] identify fault
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types based on their experience that are based on common programmer mistakes when 
using object oriented and Java specific features. Ma et al. [99] selectively amalgamate, 
categorise and refine tliese fault models into a set of fault types that are representative of 
those observed in practice.

The .Java fault model has been widely used the basis for nmtation analysis in many 
empirical testing studies [151, 122, 133, 104, 103, 102, 105, 130, 134]. This usage imhcates 
an acceptance by consensus that the fault types specified in this model are representative 
of the types of faults that occur in practice.

A spectJ  Fault M odel - Tlie types of faults defined for the Aspect.! features are 
based on the evolutionary refinement of candidate fault models [3, 12, 36, 47, 145] and 
fault classification [90]. There have been a number of candidate fault models proposed 
for Aspect.], the first of which was proposed by Alexander et al. [3]. This fault model 
identified a number of roughly defined fault types that could occur in pointcuts and advice. 
Hakken and Alexander then refined these rough definitions into a more precise set of fault 
types [12]. Ceccato et al. [36] extend the set of faults ty})es from those that caii occur 
at inter-type declarations. Van Deursen et al. add conditional and pattern based fault 
ty{)es to the set of known fault types. Lemos et al. strengthen the classification of types 
of faults that occur at pointcuts [90]. Hackly el al. further refine and extend the set of 
fault types by recognising contextual and object identify based fault types [47].

Aspect.) is relatively new and luis not yet ’’crossed the chasm” [107] to widespread 
deployment. Because of this, evidence of the types of faults that occur at the AOP 
specific features of Aspect.] in practice is sparse. Instead, the state of practice is inferred 
by researchers through convergence [79]. This occurs when a set of indei)endent researchers 
converge on the same set of fault types for Aspect.]. Convergence is illustrated by Zhang 
and Zhao [155]. They identify a number of bug patterns for Aspect,]. A bug pattern 
is similar to a fault type but the intention of tlieir bug pattern is to help in debugging 
Aspect,] programs rather tlian to generated faults for them. Tliese bug patterns are similar 
to the refined Aspect.] fault model [3, 12, 36, 47, 145]. This illustrates convergence on this 
model. More recent work on testing Aspect.] programs have selectively used these fault 
models as a basis for their research [119, 11, 91, 90, 17, 18]. This indicates a convergence 
and acceptance of these models as the current state of the practice for use in testing and 
testability related research focused on AOP.

5.2.2 M utant Operators

Fault models are the l)asis for nmtation operators. M utation operators specify how to 
generate m utants containing faults of the types identified in the selected fault model. In 
this subsection, the mutation operators for the selected .lava and Aspect,] fault models 
are described using examples.
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Java Operators

Table 5.5 lists the im itation operators for the Java fault model, introduced by M a et al 

[98]. Each m utation  operator is associated with an OOP feature of the Java language and 

generates m utants th a t contain faults of a specific type. The action the m utation operator 

takes to generate a fault is briefly described. This description is also representative of the 

tyj)e of fault generated by the operator.

Exam ples of operators in Table 5.5 are the Java t h i s  Deletion (JT D ) and Java t h i s  

Insertion (JT I) ojierators. These operators are associated with the t h i s  keyword which 
is classified as a specific feature of tlie Java language. The application of these operators 

ill illustrated  in Section 4.1 to dem onstrate the m utant analysis procedure. T he JT I 

operator inserts the t h i s  keyword.The JT D  operator deletes the t h i s  keyword. The 

resulting faults are representative of the ty])es of faults th a t occur when developers forget 

to use the t h i s  keyword where they had intended or used it where they had not intended. 

A com plete description of all of these operators is provided by M a et al. [98] on a website 
 ̂ dedicated to AluJava, the tool th a t inii)lements these operators.

A spectJ Operators

Table 5.6 lists the m utation  operators which are based on the selected AsjjectJ fault 
model, introduced by Ferrari et al [53]. p]ach operator is associated with an AOF s{)ecific 

feature of the Asj^ectJ language and the action taken by the operator to generate a fault 
of a specific type is briefly described. An example of an operator in Table 5.6 is the 

A round Proceed S tatem ent Removal (APSR) 0])erator. The application of this operator 
is dem onstrated  in Section 4.2. The APSR operator removes statem ents in which calls 

using the p ro c eed  keyword are made. The faults generated by the APSR operator are 

representative of the type of fault th a t occurs when the developer forgets the p ro c e e d  call 
in A spectJ around  advice. A com plete description of all of these operators is provided by 

Ferrari e t al [53].

5 .2 .3  M utant G eneration  Tool

AliiJava is a well-established tool for generating Java m utants. However, when work 

began on the study described in this thesis, there was no tool available for generating 

A spectJ m utants. This section describes the M uJava and its extension for A spectJ m utant 

generation.

/ /cs.gnui.cKlu/ offutt/mujava/
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F au lt T yj)c O perator D escrip tion
A O R B Binary Arithmetic Operator Replacement
A O R S Short-cut Arithmetic Operator Re])lacement
A O RI UnaryArithmetic Operator Insertion
A O IS Short-cut Arithmetic Operator hisertion
AO  D U Unary Arithmetic Operator Deletion
A O D S Unary Arithmetic Operator Deletion

T rad ition al ROR Relational Operator Replacement
C O R Conditional Operator Replacement
C O D Conditional Operator Deletion
COI Conditional Operator hisertion
SOR Shift Operator Replacement
LOH Logical Operator Replacement
LOI Logical Operator hisertion
LO D Logical Operator Deletion
A SR S Assiginnent Operator Replacement
ni l Hiding vfiriabie insertion
HID Hiding variable deletion
lO D Overriding method deletion

I nlicri t'Hiico lO P Overriding method calling position change
lO R Overriding method rename
ISI Super keyword insertion
ISD Su])er keyword deletion
IPC Explicit call to a parent’s constructor deletion
P N C New method call witli child class type
P M D Member variable declaration with parent class type
P P D Param eter variable declaration with child class type

P oly iiiorp liisn i PCI Ty])e cast oi)erator insertion
P C C Cast type change
P C D Ty])e cast operator deletion
PRV Reference assignment with other comi)aral)le variable
OMt^ Overloading method contents replace

Ovorloaclitig O M D Overloading method deletion
O AC Argmnents of overloading method call change
,rri this keyword insertion
J l'D this keyword deletion
JSI static modifier insertionJ flVft, o{)0CIilC
JSD static modifier deletion
JID Member variable initialisation deletion
JD C Java-sui)i)ort.ed default constructor creation
EO A Reference assignment and content assiginnent replacement

r- E O C Reference comparison and content comparison replacementv-y-oininon
EA M Accessor method change
EM M Modifier method change

Table 5.5: Java Fault Model

Mu Java

The Mu.Java tool [98] iniplenients the Java m utation operators identified in Table 5.5. 

This tool, an overview of which is illustrated in Figure 5.6, generates m utants given a 

.Java source file. The nuitant generation process begins by parsing the source file into 

a model of the code. This model is traversed to  identify locations containing features 

with which nuitation o[)erators are associated. Once a location is identified, the nm tation 

ojjerators associated w ith the feature a t the location are applied to a copy of the Java 

source file. The copied source is altered in line with the description given for the operator 

in Table 5.5. This alteration  results in a new version of the source code th a t deviates from
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Fault Type Operator Description
Replace a type with its immediate supertype 
Insert wildcards into poiiitcut expressions 
Remove annotation tags from patterns 
Change param eter lists 
Change after advice clauses 
Changing exception throwing clauses 
Replace a type with its inunediate subtype 
Remove wildcards from pointcut expressions 
Remove declare @ statem ents
Replacing a this pointcut designator with a target one
Switch pointcuts designators
Replace a get pointcut designator with a set one
Replace individual parts of a pointcut composition
Change composition operators
Replace a cflow with a cflowbelow
Replace a Ijefore clause with an after
Remove invocations to proceed statem ent
Replace a join point reference with enclosing
Removing implemented advices
Replace pointcuts which are bound to advices
Alter the order oTaspectsTn declare precedence
Remove declare precedence
Remove declare soft
Change declare error/warning
Changing instantiation clauses

Pointcut

Advice

PW SR
PW IW
PW AR
POPL
POAC
POEC
PSSR
PSW R
PSDR
PC TT
PCCE
PCGS
PCCR
PCLO
PCCC

Declaration

A BA R
A PSR
AJSC
ABHA
A B PR
DAPC^
DAPO
DSSR
DEW C
DAIC

Table 5.G: Aspect.) Fault Model

Java .Source

M utdn l Source

M u tan t Cldis

AspectJ Source

Model

Parser
Aspect!

O perators
M ula/it A spettJ  S ource |

AspectJ Compiler

Figure 5.6: MuJava

M u ian l Jdr J

Figure 5.7: AspectJ Extension

the original source. This deviation represents a fault.

The nuitant version of the source code contains a fault of the type represented by the 
mutation operator used to generate the mutant. The mutant versions of the source code 

is then compiled using the Java compiler to create a mutant class. The mutants that do 

not compile are discarded. Tlie mutants that compile are recorded in a mutation log. 

This log lists nuitants that pass compilation and the locations for which the mutant is 

generated.

M u Java/A spectJ

Mu Java/AspectJ is an extension of MuJava, developed specifically for this study, in which 
the operators identified in Table 5.6 are implemented. As illustrated in Figure 5.7, this 

extension uses the ajdt [40] parser to parse AspectJ source code into a code model, 'riiis
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inodel is traversed to identify locations containing the AOP specific features presented 
in 'Jable 5.6. When these features are identified their associated mutation operators are 
a})pHed to the location in precisely the same way as Mu,lava. For each application of 
a m utation operator, a copy of the Aspect,] source code is generated. The mutation 
o])erator then introduces a deviation in the copied code. This code is compiled by the 
Aspect.! compiler and if compiled, the nnitant is logged.

One difference between Mu.Iava and this extension is that when the m utant Aspect.] 
source code is compiled, a new m utant Jar of the entire 11W program containing the fault 
is generated rather than simply a new m utant class. This is because the nmtation of 
compositional features, such cis pointcuts, require the reweaving of the entire program. 
Compositional features at the source code level, such as pointcuts, specify dependencies 
that are generated at the byte-code level. M utation of these compositional features can 
cause a change to the intended dej^endencies. To ensure that nnitation at the som'ce code 
level is reflected at the l)yte-code level the entire program including the mutant Aspect.) 
source code nmst be compiled using the Aspect.] compiler.

5 .2 .4  Sum m ary

This section described the approach used to generate the nm tants for each Aspect.I and 
.Java implementation. This section described Aspect.) and .Java fault models on which 
m utant generation is based in this study. These fault models are higiily refined are agreed 
to be rei)resentative of the tyi)es of faults that occur in prjictice. The mutation operators 
that generate faults of these tyi)es are outlined and the tool that applies these to Aspect.J 
and .Java implementations is described.

5.3 Tests

This section describes the approach used to select and develop tests for used in nmtation 
analysis in the study. The section outlines the different test selection approaches that could 
have been followed and justifies the chosen approach. It describes the chosen a{)proach, 
its ap])lication to the IIW and the resulting selected tests. It also describes the approach 
used to autom ate the execution of these tests against implementations and mutants.

5.3 .1  C hoosing  a T est S election  A pproach

riiere are two candidate approaches to test selection. The first candidate is white box 
test selection. W hite box test selection is based on knowledge of the internal structure 
of the implementation. In this approach, knowledge of the internal structure is used as 
a l)avsis for selecting tests. An example of white box test selection is test selection based 
on control fiow analysis. As illustrated in Sections 4.1.1 and 3.1, control fiow analysis
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identifies tiie paths of execution tlirough an implementation. These are used as a basis 
for test selection. In tiiese ai)proaches, test inputs are selected to exercise these identified 
I)aths.

The second candidate is a black box test selection approach. Black box test selection is 
based on external knowledge of the implementation, such as its requirements. An example 
of black box test selection is a use cases driven a])proach to test selection [5, 23]. In this 
approach, test inputs are selected to exercise the requirements of a progi’am.

S elec tion  C r i te r ia

There are two criteria for choosing an approcich to test selection.

R e p re se n ta tiv e  - The first criterion is that tiie a[)proach and resulting tests nuist be 
representative of what is used in practice for selecting tests at the implementation level. 
Implementation level testing is testing focused on the programs interface [5] .

P ra c tic a l - The second is that resulting test selection nnist be prtictical in terms of 
the resources required to apply the approach.

A pp licab le  - As illustrated in Figure 5.3, the methodology on which this study is 
based recjuires one test suite that is applicable to both sets of implementations. The third 
and final criterion is tiiat the approacli must result in a set of tests that is applicable to 
the Java and As])ectJ ini})lementations of each version of the liW  program.

A p p ro ach  S elec tion

A Ijlack box approach is selected because it is more representative, practical and easily 
aj)plicable than a white box approach.

R e p re se n ta tiv e  - White box approaches to test selection are based on analysis of the 
internal structure of the implementation. In practice, this approach is used at the unit, 
module and integration levels of testing. Black box approaches to test selection is based 
on analysing of the programs. In practice, this approach is used at the implementation 
level, i.e at the level of the programs interface.

P ra c tic a l  - A white box appro^ich to test selection is expensive in terms of the 
resources needed to apply the approach. In contrast the application of a black box test 
selection approi^ich is relatively inex})ensive.

A pp licab le  - White box approaches to test selection are based on analysis of the 
internal structure of the implementation. A white box approach applied to the Java 
and AspectJ implementations of each of the ten version of the IIW program will result 
is twenty different sets of tests, one for each implementation. Each test set would be 
directly applicable to the implementation for which it was selected but would not be 
directly applicable to the other implementations.
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These test sets could be merged into a super test suite that would then be applicable to 
all implementations but would subsume each selected test suite. White box test selection 
is known to be exj^ensive [6]. The expense incurred by applying this approach at a program 
level is impractical [5, 23] and not generally used in practice [113, 61].

A black box approach to test selection is based on analysing of the requirements and 
interface of the program. Because each version of the HW share the same requirements 
and interface tests can be selected using this approach that are applicable to all implemen­
tations. This approach is inexpensive, relative to white box test selection, and is generally 
used in practice [113, 61] at the program level [5, 23].

5.3.2 Black Box Test Selection

A black box approach to test selection, based on use cases, is chosen to select tests for 
use in this study [74, 75]. To illustrate this approach, its application to the Employee 
Login use case from the 11W program is presented. The application of this ajiproach to 
the use cases identified in Tables 5.2 and 5.3, on which the HW program is based, is the 
described.

E x a m p le  U se  C ase

The Employee Login use ca«e is i^resented in Table 5.7. The tal)le is based on the full 
description of all use cases available at the TAO [64] website. This is the website at which 
all of the IIW implementations and use cases are available.

The inputs for the use case are an employee id and a password. The output of the use 
case is a validation of the password. The use case also describes a main and alternative
flow. The main flow describes the ty{)ical steps in the login process when a valid employee 
id and password pair arc used to login. In this case, the IIW program declares these tis 
l)eing valid and logs the employee into the program. The alternative flow describes the 
steps when an invalid enii)loyee id and password pair are used to login. The HW program 
declares these as being invalid and informs the user that they cannot be logged in.

T est S e lec t io n

Test inputs are selected to exercise the flows through the use case, hi the Employee Login 
use case, there are two flows. The first is the main flow, in which a valid employee id and 
passwx)rd pair arc provided to the program. The second is the alternative flow% in which 
an invalid employee id and password pair are provided to the program.

"lb exercise the main and alternative flows, valid and invalid employee id and password 
pairs are needed. The validity of an employee id and password pair depends on whether
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Use case E m ployee login
Summary Log in to the HW system
Inputs em ployee id and password
Ouput Password validation
Flow Step Description

Main 1 1.1 User jirovides valid employee Id and password pair
1.2 Employee id and password pair are identified as valid
1.3 Employee is logged into the HW

Alternative 2 2.1 User provides an invalid employee Id and password pair
2.2 Employee id and password pair are identified as invalid
2.3 Employee is not logged into the HW

Table 5.7: Employee Login Use Case

Flow Test Ejnployee id Password

Main
1 Andrew TCD
2 Siobhan Trinity
3 Andrew Trinity

Alternative
4 Siobhan TCD

Bill5 USA
6 Bill TCD

Ejnployee id Password

Andrew
Siobhan

r c D
lYinity

Tahle 5.8; Examples of Test Selection Tahle 5.9: Test Data

tiie j)air is in the IIW (latai)ase. To select tests that exorcise these flows sets of employee 
id and password j)airs and a IIW database containing employee test data are neetU'd.

Table 5.8 illustrates sample employee id and password j)airs, and eni])loyee test data 
to liopulate the IIW database is illustrated in Table 5.9. These are selected to exercise 
the main and alternative floŵ s of the Employee Login use case.

'jests 1 and 2 exercise the main flow of the Employee Login use case. These tests 
contain employee id and password pairs that are valid because they are contained in the 
eni])loyee test data  and should result in a successful login. Tests 3 to 6 exercise the 
alternative flow of the Employee Login use case. These tests contain employee id and 
password pairs that are invalid because they are not contained in the employee test data  
and should result in an unsuccessful login.

Application to HW  Use Cases

The use case driven approach to test selection is applied to the use cases, listed in Tables 
5.2 and 5.3. The use case driven ap])roach to test selection was applied to the use cases, 
identified in Table 5.2 and 5.3, by a group independent of this study. Tiiere were seven 
software testing professionals, all from different Irish software develo{)ment companies, 
with a mininmm of four years of industrial experience in this group. The grouj) were not 
told about the study presented in this thesis.

They were {)rovided witli the full description of each use case identified in 'Fables 5.2 
and 5.3 and screen shots of the IIW web interfaces associated with each use case. The 
database tables used by the HW program and some sample data to illustrate the types
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Versions Use Case Type Target Tests

1 Employee Login 18
2 Complaint 16
3 List Com plaints 4
4 List Healtli Units 8
5 Scarch Health U nits by Specialty 13
6 List Specialties 4
7 Specialties by Hcaltli Unit 13

1 10
8 Disease T ype 17
9 List Disease Types 4
10 Em ployee 13
11 Animal Complaint 14
12 Food Complaint 14
13 Special Complaint 14
14 Employee 15
15 Update Complaint 14
16 Health Unit 14
17 Search Speciality 4
18 Sym ptom s 4
19 Health Unit 10

9-10 20 Sym ptom s 10
21 Speciality 10
22 Disease Tyj)c 10
23
24 U pdate

Speciality
Sym ptom s

11
11

Table 5.10: Tests Selected for Use Cases

of data held in each table were also i)rovided. The use of software testing professionals to 
select tests ensured that the application of the use case driven approach and the resulting 
tests are representative of the general ])ractice.

Selected Tests

Table 5.10 illustrates the number of tests selected for each use case. Overall, there are 
two hundred and sixty five tests selected. For each use case, tests are selected to exercise 
each flow in the use case. The tal)le also shows a subset of the test set is applicable to all 
ten versions of the 11W program. This is because additional use cases are introduced in 
the eighth maintenance activity applied to the HW program. This means that the entire 
test set is applicable to only versions nine and ten of the HW program.

5.3 .3  T est E xecu tion  A u tom ation

There are twenty implementations of the HW. In the location execution phase of M utation 
Analysis in this study, detailed in Section 4.1, each of the selected tests must be regressively 
executed against all twenty implementations. In the fault exposure phase, also detailed 
in Section 4.1, each test nmst be regressively executed against all nmtants of all twenty 
ini})lementations. This repeated execution of tests is manually unfeasible and as such the 
execution of tests was automated.
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login(Andrew,TCD
RMi registry

Legend

Andrew.TCD Expected
Siobhan,Trinity Actual

* no change

su cces< -;  
no chang

Figure 5.8: Automated Employee Login Test

A utom ation Steps and Frameworks

Eacli automated test executes six steps, as illustrated in Figure 5.8. I'his test exercises 
tlie employee login function of the HW. The test has two inputs. The first are j)airs of 
employee id and passwords used to populate the database. The second is the Andrew,TCD  
employee id and password pair that are used as arguments to employee login function.

The first step in tlie automated test execution process is pof)ulating the database with 
the input test data  provided by tlie test. Each test is based on the dl)-unit framework 
[67] whicli provides the facility to automatically load test data into the database as a 
{precursor for test execution.

The second step) is to initialise the HW program, which requires starting an RMI 
registry [65], the server and the client in a strict sequence, in this sequence, the RMI 
registry is started first. The server is started next. The server establishes connections 
to the database and initialises its data layer, which is used to represent the data  held in 
the database. The server registers with the RMI registry and once registered, the client 
is started. The client is web based and exposes a http  interface. The client retrieves a 
reference to the server from the RMI registry and waits for http requests. To initialise 
these components in the correct sequence, a framework for starting a distributed process, 
called spawn [70] is used.

The third step is to execute the function exposed through the web client’s h ttp  inter­
face. To execute a function requires that a http  request be sent to the web client. Each 
test is based on the http-unit framework [140]. This enables tests to send h ttp  requests 
to web interfaces. Once the request is received by the web client, it is executed. The web 
client executes and forwards the request to the server, which checks to see whether the 
employee id and password pair are in the database. The test data used to populate the 
database contains pair and as such the server returns that the login attem pt is valid.

The web client sends a response to the request that indicates a successful login. The 
fourth step is to check whether this response is tlie response that was expected. The
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expected response is a successful login. This matches the actual response.

The fifth step is to check whether the execution has left the database as expected. The 
tes t’s execution has left the database unchanged which is as expected. This is asserted 
through the db-unit framework [67], which provides the facility to check the contents of 
the database after the execution of a test. Because both the actual response and the 
database are as expected after the test executes the test passes. If these were not as 
expected then the test would fail.

The sixth and final step is to stop the HW program. This requires the client, server 
and the RMI registry to be stopped. The client is stopped first, followed by the server 
and the RMI registry. This stopping sequence is controlled by the spawn framework.

Location E xecution

Legend

D ebugger
Inputs
OuputvS

Im plem enlation

• I ‘
Test

! I

.....

Legend

M utant L o ad er 
B  P a s s  
■  Fail 
H  M utant

Figure 5.9: Location Execution Figure 5.10: Fault Exposure

In the location execution phase of mutation analysis, detailed in Section 4.1, each test 
is executed against each implementation to identify the locations executed by each test. 
These locations are identified by executing the tests against the program’s implementation.

Figure 5.9 illustrates the execution of the test against the program’s implementation. 
To automatically identify the locations executed by each test, the client and server com­
ponents of the HW are wrapped by two debuggers. The debuggers take the identified 
locations as inputs and converts them into breakpoints. As the client and server execute, 
the breakpoints that are hit during the execution are recorded.

The debuggers are based on the standard Java DeBugger (JDB) tool shipped with the 
Java Standard Development Kit [10]. The JDB is customised to function as a wrapper 
around the distributed client and server components of the IIW.

Fault E xposure

In the fault exposure phase of mutation analysis, also detailed in Section 4.1, each test is 
executed against each m utant. F^igure 5.10 illustrates the execution of the test against a 
mutant.
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i
I

Figure 5.

To execute a mutant requires a mutant loader. This is a modified class loader that 
loads the m utant implementation. There are two kinds - one for Java nm tants and another 
for AspectJ nmtants. The Java nnitants are nmtant classes which are lomled with un­
mutated classes. The AspectJ nuitants are mutant Jar files which contain the class files 
for the entire nm tant implementation.

Once the nmtant is loaded, the test is executed against the nm tant im})lenientation. 
The mutant contains a fault at an executed location. This location may be on the server, 
on the client or on both. The test executes and if the test i)asses then the test is not 
exposed. If the test fails the fault is exj)osed. The outcomes of all test-nm tant executions 
are recorded for analysis.

Execution Environment

M utation Auciiysis is known to be computationally expensive [57, 135, 116]. In the fault 
exposure ])liase, eiich test is regressively executed against all nm tants of all twenty im­
plementations. This is highly computationally expensive because an exhaustive set of 
nmtants are generated for etich implementation. This means that there M’e a large num­
ber of nm tants that need to be executed by tests. As will be shown in the next chapter, 
thousands of nm tants are generated for each implementation. Each of the 265 tests can 
potentially be executed against each nmtant. This means that there is a very Uu’ge number 
of tests need to be executed against mutants in this stage.

To address these issues, the nmtants generated for each implementation were deployed 
onto separate linux machines. Some of these machines are illustrated in Figure 5.11. The 
set of automated tests were also deployed on each machine along with the required in­
frastructure for mutant execution. This ensured that the test-m utant execution could be 
carried out in parallel for each implementation. Parallelisation of the nmtation analysis 
procedure has been identified as an approach for addressing the need for a large amount 
computational resources [57]. W ithout paralellisation, this study would have been unfea­
sible.

11: Distribution of Test Executions
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5.3 .4  Sum m ary

This section described why a use case driven approach to test selection is representative 
of the general case. It indicates that professional software testers aj)i)lied this approach 
to the use cases on which the Health Watcher is based, to create a set of tests, which 
ensures the resulting tests are representative of the general case. It also described how 
the selected tests were automated and the environments in which these tests were used in 
the mutation analysis procedure, detailed in Section 4.1.

5.4 Chapter Summary

An inherent goal of the study presented in this thesis is to gather evidence from which 
general conclusions about the comparative effect of AOP and OOF on testability can be 
drawn. General conclusions can only l)e drawn from evidence gathered in contexts that 
are representative of the general case. This chapter has described the selection of the 
three inputs to create a context that is representative of the general case. This is done to 
maximise the degree to which general conclusions can be drawn from evidence gathered 
in the study.

In each section iu})uts are selected that have the potential to be used in the measure- 
nienl gathering a|)})roa.ch, prescril)ed by the methodology detailed in Ciiapter 4. The first 
section selected the evolutionary implementations of the Health Watcher program from a 
set of candidates because they best fitted the defined indicators of representativeness. The 
second section selected the Mu,Java/AspectJ tool to generate nuitants of these implemen­
tations because this tool generates nuitants that contain faults that are representative of 
the types of faults that occur in practice. The third and final section describe an ap{)roach 
to select a set of representative tests to execute against the mutants generated for each 
Aspect.! and Java implementation of the Health W^atcher program.

These selections maximise generalisablility of evidence gathered in this study because 
together these inputs form a context that is representative of the general case. The 
results of applying MA in this context and evidence derived by analysing these results are 
presented in the next chapter.
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Chapter 6

Study Results and Analysis

In M utation Analysis (MA), mutants that contain a fault are generated from implementa­
tions. Over the phases of MA, the outcomes of executing a test set against each mutant are 
derived. As illustrated on the left-hand side of Figure 6.1, for each test-nm tant execution 
there are three possible outcomes. The test can exercise a path ttu'ough the implementa­
tion where the fault is not executed. Alternatively, if the fault is executed, then the fault 
can either cause state infection and propagation of that infected state into the output, 
or not. In the first case, the output will differ from what is expected and result in a Inil 

outcome. In the second case however, the output of the test will be as expected and result 
in a outcome.

In this study, MA is applied to Aspect.1 and Java implementations of ten versions 
of the Health Watcher (IIW) program. The outcomes of the test-m utant executions for 
each implementation are used as a basis to derive rates of fault exposure, fault execution 
and infection and propagation for those implementations. To calculate these rates for 
each implementation the number of not exe, f)iiss and liiil outcomes from the test-m utant 
executions are counted.

The primary focus of this thesis, as outlined in chapters 1 and 4, is to compare the

RatesMutant
Fault E xposure  ]

n o yes

no yes
N ot Exe N ot Exe

Fail FailPass Pass

Fault Execution m Infection and Propagation

Figure 6.1: Fault Exposure: M utant and Rates 
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effects of AOP and OOF on the rate of fault exposure. As detailtKl in chapters 3 and 
4, the rate of fault exposure is caused by the rates of fault execution and infection and 
propagation. A secondary focus of this thesis is to understand why the effects of AOP and 
OOP on the rate of fauU, exposure fault exposure differ. This is achieved by comparing 
and analysing the effects effects of AOP and OOF  ̂ on the rates of fault execution and 
infection and propagation.

The rate of fault execution is calculated a.s rate =  j n i i + p a s s —  This rate repre-I ail+l>(iss+notr.xe ^

sents the proportion of test-nm tant executions where the fault contained in the nnitant 
is executed. The rate of infection and propagation is calculated a.s rate =  • This
rate represents the projjortion of test-nnitant executions in which the fault is executed 
result in state infection and propagation, resulting in test failure and fault exposure. The 
rate of fault exposure is calculated as rate  =  • This rate represents the
overall proportion of test-nnitant executions that result in test failure and fault exi)osure.

The right hand side of Figure 6.1 illustrates the causal relationship between these 
rates. The rate of fault exposure is directly caused by the rates of fault execution and 
infection and propagation. The higher the rate of fault exposure, the more faults that 
are executed. The more faults that are executed, the more possibilities there cU'e for state 
infection and propagation of infected state. That is, the higher the rate of infection and 
propagation, the more fail outcomes. The more fail outcomes, the higher the rate of fault 
exj)osure.

In this chajiter, the results of applying MA to the AspectJ and Java implementations 
of the ten versions of the Health Watcher (IIW) program m’e presented. The number 
of not exe, pass and fail outcomes from the test-nnitant extKuitions are counted for each 
implementation. Based on these counts, the rates of fault exposure, fault execution and 
infection and propagation for each implementation are calculated. The effects of AspectJ 
and Java on these rates M’e compared over the ten versions of the 11W program using 
graphical analysis. The comparative effects of these AspectJ and Java on these rates are 
then quantified by applying binomial regression analysis to each rate.

This analysis is based on the outcomes from executing tests against nmtants generated 
for each implementation. Before the analysis of rates is presented, an analysis of the 
nm tants generated for each implementation is ])resented. As outlined in Section 4.3, 
nm tant equivalence is an assumption on which this study is based. The generated nnitants 
are equivalent if they differ only in the implementation from which they are generated.

The remainder of this chapter is organised as follows. The first section of this chapter 
presents an analysis of the nm tants generated for each implementation. The second section 
compares the rates of fault exposure, fault execution and infection and propagation for 
As])ectJ and Java implementations. The third section presents the results of quantifying 
the comparative effects of AspectJ and Java on each rate. The fourth section outlines the
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threats to the vahdity of the results and analysis and discusses the impact they have on 
how the results can be interpreted. The chapter is concluded by sunnnarising each stej) 
in the comparative analysis and extracting the evidence of the (comparative effect of AGP 
and OOP on testability from the results.

6.1 Com parison of G enerated M utants

The M uJava/AspectJ nmtaiit generation tool is applied to the Java and AspectJ imj)le- 
mentations of the (IfW) in the nm tant generation phase. Table 6.2 presents the number 
of mutants  that are generated by this tool for each mipiementation of each version of the 
IIW. It also lists the number of locations in each implementation at which nnitants are 
generated.

6.1 .1  R esu lts  o f  M u tan t G eneration

The information in Table 6.2 is visualised in the graph illustrated in Figure 6.3. The x-axis 
of this gra])h represents the version of the IIW and the y-axis represents the number of 
nm tants generated. Each point in the graph represents the number of nnitaiits generated 
in a Java or Aspect J implementation. The points for both types of implementation are 
differentiated by tlie colour of eacli point. The size of each point represents the numi)er 
of locations at which the nnitants were generated. There are two lines through the graph, 
one that connects the points for the Java implementation and the other tha t connects the 
points for the As])ectJ implementation. Each line indicates the change in the numbers of 
m utants generated over versions for the Aspect J and Java.

Figure 6.3 shows that the number of nmtants that are generated for Java and As- 
pectJ implementations increase steadily over versions. The 4367 nnitants generated for 
the initial Java implementation, increases steadily to 4551 at version 8. The nunil)er of 
m utants generated then jumps to 4815 in version 9 and to 4961 in version 10. This jum p 
is explained by the implementation of five additional use cases in the maintenance activity 
implemented in version 8 and the addition of a logging feature in the maintenance activity 
implemented in version 9.

There are 4447 m utants generated for the initial AspectJ implementation. This is 
80 nm tants more than the equivalent Java implementation. The number of m utants 
generated jumps from 4472 at version 2, to 4726 at version 3. This jum p is a response to 
a significant rtvfactoring of the AspectJ implementation needed to perform a corrective 
maintenance activity to version 2. This increases the difference between the mimber of 
m utants generated for the AspectJ implementation to approximately 300 nnitants over 
the versions 3 to 8. A steady increase is then observed uj) to version 8 where another jum p 
from 4727 of nnitants generated to 4815 at version 9 and 5061 at version 10. These jiimjjs
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are also in response to the additional! use cases and logging features added a t versions 9 

and 10. At version 10 the difference in the luunber of nuitants generated for the Java and 

Aspect J im plem entations is 100 nnitants.

This difference between the lines shows th a t more nuitants are generated for the As­

pect J im plem entation over each of the ten versions of the IIW . A statistica l conipm’ison 

of these measures, presented in appendix Listing A .l, indicates th a t this difference is not 

significant when the overall num ber of nuitants generated for both im plem entations is 

considered. A com parison of the size of the points on each line shows th a t the number 

of locations a t which m utants are generated are similar, bu t slightly lai’ger for the Java 

im plem entation. A nother statistica l com parison of these measures, presented in appendix 

I>isting A .2, indicates th a t the difference in the number of locations a t whicfi m utants are 

generated for Java and A spectJ im plem entations is not significant. This indicates th a t 

the num ber of locations at which nnitants are generated is roughly the same for Java 
and AspectJ which reaffirms the eciuivalence of the m utants generated for each pair of 

im plem entation.

Because both sets of im plem entations are ecinivalent and similar nn itation  operators 

are applied to these im plem entations using precisely the same nm tation generation process 

we ex})ect there to be no significant differences between the number of m utants generated 

for Java and Asj)ectJ im plem entations of the num ber of locations a t which m utants m'e 
generated. Both statistical comparisons m atch our ex])ectation and suggest th a t the 
results of the m utan t generation for the Java and A spectJ im plem entations are eciuivalent.

6.1.2 M utant E quivalence

Section 4.2 shows th a t this study is based on im plem entation and m aintenance equiva­
lence. If each pair of AspectJ and Java im plem entations differ only in the approach used 

for their development then these are im plem entation eciuivalent. If the only difference 

between respective A spectJ and Java im plem entations of IIW  versions is the m aintenance 

activity th a t created the new version of the IIW , then these im plem entations are main­

tenance equivalent. A goal of the m utant generation phase, identified Section 4.2, is to 

generate m utants for AspectJ and Java im plem entations th a t pre;serve im plem entation 

and m aintenance equivalence.

Fxjuivalence is preserved if the only differences between m utants is th a t they were 

generated from AspectJ or Java im plem entations of different versions of the IIW . A two­

pronged apprOfich was followed to evaluate whether the generated nnitan ts luul preserved 

im plem entation and m aintenance equivalence. F irst, the num ber of m utan ts generated is 

com pared with the size of the im plem entations. If they cire correlated, then th is indicates 
th a t the m utants are reflective of the im plem entation from which they were generated. If 

the number of m utants reflect the size of im plem entations from which they are generated.
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version locations mutants
1 1014 4:i67
2 io;32 4445
3 io;^i 4471
4 io:i3 4473

o3 5 1059 4528
6 1068 4545
7 1076 4547
8 1079 4551
9 1192 4815
10 1241 4961
1 1004 4447
2 1012 4472
3 1050 4726

»-3 4 1049 4729
O
O 5 1049 4729
a
cn () 1055 4749
< 7 1063 4753

8 1058 4727
9 1135 4889
10 1209 5061

Figure 6.2: M utant Generation Figure 6.3: Measure Visualised
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Figure 6.4: Types of Faults Figure 6.5: Size for Correlation

then this suggests that these nnitants are equivalent.

Second, the types of nnitants generated for each implementation are compared. As 
shown in Section 5.1, the Java and Aspect J implementations are similar. This is because 
the initial AspectJ implementation is the result of refactoring of the initial Java implemen­
tation. This similarity means that similar types of faults should be generated in nnitants 
for Java and AspectJ ini])lementations. If the m utants generated for Java and As])ectJ 
contain similar types of faults, then this suggests that these nnitants are equivalent.
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C o rrela tio n  o f M u ta n ts  G en era ted  and  Im p lem en ta tio n  S izes

A correlation between the number of nnitants generated and the size of the IIW is illus­
trated by comparing Figures 6.3 and 6.5. Figure 6.3 shows the changes in the number of 
nnitants generated for each implementation over versions of the HW. Figure 6.5 shows the 
changes in the size^ of the AspectJ and Java implementations over the ten versions of the 
IIW. The x-axis represents the version of the IIW and the y-axis represents the number of 
modules in an implementation. Each point in the graph represents the number of modules 
in a Java or Aspect J implementation. The j^oints for both types of implementation me 
differentiated by the colour of each point. The size of each point represents the number 
of Lines Of Code (LOG) in an implementation. There are two lines through the graph, 
one that connects the points for the Java implementation and the other that connects the 
points for the Aspect J iniplenientation. Each line indicates the changes in the size of Java 
and As])ectJ implementations over versions.

Comparing Figures 6.3 and 6.5 shows that the changes in the size of Asi)ectJ and 
Java implementations over versions are reflected by similar changes in the number of nui- 
tants generated for the Asi>ectJ and Java implementations. This similarity demonstrates 
a rough correlation. This correlation indicates that the mutants generated for implemen­
tations are reflective of the ecjuivaient implementations. It suggests tliat tiie nnitants 
generated for each implementation preserve eciuivalence.

C o m p a rin g  D is tr ib u tio n  o f  Fault T y p es in M u ta n ts

Figure 6.4 presents the distribution of fault types, generated in mutants at locations in 
one specific implementation^. Each coloured segment represents the number of locations 
for whicli mutants are generated that contain a fault of a specific ty{)e.

The bars for the Aspect J and Java implementations of each version are placed directly 
beside one another to make conipming the distribution of fault types easier. This shows 
tha t the types of fault generated in m utants of each As])ectJ and Java implementation m'e 
similar. For each j)air of Aspect J and Java implementations, the distribution of shared 
fault tyj)es ai’e simihu'.

The shared fault types are: connnon, Java-specific, overloading, polymorphism and 
traditional. The number of m utants generated for each j)air are very similar. There 
are slightly more common, inheritance and polymorphism fault types generated in Java 
mutants. There are slightly more trmlitional fault types generated in AspectJ mutants. 
The nuniber of nnitants generated containing the remaining fault types are roughly equal.

The advice- and pointcut-based fault types are only generated in nnitants of the As­
pectJ implementation. The large amount of similarities and very slight differences between

^Size is based on metrics gathered from the HW l)y Greenwood et al. [63] 
more detailed version of this chart is available in Figure A .l
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the types of faults generated in nnitants of each pair of Aspect.! and Java implementations 

indicate that these mutants are equivalent.

6 .1 .3  S u m m a r y

This section presented the number of mutants that are generated for each implementation 

of each version of the IIW. The nmnber of mutants generated for Aspect.! and .!ava 

implementations were compared. This comparison showed that there were slightly, but 

not significantly, more mutants generated for the AspectJ implementation. The number 

of nmtants were correlated with the size of the implementations from which they were 
generated to provide evidence of nmtant equivalence. The distribution of the types of 

faults generated in mutants for each i^air of Aspect,! and Java implementations were also 

correlated to provide further evidence of nmtant equivalence.

6.2 A n alysis o f O u tcom es and R ates

The outcomes of the test-nnitant executions for each Java and Aspect.! im])lementation are 

used as a basis to derive rates of fault exposure, fault execution and infection and prop­
agation for those imj)lementations. To derive these rates for each implementation, the 

number of not exe, j>ass and lail outcomes from the test-mutant executions are counted. 
The first part of this section presents and analyses the outcomes from the test-mutant 
executions for each implementation. The second, third and fourth parts of this section 

j)resent and analyse the rates of fault exposure, fault execution and infection and propa­
gation derived from these outcomes. This section is concluded by sunnnarising the results 
of the analysis.

6 .2 .1  O u tc o m e s

These number of not exe, p<>ss and fail outcomes for the Java and AspectJ implementa­

tions of each version of the IIW program are presented in Table 6.6.Figure 6.7 presents a 

bar chart that visualises the nmnber and the type of outcomes for each implementation, 

provided in Table 6.6. Each bar in this chart represents the number of not exe, pass and 

fail outcomes of test-mutant executions for a specific implementation. The bars for the 
Asi)ectJ and .iava implementations of each version are placed directly beside one another 

to make comparing the number of outcomes easier.

This chart shows that for each implementation, the number of not exe outcomes is 

nmch larger than the number of j>ass and fail outcomes for all imj)lementations. This is 

expected because each test executes one path through the mutant implementation, and 

given the large size and high number of potential paths through the implementation, it is 

not surprising that most of the test-nmtant executions result in a not exe outcome.
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Iinpl Version not cxc p,'I.S.S fnil
1 788807 34182 28576
2 797607 36583 32585
3 800944 38612 32289
4 802845 38118 31272
5 813743 38500 30717cti

’“ 3 6 822344 36052 27879
7 813106 39516 :i4043
8 812933 40165 34347
9 1175755 48556 51664
10 1210095 54336 50234
1 790743 36697 39725
2 783007 51810 37223
3 829170 55237 37163
4 832999 53294 35862

O
O 5 832999 53294 35862
a

6 835886 54518 35651
< 7 835536 54952 36347

8 830536 54936 36293
9 1175962 70468 49155
10 1214042 77764 49359

Figure 6.6: Outcomes

/  /  /  /  /  /  /  /  /  /  /  /  /  f  /  /  /  /

impi

Figure 6.7: Outcomes Visualised

The chart also shows, there are consistently more outcomes for the Asj)ect.J implemen­
tations. As shown earlier, the number of outcomes for each implementation is the ])roduct 
of executing the test set against each of the nnitants generated for the implementation. 
Figure 6.3 shows that there are more mutants generated for the AspectJ implementation. 
The same test set is executed against the nmtants generated for each ]>air of Java and 
AspectJ implementations. This means that the only determinant for the difference in 
the number of outcomes for Java and AspectJ implementations is the number of nm tants 
generated from them.

6.2.2 Fault Execution

The bar chart presented in Figure 6.7, suggests that the rate of fault execution is higher for 

AspectJ implementations. The rate of innli execution is calculated as rate  =  faii+'i!!,t-!+notexe 
This rate represents the proportion of test-m utant executions where the fault contained 
in the nmtant is executed.

Comparing Rates of Fault Execution

Figure 6.8 shows the result of calculating the rates of fault execution for each Java and 
AspectJ implementation. In this graph, the x-axis represents the version and the y-axis 
represents the rate of fault execution. Each point on the graph represents the rate of fault 
execution for each of the AspectJ and Java implementations of each version of the IIW. 
The points are differentiated by colour, and a line connecting the points for AspectJ and 
Java implementations is also providcxl to highlight the changes in these rates over versions 
of the 11W.
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C lien t

C lien t

Data

version

Figure 6.8: Rates of Fault Execution Figure 6.9: Data Layer Initialisation

This graph shows that the rate of fault execution is higher for the AspectJ implemen­
tations of each version. Figure 6.8 shows that the proportions of faults that are executed 
in mutants of AspectJ implementations are between 0.088 and 0.104. This figure also 
shows that for Java implementations, the proportions of faults executed is between 0.078 
and 0.0804. A comparison of these rates shows that AspectJ has a higher rate of fault 
execution. This means that there are proportionally more faults executed by tests in 
mutants of AspectJ implementations.

As illustrated in Figure 6.1 and explained in the introduction to this chapter, the higher 
the rate of fault execution, the higher rate of fault exposure. This is because the more 
faults that are executed, the more possibilities there are for state infection and propagation 
of infected state. The rate of fault execution is higher for AspectJ implementations which 
means there is more potential for a higher rate of fault exposure for these implementations 
compared to Java implementations.

Cause of Higher R ates for AspectJ Implementations

Figure 6.8 shows that the rate of fault execution is higher for AspectJ. The most significant 
cause of this difference is that in the AspectJ implementation, there was a large amount 
of redundant execution every time this implementation was initialised for test execution. 
Figure 6.9 illustrates the initialisation of the Java and AspectJ implementations for a test.

As described in Section 5.3.3, in the initialisation of the HW, the server is started 
before the client. When the server is started, it initialises a data layer which acts as an 
interface to a database, through a persistence layer, that holds the information managed 
by the HW system. When the client is started it establishes a connection to the server
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N o t Fxo I Pa<;s ■  Fail

Figure 6.10; Example of the Im pact Of D ata Layer Initalisation On Client

and exposes a h ttp  interface to  the server for m anaging inform ation in the HW. This 
initialisation sequence for the Java im plem entation is illustrated a t the top half of Figure 

6.9.

In the initialisation of the A spectJ im plem entation, illustrated a t the bottom  half of 

Figure 6.9, the d a ta  layer is initialised in both the server and client. A lthough the d a ta  

layer is initialised on the client, it is not executed within the client after initialisation. This 

redundant initialisation is due to  a poorly defined pointcut th a t triggers the initialisation 
of th is layer in the client. The intention of the pointcut is to  initialise the d a ta  layer 
on the server only. This means th a t tests executed against m utants th a t contain faults 
generated in the d a ta  layer are more likely to execute these faults. The consecjuence of 
this, as observed in Figure 6.8, is a higher rate of fault execution  for A spectJ.

The ra te of fault execution is increased because more tests execute the faults present 

in the d a ta  layer. When the d a ta  layer is instan tiated  on the client during initialisation, 

tlie context of instantiation is not as expected. This causes faults to  execute th a t would 
otherw ise not. It also means th a t tests execute faults th a t would otherwise have not. The 

increase in the num ber of faults th a t are executed and the num ber of tests th a t execute 

faults result in an overall higher proportion of faults executed by tests per im plem entation.

Besides the inflation of ra te  of fault execution, the redundancy also has a knock on 

effect on tlie rate of infection and propagation. As more tests are executing more faults 

in the A spectJ im plem entation due to the redundant execution, the potential for test 

failure due to infection and propagation increases. However, this potential is not realised 

because the d a ta  layer is not used by the client and failures in the d a ta  layer in the client 

are less likely to cause test failure due to infection and propagation. The result of this is a 

deflation of the ra te  of infection and propagation. This deflation occurs because although 

the num ber of fail outcomes fall relative to  the num ber of pass outcomes.

This inflation and deflation is explained further through the simple example presented 

in Figure 6.10. The num bers used in this figure are conjured for the purpose of explanation 

only. The figure shows the num ber of not exe, pass and hiil outcom es for the client 

com ponent of the A spectJ im plem entation with and w ithout the d a ta  layer on the right
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a . .a

Figure 6.11: Fail and Pass Outcomes Figure 6.12; Rates of Infection and Pro]).

and left hand of the figure.

This illustrates the inflation in the rate of fault execAition from ^  to It also71L
10
12

4 0  to More-demonstrates the deflation of tlie infection and propagation rate from 
over, it also shows that although the rate of infection and propagation is deflated the 
overall effect of the redundant data layer initialisation is the inflation of the fault expo­
sure rate from to As the example shows, the increase in the miniber of faults 
executed results in a small proportion of fail outcomes which inflates the overall rate of 
fault exposure.

6.2 .3  In fection  and P ropagation

Figure 6.11 presents a bar chart that visualises the number of fail and pass outcomes from 
test-nnitant executions in which the fault contained in the m utant is exercised, provided 
in Table 6.6. Each bar in this chart represents the rnunber of j>ass and fail outcomes 
of these test-m utant executions for a specific implementation. The bars for the AspectJ 
and Java implementations of each version are placed directly beside one another to make 
comparing the number outcomes efisier.

This chart shows that for each implementation, the number of outcomes is nmch larger 
for AspectJ implementations. This is because there are more nm tants that contain faults 
generated for the AspectJ implementations, as illustrated in Figure 6.3, and more of these 
faults are executed by tests, as illustrated in Figure 6.11. This chart also indicates that 
the rates of infection and propagation are generally lower for AspectJ implenientations.
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R a tes  o f  In fec tio n  and  P ro p a g a tio n

The rate of infection and propagation is calculated as rate = • This rate repre­
sents the proportion of test-nnitant executions in which the execution of the fault results 
in state infection and propagation, which in turn results in test failure and fault exposure.

The grai)h presented in Figure 6.12 shows the result of calculating the rates of infection 
and propagation for each Java and AspectJ iniplenientation, based on the numbers of 
fail and })ass outcomes provided in Table 6.6. In this graph, the x-i îxis represents the 
version and the y-axis represents the rate of infection mid propagation. Each })oint on 
the graph rej^resents the rate of infection and propagation for each of the AspectJ and 
Java impleirientations of each version of the HW. The points are differentiated by colour. 
A line connecting the points for AspectJ and Java implementations is filso provided to 
highliglit the changes in these rates over versions of the IIW.

Figure 6.12 shows that for AspectJ implementations, the rate of faihu’e declines from 
an initial high of 0.52 to a low of 0.39. This indicates that over maintenance activities 
the rate of infection and propagation for AspectJ decreases. This figure also shows that 
for Java implementations, the rate of failure ini])roves from an initial rate of 0.455 to a 
final rate of 0.048. This indicates that over maintenance activities the rate of infection 
and jnopagation increases for Java. A comparison of these rates shows that overall, Java 
has a higher rate of failure outcomes for the nnitants executed.

As illustrated in Figure 6.1 and explained in the introduction to this chapter, the 
higher the rate of infection and propagation, the higher rate of fault exposure. This is 
because the more test faihu'es, the more faults that are exposed and the higher the rate of 
fault exposure. The rate of infection and propagation is higher for Java implementations 
which means there are more faults exposed when tests execute faults in nnitants for these 
implementations compared to AspectJ implementations.

C au ses o f H igher R a te s  for Java  Im p lem en ta tio n s

The graph presented in Figure 6.13 decomposes the munber of tail and pass outcomes 
presented in Figure 6.11 for each implementation by fault type. This shows that different 
fault types influence the rate of infection and propagation for ericli implementation. The 
figure contains a bar chart for each fault type. Each chart directly compares the number 
of ])ass and fail outcomes of test-nm tant executions for Java and AspectJ implementations 
of each version of the IIW.

The reason the rates of infection and propagation are higher for Java is because the 
rates of infection and propagation for fault types ai'e generally higher for Java compared to 
AspectJ. The rates of infection and propagation for the common, inheritance, overloading 
and traditional fault types are higher for Java implementations coni])ared to AspectJ. 
The rates of infection and propagation for these fault types are highly influential on the
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Figure 6.13; Fault Types

outcome
1̂ 1 pass 
■  fail

overall rates of infection and propagation for Java and Aspect,! iniplenientations. This is 
because the number of outcomes for these types account for a large proportion of overall 
nunil)er of outcomes for the Java and AspectJ implementations. The rates of infection 
and propagation for these fault types pulls the overall rates of infection and propagation 
for Java implementations over those for AspectJ implementations.

The rates of infection and propagation for the advice and pointcut fault types are low, 
which pulls the overall rates of infection and propagation for AspectJ implementations 
down further coni[)ared to Java implementations. The rates of infection and propagation 
for the java-specific and polymorphism fault types are higher for AspectJ implementa­
tions compared to Java. The rates of infection and propagation for these fault types is 
not as influential on the overall rates of infection and propagation for Java and AspectJ 
implementations. This is because the number of outcomes for these types account for a 
smaller proportion of overall number of outcomes for the Java and Asj)ectJ iniplementa-
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Figure 6.14: Rates of Fault Exposure

tious. The rates of infection and prupagation for these fauU types reduces the difference 
between rates of infection and propagation for the Java and AspectJ implementations.

6.2.4 Fault Exposure

The rate of fault exjxxsure is calculated as rate =  f,iii+ p/is!+ 7iotexe ' represents the
overall proportion of test-nnitant executions that result in fault execution, state inff^ction 
and j)ropagation, which in tiun  results in test failure and fault exposure.

Comparing Rates of Fault Exposure

Figure 6.14 presents a graph that ilhistrates tiie difference between tiie rates of fault 
ex])osure for the AspectJ and Java implementations of each version of the IIW. In this 
graph, the x-axis represents the version and the y-axis represents the fault exposure. 
Each point on the graph rejjresents the rate of fault exposure for each of the AspectJ 
and Java implementations of each version of the 14W. The points for Asj)ectJ and Java 
implementations are differentiated by colour. A line connecting the points for AspectJ 
and Java implementations is (ilso provided to highlight the changes in these rates over 
versions of the HW.

The graph presented in Figure 6.14 shows that over the versions the rate at which faults 
are exposed by executing nm tants is generally higher for the AspectJ implementations. 
The rate of fault exposure for the AspectJ implementation of the initial version of the 
liW  is nnich higher at 0.046 than the Java implementation at 0.033. The rate of fault 
exposure for AspectJ drops up to version six of the IIW, where the rate recovers slightly
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I  fault Exposui ^  ̂  AspectJ 

AspectJ

m Fault Execution m Infection and Propagation

Figure 6.15: Comparative Effects

until version eight, where the rate drops again to a final rate of 0.038.
The overall rate of fault exposure is higher for the AspectJ compared to Java imple­

mentations. However, it does seem that the rates are converging in the later versions of 
the HW.

Causes of Higher Rates for AspectJ Implementations

Figure 6.15 illustrates the comparative effects of AspectJ and Java on the rates of fault 
exposure, fault execution and infection and propagation. It shows that the general effect of 
AspectJ is to improve the rate of fault exposure over Java. This means that the proportion 
of faults exposed from executing the test set against the m utants generated for AspectJ 
implementations is higher than the proportion of faults exposed from executing the test 
set against the mutants generated for Java implementations.

The figure also shows that the general efi'ect of AspectJ is to improve the rate of fault 
execution over Java. This means that the proportion of faults executed in m utants of the 
AspectJ implementations is higher than the proportion of faults executed in m utants of 
the Java implementations. It also shows that the general effect of Java is to improve the 
rate of infection and propagation over AspectJ. This means that the proportion of faults 
exposed, when faults in mutants of the Java implementations are executed, is higher than 
the proportion of faults exposed when faults in m utants of the AspectJ implementations 
are executed.

As mentioned earlier and illustrated again in Figure 6.15, there is a causal effect 
between the rates of fault execution and infection and propagation on the rates of fault 
exposure. The rate of fault exposure is directly caused by the rates of fault execution 
and infection and propagation. The higher the rate of fault exposure, the more faults 
that are executed. The more faults that are executed, the more possibilities there are for 
state infection and propagation of infected state. The higher the rate of infection and 
propagation, the more fail outcomes. The more fail outcomes, the higher the rate of fault 
exposure.

123



CHAPTER 6. STUDY RESULTS AND ANALYSIS

These results suggest that although a smaller proportion of executed faults result in 
state infection and propagation of the infected state causing test failure and fault ex])o- 
siu'e, there are proportionally more faults exposed in the Aspect,! implementations. This 
is because there are more faults executed in mutants of the Aspect.! implementation and, 
although there are proportionally fewer faults exposed compared to Java implementa­
tions, the increased volume of faults executed results in a higher nmnber of instances of 
state infection and ])ropagation resulting in test failure and fault exposiu'e for AspectJ 
implementations.

6.2.5 Summary

This section presented the number of not exe, puss and f;iil outcomes for the Java and 
AspectJ implementations of each version of the liW  program. These outcomes are used 
to derive rates of fault exposure, fault execution and infection and propagation for the 
Aspect.! and Java ini])lementations. The rates for the Aspect.! and .!ava implementations 
are comj)m’ed. The results show that the rates of fault exposure are higher for Aspect.! 
implementations. The results also show that the rates of fault execution are higher for 
AspectJ ini])lementations but the rates of infection and propagation are higher for Java 
imj)lementations. The analysis of these rates suggests that the reason for this is, that 
proportionally more faults in m utants of the As])ectJ inii)lenientation m’e executed, caus­
ing more state infection and propagation, which in turn results in test failure and fault 
exposiue.

6.3 Quantifying the Comparative Effects

The analysis of the effects of Java and AspectJ on the rates of fault exposure, fault 
execution and infection and propagation in the previous section shows that there is a 
difference between the effects of Java and AspectJ. This analysis does not however quantify 
the comparative effects. This section applies binomial regression analysis to tlie outcomes 
presented in Table 6.6. This approach supports the quantification of tlie comparative 
effects of Java and AspectJ on tliese rates. The first part of this section explains tiie 
application of binomial regression, while the second part j)resents the measures of the 
comparative effects of Java and AspectJ on each rate. The third and final part summarises 
this section.

6.3.1 Binom ial Regression

Binomial Regression Analysis (BRA) [52] is used quantify the difference in the effects 
of Java and AspectJ on the rates of fault exposure, fault execution and infection and 
propagation. BRA is a statistical technique for analysing the relationship between a
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model specification
1 Fault Exposure  ~  im p lem en ta t io n  +  vers ion
2 Fault execution  ~  im p lem en ta t io n  +  vers ion  

Infection and Propagation  ~  implementation.  +  vers ion

Table 6.1: Models

binomial res])onse, (i.e., pass or fail) and explanatory fac:tors. In this application of 
binomial regression, the binomial response is the rate and the explanatory factors are the 
implementation and maintenance version. This relationship is captured in the l)inoniial 
regression model, rate  ~  im plem entation  +  version, which indicates that each rate is 
explained by both the Aspect.) and .Java im plem entation  approaches and version  of the 
program. This is the standard way in which a binomial regression model is specified [52].

M odel Fitting

The relationship between each rate, and the implementation and version factors in each 
model, is measured by fitting the model over the measures in Table 6.6. In the model fitting 
process, the correlation betw^een the effects of the levels of each factor on the observed rate 
is measured [.52]. These measurements reflect the strength of the correlation between the 
rates (of fault exposure, fault execution and infeetion and propagation) and levels 1-10 of 
the version factor and the .Java and Aspect,! levels of the implementation fjictors. These 
correlations are used to measure the generalised effects of each factor on the rate of fault 
exposure [52].

Table 6.6 presents the results of fitting three models for the effects of the Version and 
Iniplcnientation factors on the rates of Fault Exposure, Fault cXeeution and Infection 
and Propagation. These models are presented in Table 6.1. As will be shown next, 
the measures resulting from the model fitting process are the basis for calculating the 
comparative effects of Java and Aspect J on the rates of fault exposure, fault execution 
and infection and propagation.

6.3.2 Com parative Effects

As detailed l>y Faraway [52], the measures of the effects presented in Table 6.16 are used 
to construct the graphs of the generalised effects of Aspect.J and Java on the rates of 
fault exposure, fault execution and infection and propagation, presented in Figures 6.17, 
6.18 and 6.19, respectively. In each of these figures, the difference between the Java 
and AspectJ lines is the measure of the comparative effect of AspectJ and Java. The 
measures of the difference between the AspectJ and Java lines is marked in r('d in Table 
6.16. These are the measures of the comparative effect of AspectJ and Java on each rate. 
These measures are on the log odds scale [52] and need to be transformed by taking the
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version ini pi Fault Exposure (FE) Fault execut ion  (FX) Infection and Propagation (IP)
1 AspectJ -3.19553*2 -2.330187 -0.769506

.JilV'rt 0.0610(14 -0.2t)8(K)6 o . r i ' W ' C

2 -0.061564 0.128189 -0.115633
3 -0.026266 0.126485 -0.14365
4 -0.060756 0.093387 -0.148374
5 -0.074845 0.086284 -0.155383
6 -0.U59539 0.093219 -0.146910
7 -0.023780 0.125251 -0.141546
8 -0.017766 0.134074 -0.143749
9 -0.013261 0.059340 -0.072144
10 -0.057832 0.081284 -0.136110

Figure 6.16: Measures of the relative effects of implementation and version levels 
on rates

/ \

I

/

Figure 6.17: FF Figure 6.18: FX Figure 6.19: 11̂

Fault E x p o s u re ]'^A specU  6%

A specU  19%

* O A s p e c t J  13%

Fault Execution Infection and  P ropagation

Figure 6.20: Comparative Effects Quantified

exponent of each measure. This results in a measure of the difference in the odds of 
AspectJ and Java exposing faults, executing faults and causing infection and propagation 
when faults are executed.

Figure 6.20 illustrates the results of these transformations. Its shows that, based 
on the results of binomial regression, the odds of fault exposure are 6%(0.9402928 =  
ea:j9(—0.061564)) higher for AspectJ. This means that, of the health watcher program, 
faults are easier to expose in AspectJ compared to Java implementations. This is evi­
dence to indicate that the effect of AOP is to increase testability over OOP. Testing is
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AspeclJ Java

/
. V +19%

N u t Exe I P a s s  H Tail

IP ^  Infection and Propagation FX ^  Fault execution

Figure 6.21: Causation

estim ated to  account for a significant am ount of the m aintenance cost [33, 22, 141] and 

for those considering the adoption of AOP to reduce m aintenance costs [39], this evidence 

is encouraging.

Fault exposure  is a direct consequence of fault execution and s ta te  infection and prop­
agation. If more faults are executed, then there are more chances for s ta te  infection and 

propagation, resulting in fault exposure. The more executed faults th a t cause s ta te  infec­

tion and propagation, the more faults th a t are exposed. If more faults are exposed, then 
the odds of fault exposure increase.

Figure 6.20 shows th a t the odds of fault execution  are 19% (0.8114715 — ea:7j (—0.208906)) 
higher for AspectJ and th a t odds of infection and propagation  are 13% (1.138142 — 

6x79(0 .129397)) lower for Aspect.!. This means th a t in the Aspect J im plem entations there 

are more faults executed. However, it also means th a t com pared to  Java im plem entations, 

proportionally  less of the executed faults cause s ta te  infection and propagation, resulting 

in lower odds of fault exposure.

This is explained further through the illustration in Figure 6.21. T he boxes marked 

A spectJ and Java represent the to tal num ber of test-m utan t executions for A spectJ and 

Java im plem entations, respectively. The circles in these boxes represent the num ber of 

faults executed by tests in A spectJ and Java m utants. This representation shows th a t 
there are more faults executed in A spectJ com pared to Java m utants. This difference is 

the cause of the 19% higher odds of fault execution for A spectJ. T he num ber of executed 

faults th a t result in pass and fails are represented inside the circle. This representation 

shows th a t there are proportionally fewer fails for A spectJ, indicating th a t less of the 

faults executed in AspectJ m utants result in infection and propagation. This difference is 
the cause of the 13% lower odds of infection and propagation for A spectJ.

6.3 .3  Sum m ary

In this section, binomial regression analysis was applied to  the outcom es presented in 

Table 6.6. Models th a t represent the effects of Java and A spectJ im plem entations and
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each version on the rates were fitted to the outcomes. The resuh of tliis fitting process are 
relative measures of the effects of Java and AspectJ implementations and each version on 
the rates. Based on these measures, tlie comparative effect of .Java and Aspect.] on eacfi 
rate was quantified.

6.4  T h reats to  V alid ity

'I'he goal of this thesis is to gather empirical evidence of the comparative effect of AGP and 
OOP on testability through a study. In the study, the testability of equivalent As])ect.J and 
.Java implementations are measured for each maintenance version of the Health Watcher 
program. I'he result of which are pairs of testability measures that represent the effects of 
Aspect.J and .Java on testability, one pair for each version of the program. In this chapter 
tliese measures are presented and analysed to identify and (}uantify the com{)arative effect 
of Aspect and Java on testability.

Chapters 4 and 5 detail tlie decisions taken to form a methodology and select inputs to 
ensure a valid result. I'he metliodology defines testability and outlines how it is measured, 
using mutation analysis, as the rate of fault exposure. It descriljes how nnitation analysis 
was a{)plied to ensure that all fac-tors tliat may affect the measures are fixed to ensure 
1 hat the factors of interest, implementation approach and version, are isolated for study 
and defines how the resuhing measures are analysed to understand and quantify the 
comparative effect of AOl^ and 001^ on testability.

In the study, umtation analysis is applied to AspectJ and Java implementations of 
maintenance version of the IIW program. In each application, nuitants of these imple­
mentations are generated. A set of tests is executed against these nuitants to provide 
empirical evidence of the c,-oniparative effect of AspectJ and Java on testability in this 
context. The AspectJ and Java implementations of the IIW program, the m utants and 
the test set were selected because the created a context that was highly representative 
of general case. The more representative the context is of the general case the more 
generalisable the results of the study are.

This section discusses the decisions taken in the formation of the methodology and 
selection of inputs for the study. It analyses these decisions and identifies potential threats 
to the validity that arise from them. Where threats are identified their impact on hoŵ  the 
results can be interpreted are discussed. In particular, the chapter analyses the decision 
relating to the selection of an approach to measure testability, the decision to focus on the 
IIW progTam and the selection of the test set used in the application of nnitation analysis 
to each implementation.
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6.4.1 Testability M easurem ent

In this thesis, the testabihty of an implementation is defined as the ease with which faults 
can be exposed through testing [148j. As identified in Chapter 4, the ease with which 
faults can be exposed tlirough testing can be measured from two alternate perspectives, 
implementation and test. The implementation perspective mejisures testability as the 
proportion or nnitants, generated from the implementation, exposed by a set of tests. 
The test perspective measures the effort needed to create tests that will expose the faults 
in the nmtants. The mecisurements in this thesis are taken from the implementation 
j)erspective. In this section, the threat of this selection on the construct validity of the 
results is discussed.

From the implementation perspective, there are two different approaches to measuring 
testabihty. As outlined in Chapter 4, the first is based solely on the the proportion of 
faults that are exi)Osed and the second is based on the proportion of test-fault executions 
that led to exposure. The second ajjproach was used to measure testability. The impact 
of this selection on the construct validity of the results is also discussed in this section.

Perspective Selection

The construct validity of the result is dependent on how well the nieasurnient approach 
captures the property being measured. The decision to measure testability from the 
implementation perspective over the test perspective is a threat to construct validity and 
has an impact on the way in which the results can be interpreted.

The ease with which faults can be exposed through testing is dependent on the in­
teraction of two elements - tests and the implementation they are applied to. The test 
perspective measures the effort to create tests that will expose faults and the implemen­
tation perspective measures the ease with which the implementation exposes faults. To 
fully understand and quantify how testable an approach to software implementation is 
both perspectives should be considered.

Tlie nieasurnient approach used in this study focuses solely on tlie differences in fault 
exposure between AOP and OOP implementations of a program. It does not address the 
question of whether it is easier or more difficult to create tests for these implementations. 
The impact of this is that only one perspective of the testability property is captured in 
the measures on which the results presented in this chapter. This means that the inter­
pretation of tlie result is limited in that it only identifies and quantifies the comparative 
effect of Aspect.! and Java on the ease with whicli faults present in an implementation 
can be exposed. It does not provide an indication of tlie comparative efi’ect of Aspect.l 
and Java on the ease of creating tests that will expose faults. This is a limitation of this 
study.
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Test 1

Test 2

Test 3

Test 4
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Test 2
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L e g e n d

Figure 6.22; Measuring Testability In A Comparative Context

Approach Selection

In most studies that measure testability from tlie implementation perspective measure 
testability as the proportion of faults that are exposed through testing [31, 116, 114]. 
This study measures testability in terms of the proportion of test-fault executions that 
result in exposure. To assure readers that this deviance from the typical approach is 
not a threat on the construct validity a simple example is used to clarify and justify the 
approach taken. The simple example illustrated in Figure 6.22.

In this example one set of four tests are executed against two implementations (1 and 
2) of a program, similar to this study. Both implementations contain the same set of 
five faults. If the fault based measurment approach is used then the testability of both 
implementations (1 and 2) is g, because 4 of the 5 faults are exposed in each respective 
implementation. If the test-fault execution based approach to measurment is used, then 
the testability of implementation 1 is ^  and the testability of implementation 2 is 
This example sliows that the test-fault based approach is a more detailed approach to 
measurment and can be more informative in a comparative context.

Because the approach used provides a more detailed measurment and is more appro­
priate in a comparative context, the impact is not to threaten validity but to make the 
measurements more representative for the comparative context in which they are used, 
bolstering construct validity.

6 .4 .2  P rogram  S election

Chapter 5 identifies external validity or generalisability as a key challenge for the study. 
As outlined in Chapter 5, the approach taken to address this challenge was to identify 
candidate programs that fitted the methodology detailed in Chapter 4 as a basis for the 
study and select the candidate that was most representative of the general case. This 
subsection identifies the threats that arise from this selection and the impact of these
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threats on the way in which the results of the study can l)e interpreted.

H W  Selection

Cliapter 4 identifies tlien IIW program as the most representative of tlie general case of the 
candidates available for study. As the most representative candidate, the IIW program 
was considered the selection that would maximise generalisability.

As identified previously in Section 6.2, the AspectJ implementations it was ot)served 
that there was a significant amount of redundant execution for each test wliile the program 
was being initialised. This was caused by a poorly defined pointcut that triggered the 
initialisation of the data layer in the client component of the Health Watcher which 
is redundant. This redundant has an alTect on the measures of testability for Aspect.) 
implementations. The redundant execution inflates the number of faults executed in 
Asf)ect.l mutants, inflating the odds fault execution, deflating the odds of infection mid 
j)ropagation and inflating the overall odds of fault exposure.

To (luantify the impact of this redundant execution, traces driven by tests through the 
Aspect.) implementations were obtained. These traces enabled the identification of the 
additional m utants that were executed by the tests during mutation analysis. Although 
difficult to accurately (luantify, analysis of these m utants indicated that the impact on 
the odds of fault exposure, fault execution and infection and propagation was to reduce 
the differences or comparative effects of Aspect.! and .lava to a point where they were 
negligible.

There are two ways the effects of redundant execution can be viewed. 1'he first is that 
it is representative of the types of issues that occur when AOP is adopted in practice. The 
second is that the redmidant execution is not representative of the types of issues that 
occur if AOl^ is adopted. Because AOP has not been widely deployed, it is difficult to know 
if the occurrence of pointcut issues, resulting side effects such as redundant execution, are 
a characteristic of AOP or not. This is because there is no empirical evidence to confirm 
or deny that these issues are are a characteristic of AOP in practice. Dependent on the 
point of view the reader prescril)es to, the affect on validity can be argued from either 
perspective.

Sample Size of One

Basing the study solely on the IIW program threatens the degree to which the results 
can be generalised because the results are specific to the IIW. If more of the candidates 
identified in Chapter 5 were selected to increase the sample size the results would be less 
specific to the HW.

The reason that more programs were not selected for study was base on cost. The cost 
of including the program in the study include a setup cost and a computation cost. The
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setup cost is the cost of generating nnitants for the implementations of the program and 
generating realistic test cases to execute against those nmtants. The computational cost 
is the computational cost of this execution, which is well known to be highly expensive 
[31, 116, 114],

There was a fixed amount of resources for setuj) and computational resources available. 
These resource were consumed by the inclusion of the HW program into the study. This 
meant it was not possible to increase the sample size and make the results less IIW centric. 
This means that it is difficult to confidently generalise the identified comparative effect of 
AGP and OOP on testability. This is a limitation to the exteruj^il validity of this study.

6.4 .3  Test S election

As outlined in Chapters 4, 5 and this chapter, after selecting the Health Watcher program 
as the basis for the study, mutants were generated for the impk'mentations of the difi’erent 
maintenance versions of the program and tests were selected for use in nnitation analysis. 
To niciximise the generalisability of the results a set of tests were selected that were 
representative of the general case. There are two potential threats to validity that m’e 
based on the test selection. The first is based on liow effects of the oracles used in the 
evaluation of the outcome of the test-fault executions. The second is based on the using a 
test set sanij)le size of one. These potential threat are explained, their impact is outlined 
and their existence is verified.

Oracles

A test is made up of an input and an oracle or expected outcome. If a fault is executed 
by a test there are two factors liave an influence on exposure. The first factor, as detailed 
in Chapter 3, is the structure of the program that lets the test case observe a failure. The 
second factor is the ability of the oracle to identify this failure. If the oracle factor was able 
to identify test faihu’es in the Java implementation but not the Aspect.! inij)lementation 
then this would introduce an uncontrolled factor into the study that would unbalance the 
comparison, threaten the internal valklity of the identified and quantified comparative 
effect.

As explained in Chapter 5, the tests were developed based on the use cases used 
as the basis for the Java and AspectJ implementations. The oracles were developed 
based on sample data  used in the test creation process. The test and in particular oracle 
selection j)rocess was completely indei^endent from the processes of Java and Aspect J 
implementation. This ensured there could be not oracle selection bias toward either 
implementation. Furthermore, both inij)lenientations expose j)recisely the same interface. 
This means that both implementations nmst produce precisely the same output given an
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Tost Set Size F E F X IP
mill max min max min max

50 0.0084 0.1209 0.1499 0.2227 -0.2331 -0.0557
100 0.0211 0.1093 0.1645 0.2048 -0.1979 -0.0724
150 0.0311 0.0938 0.1733 0.2048 0.1864 - 0.0961
200 0.0443 0.0950 0.1716 0.2042 0.1830 -0.0971
250 0.0463 0.0901 0.1773 0.2060 -0.1802 -0.10511
;«)() 0.0460 0.0869 0.1795 0.2010 - 0.1689 -0.1068
350 0.0522 0.0887 0.1823 0.2034 -0.1596 -0.1090
400 0.0495 0.0847 0.1827 0.1991 -0.1569 -0.1093

Table 6.2: Max aiid Min results for rates for randomly selecteci test sizes

input. The fact that there is no dependence or bias of test oracles and implementation 
this means that the oracle factor is not a threat to internal validity.

Test Set Sample Size of One

Chapter 5 outlines that the test set used in the measurment phase of the study was devel­
oped by a grouf) of seven software testing professionals, all from (lifferent Irish software 
development companies, with a mininnnn of four years of industrial experience in this 
grouj). The grou]) used a best practice, use case driven test selection j)rocess. The j)rocess 
and ])rofessionals were used to ensure that the resulting test set was highly rej)rcsentative 
of the complexity encountered in the general case.

The group selected the test set based on the use cases and related design documen­
tation on which the implementation was based. The result of the selection j)rocess was 
a set of 265 tests. This set was then used in the application of nmtation analysis to the 
Aspect.] and Java implementations of the program.

This means that the results of the study are based on one set of tests. Basing the 
study on one set of tests is a threat to the external validity or generalisability of the 
results. This is because the use of a different set of tests may have yielded measure of tlie 
comparative effect of As})ect.I and Java on the odds of Fault Exposure, Fault cXecution 
and Infection and Propagation. To investigate this threat, the analysis presented in this 
chapter was performed on difl’erent subsets of the selected tests. Table 6.2 presents the 
max and min results for each rate based on analysing 1000 randomly selected tests, taken 
from the original set of 265 tests, in groups of 50, 100,150, 200, 250, 300, 350, 400.

The max and min reju’esent the most extreme values from performing the analysis on 
these new subsets. The most extreme values are of most interest because they are can 
be used as measures of the smallest and largest observed difference in the odds of Fault 
Exposure, Fault eXecution and Infection and Propagation. The difference is small if it 
is close to 0 and large the further from 0 it is. The difference between the max and min 
represent the interval between the smallest and largest difference observed from a{){)lying 
the analysis to the 1000 randomly selected sets of tests.

133



CH A PTER  6. STU DY RESULTS A ND  ANALYSIS

0 . 1 2 -

0 . 1 0 -

0 .0 8 -

0 .0 6 -

0 .0 4 -

0 .0 2 -

0 .2 2 -  

0.21  -  

0 .2 0 -  

0) 0 .1 9 -  

nj 0 .1 8 -  >
0 1 7 -  

0 1 6 -  

0 1 5 -

0.10  -  

- 0 .1 5 -

-0  2 0 -

Figiire G.23: Convergence as test set size increases

Figure 6.23 illustrates the max and min measures of the comparative effects of AspectJ 
and Java on the odds of Fault Exposure, Fault eXecution and Infection and Propagation. 
It shows that for the smaller test sets (< 200) the odds of Fault Exposure, Fault eXecution 
and Infection and Propagation can be small or large. There is a relatively wide interval 
between the max and min for each which suggests that based on these test sets the 
observed difference could negligible or significant.

For the lai’ger test sets (> =  200) the odds of Fault Exposure, Fault eXecution and In­
fection and Propagation becomes more consistent. The odds of Fault Exposure and Fault 
eXecution are consistently higher for AspectJ and the odds Infection and Propagation are 
are consistently lower for AspectJ. As the number of tests in the randomly selected test 
set increases there seems to be a convergence toward a narrower interval.

l^om Figure 6.23 three conclusions can be drawn. The first is that at in the worst 
case scenario (smaller subsets of test) for AspectJ, the difference between the odds of 
Fault Exposure, Fault eXecution and Infection and Propagation is negligible. The second 
is that at in the best case scenario (smaller subsets of test) for AspectJ, the difference 
between the odds of is significant.

measure

50 100 150 200 250 300 <5i: 400
tests
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AspectJ

I  Fault Exposure ll^ A sp e c tJ  '5 - 9 %  
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m Fault Execution Infection and Propagation

Figure 6.24; Intervals for the difference between AspectJ and Java

The third and final conclusion that can be drawn is that as the number of tests in­
creases, a consistent difference between the odds emerges. At the test set size of 400 the 
difference, as illustrated in Figure 6.24, between AspectJ and Java is that AspectJ consis­
tently results in an improvement in the odds of Fault Exposure by between approximately 
5 and 9%. This is caused by an increase in the odds of Fault eXecution of between 18 and 
20% and a decrease in the odds of Infection and Propagation by between 11 and 16%.

These conclusions impact the interpretation of the results of the study in that they 
reduce the threat to the external validity or generalisability. By performing the analysis 
on 1000 randomly selected tests, taken from the original set of 265 tests, in groups of 
50, 100,150, 200, 250, 300, 350, 400 more confidence can be associated with the general 
conclusion that for the HW program there is a moderate increase in the odds of Fault 
Exposure of between 5 and 9%.

6.4.4 Sum m ary

This section discussed the decisions taken in the formation of the methodology and selec­
tion of inputs for the study. Specifically the decisions to focus on a specific perspective 
on testability, on the HW program and a specific set of tests are discussed. In each of 
these discussions, the potential threats to validity can emerge from these decisions are 
identified. The existence of these threats are analysed and the impact of these threats on 
the validity of the results is examined.

6.5 Chapter Summary

The first section presented the number of m utants that are generated by this tool for 
each implementation of each version of the HW. The number of nnitants generated for 
AspectJ and Java implementations were compared. This comparison showed that there 
were slightly, but not significantly, more mutants generated for the AspectJ implementa-
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tioii. The number of nmtants were correlated with the size of the implementations from 
which they were generated to provide evidence of nm tant equivalence. The distribution of 
the types of faults generated in m utants for each pair of AspectJ and Java implementations 
were also correlated to provide further evidence of mutant equivalence.

This second section presented the number of not exe, })nss and iaii outcomes for the 
Java and AspectJ implementations of each version of the IIW program. These outcomes 
are used to derive rates of fault exposure, fault execution and infection and propagation 
for the AspectJ and Java implementations. The rates for the AspectJ and Java imple­
mentations are compm’ed. The results show tliat the rates of fault exposure are higher 
for AspectJ implementations. The results also show that the rates of fault execution 
are higher for AspectJ implementations but the rates of infection and propagation are 
higher for Java implementations. The analysis of these rates indicates that the reason for 
cause of this is that proi)ortionally more faults in nmtants of the AspectJ implementation 
are executed, causing state infection and propagation resulting in test failure and fault 
ex])osure.

In the third section, binomiiil regression was applied to the outcomes presented in 
Table 6.(3. Models that represent the effects of Java and AspectJ implementations and 
each version on the rates were fitted to the outcomes. The result of tiiis fitting process are 
relative measures of the effects of Java and AspectJ implementations and eacii version on 
the rates. Based on these measures, the comparative effect of Java and AspectJ on each 
rate was quantified. The next chapter draws conclusions from these findings.

In the fourth and final section, the decisions taken in the formation of the methodology 
and selection of inputs are reviewed to identify and discuss threats to validity tha t they 
have introductnl. The decisions m’e reviewed in terms of their impact on construct, internal 
and external validity. Where threats are identified, their impact on the way in whicii the 
results can be interpreted are outlined.
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Chapter 7

Conclusions and Future Work

Proponents of AOP liave claimed th a t it reduces the cost of m aintenance com pared to  

OO P by improving m aintainability  [84, 83, 50, 68, 125, 89, 40]. This claim has led organ­

isations using O O P to consider adopting AOP [39, 2].

Testability, analysability, changeability and stability  are key indicators of m aintain­
ability [73]. Existing studies [149, 14, 92, 97, 54, 87, 63] contribute empirical evidence of 
the effects of AOP and OO P on analysability, changeability and stability, but not tes ta ­

bility. T he lack of evidence of the effects of AOP and OOP on testab ility  represents an 

evidential gap illustrated in Figure 7.1.

T he existing em pirical evidence indicates th a t AOP improves analysability, change­

ability and stability  over OOP. This is encouraging for those considering the adoption of 

AOP. T estability  is an key com ponent of m aintainability  [33, 22, 141]. W ithout evidence 
of the com parative effect of AOP and O OP on testability, the m aintainability  claim cannot 

be fully tested  and the adoption of AOP cannot be objectively considered [39, 129].

This thesis gathers empirical evidence of the com parative effect of AOP and O O P on 

testab ility  through a study. This study is conducted in two phases. In the first phase, 

the testab ility  of equivalent AspectJ and Java im plem entations are m easured for each 

m aintenance version of the Health W atcher program . The result of th is phase are pairs

M aintainability

E vidence  ex ists  |||^  Evidential g a p

Figure 7.1: Gap
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Fault Exposurt /L h A sp ectJ  -5 - '9 %  

AspecU -18-~20%

m Fault Execution Infection and Propagation

Figure 7.2: C om parative Effects

of testab ility  measures th a t ref)reseiit tlie effects of A spectJ and Java on testability, one 

pair for each version of the program . In the second phase, these measures are analysed to 

identify the com parative effect of Aspect and Java on testability.

The first section of this cliapter describes w hat the evidence contributed by this study 
m eans for those who are considering the adoption of AOP. The second section outlines 

further research th a t is needed to further broaden and strengthen this evidence.

7.1 Conclusions

T his section describes what the evidence means for those who are considering the adoption 

of AOP. Based on the results of the study, advice is offered to  those who do adopt AGP 
and those who want to ensure a high level of testability.

7.1.1 Com parative Effect of AOP and OOP on Testability

T he prim ary contribution of the study  presented in this thesis is evidence to indicate th a t 

the effect of AOP is to  increase testability  over OOP. The results of the study are illus­

tra te d  in Figure 7.2. This figure shows th a t the odds of fault exposure are betw'een 5 and 
9% higher for tlie A spectJ im plem entations of the health watcher program . This means 

th a t, for the health watcher program , faults are easier to expose in A spectJ com pared to 

Java im plem entations.

Although this evidence is difficult to generalise from because it is derived from a study  

of one program , it does provide some evidence to  indicate th a t tlie effect of AOP may be 

to  increase testability  over OOP. Testability can have a significant effect on m aintenance 

costs [33, 22, 141] and for those considering the adoption of AOP to reduce m aintenance 

costs [39], this evidence is encouraging.

As outlined in C hapter 2, the existing empirical evidence indicates th a t AOP improves 
analysability, changeability and stability  over OOP. This evidence indicates th a t AOP 

improves testability  over OOP, subject to the caveats raised by the fact th a t the Health
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Watcher’s l)eiiaviour may be influenced by the redundant execution issue presented in 
Section 6.4. This means that for all key indicators of maintainability, there is evidence 
that AOI^ is l)eneficial. This i)ody of evidence enables tlie adoption of AOF to be more 
objectively considered.

7.1.2 Causes of Com parative Effect

A secondary contribution of the study, also presented in Figure 7.2, is to identify the 
causes of the 5 to 9% difference in the effects of Aspect.] and Java on the odds of fault 
exposure. Fault exposure is a direct consequence of fault execution and state infection and 
jyropagation. If more faults are executed, then there are more chances for state infection 
and j)ropagation, resulting in fault exj^osure. The more executed faults that cause state 
infection and j)ropagation, the more faults that are exjjosed. If more faults are exposed, 
then the odds of fault exposure increase.

Figure 7.2 shows that the odds of fault execution are between 18 and 20% higher 
in the AspectJ implementations and that the odds of state infection and propagation 
are between 11 and 16% lower in the AspectJ ini])lenientations. This means that in the 
AspectJ imj)lenientations there are more faults executed. However, it also means that 
compared to Java implementations, proportionally less of the executed faults cause state 
infection and propagation, resulting in lower odds of fault exi)Osure.

This is ex])lained further through the illustration in Figure 7.3. The boxes marked 
AspectJ and Java represent the total number of test-nm tant executions for AspectJ and 
Java implementations, respectively. The circles in these boxes rei)resent the number of 
faults executed by tests in AspectJ and Java mutants. This representation shows that 
tliere are more faults executed in AspectJ compared to Java mutants. This difference is tlie 
cause of the 18-20% higher odds of fault execution for AspectJ. The number of executed 
faults that result in ptiss and fails are represented inside the circle. This representation 
shows that there are proportionally less fails for AspectJ, indicating that less of the faults 
executed in AspectJ nuitants result in infection and propagation. Tliis difference is tlie 
cause of the 11-16% lower odds of infection and propagation for AspectJ.

Figure 7.3, indicates that even though there is proportionally less fail to pass outcomes 
from AspectJ test-nnitant executions, the odds of fault exposure is between 5 and 9% 
higher because the volume of fail outcomes is higher for AspectJ. The volume is higher 
because the number of faults executed in nmtants (or pass and fail outcomes) is higher 
for AspectJ coni|)ared to Java. Again this evidence of causation is difficuh to generalise 
from because it is derived solely from the health watcher program.
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N o t Exe I P a ss  H Fail

Figure 7.3: Reason for Comparative Effects

7.1.3 Advice for Adoption of AOP

One of the dangers of adopting AGF  ̂ is the issues witii pointcuts. Tliis study is Inised on 
implementations of the Health Watcher program, which has been the basis of three studies 
that provide evidence to indicate that AOP implementations are more stable than OOP 
implementations. Until this study, the poorly defined pointcut had not been detected. 
This is because the subtle symptoms of the issue only become apparent after detailed 
analysis. This shows that issues related to pointcuts can be difficult to identify and can 
go unnoticed.

These pointcut related issues have been identified as a problems that are likely to 
occur in practice [43, 142, 80, 139]. Based on this observation, the advice offert^d to those 
adopting AOF* is to be careful to ensure that issues related to pointcuts are detected. There 
are a number of approaches that have been proposed to address these issues [43, 80, 139]. 
Tliese include a test driven approach to pointcut development that is designed to identify 
pointcut related issues early [43] and a model based approach to manage pointcut evolution 
[80, 139],

7.1.4 Issues to Consider when A dopting AOP

A study that aims to provide evidence about maintainability of AOP vs. OOP is not 
relevant without considering more global issues of engineering software using Aspect- and 
Object-Oriented approaches. To correctly build AO software recjuires a complete revision 
of the software development process. The adoption of AOP to achieve more maintainable 
software requires changes to requirements gathering phase, the architectural and design 
phases and the implementation phase of the process [131]. It also requires changes to 
how software is tested [69, 152]. These changes require more work to identify crosscutting 
concerns in requirements, model them architecturally, design software to modularise them 
and implement these designs. Once software is implemented testing the resulting aspects 
and the implementations into which they are woven becomes more complex [69, 152]. 

This means that those who are considering the adoption of AOP over OOP must be
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aware of the investment required to adopt AOP. The perspective adopter nmst consider 
the tradcvofl' between the required investment needed to adopt AOP against tlie potential 
savings in maintainability costs.

7.2 Future Work

'I'his study gathers evidence of the comparative effect of AOP and OOF’ on testability. 
Further stuciies are needed to broaden this evidence, to provide a detailed understanding 
of the effect of AOP and 0 0 1 ’ on testability across different conditions.

7.2.1 P o in tcu t Issues

As mentioned in Section 7.1.3, one of the dangers of adopting AOP is the issues with 
pointcuts. I’ointcut related issues have been identified as a problems that are likely 
to occur in practice [142, 80, 139, 43]. However, there is no empirical evidence of the 
fre(|uency with which these issues arise in practic-e. Inhere is also no evidence of the efl'ects 
that these issues have on tlie cost of testing and maintenance.

Further studies are needed to gather evidence of tlie frequency with which pointcut 
related issues arise in practice and the effects that these issues have on the cost of main­
tenance. The detail from this study would i)rovide more contextual evidence, that would 

make the results of studies, such as the study presented in this thesis, easier to interpret.

7.2.2 C ausation  o f Lower In fection  and P rop agation  O dds for A O P

The results of the study provide evidence to indicate that the effect of AOP is to reduce 
the odds of infection and propagation. Figure 6.13 shows tha t some types of faults are 
harder to expose in an AOP implementation while others are easier. It also shows that 
AOP specific faults tend to have a low rate of exposure meaning tliey are hard to expose 
through testing.

The results indicate the reason the odds of infection and proi:>agation are lower for 
AOP implementation is because there are more faults of types that have a lower rate 

of fault exj)osure in AOP implementations, than those that have a higher rate of fault 

ex})OSure. Further studies are needed to understand why some types of faults are harder 

to expose in AOP compared to OOP implementations and why others are easier to expose. 
By understanding the reasons behind these differences, guideline can be derived to help 

software engineers using AOP and/or OOP to make their implementations more testable.
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7.2 .3  T esting

The evidence gathered in this study is based on applying system-level functional tests 
to AOP and OOP implementations over maintenance activities. In an industrial setting, 
there are various testing conditions that are used to validate the correctness of implemen­
tations. For instance, integration, module and unit level testing and different types of 
testing such as non-functional testing are used [110, 137].

l\u th e r  studies are needed to gather evidence of the comparative effects of AOP and 
OOP on the rate of fault exposure at these levels and under non-functional testing con­
ditions. Conducting such studies would give a broader perspective on the implications of 
the eflects of AOP an OOP on testability.

7.2 .4  Program

The evidence gathered in this study is based on Aspect.) and Java implementations of 
the Health Watcher program over maintenance activities. Chapter 5 showed that the 
Health Watcher program was carefully selected from candidates that fitted the study 
methodology because it was deemed to be the most representative of the general case. 
Gathering measures in a context which is representative of the general case maximises tlie 
degree to which the evidence is representative of general difference in effects of AOP and 
OOP on the testability of all imj)lenientations.

To further maximise generalisability, further studies are needed that are based on AOP 
and OOP implementations of a variety of representative programs. By broadening the 
number of programs from which evidence is gathered becomes even more representative 
of general difference in effects of AOP and OOP on the testability of all implementations.

7.2 .5  M utant G eneration

The computational cost of applying nmtation analysis in this study was very high. To be 
feasible, it required a number of machines to parallelise the application of the nmtation 
analysis process. This computational cost is a barrier to conducting studies of this kind. 
Approaches to reduce this cost, by reducing the number of nmtants that need to be 
generated to get an accurate result and optimising the nm tant testing process, have been 
proposed for older languages and different fault models [116, 135, 112, 111, 114]. Neŵ  
research is to needed to apply these approaches reduce the cost of applying nm tation 
analysis to Java and AspectJ implementations. This would reduce the bcirrier to carrying 
out comparative studies of tliis type, making evidence of the effects of AOP and OOP on 
testability easier for researchers to gather.
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Appendix A

A dditional Results

1
2
3
4
5
6
7
8
9

10
11 
12

Listing A .l: Comparing number of nmtants generated for Aspect.] and .Java
implementations

1
2
3
4
5
6
7
8
9

10
1 1
12

Listing A.2: Comparing number of locations at which nm tants arc generated for Aspect.! 
and .lava implementations
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t .test(aop$locations-oop$locations)

One Sample t-test

data: aop$locations - oop$locations
t = -2.0444, df = 9, p-value = 0.07125 
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-29.701597 1.501597

sample estimates: 
mean of x 

-14. 1

t.test(aop$mutants,oop$mutants)

Welch Two Sample t-test

data: aop$mutants and oopSmutants
t = 1.9761, df = 17.995, p-value = 0.06367
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-9.974042 325.774042 
sample estimates: 
mean of x mean of y 

4728.2 4570.3
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Call :
glm(formula = cbind(fail, (pass + pass_le + fail)) 

family = binomial, data = data)
imp] + version

Deviance Residuals :
Min IQ

-23.347244 -4.151534

Coefficients:

(Intercept) 
implJava 
version2 
vers i on3 
vers i on4 
vers i on5 
vers i on6 
vers i on7 
versions 
version9 
versionlO

Median 
0.009409

3Q Max
4.210211 21.515544

Estimate Std. Error z value PrOlzl)
-3.195532 0 . 004061 -786.853 < 2e-16 * ♦ *
-0.061564 0.002356 -26.135 < 2e-16 * ♦ *
0.001853 0.005500 0 . 337 0.73611
-0.026266 0.005494 -4.781 1 .74e-06 ♦ ♦ ♦
-0.060756 0.005539 -10 .969 < 2e-16 * ★ ♦
-0.074845 0.005550 -13.487 < 2e-16 * * *
-0.059539 0.005519 -10.788 < 2e-16 * * *
-0.023780 0.005476 -4.343 1 .41e-05 * ♦ ★
-0.017766 0.005471 -3.247 0.00117 * ★
-0.013261 0.005053 -2.625 0.00868 ♦ *
-0.057832 0.005064 -11.421 < 2e-16 ♦ ♦ *

s : 0 * * ♦ 0.001 ** 0.01 * 0.05 0

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3028.6 on 19 degrees of freedom
Residual deviance: 1865.9 on 9 degrees of freedom
AIC: 2134.3

Number of Fisher Scoring iterations: 4

Listing A.3: Regression output for fault exposure
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1 Call :
2 glm(formula = cbind(fail, (pass + fail)) ■ impl + version , family = binomial ,
3 data = data)

5 Deviance Residuals:
6 Min IQ Median 3Q Max
7
g

-20.72526 -1.95571 -0.01760 2 .01268 18.51048
o
9 Estimate Std. Error z value Pr(>1z 1)
10 (Intercept) -0.769506 0.004839 -159.03 <2e-16 * * ♦
11 implJava 0.129397 0.002776 46 . 62 <2e-16 * * *
12 version2 -0.115633 0.006530 -17.71 <2e-16 ★ * ♦
13 version3 -0.143651 0.006510 -22.07 <2e-16 * *
14 version4 -0.148400 0.006563 -22.61 <2e-16 * * *
15 versions -0.155383 0.006573 -23.64 <2e-16 ♦ ♦ ♦
16 version6 -0.146910 0.006541 -22.46 <2e-16 ♦ ★ *
17 version7 -0.141546 0.006491 -21.80 <2e-16 * * *
18 version8 -0.143749 0.006485 -22.17 <2e-16 * * *
19 version9 -0.072144 0.006028 -11.97 <2e-16 ♦ ♦
20 versionlO -0.136110 0.006018 -22.61 <2e-16 * * ♦
21 --
22 Signif . codes: 0 *** 0.001 ** 0.01 * 0.05 0 . 1 1
23
24 (Dispersion parameter for binomial f amily taken to be 1)
25
26 Null deviance: 4307.2 on 19 degrees of freedom
27 Residual deviance: 1097.6 on 9 degrees of freedom
28 AIC: 1359.4
29
30 Number of Fisher Scoring iterations: 3

Listing A.4: Regression output for fault exposure given execution
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1 Call :
o glm(formula = cbind((p ass + fail) , notexe) impl + versi on ,
3
4

family = binomial, data = data)

5 Deviance Residuals:
() Min iq Median 3Q Max
7
u

-8.64845 -2.95916 -0 .03712 2. 85840 7. 84903
o
9 Coefficients:
10 Estimate Std. Error z value Pr(>1z 1 )
11 (Intercept) -2.330187 0.002890 -806.35 <2e-16 * ♦ ♦
12 implJava -0.208906 0.001606 -130.07 <2e-16 * * ♦
13 version2 0.128189 0.003845 33 . 34 <2e-16 * ♦ *
M versions 0.126485 0.003817 33 . 14 <2e-16 ♦ ♦ ♦
15 version4 0.093387 0.003840 24 . 32 <2e-16 * ♦ *
16 versions 0.086284 0.003841 22 . 46 <2e-16 * ♦ *
17 version6 0.093219 0.003829 24 . 34 <2e-16 * * *
18 version? 0.125251 0.003808 32 . 89 <2e-16 ♦ ★ ♦
19 version8 0.134074 0.003804 35 . 24 <2e-16 ♦ ★ ♦
20 version9 0.059340 0.003578 16 . 58 <2e-16 * * ♦
21 versionlO 0.081284 0.003544 22 . 94 <2e-16 ♦ ♦ *
22 --
23 Signif. codes: 0 * * * 0.001 *+ 0.01 * 0. 05 0. 1 1
24
25 (Dispersion parameter for binomial family taken to be 1)
26
27 Null deviance: 19493.19 on 19 degrees of freedom
28 Residual deviance: 304.89 on 9 degrees of freedom
29 AIC: 588.68
30
31 Number of Fisher Scoring iterations: 3

Listing A.5; Regression output for location execution
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