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Summary

Proponents of Aspect-Oriented Programming (AOP) claim that it improves maintainabil-
ity over Object-Oriented Programming (OOP) by enhancing the degree to which concerns
are scparated in software. Maintainability is measured indirectly through a set of key
indicators: analysability, changeability, stability and testability. To confirm that AOP
improves maintainability, evidence of the comparative effect of AOP and OOP on each
indicator is needed. Such evidence is required to objectively consider the adoption of
AOP.

Empirical studies have contributed evidence of the comparative effect of AOP and
OOP on analysability, changeability and stability. When analysed together this evidence
indicates that AOP does improve this subset of maintainability indicators. However, these
studies do not confirm that AOP improves maintainability as there is no comparative
study of the etfect of AOP and OOP on testability.

This thesis addresses this gap through an empirical study to quantify the comparative
effect of AOP and OOP on testability. In the study, a series of maintenance activities
are cumulatively applied to equivalent AOP and OOP implementations of a program.
The effects of AOP and OOP on testability are measured by applying Mutation Analysis
(MA) to both implementations after each maintenance activity. In MA, a set of tests are
executed against mutants of the implementation. A mutant is a copy of an implementation
that contains a fault. Testability is measured as the rate at which faults are exposed
through test failure. The comparative effect is quantified by applying binomial regression
(BR) to these measures.

Any comparative study of this kind faces challenges of maximising the degree to which



the results can be generalised and ensuring validity. Maximising the generalisability of
the results is achieved in this thesis by selecting study inputs that are representative of
the general case. The measure of the comparative effect of AOP and OOP on testability
is valid if it is unbiased. Validity is ensured by designing the study such that sources of
bias are controlled and inputs that are unbiased towards AOP or OOP are selected.

The contribution of this study is evidence of the comparative effect of AOP and OOP
on testability. The evidence suggests that compared to OOP, AOP may increase testabil-
ity. Although the study is based on inputs that are representative of the general case, the
evidence is hard to generalise outside of the context from which it is derived. Although
more studies are required to provide a more generally acceptable evidence, this evidence
of the comparative effect of AOP and OOP on testability provides the first step toward
filling the gap in the existing evidence of the effect of AOP on maintainability and enabling

the adoption of AOP to be more objectively considered.
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Chapter 1
Introduction

Proponents of Aspect-Oriented Programming (AOP) claim that it improves maintainabil-
ity over Object-Oriented Programming (OOP) by enhancing the degree to which concerns
are separated in software [84, 83, 50, 68, 125, 89, 40]. The key indicators of maintainability
are analysability, changeability, stability and testability [73]. This chapter provides the
background from which this claim has emerged by describing why AOP is expected to
improve them.

Studies consistently show that maintenance accounts for the largest proportion of a
programs total cost [154, 96, 22, 51]. Making programs easier to change reduces this
cost. Improving modularity has been shown to make programs more maintainable [42].
OOP was a major improvement on modularity and is currently the defacto approach for
implementing programs [136].

The claim that AOP improves maintainability and consequently reduces costs over
OOP, has led organisations using OOP to consider adopting AOP [39, 2]. However, for
the adoption of AOP to be objectively considered, confirmation of this claim is required
[39, 25]. To confirm that AOP improves maintainability, evidence of the comparative
effect of AOP and OOP on each indicator of maintainability is needed [129].

This chapter presents the existing evidence of the comparative effect of AOP and OOP
on some of the key indicators of maintainability [149, 14, 88, 66, 92, 97, 54, 87, 63]. It
shows a gap in this evidence, as there is no empirical evidence of the testability of AOP.
Testability is a key component of maintainability [33, 22, 141]. Without evidence of the
comparative effect of AOP and OOP on testability the confirmation of any claim related
to maintainability is superficial {129, 25|. The adoption of AOP, therefore, cannot be
objectively considered [39).

This thesis addresses this gap through an empirical study to quantify the comparative
effect of AOP and OOP on testability. In the study, a series of maintenance activities are
cumulatively applied to equivalent AOP and OOP implementations of a program. The

testability of both implementations is measured after each maintenance activity and these
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CHAPTER 1. INTRODUCTION

measures are then analysed to quantify the comparative effect. This chapter introduces
how the testability is measured using mutation analysis [45]; how measures of testability
are gathered to ensure that the testability measurements for the AOP and OOP imple-
mentations are directly comparable; and how binomial regression [52] is used to measure
the comparative effect of AOP and OOP on testability.

This study, like similar studies [24], faces a fundamental challenge of maximising the
degree to which the results can be generalised. To maximise the degree to which evidence
gathered from a single study can be generalised, the inputs on which the study is based
must be representative of the general case. This chapter describes the inputs selected for
this study and shows that they are representative of the general case.

The chapter concludes by presenting the contributions of the study and outlining the

remaining chapters of this thesis.

1.1 Background

This section outlines the background from which the claim that AOP improves maintain-
ability over OOP has emerged and describes why AOP is expected to improve the key

indicators of maintainability.

1.1.1 Maintainability

Maintainability is a measure of the ease with which a program’s implementation can
be changed [73]. Applying a change to a program is made in four steps [129]. The
maintainability of an implementation is based on the ease with which each step is taken
(153, 129].

The first step is to understand and identify what parts of the implementation need
to be changed. An understanding of the implementation is needed before the code can
be analysed to identify the parts the change is applicable to. The easier the code is to
understand and analyse, the easier it is to change.

The second step is to implement the change. The ease with a change can be imple-
mented is a measure of the size of the impact it will make [8]. The impact is measured
as the effort needed to implement the change. The smaller the impact is, the easier the
change is to make.

The third step is to address the ripple effect of the change. A change to a module
can propagate through its efferent dependencies causing the effect of the change to be
amplified. Minimising these dependencies makes the system more stable and resistant to
ripple effects. The more stable an implementation is, the easier a change is to apply [129].

The fourth and final step is to expose faults that are introduced into the implemen-

tation during the change. Faults in an implementation are exposed through test failure
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1.1. BACKGROUND

[110]. The implementation can hide faults by allowing tests to pass when faults are present
[148]. An implementation that exposes more faults introduced through change is more
testable and easier to change.

Measures of the ease with which each step can be made are key indicators of a pro-
grams maintainability. These key indicators are analysability, changeability, stability and
testability [73]. Analysability is the ease with which the program’s code can be under-
stood and analysed. Changeability and stability are indicators of the ease with which a
programs implementation can be changed. Testability is the ease with which faults can

be exposed through testing [148].

1.1.2 Crosscutting Concerns

Since the inception of software engineering, increasing modularity has been recognised
(9, 46, 138, 120, 27, 28, 13, 32| as a way to improve the separation of concerns in programs
and improve maintainability. Concerns are the behaviours or features that make up a
program (82, 84, 48].

In a well modularised object-oriented program, each concern is implemented in a
module. The module encapsulates the concerns implementation. Some concerns can be
separated into modules in well modularised object-oriented programs. There are however
other concerns that cannot be cleanly encapsulated as modules. When the implementation
of a concern cannot be encapsulated within one module, it becomes scattered across other
program modules. Within these modules, this implementation becomes entangled with
the implementation of the primary concern. Scattered and tangled concerns are said to
crosscut the program and are called crosscutting concerns [82, 84, 48].

Claims that AOP improves maintainability over OOP are based on the improved
separation of crosscutting concerns that AOP supports [82, 84]. It is expected that
this improvement will result in improvements in the key indicators of maintainability.
The negative effects of crosscutting concerns on analysability, changeability, stability and
testability are the basis for the claims. The negative effects on each are outlined in this

subsection.

Analysability

Decomposing a problem into its constituent parts makes each part and the problem itself
easier to understand [123]. In OOP, the program is made easier to understand by decom-
posing each concern into a module. Crosscutting concerns have a scattering and tangling
effect that make the program harder to understand [48]. Scattering increases the number
of modules that need to be examined to understand a concern. Tangling makes it difficult
to understand one concern in isolation from other entangled concerns. These issues con-

spire to make it harder to identify the parts of a crosscutting concern’s implementation
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CHAPTER 1. INTRODUCTION

to which a change is applicable.

Changeability

Change is easier to implement when its impact is small [8]. In OOP the goal is to minimise
a change’s impact by localising the change to one module. However, when a concern is
crosscutting the impact of the change can increase [92], as it can have an impact on all of
the modules across which it is scattered. The potential impact is compounded by tangling
because a change applied to one concern, can have an impact the others with which it is

entangled.

Stability

When a program is resistant to the ripple effect of change it is more stable and easier
to change [101]. In OOP, this effect is reduced by minimising the ratio of outgoing to
incoming dependencies for each module [101]. Crosscutting concerns can reduce stability
by introducing outgoing dependencies into the modules they crosscut. A higher number
of outgoing dependencies per module increases potential of ripple effects of change. If a

program is not resistant to ripple effects it is harder to change.

Testability

A program that exposes more faults is more testable and easier to change. Faults are
exposed through testing. A fault in behaviour can only be exposed if it is executed.
When a behaviour is scattered and tangled it is more difficult to select tests that will
guarantee execution of the behaviour. Also, more faults are found to occur at these
scattered and tangled behaviours [48]. Together, these issues make the faults at scattered

and tangled behaviours difficult to expose [48].

1.1.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) improves the degree to which crosscutting concerns
are separated in software over Object-Oriented Programming (OOP) [82, 63]. AOP in-
troduces a new aspect module that can be used to encapsulate crosscutting concerns.
By modularising crosscutting concerns the amount of scattering and tangling caused by
crosscutting is reduced. Crosscutting concerns have a negative effect on analysability,
changeability, stability and testability. The expectation that AOP will lead to improve-
ments in the key indicators of maintainability is based on the improved modularity of
crosscutting concerns facilitated by AOP [84, 83, 50, 68, 125, 89, 40].

12



1.2. MOTIVATION

1.2 Motivation

This section outlines the evidence of the comparative effect of AOP and OOP on analysabil-
ity, changeability and stability contributed by existing empirical studies. A clear gap is
identified in the empirical evidence of the comparative effect of AOP and OOP on testa-

bility.

1.2.1 Analysability

Contributions to the evidence of the comparative effect of AOP and OOP on analysability
have been made through empirical studies carried out by Murphy et al. [109], Walker et
al. [149] and Bartsch and Harrison [14]. Analysability is measured as the time taken to
identify the parts of each implementation that will be affected for a specific change by
Murphy et al., Walker et al. and Bartsch and Harrison. The findings of Murphy et al.
and Walker et al. suggest that AOP results in slightly higher analysability while Bartsch

and Harrison find no significant difference between AOP and OOP.

1.2.2 Changeability

Evidence of the comparative effect of AOP and OOP on changeability have been con-
tributed by a number of studies including Walker et al. [149], Bartsch and Harrison [14],
Li et al. [92] and Lopes and Bajracharya [97]. In these studies, changeability is measured
by applying the same change(s) to AOP and OOP implementations and measuring the
difference between the impacts the change has on each. Walker et al. and Bartsch and
Harrison measure the size of the impact as the time taken to implement the change. Li et
al. measure the size of the impact by counting the number of modules that are affected
by a change. Lopes and Bajracharya measure the impact in terms of its effect on design
options. The findings of Lopes and Bajracharya, Li et al. and Walker et al. consistently
suggest that AOP can lead to improved changeability over OOP. Bartsch and Harrison

find no significant difference in the effects of AOP and OOP on changeability.

1.2.3 Stability

Empirical studies of the comparative effect of AOP and OOP on stability have been carried
out by Figueiredo et al. [54], Kulesza et al. [87] and Greenwood et al. [63]. In these
studies, stability is measured as the resistance of AOP and OOP implementations to ripple
effects when the same change(s) are applied to each. This resistance is measured using
a suite of metrics that measure coupling, size and other quality indicators and analysing
how much these indicators are affected over maintenance activities [49]. The results of

these studies indicate that AOP can lead to improved stability over OOP.
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1.2.4 Testability

There are no empirical studies of the comparative effect of AOP and OOP on testability.
Testability can have a significant effect on maintenance costs [33, 22, 141]. One cause of
this is that new faults are introduced into the implementation when changes are applied. It
is estimated that 40% of changes introduce new faults [124]. This indicates that testability
is the most significant indicator of maintainability.

It has been shown that crosscutting concerns are more likely to contain faults [48].
AOP reduces the crosscutting of concerns over OOP. This indicates that there is potential
for AOP to improve testability. The reduction in crosscutting is based on the introduction
of a composition mechanism that can introduces a range of new types of faults. It has
been observed that these new types of faults can be more difficult to expose through

testing [2], deflating the potential of AOP to improve testability somewhat.

1.2.5 Evidential Gap

The existing studies provide a significant amount of evidence to suggest that AOP can
improve analysability, changeability and stability. Although more studies are needed to
fully validate the benefits of AOP, the existing evidence is encouraging for those con-
sidering the adoption of AOP to reduce maintenance costs. However, due to the high
proportion of the maintenance costs attributed to testing, the confirmation of this claim,
without evidence of the comparative effect of AOP and OOP on testability, is superficial.
Considering the adoption of AOP based on a superficial confirmation cannot be objective
(39, 25].

1.3 Stundy

This thesis addresses the evidential gap through a study to gather empirical evidence of
the comparative effect of AOP and OOP on testability. In the study, a series of mainte-
nance activities are cumulatively applied to equivalent AOP and OOP implementations
of a program. The testability of both implementations is measured after each mainte-
nance activity. These measures are then analysed to quantify the comparative effect.
This quantification is empirical evidence of the comparative effect of AOP and OOP on
testability.

This section introduces how the testability is measured using mutation analysis [45],
how measures of testability are gathered, and how these measures are analysed to quantify

the comparative effect of AOP and OOP on testability.
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A - Mutant Outcomes |le] Fault Exposure

O Fault Execution @ Infection and Propagation

Figure 1.1: Fault Exposure: Outcomes and Rates

1.3.1 Mutation Analysis

Faults in a program’s implementation are exposed through testing. The implementation
can hide faults by allowing tests to pass when faults are present [128, 148, 60]. A program
that does not hide faults has high testablility.

Mutation Analysis (MA) [45] measures the testability of an implementation as its
rate of fault exposure under testing. In MA, tests are executed against mutants of the
implementation. A mutant is a version of the implementation that contains a fault.
Examples of mutants and details of how they are automatically generated are presented
in Chapter 4.

The rate of fault exposure is based on the outcomes of executing tests against mutants.
Part A of Figure 1.1 shows that there are three possible outcomes for each test-mutant
execution. The test executes a path through the mutant implementation. The fault
contained in the mutant may or may not be executed on this path. Chapter 3 demonstrates
that if the fault is executed, then the state directly after that can become infected and this
state infection can be propagated [128, 148, 146, 147, 76, 1], which in turn results in a fail
outcome. A fail outcome indicates fault exposure. Infection occurs when the execution
of the fault results in a state that differs from the state that would occur if the fault was
not present [128, 148]. The infected state is propagated if it causes the output of the
implementations execution to differ from the output of the normal execution [128, 148|.
If the state directly after the faults execution does not become infected or propagated,
then the resulting outcome is a pass.

Part B of Figure 1.1 illustrates a simple example in which one test is executed against
20 mutants of the implementation. Of the 20 mutants executed, the fault contained is
not executed in 6 of them. This means that there are 14 mutants in which the fault is
executed. Of these 14 fault executions, 10 do not cause state infection and propagation
and result in pass outcomes. There are 4 out of the 14 fault executions that do cause

state infection and propagation and result in fail outcomes.
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Figure 1.2: Measurement Methodology

Part C of Figure 1.1 demonstrates how these outcomes are used to calculate a rate of
fault exposure for an implementation. The rate of fault exposure in this simple example
i8 55 = 7o / S or.- This rate is based directly on the rates of fault execution and in-

B . . P . 4 _ 14 4 m i ’ : . = 14 fail+pass
fection and propagation, 55 = 55 X 17. The rate of fault execution is 55 = 5

1l4+pass+notexe*
3 . . . fail
The rate of infection and propagation is 1% — #

1.3.2 Measurement Methodology

The goal of this study is to compare the effects of AOP and OOP on testability, as an
indicator of maintainability. To ensure that this goal was achieved, the study followed a
measurement methodology widely used in existing studies [149, 14, 92, 54, 87, 63| that
compare the effects of AOP and OOP on analysability, changeability and stability. The
basis for this measurement methodology is illustrated in Figure 1.2 and is detailed in
Chapters 2 and 4.

In the methodology, maintenance activities are cumulatively applied to AOP and
OOP implementations of a program. The initial AOP and OOP implementations of a
program are equivalent in that they differ only in the approach used for their development.
Equivalence is assured by fixing all other factors that can cause the implementations to
differ. Examples of these factors are the expertise used in developed of both AOP and
OOP implementations and the requirements they satisfy. They are fixed by ensuring that
these factors are equivalent for each pair of AOP and OOP implementations. As will be
detailed in Chapters 2, 4 and 5, the implementations were developed to the same level of
expertise, satisfy the same requirements, expose the same interface and produce the same

outputs for a given input [63].
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The same maintenance activities are cumulatively applied to each pair of equivalent
AOP and OOP implementations. After each maintenance activity is applied to both
implementations, new versions of these implementations result. The new versions of these
implementations are equivalent because the same maintenance activity is applied to both
implementations [63]. This means that the respective versions of the AOP and OOP
implementations are also equivalent. When all maintenance activities are applied, the
only difference between each respective version of the AOP and OOP implementations is
the maintenance activity.

Following this methodology ensures that the measures gathered represent the effects
of the implementation approach (AOP or OOP) and maintenance factors on the measure.
The use of MA within this methodology does however, require some additional factor
fixing. This is because MA introduces new test and mutant factors that can affect each
measure. The application of MA to the AOP and OOP implementations of each version
of the program requires the execution of tests against mutants generated from the im-
plementation. To preserved equivalence, these factors are fixed. They are fixed by using
the same set of tests and mutant generation approach in the application of MA to each

implementation. Further details of this methodology are presented in Chapter 4.

1.3.3 Analysis Approach

The result of applying mutation analysis to each AOP and OOP implementation over
versions of the program are numbers of not exe, pass and fail outcomes for each imple-
mentation. These outcomes are used to derive rates of fault exposure, fault execution and
infection and propagation for each implementation. As demonstrated in Chapter 4, these
rates are informally analysed by interpreting graphs to identify if these rates are higher
or lower for AOP compared to OOP.

Binomial Regression Analysis (BRA) [52] is also applied to the outcomes for each
implementation to quantify precisely how much higher or lower the effects AOP on rates
are compared to OOP. BRA is a formal statistical technique for analysing the causal
relationship between a binomial response and explanatory factors. In this study, there
are three applications of BRA, one for each rate. In these applications of BRA, the
rate is the response and the explanatory factors are the implementation approach and
maintenance version. The causal relationship between the binomial response and the
explanatory factors is defined in a regression model [52]. To measure the effects of these
factors on a rate, the model is fitted to the outcomes. In the fitting process the effects are
measured based on the correlation between each factor and the rate [52]. The comparative
effect of AOP and OOP on each rate is measured as the difference between the effects of
AOP and OOP on the rate.
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1.4 Challenge

This study, like similar studies [24, 79], faces the fundamental challenge of maximising the
degree to which the results can be generalised. To maximise the degree to which evidence
gathered from a single study can be generalised, the inputs on which the study is based
must be representative of the general case. This section shows that implementation, tests

and mutants selected for this study are representative of the general case.

1.4.1 Implementations

The implementations of the health watcher [87, 63, 55| program were selected from a pool
of candidates, listed in Chapter 5, that fit the methodology presented in Figure 1.2. These
implementations were selected because the health watcher program and the maintenance
activities associated with it were the most representative of the general case.

The health watcher is a public health system that supports the registration, tracking
and resolution of health complaints. This program is a relatively large, database-driven,
distributed system with a web front-end and is made up of a set of concerns generally
found in a wide range of contemporary programs [87, 63].

The program was deployed for use in 2001 [63] and since its deployment, a number of
adaptive, corrective and perfective changes have been applied to it [63]. The maintenance
activities selected for use in this study are based on these and have been selected because
they are representative of the typical distribution of maintenance activity types [124].

The AOP and OOP languages used to develop the implementations are AspectJ and
Java. AspectJ is currently the most widely used AOP language [106]. Aspectd is an

extension of Java, which is currently the most widely used OOP language [136].

1.4.2 Tests and Mutants

The test set used in this study is the product of a use case driven test selection process
(74, 75]. In this process, use cases are used as the basis for test case selection [5, 23]|. As is
detailed in Chapter 5, this approach was selected over others because it is representative
of the type of approach used to select tests for an implementation in practice. Testing
professionals applied the approach to the health watcher use cases to ensure that the
application of the approach and the resulting tests were highly representative of practice.

The types of faults generated in mutants for the study are representative of those
observed in practice. These mutants are generated using MuJava [98], a tool that generates
mutants for Java implementations. MuJava has been widely used to generate mutants that
contain realistic faults in testing related research [151, 122, 133, 104, 103, 102, 105, 130,

134]. As part of this work, the tool was extended to generate AspectJ specific mutants.
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Figure 1.3: Contributions

The extension introduces the types of faults observed to occur in AspectJ implementations

[53] and allows mutants containing these types of faults to be generated.

1.5 Contributions

The primary contribution of the study presented in this thesis is evidence to indicate
that the effect of AOP is to increase testability over OOP. The results of the study are
illustrated in Figure 1.3. This shows that the odds of fault exposure are between 5 and
9% higher for the AspectJ implementations of the health watcher program. This means
that, for the health watcher program, faults are easier to expose in AspectJ compared to
Java implementations. This is evidence to indicate that the effect of AOP is to increase
testability over OOP. Testability can have a significant effect on maintenance costs [33,
22, 141] and for those considering the adoption of AOP to reduce maintenance costs [39],
this evidence is encouraging.

A secondary contribution of the study, also presented in Figure 1.3, is to identify
the causes of the 5-9% difference in the effects of AspectJ and Java on the odds of fault
exposure. Fault exposure is a direct consequence of fault execution and state infection and

propagation. If more faults are executed, then there are more chances for state infection

AspectJ

+78-20%

"

Figure 1.4: Causation
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and propagation, resulting in fault exposure. The more executed faults that cause state
infection and propagation, the more faults that are exposed. If more faults are exposed,
then the odds of fault exposure increase.

Figure 1.3 shows that the odds of fault execution are between 18-20% higher in the
AspectJ implementations and that the odds of state infection and propagation are be-
tween 11-16% lower in the AspectJ implementations. This means that in the AspectJ
implementations there are more faults executed. However, it also means that compared
to Java implementations, proportionally less of the executed faults cause state infection
and propagation, resulting in lower odds of fault exposure.

This is explained further through the illustration in Figure 1.4. The boxes marked
AspectJ and Java represent the total number of test-mutant executions for AspectJ and
Java implementations, respectively. The circles in these boxes represent the number of
faults executed by tests in AspectJ and Java mutants. This representation shows that
there are more faults executed in AspectJ compared to Java mutants. This difference is the
cause of the 18-20% higher odds of fault execution for AspectJ. The number of executed
faults that result in pass and fails are represented inside the circle. This representation
shows that there are proportionally less fails for AspectJ, indicating that less of the faults
executed in AspectJ mutants result in infection and propagation. This difference is the
cause of the 11-16% lower odds of infection and propagation for Aspect.J.

Figure 1.4, indicates that even though there is proportionally less fail to pass outcomes
from AspectJ test-mutant executions, the odds of fault exposure is 5-9% higher because
the volume of fail outcomes is higher for AspectJ. The volume is higher because the
number of faults executed in mutants (or pass and fail outcomes) is higher for AspectJ

compared to Java.

1.6 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents a review of the
studies that compare the effects of AOP and OOP on indicators of maintainability to
demonstrate the evidential gap addressed by this thesis. Chapter 3 describes the factors
that affect fault exposure. Chapter 4 details the methodology followed in the study.
Chapter 5 describes the implementations, tests and mutants on which the study is based.
Chapter 6 presents the results of the study and Chapter 7 draws conclusions from these

results.
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Chapter 2

Related Studies

Studies consistently show that maintenance accounts for the largest proportion of a pro-
gram’s total cost [154, 96, 22, 51]. OOP is currently the defacto implementation approach
with more new projects using it than any other approach [136]. The claim that AOP im-
proves maintainability and consequently reduces costs over OOP has lead organisations
using OOP, to consider adopting AOP [39, 2|. However, for the adoption of AOP to be
objectively considered, empirical evidence of the comparative effects of AOP and OOP on
maintainability is required [39, 25, 2.

Maintainability is a measure of the ease with which a program can be changed [73].
Applying a change to a program is made in four steps [129, 153]. The first step is to
understand and analyse the program and identify what parts of the implementation need
to be changed (analysability). The second step is to implement the change (changeability).
The third step is to address the ripple effects of the change (stability) and the fourth step
is to expose faults that are introduced into the program during the change (testability).

Measures of the ease with which each step can be made are key indicators of a pro-
gram’s maintainability. These key indicators are analysability, changeability, stability and
testability [73]. To confirm that AOP improves maintainability, empirical evidence of the
comparative effect of AOP and OOP on each indicator of maintainability is needed [129].
Studies have contributed empirical evidence of this comparative effect for some of these
indicators [149, 14, 92, 97, 54, 87, 63].

The primary goal of this chapter is to review these studies to demonstrate the eviden-
tial gap left by them, illustrated in Figure 2.1. This is achieved in two steps. The first
step is to identify the empirical evidence of the comparative effect of AOP and OOP gath-
ered by each study and the indicator of maintainability the evidence to which it relates.
The second step is to show that although there is empirical evidence of the comparative
effect of AOP and OOP on analysability, changeability and stability, there has been no
empirical evidence of the comparative effect on testability published in English in a major

academic journal or conference.
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Maintainability

@ Changeability Testability

Stability  Analysability
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Figure 2.1: Evidential Gap

Testability can have a significant effect on maintenance costs [33, 22, 141]. This makes
testability an important indicator of maintainability. Without evidence of the comparative
effect of AOP and OOP on testability, the maintainability claim cannot be either rejected
or confirmed [129, 25]. The adoption of AOP, therefore, cannot be objectively considered
[39].

The secondary goal of this chapter is to review how these studies gather empirical
evidence and identify an approach to gathering evidence that can be used in
the study presented in this thesis. This is achieved in two steps. The first step
is to identify how empirical evidence is gathered by each study. The second step is to
identify an approach used in these studies that can be used to gather empirical evidence
of comparative effect of AOP and OOP on testability.

The first section of this chapter justifies the focus on empirical studies. In the body of
the chapter each of the studies that contributes empirical evidence is described. For each
study, the way in which it gathers evidence and the empirical evidence it contributes are
identified. The chapter is concluded by identifying an approach that is used consistently
to gather evidence for of the comparative effect of AOP and OOP on the key indicators of
maintainability and with a discussion of the applicability of this approach to this study.
I'he empirical evidence contributed by each study is also collated to show that there is no

empirical evidence of the comparative effect of AOP and OOP on testability.

2.1 Empirical Evidence

Only studies that have contributed empirical evidence of the comparative effect of AOP
and OOP on the key indicators of maintainability are considered in this chapter. There are
other studies that provide evidence of this comparative effect based on predictive metrics
(144, 143, 108]. These studies typically use object-oriented metrics [144, 143, 108, 62] to
predict, rather than observe, the ease with which an AOP and OOP implantation can be

analysed, changed or tested.
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2.2. WALKER ET AL. AND MURPHY ET AL.

2.1.1 Object Oriented Metrics

The predictions made by applying object-oriented metrics are based on assumed cor-
relations between object-oriented features and the ease of analysis, change or testing.
Although there is evidence to validate some of these correlations for OOP [38, 93, 4, 15,
81, 29, 30], there is no empirical evidence that these correlations are valid for AOP.

This means that some confidence can be associated with the accuracy of maintain-
ability measures derived from applying object-oriented metrics to OOP implementations.
It also means that less confidence can be associated with the accuracy of maintainability

measures derived from applying object-oriented metrics to AOP implementations.

2.1.2 Comparing Object Oriented Metrics

If the object-oriented metrics do not provide accurate measures when applied to AOP, then
this makes the comparison of measures that result from applying these metrics to AOP
and OOP implementations inaccurate [34, 66, 88, 35, 144]. Object-oriented metrics are
based on features of OOP and do not incorporate AOP specific features. Bias is introduced
when comparing measures based on these metrics when they are not equally applicable to
AOP and OOP. There are adaptations of these metrics that capture the effects of some,
but not all AOP specific features [144, 108, 35, 34]. Although the adaptations reduce bias,

they do not mitigate it because they do not capture the effects of all AOP features.

2.1.3 Focus on Empirical Evidence

Measuring the observed impacts of applying maintenance activities to AOP and OOP
implementations of a program is the only way to gather accurate measures of maintain-
ability. This is because these measures are direct observations rather than inaccurate
predictions. Measuring the observed impact is an approach that is equally applicable to
AOP and OOP implementations. This means that the measures of impact are directly

comparable.

2.2 Walker et al. and Murphy et al.

Two experiments are carried out in a study by Walker et al. [149] and Murphy et al. [109].
In these experiments, empirical evidence of the comparative effect of AOP and OOP on
analysability and changability is gathered.

2.2.1 Study

Figure 2.2 shows the three phases of the study. It begins with group assignment, in which

participants are grouped for each experiment. In experiments 1 and 2 the participants are
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Figure 2.2: Walker et al. and Murphy et al. Experiments

asked to complete analytical tasks and perform tasks in which changes are applied to an
implementation. During the tasks, the performance of the participants is measured and

these measures are analysed.

Group Assignment

In this study, twelve computer science graduate students and academics were asked to
carry out maintenance activities on OOP and AOP implementations of a trivial library
program. Each participant was assigned to work on either the OOP or AOP implemen-
tation. At the end of the group assignment there were two groups of six, one group was
assigned to the OOP implementation and the other to the AOP implementation. Figure

2.2 illustrates this process.

Experiment 1

In the first experiment, illustrated in Figure 2.2, three pairs of similar ability were formed
out of each group. These pairs were then asked to analyse the Java and AspectJ imple-
mentations of the library program to which they were assigned. The goal of this analysis
was to identify three cascading synchronisation faults. These faults were cascading in
that symptoms of the first fault hid symptoms of the second, and so on. Each pair was
videotaped and measures of the time taken to identify each fault, the amount of switching

between files and the number of instances of semantic analysis were recorded.

Experiment 2

In the second experiment, also illustrated in Figure 2.2, the participants in each group
were asked to cumulatively apply three changes to Emerald [21] (an OOP language) and

AspectJ implementations to which they were assigned. Two changes were adaptive and
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one change was perfective in nature. The time spent applying these changes and the

proportion of time used for analysis and coding was recorded.

Analysis

The data gathered in both experiments is analysed graphically. The time taken, the
number of switched between files less and number of semantic analyses recorded for each
fault in the first experiment are analysed in separate graphs where the pairs assigned to
the AOP and OOP implementations are directly compared.

The time each participant took to complete each change and the percentage of that
time spent on coding and analysis identified in the second experiment are also presented
in separate graphs. These graphs allow the individual participants assigned to the AOP
and OOP implementations to be directly compared.

To identify causation for the interpreted differences between the AOP and OOP im-
plementations, interviews with participants after the experiment were held. In these in-
terviews the experience of the participants are recorded. These recorded interviews were

then transcribed and used to identify causation of the graphed data.

2.2.2 Empirical Evidence

The results of the first experiment indicated that the AspectJ implementation was more
analysable. The pairs who analysed the AspectJ implementation took less time to identify
faults, switched between files less and performed more semantic analysis. These results
suggest that the AspectJ implementation was easier to analyse than the Java implemen-
tation. Transcriptions of interviews with participants after the experiments identify that
the localisation of synchronisation behaviour in the AspectJ implementation made the
analysis easier.

The results of the second experiment indicated that the AspectJ implementation was
less changeable. The graphical analysis suggests that overall, the changes took more time
to implement using AspectJ. However, analysis of the proportions indicate that more
time is spent on analysis in the Emerald implementation and more time was spent on
implementation in the AspectJ. This again implies that AspectJ is more analysable but

it also indicates that the AspectJ implementation is harder to change.

2.3 Bartsch and Harrison

Bartsch and Harrison [14] present a similar study to Walker et al [149]. Their study
gathers empirical evidence of the comparative effect of AOP and OOP on analysability

and changeability.
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Figure 2.3: Bartsch and Harrison Experiment

2.3.1 Study

Figure 2.3 shows the two phases of the study. In the first phase, study participants are
assigned into groups to work on AOP and OOP implementations of an simplified version
of an online shop program. In the second phase, participants of each group were asked
to answer a questionnaire. The questionnaire defined both analytical tasks and a task in

which changes are applied to the implementation.

Group Assignment

Eleven professional software engineers with between two and five years experience took
part in this study. None of the participants had any prior experience of AOP. To ensure
that these professionals were equally able to understand and apply changes to both As-
pectJ and Java implementations of a program, a series of five introductory sessions in
an online tutorial based on Aspect]J was used. Each participant was randomly assigned
to an AspectJ or Java implementation of an highly simplified version of an online shop

program.

Questionnaire

Based on their assigned implementation, each participant was then asked to fill in a
questionnaire which asked the participant to: identify all classes and aspects in the source
code (Q1); identify the output of the software (Q2); implement a new requirement (Q3);
and rate the understandability on a scale of 1 to 5 (Q4). This questionnaire was based on

refinements of an initial questionnaire use in a pilot and pre-pilot tests.

Analysis

The answers to Q1, Q2 and Q3 were compared for both Java and AspectJ implementations

based on measures of the time taken to answer each question and the accuracy of answer.
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Figure 2.4: Lopes and Bajracharya Study

The comparison of the answers for Q 1-3 indicated that there were very few differences
in the accuracy of the answers but showed there was a large amount of variation in the
amount of time taken to answer these questions. For this reason the accuracy was dropped
as a point of comparison. For Q3 an additional point of comparison is the number of lines
of code that needed to be changed to implement a new requirement. The ratings in
response to Q4 were directly compared for both Java and AspectJ implementations.
Statistical summaries represented as numeric tables and boxplots of these measures
for Q1-4 are presented to facilitate ease of comparison. The significance of observed
differences between measures for AspectJ and Java is tested using the MannWhitney and
T tests [121, 41]. The MannWhitney and T tests indicate whether the two median or mean

values for these measures are significantly different for Aspect.J and Java implementations.

2.3.2 Empirical Evidence

For Q1, the median and mean time taken to identify all classes and aspects is the same for
both AspectJ and Java implementations. For Q2, there is no significant difference between
the median and mean time taken identify the output of the software for the AspectJ and
Java implementations. Similarly for Q3, the median and mean time taken and lines of code
changed to implement a new requirement were not significantly higher for the AspectJ
implementation. For Q4, the medians are the same but there is a higher level of variation
in the ratings for AspectJ. These comparisons suggest that there is no significant difference

between the effects of AOP and OOP on analysability and changeability.

2.4 Lopes and Bajracharya

Lopes and Bajracharya [97] present a study that focuses on comparing the changeability of
AOP and OOP implementations in terms of their value. The value of an implementation
is measured in terms of the options it provides for extension and refactoring. The less
dependent the modules that comprise an implementation are on one another the more

extension and refactoring options there are and more valuable the implementation is.

27



CHAPTER 2. RELATED STUDIES

2.4.1 Study

In this study five maintenance activities are applied to a web-based winery locater imple-
mentation. Figure 2.4 illustrates the six versions of the implementation that result. The
maintenance activities differ in their goals but also in the programming language used to

apply each maintenance activity.

Program and Maintenance Activities

The initial implementation provides very basic features of the winery locater program
and is written in Java. The first two maintenance activities extend the set of features
provided by the initial implementation. These extensions are applied using Java. The
first maintenance activity adds new features. The second maintenance activity introduces
a logging service.

The next three maintenance activities refactor the extended version of the winery
locater. These extensions are applied using AspectJ. In the first refactoring, aspects are
introduced to decouple core modules in the implementation. In the second refactoring,
logging and an authentication feature are refactored using aspects. In the third and final
refactoring, the web front for the program is refactored to introduce aspects to decouple

the web front from the core application.

Measurement and Analysis

For each version of the implementation, a design structure matrix is constructed. This
matrix represents the dependencies between the modules and interfaces that make up
the implementation. The value of the implementation is calculated based on the options
available for replacing modules and extending. These options are identified by analysing
the design structure matrix and their value is measured using a model typically used in
financial context. The impact of a maintenance activity is measured by calculating the
difference in the value of the implementations before and after the maintenance activity
is applied.

The analysis approach in this study is rather simple. The impacts of each maintenance
activity is deemed positive if the value of the implementation increases and negative if it
decreases. The effects of the Java and AspectJ based maintenance activities are compared

based on whether they result in positive or negative effects.

2.4.2 Empirical Evidence

In this study, the extensions to the Java implementation both increase its value. The
first two of the three AspectJ based refactorings increase the value over the Java based

extensions to the implementation. This comparison provides evidence to indicate that
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Figure 2.5: Li et al. Study

AOP has the potential to improve the value of the options to facilitate change. This
evidence suggests that changeability is improved using AOP. The final AspectJ based
refactoring decreases the implementations value. This refactoring illustrates the misuse
of AOP constructs and provides heuristics to aid developers using AOP to avoid similar

misuse.

2.5 Lietal.

Li et al. [92] present a study that gathers empirical evidence of the comparative effect of
AOP and OOP on changeability.

2.5.1 Study

The study is based on measuring the size of the impact of applying three maintenance
activities to AOP and OOP implementations of a program. Figure 2.5 illustrates the three
maintenance activities cumulatively applied to initial AspectJ and Java implementations

of Java Email Server.

Program and Maintenance Activities

I'his is an open source email server written in Java which has 21 classes and 1400 Lines
Of Code (LOC). The first of the three maintenance activities adds a spam filtering feature
to the email server. The second change refactors the logging system and the third change

replaces the implementation of the spam filtering feature.

Measurement and Analysis

The impact of each maintenance activity is measured by counting the number of modules
and lines of code that are changed when a maintenance activity is applied. Changeability
is indicated by these measures. The lower the measure the easier it is to apply the
maintenance activity. The measures for each maintenance activity are simply compared

to assess the differing effects of AOP and OOP on changeability.
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Figure 2.6: Kulesza et al. Study

2.5.2 Empirical Evidence

Table 2.1 illustrates the number of modules and LOC changed when applying each main-
tenance activity for the AspectJ and Java approach. This table shows that fewer modules
and LOC need to be changed in the AspectJ implementation. Based on this table, Li et

al. conclude that using AOP to apply changes can improve changeability over OOP.

2.6 Kulesza et al.

Kulesza et al. [87] present a study based on comparing the effects of AOP and OOP on

stability.

2.6.1 Study

As illustrated in Figure 2.6, in this study five maintenance activities are applied to
AspectJ- and Java-based implementations of an online public health care system, called
the Health Watcher (HW) 1.

Program and Maintenance Activities

The initial HW program is based on thirteen use cases and is comprised of a rich set of
general concerns including, distribution, persistence and concurrency and is 5K LOC in
size. In each of the five maintenance activities, an additional use case is implemented,

extending the features of the HW.

"The Health Watcher is also the program on which the study presented in this thesis is based
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The same level of expertise in designing the implementation is used to show that the
only differences between these implementations is the approach used to develop them.
The HW implementations were developed independently of this study and were selected

to mitigate any bias towards either implementation.

Measurement and Analysis

The metrics were applied to the initial and final versions of the AspectJ and Java im-
plementations of the HW. The levels of coupling, inheritance, cohesion, concern diffusion
and the size of each implementation is measured. The measures taken from the AspectJ
and Java implementations of the initial and final versions of the HW are comparatively
analysed by calculating the percentage difference between the measures gathered from
implementations of both versions. These percentage differences are graphed for both ini-
tial and final versions of the HW. Those graphs are compared manually by identifying

changes in the percentage difference for both initial and final versions of the HW.

2.6.2 Empirical Evidence

The resulting measures from the initial implementations indicate the AspectJ implemen-
tation is smaller in size but is dispersed across more modules, its modules are 4% less
coupled, has a 2% smaller inheritance hierarchy and is 8% less cohesive. The measures
from the implementations after the maintenance indicate the only notable change in size
is a decrease in the relative number of attributes by 3% in the AspectJ implementation.
The only other changes are that coupling in the AspectJ implementation decreases by a
further 2% to 6% and cohesion is further decreased by 7% to 15%.

Before the maintenance activities are applied, the AspectJ implementation is smaller,
less coupled and has a smaller inheritance hierarchy than the Java implementation. These
are interpreted as indications that the AspectJ implementation is of higher quality. Af-
ter the maintenance activities are applied to the AspectJ implementation, each of these
indicators are improved indicating that over these maintenance activities the quality of
the AspectJ implementation improves relative to the Java implementation. Based on
these observations, Kulesza et al. conclude that the effect of using AOP is to increase
changeability and stability compared to OOP.

Cohesion is the only measure that is worse for AspectJ both before and after the
maintenance activities. Kulesza et al. claim that the measure of cohesion they use is
not representative of how functionally cohesive modules are in an implementation. They
argue that this measure of cohesion, which is based on the density of the relationships
between methods and attributes in a module, does not capture functional cohesion.

To fully capture cohesion they use concern diffusion measurements that identify the

extent to which concerns are diffused over modules, methods and lines of code. These mea-
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Figure 2.7: Study of Greenwood et al.

sures are calculated by manually inspecting the source code and identifying or shadowing
the modules, methods and lines of code that implement each concern. These measures
are gathered for distribution, persistence and concurrency crosscutting concerns in both
implementations to identify how cohesively these functions are implemented in the As-
pectJ and Java implementation. The resulting concern diffusion measures show that these

concerns are implemented more cohesively in the AspectJ implementation.

2.7 Greenwood et al.

Greenwood et al. [63] present a study similar study to Kulesza et al. [87|, which is based

on comparing the effects of AOP and OOP on stability.

2,701 Study

As illustrated in Figure 2.7, nine maintenance activities are applied to CaesarlJ-, AspectJ-

and Java-based implementations of the same Health Watcher (HW) program.

Program and Maintenance Activities

In this study, Greenwood et al. indicate that the reason that they also focus on the
Health Watcher is because it was developed using a high level of expertise to ensure
stability. It was also used by Kulesza et al. and others allowing the results of the study
to be correlated with the results of these previous studies. Greenwood et al. also reveal
that the Health Watcher had been deployed in March 2001 and since then a number of
incremental corrective, adaptive and perfective maintenance activities have been applied
to the HW. T’he maintenance activities in this study were based on the real maintenance

activities applied to the deployed Health Watcher implementation.
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Measurement and Analysis

The level of coupling, cohesion and concern diffusion for AspectJ, CaesarJ and Java
implementations over each versions of the HW are measured. For each measure, a graph
plotting each measure is provided. These graphs enable the changes in the measure for
the AspectJ, CaesarJ and Java implementations to be directly compared over the nine
maintenance activities. Based on these graphs, the impacts the maintenance activities
have on the implementation can be determined and compared. Higher levels of impact

imply a less stable implementation.

2.7.2 Empirical Evidence

The graphs show that the stability of the AspectJ and CaesarJ implementations was
similar to the Java implementations in terms of size. Although all three implementations
consistently increase in size over the maintenance activities, the increases in the size of
AspectJ and CaesarJ implementations where consistently smaller in terms of their lines
of code. Greenwood et al. interpret this difference as not being significant.

The stability of the AspectJ and CaesarJ implementations was very different to the
Java implementations in terms of coupling and cohesion. The overall trend for all three
implementations is an increase in coupling and cohesion. Over the maintenance activities,
the AspectJ and CaesarJ implementations are more stable because the levels of coupling
and cohesion do not change as much as they do in the Java implementation. This in-
dicates that the impact in terms of coupling and cohesion on the AspectJ and Caesar)
implementations is lower than the Java implementation, which suggests that the Aspect.J
and CaesarJ implementations are more stable.

Stability is also compared in terms of concern diffusion. To compare the impacts
on concern diffusion over the maintenance activities the changes in the level of diffusion
for crosscutting and non-crosscutting concerns are compared. The level of change in the
diffusion of both types of concerns varied. Some crosscutting concerns were more stable in
the AspectJ and CaesarJ implementations, but no stability gains were observed for other
crosscutting concerns.

Based on comparing each measure taken from AspectJ, CaesarJ and Java implemen-
tations over maintenance activities, Greenwood et al. conclude that when compared to
OOP the effect of AOP is to increase stability.

2.8 Figueiredo et al.

Figueiredo et al. [54] compare the effects of AOP and OOP on stability in a software

product line context.
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Figure 2.8: Study of Figueiredo et al.

2.8.1 Study

In this study, the stability of AspectJ and Java implementations of two heterogeneous

product lines are compared.

Program and Maintenance Activities

The first product line, called Mobile Media, is for applications with 3K LOC that manip-
ulate photo, music, and video on mobile devices, such as mobile phones. Mobile Media
was independently developed and used in other research studies. The second, called Best
Lap, is for mobile game applications with 10K LOC which can be deployed on a num-
ber of different mobile devices. Best Lap was developed in industry. Both AspectJ and
Java implementations of the Mobile Media and Best Lap product lines were developed
following best practice to ensure a high level of stability.

As illustrated in Figure 2.8, there were a number of maintenance activities defined for
both product lines. These involved the introduction of new features into the product line.
For the Mobile Media product line, there were eight maintenance activities and there were

five maintenance activities for Best Lap.

Measurement and Analysis

The level of coupling, cohesion, concern diffusion and the size of each both implemen-
tations of each version of the two programs are measured. Similar to Greenwood et al.,
graphs are provided in which these measures are plotted. These graphs enable the changes
in the measure for the AspectJ and Java implementations to be directly compared over
the nine maintenance activities.

The impact is analysed from two perspectives. The first perspective compares the
impacts of maintenance activities applied to both AspectJ and Java implementations.

The number of modules, methods, lines of code and feature composition specifications
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[ | Analysability [ Changeability | Stability [ Testability |

Walker and Murphy et al. A 7
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Li et al. A

Kulesza et al. A A

Greenwood et al. A

Figueiredo et al. A

Table 2.2: Indicator Coverage

that are changed for each maintenance activity are counted and compared. The second
is based on measuring the impact on the diffusion of features over modules, methods and

lines of code in both implementations for both implementations.

2.8.2 Empirical Evidence

The AspectJ and Java implementations of the Mobile Media product line are analysed
from the first perspective. Of the maintenance activities defined for this product line,
two are applied to mandatory features, three are applied to optional features and two are
applied to alternative features. For each maintenance activity, the number of modules,
methods, lines of code and feature composition specifications that are changed are counted
and compared. The results show that the impact on the AspectJ implementation is
lower when changes are applied to optional and alternative features, but higher when
applied to mandatory features. This is because the separation of concerns in the Aspect.J
implementation makes it easier to localises the effects of change.

Analysis from the second perspective focuses first on analysing features in both the
Mobile Media and Best Lap product lines. Specific features are analysed in terms of their
diffusion in the AspectJ and Java implementations. Diffusion is measured over modules,
methods and lines of code. This shows AspectJ provides superior stability for features
with no shared implementation.

Based on the measure of impact taken from the AspectJ and Java implementations
over maintenance activities, Figueiredo et al. conclude that when compered to OOP the

effect of AOP is to increase stability.

2.9 Evidential Gap

The primary goal of this chapter is to demonstrate the evidential gap left by identifying
the evidence contributed by existing studies. In this section, the contributed evidence
identified for each study is summarised. This summary is used to demonstrate the evi-

dential gap.
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2.9.1 Existing Evidence

Table 2.2 lists the studies that provide empirical evidence of the comparative effects of
AOP and OOP on maintainability indicators. These studies provide evidence to suggest
that AOP can improve analysability, changeability and stability over OOP. The arrows
used in the table indicate whether the evidence indicated that AOP lead to improvements
in a maintainability indicator and the circle indicates that no (significant) difference be-
tween the effects of AOP and OOP was identified.

Although more studies are needed to fully validate this existing evidence, it is en-
couraging for those considering the adopting AOP to improve maintainability and reduce

maintenance costs.

2.9.2 Testability Gap

However, Table 2.2 clearly shows that these studies do not provide any evidence of the
comparative effect of AOP and OOP on testability. Testability is the most important
indicator of maintainability, as it is can have a significant effect on maintenance costs
(33, 22, 141]. The claim that AOP improves maintainability cannot be tested without
evidence of the comparative effect of AOP and OOP on testability. Considering the
adoption of AOP based on an untested claim cannot be objective [39, 25]. The study
presented in this thesis, provides evidence of testability enabling the adoption of AOP to

be more objectively considered.

2.10 Common Evidence Gathering Approach

The secondary goal of this chapter is to identify an approach to gathering evidence that
is applicable to the study presented in this thesis. In this section, an approach that is
commonly used to gather evidence of the effects of AOP and OOP on the key indicators
of maintainability is identified and its applicability to this study is discussed.

The goal of each study described in this chapter is to gather evidence of the effects of
AOP and OOP on analysability, changeability and/or stability over maintenance activi-

ties. Figures 2.9 and 2.10 illustrate the commonly used approach to gather this evidence.

2.10.1 Equivalence

In this approach, maintenance activities are cumulatively applied to AOP and OOP im-
plementations of a program. The initial AOP and OOP implementations of a program are
equivalent in that differ only in the approach used for their development. Equivalence is
assured by fixing all other factors that can cause the implementations to differ. For equiv-

alence to be assured, the implementations are developed to the same level of expertise,
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satisfy the same requirements, expose the same interface and produce the same outputs
for a given input [63].

The same maintenance activities are cumulatively applied to both AOP and OOP
implementations. After each maintenance activity is applied to both implementations, a
new version of these implementations results. The new version of these implementations
are equivalent because the maintenance activity is applied to both implementations to the
same level of expertise. This means that the versions of the AOP and OOP implementa-
tions are also equivalent. When all maintenance activities are applied, the only difference
between each respective version of the AOP and OOP implementations is a maintenance

activity.

2.10.2 Effects

Figure 2.10 illustrates the measures taken from the AOP and OOP implementations of
each version of the program. Because each pair of AOP and OOP implementations are
equivalent, the difference between each pair of AOP and OOP measures represents the
difference in the effects of AOP and OOP of the implementation factor on the measure.
Because each respective version of the program is equivalent, the difference between the
AOP and OOP measures for each version represents the effects of the maintenance factor
on these measures.

Figure 2.11 illustrates the typical result (as identified in Section 2.9) of analysing
the measures gathered by the studies that follow this approach. This shows that AOP
improves maintainability over OOP. In this analysis the effects of AOP and OOP on
maintainability are identified by observing the difference in the measures for AOP and

OOP over versions of the program.

37



CHAPTER 2. RELATED STUDIES

Graphical and statistical analysis approaches are used to identify these effects in the
studies presented in this chapter. Graphical analysis enables a more intuitive but inaccu-
rate comparison while statistical analysis enables a more formal and accurate quantitative
comparison. As will be detailed in Section 4.3, these analysis approaches are good at iden-
tifying a difference between combined effects. They do not separate combined effects and

provide means to accurately quantify these effects.

2.10.3 Applicability

The goal of the study study presented in this thesis is to gather evidence of the effects of
AOP and OOP on testability over maintenance activities. The commonly used approach,
outlined in this section, can be used to achieve this goal. The application of this approach
enables the testability of equivalent AOP and OOP implementations of a program over
equivalent maintenance activities to be gathered and analysed to identify and compare

the effects of AOP and OOP on testability over maintenance activities.

2.11 Chapter Summary

The first section of this chapter justified the focus on empirical studies by identifying the
inaccuracies of using predictive object oriented metrics. In the body of the chapter, each
of the studies that contributes empirical evidence was described. For each study, the way
in which it gathers evidence and the empirical evidence it contributes were identified. The
chapter was concluded by collating the empirical evidence contributed by each study to
show that there is no empirical evidence of the comparative effect of AOP and OOP on
testability. This evidential gap motivates the study presented in this thesis.

This chapter also identified an approach that is commonly used to gather evidence
for of the comparative effect of AOP and OOP on the key indicators of maintainability
and discussing the applicability of this approach to this study. The approach is the basis
for the approach used in this study, presented in this thesis, to gather evidence for of the
comparative effect of AOP and OOP on testability.
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Chapter 3

Testability

Testing is the process of executing the implementation of a program with the intent of
exposing faults [110]. A fault is a deviation from the intended program, and is exposed
through test failure [110]. A program can hide faults by not causing tests to fail when
faults are present [148]. The testability of an implementation is the ease with which faults
can be exposed through testing [148|.

Figure 3.1 asks three questions the answers to which are the basis for methodology
and motivation of the study presented in this thesis. This chapter answers these three
questions.

To answer the first question, how are faults exposed?, a model to explain the conditions
that cause fault exposure is presented. This model is used as a basis for determining the
causation of observed rates of fault exposure in the next chapter.

To answer the second question, what are the factors that influence fault exposure?,
cach factor is identified and its influence on fault exposure is demonstrated. These factors
are the basis of the measurement approach and design used in this study, also presented
in Chapter 4.

To answer the third and final question, what evidence has been contributed by existing
studies of testability?, an overview of the studies and the evidence they contribute is

presented. This overview reaffirms the gap identified in the pervious chapter.

1. Model -
How are faults exposed?
//\\
£ N
AN
4 \

) \,
/.f" Testability

2. Factors- / \ 3. Studies—
What factors influence fault exposure? What evidence exists 7

Figure 3.1: Testability
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public class Stack {
int size = 0;
static final int max = 5;
public int getSize (){
return this.size;
}
public void setSize(int size) {
if (size >= 0){
this.size=size; // fault size=size - "this" is deleted
if (size > Stack.max){
this.size = Stack.max;
}
} else {
throw new IllegalArgumentException();
}
}
}

Listing 3.1: Fault

3.1 Fault Exposure Model

A fault exposure model identifies the conditions in which tests expose faults in an imple-
mentation. This model is used to analyse and compare the causes of fault exposure for
AOP and OOP implementations in this study.

Listing 3.1 illustrates the Java code based on a Stack class example used by Ma et al.
[98]. Listing 3.2 illustrates tests to validate the correctness of the implementation of the
Stack class. The comment on Line 9 of Listing 3.1 of the listing illustrates a fault. In this

section, this example is used to demonstrate a model of fault exposure through testing.

3.1.1 Faults

Listing 3.1 shows the source code of the Stack class with two accessor methods. In the
setSize method, at line 9, there is an assignment to the stack’s size attribute. In the
assignment, the size parameter to the setSize method is assigned to the size attribute.
To differentiate with the parameter, the attribute is referenced using the this keyword.

In a new version of the Stack, a fault is deliberately created in the setSize method,
for the purpose of analysing how easy the fault is to expose and therefore how testable the
Stack class is. The fault is illustrated in the comment on line 9 of the listing. The fault
occurs when the this keyword is deleted. Deleting the this keyword makes the target
of assignment the size parameter rather than the size attribute. This fault is likely to
lead to an incorrect value for the size attribute, declared at line 2 of the listing.

Figure 3.2 illustrates a control flow graph of the setSize method. The nodes in
the control-flow graph represent locations, or lines of source code, of the Stack class

presented in Listing 3.1. The location containing the fault is coloured red. The directed
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l setSize(size)

EE S R = o s oo A Legend
' 4 ¥ Vi ;|
' _{ 2) l(size>=0) : '\,> Location
H i) i \ Location containing
$ ! fault
: size=size ;
' | l Control flow
' A If(size > Stack.max)l | 1
: LA vesssnien f ¥ Return flow
1
' r’ e :
) (). Ihis size=Stack.max _,
LN

R
&, b\/n throw new lilegalStateException()

Figure 3.2: Control-flow graph for setSize method

arrows between nodes represent the flow of execution between nodes. Arrows with a solid
line represent control-flow and arrows with a broken line represent a return of control.
This type of control-flow graph is used and described in detail by Ammann and Offutt
[5].

Location 2 in Figure 3.2 shows a precondition that needs to be met before the body
of the method executes. This defines zero as the minimum size the stack can be. If the
value of the size parameter is less than zero then this results in the execution of location
6, where an exception is thrown. If the value of the size parameter is greater than or
equal to zero, then location 3 is executed. Location 3 is where the this deletion fault
occurs. Location 4 is executed after location 3. Location 4 defines a condition defining
the maximum size of the stack to be five. If the value of the size parameter is greater
than five then then the size attribute is reset to a value of five by executing location 5

and returning. If the value is less than or equal to five the method returns.

3.1.2 Tests

Listing 3.2 shows four tests (1, 2, 3 and 4) to expose this fault. Each test calls the setSize
method to set the size of the stack and the getSize method to ensure that the size has
been properly set. The goal of the combined set of tests is to ensure the correctness of
the code. If the program is testable, then the fault at location 3, illustrated in Figure 3.2,
will be exposed by the tests.

Figure 3.3 illustrates the execution of each test against the setSize method on an
instance of the Stack class. The top of Figure 3.3 illustrates the values for the size
parameter (p:size) and attribute (a:size) before each test executes the setSize method
on an instance of the Stack class. All tests execute an instance of the Stack class in
which the size attribute is initialised to zero. The value of the size parameter differs

for each test.
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class StackTest
stack =
void testi1(){

public
Stack
public
try{
stack.setSize(-1);
fail () ;

}catch (Exception e){...

4

public void test2(){
stack.setSize (0);
assertEquals (0, stack

}

public void test3(){
stack.setSize (11);
assertEquals (5,stack

}

public void test4(){
stack.setSize (1) ;
assertEquals (1,stack

}

}

extends TestCase {
new Stack();

.getSize());

.getSize());

.getSize());

Listing 3.2: Tests 1 -4

Tests 1 Tests 2 Tests 3 Tests 4
a:size=0 p:size=-1 a:size=0 p:size=0 asize=0 p:size=11 a:size=0 p:size=1
intended faulty | intended faulty | intended faulty |intended faulty
\-aj (l\, (1: \/'I :I
(2) (2) )
(=)
i a:size=0] a:size=0 |a:size=11] a:size=0 a:size=1 | a:size=0
l\c; (\A\l \/4:)
(s )
Nood
exception exception 0 0 5 5 1 0
Pass Pass Pass fail

Figure 3.3: Control-flow paths through setSize method for tests 1 - 4

The middle of Figure 3.3 illustrates the control-flow path through the setSize method
exercised by each test. This shows whether the location containing the fault, location 3
is executed by the test or not.

For the tests that do execute this location, two values of the size attribute, a:size, are
shown directly after the execution of the location. On the left hand side of the control-flow
path, the value of the size attribute is shown when the setSize method does not contain
the fault at location 3. On the right hand side of the control-flow path, the value of the

size attribute is shown when the setSize method contains the fault at location 3.
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A comparison of these values shows whether the fault results in an incorrect value
for the size attribute at this stage of execution for each test. If the value for the size
attribute is correct at this stage, the fault will not cause the actual output of the test to
differ from the expected output. If it is incorrect, then this may cause the actual output
to differ from the expected output. The bottom of the figure presents the expected and
actual outcomes for each test. If the actual outcome differs from the expected outcome,

the test fails and the fault is exposed.

Test 1

Test 1 sets the value of the size parameter to minus one. This is below the minimum
size which results in a control-flow path that does not execute the faulty location. This
ensures that the state of the Stack class is correct. The outcome of test execution is that

an exception is thrown, as expected. The test passes and the fault is not exposed.

Test 2

Test 2 sets the value of the size parameter to zero. This is not below the minimum size
which results in a control-flow path that does execute the faulty location.

In the test, the size attribute is initialised to zero. Because the input to the setSize
method is also zero, the fault does not cause the state of the size attribute to become
incorrect. This is illustrated where the value of the size attribute is presented after the
intended and faulty version of location 3 is executed. This shows that when the fault is
absent or present the value of size attribute is zero after location 3 is executed.

The value of the size parameter does not exceed the maximum size and as such
returns after location 4 is executed. The output of the test execution is zero which is as

expected. The outcome is that the test passes and the fault is not exposed.

Test 3

Test 3 sets the value of the size parameter to eleven. This is above the minimum size
which results in a control-flow path that executes the faulty location.

The fault causes the parameter value of eleven to not be assigned to the size attribute.
This causes the state of the size attribute to become incorrect directly after the faulty
location is executed. This is illustrated in the figure where the value of the size attribute
is presented after the intended and faulty version of location 3 is executed. This shows
that when the fault is absent value of the size attribute is eleven after location 3 is
executed and when it is present the value of the size attribute is zero.

The value of the size parameter does exceed the maximum size and as such location

5 is executed. Location 5 resets the size attribute to a value of 5, masking the fault and
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subsequent incorrect value of the size attribute. The output of the tests execution is 5

which is as expected, the outcome of which is test passing.

Test 4

Test 4 sets the value of the size parameter to one. This is above the minimum size which
results in a control-flow path that executes the faulty location.

The fault causes the parameter value of one to not to be assigned to the size attribute.
This causes the state of the size attribute to become incorrect directly after the faulty
location is executed. This is illustrated in Figure 3.3 where the value of the size attribute
is presented after the intended and faulty version of location 3 is executed. This shows
that when the fault is absent, the value of the size attribute is one after location 3 is
executed and when it is present, the value of the size attribute is zero.

The value of the size parameter does not exceed the maximum size and returns after
location 4 is executed. The output value of the tests execution is zero, which differs from

the expected value of one. This causes the test to fail.

3.1.3 Model

This simple example is used to illustrate the model for fault exposure which was previously
identified in the Relay [128] and later in the PIE models [148, 146, 1] of testability. This
model specifies that for a fault to be exposed through testing, a test input must cause
the location at which the fault occurs to be executed. The execution of the fault must
cause the state after the location’s execution to become infected. State is infected when it
deviates from what it would be at this point of execution in the intended implementation.
This infected state must then be propagated into the output. If the test’s output deviates
from what it is expected to be the test fails exposing the fault.

Table 3.1 illustrates the model by showing whether tests 1 to 4 executed the location
containing the fault; caused the value of the size attribute of the Stack class to become
infected; caused the infected state to become propagated; and whether or not the test
exposed the fault through test failure.

Test 1 does not execute the location at which the fault occurs and as such, cannot
cause infection or propagation, resulting in a pass. Although Test 2 does cause execution,
it does not cause the state of the Stack class to become infected. This is because value
of the size attribute is the same as when the fault does not occur. As there is no state
infection caused by Test 2, the infection cannot be propagated and the test does not expose
the fault. In contrast, Test 3 does cause execution and infection, but not propagation and
as such, does not expose the fault. Test 4 does expose the fault because it is the only test
to cause execution of the fault, infection of the state directly after the fault is executed

and propagation of this infected state to the tests output.
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Test | Execcution | Infection | Propagation | Exposure
1 o o o no
2 . o o no
3 . . o no
4 . . . yes

Table 3.1: Requirements for Fault Exposure

This model is used to demonstrate the conditions that result in the exposure of a fault
through testing. The model can be used to explain the reasons why faults are exposed.
For example, a rate of execution of locations in an implementation containing faults can be
used to explain a high rate of fault exposure for the implementation. This model is useful

when analysing the causes of observed rates of fault exposure for an implementation.

3.2 Factors of Testability

There are three factors that have an effect on testability: fault type, tests and implemen-
tation [76]. In this section, an extension of the Stack class, used in the previous section,

is used to illustrate each of these factors.

3.2.1 Fault Type

The accidental deletion of the this keyword is an instance of a type of fault observed in
practice. In the example, the fault type is the accidental deletion of the this keyword.
The instance of this type of fault is its occurrence in the setSize method of the Stack
class.

Listing 3.3 extends the number of faults identified in the setSize method of the
Stack class in Listing 3.1. In this listing, there are five faults identified in the setSize
method in comments. These faults are of two different types: insertion and deletion of the
this keyword. The same four tests (1 - 4) illustrated in Listing 3.2 are executed against
implementations of the Stack class each containing one of the five identified faults.

The outcomes of applying each test to each faulty version of the Stack are illustrated
in Figure 3.4. Table 3.2 summarises the outcomes illustrated in Figure 3.4 by identifying
the instances of each fault type and the rate of exposure for these fault instances.

The first row of the table shows that the faults where the programmer inserts a this
keyword in error are fully exposed. The second row shows that 0.67 of the faults where
the programmer deletes a this keyword in error are exposed. This shows that in this
trivial example, faults of the insertion type of fault is easier to expose than faults of the
deletion type.

The third and final row shows that when the faults of both types are considered the

rate of exposure is 0.8. These different rates of exposure for the different fault types show
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public class Stack {
int size = 0;
static final int max = 5;
public int getSize(){
return this.size;
}
public void setSize(int size) {
if (size >= 0){ // if(this.size >= 0) fault 1 insertion
this.size=size; // size=size fault 2 deletion
// this.size=this.size fault 3 insertion
if (size>Stack.max){ // this.size> fault 4 insertion
this.size=Stack.max; size= // fault 5 deletion
}
} else {
throw new IllegalArgumentException();
}
}
}

Listing 3.3: This Insertion and Deletion Faults

both

A
this insertion N

r \
N this deletion

Faultl Fault2 Fault3d Fault4 Faults

Fault1l Fault2 Fault3 Faultd4 Faults

Fault 1 Fault2 Fault3 Faultd4 FaultsS

Fault 1 Fault2 Fault3 Faultd Faults

Figure 3.4: Fault Factors

Fault Type | Faults | Exposure
insertion 1,3 3
deletion 24,5 %

both 1-5 g

Table 3.2: Effects of Differences in Fault Factor

that fault type is a factor that influences the rate of exposure in an implementation.

3.2.2 Tests

The tests illustrated in Listing 3.2 and described in Section 3.1 each execute the setSize
method of the Stack class with an input selected from the domain of all possible inputs
to this method. The full set of all possible inputs is the set of all integer values. The
inputs are selected from this set to exercise each control-flow path through the method.

Figure 3.3 shows the control-flow paths through the setSize method executed by each
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[00]
3 ) Fault1 Fault2 Fault3 Fault4 Faults
=19
ﬁ ‘(/)_ g Faultl Fault2 Fault3 Fault4 Faults
= 78 ")
=} '13 P
Q ] Fault2 Fault3 Faultd4 Faults
7] -
2

Fault1 Fault2 Fault3 Faultd Faults

Figure 3.5: Test Factor

Tests | Tests | Exposure
N (30 O |
B 1-3 5
C 1-47]. ‘%

Table 3.3: Effects of Differences in Test Factor

test. Figure 3.5 illustrates the outcome of applying these tests to each faulty version of
the Stack class. To illustrate the effect of using different sets of tests on the rate of fault
exposure, the rate of exposure of three sets of tests A, B and C are compared. Sets A and
B are subsets of the set of all four tests illustrated in Listing 3.2, which is set C.

The outcomes illustrated in Figure 3.5 are summarised Table 3.3. This summary
identifies the tests in each set and their associated rates of exposure. The Tests column of
this table shows that set A is comprised of tests 2 - 4, set B is comprised of tests 1- 3 and
set C is comprised of tests 1- 4. The Exposure column shows the rate of fault exposure for
each set. It shows that set A exposes 0.6 of the faults, set B exposes .4 of faults and set
C exposes 0.8 of faults. These results imply that set C, containing the full of four tests,
expose more faults than sets B or C. This means that set C maximises the testability of
the Stack class.

These different rates of exposure for each set show that the tests selected to assert
correctness of the implementation influence the rate of exposure. This identifies the tests

used to assert correctness as a factor of testability.

3.2.3 Implementation

The implementation of the Stack class illustrated in Listing 3.3 is one of many possible
implementations of this class. For example, the pre- and post-conditions which identify
maximum and minimum sizes for the stack, defined in the setSize method, could be
removed as illustrated in Listing 3.5 or re-implemented using AspectJ as illustrated in
Listing 3.4.

In the AOP re-implementation, a new implementation of the stack is created that
provides precisely the same behaviour as the original. The only difference is that in the

AspectJ implementation the pre- and post-conditions are implemented in around advice.
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TESTABILITY

public class Stack {
int size = 0;
static final int max = 5;
public int getSize(){
return this.size;
}
public void setSize(int size) {
this.size=size; // size=size fault 2 deletion
// this.size=this.size fault 3 insertion
}
t
public privileged aspect StackAspectPrePost {
void around(int size, impl2.Stack stack)
execution(void impl2.Stack.setSize(int))
&% args(size) && target(stack){
if (size >= 0){
proceed(size, stack);
if(size > Stack.max)

{
stack.size = Stack.max;
}
} else {
throw new IllegalArgumentException();
}
}

)

Listing 3.4: AspectJ Refactored

public class Stack {
int size = 0;
public int getSize (){
return this.size;
}
public void setSize(int size) {

if(size >= 0){ // if(this.size >= 0) fault 1 insertion
this.size=size; // size=size fault 2 deletion

// this.size=this.size fault 3 insertion

} else {
throw new IllegalArgumentException();

}

Listing 3.5: Condition Removal Refactored

The around advice is executed in the place of the setSize method. The pre- and post-

conditions are executed relative to a call to proceed. This proceed call executes the

setSize implementation.

Moving the implementation of these conditions into advice means that faults in which

this is inserted or deleted are no longer relevant because the this keyword cannot be used

in aspects. Of course moving the implementation of the conditions into advice means that

new AspectJ specific faults can occur. These types of faults and their effects on the rate
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Fault1 Fault2 Fault3 Faultd4 Faults

2 Faultl Fault2 Fault3 Faultd Faults
(=]
y 3
o Fault1 Fault2 Fault3 Fault4 Faults
Fault1 Fault2 Fault3 Faultd Faults
r Al
IIMI'I' Faultl | Fault2 Fault3
Test 2 Fault2 Fault3 Faultl | Foult2 Fault3

Test 3 Fault 2 Fault3
Test4 IaMIIl

Figure 3.6: Implementation Factors

HE

Fault2 Fault3

Fault 1

Implementation Tests | Faults | Exposure
Original 1-5 1-5 3
AOP Refactor | 1-4 | 23 2
Removal Refactor 1,2,4 1,23 T

Table 3.4: Effects of Differences in Implementation Factor

of fault exposure are presented later in Section 4.2.2. For the sake of illustration purposes
only, these types of faults are not considered in this demonstrative example.

Figure 3.6 illustrates the outcome of executing the tests that are relevant for each
implementation against the faults contained in each implementation. This figure and Ta-
ble 3.4 show that the rate of exposure for the original implementation is 0.8, 1 for the
AspectJ refactored implementation and 1 for the implementation in which the pre- and
post-conditions are removed. The differences in these rates show that different implemen-

tations do have an effect on fault exposure.

3.2.4 Factors

Table 3.6 presents an overview of examples used to identify and illustrate the three factors
of testability: fault type, test and implementation. In the left most column, named Factor,
the factor being illustrated is identified. In the next three columns (Fault Type, Tests
and Implementation) illustrate the levels of each factor used to derive the fault exposure
rate, in the right most column.

The levels of each factor are identified in Table 3.5. The differences in each factor are
used to demonstrate the influence fault type, test and implementation factors have on the
rate of fault exposure. For example, three different sets or levels of tests (1-3, 2-4 and
1-4) are used to demonstrate the influence of the test factor on testability.

The effects of the different levels in one factor can be isolated by fixing the other two
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[ Factor ” Levels —|
this insertion
fault Type this deletion
both
1-3
tests 2-4
1-4
Original
AOP

Removal

Implementation

Table 3.5: Factor Levels

[ Factor " Fault Type | Tests | lmplcmcntationJ Exposed I

this insertion o 1

Sauly Lype this deletion L=4 Qriginal 0.67
both 0.8

2-4 0.6

test both 1-3 Original 0.4

1-4 0.8

Original 0.8
implementation Roks e AOP 1
Removal 1

Table 3.6: Overview

factors when deriving the rate of fault exposure. This pattern is important because it is
the basis for the designs used in all empirical studies of testability. The pattern is also
used in this thesis.

In this example, there are three instance of factor fixing. This first is where the
different levels of the test factor are isolated by fixing the levels of the implementation
and fault type factors. In this case, the original level of the implementation factor and
the both level of fault type factor are fixed for the derivation of the fault exposure rate at
each level of the test factor.

The second example of this pattern is illustrated by looking at the fault type factor in
the Table 3.6. The different levels of the fault type factor are isolated by fixing the levels of
the implementation and test factors. In this case, the original level of the implementation
factor and the 1-4 level of the test factor are fixed for the derivation of the fault exposure
rate at each level of the fault type factor.

The third and final example of this pattern is illustrated by looking at the implemen-
tation factor in Table 3.6. The different levels of the implementation factor are isolated
by fixing the levels of the fault type and test factors. In this case, the both level of the
fault type factor and the 1-4 level of the test factor are fixed for the derivation of the fault
exposure rate at each level of the fault type factor.

The Stack class example shows that different levels of each factor have an effect
on the rate of fault exposure and consequently testability. In each case, the effects of

different levels in one factor are isolated by fixing the other two factors. This pattern
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Figure 3.7: Designs of Testability Studies

is an important observation that is used as the foundation for the design of the study

presented in Chapter 4.

3.3 Comparative Studies of Testability

There are a number of empirical studies that compare the effects of differences in the
three factors of testability: fault type, test and implementation. This section shows that
these studies do not provide evidence of the effects of AOP and OOP on testability and

illustrates the use of the factor fixing pattern.

3.3.1 Fault Type

There are relatively few studies that compare the effects of different fault types on testa-
bility. However, the rates of exposure for faults of different types have been compared
(112, 111]. In these studies, the rates of exposure for faults of different types are com-
pared. The goal of these studies is to identify types of faults that have a significant effect
on testability, so that the implementation or testing process can be streamlined. For ex-
ample, the implementation or testing processes can be altered to ensure specific types of
fault are easier to expose [60].

Although much larger in scale, these studies are similar in design to the trivial example
presented in Section 3.2.1, where the rates of exposure for three different sets of fault types
are compared. The studies ensure that only the effects of the different fault type sets are
compared the same implementation and test set are used to calculate each rate. Using
the same implementation and test set ensures that these factors are fixed.

The left hand side of figure 3.7 illustrates the design of studies that compare the effects
of different fault types on testability. These studies are designed to isolate the effects of
the fault type on testability. This is done by fixing the test and implementation factors.
This ensures that the differences in the resulting rates are caused only by differences in

test set.
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3.3.2 Test

The majority of the comparative studies of testability are based on comparing different
test selection criteria [24, 132, 19]. Test selection criteria are rules to guide the selection
of test sets, to maximise the rate of fault exposure. The criteria compared in these studies

are typically based on control- and data-flow analysis [59, 58, 72, 7].

Control-flow analysis, identifies the paths of execution through an implementation.
Data-flow analysis is an extension of control flow analysis in which the flows of data along
the paths of execution are identified. Test selection criteria based on these flow analyses
identify the paths through the implementation that need to be exercised by a test set for

it to be considered adequately tested.

In these studies, sets of test are selected to satisfy each criterion. The number of tests
selected to satisfy each criterion is used as an indicator of the cost of testing with that
criterion. The rate of faults exposed when the selected tests are executed against faulty
implementations is used as a measure of test efficiency |59, 58, 72, 7|. These measures are
then used together to quantify the cost-benefit effects of different criteria on testability.

The middle of Figure 3.7 illustrates the typical design of these studies. These studies
are designed to isolate the effects of the test sets selected to satisfy each criteria. This is
done by fixing the fault type and implementation factors. The use of this pattern ensures
that the differences in the resulting rates are caused only by the different tests selected to

satisfy each criterion.

3.3.3 Implementation

There is only one study that compares the effects of using different implementation ap-
proaches on testability. In this empirical study, Voas et al. [147] compare the effects of

Object Oriented and Procedural Programming (OOP and PP) on testability.

This is done by developing OOP and PP implementations of a program. Tests, equally
applicable to both implementations, are executed against both implementations to expose
faults. The result of this study is a comparison of the rate of exposure for both imple-
mentations. It showed that the information hiding associated with OOP had the effect of

reducing testability.

The right hand section of Figure 3.7 illustrates the design of this study. It is designed
to isolate the effects of the implementation on the rate of fault exposure. This is done by
fixing the test set and fault type factors. This ensures that the differences in the resulting

rates are caused only by differences between OOP and PP approaches to implementation.



3.4. CHAPTER SUMMARY

3.3.4 Evidential Gap

The majority of comparative studies on testability are focused on identifying test selection
criteria that yield the best cost-benefit balance. The fault type factor is of some interest
and there is very little evidence of the effects of different implementation approaches on
testability. The only study that compares the effects of using different implementation
approaches on testability compares the effects of OOP and PP on testability and provides

no evidence of comparative effect of AOP and OOP.

3.4 Chapter Summary

This chapter has described a model of fault exposure, it has identified the factors in that
model that have an effect on testability and reviews the studies on the effects of differences
in these factors on testability. The model and factors and factor fixing pattern provide
a foundation for describing the measurement, design and analysis approaches used in the

study, in the next chapter.
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Chapter 4

Study Methodology

This thesis gathers empirical evidence of the comparative effect of AOP and OOP on
testability through a study. This study is conducted in two phases. In the first phase,
illustrated in Figure 4.1, the testability of equivalent AOP and OOP implementations is
measured for each version of the program. AOP and OOP implementations are equivalent
if they differ only in the approach used for their development. The results of this phase
are pairs of AOP and OOP implementation testability measures, one pair for each version
of the program, as illustrated in Figure 4.2. These measures are analysed in the second
phase, illustrated in Figure 4.3. This analysis quantifies the comparative effects of AOP
and OOP on testability.

The graph presented in Figure 4.4 illustrates the result of the measurement and anal-
ysis phases for the Stack class example. The lines in this graph represent the generalised
effects of AOP and OOP on testability over maintenance activities. The difference be-
tween these lines is the comparative effect of AOP and OOP on testability for the trivial
Stack class example.

The first and second sections of this chapter describe the methodology followed in the
measurement phase and the third section describes methodology followed in the analysis
phase. The first section describes the approach used to measure testability. The second
section describes how this approach is applied to ensure the resulting pairs of measures iso-
late the combined effects the implementation and maintenance factors. The third section

describes how the comparative effects of AOP and OOP are analysed and quantified.

4.1 Testability Measurement

In the measurement phase of the study, illustrated in Figure 4.1, the testability of the
AOP and OOP implementations are measured. There are two approaches to measuring
the testability of an implementation. The selection of the approach that best meets defined

selection criteria is described and the selected approach is detailed.
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4.1.1 Measurement Approach Selection

The review of the empirical studies of testability is presented in Section 3.3 illustrate
there are two main approaches to measuring testability. The first measurement approach
uses mutation analysis to measure the rate of fault exposure in an implementation through
testing. The second approach measures the number of tests that are needed to adequately
test an implementation. Here, these approaches are compared against the testability

selection criterion.

Selection Criterion

Testability is the ease with which faults can be exposed through testing [148]. Measures
of testability are approximations of this ease [121, 24]. The goal is to select the approach
that provides the most accurate approximation. This is because the more accurate the
measures of testability are, the more accurate the comparison of the effects of AOP and
OOP on testability will be.

The rate at which faults in an implementation are exposed through testing is used as a

measure of testability [59, 58, 72, 7, 85, 150, 117, 147]. Mutation analysis [45, 31] derives
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Figure 4.5: Measuring testability as the rate of fault exposure

this measure using faulty versions of the implementation. In each faulty implementation,
a fault is introduced at a location. A location is a line of the implementation’s source
code. A set of tests is executed against each of these faulty implementations. Test
failure indicates fault exposure. Non-failure of a test indicates that fault contained in the
implementation is not exposed.

The rate of fault exposure can be measured in two ways. The first is to identify the
proportion of faults exposed. The second is to identify the proportion of fails over the
total number of test executions. In both cases, the higher the proportion is, the easier it
is to expose faults. The top part of Figure 4.5 illustrates this approach. It presents the
outcomes of executing the four tests, shown in Listing 3.2, against five faulty implemen-
tations of the setSize method of the Stack class. Each of these faulty implementations
contains one of the five faults illustrated in Listing 3.3.

In this example, the rate of fault exposure can be measured as the number of faults
exposed taken as a proportion of the total number of faults in the implementation, which
is %. The numerator of 4 is obtained by counting the number of faults exposed in Figure
4.5. The denominator of 5 is the number of faults in Figure 4.5. Fault exposure can also
be measured as a proportion of the total number of faults in the implementation, which
is 240. The denominator of 20 is the total number of test-mutant executions illustrated in
Figure 4.5.

Both measures reflect the ease with which faults are exposed through testing. Higher
proportions suggest that faults in the implementation are easier to expose. In a context
in which the testability of implementations is compared the latter measure is preferred

because it provides a more detailed measure of fault exposure.

Number of Tests

The second approach to testability measurement is based on counting the number of tests
needed to adequately test an implementation [59, 58, 72, 7, 85, 150, 117]. The key to
deriving this measure is establishing when a test set is adequate.

Adequacy is determined by identifying the paths of execution through the implemen-

tation that must be exercised through testing. These paths are typically identified using

57



CHAPTER 4. STUDY METHODOLOGY

Part A l Part B -

P O e I O 0 ¢
"y 1

; ‘1\ ] i v

i —_.(z') If(size>=0) E

: n'I\ :

: s ) thissize=size |

| c |

! ,L If(size > Stack.max)

' e 1

' ~ |

] 1) '

1 k2 . L o '

L | () PisizetSiackmax ¢,

! J

¥ X ;
1 _( 0 throw new lllegalStateException()
S

Figure 4.6: Measuring Testability as the Number of Tests Needed for Fault Exposure

control- or data-flow analysis. In these analyses, the source code of the application is
analysed and a graph representing the paths through the implementation is created. A
test set is considered adequate if it exercises all of the unique and complete paths through

this graph.

Part A of Figure 4.6 illustrates a control-flow graph representation of the source code
of the setSize method. Part B identifies all three of the unique and complete paths
through this graph. For this method to be adequately tested, a set of tests that exercise
all of these paths is required. Table 4.1 identifies which of the paths, identified in part
B of Figure 4.6, are executed by the test set (illustrated in Listing 3.2). This test set is
considered adequate because all of the paths are exercised by at least one test. In this

case, the measure of testability is four.

This approach is based on the assumption that if a set of tests is adequate, then the
faults in an implementation will be exposed. This assumption is based on the observa-
tion, demonstrated in Section 3.1, that execution is the primary requirement for fault
exposure. However, Section 3.1 also demonstrates that although execution is the primary
requirement, fault exposure also requires state infection and propagation of an infected

state.

Figure 4.5 shows the outcome of executing the test set, identified in Table 4.1, against
faulty versions of setSize method. Although Table 4.1 shows that these tests are con-
sidered adequate, this figure shows that only g of the faults contained in these faulty
implementations are exposed. This demonstrates the weakness of the correlation between
the number of tests in a test set and fault exposure. The weakness of this correlation
has been documented through empirical studies [72, 7|. This weakness suggests that the
number of tests needed to adequately test an implementation is not an accurate measure

of the ease with which faults in an implementation are exposed through testing.
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Table 4.1: Test Path Execution

Selection

The descriptions of the two approaches to measuring testability indicate that the rate
of fault exposure, derived using mutation analysis, is a more accurate approximation of
the ease with which faults are exposed through testing. The mutation analysis approach
provides a measure of testability of %, which is accurate. The number of tests required
to exposed is 4 based on the approach based on excessing control-flow paths. This is
inaccurate because this number of tests does not result in full fault exposure. Mutation
analysis is selected because analysis of the accurate measures of testability it provides

result in an accurate comparison of the effects of AOP and OOP on testability.

4.1.2 Mutation Analysis

In Mutation Analysis (MA) [45], the rate of fault exposure of an implementation is derived
by executing a set of tests against mutants of the implementation. In this subsection,
mutants are described, the three phases of MA: mutant generation, location execution
and fault exposure are outlined, and each phase is described in detail through simple

examples.

Mutants

A mutant is version of an implementation that contains a fault. The fault contained in a
mutant is a small deviation from the intended implementation. Mutants are created by
generating a copy of the implementation and introducing a deviation into the copy.

Two examples of the deviations used to generate mutants are presented in Listing
4.1. This listing shows the implementation of the Stack class. Lines 9 and 11 of the
source show two deviations from the intended program in which the this keyword is
deleted. Mutants are created by making two copies of the Stack class implementation
and introducing one of these deviations into each copy.

As will be illustrated in Chapter 5, there are different types of deviation. The type
illustrated in Listing 4.1 is where the this keyword is deleted. This type of deviation is
representative of the type of fault that occurs when a developer forgets to use the this
keyword where its use is intended. Each deviation in which the this keyword is deleted

is representative of a fault of this type.
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1| public class Stack {

2] 4nt size = 0

3|l static f£inal int max = 5;

4] public int getSize (){

5 return this.size;

6] 1}

7| public void setSize(int size) {

8 if(size >= 0){

9 this.size=size;//deviation size= "this" is deleted
10 if(size > Stack.max){

11 this.size = Stack.max;//deviation size= "this" is deleted
12 }

13 } else {

14 throw new IllegalArgumentException();

15 }

163

171 }

Listing 4.1: this keyword deletion deviants

Overview of MA process

An overview of the MA process is presented in Figure 4.7. This provides a high level view
of the inputs and outputs of the three phases of MA.

The first phase of MA is mutant generation. In this phase, mutants of an imple-
mentation are generated. An implementation is taken as input. The implementation is
analysed to identify locations at which deviations can be created and mutants generated.
The outputs of this phase are the generated mutants and the locations at which they were
generated.

The second phase of MA is location execution. The goal of this phase is to reduce
the number of mutants that need to be executed to improve the efficiency of applying
mutation analysis. The inputs to this phase are a test set and the locations identified in
the mutant generation phase and the implementation. In this phase, each test is executed
against the implementation to identify which of the locations are executed. This enables
the identification of mutants that contain faults at locations that are not executed by each
test. If the location at which a fault is contained is not executed then the fault cannot
be exposed. The output of this phase is a list of mutants generated at locations that are
executed by each test.

Fault exposure is the third and final phase of MA. The inputs to this phase are the
test set used in the location execution phase and the list of mutants generated at locations
that are executed by each test in that set. In this phase, tests are executed against the
mutants generated at the executed locations. The output of this phase is the pass and
fail outcomes from executing tests against mutants. A fail outcome is indicative of fault

exposure.
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Mutant Generation

Mutant generation is the first phase of MA. In this phase, mutants are generated by
analysing the source code of an implementation to identify locations at which to apply
mutation operators. Mutation operators create deviations at these locations and these
deviations are used to generate mutants. Fach mutation operator is used to create a
specific type of deviation or fault. As will be demonstrated later in Section 5.2, there are
mutation operators defined for different languages. The mutation operators defined for a
specific language are used to generate the types of faults that occur in practice when that
language is used. The output of this phase is a set of mutants of the implementation that

contain faults at specific locations.

Mutant Generation Example

The process of mutant generation is demonstrated using the Stack class example. In this
example, two Java mutation operators |98, the Java this Deletion (JTD) and Java this
Insertion (JTI) operators are applied to the source code of the Stack class.

The JTD operator is applicable to locations which contain the this keyword. When
applied to these locations, the operator creates deviations by deleting the this keyword.

The result of applying the JTD operator to the Stack class is illustrated in the comments
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public class Stack {
int size = 0;
static final int max = 5;
public int getSize(){
return this.size;
}
public void setSize(int size) {
if (size >= 0){//deviation this.size >= "this" is inserted
this.size=size;//deviation =this.size "this" is inserted
if (size>Stack.max){//deviation this.size> "this" is inserted
this.size=Stack.max;
}
} else {
throw new IllegalArgumentException();
}
}
}

Listing 4.2: this keyword insertion deviants

at lines 9 and 11 in Listing 4.1. Each of these locations contain a reference to the this
keyword. In each deviation the keyword is deleted.

The JTI operator is applicable to locations which contain references to method pa-
rameters that have the same name as a method attribute. An example of such a location
occurs at line 8 of Listing 4.2. At this line, the size parameter of the setSize method
is referenced. There is also an attribute in the Stack with the name size. By default,
a reference to size, is a reference to the parameter. To reference the size attribute can
only be made by prefixing the reference with the this keyword.

When applied to these locations, the operator creates deviations by inserting the this
keyword as a prefix to parameter references. The result of applying the JTI operator to
the Stack class is illustrated in the comments at lines 8, 9 and 10 in Listing 4.2. At each
of these locations, the operator creates deviations in which the this keyword is inserted.

The output of the mutant generation phase, after being applied to the Stack class
example, is illustrated in Figure 4.8. This shows that five mutants are generated at four

locations at lines 8, 9, 10 and 11 by the JTD and JTI operators.

Location Execution

The second phase of MA is location execution. The goal of this phase is to reduce the
number of mutants that need to be executed by each test in the fault exposure phase.
In the fault exposure phase, tests are executed against mutants. The fault exposure
phase can be computationally expensive [31, 116, 114]. This is because every test needs
to be executed against every mutant. If there are a large number of tests and/or mu-
tants, then the number of test-mutant executions is large. A large number of test-mutant

executions requires a large amount of computational resources, which may be infeasible.
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The need for a large amount of computational resources can be reduced by reducing the
number of test-mutant executions in the fault exposure phase. The goal of the test-mutant
executions in the fault exposure phase is to identify the outcome of each test-mutant
execution. This reduction is made possible by identifying the mutants that contain faults
at locations that are not executed by tests. Section 3.1 demonstrates that the execution
of the location at which the fault occurs is the primary requirement for fault execution. If
a test does not execute the location at which a fault occurs, then the test cannot expose
the fault.

In this phase of MA, the locations executed by each test are identified by executing
each test against the original version of the implementation. By identifying the locations
executed by each test, the locations that are not executed are determined. The mutants
at the locations that are not executed by a test, do not need to be executed to identify the
outcome as it is known to be a pass. The output of this phase of MA is a reduction in the
number of mutants that must be executed by each test. For each test, only the mutants
that contain faults at locations that are executed by the test need to be executed.

Location Execution Example

The process of identifying the locations executed by each test is demonstrated using the
Stack class example. This demonstration focuses on Test 1 from Listing 3.2. In this
phase, this test is executed against the original version of the Stack class to identify
which of the locations, identified in Figure 4.8, are executed by the test.

In Figure 4.9, the path of execution exercised by ‘lest 1 through the setSize method
of the Stack class is highlighted in red. This figure identifies the relevant locations! and
shows that Test I executes location 8. Because locations 9, 10 and 11 are not executed

by ‘Test 1, the outcome of executing ‘lest 1 against mutants that contain faults at these

!These locations are identified in the mutant generation phase
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locations is a pass, indicating that these faults are not exposed.

Based on this, the number of mutants that need to be executed in the fault exposure
phase of MA is reduced from five to one. Figure 4.10 presents the output of this phase
for the four tests presented in Listing 3.2. The figure identifies for each test, the mutants

that contain faults at locations that will be exercised by the test.

Fault Exposure

The third and final phase of MA is fault exposure. In this phase, each test is executed
against the mutants that contain faults, at locations that are executed by the test. When
the execution of a test against a mutant results in failure, the fault is exposed. When
the execution of a test against a mutant results in a pass, the fault is not exposed.
This model of fault exposure is illustrated in Part A of Figure 4.12. This shows the

causes of the observed outcomes. If a test does not execute the fault contained in the
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mutant, then a not exe outcome results. If a test does execute the fault contained in
the mutant, then the state directly after the execution may become infected and this
infected state can be propagated into the output of the mutants execution. If infection
and propagation occurs, then this results in a fail outcome. If not, then a pass outcome

results.

Figure 4.11 illustrates the outcomes of executing each of the four tests, presented
in Listing 3.2, against the mutants of the Stack class identified in Figure 4.10. These
outcomes are the basis for calculating the rate of fault exposure. To calculate the rate,

the number of not exe, pass and fail outcomes are counted. Based on these counts, the

fll il
fail+pass+notexe”

mutant execution, illustrated in Figure 4.11 are summarised in Part B of Figure 4.12,

rate of fault exposure is calculated as rate = The outcomes of test-

which shows that there are 6 not exe outcomes for test-mutant execution. There are 10

pass and 4 fail outcomes. Based on these counts, the rate of fault exposure is calculated
4 4

to be 55 = 777075 as illustrated in Part C of Figure 4.12.

Part C of Figure 4.12 indicates that the rate of fault exposure is caused by two sub-
rates. The first is the rate of fault execution. As illustrated, in the figure this rate is
» e 17 Py fail+pass 1_4.__ 14 A S . . .
calculated as rate = ————J—,.”,,ﬂw“ﬂm",” Or 55 = 1056 Lhe second is the rate of infection

fail 4 4

and propagation. As illustrated, this rate is calculated as rate = Taipen O @ = T

The effects of these sub-rates on the rate of fault exposure is illustrated in Part D of
Figure 4.12. The relationship between the rates of Fault eXecution (FX) and Infection and
Propagation (IP) and the rate of Fault Exposure (FE) is multiplicative FE = FX X I P.
This is demonstrated by the rates derived from the Stack example, % = % X ]4—4. The
rate of fault execution represents the proportion of mutants that are executed. If this
rate is high, then the number of potential fail outcomes is high. The rate of infection and
propagation represents proportion of the executed mutants that result in a fail outcome.
If this rate is high, then the number actual fail outcomes is high, which ensures a high

rate fault exposure.

4.1.3 Summary

Figure 4.1 shows that in the first phase of the study, the testability of implementations
are measured. In this section, mutation analysis was selected as the approach used to
measure the testability of implementations. It is selected because it results in a measure
that is more reflective of the ease of fault exposure than other approaches. The mutation

analysis approach was also described in detail.
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4.2 Gathering Measures of Testability

In the measurement phase of the study, illustrated in Figure 4.1, mutation analysis (MA)
is applied to AOP and OOP implementations of different versions of a program. The goal
of this phase is to gather testability measures from these implementations that can be
analysed to identify the comparative effect of AOP and OOP on testability over mainte-
nance activities, as illustrated in Figure 4.4.

To perform this analysis requires pairs of AOP and OOP measures, one pair for each
version of the program. Each measure must represent the combined effects of two factors:
implementation and maintenance. Section 2.10, identifies an approach used in studies,
similar to this study, that compare the effects of AOP and OOP on the other indicators
of maintainability that result in measures that meet these requirements.

One challenge to overcome in following this approach was the integration of mutation
analysis. Typically, when this approach is applied result in measures that are solely
representative of the combined effects of two factors: implementation and maintenance.
The measure of testability, derived using mutation analysis, introduces two other factors,
tests and mutants. To overcome this, an extension is introduced, as outlined in Section
3.2.4, to fix these factors over measurements. Fixing these factors for each measurement,
ensures that the resulting measures are solely representative of the combined effects of

two factors: implementation and maintenance.

4.2.1 Following the Common Approach

Section 2.10, outlines an approach commonly used in similar studies, that compare the
effects of AOP and OOP on the other indicators of maintainability, that result in measures
that are solely representative of the combined effects of two factors: implementation and
maintenance. The foundation of this approach is implementation and maintenance

equivalence, which are explained and illustrated through the Stack class example.

Implementation and Maintenance Equivalence

In the common approach, illustrated in Figure 4.13, maintenance activities are cumula-
tively applied to AOP and OOP implementations of a program. The initial AOP and
OOP implementations of a program are equivalent in that they differ only in the ap-
proach used for their development. Equivalence is assured by fixing all other factors that
can cause the implementations to differ. For example, the implementations are developed
to the same level of expertise, are based on the same style of programming, satisfy the
same requirements, expose the same interface and produce the same outputs for a given
input etc.

The same maintenance activities are cumulatively applied to both AOP and OOP
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implementations. After each maintenance activity is applied to both implementation,
a new version of these implementations result. The new versions of these implementa-
tions are equivalent because the maintenance activity is applied to both implementations.
This means that the respective versions of the AOP and OOP implementations are also
equivalent. When all maintenance activities are applied, the only difference between each

respective version of the AOP and OOP implementations is a maintenance activity.

Stack Example

To demonstrate equivalence, Java and AspectJ implementations of the Stack class are
illustrated in Listings 4.3 and 4.4. Both implementations are developed by a progammer
proficient in both Java and AspectJ, are based on the same style of programming, satisfy
the same requirements, expose the same interface and produce the same outputs for a given
input. Specifically, both implement a setSize in which the pre- and post-conditions are
defined that identify minimum and maximum sizes for the Stack. The only difference
between these implementations is that Listing 4.3 is implemented in Java and Listing 4.4
is implemented in AspectJ. They are equivalent in that they differ only in the approach
used in their development.

As illustrated in Figure 4.15, one maintenance activity is then applied to both im-
plementations of the Stack class. In this maintenance activity, the post-condition that
identifies a maximum and size for the Stack is removed. The results of applying this
maintenance activity are illustrated in Listings 4.5 and 4.6. The only difference between
Listings 4.3 and 4.4 and Listings 4.5 and 4.6 is that the post-condition is removed. This
means that the Java implementations for the Stack in Listings 4.3 and 4.4 are mainte-

nance equivalent, in that the only difference between these implementations is the effect
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1| public class Stack {

2] int size = 0;

3| static final int max = 5;

4| public int getSize(){...}

5| public void setSize(int size) {
6 if (size >= 0){

7 this.size=size;

8 if (size>Stack.max){

9 this.size=Stack.max;

10 }

11 } else {
12 throw new IllegalArgumentException();
13 }

14 }
15] }

Listing 4.3: Java Stack - Initial Implementation

1| public class Stack {

2] int size = 0;

3] static final int max = 5;

4| public int getSize(){...}

5| public void setSize(int size) {
6 this.size=size;

v 1

8[}

9| public privileged aspect StackAspectPrePost {
10| void around(int size, impl2.Stack stack)

11 execution(void impl2.Stack.setSize(int))

12 &% args(size) && target(stack){

13 if (size >= 0){

14 proceed(size, stack);

15 if (size > Stack.max){

16 stack.size = Stack.pmax;

17 }

18 } else {

19 throw new IllegalArgumentException();
20 }

21| }

22| }

Listing 4.4: AspectJ Stack - Initial Implementation

public class Stack {
int size = 0;
public int getSize(){...}
public void setSize(int size) {

if (size >= 0){
this.size=size;

} else {
throw new IllegalArgumentException();

W N =

=

¥
}
}

= O oI U,

—

Listing 4.5: Java Stack - Maximum Condition Removed
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public class Stack {
int size = 0;
public int getSize(){...}
public void setSize(int size) {
this.size=size;
}
}
public privileged aspect StackAspectPre {
void around(int size, impl2.Stack stack)
execution(void impl2.Stack.setSize(int))
&& args(size) && target (stack){
if (size >= 0){
proceed(size, stack);
} else {
throw new IllegalArgumentException();
}
2
¥

Listing 4.6: AspectJ Stack - Maximum Condition Removed
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Implementation Equivalence

Figure 4.15: Stack Example

of applying the maintenance activity.

4.2.2 Integrating Mutation Analysis into the Approach

The measurement approaches used when this approach is applied result in measures that
are solely representative of the combined effects of two factors: implementation and main-
tenance. An example of a typical measurement approach is to measure the size of each
implementation. As illustrated in Figure 6.5, this measurement is based solely on the
implementation from which it is taken. When this measurement approach is applied to

implementations that are equivalent, the resulting measures are solely representative of

the effects of the implementation and maintenance factors.

Figure 4.14 illustrates the result of applying MA to the implementations. There are
measures for AOP and OOP implementations of each version of the program. Each mea-

sure is representative of the combined effects of four factors: test, mutant, implementation
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Program

(o]

Fault Exposure

Figure 4.16: Size Figure 4.17: Mutation Analysis

and maintenance. As illustrated in Figure 4.17, the application of MA to each implemen-
tation requires the generation of mutants of the implementation and the execution of tests
against those mutants, the outcomes of which are used to derive a measure of testability.
The test and mutant factors are an issue because their uncontrolled presence introduces
the effects of these factors into the measures and has the potential to confound the com-
parison of the effects of AOP and OOP on testability.

To address this problem, and ensure that each measure is representative of the com-
bined effects of only implementation and maintenance, the effects of test and mutant
factors must be neutralised. Section 3.2.4 outlines an approach to neutralise the effects of
these factors, which is to fix the test and mutant factors for each application of mutation

analysis.

Fixing the Mutant Factor

The mutant factor is fixed by ensuring that the mutants generated for each implementation
are (implementation and maintenance) equivalent. Figure 4.18 illustrates the mutants
generation phase of MA. In this phase, mutants are generated for the AOP and OOP

implementations of each version of the program.

The types of faults that are generated in the mutants of the AOP and OOP implemen-
tations have to differ, as they are based on the types of faults that are observed in practice.
Different types of faults occur in AOP and OOP implementations, and as such the types
of faults generated in mutants of these implementation also differ [53, 26, 36, 156].

To fix the fault type factor, this study ensures that the mutants generated for each
pair of equivalent AOP and OOP implementations are also equivalent. That is, the only
difference between AOP and OOP mutants is based directly on the difference between the

AOP and OOP implementations from which they are generated.

To ensure that the fault type factor is fixed, the same process is used to generate mu-
tants in both implementations. Although mutants that contain different types of faults are
generated for the AOP and OOP implementations, the resulting mutants are equivalent

and the mutant factor is fixed.
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Fixing the Test Factor

Figure 4.19 illustrates the application of the location execution phase to the AOP and
OOP implementations. In this phase, tests are executed against the implementation that
to identify the locations that are executed by each test. To fix the test factor in this
phase, the same set of tests are executed against the AOP and OOP implementations of
each version of the program. This ensures that the only difference in the results of this
phase is the difference between the AOP and OOP implementations.

Figure 4.20 illustrates the application of the fault exposure phase. In this phase, tests
are executed against mutants. To fix the test factor in this phase, the same set of tests
are executed against the mutants of the AOP and OOP implementations of each version
of the program. This ensures that the only difference between outcomes for each set of

mutants is based on the difference between the AOP and OOP implementations.

Program Program | Program
A A A
1 Al "
Version Implementations Version Implem‘entahons Version Mutants
—_—,—— —t " —t—

Mut
Generator J

Figure 4.18: Mutant Gen Figure 4.19: Location Exe Figure 4.20: Exposure

Stack Example

Stack Stack Stack
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Figure 4.21: Mutant Gen Figure 4.22: Location Exe Figure 4.23: Exposure

The integration of the measurement gathering and mutation analysis approaches used
in this study is demonstrated using the Stack class example. In this example, mutation
analysis is applied to the implementation and maintenance equivalent Java and AspectJ

implementations of the Stack class, illustrated in Listings 4.3, 4.4, 4.5 and 4.6.
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Mutant Generation for Stack Implementations

Figure 4.21 illustrates application of a mutant generator to the Java and AspectJ imple-
mentations of versions 1 and 2 of the Stack class. The mutant generator applies different
mutation operators to each implementation. The AspectJ mutation operators are applied
to locations that contain AspectJ features and Java mutation operators are applied to
locations that contain Java features. In this example, two Java mutation operators, the
Java this Deletion (JTD) and Java this Insertion (JTI) operators are applied to the
AspectJ and Java versions of the Stack class. The Around Proceed Statement Removal
(APSR) operator is also applied to the AspectJ implementation. These operators repre-
sent a subset of the types of faults observed to occur in Java and AspectJ implementations
(98, 53]. The complete set of operators are detailed in Section 5.2 of the next chapter.

The JTD operator is applicable to locations that contain the this keyword. When
applied to such a location, the operator creates a deviation or fault by deleting the this
keyword. The JTI operator is applicable to locations that contain references to method
parameters that have the same name as a method attribute. When applied to such a
location, the operator creates a fault by inserting the this keyword. The APSR operator
is applicable to locations that contain a call to proceed. When applied to such a location,
the operator creates a fault by deleting the proceed call.

In this application of mutant generation, the generator analyses the code to identify
all of the locations that meet these criteria. The mutation operators are then applied to
the appropriate locations. The results of this process are illustrated in Listings 4.7, 4.8,
4.9 and 4.10. In each listing, the comments identify faults generated in mutants and the
mutation operators that created them.

The only difference in each set of generated mutants is based solely on the implemen-
tation for which they are generated. For example, Listings 4.7 and 4.8 contain equivalent
Java and AspectJ implementations of the first version of the Stack class. The mutants
generated for the Java and AspectJ implementations differ. Five mutants of the Java
implementation are generated by the JTI and JTD operators. Three mutants of the
AspectJ implementation are generated by the JTI, JTD and APSR operators. They
are implementation equivalent because they represent the faults that can occur in both
implementations.

Another example of mutant equivalence is observed in Listings 4.7 and 4.9. These
contain the Java implementations of the first and second versions of the Stack class.
These are equivalent in that the only difference between these implementations is the
maintenance activity applied to the first Java implementation to create the second. Dif-
ferent mutants are generated for each implementation. In the implementation of the first
version, there are five faults and in the second there are three. They are maintenance

equivalent because the only difference between these mutants is directly based on the
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1| public class Stack {
2| int size = 0;
3] static final int max = 5;
4| public int getSize(){
5 return this.size;
6] X
7| public void setSize(int size) {
8 if (size >= 0){// if(this.size >= 0) fault 1-JTI
9 this.size=size;// size=size faults 2-JDT 3-JTI
10 if (size>Stack.max){// this.size> fault 4-JTI
11 this .size=Stack.max;// size= fault 5-JDT
12 }
13 } else {
14 throw new IllegalArgumentException();
15 }
16 }
17( }
Listing 4.7: Java Stack - Initial Implementation Mutants
1| public class Stack {
2| int size = 0;
3| static final int max = 5;
4] public int getSize(){...}
5| public void setSize(int size) {
6 this .size=size;// size=size fault 2-JTD 3-JTI
7l ¥
8]}

9| public privileged aspect StackAspectPrePost {
10 void around(int size, impl2.Stack stack)

11 execution(void impl2.Stack.setSize(int))

12 %% args(size) && target(stack){

13 if (size >= 0){

14 proceed(size, stack);// fault 6-APSR
15 if (size > Stack.max){

16 stack.size = Stack.max;

17 }

18 } else {

19 throw new IllegalArgumentException();
20 i

21 }

22|}

Listing 4.8: AspectJ Stack - Initial Implementation Mutants

difference between the Java implementations.

By ensuring that each set of mutants are implementation and maintenance equivalent,
the mutant factor is fixed. The generated mutants do not impose any influence on the
measures derived from executing tests against these to produce outcomes, from which

fault exposure rate measures can be derived.
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public class Stack {
int size = 0;
public int getSize(){...}
public void setSize(int size) {
if (size >= 0){ // if(this.size >= 0) fault 1-JTI
this.size=size;
} else {
throw new IllegalArgumentException();
b

Listing 4.9: Java Stack - Maximum Condition Removed Mutants

public class Stack {
int size = 0;
public int getSize(){...}
public void setSize(int size) {
this.size=size;// size=size fault 2-JTD 3-JTI
}
}
public privileged aspect StackAspectPrePost {
void around(int size, impl2.Stack stack)
execution(void impl2.Stack.setSize(int))
&% args(size) && target(stack)({
if (size >= 0){
proceed(size, stack);// fault 6-APSR
} else {
throw new IllegalArgumentException();
}
ik
}

Listing 4.10: AspectJ Stack - Maximum Condition Removed Mutants

Location Execution and Fault Exposure for Stack Implementations

Figures 4.22 and 4.23 illustrate the location execution and fault exposure phases of MA.
Both of these phases use the four tests developed for the Stack, illustrated in Listing 3.2.
In the location execution phase, they are executed against each implementation to identify
the locations executed by each test. In the fault exposure phase, they are executed against
each mutants of executed locations in each implementation. In both phases, the test factor
is fixed. The only difference in the outcomes for each implementation, are due solely to
the difference between each implementation.

The outcomes of both phases for the Java and AspectJ implementations of versions 1
and 2 of the Stack are illustrated in Figures 4.24 and 4.25 respectively. These outcomes
are summarised in Table 4.2. For each implementation of both versions, this table counts
the number of mutants that were not executed, mutants that were executed resulting in

a pass and mutants that were executed resulting in a fail . Based on these counts, the
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. Java AspectJ
Version -
not exe pass fail rate not exe pass fail rate
1 6 10 4 0.20 3 4 3 0.30
2 2 4 3 0.33 3 3 3 0.33

Table 4.2: Mutation Analysis Outcomes

fail
fail+pass+notexe *

Each measure represents the combined effects of two factors: implementation and

rate of exposure is calculated s rate =

maintenance. The rate of fault exposure for the Java implementation at version 1 is
0.20. This represents the effects of Java at the initial maintenance version. The rate for
the Java implementation at version 2 is 0.33. This represents the effects of Java at the
second maintenance version. The rate of fault exposure for the AspectJ implementation
at version 1 is 0.30. This represents the effects of AspectJ at the initial maintenance
version. The rate for the AspectJ implementation at version 2 is 0.33. This represents

the effects of AspectJ at the second maintenance version.
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Figure 4.24: Java Figure 4.25: AspectJ

4.2.3 Summary

In the measurement phase of this study, mutation analysis (MA) is applied to AOP and
OOP implementations of different versions of a program. This section has outlined an
approach for gathering testability measures from implementations that can be analysed to
identify the comparative effect of AOP and OOP on testability over maintenance activities.
The approach ensures that the gathered measures represent the combined effects of only
two factors: implementation and maintenance. Each measure gathered, represents the
effects of either AOP or OOP at each maintenance version of the program. In the next

section, the approach to analyse these measures is outlined.
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; Java AspectJ

Version — —
not exe | pass | fail | not exe | pass | fail

1 6 10 4 3 4 3
2 2 4 3 3 3 3
3 4 16 10 7 13 3
4 6 18 8 8 12 4
5 6 20 14 10 12 3
6 8 22 16 14 16 6
I 10 22 18 16 14 6
8 12 26 18 18 18 5
9 16 26 20 20 22 10
10 10 20 16 14 16 8

Table 4.3: Mutation Analysis Outcomes

4.3 Analysing Measures of Testability

In the measurement phase of the study, measures are gathered that represent the combined
effects of two factors: implementation and maintenance. Each measure represents the
effects of either AOP or OOP at each maintenance version of the program. In this section,
the approach to analysing these measures is outlined. This section shows how a mixture
of informal graphical comparison and formal regression analysis approaches are used to
compare the effects of AOP and OOP on the rate of fault exposure and understand the
causes for differences in those effects. The first part of this section, shows how measures
are graphed to illustrate the difference between the effects of AOP and OOP on rates and
the second part shows how regression analysis is used to quantify the difference between

these effects on rates.

4.3.1 Graphical Analysis

Graphical analysis [149, 14, 92, 97, 54, 87, 63] is a typical approach to analysing the
measures collected in comparative studies of the effects of OOP and AOP on indicators
of maintainability. Graphical analysis is widely used because it is an intuitive way to

understand and compare measures.

Outputs of Mutation Analysis for Stack example

To demonstrate this it is applied to an extension of the Stack example used in Section
4.2.2 that are presented in Table 4.3. In this extension, mutation analysis is applied to
a further eight versions of the Java and AspectJ implementations, illustrated in Listings
4.7 and 4.9. Table 4.3 presents the resulting counts of not exe, pass and [2il outcomes for

the Java and AspectJ implementations at a specific maintenance version of the program.
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Visualising Results

Figure 4.26 presents a bar chart that visualises number of not exe, pass and fail outcomes
for each implementation in Table 4.3. Each bar in this chart represents the outcomes
of the test-mutant executions for a specific implementation. The bars for the AspectlJ
and Java implementations of each version are placed directly beside one another to make
comparing the number of not exe, pass and fail outcomes easier. This chart provides an
easily comparable representation of the numbers of not exe, pass and fail outcomes for

each pair of AspectJ and Java implementations.
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For instance, from this chart it is clear that there are consistently less test-mutant
executions for AspectJ compared to Java. This is because there are less mutants generated
for the AspectJ implementations, as indicated in Figures 4.24 and 4.25. A trend of an
increasing number of test-mutant executions up to version 9 of the stack can also be seen.
From this graph, it is however more difficult to estimation of the rates of fault exposure,
fault execution and infection and propagation.

This chart also enables the rates of fault exposure, fault execution and infection and

propagation over versions to roughly estimated and compared. For example, at version

fail

m) seems to be higher for AspectJ.

9, the rate of fault exposure (rate =

N Te \ y O, 7 — ail XSS OO 3 =¥ ioher ¢ o « 3
The rate of fault execution (rate = —-+"2" ) seems to be higher and the rate of
fail+ pass+notexe
y » y s P o - 5 .l D) — —»rv"ll — . J Jars} J 3 1 3
infection and propagation (rate = /»,”/ﬂm\) also seems to be higher.

Analysing Rates

Figures 4.27, 4.28 and 4.29 are graphs that illustrate the rates of fault exposure, fault
execution and infection and propagation, respectively. In these graphs the x-axis repre-
sents the version and the y-axis represents the rate. Each point on the graph represents a
rate for each an AspectJ or Java implementations ol each version of the HW. The points
are differentiated by colour and a line connecting the points for AspectJ and Java imple-
mentations is provided to highlight the changes in the rate over versions of the HW for

each.

Fault Execution

Figures 4.28 and 4.29 show the rates of fault execution and infection and propagation for
each AspectJ or Java implementation. Figure 4.28 shows that rate of fault execution is
consistently higher for Java implementations. The rate starts at 0.7 and ends at 0.63 for
Aspectd and starts at 0.7 and ends at 0.79 for Java. This means that when the same tests
are executed against Java and AspectJ Stack implementations there were more faults

executed in the Java implementation.

Infection and Propagation

Figure 4.29 shows that rate of infection and propagation is higher for Java implementa-
tions. The rate starts at 0.43 and ends at 0.33 for AspectJ and starts at 0.29 and ends
at 0.44 for Java. Besides versions 1 and 2 the rate of infection and propagation for Java
are consistently higher compared to AspectJ. This means that when the same tests are
executed against the faults in mutants of the Java and AspectJ Stack implementations,

more faults are exposed in the Java implementation.
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Fault Exposure

As demonstrated in Section 4.1.2, the relationship between the rates of fault execution
and infection and propagation and the rates of fault exposure is multiplicative. That is
the rate of Fault Exposure (FE) is the product of the rates of Fault eXecution (FX) and
Infection and Propagation (IP), FE = FX x IP. Figure 4.27 shows that the rates of
fault exposure for AspectJ and Java implementations differ. Each of these rates is based
on the product of the rates, illustrated in Figures 4.28 and 4.29.

Figure 4.27 shows that the rate of fault exposure for the AspectJ implementation at
version 1 is 0.3 = 0.7 X 0.43 and decreases to 0.21 = 0.63 x 0.33 at version 10. The rate
of fault exposure for Java implementation at version 1 is 0.3 = 0.7 X 0.29 and increases
t0 0.35 = 0.79 x 0.44 at version 10. The calculation of these rates shows that higher rates
show that higher rates of fault execution and infection and propagation result in higher
rates of fault exposure.

In Figure 4.27 the rate fault exposure is consistently higher for Java from version 3 to
10. This is because the rate fault execution and infection and propagation are consistently
higher for Java over these versions. This means that in the Java implementations of
versions 3 to 10, more faults are executed by tests and when these faults are executed
more of them are exposed.

The figure shows that the rate at version 1 is higher for AspectJ and at version 2
the rate is the same for Java and AspectJ. The rate at version 1 is higher because the
rate of fault execution is the same for both AspectJ and Java at version 1 but the rate
of infection and propagation is higher for AspectJ. This means that in the AspectJ and
Java implementations of versions 1 the same proportion of faults are executed by tests
but more these faults are exposed when executed in the AspectJ implementation.

The rate at version 2 is equal because rate of fault execution is higher for the Java
implementation but the rate of infection and propagation is higher for AspectJ. This means
that although there are more faults executed in the Java implementation of versions 2,
less of these faults are exposed when executed compared to the AspectJ implementation.
These differences cancel one another out and result in an equal rate of fault exposure for

the AspectJ and Java implementations of version 2.

Conclusions from Graphical Analysis

From the analysis of the bar chart in Figure 4.26, it can be concluded that there are
more test-mutants executions for the Java implementations compared to the AspectJ
implementations. The reason for this is that there are more mutants generated for the
AspectJ implementation. The same number of tests are executed against the mutants
of each implementation, which means that the only cause of the difference is due to the

number of mutants generated.
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Figure 4.30: Conclusions of Analysis for Stack

The left hand side of Figure 4.30 illustrates the conclusions drawn from the analysis
of the rates of fault execution, infection and propagation and fault exposure presented in
Figures 4.27, 4.28 and 4.29. It indicates that the rate of fault exposure or testability is
higher for the Java implementations of the Stack. It also illustrates that the reason for the
observed difference is that over the different versions of the Stack, there are more faults
executed by tests and more of these executed faults result in infection and propagation
resulting in test failure and fault exposure for the Java implementations.

Graphical analysis, as has been demonstrated, allows conclusions to be drawn about
the comparative effect, or differences in the effects, of AspectJ and Java on the testability
of the stack. It also allows conclusions to be drawn about the comparative effect of
AspectJ and Java on the determinants testability, the rates of fault execution and infection
and propagation. As will be detailed next, binomial regression analysis [52], is used to
quantify the comparative effects of AspectJ and Java on the testability of the stack and

its determinants.

4.3.2 Binomial Regression Analysis

Binomial Regression Analysis (BRA) [52] is used quantify the difference in the effects
of OOP and AOP on the rates of fault exposure, fault execution and infection and
propagation. BRA is a statistical technique for analysing the relationship between a
binomial response and explanatory factors. In this application of binomial regression,
the binomial response is the rate and the explanatory factors are the implementation
and maintenance version. The relationship between between these factors and the re-
sponse is defined in a model. This relationship is captured in the regression model,
rate ~ implementation + version, which indicates that each rate is caused by both the
implementation and version of the program. This is the standard way in which a binomial
regression model is specified [52]. In this case, there are three models specified, one for

each rates of fault exposure, fault execution and infection and propagation.

80



4.3. ANALYSING MEASURES OF TESTABILITY

model specification
1 Fault Exposure ~ implementation + version
2 Fault eXecution ~ implementation + version
3 Infection and Propagation ~ implementation + version

Table 4.4: Models

Model Fitting

The relationship between each rate and the factors in each model is measured by fitting
the model over the measures in Table 4.3. In the model fitting process, the correlation
between the effects of AspectJ and Java implementation approaches and each version on
the observed rate is measured [52]. These correlations are used to measure the generalised

effects of each factor on the rate of fault exposure [52].

Table 4.31 presents the results of fitting three models for the effects of the Version and
Implementation factors on the rates of Fault Exposure, Fault eXecution and Infection and

Propagation. These models are presented in Table 4.4.

The first two columns of the table are Version and Implementation. The rows within
these columns represent the specific versions (1-10) and implementations (AspectJ or
Java) for to which the measures in Table 4.3 relate. For each model, the model fitting
process analyses the strength of the correlation between each version and implementation
approach on the rate. The resulting correlation measures for each of the three models are
presented in rows in the columns labelled Fault Exposure, Fault eXecution and Infection
and Propagation. Each measure represents the strength of the correlation between the

observed rate and a specific version (1-10) and implementations (AspectJ or Java).

Comparative Effects

As detailed by Faraway [52], the measures of the effects presented in Table 4.31 are used
to construct the graphs of the generalised effects of AspectJ and Java on the rates of
fault exposure, fault execution and infection and propagation, presented in Figures 4.32,
4.33 and 4.34, respectively. In each of these figures, the difference between the Java and
AspectJ lines is the measure of the comparative effect of AspectJ and Java. The measures
of the difference between the AspectJ and Java lines is marked in red in Table 4.31. These
are the measures of the comparative effect of AspectJ and Java on each rate. These are
on the log odds scale [52] and need to be transformed by taking the exponent of each
measure [52]. This results in a measure of the difference in the odds of AspectJ and Java

exposing faults, executing faults and causing infection and propagation.
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Version Implementation | Fault Exposure (FE) Fault eXecution (FX) | Infection and Propagation (IP)
1 AspectJ -1.89630 -0.529032 -1.352227
2 0.45421 0.069907 0.371564
3 0.07626 0.144253 -0.078863
4 -0.04978 0.088373 -0.150122
b 0.10965 0.078850 -0.009129
6 0.17326 0.063659 0.090059
7 0.19977 0.009482 0.165758
8 0.03550 0.001137 0.012562
9 0.17010 0.003726 0.155845

10 0.25076 0.045131 0.192354

Figure 4.31: Correlations between each Rates and versions and implementation fac-

tors
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Conclusions from Regression Analysis

The left hand side of Figure 4.30 illustrates the results of these transformations. Its
shows that, based on the results of binomial regression, that the odds of fault exposure
are 89%(1.889364 = exp(0.63624)) higher for Java. It shows that the odds of fault execu-
tion are 29% (1.292347 = exp(0.256460)) higher for Java and that odds of infection and
propagation are 46% (1.464355 = exp(0.381415)) higher for Java.

This is explained further through the illustration in Figure 4.35. The boxes marked

AspectJ and Java represent the total number of test-mutant executions for AspectJ and

I T

Figure 4.35: Causation for Comparative Effects
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Java implementations, respectively. The circles in these boxes represent the number of
faults executed by tests in AspectJ and Java mutants. This representation shows that
there are more faults executed in Java compared to AspectJ mutants. This difference is
the cause of the 29% higher odds of fault execution for Java. The number of executed
faults that result in pass and fails are represented inside the circle. This representation
shows that there are proportionally less fails for AspectJ, indicating that less of the faults
executed in AspectJ mutants result in infection and propagation. This difference is the

cause of the 46% higher odds of infection and propagation for Java.

4.3.3 Threats to Analysis Validity
4.3.4 Summary

In the analysis phase of this study, the measures gathered from applying mutation analysis
to AOP and OOP implementations of different versions of a program are analysed. This
section has shown how a mixture of graphical and binomial regression analysis are used
to analyse these measures and quantify the comparative effect of AOP and OOP on

testability.

4.4 Chapter Summary

This chapter described the methodology followed in the measurement and analysis phase
of the study. The first section selected and described mutation analysis as the approach
used to measure testability. The second section described how this approach is applied
to ensure the resulting pairs of measures isolate the combined effects the implementation
and maintenance factors. The third section described how the effects of AOP and OOP
are generalised and the comparative effect on testability is measured and how causation
for this comparative is determined.

The methodology describes how the study will be carried out and outlines the ap-
proaches that will be used in the measurement and analysis phases of the study. The next
chapter describes the inputs selected to fit into this methodology and as a basis for the

study.
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Chapter 5

Study Inputs

The previous chapter presents the methodology on which this study is based. The method-
ology describes how measures of testability are gathered and analysed to produce evidence
of the comparative effect of AOP and OOP on testability.

The quality of this evidence is based on the implementations, mutants and tests used
to gather each measure of testability. For evidence to be of high quality, the evidence
must be generalisable [79]. Generalisablility is the ability to draw general conclusions
from evidence gathered in a specific context. General conclusions can be drawn from
evidence gathered in contexts that are representative of the general case [79]. The first
goal of this chapter is to show that the implementations, mutants and tests that form
the context in which measures of testability are gathered, are selected because they are

representative of the general case.
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The second goal of this chapter is to show that the selected implementations, mutants
and tests fit into the measurement gathering approach prescribed by the methodology.
As explained in Section 2.10, the AOP and OOP implementations from which measures

of testability are gathered must be implementation and maintenance equivalent. As illus-
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trated in Figure 5.1, equivalence is assured by cumulatively applying the same mainte-
nance activities to AOP and OOP implementations of a program that differ only in the
approach used in their development. Figures 5.2 and 5.3 show that to measure the testa-
bility of each implementation using mutation analysis, mutants of each implementation
must be generated and a set of tests must be executed against each implementation and
mutants of each implementation.

The first section of this chapter describes the programs for which AOP and OOP
implementations exist and the maintenance activities that have been cumulatively applied
to these implementations to create several maintenance versions of both implementations.
It describes the selection of a program which is representative of the general case and
describes the selected program, maintenance activities and implementations in detail.

The second section of this chapter identifies the approach used to generate the mutants
for each AOP and OOP implementation. It shows that the mutant generation approach is
based on AOP and OOP fault models that are representative of the types of faults that are
generally observed to occur in practice. The fault model is the basis for mutation operators
that are used to generate mutants. The mutation operators defined for the AOP and OOP
fault models are identified and described. The tool that implements these operators, and
that is used to generate the mutants for each AOP and OOP implementation is also
described.

The third section of this chapter identifies the approach used to select and automate
tests that are executed against each implementation and mutants of each implementation
in the study. The section outlines the different available test selection approaches and
justifies the selected approach. It also describes the approach used to automate the
execution of tests against implementations and mutants.

This chapter is concluded by summarising the selections made. This summary com-
ments on how these selections impact on the degree to which general conclusions can be

drawn from evidence gathered in the study.

5.1 Implementations

The section lists a set of candidate programs that have the potential to be used in the
measurement gathering approach prescribed by the methodology. These are programs
for which AOP and OOP implementations exist and maintenance activities have been
cumulatively applied to these implementations to create several maintenance versions of
both implementations. This section describes the approach used to select of the most
representative implementations and describes the program and Maintenance Activities
(MAT) on which they are based.
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! maintenance activities

program i i Sploysd adaptive | perfective | corrective
Health Watcher | [87, 63, 55] yes 1 7 1
Online Shop [14] no 1 - -
Library [149] no 2 1 3
Email Server 92 yes 2 1 -
Best Lap 54 yes 5 - -
Mobile Media 54 no 8 - -

Table 5.1: Candidates for Selection

5.1.1 Selection of Implementations

Table 5.1 lists the candidate programs that have the potential to be used in the mea-
surement gathering apprecach prescribed by the methodology. This section describes the

selection of the one that is most representative of the general case.

Selection Criteria

For each program, Table 5.1 identifies the studies which are based on the AOP and OOP
implementations of the program. It identifies whether the program has been deployed and
shows the distribution of maintenance activities applied to the AOP and OOP implemen-
tations of the program. These characteristics are used as indicators of how representative
each candidate is of the general case.

Studies - The number of empirical studies in which the program’s AOP and OOP
implementations is used as an indicator of representativeness. This is based on the as-
sumption that these studies are based on implementations that are representative of the
general case to ensure generalisability. It also assumes that if AOP and OOP implemen-
tations of a program are used across a number of empirical studies, then this indicates
that they are representative of the general case.

Deployed - The intended audience of this thesis are industrial practitioners who
are considering the adoption of AOP. For evidence to be generalisable for this audience,
the program and the MATSs on which these studies are based must be representative of
the general industrial case. The fact that a program has been deployed indicates that it
is a real program and that it contains the concerns such as a GUI, exception handling,
persistence, concurrency, and distribution that are generally present in an industrial pro-
gram. It implies that the program implements the diverse set of concerns, encountered in
the industrial case, that must be addressed to ensure a robust program. The usage and
deployment of a program are used as indicators that the program is representative of the
general case and are used as criteria for selecting candidate implementations on which to
base this study.

Maintenance activities - The MATs are more representative if the types of activi-

ties applied follow the distribution of types of MATs applied in general practice. There are
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three main types of MAT: perfective, adaptive and corrective. Perfective MTAs improve
the quality of an implementation. Corrective MATs fix faults in the implementation and
adaptive MATs implement new requirements. There is evidence [95, 96, 94, 124] to sug-
gest that the general distribution of MAT types is that there are more pefective MATs

applied to implementations in practice than corrective and adaptive MATs.

Selection

The Health Watcher (HW) program is the only candidate in Table 5.1 that matches the
criteria defined for selection.

Studies - It has been used in three empirical studies that compare the effects of
AOP and OOP on maintainability indicators. Each of the other candidates are used in
one study. More confidence can be associated with the representativeness of the HW as
it is used in more empirical studies than the other programs.

Deployed - The HW has been deployed in a real-world context since 2001.The HW
contains concerns, such as view (view is a GUI concern), exception handling, persistence,
concurrency, and distribution, which are generally present in an industrial program. Sim-
ilar to all of the candidates, the AOP and OOP implementations of the HW are developed
using the AspectJ and Java languages. AspectdJ is the most popular [106] AOP language.
It is an extension of Java, which is the most popular OOP language [136]. AspectJ extends
Java through the introduction of new constructs such as pointcuts, advice and inter-type
declarations to realise AOP concepts. The HW implementations are based on technolo-
gies, such as Servlets [71], RMI [65] and JDBC [126] that generally used in Java based
implementations.

Maintenance activities - Since its deployment a number of MAT's were applied to
the initial deployed implementation. Nine MAT's are selected based on those applied to the
deployed implementation. These MATSs are applied cumulatively to the initial equivalent
implementations if the AOP and OOP implementations, resulting in ten releases of each
implementation. The types of MAT also roughly follow the general distribution of MATSs
over types [124].

5.1.2 Health Watcher - Use Cases and Maintenance Activities

The purpose of the Health Watcher (HW) system is the registration and administration
of complaints to the public health system. The initial release of the HW is based on

sixteen use cases |74, 75|. These use cases are identified in Table 5.2 and detailed in

full at the TAO website '. This website provides open access to the AspectJ and Java

implementations of all ten versions of the Health Watcher and the use cases on which

"http://www.comp.lancs.ac.uk/ greenwop/tao/
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[ Use Case | Type | Target
1 Employee Login
2 Complaint
3 List Complaints
4 List Health Units
5 Search Health Units by Specialty
6 List Specialties
7 Specialties by Health Unit
8 Disease Type
9 List Discase Types
10 Employce
11 To et Animal Complaint
12 St Food Complaint
13 Special Complaint
14 Employee
15 Update Complaint
16 Health Unit

Table 5.2: Health Watcher Version 1: Use Cases [87]

[ Use Case [ Type | Target |

17 s Speciality
18 Bearch Symptoms
19 Health Unit
20 ) Symptoms
21 g Speciality
22 Disease Type
23 s Speciality
24 Update Symptoms

Table 5.3: Health Watcher Version 9: Use Cases [87]

I 1D l Maintenance Activity | Type | Impact I

1 Factor out multiple Servlets to improve extensibility Perfective View

2 Ensure the complaint state cannot be updated once closed | Corrective View/Business
to protect complaints from multiple updates.

3 Encapsulate update operations to improve maintainability Perfective Business/View
using common software engineering practices.

4 Improve the encapsulation of the distribution concern for | Perfective | View/Distribution/Business
better reuse and customization.

5 Generalize the persistence mechanism to improve reuse and | Perfective Business/Data
extensibility.

6 Remove dependencies on Servlet response and request ob- | Perfective View
jects to case the process of adding new GUI.

7 Generalize distribution mechanism to improve reuse and ex- | Perfective | Business/View /Distribution
tensibility.

8 New functionality added to support querying of more data Additive Business/Data/View
types

9 Modularize exception handling and include more effect error | Perfective Business/Data/View
recovery behaviour into handlers

Table 5.4: Health Watcher Versions 2 - 10: Maintenance Activities

these implementations are based.
To summarise, the HW enables different types of complaints to be registered, each
complaint details the symptoms of the person registering the complaint, the health system

employees to be assigned to deal with the complaints at specific health units or clinics, all
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Figure 5.4: Object Oriented Health Watcher [63]

of which specialise in treating different types of diseases. Each use case does one of the
following actions: search, insert and update. The table shows which actions are associated
with each use case.

Table 5.4 lists each MAT cumulatively applied to the initial HW program. The table
provides a brief description of the MAT) its type and the layers to which it applies. The
majority of the MATs are perfective, one is corrective and one is adaptive. The eighth

MAT is adaptive and implements five new use cases, these are listed in Table 5.3.

5.1.3 Health Watcher - Java and AspectJ Implementations

Figures 5.4 and 5.5 present overviews of the Java and AspectJ implementations of the
initial HW. They identify the architectural layers in both implementations and the core

modules that implement each layer.

Maintenance Activity Impacts

Each figure identifies the impacts of each MAT (or scenario as termed in the legends of
these figures) on the implementation. As illustrated in the legends, Sx identifies a MAT,

where x identifies the specific MAT. These numbers are placed in the core modules of each
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Figure 5.5: Aspect Oriented Health Watcher [87]

implementation to demonstrate the impact of the MAT. If the impact is the addition of a
module, then a + symbol is prefixed to the MAT identifier. The ~ symbol indicates that

the MAT alters the module and the — indicates that the impact is to remove the module.

For example, at the top of Figure 5.4 the Command module is added in the first MAT
(S1+) and altered in the ninth (S9 ) and the OpServlets module is removed in the first
MAT (S1-) .

Client

The figures show that both implement view, distribution, exception handling, concurrency,
business, data and persistence concerns. Both implementations follow client-server and
layered architectural styles where the view, distribution, business and data concerns are
structured as architectural layers. They also show that for both implementations, the
view layer is a web client implemented using Java Servlets [71]. This layer accepts http
requests and returns http responses. When a request is made, the corresponding command

is called on the server through the distribution layer. This call is relayed to the server
using RMI [65].
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Server

On the server, a client request is invoked on the business layer. The business layer contains
the business logic, which manages the data layer by creating, inserting, updating and
deleting instances of entities under the management of the HW. The data layer defines
entities represented by the system. These entities include complaints, symptoms, health
system employees, health units, specialities, disease types and are mapped to persistent
database storage. To ensure that the HW can handle many concurrent users, access to
entities is managed by the concurrency concern. The implementation of this concern is
based on the standard Java blocking mechanism. Once access to an entity is granted and
a change is applied, the change must be persisted. The persistence concern manages this
process and is implemented using JDBC [126].

During the execution of HW, there are many points of failure at which exceptions
are thrown. To handle these failure cases gracefully, the HW implements an exception
handling concern. This concern provides facilities to throw exceptions where a failure is

recognised, and to catch and deal with these exceptions.

Differences and Equivalence

In the AspectJ implementation, the concurrency, exception handling, distribution and
persistence concerns are implemented separately in aspect modules. In the Java imple-
mentation these concerns are scattered and tangled across the modules that comprise the
Java implementation. This is the only significant difference between these implementa-
tions. The initial AspectJ implementation is a refactoring of the Java implementation in

which these concerns are aspectised [63].

5.1.4 Summary

The section listed the programs that have the potential to be used in the measurement
gathering approach prescribed by the methodology. These are programs for which AOP
and OOP implementations exist and MATs have been cumulatively applied to these imple-
mentations to create several maintenance versions of both implementations. It described
the program selected as most representative of the general case. It also detailed the im-
plementations and maintenance activities associated with the program through their use

in empirical studies.

5.2 Mutants

The testability of the HW implementations is measured by applying mutation analysis to

each implementation. Mutation analysis measures the testability of an implementation as
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the rate at which it exposes faults under testing. This rate is derived by executing tests
against mutants generated from the implementation. This section describes the approach
used to generate the mutants for each AspectJ and Java implementation.

The generation of mutants is based on a fault model. The fault model specifies a list
100, 20]. The first part of this

section describes the AspectJ and Java fault models on which mutant generation is based

of the types of faults that occur at features of a language

in this study.

Mutation operators specify how to generate these types of faults. The second part of
this section presents the mutation operators that are used to generate mutants of Aspect.
and Java implementations of the HW of the types specified in the fault model.

Mutation operators are applied to implementation through a mutant generation tool.
The third and final part of this section describes the mutant generation tool that applies

these operators to the AspectJ and Java implementations in the study.

5.2.1 Fault Model

In mutation analysis, the rate of fault exposure for an implementation is the proportion
of faults exposed when tests are executed against mutants generated from the implemen-
tation. The generated mutants are approximations of the types of faults that occur in
practice. These mutants are the basis for the fault exposure rate derived from apply-
ing mutation analysis to an implementation. Because the mutants are approximations,
the resulting rate of fault exposure is also an approximation. The more representative
the generated mutants are of the types of faults that occur in practice, the more the
approximated rate of fault exposure is.

Here, the AspectJ and Java fault models are selected as a basis for mutant generation
that match indicators that these fault models contain the types of faults that occur in

practice.

Indicators

There are two ways in which the representativeness of a fault model can be indicated. The
first is by tracing its evolution. A fault model defines the types of faults that are observed
to occur at features of a language. As languages evolve so too do fault models. When a
new language such as Java evolves, the language introduces some new features but inherits
many of the features from the languages from which it has evolved. Fault models evolve
in the same way. When a new language evolves from older languages, the fault types
associated with the inherited features are also inherited into the fault model for the new
language. These can be refined in the inheritance process. For the new features, various
fault types are proposed based on empirical studies or through retrospective observation.

These are then amalgamated through convergence. Convergence occurs when a set of
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independent researchers converge on the same set of fault types for new language features.
If a fault model is highly evolved, then this indicates that the fault types in the model
have undergone generations of refinement to ensure that they are highly representative of
the types of faults that really do occur in practice.

The second indicator that a fault model specifies the types of faults that are repre-
sentative, is based on how often used it is. If the fault model is the basis for mutant
generation in a large number of scientific studies, then this indicates a pragmatic accep-
tance by consensus that the fault types specified in this model are representative of the

types of faults that occur in practice.

Fault Model Selection

The Java fault model, introduced by Ma et al [98], and the AspectJ fault model, introduced
by Ferrari et al [53] were chosen. These fault models are selected because they are the
most evolved and contain the most refined set of fault types for the features defined the
Java and AspectJ languages. The fault types specified in this model are also accepted by
consensus to be representative of the types of faults that occur in practice.

Java Fault Model - The Java language is based on features inherited from imper-
ative languages and new object oriented features.

The types of faults defined for the imperative features of Java have evolved from fault
models defined for Ada, C and FORTRAN [98, 86, 127, 44, 118]. The C language is a pre-
decessor of Ada and FORTRAN can be seen as the basis for C [16]. As these imperative
languages evolved, the elements of older languages that were considered useful were used
as the basis for new languages. The types of faults associated with these elements were
also brought forward into the newer fault models. The FORTRAN fault model was de-
rived from studies of programmer errors and corresponds to simple errors that competent
programmers typically make [86]. The C fault model is an evolution and refinement of
the FORTRAN fault model [127] and the Ada fault model is a further refinement of both
the C and FORTRAN fault models [118]. In both cases, these refinements were designed
to ensure that the fault models were representative of those observed in practice. The
fault types in these models are further refined by Offutt et al [114] for use in the Java
fault model (98],

The types of faults defined in the Java fault model [98] are based on a number of
fault models that have been refined over time |56, 77, 78, 115, 37, 99, 98]. Kim et al.
[77, 78] identify a number of studies in which specific types of faults occur in practice at
object-oriented features of the Java language. They combine these into an initial Java
fault model based on object-oriented specific elements including dynamic binding and
inheritance related types of fault. Offutt et al. also identify an initial fault model based

on the same object-oriented features. Firesmith [56] and Chevalley [37] identify fault
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types based on their experience that are based on common programmer mistakes when
using object oriented and Java specific features. Ma et al. [99] selectively amalgamate,
categorise and refine these fault models into a set of fault types that are representative of
those observed in practice.

The Java fault model has been widely used the basis for mutation analysis in many
empirical testing studies [151, 122, 133, 104, 103, 102, 105, 130, 134]. This usage indicates
an acceptance by consensus that the fault types specified in this model are representative
of the types of faults that occur in practice.

AspectJ Fault Model - The types of faults defined for the Aspect] features are
based on the evolutionary refinement of candidate fault models [3, 12, 36, 47, 145] and
fault classification [90]. There have been a number of candidate fault models proposed
for AspectJ, the first of which was proposed by Alexander et al. [3]. This fault model
identified a number of roughly defined fault types that could occur in pointcuts and advice.
Bakken and Alexander then refined these rough definitions into a more precise set of fault
types [12]. Ceccato et al. [36] extend the set of faults types from those that can occur
at inter-type declarations. Van Deursen et al. add conditional and pattern based fault
types to the set of known fault types. Lemos et al. strengthen the classification of types
of faults that occur at pointcuts [90]. Eaddy et al. further refine and extend the set of
fault types by recognising contextual and object identify based fault types [47].

AspectJ is relatively new and has not yet "crossed the chasm” [107] to widespread
deployment. Because of this, evidence of the types of faults that occur at the AOP
specific features of AspectJ in practice is sparse. Instead, the state of practice is inferred
by researchers through convergence [79]. This occurs when a set of independent researchers
converge on the same set of fault types for AspectJ. Convergence is illustrated by Zhang
and Zhao [155]. They identify a number of bug patterns for AspectJ. A bug pattern
is similar to a fault type but the intention of their bug pattern is to help in debugging
AspectJ programs rather than to generated faults for them. These bug patterns are similar
to the refined AspectJ fault model [3, 12, 36, 47, 145]. This illustrates convergence on this
model. More recent work on testing AspectJ programs have selectively used these fault
models as a basis for their research [119, 11, 91, 90, 17, 18]. This indicates a convergence
and acceptance of these models as the current state of the practice for use in testing and

testability related research focused on AOP.

5.2.2 Mutant Operators

Fault models are the basis for mutation operators. Mutation operators specify how to
generate mutants containing faults of the types identified in the selected fault model. In
this subsection, the mutation operators for the selected Java and AspectJ fault models

are described using examples.
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Java Operators

Table 5.5 lists the mutation operators for the Java fault model, introduced by Ma et al
[98]. Each mutation operator is associated with an OOP feature of the Java language and
generates mutants that contain faults of a specific type. The action the mutation operator
takes to generate a fault is briefly described. This description is also representative of the
type of fault generated by the operator.

Examples of operators in Table 5.5 are the Java this Deletion (JTD) and Java this
Insertion (JTI) operators. These operators are associated with the this keyword which
is classified as a specific feature of the Java language. The application of these operators
in illustrated in Section 4.1 to demonstrate the mutant analysis procedure. The JTI
operator inserts the this keyword.The JTD operator deletes the this keyword. The
resulting faults are representative of the types of faults that occur when developers forget
to use the this keyword where they had intended or used it where they had not intended.
A complete description of all of these operators is provided by Ma et al. [98] on a website

2 dedicated to MuJava, the tool that implements these operators.

AspectJ Operators

Table 5.6 lists the mutation operators which are based on the selected AspectJ fault
model, introduced by Ferrari et al [53]. Each operator is associated with an AOP specific
feature of the AspectJ language and the action taken by the operator to generate a fault
of a specific type is briefly described. An example of an operator in Table 5.6 is the
Around Proceed Statement Removal (APSR) operator. The application of this operator
is demonstrated in Section 4.2. The APSR operator removes statements in which calls
using the proceed keyword are made. The faults generated by the APSR operator are
representative of the type of fault that occurs when the developer forgets the proceed call
in AspectJ around advice. A complete description of all of these operators is provided by

Ferrari et al [53].

5.2.3 Mutant Generation Tool

MulJava is a well-established tool for generating Java mutants. However, when work
began on the study described in this thesis, there was no tool available for generating
AspectJ mutants. This section describes the MuJava and its extension for AspectJ mutant

generation.

2http://cs.gmu.edu/ offutt/mujava/
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Fault Type Operator | Description

AORB Binary Arithmetic Operator Replacement

AORS Short-cut Arithmetic Operator Replacement

AOIU UnaryArithmetic Operator Insertion

AOIS Short-cut Arithmetic Operator Insertion

AODU Unary Arithmetic Operator Deletion

AODS Unary Arithmetic Operator Deletion
Traditional ROR Relational Operator Replacement

COR Conditional Operator Replacement

COD Conditional Operator Deletion

Col Conditional Operator Insertion

SOR Shift Operator Replacement

LOR Logical Operator Replacement

LOI Logical Operator Insertion

LOD Logical Operator Deletion

ASRS Assignment Operator Replacement

HI Hiding variable insertion

IHD Hiding variable deletion

10D Overriding method deletion
Toheritance 10P Overriding method calling position change
nheritance s qe

IOR Overriding method rename

ISI Super keyword insertion

ISD Super keyword deletion

IPC Explicit call to a parent’s constructor deletion

PNC New method call with child class type

PMD Member variable declaration with parent class type

PPD Parameter variable declaration with child class type
Polymorphism | PCI Type cast operator insertion

pCC Cast type change

PCD Type cast operator deletion

PRV Reference assignment with other comparable variable

OMR Overloading method contents replace
Overloading OMD Overloading method deletion

OAC Arguments of overloading method call change

JTI this keyword insertion

JTD this keyword deletion
Son St JSI static modifier insertion

JSD static modifier deletion

JID Member variable initialisation deletion

JDC Java-supported default constructor creation

EOA Reference assignment and content assignment replacement
C EOC Reference comparison and content comparison replacement
~,Omimon

EAM Accessor method change

EMM Modifier method change

Table 5.5: Java Fault Model
MuJava

The MulJava tool [98] implements the Java mutation operators identified in Table 5.5.
This tool, an overview of which is illustrated in Figure 5.6, generates mutants given a
Java source file. The mutant generation process begins by parsing the source file into
a model of the code. This model is traversed to identify locations containing features
with which mutation operators are associated. Once a location is identified, the mutation
operators associated with the feature at the location are applied to a copy of the Java
source file. The copied source is altered in line with the description given for the operator

in Table 5.5. This alteration results in a new version of the source code that deviates from
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Fault Type | Operator | Description
PWSR Replace a type with its immediate supertype
PWIW Insert wildcards into pointcut expressions
PWAR Remove annotation tags from patterns
POPL Change parameter lists
POAC Change after advice clauses
POEC Changing exception throwing clauses
PSSR Replace a type with its immediate subtype
Pointcut PSWR Remove wildcards from pointcut expressions
PSDR Remove declare @ statements
PCTT Replacing a this pointcut designator with a target one
PCCE Switch pointcuts designators
PCGS Replace a get pointcut designator with a set one
PCCR Replace individual parts of a pointcut composition
PCLO Change composition operators
PCCC Replace a cflow with a cflowbelow
ABAR Replace a before clause with an after
APSR Remove invocations to proceed statement
Advice AJSC Replace a join point reference with enclosing
ABHA Removing implemented advices
ABPR Replace pointcuts which are bound to advices
DAPC Alter the order of aspects in declare precedence
DAPO Remove declare precedence
Declaration | DSSR Remove declare soft
DEWC Change declare error/warning
DAIC Changing instantiation clauses
Table 5.6: AspectJ Fault Model

Java Source AspectJ Source

Java

Operators

Mutant

Parser

Model

Aspect)

Model
Operators

Source Mutant Aspect] Source

o compier | [ spectscompier |

Mutant Class Mutant Jar

Figure 5.6:

MuJava Figure 5.7: Aspect]J Extension

the original source. This deviation represents a fault.

The mutant version of the source code contains a fault of the type represented by the
mutation operator used to generate the mutant. The mutant versions of the source code
is then compiled using the Java compiler to create a mutant class. The mutants that do
not compile are discarded. The mutants that compile are recorded in a mutation log.

This log lists mutants that pass compilation and the locations for which the mutant is

generated.

MuJava/AspectJ

MulJava/AspectJ is an extension of MulJava, developed specifically for this study, in which
the operators identified in Table 5.6 are implemented. As illustrated in Figure 5.7, this

extension uses the ajdt [40] parser to parse AspectJ source code into a code model. This
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model is traversed to identify locations containing the AOP specific features presented
in Table 5.6. When these features are identified their associated mutation operators are
applied to the location in precisely the same way as MuJava. For each application of
a mutation operator, a copy of the AspectJ source code is generated. The mutation
operator then introduces a deviation in the copied code. This code is compiled by the
AspectJ compiler and if compiled, the mutant is logged.

One difference between MuJava and this extension is that when the mutant AspectJ
source code is compiled, a new mutant Jar of the entire HW program containing the fault
is generated rather than simply a new mutant class. This is because the mutation of
compositional features, such as pointcuts, require the reweaving of the entire program.
Compositional features at the source code level, such as pointcuts, specify dependencies
that are generated at the byte-code level. Mutation of these compositional features can
cause a change to the intended dependencies. To ensure that mutation at the source code
level is reflected at the byte-code level the entire program including the mutant AspectJ

source code must be compiled using the AspectJ compiler.

5.2.4 Summary

This section described the approach used to generate the mutants for each AspectJ and
Java implementation. This section described AspectJ and Java fault models on which
mutant generation is based in this study. These fault models are highly refined are agreed
to be representative of the types of faults that occur in practice. The mutation operators
that generate faults of these types are outlined and the tool that applies these to Aspect.

and Java implementations is described.

5.3 Tests

This section describes the approach used to select and develop tests for used in mutation
analysis in the study. The section outlines the different test selection approaches that could
have been followed and justifies the chosen approach. It describes the chosen approach,
its application to the HW and the resulting selected tests. It also describes the approach

used to automate the execution of these tests against implementations and mutants.

5.3.1 Choosing a Test Selection Approach

There are two candidate approaches to test selection. The first candidate is white box
test selection. White box test selection is based on knowledge of the internal structure
of the implementation. In this approach, knowledge of the internal structure is used as
a basis for selecting tests. An example of white box test selection is test selection based

on control flow analysis. As illustrated in Sections 4.1.1 and 3.1, control flow analysis
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identifies the paths of execution through an implementation. These are used as a basis
for test selection. In these approaches, test inputs are selected to exercise these identified
paths.

The second candidate is a black box test selection approach. Black box test selection is
based on external knowledge of the implementation, such as its requirements. An example
of black box test selection is a use cases driven approach to test selection [5, 23]. In this

approach, test inputs are selected to exercise the requirements of a program.

Selection Criteria

There are two criteria for choosing an approach to test selection.

Representative - The first criterion is that the approach and resulting tests must be
representative of what is used in practice for selecting tests at the implementation level.
Implementation level testing is testing focused on the programs interface [5] .

Practical - The second is that resulting test selection must be practical in terms of
the resources required to apply the approach.

Applicable - As illustrated in Figure 5.3, the methodology on which this study is
based requires one test suite that is applicable to both sets of implementations. The third
and final criterion is that the approach must result in a set of tests that is applicable to

the Java and AspectJ implementations of each version of the HW program.

Approach Selection

A black box approach is selected because it is more representative, practical and easily
applicable than a white box approach.

Representative - White box approaches to test selection are based on analysis of the
internal structure of the implementation. In practice, this approach is used at the unit,
module and integration levels of testing. Black box approaches to test selection is based
on analysing of the programs. In practice, this approach is used at the implementation
level, i.e at the level of the programs interface.

Practical - A white box approach to test selection is expensive in terms of the
resources needed to apply the approach. In contrast the application of a black box test
selection approach is relatively inexpensive.

Applicable - White box approaches to test selection are based on analysis of the
internal structure of the implementation. A white box approach applied to the Java
and AspectJ implementations of each of the ten version of the HW program will result
is twenty different sets of tests, one for each implementation. Fach test set would be
directly applicable to the implementation for which it was selected but would not be

directly applicable to the other implementations.
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These test sets could be merged into a super test suite that would then be applicable to
all implementations but would subsume each selected test suite. White box test selection
is known to be expensive [6]. The expense incurred by applying this approach at a program
level is impractical [5, 23] and not generally used in practice [113, 61].

A black box approach to test selection is based on analysing of the requirements and
interface of the program. Because each version of the HW share the same requirements
and interface tests can be selected using this approach that are applicable to all implemen-
tations. This approach is inexpensive, relative to white box test selection, and is generally

used in practice [113, 61] at the program level [5, 23].

5.3.2 Black Box Test Selection

A black box approach to test selection, based on use cases, is chosen to select tests for
use in this study [74, 75]. To illustrate this approach, its application to the Employee
Login use case from the HW program is presented. The application of this approach to

"

the use cases identified in Tables 5.2 and 5.3, on which the HW program is based, is the

described.

Example Use Case

The Employee Login use case is presented in Table 5.7. The table is based on the full
description of all use cases available at the TAO [64] website. This is the website at which
all of the HW implementations and use cases are available.

The inputs for the use case are an employee id and a password. The output of the use
case is a validation of the password. The use case also describes a main and alternative
flow. The main flow describes the typical steps in the login process when a valid employee
id and password pair are used to login. In this case, the HW program declares these as
being valid and logs the employee into the program. The alternative flow describes the
steps when an invalid employee id and password pair are used to login. The HW program

declares these as being invalid and informs the user that they cannot be logged in.

Test Selection

Test inputs are selected to exercise the flows through the use case. In the Employee Login
use case, there are two flows. The first is the main flow, in which a valid employee id and
password pair are provided to the program. The second is the alternative flow, in which
an invalid employee id and password pair are provided to the program.

To exercise the main and alternative flows, valid and invalid employee id and password

pairs are needed. The validity of an employee id and password pair depends on whether
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| Use case | Employee login ]
Summary Log in to the HW system
Inputs employee id and password
Ouput Password validation
Flow Step | Description
Main 1 il User provides valid employee Id and password pair
1.2 Employee id and password pair are identified as valid
123 Employce is logged into the HW
Alternative 2 | 2.1 User provides an invalid employee Id and password pair
2.2 Employee id and password pair are identified as invalid
2.3 Employee is not logged into the HW

Table 5.7: Employee Login Use Case

[ Flow | Test | Employee id | Password |

Mais 1 Andrew TCD
i 2 Siobhén Trinity
3 Andrew Trinity
Al i 4 Siobhén I‘(:I) [ Employee id | Password |
B Bill UsA Andrew TCD
6 Bill I'Cb Siobhén Trinity
Table 5.8: Examples of Test Selection Table 5.9: Test Data

the pair is in the HW database. To select tests that exercise these flows sets of employee
id and password pairs and a HW database containing employee test data are needed.

Table 5.8 illustrates sample employee id and password pairs, and employee test data
to populate the HW database is illustrated in Table 5.9. These are selected to exercise
the main and alternative flows of the Employee Login use case.

Tests 1 and 2 exercise the main flow of the Employee Login use case. These tests
contain employee id and password pairs that are valid because they are contained in the
employee test data and should result in a successful login. Tests 3 to 6 exercise the
alternative flow of the Employee Login use case. These tests contain employee id and
password pairs that are invalid because they are not contained in the employee test data

and should result in an unsuccessful login.

Application to HW Use Cases

The use case driven approach to test selection is applied to the use cases, listed in Tables
5.2 and 5.3. The use case driven approach to test selection was applied to the use cases,
identified in Table 5.2 and 5.3, by a group independent of this study. There were seven
software testing professionals, all from different Irish software development companies,
with a minimum of four years of industrial experience in this group. The group were not
told about the study presented in this thesis.

They were provided with the full description of each use case identified in Tables 5.2
and 5.3 and screen shots of the HW web interfaces associated with each use case. The

database tables used by the HW program and some sample data to illustrate the types
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[ Versions [ Use Case [ Type | Target | Tests |
1 Employee Login 18
2 Complaint 16
3 List Complaints 4
4 List Health Units 8
5 Secarch Health Units by Specialty 13
6 List Specialties 4
i Specialties by Health Unit 13
1-10 8 Disease Type 17
9 List Disecase Types 4
10 Employee 13
11 Thsert Animal Complaint 14
12 i Food Complaint 14
13 Special Complaint 14
14 Employee 15
15 Update Complaint 14
16 Health Unit 14
17 " Speciality 4
18 Seispe Symptoms 4
19 Health Unit 10
20 ) Symptoms 10
10 21 il Speciality 10
22 Discase Type 10
23 Speciality 11
24 s S)]'mpt()ms 11

Table 5.10: Tests Selected for Use Cases

of data held in each table were also provided. The use of software testing professionals to
select tests ensured that the application of the use case driven approach and the resulting

tests are representative of the general practice.

Selected Tests

Table 5.10 illustrates the number of tests selected for each use case. Overall, there are
two hundred and sixty five tests selected. For each use case, tests are selected to exercise
each flow in the use case. The table also shows a subset of the test set is applicable to all
ten versions of the HW program. This is because additional use cases are introduced in
the eighth maintenance activity applied to the HW program. This means that the entire

test set is applicable to only versions nine and ten of the HW program.

5.3.3 Test Execution Automation

There are twenty implementations of the HW. In the location execution phase of Mutation
Analysis in this study, detailed in Section 4.1, each of the selected tests must be regressively
executed against all twenty implementations. In the fault exposure phase, also detailed
in Section 4.1, each test must be regressively executed against all mutants of all twenty
implementations. This repeated execution of tests is manually unfeasible and as such the

execution of tests was automated.
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T LLEEEE L X * success
3 A

| Ly
changee< Legend
: A B Inputs
| A‘ndreYV,TCD. 1 I Expected
: Siobhan, Trinity i B Actual
lesnsnncons * no change
D

Figure 5.8: Automated Employee Login Test

Automation Steps and Frameworks

Fach automated test executes six steps, as illustrated in Figure 5.8. I'his test exercises
the employee login function of the HW. The test has two inputs. The first are pairs of
employee id and passwords used to populate the database. The second is the Andrew, TCD
employee id and password pair that are used as arguments to employee login function.

The first step in the automated test execution process is populating the database with
the input test data provided by the test. Each test is based on the db-unit framework
[67] which provides the facility to automatically load test data into the database as a
precursor for test execution.

The second step is to initialise the HW program, which requires starting an RMI
registry [65], the server and the client in a strict sequence. In this sequence, the RMI
registry is started first. The server is started next. The server establishes connections
to the database and initialises its data layer, which is used to represent the data held in
the database. The server registers with the RMI registry and once registered, the client
is started. The client is web based and exposes a http interface. The client retrieves a
reference to the server from the RMI registry and waits for http requests. To initialise
these components in the correct sequence, a framework for starting a distributed process,
called spawn [70] is used.

The third step is to execute the function exposed through the web client’s http inter-
face. To execute a function requires that a http request be sent to the web client. Each
test is based on the http-unit framework [140]. This enables tests to send http requests
to web interfaces. Once the request is received by the web client, it is executed. The web
client executes and forwards the request to the server, which checks to see whether the
employee id and password pair are in the database. The test data used to populate the
database contains pair and as such the server returns that the login attempt is valid.

The web client sends a response to the request that indicates a successful login. The

fourth step is to check whether this response is the response that was expected. The
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expected response is a successful login. This matches the actual response.

The fifth step is to check whether the execution has left the database as expected. The
test’s execution has left the database unchanged which is as expected. This is asserted
through the db-unit framework [67], which provides the facility to check the contents of
the database after the execution of a test. Because both the actual response and the
database are as expected after the test executes the test passes. If these were not as
expected then the test would fail.

The sixth and final step is to stop the HW program. This requires the client, server
and the RMI registry to be stopped. The client is stopped first, followed by the server
and the RMI registry. This stopping sequence is controlled by the spawn framework.

Location Execution

| Mutant Loader
|l Pass

| [ Fail

Legend [l Mutant

Debugger
W Inputs

W Ouputs
Legend | Il Implementation

Figure 5.9: Location Execution Figure 5.10: Fault Exposure

In the location execution phase of mutation analysis, detailed in Section 4.1, each test
is executed against each implementation to identify the locations executed by each test.
These locations are identified by executing the tests against the program’s implementation.

Figure 5.9 illustrates the execution of the test against the program’s implementation.
To automatically identify the locations executed by each test, the client and server com-
ponents of the HW are wrapped by two debuggers. The debuggers take the identified
locations as inputs and converts them into breakpoints. As the client and server execute,
the breakpoints that are hit during the execution are recorded.

The debuggers are based on the standard Java DeBugger (JDB) tool shipped with the
Java Standard Development Kit [10]. The JDB is customised to function as a wrapper

around the distributed client and server components of the HW.

Fault Exposure

In the fault exposure phase of mutation analysis, also detailed in Section 4.1, each test is
executed against each mutant. Figure 5.10 illustrates the execution of the test against a

mutant.
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Figure 5.11: Distribution of Test Executions

To execute a mutant requires a mutant loader. This is a modified class loader that
loads the mutant implementation. There are two kinds - one for Java mutants and another
for Aspect mutants. The Java mutants are mutant classes which are loaded with un-
mutated classes. The AspectJ mutants are mutant Jar files which contain the class files
for the entire mutant implementation.

Once the mutant is loaded, the test is executed against the mutant implementation.
The mutant contains a fault at an executed location. This location may be on the server,
on the client or on both. The test executes and if the test passes then the test is not
exposed. If the test fails the fault is exposed. The outcomes of all test-mutant executions

are recorded for analysis.

Execution Environment

Mutation Analysis is known to be computationally expensive [57, 135, 116]. In the fault
exposure phase, each test is regressively executed against all mutants of all twenty im-
plementations. This is highly computationally expensive because an exhaustive set of
mutants are generated for each implementation. This means that there are a large num-
ber of mutants that need to be executed by tests. As will be shown in the next chapter,
thousands of mutants are generated for each implementation. Each of the 265 tests can
potentially be executed against each mutant. This means that there is a very large number
of tests need to be executed against mutants in this stage.

To address these issues, the mutants generated for each implementation were deployed
onto separate linux machines. Some of these machines are illustrated in Figure 5.11. The
set of automated tests were also deployed on each machine along with the required in-
frastructure for mutant execution. This ensured that the test-mutant execution could be
carried out in parallel for each implementation. Parallelisation of the mutation analysis
procedure has been identified as an approach for addressing the need for a large amount
computational resources [57]. Without paralellisation, this study would have been unfea-

sible.
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5.3.4 Summary

This section described why a use case driven approach to test selection is representative
of the general case. It indicates that professional software testers applied this approach
to the use cases on which the Health Watcher is based, to create a set of tests, which
ensures the resulting tests are representative of the general case. It also described how
the selected tests were automated and the environments in which these tests were used in

the mutation analysis procedure, detailed in Section 4.1.

5.4 Chapter Summary

An inherent goal of the study presented in this thesis is to gather evidence from which
general conclusions about the comparative effect of AOP and OOP on testability can be
drawn. General conclusions can only be drawn from evidence gathered in contexts that
are representative of the general case. This chapter has described the selection of the
three inputs to create a context that is representative of the general case. This is done to
maximise the degree to which general conclusions can be drawn from evidence gathered
in the study.

In each section inputs are selected that have the potential to be used in the measure-
ment gathering approach, prescribed by the methodology detailed in Chapter 4. The first
section selected the evolutionary implementations of the Health Watcher program from a
set of candidates because they best fitted the defined indicators of representativeness. The
second section selected the MuJava/AspectJ tool to generate mutants of these implemen-
tations because this tool generates mutants that contain faults that are representative of
the types of faults that occur in practice. The third and final section describe an approach
to select a set of representative tests to execute against the mutants generated for each
AspectJ and Java implementation of the Health Watcher program.

These selections maximise generalisablility of evidence gathered in this study because
together these inputs form a context that is representative of the general case. The
results of applying MA in this context and evidence derived by analysing these results are

presented in the next chapter.
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Chapter 6
Study Results and Analysis

In Mutation Analysis (MA), mutants that contain a fault are generated from implementa-
tions. Over the phases of MA, the outcomes of executing a test set against each mutant are
derived. As illustrated on the left-hand side of Figure 6.1, for each test-mutant execution
there are three possible outcomes. I'he test can exercise a path through the implementa-
tion where the fault is not executed. Alternatively, if the fault is executed, then the fault
can either cause state infection and propagation of that infected state into the output,
or not. In the first case, the output will differ from what is expected and result in a /i
outcome. In the second case however, the output of the test will be as expected and result
in a pass outcome.

In this study, MA is applied to AspectJ and Java implementations of ten versions
of the Health Watcher (HW) program. The outcomes of the test-mutant executions for
each implementation are used as a basis to derive rates of fault exposure, fault execution
and infection and propagation for those implementations. To calculate these rates for
each implementation the number of not exe, pass and [2il outcomes from the test-mutant
executions are counted.

The primary focus of this thesis, as outlined in chapters 1 and 4, is to compare the

Mutant Rates
Test Fault Exposure | {
no yes
no & yes

=
0 Fault Execution @ Infection and Propagation

Figure 6.1: Fault Exposure: Mutant and Rates
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effects of AOP and OOP on the rate of fault exposure. As detailed in chapters 3 and
4, the rate of fault exposure is caused by the rates of fault execution and infection and
propagation. A secondary focus of this thesis is to understand why the effects of AOP and
OOP on the rate of fault exposure fault exposure differ. This is achieved by comparing
and analysing the effects effects of AOP and OOP on the rates of fault execution and

infection and propagation.

fail+pass

m ThlS rate repre-

The rate of fault execution is calculated as rate =
sents the proportion of test-mutant executions where the fault contained in the mutant

is executed. The rate of infection and propagation is calculated as rate = # This

rate represents the proportion of test-mutant executions in which the fault is executed

result in state infection and propagation, resulting in test failure and fault exposure. The
faul
fail+pass+notexe

overall proportion of test-mutant executions that result in test failure and fault exposure.

rate of fault exposure is calculated as rate = This rate represents the

The right hand side of Figure 6.1 illustrates the causal relationship between these
rates. The rate of fault exposure is directly caused by the rates of fault execution and
infection and propagation. The higher the rate of fault exposure, the more faults that
are executed. The more faults that are executed, the more possibilities there are for state
infection and propagation of infected state. That is, the higher the rate of infection and
propagation, the more fail outcomes. The more fail outcomes, the higher the rate of fault
exposure.

In this chapter, the results of applying MA to the AspectJ and Java implementations
of the ten versions of the Health Watcher (HW) program are presented. The number
of not exe, pass and fail outcomes from the test-mutant executions are counted for each
implementation. Based on these counts, the rates of fault exposure, fault execution and
infection and propagation for each implementation are calculated. The effects of AspectJ
and Java on these rates are compared over the ten versions of the HW program using
graphical analysis. The comparative effects of these AspectJ and Java on these rates are

then quantified by applying binomial regression analysis to each rate.

This analysis is based on the outcomes from executing tests against mutants generated
for each implementation. Before the analysis of rates is presented, an analysis of the
mutants generated for each implementation is presented. As outlined in Section 4.3,
mutant equivalence is an assumption on which this study is based. The generated mutants
are equivalent if they differ only in the implementation from which they are generated.

The remainder of this chapter is organised as follows. The first section of this chapter
presents an analysis of the mutants generated for each implementation. The second section
compares the rates of fault exposure, fault execution and infection and propagation for
AspectJ and Java implementations. The third section presents the results of quantifying

the comparative effects of AspectJ and Java on each rate. The fourth section outlines the
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threats to the validity of the results and analysis and discusses the impact they have on
how the results can be interpreted. The chapter is concluded by summarising each step
in the comparative analysis and extracting the evidence of the comparative effect of AOP

and OOP on testability from the results.

6.1 Comparison of Generated Mutants

The MuJava/AspectJ mutant generation tool is applied to the Java and AspectJ imple-
mentations of the (HW) in the mutant generation phase. Table 6.2 presents the number
of mutants that are generated by this tool for each implementation of each version of the
HW. It also lists the number of locations in each implementation at which mutants are

generated.

6.1.1 Results of Mutant Generation

The information in Table 6.2 is visualised in the graph illustrated in Figure 6.3. The x-axis
of this graph represents the version of the HW and the y-axis represents the number of
mutants generated. Each point in the graph represents the number of mutants generated
in a Java or AspectJ implementation. The points for both types of implementation are
differentiated by the colour of each point. The size of each point represents the number
of locations at which the mutants were generated. There are two lines through the graph,
one that connects the points for the Java implementation and the other that connects the
points for the AspectJ implementation. Each line indicates the change in the numbers of
mutants generated over versions for the AspectJ and Java.

Figure 6.3 shows that the number of mutants that are generated for Java and As-
pectJ implementations increase steadily over versions. The 4367 mutants generated for
the initial Java implementation, increases steadily to 4551 at version 8. The number of
mutants generated then jumps to 4815 in version 9 and to 4961 in version 10. This jump
is explained by the implementation of five additional use cases in the maintenance activity
implemented in version 8 and the addition of a logging feature in the maintenance activity
implemented in version 9.

There are 4447 mutants generated for the initial AspectJ implementation. This is
80 mutants more than the equivalent Java implementation. The number of mutants
generated jumps from 4472 at version 2, to 4726 at version 3. This jump is a response to
a significant re-factoring of the AspectJ implementation needed to perform a corrective
maintenance activity to version 2. This increases the difference between the number of
mutants generated for the AspectJ implementation to approximately 300 mutants over
the versions 3 to 8. A steady increase is then observed up to version 8 where another jump

from 4727 of mutants generated to 4815 at version 9 and 5061 at version 10. These jumps
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are also in response to the additional use cases and logging features added at versions 9
and 10. At version 10 the difference in the number of mutants generated for the Java and
AspectJ implementations is 100 mutants.

This difference between the lines shows that more mutants are generated for the As-
pectdJ implementation over each of the ten versions of the HW. A statistical comparison
of these measures, presented in appendix Listing A.1, indicates that this difference is not
significant when the overall number of mutants generated for both implementations is
considered. A comparison of the size of the points on each line shows that the number
of locations at which mutants are generated are similar, but slightly larger for the Java
implementation. Another statistical comparison of these measures, presented in appendix
Listing A.2, indicates that the difference in the number of locations at which mutants are
generated for Java and AspectJ implementations is not significant. This indicates that
the number of locations at which mutants are generated is roughly the same for Java
and AspectJ which reaffirms the equivalence of the mutants generated for each pair of
implementation.

Because both sets of implementations are equivalent and similar mutation operators
are applied to these implementations using precisely the same mutation generation process
we expect there to be no significant differences between the number of mutants generated
for Java and AspectJ implementations of the number of locations at which mutants are
generated. Both statistical comparisons match our expectation and suggest that the

results of the mutant generation for the Java and AspectJ implementations are equivalent.

6.1.2 Mutant Equivalence

Section 4.2 shows that this study is based on implementation and maintenance equiva-
lence. If each pair of AspectJ and Java implementations differ only in the approach used
for their development then these are implementation equivalent. If the only difference
between respective AspectJ and Java implementations of HW versions is the maintenance
activity that created the new version of the HW, then these implementations are main-
tenance equivalent. A goal of the mutant generation phase, identified Section 4.2, is to
generate mutants for AspectJ and Java implementations that preserve implementation
and maintenance equivalence.

Equivalence is preserved if the only differences between mutants is that they were
generated from AspectJ or Java implementations of different versions of the HW. A two-
pronged approach was followed to evaluate whether the generated mutants had preserved
implementation and maintenance equivalence. First, the number of mutants generated is
compared with the size of the implementations. If they are correlated, then this indicates
that the mutants are reflective of the implementation from which they were generated. If

the number of mutants reflect the size of implementations from which they are generated,
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then this suggests that these mutants are equivalent.

Second, the types of mutants generated for each implementation are compared. As
shown in Section 5.1, the Java and AspectJ implementations are similar. This is because
the initial AspectJ implementation is the result of refactoring of the initial Java implemen-
tation. This similarity means that similar types of faults should be generated in mutants
for Java and AspectJ implementations. If the mutants generated for Java and AspectJ

contain similar types of faults, then this suggests that these mutants are equivalent.
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Correlation of Mutants Generated and Implementation Sizes

A correlation between the number of mutants generated and the size of the HW is illus-
trated by comparing Figures 6.3 and 6.5. Figure 6.3 shows the changes in the number of
mutants generated for each implementation over versions of the HW. Figure 6.5 shows the
changes in the size! of the AspectJ and Java implementations over the ten versions of the
HW. The x-axis represents the version of the HW and the y-axis represents the number of
modules in an implementation. Each point in the graph represents the number of modules
in a Java or AspectJ implementation. The points for both types of implementation are
differentiated by the colour of each point. The size of each point represents the number
of Lines Of Code (LOC) in an implementation. There are two lines through the graph,
one that connects the points for the Java implementation and the other that connects the
points for the AspectJ implementation. Each line indicates the changes in the size of Java
and AspectJ implementations over versions.

Comparing Figures 6.3 and 6.5 shows that the changes in the size of AspectJ and
Java implementations over versions are reflected by similar changes in the number of mu-
tants generated for the AspectJ and Java implementations. This similarity demonstrates
a rough correlation. This correlation indicates that the mutants generated for implemen-
tations are reflective of the equivalent implementations. It suggests that the mutants

generated for each implementation preserve equivalence.

Comparing Distribution of Fault Types in Mutants

Figure 6.4 presents the distribution of fault types, generated in mutants at locations in
one specific implementation®. Each coloured segment represents the number of locations
for which mutants are generated that contain a fault of a specific type.

The bars for the AspectJ and Java implementations of each version are placed directly
beside one another to make comparing the distribution of fault types easier. This shows
that the types of fault generated in mutants of each AspectJ and Java implementation are
similar. For each pair of AspectJ and Java implementations, the distribution of shared
fault types are similar.

The shared fault types are: common, Java-specific, overloading, polymorphism and
traditional. The number of mutants generated for each pair are very similar. There
are slightly more common, inheritance and polymorphism fault types generated in Java
mutants. There are slightly more traditional fault types generated in AspectJ mutants.
The number of mutants generated containing the remaining fault types are roughly equal.

The advice- and pointcut-based fault types are only generated in mutants of the As-

pectJ implementation. The large amount of similarities and very slight differences between

'Size is based on metrics gathered from the HW by Greenwood et al. [63)]
2A more detailed version of this chart is available in Figure A.1
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the types of faults generated in mutants of each pair of AspectJ and Java implementations

indicate that these mutants are equivalent.

6.1.3 Summary

This section presented the number of mutants that are generated for each implementation
of each version of the HW. The number of mutants generated for AspectJ and Java
implementations were compared. This comparison showed that there were slightly, but
not significantly, more mutants generated for the AspectJ implementation. The number
of mutants were correlated with the size of the implementations from which they were
generated to provide evidence of mutant equivalence. The distribution of the types of
faults generated in mutants for each pair of AspectJ and Java implementations were also

correlated to provide further evidence of mutant equivalence.

6.2 Analysis of Outcomes and Rates

The outcomes of the test-mutant executions for each Java and AspectJ implementation are
used as a basis to derive rates of fault exposure, fault execution and infection and prop-
agation for those implementations. To derive these rates for each implementation, the
number of not exe, pass and fail outcomes from the test-mutant executions are counted.
The first part of this section presents and analyses the outcomes from the test-mutant
executions for each implementation. The second, third and fourth parts of this section
present and analyse the rates of fault exposure, fault execution and infection and propa-
gation derived from these outcomes. This section is concluded by summarising the results

of the analysis.

6.2.1 Outcomes

These number of not exe, pass and fail outcomes for the Java and AspectJ implementa-
tions of each version of the HW program are presented in Table 6.6.Figure 6.7 presents a
bar chart that visualises the number and the type of outcomes for each implementation,
provided in Table 6.6. Each bar in this chart represents the number of not exe, pass and
fail outcomes of test-mutant executions for a specific implementation. The bars for the
AspectJ and Java implementations of each version are placed directly beside one another
to make comparing the number of outcomes easier.

This chart shows that for each implementation, the number of not exe outcomes is
much larger than the number of pass and fail outcomes for all implementations. This is
expected because each test executes one path through the mutant implementation, and
given the large size and high number of potential paths through the implementation, it is

not surprising that most of the test-mutant executions result in a not exe outcome.
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Figure 6.6: Outcomes Figure 6.7: Outcomes Visualised

The chart also shows, there are consistently more outcomes for the AspectJ implemen-
tations. As shown earlier, the number of outcomes for each implementation is the product
of executing the test set against each of the mutants generated for the implementation.
Figure 6.3 shows that there are more mutants generated for the AspectJ implementation.
The same test set is executed against the mutants generated for each pair of Java and
AspectJ implementations. This means that the only determinant for the difference in
the number of outcomes for Java and AspectJ implementations is the number of mutants

generated from them.

6.2.2 Fault Execution

The bar chart presented in Figure 6.7, suggests that the rate of fault execution is higher for
/m/-J-,w“

AspectJ implementations. The rate of fault execution s calculated as rate = ===
This rate represents the proportion of test-mutant executions where the fault contained

in the mutant is executed.

Comparing Rates of Fault Execution

Figure 6.8 shows the result of calculating the rates of fault execution for each Java and
AspectJ implementation. In this graph, the x-axis represents the version and the y-axis
represents the rate of fault execution. Each point on the graph represents the rate of fault
execution for each of the AspectJ and Java implementations of each version of the HW.
The points are differentiated by colour, and a line connecting the points for AspectJ and
Java implementations is also provided to highlight the changes in these rates over versions
of the HW.
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This graph shows that the rate of fault execution is higher for the AspectJ implemen-
tations of each version. Figure 6.8 shows that the proportions of faults that are executed
in mutants of AspectJ implementations are between 0.088 and 0.104. This figure also
shows that for Java implementations, the proportions of faults executed is between 0.078
and 0.0804. A comparison of these rates shows that AspectJ has a higher rate of fault
execution. This means that there are proportionally more faults executed by tests in
mutants of AspectJ implementations.

As illustrated in Figure 6.1 and explained in the introduction to this chapter, the higher
the rate of fault execution, the higher rate of fault exposure. This is because the more
faults that are executed, the more possibilities there are for state infection and propagation
of infected state. The rate of fault execution is higher for AspectJ implementations which
means there is more potential for a higher rate of fault exposure for these implementations

compared to Java implementations.

Cause of Higher Rates for AspectJ Implementations

Figure 6.8 shows that the rate of fault execution is higher for AspectJ. The most significant
cause of this difference is that in the AspectJ implementation, there was a large amount
of redundant execution every time this implementation was initialised for test execution.
Figure 6.9 illustrates the initialisation of the Java and AspectJ implementations for a test.

As described in Section 5.3.3, in the initialisation of the HW, the server is started
before the client. When the server is started, it initialises a data layer which acts as an
interface to a database, through a persistence layer, that holds the information managed

by the HW system. When the client is started it establishes a connection to the server
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With Data Layer Without Data Layer

70 40 40

Figure 6.10: Example of the Impact Of Data Layer Initalisation On Client

and exposes a http interface to the server for managing information in the HW. This
initialisation sequence for the Java implementation is illustrated at the top half of Figure
6.9.

In the initialisation of the AspectJ implementation, illustrated at the bottom half of
Figure 6.9, the data layer is initialised in both the server and client. Although the data
layer is initialised on the client, it is not executed within the client after initialisation. This
redundant initialisation is due to a poorly defined pointcut that triggers the initialisation
of this layer in the client. The intention of the pointcut is to initialise the data layer
on the server only. This means that tests executed against mutants that contain faults
generated in the data layer are more likely to execute these faults. The consequence of
this, as observed in Figure 6.8, is a higher rate of fault execution for AspectlJ.

The rate of fault execution is increased because more tests execute the faults present
in the data layer. When the data layer is instantiated on the client during initialisation,
the context of instantiation is not as expected. This causes faults to execute that would
otherwise not. It also means that tests execute faults that would otherwise have not. The
increase in the number of faults that are executed and the number of tests that execute
faults result in an overall higher proportion of faults executed by tests per implementation.

Besides the inflation of rate of fault execution, the redundancy also has a knock on
effect on the rate of infection and propagation. As more tests are executing more faults
in the AspectJ implementation due to the redundant execution, the potential for test
failure due to infection and propagation increases. However, this potential is not realised
because the data layer is not used by the client and failures in the data layer in the client
are less likely to cause test failure due to infection and propagation. The result of this is a
deflation of the rate of infection and propagation. This deflation occurs because although
the number of /21/ outcomes fall relative to the number of pass outcomes.

This inflation and deflation is explained further through the simple example presented
in Figure 6.10. The numbers used in this figure are conjured for the purpose of explanation
only. The figure shows the number of not exe, pass and [ail outcomes for the client

component of the AspectJ implementation with and without the data layer on the right
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Figure 6.11: Fail and Pass Outcomes Figure 6.12: Rates of Infection and Prop.

and left hand of the figure.

This illustrates the inflation in the rate of fault execution from % to % It also

demonstrates the deflation of the infection and propagation rate from 11—8 to % More-
over, it also shows that although the rate of infection and propagation is deflated the
overall effect of the redundant data layer initialisation is the inflation of the fault expo-
sure rate from % to % As the example shows, the increase in the number of faults
executed results in a small proportion of fail outcomes which inflates the overall rate of

fault exposure.

6.2.3 Infection and Propagation

Figure 6.11 presents a bar chart that visualises the number of fail and pass outcomes from
test-mutant executions in which the fault contained in the mutant is exercised, provided
in Table 6.6. Each bar in this chart represents the number of pass and fail outcomes
of these test-mutant executions for a specific implementation. The bars for the AspectJ
and Java implementations of each version are placed directly beside one another to make

comparing the number outcomes easier.

This chart shows that for each implementation, the number of outcomes is much larger
for AspectJ implementations. This is because there are more mutants that contain faults
generated for the AspectJ implementations, as illustrated in Figure 6.3, and more of these
faults are executed by tests, as illustrated in Figure 6.11. This chart also indicates that

the rates of infection and propagation are generally lower for AspectJ implementations.
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Rates of Infection and Propagation

fail
fail+pass

sents the proportion of test-mutant executions in which the execution of the fault results

The rate of infection and propagation is calculated as rate = . This rate repre-
in state infection and propagation, which in turn results in test failure and fault exposure.

The graph presented in Figure 6.12 shows the result of calculating the rates of infection
and propagation for each Java and AspectJ implementation, based on the numbers of
[ail and pass outcomes provided in Table 6.6. In this graph, the x-axis represents the
version and the y-axis represents the rate of infection and propagation. Each point on
the graph represents the rate of infection and propagation for each of the AspectJ and
Java implementations of each version of the HW. The points are differentiated by colour.
A line connecting the points for AspectJ and Java implementations is also provided to
highlight the changes in these rates over versions of the HW.

Figure 6.12 shows that for AspectJ implementations, the rate of failure declines from
an initial high of 0.52 to a low of 0.39. This indicates that over maintenance activities
the rate of infection and propagation for AspectJ decreases. This figure also shows that
for Java implementations, the rate of failure improves from an initial rate of 0.455 to a
final rate of 0.048. This indicates that over maintenance activities the rate of infection
and propagation increases for Java. A comparison of these rates shows that overall, Java
has a higher rate of failure outcomes for the mutants executed.

As illustrated in Figure 6.1 and explained in the introduction to this chapter, the
higher the rate of infection and propagation, the higher rate of fault exposure. This is
because the more test failures, the more faults that are exposed and the higher the rate of
fault exposure. The rate of infection and propagation is higher for Java implementations
which means there are more faults exposed when tests execute faults in mutants for these

implementations compared to AspectJ implementations.

Causes of Higher Rates for Java Implementations

The graph presented in Figure 6.13 decomposes the number of [2il and pass outcomes
presented in Figure 6.11 for each implementation by fault type. This shows that different
fault types influence the rate of infection and propagation for each implementation. The
figure contains a bar chart for each fault type. Each chart directly compares the number
of pass and fail outcomes of test-mutant executions for Java and AspectJ implementations
of each version of the HW.

The reason the rates of infection and propagation are higher for Java is because the
rates of infection and propagation for fault types are generally higher for Java compared to
Aspectd. The rates of infection and propagation for the common, inheritance, overloading
and traditional fault types are higher for Java implementations compared to AspectJ.

The rates of infection and propagation for these fault types are highly influential on the
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Figure 6.13: Fault Types

overall rates of infection and propagation for Java and AspectJ implementations. This is
because the number of outcomes for these types account for a large proportion of overall
number of outcomes for the Java and AspectJ implementations. The rates of infection
and propagation for these fault types pulls the overall rates of infection and propagation

for Java implementations over those for AspectJ implementations.

The rates of infection and propagation for the advice and pointcut fault types are low,
which pulls the overall rates of infection and propagation for AspectJ implementations
down further compared to Java implementations. The rates of infection and propagation
for the java-specific and polymorphism fault types are higher for AspectJ implementa-
tions compared to Java. The rates of infection and propagation for these fault types is
not as influential on the overall rates of infection and propagation for Java and AspectJ
implementations. This is because the number of outcomes for these types account for a

smaller proportion of overall number of outcomes for the Java and Aspect.J implementa-
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Figure 6.14: Rates of Fault Exposure

tions. The rates of infection and propagation for these fault types reduces the difference

between rates of infection and propagation for the Java and AspectJ implementations.

6.2.4 Fault Exposure

fail

m . This rate I'CI)I'(,‘S(‘I![S Lll(‘

The rate of fault exposure is calculated as rate =
overall proportion of test-mutant executions that result in fault execution, state infection

and propagation, which in turn results in test failure and fault exposure.

Comparing Rates of Fault Exposure

Figure 6.14 presents a graph that illustrates the difference between the rates of fault
exposure for the AspectJ and Java implementations of each version of the HW. In this
graph, the x-axis represents the version and the y-axis represents the fault exposure.
Each point on the graph represents the rate of fault exposure for each of the AspectJ
and Java implementations of each version of the HW. The points for AspectJ and Java
implementations are differentiated by colour. A line connecting the points for AspectlJ
and Java implementations is also provided to highlight the changes in these rates over
versions of the HW.

The graph presented in Figure 6.14 shows that over the versions the rate at which faults
are exposed by executing mutants is generally higher for the AspectJ implementations.
The rate of fault exposure for the AspectJ implementation of the initial version of the
HW is much higher at 0.046 than the Java implementation at 0.033. The rate of fault

exposure for AspectJ drops up to version six of the HW, where the rate recovers slightly
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Figure 6.15: Comparative Effects

until version eight, where the rate drops again to a final rate of 0.038.
The overall rate of fault exposure is higher for the AspectJ compared to Java imple-
mentations. However, it does seem that the rates are converging in the later versions of

the HW.

Causes of Higher Rates for AspectJ Implementations

Figure 6.15 illustrates the comparative effects of AspectJ and Java on the rates of fault
exposure, fault execution and infection and propagation. It shows that the general effect of
AspectJ is to improve the rate of fault exposure over Java. This means that the proportion
of faults exposed from executing the test set against the mutants generated for AspectlJ
implementations is higher than the proportion of faults exposed from executing the test
set against the mutants generated for Java implementations.

The figure also shows that the general effect of AspectJ is to improve the rate of fault
execution over Java. This means that the proportion of faults executed in mutants of the
AspectJ implementations is higher than the proportion of faults executed in mutants of
the Java implementations. It also shows that the general effect of Java is to improve the
rate of infection and propagation over AspectJ. This means that the proportion of faults
exposed, when faults in mutants of the Java implementations are executed, is higher than
the proportion of faults exposed when faults in mutants of the AspectJ implementations
are executed.

As mentioned earlier and illustrated again in Figure 6.15, there is a causal effect
between the rates of fault execution and infection and propagation on the rates of fault
exposure. The rate of fault exposure is directly caused by the rates of fault execution
and infection and propagation. The higher the rate of fault exposure, the more faults
that are executed. The more faults that are executed, the more possibilities there are for
state infection and propagation of infected state. The higher the rate of infection and
propagation, the more fail outcomes. The more fail outcomes, the higher the rate of fault

exposure.
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These results suggest that although a smaller proportion of executed faults result in
state infection and propagation of the infected state causing test failure and fault expo-
sure, there are proportionally more faults exposed in the AspectJ implementations. This
is because there are more faults executed in mutants of the AspectJ implementation and,
although there are proportionally fewer faults exposed compared to Java implementa-
tions, the increased volume of faults executed results in a higher number of instances of
state infection and propagation resulting in test failure and fault exposure for AspectJ

implementations.

6.2.5 Summary

This section presented the number of not exe, pass and fail outcomes for the Java and
AspectJ implementations of each version of the HW program. These outcomes are used
to derive rates of fault exposure, fault execution and infection and propagation for the
AspectJ and Java implementations. The rates for the AspectJ and Java implementations
are compared. The results show that the rates of fault exposure are higher for AspectJ
implementations. The results also show that the rates of fault execution are higher for
AspectJ implementations but the rates of infection and propagation are higher for Java
implementations. The analysis of these rates suggests that the reason for this is, that
proportionally more faults in mutants of the AspectJ implementation are executed, caus-
ing more state infection and propagation, which in turn results in test failure and fault

exposure.

6.3 Quantifying the Comparative Effects

The analysis of the effects of Java and AspectJ on the rates of fault exposure, fault
execution and infection and propagation in the previous section shows that there is a
difference between the effects of Java and AspectJ. This analysis does not however quantify
the comparative effects. This section applies binomial regression analysis to the outcomes
presented in Table 6.6. This approach supports the quantification of the comparative
effects of Java and AspectJ on these rates. The first part of this section explains the
application of binomial regression, while the second part presents the measures of the
comparative effects of Java and AspectJ on each rate. The third and final part summarises

this section.

6.3.1 Binomial Regression

Binomial Regression Analysis (BRA) [52] is used quantify the difference in the effects
of Java and AspectJ on the rates of fault exposure, fault execution and infection and

propagation. BRA is a statistical technique for analysing the relationship between a
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model specification
1 Fault Exposure ~ implementation + version
2 Fault eXecution ~ implementation + version
3 Infection and Propagation ~ implementation + version

Table 6.1: Models

binomial response, (i.e., pass or fail) and explanatory factors. In this application of
binomial regression, the binomial response is the rate and the explanatory factors are the
implementation and maintenance version. This relationship is captured in the binomial
regression model, rate ~ implementation + version, which indicates that each rate is
explained by both the AspectJ and Java implementation approaches and version of the

program. This is the standard way in which a binomial regression model is specified [52].

Model Fitting

The relationship between each rate, and the implementation and version factors in each
model, is measured by fitting the model over the measures in Table 6.6. In the model fitting
process, the correlation between the effects of the levels of each factor on the observed rate
is measured [52]. These measurements reflect the strength of the correlation between the
rates (of fault exposure, fault execution and infection and propagation) and levels 1-10 of
the version factor and the Java and AspectJ levels of the implementation factors. These
correlations are used to measure the generalised effects of each factor on the rate of fault
exposure [52].

Table 6.6 presents the results of fitting three models for the effects of the Version and
Implementation factors on the rates of Fault Exposure, Fault eXecution and Infection
and Propagation. These models are presented in Table 6.1. As will be shown next,
the measures resulting from the model fitting process are the basis for calculating the
comparative effects of Java and AspectJ on the rates of fault exposure, fault execution

and infection and propagation.

6.3.2 Comparative Effects

As detailed by Faraway [52], the measures of the effects presented in Table 6.16 are used
to construct the graphs of the generalised effects of AspectJ and Java on the rates of
fault exposure, fault execution and infection and propagation, presented in Figures 6.17,
6.18 and 6.19, respectively. In each of these figures, the difference between the Java
and AspectJ lines is the measure of the comparative effect of Aspect) and Java. The
measures of the difference between the AspectJ and Java lines is marked in red in Table
6.16. These are the measures of the comparative effect of AspectJ and Java on each rate.

These measures are on the log odds scale [52] and need to be transformed by taking the
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version

impl

Fault Exposure (FE) || Fault eXecution (FX)

Infection and Propagation (IP)

1 Aspect] -3.195532 2.330187 -0.769506
Java 0.061564 0.208906 0.129397
2 -0.061564 0.128189 -0.115633
3 -0.026266 0.126485 -0.14365
4 -0.060756 0.093387 -0.148374
5 -0.074845 0.086284 -0.155383
6 -0.059539 0.093219 -0.146910
7 -0.023780 0.125251 -0.141546
8 -0.017766 0.134074 -0.143749
9 -0.013261 0.059340 -0.072144
10 -0.057832 0.081284 -0.136110

Figure 6.16: Measures of the relative effects of implementation and version levels
on rates

Figure 6.17: FE Figure 6.18: KX Figure 6.19: 1P

| Fault Exposure ":\'Aspect.l 6%

L Aspecty 19%

b Aspects 13%

. Fault Execution @ Infection and Propagation

Figure 6.20: Comparative Effects Quantified

exponent of each measure. This results in a measure of the difference in the odds of
AspectJ and Java exposing faults, executing faults and causing infection and propagation
when faults are executed.

Figure 6.20 illustrates the results of these transformations. Its shows that, based
on the results of binomial regression, the odds of fault exposure are 6%(0.9402928 —
exp(—0.061564)) higher for AspectJ. This means that, of the health watcher program,
faults are easier to expose in AspectJ compared to Java implementations. This is evi-

dence to indicate that the effect of AOP is to increase testability over OOP. Testing is
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Figure 6.21: Causation

estimated to account for a significant amount of the maintenance cost [33, 22, 141] and
for those considering the adoption of AOP to reduce maintenance costs [39], this evidence
is encouraging.

Fault exposure is a direct consequence of fault execution and state infection and prop-
agation. If more faults are executed, then there are more chances for state infection and
propagation, resulting in fault exposure. The more executed faults that cause state infec-
tion and propagation, the more faults that are exposed. If more faults are exposed, then
the odds of fault exposure increase.

Figure 6.20 shows that the odds of fault execution are 19% (0.8114715 = exp(—0.208906))
higher for AspectJ and that odds of infection and propagation are 13% (1.138142
exp(0.129397)) lower for AspectJ. This means that in the AspectJ implementations there
are more faults executed. However, it also means that compared to Java implementations,
proportionally less of the executed faults cause state infection and propagation, resulting
in lower odds of fault exposure.

This is explained further through the illustration in Figure 6.21. The boxes marked
AspectJ and Java represent the total number of test-mutant executions for AspectJ and
Java implementations, respectively. The circles in these boxes represent the number of
faults executed by tests in AspectJ and Java mutants. This representation shows that
there are more faults executed in AspectJ compared to Java mutants. This difference is
the cause of the 19% higher odds of fault execution for AspectJ. The number of executed
faults that result in pass and fails are represented inside the circle. This representation
shows that there are proportionally fewer fails for AspectJ, indicating that less of the
faults executed in AspectJ mutants result in infection and propagation. This difference is

the cause of the 13% lower odds of infection and propagation for AspectJ.

6.3.3 Summary

In this section, binomial regression analysis was applied to the outcomes presented in

Table 6.6. Models that represent the effects of Java and AspectJ implementations and
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each version on the rates were fitted to the outcomes. The result of this fitting process are
relative measures of the effects of Java and AspectJ implementations and each version on
the rates. Based on these measures, the comparative effect of Java and AspectJ on each

rate was quantified.

6.4 Threats to Validity

The goal of this thesis is to gather empirical evidence of the comparative effect of AOP and
OOP on testability through a study. In the study, the testability of equivalent AspectJ and
Java implementations are measured for each maintenance version of the Health Watcher
program. The result of which are pairs of testability measures that represent the effects of
AspectdJ and Java on testability, one pair for each version of the program. In this chapter
these measures are presented and analysed to identify and quantify the comparative effect

of Aspect and Java on testability.

Chapters 4 and 5 detail the decisions taken to form a methodology and select inputs to
ensure a valid result. The methodology defines testability and outlines how it is measured,
using mutation analysis, as the rate of fault exposure. It describes how mutation analysis
was applied to ensure that all factors that may affect the measures are fixed to ensure
that the factors of interest, implementation approach and version, are isolated for study
and defines how the resulting measures are analysed to understand and quantify the

comparative effect of AOP and OOP on testability.

In the study, mutation analysis is applied to AspectJ and Java implementations of
maintenance version of the HW program. In ecach application, mutants of these imple-
mentations are generated. A set of tests is executed against these mutants to provide
empirical evidence of the comparative effect of AspectJ and Java on testability in this
context. The AspectJ and Java implementations of the HW program, the mutants and
the test set were selected because the created a context that was highly representative
of general case. The more representative the context is of the general case the more

generalisable the results of the study are.

This section discusses the decisions taken in the formation of the methodology and
selection of inputs for the study. It analyses these decisions and identifies potential threats
to the validity that arise from them. Where threats are identified their impact on how the
results can be interpreted are discussed. In particular, the chapter analyses the decision
relating to the selection of an approach to measure testability, the decision to focus on the
HW program and the selection of the test set used in the application of mutation analysis

to each implementation.
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6.4.1 Testability Measurement

In this thesis, the testability of an implementation is defined as the ease with which faults
can be exposed through testing [148]. As identified in Chapter 4, the ease with which
faults can be exposed through testing can be measured from two alternate perspectives,
implementation and test. The implementation perspective measures testability as the
proportion or mutants, generated from the implementation, exposed by a set of tests.
The test perspective measures the effort needed to create tests that will expose the faults
in the mutants. The measurements in this thesis are taken from the implementation
perspective. In this section, the threat of this selection on the construct validity of the
results is discussed.

From the implementation perspective, there are two different approaches to measuring
testability. As outlined in Chapter 4, the first is based solely on the the proportion of
faults that are exposed and the second is based on the proportion of test-fault executions
that led to exposure. The second approach was used to measure testability. The impact

of this selection on the construct validity of the results is also discussed in this section.

Perspective Selection

The construct validity of the result is dependent on how well the measurment approach
captures the property being measured. The decision to measure testability from the
implementation perspective over the test perspective is a threat to construct validity and
has an impact on the way in which the results can be interpreted.

The ease with which faults can be exposed through testing is dependent on the in-
teraction of two elements - tests and the implementation they are applied to. The test
perspective measures the effort to create tests that will expose faults and the implemen-
tation perspective measures the ease with which the implementation exposes faults. To
fully understand and quantify how testable an approach to software implementation is
both perspectives should be considered.

The measurment approach used in this study focuses solely on the differences in fault
exposure between AOP and OOP implementations of a program. It does not address the
question of whether it is easier or more difficult to create tests for these implementations.
The impact of this is that only one perspective of the testability property is captured in
the measures on which the results presented in this chapter. This means that the inter-
pretation of the result is limited in that it only identifies and quantifies the comparative
effect of AspectJ and Java on the ease with which faults present in an implementation
can be exposed. It does not provide an indication of the comparative effect of AspectJ
and Java on the ease of creating tests that will expose faults. This is a limitation of this

study.
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Figure 6.22: Measuring Testability In A Comparative Context

Approach Selection

In most studies that measure testability from the implementation perspective measure
testability as the proportion of faults that are exposed through testing (31, 116, 114].
This study measures testability in terms of the proportion of test-fault executions that
result in exposure. To assure readers that this deviance from the typical approach is
not a threat on the construct validity a simple example is used to clarify and justify the
approach taken. The simple example illustrated in Figure 6.22.

In this example one set of four tests are executed against two implementations (1 and
2) of a program, similar to this study. Both implementations contain the same set of
five faults. If the fault based measurment approach is used then the testability of both
implementations (1 and 2) is _‘é, because 4 of the 5 faults are exposed in each respective
implementation. If the test-fault execution based approach to measurment is used, then
the testability of implementation 1 is Q% and the testability of implementation 2 is %—g.
This example shows that the test-fault based approach is a more detailed approach to
measurment and can be more informative in a comparative context.

Because the approach used provides a more detailed measurment and is more appro-
priate in a comparative context, the impact is not to threaten validity but to make the
measurements more representative for the comparative context in which they are used,

bolstering construct validity.

6.4.2 Program Selection

Chapter 5 identifies external validity or generalisability as a key challenge for the study.
As outlined in Chapter 5, the approach taken to address this challenge was to identify
candidate programs that fitted the methodology detailed in Chapter 4 as a basis for the
study and select the candidate that was most representative of the general case. This

subsection identifies the threats that arise from this selection and the impact of these
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threats on the way in which the results of the study can be interpreted.

HW Selection

Chapter 4 identifies then HW program as the most representative of the general case of the
candidates available for study. As the most representative candidate, the HHW program
was considered the selection that would maximise generalisability.

As identified previously in Section 6.2, the AspectJ implementations it was observed
that there was a significant amount of redundant execution for each test while the program
was being initialised. This was caused by a poorly defined pointcut that triggered the
initialisation of the data layer in the client component of the Health Watcher which
is redundant. This redundant has an affect on the measures of testability for Aspect.)
implementations. The redundant execution inflates the number of faults executed in
AspectJ mutants, inflating the odds of fault execution, deflating the odds of infection and
propagation and inflating the overall odds of fault exposure.

To quantify the impact of this redundant execution, traces driven by tests through the
AspectJ implementations were obtained. These traces enabled the identification of the
additional mutants that were executed by the tests during mutation analysis. Although
difficult to accurately quantify, analysis of these mutants indicated that the impact on
the odds of fault exposure, fault execution and infection and propagation was to reduce
the differences or comparative effects of AspectJ and Java to a point where they were
negligible.

There are two ways the effects of redundant execution can be viewed. The first is that
it is representative of the types of issues that occur when AOP is adopted in practice. The
second is that the redundant execution is not representative of the types of issues that
occur if AOP is adopted. Because AOP has not been widely deployed, it is difficult to know
if the occurrence of pointcut issues, resulting side effects such as redundant execution, are
a characteristic of AOP or not. This is because there is no empirical evidence to confirm
or deny that these issues are are a characteristic of AOP in practice. Dependent on the
point of view the reader prescribes to, the affect on validity can be argued from either

perspective.

Sample Size of One

Basing the study solely on the HW program threatens the degree to which the results
can be generalised because the results are specific to the HW. If more of the candidates
identified in Chapter 5 were selected to increase the sample size the results would be less
specific to the HW.

The reason that more programs were not selected for study was base on cost. The cost

of including the program in the study include a setup cost and a computation cost. The
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setup cost is the cost of generating mutants for the implementations of the program and
generating realistic test cases to execute against those mutants. The computational cost
is the computational cost of this execution, which is well known to be highly expensive
(31, 116, 114].

There was a fixed amount of resources for setup and computational resources available.
These resource were consumed by the inclusion of the HW program into the study. This
meant it was not possible to increase the sample size and make the results less HW centric.
This means that it is difficult to confidently generalise the identified comparative effect of

AOP and OOP on testability. This is a limitation to the external validity of this study.

6.4.3 Test Selecticon

As outlined in Chapters 4, 5 and this chapter, after selecting the Health Watcher program
as the basis for the study, mutants were generated for the implementations of the different
maintenance versions of the program and tests were selected for use in mutation analysis.
To maximise the generalisability of the results a set of tests were selected that were
representative of the general case. There are two potential threats to validity that are
based on the test selection. The first is based on how effects of the oracles used in the
evaluation of the outcome of the test-fault executions. The second is based on the using a
test set sample size of one. These potential threat are explained, their impact is outlined

and their existence is verified.

Oracles

A test is made up of an input and an oracle or expected outcome. If a fault is executed
by a test there are two factors have an influence on exposure. The first factor, as detailed
in Chapter 3, is the structure of the program that lets the test case observe a failure. The
second factor is the ability of the oracle to identify this failure. If the oracle factor was able
to identify test failures in the Java implementation but not the AspectJ implementation
then this would introduce an uncontrolled factor into the study that would unbalance the
comparison, threaten the internal validity of the identified and quantified comparative
effect.

As explained in Chapter 5, the tests were developed based on the use cases used
as the basis for the Java and AspectJ implementations. The oracles were developed
based on sample data used in the test creation process. The test and in particular oracle
selection process was completely independent from the processes of Java and AspectJ
implementation. This ensured there could be not oracle selection bias toward either
implementation. Furthermore, both implementations expose precisely the same interface.

This means that both implementations must produce precisely the same output given an
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Test Set Size - i - L - i
min max min max min max
50 0.0084 | 0.1209 | 0.1499 | 0.2227 | —0.2331 —0.0557
100 0.0211 0.1093 0.1645 0.2048 -0.1979 —0.0724
150 0.0311 0.0938 0.1733 0.2048 —0.1864 —0.0961
200 0.0443 0.0950 0.1716 0.2042 —0.1830 —0.0971
250 0.0463 | 0.0901 | 0.1773 | 0.2060 | —0.1802 0.10511
300 0.0460 | 0.0869 0.1795 0.2010 0.1689 -0.1068
350 0.0522 0.0887 | 0.1823 0.2034 —0.1596 —0.1090
400 0.0495 0.0847 | 0.1827 | 0.1991 —0.1569 —0.1093

Table 6.2: Max and Min results for rates for randomly selected test sizes

input. The fact that there is no dependence or bias of test oracles and implementation

this means that the oracle factor is not a threat to internal validity.

Test Set Sample Size of One

Chapter 5 outlines that the test set used in the measurment phase of the study was devel-
oped by a group of seven software testing professionals, all from different Irish software
development companies, with a minimum of four years of industrial experience in this
group. The group used a best practice, use case driven test selection process. The process
and professionals were used to ensure that the resulting test set was highly representative
of the complexity encountered in the general case.

The group selected the test set based on the use cases and related design documen-
tation on which the implementation was based. The result of the selection process was
a set of 265 tests. This set was then used in the application of mutation analysis to the
AspectJ and Java implementations of the program.

This means that the results of the study are based on one set of tests. Basing the
study on one set of tests is a threat to the external validity or generalisability of the
results. This is because the use of a different set of tests may have yielded measure of the
comparative effect of AspectJ and Java on the odds of Fault Exposure, Fault eXecution
and Infection and Propagation. To investigate this threat, the analysis presented in this
chapter was performed on different subsets of the selected tests. Table 6.2 presents the
max and min results for each rate based on analysing 1000 randomly selected tests, taken
from the original set of 265 tests, in groups of 50, 100,150, 200, 250, 300, 350, 400.

The max and min represent the most extreme values from performing the analysis on
these new subsets. The most extreme values are of most interest because they are can
be used as measures of the smallest and largest observed difference in the odds of Fault
Exposure, Fault eXecution and Infection and Propagation. The difference is small if it
is close to 0 and large the further from 0 it is. The difference between the max and min
represent the interval between the smallest and largest difference observed from applying

the analysis to the 1000 randomly selected sets of tests.
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Figure 6.23: Convergence as test set size increases

Figure 6.23 illustrates the max and min measures of the comparative effects of AspectJ
and Java on the odds of Fault Exposure, Fault eXecution and Infection and Propagation.
It shows that for the smaller test sets (< 200) the odds of Fault Exposure, Fault eXecution
and Infection and Propagation can be small or large. There is a relatively wide interval
between the max and min for each which suggests that based on these test sets the

observed difference could negligible or significant.

For the larger test sets (>= 200) the odds of Fault Exposure, Fault eXecution and In-
fection and Propagation becomes more consistent. The odds of Fault Exposure and Fault
eXecution are consistently higher for AspectJ and the odds Infection and Propagation are
are consistently lower for AspectJ. As the number of tests in the randomly selected test
set increases there seems to be a convergence toward a narrower interval.

From Figure 6.23 three conclusions can be drawn. The first is that at in the worst
case scenario (smaller subsets of test) for AspectJ, the difference between the odds of
Fault Exposure, Fault eXecution and Infection and Propagation is negligible. The second
is that at in the best case scenario (smaller subsets of test) for AspectJ, the difference

between the odds of is significant.
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Figure 6.24: Intervals for the difference between AspectJ and Java

The third and final conclusion that can be drawn is that as the number of tests in-
creases, a consistent difference between the odds emerges. At the test set size of 400 the
difference, as illustrated in Figure 6.24, between AspectJ and Java is that AspectJ consis-
tently results in an improvement in the odds of Fault Exposure by between approximately
5 and 9%. This is caused by an increase in the odds of Fault eXecution of between 18 and
20% and a decrease in the odds of Infection and Propagation by between 11 and 16%.

These conclusions impact the interpretation of the results of the study in that they
reduce the threat to the external validity or generalisability. By performing the analysis
on 1000 randomly selected tests, taken from the original set of 265 tests, in groups of
50, 100,150, 200, 250, 300, 350, 400 more confidence can be associated with the general
conclusion that for the HW program there is a moderate increase in the odds of Fault

Exposure of between 5 and 9%.

6.4.4 Summary

This section discussed the decisions taken in the formation of the methodology and selec-
tion of inputs for the study. Specifically the decisions to focus on a specific perspective
on testability, on the HW program and a specific set of tests are discussed. In each of
these discussions, the potential threats to validity can emerge from these decisions are
identified. The existence of these threats are analysed and the impact of these threats on

the validity of the results is examined.

6.5 Chapter Summary

The first section presented the number of mutants that are generated by this tool for
each implementation of each version of the HW. The number of mutants generated for
AspectJ and Java implementations were compared. This comparison showed that there

were slightly, but not significantly, more mutants generated for the AspectJ implementa-
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tion. The number of mutants were correlated with the size of the implementations from
which they were generated to provide evidence of mutant equivalence. The distribution of
the types of faults generated in mutants for each pair of AspectJ and Java implementations
were also correlated to provide further evidence of mutant equivalence.

This second section presented the number of not exe, pass and fail outcomes for the
Java and AspectJ implementations of each version of the HW program. These outcomes
are used to derive rates of fault exposure, fault execution and infection and propagation
for the AspectJ and Java implementations. The rates for the AspectJ and Java imple-
mentations are compared. The results show that the rates of fault exposure are higher
for AspectJ implementations. The results also show that the rates of fault execution
are higher for AspectJ implementations but the rates of infection and propagation are
higher for Java implementations. The analysis of these rates indicates that the reason for
cause of this is that proportionally more faults in mutants of the AspectJ implementation
are executed, causing state infection and propagation resulting in test failure and fault
exposure.

In the third section, binomial regression was applied to the outcomes presented in
Table 6.6. Models that represent the effects of Java and AspectJ implementations and
each version on the rates were fitted to the outcomes. The result of this fitting process are
relative measures of the effects of Java and AspectJ implementations and each version on
the rates. Based on these measures, the comparative effect of Java and AspectJ on each
rate was quantified. The next chapter draws conclusions from these findings.

In the fourth and final section, the decisions taken in the formation of the methodology
and selection of inputs are reviewed to identify and discuss threats to validity that they
have introduced. The decisions are reviewed in terms of their impact on construct, internal
and external validity. Where threats are identified, their impact on the way in which the

results can be interpreted are outlined.
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Chapter 7

Conclusions and Future Work

Proponents of AOP have claimed that it reduces the cost of maintenance compared to
OOP by improving maintainability [84, 83, 50, 68, 125, 89, 40]. This claim has led organ-
isations using OOP to consider adopting AOP [39, 2].

Testability, analysability, changeability and stability are key indicators of maintain-
ability [73|. Existing studies [149, 14, 92, 97, 54, 87, 63] contribute empirical evidence of
the effects of AOP and OOP on analysability, changeability and stability, but not testa-
bility. The lack of evidence of the effects of AOP and OOP on testability represents an
evidential gap illustrated in Figure 7.1.

The existing empirical evidence indicates that AOP improves analysability, change-
ability and stability over OOP. This is encouraging for those considering the adoption of
AOP. Testability is an key component of maintainability [33, 22, 141]. Without evidence
of the comparative effect of AOP and OOP on testability, the maintainability claim cannot
be fully tested and the adoption of AOP cannot be objectively considered (39, 129].

This thesis gathers empirical evidence of the comparative effect of AOP and OOP on
testability through a study. This study is conducted in two phases. In the first phase,
the testability of equivalent AspectJ and Java implementations are measured for each

maintenance version of the Health Watcher program. The result of this phase are pairs

Maintainability

JA Changeability  Testability \
\ Stability Analysability

. Evidence exists . Evidential gap

Figure 7.1: Gap
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Figure 7.2: Comparative Effects

of testability measures that represent the effects of AspectJ and Java on testability, one
pair for each version of the program. In the second phase, these measures are analysed to
identify the comparative effect of Aspect and Java on testability.

The first section of this chapter describes what the evidence contributed by this study
means for those who are considering the adoption of AOP. The second section outlines

further research that is needed to further broaden and strengthen this evidence.

7.1 Conclusions

This section describes what the evidence means for those who are considering the adoption
of AOP. Based on the results of the study, advice is offered to those who do adopt AOP

and those who want to ensure a high level of testability.

7.1.1 Comparative Effect of AOP and OOP on Testability

The primary contribution of the study presented in this thesis is evidence to indicate that
the effect of AOP is to increase testability over OOP. The results of the study are illus-
trated in Figure 7.2. This figure shows that the odds of fault exposure are between 5 and
9% higher for the AspectJ implementations of the health watcher program. This means
that, for the health watcher program, faults are easier to expose in AspectJ compared to
Java implementations.

Although this evidence is difficult to generalise from because it is derived from a study
of one program, it does provide some evidence to indicate that the effect of AOP may be
to increase testability over OOP. Testability can have a significant effect on maintenance
costs [33, 22, 141] and for those considering the adoption of AOP to reduce maintenance
costs [39], this evidence is encouraging.

As outlined in Chapter 2, the existing empirical evidence indicates that AOP improves
analysability, changeability and stability over OOP. This evidence indicates that AOP

improves testability over OOP, subject to the caveats raised by the fact that the Health
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Watcher’s behaviour may be influenced by the redundant execution issue presented in
Section 6.4. This means that for all key indicators of maintainability, there is evidence
that AOP is beneficial. This body of evidence enables the adoption of AOP to be more

objectively considered.

7.1.2 Causes of Comparative Effect

A secondary contribution of the study, also presented in Figure 7.2, is to identify the
causes of the 5 to 9% difference in the effects of AspectJ and Java on the odds of fault
exposure. Fault exposure is a direct consequence of fault execution and state infection and
propagation. If more faults are executed, then there are more chances for state infection
and propagation, resulting in fault exposure. The more executed faults that cause state
infection and propagation, the more faults that are exposed. If more faults are exposed,

then the odds of fault exposure increase.

Figure 7.2 shows that the odds of fault execution are between 18 and 20% higher
in the AspectJ implementations and that the odds of state infection and propagation
are between 11 and 16% lower in the AspectJ implementations. This means that in the
AspectJ implementations there are more faults executed. However, it also means that
compared to Java implementations, proportionally less of the executed faults cause state

infection and propagation, resulting in lower odds of fault exposure.

This is explained further through the illustration in Figure 7.3. The boxes marked
AspectJ and Java represent the total number of test-mutant executions for Aspect.J and
Java implementations, respectively. The circles in these boxes represent the number of
faults executed by tests in AspectJ and Java mutants. This representation shows that
there are more faults executed in Aspect.J compared to Java mutants. This difference is the
cause of the 18-20% higher odds of fault execution for AspectJ. The number of executed
faults that result in pass and fails are represented inside the circle. This representation
shows that there are proportionally less fails for AspectJ, indicating that less of the faults
executed in AspectJ mutants result in infection and propagation. This difference is the

cause of the 11-16% lower odds of infection and propagation for Aspect..

Figure 7.3, indicates that even though there is proportionally less fail to pass outcomes
from AspectJ test-mutant executions, the odds of fault exposure is between 5 and 9%
higher because the volume of fail outcomes is higher for AspectJ. The volume is higher
because the number of faults executed in mutants (or pass and fail outcomes) is higher
for AspectJ compared to Java. Again this evidence of causation is difficult to generalise

from because it is derived solely from the health watcher program.
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Aspect __ Java

\-11:16% 1P

Figure 7.3: Reason for Comparative Effects

7.1.3 Advice for Adoption of AOP

One of the dangers of adopting AOP is the issues with pointcuts. This study is based on
implementations of the Health Watcher program, which has been the basis of three studies
that provide evidence to indicate that AOP implementations are more stable than OOP
implementations. Until this study, the poorly defined pointcut had not been detected.
This is because the subtle symptoms of the issue only become apparent after detailed
analysis. This shows that issues related to pointcuts can be difficult to identify and can
go unnoticed.

These pointcut related issues have been identified as a problems that are likely to
occur in practice [43, 142, 80, 139]. Based on this observation, the advice offered to those
adopting AOP is to be careful to ensure that issues related to pointcuts are detected. There
are a number of approaches that have been proposed to address these issues [43, 80, 139].
These include a test driven approach to pointcut development that is designed to identify
pointcut related issues early [43] and a model based approach to manage pointcut evolution
80, 139).

7.1.4 Issues to Consider when Adopting AOP

A study that aims to provide evidence about maintainability of AOP vs. OOP is not
relevant without considering more global issues of engineering software using Aspect- and
Object-Oriented approaches. To correctly build AO software requires a complete revision
of the software development process. The adoption of AOP to achieve more maintainable
software requires changes to requirements gathering phase, the architectural and design
phases and the implementation phase of the process [131]. It also requires changes to
how software is tested [69, 152|. These changes require more work to identify crosscutting
concerns in requirements, model them architecturally, design software to modularise them
and implement these designs. Once software is implemented testing the resulting aspects
and the implementations into which they are woven becomes more complex [69, 152].

This means that those who are considering the adoption of AOP over OOP must be
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aware of the investment required to adopt AOP. The perspective adopter must consider
the trade-off between the required investment needed to adopt AOP against the potential

savings in maintainability costs.

7.2 Future Work

This study gathers evidence of the comparative effect of AOP and OOP on testability.
Further studies are needed to broaden this evidence, to provide a detailed understanding

of the effect of AOP and OOP on testability across different conditions.

7.2.1 Pointcut Issues

As mentioned in Section 7.1.3, one of the dangers of adopting AOP is the issues with
pointcuts. Pointcut related issues have been identified as a problems that are likely
to occur in practice [142, 80, 139, 43]. However, there is no empirical evidence of the
frequency with which these issues arise in practice. There is also no evidence of the effects
that these issues have on the cost of testing and maintenance.

Further studies are needed to gather evidence of the frequency with which pointcut
related issues arise in practice and the effects that these issues have on the cost of main-
tenance. The detail from this study would provide more contextual evidence, that would

make the results of studies, such as the study presented in this thesis, easier to interpret.

7.2.2 Causation of Lower Infection and Propagation Odds for AOP

The results of the study provide evidence to indicate that the effect of AOP is to reduce
the odds of infection and propagation. Figure 6.13 shows that some types of faults are
harder to expose in an AOP implementation while others are easier. It also shows that
AOP specific faults tend to have a low rate of exposure meaning they are hard to expose

through testing.

The results indicate the reason the odds of infection and propagation are lower for
AOP implementation is because there are more faults of types that have a lower rate
of fault exposure in AOP implementations, than those that have a higher rate of fault
exposure. Further studies are needed to understand why some types of faults are harder
to expose in AOP compared to OOP implementations and why others are easier to expose.
By understanding the reasons behind these differences, guideline can be derived to help

software engineers using AOP and/or OOP to make their implementations more testable.
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7.2.3 Testing

The evidence gathered in this study is based on applying system-level functional tests
to AOP and OOP implementations over maintenance activities. In an industrial setting,
there are various testing conditions that are used to validate the correctness of implemen-
tations. For instance, integration, module and unit level testing and different types of
testing such as non-functional testing are used [110, 137].

IFurther studies are needed to gather evidence of the comparative effects of AOP and
OOP on the rate of fault exposure at these levels and under non-functional testing con-
ditions. Conducting such studies would give a broader perspective on the implications of
the effects of AOP an OOP on testability.

7.2.4 Program

The evidence gathered in this study is based on AspectJ and Java implementations of
the Health Watcher program over maintenance activities. Chapter 5 showed that the
Health Watcher program was carefully selected from candidates that fitted the study
methodology because it was deemed to be the most representative of the general case.
Gathering measures in a context which is representative of the general case maximises the
degree to which the evidence is representative of general difference in effects of AOP and
OOP on the testability of all implementations.

To further maximise generalisability, further studies are needed that are based on AOP
and OOP implementations of a variety of representative programs. By broadening the
number of programs from which evidence is gathered becomes even more representative

of general difference in effects of AOP and OOP on the testability of all implementations.

7.2.5 Mutant Generation

The computational cost of applying mutation analysis in this study was very high. To be
feasible, it required a number of machines to parallelise the application of the mutation
analysis process. This computational cost is a barrier to conducting studies of this kind.
Approaches to reduce this cost, by reducing the number of mutants that need to be
generated to get an accurate result and optimising the mutant testing process, have been
proposed for older languages and different fault models [116, 135, 112, 111, 114]. New
research is to needed to apply these approaches reduce the cost of applying mutation
analysis to Java and AspectJ implementations. This would reduce the barrier to carrying
out comparative studies of this type, making evidence of the effects of AOP and OOP on

testability easier for researchers to gather.
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Appendix A

Additional Results

t.test(aop$mutants,oop$mutants)
Welch Two Sample t-test

data: aop$mutants and oop$mutants
t = 1.9761, df = 17.995, p-value = 0.06367
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-9.974042 325.774042
sample estimates:
mean of x mean of y
4728.2 4570.3

Listing A.1:  Comparing number of mutants generated for Aspect and Java
implementations

t.test(aop$locations -oop$locations)
One Sample t-test

data: aop$locations - oop$locations
t = -2.0444, df = 9, p-value = 0.07125
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
-29.701597 1.501597
sample estimates:
mean of x
-14.1

Listing A.2: Comparing number of locations at which mutants are generated for AspectJ
and Java implementations
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29
30
31

Call:
glm(formula = cbind(fail, (pass + pass_le + fail)) ~ impl + version,
family = binomial, data = data)

Deviance Residuals:
Min 1Q Median 3Q Max
-23.347244 -4.151534 0.009409 4.,210211 21.515544

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) -3.195532 0.004061 -786.853 < 2e-16 *x*x
implJava -0.061564 0.002356 -26.135 < 2e-16 *=*x
version2 0.001853 0.005500 0.337 0.73611
version3 -0.026266 0.005494 -4.781 1.74e-06 *x*x
version4 -0.060756 0.005539 -10.969 < 2e-16 **x
versionb -0.074845 0.005550 -13.487 < 2e-16 *x*x*
version6 -0.059539 0.005519 -10.788 < 2e-16 *x*x*
version7 -0.023780 0.005476 -4.343 1.41e-05 *x*xx
version8 -0.017766 0.005471 -3.247 0.00117 =*=*
version9 -0.013261 0.005053 -2.625 0.00868 x**
version10 -0.057832 0.005064 -11.421 < 2e-16 **x*
Signif. codes: O **x 0.001 =**x 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3028.6 on 19 degrees of freedom
Residual deviance: 1865.9 on 9 degrees of freedom

AIC: 2134.3

Number of Fisher Scoring iterations: 4

Listing A.3: Regression output for fault exposure
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Call:
glm(formula = cbind(fail, (pass + fail)) ~ impl + version, family = binomial,
data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-20.72526 -1.95571 -0.01760 2.01268 18.51048

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.769506 0.004839 -159.03 <2e-16 *x**
implJava 0.129397 0.002776 46.62 <2e-16 *x*x*
version?2 -0.115633 0.006530 -17.71 <2e-16 **=*
version3 -0.143651 0.006510 -22.07 <2e-16 *x**
version4 -0.148400 0.006563 -22.61 <2e-16 **x
version5 -0.155383 0.006673 -23.64 <2e-16 *xx*
version6 -0.146910 0.006541 -22.46 <2e-16 **x*
version7 -0.141546 0.006491 =21.80 <2e-16 **x*
version8 -0.143749 0.006485 -22.17 <2e-16 **x*
version9 -0.072144 0.006028 -11.97 <2e-16 *x*x*
versionl10 -0.136110 0.006018 -22.61 <2e-16 **x
Signif. codes: 0 *** 0.001 =*x 0.01 =* 0.056 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4307.2 on 19 degrees of freedom
Residual deviance: 1097.6 on 9 degrees of freedom

AIC: 1359.4

Number of Fisher Scoring iterations: 3

Listing A.4: Regression output for fault exposure given execution
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Call:
glm(formula = cbind((pass + fail), notexe) ~ impl + version,
family = binomial, data = data)

Deviance Residuals:
Min 1Q Median 3Q Max
-8.64845 -2.95916 -0.03712 2.85840 7.84903

A L

-~

8

9| Coefficients:

10 Estimate Std. Error z value Pr(>|z|)

11| (Intercept) -2.330187 0.002890 -806.35 <2e-16 *x*x*
12| implJava -0.208906 0.001606 -130.07 <2e-16 **x*
13| version2 0.128189 0.003845 33.34 <2e-16 *x*x*
14| version3 0.126485 0.003817 33.14 <2e-16 *x*xx*
15| version4d 0.093387 0.003840 24.32 <2e-16 *x*x*
16| versionb 0.086284 0.003841 22.46 <2e-16 *x*x*
17| version6 0.093219 0.003829 24 .34 <2e-16 **x*
18| version?7 0.1252561 0.003808 32.89 <2e-16 *x*x*
19| version8 0.134074 0.003804 35.24 <2e-16 **x*
20| version9 0.059340 0.003578 16.58 <2e-16 *x*x*
21| version10 0.081284 0.003544 22.94 <2e-16 *x*x
22| ===

23| Signif. codes: O **x 0.001 =**x 0.01 * 0.05 . 0.1 1
24

25| (Dispersion parameter for binomial family taken to be 1)
26
27 Null deviance: 19493.19 on 19 degrees of freedom
28| Residual deviance: 304.89 on 9 degrees of freedom
29| AIC: 588.68

30
31| Number of Fisher Scoring iterations: 3

Listing A.5: Regression output for location execution
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