AN APPROACH TO MANAGED
CLUSTERING FOR KNOWLEDGE-
BASED NETWORKS

A thesis submitted to the
University of Dublin, Trinity College
for the degree of

Doctor of Philosophy

Dominic Hugh Jones, B.Sc. (Hons), M.Sc.
Knowledge and Data Engineering Group (KDEG)
School of Computer Science and Statistics
Trinity College, Dublin,

Dominic.Jones@cs.tcd.ie

Supervised by Dr. David Lewis

Co-Supervised by: Dr. Declan O’Sullivan

Declaration and Online Access

I declare that this thesis has not been submitted as an exercise for a degree at this or any other

university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow the
library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library

conditions of use and acknowledgement.

Dominic Hugh Jones

April 2013

I

Acknowledgements

I would first like to thank Dr. David Lewis for providing me with this opportunity to pursue the
degree of Doctor of Philosophy. Dr. Lewis has been supportive, critical, encouraging and has
become both a friend and mentor over my time in KDEG, it has been an honour to work with Dr.

Lewis.

Dr. Lewis has been able to offer me funding through Science Foundation Ireland under Grant No
05/RFP/CMS014 (Mecon) and Grant number 07/CE/I1142 (CNGL). For this I am extremely

appreciative.

It has been a privilege to have the co-supervision of Dr. O’Sullivan who offered me advice and
support that has been invaluable over the years. Special thanks to Dr. John Keeney, Dr. Alexander
O’Connor, Dr. Seamus Lawless, Dr. Owen Conlan and Mrs. Mary Sharp who have supported and

encouraged me throughout the years and made the difference to many a day.

It was Ms. Marie Carroll who guided me through my undergraduate study, provided endless cups
of tea and was there when needed. Marie will always be a great friend, who started me on my path

through University level education and is herself an asset to education.

However most importantly I would like to thank my parents Jan and Hughie Jones as well as my
de-facto American Mom Dr. P. Jane Gale. Without their combined support this thesis could easily
have disappeared during its final year in which they picked me up, stood by me, guided me and

had faith in me.

“Insanity is doing the same thing, over and over again, but expecting different results.”

- Possibly Albert Einstein, possibly not.

II

Abstract

In publish/subscribe networks the capacity of the delivery network can easily be exceeded as the
volume and range of content increases. This is known as the flooding problem. One solution to

this problem is to group publishers and subscribers with similar interests into clusters.

A publish/subscribe network typically operates across a broker overlay. The work described in
this thesis offers a novel solution to the flooding problem based on reducing the number of
brokers between related publishers and subscribers, thus reducing the routing message volume.
With fewer brokers between publisher and subscriber, fewer hops are required to route each
message and ultimately the network is more efficient, with less resources required to deliver the

same number of messages.

This thesis describes the design, implementation and evaluation of a prototype system in which a
Semantic-based Publish/Subscribe network is used to cluster publishers of content with the
message brokers that are responsible for routing content to subscribers with related interests. The

objective of this clustering is to reduce the number of hops required in the routing process.

This contribution has been implemented in a prototype, KBNCluster, as part of this thesis and
provides a platform for the clustering of KBNImpl, which has been shown to reduce the hop
count required to deliver publications to subscribers and thus decrease the time taken to deliver

publications.

A further contribution of this work is the automatic calculation, placement and re-clustering of
publishers and subscribers around their interests using a Policy-based Network Management
approach. This contribution is evaluated in terms of management data collection costs, storage

and policy execution and is shown to scale efficiently.

This work is novel in the way in which semantic interests are calculated from a client’s
publication or subscription, using a semantic map of concepts to calculate a single semantic point
deemed representative of the client. An additional source of novelty in this work is in employing
the network’s Semantic-based Publish/Subscribe capability for the delivery of management
messages to the management system using a push-based approach in contrast to more standard

pull-based architectures.

v

Table of Contents

Declaration and Online ACCESS......cieiveeerseicssnicisanicssnnessssnessssecsssnssssssesssssesssssssssssssssssses 1T
ACKNOWICAZEIMENLS ...cccuueeieiinricssnricssanicssnnesssnnessnnessssecsssnesssssesssssessssnessssnesssssssssssssssssssssses I
ADSEITACE cuueeiinericinirinieiisitiesinnecissnicsssnccssssessssnesssseessssesssssssssssesssssesssssssssssssssssssssssssssssssssne v
Table Of CONTENLS ...cccceiiiiveiinisniininnissnncssnncssnicsssnesssssesssssessssesssssssssssessssssssssssssssssssssssses \%
LiSE Of FIGUIES cuuceeueeiiiniiiiniiiiinticssntiissnnicsssnicsssnessssnessssssssssnesssssssssssssssssessssssssssssssssssssssee XI
LiSt Of TADIES ..cuueineiiniiiiiiiiniicninniicsnisnesssicsstsssisssssssesssssessssssssssssssssssssssssssssssssans XII
List Of Code EXAMPIEScccovvvnnrieiiirnniicsisnniesssssnrecsssssssess X1V
ADDIEVIALIONS cocuveririerensnricssnncssnecsssnecsssnessssnesssnesssssessssssssssesssssessssssssssssssssssssssssssssssssss XV
1 INTRODUCTIONcooiiiiiniisnicsiissniessnisssiessssssssssssssssssssssssssssssssssesssssssssssssssssessssss 1

1.1 Research Question

1.2 Research Objectives

1.3 Methodological Approach Taken

1.4 Evaluation Findings

1.5 Thesis Contribution

o % =& & ;oW

1.6 Selected publications......
1.7 Thesis Outline10
2 BACKGROUND...ooviiicncnnnnicsssssnsecssas 11
2.1 Key Terms. . . . A1
2.2 Semantics... 12
2.2.1 RDF and OntologIeScccuvieiuiieiiieiiieeiieetie ettt ettt sev e sveeereeeteeeteeeteeeeseeseseeennas 12
2.3 Publish/Subscribe Middleware...15
2.3.1 Topic-based Publish / SUDSCIIDE:cceivcuiieiiiiiciiecieeceectee e 16
2.3.2 Content-based Publish / SUDSCIIDEccceiviiiiiiiiiieiece e 16
2.3.3 Knowledge-based Networks in comparison to CBNSccccceeeviieiiieciieciieeieeee, 17
2.4 Policy-based Network Management (PBNM)... . . .20
2.5 Conclusion. . . . 21
3 STATE OF THE ARTuiiiiiiirnnriccsssnneicsssssssoss 22
3.1 Content-based Networks.. . . 22
T O B) o - PRSPPI 22
3.1.2 HETIMNIES ittt ettt ettt et et e h e e eb e sa e st e e bt e et e e bt e e bt e e et e sans 23
3013 GIYPRON .ottt et et e et e et e e b e e eabeeanns 24

14 EIVII oottt ettt e e e e e e e e e e e et e e et e e e e aer e e —————————— 24

3.1.5 ANALYSIS cetiiiiiieiie et ettt e e ab e et e e et eeebaeeataeetaeeabeenabeeaans 25
3.1.5.1 Advantages Of CBINSooiiiiiiieeeee ettt 25
3.1.5.2 Disadvantages Of CBINSccouoi ittt 25

3.2 Semantic-based Publish/Subscribe (SBPS) .26

3.2.1 Knowledge-based NEtWOrKS.........ccciiiiiiiieiiieiiiieeiieciie ettt ettt etee e esereesevee e 26
32011 KBNIMPL ... 26
3.201.2 KBNMAP ..o e 26
32013 KBNCIUSTEE ...ttt ettt 27

3.2.2 A semantic INfOSPRETE........cciiiiiiiiiiiciicce ettt et e 27

3.2.3 Semantic Toronto Publish/Subscribe System (S-TOPSS)cccceevvieviieiiieciieereee 28

3.2.4 Graphed Toronto Publish/Subscribe System (G-TOPSS).......ccoeeviieviiiiiieciieereee 29

3.2.5 Semantic Message Middleware for publish/subscribe networks (SMOM)................ 29

3.2.6 An ontology-Based publish/subscribe System (OPS)cccceeeviieiiieiiiiiiiecieeeieee 30

3.2.7 Designing semantic Publish Subscribe networks Using Super-Peers (SPS-SP)........ 30

3.2.8 IBIOKET ..ttt et 31

3.2.9 ANALYSIS ettt ettt e e tb e et e e et e e ebaeebaeetaeenbeeaabaeanrs 31
3.2.9.1 Advantages 0f SBPS.........oooo oo 31
3.2.9.2 Disadvantages Of SBPS...........ccoo oot 32

3.3 Publish / Subscribe clustering Techniques . .33

3.3.1 Topic-based Publish/Subscribe CIUStEring.........cc.cccvvrervieiiieiiieeciieeeiee e 34
3.3.1.1 Boosting topic-based publish-subscribe systems with dynamic clustering (Tamara) 34
3.3.1.2 Scribe: a large-scale and decentralized application-level multicast infrastructure 34
3.3.1.3 Data Aware Multicast (AaMUulticast)c...cccoecvivieiieeiieiiieecie s 35
3.3.1.4 Topic-based Event Routing for peer-to-peer Architectures (TERA)ccccccceeeuen.. 35

3.3.2 Content-based Publish/Subscribe CIUStEringccceevvrereriiecreieiiieciie e 36
3.3.2.1 Sub-2-sub: Self-organizing content-based publish and subscribe for dynamic and large
scale collaborative NEIWOTKSccocuciuiiiiiiiiniiiiiicicctet ettt 36
3.3.2.2 Efficient Publish Subscribe through a Self-Organizing broker Overlay and its
APPLICATION 10 SIENA.ccuooevieiieeieeeie ettt ettt ettt e e ae et e e e saeeesbeesaaeenres 37

3.3.3 COMCIUSION ...ttt ettt ettt st sb e st be b e 37

3.4 Publish/Subscribe Classification 11 .38
3.5 Research Challenges gathered from the SoA.... .39

3.5.1 Design Ideas gathered from the SOAcooooiiiiiiiiiiice e 40
3.5.1.1 Subscription ReGIONALISIc..coiiiiiiieiieieet et 40
3.5.1.2 Ontology PATLILIONINGcccoeiieiieiiiee ettt ettt 41
3.5.1.3 Ontological CRANGE..............cccoeieeiiiieeeee ettt 42

3.6 Conclusion .43

VI

4 DESIGN 44
4.1 Introduction .44
4.1.1 Extended and New TeChnology.......ccccovuieiiiiiiiiiiiieiie et 46
4.2 High Level Design .47
4.2.1 System ATCRItECIUIEoeiiiiiiiiieiie ettt et et sve e veeesbeeebeeeaneenes 47
4.2.2 DESIZN OVEIVIEW .ocuvviiieiieieiieeiieetieeeieeeetteesteeetteeeteeeseeeteeessseessseessseesaseesssesanseeessseenes 48
4.2.2.1 Managed Overlay Design OVerVieW................oooewveeooeeeeeeeoeeseeeeeeseeeeeseeseseseeseeseeesseeons 48
4.2.2.2 Trigger Broker Design OVErvViewoo.coommweeooooeeeeeoooeeseeeseeeseeeeeseeseeseseeseesesesseeons 48
4.2.2.3 PolicY Server DeSign OVEIViewoowweeeooeeeeeeeeeeeeseeeeeeseeeeeeseeeeeseeseesesesseesesesseeens 48

4.2.3 Clustering Design Assumptions and SCOPE........cccuvievviieciiriiiieiiienreeeree e eieeesere s 49
4.2.3.1 Publisher and Subscriber Design ASSUMPLIONScccoceuviiieeiiaiaieiee et 49
4.2.3.2 Design Assumptions around ontological CIUSIEFiNGoovv..ooveeeeoereeeereseeeereseseeenns 49

4.3 Clustering Process .51
4.3.1 The MEAOid ...coouiiiiiiiieeie ettt ettt ettt ettt et et e et 51
4.3.2 Taxonomical Approach to Cluster Creation...........ccceeeeveeeriieeieenrieeieecreeeieeeeneenns 53
4.3.3 Creating an Ontological A* Map.......ccccuieiiieiiiiiiiceee ettt eaee e 55
4.3.3.1 Extracting Semantic Elements from SubSCFIDHONSccooeioeioiiiiiaiiieiieei e 56
4.3.3.2 Extracting Semantic Elements from Publicationsc.cccccoeveiceniiiieniiaceniaeinne 56

4.3.4 Medoid CalCulationcooiiiiiiiiiieeie ettt 57
4.3.4.1 Example Medoid CalCUlQtioncccoeiiimiiioiiiiiieiiee ettt 58
4.3.4.2 Summary: Medoid CalCulation..................c.ccoccoiiiiiiiiiiiiiiie e 58

4.3.5 CluSter PlaCOmMIENT ...c..eeiuiiiiiiiiiiitieeiie ettt ettt ettt et e et eeeenteeneeenneens 59
4.3.6 RE-CIUSIEIING....ccuviiiiiiiieiieciie ettt ettt ettt e e e et e eteeeteeesabeesareesaseeensesenseeesseanes 60
4.4 Trigger Broker..... .62
4.4.1 Subscriptions to Trig@er BroKerccciiiviiiiiiiiiiieiic ettt e 63
4.4.2 Publications Received by the Trigger Broker...........cooeeviiiiiiiiiieiiiecieeciee e 64
4.4.3 Interactions between KBNImpl Publishers and the Trigger Broker.............cccccueeee. 66
4.5 Policy Server .67
4.5.1 MIB/MO DESIZN...c.uiiiiiiieiiiieiiieiieeiie ettt eete e ettt eeveeeveeeteeestseesebeesaseeseseesnsesenseeesssaanns 68
452 POLICIES eeetietieitieetie ettt ettt sttt ettt et et a bt eat e eat e et e eate e bt enteenteenteens 69
4.53 ACtiONADIE EVENLS ...cuiiiiiiiiiiiiiitie ettt ettt et et ettt e et ea 70
4.6 Key Design Characteristics and Conclusion...... 72
5 IMPLEMENTATION 74
5.1 Introduction .74
5.2 Technology Selection...... .75
5.2.1 COre TeCNOLOZICS:ueieiiieeiieeiiieeiiieeieeeteeeette et e streeseaeesebeeesreeebeeeseeesaeesseeseseeanns 75
5.2.2 Development TOOIS:ccciiiiiieiiieciieeiee ettt et eraeesebeesebeeeens 75

VII

5.2.3 Messaging MEChaNISIMS:c.ueeiviiiiieeiieetieeite ettt esireesereesereeereeeteeeteeeeseesaseeseseesnns 76

5.3 Order of Operation

5.4 Communication Flow
5.4.1 Overall ComMmMUNICAION ...cooverruieriieriieiiieeie et
5.4.2 Broker Focused Communicationccocueeeueeeeeieeieeieeee e
5.4.3 Publisher Focused Communicationc.ceevueeuenieneeneeeieeienne.
5.4.4 Subscriber Focused Communication............ccecueeeeeeeneeseeeceeeneenne.
5.4.5 Conclusions — Communication FIOWcccoccoeiiiiiiiiniinineee.
5.5 Trigger Broker.....
5.5.1 Trigger Broker — Start-up Configuration.............ccccceeveeeerieeerieennenns
5.5.2 Trigger Broker — Main Classes........c.cccceeevvireiiireciieeniiiecieeeree e
5.5.3 Trigger Broker - Summary of Key Characteristicsccoceunee..

5.6 Policy Server

5.6.1
5.6.2
5.6.3
5.6.4

5.6.4.1 Cluster PartitiOningc.ccoooeiueiiiiee ettt
5.6.4.2 Overlaying an Ontology onto Brokers
5.6.4.3 Calculating Client Cluster Placementcccccocceuceavenceanennanne.

5.6.5

5.7 Starting Brokers, Publisher and Subscriber.....

5.7.1
5.7.2
5.7.3

5.8 Conclusions and Summary of Technical Discussions..

6 EVALUATION
6.1 Experimental Setup

6.1.1
6.1.2
6.1.3
6.1.4

6.2 Static Approach to Clustering....

6.2.1
6.2.2
6.2.3

77

.79

........................... 80
........................... 82
........................... 83
........................... 85
........................... 86

.87

........................... 87
........................... 87
........................... 89

.90

Policy Server - Start-up Configuration............cccceeevveeevrenneenneennnen.
IMAIN CLASSES ...uveutieiieeie ettt ettt ettt ettt et ettt eee e
MIB/MO Implementation............cceeeveeerieeeieeeeiieeiie e

ClUStEring PrOCESScocuviecviiiiieeiie ettt et e

Summary of Key CharacteristiCs.........cceeevererirerirenieecieeeree e

........................... 90
........................... 91
........................... 92
.......................... 93
............................. 93
............................. 94
............................. 95
.......................... 95

.96

Starting @ BroKer........cc.oooiiiiiiiiiiiciicceecee e
Starting a PUbIiSher.........c.cooviiiiiiiiiiicec e

Starting a SUDSCIIDET.......c..oooiiiiiiiiiiicieecee e

ONLOIOZICS....uviiiiiieiie ettt et re e et e eaneesenee e
PlatfOTINIS ..ottt e e e e e e e e e eeeeaaeeeaaeas
IVLEETICS oottt ettt e et e e e e e eeeeeeeeeeeeaeeaaeas

Sensitivity ANALYSIS ..cvviieuiiieeiieiiiecieeciee ettt et

INErOAUCHION ..
Experimental MEtricsccvevvieeiieiiieeiee ettt

Experimental SEtUP.......ccccecviiiiiiiiieciie e

0.2.4 RESUILS ettt e e e e e e e e e e e e e et e e e e e e e e e et e e ——aaaaaa——

0.2.5 COMNCIUSION ...ttt e e e e eeeeeaeeeeeeeeeeeeeeeeeeererererereeeeeesaeesaaaaaas

6.3 KBNImpl Operational Costs

6.3.1 OPETALOT USAZEvvieeieiiiieeiiiiieeiiiieeiiiteeestteeesereeeesrteeessseeessssseesssseesassseesssseessnssees

6.3.2 Subscription Tree Search TIimec.ccooviiiciiiiiiiiciice e

6.3.3 Hop Count EXPErimENtsccccuiiiiiieiiieiiieeciieeeieeeeieeesireesveesveeeveeereeeseeeseneessneenns

6.3.3.1
6.3.3.2

HOD OCCUFFEICES ... ettt e et e aree e

HOP COURNE TIMING ...ttt

.34 COMNCIUSION ...ttt eeeeeeeeeeeeeeeeeeeeeeeeeeeeerererereseeeeeesasesanaaaas

6.4 Costs Associated with Dynamic Clustering

6.4.1 Management Data Storage & Policy Execution CostS.........ccccceevevieeciieeciieeniieniieens

6.4.1.1
6.4.1.2
6.4.1.3

MEMOTY FOOIPDFINE ..ottt ettt e ettt e et e e eeae e e s
Policy EXeCution TiMiNgGc.cccoioueiiiieai ettt

CONCIUSION ... et

6.4.2 Data COlIECTION COSES ..uuueeiiiiieieieeeeeeeeeee ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeererererereeeeeeeeeeeaaaaas

6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7

Management Method 1ccoooiiieiiiieii it
Management Method 2ccoooiioieiiiiei ettt
Standard Error CalCUlQUion..................c.cccccveevioiiciiiiiiiiiiiiiiiiitiieeeeeeeeeeeevee e
Subscription ProcesSing TiMeSc.ccoociiveiiiiiiieeee ettt
Publication Processing TilesScccceiiaieiiaeeee ettt
Pub-10-Sub Delivery TIiMesccccoiiiieiiaieei ettt

CONCIUSION ... e ettt

6.4.3 MODIIIEY COSES ..viiiriiiiiieiie i et e et e ettt e etee et e eetteestaeestaeesebeeesbeeesseeensesenseeesseessseenns

6.4.3.1

6.5 Dynamic Clustering Evaluation.

Moving Broker & Moving All SUDSCIIDEFSccccceioiiiiiiiiiieeieeee e

6.5.1 EXperimental MELIICScc.ccciiiiiiiiiiecrieciee ettt ettt ve e veeeveeeveeeveeeeneeseneenes

6.5.2 SubSCIIPION TIEE SIZE...cuiiiieiiiiiiieiieeiee ettt e e e et e et e easeesane e

6.5.3 Hop Count in DEIHIVETYccoiiiiiiiiiiieciiectee ettt et et eeteeeaneesane e
6.5.4 RE-CIUSIEIING.....eiiouiieiiieiieeciieeeie e et e et e eteeeeteeeetteestbeestbeeseseesebeeesseassseseseeensseessseenes

0.5.5 CONCIUSION ...ttt e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeerererereseeeeaeeesesaaaaaas

6.6 Overall Conclusion

7 Conclusion

7.1 Objectives and Achievements.....

7.1.1 ReSearch ODJECHIVE 1cccuiiiiiiiiiiieiieeiecciee ettt ettt e et e eveeeaneesaneees
7.1.2 ReSEarch ODJECHIVE 2 ...oiciiiiiiiiciiieeieeciee ettt ettt e ve e veeeveeeteeeteeeeneeseneenes
7.1.3 ReSearch ODJECHIVE 3ccuiiiiiiiiiiecieeciee ettt ettt e e eveeeteeeteeeeneesaneenes

7.2 Contributions

IX

149
149
150
151
151
152

7.2.1 Major CONIIDULIONeiiiiieiiieieiieeieeet e eteeeetee et e et eeseeeesbeeebeeeaveeeaseeenseeesseesaneenns 152

7.2.2 MiINOT CONIIIDULIONc.tiitieiieieeitiestt ettt ettt ettt ettt e e eteebeebeenseeneeeneeeneeens 153
7.2.3 Additional Supporting Publications:cccceevviieiiiiiiieeiie et 154

7.3 Future Work . . 155
7.3.1 Subscriber Re-CIUSTEIING......c..coiiiiiiiiiiiiciie ettt ettt eseneesane e 155
7.3.2 Load Balancing of CIUSIETSc.ccovuiiiiiiiiii et eciie et ettt et eveeeseaeesene e 155
7.3.3 The trigger broker as a management event monitoring System..............cceeevrerenens 156
7.3.4 Multiple POLICY SEIVEISccciuiiiiiiiiiieeiieeiee ettt ettt ettt e eteeeaeeeseneeseneees 156

7.4 Final Remarks...... . . . 157
Bibliography 158
Appendices 161
Appendix A 161
Appendix B 169
Appendix C 178
Appendix D 182
Appendix E 183

List Of Figures

Figure 1: EXample ONtOlOZYcccviiiuiiiiiiiiiieciieetieetee et ettt sveeeveeeveeeaaeesaaeesaaeeseseesasesenseean 13
Figure 2: Classification of Publish/Subscribe SYStemsccccccvveiiiieciiieiiieiieceie e 15
Figure 3: Classification of Publish/Subscribe Systems I1..........cccoovviiieiiiiiiiiiiiecie e 38
Figure 4: High Level Component ArchiteCturecveeeuiiiiiieiiieiieeciee e 47
Figure 5: Sample Clustered OntolOgY.......ocouiiiiiiiiiieiii ettt ettt ettt e sebeeevee e s 53
Figure 6: A* OntologIiCal IMAPeiiiuiiiieiiieiiecieeciee ettt ettt sve et e et eetaeeaeeetaeeseseesereeenreean 55
Figure 7: Sample ontology graphed using A* algorithm............cccoooviieviiiiiiiiiiicie e 56
Figure 8: Example Medoid Calculationcc.eeecviiiciiiiiiiiiiiieciiecieecree et 58
Figure 9: Trigger Broker, High Level OVErvVIEWcccccoiiiiiiiiiiiiiieeciee e 62
Figure 10: Trigger Broker ONtOlOZYcoovuiiiiiiiiiieiieeciie ettt ettt e et esteeesaaeeseveeseveeenvea s 63
Figure 11: Policy Server, High Level ArchiteCturecooovviiviiiiiiieiie e 67
Figure 12: Components of KBNCIUSLETcccuiiiiiiiiciiiiiii ettt eeveeevee e s 77
Figure 13: Overall Communication MeChaniSmscceeevvieiiieiiieeiie e eeveeevee e 80
Figure 14: Broker Based COMMUNICATIONcueeiviieiiieiiiieiieeeiieeeteeereeeieeeieeeeaeeeseveeseveeeeresenreaas 82
Figure 15: Publisher based COMMUNICAtIONcccviiieiiiiiiiieiiieeiie ettt eeeee e eereeeeveeeare s 83
Figure 16: Subscriber based COMMUNICATIONccviieviieiiiieeiiieiiieecieeeteeeieeeeieeeseeeeseeeesereeeereeenreeas 85
Figure 17: UML Class Diagrams for Broker, Publisher and Subscriber............cccccoevveeciieicnenennn.. 92
Figure 18: BroKer HICTarChyc..cooviiiiiiiiiiiiiiciee ettt e 110
Figure 19: Root Subscription Tree Size on the Master Node (shown in Figure 18) 111
Figure 20: Unique Subscriptions on a Broker on Level 3 (shown in Figure 18)..........cccecuneene. 111
Figure 21: Example Topology, Operator Search COstSccccvvieriieeiieiiiieeiie e 114
Figure 22: Subscription tree search times (Semantic & Non Semantic)ccceeeveeevieenveenneennne. 116

Figure 23: Spread of Hop Counts in Delivered Notifications, across various cluster topologies 118

Figure 24: Average Message Delivery Timing, SemMantiC..........ccoecvveeeereeeerirenieenieeieeevee v 119
Figure 25: Average Message Delivery Times, Non SemantiC.........ccccceveeeeerevieeenieeneeenveeeveeennes 120
Figure 26: Memory Usage vS. MO Created..........cceeeeviieiuiiiiiieiiieciieeree ettt 123
Figure 27: Time Taken to execute a number of MIBS against various Policiesc..cc..c...... 125

XI

Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:

Figure 35:

Average Subscription Processing Times (INS).....cc.cccvveeivieeciieiiiieeriieesiee e esreesevee s 131
Average Publication Processing Times (INS).......ccueevvreriieecrieiiiieeniieeciee e eseveesevee e 132
End-to-End Delivery Time (IMS).......cccvieiiieiiieeiieeiieeieeeeieeesieeesereesveeseseesereeeveeeseeas 134
Moving Broker & All Subs and Moving All Subs Individuallycccccevvieeiirennnn. 138
Dynamic Clustering - Server TOPOIOZYcccviiuiiiiiieeiiiieiie ettt 139
Root Subscription Tree Size (Clustered and un-clustered)cccccevveevieeciieecneeennnn. 141
Hop Count - Clustered and Un-Clustered Topology........ccceeevieviieeiieiieeeiieeieeennenn 143
Mean Hop Count in Delivery for Each Subscriberccoveevieiiiiiiiiiiiiciiceeeeen 145

XII

List Of Tables

Table 1: EXample RDF TIIPIC.....ccuiiiiiiiiieeiiecieeetee ettt ettt et seveeeeveeenaea s 12
Table 2: Example Filter CONStraiNt........cc.occvviiiiiieiiiieeiie e eeie et esiveeeree e eaaeesaeeeseveeseseeeereeenreaas 16
Table 3: EXample PUDIICAtIONciiiiiiiiiiiiieciecciee ettt ettt et e et eeaeeesaaeeeebeeeebeeenaeean 16
Table 4: EXample SUDSCIIPLIONeiiiuiiiiiiiiiiecieectee et ettt et sibe e et e et e etaeesteeeseaeesebeeenseeenseeas 17
Table 5: Classification of Topic, Content and Knowledge-based Networkcccoeveveeenerennenn. 18
Table 6: Siena CBN Operators, Types and Symbols...........ccceiviiiiiiiiciiiiiiieie e 19
Table 7: KBNImpl KBN Operators, Types and SYmbols..........cccoecevieeeiiieiiiieiiienie e 19
Table 8: Bag Operators, Types and SYmDOIS.........c.ocociiiiiiiiiiiiiiccieeciee e 19
Table 9: Broker, Subscriber & Publisher MO Key Elements..........cccccceveeiiiiiieiiiccieeciee e 68
Table 10: Test Ontology CharacCteriStiCS......cuiiiuieiiiieeeriieetieeeiieeciieeeteeereeereeeteeeteeeereesereesereeennes 104
Table 11: Matrix of EXperimental MEtriCsccccccviieeiiieiiiieiiieiie ettt evee e e 107
Table 12: Experimental set-up metrics used in eXperimentsccceeeeveeeereeeneeeneeeneeenveesveeennes 109
Table 13: Experimental set-up metrics used in eXperimentsccceeeeveeeeeeeneeeneeeneeenveesveeennes 113
Table 14: Example Subscriptions and Matching Publicationscccceevvveviieiiiecieecieeeneeee, 113
Table 15: KBNImpl Operator Costs — End to end mean delivery times per match (ms) 114
Table 16: Experimental set-up metrics used in eXperimentscceeeeveeeereeeneeenieeneeesveeeveeennes 115
Table 17: Experimental set-up metrics used in eXperimentsccceeeeveeeereeeneeeneeeeeeesveeeveeennes 117
Table 18: Experimental set-up metrics used in eXperimentsccceeeeveeeereeeneeeneeeeeeenveesveeennes 130
Table 19: Standard Error Subscription Processing Times (IMS)......ccceeeeveeveiiienieecieenieeeree e 131
Table 20: Experimental set-up metrics used in eXperimentscceeeeveeeereeeneeerieeneeesveeeveeennes 132
Table 21: Standard Error Publication Processing Times (INS).......ccceeveveeierirenieenieeieeeree e 132
Table 22: Experimental set-up metrics used in eXperimentsccceeeeveeeereeeneeeneeeneeenveeeveeennes 133
Table 23: Standard Error End-to-End Delivery Times (INS)......ccccccvveeeevieeiieeniieeeie e 134
Table 24: Experimental set-up metrics used in eXperimentsccceeeeveeeereeeneeeneeenneenveesveeennes 137
Table 25: Experimental Datacccoiiiiiiiiiiiiiiciie ettt et et e et eve e eens 138
Table 26: Experimental set-up metrics used in eXperimentsccceeeeveeeeeeeneeeneeeneeenveesveeennes 140

XIII

List Of Code Examples

Code Example 1: Example Managerial Subscription ITccccoooviiiiiiiiiiiiiiicie e 63
Code Example 2: Example Managerial Publication Iccccoooiiiiiiiiiiiiceecee e 64
Code Example 3: Example Medoid MeSSAZEcc.eeecueieiuiieiiiiiiieciieeeiieeieeeieeesiee e seveeeevee e s 64
Code Example 4: Example Broker Info MeSSage..........coovieiiiiiiiiiiiiciie e 64
Code Example 5: Example Subscriber Info Message (Publication)..........ccccccveeviieviieeieeeneeennnnn 65
Code Example 6: Example Publisher Info Message (Publication)............cccceeveeviiiviiecieecneeennen 65
Code Example 7: Example Subscriber Notification Report (Publication)cccccceveeeveeeneeennenn. 65
Code Example 8: Starting the Trigger BroKercccviiiiiiiiiiiiieiieeciee et 87
Code Example 9: Starting the POIICY SEIVeT.......cocuiiiciiiiiiiiciiecieecteeeee e 90
Code Example 10: Starting the Top Level Master Brokerccccoeeeviieeiiiciiiniiiciecciee e 96
Code Example 11: Starting @ Sub BroKer.........c.ooocviiiciiiiiiiieiiececceecee e 96
Code Example 12: Example Publishing Clent...........cccoooviiiiiiiiiiiiiieciee e 97
Code Example 13: Example Subscriber CHEent...........cceeiiiiiiiiiiiiiieeciie e 99
Code Example 14: Example Semantic Subscription used within this section..............ccccoceuveene.e. 116
Code Example 15: Example Semantic Publications used within this sectioncccceceuveennne. 116
Code Example 16: Calculating Memory USAZE.........ccvieiuiieriiieiiieciieeeree e eereeeieeeieeeseveesvee s 122
Code Example 17: Request Medoidoooviiiiiiiiiiiiiieieee ettt e 127
Code Example 18: Reduce down to N CIUSLEIS........cceviiiiiiiiiiieciieecieeeree e et 128
Code Example 19: Request Medoid INfo........cccviiiiiiiiiiiiiciecceeeeee e 128
Code Example 20: Example Subscriptions used within the Sectionccccceeeevieciienieeeneennne. 136
Code Example 21: Dynamic Clustering, example subSCriptions..........cceeevveevueeereeenveenveeereeenne 140
Code Example 22: Dynamic Clustering, example publicationsc.ccccvveevieevieecieenvee e, 140
Code Example 23: Re-cluster Messages received by Subscribers........c.oooevvieviieviieciieeieecneenne, 146

X1V

Abbreviations

AC Attribute Constraint

API Application Programming Interface
AV Attribute Value

BIM Broker Information Message

CBN Content-based Network

DEBS Distributed Event-based Systems
DHT Distributed Hash Table

DPS Distributed-Publish/Subscribe

GUI Graphical User Interface

IDE Integrated Development Environment
1P Internet Protocol

JMS Java Messaging Service

KBN Knowledge-based Network

MIB Management Information Base

MO Managed Object

OAEI Ontology Alignment Evaluation Initiative
OWL Ontology Web Language

PAM Partitioning Around Medoids
PBNM Policy-based Network Management
PIM Publisher Information Message
RBAC Role-based Access Control

RDF Resource Description Framework
RSS Really Simple Syndication

SBPS Semantic-based Publish/Subscribe
SIM Subscriber Information Message
SoA State of the Art

SPARQL SPARQL Protocol and RDF Query Language
TBN Topic-based Network

TCP Transmission Control Protocol
URI Uniform Resource Identifier

URL Uniform Resource Locator

UvuID Universally Unique Identifier
XML Extensible Mark-up Language

XV

1 INTRODUCTION

Publish/subscribe networks are made up of client content producers (publishers) and client
consumers (subscribers) both attached to a network of message brokers/routers. Currently clients
make an un-constrained choice as to the broker to connect to, often leading to an overloading of
certain popular brokers in the network, resulting in performance degradation. This thesis is
designed to improve the scalability of Semantic-based Publish/Subscribe (SBPS) networks by

placing clients interested in similar content around similar brokers in the network.

These brokers asynchronously route messages from publisher to interested subscribers based on
matches between publication and subscription. Publications are messages that may be of interest
to subscribers, where those interests have been expressed in a subscription. Subscriptions are
expressions of subscribers interests, often formed from a taxonomy of types/topics or from a set
of one or more filter constraints defining the content they wish to receive from publishers. A
broker maintains a set of these subscriptions, and applies their subscription constraints to
publications as they arrive. If a publication is matched against a subscription, then it is forwarded

to the associated subscriber.

Centralised publish/subscribe networks operate using a single broker, whereas distributed
publish/subscribe networks operate across a network of inter-connected message brokers. In
distributed publish/subscribe networks, messages are usually routed from publisher to relevant
subscribers according to a routing table derived from subscription filters. This offers performance
efficiencies, as messages are directed only to interested subscribers, rather than using an approach

which floods the network in the search for all possible interested publishers.

The main differentiators between classes of publish/subscribe systems are the formats, types,
values, ranges and filter operators supported in specifying subscriptions and publications. For
example highly expressive filters can be argued to more accurately represent subscribers interests
through a greater number of filter constructs. Therefore asserting that the more expressive the
subscription filter, the greater the ability of the subscriber to accurately express their interests. In

increasing order of expressivity, the three main classes of publish/subscribe network are:

1. Type/Topic-based publish/subscribe (TBN): Publications are tagged with a topic or type.
Types/topics are often formed into taxonomies with parent/child relationships existing
between type/topic values. Subscribers use the operators: sub, super, not/exact against
types/topics. For example a subscription may be made to “every sub topic of Football” or
“every super topic of Manchester United.” Matching occurs using only the header of the
publication, which contains the type/topic, and the stored subscription, using the specified

operator. (TIBCO [1] is a widely know example of topic-based publish/subscribe.)

2. Content-based publish/subscribe (CBN): Publications contain a set of one or more typed
values, whereas subscriptions are a set of value-based filters that are applied to the body
of the publication’s contents (Siena [2] being an example of a CBN.)

3. Semantic-based publish/subscribe (SBPS): Similar to content-based, but where both
publications and subscriptions may have semantically enhanced operators, types and
values based on a semantic model or ontology [3]. The use of the term SBPS is first
referred to by Guo in [4]. (Examples of such SBPS can be found in [5-9] an example
being Knowledge-based Networks (KBN) [9].)

Type / Topic-based Networks operate efficiently, as the extent of the routing information
maintained at each broker is a list of types or topics associated with each interested subscriber,
reducing the complexity involved in matching incoming publications to stored subscriptions.
When an incoming publication arrives at a broker, a simple look-up for the type/topic in an
ordered list is performed, and when matched, is forwarded to all the subscribers associated with
that type/topic. This is all conducted via the message header, which is marked, with one or more
topic or types for each publication. In comparison both content and semantic-based networks see

the incoming publications contents being evaluated against the brokers’ stored subscription filters.

Content-based subscriptions are usually constructed from one or more filters in the form of a
Name-Type-Operator-Value (Attribute-Constraint) and publications are constructed
from one or more Name-Value-Type (Attribute-Values). For each filter in each
subscription the Type and Value must be compared, using its Operator against each Type and
Value in each element of every incoming publication. If a match occurs the publication is

forwarded towards the subscriber.

The time taken to search incoming publications against stored subscriptions depends on the
particular set of subscriptions or publications. Importantly, with Type/Topic-based Networks the
matching performance is predictable against the throughput of publications to subscriptions. For
Content-based Networks performance is a function of the size (where the size = number of
elements) in both subscriptions and publications and hence is less predictable. In Semantic-based
Publish/Subscribe this problem is exacerbated as different semantic operators hold different
associated costs. There is therefore a trade-off between the efficiency of Topic- and Content-

based Networks like Scribe [10] and Siena [2] and the expressiveness of SBPS.

In aiming to reduce these costs one key optimisation of the routing information stored at each
broker is subscription aggregation (covering), where similar subscriptions, which cover one
another, are grouped together. Covering, in its simplest form, can be described as follows: Given
two subscriptions S1 and $2 where each is made up of one or more filters F1..Fn, it can be said

that 81 covers S2, if all of the pubs that would match S1 are a subset or equal to the set of

publications that match s2. Miihl et. al. [11] describe a benefit of this covering as being “a
reduction in the number of entries in brokers’ routing tables.” If covering reduces the total number
of routing entries in the broker, the matching and routing time involved in delivering publications
to subscribers via those message brokers on which no covering has occured is also reduced
through a reduction in the number of subscriptions which must be matched against incoming

publications.

In this thesis work is conducted on a particular class of SBPS, Knowledge-based Networks
(KBN), a specific implementation of a KBN (KBNImpl) extended to form KBNCluster.
KBNCluster focuses on incorporating the expressivity of SBPS with the efficiency of content-
based routing and subscription aggregation through subscription clustering. The continuing
research challenge in SBPS is where the increase in expressivity results in an additional increase
in the overhead involved in determining matches between semantic subscriptions and publications.
This research challenge has motivated the solution proposed in this thesis, aiming to reduce the
average number of hops and thus brokers required to deliver messages, where the time taken to
deliver a publication is directly related to the number of hops taken in its routing and thus overall
load on the broker network. This is an alternative to trying to further optimise individual operator
match performance [6]. In clustering this allows publishers and subscribers, with shared interests,
to be arranged closer to one another in the broker network and thus the number of hops that a

publication is required to traverse is reduced, therefore reducing overall load on the network.

More precisely when matching semantic terms in a publication to subscription, logical structures
are used that make explicit a graph that expresses the ontology being referenced. Because this
graph exists in definition, it can be analysed by its characteristics and the specific references made

to it by publishers and subscribers in matches between publication and subscription.

It is assumed that shared interests will (as expressed by publications and subscriptions) involve
terms nearer to each other in the semantic graph or ontology. Therefore clustering publishers and
subscribers, using their semantic publications or subscriptions is predicted to reduce the number
of hops a publication passes over in being routed to interested subscribers. This is in contrast to
non-semantic CBNs, which operate only on the content (numbers, strings, sets etc of messages)
and which do not have an explicit semantic structure that can be efficiently utilised in clustering.
Publish/subscribe topologies generally allow these clients to connect to brokers in an un-
constrained manner; meaning that the range of subscriber or publisher interests attached to any

given broker cannot be predicted.

The approach to clustering, applied in this thesis, exploits the use of explicit semantic annotations
in the publications and subscriptions not previously possible with non-semantic content-based

messages. Once the explicit semantic makeup of a client’s publication or subscription is given, it

becomes possible to compare it to that of other clients publications or subscriptions, and thus

create clusters of common interest, around message brokers. In support of clustering, the

performance of the publish/subscribe network is predicted to be improved as follows:

1.

The fewer hops (brokers) over which a publication message passes when being routed from
publisher to relevant subscribers decreases both the time taken to deliver (based on per broker
matching time and number of brokers involved in routing.)

Clustering reduces the semantic range of subscriptions that are received by brokers and the
number of filter matches that must be made, on each broker. With clustering, a publication
arriving at a broker, has a higher chance of matching a stored subscription, in that broker’s
routing table. The same routing table is also better optimised in terms of subscription covering,
as subscribers are clustered according to the semantics of that subscription and thus the

probability of subscription covering also increases.

In this thesis two types of clustering are defined, as discussed below:

1.

Static Clustering instructs the brokers, publishers and subscribers of their relationship
between one another pre deployment. However if this relationship changes, the statically
embedded logic in every client must also change, usually with a full re-start. With the
relationships between publishers, subscribers and brokers potentially changing rapidly, such a
static approach is seen in [7] as being inefficient in terms of the ability of a network manager
to manage efficiently the relationship between publishers, subscribers and clusters. In static
clustering every publisher or subscriber must be manually instructed, by a network
administrator, as to the broker they should attach to and it is thus clear to see that this does not
scale as the number of clients increases.

Managed Dynamic Clustering allows publishers, subscribers and brokers to hold no
statically embedded logic or knowledge of how to cluster. All logic is maintained in a
management entity, which enforces the rules of clustering across the network, using an
embedded management agent in each client and broker to enforce managed dynamic
clustering. The key motivator for such an approach is that changes in managerial policies can

be made and enforced without requiring any change on the part of the client.

To summarise: managed dynamic clustering happens automatically, as required, without having

to re-start brokers. External intelligence is involved in optimising the decision process. The

reasons behind taking a managed dynamic approach is that the best clustering configuration

depends on the shared interests between clients, and therefore cannot be determined accurately

prior to network configuration.

1.1 Research Question

This thesis examines whether a managed dynamic clustering approach improves the performance

of Knowledge-based Networks, a sub-class of Semantic-based Publish/Subscribe.

1.2 Research Objectives
Three main research objectives have been drawn from the above research question:

Objective 1: Establish an approach for the formation, movement and re-clustering of semantic

clusters in Knowledge Based Networks.

Objective 2: Establish the effect and overhead of implementing static and managed dynamic

clustering in Knowledge Based Networks.

Objective 3: Apply Policy-based Network Management as an adaptable approach to the

management of clustering.

In order to address research objective 1, a dynamic process for partitioning an ontology into a
number of semantic clusters is presented. This partitioned ontology is then overlaid onto a broker
network. This process directs into which cluster a subscriber or publisher should be placed. In

addition, a misplaced subscriber can be identified and moved to a more suitable cluster.

In order to address research objective 2, it is shown that clustering decreases the average distance
a message travels from publisher to subscriber. In addition to this, clustering is shown to reduce

the overall load on individual brokers, and the broker network in general.

In order to address research objective 3, Policy-based Network Management (PBNM) is applied
to control the process of clustering. This use of Policy-based Network Management is
investigated in terms of the efficiency of management data collection, storage and policy

execution.

1.3 Methodological Approach Taken

This research was conducted using an iterative investigative approach in evaluating the effect
clustering has upon knowledge-based networks. The positive effect of clustering had been shown
in topic-based networks. In content-based networks clustering became more difficult as there
exists no agreed model of knowledge used to form messages. With semantics and knowledge-
based networks a common model is present for use in clustering opening a new avenue of

research.

However there was no starting point on which to build using a comparative approach. There was
no system in which the effects of clustering, as shown in topic-based networks, had been applied
in a knowledge-based environment. Having established that a comparative approach was not
possible, this research took an approach based on evaluating incremental improvements in KBN
performance through clustering. This was conducted using a two-pronged methodology
evaluating system performance and network delivery metrics in parallel. These two metrics offer
a mechanism for evaluating whether the introduction of clustering had either a positive or
negative effect on the network. An un-clustered KBN Implementation was used as a benchmark
to test the effect of clustering upon performance. This was conducted by comparing the results of

the same experiments in both a clustered and un-clustered topology.

This thesis itself provides, for future researchers, a base-line implementation, evaluating
performance gains through clustering which can be built upon by others, using a comparative
approach, looking for incremental improvements. The comparative methodology that was not
available in the early stages of this research is now available to others especially when combined

with the future work section of this thesis.

1.4 Evaluation Findings

In this section the evaluation findings from this research are outlined and briefly discussed. The

factors used in evaluating this work these are:

* Message delivery hop count, which refers to the number of brokers a publication passes
through in being delivered to the subscriber as a notification. This is shown to related to
the time taken to deliver a notification referring, to the period between when a publisher
inserts the publication into the network, and the point at which a subscriber receives it.

* Subscription tree/set size refers to the number of subscriptions held by each broker at any

given point in time.

An initial study was conducted into the effect that static clustering had upon a KBN deployment.
This study concluded that clustering of publishers and subscribers around brokers of common

interest increased the performance of KBNImpl in terms of subscription tree size and the number

of brokers involved in routing message from publisher to subscriber (Hop count). A full
evaluation of the approach taken to static clustering is included in the Evaluation Chapter 6,
Section 6.2. However in order to be able to dynamically cluster clients around brokers of interest,
a method for extracting the semantic interests of publisher, subscriber, or broker is introduced.
This returns the client’s “Medoid” where this represents, in a single ontological value, the central
ontological interest of the client. (A full definition of Medoid calculation is presented in the
Design Chapter 4 Section 4.3) Once this Medoid has been calculated, clustering is achieved by
placing publishers and subscribers around specific brokers that share, or have similar, Medoids to
that of others. A full evaluation of this can be found in Chapter 6, Section 6.5.3 entitled “Hop
Count in Delivery. It will be shown, as a confirmatory finding, that the greater the number of
hops taken in routing a message, the greater the time taken for delivery. Therefore, with fewer
brokers involved, the routing process is deemed to be more efficient. 4 full evaluation of this can

be found in Chapter 6, Section 6.3.3 entitled “Hop Count Experiments.”
Two types of node movement are introduced and evaluated in terms of efficiency:

1. Client based, where individual publisher or subscriber clients are moved from one broker
to broker across the network..
2. Broker based, where a broker and all its directly attached clients are moved in unison

from one position in the network topology to another.

It is shown that broker based movement requires less time and is more efficient than client based.
These movement methods have been evaluated and can be found in Chapter 6, Section 6.4.3

entitled “Mobility Costs.”

Collecting management information from brokers, publishers and subscribers, across the network,
will be shown to be expensive, depending on the type of information being collected. The process
of clustering has been designed, as discussed in the Design Chapter 4, so that this cost is reduced.

A full evaluation of this can be found in Chapter 6, Section 6.4.2 entitled “Data Collection Costs.”

Storing management information is evaluated in terms of the amount of memory used. In addition
policy execution is evaluated in terms of the time taken to execute a number of policies against
the set of previously stored management objects. A full evaluation of this can be found in Chapter

6, Section 6.4.1 entitled “Management Data Storage & Policy Execution Costs.”

Finally a dynamic approach taken to clustering publishers and subscribers, around common
brokers of interest, is evaluated in a set of experiments comparing the clustered implementation of
KBNCluster to an un-clustered KBNImpl deployment. Clustered and un-clustered subscription
tree sizes, hop counts taken to deliver messages and re-clustering message notification for clients
deemed to be in an un-suitable cluster are compared side by side. 4 full evaluation of this can be

s’

found in Chapter 6, Section 6.5 entitled “Dynamic Clustering Evaluation.’

1.5 Thesis Contribution

Much research has been conducted into clustering Topic-based Networks, [12] [10] [13] [14] [15],
and is discussed in the State of the Art Chapter of this thesis. However the clustering of Content-
based Networks has received less attention. Of the publish/subscribe architectures reviewed by
Querzoni [16] in five operate as Topic-based Networks, whereas only two operate as Content-
based Networks and none are semantic-based. The small number of studies into clustering
content-based publish/subscribe is due to the difficulty associated with extracting and reasoning
about the interests of publisher and subscriber messages without a formal semantic model.
Although Querzoni’s paper is only a single review of publish/subscribe architectures and their
approach to clustering, his arguments are supported by the following problem: In topic-based
publish/subscribe, clusters are easily formed around the taxonomy of topics used for publication
and subscription. In content-based publish/subscribe, clustering becomes more difficult and
involves subscription table comparison between brokers to calculate similarity between their
subscribers. The solution however exists in Semantic-based Publish/Subscribe where an external
model of knowledge, an ontology is used. This makes calculating semantic interests between
clients an easier task, leading directly to the major contribution of this thesis, which is the ability
to increase the scalability of semantic publish/subscribe networks through the introduction of
clustering. The major contribution of this thesis is therefore formed from the ability to calculate
the semantic centre of a publisher, subscriber or broker and thus allows common interest groups,
or clusters, to be formed. The impact of this work compares an approach for clustering clients in
semantic publish/subscribe systems with the ease at which it is achieved in topic-based

publish/subscribe thus bypassing the problems of clustering Content-based Networks.

An additional minor contribution of this thesis is the approach used in managing the clustering of
KBNs. The problem relates to managing a process of dynamic clustering across a network of
brokers, publishers and subscribers. The solution is to use an approach that enforces clustering
using defined policy rules and a policy engine with data that is collected and filtered by a
semantic publish/subscribe message broker. Others have used Policy-based Network
Management (PBNM) in [17] to determine what tasks to perform post publication-subscription-
matching, and Role-based Access Control (RBAC) [18] has been used to restrict access to content
across the publish/subscribe paradigm. However the novel contribution of this thesis allows for
management agents embedded on each node to be instructed by a policy server as to how to
cluster clients, allowing for changes in managerial goals to be enforced in changes in policy, as
opposed to changes in the client’s code base. The impact of this work relates to the approach
taken in applying an approach to clustering and filtering management data, sourced from across a
collection of managed nodes, and using semantic publication and subscription delivery via a KBN

broker network for management message delivery.

1.6 Selected publications

Seven peer-reviewed publications form the basis of this thesis. The full set of contributed

publications is included in the Conclusion Chapter 7, Section 7.2. In this section a number of

these publications are outlined and a brief description is provided as to how they add to the State

of the Art in publish/subscribe clustering or publish/subscribe research in general. These

publications were chosen as they represent the three main concepts of this thesis: Knowledge-

based Networking, managed clustering using policy-based networking, and an approach to

semantic clustering.

John Keeney, Dominic Jones, Song Guo, David Lewis, and D. O'Sullivan, "Knowledge-
based Networking”: book chapter, published in the "Handbook of Research on
Advanced Distributed Event-Based Systems, Publish/Subscribe and Message Filtering
Technologies. "IGI Global (Editor(s): Annika Hinze and Alejandro Buchmann) 2009.

o This peer reviewed book chapter introduces and presents a complete overview of
the Knowledge-based Network, an implementation of which is used in this thesis.
Work from this thesis contributed to the related work, motivational case studies
and discussion/future work sections of this chapter.

Dominic Jones, John Keeney, David Lewis, and D. O'Sullivan, "Policy-based
Management of Semantic Clustering": conference paper, presented at the second
International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy,
July 2008.

o This paper presented the policy-based approach used within this thesis for
controlling the clustering of publishers, subscribers and brokers. The application
of using policy in publish/subscribe clustering is a novel contribution of this
research. In this position paper the work in this thesis outlined the approach
evaluated in the rest of this thesis.

John Keeney, Dominic Jones, Dominik Roblek, David Lewis, and D. O'Sullivan,
"Knowledge-based Semantic Clustering": conference paper, presented at the twenty
third annual ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Brazil,
Mar 16-20 2008. (Included in Appendix A)

o This conference paper presented and evaluated a static approach to clustering,
where each client was manually configured with a pre-defined cluster. This work
supported the arguments on the benefit to KBN clustering motivating the research

presented in this thesis.

1.7 Thesis Outline

Chapter 2, Background: This chapter provides the reader with the necessary background
knowledge for the thesis. By the end of this chapter the reader will have acquired an

understanding of publish/subscribe networks, ontologies and policy-based network management.

Chapter 3, State of the Art: This chapter places the work presented in this thesis within the
context of existing research in both publish/subscribe networks and the clustering of these
networks. By the end of this chapter the reader should be able to compare the research presented
in this thesis against research completed by others, and see where this research contributes to the

State of the Art.

Chapter 4, Design: This chapter presents the reader with a description of the design decisions
made in the process of clustering of Knowledge-based Networks. By the end of this chapter the

reader should have an understanding of how each part of the system connects together.

Chapter 5, Implementation: The reader will have gained an understanding of the various
components of the evaluated system from the design chapter. This chapter introduces the various
technologies and technical approaches taken to implement a proof of concept of the design,

KBNCluster.

Chapter 6, Evaluation: The evaluation chapter presents the findings of the research conducted
as part of this thesis. Each of these findings is supported in data. By the end of this chapter the
reader will be able to identify the benefits of clustering KBNs and the evaluated efficiency of the

management system.

Chapter 7, Future Work and Conclusions: This chapter presents the future direction of this
research. In addition, it presents an overview of the research question and objectives backed by
supporting data. Finally the benefits to the scientific community of this work are clearly outlined

and discussed.

Appendixes: A: Full copy of "Knowledge-based Semantic Clustering”" [7]. B: Results of the
clustering algorithm used in this thesis applied to five separate ontologies. C: All policies
designed as part of this thesis. D: In DVD format: a copy of this thesis in PDF format, all
evaluation data sets, publications and subscriptions used in experimentation, all ontologies (in
* owl format) results of the clustering algorithm applied to the ontologies, all policies used in as

well as copies of all papers published from the work presented in this thesis.

10

2 BACKGROUND

This chapter presents the technology and background knowledge important in fully understanding
this thesis. In this chapter, ontologies, semantics, semantic reasoning, publish/subscribe

middleware and Policy-based Network Management (PBNM) each are introduced in turn.

2.1 Key Terms

This first section describes for clarity some of the key terms in the context of this thesis, not

specifically to the field of publish/subscribe.

Subscribers register subscriptions with a broker. Each subscription consists of one or more filters,
where each filter is constructed from a Name, Type, Operator, and Value in the form of
an Attribute-Constraint. Publishers send publications into a broker across the network
constructed from a Name, Type, Value in the form of an Attribute-Value. These
publications are matched, by message brokers, to stored subscriptions and routed across the

broker network towards subscribers as notifications, where matches occur.

Brokers route messages received from a publisher to a subscriber. Subscriptions are stored in a
broker’s subscription set or tree. When a broker receives a publication, it checks its subscription

set and forwards matches towards the subscriber that was the source of the subscription.

Hop Count relates to the number of brokers over which a publication passes as it travels from its
source to a destination. It is initialised at zero, and the first broker to receive a publication
increments it by one. This continues until the publication turns into a notification, when it is

delivered to a subscriber with an attached final count.

An Un-clustered Topology is a broker topology where both subscribers and publishers are un-
constrained in the choice as to where they publish or subscribe to across the broker network.
There is no coordination as to where, in the overlay, from a logical point of view, a publisher or
subscriber should connect. For the purposes of this thesis, a Clustered Topology utilises a
managed process to attach both publishers and subscribers to an appropriate broker before they
publish or subscribe, thereby clustering the clients around their interests. When a Publisher or
Subscriber requests attachment, its semantic interests are used to calculate a suggested cluster

within the network.

The process used to control clustering takes a Policy-based Management [19] approach. The Rule
Driven Policy Server plays a central role in the management of the clustering process.
Management policies are designed and implemented by a systems administrator. These policies
and the methods these policies utilise subsequently allow for a clustering process to be

implemented across the managed collection of nodes by a centralised policy server.

11

2.2 Semantics

2.2.1 RDF and Ontologies

In this section ontologies are introduced. However before this, the Resource Description
Framework (RDF) is briefly discussed. Baader et. al. [20] define RDF as “a language for
representing information about resources in the World Wide Web” written so that machines can
parse it, and humans read it. In RDF, a resource can be either a Subject, Object, or
Predicate, each with a unique Uniform Resource Identifier (URI). Stringing together a subject
and an object with a predicate creates an RDF triple. Importantly objects and predicates can also
form parts of other triples, and these can be extended into one another so that they form a

knowledge base. By way of illustration, a simplistic example of an RDF is shown below:

Subject: John
has_surname

Predicate: has_surname

John

Object: Smith

Table 1: Example RDF Triple
Moving on from RDF, Web Ontology Language (OWL) ontologies are seen as more detailed and
formal representations of knowledge, formed from classes, instances/individuals and properties.
The remainder of this section will introduce the main characteristics of a generic ontological

model in the course of building a simplistic example ontology.

1) Classes: represent collections of individuals that share common characteristics. In the
example ontology built through this chapter a single root class is created, underneath Oowl : Thing,

where Oowl : Thing represents all knowledge in the modelled domain.

The newly created class sub-class of owl:Thing will be named Animals and have additional
sub-classes of Cats and Dogs. Classes named Burmese are created under Cat and
GermanShepherd and JackRussell under Dog. Using this approach sub- and super-classes
can be extended into a taxonomy as required. Equivalence and disjoint relationships can be
encoded into class relationships, such that Dog and the class Canis lupus familiaris can be

defined as being equivalent and Cat defined as being disjoint from Dog.

2) Instances/Individuals: are occurrences of entities and assigned to specific classes. By
extending the class structure created in the previous step, Dixie is associated to the class,
Burmese, Tillie and Ray to the class German Shepherd and Gus to the class Jack Russell.
This process populates the previously created class structure with instances of each class. The

next step assigns some properties to the sample ontology.

12

3) Property Types: The two main properties used in OWL ontologies are either object- or

data-type properties. The W3C defines object-type properties, in [21], as a directional relationship

3

between “an individual (s) and another individual (s)” and data-type properties as
“individual (s) to datatype (s)” where data types equal strings, integers, Booleans, dates
etc. When dealing with object properties, the domain and range can be set. For data-type

properties an instance is directionally related to typed data values expressed in XML schema.

Expanding upon the example ontology a property is created where the Domain is set to Dog and
the range is set to Cat. Once this property has been assigned a domain and range and
subsequently when an instance of the Dog class is selected it is possible to assign the property
chases to the selected Dog. For example Tillie, a German Shepherd chases Dixie a

Burmese.

An example of data-type properties is hasAge which has a domain of Animal and its range being
set to Integer. This allows any instances of any sub-class, below Animal, to be assigned an

integer value. Shown in Figure 1 is the example ontology formed in this section.

owl:Thing

owl:subClassOr

Animals

owl:subClassOf

owl:subClassOf

Burmese

owl:InstanceOf

owl:ObjectProperty

Figure 1: Example Ontology
One limitation of the ontological representation of knowledge is in the ability of a machine to
understand the meaning of that knowledge. Whether in OWL, RDF, or plain text, a machine can
only understand the relationships among concepts based on the path between them, not by the
semantic meaning of the concept’s label. At present it is difficult for a machine to understand
meaning but it is possible to identify relationships between concepts in a particular knowledge

model. Taking an object-property Father is parent of Child a machine could interpret

13

through reasoning the link between the concept of Father and of Child, but not of the meaning

of the wording of the property, is_parent.

If ontologies are seen as multi-dimensional graphs of knowledge, where relationships are
represented as formally defined properties, super- and sub-class, assignments of instances and
properties it is thus possible to refer knowledge from these relationships whereas understanding
the concepts is more difficult to achieve. There are two main methods for inferring knowledge, as
outlined in [22], the T-Box or “Taxonomy Box” and A-Box or the “Assertion Box.” Combined,
they apply a classification of concepts and the relationships between concepts individuals and

properties, which provides a query-able reasoned taxonomy of a knowledge base.

14

2.3 Publish/Subscribe Middleware

Having discussed ontological semantics this section looks at the different types of
publish/subscribe middleware responsible for delivering event messages from publishers to
subscribers, whose interests are expressed as a subscription. This approach can be viewed in
contrast to systems such as (RSS) Really Simple Syndication [23] where a pull-based delivery
mechanism is used. In RSS a client is required to query for new content from a defined collection
point, as it appears, whereas the push-based publish/subscribe paradigm sees content pushed

towards a subscriber, with no action required on the part of the subscriber.

Distributed publish/subscribe offers a de-coupled method of communication in which messages
are routed from a publisher towards interested subscribers via a broker without any direct
relationship existing between both. Agreement is only required in terms of the message format
and the broker mechanism in use, often achieved through a boot-strap service. The remainder of
this section looks, in detail, at three types of publish/subscribe middleware, topic-, content- and

knowledge-based.

DISTRIBUTED EVENT-BASED SYSTEMS

* SUB-C;LASS ¢

SEMANTIC-BASED CONTENT-BASED ToOPIC/TYPE-BASED
PUBLISH/SUBSCRIBE PUBLISH/SUBSCRIBE PUBLISH/SUBSCRIBE
SBPS CBN TBN

COMBINES

y

KNOWLEDGE-BASED
NETWORKING
KBN

Figure 2: Classification of Publish/Subscribe Systems
Shown in Figure 2 are sub-classes of Distributed Event-based Systems (DEBS) [24] discussed in
the last three sections of this chapter. In this thesis the prototype system developed upon is an
implementation of Knowledge-based Networking [9] which itself extends upon the Siena [2]
Content-based Network (CBN). The State of the Art Chapter 3, of this thesis, extends the above
diagram with the various implementations of the four classifications presented above, introducing

topic-, content- and Knowledge-based Networks in turn.

15

2.3.1 Topic-based Publish / Subscribe:

A highly cost-efficient and widely used publish/subscribe system is the topic-, type- or channel-
based, network where clients subscribe and publish to particular topics or channels of information,
each a specific reference to a stream of information. An example of the concept of subscriptions
in such a system could include topics such as Wimbledon as a sub-topic of Tennis or
World Cup Final as a sub-topic of Football. Subscribers are delivered all messages
published to the specific topic-channel they have previously subscribed to. TIBCO [1] and Scribe

[10] are examples of popular Topic-based Networks.

One requirement of topic-based publish/subscribe is that there must exist an agreement on the
topic set, pre-defined by an administrator. De-coupling of clients is a key characteristic of
publish/subscribe, yet the requirement for agreement upon a topic set reduces this de-coupling and
requires a centralised service to advertise available topics. However, this is offset by the
efficiency of routing messages to pre-defined topic channels, therefore in Topic-based Networks
the only part of the message available to the event-service used in message matching is the topic

identifier itself, included in the message header.

2.3.2 Content-based Publish / Subscribe

Content-based Networks (CBN), such as Siena [2], Hermes [25], Gryphon [26] and Elvin [27],
allow subscriptions to be matched against the contents of publications. In CBNs publications are
usually formed from a number of attributes composed of a name, type and value, whereas
subscriptions are a conjunction of one or more name, type, operator and value filter(s).
If a subscription is satisfied, from the contents of a publication, the publication is forwarded to the

subscriber as a notification.

Type Name Operator | Value

String | User_Name | = jonesdh

Table 2: Example Filter Constraint

Shown in Table 2 is a content-based subscription, constructed using a single filter in the form of a
Type, Name an Operator and a Value. Each of the filters in a given subscription must be
matched to a candidate publication, if it is to be matched as a notification. However there may be
more attributes in the publication than specified in a matching the subscription, but every part of

the subscription must be satisfied by one or more parts of the publication.

Type Name Value
String | User_ Name jonesdh
int MailBoxSize | 500

int ExtNumber 6099

Table 3: Example Publication

16

The example publication shown above in Table 3 would be matched to the subscription shown in
Table 2 as all of the subscription filters are satisfied. In contrast to this, shown in Table 4 is a
non-matching subscription, as the MailBoxSize attribute does not match any of the attributes

in the example publication, and therefore will not be delivered to the subscriber.

Type Name Operator | Value
String | User Name = jonesdh
int MailBoxSize | > 590

Table 4: Example Subscription

2.3.3 Knowledge-based Networks in comparison to CBNs

Knowledge-based Networks (KBNs) [9] are a classification of semantic-publish/subscribe
middleware, allowing the semantics of the contents of publications and subscriptions to have an

effect in message matching.

The semantic content in subscriptions and publications are based on a shared semantic web OWL
ontology [3], using additional ontological types and operators. A key identifier of Knowledge-
based Networks is that semantic types and operators are often integrated seamlessly with the
existing (non-semantic) types and operators of CBNs, the KBN implementation used in this thesis
offers an extended version of a CBN (Siena [2]) in which both semantic and non-semantic
message attributes operate in unison, across the same network of brokers being matched either

syntactically (available in both CBN + KBN) or semantically (only available in KBN).

One problem that exists with Knowledge-based Networks is in the requirement for pre-agreement
on the common model of knowledge, or Ontology, used between clients and brokers. This pre-
agreement is a drawback as it reduces the de-coupled nature of publish/subscribe however it also
provides an increases level of expressivity in messaging. KBNCluster does not address the issue
of pre-agreement between ontological models nor does it require clients to communicate in a pre-
operational agreement phase. However the work of Guo [4] looks in detail at the use of
ontological mappings between different ontologies so to mitigate the problem of pre-agreement

on ontological models as present in Knowledge-based Networks.

The data in Table 5 introduces Knowledge-based Networks by comparing them against both
Topic- and Content-based Networks in terms of delivery, subscription and publication method,
available operators, pre-operation agreements as well as providing examples of each, from current

literature.

17

Generic Topic-Based

Siena [28] CBN

KBNImpl [8] KBN

Delivery Each topic channel has all Messages are delivered by brokers based on non- Messages are delivered by brokers based on non- and
Method: messages delivered to all semantic subscriptions constructed from a Name, semantic-subscriptions constructed from a Name,
clients, who have previously Type, Operator and Value. Type, Operator and Value.
expressed interest in the
channels content.
Subscription | Subscriptions to topic Name-Type-Operator-Value (Attribute- Name-Type-Operator-Value (Attribute-
Method: channels are seen as Constraints) using syntactic subscriptions formed | Constraints) syntactic and semantic subscriptions
expressions of interests in all | from non-semantic operators and types. using both non-semantic and semantic operators and
content to be published to types
that channel.
Publication | Publication pushed into Non-Semantic publications Name-Value-Type Non-Semantic and Semantic publications Name-
Method: specific channel and (Attribute-Values) matched at each broker Value-Type (Attribute-Values) matched at
delivered to all subscribers of | against stored subscriptions, delivered as each broker and delivered as notifications to all
that channel. notifications to all interested subscribers. interested subscribers.
Operators Limited set, based around Including, but not exclusive of: Equals =, Not Including, but not exclusive of: Equals =, Not
available: exact subscriptions to Equals !=, Less Than < and <= Greater Than > and Equals !=, Less Than < and <= Greater Than > and
previously agreed topic >=, Prefix (String starts with) >*, Suffix (String ends | >=, Prefix (String starts with) >*, Suffix (String ends
taxonomy, examples include: | with) *<, Substring * , Equal Bag #=, Sub Bag #<, with) *<, Substring * , Equal Bag #=, Sub Bag #<,
Sub-, Super-, exact or | Super Bag #>, (Logical OR ||, Logical AND &&, Super Bag #>, Logical OR ||, Logical AND &&,
equivalent operators. Logical NOT! Varies for different implementations.) | Logical NOT ! Equivalent @~, Not Equivalent
@!~, Sub Class @>, Super Class @<, ISA @=,
IS_NOT_A @!=, Ont Property @*,
Operational | Agreement of topic Requires agreement on names and types between | Requires agreement on an ontology used by
agreements taxonomy by publishers, publishers, subscribers and brokers. publishers, subscribers and brokers and name and
required: subscribers and brokers. types used.
Gener::;l TIBCO [1] and Scribe [10]. Siena [2], Hermes [25], Gryphon [26] and Elvin [27]. | KBN [9], OPS [29], and S-ToPSS [30]
Examples:

Table S: Classification of Topic, Content and Knowledge-based Network

18

Shown in Table 6 are the range of operators and applicable types available in the Siena CBN [2].
The combination of these operators and types, with a value, allows Attribute-Constraint-

filters to be formed from one or more Name, Type, Operator and Value.

Operators Symbol | Applicable Types

Equals = String, Byte Array, Integer, Long
Integer, Double, Float, Boolean.

Not Equals I= String, Byte Array, Integer, Long
Integer, Double, Float, Boolean.

Less Than < Integer, Long Integer, Double, Float

Less Than Equal To <= Integer, Long Integer, Double, Float

Greater Than > Integer, Long Integer, Double, Float

Greater Than Equal To = Integer, Long Integer, Double, Float

Prefix (starts with) >* String

Suffix (ends with) *< String

Substring * String

Table 6: Siena CBN Operators, Types and Symbols
Shown in Table 7 are the operators and applicable types available in the KBN implementation

used, extending the CBNs operators and types, shown in Table 6, to include semantics.

Operators Symbols Applicable Types

CBN Operators. See Table 6. See Table 6.

Equivalent @~ Class or Property

Not Equivalent @ar~ Class or Property

Sub Class @> Of a named Class

Super Class @< Of a named Class

ISA @= Individual against Class

IS NOT A ar= Individual against Class

ONT PROP @* Individual, Property, Individual

Table 7: KBNImpl KBN Operators, Types and Symbols
Roblek introduces, in [31], shown in Table 8, Bag operators and types. A Bag can contain any
valid KBNImpl (Table 7) type, including other Bags and their applicable operators in the form of
subscriptions or as publications. Examples of matching a publication (Bag A) against a
subscription (Bag B) are as follows: Equal Bag: all elements in Bag A must be in Bag B. sub
Bag: Some elements in Bag A must be in Bag B. Super Bag: Some elements in Bag B must be

in Bag A. Each of these combinations is represented below, in Table 8, Bag operators and types.

Operator Symbol | Applicable Types

Equal Bag | #= See Table 6 and Table 7.
Sub Bag #< See Table 6 and Table 7.
Super Bag | #> See Table 6 and Table 7.

Table 8: Bag Operators, Types and Symbols
In this section three forms of publish/subscribe middleware have been introduced, topic-, content-
and knowledge-based, where the latter is identified as a sub-class of Semantic-based
Publish/Subscribe. These three classes of publish/subscribe middleware are compared to one
another in tabular form before the operators, symbols, and applicable types for both content- and

Knowledge-based Networks have been introduced.

19

2.4 Policy-based Network Management (PBNM)

The Design Chapter 4, Section 4.5, of this thesis outlines a number of dynamic management
methodologies used in managing the clustering of clients who require a dynamic management
approach. In this thesis the placement of clients is dynamic in that it is not based not on any pre-
determined metrics, but on the specific semantic interests of the client at a given point in time,

acquired during operation.

PBNM is seen as an appropriate choice for encoding enforceable management requirements as it
enables for dynamic and rapidly changing rules to be integrated directly into the operation of the
management process without any re-compilation or re-deployment of the management system.
PBNM is defined by Boutaba et. al. as supporting this view in [19], where it is seen as “separating
the rules governing the behaviour of a system from its functionality.” It is this level of separation
between the policy system used for achieving clustering and the broker network itself that makes

a PBNM approach highly suitable for this thesis.

PBNM simplifies the management of this thesis by declaring operating rules, which deal with
situations that are likely to occur. Informally, policy rules can be regarded as a declarative
instruction or authority for a manager to execute actions on a managed target to achieve an
objective or execute a change. Supported by this premise, PBNM is used within this research to
provide a set of external controls, which, in certain configurations, allow management level
decisions to be filtered down from the networks management into the operational characteristics

of a clustered KBN.

The goal behind using PBNM in the clustering of brokers and clients is to control the behaviour
of brokers and clients by employing well-defined policy rules, so that an administrator can
manage the network as an entity in-itself. PBNM allows this to be realized through its ability to
implement changes across the network as a whole, in comparison to managing individual network
entities and actions. PBNM often uses the principle of an event-condition-action loop,
where the event is an occurrence of a trigger phenomenon within the system. The condition is
defined by the policy manager as an arbitrary set of additional conditions that might refer to the
event, the system, or other observable context. Finally the action represents the task to perform
if the event received matches the conditions required for an action to be fired. The policy loop can
be formalised as IF [condition] THEN [action], an example being presented by Martin et.
al. in [32]: If [network resources are low] THEN [limit WWW access]. Such an
approach is used in designing the policies and enforcing the clustering, evaluated as part of this

thesis.

20

2.5 Conclusion

In this Background chapter, an initial introduction to semantics has been outlined showing how
RDF triples [20], consisting of a Subject, Object and Predicate, can be used to represent
semantic data. These triples have been extended and discussed in relation to the three main types
of OWL ontologies. A sample ontology has been built in terms of classes, individuals/instances
and properties. Classes have been defined as representing collections of individuals, and
individuals as representing instances of classes where object properties may be used to relate one
individual to another. Data-type properties, in RDF, have been discussed as resources that relate
to some value (which may be another resource.) However, in OWL object properties relate
individual to individual, and data-type properties individuals. An OWL reasoner can follow these

properties to inter-logical relationships between individuals and data based on a given ontology.

Various classes of publish/subscribe middleware have been introduced, including Topic-based,
such as Scribe [10]; Content-based (CBN), such as Siena [2]; and Knowledge-based Networking
[9] as a sub-class of Semantic-based Publish/Subscribe (SBPS). For each of these networks, the
various types of operators and the various types that they apply to have been documented. It has
been shown how topic structures are subscribed to and how content-based Attribute-

Constraint filters are formed around Attribute-Values.

Finally Policy-based Network Management [19], [32] has been introduced and established in
terms of various parts of a generic policy loop, in the form of event-condition-action. The
next chapter looks at current State of the Art research in the field of publish/subscribe networks,

their clustering, and approaches to managing clustering

21

3 STATE OF THE ART

In the previous chapter the technology and background used in this thesis have been introduced.
In this chapter the current State of the Art in the field of publish/subscribe is introduced,
concluding with design ideas, drawn from across the State of the Art. The first section of this
State of the Art Chapter looks at other implementations of Content-based Networks. Following on
from this a review of Semantic-based Publish/Subscribe (SBPS) is conducted, both sections
concluding with the advantages / disadvantages of each technology. A detailed review of the
application of clustering in both topic-, content- and Semantic-based Publish/Subscribe is
conducted, before this chapter concludes with design ideas, applied in KBNCluster, sourced from

the current State of the Art.

3.1 Content-based Networks

As has been discussed, Content-based Networks (CBN), such as Siena [2], Hermes [25], Gryphon
[26] and Elvin [27] are formed around the necessity to match a varying subscriber base to a wide
range of publishers. This “de-coupling” of the parties involved in the communication process
allows for message routing, upon message brokers, based on subscribers interested in a particular

message, rather than the flooding of the network in the search for all interested parties.

Subscribers register interests in the form of subscription filters, which are matched against
incoming publications at a broker. The routing process allows for a message inserted into a broker
network to be routed across the network based on positive matches to stored subscriptions (made
up from a number of filters) until every client, interested in the message, is satisfied. The filters,
which match these publications, are constructed using filtering constraints applied to the contents
of the publications. Miihl et. al. [24] describes this content-based matching as a set of “filters
[which] are evaluated against the whole contents of notifications.” The range of these operators
and types determines the type of pub/sub network in which the message is being sent and these

operators have been introduced and discussed in the Background Chapter 2, Section 2.3.

This section overviews four well known Content-based Networks, Siena [2], Hermes [25],
Gryphon [26] and Elvin [27], concluding with the advantages and disadvantages of the various

CBN architectures discussed.

3.1.1 Siena

Central to the design of Siena [2] is the observation that: “in practice, many parties are interested
in similar events” central to the approach taken in clustering. This is put into practice when a
subscription is received by a broker, as this subscription is only forwarded to a peer broker node if
“it defines newly selectable notifications that are not in the set of selectable notifications defined

by any previously propagated subscriptions.” Using this approach, the Siena broker network

22

removes some of the load placed on the processing of publications by only forwarding the
subscription up the hierarchical chain of brokers, making it a concern of other brokers, if the

publication matches previously forwarded subscriptions.

The relationship between advertisements (not used in this thesis) and publications in Siena are
more complex. Siena is an event notification service, where publications are the events, compared
to the set of subscriptions stored in each broker. Changes in subscribers’ interests are represented
by a change in the set of stored subscriptions they hold at a broker. Advertisements allow the
publisher to “inform the event notification service about the notifications that will generate
objects of interest,” allowing brokers a glimpse of the content that may become available from a
particular node in the future. Advertisements are non-binding; messages are delivered even if the

advertisement is different from that of the subsequent publication.

Finally Siena identifies a single match of a subscription and a publication as a pattern. One or
more filters form a subscription and a publication matching a subscription is termed a notification.
This form can be further extended into a sequence of multiple filters, in a pattern, where each
filter must be matched in ordered of definition in order for that complete pattern-subscription to

be matched.

3.1.2 Hermes

As with other distributed event-based systems, Hermes [25] uses the terms event-clients and
event-brokers, where event-clients are publishers or subscribers and event-brokers route messages
between the two. However Hermes introduces the concept of “rendezvous” nodes, known to both
publishers and subscribers placing each around a common shared broker of interest, where
message delivery occurs or will occur. In addition to this, Hermes allows for subscription to type-
based events. For each event type, a rendezvous node exists in the network, and is replicated
somewhere else within the network. This assures that no single rendezvous node becomes a
“single-point of failure,” but also allows clients to connect at particular nodes that deal with

particular event types.

Publications are delivered to subscribers in Hermes, as follows: publishers establish rendezvous
(R) nodes for each of the types on which they will publish. They then send advertisements across
message brokers to these R nodes. Subscribers similarly subscribe across broker paths, from their
destination to the R nodes relevant to their subscription type. As these subscriptions route across
the collection of brokers, each individual broker stores the subscription locally, the path travelled
terminating at the relevant R node. Once the subscriptions have been processed from subscriber to
R nodes, and the path stored, brokers route publications back across these paths on behalf of
publishers. As publications pass across brokers (towards R nodes), brokers check to see if routing

publications match any stored subscriptions. If a match does occur, the broker forwards the

23

publication, towards the subscriber, using the reverse route of the previously stored subscription.
Using this approach Hermes attempts to avoid bottlenecks occurring if subscriptions route to an R
node and only then route back to subscribers so that brokers take some of the load of the R node
as soon as they can. A layer below the API allows for a mechanism to filter across the event type

values, as opposed to just the event-type, much like the Siena filtering mechanism.

3.1.3 Gryphon

The authors of Gryphon [26] present three approaches for solving the multicast (publisher to
subscriber) problem, initially using a match-first approach, secondly using a flooding approach,
and thirdly presenting a hybrid approach. When match-first message matching is utilised, a list of
matches is generated when a publication is received. Once this list is accumulated the publication
is forwarded, as a notification, to each of the generated matches (subscribers). Flooding, as in the
name suggests, pushes the publication to all nodes, regardless of whether a match may occur or
not. The Gryphon authors outline and evaluate a third, more efficient, hybrid approach to the
problem of message delivery, termed “link matching.” Central to the concept of link matching is
the principle that each broker can calculate the route, from themselves to a subscriber, with

respect to the brokers outgoing links when the broker receives a publication.

Gryphon then uses a Parallel Search Tree (PST) approach in an initial prototype which is then
extended in [26] using a neighbour-first approach. In this, each subscription corresponds to a path
from the root node of the PST to the corresponding subscriber. By following the tree from the
root node down each of the possible attribute paths, the distance between each incoming
publication and interested subscriber can be calculated, the shortest path being the one used in

message delivery.

3.1.4 Elvin

In [27] the Elvin3 protocol is discussed in operation, and extended theoretically into Elvin 4. In
Elvin3 clients are represented as producers (publishers), consumers (subscriber) and servers
(router/broker). An important note with regard to Elvin3 is that the message delivery is conducted
over a single message server, solely responsible for the collection of subscriptions and delivery of
publications to interested subscribers. In their discussion regarding Elvin4 the authors discuss the
problems involved in scaling such an event-based system, where a single server processes all load,
whilst keeping intact the message-matching algorithm. In this discussion the authors conclude
that: “The remaining research challenge is to address scalability to wide area networks, and to
provide an internet-scaled Elvin [publish/subscribe] service.” This is important with regard to the
design of publish/subscribe systems and specifically when dealing with a growing set of stored
subscriptions and incoming publications where reducing the cost involved in matching each

publication to each subscription, with such large distributed subscription table is an aim of design.

24

3.1.5 Analysis

3.1.5.1 Advantages of CBNs

Content-based Networks offer many advantages over their predecessor; Topic-based Networks.
The use of Content-based Networks provides a more expressive and flexible subscription
matching mechanism. This increased flexibility is achieved through the use of Attribute-
Constraint filters that allow subscription filters to be compared to the separate constituent parts
of Attribute-Values making up a publication. If one or more of the publication’s attributes
match all of the constituent parts of the subscription, then the message is forwarded to the
subscriber as a notification. Content-based Networks allow for a range of operators to be added to
the combination of Attribute-Constraints, present in subscription filters, such as; greater
than, less than, equals, does not equal etc. This combination of attributes, constraints and filters,
specified by the users, increases greatly the expressiveness of the subscription mechanism and

thus the expressiveness of the system.

In Content-based Networks there is no requirement that the set of users neither join together in
agreeing what subjects, sub-subjects and super-subjects should be formed into a topic taxonomy,
nor use a pre-defined taxonomy only required is that they agree on naming conventions between
attributes. Users publish, regardless of subscribers’ interests, and the same is true for subscribers
where content is delivered based on a match between subscriptions filters and publications, routed

to one another from across the network.

3.1.5.2 Disadvantages of CBNs

There are however some drawbacks to Content-based Networks not apparent in Topic-based
Networks. These drawbacks are primarily associated with the increased cost of matching stored
subscriptions to incoming publications, where the complete contents of each publication needs to
be compared to every subscription held by a broker, regardless of whether any match may be
made elsewhere within the subscription tree. This results in an increase in operational costs when
searching for notification matches, and subsequently increases if the number of Attribute-
Constraint pairs in each subscription increases. However some pre-agreement is still required
with Content-based Networks relating to the naming of attributes. Unless the naming of attributes
is in synergy then publications will not match subscriptions, regardless of the content. The
balance between the level of specification and the agreement of naming attributes is one that is
constantly re-assessed. In summary, Content-based Networks are shown to be extremely

expressive, but still require pre-agreement upon the naming of attributes and their pre-deployment.

25

3.2 Semantic-based Publish/Subscribe (SBPS)

Semantic-based Publish/Subscribe (SBPS) [5-8] are a class of publish/subscribe middleware
defined by Guo in [4] as “any publish/subscribe mechanism in which the semantics of the
message are used in the routing of publication to subscriber.” To be defined as using semantics
requires additional knowledge to be gained from the user’s subscription or publication, and thus

increases the likelihood that any content delivered will be of interest.

The subscriptions by a subscriber define the interest of the user, where SBPS allows messages to
be routed towards subscribers, based not only on their specific subscriptions, but also on the
semantic relationship between their subscription and the contents of the publications. This section
looks at various implementations of SBPS, their characteristics, usage, advantages and
disadvantages. Any SBPS aims to increase expressivity in the subscriptions and publications of
network clients, whilst maintaining the efficiencies of publish/subscribe. Hence the key common
characteristic of SBPS is increased expressivity, and is used as the common metric for
comparison throughout this section. Before the State of the Art in Semantic-based
Publish/Subscribe is discussed a sub-class of SBPS (Knowledge-based Networks), and three

implementations of Knowledge-based Networking are introduced.

3.2.1 Knowledge-based Networks

Knowledge-based Networks (KBN) are a class of Semantic-based Publish Subscribe (SBPS)

which must allow both content- and semantic-based subscriptions and publications to intermix.

KBN subscriptions are formed from a (Name, Operator and Value), whereas publications
are formed from a (Name, Value and Type) whether semantic or non-semantic. This is the
key identifier of KBN equal to CBN functionality extended with support for semantics in

Attribute Values (publications) and Attribute Constraints (subscriptions).

3.2.1.1 KBNImpl

KBNImpl is an implementation of a Knowledge-based Network developed by Keeney and
extended by Roblek in [31] as presented in [6]. KBNImpl is based upon the Siena CBN [2]
specifically version 1.69 which extends the functions of the Siena CBN with the semantic
operators, types and values introduced in the Background Chapter 2, Section 2.3.3. KBNImpl
does not constrain which broker a client connects to and clients are free to choose any broker in

the network topology, as is the case with Siena.

3.2.1.2 KBNMap

KBNImpl operates around a single source ontology, used for creating publications and

subscriptions. The work of Guo [4] extended KBNImpl, forming KBNMap, offering support for

26

multiple mappings between semantic models and interlinking SBPS systems through custom
gateways. In KBNMap, when a broker receives a publication or subscription, and if it does not
hold the semantic model required to reason about the message KBNMap uses a probabilistic-
based selection strategy to “dynamically select the appropriate mapping strategy” between
multiple different semantic models (ontologies). Guo’s work links multiple semantic models,
across multiple brokers, where required. It is important to note is that KBNMap does not
constrain or cluster which broker a publisher or subscriber connects to and operates like

KBNImpl in terms of the choice of broker a client takes.

3.2.1.3 KBNCluster

KBNCluster, a proto-type system developed as part of this thesis, combines KBNImpl with a
policy system controlling, and methods for, clustering publishers and subscribers around brokers
of similar interests. KBNCluster extends the code-base of KBNImpl, like that of Guo. The Design
Chapter 4 and Implementation Chapter 5 will discuss KBNCluster in detail.

3.2.2 A semantic Infosphere

Turning the focus to other classes of SBPS a Semantic Infosphere [33] operates around and
clearly defines one of the core principles of SBPS, that being, semantic knowledge delivery. It
utilises an architecture where publishers publish semantic XML messages as an “Infosphere
Information Data Object (IDO).” This IDO is subscribed to by subscribers, using message filters

i.e. filters that bound the requirements of the subscriber against the IDO.

Infosphere operates around the principle of semantic templates, into which non-semantic
messages are cast. Messages are cast into templates using the domain “hasTemplate,” the range
being the specific template in question. Using such a casting algorithm sees each non-semantic

message being cast into a semantic template, thus becoming pesduo-semantic.

The scenario, used in [33], gives an example as a battle tank-force. The message templates, used
in this scenario, and into which all messages are cast are: “Move,; Event; Situation Report
and Enemy Order of Battle.” In each of the template classes there are multiple instances of
message types, each with a domain and range. Message carriers (IDOs) pass across the network
with attached semantic annotations that describe the content of the data object. Such attachment
enables for expression of “both the annotations and the subscriptions in vocabulary from the
common ontology” than allowing ontological reasoning against the ontological strand of
knowledge in the publication against the query, or filter, stored as a subscription. This reasoning
is used to calculate whether the ontological filter structure matches the publication structure and
delivers the content if and when a match occurs. The matching mechanism, utilised within
semantic Infosphere, is at its core the same as that used in the KBNImpl, which takes the

approach of combining snippets of ontological messages with non-semantic messages allowing

27

both semantic and non-semantic messaging and matching to occur simultaneously albeit with
casting. Where criteria outlined in the ontological representation of the publication match that of

the subscription, then there exists a notification and this is delivered to the subscriber.

The work presented in Infosphere greatly supports the argument that the augmentation of non-
semantic data, into semantic messages, increases the expressiveness of the publication to the

subscription-matching algorithm and that semantics improve expressivity.

3.2.3 Semantic Toronto Publish/Subscribe System (S-ToPSS)

S-ToPSS, presented in [30], addresses the semantic matching problem between publication and

subscription, proposing a three stage solution to the problem, as discussed below.

Firstly synonym (“a word or phrase that means exactly or nearly the same as another word or
phrase in the same language”) translates “all events and subscription attributes with different

names but with the same meaning to a root attribute.”

The second stage involves the placement of a subscription / event into a concept hierarchy where,
for each new event, additional event entries may be added. An important aspect of the concept
hierarchy is the subscription to and publication from an ontological class structure, populated with
multiple distinct instances belonging to classes, thereby enabling for the delivery of subscriptions

based on generalised / less specific notifications.

Thirdly a mapping function “specifies relationships which otherwise cannot be specified using a
concept hierarchy or a synonym relationship.” This mapping function “correlates one or more

Attribute-Constraints to one or more semantically related Attribute-Value pairs.”

The mapping process presented has one major drawback. It must be conducted by a domain-
expert, is not automatic and requires that a domain experts mappings or representation of those
mappings is correct and and agreed upon. i.e. no other combination of mappings could be chosen.
The implementation of S-ToPSS is justified in the following semantic matching example, in
which the task is to match an employer to a prospective employee. The employer is looking for a
candidate from a “certain university”, “with a PhD degree”, “with at least 4 years work
experience.” This semantic query is matched to an employee who has a PhD, from a particular
school, with at least four years work experience only because S-ToPSS is able to reason that
“school” and “university” have the same semantic meaning, particularly in North America,

through their equivalence in a knowledge-base via the common ontology.

28

3.2.4 Graphed Toronto Publish/Subscribe System (G-ToPSS)

An extension to S-ToPSS, G-ToPSS [34], was developed by the same authors as a graph-based
publish/subscribe architecture for dissemination of RDF data. G-ToPSS works with a common

architecture of publishing and subscribing clients laid across a broker, or a network of brokers.

G-ToPSS uses Really Simple Syndication (RSS) [23] web feeds as the source for content-
dissemination which are pruned into RDF triples, where each triple is made up of a (subject,
object, property). Each publication in G-ToPSS is seen as a “directed labelled graph”
formed around simple RDF triples. Subscriptions are represented by five tuple events: “(subject,

property, object, contraintSet (subject), constraintSet (object))”’

The use of constraints can be applied to both subjects and objects where constraints are
represented "as a predicate of the form (?x, op, v) where ?x is the variable, op is an operator
and v is a value." There are two available operators: "Boolean, for literal value filtering, is-a for
taxonomy filtering." The class topology used within the G-ToPSS system enables an is-a
relationship to exist between classes and instances, where constraints applied against this class
structure enables a subscriptions and publications (formed from the taxonomy) to be matched

against one-another.

Such an example is clarified when the taxonomy is visualized: G-ToPSS presents a hierarchical
topology in which “Publication” is the parent to both “Journal” and “Conference Proceedings.”
Subscriptions therefore can be formed around a publication being a conference paper and a

content-based constraint such as “Year Published >= 2008”.

This demonstrates, in G-ToPSS as in the KBNImpl, a clear mix of content and knowledge-based
subscriptions and provides an interesting comparison to the KBNImpl, supporting, much like S-
ToPPS did, the argument that the introduction of semantics into the publish/subscribe paradigm
greatly improves delivery chances to the subscribing consumer supported through worked

examples.

3.2.5 Semantic Message Middleware for publish/subscribe networks
(SMOM)

The main aim of SMOM [35] is to provide subscribers with a more flexible way to describe their
subscriptions. This is achieved using an adaption of the DARPA Agent Mark-up Language and
ontology Inference Layer (DAML+OIL) which are RDF [20] / OWL [36] precursors.

This architecture is structured around a client-server model in which the client may be a publisher
or subscriber. The server provides both an interface to the Java Messaging Service (JMS) layer
and the additional semantic layer. The semantic layer is accessed via a client API used to route

through the semantic layer, to the JMS layer where the semantic layer calculates semantic

29

relationships between classes and instances. This matching mechanism involves a “semantic topic
matching function which is responsible for instance checking and inference between each
subscriber’s class description and each publishers instance description.” Such a checking
mechanism results in notifications being delivered to subscribers from publications, as and when

they appear in the network.

In conclusion SMOM is shown to provide a valid argument behind the adaption of Content-based
Networks to provide semantic services which in turn aids in the delivery of semantic content to

users, who have previously registered interests.

3.2.6 An ontology-Based publish/subscribe System (OPS)

The authors of OPS [29] propose an architecture in which "the domain concepts in all events are
integrated together to form a concept node, and the system matches events with subscriptions both
semantically and syntactically." Implemented using RDF and DAMLAOIL OPS describes the
data model using a (subject, object, property) relationship in the form of RDF triples,
where multiple triples form together to represent events and where by using a comparison of the
two event models allows for subscriptions, in the form of RDF graphs, and publications to be
matched against one another. OPS uses RDF graphs and ontological representation of knowledge
represent a method of turning non-semantic networks semantic. OPS provides such a method for
publish/subscribe semantic matching using RDF as well as fully evaluating the performance of
the matching algorithm using mathematical proof. OPS provides a good balanced argument for

proven performance, offset with the increased expressiveness of semantics.

3.2.7 Designing semantic Publish Subscribe networks Using Super-
Peers (SPS-SP)

The work of SPS-SP [37] aims to integrate publish/subscribe in an RDF based peer-to-peer
publish/subscribe system. The approach of SPS-SP supports advertisements, subscriptions and
publications, where the broker network consists of two types of nodes: super-peers and peers.
“Peers are typically network nodes which wish to advertise and publish data, and/or subscribe to
data owned by others. A super-peer is a node with more capabilities than a peer (e.g more cpu
cycles, power and bandwidth)." The super-peer backbone is therefore responsible for the
processing of publications, advertisements and delivery of notifications to subscribers, based on

their available and increased processing power.

In SPS-SP [37] a peer subscribes by sending a subscription to its defined super-peer access point.
Once a super-peer receives a subscription, the super-peer processes the subscription, storing a
local copy of the subscription in its subscription tree and also forwards this subscription to its

peers. Much like Siena [2] the super-peers do not forward messages “which are subsumed by

30

previously forwarded subscriptions,” this is referred to as covering and results in only newly
registered subscriptions being forwarded to the super-peers neighbours, covered subscription

being merged with subscriptions already held by the broker.

This approach to load sharing reduces some of the costs involved in processing and routing
semantic messages across the network. By outsourcing message processing to more highly
powered super nodes, the less powerful client nodes can access services provided by the super-

peers without resulting in a degradation of performance.

3.2.8 iBroker

iBroker [38] aims to reduce the load placed on a user, when searching for knowledge on the web,

by matching stored (semantic) user models to incoming publications.

The authors of iBroker propose using OWL based ontologies and SPARQL[39] queries, in place
of the RDF and XML content-based approach. Using iBroker allows users to define “user profiles”
which are matched against incoming ontology-based publications. If a match occurs, the

publication is forwarded to the user as a notification.

iBroker uses an OWL parser, to extract (from incoming ontological publications) the classes and
individuals associated with those classes, the properties, domain and range of those properties, all
of which is stored in an adapted hash-map. The subscriptions, in the form of SPARQL queries,
represent user profiles, and make it possible to compare stored subscriptions against incoming
publications. In conclusion iBroker provides a good overview as to how RDF/OWL and SPARQL
queries can be used in a publish/subscribe scenario, if only centralised, and with the costs

involved in SPARQL/RDF message matching.
3.2.9 Analysis

3.2.9.1 Advantages of SBPS

Semantic publish/subscribe offer a number of benefits to the user over Content-based Networks.
The use of semantic subscriptions and publications offer an increased level of flexibility,

expressivity and a great level of meaning, in the notifications delivered to a subscriber.

The use of semantics in publish/subscribe aims to assure and increase the chance that users only
receive messages which they have expressed a direct interest. Content-based Networks provide
the user with a method of explicitly subscribing to content in which they express an interest via
non-semantic Attribute-Constraints. In comparison, semantic subscriptions allow

expressions of interest using semantic concepts, to be formed.

One benefit of any publish/subscribe model is the de-coupling that occurs between producer and

consumer, connected only by a common broker or message delivery mechanism. This is true

31

except in the naming of operators and attributes, where agreement is required, as previously
discussed. It has been shown through the introduction of richer semantic models into the
publication/subscription matching process further increases the separation between content

producers and consumers, via a linked content model.

However semantics can be costly in terms of operational performance, which must therefore be
balanced against expressivity. Examples discussed as part of this section have established that
semantics increase expressivity in publish/subscribe and thus it is argued that this increases the
ability of a producer to reach a consumer, in as dynamic a manner as possible, across a network

topology.

3.2.9.2 Disadvantages of SBPS

One major drawback to semantic publish/subscribe is the requirement for agreement between
producer and consumer on the body of semantic information over which reasoning is to occur,
pre-deployment. Whether such semantic subscriptions occur over an RDF graph or ontological
model, or using some bespoke metadata requires the format and agreement of structured content
to be agreed upon and loaded by clients and brokers alike removing some of the de-coupling and

flexibility introduced through the use of semantics in the first place.

There are additional costs associated with SBPS which increase when compared to using Content-
based Networks. These are associated with searching for semantic matches against incoming
publications and stored subscriptions. The specific cost of using the various semantic and non-
semantic operators are outlined in the Evaluation Chapter 6, Section 6.3.1 and shows that
semantics dramatically increase subscription processing times and publication delivery times. An
additional problem associated with the usage of SBPS is that the semantics need to be available
across the network on each node and for each node to hold the same semantic model as its peers,

hence the work of Guo [4] in KBNMap.

A common drawback within both content- and knowledge- and semantic-based publish/subscribe
is in the use of acronyms or full text in the naming of publications of subscriptions. For example
the subscription name=Dominic is not matched by the publication FirstName=Dominic. The
problem of matching subscription to publication names is one that is outside of the scope of this

thesis, but one that does exist and needs to be present in system designers / implementers.

In conclusion SBPS have shown to increase the expressivity of the publications and subscriptions
matched against one another over a common semantic model. As will be shown in the Evaluation
Chapter 6, Section 6.3, the use of semantics increases both expressivity and also the cost involved
in matching publication to subscription. This thesis does not aim to reduce the costs involved in
semantic matching of publication to subscription. However it aims to increase the chance that a

broker, receiving a publication, will hold a matching subscription.

32

3.3 Publish / Subscribe clustering Techniques

Querzoni [16] defines the process of clustering, applied to publish/subscribe systems, as being
akin to “subscription regionalism” where subscriptions matched by the same publications are
hosted on nodes localized in the same region of the overlay network. In this section a number of

approaches to clustering publish/subscribe systems are introduced and discussed.

Most of the systems reviewed as part of this chapter operate over an overlay network, a logical
network built on top of an underlying IP network. In this thesis clustering aims to reduce the
number of overlay hops between producer and consumer, not the geographical distance or
necessarily the number of IP hops across the network. The aim of this thesis is to reduce the
number of message brokers process events required in delivering a message. This has the benefit
of reducing the number of overlay hops and so time taken to deliver a publication, thus reducing
the processing load placed on the broker network and increasing subscription aggregation

improving both processing overhead in individual brokers and the network as a whole.

Querzoni, in his survey paper on interest clustering techniques [16], compares the difficulty of
clustering Content- to Topic-based Networks. Using a defined taxonomy of topics allows clusters
of interest to be easily created around the topic taxonomy, and publishers/subscribers be assigned
to those clusters. Therefore topic-based subscriptions and publications are very tightly bound to
interests. Content-based subscriptions are however constructed from a more diverse combination
of filters, in comparison to topic-based subscriptions, and therefore it is harder to calculate a
suggested cluster for a content- or knowledge-based publication or subscription. This difficulty in
clustering content- as opposed to topic-based is indicated through the greater number of clustered
Topic-based Networks [12] [10] [13] [14] [15] than Content-based Networks [40] identified by
Querzoni in his review paper [16]. This is attributed to CBN lacking an external structure used for
forming publications and subscriptions (such as an ontology) that can be analysed and used for

the purposes of anticipating commonalities and forming clusters.

This difficulty, in clustering content-based subscriptions and publications is somewhat reduced
when semantic subscriptions are introduced. Much like the approach used with Topic-based
Networks it again becomes possible to use the ontological structure of the ontology to classify
clusters and most importantly calculate the central, semantic point of the user’s subscription or

publication, when formed around semantic content.

The remainder of this section examines various clustering techniques within mainly topic-based
and Content-based Networks; there is currently no known work to the authors knowledge on

clustering SBPS systems or semantic query systems on such a scale.

33

3.3.1 Topic-based Publish/Subscribe Clustering

3.3.1.1 Boosting topic-based publish-subscribe systems with dynamic

clustering (Tamara)

Tamara [12] introduces a “novel distributed algorithm that utilizes correlations between user
subscriptions to dynamically group topics together into virtual topics (called topic clusters), and
thereby unifies their supporting structures and reduces costs.” Central to Tamara is a reduction in
operating costs through the grouping of clients who share similar interests around common
brokers. In Tamara topic-clusters are formed from the “groupings of topics with similar sets of
subscriptions into virtual topics.” Much like individual topics, virtual topics are allocated a unique
channel identifier. Using these identifiers publishers can reach of all the subscribers of the topic

cluster through that channel or topic-cluster.

Subscribers attach to the topic-cluster as follows: “a user declares their interest in a set of topics.
The system then determines a subscription policy for that user, namely a set of topics and topic-
clusters that covers the user's interests.” This step in the clustering process identifies the user’s
defined interests and places the user based upon these interests into the correct topic-cluster.
When a user’s subscription changes, the user repeats the placement process, resulting in a
replacement of the user within a new cluster, or they stay in the same cluster. A similar approach
is applied to publishers and the result is publishers and subscribers are clustered around common

brokers of interest, such a principle is applied in KBNCluster, using SBPS.

In conclusion Tamara [12] provides for the grouping of pairs of individual topics to form new
clusters; the addition of a topic to an existing cluster; the merging of two existing clusters into a
single cluster, the removal of a topic from a cluster as well as the destruction of a cluster. This
results in a system which is dynamic in the process of clustering, and the result is a low overhead
system enabling the benefits of the clustering process to be evaluated through performance

analysis.

3.3.1.2 Scribe: a large-scale and decentralized application-level multicast

infrastructure

Scribe [10] operates around the principle of multicast, where one message is distributed to
multiple members of an individual groups and can therefore be thought of as clusters of content or
interests.Implemented using the Pastry [41] DHT, Scribe allows for a “fully decentralised peer-to-
peer model in which each participating node has equal responsibilities” [10]. Being fully
decentralised removes any requirement for central co-ordination on the creation, joining and

management of clusters. Scribe provides an adapted model of topic-based publish/subscribe,

34

allowing users to subscribe to a multicast group and receive delivery of all messages sent to that
group.

Using the Pastry DHT, Scribe acts as a layer providing API calls to create a group, join a group,
leave a group and finally publish to a group. Each group is assigned a “single rendezvous” node
that acts as an access point for communication with additional nodes, belonging to the group,
where groups can be thought of as analogous to clusters. The use of forwarding, in Scribe, allows
for messages arriving for delivery to a group to be both routed towards all members of that groups
as well as allowing any other members of the group to route messages towards the other members
of that group. This allows groups of clients who share similar interests to reduce the costs
involved in routing messages from publisher to subscriber, again a process only possible in Topic-

based Networks.

3.3.1.3 Data Aware Multicast (daMulticast)

Data Aware Multicast [13] (daMulticast) provides topic-clustering, using Topic-based Networks
and is similar, in operation, to Tamara [12]. daMulticast uses a “decentralized multicast algorithm
that is data aware in the sense that it makes use of information about the hierarchical construction
of pre-agreed topics to dynamically create groups of interests around subscribers and publishers,
according to topic hierarchies.” The authors of daMulticast [13] identify two main approaches to
topic clustering, one focusing on publishers, the other on subscribers. The publisher-based
approach creates a group for the publishers of a topic and for each individual topic. This is a
relatively simple process where the topic-hierarchy is parsed and re-formed into topic-groups,

which allow future publications to be routed towards the correct topic-group.

For subscribers, daMulticast creates a group for the subscribers of each topic aligning these
subscriber topic-groups against those previously created for publishers. Event dissemination is
conducted based upon a topic-hierarchy structure where a node receiving a message forwards that
message to the super-peer for that topic-group. This node then forwards the message to all other
nodes in its original topic-group. This continues until the path the message takes reaches the node
at the top of the topic tree, the master topic. Along this path subscribers who are interested in the
publication are delivered the notification. In conclusion, daMulticast operates as multiple topic
sub-overlays, connected by super peer topic clusters which interconnect brokers and route

publication between topic clusters, based around the topic hierarchy.

3.3.1.4 Topic-based Event Routing for peer-to-peer Architectures (TERA)

TERA [14] again only provides interest clustering in a topic-based publish/subscribe network.
Each topic in TERA forms a topic-overlay, where different topic-overlays interact with one
another through a general super-peer overlay. Subscribers join the overlay, representing their

topic-interest and may be part of more than one topic-overlay at a time. The general super-peer

35

overlay is then used as a routing mechanism for messages from their source to the access point

which links the general overlay to the specific sub-topic-overlay.

TERA uses a Topic-based Network and a distributed unmanaged P2P architecture, much like
Tamara [12] for event dissemination. There are two overlays, the “global overlay” and the “topic
overlays”. The global overlay is linked to the topic overlay(s) through topic access points; these
access points are nodes on the global overlay, which are linked with all members of the topic-
overly and provide access to and an entry point to a multi-cast group. When a topic access point
receives a message, which is intended for the topic overlay they serve, the access point diffuses

this message across the sub topic overlay, its cluster.

Subscribers join topic overlays, representing their interests. Publishers pass publications to the
global overlay which routes these message across the global overlay until an access point (and
topic overlay) is found for a matching topic and cluster. When passed to the topic access point the
message (using a flooding approach) is diffused to all subscribers in the overlay. In conclusion
TERA [14] proposes and evaluates a novel approach to the creation of clusters within Topic-

based Networks using a global topic overlay linking multiple sub global overlays.
3.3.2 Content-based Publish/Subscribe Clustering

3.3.2.1 Sub-2-sub: Self-organizing content-based publish and subscribe for

dynamic and large scale collaborative networks

Sub-2-Sub (S2S) [40] clusters subscribers in Content-based Networks in contrast to the previous
approaches using Topic-based Networks. S2S uses a fully decentralised P2P system where
subscribers form clusters by comparing their subscription with subscribers around them using an

epidemic approach and where there are no defined boundaries between clusters.

The epidemic approach used to form clusters operates as follows: “Each peer i maintains a
reference to another node j. If Si and Sj intersect, and this intersection is not yet fully covered
by the subscription of another node to which i has a reference, they link.” Such an approach
allows nodes to independently compare their subscriptions to those of one of their neighbours and
create a link if they hold comparable subscriptions but only if there exists no other closer match
across their view of peers. The intersection between subscriptions determines whether
subscriptions match exactly, do not match at all, or match to some extent or another. Subscribers
in S2S are organised into multiple rings of similarity across a single overlay. Publications are
routed across the overlay using a greedy algorithm to cross the rings until they reach a matching
ring, at which point the ring will act as a transport to other subscribers within that ring, delivering
to them the notification. Three types of links between nodes are utilised in S2S [40] to assure the

overlay does not self-partition into unreachable areas; these are:

36

1. Random links are created between nodes within the network.
2. Overlapping-interest links create mappings between rings that share common interests.

3. Finally ring links, between ring nodes, are used to distribute publications to subscribers.

The evaluation of S2S is conducted in terms of overlay construction; the cost involved in
construction of the rings, inter-ring link communication, random link creation and overlapping
links. In conclusion S2S [40] is one of the few examples of content-based clustering documented

as part of this State of the Art review, similar to the approach discussed in KBNCluster.

3.3.2.2 Efficient Publish Subscribe through a Self-Organizing broker
Overlay and its Application to SIENA

The work of Baldoni et. al. [28] is based on the Siena [2] Content-based Network focusing on the
clustering of non-semantic publications and subscriptions aiming to “cluster brokers sharing
similar interests in a limited number of overlay hops.” This aims to reduce both the load on the
collection of overlay brokers, as well as the number of hops to route messages from publisher to
subscriber. In the work of Baldoni et. al. the calculation of similarity between brokers within the
network is calculated as the number of events matched on broker Bi against the number that
would have been matched on broker Bj, where existing hierarchical links are followed first.
Brokers compare views within one another, looking for similarities that have occurred in
previously delivered messages. Based on these similarities brokers make decisions to either move
towards one another, in the hierarchical broker network, or stay in their current location,
connecting and disconnecting as needed. Baldoni’s system operates in a non-semantic Content-
based Network and embeds the logic for clustering on each of the nodes in the network. Like S28S,
Baldoni’s work presents one the few approaches taken to clustering Content-based Networks,
using a comparison between the messages brokers have delivered, bringing together brokers with
similar sets of interests. This is different to the approach in this thesis which takes a client-first

approach to clustering.

3.3.3 Conclusion

In sections 3.3.1 and 3.3.2 a number of approaches to clustering publish/subscribe architectures
have been discussed. These approaches have commonly been applied to Topic-based Networks,
where the external topic structure can be utilised in the grouping of clients around clusters of
interest. Content-based Networks have been shown to be more complex in terms of their
suitability for clustering. This thesis aims to contribute to the State of the Art by introducing and
evaluating the clustering of Semantic-based Publish/Subscribe networks through the use of the
semantic model, used by publishers, subscribers and brokers alike. The next section of this

chapter grounds the publish/subscribe middleware previously introduced, in a common taxonomy.

37

3.4 Publish/Subscribe Classification Il

DISTRIBUTED EVENT-BASED SYSTEMS
+ SUB-CLASS SUB-CLASS
SEMANTIC-BASED \J v
PUBLISH/SUBSCRIBE -
seps FUBLISH/SUBSCRIBE TOPIC/TYPE-BASED
CBN PUBLISH/SUBSCRIBE
! TEN
INSTANCES | T
+ f COMBINES ——— — INSTANCES INSTANCES
| OPS | | S-ToPSS | ‘ ‘
| TIBCO | | SCRIBE |
KNOWLEDGE-BASED | SIENA | | HERMES |
NETWORKING
KBN
1
INSTANCES
|
| KBNIMPL | | KBNMAP | | KBNCLUSTER |

Figure 3: Classification of Publish/Subscribe Systems II
Figure 3 is the classification presented and previously introduced as Figure 2 in the Background
Chapter 2, Section 2.3, extended to include a number of the implementations of publish/subscribe
systems introduced in this Chapter. This figure only contains a number of example
implementations, in each classification, not all those presented in this chapter. It is intended that
this classification structure be used by Distributed Event-based System architects to classify their

contributions in terms of the four major classes of such systems.

References to implementations above are as follows: OPS [29], S-ToPSS [30], TIBCO [1],
SCRIBE [10], STENA [2], HERMES [25] KBNImpl [6], KBNMap [4], Finally KBNCluster is
introduced extended from KBNImpl in this thesis as the prototype implementation of clustering

designed, implemented and evaluated.

Meier and Cahill [42] introduce a taxonomy of Distributed Event-based Systems which differs
from the classification presented above in that theirs is used to describe any event-based
programming system in terms of “a variety of properties including quality of service, mobility and
security.” Meier’s taxonomy is for the technical classification of Distributed Event-based Systems,
whereas the classification presented above, in Figure 3, is introduced to conceptually classify
publish/subscribe systems within this thesis, and in future work, in terms of their placement into

either topic-, content-, semantic-, and Knowledge-based Networks classifications.

The subsequent Design Chapter 4 of this thesis introduces KBNCluster as a managed approach to
clustering publishers and subscribers around brokers, which match the interests of publisher, and
subscriber, subsequently evaluated as supporting the research question and the objectives of this

thesis.

38

3.5 Research Challenges gathered from the SoA

Three key common research challenges exist in the State of the Art, related to clustering

publish/subscriber networks. In this section each of these challenges is discussed in turn.

Research Challenge 1: How can publishers who only attach transiently to a broker be clustered?

In publish/subscribe systems (without advertising) subscribers define the scope of their interests
before they consume content, in the form of subscriptions. Publishers send publications to a
broker, but there is often no mechanism in place for a broker to subsequently contact publishers.
Publications occur at the moment of their creation and then disconnect. This makes it difficult to
define interests pre-publication. A solution to this is to use publication advertising [2] where
publishers advertise descriptions of their future publications. They can then be instructed to

connect to a different broker, and publish.

However in contrast to this the work, presented in daMulti-cast [13], proposes a solution for the
clustering of both publishers and subscribers (but only in Topic-based Networks) where
publishers only publish to specific topic-channels. By creating clusters around a finite set of
channel definitions, brokers, publishers and subscribers are more easily clustered. The client or
broker choosing their cluster based on a finite set of possible clusters formed around the same

topic-channels, an approach that can be applied to Ontologies in KBNCluster.

Research Challenge 2: How can clustering exploit the semantic content of publications and

subscriptions, in a semantic publish/subscribe system?

It is inferred, from the range of systems evaluated in [16] and in the SoA in general that clustering
based on topics is a task more easily achieved than clustering based on content-based messages.
When clustering is based on topics, a publisher or subscriber joins a particular topic-cluster where
topic-based subscriptions are seen as direct expressions of interest clients have expressed for

future publications. For each topic a cluster can be created expressing and representing that topic.

Publishers, like subscribers, choose which topic and therefore which cluster they wish to reside in
before they publish, using a pre-determined list. The issue with Content-based Networks is that of
how to calculate and represent a common subset of the client using a Name-Operator-Value-
Type subscription or Name-Value-Type publication. In content-based and KBN systems there
is no finite set of interests (topic taxonomy) and clients do not express or place themselves in
terms of their interests drawn across such a taxonomy. Interests (publications or subscriptions) are
formed from the constructs of a (Name-Operator-Value-Type or Name-Value-Type) and
matched against one another. However, the problem lies in calculating the similarity between two
triples and forming clusters of interests from the complete set of clients across the network when
triples are expressions of specific unique data values. This is a challenge addressed in SBPS by

the introduction of an external semantic model of knowledge, used to assign clients to clusters.

39

Research Challenge 3: How efficiently can a single ontology be separated out into multiple sub-

regions of separate interests?

The broker architecture, and the approach taken to overlaying clusters onto the broker network,
used in this thesis, is based around a hierarchy that uses top-level brokers to receive messages
with the broadest scope, allowing routers at the lower levels of the broker hierarchy to deal with
more specific messages and those at the top the most general. In contrast to the approach taken in
this thesis, where all brokers are seen as equal in terms of content they may route, [14], use a
combined global and sub-topic overlay approach to clustering, where global overlays route
messages from sub-topic cluster to sub-topic cluster seen as a ring (global overlay) with multiple
topic-clusters extending from the global overlay. An initial, but later abandoned, approach taken
in this thesis utilised an upper-level ontology, routing messages from cluster to cluster where each
cluster dealt with a specific set of interests, a sub-ontology, like the approach taken in TERA.
Therefore each cluster functioned around a partitioned, separate and smaller in terms of concepts
and file size ontology with links between clusters that existed only at the top tier. It was planned
that a top level global overlay of brokers would route messages from cluster to cluster, where one
topic-level broker in the global overlay represents each cluster. Each cluster would use a separate,
sub-section of the complete source ontology, where in contrast each global overlay broker would

use the complete ontology.

However the difficulty in such an approach was in splitting a single ontology into multiple sub-
ontologies, where each sub ontology represents a section of the main ontology and the original
ontology. When a single ontology is separated into multiple sub-ontologies the new sub-
ontologies become an inaccurate representation of only a part of the original ontology. An
ontology is a model of knowledge, and although the sub-ontologies are valid ontologies in their
own right, they are, once split, not an accurate representation of the complete original ontological

model hence this approach was not carried forward.

3.5.1 Design Ideas gathered from the SoA

Drawing on the State of the Art several approaches are highlighted as having a direct bearing on
this research to address the research objectives in Chapter 1. In this section those influences are

discussed in turn.

3.5.1.1 Subscription Regionalism

One of the core ideas taken from State of the Art research in publish/subscribe clustering is the
idea of “subscription regionalism” as defined by Querzoni et. al. [16]. Subscription regionalism,
in topic-, content- and semantic- publish/subscribe is the placement of subscribers around brokers

that share interests to one another. This results in fewer hops when delivering publication to

40

subscriber, less brokers involved in routing a message and a greater chance that a publication,

arriving at any broker, will be matched to a subscriber of the same broker.

Subscription regionalism, as discussed in [16], is extended in this thesis and termed clustering,
incorporating the benefits offered by subscription regionalism. A key difference between the two
is that KBNCluster incorporates both the publisher and subscriber in the placement of clients
across the network, whereas subscription regionalism, in [16], only deals with subscriber

placement.

3.5.1.2 Ontology Partitioning

The work of Voulgaris et. al. in [40] present clusters not as defined boundaries of interest but as
overlaying concept-spaces where clients are placed in the best region of the network for their
interests. Placement within a concept space is calculated based on subscriptions to common
concepts and the similarities in the naming of Attribute-Constraints and Attribute-
Values. The principle of concept-spaces allow for parts of an ontology to be assigned brokers
across the network, where publishers and subscribers can be placed into the clusters that best

represent their interests or on the loose-boundaries between clusters.

In this thesis loose-boundary clustering is used to allow clusters of content to be applied over
single or multiple brokers, whilst assuring that all publications will be delivered, to all interested
subscribers, regardless of which broker receives them, as is the case in an un-clustered topology,
but with the benefits of clustering. Using loose clustering, all brokers load and reason the whole
ontology, regardless of their location in the network so they are able to process all subscriptions
and publications as they arrive. No broker has any more knowledge than any of its peers.
However loose-clustering still aims to focus the scope of publications and subscriptions received

by each broker, in each loosely bound cluster.

Referencing the work of Guo and KBNMap in [4], tight-boundaries can be defined across broker
routing based on specific, and separate ontologies. In KBNMap, when a broker receives a
message and does not have the ontological knowledge to interpret the message, the broker loads
mappings to other portions of a global overlay of brokers, where this overlay is constructed from
multiple, semantically mapped ontologies interrelated by pre-defined explicit mappings. However,
in contrast, in KBNCluster the most general clusters are assigned to the top-level brokers and at
each lower level in the broker hierarchy more specific clusters of knowledge are assigned to
brokers. However all brokers can route all messages / deal with any section of the ontological
content. Such loose-boundary clustering allows for clients to be placed in the best region of the
overlay by examining the set of semantically defined resources used in their publications or

subscriptions.

41

3.5.1.3 Ontological Change

How often an ontology changes is driven by a change in the knowledge model, a change in
perspective or simply new information arising and being incorporated into the ontology, as
outlined by Flouris et. al. in [43]. However an assumption of this thesis is that the ontology will
not change during experimentation. In KBNCluster therefore the clustering algorithm does not
adapt the definitions, boundaries or placement of ontological clusters onto brokers over the period
of experimentation, although the placement of publishers and subscribers does change, as their

interests change. Clients’ interests will change, but the underlying ontology will not.

In KBNCluster an additional feature is implemented which allows brokers and clients to be
pushed an electronic ontological model and for this model to be reasoned over and loaded into
memory. This feature was implemented so that brokers could be pushed new ontologies when the
initial approach of multiple sub-ontologies, with a global upper ontology, was being investigated.
This approach was made redundant when the difficulties in splitting a single ontology into
multiple sub-ontologies whilst remaining the semantics of the original model. It is discussed here
as an avenue of future work where research could be conducted into the process of updating
ontological models on the brokers and clients of the network, as interests change, without

requiring a full-restart.

However for the evaluated implementation presented in this thesis if the ontology does change the
full system requires a cold-start. By adapting where users are placed within a static cluster
structure assures that as users change their semantic interests this change is represented in their
placement within a specific cluster. However the cluster topology is static, it does not change.

What changes is the cluster a client is placed into, as the clients’ interests change.

42

3.6 Conclusion

This chapter has provided an overview of current Topic- and Content-based Networks, which

provide important reference architectures being the catalyst for the development of this research.

In addition to discussing Topic- and Content-based Networks, this chapter has examined the
approaches taken by others in the application of semantics in publish/subscribe networks. The
discussion as to how these technologies increase the expressiveness of subscriptions and

publications is examined in each case.

This chapter has introduced topic- content- and semantic-based networks outlining the advantages
/ disadvantages of each as well as discussing architectural differences. In addition, a number of
approaches have been analysed which apply clustering to mainly topic-, but also Content-based
Networks. In general topic-based clustering of publish/subscribe networks creates a cluster per
topic where publishers and subscribers are grouped around topic brokers that share common
interests. In addition to the clustering algorithms applied to Topic-based Networks, there is also a
examination as to the less wide-spread approaches applied in the clustering of Content-based

Networks.

In conclusion, this chapter has related the research challenges of this thesis with the learning’s
drawn from the State of the Art. Design ideas are also gathered throughout the review and
disussed. The next chapter of this thesis discusses the Design of KBNCluster, followed by a

detailed documentation of the Implementation of the designed architecture.

43

4 DESIGN

4.1 Introduction

This chapter discusses the design of KBNCluster. This design is intended to explore the issue of
clustering in Knowledge Based Network and of the dynamic management of such clustering. The
design is an extension of an existing KBN implementation, KBNImpl. The design of KBNCluster
can therefore be classed as an instance of Knowledge-based Network within the DEBS taxonomy

presented in State of the Art Chapter 3, Section 3.4.

Dynamic semantic clustering as investigated in this thesis involves the ability to define the
semantic centre (termed Medoid, see Section 4.3.1) of a client’s interests making it possible to
group clients more accurately around brokers sharing similar interests. A client’s semantic centre
(Medoid) is a single semantic entity that best represents the collection all their complete interests
as expressed through the semantic subscription filters and publications they emit. In the case of
KBNCluster, this entity is sourced from across an ontology representing all the concepts and their

relationships active in the KBNImpl at that time.

In order to achieve clustering, a management approach is taken to the placement of publishers and
subscribers across message brokers, where placement/clustering policies are rule driven and can
therefore be manipulated by network operators as they change. Such patterns can only be
understood through observing real world subscription and publication patterns and extracting their
semantic attributes. This is not currently feasible with the present underdeveloped and state of
SBPS deployment in real world applications. However, the impact of different management
approaches and their processing and communication overheads on the generic operational
behaviour can be readily assessed. It is for this purpose that the KBNCluster design is based on
three core requirements for the operation and management of dynamic clustering, each discussed

in turn, in this chapter. These are:

1. Formation of clusters: In KBNCluster an ontology is partitioned and overlaid across a
number of brokers, assigning to each broker a portion of the ontological knowledge
possessed by the whole network, thereby defining the semantic interests of that semantic
content assigned to a broker. By matching a publisher’s or subscriber’s Medoid to the set
of brokers the most appropriate broker, or cluster, for that publisher or subscriber, is
estimated.

2. Moving of clients and brokers across the overlay: Being able to move clients to a more
appropriate position in the overlay network is a requirement for clustering. KBNCluster
instructs a client to reside in the most suitable cluster, automatically. However the

interests of subscribers and publishers, in terms of content they subscribe to, or publish on,

44

and their suitable placement, may change over time. Hence the ability to move clients
from cluster to cluster is vital for implementing dynamic clustering.

3. Re-clustering of clients deemed to be in a sub-optimal cluster: For each notification a
client receives, the number of overlay hops the message has traversed during delivery can
be calculated. From this it is possible to apply a re-clustering decision using the
notification hop count metric to identify clients residing in a possibly sub-optimal cluster.
If this occurs, a more suitable cluster for the subscribing client may exist and they may be

suggested to move.

Having identified the core design requirements of KBNCluster, the high level design of the
architecture is introduced, before a detailed example of the process of clustering is provided. Once
both the architecture of KBNCluster and the clustering process have been detailed, the

management system is discussed.

45

4.1.1 Extended and New Technology

The investigation performed with KBNCluster was made possible by the availability of an
existing KBN design (based on the Siena CBN [2]), termed KBNImpl. KBNImpl is the work of
Keeney et. al. as described in [6] and used in KBNMap [4] and this thesis as KBNCluster.

This section describes this technology, which has been extended to form KBNCluster as part of
this thesis. These extended features are identified as technical contributions of this thesis,
combining with KBNClusters evaluation, to address the research question and objectives outlined
in the Introduction Chapter 1, Sections 1.1 and 1.2; KBNImpl has been extended with new core
functionality, in order to achieve KBNCluster. The extensions made to KBNImpl, as part of

KBNCluster, are outlined below:

* Subscriber and