

AN APPROACH TO MANAGED

CLUSTERING FOR KNOWLEDGE-

BASED NETWORKS

A thesis submitted to the

University of Dublin, Trinity College

for the degree of

Doctor of Philosophy

Dominic Hugh Jones, B.Sc. (Hons), M.Sc.

Knowledge and Data Engineering Group (KDEG)

School of Computer Science and Statistics

Trinity College, Dublin,

Dominic.Jones@cs.tcd.ie

Supervised by Dr. David Lewis

Co-Supervised by: Dr. Declan O’Sullivan

II

Declaration and Online Access
I declare that this thesis has not been submitted as an exercise for a degree at this or any other

university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow the

library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library

conditions of use and acknowledgement.

 Dominic Hugh Jones

 April 2013

III

Acknowledgements
I would first like to thank Dr. David Lewis for providing me with this opportunity to pursue the

degree of Doctor of Philosophy. Dr. Lewis has been supportive, critical, encouraging and has

become both a friend and mentor over my time in KDEG, it has been an honour to work with Dr.

Lewis.

Dr. Lewis has been able to offer me funding through Science Foundation Ireland under Grant No

05/RFP/CMS014 (Mecon) and Grant number 07/CE/I1142 (CNGL). For this I am extremely

appreciative.

It has been a privilege to have the co-supervision of Dr. O’Sullivan who offered me advice and

support that has been invaluable over the years. Special thanks to Dr. John Keeney, Dr. Alexander

O’Connor, Dr. Seamus Lawless, Dr. Owen Conlan and Mrs. Mary Sharp who have supported and

encouraged me throughout the years and made the difference to many a day.

It was Ms. Marie Carroll who guided me through my undergraduate study, provided endless cups

of tea and was there when needed. Marie will always be a great friend, who started me on my path

through University level education and is herself an asset to education.

However most importantly I would like to thank my parents Jan and Hughie Jones as well as my

de-facto American Mom Dr. P. Jane Gale. Without their combined support this thesis could easily

have disappeared during its final year in which they picked me up, stood by me, guided me and

had faith in me.

“Insanity is doing the same thing, over and over again, but expecting different results.”

- Possibly Albert Einstein, possibly not.

IV

Abstract
In publish/subscribe networks the capacity of the delivery network can easily be exceeded as the

volume and range of content increases. This is known as the flooding problem. One solution to

this problem is to group publishers and subscribers with similar interests into clusters.

A publish/subscribe network typically operates across a broker overlay. The work described in

this thesis offers a novel solution to the flooding problem based on reducing the number of

brokers between related publishers and subscribers, thus reducing the routing message volume.

With fewer brokers between publisher and subscriber, fewer hops are required to route each

message and ultimately the network is more efficient, with less resources required to deliver the

same number of messages.

This thesis describes the design, implementation and evaluation of a prototype system in which a

Semantic-based Publish/Subscribe network is used to cluster publishers of content with the

message brokers that are responsible for routing content to subscribers with related interests. The

objective of this clustering is to reduce the number of hops required in the routing process.

This contribution has been implemented in a prototype, KBNCluster, as part of this thesis and

provides a platform for the clustering of KBNImpl, which has been shown to reduce the hop

count required to deliver publications to subscribers and thus decrease the time taken to deliver

publications.

A further contribution of this work is the automatic calculation, placement and re-clustering of

publishers and subscribers around their interests using a Policy-based Network Management

approach. This contribution is evaluated in terms of management data collection costs, storage

and policy execution and is shown to scale efficiently.

This work is novel in the way in which semantic interests are calculated from a client’s

publication or subscription, using a semantic map of concepts to calculate a single semantic point

deemed representative of the client. An additional source of novelty in this work is in employing

the network’s Semantic-based Publish/Subscribe capability for the delivery of management

messages to the management system using a push-based approach in contrast to more standard

pull-based architectures.

V

Table of Contents

Declaration and Online Access .. II!

Acknowledgements .. III!

Abstract .. IV!

Table of Contents ... V!

List Of Figures ... XI!

List Of Tables ... XIII!

List Of Code Examples .. XIV!

Abbreviations ... XV!

1! INTRODUCTION ... 1!
1.1! Research Question ... 5!
1.2! Research Objectives .. 5!
1.3! Methodological Approach Taken ... 6!
1.4! Evaluation Findings ... 6!
1.5! Thesis Contribution ... 8!
1.6! Selected publications ... 9!
1.7! Thesis Outline .. 10!

2! BACKGROUND .. 11!
2.1! Key Terms .. 11!
2.2! Semantics .. 12!

2.2.1! RDF and Ontologies ... 12!
2.3! Publish/Subscribe Middleware ... 15!

2.3.1! Topic-based Publish / Subscribe: ... 16!
2.3.2! Content-based Publish / Subscribe ... 16!
2.3.3! Knowledge-based Networks in comparison to CBNs .. 17!

2.4! Policy-based Network Management (PBNM) ... 20!
2.5! Conclusion .. 21!

3! STATE OF THE ART .. 22!
3.1! Content-based Networks ... 22!

3.1.1! Siena ... 22!
3.1.2! Hermes .. 23!
3.1.3! Gryphon .. 24!

VI

3.1.4! Elvin ... 24!
3.1.5! Analysis .. 25!

3.1.5.1! Advantages of CBNs .. 25!
3.1.5.2! Disadvantages of CBNs ... 25!

3.2! Semantic-based Publish/Subscribe (SBPS) ... 26!
3.2.1! Knowledge-based Networks ... 26!

3.2.1.1! KBNImpl .. 26!
3.2.1.2! KBNMap .. 26!
3.2.1.3! KBNCluster .. 27!

3.2.2! A semantic Infosphere .. 27!
3.2.3! Semantic Toronto Publish/Subscribe System (S-ToPSS) .. 28!
3.2.4! Graphed Toronto Publish/Subscribe System (G-ToPSS) ... 29!
3.2.5! Semantic Message Middleware for publish/subscribe networks (SMOM) 29!
3.2.6! An ontology-Based publish/subscribe System (OPS) .. 30!
3.2.7! Designing semantic Publish Subscribe networks Using Super-Peers (SPS-SP) 30!
3.2.8! iBroker .. 31!
3.2.9! Analysis .. 31!

3.2.9.1! Advantages of SBPS ... 31!
3.2.9.2! Disadvantages of SBPS .. 32!

3.3! Publish / Subscribe clustering Techniques .. 33!
3.3.1! Topic-based Publish/Subscribe Clustering ... 34!

3.3.1.1! Boosting topic-based publish-subscribe systems with dynamic clustering (Tamara) 34!
3.3.1.2! Scribe: a large-scale and decentralized application-level multicast infrastructure 34!
3.3.1.3! Data Aware Multicast (daMulticast) ... 35!
3.3.1.4! Topic-based Event Routing for peer-to-peer Architectures (TERA) 35!

3.3.2! Content-based Publish/Subscribe Clustering ... 36!
3.3.2.1! Sub-2-sub: Self-organizing content-based publish and subscribe for dynamic and large

scale collaborative networks ... 36!
3.3.2.2! Efficient Publish Subscribe through a Self-Organizing broker Overlay and its

Application to SIENA ... 37!
3.3.3! Conclusion .. 37!

3.4! Publish/Subscribe Classification II .. 38!
3.5! Research Challenges gathered from the SoA .. 39!

3.5.1! Design Ideas gathered from the SoA .. 40!
3.5.1.1! Subscription Regionalism .. 40!
3.5.1.2! Ontology Partitioning .. 41!
3.5.1.3! Ontological Change ... 42!

3.6! Conclusion .. 43!

VII

4! DESIGN .. 44!
4.1! Introduction ... 44!

4.1.1! Extended and New Technology .. 46!
4.2! High Level Design .. 47!

4.2.1! System Architecture .. 47!
4.2.2! Design Overview .. 48!

4.2.2.1! Managed Overlay Design Overview .. 48!
4.2.2.2! Trigger Broker Design Overview .. 48!
4.2.2.3! Policy Server Design Overview ... 48!

4.2.3! Clustering Design Assumptions and Scope .. 49!
4.2.3.1! Publisher and Subscriber Design Assumptions ... 49!
4.2.3.2! Design Assumptions around ontological clustering .. 49!

4.3! Clustering Process ... 51!
4.3.1! The Medoid .. 51!
4.3.2! Taxonomical Approach to Cluster Creation ... 53!
4.3.3! Creating an Ontological A* Map .. 55!

4.3.3.1! Extracting Semantic Elements from Subscriptions .. 56!
4.3.3.2! Extracting Semantic Elements from Publications ... 56!

4.3.4! Medoid Calculation .. 57!
4.3.4.1! Example Medoid Calculation .. 58!
4.3.4.2! Summary: Medoid Calculation .. 58!

4.3.5! Cluster Placement ... 59!
4.3.6! Re-clustering ... 60!

4.4! Trigger Broker ... 62!
4.4.1! Subscriptions to Trigger Broker ... 63!
4.4.2! Publications Received by the Trigger Broker ... 64!
4.4.3! Interactions between KBNImpl Publishers and the Trigger Broker 66!

4.5! Policy Server .. 67!
4.5.1! MIB/MO Design ... 68!
4.5.2! Policies ... 69!
4.5.3! Actionable events ... 70!

4.6! Key Design Characteristics and Conclusion ... 72!

5! IMPLEMENTATION ... 74!
5.1! Introduction ... 74!
5.2! Technology Selection ... 75!

5.2.1! Core Technologies: ... 75!
5.2.2! Development Tools: ... 75!

VIII

5.2.3! Messaging Mechanisms: .. 76!
5.3! Order of Operation .. 77!
5.4! Communication Flow .. 79!

5.4.1! Overall Communication ... 80!
5.4.2! Broker Focused Communication .. 82!
5.4.3! Publisher Focused Communication .. 83!
5.4.4! Subscriber Focused Communication .. 85!
5.4.5! Conclusions – Communication Flow ... 86!

5.5! Trigger Broker ... 87!
5.5.1! Trigger Broker – Start-up Configuration .. 87!
5.5.2! Trigger Broker – Main Classes ... 87!
5.5.3! Trigger Broker - Summary of Key Characteristics .. 89!

5.6! Policy Server .. 90!
5.6.1! Policy Server - Start-up Configuration ... 90!
5.6.2! Main Classes ... 91!
5.6.3! MIB/MO Implementation ... 92!
5.6.4! Clustering Process .. 93!

5.6.4.1! Cluster Partitioning ... 93!
5.6.4.2! Overlaying an Ontology onto Brokers ... 94!
5.6.4.3! Calculating Client Cluster Placement ... 95!

5.6.5! Summary of Key Characteristics .. 95!
5.7! Starting Brokers, Publisher and Subscriber ... 96!

5.7.1! Starting a Broker ... 96!
5.7.2! Starting a Publisher ... 97!
5.7.3! Starting a Subscriber ... 99!

5.8! Conclusions and Summary of Technical Discussions ... 100!

6! EVALUATION .. 101!
6.1! Experimental Setup ... 103!

6.1.1! Ontologies ... 103!
6.1.2! Platforms ... 104!
6.1.3! Metrics .. 105!
6.1.4! Sensitivity Analysis .. 106!

6.2! Static Approach to Clustering .. 109!
6.2.1! Introduction .. 109!
6.2.2! Experimental Metrics ... 109!
6.2.3! Experimental Setup ... 110!

IX

6.2.4! Results .. 110!
6.2.5! Conclusion .. 112!

6.3! KBNImpl Operational Costs .. 113!
6.3.1! Operator Usage ... 113!
6.3.2! Subscription Tree Search Time .. 115!
6.3.3! Hop Count Experiments ... 117!

6.3.3.1! Hop Occurrences ... 117!
6.3.3.2! Hop Count Timing ... 119!

6.3.4! Conclusion .. 120!
6.4! Costs Associated with Dynamic Clustering ... 121!

6.4.1! Management Data Storage & Policy Execution Costs ... 122!
6.4.1.1! Memory Footprint .. 122!
6.4.1.2! Policy Execution Timing .. 123!
6.4.1.3! Conclusion ... 126!

6.4.2! Data Collection Costs ... 126!
6.4.2.1! Management Method 1 .. 127!
6.4.2.2! Management Method 2 .. 128!
6.4.2.3! Standard Error Calculation ... 129!
6.4.2.4! Subscription Processing Times .. 130!
6.4.2.5! Publication Processing Times ... 131!
6.4.2.6! Pub-to-Sub Delivery Times .. 133!
6.4.2.7! Conclusion ... 134!

6.4.3! Mobility Costs .. 136!
6.4.3.1! Moving Broker & Moving All Subscribers .. 137!

6.5! Dynamic Clustering Evaluation ... 139!
6.5.1! Experimental Metrics ... 140!
6.5.2! Subscription Tree Size .. 140!
6.5.3! Hop Count in Delivery ... 142!
6.5.4! Re-Clustering .. 144!
6.5.5! Conclusion .. 146!

6.6! Overall Conclusion .. 147!

7! Conclusion .. 149!
7.1! Objectives and Achievements ... 149!

7.1.1! Research Objective 1 .. 150!
7.1.2! Research Objective 2 .. 151!
7.1.3! Research Objective 3 .. 151!

7.2! Contributions ... 152!

X

7.2.1! Major Contribution ... 152!
7.2.2! Minor Contribution ... 153!
7.2.3! Additional Supporting Publications: .. 154!

7.3! Future Work .. 155!
7.3.1! Subscriber Re-clustering ... 155!
7.3.2! Load Balancing of Clusters .. 155!
7.3.3! The trigger broker as a management event monitoring system 156!
7.3.4! Multiple Policy Servers .. 156!

7.4! Final Remarks .. 157!

Bibliography .. 158!

Appendices ... 161!
Appendix A .. 161!
Appendix B .. 169!
Appendix C .. 178!
Appendix D .. 182!
Appendix E .. 183!

XI

List Of Figures
Figure 1: Example Ontology ... 13!
Figure 2: Classification of Publish/Subscribe Systems .. 15!
Figure 3: Classification of Publish/Subscribe Systems II ... 38!
Figure 4: High Level Component Architecture .. 47!
Figure 5: Sample Clustered Ontology ... 53!
Figure 6: A* Ontological Map .. 55!
 Figure 7: Sample ontology graphed using A* algorithm ... 56!
Figure 8: Example Medoid Calculation .. 58!
Figure 9: Trigger Broker, High Level Overview .. 62!
Figure 10: Trigger Broker Ontology ... 63!
Figure 11: Policy Server, High Level Architecture .. 67!
Figure 12: Components of KBNCluster ... 77!
Figure 13: Overall Communication Mechanisms ... 80!
Figure 14: Broker Based Communication .. 82!
Figure 15: Publisher based communication .. 83!
Figure 16: Subscriber based Communication ... 85!
Figure 17: UML Class Diagrams for Broker, Publisher and Subscriber .. 92!
Figure 18: Broker Hierarchy ... 110!
Figure 19: Root Subscription Tree Size on the Master Node (shown in Figure 18) 111!
Figure 20: Unique Subscriptions on a Broker on Level 3 (shown in Figure 18) 111!
Figure 21: Example Topology, Operator Search Costs .. 114!
Figure 22: Subscription tree search times (Semantic & Non Semantic) 116!
Figure 23: Spread of Hop Counts in Delivered Notifications, across various cluster topologies 118!
Figure 24: Average Message Delivery Timing, Semantic .. 119!
Figure 25: Average Message Delivery Times, Non Semantic .. 120!
Figure 26: Memory Usage vs. MO Created .. 123!
Figure 27: Time Taken to execute a number of MIBS against various Policies 125!

XII

Figure 28: Average Subscription Processing Times (ms) ... 131!
Figure 29: Average Publication Processing Times (ms) ... 132!
Figure 30: End-to-End Delivery Time (ms) .. 134!
Figure 31: Moving Broker & All Subs and Moving All Subs Individually 138!
Figure 32: Dynamic Clustering - Server Topology .. 139!
Figure 33: Root Subscription Tree Size (Clustered and un-clustered) ... 141!
Figure 34: Hop Count - Clustered and Un-Clustered Topology ... 143!
Figure 35: Mean Hop Count in Delivery for Each Subscriber ... 145!

XIII

List Of Tables
Table 1: Example RDF Triple ... 12!
Table 2: Example Filter Constraint ... 16!
Table 3: Example Publication ... 16!
Table 4: Example Subscription ... 17!
Table 5: Classification of Topic, Content and Knowledge-based Network 18!
Table 6: Siena CBN Operators, Types and Symbols .. 19!
Table 7: KBNImpl KBN Operators, Types and Symbols ... 19!
Table 8: Bag Operators, Types and Symbols .. 19!
Table 9: Broker, Subscriber & Publisher MO Key Elements ... 68!
Table 10: Test Ontology Characteristics ... 104!
Table 11: Matrix of Experimental Metrics ... 107!
Table 12: Experimental set-up metrics used in experiments .. 109!
Table 13: Experimental set-up metrics used in experiments .. 113!
Table 14: Example Subscriptions and Matching Publications ... 113!
Table 15: KBNImpl Operator Costs – End to end mean delivery times per match (ms) 114!
Table 16: Experimental set-up metrics used in experiments .. 115!
Table 17: Experimental set-up metrics used in experiments .. 117!
Table 18: Experimental set-up metrics used in experiments .. 130!
Table 19: Standard Error Subscription Processing Times (ms) .. 131!
Table 20: Experimental set-up metrics used in experiments .. 132!
Table 21: Standard Error Publication Processing Times (ms) .. 132!
Table 22: Experimental set-up metrics used in experiments .. 133!
Table 23: Standard Error End-to-End Delivery Times (ms) ... 134!
Table 24: Experimental set-up metrics used in experiments .. 137!
Table 25: Experimental Data .. 138!
Table 26: Experimental set-up metrics used in experiments .. 140!

XIV

List Of Code Examples
Code Example 1: Example Managerial Subscription II ... 63!
Code Example 2: Example Managerial Publication II ... 64!
Code Example 3: Example Medoid Message ... 64!
Code Example 4: Example Broker Info Message ... 64!
Code Example 5: Example Subscriber Info Message (Publication) ... 65!
Code Example 6: Example Publisher Info Message (Publication) ... 65!
Code Example 7: Example Subscriber Notification Report (Publication) 65!
Code Example 8: Starting the Trigger Broker .. 87!
Code Example 9: Starting the Policy Server ... 90!
Code Example 10: Starting the Top Level Master Broker ... 96!
Code Example 11: Starting a Sub Broker ... 96!
Code Example 12: Example Publishing Client ... 97!
Code Example 13: Example Subscriber Client ... 99!
Code Example 14: Example Semantic Subscription used within this section 116!
Code Example 15: Example Semantic Publications used within this section 116!
Code Example 16: Calculating Memory Usage .. 122!
Code Example 17: Request Medoid ... 127!
Code Example 18: Reduce down to N clusters ... 128!
Code Example 19: Request Medoid Info .. 128!
Code Example 20: Example Subscriptions used within the Section .. 136!
Code Example 21: Dynamic Clustering, example subscriptions .. 140!
Code Example 22: Dynamic Clustering, example publications ... 140!
Code Example 23: Re-cluster Messages received by Subscribers .. 146!

XV

Abbreviations
AC Attribute Constraint

API Application Programming Interface

AV Attribute Value

BIM Broker Information Message

CBN Content-based Network

DEBS Distributed Event-based Systems

DHT Distributed Hash Table

DPS Distributed-Publish/Subscribe

GUI Graphical User Interface

IDE Integrated Development Environment

IP Internet Protocol

JMS Java Messaging Service

KBN Knowledge-based Network

MIB Management Information Base

MO Managed Object

OAEI Ontology Alignment Evaluation Initiative

OWL Ontology Web Language

PAM Partitioning Around Medoids

PBNM Policy-based Network Management

PIM Publisher Information Message

RBAC Role-based Access Control

RDF Resource Description Framework

RSS Really Simple Syndication

SBPS Semantic-based Publish/Subscribe

SIM Subscriber Information Message

SoA State of the Art

SPARQL SPARQL Protocol and RDF Query Language

TBN Topic-based Network

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

XML Extensible Mark-up Language

 1

1 INTRODUCTION
Publish/subscribe networks are made up of client content producers (publishers) and client

consumers (subscribers) both attached to a network of message brokers/routers. Currently clients

make an un-constrained choice as to the broker to connect to, often leading to an overloading of

certain popular brokers in the network, resulting in performance degradation. This thesis is

designed to improve the scalability of Semantic-based Publish/Subscribe (SBPS) networks by

placing clients interested in similar content around similar brokers in the network.

These brokers asynchronously route messages from publisher to interested subscribers based on

matches between publication and subscription. Publications are messages that may be of interest

to subscribers, where those interests have been expressed in a subscription. Subscriptions are

expressions of subscribers interests, often formed from a taxonomy of types/topics or from a set

of one or more filter constraints defining the content they wish to receive from publishers. A

broker maintains a set of these subscriptions, and applies their subscription constraints to

publications as they arrive. If a publication is matched against a subscription, then it is forwarded

to the associated subscriber.

Centralised publish/subscribe networks operate using a single broker, whereas distributed

publish/subscribe networks operate across a network of inter-connected message brokers. In

distributed publish/subscribe networks, messages are usually routed from publisher to relevant

subscribers according to a routing table derived from subscription filters. This offers performance

efficiencies, as messages are directed only to interested subscribers, rather than using an approach

which floods the network in the search for all possible interested publishers.

The main differentiators between classes of publish/subscribe systems are the formats, types,

values, ranges and filter operators supported in specifying subscriptions and publications. For

example highly expressive filters can be argued to more accurately represent subscribers interests

through a greater number of filter constructs. Therefore asserting that the more expressive the

subscription filter, the greater the ability of the subscriber to accurately express their interests. In

increasing order of expressivity, the three main classes of publish/subscribe network are:

1. Type/Topic-based publish/subscribe (TBN): Publications are tagged with a topic or type.

Types/topics are often formed into taxonomies with parent/child relationships existing

between type/topic values. Subscribers use the operators: sub, super, not/exact against

types/topics. For example a subscription may be made to “every sub topic of Football” or

“every super topic of Manchester United.” Matching occurs using only the header of the

publication, which contains the type/topic, and the stored subscription, using the specified

operator. (TIBCO [1] is a widely know example of topic-based publish/subscribe.)

 2

2. Content-based publish/subscribe (CBN): Publications contain a set of one or more typed

values, whereas subscriptions are a set of value-based filters that are applied to the body

of the publication’s contents (Siena [2] being an example of a CBN.)

3. Semantic-based publish/subscribe (SBPS): Similar to content-based, but where both

publications and subscriptions may have semantically enhanced operators, types and

values based on a semantic model or ontology [3]. The use of the term SBPS is first

referred to by Guo in [4]. (Examples of such SBPS can be found in [5-9] an example

being Knowledge-based Networks (KBN) [9].)

Type / Topic-based Networks operate efficiently, as the extent of the routing information

maintained at each broker is a list of types or topics associated with each interested subscriber,

reducing the complexity involved in matching incoming publications to stored subscriptions.

When an incoming publication arrives at a broker, a simple look-up for the type/topic in an

ordered list is performed, and when matched, is forwarded to all the subscribers associated with

that type/topic. This is all conducted via the message header, which is marked, with one or more

topic or types for each publication. In comparison both content and semantic-based networks see

the incoming publications contents being evaluated against the brokers’ stored subscription filters.

Content-based subscriptions are usually constructed from one or more filters in the form of a

Name-Type-Operator-Value (Attribute-Constraint) and publications are constructed

from one or more Name-Value-Type (Attribute-Values). For each filter in each

subscription the Type and Value must be compared, using its Operator against each Type and

Value in each element of every incoming publication. If a match occurs the publication is

forwarded towards the subscriber.

The time taken to search incoming publications against stored subscriptions depends on the

particular set of subscriptions or publications. Importantly, with Type/Topic-based Networks the

matching performance is predictable against the throughput of publications to subscriptions. For

Content-based Networks performance is a function of the size (where the size = number of

elements) in both subscriptions and publications and hence is less predictable. In Semantic-based

Publish/Subscribe this problem is exacerbated as different semantic operators hold different

associated costs. There is therefore a trade-off between the efficiency of Topic- and Content-

based Networks like Scribe [10] and Siena [2] and the expressiveness of SBPS.

In aiming to reduce these costs one key optimisation of the routing information stored at each

broker is subscription aggregation (covering), where similar subscriptions, which cover one

another, are grouped together. Covering, in its simplest form, can be described as follows: Given

two subscriptions S1 and S2 where each is made up of one or more filters F1..Fn, it can be said

that S1 covers S2, if all of the pubs that would match S1 are a subset or equal to the set of

 3

publications that match S2. Mühl et. al. [11] describe a benefit of this covering as being “a

reduction in the number of entries in brokers’ routing tables.” If covering reduces the total number

of routing entries in the broker, the matching and routing time involved in delivering publications

to subscribers via those message brokers on which no covering has occured is also reduced

through a reduction in the number of subscriptions which must be matched against incoming

publications.

In this thesis work is conducted on a particular class of SBPS, Knowledge-based Networks

(KBN), a specific implementation of a KBN (KBNImpl) extended to form KBNCluster.

KBNCluster focuses on incorporating the expressivity of SBPS with the efficiency of content-

based routing and subscription aggregation through subscription clustering. The continuing

research challenge in SBPS is where the increase in expressivity results in an additional increase

in the overhead involved in determining matches between semantic subscriptions and publications.

This research challenge has motivated the solution proposed in this thesis, aiming to reduce the

average number of hops and thus brokers required to deliver messages, where the time taken to

deliver a publication is directly related to the number of hops taken in its routing and thus overall

load on the broker network. This is an alternative to trying to further optimise individual operator

match performance [6]. In clustering this allows publishers and subscribers, with shared interests,

to be arranged closer to one another in the broker network and thus the number of hops that a

publication is required to traverse is reduced, therefore reducing overall load on the network.

More precisely when matching semantic terms in a publication to subscription, logical structures

are used that make explicit a graph that expresses the ontology being referenced. Because this

graph exists in definition, it can be analysed by its characteristics and the specific references made

to it by publishers and subscribers in matches between publication and subscription.

It is assumed that shared interests will (as expressed by publications and subscriptions) involve

terms nearer to each other in the semantic graph or ontology. Therefore clustering publishers and

subscribers, using their semantic publications or subscriptions is predicted to reduce the number

of hops a publication passes over in being routed to interested subscribers. This is in contrast to

non-semantic CBNs, which operate only on the content (numbers, strings, sets etc of messages)

and which do not have an explicit semantic structure that can be efficiently utilised in clustering.

Publish/subscribe topologies generally allow these clients to connect to brokers in an un-

constrained manner; meaning that the range of subscriber or publisher interests attached to any

given broker cannot be predicted.

The approach to clustering, applied in this thesis, exploits the use of explicit semantic annotations

in the publications and subscriptions not previously possible with non-semantic content-based

messages. Once the explicit semantic makeup of a client’s publication or subscription is given, it

 4

becomes possible to compare it to that of other clients publications or subscriptions, and thus

create clusters of common interest, around message brokers. In support of clustering, the

performance of the publish/subscribe network is predicted to be improved as follows:

1. The fewer hops (brokers) over which a publication message passes when being routed from

publisher to relevant subscribers decreases both the time taken to deliver (based on per broker

matching time and number of brokers involved in routing.)

2. Clustering reduces the semantic range of subscriptions that are received by brokers and the

number of filter matches that must be made, on each broker. With clustering, a publication

arriving at a broker, has a higher chance of matching a stored subscription, in that broker’s

routing table. The same routing table is also better optimised in terms of subscription covering,

as subscribers are clustered according to the semantics of that subscription and thus the

probability of subscription covering also increases.

In this thesis two types of clustering are defined, as discussed below:

1. Static Clustering instructs the brokers, publishers and subscribers of their relationship

between one another pre deployment. However if this relationship changes, the statically

embedded logic in every client must also change, usually with a full re-start. With the

relationships between publishers, subscribers and brokers potentially changing rapidly, such a

static approach is seen in [7] as being inefficient in terms of the ability of a network manager

to manage efficiently the relationship between publishers, subscribers and clusters. In static

clustering every publisher or subscriber must be manually instructed, by a network

administrator, as to the broker they should attach to and it is thus clear to see that this does not

scale as the number of clients increases.

2. Managed Dynamic Clustering allows publishers, subscribers and brokers to hold no

statically embedded logic or knowledge of how to cluster. All logic is maintained in a

management entity, which enforces the rules of clustering across the network, using an

embedded management agent in each client and broker to enforce managed dynamic

clustering. The key motivator for such an approach is that changes in managerial policies can

be made and enforced without requiring any change on the part of the client.

To summarise: managed dynamic clustering happens automatically, as required, without having

to re-start brokers. External intelligence is involved in optimising the decision process. The

reasons behind taking a managed dynamic approach is that the best clustering configuration

depends on the shared interests between clients, and therefore cannot be determined accurately

prior to network configuration.

 5

1.1 Research Question

This thesis examines whether a managed dynamic clustering approach improves the performance

of Knowledge-based Networks, a sub-class of Semantic-based Publish/Subscribe.

1.2 Research Objectives

Three main research objectives have been drawn from the above research question:

Objective 1: Establish an approach for the formation, movement and re-clustering of semantic

clusters in Knowledge Based Networks.

Objective 2: Establish the effect and overhead of implementing static and managed dynamic

clustering in Knowledge Based Networks.

Objective 3: Apply Policy-based Network Management as an adaptable approach to the

management of clustering.

In order to address research objective 1, a dynamic process for partitioning an ontology into a

number of semantic clusters is presented. This partitioned ontology is then overlaid onto a broker

network. This process directs into which cluster a subscriber or publisher should be placed. In

addition, a misplaced subscriber can be identified and moved to a more suitable cluster.

In order to address research objective 2, it is shown that clustering decreases the average distance

a message travels from publisher to subscriber. In addition to this, clustering is shown to reduce

the overall load on individual brokers, and the broker network in general.

In order to address research objective 3, Policy-based Network Management (PBNM) is applied

to control the process of clustering. This use of Policy-based Network Management is

investigated in terms of the efficiency of management data collection, storage and policy

execution.

 6

1.3 Methodological Approach Taken

This research was conducted using an iterative investigative approach in evaluating the effect

clustering has upon knowledge-based networks. The positive effect of clustering had been shown

in topic-based networks. In content-based networks clustering became more difficult as there

exists no agreed model of knowledge used to form messages. With semantics and knowledge-

based networks a common model is present for use in clustering opening a new avenue of

research.

However there was no starting point on which to build using a comparative approach. There was

no system in which the effects of clustering, as shown in topic-based networks, had been applied

in a knowledge-based environment. Having established that a comparative approach was not

possible, this research took an approach based on evaluating incremental improvements in KBN

performance through clustering. This was conducted using a two-pronged methodology

evaluating system performance and network delivery metrics in parallel. These two metrics offer

a mechanism for evaluating whether the introduction of clustering had either a positive or

negative effect on the network. An un-clustered KBN Implementation was used as a benchmark

to test the effect of clustering upon performance. This was conducted by comparing the results of

the same experiments in both a clustered and un-clustered topology.

This thesis itself provides, for future researchers, a base-line implementation, evaluating

performance gains through clustering which can be built upon by others, using a comparative

approach, looking for incremental improvements. The comparative methodology that was not

available in the early stages of this research is now available to others especially when combined

with the future work section of this thesis.

1.4 Evaluation Findings

In this section the evaluation findings from this research are outlined and briefly discussed. The

factors used in evaluating this work these are:

• Message delivery hop count, which refers to the number of brokers a publication passes

through in being delivered to the subscriber as a notification. This is shown to related to

the time taken to deliver a notification referring, to the period between when a publisher

inserts the publication into the network, and the point at which a subscriber receives it.

• Subscription tree/set size refers to the number of subscriptions held by each broker at any

given point in time.

An initial study was conducted into the effect that static clustering had upon a KBN deployment.

This study concluded that clustering of publishers and subscribers around brokers of common

interest increased the performance of KBNImpl in terms of subscription tree size and the number

 7

of brokers involved in routing message from publisher to subscriber (Hop count). A full

evaluation of the approach taken to static clustering is included in the Evaluation Chapter 6,

Section 6.2. However in order to be able to dynamically cluster clients around brokers of interest,

a method for extracting the semantic interests of publisher, subscriber, or broker is introduced.

This returns the client’s “Medoid” where this represents, in a single ontological value, the central

ontological interest of the client. (A full definition of Medoid calculation is presented in the

Design Chapter 4 Section 4.3) Once this Medoid has been calculated, clustering is achieved by

placing publishers and subscribers around specific brokers that share, or have similar, Medoids to

that of others. A full evaluation of this can be found in Chapter 6, Section 6.5.3 entitled “Hop

Count in Delivery.”It will be shown, as a confirmatory finding, that the greater the number of

hops taken in routing a message, the greater the time taken for delivery. Therefore, with fewer

brokers involved, the routing process is deemed to be more efficient. A full evaluation of this can

be found in Chapter 6, Section 6.3.3 entitled “Hop Count Experiments.”

Two types of node movement are introduced and evaluated in terms of efficiency:

1. Client based, where individual publisher or subscriber clients are moved from one broker

to broker across the network..

2. Broker based, where a broker and all its directly attached clients are moved in unison

from one position in the network topology to another.

It is shown that broker based movement requires less time and is more efficient than client based.

These movement methods have been evaluated and can be found in Chapter 6, Section 6.4.3

entitled “Mobility Costs.”

Collecting management information from brokers, publishers and subscribers, across the network,

will be shown to be expensive, depending on the type of information being collected. The process

of clustering has been designed, as discussed in the Design Chapter 4, so that this cost is reduced.

A full evaluation of this can be found in Chapter 6, Section 6.4.2 entitled “Data Collection Costs.”

Storing management information is evaluated in terms of the amount of memory used. In addition

policy execution is evaluated in terms of the time taken to execute a number of policies against

the set of previously stored management objects. A full evaluation of this can be found in Chapter

6, Section 6.4.1 entitled “Management Data Storage & Policy Execution Costs.”

Finally a dynamic approach taken to clustering publishers and subscribers, around common

brokers of interest, is evaluated in a set of experiments comparing the clustered implementation of

KBNCluster to an un-clustered KBNImpl deployment. Clustered and un-clustered subscription

tree sizes, hop counts taken to deliver messages and re-clustering message notification for clients

deemed to be in an un-suitable cluster are compared side by side. A full evaluation of this can be

found in Chapter 6, Section 6.5 entitled “Dynamic Clustering Evaluation.”

 8

1.5 Thesis Contribution

Much research has been conducted into clustering Topic-based Networks, [12] [10] [13] [14] [15],

and is discussed in the State of the Art Chapter of this thesis. However the clustering of Content-

based Networks has received less attention. Of the publish/subscribe architectures reviewed by

Querzoni [16] in five operate as Topic-based Networks, whereas only two operate as Content-

based Networks and none are semantic-based. The small number of studies into clustering

content-based publish/subscribe is due to the difficulty associated with extracting and reasoning

about the interests of publisher and subscriber messages without a formal semantic model.

Although Querzoni’s paper is only a single review of publish/subscribe architectures and their

approach to clustering, his arguments are supported by the following problem: In topic-based

publish/subscribe, clusters are easily formed around the taxonomy of topics used for publication

and subscription. In content-based publish/subscribe, clustering becomes more difficult and

involves subscription table comparison between brokers to calculate similarity between their

subscribers. The solution however exists in Semantic-based Publish/Subscribe where an external

model of knowledge, an ontology is used. This makes calculating semantic interests between

clients an easier task, leading directly to the major contribution of this thesis, which is the ability

to increase the scalability of semantic publish/subscribe networks through the introduction of

clustering. The major contribution of this thesis is therefore formed from the ability to calculate

the semantic centre of a publisher, subscriber or broker and thus allows common interest groups,

or clusters, to be formed. The impact of this work compares an approach for clustering clients in

semantic publish/subscribe systems with the ease at which it is achieved in topic-based

publish/subscribe thus bypassing the problems of clustering Content-based Networks.

An additional minor contribution of this thesis is the approach used in managing the clustering of

KBNs. The problem relates to managing a process of dynamic clustering across a network of

brokers, publishers and subscribers. The solution is to use an approach that enforces clustering

using defined policy rules and a policy engine with data that is collected and filtered by a

semantic publish/subscribe message broker. Others have used Policy-based Network

Management (PBNM) in [17] to determine what tasks to perform post publication-subscription-

matching, and Role-based Access Control (RBAC) [18] has been used to restrict access to content

across the publish/subscribe paradigm. However the novel contribution of this thesis allows for

management agents embedded on each node to be instructed by a policy server as to how to

cluster clients, allowing for changes in managerial goals to be enforced in changes in policy, as

opposed to changes in the client’s code base. The impact of this work relates to the approach

taken in applying an approach to clustering and filtering management data, sourced from across a

collection of managed nodes, and using semantic publication and subscription delivery via a KBN

broker network for management message delivery.

 9

1.6 Selected publications

Seven peer-reviewed publications form the basis of this thesis. The full set of contributed

publications is included in the Conclusion Chapter 7, Section 7.2. In this section a number of

these publications are outlined and a brief description is provided as to how they add to the State

of the Art in publish/subscribe clustering or publish/subscribe research in general. These

publications were chosen as they represent the three main concepts of this thesis: Knowledge-

based Networking, managed clustering using policy-based networking, and an approach to

semantic clustering.

• John Keeney, Dominic Jones, Song Guo, David Lewis, and D. O'Sullivan, "Knowledge-

based Networking”: book chapter, published in the "Handbook of Research on

Advanced Distributed Event-Based Systems, Publish/Subscribe and Message Filtering

Technologies. "IGI Global (Editor(s): Annika Hinze and Alejandro Buchmann) 2009.

o This peer reviewed book chapter introduces and presents a complete overview of

the Knowledge-based Network, an implementation of which is used in this thesis.

Work from this thesis contributed to the related work, motivational case studies

and discussion/future work sections of this chapter.

• Dominic Jones, John Keeney, David Lewis, and D. O'Sullivan, "Policy-based

Management of Semantic Clustering": conference paper, presented at the second

International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy,

July 2008.

o This paper presented the policy-based approach used within this thesis for

controlling the clustering of publishers, subscribers and brokers. The application

of using policy in publish/subscribe clustering is a novel contribution of this

research. In this position paper the work in this thesis outlined the approach

evaluated in the rest of this thesis.

• John Keeney, Dominic Jones, Dominik Roblek, David Lewis, and D. O'Sullivan,

"Knowledge-based Semantic Clustering": conference paper, presented at the twenty

third annual ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Brazil,

Mar 16-20 2008. (Included in Appendix A)

o This conference paper presented and evaluated a static approach to clustering,

where each client was manually configured with a pre-defined cluster. This work

supported the arguments on the benefit to KBN clustering motivating the research

presented in this thesis.

 10

1.7 Thesis Outline

 Chapter 2, Background: This chapter provides the reader with the necessary background

knowledge for the thesis. By the end of this chapter the reader will have acquired an

understanding of publish/subscribe networks, ontologies and policy-based network management.

Chapter 3, State of the Art: This chapter places the work presented in this thesis within the

context of existing research in both publish/subscribe networks and the clustering of these

networks. By the end of this chapter the reader should be able to compare the research presented

in this thesis against research completed by others, and see where this research contributes to the

State of the Art.

Chapter 4, Design: This chapter presents the reader with a description of the design decisions

made in the process of clustering of Knowledge-based Networks. By the end of this chapter the

reader should have an understanding of how each part of the system connects together.

Chapter 5, Implementation: The reader will have gained an understanding of the various

components of the evaluated system from the design chapter. This chapter introduces the various

technologies and technical approaches taken to implement a proof of concept of the design,

KBNCluster.

Chapter 6, Evaluation: The evaluation chapter presents the findings of the research conducted

as part of this thesis. Each of these findings is supported in data. By the end of this chapter the

reader will be able to identify the benefits of clustering KBNs and the evaluated efficiency of the

management system.

Chapter 7, Future Work and Conclusions: This chapter presents the future direction of this

research. In addition, it presents an overview of the research question and objectives backed by

supporting data. Finally the benefits to the scientific community of this work are clearly outlined

and discussed.

Appendixes: A: Full copy of "Knowledge-based Semantic Clustering" [7]. B: Results of the

clustering algorithm used in this thesis applied to five separate ontologies. C: All policies

designed as part of this thesis. D: In DVD format: a copy of this thesis in PDF format, all

evaluation data sets, publications and subscriptions used in experimentation, all ontologies (in

*.owl format) results of the clustering algorithm applied to the ontologies, all policies used in as

well as copies of all papers published from the work presented in this thesis.

 11

2 BACKGROUND
This chapter presents the technology and background knowledge important in fully understanding

this thesis. In this chapter, ontologies, semantics, semantic reasoning, publish/subscribe

middleware and Policy-based Network Management (PBNM) each are introduced in turn.

2.1 Key Terms

This first section describes for clarity some of the key terms in the context of this thesis, not

specifically to the field of publish/subscribe.

Subscribers register subscriptions with a broker. Each subscription consists of one or more filters,

where each filter is constructed from a Name, Type, Operator, and Value in the form of

an Attribute-Constraint. Publishers send publications into a broker across the network

constructed from a Name, Type, Value in the form of an Attribute-Value. These

publications are matched, by message brokers, to stored subscriptions and routed across the

broker network towards subscribers as notifications, where matches occur.

Brokers route messages received from a publisher to a subscriber. Subscriptions are stored in a

broker’s subscription set or tree. When a broker receives a publication, it checks its subscription

set and forwards matches towards the subscriber that was the source of the subscription.

Hop Count relates to the number of brokers over which a publication passes as it travels from its

source to a destination. It is initialised at zero, and the first broker to receive a publication

increments it by one. This continues until the publication turns into a notification, when it is

delivered to a subscriber with an attached final count.

An Un-clustered Topology is a broker topology where both subscribers and publishers are un-

constrained in the choice as to where they publish or subscribe to across the broker network.

There is no coordination as to where, in the overlay, from a logical point of view, a publisher or

subscriber should connect. For the purposes of this thesis, a Clustered Topology utilises a

managed process to attach both publishers and subscribers to an appropriate broker before they

publish or subscribe, thereby clustering the clients around their interests. When a Publisher or

Subscriber requests attachment, its semantic interests are used to calculate a suggested cluster

within the network.

The process used to control clustering takes a Policy-based Management [19] approach. The Rule

Driven Policy Server plays a central role in the management of the clustering process.

Management policies are designed and implemented by a systems administrator. These policies

and the methods these policies utilise subsequently allow for a clustering process to be

implemented across the managed collection of nodes by a centralised policy server.

 12

2.2 Semantics

2.2.1 RDF and Ontologies

In this section ontologies are introduced. However before this, the Resource Description

Framework (RDF) is briefly discussed. Baader et. al. [20] define RDF as “a language for

representing information about resources in the World Wide Web” written so that machines can

parse it, and humans read it. In RDF, a resource can be either a Subject, Object, or

Predicate, each with a unique Uniform Resource Identifier (URI). Stringing together a subject

and an object with a predicate creates an RDF triple. Importantly objects and predicates can also

form parts of other triples, and these can be extended into one another so that they form a

knowledge base. By way of illustration, a simplistic example of an RDF is shown below:

Subject: John

Predicate: has_surname

Object: Smith

Table 1: Example RDF Triple

Moving on from RDF, Web Ontology Language (OWL) ontologies are seen as more detailed and

formal representations of knowledge, formed from classes, instances/individuals and properties.

The remainder of this section will introduce the main characteristics of a generic ontological

model in the course of building a simplistic example ontology.

1) Classes: represent collections of individuals that share common characteristics. In the

example ontology built through this chapter a single root class is created, underneath Owl:Thing,

where Owl:Thing represents all knowledge in the modelled domain.

The newly created class sub-class of Owl:Thing will be named Animals and have additional

sub-classes of Cats and Dogs. Classes named Burmese are created under Cat and

GermanShepherd and JackRussell under Dog. Using this approach sub- and super-classes

can be extended into a taxonomy as required. Equivalence and disjoint relationships can be

encoded into class relationships, such that Dog and the class Canis lupus familiaris can be

defined as being equivalent and Cat defined as being disjoint from Dog.

2) Instances/Individuals: are occurrences of entities and assigned to specific classes. By

extending the class structure created in the previous step, Dixie is associated to the class,

Burmese, Tillie and Ray to the class German Shepherd and Gus to the class Jack Russell.

This process populates the previously created class structure with instances of each class. The

next step assigns some properties to the sample ontology.

Smith&John&
has_surname&

 13

3) Property Types: The two main properties used in OWL ontologies are either object- or

data-type properties. The W3C defines object-type properties, in [21], as a directional relationship

between “an individual(s) and another individual(s)” and data-type properties as

“individual(s) to datatype(s)” where data types equal strings, integers, Booleans, dates

etc. When dealing with object properties, the domain and range can be set. For data-type

properties an instance is directionally related to typed data values expressed in XML schema.

Expanding upon the example ontology a property is created where the Domain is set to Dog and

the range is set to Cat. Once this property has been assigned a domain and range and

subsequently when an instance of the Dog class is selected it is possible to assign the property

chases to the selected Dog. For example Tillie, a German Shepherd chases Dixie a

Burmese.

An example of data-type properties is hasAge which has a domain of Animal and its range being

set to Integer. This allows any instances of any sub-class, below Animal, to be assigned an

integer value. Shown in Figure 1 is the example ontology formed in this section.

Figure 1: Example Ontology

One limitation of the ontological representation of knowledge is in the ability of a machine to

understand the meaning of that knowledge. Whether in OWL, RDF, or plain text, a machine can

only understand the relationships among concepts based on the path between them, not by the

semantic meaning of the concept’s label. At present it is difficult for a machine to understand

meaning but it is possible to identify relationships between concepts in a particular knowledge

model. Taking an object-property Father is_parent_of Child a machine could interpret

Animals

Cats Dogs

German
Shepherd

Jack
RussellBurmese

Dixie Tillie Ray Gus

owl:InstanceOf

owl:subClassOf

owl:InstanceOf owl:InstanceOf owl:InstanceOf

owl:subClassOf owl:subClassOf
owl:subClassOf

owl:subClassOf

Chases

owl:ObjectProperty

owl:Thing
owl:subClassOf

 14

through reasoning the link between the concept of Father and of Child, but not of the meaning

of the wording of the property, is_parent.

If ontologies are seen as multi-dimensional graphs of knowledge, where relationships are

represented as formally defined properties, super- and sub-class, assignments of instances and

properties it is thus possible to refer knowledge from these relationships whereas understanding

the concepts is more difficult to achieve. There are two main methods for inferring knowledge, as

outlined in [22], the T-Box or “Taxonomy Box” and A-Box or the “Assertion Box.” Combined,

they apply a classification of concepts and the relationships between concepts individuals and

properties, which provides a query-able reasoned taxonomy of a knowledge base.

 15

2.3 Publish/Subscribe Middleware

Having discussed ontological semantics this section looks at the different types of

publish/subscribe middleware responsible for delivering event messages from publishers to

subscribers, whose interests are expressed as a subscription. This approach can be viewed in

contrast to systems such as (RSS) Really Simple Syndication [23] where a pull-based delivery

mechanism is used. In RSS a client is required to query for new content from a defined collection

point, as it appears, whereas the push-based publish/subscribe paradigm sees content pushed

towards a subscriber, with no action required on the part of the subscriber.

Distributed publish/subscribe offers a de-coupled method of communication in which messages

are routed from a publisher towards interested subscribers via a broker without any direct

relationship existing between both. Agreement is only required in terms of the message format

and the broker mechanism in use, often achieved through a boot-strap service. The remainder of

this section looks, in detail, at three types of publish/subscribe middleware, topic-, content- and

knowledge-based.

Figure 2: Classification of Publish/Subscribe Systems

Shown in Figure 2 are sub-classes of Distributed Event-based Systems (DEBS) [24] discussed in

the last three sections of this chapter. In this thesis the prototype system developed upon is an

implementation of Knowledge-based Networking [9] which itself extends upon the Siena [2]

Content-based Network (CBN). The State of the Art Chapter 3, of this thesis, extends the above

diagram with the various implementations of the four classifications presented above, introducing

topic-, content- and Knowledge-based Networks in turn.

Distributed Event-based Systems

Semantic-based
publish/subscribe

SBPS

Content-based
publish/subscribe

CBN

Topic/Type-based
publish/subscribe

TBN

Knowledge-based
Networking

KBN

Sub-Class

Combines

 16

2.3.1 Topic-based Publish / Subscribe:

A highly cost-efficient and widely used publish/subscribe system is the topic-, type- or channel-

based, network where clients subscribe and publish to particular topics or channels of information,

each a specific reference to a stream of information. An example of the concept of subscriptions

in such a system could include topics such as Wimbledon as a sub-topic of Tennis or

World_Cup_Final as a sub-topic of Football. Subscribers are delivered all messages

published to the specific topic-channel they have previously subscribed to. TIBCO [1] and Scribe

[10] are examples of popular Topic-based Networks.

One requirement of topic-based publish/subscribe is that there must exist an agreement on the

topic set, pre-defined by an administrator. De-coupling of clients is a key characteristic of

publish/subscribe, yet the requirement for agreement upon a topic set reduces this de-coupling and

requires a centralised service to advertise available topics. However, this is offset by the

efficiency of routing messages to pre-defined topic channels, therefore in Topic-based Networks

the only part of the message available to the event-service used in message matching is the topic

identifier itself, included in the message header.

2.3.2 Content-based Publish / Subscribe

Content-based Networks (CBN), such as Siena [2], Hermes [25], Gryphon [26] and Elvin [27],

allow subscriptions to be matched against the contents of publications. In CBNs publications are

usually formed from a number of attributes composed of a name, type and value, whereas

subscriptions are a conjunction of one or more name, type, operator and value filter(s).

If a subscription is satisfied, from the contents of a publication, the publication is forwarded to the

subscriber as a notification.

Type Name Operator Value
String User_Name = jonesdh

Table 2: Example Filter Constraint

Shown in Table 2 is a content-based subscription, constructed using a single filter in the form of a

Type, Name an Operator and a Value. Each of the filters in a given subscription must be

matched to a candidate publication, if it is to be matched as a notification. However there may be

more attributes in the publication than specified in a matching the subscription, but every part of

the subscription must be satisfied by one or more parts of the publication.

Type Name Value
String User_Name jonesdh
int MailBoxSize 500
int ExtNumber 6099

Table 3: Example Publication

 17

The example publication shown above in Table 3 would be matched to the subscription shown in

Table 2 as all of the subscription filters are satisfied. In contrast to this, shown in Table 4 is a

non-matching subscription, as the MailBoxSize attribute does not match any of the attributes

in the example publication, and therefore will not be delivered to the subscriber.

Type Name Operator Value
String User_Name = jonesdh
int MailBoxSize > 590

Table 4: Example Subscription

2.3.3 Knowledge-based Networks in comparison to CBNs

Knowledge-based Networks (KBNs) [9] are a classification of semantic-publish/subscribe

middleware, allowing the semantics of the contents of publications and subscriptions to have an

effect in message matching.

The semantic content in subscriptions and publications are based on a shared semantic web OWL

ontology [3], using additional ontological types and operators. A key identifier of Knowledge-

based Networks is that semantic types and operators are often integrated seamlessly with the

existing (non-semantic) types and operators of CBNs, the KBN implementation used in this thesis

offers an extended version of a CBN (Siena [2]) in which both semantic and non-semantic

message attributes operate in unison, across the same network of brokers being matched either

syntactically (available in both CBN + KBN) or semantically (only available in KBN).

One problem that exists with Knowledge-based Networks is in the requirement for pre-agreement

on the common model of knowledge, or Ontology, used between clients and brokers. This pre-

agreement is a drawback as it reduces the de-coupled nature of publish/subscribe however it also

provides an increases level of expressivity in messaging. KBNCluster does not address the issue

of pre-agreement between ontological models nor does it require clients to communicate in a pre-

operational agreement phase. However the work of Guo [4] looks in detail at the use of

ontological mappings between different ontologies so to mitigate the problem of pre-agreement

on ontological models as present in Knowledge-based Networks.

The data in Table 5 introduces Knowledge-based Networks by comparing them against both

Topic- and Content-based Networks in terms of delivery, subscription and publication method,

available operators, pre-operation agreements as well as providing examples of each, from current

literature.

 18

Table 5: Classification of Topic, Content and Knowledge-based Network

 Generic Topic-Based Siena [28] CBN KBNImpl [8] KBN

Delivery
Method:

Each topic channel has all
messages delivered to all
clients, who have previously
expressed interest in the
channels content.

Messages are delivered by brokers based on non-
semantic subscriptions constructed from a Name,
Type, Operator and Value.

Messages are delivered by brokers based on non- and
semantic-subscriptions constructed from a Name,
Type, Operator and Value.

Subscription
Method:

Subscriptions to topic
channels are seen as
expressions of interests in all
content to be published to
that channel.

Name-Type-Operator-Value (Attribute-
Constraints) using syntactic subscriptions formed
from non-semantic operators and types.

Name-Type-Operator-Value (Attribute-
Constraints) syntactic and semantic subscriptions
using both non-semantic and semantic operators and
types

Publication
Method:

Publication pushed into
specific channel and
delivered to all subscribers of
that channel.

Non-Semantic publications Name-Value-Type
(Attribute-Values) matched at each broker
against stored subscriptions, delivered as
notifications to all interested subscribers.

Non-Semantic and Semantic publications Name-
Value-Type (Attribute-Values) matched at
each broker and delivered as notifications to all
interested subscribers.

Operators
available:

Limited set, based around
exact subscriptions to
previously agreed topic
taxonomy, examples include:
Sub-, Super-, exact or
equivalent operators.

Including, but not exclusive of: Equals =, Not
Equals !=, Less Than < and <= Greater Than > and
>=, Prefix (String starts with) >*, Suffix (String ends
with) *<, Substring * , Equal Bag #=, Sub Bag #< ,
Super Bag #>, (Logical OR ||, Logical AND &&,
Logical NOT! Varies for different implementations.)

Including, but not exclusive of: Equals =, Not
Equals !=, Less Than < and <= Greater Than > and
>=, Prefix (String starts with) >*, Suffix (String ends
with) *<, Substring * , Equal Bag #=, Sub Bag #< ,
Super Bag #>, Logical OR ||, Logical AND &&,
Logical NOT ! Equivalent @~, Not Equivalent
@!~, Sub Class @>, Super Class @<, ISA @=,
IS_NOT_A @!= , Ont Property @*,

Operational
agreements
required:

Agreement of topic
taxonomy by publishers,
subscribers and brokers.

Requires agreement on names and types between
publishers, subscribers and brokers.

Requires agreement on an ontology used by
publishers, subscribers and brokers and name and
types used.

General
Examples:

TIBCO [1] and Scribe [10]. Siena [2], Hermes [25], Gryphon [26] and Elvin [27]. KBN [9], OPS [29], and S-ToPSS [30]

 19

Shown in Table 6 are the range of operators and applicable types available in the Siena CBN [2].

The combination of these operators and types, with a value, allows Attribute-Constraint-

filters to be formed from one or more Name, Type, Operator and Value.

Operators Symbol Applicable Types
Equals = String, Byte Array, Integer, Long

Integer, Double, Float, Boolean.
Not Equals != String, Byte Array, Integer, Long

Integer, Double, Float, Boolean.
Less Than < Integer, Long Integer, Double, Float
Less Than Equal To <= Integer, Long Integer, Double, Float
Greater Than > Integer, Long Integer, Double, Float
Greater Than Equal To >= Integer, Long Integer, Double, Float
Prefix (starts with) >* String
Suffix (ends with) *< String
Substring * String

Table 6: Siena CBN Operators, Types and Symbols

Shown in Table 7 are the operators and applicable types available in the KBN implementation

used, extending the CBNs operators and types, shown in Table 6, to include semantics.

Operators Symbols Applicable Types
CBN Operators. See Table 6. See Table 6.
Equivalent @~ Class or Property
Not Equivalent @!~ Class or Property
Sub Class @> Of a named Class
Super Class @< Of a named Class
ISA @= Individual against Class
IS_NOT_A @!= Individual against Class
ONT_PROP @* Individual, Property, Individual

Table 7: KBNImpl KBN Operators, Types and Symbols

Roblek introduces, in [31], shown in Table 8, Bag operators and types. A Bag can contain any

valid KBNImpl (Table 7) type, including other Bags and their applicable operators in the form of

subscriptions or as publications. Examples of matching a publication (Bag A) against a

subscription (Bag B) are as follows: Equal Bag: all elements in Bag A must be in Bag B. Sub

Bag: Some elements in Bag A must be in Bag B. Super Bag: Some elements in Bag B must be

in Bag A. Each of these combinations is represented below, in Table 8, Bag operators and types.

Operator Symbol Applicable Types
Equal Bag #= See Table 6 and Table 7.
Sub Bag #< See Table 6 and Table 7.
Super Bag #> See Table 6 and Table 7.

Table 8: Bag Operators, Types and Symbols

In this section three forms of publish/subscribe middleware have been introduced, topic-, content-

and knowledge-based, where the latter is identified as a sub-class of Semantic-based

Publish/Subscribe. These three classes of publish/subscribe middleware are compared to one

another in tabular form before the operators, symbols, and applicable types for both content- and

Knowledge-based Networks have been introduced.

 20

2.4 Policy-based Network Management (PBNM)

The Design Chapter 4, Section 4.5, of this thesis outlines a number of dynamic management

methodologies used in managing the clustering of clients who require a dynamic management

approach. In this thesis the placement of clients is dynamic in that it is not based not on any pre-

determined metrics, but on the specific semantic interests of the client at a given point in time,

acquired during operation.

PBNM is seen as an appropriate choice for encoding enforceable management requirements as it

enables for dynamic and rapidly changing rules to be integrated directly into the operation of the

management process without any re-compilation or re-deployment of the management system.

PBNM is defined by Boutaba et. al. as supporting this view in [19], where it is seen as “separating

the rules governing the behaviour of a system from its functionality.” It is this level of separation

between the policy system used for achieving clustering and the broker network itself that makes

a PBNM approach highly suitable for this thesis.

PBNM simplifies the management of this thesis by declaring operating rules, which deal with

situations that are likely to occur. Informally, policy rules can be regarded as a declarative

instruction or authority for a manager to execute actions on a managed target to achieve an

objective or execute a change. Supported by this premise, PBNM is used within this research to

provide a set of external controls, which, in certain configurations, allow management level

decisions to be filtered down from the networks management into the operational characteristics

of a clustered KBN.

The goal behind using PBNM in the clustering of brokers and clients is to control the behaviour

of brokers and clients by employing well-defined policy rules, so that an administrator can

manage the network as an entity in-itself. PBNM allows this to be realized through its ability to

implement changes across the network as a whole, in comparison to managing individual network

entities and actions. PBNM often uses the principle of an event-condition-action loop,

where the event is an occurrence of a trigger phenomenon within the system. The condition is

defined by the policy manager as an arbitrary set of additional conditions that might refer to the

event, the system, or other observable context. Finally the action represents the task to perform

if the event received matches the conditions required for an action to be fired. The policy loop can

be formalised as IF [condition] THEN [action], an example being presented by Martin et.

al. in [32]: If [network resources are low] THEN [limit WWW access]. Such an

approach is used in designing the policies and enforcing the clustering, evaluated as part of this

thesis.

 21

2.5 Conclusion

In this Background chapter, an initial introduction to semantics has been outlined showing how

RDF triples [20], consisting of a Subject, Object and Predicate, can be used to represent

semantic data. These triples have been extended and discussed in relation to the three main types

of OWL ontologies. A sample ontology has been built in terms of classes, individuals/instances

and properties. Classes have been defined as representing collections of individuals, and

individuals as representing instances of classes where object properties may be used to relate one

individual to another. Data-type properties, in RDF, have been discussed as resources that relate

to some value (which may be another resource.) However, in OWL object properties relate

individual to individual, and data-type properties individuals. An OWL reasoner can follow these

properties to inter-logical relationships between individuals and data based on a given ontology.

Various classes of publish/subscribe middleware have been introduced, including Topic-based,

such as Scribe [10]; Content-based (CBN), such as Siena [2]; and Knowledge-based Networking

[9] as a sub-class of Semantic-based Publish/Subscribe (SBPS). For each of these networks, the

various types of operators and the various types that they apply to have been documented. It has

been shown how topic structures are subscribed to and how content-based Attribute-

Constraint filters are formed around Attribute-Values.

Finally Policy-based Network Management [19], [32] has been introduced and established in

terms of various parts of a generic policy loop, in the form of event-condition-action. The

next chapter looks at current State of the Art research in the field of publish/subscribe networks,

their clustering, and approaches to managing clustering

 22

3 STATE OF THE ART
In the previous chapter the technology and background used in this thesis have been introduced.

In this chapter the current State of the Art in the field of publish/subscribe is introduced,

concluding with design ideas, drawn from across the State of the Art. The first section of this

State of the Art Chapter looks at other implementations of Content-based Networks. Following on

from this a review of Semantic-based Publish/Subscribe (SBPS) is conducted, both sections

concluding with the advantages / disadvantages of each technology. A detailed review of the

application of clustering in both topic-, content- and Semantic-based Publish/Subscribe is

conducted, before this chapter concludes with design ideas, applied in KBNCluster, sourced from

the current State of the Art.

3.1 Content-based Networks

As has been discussed, Content-based Networks (CBN), such as Siena [2], Hermes [25], Gryphon

[26] and Elvin [27] are formed around the necessity to match a varying subscriber base to a wide

range of publishers. This “de-coupling” of the parties involved in the communication process

allows for message routing, upon message brokers, based on subscribers interested in a particular

message, rather than the flooding of the network in the search for all interested parties.

Subscribers register interests in the form of subscription filters, which are matched against

incoming publications at a broker. The routing process allows for a message inserted into a broker

network to be routed across the network based on positive matches to stored subscriptions (made

up from a number of filters) until every client, interested in the message, is satisfied. The filters,

which match these publications, are constructed using filtering constraints applied to the contents

of the publications. Mühl et. al. [24] describes this content-based matching as a set of “filters

[which] are evaluated against the whole contents of notifications.” The range of these operators

and types determines the type of pub/sub network in which the message is being sent and these

operators have been introduced and discussed in the Background Chapter 2, Section 2.3.

This section overviews four well known Content-based Networks, Siena [2], Hermes [25],

Gryphon [26] and Elvin [27], concluding with the advantages and disadvantages of the various

CBN architectures discussed.

3.1.1 Siena

Central to the design of Siena [2] is the observation that: “in practice, many parties are interested

in similar events” central to the approach taken in clustering. This is put into practice when a

subscription is received by a broker, as this subscription is only forwarded to a peer broker node if

“it defines newly selectable notifications that are not in the set of selectable notifications defined

by any previously propagated subscriptions.” Using this approach, the Siena broker network

 23

removes some of the load placed on the processing of publications by only forwarding the

subscription up the hierarchical chain of brokers, making it a concern of other brokers, if the

publication matches previously forwarded subscriptions.

The relationship between advertisements (not used in this thesis) and publications in Siena are

more complex. Siena is an event notification service, where publications are the events, compared

to the set of subscriptions stored in each broker. Changes in subscribers’ interests are represented

by a change in the set of stored subscriptions they hold at a broker. Advertisements allow the

publisher to “inform the event notification service about the notifications that will generate

objects of interest,” allowing brokers a glimpse of the content that may become available from a

particular node in the future. Advertisements are non-binding; messages are delivered even if the

advertisement is different from that of the subsequent publication.

Finally Siena identifies a single match of a subscription and a publication as a pattern. One or

more filters form a subscription and a publication matching a subscription is termed a notification.

This form can be further extended into a sequence of multiple filters, in a pattern, where each

filter must be matched in ordered of definition in order for that complete pattern-subscription to

be matched.

3.1.2 Hermes

As with other distributed event-based systems, Hermes [25] uses the terms event-clients and

event-brokers, where event-clients are publishers or subscribers and event-brokers route messages

between the two. However Hermes introduces the concept of “rendezvous” nodes, known to both

publishers and subscribers placing each around a common shared broker of interest, where

message delivery occurs or will occur. In addition to this, Hermes allows for subscription to type-

based events. For each event type, a rendezvous node exists in the network, and is replicated

somewhere else within the network. This assures that no single rendezvous node becomes a

“single-point of failure,” but also allows clients to connect at particular nodes that deal with

particular event types.

Publications are delivered to subscribers in Hermes, as follows: publishers establish rendezvous

(R) nodes for each of the types on which they will publish. They then send advertisements across

message brokers to these R nodes. Subscribers similarly subscribe across broker paths, from their

destination to the R nodes relevant to their subscription type. As these subscriptions route across

the collection of brokers, each individual broker stores the subscription locally, the path travelled

terminating at the relevant R node. Once the subscriptions have been processed from subscriber to

R nodes, and the path stored, brokers route publications back across these paths on behalf of

publishers. As publications pass across brokers (towards R nodes), brokers check to see if routing

publications match any stored subscriptions. If a match does occur, the broker forwards the

 24

publication, towards the subscriber, using the reverse route of the previously stored subscription.

Using this approach Hermes attempts to avoid bottlenecks occurring if subscriptions route to an R

node and only then route back to subscribers so that brokers take some of the load of the R node

as soon as they can. A layer below the API allows for a mechanism to filter across the event type

values, as opposed to just the event-type, much like the Siena filtering mechanism.

3.1.3 Gryphon

The authors of Gryphon [26] present three approaches for solving the multicast (publisher to

subscriber) problem, initially using a match-first approach, secondly using a flooding approach,

and thirdly presenting a hybrid approach. When match-first message matching is utilised, a list of

matches is generated when a publication is received. Once this list is accumulated the publication

is forwarded, as a notification, to each of the generated matches (subscribers). Flooding, as in the

name suggests, pushes the publication to all nodes, regardless of whether a match may occur or

not. The Gryphon authors outline and evaluate a third, more efficient, hybrid approach to the

problem of message delivery, termed “link matching.” Central to the concept of link matching is

the principle that each broker can calculate the route, from themselves to a subscriber, with

respect to the brokers outgoing links when the broker receives a publication.

Gryphon then uses a Parallel Search Tree (PST) approach in an initial prototype which is then

extended in [26] using a neighbour-first approach. In this, each subscription corresponds to a path

from the root node of the PST to the corresponding subscriber. By following the tree from the

root node down each of the possible attribute paths, the distance between each incoming

publication and interested subscriber can be calculated, the shortest path being the one used in

message delivery.

3.1.4 Elvin

In [27] the Elvin3 protocol is discussed in operation, and extended theoretically into Elvin 4. In

Elvin3 clients are represented as producers (publishers), consumers (subscriber) and servers

(router/broker). An important note with regard to Elvin3 is that the message delivery is conducted

over a single message server, solely responsible for the collection of subscriptions and delivery of

publications to interested subscribers. In their discussion regarding Elvin4 the authors discuss the

problems involved in scaling such an event-based system, where a single server processes all load,

whilst keeping intact the message-matching algorithm. In this discussion the authors conclude

that: “The remaining research challenge is to address scalability to wide area networks, and to

provide an internet-scaled Elvin [publish/subscribe] service.” This is important with regard to the

design of publish/subscribe systems and specifically when dealing with a growing set of stored

subscriptions and incoming publications where reducing the cost involved in matching each

publication to each subscription, with such large distributed subscription table is an aim of design.

 25

3.1.5 Analysis

3.1.5.1 Advantages of CBNs

Content-based Networks offer many advantages over their predecessor; Topic-based Networks.

The use of Content-based Networks provides a more expressive and flexible subscription

matching mechanism. This increased flexibility is achieved through the use of Attribute-

Constraint filters that allow subscription filters to be compared to the separate constituent parts

of Attribute-Values making up a publication. If one or more of the publication’s attributes

match all of the constituent parts of the subscription, then the message is forwarded to the

subscriber as a notification. Content-based Networks allow for a range of operators to be added to

the combination of Attribute-Constraints, present in subscription filters, such as; greater

than, less than, equals, does not equal etc. This combination of attributes, constraints and filters,

specified by the users, increases greatly the expressiveness of the subscription mechanism and

thus the expressiveness of the system.

In Content-based Networks there is no requirement that the set of users neither join together in

agreeing what subjects, sub-subjects and super-subjects should be formed into a topic taxonomy,

nor use a pre-defined taxonomy only required is that they agree on naming conventions between

attributes. Users publish, regardless of subscribers’ interests, and the same is true for subscribers

where content is delivered based on a match between subscriptions filters and publications, routed

to one another from across the network.

3.1.5.2 Disadvantages of CBNs

There are however some drawbacks to Content-based Networks not apparent in Topic-based

Networks. These drawbacks are primarily associated with the increased cost of matching stored

subscriptions to incoming publications, where the complete contents of each publication needs to

be compared to every subscription held by a broker, regardless of whether any match may be

made elsewhere within the subscription tree. This results in an increase in operational costs when

searching for notification matches, and subsequently increases if the number of Attribute-

Constraint pairs in each subscription increases. However some pre-agreement is still required

with Content-based Networks relating to the naming of attributes. Unless the naming of attributes

is in synergy then publications will not match subscriptions, regardless of the content. The

balance between the level of specification and the agreement of naming attributes is one that is

constantly re-assessed. In summary, Content-based Networks are shown to be extremely

expressive, but still require pre-agreement upon the naming of attributes and their pre-deployment.

 26

3.2 Semantic-based Publish/Subscribe (SBPS)

Semantic-based Publish/Subscribe (SBPS) [5-8] are a class of publish/subscribe middleware

defined by Guo in [4] as “any publish/subscribe mechanism in which the semantics of the

message are used in the routing of publication to subscriber.” To be defined as using semantics

requires additional knowledge to be gained from the user’s subscription or publication, and thus

increases the likelihood that any content delivered will be of interest.

The subscriptions by a subscriber define the interest of the user, where SBPS allows messages to

be routed towards subscribers, based not only on their specific subscriptions, but also on the

semantic relationship between their subscription and the contents of the publications. This section

looks at various implementations of SBPS, their characteristics, usage, advantages and

disadvantages. Any SBPS aims to increase expressivity in the subscriptions and publications of

network clients, whilst maintaining the efficiencies of publish/subscribe. Hence the key common

characteristic of SBPS is increased expressivity, and is used as the common metric for

comparison throughout this section. Before the State of the Art in Semantic-based

Publish/Subscribe is discussed a sub-class of SBPS (Knowledge-based Networks), and three

implementations of Knowledge-based Networking are introduced.

3.2.1 Knowledge-based Networks

Knowledge-based Networks (KBN) are a class of Semantic-based Publish Subscribe (SBPS)

which must allow both content- and semantic-based subscriptions and publications to intermix.

KBN subscriptions are formed from a (Name, Operator and Value), whereas publications

are formed from a (Name, Value and Type) whether semantic or non-semantic. This is the

key identifier of KBN equal to CBN functionality extended with support for semantics in

Attribute Values (publications) and Attribute Constraints (subscriptions).

3.2.1.1 KBNImpl

KBNImpl is an implementation of a Knowledge-based Network developed by Keeney and

extended by Roblek in [31] as presented in [6]. KBNImpl is based upon the Siena CBN [2]

specifically version 1.69 which extends the functions of the Siena CBN with the semantic

operators, types and values introduced in the Background Chapter 2, Section 2.3.3. KBNImpl

does not constrain which broker a client connects to and clients are free to choose any broker in

the network topology, as is the case with Siena.

3.2.1.2 KBNMap

KBNImpl operates around a single source ontology, used for creating publications and

subscriptions. The work of Guo [4] extended KBNImpl, forming KBNMap, offering support for

 27

multiple mappings between semantic models and interlinking SBPS systems through custom

gateways. In KBNMap, when a broker receives a publication or subscription, and if it does not

hold the semantic model required to reason about the message KBNMap uses a probabilistic-

based selection strategy to “dynamically select the appropriate mapping strategy” between

multiple different semantic models (ontologies). Guo’s work links multiple semantic models,

across multiple brokers, where required. It is important to note is that KBNMap does not

constrain or cluster which broker a publisher or subscriber connects to and operates like

KBNImpl in terms of the choice of broker a client takes.

3.2.1.3 KBNCluster

KBNCluster, a proto-type system developed as part of this thesis, combines KBNImpl with a

policy system controlling, and methods for, clustering publishers and subscribers around brokers

of similar interests. KBNCluster extends the code-base of KBNImpl, like that of Guo. The Design

Chapter 4 and Implementation Chapter 5 will discuss KBNCluster in detail.

3.2.2 A semantic Infosphere

Turning the focus to other classes of SBPS a Semantic Infosphere [33] operates around and

clearly defines one of the core principles of SBPS, that being, semantic knowledge delivery. It

utilises an architecture where publishers publish semantic XML messages as an “Infosphere

Information Data Object (IDO).” This IDO is subscribed to by subscribers, using message filters

i.e. filters that bound the requirements of the subscriber against the IDO.

Infosphere operates around the principle of semantic templates, into which non-semantic

messages are cast. Messages are cast into templates using the domain “hasTemplate,” the range

being the specific template in question. Using such a casting algorithm sees each non-semantic

message being cast into a semantic template, thus becoming pesduo-semantic.

The scenario, used in [33], gives an example as a battle tank-force. The message templates, used

in this scenario, and into which all messages are cast are: “Move; Event; Situation Report

and Enemy Order of Battle.” In each of the template classes there are multiple instances of

message types, each with a domain and range. Message carriers (IDOs) pass across the network

with attached semantic annotations that describe the content of the data object. Such attachment

enables for expression of “both the annotations and the subscriptions in vocabulary from the

common ontology” than allowing ontological reasoning against the ontological strand of

knowledge in the publication against the query, or filter, stored as a subscription. This reasoning

is used to calculate whether the ontological filter structure matches the publication structure and

delivers the content if and when a match occurs. The matching mechanism, utilised within

semantic Infosphere, is at its core the same as that used in the KBNImpl, which takes the

approach of combining snippets of ontological messages with non-semantic messages allowing

 28

both semantic and non-semantic messaging and matching to occur simultaneously albeit with

casting. Where criteria outlined in the ontological representation of the publication match that of

the subscription, then there exists a notification and this is delivered to the subscriber.

The work presented in Infosphere greatly supports the argument that the augmentation of non-

semantic data, into semantic messages, increases the expressiveness of the publication to the

subscription-matching algorithm and that semantics improve expressivity.

3.2.3 Semantic Toronto Publish/Subscribe System (S-ToPSS)

S-ToPSS, presented in [30], addresses the semantic matching problem between publication and

subscription, proposing a three stage solution to the problem, as discussed below.

Firstly synonym (“a word or phrase that means exactly or nearly the same as another word or

phrase in the same language”) translates “all events and subscription attributes with different

names but with the same meaning to a root attribute.”

The second stage involves the placement of a subscription / event into a concept hierarchy where,

for each new event, additional event entries may be added. An important aspect of the concept

hierarchy is the subscription to and publication from an ontological class structure, populated with

multiple distinct instances belonging to classes, thereby enabling for the delivery of subscriptions

based on generalised / less specific notifications.

Thirdly a mapping function “specifies relationships which otherwise cannot be specified using a

concept hierarchy or a synonym relationship.” This mapping function “correlates one or more

Attribute-Constraints to one or more semantically related Attribute-Value pairs.”

The mapping process presented has one major drawback. It must be conducted by a domain-

expert, is not automatic and requires that a domain experts mappings or representation of those

mappings is correct and and agreed upon. i.e. no other combination of mappings could be chosen.

The implementation of S-ToPSS is justified in the following semantic matching example, in

which the task is to match an employer to a prospective employee. The employer is looking for a

candidate from a “certain university”, “with a PhD degree”, “with at least 4 years work

experience.” This semantic query is matched to an employee who has a PhD, from a particular

school, with at least four years work experience only because S-ToPSS is able to reason that

“school” and “university” have the same semantic meaning, particularly in North America,

through their equivalence in a knowledge-base via the common ontology.

 29

3.2.4 Graphed Toronto Publish/Subscribe System (G-ToPSS)

An extension to S-ToPSS, G-ToPSS [34], was developed by the same authors as a graph-based

publish/subscribe architecture for dissemination of RDF data. G-ToPSS works with a common

architecture of publishing and subscribing clients laid across a broker, or a network of brokers.

G-ToPSS uses Really Simple Syndication (RSS) [23] web feeds as the source for content-

dissemination which are pruned into RDF triples, where each triple is made up of a (subject,

object, property). Each publication in G-ToPSS is seen as a “directed labelled graph”

formed around simple RDF triples. Subscriptions are represented by five tuple events: “(subject,

property, object, contraintSet(subject), constraintSet (object))”

The use of constraints can be applied to both subjects and objects where constraints are

represented "as a predicate of the form (?x, op, v) where ?x is the variable, op is an operator

and v is a value." There are two available operators: "Boolean, for literal value filtering, is-a for

taxonomy filtering." The class topology used within the G-ToPSS system enables an is-a

relationship to exist between classes and instances, where constraints applied against this class

structure enables a subscriptions and publications (formed from the taxonomy) to be matched

against one-another.

Such an example is clarified when the taxonomy is visualized: G-ToPSS presents a hierarchical

topology in which “Publication” is the parent to both “Journal” and “Conference Proceedings.”

Subscriptions therefore can be formed around a publication being a conference paper and a

content-based constraint such as “Year Published >= 2008”.

This demonstrates, in G-ToPSS as in the KBNImpl, a clear mix of content and knowledge-based

subscriptions and provides an interesting comparison to the KBNImpl, supporting, much like S-

ToPPS did, the argument that the introduction of semantics into the publish/subscribe paradigm

greatly improves delivery chances to the subscribing consumer supported through worked

examples.

3.2.5 Semantic Message Middleware for publish/subscribe networks
(SMOM)

The main aim of SMOM [35] is to provide subscribers with a more flexible way to describe their

subscriptions. This is achieved using an adaption of the DARPA Agent Mark-up Language and

ontology Inference Layer (DAML+OIL) which are RDF [20] / OWL [36] precursors.

This architecture is structured around a client-server model in which the client may be a publisher

or subscriber. The server provides both an interface to the Java Messaging Service (JMS) layer

and the additional semantic layer. The semantic layer is accessed via a client API used to route

through the semantic layer, to the JMS layer where the semantic layer calculates semantic

 30

relationships between classes and instances. This matching mechanism involves a “semantic topic

matching function which is responsible for instance checking and inference between each

subscriber’s class description and each publishers instance description.” Such a checking

mechanism results in notifications being delivered to subscribers from publications, as and when

they appear in the network.

In conclusion SMOM is shown to provide a valid argument behind the adaption of Content-based

Networks to provide semantic services which in turn aids in the delivery of semantic content to

users, who have previously registered interests.

3.2.6 An ontology-Based publish/subscribe System (OPS)

The authors of OPS [29] propose an architecture in which "the domain concepts in all events are

integrated together to form a concept node, and the system matches events with subscriptions both

semantically and syntactically." Implemented using RDF and DAML+OIL OPS describes the

data model using a (subject, object, property) relationship in the form of RDF triples,

where multiple triples form together to represent events and where by using a comparison of the

two event models allows for subscriptions, in the form of RDF graphs, and publications to be

matched against one another. OPS uses RDF graphs and ontological representation of knowledge

represent a method of turning non-semantic networks semantic. OPS provides such a method for

publish/subscribe semantic matching using RDF as well as fully evaluating the performance of

the matching algorithm using mathematical proof. OPS provides a good balanced argument for

proven performance, offset with the increased expressiveness of semantics.

3.2.7 Designing semantic Publish Subscribe networks Using Super-
Peers (SPS-SP)

The work of SPS-SP [37] aims to integrate publish/subscribe in an RDF based peer-to-peer

publish/subscribe system. The approach of SPS-SP supports advertisements, subscriptions and

publications, where the broker network consists of two types of nodes: super-peers and peers.

“Peers are typically network nodes which wish to advertise and publish data, and/or subscribe to

data owned by others. A super-peer is a node with more capabilities than a peer (e.g more cpu

cycles, power and bandwidth)." The super-peer backbone is therefore responsible for the

processing of publications, advertisements and delivery of notifications to subscribers, based on

their available and increased processing power.

In SPS-SP [37] a peer subscribes by sending a subscription to its defined super-peer access point.

Once a super-peer receives a subscription, the super-peer processes the subscription, storing a

local copy of the subscription in its subscription tree and also forwards this subscription to its

peers. Much like Siena [2] the super-peers do not forward messages “which are subsumed by

 31

previously forwarded subscriptions," this is referred to as covering and results in only newly

registered subscriptions being forwarded to the super-peers neighbours, covered subscription

being merged with subscriptions already held by the broker.

This approach to load sharing reduces some of the costs involved in processing and routing

semantic messages across the network. By outsourcing message processing to more highly

powered super nodes, the less powerful client nodes can access services provided by the super-

peers without resulting in a degradation of performance.

3.2.8 iBroker

iBroker [38] aims to reduce the load placed on a user, when searching for knowledge on the web,

by matching stored (semantic) user models to incoming publications.

The authors of iBroker propose using OWL based ontologies and SPARQL[39] queries, in place

of the RDF and XML content-based approach. Using iBroker allows users to define “user profiles”

which are matched against incoming ontology-based publications. If a match occurs, the

publication is forwarded to the user as a notification.

iBroker uses an OWL parser, to extract (from incoming ontological publications) the classes and

individuals associated with those classes, the properties, domain and range of those properties, all

of which is stored in an adapted hash-map. The subscriptions, in the form of SPARQL queries,

represent user profiles, and make it possible to compare stored subscriptions against incoming

publications. In conclusion iBroker provides a good overview as to how RDF/OWL and SPARQL

queries can be used in a publish/subscribe scenario, if only centralised, and with the costs

involved in SPARQL/RDF message matching.

3.2.9 Analysis

3.2.9.1 Advantages of SBPS

Semantic publish/subscribe offer a number of benefits to the user over Content-based Networks.

The use of semantic subscriptions and publications offer an increased level of flexibility,

expressivity and a great level of meaning, in the notifications delivered to a subscriber.

The use of semantics in publish/subscribe aims to assure and increase the chance that users only

receive messages which they have expressed a direct interest. Content-based Networks provide

the user with a method of explicitly subscribing to content in which they express an interest via

non-semantic Attribute-Constraints. In comparison, semantic subscriptions allow

expressions of interest using semantic concepts, to be formed.

One benefit of any publish/subscribe model is the de-coupling that occurs between producer and

consumer, connected only by a common broker or message delivery mechanism. This is true

 32

except in the naming of operators and attributes, where agreement is required, as previously

discussed. It has been shown through the introduction of richer semantic models into the

publication/subscription matching process further increases the separation between content

producers and consumers, via a linked content model.

However semantics can be costly in terms of operational performance, which must therefore be

balanced against expressivity. Examples discussed as part of this section have established that

semantics increase expressivity in publish/subscribe and thus it is argued that this increases the

ability of a producer to reach a consumer, in as dynamic a manner as possible, across a network

topology.

3.2.9.2 Disadvantages of SBPS

One major drawback to semantic publish/subscribe is the requirement for agreement between

producer and consumer on the body of semantic information over which reasoning is to occur,

pre-deployment. Whether such semantic subscriptions occur over an RDF graph or ontological

model, or using some bespoke metadata requires the format and agreement of structured content

to be agreed upon and loaded by clients and brokers alike removing some of the de-coupling and

flexibility introduced through the use of semantics in the first place.

There are additional costs associated with SBPS which increase when compared to using Content-

based Networks. These are associated with searching for semantic matches against incoming

publications and stored subscriptions. The specific cost of using the various semantic and non-

semantic operators are outlined in the Evaluation Chapter 6, Section 6.3.1 and shows that

semantics dramatically increase subscription processing times and publication delivery times. An

additional problem associated with the usage of SBPS is that the semantics need to be available

across the network on each node and for each node to hold the same semantic model as its peers,

hence the work of Guo [4] in KBNMap.

A common drawback within both content- and knowledge- and semantic-based publish/subscribe

is in the use of acronyms or full text in the naming of publications of subscriptions. For example

the subscription name=Dominic is not matched by the publication FirstName=Dominic. The

problem of matching subscription to publication names is one that is outside of the scope of this

thesis, but one that does exist and needs to be present in system designers / implementers.

In conclusion SBPS have shown to increase the expressivity of the publications and subscriptions

matched against one another over a common semantic model. As will be shown in the Evaluation

Chapter 6, Section 6.3, the use of semantics increases both expressivity and also the cost involved

in matching publication to subscription. This thesis does not aim to reduce the costs involved in

semantic matching of publication to subscription. However it aims to increase the chance that a

broker, receiving a publication, will hold a matching subscription.

 33

3.3 Publish / Subscribe clustering Techniques

Querzoni [16] defines the process of clustering, applied to publish/subscribe systems, as being

akin to “subscription regionalism” where subscriptions matched by the same publications are

hosted on nodes localized in the same region of the overlay network. In this section a number of

approaches to clustering publish/subscribe systems are introduced and discussed.

Most of the systems reviewed as part of this chapter operate over an overlay network, a logical

network built on top of an underlying IP network. In this thesis clustering aims to reduce the

number of overlay hops between producer and consumer, not the geographical distance or

necessarily the number of IP hops across the network. The aim of this thesis is to reduce the

number of message brokers process events required in delivering a message. This has the benefit

of reducing the number of overlay hops and so time taken to deliver a publication, thus reducing

the processing load placed on the broker network and increasing subscription aggregation

improving both processing overhead in individual brokers and the network as a whole.

Querzoni, in his survey paper on interest clustering techniques [16], compares the difficulty of

clustering Content- to Topic-based Networks. Using a defined taxonomy of topics allows clusters

of interest to be easily created around the topic taxonomy, and publishers/subscribers be assigned

to those clusters. Therefore topic-based subscriptions and publications are very tightly bound to

interests. Content-based subscriptions are however constructed from a more diverse combination

of filters, in comparison to topic-based subscriptions, and therefore it is harder to calculate a

suggested cluster for a content- or knowledge-based publication or subscription. This difficulty in

clustering content- as opposed to topic-based is indicated through the greater number of clustered

Topic-based Networks [12] [10] [13] [14] [15] than Content-based Networks [40] identified by

Querzoni in his review paper [16]. This is attributed to CBN lacking an external structure used for

forming publications and subscriptions (such as an ontology) that can be analysed and used for

the purposes of anticipating commonalities and forming clusters.

This difficulty, in clustering content-based subscriptions and publications is somewhat reduced

when semantic subscriptions are introduced. Much like the approach used with Topic-based

Networks it again becomes possible to use the ontological structure of the ontology to classify

clusters and most importantly calculate the central, semantic point of the user’s subscription or

publication, when formed around semantic content.

The remainder of this section examines various clustering techniques within mainly topic-based

and Content-based Networks; there is currently no known work to the authors knowledge on

clustering SBPS systems or semantic query systems on such a scale.

 34

3.3.1 Topic-based Publish/Subscribe Clustering

3.3.1.1 Boosting topic-based publish-subscribe systems with dynamic
clustering (Tamara)

Tamara [12] introduces a “novel distributed algorithm that utilizes correlations between user

subscriptions to dynamically group topics together into virtual topics (called topic clusters), and

thereby unifies their supporting structures and reduces costs.” Central to Tamara is a reduction in

operating costs through the grouping of clients who share similar interests around common

brokers. In Tamara topic-clusters are formed from the “groupings of topics with similar sets of

subscriptions into virtual topics.” Much like individual topics, virtual topics are allocated a unique

channel identifier. Using these identifiers publishers can reach of all the subscribers of the topic

cluster through that channel or topic-cluster.

Subscribers attach to the topic-cluster as follows: “a user declares their interest in a set of topics.

The system then determines a subscription policy for that user, namely a set of topics and topic-

clusters that covers the user's interests.” This step in the clustering process identifies the user’s

defined interests and places the user based upon these interests into the correct topic-cluster.

When a user’s subscription changes, the user repeats the placement process, resulting in a

replacement of the user within a new cluster, or they stay in the same cluster. A similar approach

is applied to publishers and the result is publishers and subscribers are clustered around common

brokers of interest, such a principle is applied in KBNCluster, using SBPS.

In conclusion Tamara [12] provides for the grouping of pairs of individual topics to form new

clusters; the addition of a topic to an existing cluster; the merging of two existing clusters into a

single cluster, the removal of a topic from a cluster as well as the destruction of a cluster. This

results in a system which is dynamic in the process of clustering, and the result is a low overhead

system enabling the benefits of the clustering process to be evaluated through performance

analysis.

3.3.1.2 Scribe: a large-scale and decentralized application-level multicast
infrastructure

Scribe [10] operates around the principle of multicast, where one message is distributed to

multiple members of an individual groups and can therefore be thought of as clusters of content or

interests.Implemented using the Pastry [41] DHT, Scribe allows for a “fully decentralised peer-to-

peer model in which each participating node has equal responsibilities” [10]. Being fully

decentralised removes any requirement for central co-ordination on the creation, joining and

management of clusters. Scribe provides an adapted model of topic-based publish/subscribe,

 35

allowing users to subscribe to a multicast group and receive delivery of all messages sent to that

group.

Using the Pastry DHT, Scribe acts as a layer providing API calls to create a group, join a group,

leave a group and finally publish to a group. Each group is assigned a “single rendezvous” node

that acts as an access point for communication with additional nodes, belonging to the group,

where groups can be thought of as analogous to clusters. The use of forwarding, in Scribe, allows

for messages arriving for delivery to a group to be both routed towards all members of that groups

as well as allowing any other members of the group to route messages towards the other members

of that group. This allows groups of clients who share similar interests to reduce the costs

involved in routing messages from publisher to subscriber, again a process only possible in Topic-

based Networks.

3.3.1.3 Data Aware Multicast (daMulticast)

Data Aware Multicast [13] (daMulticast) provides topic-clustering, using Topic-based Networks

and is similar, in operation, to Tamara [12]. daMulticast uses a “decentralized multicast algorithm

that is data aware in the sense that it makes use of information about the hierarchical construction

of pre-agreed topics to dynamically create groups of interests around subscribers and publishers,

according to topic hierarchies.” The authors of daMulticast [13] identify two main approaches to

topic clustering, one focusing on publishers, the other on subscribers. The publisher-based

approach creates a group for the publishers of a topic and for each individual topic. This is a

relatively simple process where the topic-hierarchy is parsed and re-formed into topic-groups,

which allow future publications to be routed towards the correct topic-group.

For subscribers, daMulticast creates a group for the subscribers of each topic aligning these

subscriber topic-groups against those previously created for publishers. Event dissemination is

conducted based upon a topic-hierarchy structure where a node receiving a message forwards that

message to the super-peer for that topic-group. This node then forwards the message to all other

nodes in its original topic-group. This continues until the path the message takes reaches the node

at the top of the topic tree, the master topic. Along this path subscribers who are interested in the

publication are delivered the notification. In conclusion, daMulticast operates as multiple topic

sub-overlays, connected by super peer topic clusters which interconnect brokers and route

publication between topic clusters, based around the topic hierarchy.

3.3.1.4 Topic-based Event Routing for peer-to-peer Architectures (TERA)

TERA [14] again only provides interest clustering in a topic-based publish/subscribe network.

Each topic in TERA forms a topic-overlay, where different topic-overlays interact with one

another through a general super-peer overlay. Subscribers join the overlay, representing their

topic-interest and may be part of more than one topic-overlay at a time. The general super-peer

 36

overlay is then used as a routing mechanism for messages from their source to the access point

which links the general overlay to the specific sub-topic-overlay.

TERA uses a Topic-based Network and a distributed unmanaged P2P architecture, much like

Tamara [12] for event dissemination. There are two overlays, the “global overlay” and the “topic

overlays”. The global overlay is linked to the topic overlay(s) through topic access points; these

access points are nodes on the global overlay, which are linked with all members of the topic-

overly and provide access to and an entry point to a multi-cast group. When a topic access point

receives a message, which is intended for the topic overlay they serve, the access point diffuses

this message across the sub topic overlay, its cluster.

Subscribers join topic overlays, representing their interests. Publishers pass publications to the

global overlay which routes these message across the global overlay until an access point (and

topic overlay) is found for a matching topic and cluster. When passed to the topic access point the

message (using a flooding approach) is diffused to all subscribers in the overlay. In conclusion

TERA [14] proposes and evaluates a novel approach to the creation of clusters within Topic-

based Networks using a global topic overlay linking multiple sub global overlays.

3.3.2 Content-based Publish/Subscribe Clustering

3.3.2.1 Sub-2-sub: Self-organizing content-based publish and subscribe for
dynamic and large scale collaborative networks

Sub-2-Sub (S2S) [40] clusters subscribers in Content-based Networks in contrast to the previous

approaches using Topic-based Networks. S2S uses a fully decentralised P2P system where

subscribers form clusters by comparing their subscription with subscribers around them using an

epidemic approach and where there are no defined boundaries between clusters.

The epidemic approach used to form clusters operates as follows: “Each peer i maintains a

reference to another node j. If Si and Sj intersect, and this intersection is not yet fully covered

by the subscription of another node to which i has a reference, they link.” Such an approach

allows nodes to independently compare their subscriptions to those of one of their neighbours and

create a link if they hold comparable subscriptions but only if there exists no other closer match

across their view of peers. The intersection between subscriptions determines whether

subscriptions match exactly, do not match at all, or match to some extent or another. Subscribers

in S2S are organised into multiple rings of similarity across a single overlay. Publications are

routed across the overlay using a greedy algorithm to cross the rings until they reach a matching

ring, at which point the ring will act as a transport to other subscribers within that ring, delivering

to them the notification. Three types of links between nodes are utilised in S2S [40] to assure the

overlay does not self-partition into unreachable areas; these are:

 37

1. Random links are created between nodes within the network.

2. Overlapping-interest links create mappings between rings that share common interests.

3. Finally ring links, between ring nodes, are used to distribute publications to subscribers.

The evaluation of S2S is conducted in terms of overlay construction; the cost involved in

construction of the rings, inter-ring link communication, random link creation and overlapping

links. In conclusion S2S [40] is one of the few examples of content-based clustering documented

as part of this State of the Art review, similar to the approach discussed in KBNCluster.

3.3.2.2 Efficient Publish Subscribe through a Self-Organizing broker
Overlay and its Application to SIENA

The work of Baldoni et. al. [28] is based on the Siena [2] Content-based Network focusing on the

clustering of non-semantic publications and subscriptions aiming to “cluster brokers sharing

similar interests in a limited number of overlay hops.” This aims to reduce both the load on the

collection of overlay brokers, as well as the number of hops to route messages from publisher to

subscriber. In the work of Baldoni et. al. the calculation of similarity between brokers within the

network is calculated as the number of events matched on broker Bi against the number that

would have been matched on broker Bj, where existing hierarchical links are followed first.

Brokers compare views within one another, looking for similarities that have occurred in

previously delivered messages. Based on these similarities brokers make decisions to either move

towards one another, in the hierarchical broker network, or stay in their current location,

connecting and disconnecting as needed. Baldoni’s system operates in a non-semantic Content-

based Network and embeds the logic for clustering on each of the nodes in the network. Like S2S,

Baldoni’s work presents one the few approaches taken to clustering Content-based Networks,

using a comparison between the messages brokers have delivered, bringing together brokers with

similar sets of interests. This is different to the approach in this thesis which takes a client-first

approach to clustering.

3.3.3 Conclusion

In sections 3.3.1 and 3.3.2 a number of approaches to clustering publish/subscribe architectures

have been discussed. These approaches have commonly been applied to Topic-based Networks,

where the external topic structure can be utilised in the grouping of clients around clusters of

interest. Content-based Networks have been shown to be more complex in terms of their

suitability for clustering. This thesis aims to contribute to the State of the Art by introducing and

evaluating the clustering of Semantic-based Publish/Subscribe networks through the use of the

semantic model, used by publishers, subscribers and brokers alike. The next section of this

chapter grounds the publish/subscribe middleware previously introduced, in a common taxonomy.

 38

3.4 Publish/Subscribe Classification II

Figure 3: Classification of Publish/Subscribe Systems II

Figure 3 is the classification presented and previously introduced as Figure 2 in the Background

Chapter 2, Section 2.3, extended to include a number of the implementations of publish/subscribe

systems introduced in this Chapter. This figure only contains a number of example

implementations, in each classification, not all those presented in this chapter. It is intended that

this classification structure be used by Distributed Event-based System architects to classify their

contributions in terms of the four major classes of such systems.

References to implementations above are as follows: OPS [29], S-ToPSS [30], TIBCO [1],

SCRIBE [10], SIENA [2], HERMES [25] KBNImpl [6], KBNMap [4], Finally KBNCluster is

introduced extended from KBNImpl in this thesis as the prototype implementation of clustering

designed, implemented and evaluated.

Meier and Cahill [42] introduce a taxonomy of Distributed Event-based Systems which differs

from the classification presented above in that theirs is used to describe any event-based

programming system in terms of “a variety of properties including quality of service, mobility and

security.” Meier’s taxonomy is for the technical classification of Distributed Event-based Systems,

whereas the classification presented above, in Figure 3, is introduced to conceptually classify

publish/subscribe systems within this thesis, and in future work, in terms of their placement into

either topic-, content-, semantic-, and Knowledge-based Networks classifications.

The subsequent Design Chapter 4 of this thesis introduces KBNCluster as a managed approach to

clustering publishers and subscribers around brokers, which match the interests of publisher, and

subscriber, subsequently evaluated as supporting the research question and the objectives of this

thesis.

Distributed Event-based Systems

Semantic-based
publish/subscribe

SBPS
Content-based

publish/subscribe
CBN

Topic/Type-based
publish/subscribe

TBN

OPS S-ToPSS

KBNImpl KBNMap KBNCluster

Siena Hermes
TIBCO SCRIBE

Sub-Class Sub-Class

Instances

Knowledge-based
Networking

KBN

Combines

Instances

Instances

Instances

 39

3.5 Research Challenges gathered from the SoA

Three key common research challenges exist in the State of the Art, related to clustering

publish/subscriber networks. In this section each of these challenges is discussed in turn.

Research Challenge 1: How can publishers who only attach transiently to a broker be clustered?

In publish/subscribe systems (without advertising) subscribers define the scope of their interests

before they consume content, in the form of subscriptions. Publishers send publications to a

broker, but there is often no mechanism in place for a broker to subsequently contact publishers.

Publications occur at the moment of their creation and then disconnect. This makes it difficult to

define interests pre-publication. A solution to this is to use publication advertising [2] where

publishers advertise descriptions of their future publications. They can then be instructed to

connect to a different broker, and publish.

However in contrast to this the work, presented in daMulti-cast [13], proposes a solution for the

clustering of both publishers and subscribers (but only in Topic-based Networks) where

publishers only publish to specific topic-channels. By creating clusters around a finite set of

channel definitions, brokers, publishers and subscribers are more easily clustered. The client or

broker choosing their cluster based on a finite set of possible clusters formed around the same

topic-channels, an approach that can be applied to Ontologies in KBNCluster.

Research Challenge 2: How can clustering exploit the semantic content of publications and

subscriptions, in a semantic publish/subscribe system?

It is inferred, from the range of systems evaluated in [16] and in the SoA in general that clustering

based on topics is a task more easily achieved than clustering based on content-based messages.

When clustering is based on topics, a publisher or subscriber joins a particular topic-cluster where

topic-based subscriptions are seen as direct expressions of interest clients have expressed for

future publications. For each topic a cluster can be created expressing and representing that topic.

Publishers, like subscribers, choose which topic and therefore which cluster they wish to reside in

before they publish, using a pre-determined list. The issue with Content-based Networks is that of

how to calculate and represent a common subset of the client using a Name-Operator-Value-

Type subscription or Name-Value-Type publication. In content-based and KBN systems there

is no finite set of interests (topic taxonomy) and clients do not express or place themselves in

terms of their interests drawn across such a taxonomy. Interests (publications or subscriptions) are

formed from the constructs of a (Name-Operator-Value-Type or Name-Value-Type) and

matched against one another. However, the problem lies in calculating the similarity between two

triples and forming clusters of interests from the complete set of clients across the network when

triples are expressions of specific unique data values. This is a challenge addressed in SBPS by

the introduction of an external semantic model of knowledge, used to assign clients to clusters.

 40

Research Challenge 3: How efficiently can a single ontology be separated out into multiple sub-

regions of separate interests?

The broker architecture, and the approach taken to overlaying clusters onto the broker network,

used in this thesis, is based around a hierarchy that uses top-level brokers to receive messages

with the broadest scope, allowing routers at the lower levels of the broker hierarchy to deal with

more specific messages and those at the top the most general. In contrast to the approach taken in

this thesis, where all brokers are seen as equal in terms of content they may route, [14], use a

combined global and sub-topic overlay approach to clustering, where global overlays route

messages from sub-topic cluster to sub-topic cluster seen as a ring (global overlay) with multiple

topic-clusters extending from the global overlay. An initial, but later abandoned, approach taken

in this thesis utilised an upper-level ontology, routing messages from cluster to cluster where each

cluster dealt with a specific set of interests, a sub-ontology, like the approach taken in TERA.

Therefore each cluster functioned around a partitioned, separate and smaller in terms of concepts

and file size ontology with links between clusters that existed only at the top tier. It was planned

that a top level global overlay of brokers would route messages from cluster to cluster, where one

topic-level broker in the global overlay represents each cluster. Each cluster would use a separate,

sub-section of the complete source ontology, where in contrast each global overlay broker would

use the complete ontology.

However the difficulty in such an approach was in splitting a single ontology into multiple sub-

ontologies, where each sub ontology represents a section of the main ontology and the original

ontology. When a single ontology is separated into multiple sub-ontologies the new sub-

ontologies become an inaccurate representation of only a part of the original ontology. An

ontology is a model of knowledge, and although the sub-ontologies are valid ontologies in their

own right, they are, once split, not an accurate representation of the complete original ontological

model hence this approach was not carried forward.

3.5.1 Design Ideas gathered from the SoA

Drawing on the State of the Art several approaches are highlighted as having a direct bearing on

this research to address the research objectives in Chapter 1. In this section those influences are

discussed in turn.

3.5.1.1 Subscription Regionalism

One of the core ideas taken from State of the Art research in publish/subscribe clustering is the

idea of “subscription regionalism” as defined by Querzoni et. al. [16]. Subscription regionalism,

in topic-, content- and semantic- publish/subscribe is the placement of subscribers around brokers

that share interests to one another. This results in fewer hops when delivering publication to

 41

subscriber, less brokers involved in routing a message and a greater chance that a publication,

arriving at any broker, will be matched to a subscriber of the same broker.

Subscription regionalism, as discussed in [16], is extended in this thesis and termed clustering,

incorporating the benefits offered by subscription regionalism. A key difference between the two

is that KBNCluster incorporates both the publisher and subscriber in the placement of clients

across the network, whereas subscription regionalism, in [16], only deals with subscriber

placement.

3.5.1.2 Ontology Partitioning

The work of Voulgaris et. al. in [40] present clusters not as defined boundaries of interest but as

overlaying concept-spaces where clients are placed in the best region of the network for their

interests. Placement within a concept space is calculated based on subscriptions to common

concepts and the similarities in the naming of Attribute-Constraints and Attribute-

Values. The principle of concept-spaces allow for parts of an ontology to be assigned brokers

across the network, where publishers and subscribers can be placed into the clusters that best

represent their interests or on the loose-boundaries between clusters.

In this thesis loose-boundary clustering is used to allow clusters of content to be applied over

single or multiple brokers, whilst assuring that all publications will be delivered, to all interested

subscribers, regardless of which broker receives them, as is the case in an un-clustered topology,

but with the benefits of clustering. Using loose clustering, all brokers load and reason the whole

ontology, regardless of their location in the network so they are able to process all subscriptions

and publications as they arrive. No broker has any more knowledge than any of its peers.

However loose-clustering still aims to focus the scope of publications and subscriptions received

by each broker, in each loosely bound cluster.

Referencing the work of Guo and KBNMap in [4], tight-boundaries can be defined across broker

routing based on specific, and separate ontologies. In KBNMap, when a broker receives a

message and does not have the ontological knowledge to interpret the message, the broker loads

mappings to other portions of a global overlay of brokers, where this overlay is constructed from

multiple, semantically mapped ontologies interrelated by pre-defined explicit mappings. However,

in contrast, in KBNCluster the most general clusters are assigned to the top-level brokers and at

each lower level in the broker hierarchy more specific clusters of knowledge are assigned to

brokers. However all brokers can route all messages / deal with any section of the ontological

content. Such loose-boundary clustering allows for clients to be placed in the best region of the

overlay by examining the set of semantically defined resources used in their publications or

subscriptions.

 42

3.5.1.3 Ontological Change

How often an ontology changes is driven by a change in the knowledge model, a change in

perspective or simply new information arising and being incorporated into the ontology, as

outlined by Flouris et. al. in [43]. However an assumption of this thesis is that the ontology will

not change during experimentation. In KBNCluster therefore the clustering algorithm does not

adapt the definitions, boundaries or placement of ontological clusters onto brokers over the period

of experimentation, although the placement of publishers and subscribers does change, as their

interests change. Clients’ interests will change, but the underlying ontology will not.

In KBNCluster an additional feature is implemented which allows brokers and clients to be

pushed an electronic ontological model and for this model to be reasoned over and loaded into

memory. This feature was implemented so that brokers could be pushed new ontologies when the

initial approach of multiple sub-ontologies, with a global upper ontology, was being investigated.

This approach was made redundant when the difficulties in splitting a single ontology into

multiple sub-ontologies whilst remaining the semantics of the original model. It is discussed here

as an avenue of future work where research could be conducted into the process of updating

ontological models on the brokers and clients of the network, as interests change, without

requiring a full-restart.

However for the evaluated implementation presented in this thesis if the ontology does change the

full system requires a cold-start. By adapting where users are placed within a static cluster

structure assures that as users change their semantic interests this change is represented in their

placement within a specific cluster. However the cluster topology is static, it does not change.

What changes is the cluster a client is placed into, as the clients’ interests change.

 43

3.6 Conclusion

This chapter has provided an overview of current Topic- and Content-based Networks, which

provide important reference architectures being the catalyst for the development of this research.

In addition to discussing Topic- and Content-based Networks, this chapter has examined the

approaches taken by others in the application of semantics in publish/subscribe networks. The

discussion as to how these technologies increase the expressiveness of subscriptions and

publications is examined in each case.

This chapter has introduced topic- content- and semantic-based networks outlining the advantages

/ disadvantages of each as well as discussing architectural differences. In addition, a number of

approaches have been analysed which apply clustering to mainly topic-, but also Content-based

Networks. In general topic-based clustering of publish/subscribe networks creates a cluster per

topic where publishers and subscribers are grouped around topic brokers that share common

interests. In addition to the clustering algorithms applied to Topic-based Networks, there is also a

examination as to the less wide-spread approaches applied in the clustering of Content-based

Networks.

In conclusion, this chapter has related the research challenges of this thesis with the learning’s

drawn from the State of the Art. Design ideas are also gathered throughout the review and

disussed. The next chapter of this thesis discusses the Design of KBNCluster, followed by a

detailed documentation of the Implementation of the designed architecture.

 44

4 DESIGN

4.1 Introduction

This chapter discusses the design of KBNCluster. This design is intended to explore the issue of

clustering in Knowledge Based Network and of the dynamic management of such clustering. The

design is an extension of an existing KBN implementation, KBNImpl. The design of KBNCluster

can therefore be classed as an instance of Knowledge-based Network within the DEBS taxonomy

presented in State of the Art Chapter 3, Section 3.4.

Dynamic semantic clustering as investigated in this thesis involves the ability to define the

semantic centre (termed Medoid, see Section 4.3.1) of a client’s interests making it possible to

group clients more accurately around brokers sharing similar interests. A client’s semantic centre

(Medoid) is a single semantic entity that best represents the collection all their complete interests

as expressed through the semantic subscription filters and publications they emit. In the case of

KBNCluster, this entity is sourced from across an ontology representing all the concepts and their

relationships active in the KBNImpl at that time.

In order to achieve clustering, a management approach is taken to the placement of publishers and

subscribers across message brokers, where placement/clustering policies are rule driven and can

therefore be manipulated by network operators as they change. Such patterns can only be

understood through observing real world subscription and publication patterns and extracting their

semantic attributes. This is not currently feasible with the present underdeveloped and state of

SBPS deployment in real world applications. However, the impact of different management

approaches and their processing and communication overheads on the generic operational

behaviour can be readily assessed. It is for this purpose that the KBNCluster design is based on

three core requirements for the operation and management of dynamic clustering, each discussed

in turn, in this chapter. These are:

1. Formation of clusters: In KBNCluster an ontology is partitioned and overlaid across a

number of brokers, assigning to each broker a portion of the ontological knowledge

possessed by the whole network, thereby defining the semantic interests of that semantic

content assigned to a broker. By matching a publisher’s or subscriber’s Medoid to the set

of brokers the most appropriate broker, or cluster, for that publisher or subscriber, is

estimated.

2. Moving of clients and brokers across the overlay: Being able to move clients to a more

appropriate position in the overlay network is a requirement for clustering. KBNCluster

instructs a client to reside in the most suitable cluster, automatically. However the

interests of subscribers and publishers, in terms of content they subscribe to, or publish on,

 45

and their suitable placement, may change over time. Hence the ability to move clients

from cluster to cluster is vital for implementing dynamic clustering.

3. Re-clustering of clients deemed to be in a sub-optimal cluster: For each notification a

client receives, the number of overlay hops the message has traversed during delivery can

be calculated. From this it is possible to apply a re-clustering decision using the

notification hop count metric to identify clients residing in a possibly sub-optimal cluster.

If this occurs, a more suitable cluster for the subscribing client may exist and they may be

suggested to move.

Having identified the core design requirements of KBNCluster, the high level design of the

architecture is introduced, before a detailed example of the process of clustering is provided. Once

both the architecture of KBNCluster and the clustering process have been detailed, the

management system is discussed.

 46

4.1.1 Extended and New Technology

The investigation performed with KBNCluster was made possible by the availability of an

existing KBN design (based on the Siena CBN [2]), termed KBNImpl. KBNImpl is the work of

Keeney et. al. as described in [6] and used in KBNMap [4] and this thesis as KBNCluster.

This section describes this technology, which has been extended to form KBNCluster as part of

this thesis. These extended features are identified as technical contributions of this thesis,

combining with KBNClusters evaluation, to address the research question and objectives outlined

in the Introduction Chapter 1, Sections 1.1 and 1.2; KBNImpl has been extended with new core

functionality, in order to achieve KBNCluster. The extensions made to KBNImpl, as part of

KBNCluster, are outlined below:

• Subscriber and publisher Medoid calculation, vital for clustering clients around brokers of

common interest termed clusters.

• A dynamic broker hierarchy, where brokers and clients can be moved around the topology,

utilising a set of movement methods. These movement methods are implemented so that

KBNCluster can migrate clients across clusters as their interests drift. Without these changes

clustering would be static.

• Instrumentation of a hop count metric, embedded directly in notification message headers.

• Support for communication with brokers, publishers or subscribers through an adaptation of

XML based KBNImpl configuration messages. This enables an unlimited number of policy

server configurable messages to be sent from the policy server to KBNImpl brokers.

• The trigger broker provides for the policy server to subscribe to management messages and

receive management updates, through matching publication to subscription.

• The ability for the policy server to communicate with publishers via the trigger broker and the

publishers Universally Unique Identifier (UUID).

• Management Information Base (MIB) support for Managed Objects (MOs) where MOs are

generic data models of brokers, publishers and subscribers.

• The combination of a rule engine and MIB query access in support of management policy

execution.

• Provision for multiple actionable events, allowing executing policies to change where clients

are placed across the network and request management information from them.

• A method for partitioning a single ontology into multiple strands of sub-ontologies

subsequently overlaid onto a set of brokers, from the most specific cluster to least specific,

top to bottom over the broker hierarchy.

In the next section the high level design of KBNCluster is presented and each component

discussed in turn.

 47

4.2 High Level Design

This section presents a high-level design, operational objectives and the design assumptions made

in KBNCluster. Each of the constituent parts of the system is discussed in turn, providing support

for the clustering of ontologies, placement of clients within clusters and re-placement of clients

when identified as residing in the wrong cluster.

4.2.1 System Architecture

Figure 4: High Level Component Architecture
Figure 4 presents a high-level design overview of the main components, of KBNCluster. These

components consist of the broker network, which combined with publishers (P) and subscribers

(S) forms a managed overlay network. When this managed overlay is combined with the trigger

broker and policy server they form the management plane, with potential to support a range of

dynamic clustering in SBPS networks, which together forms KBNCluster. The trigger broker

allows for subscriptions to specific occurrences of management data to be sourced from a large

set of management source data, originating across the managed overlay. The filtering for

relevancy of this data occurs in the trigger broker, not the policy server, removing this role from

the policy server and placing this instead upon the trigger broker.

In this way the trigger broker acts as an aggregation and filtering point for management

information, before it is delivered to the policy server as notifications. These notifications are

used by the policy server to update or create Managed Objects (MO) entries in the Management

Information Based (MIB), which are then used to trigger and evaluate policy rules. If a policy rule

fires, i.e. the conditions in the policy are met, the action contained in the policy is enforced within

the managed overlay, achieved either through direct messaging to brokers (and their attached

subscribers) or via messages, sent across the trigger broker, back to publishers, addressed to their

UUID.

B

BB

BB

P

S

Broker Network

POLICY
SERVER

TRIGGER BROKER
Management

Information

Pubs/Subs

Policy

Actions MIB
P

S

Managed Overlay
Management Plane

 48

4.2.2 Design Overview

The following section outlines the the approach taken in the design of the managed overlay,

policy server and trigger broker in turn, central components of KBNCluster.

4.2.2.1 Managed Overlay Design Overview

Subscribers initially make an un-constrained choice about the broker they subscribe to but are

then subsequently re-clustered by the policy server. This attachment process was kept as an

operational characteristic of the KBNImpl, where a client initially attaches using an un-

constrained decision and KBNCluster does not change this characteristic from KBNImpl.

However once attached to a broker is a subscriber re-clustered.

Each broker, upon receiving a subscription from a new subscriber, passes this subscription and

the subscriber’s information to the trigger broker. The broker then waits for a re-clustering

command to be received from the policy server and re-directs the subscriber to the most

appropriate cluster, using a custom re-cluster instruction.

Brokers report to the policy server with appropriate management information as and when

requested to do so by the policy server. These management messages include the number of

subscribers, number of notifications delivered and broker’s Medoid.

Publishers publish their Medoid to the trigger broker before they wish to publish. Once published

they listen for clustering instructions from the trigger broker by subscribing to messages

containing their Universally Unique Identifier (UUID). This UUID was required to identify each

publisher in the system where there previously existed no way of identifying or communicating

with publishers. By assigning each publisher a UUID, the policy server can communicate

instructions to and receive management updates from the collection of publishers, notifying them

of their new master broker and cluster or other operational instructions.

4.2.2.2 Trigger Broker Design Overview

The trigger broker receives subscriptions from the policy server and publications from the

components of the managed overlay (brokers and publisher / subscriber clients) routing command

messages from the policy server back to the publishers addressed, using their UUID. The trigger

broker applies KBNImpl message matching against stored management subscriptions (originating

from the policy server) and incoming management publications (originating from brokers and

publishers in the managed overlay,) and delivers notifications, where a match occurs.

4.2.2.3 Policy Server Design Overview

The policy server initialises operation by subscribing to the trigger broker with subscriptions,

representing its complete set of management interests. When notifications are delivered from the

 49

trigger broker to the policy server these are stored, in individual MOs as part of the MIB. Once

MOs is created or updated, the policy server executes the appropriate policies against the

complete MIB. If policy conditions are met, then the policy server fires an action, which may

involve notifying a broker or client in the managed overlay to adapt someway, as outlined in the

policy rule.

These objectives form the core operational characteristics of the components of KBNCluster, the

managed overlay, policy server and trigger broker combining to form KBNCluster. The managed

overlay performance, trigger broker and policy server are evaluated in detail in the Evaluation

Chapter 6, Section 6.4.

4.2.3 Clustering Design Assumptions and Scope

Having discussed the high-level design objectives of KBNCluster in this section, some of the

design assumptions and scope, applicable to KBNCluster, are outlined.

4.2.3.1 Publisher and Subscriber Design Assumptions

Subscribers choose a broker, an arbitrary choice, connect to that broker and then are re-clustered.

The behaviour up until the point of re-clustering replicates the behaviour of KBNImpl. Once a

subscriber has attached to a broker, the broker calculates the subscriber’s Medoid and this is

forwarded to the policy server, who calculates if this broker attachment represents the most

suitable cluster for the subscriber, and if not which cluster would be more suitable. Once

calculated, this cluster information is forwarded back to the broker that originated the clustering

decision for the subscriber. The broker notifies the subscriber of its newly suggested cluster and

the subscriber disconnects from its current broker and reconnects to the new cluster broker.

Publishers communicate, via the trigger broker, with the policy server, to establish where to

publish based on their calculated Medoid. Once instructed, the publisher connects to the broker

mandated by the policy server, and publishes their publications as in normal KBNImpl operation.

4.2.3.2 Design Assumptions around ontological clustering

Brokers load a set of ontologies during start-up. These ontologies are those used by publishers,

subscribers and brokers to create publications or subscriptions. Ontologically unknown messages

are messages that are received by a broker to which they do not hold the ontology required to

reason. Such messages, as addressed by Guo [4] in KBNMap, are not present in any experiments

conducted as part of this thesis nor is KBNCluster designed to deal with such messages. The

research of Guo provides a solution to such problems.

Every broker, in KBNCluster, has access to the complete set of ontological knowledge required to

reason about all semantic messages that it may receive. The approach taken here focuses on the

 50

use of clusters that ensure publications and subscriptions are injected as closely as possible to one

another in the broker overlay.

In summary, KBNCluster operates on the principle that a single source ontology is provided

relating to the content that publishers, subscribers and brokers generate and route messages over.

Through the use of Policy-Based Network Management (PBNM), operational characteristics of

clustering change without requiring a re-start of the network. However if the source ontology

changes then the full network, including all brokers, publishers, subscribers, the trigger broker

and the policy server, need to be restarted. This restart is required so that the policy server can re-

cluster the new ontology and the brokers, publishers and subscribers of the network re-load and

reason over the new ontology; subsequently, each individual client is re-clustered appropriately.

 51

4.3 Clustering Process

Having introduced the high-level design overview of KBNCluster, this section discusses the

calculation of a client’s Medoid and the clustering of brokers across the overlay network, where

clusters are assigned to brokers as they are formed from a source ontology.

Once the clustering algorithm has passed over the source ontology, a number of clusters are

created. These clusters are then assigned to brokers in the network and clients with interests

matching these clusters attach as instructed by the policy server.

This section discusses how to place a client within a cluster and the identification of misplaced

clients. Six sections are introduced, each key to the clustering algorithm evaluated in

KBNCluster; these are:

1. The origins of the concept of the Medoid (Section 4.3.1).

2. Creating clusters around a source ontology (Section 4.3.2).

3. Mapping this source ontology onto an A* semantic map (Section 4.3.3).

4. Calculating a client’s Medoid (Section 4.3.4).

5. Assigning a client to a cluster (Section 4.3.5).

6. Re-assigning misplaced clients (Section 4.3.6).

4.3.1 The Medoid

Before the clustering process is examined, this section introduces the concept of the Medoid as

has been previously briefly discussed. The Medoid is used to represent the centre of the semantic

interests of publisher or subscriber. It is calculated from the set of semantic (ontological)

subscriptions or publications a client holds at a given point in time. It is not possible to calculate a

Medoid, or similar single representation of interest, from a non-semantic subscription or

publication, as they lack the structured graph of the ontology, from which the Medoid is

calculated. The Medoid is represented by a single URL of an ontological class or instance taken

from the source ontology on which semantic publications or subscriptions have been formed. It is

deemed to represent the client’s or broker’s central point from a set of interests.

The source ontology is the ontology used by brokers, publishers and subscribers, in the KBNImpl,

to express semantic messages, and is consistent with the name space properties of semantic web

languages. In practice, the ontology present across the KBNImpl could be composed from several

ontology documents taken from different sources, but containing at least one link connecting a

term in each ontology document to one in another. However, this namespace partition does not

impact on the Medoid calculation and is not therefore considered further in this thesis. Ontologies

are contained in a single file throughout KBNCluster.

 52

The term Medoid is first defined by Kaufman and Rousseeuw in [44] and discussed by Van der

Lann, Pollard and Bryan in [45] where Partitioning Around Medoids (PAM) is presented as an

algorithm used to calculate, given a source data set, the number of clusters and topological centre

of those clusters. The work of Kaufman provides a basis for the concept of a KBNCluster Medoid

in calculating clusters of similarities in large sets of human gene expression data. The major

difference between the use of the Medoid in this thesis, and in Kaufman’s work, lies in the PAM

algorithm taking a complete set of input data and returning n multiple clusters and their respective

Medoids, from across the complete data set, where n is provided to the algorithm.

However, the Medoid in this thesis is returned as the central point of the client from a set of

interests.. The different approach arises from the operational need of KBNCluster in comparing

the interests of a client to that currently held by different brokers (clusters,) and is seen as more

suitable to a changing network configuration. This is in comparison to the PAM approach, which

attempts to build a global model of semantic structure based on a single graph. In KBNCluster the

Medoid is defined as representative of the point on a weighted graph with the smallest distance to

all other points, within a query set. The query set is taken from all semantic elements contained in

a publications Attribute-Value (Name, Type, Value) or subscriptions Attribute-

Constraints (Name, Type, Operator, Value), in effect the complete set of semantic

elements referenced in either publication or subscription. Detailed examination of extracting the

query set from publications and subscriptions is included in Sections 4.3.3.1 and 4.3.3.2

respectively.

In KBNCluster, the Medoid is calculated as the node (ontological URL) in a semantic graph of

the source ontology (see Section 4.3.3) with the smallest combined distance to a given query set

where the query set is a subset of the nodes in the graph. The semantic spread of a Medoid is also

calculated. This represents the accuracy of the Medoid value. The semantic spread is calculated as

the standard deviation from the Medoid, to each point in the query set. A smaller standard

deviation for a given query set represents a more accurate Medoid, whereas a larger standard

deviation indicates the Medoid has a less uniform distance to it.

 53

4.3.2 Taxonomical Approach to Cluster Creation

Figure 5: Sample Clustered Ontology

Figure 5 presents the sample “animal” ontology, previously introduced in the Background

Chapter 2, of this thesis. The taxonomical cluster creation algorithm, used by KBNCluster, is

applied to this ontology, and utilises only the structure of the ontology, the relationship between

ontological nodes, in calculating clusters and not the labels of the elements, or their meaning. The

classes at the bottom of the input ontology are presumed to be more specific than those at the top,

as specific concepts are broken down into sub-concepts. Virtual-partitions of clusters, within a

single ontology, as used in KBNCluster, do not physically split the ontology but only create

virtual associations of interests, loose-boundaries, across the source ontology, which are then

assigned to brokers.

Clusters are created using the following approach: for each top-level root ontological class, create

a cluster of that class and its sub-classes. This creates the first Animal cluster, shown in Figure 5.

Then algorithm then loops through each sub-class class of the top-level root classes and creates a

cluster of that class and its sub-classes. This creates the two-second clusters Cats and Dogs, as

shown in Figure 5. As each cluster is created the instances of each class, being clustered, are

associated with the cluster. This process continues until the last sub/super relationship between

classes, in the topology, is identified. For example there is no (Burmese) (German

Shepherd) or (Jack Russell) cluster created; only the parent classes are formed into

Animals

Cats Dogs

German
Shepherd

Jack
RussellBurmese

Dixie Tillie Ray Gus

owl:InstanceOf

owl:subClassOf

owl:InstanceOf owl:InstanceOf owl:InstanceOf

owl:subClassOf owl:subClassOf
owl:subClassOf

owl:subClassOf

owl:ObjectProperty

owl:Thing
owl:subClassOf

 54

clusters. This approach creates clusters at the highest level through to the lowest level of concepts,

for a given source ontology.

After the clustering algorithm has been applied to the ontology, three distinct clusters have been

created, shown in Figure 5, these are:

• The Animal cluster (inc. Cats and Dogs).

• The Cats cluster (inc Burmese Dixie).

• The Dogs Cluster (inc German Shepherd, Jack Russell, Tillie, Ray and Gus).

The cluster identifier for each is Animal, Cats and Dogs, where the concepts associated with

each of those IDs are included in brackets. Once created for an ontology, these taxonomy clusters

are overlaid onto the set of available brokers from the top of the broker hierarchy down to the

bottom of the broker hierarchy. As the algorithm passes over brokers, the highest-level brokers in

the topology are assigned the most general clusters (Animal), and the lower level brokers to the

most specific clusters (Cats and Dogs). It is important to note that this algorithm is applied

symmetrically it starts at the top of the ontology and moves from left to right across the

ontological model. Once clusters are created the algorithm applies these clusters to the broker

hierarchy from top to bottom left to right. Its loose association approach overlays the structure of

the ontology across the topology of the broker from top to bottom, left to right.

This occurs due to the following principles of design: In a file held on the policy server,

brokers.txt, all the available brokers are recorded from the top to the bottom of the broker

hierarchy. On each line of the brokers.txt file is a broker lower down the hierarchy of all

brokers in the KBNImpl deployment. Using the principle that the brokers at the top of the

hierarchy are at the top of brokers.txt and those at the bottom of the hierarchy at the bottom

of the file enables cluster assignment from most to least specific from the top to the bottom of the

broker hierarchy. A by-product of this process is that if there are more brokers than there are

clusters, these clusters will be assigned to only the top-level brokers in the hierarchy, typically

those with more resources and less contrainsts Once this process is complete the policy server

assigns the remaining number of clusters from the top-down across the broker network, until all

clusters are assigned to a broker, and each broker may hold one or more clusters.

A key feature of the architecture is that the clustering algorithm is a modular function and thus

replaceable. The algorithm described here attempts to provide an efficient solution for using

clustering to improve network performance, specifically in terms of the hops taken to route

publications, as will be evaluated. Yet the clustering algorithm could be replaced with an updated

or modified approach, providing for future adaptations, as experience in the forms of ontologies

and the client interests that are expressed in them, become better understood.

 55

4.3.3 Creating an Ontological A* Map

Having clustered the source ontology, this section of design discusses the calculation of a client’s

Medoid. This is achieved using an A* graph of the ontology [46]. A* is a variation of the Dijkstra

graph search algorithm [47] which provides the shortest path between any two nodes in a

weighted graph of nodes. These nodes are connected via weighted edges, and this graph is used in

Medoid calculation from a set of input query nodes, the complete semantic interests of publisher

or subscriber.

Figure 6: A* Ontological Map

Shown in Figure 6 are the example relationships between ontological elements (nodes) and their

edges (weighting) in a generic model of ontology, used in transposing a source ontology onto a

semantic A* map. In KBNCluster the cost to travel between nodes are as follows:

o Sub Class to Super Class = 100 / Super Class to Super Class = 100.

o Class to Equivalent Class = 1 / Equivalent Class to Class =1.

o Class to Instance (One Way) = 1.

o Domain Instance to Range Instance = 1 / Range Instance to Domain Instance = 1.

The algorithm allows for alternate weightings to be given to the arcs between ontological

concepts, between 1 and 100; the example weightings shown above used in the evaluation of

KBNCluster. These weights were chosen to represent the broad relationship between classes in

the super – sub class relationships and the closer relationship between instances and classes. It is

suggested future user studies are conducted where ontology experts as asked to weight edges

between nodes and averages of the user-suggested values used in future experimentation. These

values are configurable in KBNCluster, here they are suggested values, user-sourced variables

should be established to fully validate these values.

RANGE

INSTANCE

Super-Class

100

100
CLASS

B
CLASS

A

Instance
Of
1

Sub-Class

Property
1

CLASS
C

Equivalent Class 1

DOMAIN

INSTANCE

Instance
Of 1

 56

 Figure 7: Sample ontology graphed using A* algorithm

Such weightings are applied in Figure 7 to the example animal ontology plotted onto an A* map

of nodes and edges, using the previously introduced rules and weights. The next two sections look

at extracting the semantic query set from publications and subscriptions required for calculating a

clients Medoid.

4.3.3.1 Extracting Semantic Elements from Subscriptions

When calculating a subscriber’s Medoid, multiple Attribute-Constraints, combined as

subscription filters, are used. Each attribute constraint is made up of a (Name, Type,

Operator, Value). Using these Attribute-Constraints the following approach is applied

in the calculation of a subscriber’s Medoid, using their set of semantic subscription filters.

1. For each subscription from a given subscriber, the broker extracts into an array all the

semantic Attribute-Constraints from that subscriber’s subscriptions, therefore

including all the ontological concepts referenced in the subscription.

2. Calculate and return the Medoid for this collection of concepts, see Section 4.3.4.

3. The broker passes the Medoid to the trigger broker, which forwards it in a cluster

decision request to the policy server.

4. Awaits re-clustering instructions for the subscriber, from the policy server.

5. The broker informs the subscriber which then, if necessary, moves itself to the assigned

cluster.

In summary, the broker calculates Medoids for newly attaching subscribers, and these are sent to

the policy server in the form of a single Medoid and its associated semantic spread via the

trigger broker as a subscriber information message. Instructions for clustering subscribers, are

then sent back to the broker, and these are forwarded to the relevant subscriber.

4.3.3.2 Extracting Semantic Elements from Publications

Calculating the publisher’s Medoid is a more challenging task than that used in subscriber

Medoid calculation. Subscribers issue subscriptions to brokers and this allows the broker to act as

100
DogsAnimals

100
Cats

German
Shepherd

100

Jack
Russell

100

Burmese

100

Dixie
1 Gus

1

Ray1Tillie
11

 57

an intermediary between the subscriber and policy server in clustering the subscriber. However,

publishers are not persistent. They appear, publish and disappear. Due to this the following

approach is applied in clustering publishers:

1. The publisher client calculates their own Medoid, based on their publications

Attribute-Value formed from a (Name, Type, Value).

2. Publishers forward their Medoid to the policy server via the trigger broker including their

UUID. It is important to note the trigger broker is a single point of failure in KBNCluster.

3. The policy server calculates the most suitable cluster for the publisher, and sends these

instructions back to the publisher, addressed to their UUID, via the trigger broker.

4. The publisher connects to the assigned cluster/broker and publishes.

In summary, due to the transient relationship publishers have with a broker, publishers calculate

their own Medoid before publishing and are clustered. In contrast subscribers have their Medoid

calculated by the broker to whom they initially subscribe. Subsequently the subscriber, with all

their subscriptions, is moved to the suggested cluster.

4.3.4 Medoid Calculation

This section presents a description of the process of calculating a Medoid using the principles

outlined in the previous two sub-sections and utilising a selection of query nodes, provided as

ontological URIs, calculated from a subscription (Attribute-Constraints) or publication

(Attribute-Values).

In the first step of Medoid calculation, the shortest distance, ds, is defined between all nodes n

and n’ in the A* map by the A* algorithm. Ds is calculated between all nodes in the ontology,

formed into an A* map, based on the configured weighting for each different arc in the ontology.

Next, the shortest distance dq is calculated between each node n in the semantic map, and the

complete query set q, using ds to calculate the collective cost from each node to the query set.

Once calculated, dq is equal to the node with the shortest sum of all distances to the complete

query set. The ontological URL associated with that node is returned as the client’s Medoid.

If the query set only contains one ontological entry, then the Medoid for that query set is

automatically returned, being the single entry of the query set.

 58

4.3.4.1 Example Medoid Calculation

Figure 8: Example Medoid Calculation

 Shown in Figure 8 is a Medoid, calculated from the example “animal” ontology previously

introduced. In the above example, the query set has been identified as containing references to

both the ontological class Jack Russell and instance Gus, bolded only for clarity.

The graph is searched for the node with the shortest distance to each entry of the query set. The

Medoid calculated from the query set is Jack Russell with a cost of one, zero to itself and one

to Gus, remembering the Medoid can itself be part of the query set, or outside the query set.

Therefore, from the query set, Jack Russell is calculated as the Medoid for the query set, and

thus the suggested cluster Dog returned to the subscriber or publisher as the calculated cluster for

the query set and placement. In the next Section 4.3.5 each possible Medoid, shown above, is

placed into a cluster, using KBNClusters algorithm for cluster placement and the previously

defined clusters.

4.3.4.2 Summary: Medoid Calculation

When an ontology is plotted onto a weighted graph of nodes and edges, using the rules described

in this chapter, distances between ontological concepts can be calculated. Combined with this, a

publication or subscription is made up of elements from an ontological model. Given the concepts

referenced in a publication or subscription (query set) and a weighted graph of the source

ontology, it is possible to calculate the ontological point which represents the shortest distance

(possibly any one of the ontological concepts) to the combined query set.

The cost is calculated from every point in the weighted graph to the entire query set. The point in

the weighted graph with the smallest combined cost to travel to each of the points of the query set

is deemed to represent the Medoid of the client, even if this point resides outside or inside of the

initial query set. In KBNCluster weighted graphs are used to calculate the shortest path between

two points.

100
DogsAnimals

100
Cats

German
Shepherd

100

Jack
Russell

100

Burmese

100

Dixie
1 Gus

1

Ray1Tillie
11

 59

4.3.5 Cluster Placement

At this stage a collection of clusters has been calculated, semantic publication or subscription

elements extracted, and a single semantic interest (Medoid) of publisher or subscriber calculated.

This section discusses client placement into a suitable cluster.

An initial approach was taken using the WordNet:Similarity tool [48] to measure the semantic

similarities between the Medoid concept and each of the clusters. Each cluster is represented by a

set of strings (class or instance, etc) extracted from the ontology. The WordNet similarity API

was used to calculate the similarity between the Medoid string and each of the strings in each of

the sets of clusters, the cluster with the highest combined similarity to the Medoid being returned

as the suggested cluster for the client. However, this approach assumes that the usage of word in

the ontology definition corresponds to the definition in WordNet or could be found in WordNet in

the first place. These are not necessarily valid assumptions, especially if the ontologies were more

product oriented, or written in completely different languages. Therefore KBNCluster took a

taxonomical, not a synonym-based, approach in calculating the cluster most suited to a query

Medoid, as follows:

1. Given a client Medoid, as a URL, all clusters are searched to see if they contain that URL.

2. The cluster that the Medoid URL resides in is the cluster where the client should be

placed, and this is returned to the client as their suggested cluster. A URL (ontological

element) in KBNCluster can only be contained in one cluster.

Summarising the above: each client’s Medoid is a URL, calculated, from the source ontology, and

represent a client’s semantic centre. Every cluster definition is similarly a collection of URLs

from the source ontology, partitioned into clusters of interests. Searching the collection of clusters,

comparing each URL in each cluster to the Medoid URI of a client, a match, when found, returns

a cluster (and so the associated broker associated with that cluster to the subscriber or publisher.)

For properties the class applicable to the property’s domain is chosen for the suggested cluster. If

the property has no domain or range, then it will not have previously been mapped onto the A*

semantic map. If it had been mapped (lacking a domain and range) it would have been

disconnected from the rest of the map and therefore the cost of travel to the property would be

infinity and thus be excluded. In KBNCluster each broker is assigned a single cluster in the first

pass of the algorithm. If more clusters exist than brokers those brokers at the top of the broker

hierarchy are assigned the remaining clusters. One cluster can only be assigned to one broker but

one broker may have more than one cluster assigned to it.

The cluster calculation algorithm is run, using each Medoid from the source ontology shown in

Figure 5, and estimation as to their correct cluster given. If no cluster is returned, for any reason,

then the subscriber stays connected to the broker they initially attached to, and publishers make an

 60

arbitrary choice of broker and publish. Examples of Medoid matches and cluster placement from

the previous example ontology are as follows:

• Class Medoid estimations:

o Query Medoid Animals should be placed in the cluster Animals.

o Query Medoid Cats should be placed in the cluster Cats.

o Query Medoid Burmese should be placed in the cluster Cats.

o Query Medoid Dogs should be placed in the cluster Dogs.

o Query Medoid German Shepherd should be placed in the cluster Dogs.

o Query Medoid Jack Russell should be placed in the cluster Dogs.

• Instance Medoid estimations:

o Query instance Gus should be placed in the cluster Dogs.

o Query instance Tillie should be placed in the cluster Dogs.

o Query instance Ray should be placed in the cluster Dogs.

o Query instance Dixie should be placed in the cluster Cats.

• Property Tillie chases Dixie and should be placed in the cluster Dogs.

Five ontologies have been run against the cluster placement algorithm and these are presetend in

the Appendix B.

4.3.6 Re-clustering

Over a period of time the interests of a subscriber may drift, and, as this occurs, so will their

Medoid will change. The policy server provides a number of policies, allowing the network

manager to set the interval for a subscriber or broker to report their Medoid back to the policy

server. Once requested, and received, this updated Medoid is used to calculate whether the client

is still in the right cluster or whether the client needs to be re-clustered to a more suitable cluster.

In reaction to this drift, the policy server uses a numerical and objective measure of assessing

when clients require re-clustering. To adopt a simple but operationally significant parameter for

such a policy decision, the number of hops over which a notification passes in being delivered

from publisher to subscriber was identified. Each subscriber is responsible for calculating its

mean hop count from all delivered notifications, and this is used in determining if re-clustering is

required. This hop count information is included in a notification report, requested by the policy

server from the subscriber, delivered via the Trigger Broker.

Once the policy server receives a notification report for a subscriber, if the mean hop count is

deemed too high, they are identified as requiring re-clustering. Metrics for determining too high a

hop count are outlined in a configurable policy. If a subscriber is identified as requiring re-

 61

clustering, its Medoid is passed to the same process that is used in their initial clustering with

their updated Medoid. If a new more suitable cluster is found, the client is requested to move.

Key to re-clustering subscribers is the requirement that their semantic interests (subscriptions)

change, which results in a change to their Medoid and thus re-clustering. With regard to

publishers, they only ever request to be re-clustered and are never directed to re-cluster. For this

reason it is required that publishers request to re-cluster at a defined interval, or after their

publications change and they identify this change. Publishers are only ever clustered in their first

publication into the network and then identify themselves as requesting re-clustering.

Additionally, and because of this, publishers calculate their own Medoid, and do not have it

calculated by the broker they are attached to, i.e. they by-pass brokers and deal directly with the

policy server. There is no metric which can be used for identifying publishers in an un-suitable

cluster.

Finally, it is possible that an application node could be both a publisher and a subscriber. In such

a situation the application is clustered, in KBNCluster, based upon their subscription (subscriber)

Medoid and not their publication (publisher) Medoid.

A proposed solution to such a problem is to initiate 2 client interfaces, 1 for publishing and one

for subscribing, where each client interface, held by a single application, would be resident in

different clusters. This is seen as an application level decision and thus outside the scope of the

objectives addressed in KBNCluster, and not evaluated.

 62

4.4 Trigger Broker

Having established the clustering process, this section discusses the design of the trigger broker.

The trigger broker acts as an intermediary between the managed overlay and the policy server,

responsible for filtering incoming publications from the managed overlay and delivering relevant

messages to the policy server. Shown in Figure 9 is a high level overview of the internal

operations of the trigger broker.

Figure 9: Trigger Broker, High Level Overview

The subscriptions and publications sent to the policy server from the managed overlay via the

trigger broker are based on a management ontology designed specifically for representing

management information sourced from the network (i.e. the managed overlay). It therefore is

distinct from the ontology used in the core of KBNCluster and is not part of the source ontology

used by the brokers and non-management clients in forming clusters. This management ontology

is shown in Figure 10 and is used to form semantic subscriptions on a range of management

information published by components of the managed overlay.

There are two ontologies used in KBNCluster. The first is the content ontology this being the

ontology used by KBNImpl nodes for producing publications and subscriptions. This content

ontology can be thought of as the messaging ontology, on which semantic publications and

subscriptions are formed, this ontology is present and used in KBNImpl.

The second ontology is the management ontology this is the ontology used to tag management

messages. All nodes in KBNCluster use both the content and management ontology, the

content ontology used for delivering publications and subscriptions and the management ontology

used in delivering management messages between nodes in the overlay, the trigger broker and

policy server. This ontology is not present or used in KBNImpl.

P
U
B
S

PUB
MATCHER

Subscription
Tree

S
U
B
SNOTIFICATIONS

Write

Read

Match Made

Process

TRIGGER BROKERBrokers,
Publishers,
Mgmt Info

Policy Server

Policy Server Publishers

Mgmt Actions

Mgmt Info Mgmt Actions

Policy Server

Publishers

Mgmt Info

Mgmt Actions

 63

Figure 10: Trigger Broker Ontology

By using the trigger broker ontology, it is possible for semantic subscriptions to be formed around

management information needed by the policy server, accurately filtered by the trigger broker.

Exploiting existing KBNImpl functionality in this way represents a new approach to the semantic

delivery of management data, using semantic message matching. In the next section, the types of

subscriptions, sent into the trigger broker in KBNCluster, are discussed.

4.4.1 Subscriptions to Trigger Broker

There are a number of types of subscriptions that can be issued by the policy server to the trigger

broker for management information based on the trigger broker ontology, these are:

1. Medoid messages (From brokers, publishers and subscribers).

2. Broker information messages.

3. Subscriber information messages.

4. Publisher information messages.

5. Broker utilisation reports.

An example semantic technique for subscriptions to management data allows a manager to

subscribe, using the ISA operator to a class of instances. Again using the ontology in Figure 10,

some examples are shown in Code Example 1, and publications shown in Code Example 2.

Type Name Operator Value
OntInstance MessageType ISA Broker

Code Example 1: Example Managerial Subscription II

On Occurrence
Events

Publishers Broker Subscribers

owl:Thing

Medoid_
Message

Broker_utilisation_report

Subscriber_info
Publisher_Info

Broker_Info

owl:subClassOf owl:subClassOf owl:subClassOfowl:subClassOf

owl:InstanceOf owl:InstanceOf
owl:InstanceOf

owl:InstanceOf

owl:InstanceOf

 64

Type Name Value
OntInstance MessageType Broker_Info

OR
OntInstance MessageType Broker_utilisation_report

Code Example 2: Example Managerial Publication II

The example above allows for subscriptions to specific management events, or classes of

management events to be issued to the trigger broker by the network manager. It is also possible,

but not evaluated in this thesis, to couple these semantic filters with low-level data filters that,

when applied to the content of the messages, provides both semantic and non-semantic

subscription mechanism, e.g. where data properties have a value over a certain threshold.

4.4.2 Publications Received by the Trigger Broker

This section describes publications from publishers and brokers that are subscribed to by the

trigger broker, these include (used in KBNCluster):

Medoid Messages, (Code Example 3), requested by the policy server from brokers and contain

the broker’s Medoid(s), Medoid standard deviation(s), master broker (if any), broker address and

port.

Type Name Value
String BrokerID KBNImpl Broker Address
Instance BrokerMedoidMsg Ontological Instance URL

Instance or Class Medoid Ontological URL
Integer NumOfSubs Number
Double StdDev Number
String Master KBNImpl Broker Address
Integer Port Number
String Receiver Local KBNImpl Broker Address

Code Example 3: Example Medoid Message

Broker Info Messages, (Code Example 4), received by the trigger broker on broker start-up, or as

a broker is moved across the network. They contain the broker’s master and receiver address in

the form of tcp:IP_Address:Port, used by KBNImpl for message delivery.

Type Name Value
Instance BrokerInfoMessage Ontological Instance URL
String Master KBNImpl Broker Address
String Reciever Local KBNImpl Broker Address

Code Example 4: Example Broker Info Message

Subscriber Info Messages, (Code Example 5), received by the trigger broker each time a

subscriber attaches to a broker or moves to a new broker and contain the subscriber’s master

broker, Medoid, unique KBNImpl subscriber ID and their complete subscription as a string entity

as generated by the KBNImpl code-base.

 65

Type Name Value
Instance SubscriberInfoMessage Ontological Instance URL
String Master KBNImpl Broker Address
Instance or Class Medoid Ontological URL
String Subscriber ID KBNImpl Subscriber ID
String Subscription Full KBNImpl Subscription

Code Example 5: Example Subscriber Info Message (Publication)

Publisher Info Messages, (Code Example 6), received by the trigger broker from publishers

before they publish. They contain the address, their current master broker in the network, previous

Medoid and UUID.

Type Name Value
Instance PubInfoMsg Ontological Instance URL
String CurrentMaster KBNImpl Broker Address
Instance
or Class

Medoid Ontological URL

Integer StdDev Number
String PublisherID KBNImpl Publisher UUID

Code Example 6: Example Publisher Info Message (Publication)

Subscriber Notification Reports, (Code Example 7), requested by the policy server and contains

the subscriber’s unique KBNImpl subscriber ID, master broker and a notification map. This

notification map contains the subscriber’s mean hop count, standard deviation associated with the

mean and a map of the number of occurrences of the number of hops for all delivered messages.

For example if a subscriber has received (6 notifications across 1 hop), (2 across 4 hops) and (1

across 7 hops) their resulting map would be formed as follows: (NotificationMap=”(1-

hop=6, 4-hop=2, 7-hop=1)”.)

Type Name Value
Instance NotificationReportMessage Ontological Instance URL
String Subscriber ID KBNImpl Subscriber UUID
Integer HopCountMean Number
Integer StdDev Number
String NotficaitonDeliveryMap Array of Hops and Counts
String CurrentMaster KBNImpl Broker Address

Code Example 7: Example Subscriber Notification Report (Publication)

The five publications shown above are extendable. However these are in the form used in the

evaluation of KBNCluster in Chapter 6. A key benefit of using such message formats is that the

policy server is able to subscribe to certain semantic occurrences or specific low-level data values

occurring in the set of management data. In this way the trigger broker acts as a central

rendezvous point and broker for management messages, where these messages can be filtered

using subscription filters incorporating semantic and non-semantic constraints that directly

represent the conditions present in management policies in the policy server. Therefore the

 66

messages received by the trigger broker and the data stored in the MIB can be tuned to the

minimum needed to support the active policies or operational policy.

4.4.3 Interactions between KBNImpl Publishers and the Trigger
Broker

In addition to receiving status reports from the brokers of the network (and their subscribers), the

trigger broker acts as an intermediary between the policy server and publishers in receiving and

sending instructions back to publishers via their UUID. This again uses the publication and

subscription feature of the KBNImpl, with the publisher and the policy server acting in both roles

to exchange messages in both directions. The approach required for communicating with

publishers, is outlined below:

1. Publishers connect to the trigger broker and subscribe to messages containing their Java

generated Universally Unique Identifier (UUID).

2. The publisher publishes a Publisher Information Message (PIM) containing both its

UUID and their Medoid.

3. The PIM is delivered to all interested subscribers, via the trigger broker.

4. The policy server uses the PIM to calculate the most suitable cluster for the publisher.

This instruction is published back to the trigger broker including the UUID of the

publisher to whom the instruction is addressed.

5. When the trigger broker receives clustering instructions from the policy server addressed

to a UUID (of a publisher), The Trigger Broker notifies the relevant publisher (the only

node to have subscribed to management messages with its UUID).

6. The publisher receiving this clustering decision from the policy server, via the trigger

broker, attaches to the broker identified in the clustering decision, publishing content as

normal.

Full sequence diagrams of this communication flow can be found in the Implementation Chapter

5, Section 5.4. However before this the next section of this chapter discusses the policy server’s

operation, addressing MIB/MO design, load balancing, policy authoring and actionable events,

before this chapter is concluded with an overview of the key characteristics of the design of

KBNCluster.

 67

4.5 Policy Server

The policy server allows for managerial commands to be enforced across the managed overlay.

This is achieved using six core principles of operation, these are:

1. The policy server subscribes to the trigger broker to receive notifications of management

information.

2. The policy server listens for and receives notifications from the trigger broker.

3. When the policy server receives notifications from the trigger broker, the MIB updater

finds, or creates, the MO for the node identified in the message.

4. Once a MO has been created or updated, the policy engine runs the complete set of policy

rules over the complete MIB, to assure concurrent changes to the MIB are caught. The

complete set of policies, 4 in total, defined in section (4.5.2) are executed each run.

5. If a policy fires, the policy engine calls the actioner, enforcing the policy outcome in the

Managed Overlay.

6. Once all actions have been completed, the policy server returns to point two above,

awaiting notifications of new, management information.

Shown, in Figure 11, is the internal architecture of the policy server, where numbered components

are linked with the numerically bulleted descriptions presented above.

Figure 11: Policy Server, High Level Architecture

N
O
T
I
F
I
C
A
T
I
O
N
S

POLICY SERVER

UPDATE
MO's

MIB
Write

RUN
POLICIES Policies

Read

ACTIONER

SEND MGNT
COMMANDS

FIRED

3

4

5

2+6

SUBSCRIBE1

Trigger Broker

Mgmt InfoMgmt Info

Broker(s) Trigger
Broker

Mgmt Actions

Subscriber(s) Publisher(s)

 68

The policy server has been designed for experimental purposes in the evaluation of KBNCluster

and is not production ready or designed to scale to real-world deployment levels. Section 6.4.1.2

in the Evaluation chapter evaluates the costs and upper limits of the policy server as implemented

in KBNCluster. These boundaries are found to be acceptable for the purpose of evaluating

KBNCluster but not scale to real-world deployments. Therefore re-engineering of the policy

server is required before real-world deployment according to the design ideas presented in this

Design chapter.

4.5.1 MIB/MO Design

The Management Information Based (MIB) is constructed from a number of Managed Objects

(MO) where each MO is a simple Java data storage object. This enables the variables from

incoming notifications (via the trigger broker) to be parsed and stored in the correct MO for the

node that published the management information. Overlay broker MOs are identified by the

broker ID, publisher MOs by their UUID, and subscribers by their KBNImpl subscriber ID, each

of which are unique in any given KBNImpl deployment. Details of the MIB and MO design are

included in Section 4.5.1 with full UML class diagrams being presented in the Implementation

Chapter 5, Section 5.6.3, however high level descriptions are presented here.

Broker MO’s contain: • Unique KBNImpl broker ID,
• Broker’s master and their own network addresses,
• Number of currently active subscribers,
• Number of currently active subscriptions,
• Medoid of the broker and the Medoid’s standard deviation.

Subscriber MO’s

contain:

• Unique KBNImpl subscriber ID,
• The broker address to which the subscriber is currently attached,
• Medoid of the subscriber and the Medoid’s standard deviation,
• Notification map, stored as a hash map where the key is the hop

count and the value is the number of occurrences of each hop.

Publisher MO’s

contain:

• Unique KBNImpl publisher UUID,
• The broker to which the publisher is attached, if any,
• Medoid of the publisher and the Medoid’s standard deviation.

Table 9: Broker, Subscriber & Publisher MO Key Elements

Shown in Table 9 are the three types of MO used in the MIB, by the policy server. These MOs are

generic Java objects with a range of variables and associated ‘getter’ and ‘setter’ methods. Each

MO acting as a buffer between incoming management messages and the policy engine, by storing

relevant management information to support subsequent policy condition execution.

The remainder of this section looks at the high-level policy objectives, applicable to these MOs as

they arrive at the policy engine, and finally the set of policies that are run over the MIB objects in

the evaluated KBNCluster.

 69

4.5.2 Policies

As has been previously discussed, policies are constructed using an Event-Condition-Action

form. The Event part of the policy rule is based on a publication arriving at the policy server,

being processed, and stored into an existing or newly created MO. The Condition part of the

policy is based on filtering conditions that can be applied to data stored in the MO. The Action is

to be carried out if the Condition is satisfied, given a certain Event. This section looks

specifically at the high level goals of the policies held by the policy server.

Policy 1: (Subscriber Placement) occurs when a subscriber appears for the first time or is

identified as requiring re-clustering and outlines the conditions, across the overlay that should

be met before a subscriber can be clustered. These policy conditions are the number of

brokers in the network and the number of clusters.

Policy 2: (Publisher Placement) occurs when a publisher appears for the first time or is

identified as requiring re-clustering and outlines the conditions, across the overlay that should

be met before a publisher can be clustered. The policy conditions are the number of brokers in

the network and the number of clusters.

Policy 3: (Notifications Reports) determine how often the policy server should request

notification reports from each subscriber and sets out the metrics that subsequently identify

subscribers who are deemed to be in the wrong cluster. The policy conditions are the number

of brokers in the network, number of subscribers, number of clusters, mean hop count and

mean standard deviation of the hop count.

Policy 4: (Broker Medoid Reporting) determines how often a broker should report their

Medoid and their Medoid’s standard deviation. This information is used to identify the broker

to be clustered, and then the specific subscribers to be re-clustered. The policy conditions are

the number of brokers in the network, number of subscribers and the number of clusters.

Policies 1 and 2 deal with clustering publishers and subscribers across the network, whereas

policy 3 deals with the identification of a subscriber placed in the incorrect cluster. Policy 4 is

provisioned for, but not utilised, in the evaluated KBNCluster. Rather, based on management

performance evaluations described in the Evaluation Chapter 6 Section 6.4, a client-first approach

to clustering is taken, where KBNCluster monitors and moves subscribers first, publishers second

and leaves the broker network static, not moving or adapting the Broker hierarchy.

There are two reasons for the exclusion of policy 4: firstly, the Siena CBN that was extended to

form KBNImpl and used in KBNCluster is intrinsically static in the connection of brokers to one

another; secondly, the cost of collecting and clustering brokers, using their management data, as

will be shown in experimentation and evaluated in the Evaluation Chapter 6, Section 6.4.2, is

costly and high. The use of policy allows the choice of how clustering design is set by a network

manager and changed over time. However this choice is provisional, based on management

 70

performance described in the Evaluation Chapter, and could be easily changed in future

implementations, e.g. if this aspect of performance required improvement.

Such flexibility is a key design goal in adopting a policy based management approach and is

supported by the KBNImpl-based mechanism for communicating between the management

system and the managed overlay represented by the KBNCluster implementation.

4.5.3 Actionable events

Although many of the actions discussed as part of this section have been mentioned previously,

they are repeated here for clarity and as a summary of KBNCluster’s overall management

operation.

The policy server provides a set of actions to the policy engine, that when called, allow certain

policy outcomes to be enforced across the broker network. These form the Action part of the

Event-Condition-Action loop. Given an Event and a matched set of Conditions the

policy engine chooses an Action from the actioner to be enforced in the identified broker,

publisher or subscriber. This section discusses the actions available to the policy server.

1. Subscriber clustering (input: sub master, sub ID, sub Medoid)

Given a subscriber’s ID and Medoid, this method calculates the cluster that most suits a

subscriber (as discussed in Section 4.3.4). Once the suggested cluster of the subscriber is

calculated, the broker, to whom the subscriber in question is currently attached, is directly

notified of the change. This broker then instructs the subscriber to move. This action is

sent directly from the policy server to the unique KBNImpl address of the broker to

whom the subscriber is attached, and not via the trigger broker.

2. Publisher clustering (input: pub ID, pub Medoid)

Given a publisher ID and Medoid, this method calculates the cluster that most suits a

publisher (as discussed in Section 4.3.4). Once calculated, the action message is published

to the trigger broker, addressed to the UUID of the publisher to be clustered; the publisher,

having previously subscribed to future publications containing its UUID, receive this as a

notification and connects to the broker identified in the message and publishes as normal.

3. Broker clustering (input: broker ID, broker Medoid)

If instigated, not the case in the evaluated version of KBNCluster, the policy engine

calculates the broker to be clustered. This broker is identified as having the largest

Medoid standard deviation. Once called, this method calculates which of the broker’s

clients should be clustered. KBNCluster provides for the clustering of brokers but

however does not enforce this, as is discussed in the Evaluation Chapter 6, Section 6.4.2.

 71

4. Notification Reports (input: trigger broker address, interval)

This method instructs brokers to command their subscribers to report to the trigger broker

with notification reports. These reports are sent as publications directly to the trigger

broker at a scheduled interval outlined in policy.

5. Broker Medoids (input: trigger broker address)

This method instructs brokers to report their Medoid report to the trigger broker. These

reports contain their Medoid, the Medoid’s Standard Deviation and the broker’s clients

associated with each of their Medoids. Similar to action 4, these messages are defined to

be sent at an interval specified in policy.

6. Publisher Medoids (input: trigger broker address)

This method instructs publishers to report back their Medoid reports to the trigger broker

at an interval outlined in policy.

In concluding this section of actionable events and their association with the policy format:

1. The event part of the policy comes from MO updates / creations on the MIB.

2. The condition part of the policy is outlined in the policy rules, and compares the MO

being queried against the policy condition.

3. The action part of the policy is provided through the policy server’s actioner.

 72

4.6 Key Design Characteristics and Conclusion

KBNCluster allows for and provides for intelligence outside of the network, so that managerial

goals are not hardwired into the network, but designed, contained and executed by the policy

server, enforcing actions across the managed overlay, as required. This is critical in Semantic-

based Publish/Subscribe networks, where performance is dependent on the patterns of semantic

interest expressed in subscriptions and publication, which in turn may shift across of the network.

These patterns and their shift cannot be reasonably predicted in advance and must therefore be

understood through the monitoring of the operational behaviour of clients using the network.

Therefore, the flexible, policy-based management solution adopted in KBNCluster is essential to

the viability of future of clustering Semantic-based Publish/Subscribe deployments.

In supporting such external management, notifications of management data are pushed to the

policy server, as they occur, by the nodes themselves. This is done via the trigger broker, using

the publish/subscribe functionality of KBNImpl as opposed to being pulled or requested from

each node using a dedicated management protocol. The use of subscriptions for the gathering of

management information also supports the potential for a multiple manager architecture, where

multiple managers manage multiple overlays, across a network of interconnected trigger brokers.

In this chapter, the clustering process applied to the managed overlay using the trigger broker and

policy server, has been introduced. Each has been discussed in terms of design requirements,

design decisions made and operational rationale. In the next chapter the prototype implementation

of KBNCluster is discussed. In summary, the key characteristics of the design of KBNCluster are

documented as follows:

1. Formation of clusters: The process of clustering an ontology into multiple clusters of

interest has been outlined in a sample ontological model. This has been achieved by utilising

the semantics built into the structure of the ontology, as opposed to the labels of the

ontological components. In this approach, clusters have been formed using loose boundaries

between semantic concepts, ensuring any broker, anywhere in the network, can process

messages on any sub-set strand of the ontology, but still has an ontological specialisation in

terms of the content they are optimised to route.

2. Subscriber Clustering: Subscribers are clustered via the broker they initially attach to,

negotiated between the broker and the policy server, the subscriber is instructed to move to

the most suitable cluster.

3. Publisher Clustering: Publishers communicate with the policy server, via the trigger broker,

in a pre-publication, phase. Once a cluster is suggested, the publisher connects and publishes,

checking for a more suitable cluster, as required. A self-identifying approach.

 73

4. Re-clustering: The principle of re-clustering has been introduced in terms of collecting

notification hop count statistics and updated Medoids from subscribers, deciding which to re-

cluster based on these values.

5. Managed Overlay: The managed overlay has been introduced as consisting of the message

brokers, publishers and subscribers combined with and connected to the trigger broker and

policy server.

6. Trigger Broker: The trigger broker has been introduced as a medium, connecting both the

managed overlay and the policy server receiving subscriptions from the policy server and

routing management information to interested subscribers, one case of this being the policy

server.

7. Policy Server: The policy server has been introduced and documented as comprising of the

message processor, MIB/MO updater, policy engine and actioner. Each operates in union with

the policy server to receive management updates from across the managed overlay, run

policies over these updates and enforce actions where required.

8. Management Plane: The management plane has been introduced as an umbrella term for the

trigger broker and policy server responsible for the operation of the managed overlay.

In the next chapter of this thesis the design outlined in this chapter is discussed in terms of its

implementation. This is followed by a full evaluation of KBNCluster in comparison to KBNImpl,

concluding with a discussion of the question this research is addressing, objectives, contribution

and future work.

 74

5 IMPLEMENTATION
In the previous chapter the design of KBNCluster has been discussed in terms of the decisions

made in producing a prototype system to evaluate the research objectives of this thesis. In this

chapter the implementation of the designed system is discussed in detail.

5.1 Introduction

This chapter introduces a prototype implementation of KBNCluster, comprising three

components: the trigger broker, policy server and managed overlay, all implemented using the

Java programing language (v 1.6.0.) As has been discussed in the design chapter, the trigger

broker is implemented as an unmodified KBNImpl broker, whereas the policy server acts as both

a KBNImpl publishing and subscribing client and incorporates a policy rule engine. Each of the

individual components combine to implement a prototype version of KBNCluster, as described in

the previous chapter. This was implemented in five main parts:

1. Extension of the KBNImpl to support the dynamic repositioning of publishing and

subscribing clients, across the network.

2. The Medoid calculation implementation for both publisher and subscriber.

3. Use of a standalone KBNImpl broker to form and operate as the trigger broker an

intermediary between the managed overlay (brokers & nodes) and policy server.

4. Implementation of a policy engine responsible for managing the clustering of clients

around brokers of interest.

5. Integration of the logic for clustering and managing clients into a KBNImpl client

subsequently forming the policy server.

Both the trigger broker and policy server used KBNImpl technology in KBNCluster, so the

communication mechanisms present in KBNImpl could be utilised in the process of cluster

management and inter-component communication. Therefore, rather than re-engineering a

collection of TCP/IP communication agents and integrating these agents into each of the

components, the KBNImpl itself, is utilised for messaging between all parts of the management

plane.

 75

5.2 Technology Selection

A number of technologies have been used in the implementation of KBNCluster which consist of

the managed overlay (i.e. the network of KBNImpl brokers and clients), trigger broker and policy

server combined. This section introduces those technologies, the communication mechanism used

between components and the development tools used in the implementation of KBNCluster.

5.2.1 Core Technologies:

• The Siena CBN (v 1.21) [2] was extended by Keeney et. al. [6] to form the KBNImpl.

The KBNImpl codebase was further extended through the design previously introduced

forming KBNCluster, evaluated in this thesis.

• Drools (v 4.0.7) is the rule engine used in the policy server. Drools [49] was selected as it

offers both an interface to write and edit rules as well as a rule engine to execute rules

against data objects.

• Jena (v 2.5.4) [50] has been used extensively in KBNCluster as a way to access the

knowledge represented in ontologies through its Java API.

• Pellet (v 1.5.1) [51] is a Java based OWL DL reasoner which is used in conjunction with

Jena for the classification, inference, consistency checking and validation of ontological

models.

5.2.2 Development Tools:

The following Integrated Development Environments (IDEs) have been used in the

implementation of KBNCluster, primarily for the development and editing of ontologies, coding

of applications, and design and debugging of policy rules. Each is discussed in turn:

1. Protégé (v 3.3.1) [52] Protégé was used for the development, editing, testing and

reasoning (using Pellet [51]) of each of the ontological models used in the trigger broker,

policy server and managed overlay.

2. Eclipse (v 3.4.2) [53] is primarily a Java IDE which has been used for the management,

development and deployment of KBNCluster. Eclipse being an open-source IDE for

multi-language development allows for plug-ins to be developed on top of the Eclipse

IDE.

3. The Drools workbench (v 4.0.7) [49], is an example of such a plugin built on-top of the

Eclipse IDE, allowing users to create a Drools project with the correct dependencies, as

well as providing a specific GUI for editing and debugging rules. The Drools rule

workbench has been used for all policy rule engineering.

 76

Protégé, Eclipse and the Drools workbench have combined to provide the foundation for

KBNCluster development and deployment, allowing OWL ontologies, Drools rules and the Java

code base of KBNCluster to be edited and de-bugged.

5.2.3 Messaging Mechanisms:

Across KBNCluster, the KBNImpl communication mechanism is used wherever possible. In this

approach there are two main types of messages used between brokers, publishers, subscribers, the

trigger broker and the policy server. Both these message types are a single point of failure should

the delivery mechanism or clients become unreachable.

Message Type 1: KBNImpl publications and subscriptions: The trigger broker, offering

the functionality of a KBNImpl broker, routes incoming publications towards interested

subscribers. The policy server issues expressions of interest for future management

messages. These are satisfied through publications sourced from across the managed

overlay via the trigger broker forming the backbone for the routing of management

information between the managed overlay (brokers, publishers and subscribers) and the

policy server.

Message Type 2: Direct KBNImpl to KBNImpl Communication: Brokers in the

network can communicate with one another directly, and the policy server can

communicate with brokers, using the brokers’ receiver address in the form of

tcp:HostName:Port. In KBNCluster this mechanism is used to direct clustering

instructions from the policy server back to the brokers of the network. This was utilised as

it allows for a single configuration message to contain multiple enforceable actions, in

multiple cases, sent directly from the policy server to brokers in the network.

KBNCluster uses two types of messages, as introduced above. Publishers exist detached from any

broker, they publish and never again re-connect to the broker. For this reason the publishers in the

overlay communicate with the policy server using specially designed publications and

subscriptions delivered and published addressed to UUID via the trigger broker.

In contrast to publishers subscribers’ exist connected to their broker. A subscriber cannot exist

without being connected to a broker. This makes communication with a subscriber, via their

broker, as outlined in Message Type 2. There was no requirement, in KBNCluster, to implement

direct communication from the policy server to the subscriber as the subscribers broker exists as

an intermediary between both. It would however be possible for subscribers to communicate with

the policy server through the use of a UUID, this feature is not however implemented in

KBNCluster at this time.

 77

5.3 Order of Operation

Figure 12: Components of KBNCluster

Shown in Figure 12 is the high-level component architecture, as has been introduced and

discussed in the Design Chapter, 4, Section 4.2.. The evaluated KBNCluster is not a real-world

deployment but an evaluation test-bed therefore the order of operation is strictly defined. The

trigger broker must be started first to receive subscriptions from the policy server before nodes in

the managed overlay begin to publish management data, being delivered across the Trigger

Broker to the Policy Server.

1. Trigger Broker Start-up Process:

a. Start a KBNImpl broker running on a user-defined port.

b. Load the management ontology as discussed in the Design Chapter 4, Section 4.4,

used to reason incoming messages.

c. Await incoming subscriptions from the policy server, which are processed,

organised and stored in the trigger broker’s subscription tree.

d. Wait for incoming publications, from nodes in the managed overlay containing

management information. If any publications match stored subscriptions, route as

notifications towards subscribers, such as the policy server.

2. Policy Server Start-up Process: (Can only be started after the trigger broker)

a. Cluster the content ontology used within the managed overlay for routing

messages from publisher to subscriber. This is the ontology used by KBNImpl,

used for creating semantic publications and subscriptions routed from producer to

consumer by message broker.

b. Overlay the clustered ontology onto the list of available brokers, dividing the

number of clusters across the set of available brokers.

c. Subscribe to the trigger broker with subscriptions for future management data.

B

BB

BB

P

S

Broker Network

POLICY
SERVER

TRIGGER BROKER
Management

Information

Pubs/Subs

Policy

Actions MIB
P

S

Managed Overlay
Management Plane

 78

d. Start timer-based policies specifying certain tasks to be performed at defined

intervals.

e. Await management updates to arrive from the trigger broker.

3. Managed Overlay: (Can only be started after the Trigger Broker and Policy Server)

a. Managed Brokers (started first, before publishers or subscribers):

i. Load the content ontology used for reasoning about messages.

ii. Start a KBNImpl broker using the server’s host name.

iii. Publish to the trigger broker a semantic broker information message.

b. Managed Subscribing clients (Can be started once brokers have loaded):

i. Creates a KBNImpl subscribing client.

ii. The managed subscribing client subscribes to an un-constrained choice of

broker.

iii. The broker forwards to the trigger broker a subscriber information

message, as discussed in the Design Chapter 4, Section 4.5.1.

iv. The policy server, upon receiving the subscriber’s information message,

calculates the correct cluster for the subscriber and sends this re-cluster

instruction back to the broker to which the subscriber is attached in an

XML configuration message. This message contains the identifier of the

new broker to which the subscriber must reattach.

v. The subscriber un-subscribes from their old broker and re-subscribes, as

instructed to do so by the policy server.

c. Managed Publishing clients (Can be started once brokers have loaded):

i. The application initialises a KBNImpl publishing client.

ii. The publisher client subscribes to the trigger broker for all messages

containing their UUID.

iii. The publisher client calculates their Medoid from the publications they

wishes to publish and sends this to the trigger broker as a publisher info

message, discussed in the Design Chapter 4, Section 4.5.1.

iv. The publisher client await a re-clustering instruction from the policy

server and a decision as to which cluster they should join delivered to

them as a notification, addressed to their UUID from the policy server,

via the trigger broker.

v. The client publishes its publications to the broker and cluster, as

suggested by the policy server.

The above order of operation is extended upon, in the next section, with implementation details

relating to the detailed communication between the components of KBNCluster represented as

sequence diagrams.

 79

5.4 Communication Flow

This section outlines the communication between the managed overlay (brokers, publishers and

subscribers) trigger broker and policy server. Sequence diagrams are used for modelling this

communication and a modified form of UML sequence diagrams [54].

In these examples each message in the sequence diagrams is numbered, followed by a numbered

list of descriptions, where each numbered item on the sequence diagram corresponds to the

description provided in the list. The following communication sequences are presented and

discussed in detail:

1. All components using publish/subscribe technology for communication.

2. Communications between the broker, trigger broker and policy server.

3. Communications between publisher, trigger broker and policy server.

4. Communications between subscriber, broker, trigger broker and policy server.

Once the above have been discussed, this section concludes with a review and summary of the

various types of messages sent across KBNCluster, before discussing the implementation of the

trigger broker, policy server and clustering process in turn, concluding with examples of starting a

KBNCluster deployment.

 80

5.4.1 Overall Communication

Figure 13: Overall Communication Mechanisms

(Managed overly nodes can be brokers, publishers or subscribers.)

1. The policy server registers an interests in management information through subscriptions

to the trigger broker, stored in the trigger broker’s subscription table.

2. The nodes (publishers) in the managed overlay register an interest in future publications

containing their UUID. These are also sorted and stored in the trigger broker’s

subscription table.

 81

3. Nodes in the managed overlay begin to publish management information to the trigger

broker and these publications are checked against the trigger broker’s subscription table.

4. If any of the subscriptions stored on the trigger broker match incoming publications, these

are forwarded to matching subscribers, in this case the policy server, as notifications.

These are used by the policy server to execute policy rules against the most up-to-date

Managed Objects (MO) held in the Management Information Base (MIB).

5. If a policy fires, instructions from the policy directives are sent to the nodes of the

managed overlay, using one of the communication mechanisms outlined in Section 5.2.3,

either KBNImpl publish/subscribe or direct KBNImpl configuration messages.

This sequence shows the policy server receiving management updates from publishers and

brokers across the managed overlay and communicating with the publishers, addressed using

their UUID, using messages sent via, and matched by, the trigger broker.

 82

5.4.2 Broker Focused Communication

Figure 14: Broker Based Communication

1. The broker publishes to the trigger broker a broker information publication when

requested (at a defined interval in policy) to do so by the policy server.

2. If a match is found for the broker information message against stored subscriptions, the

trigger broker forwards this information message towards subscribers. When the policy

server receives these management messages they are stored in the managed object (MO)

representing that broker.

3. Whereas the communications represented through messages 1 and 2 are KBNImpl

publications and subscriptions, message 3 is a direct configuration message sent from the

policy server to the KBNImpl broker in question, allowing the policy server to issue

commands directly to brokers when fired by policies. This is used as the broker is already

monitoring a socket for incoming publications, subscriptions or configuration messages.

The policy server can therefore direct a message directly to the broker, completely by-

passing the trigger-broker.

The communication sequence presented above shows broker information messages being

delivered to interested subscribers, which in this case is only the policy server. Once

processed and if a policy fires, KBNCluster allows for topological changes/directives to be

sent back to brokers, by the policy server, and the subscribers attached to the broker.

�!"#$$%"�&
�'"()%"��'"()%"� �*(+#,-�&

�.%"/%"�

01&*23&4'56785#9:6;<=>

*56?8<<&*231.23<

@1&A8BCD85&E6FC:C?GFC694'56785#9:6;<=>

.F658	:6

H1&!6I6B6=C?GB&,JG9=8<

 83

5.4.3 Publisher Focused Communication

Figure 15: Publisher based communication

1. Publishers subscribe to the trigger broker using their UUID as an attribute in their

subscription. The trigger broker stores this subscription allowing for any future

publications arriving at the trigger broker, containing the publisher’s UUID, to be

forwarded to the publisher, as a notification.

2. The publisher, once subscribed, publishes to the trigger broker a publisher information

message, as discussed in the Design Chapter 4, Section 4.5.1. The trigger broker forwards

this publisher information messages to the policy server.

3. The trigger broker delivers publications, matching stored subscriptions to the policy

server, as notifications. The policy server, upon receiving these notifications, updates the

MO identified by the UUID of the publisher and executes any policies, including those

responsible for calculating the suggested semantic cluster of the publisher against the MO.

4. Once a cluster has been identified for the publisher, the policy server sends to the trigger

broker a publication containing the UUID of the publisher, identifying their most suitable

suggested cluster.

5. The trigger broker identifies a match of the policy server’s publication and the previously

registered subscription from the publisher to their UUID. This publication contains

clustering instruction for the publisher and is delivered to the publisher using their UUID

element.

�!"#$%&'()�*
�+$%(,-�

�./0112/�*
�3/452/�

�!460+7�*
�82/92/��3/452/*:�

:;*8"#*<!"#$%&'()0=>

8-?)(*8"#

@;*!"#<!"#0,A?B&C>

!)?D(&&*!"#;8"#&

E;*=($%F()*G?-%A%DH-%?,*<!"#0,A?B&C>

+H$D"$H-(*+$"&-()

I;*!"#*<+$"&-()0,A?B&C>

J;*=($%F()*G?-%ADH-%?,*<+$"&-()0,A?B&C>

!)?D(&&*!"#;8"#&

K;*!"#$%&'*!"#$%DH-%?,

 84

6. In the final step the publisher connects to the appropriate cluster, as calculated at the

policy server, and publishes the publication towards the broker holding interested,

clustered, subscribers.

The communication sequence above outlines the messages sent in the process of clustering

publishers, who communicate with the policy server, via the trigger broker, finally publishing to

a broker / cluster suggested as suiting their interests.

 85

5.4.4 Subscriber Focused Communication

Figure 16: Subscriber based Communication

1. The subscriber initially issues their subscription to an un-constrained choice of broker

across the network. A broker, upon receiving the first subscription of a subscriber, stores

this subscription in their local subscription tree and calculates the subscriber’s Medoid.

2. Once the Medoid of a subscriber has been calculated, the broker forwards this to the

trigger broker as a subscriber information message, as discussed in the Design Chapter 4,

Section 4.5.1. When the trigger broker receives this message it searches for matches

against the incoming publication and stored subscriptions.

3. If a match to the incoming publication is found, the trigger broker forwards the

publication to interested subscribers, in this case the policy server, as a notification. Upon

receiving a notification the policy server updates the relevant MO and policy rules that

implement the clustering algorithm are executed against it.

4. When the policy server has identified the correct cluster for the subscriber, this decision is

communicated directly to the subscriber’s broker. Rather than going through the trigger

broker, the policy server in this case sends a KBNImpl configuration message directly to

the broker, using its open socket.

5. Once the broker receives an instruction to move a subscriber, the subscriber is informed.

6. The subscriber un-subscribes from the broker they were attached to and re-connects to the

cluster identified as matching their interests. There are not however re-clustered.

 86

The communication sequence above shows messages being sent in the process of clustering

subscribers from an initial and single subscription to a broker through to their re-clustering into

an suggested cluster of interest.

5.4.5 Conclusions – Communication Flow

In this section the two types of messages, sent between the components of the managed overlay

and policy server have been discussed. These are the only types of messages used in the

management of KBNCluster (KBNImpl publications to subscriptions matching) and (direct

socket-to-socket KBNImpl messages.)

The sequence diagrams presented in this section outline the high-level messaging used between

all components in KBNCluster. All KBNImpl messaging occurs via the trigger broker whereas

direct messaging only occurs between brokers and the policy server, using the KBNImpl brokers

receiver addresses and open socket. These messages are not publications or subscriptions but

highly configurable XML based messages, allowing an extendable number of managerial

instructions to be delivered to brokers in the managed overlay, as part of KBNCluster. The

communication relationships between all the components are summarised below:

• Publishers send to the policy server using KBNImpl Messaging.

• Subscribers send to the policy server, via their broker, using KBNImpl Messaging.

• Brokers send to the policy server using KBNImpl Messaging.

• Policy Server send to publishers using KBNImpl Messaging.

• Policy Server send to subscribers via their broker using Direct Messaging.

• Policy Server send to broker via Direct Messaging.

Subscribers in the first instance make an arbitrary decision as to the broker to join and subscribe

to. They are then re-clustered using Direct Messaging between the policy server and the broker to

which they first attached. All communication with subscribers is conducted using Direct

Messaging between the policy server and the subscribers attached broker.

Publishers subscribe to the trigger broker for messages addressed to their UUID. Publishers

always go to the trigger broker for clustering instructions; UUID’s connect publisher and policy

server, via the trigger broker. All of this communication occurs using KBNImpl Messaging.

In conclusion the two types of messaging KBNImpl-based and direct socket-to-socket messaging

are used in KBNCluster. This section has introduced sequence diagrams for all communication

between all components, and detailed the type of message used at each point. The subsequent

sections of this chapter examine the trigger broker, policy server and clustering implementation in

detail.

 87

5.5 Trigger Broker

As discussed, the trigger broker is a standard KBNImpl broker, routing messages from the

managed overlay to the policy server and management instructions back to publishers. This

section discusses starting the tigger broker, its main classes of operation, and concludes with a

summary of its key characteristics. The Trigger Broker was not implemented as part of this thesis

it as “off the shelf” KBN broker used in KBNCluster.

5.5.1 Trigger Broker – Start-up Configuration

The trigger broker operates as a single KBNImpl broker, with no master or children. However it

could, in future deployments, form part of a larger collection of brokers in a hierarchical tree, as

required for reliability, itself clustered. In KBNCluster evaluated as part of this thesis, only a

single trigger broker is required. This section discusses the configuration variables provided to the

trigger broker in its configuration.

#!/bin/sh

java siena.StartServer -port <port> -tcp -log - -err -

Code Example 8: Starting the Trigger Broker

At the highest level the script, shown in Code Example 8 is the Linux Bash Script [55] that once

executed, completes the following tasks, in order:

1. Loads the management message ontology identified in the ontologies.conf file. This

holds a list of the ontologies that the trigger broker should load and subsequently route

semantic messages. The trigger broker, in KBNCluster, only uses this single ontology, as

discussed in the Design Chapter 4, Section 4.4.

2. Once the ontology has been loaded the trigger broker starts an un-clustered KBNImpl

broker, on the port specified and the host IP address forming a tcp:HostName:Port

address.

3. Once started the trigger broker awaits incoming subscriptions, from the policy server,

storing these in its local subscription table and routing incoming publications to interested

subscribers, where and if a match is made.

5.5.2 Trigger Broker – Main Classes

There are three main classes that are important to note in the trigger brokers operation. For each

of these three classes the main operations of each are outlined. Each of these features were present

in the KBNImpl used for the trigger broker and were not implemented as part of this thesis.

1. Starting a server – siena.StartServer() – Takes input configuration parameters and

instantiates a broker using the following:

 88

a. The port on which the broker will run, <port> in Code Example 8,

b. Any master broker (n/a in the case of KBNCluster where a single trigger broker is

being used as opposed to a hierarchical network of trigger brokers.)

c. Creates an object representing the Siena-hierarchical dispatcher of the broker

populated with the configuration parameters taken from the start-up script. The

dispatcher is responsible for routing incoming messages, storing subscriptions

and notifying clients of matching publications to stored subscriptions.

d. Once populated with the configuration variables the dispatcher is started as a

separate thread operating with the purpose of listening and processing incoming

messages.

2. Message processing - siena.HierarchicalDispatcher()

a. The dispatcher listens on an open port for incoming messages. As they are

received they are passed to the ProcessRequest method, which is responsible

for determining the course of action to take for each message type, whether that

be a publication, subscription or notification. The messages type is used to action

an event, which can be one of the following:
1) Publish():

a) Searches the subscription tree of the broker for subscriptions

matching the publication.

b) If a match exists it forwards the publication to any local or

remote subscribers.
2) Subscribe():

a) Firstly the broker searches their set of subscriber objects, where

each object represents a separate subscriber, to see if an entry

already exists.

b) Either updates or creates an entry for the subscriber with the new

subscription information contained in the subscription.

3. Ontology loading – extSiena.Ontology.OntSienaConfig()

a. Load all the ontologies stored in ontologies.conf.

b. For each ontology loads the classes, properties and individuals.

c. Once loaded, the trigger broker can query a stored Attribute-

Constraint against an incoming Attribute-Value.

The three classes of the trigger broker provide a delivery mechanism for incoming publications to

be matched against stored subscriptions and delivered as notifications if necessary. This uses the

KBNImpl message-matching algorithm in the delivery of management information from the

managed overlay to the policy server and subsequently for instructions to be sent back to

publishers.

 89

5.5.3 Trigger Broker - Summary of Key Characteristics

The key tasks performed by the trigger broker are summarised below:

• Utilises the management ontology (see Design Chapter 4, Section 4.4) to semantically

match incoming publications to stored subscriptions, being delivered as notifications.

• Receives semantic subscriptions from the policy server and managed overlay publishers,

• Receives semantic publications from the policy server and managed overlay.

• Routes notifications from publishers, managed overlay or policy server, to the policy

server or publishers where a match is made.

Having discussed the trigger broker in terms of start-up configuration, main classes, and

providing a summary of key characteristics, the same information is presented for the policy

server before discussing in detail the process of clustering. This chapter then concludes with an

overview of starting each of the components of KBNCluster.

 90

5.6 Policy Server

This section looks at the operation of the policy server responsible for both receiving management

information from the managed overlay, storing this information in the MIB, as MOs, before

executing affected policies against these stored MOs.

As with the trigger broker, the policy server uses direct socket-to-socket communication and

publish/subscribe messages in communication between brokers, subscribers and publishers. The

policy server incorporates KBNImpl client functionality, providing support for MO

creation/updating, policy execution and event actions.

All policies used in either the development or evaluation of KBNCluster are included in

Appendix C of this thesis. This section discusses the start-up sequence and configuration of the

policy server and some of its main operational classes before concluding with an overview of its

implementation.

5.6.1 Policy Server - Start-up Configuration

Shown in Code Example 9 is the Linux Bash Script [55] used in starting the policy server. A

single value passed to the policy server is the address of the, formatted as a KBNImpl receiver

address: tcp:HostName:Port.

#!/bin/sh

java ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.Cluster_Scheduler

'tcp:134.226.38.135:50000'

Code Example 9: Starting the Policy Server

At the highest level the code, shown in Code Example 9, completes the following tasks in order:

1. Loads the management ontology from the ontologies.conf file used in semantic

communication between the trigger broker, policy server and the managed overlay nodes.

2. Subscribes to the trigger broker with subscriptions for future management interests.

3. Loads and clusters the content ontology, used in the managed overlay for matching

publications and subscriptions.

4. Clusters and overlays the content ontology onto the list of available brokers, stored in

brokers.txt listing the brokers available for clustering.

5. Start the timer based policies designed to fire at defined intervals.

6. Await incoming MO updates, from the managed overlay via the trigger broker, storing

these as they are received.

When a complete MO has been updated or created, the policy server then executes the appropriate

set of rules over the MIB, firing actions as required. When fired, these actions enforce the change

outlined in the policy.

 91

5.6.2 Main Classes

This section looks at the main classes of the policy server and their use in the process of

clustering. Presented are the key functions of KBNImpl publish/subscribe communication, MIB

creation / updates and the firing of policy rules:

a. Subscriber – drools.KBNSubscriber()

i. Create a new notification object. This objects allows the trigger broker to

notify the policy server of management information matches.

ii. Subscribe via the trigger broker for management messages, using the

previously created notification object for message delivery.

iii. Sleep while awaiting incoming notifications, which are delivered through

the notification object. When received, these are passed to the

notification processor responsible for extracting the type of the

notification, and the source of the notification be it broker, publisher or

subscriber. Once the type of message has been determined, the message

is passed to the MIB updater.

b. Publisher – drools.rules.actioner()

i. Create a new, blank, publication object.

ii. Add publication elements to the object, this is the publication that

without clustering would normally be published directly to a broker. In

KBNCluster this publication(s) is used to advertise the publishers

Medoid to the policy server and for clustering to occur.

iii. Generates and adds its UUID to the object.

iv. Send this publication to the trigger broker, delivering this to interested

subscribers with management instructions.

2. MIB Updater –cluster_Mgnt.Updater()

i. Create an instance of an actioner object passed to the policy engine

allowing actions to be instigated, as required, across the managed

overlay.

ii. Provide methods to create or update a MO.

iii. Provide methods to get and set variables stored in the MOs.

iv. When a MO has either been created or updated, the complete MIB is

passed to the policy server and the appropriate set of rules executed

against each MO. If a policy rule fires, the policy server uses the

actioner object previously created in step i to instigate a change within

the managed overlay, as outlined in the policy.

 92

5.6.3 MIB/MO Implementation

As has been discussed, each component in the managed overlay is either a broker, publisher or

subscriber, and therefore there are three matching types of managed objects (MO) available to the

policy server.

As the policy server receives a new management message, the MO representing that management

node (broker, publisher or subscriber) is updated, or in the first instance, created. This is then used

by the policy server to execute rules against the data the MOs hold.

Broker/subscriber/publisher information as discussed in the Design Chapter 4, Section 4.5.1 are

used to update or create entries in the MIB. Shown in Figure 17 are UML class diagrams for

broker, subscriber and publisher MO’s.

Figure 17: UML Class Diagrams for Broker, Publisher and Subscriber

Each MO and indeed the MIB itself is extensible, in that the number of variables in each can be

extended or reduced as required. The key to the MIB is its purpose is to act as a buffer between

incoming management messages and the policy server. If the requirements of the MIB change,

this can be represented by the addition or removal of elements in each MO.

 93

5.6.4 Clustering Process

This section outlines the implementation of the process of clustering an OWL ontology and the

overlapping of the ontology onto a collection of brokers. This is a two-stage process that first

involves the partitioning of the ontology into clusters. The second stage involves the calculation

of the cluster best suiting a client Medoid. When combined, this provides the clustering algorithm

used and evaluated in KBNCluster, in the subsequent Evaluation Chapter.

5.6.4.1 Cluster Partitioning

Ontology partitioning requires no knowledge of the semantic meaning of the ontological elements

labels, is language independent and is implemented using the following approach:

1. Load the input content ontology into a Jena ontological model [50]. This is the ontology

used by the brokers, publishers and subscribers across the managed overlay.

2. Reason over the ontology, using Pellet [51].

3. Take each of the reasoned ontological top level root classes, their sub-classes and their

instances and create a cluster.

4. Take each sub-class of the root classes, and if it has children, create a cluster for that class,

all its sub-classes and instances. (For each bottom level class, Jena is queried to return the

instances for that class.)

5. Follow the same process for each class in the ontological taxonomy, from the top level to

bottom level class, creating parent-child clusters of classes and instances where such a

relationship exists.

The result of the process is a hash map where the key to each entry is the cluster identifier and the

values associated with each key are the ontological classes or instances, from the source ontology

associated with the cluster.

The clustering process does not explicitly deal with ontological properties in the clustering

process, which can be either object-properties (a relationship between instances) or data-type,

which relate data values to instances. In KBNCluster, a client Medoid will never be returned as a

property, but an instance, or class. Therefore there are no clusters created for properties, but for

the classes and instances associated with those interlinking properties. Having created the clusters

of content, the next section of this chapter looks at overlaying this clustered ontology onto a

collection of brokers, assigning to each broker a cluster.

 94

5.6.4.2 Overlaying an Ontology onto Brokers

As previously discussed, KBNCluster is constructed from a hierarchical managed overlay.

Brokers are related to other brokers via a parent-child relationship. Having partitioned the

ontology and created multiple semantic clusters, the next step in the process of clustering is to

overlay the ontology onto the brokers of the hierarchical managed overlay. This is implemented

using the following approach:

1. Load list of broker addresses from a configuration file from top to bottom of hierarchy.

2. Load list of ontological clusters. These clusters are represented by a key, the top level

ontological element (parent) and a number of values associated with the key, these being

the children of the top level element.

3. Divide the number of clusters by the number of brokers to calculate both the quotient and

remainder of the division. This provides the clustering process with the number of

clusters that can be assigned to each of the available brokers and those left over.

4. Loop through, from the top to the bottom of the hierarchy, assigning n clusters to each

broker where n equals the quotient of the division. Once complete assign the remainder

n’ clusters to the top level brokers. In such an approach each broker, across the overlay,

is assigned an equal number of clusters from the top-down. If there are any remaining

clusters these are assigned to brokers at the top of the broker network.

KBNCluster operates on the principle of clustering the ontology and applying clusters to the

broker hierarchy as they are formed in the ontology. The process loosely overlays the ontology

over the broker hierarchy, so the two (ontology and broker hierarchy) merge together. An

ontology is simply a weighted graph of nodes and edges connected via semantic relationships, the

broker network is again simply a collection of nodes related via parent-child relationships, edges.

These similarities are used in overlaying the ontology across the broker network. However no

guarantee can exist that the same number of brokers or ontological elements exist, so there can be

no absolute overlaying of an ontology across a given number of brokers. For this reason

KBNCluster aims to overlay one ontological cluster per broker, from top to bottom, left to right.

If however more clusters exist than brokers the top level brokers are assigned these remaining

clusters. These top level brokers are involved in less routing than those at the bottom of the

hierarchy hence they can process the extra load placed required to process more than one cluster.

Part of the process of storing clusters in KBNCluster sees the least specific clusters being stored

in the beginning of clusters.txt and the most specific, formed lower down in the ontology,

being added to the end of the list. Similarly, brokers.txt holds the highest-level brokers at the

top of the list and the lowest level brokers at the bottom. The clusters are then overlaid onto the

broker network, with the most general interests being assigned to the top of broker hierarchy, and

those clusters with the most specific interests being assigned to the bottom of the hierarchy.

 95

5.6.4.3 Calculating Client Cluster Placement

Section 5.6.4.1 discussed creating clusters of content and in the previous Section 5.6.4.2 these

clusters were overlaid onto the broker network. This process assigns to each broker a cluster of

ontological concepts where every cluster is a collection of ontological URLs representing a key

(i.e. a parent concept that acts as a top level cluster identifier) and the set of values, classes and

instances from the ontology associated with that cluster (children).

It is possible to calculate which cluster a client should be placed within using the following

algorithm, previously discussed in the Design Chapter 4, Section 4.3. Given, Medoid, an

ontological URL:

1. Search through all the values in cluster hash map.

2. Retrieve the cluster ID of the cluster containing a matching value, the Medoid URL only

ever residing in a single cluster, hence two clusters will never be suggested.

3. Return the broker responsible for the cluster identified by the cluster identifier (the key).

5.6.5 Summary of Key Characteristics

This section concludes with an overview of the key characteristics of the policy server which are

summarised as:

• Operates as a publishing and subscribing KBNImpl client.

• Subscribes to the trigger broker with subscriptions for future management messages

produced by the nodes (broker, publishers and subscribers) across the managed overlay.

• Publishes to the trigger broker with instructions for publishers.

• Communicates with brokers (and their subscribers indirectly), using socket-to-socket

communication.

• Receives notifications from the trigger broker.

• Updates and maintains MOs for brokers, publishers and subscribers in the MIB.

• Runs policy rules against the MIB as MOs a re created or updated running the relevant

policies for the last type of update be it publisher, subscriber or broker.

• Clusters and overlays an ontology on a collection of brokers.

• Calculates and delivers instructions on the placement of clients into the previously created

clusters.

The final section of this chapter looks at the process of starting brokers, publishers and

subscribers before discussing conclusions and summarising the implementation presented.

 96

5.7 Starting Brokers, Publisher and Subscriber

This section discusses starting the various components of the managed overlay once the trigger

broker and policy server have been started, as documented in Section 5.5.1 and 5.6.1 respectively.

The order in which the remaining components must be started is as follows: brokers first,

followed by either subscribers or publishers. In the evaluation of KBNCluster brokers are started

first, followed by subscribers and finally by publishers.

5.7.1 Starting a Broker

If the publish/subscribe network is hierarchical, then the first step in deployment is the

configuration of the network hierarchy. This defines the number of brokers and the relationship

between them, in the case of KBNCluster this is done using a master and child relationship, and

can result in one of the following states:

• No master, no children, single broker - similar in operation to the trigger broker.

• A single master but no children - in effect the same as a single broker.

• No master but one or more children.

• Both a single master and one or more children.

Brokers are configured only to know their master: they have no indication of whether children are

subscribing clients or child brokers exist.

The Bash script [55] shown in Code Example 10 configures and initiates the top level master

broker, with no master itself, running on port 1500 with a trigger broker address of

tcp:134.226.38.135:50000.

#!/bin/sh

java -classpath $CLASSPATH siena.StartServer -port 1500 -tcp -log - -

err - -TRIG_BROKER tcp:134.226.38.135:50000

Code Example 10: Starting the Top Level Master Broker

Code Example 11 shows a child broker using port 2000. This broker looks to the broker

addressed at tcp:134.226.38.135:1500 as its master and to the trigger broker addressed at

tcp:134.226.38.135:50000. Each broker when receiving a publication forwards this to its

master, up across and back down the the tree. This allows any broker in the network to match any

publication to stored subscriptions across the network. In this example the publication is

forwarded to the brokers master: tcp:134.226.38.135:1500.

java -classpath $CLASSPATH siena.StartServer -port 2000

-master tcp:134.226.38.135:1500 -tcp -log - -err –

-TRIG_BROKER tcp:134.226.38.135:50000

Code Example 11: Starting a Sub Broker

 97

5.7.2 Starting a Publisher
1 public void ExamplePublisher() {

2 Publisher pub = new Publisher();

3 Notification n = new Notification();

4 //Populate Notification with 1 or more (Name,Value,Type)

5 n.putAttribute("PubrInfoMsg",

5.1 "http://kdeg.cs.tcd.ie/KBNFaults.owl/#publisher_Info");

6 n.putAttribute("publisherID", getUUID());

7 n.putAttribute("medoid", getMedoid());

8 n.putAttribute("pubTime", System.currentTimeMillis());

9 n.putAttribute("currentMaster", getCurrentMaster()");

10 pub.addNotification(n);

11 pub.sendConfig("tcp:135.226.38.135:50000");

12 try {

13 Thread.sleep(50)

14 } catch (InterruptedException e) {

15 e.printStackTrace();

16 }

17 pub.startPublishing();

18 }

Code Example 12: Example Publishing Client

In comparison to brokers, publishers and subscriber are started using Java application, in code.

Shown, in Code Example 12 is an example of starting a KBNImpl publishing client where the

code line numbers above correspond to the numbered bullets below:

2: Create a new publisher object.

3: Create a new notification object, a publication.

4: Populate the notification object with Attribute-Values.

5/5.1: Add in semantic reference tagging the message as being a publisher_Info message.

6: Add in reference to publishers UUID using the getUUID() method.

7: Add in reference to publishers mediod using the getMedoid() method.

8: Add in publication time using the system time.

9: Add in the publishers current master, if any, using the getCurrentMaster() method.

10: Add the notification to the publisher object.

11: Send to the trigger broker a publisher configuration message containing the publishers

UUID, Medoid, current master and publication time.

 98

13: Sleep for 50ms, an arbitrary period, to allow the policy server’s calculation as to the

publishers suggested cluster and for these instructions to be sent back to the publisher.

KBNCluster is not a production ready system hence this arbitrary time period is added

between subscription and the next step publishing.

17: Start the publishing client addressed to the cluster suggested by the policy server.

 99

5.7.3 Starting a Subscriber

In comparison to starting a publisher, subscribers require both an instance of a subscribing client

and a notification object responsible for monitoring incoming notifications. Publishers publish

their publication to a broker and then disconnect whereas subscribers leave a thread open for a

broker to be able deliver notifications back to the subscriber, when a match occurs.

1 public void ExampleSubscriber() throws SienaException {

2 ThinClient subscriber = new ThinClient("tcp:134.226.38.135:2000");

3 SubscriberNotifier notify = new SubscriberNotifier();

4 Filter f = new Filter();

5 //Populate Filter with one or more (Name,Operator,Value,Type)

6 f.addConstraint("OntClass",ExtOp.MORESPEC,"http://conf#University");

7 f.addConstraint("Instance_ISA",ExtOp.ISA, http://conf#Ireland);

8 subscriber.subscribe(f, notify);

9 }

Code Example 13: Example Subscriber Client

Shown in Code Example 13 above is the code used by a subscriber to issue subscriptions to a

broker. Again the line numbers above correspond to the numbered items below:

2. Create a thin client object that ties together the message filter and notification object into

a single object responsible for communicating with a KBNImpl message broker.

3. Once the thin client object has been created, a notification object is constructed to provide

a mechanism for publications to be delivered to a subscriber, as a notification.

4. A new blank subscription filter is created.

5. Populate the filter with Attribute-Constraints.

6. Add an ontological filter for all classes more specific than #University.

7. Add an ontological filter for all instances of the country #Ireland.

8. Subscribe to the chosen broker (an un-constrained choice) with the subscription filter and

open a threaded listener object used for notifications to be delivered back from the broker

network to the subscriber.

 100

5.8 Conclusions and Summary of Technical Discussions

This chapter has outlined the implementation of KBNCluster, the types of messages sent, and

provided an overview of key implementation code. The order of operation, for brokers,

publishers/subscribers, the trigger broker and policy server have been outlined and the key

characteristics of each element of KBNClusters implementation outlined. The managed overlay

and management plane’s implementation have been discussed and their interactions, in the

process of clustering clients around common brokers of interest, as KBNCluster. In addition to

this detailed communication flows have been outlined between:

1. Publisher and subscriber components.

2. Brokers, the trigger broker and policy server.

3. Publishers, the trigger broker and policy server.

4. Subscribers, brokers, the trigger broker and the policy server.

The two types of messages, KBNImpl publish/subscribe and direct socket-to-socket messaging

have been discussed in detail, and their occurrence across the network discussed. The start-up

characteristics of the trigger broker, policy server, message brokers, publishers and subscribers in

either script or code have been presented.

For both the trigger broker and policy server, the key classes and characteristics of both have been

discussed. The clustering process has been detailed with regards to the partitioning of an ontology

and the ontology subsequently being overlaid onto the broker network. Where the main operating

classes of KBNClusters implementation have been discussed, they have been looked at in terms

of the requirements for clustering publishers and subscribers.

This implementation delivers the operational configuration of KBNCluster, described in the

design chapter, that is used in the next chapter, evaluating the performance of KBNCluster in

terms of the cost involved in moving clients around the network, storing management data, and

the effect of being clustered on subscribers.

 101

6 EVALUATION
The evaluation presented in this chapter is conducted upon a prototype implementation of

KBNCluster designed to evaluate the efficiency of the approach taken to clustering. In this thesis

two approaches to clustering are evaluated:

The first approach uses Static clustering in which brokers, publishers and subscribers are

informed of the inter-relationships between one another before start-up. Therefore if this

relationship changes, all the logic embedded in every client and broker must also change, through

a full cold system re-start.

The second approach uses a Managed Dynamic Clustering approach that removes the necessity

for embedding clustering instructions into the clients themselves. Publishers, subscribers and

brokers are instructed by a management system, as to how to cluster. The key motivator for such a

dynamic management approach is that changes in operational clustering policies can be made and

enforced in KBNCluster, without requiring any change of the logic held in the brokers, publishers

or subscribers.

The two approaches to clustering are introduced and evaluated across four sections:

• Section 6.2 (Static Approach to Clustering) – This section evaluates an initial experiment,

conducted in the early stages of this research, into static clustering, motivating additional

research to a managed dynamic approach to clustering, implemented as KBNCluster.

• Section 6.3 (KBNImpl Operational Costs) – This section evaluates operational costs

associated with the use of an implementation of KBNImpl including semantic

publication/subscription operator usage cost, subscription tree search times and the hop count

metric, used in the evaluation of KBNCluster.

• Section 6.4 (Costs Associated with Dynamic Clustering) – This section evaluates some of the

operational costs associated with applying a dynamic approach to KBNCluster. This includes

management data collection, storage, policy execution and client mobility.

• Section 6.5 (Dynamic Clustering Evaluation) – This final section evaluates the overall

approach of KBNCluster in terms of dynamically assigning publishers and subscribers to

clusters of interests and the effect this has on the performance of the publish/subscribe

paradigm. This section repeats the previous experiments conducted into a static approach to

clustering, using the dynamic prototype implementation of KBNCluster.

The evaluation methodology taken works on the principle of multiple layered levels of evaluation,

each building upon the last and being fully evaluated in a final experiment. In the first stage of

evaluation a static approach to clustering is evaluated to establish whether clustering was of any

benefit to an implementation of knowledge-based networking, KBNImpl. The second strand of

evaluation evaluated KBNImpl itself in terms of the cost of introducing semantic operators and

 102

types. The third strand of evaluation looked at the cost of storing and executing policies,

collecting management data and client mobility. This presented an evaluation of the cost to

manage, collect data and move clients. The final evaluation took the results of strands 1, 2 and 3

into account, fully evaluating a dynamic approach to clustering against a non-clustered topology.

The evaluation was built on the following four principles:

• Establish whether clustering was feasible and effect in KBN implementations.

• Establish the cost of using semantics, as opposed to not using semantics.

• Evaluate management data collection, execution and mobility.

• Evaluate a KBNCluster against KBNImpl in terms of performance gains.

The evaluation approach outlined above provides a step-by-step evaluation of the separate

components of a KBNImpl deployment, the effect management has upon such an implementation

and finally an evaluation of the benefits introduced to KBNImpl when clustered as KBNCluster.

 103

6.1 Experimental Setup

This section discusses, and outlines, some of the experimental set-up used across all sections of

this evaluation, in terms of ontologies used, experimental platforms and the complete set of

experimental metrics used across all experiments.

6.1.1 Ontologies

Through this evaluation chapter two ontologies were used. The first for Section 6.2 (Static

Approach to Clustering) is discussed in Appendix A, included in electronic form in Appendix D

“subjectCat.owl”. The second ontology, used in Sections 6.3, 6.4 and 6.5 “confOf.owl”

(also included in Appendix D) is based around an academic conference, taken from the Ontology

Alignment Evaluation Initiative [56] (OAEI2007).

The Static Approach to Clustering experiment (Section 6.2) used a different ontology than the

remainder of experimentation as this ontology was deemed only satisfactory for use in a

motivation initial case study, and lacked the range of instances, classes and properties required for

fully evaluating KBNCluster. However all experimentation conducted into static clustering, in

sections 6.3 and 6.4 are complimented by a full dynamic clustering experiment presented in 6.5.

In section (6.2) an initial case-study is presented, in sections 6.3 and 6.4 experiments are

conducted into static clustering using the same ontology as that used in section 6.5. Therefore this

allows the dynamic experiments presented in sections 6.3 and 6.4 to be compared to the full and

dynamic evaluation presented in section 6.5.

Thus the ontology used in experiments 6.3, 6.4 and 6.5, “confOf.owl” was selected and then

extended to better match the median size of a representative set of OAEI2007 test ontologies,

shown in Table 10. The “confOf.owl” ontology originally consisted of 23 classes, 23 data-type

properties and 13 object-properties and was extended to consist of 45 classes that were populated

with a total of 19 individuals. The existing 23 data-type and 13 object-properties left unchanged.

Table 10 presents the characteristics of five OAEI2007 ontologies, included in Appendix D, that

were tested against the KBNCluster algorithm for cluster creation and placement accuracy. Each

of the ontological elements (classes and instances) in each of the five test ontologies were passed

to the clustering algorithm (Design Chapter 4, Section 4.3.5) to successfully test its consistent

operation over different data sources. The results of this subjective experimentation is included

for reference in Appendix B. This data, although interesting, can only be evaluated subjectively,

in terms of how well a concept is placed into a specific cluster. The hop count metric, introduced

later in this chapter, identifies objectively how well subscribers and publishers are clustered in

terms of distance between one another and is deemed a direct reflection of the efficiency of the

clustering algorithm.

 104

Ontology Tested: Classes: Individuals: Properties:
confOf.owl 45 19 36
iswc.owl 33 50 37
ekaw.owl 73 0 33
swrc.owl 55 0 74
security.owl 446 37 206

Table 10: Test Ontology Characteristics

6.1.2 Platforms

This experimentation has been conducted over two experimental platforms. The first distributed

overlay platform utilised the PlanetLab [57] research network. This is a global overlay in which

developers can deploy and test distributed networking applications. Experiment 6.2 was deployed

to provide a geographically wide scale KBNImpl overlay. This experiment established the effect

of clustering on a KBNImpl deployment, and the experience in network management of a

statically clustered KBNImpl motivated future research into a dynamic approach to clustering.

After conducting a full-scale deployment of static clustering, across the PlanetLab network, all

other experiments were performed on a single host, like that used in evaluating KBNMap by Guo

[4], for the following reasons:

1. Synchronised Timing: Using the PlanetLab architecture, or any distributed architecture,

makes it very difficult to guarantee fine-grained synchronisation of the clocks in the various

machines. This is especially true on PlanetLab nodes as administrator “root” access was not

available to manipulate the system clocks, making distributed timing difficult.

2. Resource ceilings: At the time of deployment (2008) PlanetLab nodes were very limited in

terms of the CPU and Memory resources, which limited the scope of experimentation.

3. Node reliability: In using PlanetLab it was found that there were many other researchers

deploying experimental code onto the network, which, together with other operational server

outages, would often cause unexpected node failure. In addition, well resourced nodes, would

frequently become rapidly unusable as other researchers searched for more highly powered

nodes for their experiments. Thus the reliability of nodes on PlanetLab was found to be less

than adequate and as robustness to infrastructure failure was not a goal of the research, this

was an impediment to future PlanetLab experimentation.

The machine used by Guo in [4] had the following specifications: Dell Inspiron 9300 laptop with

1.73 GHz Intel processor, 2GB of RAM, running Windows XP Service Pack 2. For Java-based

tools, Sun’s JDK 1.6.0 was used. All tests were run at least 20 times to provide statistically

appropriate averages.

The machine used in this thesis to evaluate KBNCluster had the following specifications: Dell

Dimension 9200 Desktop PC with a 2.66 GHz Intel Core 2 Duo processor with 4GB of RAM

running Ubuntu Linux 10.10. For Java-based tools, Sun’s JDK 1.6.0 was used. All tests were

 105

either performed once when re-creatable each experimental run, i.e. the data is the same

regardless of the number of runs. In other experiments sensitivity analysis is performed to

establish statistically appropriate averages.

6.1.3 Metrics

In this section evaluation metrics are outlined for experiments where publish/subscribe

performance is evaluated, and summarised for clarity. These metrics are derived from the work of

Keeney et. al. in [58] which provides initial benchmarking characteristics of a KBNImpl

deployment. With regard to KBNCluster this section aims to identify and motivate the

commonalities and differences between data variables and the specific ranges of parameters

chosen for each experiment. The variables are:

1. No. of runs: This refers to the number of times the experiment was run.

2. No. of brokers: This refers to the number of brokers used in the experiment. Where this

value is greater than one, the brokers are arranged in a hierarchical topology.

3. No. of subscribers: This refers to the number of subscribers used in each experiment. Each

subscriber is represented by a separate client with a number of subscription.

4. No. of subscription filters per subscriber: This refers to the number of subscription filters

in each client’s subscription.

5. No. of subscription attributes: Each subscription filter is made up of one or more (Name,

Type, Operator, Value) Attribute Constraints. This value represents the

number of these quadruples in each subscription filter.

6. Subscription frequency: This refers to the delay introduced between individual subscribers

submitting their different subscriptions into the broker network.

7. No. of publishers: This refers to the number of unique publishers used in experiment. A

separate client represents each publisher.

8. No. of publications per publisher: This value refers to the total number of publications each

publisher client issues. Multiplying the number of publishers by the number of publications

per client therefore provides the total number of publications used in each experiment.

9. No. of publication attributes: Each publication is made up from one or more (Name, Type,

Value) Attribute Value pairs. This metric refers to the number of these triples per

publication.

10. Publication frequency: This value represents the delay introduced between publications

submitted to the broker network by individual publisher clients.

11. No. of notifications delivered: This value refers to the number of notifications delivered to a

subscriber, where one or more of their subscriptions has been matched to a publication.

With regard to subscription and publication frequency, these values represent the time, in

milliseconds (ms), between each publisher or subscriber submitting their publication or

 106

subscription to a broker. For example if an experiment has 250 subscribers and a subscription

frequency of 250ms then each unique subscriber subscribes with an interval of 250ms between

each subscription. Shown in Table 11 is a breakdown of the range of metrics used in each

experiment, introduced above, discussed in this section.

6.1.4 Sensitivity Analysis

For a number of experiments the data value presented does not suffer from any change, regardless

of the number of times run the experiment is run. For example in the experiments regarding the

number of hops taken to deliver a message, regardless of how many times the experiment is run

the number of hops taken stays exactly the same.

There are some experiments, particularly those involving measuring time, where when run there

is a slight variance in the measurement recorded. In addressing this variance in each of these

experiments the data point is calculated for 1,3,5,10 and 15 runs. So in the first experiment (1 run)

only 1 value is recorded, in the second experiment (3 runs) the mean from 3 experiments is

recorded, the same for 5, 10 and 15 experimental runs.

The trend between each of the mean values (1, 3, 5, 10, 15 runs) is compared to establish whether

with more experimental data points, the mean value changes i.e. whether as more experimental

runs are added to the mean calculation is there any fluctuation in the data values recorded. From

this sensitivity analysis the choice of using five mean experimental runs is justified.

Sensitivity analysis is presented in Appendix E for the following experiments:

• 6.3.2 Subscription Tree Search Time

• 6.4.2.4 Subscription Processing Times

• 6.4.2.5 Publication Processing Times

• 6.4.2.6 Pub-to-Sub Delivery Times

• 6.4.3.1 Moving Broker & Moving All Subscribers

In the experimental matrix presented on the next page where five runs are recorded the mean of

five experimental runs has been shown to be stable as a measure of the experiment. Where one

experimental run is recorded there is no fluctuation in the data points regardless of the number of

times the experiment is run therefore only one value needs to be recorded.

 107

Table 11: Matrix of Experimental Metrics

Experiments which use

publish/subscribe messages:

No of
exp
runs

No of
brokers

No of
subscribers

No of
subscription
filters per
subscriber

No of
subscription
attributes

Sub
freq

No of
publishers

No of
publications
per
publishers

No of
publication
attributes

Pub
freq:

No of
delivered
notifications

Static Approach To Clustering
Subscription Tree Size 1 37 75000 6 0-4 250

ms

1500 1 15 250ms

wss

N/A

KBNImpl Operator Costs
KBNImpl Operator Usage 1 1 500-3000 2 1 250

ms

250 2 1 250ms 300

Subscription Tree Search 5 1 1000-6000 2 4 250

ms

250 2 4 250ms 300

Hop Count Measurement 1 11 3000 3000 4 250

ms

3000 4 4 250ms 3000

Hop Count Timing 1 11 3000 3000 4 250

ms

3000 4 4 250ms 3000

Data Collection Costs
Subscription Processing 5 1 500 1 2-5 9ms N/A N/A N/A N/A N/A

Publication Processing 5 1 500 1 2-5 9ms 120 1 2-5 250ms 35

Pub-to-Sub Delivery Times 5 1 500 1 2-5 9ms 120 1 2-5 250ms 35

Mobility Costs
Moving Broker & Subscribers 5 2 200-1000 2 1-6 9ms N/A N/A N/A N/A N/A

Moving All Subscribers 5 2 200-1000 2 1-6 9ms N/A N/A N/A N/A N/A

Dynamic Clustering Evaluation
Subscription Tree Size 1 11 250 2 1-6 9ms N/A N/A N/A N/A N/A

Notifications Delivered 1 11 250 2 1-6 9ms 1000 1 1-5 250ms 98

Hop Count in Delivery 1 11 250 2 1-6 9ms 1000 1 1-5 250ms 98

Re-Clustering 1 11 250 2 1-6 9ms 1000 1 1-5 250ms 98

 108

In each experiment a number of decisions were made as to the upper and lower limits of data

values, their exact value or range. Some were designed to find the upper limit of the data range

and some designed so the experimenter could assure clustering decisions were being made

correctly, manually interpreting experimental results. The specific experimental design decisions

are presented in more detail in the relevant sections, but the following provides an outline of this

chapter.

• Static Approach to Clustering (See Section 6.2): In this evaluation statically encoded

rules guided clustering. For this reason sufficiently high levels of publishers and

subscribers were used, across a large number of brokers in order to detect the impact of

clustering. Operating with a large number of brokers offers practical insight into the

practical difficulty of a static clustering management approach.

• Data Storage and Policy Execution Costs (See Section 6.4.1): This section is excluded

due to this being an evaluation of storing managed objects (MOs) in the management

information base (MIB) of the policy server. These values used in Section 6.4.1 were

chosen to push the upper bounds of incoming MOs and the execution of policies against

them, thereby stressing the performance of management system as a potential bottleneck,

but do not fit into the publish/subscribe characteristics of the table.

• Data Collection Costs (See Section 6.4.2): When choosing this range of data values, a

fixed number of publishers and subscribers were chosen to represent a high load for the

number of brokers used in the evaluation of KBNCluster, a stress test.

• Mobility Costs (See Section 6.4.3): In this section, a range of subscribers were moved in

each experiment to identify the variance in costs associated with each move. This was

progressively repeated using larger numbers of subscribers. There were no publishers

used in the experiment, as all that was being evaluated was a period of routing service

disruption due to the movement of subscribers.

• Dynamic Clustering Evaluation (See Section 6.5): These values were chosen to be

representative of 50% of the load used in the data collection costs experiments. However

a much higher rate of publications to subscriptions was chosen, as the random creation of

both resulted in fewer matches (notifications). Additionally the ratio of incoming

publications to stored subscriptions was chosen to push the performance limit of the

brokers in searching incoming publications against stored subscriptions, one of the more

costly KBNImpl operations.

This section has introduced a matrix of experimental parameters for each experiment. Included in

Appendix D, the data DVD, are the ontologies used in all experiments, and the publication and

subscription data set that, when combined with this experimental matrix, supports the

reproduction of the experiments of this chapter.

 109

6.2 Static Approach to Clustering

6.2.1 Introduction

This first experiment was conducted as a test case of the effect of clustering on KBNImpl

designed to show that clustering improved the performance of brokers by demonstrating that the

subscription tree size is reduced on brokers across the network through clustering. The set of

subscription and publication data used was designed to offer ample scope for occurrences of

subscription covering. If subscription covering occurs in a broker this reduces the overall number

of subscriptions that need to be matched by a broker to incoming publications and therefore

increases routing efficiency in terms of the rate at which incoming publications can be matched to

stored subscriptions. One subscription is more likely to cover another if they are about the same

content or, more specifically, the same set of Attribute-Constraints. In particular,

computationally expensive semantic subscriptions (which must invoke an ontology reasoner) are

more likely to exhibit coverage if they are from the same area of the knowledge base (ontology).

At a network wide level, a lower number of root subscriptions in the root node acts as a proxy

metric for subscription covering occurrences, via clustering.

In this first experiment a single generic ontology was formed around a taxonomy of classes used

in a one-cluster topology; this is then split, manually, into two sub-ontologies for a two-cluster

topology and similarly, manually, into three sub-ontologies for a three-cluster topology. Each

cluster in the broker topology then utilises each of the newer, smaller ontology strands for

publishing, routing and subscribing content. The process of splitting a single ontology manually

into multiple clusters is only used in this initial experiment as a baseline for the following

experiments using automated clustering and the whole ontology.

6.2.2 Experimental Metrics

Shown in Table 12 are the experimental metrics used in all experiments conducted as part of this

experiment. Please refer to Section 6.1.3 for detailed discussion behind each of these terms. For

detailed discussion and examples of subscriptions and publications see Appendix D.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
1 37
 No of

subscribers:

No of subscription

filters per subscriber:

No of subscription
attributes:

Sub delay:

75000 6 0-4 250ms
 No of publishers: No of publications per

publisher:
No of publication
attributes:

Pub
delay:

No of
notifications:

1500 1 15 250ms Not recorded
Table 12: Experimental set-up metrics used in experiments

 110

6.2.3 Experimental Setup

Figure 18: Broker Hierarchy

Shown in Figure 18 is the broker hierarchy used in this experiment, where each shaded square

represents a single broker. Thirty-seven nodes were chosen and used, this being the upper limit of

nodes that could be accurately monitored across the PlanetLab [57] research platform by a single

researcher, in a static approach.

In each experiment, the ontology was partitioned and split into multiple physical sub ontologies

and each sub-ontology applied to a section of the broker network as shown above. Publishers and

subscribers then publish or subscribe from a selected sub-ontology into parts of the broker

network allocated to that sub-ontology. This is implemented by clients submitting messages to

certain brokers, based around common interests of the sub-ontology, as defined in a static spread

sheet, which is parsed and used by a message scheduler in each client, across the network, Full

details of this experimental set-up can be found in Appendix A of this thesis.

6.2.4 Results

Shown in Figure 19 are the root subscriptions held by the root broker in the no-cluster, 2-cluster

and 3-cluster configurations, shown in Figure 18. Figure 20 presents the total unique subscriptions

held by a typical broker at level three in the broker network. The data in these figures shows that

clustering has reduced the total number of subscriptions, received by brokers as sampled at level

three of the broker network. Due to the limited number of subscription combinations that span

the network and the clusters within it, the number of root subscriptions eventually falls to a stable

number, as new subscriptions, that are passed to the root, aggregate with existing root node

Experiment 3 – Cluster 2 Experiment 3 – Cluster 3

Experiment 2 – Cluster 1

Level 1
(1 Node)

Level 2
(4 Nodes)

L3
(7 Nodes)

L4
(10 Nodes)

L5
(15 Nodes)

Root Node

Experiment 1 – No Clustering

Experiment 3 – Cluster 1

Experiment 2 – Cluster 2

 111

subscriptions. A key finding that can be drawn from Figure 19 is that with clustering subscription

aggregation at the root node is greatly increased and covering converges much faster.

The data from the brokers shown in Figure 19 (master) and Figure 20 (level 3) are chosen as

representative of key nodes in the network. The master broker must receive all root level

subscriptions from its children (i.e. all children) and therefore truly represents the load of the

overall network. Similarly the broker from level three can be seen as a representative node,

responsible for a high number of its children’s subscriptions.

Figure 19: Root Subscription Tree Size on the Master Node (shown in Figure 18)

Figure 20: Unique Subscriptions on a Broker on Level 3 (shown in Figure 18)

0"

20"

40"

60"

80"

100"

120"

140"

1" 6" 11
"

16
"

21
"

26
"

31
"

36
"

41
"

46
"

51
"

56
"

61
"

66
"

71
"

76
"

81
"

86
"

91
"

96
"

10
1"

10
6"

11
1"

11
6"

12
1"

12
6"

13
1"

13
6"

14
1"

14
6"

R
oo
t$
Su
b
sc
ri
p
ti
on
$T
re
e$
Si
ze
$

Simulated$Hours$

No"Clusters" 2"Clusters" 3"Clusters"

0"

200"

400"

600"

800"

1000"

1200"

1400"

1" 30
"

59
"

88
"

11
7"

14
6"

17
5"

20
4"

23
3"

26
2"

29
1"

32
0"

34
9"

37
8"

40
7"

43
6"

46
5"

49
4"

52
3"

55
2"

58
1"

61
0"

63
9"

66
8"

69
7"

72
6"

75
5"

78
4"

81
3"

84
2"

T
ot
al
$S
u
b
$T
re
e$
Si
ze
$

Simulated$Hours$
No"Clusters" 2"Clusters" 3"Clusters"

 112

6.2.5 Conclusion

Figure 19 shows the root subscriptions on the master broker. The growth of the number of root

subscriptions is non-linear as this represents the broker merging similar subscriptions as they

arrive at the broker into covering relationships over time and hence the fluctuations as

subscriptions are received, stored and then merged. This experiment has shown that through the

introduction of clustering the subscription table size of brokers decreases.

Shown in Figure 20 are the total subscriptions received by a broker at level three in the broker

network. The data shows a gradual rise as subscriptions are received, across the three clustering

experiments, although as clusters are introduced the number of unique subscriptions maintained in

the broker’s subscription table increases sub-linearly. All experiments are presented over a period

of simulated hours, subscriptions being clustered over a period of simulation, and different

brokers were active during different periods within this simulation, hence the timings are different

in each case. Nothing is being varied over time; all that changes is the rate at which various

brokers receive subscriptions across the network

This early pilot study into the effects of clustering is presented in [7] and also included in

Appendix A. It motivated research into dynamically clustering Knowledge-Based Networks

having shown that through the introduction of static clustering the subscription tables become

smaller and more optimal as clusters of interest are defined across the network.

However this experiment does not indicate how to handle situations where clients’ semantic

interests might drift or where the interests of individual clients are not known a-priori, motivating

the need for a more dynamic clustering approach, which can be managed in an extensible and

flexible manner.

The next section of this chapter provides a detailed evaluation of KBNImpl semantic operator

usage costs, subscription tree search times and hop count in delivering messages across clusters

before finally evaluating the time taken to travel across a number of hops, where each hop

represents a broker in the network.

 113

6.3 KBNImpl Operational Costs

6.3.1 Operator Usage

The first experiment conducted as part of this section looks at the cost of using the various

KBNImpl operators in messages, and evaluates the time taken to match incoming publications to

stored subscriptions, using the ontology introduced in Section 6.1.1. This experiment was

designed to assess how different semantic operators have different time-based costs associated

with their use. And the degree to which semantic operators are more costly, in terms of time taken

to match incoming publications to stored subscriptions. For this purpose, therefore, only a single

broker was needed and used.

Shown in Table 13 is the experimental set-up used in all experiments conducted as part of Section

6.3.1, please refer to Section 6.1.3 for detailed discussion of each of these terms.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
1 1
 No of

subscribers:

No of subscription

filters per subscriber:

No of subscription
attributes:

Sub frequency:

500-3000 2 1 250ms

No of publishers: No of publications per

publisher:
No of publication
attributes:

Pub
freq:

No of
notifications:

250 2 1 250ms 300
Table 13: Experimental set-up metrics used in experiments

Operator Subscription Sample, matching, publication
 Name space, applies to each semantic element = http://confOf#
Equivalent @~ Lesson Tutorial
Not
Equivalent

@!~ Lesson Organization (is not equivalent)

Sub Class @< Paper Contribution
Super
Class

@> Administrative_event Camera_Ready_event

ISA @= City Dublin
IS_NOT_A @!= Organization Autonomic_Actions
ONT_PROP @* [hasCity, Dublin] Jones_Dominic
Equal Bag
of sub
classes @<

#=/@< [Chair_PC, Administrator,
Administrative_event]

[Organization, Person, Event]

Super Bag
of sub
classes @<

#>/@< [Chair_PC,
Administrative_event]

[Organization, Person, Event]

Sub Bag of
sub
classes @<

#</@< [Chair_PC, Administrator,
Administrative_event]

[Organization, Person]

Table 14: Example Subscriptions and Matching Publications

Shown in Table 14 are example subscriptions and publications for the data used in this

experiment. Each subscription and publication is the same, in terms of the semantic components

 114

above, however each has a unique numerical ID added, to block any covering from occurring,

allowing this evaluation to only focus upon the total number of semantic or non-semantic

subscriptions held in each broker.

For each publication an additional time-stamp attribute is inserted into the message body when

formed. When a notification is delivered to a subscriber, the subscriber is able to use this time-

stamp to calculate the time taken to deliver the message, using the time the message was received

(in milliseconds) minus the time it was sent.

This new feature of KBNImpl made possible the measurement of delivery time. Operationally,

this time measure is only valid when synchronised clocks are guaranteed. For these experiments,

this was addressed by running the clients and brokers on the same machine and therefore using

the same system clock as shown in Figure 21, the hierarchical topology existing on a single

machine for this experiment.

Figure 21: Example Topology, Operator Search Costs

All values in
milliseconds

500 Unique
Subscriptions

1000 Unique
Subscriptions

2000 Unique
Subscriptions

3000 Unique
Subscriptions

Operator: Mean:
Std
Dev: Mean:

Std
Dev: Mean:

Std
Dev: Mean:

Std
Dev:

Ont Prop 94.76 5.42 185.28 7.15 ** ** ** **
Is A 50.83 12.37 94.64 20.03 190.33 42.35 4319.39 2235.37
Is Not A 50.35 24.76 96.90 40.4 200.83 104.91 4349.53 2078.71
Bag – Super 18.17 6.3 33.45 8.56 62.18 11.86 92.94 16.34
Equiv 17.94 9.67 32.77 14.21 61.76 21.02 90.46 24.8
Bag – Sub 11.40 2.9 20.50 3.95 38.75 4.87 57.60 5.52
Bag – Equal 9.10 3.04 15.98 3.51 30.98 4.77 43.57 4.94
Not Equiv 8.74 4.92 15.37 6.72 27.84 9.78 39.87 11.83
Less Spec 4.47 2.99 7.03 3.46 12.51 3.88 17.11 4.24
More Spec 4.32 2.95 7.61 4.4 11.83 4.14 16.96 4.19

Table 15: KBNImpl Operator Costs – End to end mean delivery times per match (ms)

Shown in Table 15 are the results from this experiment presented from the highest time taken to

the lowest. It is clear that the costs associated with using the different ontological operators range

greatly in time taken to deliver 300 publications to 300 matching subscribers. The matching time

varies sub-linearly with the number of subscriptions. The high values with 3000 subscription

present results from the processing time running on after the next publication is received, and

Broker

n Subscribers 500 Publishers
300 Matching

n = 500, 1000, 2000, 3000

 115

hence two matches being run in parallel. Similarly, the ontological property operator data for the

2000 & 3000 results (shown as **) are excluded, as the cost of searching the ontology for

matching subscriptions resulted in Java Out-of-Memory errors on the KBNImpl message broker.

This out of memory error was established as a Siena/KBNImpl implementation issue arising from

the number of ontological queries that are being passed to the reasoner. This is a KBNImpl bug

and not one created through the development of KBNCluster.

This experiment shows the likely variability of performance based on the particular semantic

KBNImpl operators employed in the set of subscriptions active at any one time motivating a

flexible management approach such that future KBNCluster management policies can be

designed to account for the operators in use in a particular sphere of interest.

6.3.2 Subscription Tree Search Time

This second experiment documents the time taken to search a subscription tree/set of various sizes,

against incoming publications. This experiment was conducted to establish the relationship

between the number of subscriptions on a broker and the time taken to match incoming

publications to those stored subscriptions. Additionally this experiment evaluates the effect of

searching semantic and non-semantic subscriptions.

Shown in Table 16 are the experimental metrics used in all experiments conducted as part of

Section 6.3.2. Again please refer to Section 6.1.3 for detailed discussion behind these terms.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
5 1

No of

subscribers:

No of subscription

filters per subscriber:

No of subscription
attributes:

Sub frequency:

1000-6000 2 4 250ms
 No of publishers: No of publications per

publisher:
No of publication
attributes:

Pub
freq:

No of
notifications:

250 2 4 250ms 300
Table 16: Experimental set-up metrics used in experiments

Each experiment was run 5 times and from this data the mean value of the overall search time is

calculated. Incoming publications were engineered to match 300 subscriptions by the

incorporation of a unique ID “notificiationNumber” in matching pairs. As in the last

experiment a time-stamp was added to enable calculation of end-to-end delivery time. Shown in

Code Example 14 is an example subscription used in this experiment. Each subscription is made

up of a subscription to a class “Contribution” and an instance “Paper.” In addition to this,

each subscription contains a notification number. Using this notification number it is possible to

direct which subscriber receives which notification, as shown in Code Example 15, creating static

 116

clusters whilst prompting ontological comparisons to still occur. Matches will only ever occur

between the notificationNumber, as all ontological filters are kept uniform in this

experiment, but will be used in comparison.

Type Name Operator Value
Name space, applies to each semantic element = http://confOf#

Class ontClass @> Contribution
Instance ontInstance @= Paper
Integer notificationNumber = n…n+1

Code Example 15: Example Semantic Publications used within this section

Figure 22 shows the mean time taken to deliver both non-semantic and semantic messages (where

class and instance filters were removed from the subscriptions and publications) across a single

broker, where the number of subscriptions varies.

Figure 22: Subscription tree search times (Semantic & Non Semantic)

In conclusion, this experiment has shown that as the number of subscribers increases, so does the

mean time to process and deliver the incoming publication to subscribers. It has also shown that

semantic subscriptions take more time to search than non-semantic. Also, while semantic

subscription matching time increases non-linearly with the increase in subscriptions held, non-

2.45% 3.61% 5.46% 7.25%7.55%
12.97%

26.10%

42.53%

,10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1000% 2000% 4000% 6000%

M
ea
n%
Ti
m
e%
Ta
ke
n%
to
%P
ro
ce
ss
%P
ub

%(m
s)
%

SubscripBons%Held%in%Broker%
Non%SemanBc% SemanBc%

Code Example 14: Example Semantic Subscription used within this section

Type Name Value
Name space, applies to each semantic element = http://confOf#

Class ontClass Paper
Instance ontInstance Paper_17
Integer notificationNumber n…n+1
Integer pubTime N

 117

semantic subscription matching time increase linearly. This supports the application of clustering

to a KBNImpl by showing that if a subscription tree’s size can be reduced or optimised, through

clustering and through the introduction of a greater number of root subscriptions, the time to

deliver publications to the brokers’ attached subscribers can also be reduced.

6.3.3 Hop Count Experiments

This final set of experiments into static clustering looks at the hop count associated with

delivering messages, and the time taken to deliver these across a range of hop counts. When

defined as a single cluster, publishers and subscribers publish and subscribe to all brokers in the

topology. When defined as three clusters, clients are split below the top-level master broker into

three clusters and publishers and subscribers manually assigned by the experimenter to specific

clusters. A similar process is applied to creating six clusters. To summarise this key difference

between the 1, 3 and 6-cluster scenarios is as follows: in the 1-cluster scenario, the consumers and

producers are spread randomly across the network, with no correlation between their placement

around brokers. In contrast the 3-cluster scenario sees clients statically placed in a specific cluster

within the network topology – i.e. nearer to their predicted publishing or subscribing partner,

based on directing a client to attach to a broker that may match their interests. The same method is

applied in the 6-cluster scenario. Shown in Table 17 are the experimental metrics used in all

experiments conducted as part of Section 6.3.3.1 and 6.3.3.2. Again please refer to Section 6.1.3

for detailed discussion behind each of these terms. For both experiments (measurement and

timing) please see Code Example 14 and Code Example 15, used in Section 6.3.2, for examples

of publications and subscriptions.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
1 11

No of

subscribers:

No of subscription

filters per subscriber:

No of subscription
attributes:

Sub frequency:

3000 3000 4 250ms

No of publishers: No of publications per

publisher:
No of publication
attributes:

Pub
freq:

No of
notifications:

3000 4 4 250ms 3000
Table 17: Experimental set-up metrics used in experiments

6.3.3.1 Hop Occurrences

This experiment was conducted to establish whether the number of hops, taken to deliver

publications to subscribers could be reduced through clustering conducted to support the

arguments behind developing and deploying a dynamic approach to clustering KBNImpl brokers

and clients in order to improve efficiency.

 118

In measuring the hop count of messages passing from publisher to subscriber the KBNImpl

publication forwarding mechanism was adapted to include a hop count value within the message

header itself that is incremented as the message passes across a broker as it traverses the network.

In this experiment clustered vs. un-clustered hop counts are measured and publishers and

subscribers

are assigned to brokers, based on shared interests, statically set out in code i.e. when they are

created as applications they are instructed to connect to a specific cluster or broker. Such an

approach is utilised only initially to evaluate such a static approach to clustering. Shown in Figure

23 is a histogram of hop counts in the 1, 3 and 6 cluster experiments. It is clear that as the number

of clusters increases, the number of hop counts required for delivery decreases. In a 6-cluster

experiment 95% of messages are delivered across 1, 2 or 3 hops, whereas in a 3-cluster

experiment that percentage is 80% and in 1-cluster experiment that percentage is only 28%.

Figure 23: Spread of Hop Counts in Delivered Notifications, across various cluster topologies

In conclusion, this experiment confirms that the number of hops required to route a message

decreases as the number of clusters increases. The implication is that a reduction in the number of

hops required to route messages from source to destination will have two main impacts: first the

broker, upon receiving a publication, has a higher chance of holding a matching subscription to

the incoming publication and that, secondly, at a network-level this will decrease the amount of

time taken to route messages from source to destination. Fewer hops require fewer brokers

involved in the routing of a message and thus a lower load is placed on the whole network’s

processing capabilities. Supporting the argument behind deploying clustering in KBNCluster as a

way to offset some of the costs associated with KBNImpl’s increased expressiveness.

0%"

10%"

20%"

30%"

40%"

50%"

60%"

70%"

80%"

90%"

100%"

1$Cluster$ 3$Clusters$ 6$Clusters$

8"Hops"

7"Hops"

6"Hops"

5"Hops"

4"Hops"

3"Hops"

2"Hops"

1"Hop"

 119

6.3.3.2 Hop Count Timing

This experiment was conducted to establish the cost (in terms of time taken) to travel across a

varying number of hops in a KBNImpl deployment. Using the data set from the previous

experiment, it was possible to calculate the mean delivery time per hop across the network. The

notifications received in the previous experiment contain two measureable values, the number of

hops they took to be delivered and the time taken to route across those hops. The times per hop,

presented in this section, are calculated by grouping all the timings for each hop count and

calculating the mean from these values. Shown in Figure 24 is the timing data broken down by

publication delivery hop count in each of the three clustering experiments, for publication

matching semantic filters. Figure 25 shows the same for non-semantic matching filters.

Figure 24: Average Message Delivery Timing, Semantic

In Figure 24 large standard deviations are presented associated with the mean average times taken,

per hop for the delivery on semantic messages. In Figure 25 slightly smaller, but still significant

standard deviations are presented for non-semantic data. The key reason behind such large

variance, in both cases, is due to the number of attributes randomly included in each subscription.

Subscriptions with more attributes take longer to process against incoming publications,

conversely subscriptions with fewer attributes take less time to process. Each subscription in this

experiment was randomly created with between 1 and 4 attributes each, hence timings to delivery

each message result in larger variance than expected. The difference between the semantic

variance Figure 24 and non-semantic variance Figure 25 is attributed purely to longer time taken

to process semantic vs. non-semantic messages. The variance / deviation from the mean, in both

cases, is inline with the increased times taken in comparing semantic to non-semantic delivery.

840.00"

820.00"

0.00"

20.00"

40.00"

60.00"

80.00"

100.00"

1" 2" 3" 4" 5" 6" 7" 8"

T
im
e$
T
ak
en
$(
m
s)
$

NumberofHops$(Semantic$Data)$
$

1"Cluster"

3"Clusters"

6"Clusters"

 120

Figure 25: Average Message Delivery Times, Non Semantic

In conclusion this experiment has shown that as the number of hops increases so does the time

taken to route over those hops, additionally this experiment has shown that there is an increase in

the time taken to process semantic vs. non-semantic. Timing has been shown to be linear with the

number of hops; a key premise of this thesis, less hops results in quicker delivery of content from

producer to consumer.

6.3.4 Conclusion

This section has established the benefits of static clustering KBNImpl publishers, subscribers and

brokers. From the evaluation presented a number of conclusions are drawn:

• The introduction of clusters reduces the number of hops between source and destination

and correspondingly the time taken to deliver messages.

• Use of semantic publications and subscriptions increases the cost involved in handling

messages, esp depending on the operators used. This is a strong argument for the

introduction of dynamic managed clustering.

It has been shown in this section that static clustering can be of direct benefit to the publishers,

subscribers and brokers of a network through a reduction in load and time taken to route messages.

In addition to this it can be inferred that when scaled to multiple clusters, it rapidly becomes un-

manageable, due to the number of changes which need to be made, across multiple clients and

brokers when operational characteristics change, and the inherent variance in performance

between different operators (both semantic and non-semantic).

82.00"

3.00"

8.00"

13.00"

18.00"

1" 2" 3" 4" 5" 6" 7" 8"

T
im
e$
T
ak
en
$(
m
s)
$

NumberofHops$(Non@Semantic)$

1"Cluster"

3"Clusters"

6"Clusters"

 121

6.4 Costs Associated with Dynamic Clustering

Static clustering was used in the previous section to evaluate the effects of clustering when

applied using a static, manually configured approach which clearly will not scale. Dynamic

managed clustering places the logic for guiding clustering outside of the network, thereby

removing the requirement for any application specific logic to be placed in the client or broker

code. In such an architecture, clients are directed where to attach to the network, based on their

semantic interests. As managerial goals or the balance of ontological operators representing those

interests change, so the clustering policies can change, without any modification required to the

client’s or broker’s code-base. This section introduces three strands of evaluation, each of which

addresses some aspects of the approach taken in the dynamic managed clustering of clients

around brokers of common interest, based on the Design and Implementation chapters.

The first evaluation, 6.4.1 (Management Data Storage & Policy Execution Costs) evaluates the

costs associated with creating and storing managed objects (MO) in the Management Information

Base (MIB) stored on the policy server. This places potential upper limits on the number of

brokers, publishers and subscribers that can be managed by a single prototype policy server

implementation. In addition to this, the cost of executing policies against those MOs is fully

evaluated and presented with regard to time taken, which in turn may constrain the reactivity of

the management system to changes. A range of MIBS in the range of 500-2500 are used in each

experiment with a 5 policies used in 6.4.1.2, 2 subscriber, 2 broker and 1 publisher.

The second evaluation, 6.4.2 (Data Collection Costs) looks at the costs involved in collecting

detailed clustering information from across the broker topology, taking a broker first approach to

clustering. This two-phase approach involves the broker calculating its semantic centre (Medoid)

or multiple values and returning this value to the policy server. The effect that these management

requests have upon normal publish/subscribe operation is important in determining the overall

effect that collecting management data (using a broker first approach) has upon the operation of

the network.

Finally in the third evaluation, 6.4.3 (Mobility Costs), the various costs associated with moving

clients and brokers across the network are evaluated as the policy server makes operational

decisions as to where these clients should reside. This section presents the various times

associated with each movement. Message delivery is not guaranteed during this period of

movement (from start to finish), therefore imposing an operational reliability cost of this

management approach. KBNCluster and the evaluation of this thesis works on the premise that

from the point at which a client instigates a movement request to the point at which this request is

completed messages may not be delivered. This window is used to evaluate the worst-case time

taken in moving a client where messages may not be delivered.

 122

6.4.1 Management Data Storage & Policy Execution Costs

The first experiment in this section looks at the cost of creating/updating MO entries in the MIB

when incoming management messages are received. There are six different management

messages that the prototype policy server (Design Chapter 4, Section 4.4.2) can receive. Three

relate to broker state, two relate to subscriber state and one relates to publisher state. They range

in the number of attributes they contain, with the smallest containing three attributes and the

largest containing ten attributes.

In KBNCluster a single instance of the policy server connects to the trigger broker, as discussed

in the Design Chapter 4, Section 4.2.1. For this experiment, the local management agents for

simulated brokers, publishers and subscribers connect to this management network and trigger

broker, and publish management information towards the policy server, using the trigger broker’s

semantic delivery mechanism. These messages contain the correct number of attributes, with the

correct number of types; however, the actual data used in this experimentation has been simulated,

in the range of data values that would be received in real operation. A key design decision of the

policy server was that the first message received, which holds a unique and previously unknown

client or broker address, represents the first MO of the MIB for each agent; this is updated with

new variables as received. This address is either the broker’s or a subscriber’s KBNImpl assigned

address or publisher’s uniquely generated ID (UUID). The second experiment in this section

looks at the cost of executing, against a variable number of MOs, n policies, where n is fixed but

the number of MOs change. This aims to evaluate the efficiency of the policy server against a

range of MO in terms of policy execution times and policy server memory usage.

6.4.1.1 Memory Footprint

This first experiment establishes the memory (RAM) required for storing a range of MOs in the

MIB. This stress tests the amount of memory required to store and maintain the MIB with an

increasing number of MO entries, thereby determining any operational limits on policy server

deployments and configuration.

System.gc();// Run multiple times

Long startMemory = Runtime.getRuntime().totalMemory()-

Runtime.getRuntime().freeMemory();

//Do Task - Update / Insert MO data

System.gc(); // Run multiple times

long usedMemory = Runtime.getRuntime().totalMemory()-

Runtime.getRuntime().freeMemory();

long totalMemory = usedMemory – startMemory;

Code Example 16: Calculating Memory Usage

 123

Being able to calculate the memory, as shown in Code Example 16, used by the application server

over a period of time allows the memory footprint of the application to be determined precisely.

The memory usage calculation shown in Code Example 16 is the same as that used by Guo, in

KBNMap [4], that being the standard Java library for memory calculation.

In five experiments a range of between 500 to 2500 MOs were sent and initialised by the policy

server, with a third of each representing broker, subscriber, and publisher MOs. The standard

deviation associated with this data is zero, i.e. regardless of the number of runs which were tested,

the data points, which were only measured once did not fluctuate.

Figure 26: Memory Usage vs. MO Created

In conclusion this experiment has shown, in Figure 26, that the amount of RAM used for storing

MOs in the MIB scales well within the experimental bounds of KBNCluster, outlined in Section

6.1.3. This experiment supports the argument that the use of a MIB/MO approach to storing

management data, across KBNCluster, is suitable as a buffer between the nodes of the managed

overlay and the policy server.

6.4.1.2 Policy Execution Timing

This experiment evaluates the cost of firing policies and having these policies execute against the

MIB/MOs previously stored by the policy server. The results from this experiment will establish

which policy rule is the most or least costly to invoke, as well as how each rule invocation scales,

as the number of MO updates increases.

The experiment is conducted using five policies that fire if, and only if, an update is received

(with the correct data set) from a node within the managed overlay. There are three timer-based

policies and each operates and fires periodically. They are not evaluated, as they do not exercise

the full cycle of events that can trigger a policy evaluation.

7800"

7850"

7900"

7950"

8000"

8050"

0" 500" 1000" 1500" 2000" 2500" 3000"

M
em

or
y$
U
se
d
$(
k
b
)$

NumberofManaged$Objects$(MO)$

 124

The policy rules that are evaluated operate on an Event-Condition-Action basis as defined in

[19]. In these experiments the Action part of the policy is not evaluated. The evaluation focuses

on the cost of executing the Condition part of the sequence; having received an Event. The

actions are mostly operated by the management agents on the KBNImpl nodes and are therefore

evaluated separately in the remainder of this chapter.

In this experiment the policy server is populated with an equal number of broker, publisher and

subscriber MOs. Once populated the full set of subscriber, publisher and broker policies are

executed against the MOs. During the experiment the time taken for invoking the policy is

measured from the completion of the MO updates to when the last MO has the policy rule

condition tested against it. Three types of policies were evaluated in this experiment including:

• Subscriber Policies (See Design Chapter 4, Section 4.5.2):

o Where should subscribers be placed when they first appear in the network?

o Does a delivery report identify a subscriber in the wrong cluster?

• Publisher Policies (See Design Chapter 4, Section 4.5.2):

o Where should a Publisher be clustered when it report its Medoid?

• Broker Policies (See Design Chapter 4, Section 4.5.2 and used to evaluate client- vs.

broker-based approach to clustering in the Evaluation Chapter 6 Section 6.4.2):

o Which is the Broker on which clustering should occur?

o Which is the Medoid on which clustering should occur?

Detailed explanations of the policies presented above are included in the Design Chapter 4,

Section 4.5, and Appendix C of this thesis. Each one of these policy groups is executed against a

varying number of MOs, where the number of entries ranges from 500-2500, made up of an equal

number of brokers, publishers and subscribers. In line with the last experiment 500 – 2500 MO’s

were stored in the MIB.

 125

Figure 27: Time Taken to execute a number of MIBS against various Policies

Shown in Figure 27 are the times taken to execute five policies (2 Subscriber, 2 Broker, 1

Publisher rule) against an increasing number of MOs in this experiment. The policy server is

bootstrapped with a number of MOs and varied for each experiment. Once populated, the set of

policies are executed against the MOs stored and the time taken from the first execution of the

first policy to the last is measured. So with 500 MOs populated in the MIB consisting of an equal

number of subscriber, broker and publisher MO’s, the set of rules are executed against the MIB

and the time from start to finish recorded. In stress testing the policy server an equal split between

broker, publisher and subscriber was deemed to represent the best split between MO entries in the

MIB. The standard deviation associated with this data is zero, i.e. regardless of the number of

runs which were tested, the data points, which were only measured once did not fluctuate.

Figure 27 shows a linear growth in each case for the time taken to process policies against an

increasing number of MOs. Looking at the broker policies, we see a very small increase in time

taken as the number of MOs increases. Broker policies take an array of MOs representing the

brokers as an input variable, and the Drools [49] rule engine searches this array for any individual

MOs that match the conditions outlined in the policy conditional statement.

In conclusion this experiment has shown that as the number of MO entries increases so does the

time taken to execute the set of policies against the MIB. Also shown are the different execution

times of various policies, these differences having been previously discussed. This experiment,

much like the experiment shown in Section 6.4.1.1 confirms the feasibility of the management

approach applied in KBNCluster. The upper value for the policy execution time is appreciable,

and therefore will need to be taken into consideration when configuring the period with which

MO data updates are requested from the KBNImpl nodes. Feasibility is assured through providing

upper bounds of the rates of MO’s that can be stored by the policy server. These are well within

8978"

13083"

17137"

20478"

23272"

103" 112" 177" 150" 197"

3503"

6276"

8742"

11016"

13595"

0"

5000"

10000"

15000"

20000"

25000"

500" 1000" 1500" 2000" 2500"Co
m
p
le
te
$T
im
e$
ta
k
e$
to
$E
xe
cu
te
$P
ol
ic
ie
s$

(m
s)
$

NumberofMOs$executed$against$

Subscriber"Policies" Broker"Policies" Publisher"Policies"

 126

the experimental bounds of KBNCluster. Further engineering of the policy server could increase

this value, the number of MO’s possible to store, as needed. This experiment has shown that the

implemented policy server can perform in line with the experimental bounds of this thesis. It does

not evaluate the policy server at an Internet scale.

6.4.1.3 Conclusion

In this sub-section the first experiment 6.4.1.1 (Memory Footprint) has shown that the memory

usage of the policy system is only slightly affected by the cost of processing and storing a wide

range of incoming MO messages. The memory footprint of the MIB rises only 0.2MB when the

number of incoming messages is increased from 500 to 2500 (Figure 26). It is concluded from

this data that the cost of storing MOs on the policy server only increases slightly as the number of

MOs increases and scales well.

From the second experiment 6.4.1.2 (Policy Execution Timing) it is concluded that using the

Drools rules accumulate and iterate functions in rule operation greatly out-performs passing

single objects to the rule engine.

However, regardless of the way in which the objects are processed, the processing time scales

linearly with the number of rules and number of MOs being evaluated, though with non-trivial

execution delays emerging, which must be considered in the operational configuration of

KBNCluster.

6.4.2 Data Collection Costs

KBNCluster provides thirteen sample policies for clustering, included in Appendix C. Two of

these thirteen policy rules require management information requested (by the policy server) from

the brokers themselves and are stored as MOs on the policy server. This section evaluates the cost

of collecting this management information from these brokers.

The policy server subscribes to the trigger broker with subscriptions to future management

updates, from the brokers, publishers and subscribers. There are two management request

messages that could be utilised in clustering and that require the broker to publish management

information regarding their operational status. These are defined as Management Message 1

(MgntMsg1) and Management Message 2 (MgntMsg2). In this section, the cost of requesting

these messages is evaluated and both messages are introduced in the next two sub-sections in turn.

Three values are evaluated across a broker network, while a range of management messages are

requested, in order to assess the impact on regular KBNImpl operation while supporting the

management data monitoring needed for KBNCluster policy management. These are:

 127

• Average subscription processing times: The time taken to process incoming

subscriptions and store these in a broker’s subscription tree.

• Average publication processing times: The time taken to process incoming publications

against a number of stored subscriptions.

• Average end-to-end delivery: The time taken from a publication’s submission through

to its delivery to an interested subscriber.

The next two sections (6.4.2.1 and 6.4.2.2) introduce Management Message 1 and Management

Message 2 respectively. Following this sections (6.4.2.4, 6.4.2.5 and 6.4.2.6,) evaluate

subscription processing times, publication processing times and end-to-end delivery times

respectively against the two types of management message. Section 6.4.2.3 dealing with Standard

Error calculation, based on the set of standard deviations.

6.4.2.1 Management Method 1

Action required by the broker:

Create MedoidCollectionAL ArrayList:

Create SET of ALL Subscribers(where semantic subscribers)

For (each in SET){

 Create new SemanticSubObj(Subscriber)

 Create new RepresentativeMedoid(SemanticSubObj);

 Add RepresentativeMedoid to MedoidCollectionAL();

}

Code Example 17: Request Medoid

Shown in Code Example 17 is the pseudo-code representation of what is executed when a request

for MgntMsg1 is received by a broker. This requires a broker to enumerate their complete set of

semantic subscribers into a number (n) of distinct representative Medoids where n is dictated by

the policy server. This collection of representative Medoids is calculated by grouping and pair-

wise merging the semantic representation (Medoids) of the brokers semantic subscribers, as

shown in Code Example 18.

 numbOfRepresentativeMedoids definedBy POLICY_SERVER;

 MedoidCollectionAL defined in Previous Step;

While (MedoidCollectionAL > numberOfRepresentativeMedoids){

Start = Rep Medoid with smallest average semantic Spread;

//Remove Start from MedoidCollectionAL;

End = Rep Medoid with closest Medoid to Start;

//Merge the two representative Medoids.

Start.merge(end);

 128

Remove(end);

MedoidCollectionAL.insert(Start);

 }

return MedoidCollectionAL;

Code Example 18: Reduce down to N clusters

Each response to the policy server, by each broker, contains the cluster’s name, the cluster’s

Medoid and associated semantic spread of this Medoid. This information represents the broker

and all of the broker’s clients in a single Medoid. The semantic spread of the Medoid is the

standard deviation of the mean average from the Medoid to all other entries in a set of query

values. With this information the policy system is able to identify the semantic Medoid or

semantic make-up of every broker in the network, used if a broker-first approach to clustering is

utilised.

6.4.2.2 Management Method 2

Action required by the broker:

Using the process outlined in POLICY_2 calculate 1 Cluster;

Also Calculate brokers:

 Hierarchical Server location;

 Number of Active Subscriptions;

 Number of Notifications Delivered;

 Single Clusters Medoid;

 Single Clusters Medoid Spread;

Return all values to Policy Server;

Code Example 19: Request Medoid Info

The second message request to the broker is defined as Management Message 2 (MgntMsg2)

shown in Code Example 19. MgntMsg2 requests utilisation reports from brokers, and contains

information about the brokers, subscribers, publishers and notification delivery metrics of the

broker as well as a single Medoid for the broker and its associated standard deviation. This is, in

broker first clustering, used to calculate the accuracy of the client’s placement with that broker.

In the rest of this section the costs involved in calculating the average publication processing time,

average subscription processing time, and end-to-end delivery time, is measured, whilst a range of

management message 1 and 2 are requested by the policy server from a broker over a period of

experimentation.

 129

6.4.2.3 Standard Error Calculation

In subsequent experiments (6.4.2.4, 6.4.2.5 and 6.4.2.6) the mean of mean calculations from five

experimental runs are shown in Figure 28, Figure 29 and Figure 30. The standard error for each of

these data points is calculated, as below, against the set of standard deviations.

SUM (SET OF STANDARD DEVIATIONS) / Square Root (Num data points)

The above calculation provides the standard error variation from the mean of means for each of

the experiments and is seen as being the sampling variance of the complete set of standard

deviations. The formula used in calculating the standard error can be referenced in [53].

Where a single standard deviation represents the variance in a mean value of a set of data points,

the standard error shows both the variance across the set of means and standard deviations. From

this standard error calculation, it is possible to assess the accuracy of the mean of means, based on

the difference between the mean and the standard error (both plus and minus).

This calculation, and the standard errors for each experiment are shown in Table 19, Table 21 and

Table 23 for each of the experiments conducted as part of this section.

 130

6.4.2.4 Subscription Processing Times

This experiment looks at the overhead involved in processing and storing subscriptions whilst the

policy server is requesting a range of management messages. This experiment was designed to

determine how the time taken to process and store incoming subscriptions in the KBNImpl broker

scaled as the rate of management requests increased. Shown in Table 18 are the experimental

metrics used in all experiments conducted as part of this section. Again please refer to Section

6.1.3 for detailed discussion behind each of these terms.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
5 1
 No of

subscribers:

No of subscription

Filters:

No of subscription
attributes:

Sub frequency:

500 1 2-5 9ms

No of publishers: No of publications: No of publication

attributes:
Pub
freq:

No of
notifications:

N/A N/A N/A N/A N/A
Table 18: Experimental set-up metrics used in experiments

The policy server requests n management messages (alternating between the 2 types of

management messages) from the broker over a period of one minute, as publications are also sent

into the broker. The broker receives no incoming publications during this experiment; the only

measurement is the storing of incoming subscriptions.

Shown in Figure 28 and Table 19 is that the mean time taken to process incoming subscriptions

increasing from around 6.6ms when no management messages are being requested to around

20ms when 10 management messages per min are being requested. Showing that as more

management messages are requested the speed at which incoming subscriptions are processed

decreases.

It is clear that, as management requests increase, the subscription processing performance of the

KBNImpl broker decreases, indicating the performance overhead that this management function

imposes on the core network well above any acceptable threshold.

 131

Figure 28: Average Subscription Processing Times (ms)

Number of Mgnt Msg Requested per min
0 2 4 6 8 10

Management Message Type 1 - Standard Error
1.65 11.33 15.91 22.94 29.40 26.57

Management Message Type 2 - Standard Error
3.98 55.46 44.83 63.45 70.57 81.64
Table 19: Standard Error Subscription Processing Times (ms)

6.4.2.5 Publication Processing Times

This experiment was conducted to establish the effect that requesting management information

has upon the time taken by a broker to process publications against stored subscriptions, in

KBNImpl. The processing time measured is calculated from the point when a publication is

received to when it has been matched against the complete set of subscriptions held by a broker.

This experiment was designed to determine, in line with the previous experiment, the impact on

the publication processing time taken by a broker as management message requests increase.

Shown in Table 20 are the experimental metrics used in all experiments conducted as part of this

section.

In the bootstrap phase of this experiment a single broker is populated with a number of

subscribers. The policy server and publisher client both then start at the same time. The policy

server requests n management messages (alternating between the 2 types of management

messages) from the broker over a period of one minute, as publications are sent into the broker.

6.57"

9.29"

11.77"

14.83"

18.32"
19.37"

6.59"

8.67"

13.72"
14.76"

18.33"

23.08"

5.00"

7.00"

9.00"

11.00"

13.00"

15.00"

17.00"

19.00"

21.00"

23.00"

25.00"

0" 2" 4" 6" 8" 10"

T
im
e$
T
ak
en
$t
o$
P
ro
ce
ss
$(
m
s)
$

RateofManagment$Msgs$perMin

Sub"Proc"Time"(Mgt"Msg"1)" Sub"Proc"Time"(Mgt"Msg"2)"

 132

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
5 1

No of

subscribers:

No of subscription

Filters:

No of subscription
attributes:

Sub frequency:

500 1 2-5 9ms
 No of publishers: No of publications: No of publication

attributes:
Pub
freq:

No of
notifications:

120 1 2-5 250ms 35
Table 20: Experimental set-up metrics used in experiments

Figure 29: Average Publication Processing Times (ms)

Number of Mgnt Msg Requested per min
0 2 4 6 8 10

Management Message Type 1 - Standard Error
3.28 253.15 313.50 347.56 388.20 409.66

Management Message Type 2 - Standard Error
3.03 258.92 299.95 388.98 401.77 408.73
Table 21: Standard Error Publication Processing Times (ms)

Shown in Figure 29 and Table 21 is the baseline measurement (with no management messages

being requested) of around 6 milliseconds to process a publication, which grows to around 700

milliseconds when 10 management messages are requested over a period of one minute. This is

roughly a 100-fold increase and shows the load placed upon the broker publication processing

functions while calculating and delivering management information. In line with the previous

experiment this set of data shows a large increase in the time taken to process incoming

publications against stored subscriptions, as they arrive at the broker, whilst two different

management requests are being made from the broker. Each time a management message is

requested the broker has to perform multiple measurements of their subscription tree, in

6.61"

187.74"

310.17"

418.81"

590.16"

727.52"

6.39"

194.26"

292.11"

504.01"

615.84"

720.32"

0.00"

100.00"

200.00"

300.00"

400.00"

500.00"

600.00"

700.00"

800.00"

0" 2" 4" 6" 8" 10"

T
im
e$
T
ak
en
$t
o$
P
ro
ce
ss
$(
m
s)
$

RateofMangment$Msgs$perMin
Pub"Proc"Time"(Mgt"Msg"1)" Pub"Proc"Time"(Mgt"Msg"2)"

 133

calculating the metrics required to fulfil the request for management information. These requests

have a clearly huge and negative impact upon the performance of the broker. A 100-fold increase

in publication processing times when 10 management requests are requested is unjustified in any

performance analysis. This is especially true when compared with the results of Section 6.4.1.3

which shows that management request processing has a much larger impact on publication

processing time than sub processing as the broker is both processing incoming publications

against stored subscriptions and calculating the response to management message requests, well

above any acceptable threshold. However in a final experiment conducted as part of this sub-

section publication to subscription delivery times are measured.

6.4.2.6 Pub-to-Sub Delivery Times

The previous experiment looked at the time to process incoming publications against stored

subscriptions in the broker itself. This experiment evaluates the end-to-end delivery time of a

number of publications through a broker while a varying number of management messages are

being requested. The period is measured from the point at which the publication was created in

the publishing client to it being delivered to the subscriber. This experiment, in line with the two

previous experiments is designed to determine the impact on the total time taken to deliver

publications from publishers to subscribers, as the rate of management message requests also

increases.

Shown in Table 22 are the experimental metrics used in all experiments conducted as part of

Section 6.4.2.6. In the bootstrap phase a broker is populated with n subscribers. Once populated,

publications are submitted over a period of one minute whilst n’ management messages

(alternating between the 2 types of management messages) are requested from the broker over the

same period, as publications are also sent into the broker.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
5 1
 No of

subscribers:

No of subscription

Filters:

No of subscription
attributes:

Sub frequency:

500 1 2-5 9ms

No of publishers: No of publications: No of publication

attributes:
Pub
freq:

No of
notifications:

120 1 2-5 250ms 35
Table 22: Experimental set-up metrics used in experiments

 134

Figure 30: End-to-End Delivery Time (ms)

Number of Mgnt Msg Requested per min
0 2 4 6 8 10

Management Message Type 1 - Standard Error
7.04 258.89 314.09 358.83 392.55 399.27

Management Message Type 2 - Standard Error
8.63 271.38 343.20 358.98 396.98 406.80

Table 23: Standard Error End-to-End Delivery Times (ms)

Figure 30 and Table 23 show an increase in end-to-end delivery costs, consistent with the trend

observed for average publication processing times shown in Figure 29. Again this experiment has

shown that as the rate of management messages increases, so does the time taken to deliver

messages from publisher to subscriber, across the broker on which management requests are

being made. Therefore management message requests are shown to degrade performance outside

of any definition of acceptable performance.

6.4.2.7 Conclusion

This section of evaluation has shown that ten management messages requested from the broker

network over the period of one minute results in:

1. An increase in the cost of the subscription processing time (of around 20ms).

2. An increase in publication processing time (of around 700ms).

3. An increase in end-to-end publication to subscription delivery time (of around 700ms).

From this it is concluded that the costs involved in subscription and publication processing and

end-to-end delivery increase unsatisfactorily. Even with 2 management requests per minute data

performance impacted severely upon performance. From evaluation it was shown that there was

no justifiable rate at which management message requests could be satisfied. The data requests

were unacceptable at any rate of management requests. Another approach was required.

15.43"

225.38"

343.29"

456.22"

605.89"

714.04"

15.55"

249.49"

387.91"

502.91"

689.41"
757.13"

0.00"

100.00"

200.00"

300.00"

400.00"

500.00"

600.00"

700.00"

800.00"

0" 2" 4" 6" 8" 10"

T
im
e$
T
ak
en
$(
m
s)
$t
o$
D
el
iv
er
$(
So
u
rc
e$

@>
$D
es
ti
n
at
io
n
)$

RateofMangment$Msgs$perMin
End8to8End"Devliery"Time"(Mgt"Msg"1)" End8to8End"Devliery"Time"(Mgt"Msg"2)"

 135

Such increases in costs led to this work and the KBNCluster implementation taking a client first

approach to clustering, moving subscribers and publishers around static clusters of brokers,

dividing and sharing these costs between clients. In KBNCluster Subscribers have their Medoids

calculated for them, by message brokers, as they attach to the broker whereas publishers calculate

their own Medoid and report this back, to the policy server, for clustering.

The reason for this design decision was the rapidly increasing costs associated with the normal

operation of the message broker as a number of management messages requested increased.

Rather than one broker calculating the Medoid of multiple clients on request of the policy server,

the subscribers are processed as they arrive at the broker, typically a relatively rare event, and all

publisher calculations, which occur relatively frequently on the publishers themselves. Thus this

management overhead is pushed onto the relatively more abundant client resources, rather than

the scarcer broker resources, where the impact on the general performance level of a single

Medoid calculation will be greater.

In the next section of this thesis the time costs involved in introducing mobility to brokers,

subscribers and publishers are evaluated. This explores how the introduction of movement

methods relates to the operational performance of a broker network.

 136

6.4.3 Mobility Costs

KBNImpl operates in a relatively static operational configuration, resulting from the underlying

routing mechanism of the Siena CBN on which it is built. This in functional terms makes it very

difficult for the subscribers and brokers of the network to be mobile. For dynamic clustering to

occur a broker needs to be able to move itself across the network, move its subscribers to other

brokers, and merge itself with other brokers across the network. In the KBNImpl code base, there

existed a single method by which a broker and all the broker’s attached subscribers could be

moved. However the following methods have been implemented as part of KBNCluster:

1. Move whole broker and all subscribers to become a child of another broker.

2. Move one, some or all subscribers, using their ID, to another broker, a new KBNImpl

feature.

However with both of the above and throughout this complete section the following assumption is

made: When a movement process is instigated, message delivery is not guaranteed from the

point the movement process begins until it completes. This is true as publications travel upwards

to the root node of the broker hierarchy and then back down towards child nodes, as necessary.

While a subscriber is moving from branch to branch, they may miss publications that have

already traversed the branch to which they are moving. This is a worst-case scenario. However,

use of the above presumption allows us to measure performance of movement unambiguously

with respect to message delivery. Below are example Subscriptions used in this experiment

(OntClass0 @<"http://confOf#Poster" OntClass1 @>"http://confOf#Author" ontInstance2

@="http://confOf#Administrative_event" ontInstance3

@="http://confOf#Reviewing_results_event" ontInstance4

@="http://confOf#Submission_event")

(OntClass5 @<"http://confOf#Short_paper" ontInstance6 @="http://confOf#North_America"

ontInstance7 @="http://confOf#Workshop")

(OntClass8 @>"http://confOf#Social_event" OntClass9

@<"http://confOf#Administrative_event" OntClass10 @>"http://confOf#Asia" ontInstance11

@="http://confOf#Poster" ontInstance12 @="http://confOf#Student" ontInstance13

@="http://confOf#Registration_of_participants_event")

(OntClass14 @>"http://confOf#Camera_Ready_event" ontInstance15

@="http://confOf#Member" ontInstance16 @="http://confOf#Member")

(OntClass17 @>"http://confOf#Europe" ontInstance18 @="http://confOf#Organization"

ontInstance19 @="http://confOf#Reception")

Code Example 20: Example Subscriptions used within the Section

 137

6.4.3.1 Moving Broker & Moving All Subscribers

This experiment was conducted to establish which of the two approaches was the most cost

efficient: moving a broker and all attached subscribers or moving all subscribers individually.

Each movement time is measured, as the period from when a broker is instructed to move until

the time the action is fully complete. Shown in Table 24 are the experimental metrics used in all

experiments conducted as part of Section 6.4.3.1. Code Example 20 presents example

subscriptions used across this experiment.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers:
5 2 (Source and Desintation)
 No of

subscribers:

No of subscription

Filters:

No of
subscription
attributes:

Sub frequency:

200-1000 2 1-6 9ms

No of publishers: No of publications: No of

publication
attributes:

Pub
freq:

No of
notifications:

N/A N/A N/A N/A N/A
Table 24: Experimental set-up metrics used in experiments

Shown in Figure 31 are the times taken to move a broker and all attached subscribers compared to

the times taken to move just subscribers. When moving the broker and all subscribers, a single

instruction is issued to the broker and the broker un-subscribes all top-level subscribers from its

parent and moves its master link to its newly defined master. In contrast to this when moving all

subscribers the broker instructs each subscriber to move individually and where to move to. The

subscribers then instigate this movement by themselves.

The slightly non-linear growth, in both plots, is attributed to the random distribution (1-6) of the

attributes contained in the complete set of subscriptions, used in each experiment. In some

experiments more subscribers with more subscription attributes could be moved in less time, due

to the smaller number and less complex subscriptions of those subscribers, hence non-linear

growth.

 138

Figure 31: Moving Broker & All Subs and Moving All Subs Individually

Num of
Subscribers:

Mean Time to
Move Broker +

Subs (ms):

Std
Dev:

Mean Time to
Move All Subs

Individually
(ms):

Std Dev:

200 3562 387.96 5126 979
400 4496 327.45 12933 1367
600 7496 680.15 15838 1854
800 7324 877.27 14549 1384

1000 9550 1011.75 16335 1286
Table 25: Experimental Data

In conclusion, this experiment has shown, as shown in Figure 31, that it is more costly, in terms

of time, to move each subscriber attached to a broker individually than it is to move the whole

broker and all subscribers at once. This is attributed to the fact that the broker can move all the

subscriptions of its attached subscribers in one go, as root subscriptions, to a new master, keeping

its connections to all of its individual subscribers alive as opposed to subscribers un-subscribing,

changing master brokers, and re-subscribing, for each subscriber in turn.

This experiment supports a broker-based approach to KBNCluster where the last set of

experiments (Section 6.4.2) supports a client-first approach. Even though this is true, in the design

of KBNCluster it was decided that the management message collection costs, previously

evaluated, were too high to incorporate into implementation in comparison to the difference

between a broker-first and client-first approach to movement. Therefore KBNCluster takes a

client (subscriber-based) approach to movement, rather than a broker (and all subscribers) based

approach, due to the substantial decrease in the performance of the KBNImpl, when management

messages are requested during operation. In summary, increases in subscriber- to broker-based

movement costs are less than costs involved in collecting the management data used in clustering

brokers, as shown in the last experiment (Section 6.4.2) and so incorporated into design.

3562"
4496"

7496" 7324"

9550"

5126"

12933"

15838"
14549"

16335"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

200" 400" 600" 800" 1000"

T
ot
al
$T
im
e$
T
ak
en
$t
o$
M
ov
e$
(m
s)
:$

NumberofSubscribers$(2$SubscriptionsperSubscriber):$

Move"Broker"And"All"Subs" Move"All"Subs"

 139

6.5 Dynamic Clustering Evaluation

Clustering has previously been defined as the process of grouping publishers and subscribers

around brokers that share common interests. The static process previously evaluated involves

each client being manually configured by a network manager to be placed into the most suitable

cluster. The concept of managed dynamic clustering involves the dynamic placement of

publishers and subscribers into the most suitable clusters. In KBNCluster this process is

performed by the policy server, providing managed dynamic clustering, evaluated in this thesis.

In this section a managed, clustered topology (KBNCluster) is compared to an un-clustered

topology (KBNImpl). The network of eleven Brokers used within all experiments, is shown in

Figure 32.

Figure 32: Dynamic Clustering - Server Topology

In both clustered (KBNCluster) and un-clustered (KBNImpl) experiments the same set of

publications and subscriptions are used, in the same order of usage, and with the same clients,

included in Appendix D. For both the clustered and un-clustered systems the following three key

markers of performance are evaluated:

• A smaller more ordered subscription set is easier to search, particularly with more complex

ontological subscriptions,

• With a smaller hop count, a message is delivered to its destination by travelling through fewer

brokers, thereby reducing overall routing overhead,

• Finally clients residing in the least suitable cluster can be identified, via the number of hops

taken to deliver their messages and re-clustered.

 140

6.5.1 Experimental Metrics

Shown in Table 26 are the experimental metrics used in all experiments conducted as part of

Section 6.5.2, 6.5.3 and 6.5.4. In the first experiment 6.5.2 no publications are used as only

subscription tree size is being evaluated.

Shown in Code Example 21 and Code Example 22 are example subscriptions and publications

used throughout this section. Real user data sets of publish/subscribe systems are hard, if not

impossible, to come by, hence the evaluation conducted as part of this section does not

manipulate or manage semantic similarity between the elements of subscriptions. Subscriptions

are randomly created from attributes sourced across the ontology so that any experimental bias in

the subscription sets is removed.

EXPERIMENT SET-UP METRICS
No of runs: No of brokers: Number of Clusters = 11.
1 11
 No of

subscribers:

No of subscription

Filters:

No of subscription
attributes:

Sub frequency:

250 2 1-6 9ms
 No of publishers: No of publications: No of publication

attributes:
Pub
freq:

No of
notifications:

1000 1 1-5 250ms 98
Table 26: Experimental set-up metrics used in experiments

(OntClass @<"http://confOf#Reviewing_results_event" OntClass @<"http://confOf#Banquet"
ontInstance @="http://confOf#Reception" ontInstance @="http://confOf#Contribution")
(OntClass @>"http://confOf#South_America" ontInstance @="http://confOf#Trip"
ontInstance @="http://confOf#Topic")
(OntClass @<"http://confOf#Person" OntClass @>"http://confOf#Tutorial" ontInstance
@="http://confOf#Africa" ontInstance @="http://confOf#University")
(OntClass @<"http://confOf#Contribution" ontInstance @="http://confOf#Event"
ontInstance @="http://confOf#Conference")
(OntClass @>"http://confOf#Author" OntClass @<"http://confOf#Country" ontInstance
@="http://confOf#Asia" ontInstance @="http://confOf#Assistant" ontInstance
@="http://confOf#Reviewing_event")

Code Example 21: Dynamic Clustering, example subscriptions

(OntClass ="http://confOf#Administrative_event" ontInstance="http://confOf#Short_paper_19")
(OntClass ="http://confOf#North_America" ontInstance="http://confOf#Fomal_Methods")
(OntClass ="http://confOf#City" ontInstance="http://confOf#Carlow")
(OntClass ="http://confOf#Administrator" ontInstance="http://confOf#Lewis_Dave")
(OntClass ="http://confOf#Contribution" ontInstance="http://confOf#Dynaism")

Code Example 22: Dynamic Clustering, example publications

6.5.2 Subscription Tree Size

In this experiment the subscription set of brokers when clustered (KBNCluster) and un-clustered

(KBNImpl) are evaluated. In this experiment the root subscription tree size is evaluated

representing the total number of subscriptions, which cannot be merged into more general, root

 141

subscriptions in both a clustered (KBNCluster) and un-clustered (KBNImpl) topology. This

experiment was conducted to establish whether, when clustering is applied to the broker network,

the number of root subscriptions received by the network of brokers is reduced. In this experiment

subscriptions and publications are sent to specific brokers either via an un-constrained choice

(KBNImpl) or via a dynamic managed choice (KBNCluster). The attributes of the messages were

randomly chosen, in that there was no relationship between similarity of concepts in publications

or subscriptions; they were randomly selected from the source ontology.

Figure 33: Root Subscription Tree Size (Clustered and un-clustered)

Shown in Figure 33 are the root subscriptions of each of the eleven brokers in the broker

hierarchy shown in Figure 32. Root subscriptions are on average 2 messages less per broker,

when clustered, than in comparison to total subscriptions. This low level of clustering is

established as a worst case result attributed to the random choice of subscription filters, where

subscriptions do not cover all or more of the attributes of other subscriptions. The numbers of

attributes within each subscription was limited to between 1-5 randomly chosen values. Such

restrictions and randomness in the subscription set results in a much lower occurrence of

covering, or chances of covering occurring, in comparison to real user subscribers, which are less

random in nature and which share more common concepts.

It is important to note that the level of covering shown in this experiment is smaller than that

present in Experiment 6.2 (Static Approach to Clustering) where in motivating clustering more

emphasis was placed on crafting subscriptions with similar interests, using a manual, static

approach However, with randomly created subscriptions, covering is improved, if only slightly, in

6 of the 11 brokers used. Most importantly the top three brokers, 1,2 and 3 all see reductions in

201"

112"

80"

61"

43"

21"

45"

23"
28"

8"
0"

208"

117"

103"

67"

31"
21"

63"

21" 17"
25" 27"

0"

50"

100"

150"

200"

250"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11"

R
oo
t$
Su
b
sc
ri
p
ti
on
$T
re
e$
Si
ze
$

Broker$

Clustered:" Un8Clustered:"

 142

their root subscriptions. Root subscriptions are passed up the broker hierarchy towards top level

brokers in KBNImpl operation so the fewer root subscriptions received by the top level brokers in

the network is seen as an indication of how well subscriptions, below these top level nodes, are

covering one another.

In conclusion, this worst case scenario, of randomly created subscriptions still results in increased,

if only slight, covering across more than 50% of the brokers in the network. It is argued and

predicted that with more realistic real-world data sets, or a wide-scale user study of publication

and subscription generation, the data representing subscription covering would continue to show

improvements.

6.5.3 Hop Count in Delivery

In this experiment dynamic clustering is evaluated. In this process subscribers subscribe to a

randomly chosen broker with their individual subscription. The broker then forwards a subscriber

information message (containing the subscriber’s Medoid) to the policy server via the trigger

broker. The policy server uses this to calculate where the subscriber should be placed and

forwards this decision back to the subscriber’s parent broker. It is subsequently the responsibility

of this broker to notify the subscriber of its newly calculated matching broker, instructing the

subscriber to move, the subscriber disconnecting and re-connecting.

In contrast to the approach taken by subscribers, each publisher calculates its Medoid and

forwards this information directly to the policy server, via the trigger broker, before their first

publication. The policy server advises the publisher as to where in the network they should

publish based on their Medoid, addressed to the publishers UUID.

This experiment was run twice. In the first un-clustered (KBNImpl) experiment clients publish

and subscribe to random brokers within the network. In the second clustered experiment

(KBNCluster) the subscribers and publishers are placed by the policy server around brokers that

match their interests. In both experiments the hop count is recorded for the delivery of the same

set of publications to subscribers. Hop count in delivery is seen as key to the evaluation of

KBNCluster. The number of hops between source publication and subscriber is a direct indicator

of the accuracy of the placement of clients into clusters. Therefore this experiment was conducted

to establish the effect of clustering on the number of hops taken to deliver messages across a

broker network of eleven brokers.

Shown in Figure 34 in histogram format are the percentages of messages delivered across each

number of hops for both a clustered (KBNCluster) and an un-clustered (KBNImpl) network. The

data indicates that through the introduction of clustering, the number of hops over which a

message passes when being delivered from source to destination is dramatically reduced. Shown

 143

in the data is that the mean hop count in the clustered experiment being 2.06 hops, with a standard

deviation of 1.80. For the un-clustered experiment the mean hop count was 3.99 hops with a

standard deviation of 1.57. KBNCluster has shown to reduce the mean number of hops, with the

same set of subscription and publication data, by 50%.

Figure 34: Hop Count - Clustered and Un-Clustered Topology

It is interesting to note that an anomaly occurs with regard to the publications requiring 6+7 hops

(full traversal of the network). In the clustered experiment 8% of the messages are still delivered

over 6 and 7 hops, while only ~4% require 6-7 hops in the un-clustered network. This data

anomaly is attributed to the random nature of the creation of subscriptions and publications across

the ontology and their potential placement in polar opposite clusters across the network. Medoids

are calculated from the semantic subscriptions and publications of their clients. If the policy

server receives a subscription with ontological attributes that are all extremely distant from one

another and not particularly suitable, then the client may be placed in a cluster that results in a

large number of hops for matching publications, hence the disparity in results.

This experiment has shown that KBNCluster reduces the number of hops taken in routing

messages from publisher to subscriber in when compared to KBNImpl. Hop count has been used

in this thesis as a major characteristic of the performance of the KBNImpl, when compared

against the total number of brokers in the network. This experiment has shown that a clustered

KBNImpl, KBNCluster, reduces the number of hops, across the whole network, taken in routing

publications to subscribers when compared to KBNImpl. It is important to note that the hop count

metric is only presented using a client-first approach to clustering. The high degradation of

0%"

10%"

20%"

30%"

40%"

50%"

60%"

70%"

80%"

90%"

100%"

Clustered$ Un@clustered$

7$Hops$

6$Hops$

5$Hops$

4$Hops$

3$Hops$

2$Hops$

1Hop

 144

performance associated with management messages requests, as shown in section 6.4.2 have been

negated by having clients calculate their own semantic interests and forward these to the policy

server. The hop count data is valid for a client first approach where the load placed on

management in spread out to the edges of the network, the clients, as opposed to being placed

directly upon the brokers.

6.5.4 Re-Clustering

The previous section has indicated that the approach taken in KBNCluster to the dynamic

placement of clients into clusters substantially improves performance in terms of publication

delivery hop count. However, there still remain a small number of clients that would benefit from

re-clustering.

This experiment was conducted to explore the behaviour when, as clients’ interests change, or if

they are identified as being resident in a misplaced cluster, they are re-clustered by the policy

server. This experiment is designed to show the impact of a policy to re-cluster clients if the hop

count they experience in average message delivery was outside a specified range.

The policy server collects and monitors the mean hop counts required to deliver publications to

individual subscribers from subscribers. This monitoring process allows for decisions to be made

as to whether a subscriber has been misplaced into a cluster. If identified as residing in a sub-

optimal cluster, the policy server re-examines the Medoid of the subscriber, searching for a more

suitable cluster. The initial steps involved in this process are as follows:

1. Subscribers are initially clustered around brokers.

2. Publishers are initially clustered around brokers.

3. Notifications are delivered to subscribers, across the broker network.

4. Subscribers periodically inform the policy server, based on a timer activated policy, of the

mean number of hops taken to deliver their notifications and the standard deviation of this

mean value.

Step 4, above allows the policy server to identify that a subscribing client is in a sub-optimal

cluster. However before the client can be re-clustered a client’s subscription (and thus their

Medoid) must reflect any change in their interests.

In KBNCluster if no change has occurred in their subscription then the client will be relocated

back into the original cluster into which it resided. Until a subscriber’s subscription changes, their

cluster will not change. If however the client Medoid changes, after being identified as being in a

sub-optimal cluster, the following occurs on the policy server:

1. Recalculation of the client’s placement into a new cluster based on their new Medoid.

2. Continual monitoring of subscribers with excessive hop counts in notifications.

 145

As the process for identification of clients in the wrong cluster reoccurs at scheduled intervals, it

is assured that clients (identified as being in a sub-optimal cluster) will be re-clustered at some

point in the future when their Medoid changes. With regard to publishers, it is the responsibility

of publishing clients (after their initial clustering) to indicate to the policy server a change of

interests and push to the policy server their new Medoid as a basis for being re-clustered.

In Figure 35 the mean of each subscriber’s delivered notifications are plotted. From this data we

can conclude that, with regard clustering:

• 71% of subscribers had messages delivered from a mean of between 1 to 2 hops.

• 14.5% of subscribers had messages delivered from a mean of between 2 to 4 hops.

• 14.5% of subscribers had messages delivered from a mean of between 6 to 7 hops.

Figure 35: Mean Hop Count in Delivery for Each Subscriber

With regard to re-clustering, the data suggested that four of the subscribers were placed in clusters

that possibly do not suit their interests (subscribers 3,5,8,11). In KBNCluster a policy rule

determines that anything higher than 1.5 mean hops, for the given topology of eleven brokers, is

too high. Given the data set plotted in Figure 35 we can discern that subscribers 3, 5, 8 and 11 are

misplaced. Shown in Code Example 23 are the messages received by the four subscribers,

instructing them that the policy server has determined they may be in the wrong cluster and that

they should re-submit their subscriber information to the policy server for a possible re-placement.

Should a subscriber receive a re-cluster message, as shown in Code Example 23, the subscriber

re-submits their Medoid to the policy server. The policy server would then decide to re-cluster the

subscriber to establish if the subscriber should reside in another more suitable cluster.

0"

1"

2"

3"

4"

5"

6"

7"

8"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14"

M
ea
n
$H
op
$C
ou
n
t$

Subscriber$(Receiving$NotiRications)$

 146

(UUID="TC:b562dd72.c.(mahler.cs.tcd.ie/127.0.1.1)1977220433" reCluster=true)
(UUID="TC:b562dd72.69.(mahler.cs.tcd.ie/127.0.1.1)1109376982" reCluster=true)
(UUID="TC:b562dd72.77.(mahler.cs.tcd.ie/127.0.1.1)1320864185" reCluster=true)
(UUID="TC:b562dd72.3f.(mahler.cs.tcd.ie/127.0.1.1)161514210" reCluster=true)

Code Example 23: Re-cluster Messages received by Subscribers

This experiment has shown in Figure 35 and Code Example 23 that subscribers have been

identified as residing in a sub-optimal cluster based on policy rule, and that these subscribers have

been notified to request re-clustering.

6.5.5 Conclusion

In conclusion this section has shown that the subscription tree size of brokers can be reduced,

somewhat when brokers, publishers and subscribers are clustered in KBNCluster. In addition to

this it has also been shown that clustering reduces the number of hops taken to deliver

notifications. Finally it has been shown that the introduction of clustering has been extended to

include the identification of clients, through usage reports, residing in a sub-optimal cluster and

their subsequent, re-clustering.

 147

6.6 Overall Conclusion

In this chapter six sets of experiments were introduced. Each experiment builds upon the previous

in order to address the research question and objectives of this thesis. In this final section, the

main findings from each experiment are outlined.

In Section 6.2, with regard to motivating static clustering, it has been demonstrated that a

static approach to clustering supported continued investigation into the effect that clustering has

upon KBNImpl, motivating the evaluation conducted as part of the rest of this chapter.

In Section 6.3, with regard to the evaluation of KBNImpl operational costs, it has been shown

that different ontological operators have different costs associated with their use and that larger

subscription trees take longer to search, particularly when using semantic subscriptions. Thus

when clustered, the number of hops taken to deliver publications is reduced.

In Section 6.4.1, with regard to data storage and policy execution costs, it has been shown that

the amount of memory and upper bounds of MIB updates / inserts updates well, in comparison to

the experimental bounds placed upon KBNCluster (as shown in Section 6.1.3.) It is also shown

that both the time taken to execute an increasing number of policies against MOs and the

difference in time taken to execute various different policies scales well, again when compared to

experimentation bounds placed upon KBNCluster.

In Section 6.4.2, with regard to data collection costs, it has been shown that overall

performance decreases, in terms of subscription processing times, publication processing times

and publication to subscription delivery times, as the rate of requests for management information

increases. From this data a client first methodology to clustering subscribers and publishers,

around a relatively static broker network, is motivated, as discussed in Section 6.4.2.7.

In Section 6.4.3, with regard to client mobility, it has been shown that it is more efficient to

move a broker and all its attached subscribers than it is to move each individual subscriber from a

broker. However the increased cost of moving individual subscribers, is offset against the cost of

collecting management data from brokers, as discussed in Section 6.4.2. This finding further

justifies KBNCluster using a client-first approach to clustering.

In Section 6.5, with regard to an overall evaluation of KBNCluster, it has been shown that the

root subscription tree of most brokers (6 out of 11) has been reduced when a dynamic approach to

clustering is taken. Although not as pronounced as possible, this is attributed to the random

creation of subscriptions and publications. However, offsetting this, in the final evaluation

conducted into hop counts, it has been shown that through clustering the hop count taken in

message delivery is dramatically reduced when KBNCluster is compared to KBNImpl side-by-

 148

side and importantly that clients, residing in a sub-optimal cluster, are identified and asked to re-

cluster.

In the previous section 6.5 a fully dynamic client-first clustered topology is compared to a

completely un-clustered and un-constrained broker network. In the last section of evaluation a

clustered topology is compared to an un-clustered topology in terms of subscription tree size, hop

count and the identification of clients requiring re-clustering. The data collection costs are not

evaluated as the approach of management message requests and brokers satisfying these requests

was dropped in favour of a client first approach to management data collection. In such a

topology no additional load is placed on the broker networks, clients share the cost of

management message calculation.

The concluding chapter readdresses the evaluation findings in terms of the research question and

objectives of this thesis. From this discussion it is argued that managed dynamic clustering does

improve the performance of Semantic-based Publish/Subscribe.

 149

7 CONCLUSION
This thesis has presented and evaluated an approach to the clustering of Knowledge Based

Network’s clients and brokers as the prototype system that is KBNCluster. By utilising the

semantics available through the use of KBNImpl, clusters of interest have been formed using a

managed approach. In defining the semantic centre (Medoid) of a KBNImpl client and placing

these clients around KBNImpl brokers routing publications from source to destination,

KBNCluster is implemented. This clustering results in messages being delivered over fewer hops

without management requests than when clients are un-constrained in their placement across the

network, as is the case in KBNImpl.

This final chapter of this thesis presents an overview of the design and evaluation against the

research question and objectives. Contributions of the research are discussed and future work is

suggested as well as the achievements discussed.

7.1 Objectives and Achievements

The question this research set out to address was whether a managed dynamic clustering

approach improves the performance of Knowledge-based Networks, a sub-class of Semantic

Publish/Subscribe? From this, three main research objectives were drawn. These objectives are as

follows:

Objective 1: Establish an approach for the formation, movement and re-clustering of semantic

clusters in Knowledge Based Networks.

Objective 2: Establish the effect and overhead of implementing static and managed dynamic

clustering in Knowledge Based Networks.

Objective 3: Apply Policy-based Network Management as an adaptable approach to the

management of clustering.

In this section each research objective is broken down into a number of sub-objectives where

necessary, and discusses how each was addressed in this thesis. For each research objective,

supporting evaluation is identified from the previous evaluation chapter.

 150

7.1.1 Research Objective 1

In addressing research objective 1, which was to “Establish an approach for the formation,

movement and re-clustering of semantic clusters in Knowledge Based Networks.” three sub-

objectives combine in part of completing this objective, these are:

Sub-objective 1: Develop an approach for the formation of clusters.

It has been shown in KBNCluster that publishers and subscribers residing in clusters

appropriate to their interests receive messages with a lower hop count. Such a reduction in

hop count is documented in the Evaluation Chapter 6, Section 6.5 (Dynamic Clustering

Evaluation.)

Sub-objective 2: Develop an approach for the movement of clients and brokers.

The ability to move clients and brokers around the hierarchical topology of KBNCluster

allows for clustering decisions to be enforced in clients. In addressing this sub-objective the

broker, publisher and subscriber have been adapted enabling mobility across the network

when requested to do so. The adaption was achieved via the embedding of a management

agent into the brokers, publishers and subscribers themselves that enables management

instructions to be sent to them by a manager system, i.e. the policy server. Each movement

method was fully tested to ensure KBNCluster functioned as expected in KBNImpl i.e.

publications that are delivered to subscribers. Each of these movement methods was evaluated

in terms of the time taken to implement movement as shown in Chapter 6, Section 6.4.3

(Mobility Costs). From this data it can be concluded that the different methods of movement

have different associated costs - the most expensive being moving all subscribers,

individually, from broker to broker, and the cheapest being moving a broker and all attached

subscribers in union across the broker network.

Sub-objective 3: Develop an approach for identifying clients that should be re-clustered

and a means by which that re-clustering could occur.

The clustering mechanism was designed so clusters are formed and clients assigned to

clusters in an automated dynamic manner. Clients are identified as residing in a sub-optimal

cluster if the hop count associated with delivery of their publications passes a pre-determined

configurable threshold of hops. It is implied that if a hop count, for a delivered notification, is

determined to be too high then there may be a cluster which is more suited to the subscriber

and the subscriber is re-clustered, if appropriate, based on their current semantic interests. An

evaluation of the process of both the identification of and subsequent re-clustering of

subscribing clients residing in an unsuitable cluster is discussed in Chapter 6, Section 6.5.4

(Dynamic Clustering – Re-clustering)

 151

7.1.2 Research Objective 2

This second objective was addressed by establishing the effect and overhead of implementing

static and managed dynamic clustering in Knowledge Based Networks. An initial evaluation

studied the effect that static semantic clustering had on brokers, publishers and subscribers in

KBNImpl. The evaluation examined the performance benefits offered to the clients and brokers

through clustering.

Achieving this objective required determining the measures to be used in evaluating the

performance of the subsequently implemented KBNCluster. The following metrics were

established as having a direct effect on the performance of KBNCluster and were therefore central

to the evaluation of this thesis:

1. The size and make up of the subscription set held on message brokers.

2. The hop count taken in delivering publications to interested subscribers representing the

distance taken in delivering messages across the network.

Each of the above was evaluated in detail in a static topology, using KBNImpl, in Chapter 6.

Section 6.2 (Static Approach to Clustering), and using KBNCluster in Chapter 6, Section 6.5

(Dynamic Clustering Evaluation).

7.1.3 Research Objective 3

In addressing research objective 3, which aimed to investigate policy-based management as an

adaptable approach to the management of clustering, three metrics were evaluated, these are

1. The cost of collecting management data from across the managed overlay.

2. The cost of storing management data on the policy server.

3. The cost of evaluating firing policy rules against stored management data.

The evaluation conducted as part of this objective investigated the effect that the management of

that clustering process had upon the performance of KBNCluster. It has been shown that, through

the combination of the trigger broker, policy server, data collection methodology, data storage and

policy execution process a flexible dynamic management approach for the grouping of clients into

clusters is provided in KBNCluster. This evaluation is presented in Chapter 6, Section 6.4.1

(Management Data Storage and Policy Execution Costs).

In particular, it has been shown that clustering reduces the number of brokers required to route

each message, and thus the broker network as a whole, when routing messages from publishers to

subscribers. From this evaluation, it is concluded that KBNCluster is well suited to semantic

clustering, despite the slightly increased costs associated with the management of this clustering

when these costs are considered, offset by gains in performance associated with clustering.

 152

7.2 Contributions

This research makes two novel contributions to the field of semantic based publish/subscribe. In

this section these will each be discussed in turn.

7.2.1 Major Contribution

The major contribution of this work is:

• A method for the semantic clustering of publishers, subscribers and brokers in a KBN.

This contribution has been implemented in a prototype, KBNCluster, as part of this thesis and

provides a platform for the clustering of KBNImpl, which has been shown to reduce the hop

count required to deliver publications to subscribers and thus decrease the time taken to deliver

publications.

Novelty: In KBNCluster, clustering is achieved by transposing an ontology onto an A* variation

of the Djkstra [47] graph of weighted nodes and edges. This graph is then used to calculate a

single point in the ontology, from a source set of query interests returning, as a client Medoid,

which is in the author’s knowledge, both novel and new. Additionally being able to form clusters

around a source ontology and placing clients into suitable clusters is possible through the

introduction of the Medoid, as implemented in KBNCluster. Impact: The approach taken to

clustering in this thesis has shown that semantics provide an important external model of

reference, allowing clustering to be realised in SBPS as is in topic-based, re-igniting the

possibilities of clustering Semantic-based Publish/Subscribe.

This major contribution is supported in the following publications:

• John Keeney, Dominic Jones, Dominik Roblek, David Lewis, and D. O'Sullivan,

“Knowledge-based Semantic Clustering”: conference paper presented at The 23rd

Annual ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Ceará, Brazil,

March, 2008.

o This conference paper presented and evaluated a static approach to clustering,

where each client was manually configured with a pre-defined cluster. This work

supported the arguments behind the benefit to Knowledge-based Networks of

clustering.

• John Keeney, Dominic Jones, Dominik Roblek, David Lewis, and D. O'Sullivan,

“Improving Scalability in Pub-Sub Knowledge-Based Networking by Semantic

Clustering”: conference paper presented at the 6th International Conference on

Ontologies, DataBases, and Applications of Semantics, Algarve, Portugal, Nov 2007.

 153

o Work from this thesis helped form the arguments for the motivation of clustering

KBNs in this paper.

7.2.2 Minor Contribution

The minor contribution of this thesis’ is:

• An efficient approach for the management of KBNCluster.

The combination of data collection, MIB design, the processes of populating and of updating

MIBs, policy execution and policy enforcement, represent a novel approach to the management

and clustering of KBNs. The union of this management approach with the use of the KBNImpl-

based trigger broker allowing for management clustering actions to be enforced across the

network.

Novelty: Using Semantic-based Publish/Subscribe for the collection of management data

provides a set of triggers that are applied across a wide set of source data in the form of

publications and subscriptions. The design of the MIB and policy execution across the MIB

follows network management practice. However the way in which data is delivered to the policy

engine is unique in KBNCluster. Using Semantic-based Publish/Subscribe for management data

collection allows managed nodes to become publishers and system administrators (designing

policy rules) to become subscribers, the two combining via a trigger broker and Semantic-based

Publish/Subscribe for management message event delivery.

Impact: Where many management entities are producing content and only a few interested in

consuming a sub-set of this content Semantic-based Publish/Subscribe, as used in the

management of KBNCluster, via the trigger broker, becomes useful for knowledge filtering. Such

an approach is applicable in many areas outside of those discussed in this thesis where the use of

Semantic-based Publish/Subscribe provides a new approach for push-based management data

collection.

This minor contribution is supported in the following publications:

• Dominic Jones, John Keeney, David Lewis, and D. O'Sullivan, “Knowledge Delivery

Mechanism for Autonomic Overlay Network Management”: conference paper

presented at the sixth International Conference on Autonomic Computing and

Communications (ICAC 2009), Barcelona, Spain, June, 2009.

o This paper presented the mechanism used in collecting management data from

across the broker network. This was a novel approach to collecting management

data developed as part of this thesis.

• Dominic Jones, John Keeney, David Lewis, and D. O'Sullivan, “Policy-based

management of Semantic Clustering” conference paper presented at the 2nd

 154

International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy,

July 2008.

o This paper presented the policy-based approach used in this thesis for controlling

the clustering of publishers, subscribers and brokers. The application of policy to

publish/subscribe clustering is a novel contribution of this research.

7.2.3 Additional Supporting Publications:

This research has sought to present the contributions of this thesis to influence the State of the Art

through a number of additional peer-reviewed scientific publications, presentations and an

academic book chapter, not directly linked to any contribution but presented below:

• John Keeney, Dominic Jones, Song Guo, David Lewis, and D. O'Sullivan,

“KNOWLEDGE-BASED NETWORKING”, book chapter: Published in the

"Handbook of Research on Advanced Distributed Event-Based Systems,

publish/subscribe and Message Filtering Technologies." IGI Global (Editor(s): Annika

Hinze and Alejandro Buchmann) 2009.

o This peer reviewed book chapter introduced and presented a complete overview

of the Knowledge-based Network, used in implementing KBNCluster. Work

from this thesis contributed the related work, motivational case studies and

discussion/future work sections of this chapter.

• Dominic Jones, John Keeney, David Lewis, and D. O'Sullivan, “Knowledge-based

Networking”: conference paper presented at the 2nd International Conference on

Distributed Event-Based Systems (DEBS 2008), Rome, Italy, July 2008.

o This demonstration paper presents the KBNImpl and full range of semantic

operators, an extension of the Siena CBN.

• John Keeney, Dominik Roblek, Dominic Jones, David Lewis, and D. O'Sullivan,

“Extending Siena to support more expressive and flexible subscriptions”: conference

paper presented at the 2nd International Conference on Distributed Event-Based Systems

(DEBS 2008), Rome, Italy, July 2008.

o This paper discusses the extensions to the Siena CBN which are implemented as

part of the KBNImpl. Work from this thesis has provided the motivational case

studies section and future work for this paper.

 155

7.3 Future Work

Many of the ideas and research challenges surrounding this thesis could be addressed in more

depth in future work. Included below are suggestions for and discussion of the next steps required

in exploring further the research presented in KBNCluster.

7.3.1 Subscriber Re-clustering

In the current approach, subscribers are re-clustered based on the identification of too high a

number of hops in routing between source and destination. The policy server is sent information

by the subscriber that contains:

1. The number of notifications received by the subscriber.

2. The average hop count based on all messages delivered to the subscribers.

3. The standard deviation associated with the reported average hop count value.

Once a client is identified as being in an unsuitable cluster, based on too high hop count

associated with the delivery of messages, the policy server reassigns the subscriber, placing it in a

more suitable cluster.

An enhancement of this approach creates a decentralised role for subscribers in the identification

of a change in their interests and the subsequent determination that their cluster placement is

possibly sub-optimal, where the client automatically requests replacement. Such an approach

removes the requirement on the policy server to identify clients in the wrong cluster, placing the

responsibility instead on the subscriber, further farming out the processing costs associated with

clustering.

7.3.2 Load Balancing of Clusters

The manner, in which the clusters are currently created and then overlaid onto the brokers,

ensures that the less specific clusters are placed at the top of the broker network, and the more

specific clusters placed at the bottom of the broker network. This current methodology does not,

however, address the issue of load, or popularity, once clusters are overlaid across the broker

network, nor does it adapt the number of brokers assigned to each cluster, as load changes.

This current approach can be improved upon through the introduction of load balancing i.e.

adjusting the number of brokers per cluster in keeping with the cluster’s load. Load balancing

represents the provision of resources for optimal scalability, in terms of available hardware

resources, whereas clustering represents the placement of clients into areas of similar interest

within the network overlay, optimising the number of hops in message delivery. In the current

implementation, a cluster is represented by a fixed number of brokers, which can result in the

broker for a popular cluster becoming overloaded in terms of hardware resources, as the number

 156

of attached clients increases. An extension to the current approach would allow for the policy

server to offer a load balancing service, adding and removing resources to clusters and cultivating

clusters which contain multiple assigned brokers, as required. Note that the mechanism for such

load balancing and its integration into the policy server is already implemented but not evaluated

as it is seen as outside of the scope of the thesis research question and research objectives.

7.3.3 The trigger broker as a management event monitoring system

The trigger broker is currently used as a communication mechanism between nodes in the overlay

(managed loads) and the policy server (manager). The use of a KBNImpl based trigger broker

allows for a set of semantic subscriptions from a given manager to be matched against

management data sourced from across the overlay, and this information to be delivered as

notifications. Such an approach has been shown to work well for the process of clustering, as

presented in this thesis. An investigation into the properties of the trigger broker, or a KBNImpl-

based approach to management, in a push-based approach, is an area in which additional research

effort is justified.

7.3.4 Multiple Policy Servers

KBNCluster is implemented using a single policy server, which has overall control of the

managed overlay. Instructions are sent from the policy server to the managed overlay, containing

the policy server’s unique identifier (UUID), as a string value.

Although the current deployment consists of a single policy server, trigger broker and managed

overlay, the design of the architecture was built around the principle that multiple policy servers

could interact with either single or multiple managed overlays simultaneously. The trigger broker

is responsible for routing incoming management messages to multiple managerial subscribers,

each uniquely identified.

This could, in future work, provide for multiple policy servers, operating in parallel, to control a

single managed overlay, with management messages being choreographed by the trigger broker.

 157

7.4 Final Remarks

This thesis has presented an approach for the clustering of KBNImpl, in KBNCluster, so that

subscribers and publishers reside around clusters of common interest. This clustering is achieved

using a policy-based approach to the management of client placement, and subsequent

identification of clients placed in un-suitable clusters and their re-clustering.

This research has presented an approach to KBN clustering, the background technology and

terminology have been introduced, and the design and implementation of KBNCluster

documented at each stage of development. An approach to the formation of clusters and

movement and re-clustering of semantic clients has been developed and evaluated in terms of the

effect and overhead of the clustering process on KBNImpl. Additionally policy-based

management has been shown to be effective in providing a mechanism for controlling

KBNCluster, where the evaluation presented as part of this research assesses the cost of both

static and dynamic clustering, management data storage, policy execution and data collection as

well as evaluating mobility costs.

The key metric used throughout this thesis has been the hop count taken in delivering a

publication to a subscriber. It has been shown through evaluation that 60% of publications were

delivered across 1-4 hops in an un-clustered implementation of KBNImpl. In KBNCluster the

same data set was used but 91% of publications delivered across 1-4 hops, clustering has shown

to increase the percentage of publications delivered across 1-4 hops by 31%. this is the key

finding of the evaluation of KBNCluster. Other evaluation data supports the design and

implementation of the approach taken, but this key finding supports the argument that

KBNCluster brings together publishers and subscribers around brokers of common interests,

semantic clusters. In the final section of evaluation, section 6.5, a full implementation of

KBNCluster is compared to a fully un-clustered topology. This provides a comparison of the

benefits of clustering when comparing KBNCluster to KBNImpl. This evaluation is conducted

with a client-first approach to clustering where any costs involved in calculating a clients Medoid

is shared amongst the edges of the network, the clients, as opposed to the brokers.

In conclusion, semantic clustering around ontologies has been shown to be beneficial, and its

applicability is only just beginning to be explored in other areas of computing. Wherever there are

a great number publishing clients and subscribing individuals, using a semantic reference model,

clustering as presented in this thesis can bring those clients together across an overlay. The main

effect of this is a reduction in overall traffic, as messages are routed to clients more closely

connected to one another and messages propagating across a network in fewer hops. KBNCluster

uses semantics at its core; this thesis has shown that that when available semantics are fully

utilised, content is delivered more efficiently and with less wasted message routing.

 158

Bibliography
[1] TIBCO, "TIBCO Software Inc," 2000.
[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation of a Wide-area

Event Notification Service (Siena)," ACM Transactions on Computer Systems, vol. 19,
2001.

[3] G. Antoniou and F. Van Harmelen, "Web Ontology Language: Owl," Handbook on
Ontologies, vol. 2, 2004.

[4] S. Guo, "Using Semantic Mappings for Semantic Based Publish/Subscribe Systems,"
PhD Thesis, Computer Science and Statistics Trinity College Dublin, Dublin, Ireland,
2009.

[5] D. Lewis, J. Keeney, D. O'Sullivan, and S. Guo, "Towards a Managed Extensible Control
Plane for Knowledge-based Networking," DSOM, vol. 4269, 2006.

[6] J. Keeney, D. Roblek, D. Jones, D. Lewis, and D. O’Sullivan, "Extending Siena to
Support More Expressive and Flexible subscriptions," presented at the 2nd International
Conference on Distributed Event-Based Systems, Rome, Italy, 2008.

[7] J. Keeney, D. Jones, D. Roblek, D. Lewis, and D. O’Sullivan, "Knowledge-based
Semantic Clustering," presented at the 23rd Annual ACM Symposium on Applied
Computing, Fortaleza, Ceará, Brazil, 2008.

[8] D. Jones, J. Keeney, D. Lewis, and D. O’Sullivan, "Knowledge-based Networks,"
presented at the 2nd International Conference on Distributed Event-based Systems
(DEBS08), Rome, Italy, 2008.

[9] J. Keeney, D. Jones, S. Guo, D. Lewis, and D. O'Sullivan, "Knowledge-based
Networking," in The Handbook of Research on Advanced Distributed Event-Based
Systems, Publish/Subscribe and Message Filtering Technologies, ed: IGI Global, 2009.

[10] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron, "Scribe: a Large-scale
and Decentralized Application-level Multicast Infrastructure," IEEE Journal on Selected
Areas in Communications, vol. 20, 2002.

[11] G. Mühl, L. Fiege, and A. Buchmann, "Filter Similarities in Content-Based
Publish/Subscribe Systems," in Trends in Network and Pervasive Computing, ed: LNCS,
2002.

[12] T. Milo, T. Zur, and V. Elad, "Boosting Topic-based Publish/Subscribe Systems with
Dynamic Clustering," presented at the ACM SIGMOD International Conference on
Management of Data, Beijing, China, 2007.

[13] S. Baehni, P. Eugster, and R. Guerraoui, "Data-aware Multicast," presented at the 2004
International Conference on Dependable Systems and Networks, Florence, Italy, 2004.

[14] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-Piergiovanni, "TERA:
Topic-based Event Routing for peer-to-peer Architectures," presented at the Inaugural
International Conference on Distributed Event-Based Systems (DEBS), Toronto, Ontario,
Canada, 2007.

[15] C. Gregory, M. Roie, T. Yoav, and V. Roman, "SpiderCast: a Scalable Interest-aware
Overlay for Topic-based Pub/Sub Communication," presented at the Inaugural
International Conference on Distributed Event-based Systems, Toronto, Ontario, Canada,
2007.

[16] L. Querzoni, "Interest Clustering Techniques for Efficient Event Routing in Large-scale
Settings," presented at the 2nd International Conference on Distributed Event-based
Systems, Rome, Italy, 2008.

[17] A. Wun and H. A. Jacobsen, "A Policy Management Framework for Content-based
Publish/Subscribe Middleware," presented at the International Conference on Middleware,
Newport Beach, CA, USA, 2007.

[18] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and K. Moody, "Role-based
Access Control for Publish/Subscribe Middleware Architectures," presented at the 2nd
International Workshop on Distributed Event-based Systems, San Diego, California, 2003.

 159

[19] R. Boutaba and I. Aib, "Policy-based Management: A Historical Perspective," The
Journal of Network & Systems Management, vol. 15, 2007.

[20] G. Klyne, J. Carroll, and B. McBride, "Resource description framework (RDF): Concepts
and Abstract Syntax," W3C Recommendation, vol. 10, 2004.

[21] D. McGuinness and F. Van Harmelen, "OWL Web Ontology Language Overview," W3C
Recommendation, vol. 10, 2004.

[22] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, The
Description Logic Handbook, 2007.

[23] J. Grossnickle, T. Board, B. Pickens, and M. Bellmont, "RSS - Crossing Into the
Mainstream " Yahoo! & Ipsos Insight, 2005.

[24] G. Muhl, F. Fiege, and P. Pietzuch, Distributed Event-Based Systems, 2006.
[25] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Middleware

Architecture," presented at the 22nd International Conference on Distributed Computing
Systems, 2002.

[26] M. Astley, J. Auerbach, S. Bhola, G. Buttner, M. Kaplan, K. Miller, R. Saccone Jr, R.
Strom, D. C. Sturman, and M. J. Ward, "Achieving Scalability and Throughput in a
Publish/Subscribe System," 2004.

[27] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, "Content-based Routing with
Elvin4," presented at the AUUG2K, Canberra, Australia, 2000.

[28] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito, "Efficient Publish Subscribe
through a Self-Organizing Broker Overlay and its Application to SIENA," The Computer
Journal vol. 50, 2007.

[29] J. Wang, B. Jin, and J. Li, "An Ontology-Based Publish/Subscribe System," presented at
the International Middleware Conference, Toronto, Canada, 2004.

[30] P. Milenko, I. Burcea, and H.-A. Jacobsen, "S-ToPSS: Semantic Toronto
Publish/Subscribe System," presented at the 29th International Conference on Very large
Data Bases, Berlin, Germany, 2003.

[31] D. Roblek, "Decentralized Discovery and Execution for Composite Semantic Web
Services," M.Sc. Thesis, Computer Science and Statistics, Trinity College Dublin, Dublin,
Ireland, 2006.

[32] J. Martin, "Policy-based Networks," 1999.
[33] M. Uschold, P. Clark, F. Dickey, C. Fung, S. Smith, S. Uczekaj, M. Wilke, S. Bechhofer,

and I. Horrocks, "A Semantic Infosphere," DSOM, 2003.
[34] M. Petrovic, H. Liu, and H. Jacobsen, "G-ToPSS: fast filtering of graph-based metadata,"

presented at the World Wide Web Conference, Chiba, Japan, 2005.
[35] H. Li and G. Jiang, "Semantic Message Oriented Middleware for Publish/Subscribe

Networks," presented at the Sensors, and Command, Control, Communications, and
Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III,
Orlando, FL, USA, 2004.

[36] ("W3C Recommendation: OWL Web Ontology Language Overview", Accessed October
2011). http://www.w3.org/TR/owl-features/.

[37] P. Alex, R. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl, "Designing Semantic
Publish/Subscribe Networks using Super-Peers," in Semantic Web and PeerTo-Peer, ed:
Springer, 2004.

[38] M.-J. Park and C.-W. Chung, "iBroker: An Intelligent Broker for Ontology Based
Publish/Subscribe Systems," presented at the International Conference on Data
Engineering, 2009.

[39] E. Prud’Hommeaux and A. Seaborne, "SPARQL query language for RDF," W3C
Working Draft, vol. 4, 2006.

[40] S. Voulgaris, E. Riviere, A. M. Kermarrec, and M. van Steen, "Sub-2-sub: Self-
organizing Content-based Publish/Subscribe for Dynamic and Large Scale Collaborative
Networks," presented at the 5th International Workshop on Peer-to-Peer Systems, 2006.

[41] A. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems," Lecture Notes in Computer Science, vol.
2218, 2001.

 160

[42] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems,"
presented at the 22nd International Conference on Distributed Computing Systems,
Montreal, Canada, 2002.

[43] G. Flouris, D. Plexousakis, and G. Antoniou, "A classification of ontology change,"
presented at the 3rd Semantic Web Applications and Perspectives Workshop, Pisa, Italy,
2006.

[44] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster
analysis, 1990.

[45] M. van der Laan, K. Pollard, and J. Bryan, "A new Partitioning around Medoids
Algorithm," Journal of Statistical Computation and Simulation, vol. 73, 2003.

[46] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for the heuristic determination
of minimum cost paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4,
1968.

[47] E. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik,
vol. 1, 1959.

[48] T. Pedersen, S. Patwardhan, and J. Michelizzi, "WordNet:Similarity: measuring the
relatedness of concepts," presented at the ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment, Arbor, Michigan, USA, 2005.

[49] M. Proctor, M. Neale, P. Lin, and M. Frandsen, "Drools documentation," JBoss, vol. 5,
2008.

[50] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson, "Jena:
Implementing the Semantic Web Recommendations," 2004.

[51] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A Practical Owl-dl
Reasoner," Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5,
2007.

[52] ("The Protégé Ontology Editor and Knowledge Acquisition System", Accessed October
2011). http://protege.stanford.edu/.

[53] ("Standard Error Calculation", Accessed April 2013).
http://davidmlane.com/hyperstat/A103735.html.

[54] B. Douglass, "UML Sequence Diagrams," Embedded Systems Programming, vol. 16,
2003.

[55] K. Burtch, Linux shell scripting with Bash: Pearson Higher Education, 2004.
[56] ("Ontology Alignment Evaluation Initiative 2007", Accessed October 2011).

http://oaei.ontologymatching.org/2007/.
[57] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Waerzoniak, and M. Bownman,

"PlanetLab: an overlay testbed for broad-coverage services," SIGCOMM Compututer
Communication Review, vol. 33, 2003.

[58] J. Keeney, D. Lewis, and D. O'Sullivan, "Benchmarking Knowledge-based Context
Delivery Systems," presented at the International Conference on Autonomic and
Autonomous Systems, Silicon Valley, CA, USA, 2006.

 161

Appendices

Appendix A

John Keeney, Dominic Jones, Dominik Roblek, David Lewis, and D. O'Sullivan, "Knowledge-

based Semantic Clustering", Pages 460-467, presented at The 23rd Annual ACM Symposium on

Applied Computing (SAC 2008), Fortaleza, Ceará, Brazil, March, 2008.

Knowledge-based Semantic Clustering
John Keeney, Dominic Jones, Dominik Roblek, David Lewis, Declan O’Sullivan

Knowledge & Data Engineering Group (KDEG) & CTVR

Trinity College Dublin, Ireland

{ John.Keeney | jonesdh | roblekd | Dave.Lewis | Declan.OSullivan }@cs.tcd.ie

ABSTRACT
Users of the web are increasingly interested in tracking the
appearance of new postings rather than locating existing
knowledge. Coupled with this is the emergence of the Web 2.0
movement (where everyone effectively publishes and subscribes),
and the concept of the “Internet of Things”. These trends bring
into sharp focus the need for efficient distribution of information.
However to date there has been few examples of applying
ontology-based techniques to achieve this. Knowledge-based
networking (KBN) involves the forwarding of messages across a
network based not just on the contents of the messages but also on
the semantics of the associated metadata. In this paper we
examine the scalability problems of such a network that would
meet the needs of Internet-scale semantic-based event feeds. This
examination is conducted by evaluating an implemented
extension to an existing pub-sub content-based networking (CBN)
algorithm to support matching of notification messages to client
subscription filters using ontology-based reasoning. We also
demonstrate how the clustering of ontologies leads to increased
efficiencies in the subscription forwarding tables used, which in
turn results in increased scalability of the network.

Categories and Subject Descriptors
C.2.2 Network Protocols: Routing protocols, I.2.4 Knowledge
Representation Formalisms and Methods: Semantic Networks

General Terms
Performance, Experimentation

Keywords
Publish-subscribe, content-based networking, ontologies

1 INTRODUCTION
Establishing a global event service at Internet scales presents a
major challenge for existing networking technologies. Such an
event service is crucial in the support of the explosion of dynamic
interactivity expected through the increased use of Web 2.0
technologies where diverse and an increasing numbers of
publishers and subscribers of content will be more mobile and
dynamic [1]. The time at which items are posted is increasing in
importance relative to the content of the post, e.g. blog postings
rapidly fade in importance as time passes. The web has responded

to this need with RSS feeds which allow event postings, to
quickly be notified to interested users. However, this system relies
on users subscribing to feeds of pages they have already located,
whilst feed aggregators offer only rudimentary searches or simple
classifications of feeds. This is partly because the near-real time
events present in feeds are disassociated from the system of user-
defined hyperlinks required by search engines which also
introduces a discovery latency that is unacceptable to feed users.
Though we can search for the static pages we are unable to search
the body of feed events active at any point in time. As we look
forward to future uses of the Web, in support of the ‘Internet of
Things,’ searching for events becomes more important as devices
and sensors become sources of high frequency postings of
interest. In [27] it is suggested that that an Internet-wide event
service may need to scale to 109 events per second, a similar order
of event producers and huge variability in the proportion of
consumers subscribing to an event. Current event-based publish-
subscribe systems offer a networking model that is well suited to
such applications, but they are typically limited to relatively static
characterisations of events. Elements of this are being addressed
by developments in Content Based Networks (CBN), a
specialisation of the pub-sub paradigm where message forwarding
is based on message attributes and their values. Extensive
research is ongoing into finding a balance between restricting the
expressiveness of event attribute types and subscription filters,
their efficient matching at CBN nodes and efficient maintenance
of routing tables [11, 21, 22, 33]. Currently user subscriptions are
limited to simple syntactic matches (typically integers, strings and
Booleans). In [16, 29, 31] the concept of Knowledge Based
Networking is introduced, as a semantically enhanced publish-
subscribe model extending content-based networking (CBN). This
novel integration of semantics within the pub-sub routers
themselves allows messages to be matched to subscriptions based
not only on their contents, but also their semantics. Producers of
knowledge express the semantics of their available information
based on an ontological representation of that information, and
publish semantically enriched messages as required. Consumers
express subscriptions upon that information as long-lived
semantic queries, in response to which they continually receive
suitable matching messages. A Knowledge-based Network (KBN)
is therefore more flexible, open and reusable to new applications.
However, the scalability of a KBN to Internet scale requires a
routing mechanism that minimizes both the size of routing state
held in KBN nodes and the overhead of ontological reasoning in
nodes. To address this, [29] proposes the efficient partitioning of
the routing space based on clustering related to the semantics of
message contents, rather than grouping within the hierarchies of
network addresses. In this paper we describe some empirical
evaluation into the performance of semantic-based clustering
within a deployed KBN using realistic distribution of
subscriptions, notifications and their semantics based on
characteristics of existing RSS feeds.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

 162

2 KBN IMPLEMENTATION
The particular flavour of KBN investigated in this paper is an
extension of the Siena CBN [12]. A Siena notification is a set of
typed attributes, each attribute is comprised of a name, a type and
a value. The current version of Siena supports the following basic
types: string, long, integer, double and Boolean. Siena
subscriptions are a conjunction of filtering constraints, where
constraint is comprised of the attribute name, an operator and a
value. The subscription operators currently supported are equality
and less/greater than etc., and for strings, substring, suffix and
prefix. Each Siena router maintains its own set of subscriptions
(routing table), which is dynamically built from the specific
subscriptions it receives. A subscription “covers” a notification, if
the event matches to all filtering constraints of a filter.
Notifications are delivered to a client, if the client has submitted a
subscription where the conjunction of the subscription’s filters
covers that notification. Siena also discovers coverings between
subscription filters to optimize subscription routing. A filter
covers another filter, if all notifications covered by the latter are
also covered by the former. The Siena covering relationships,
defined in [12, 20], allow each router’s subscription set to be
dynamically arranged into a hierarchical tree structure (routing
table), with more general subscriptions towards the top, and more
specific subscriptions towards the bottom. This structure allows
subscriptions to be efficiently and correctly aggregated together to
reduce the subscription tree size and efficiently match each
publication to subscriptions as it passes through each router.

In [16, 29, 31] a KBN implementation is presented that extends
Siena by providing three additional ontological base types:
properties, concepts and individuals. It also supports subsumptive
subscription operators, i.e. sub-class/property (more specific),
super-class/property (less specific), and equivalence. E.g., a
subscriber can subscribe to all KBN messages that contain an
attribute whose value is a concept more/less specific than the
named concept in the subscription. To achieve this, each KBN
router holds a copy of a shared OWL ontology, within which each
ontological class, property and individual used is described and
reasoned upon. These new ontological types are first class KBN
types, and can be used in any KBN subscription or notification,
along-side the standard Siena types and operators. Due to the
transitive nature of the sub-property/class and super-
property/class properties, covering relationship for these operators
were defined in [31], marinating Siena’s subscription aggregation
efficiencies. A further fully-implemented extension, presented in
[34], introduces a new “bag” type and associated bag operators. A
bag (also called a multiset) is a set-like object . The bags of
integers {1,2,3} and {2,1,3} are equivalent, but bags {1,1,2,3}
and {1,2,3} differ. The bag of integers {1,1,2,3,4} is a super-bag
of {2,4,3} and so on. A bag can contain any valid Siena values,
including other bags. Bags are first order members of the Siena
KBN type set so can appear in notifications, as well as in
subscription filters.

The bag operators can also be combined with other Siena KBN
operators to produce composite bag operators. The composite bag
relation is a binary relation over bags composed of (i) another
binary bag relation over bags and of (ii) a sub-relation over the
bag elements. The bag of integers {1, 1, 2, 3, 4} is a super-bag of
{2, 4, 3} using the default “equals” (==) sub-relation. The bag of
integers {1, 2, 3} is an equal-bag of {2, 3, 4} using the “less than”
(<) sub-relation. (i.e. for every element in the second bag, there

exists an element in the first bag that is less than the element, with
no unused elements in either bag). A full description and logical
proofs of KBN bags, and the simple and composite bag operators
are outside of the scope of this paper, but are provided in [34].

These bag type and operator extensions greatly extend the
expressiveness of the Siena KBN subscription mechanism,
especially when combined with the ontological operators. Again,
due to the transitive nature of the sub/super bag operators, when
combined with the covering relationships for the other Siena KBN
operators, covering relationships for the bag operators can also be
defined [34]. This maintains the efficiencies of Siena, allowing a
single homogenous KBN to scale to moderate sizes.

3 BENCHMARKING KBN PERFORMANCE
Many of the parameters that affect the performance of a KBN’s
routing scheme are largely application specific. Therefore a KBN
can only be evaluated through its use in supporting diverse
applications in a variety of scenarios. A benchmark, specifically
for KBNs, is presented in [25], based on a synthetic benchmark
for Content-based Networks in [26]. It defines the set of
parameters that must be defined before an application of a
specified KBN can be evaluated in either a qualitative or
quantitative manner. These are summarised below:

Message generation: publication rate; subscription rate; active /
inactive subscriptions cycle durations.

Publication generation parameters: number of fields in
publication; publishers’ ontologies (defined in terms of content,
size, complexity, expressiveness, bushiness etc).; names of
attributes in publications, which may be drawn from publishers’
ontologies; type of each attribute; value space for each attribute,
which may be drawn from publishers’ ontologies.

Subscription generation parameters: number of subscriptions
per subscriber; number of filters per subscription; subscribers’
ontologies (defined in terms of content, size, complexity,
expressiveness, bushiness etc. and its similarity to the publishers’
ontologies); names of attributes used in each filter, which may be
drawn from the publishers’ or subscribers’ ontologies; type of
each attribute used in the filter; attribute values used in filters,
which may be drawn from the publishers’ or subscribers’
ontologies; operators used in filters.

KBN routers’ ontologies (defined in terms of content, size,
complexity, expressiveness, bushiness etc. and their similarity to
each other, the publishers’ ontologies and the subscribers’
ontologies).Only once the parameters listed above have been
made explicit for each application running on top of a KBN, the
performance can then be effectively and accurately compared.

4 PODCASTING – A REAL WORLD-BASED
PUB - SUB USAGE SCENARIOS
In order to undertake empirical evaluation into the performance of
a KBN using the benchmark identified in section 3, it was
necessary to identify realistic distributions of subscriptions,
publications and their semantics. Despite the increasing adoption
of semantic-based metadata within the Web 2.0 community, there
remains few sources of information to define distributions of
subscriptions, messages and their semantics for different
applications. In order to identify some realistic benchmark values
we examined the distribution of podcast update feeds.

 163

Arts
 Design
 Fashion & Beauty
 Food
 Literature
 Performing Arts
 Visual Arts
Kids & Family
Music
Comedy

Education
 Education Technology
 Higher Education
 K-12
 Language Courses
 Training
Business
 Business News
 Careers
 Investing
 Management &Marketing
 Shopping

Games & Hobbies
 Automotive
 Aviation
 Hobbies
 Other Games
 Video Games
Government
 & Org
 Local
 National
 Non-Profit
 Regional

Health
 Alternative Health
 Fitness & Nutrition
 Self-Help
 Sexuality
News & Politics
Technology
 Gadgets
 Tech News
 Podcasting
 Software How-To
TV & Film

Religion &Spirituality
 Buddhism
 Christianity
 Hinduism
 Islam
 Judaism
 Other
 Spirituality
Science & Medicine
 Medicine
 Natural Sciences
 Social Sciences

Society & Culture
 History
 Personal Journals
 Philosophy
 Places & Travel
Sports & Recreation
 Amateur
 College &High School
 Outdoor
 Professional

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 20 40 60 80 100 120 140 160 180 200

Time (simulated hours)

Whole Network: Ratio of Publications to
Subscriptions

Subscriptions

Publications

4.1 PODCASTING
 The application area chosen for study was podcasting, due to its
popularity and the availability of a semantically rich de-facto
metadata standard, the iTunes XML schema [7]. The iTunes
schema allows for basic descriptors to be combined with
semantically rich tags such as descriptive hierarchical categories,
keywords, and ownership. Of particular interest is the set of
hierarchical categories defined in the schema, as shown in Figure
1 which are used to annotate messages and aid in the searching for
relevant podcasts. Firstly, it was necessary for the authors to
establish exactly how many podcasts were actually being
produced and consumed, or in terms of this paper, published and
subscribed to. In 2006 a number of pivotal net analysts, including
Neilson and Pew, aimed to answer this question. The survey by
the “Pew Internet and American Life project” [3] in November
2006, through a telephone survey of 2,928 adults within the
Continental US, showed 12% of Internet users had downloaded a
podcast, averaging an estimated 65 million podcast listeners
within the U.S.A. This is in contrast with the 7% of users who
reported downloading a podcast in their April 2006 survey
showing a growth of around 5% in as many months. The Neilson
analysis [4] shows varying yet similar results to the data collected
by Pew. Based on a phone interview of 1700 participants, 6% of
the respondents were “regular podcast downloader’s” leading to
an estimate that 6% of US Adults, or around 9 million Web users
had downloaded podcasts in the July-August period of 2006.
Neilson also estimates that 72% of the respondents who regularly
download podcasts download an average of 1-3 podcasts per
week, 10% of whom download 8 or more podcasts per week.
Neilson concludes approximately five podcast downloads per
week was a fair estimate of average consumption. These studies
provided us with a good indication of type of growth in podcast
subscription that we should model in our distribution. From data
donated by the administrators of FeedBurner.com
(http://www.feedburner.com), one of the most popular and
established podcast syndication websites, we determined the
following with respect to characterising the distribution model for
publications and subscriptions. In 2006, the number of podcast
feeds grew from 31,167 feeds to 83,743 feeds, resulting in a
growth of 52,576 new feeds over that 1 year period. When
distributed equally over the year, this equates to a new podcast
producer publishing approximately every 10 minutes. From a
survey of the most 30 of the popular feeds, the average update
period for each feed averaged one update per week. Where each

feed is represented by one publisher, and each publisher publishes
a new notification every week, this means that a new publisher
starts on average every 600 seconds, with an average continuous
publication rate of one notification every 604,800 seconds per
publisher. The data from FeedBurner.com also shows a growth in
subscriptions from 915,277 to 6,434,758, resulting in 5,519,481
new subscriptions in 2006 alone. This can be approximated to
836,285 new subscribers over the year or one every 37.73
seconds. Based on the data in a Yahoo White paper on RSS feeds
[9], each subscriber maintains an average of 6.6 subscriptions. It
is estimated that podcast users very rarely change their
subscriptions once they have found feeds that they like, and they
rarely subscribe to feeds that they do not like. For these reasons
this scenario estimates that each subscriber takes one week to
subscribe to only their favourite 6.6 feeds, and then never
unsubscribe. These approximations mean that a new subscriber is
created on average every 37.73 seconds, which each creates an
average of 6.6 subscriptions over a week (i.e. one every approx.
91,636 seconds or 25.5 hours), and then continuously waits for
messages, the ratio shown in Figure 2:

4.2 DEPLOYING THE EXPERIMENT
In striving to replicate a real world distributed deployment, the
PlanetLab network [10] was used to deploy a KBN network and
exercise it according to the scenario above. The PlanetLab
network comprises 756 nodes, distributed across 368 sites
worldwide. Whereas traditional network simulations are evaluated
on either a local or virtual test-bed, the PlanetLab environment
allowed us to experiment across a physical Internet infrastructure
of 77 random machines distributed across Europe, North America,

E xperiment 3 – Ontolog y 1 E xperiment 3 – Ontolog y 2 E xperiment 3 – Ontolog y 3

E xperiment 2 – Ontolog y 1 E xperiment 2 – Ontolog y 2

E xperiment 1 – F ull Ontolog y

E xperiment 3 – Ontolog y 1 E xperiment 3 – Ontolog y 2 E xperiment 3 – Ontolog y 3

E xperiment 2 – Ontolog y 1 E xperiment 2 – Ontolog y 2

E xperiment 1 – F ull Ontolog y
Figure 1: Categories in the Apple iTunes Podcast schema (Ontology)

Figure 2: Ratio of Publications to Subscribers

 164

Experiment 3 – Cluster 2 Experiment 3 – Cluster 3

Experiment 2 – Cluster 1

Level 1
(1 Node)

L2
(4 N)

L3
(7 N)

L4
(10 N)

L5
(15 N)

Root / Master Node

Experiment 1 – No Clustering

Experiment 3 – Cluster 1

Experiment 2 – Cluster 2

South America, Asia and Australia. The experimental setup
consisted of 37 nodes running as dedicated KBN routers, 15 nodes
running as dedicated publication creators and a further 25 were
used as dedicated subscription generators. The 37 KBN routers
form the hierarchical overlay as shown in Figure 3.

4.3 THE PODCASTING BENCHMARK
To evaluate the performance of the KBN we simulated the
distribution of podcast feed updates according to the traffic
characteristics discussed in section 4.1. In this scenario a KBN
publishing client is created for each feed, and the client generates
KBN publications for every update announcing a new podcast
episode for that feed. A KBN client was also created for each feed
subscriber, and that client created a separate KBN subscription for
each of its feed subscriptions. To speed up the gathering of data it
was decided to speed-up the experiment by a factor of 365, i.e.
model a full year’s traffic in a single day.

Message generation rates: These are sourced from section 4.1: a
new publisher was started on average every 600 seconds, with an
average continuous publication rate of one notification every
604,800 seconds per publisher. a new subscriber was created on
average every 37.73 seconds, which each created an average of
6.6 subscriptions over a week (i.e. one every approx. 91,636
seconds or 25.5 hours), and then continuously waited for
messages.

Publication generation parameters: The publishers’ relatively
shallow and simple ontology was hand-crafted from the item
categories as defined in the Apple iTunes podcast schema shown
in Figure 1. This ontology is relatively small, at 38 kilobytes, with
67 classes, no properties and no individuals. Each publication
message contained 15 named attributes, as defined in the Apple
iTunes podcast schema. (title, link, copyright, pubDate,
itunes_Author itunes_Block, itunes_image, itunes_duration,
itunes_explicit ,itunes_newFeedUrl, itunes_owner,
itunes_subtitle, itunes_summary, itunes_category,
itunes_keywords). All of the named attributes except
itunes_category and itunes_keywords were of type String.
itunes_category was defined as a bag of ontological classes, and
itunes_keywords was defined as a bag of Strings. Following a
survey of the 30 most popular feeds hosted by FeedBurner.com,
the average number of keywords in each podcast item/episode
was calculated as 4, therefore the itunes_keywords bag of each
publication contained 4 keyword strings. These keywords were
randomly drawn from a dictionary of 80 popular keywords. In the
same survey, an average of 3 categories were attached to each
publication, so the itunes_category bag of each publication

contained on average 2-4 classes, drawn randomly from the
publishers’ ontology described above and shown in Figure 1. The
values for all of the attributes except itunes_category and
itunes_keywords were hard-coded as static strings.

Subscription generation parameters: Despite extensive
searches we were unable to locate any information about how
subscribers search for and select podcasts. For this reason, we
decided to base the subscription format on what we considered the
most useful and important semantic attributes of published
podcast update notifications, i.e. the itunes_keywords and
itunes_category attributes. When searching for actual podcasts the
user would most likely use a search engine. The most popular
search engines, including www.podcast-search.info,
www.google.com, podcasts.yahoo.com and so on, all implement
searches using a conjunction of keywords. In this scenario we
decided to implement this subscription using the bag subscription
mechanism discussed in section 2 by requiring that any matching
subscription’s itunes_category bag of keywords must be a super-
bag of the keywords requested by the searcher. In this scenario,
each subscriber subscribes using between 0 and 3 keywords
randomly drawn from the same dictionary used by the publisher.
When searching, a user would most likely select a single
category, which would include all sub-categories if it was a parent
category. Using the compound bag operator and described in
section 2, this search can be implemented by requiring that the
itunes_category attribute of any message must contain a bag of
categories that is a super-bag of the required category, where one
of the elements in the published itunes_category bag must be
“more specific” than the required category, i.e. subsumed by the
requested category. (i.e. a super-bag using the “more specific”
sub-operator). In this scenario each subscriber specifies one
category class drawn from the same ontology as the publisher.
Therefore, each subscription is a conjunction of 2 constraints, 0-3
keywords and a category class. This is based on the experimental
assumption that a user when searching for content is typically less
specific than a user posting content. In this scenario only the
itunes_category and itunes_keywords attributes were used in the
subscription filters so it was acceptable to have the other unused
attributes in the publications hard-coded as representative static
strings.

Network topology: Combined with the goal of testing the KBN
in a physically distributed environment, due to the resource
requirements of this very large scale KBN deployment scenario
(in particular the memory requirements of the multi-threaded
publishing and subscribing clients rather than that of the routers),
it was not possible to test the KBN’s operation for this scenario
without widely distributing the workload of the clients. As
discussed in the section 4.2, the experiment was deployed across
77 distributed PlanetLab nodes, with 37 randomly selected nodes
acting as KBN routers deployed in a hierarchy shown in figure 3,
15 randomly selected dedicated publishing nodes, and 25
randomly selected dedicated subscribing nodes. This workload
distribution took into account the high subscription rate and
relatively low publication rate. Considering the hierarchical
nature of the network, and envisioning that the Root/Master node
would suffer the highest loading, no publisher or subscriber sent
messages directly to the Root Node.

KBN routers’ ontologies: The KBN routers each used a copy of
the same podcast categories ontology as used by the subscribers
and the publishers. The hypothesis of this research is that the

Figure 3: The KBN overlay network

 165

0

200

400

600

800

1000

1200

1 1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

Simulated Hours

Sub Tree Size - A Router on Level 3

No Cluster: Sub Tree Size

2 Clusters: Sub Tree Size

3 Clusters: Sub Tree Size

clustering of KBN nodes according to the semantics of the
knowledge they present or request will have a positive effect on
the performance of the KBN and improve its scalability. To
evaluate this hypothesis the operation of the KBN was evaluated
in 3 experiments. The scenario described was evaluated by
crudely dividing the KBN hierarchical overlay into clusters of
approximately equal size, as shown in Figure 3. In the first
experiment the network was not divided (one cluster). In the
second experiment the same logical network hierarchy was
divided into two clusters. In the third experiment the same
network was divided into three clusters. When divided, each
cluster was tasked with focusing on only a proportion of the
ontology, as shown in Figure 1.

To demonstrate the expected difference in performance due to
clustering, the KBN’s operation was measured. In the first
“unclustered” experiment, each publisher and subscriber could
send their subscriptions and publications messages to any random
node in the network (except the Root node). In the second and
third “clustered” scenarios, depending on the semantics of the
subscription or publication to be sent, the client selected a random
node from whichever cluster was most suited to receive that
message (i.e. the cluster that focussed on the portion of the
ontology which contained the majority of their referenced
ontological concepts). If the message referenced the same number
of concepts from all portions of the ontology then the message
could be sent to any node in the network. In each of the
experiments the same volume of publications and subscriptions
were created, according to the same message generation
distributions described above. It is important to note however that
although the cluster to receive the message was calculated, the
particular node within the cluster that would receive the message
was randomly selected from the cluster’s members. This approach
was taken to maintain the idea that in a hierarchical overlay pub-
sub network, where the logical hierarchy may be very different
from the physical network’s topology, clients are not restricted by
which router (or broker) they should connect to. In many cases
clients may connect to their closest router, but this is not a
requirement, hence random node selection could be considered a
worst-case scenario.

5 RESULTS AND FINDINGS
The primary metrics used in this paper were to compare the
performance of the KBN’s operation where the characteristics of
the subscription tree / routing table stored at each KBN router.
This was due the end-to-end nature of the network, the
heterogeneity of the machines in the PlanetLab network, and the
variability of dynamic resource availability on the PlanetLab
nodes as they ran other experiments concurrently. The authors
feel that this is a fair metric to objectively compare the
experiments for two reasons. Firstly, by the nature of using
content-based subscription filter matching, for each notification
potentially all subscriptions filters may need to be evaluated
against the notification. For each subscription the subscription
tree needs to be searched to find the optimal position to insert the
subscription. Therefore, a smaller and more ordered subscription
tree is more efficient. Secondly, the hierarchical logical topology
of the KBN overlay were randomly created, and clients connect to
random nodes (within a cluster), so the aggregate network traffic
across each of the experiments should remain similar (especially
for larger networks.)

Figure 4 shows the sizes of the subscription tree / routing table for
a node at level 3 in the middle of the KBN hierarchy. The graphs
are truncated to approximately 850 simulated hours since soon
after this point the resources requirements of the subscribers
began to exceed the conservative fair-use resource allocation of
the oldest PlanetLab nodes, mainly due to the 365X speedup
factor used in these experiments. Resource throttling at these
weaker nodes meant that the results became unreliable after
approx 1000 simulated hours (40+ simulated days). The graphs
show how the total subscription tree size is smaller when semantic
clustering is employed, despite a very similar number of
subscriptions arriving at the node for each experiment. Despite the
fact that the rate at which subscriptions were arriving continued to
increase according the distribution in figure 1, the total
subscription tree size was starting to level out. The results
therefore show that for a given number of received subscriptions,
the subscription tree is smaller when semantic clustering is
employed. Similar graphs were generated for nodes at each level
in the hierarchy, and all show very similar results (except the
Root node), and so are not presented here. The main optimisation
feature of the Siena Hierarchical CBN, upon which the evaluated
implementation of the KBN is based, is the use of subscription
aggregation / covering to merge and order similar subscriptions.
In the Siena subscription tree, subscriptions which cannot be
merged with other subscriptions, or grouped under more general
(covering) subscriptions, form “root” subscriptions in the tree.
The count of “root” subscriptions, when considered with the size
of the subscription tree, gives an overview of the searchability and
optimality of the subscription tree at each node. Therefore the
number of Siena “root” subscriptions at each node was also
measured, as shown in Figures 5-8.The “root” subscriptions at
each node are the most general subscriptions of each node so it is
only these root subscriptions that need to be passed up to a
router’s parent node. To a parent router a child router appears as a
subscribing client using only the child’s “root” subscriptions.

This is done iteratively up the tree, so subscriptions become more
general in the nodes towards the top of the network, and more
specific towards the bottom. This explains why the more general
subscriptions flowing up the hierarchy cause the subscription tree
to reach optimality quicker as more general subscriptions reduce
the number of “root” subscriptions. In addition, with respect to
how child nodes send their “root” subscriptions to their parent
node, it can be seen that semantic clustering greatly reduces this
traffic and associated routing table “churn”. This is particularly
apparent towards the bottom of the network. Again similar graphs

Figure 4: Subscription tree / Routing table size on one KBN router

 166

0

10

20

30

40

50

60

70

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

Simulated Hours

`root` subscriptions - Router on Level 2

No Cluster: `root` subscriptions

2 Clusters: `root` subscriptions

3 Cluster: `root` subscriptions

0

20

40

60

80

100

120

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

Simulated Hours

`root` subscriptions - Router on Level 5

No Cluster: `root` subscriptions

2 Clusters: `root` subscriptions

3 Cluster: `root` subscriptions

0

20

40

60

80

100

120

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

Simulated Hours

`root` subscriptions - Master / Root Node

No Cluster: `root` subscriptions

2 Clusters: `root` subscriptions

3 Cluster: `root` subscriptions

Figure 9: “Root” subscriptions in the Master/Root Node

0

20

40

60

80

100

120

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

SimulatedHours

Sub Tree Size - Master / Root Node

No Cluster: Sub Tree Size

2 Clusters: Sub Tree Size

3 Clusters: Sub Tree Size

0

10

20

30

40

50

60

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

Simulated Hours

`root` subscriptions - Router on Level 3

No Cluster: `root` subscriptions

2 Clusters: `root` subscriptions

3 Cluster: `root` subscriptions

were generated for other nodes at each level in the hierarchy, and
all show similar results except the Root node. In a purely
hierarchical network, where messages may be routed from one
side of the network to the other side, it is clear that the
Root/Master node can form a bottleneck in terms of the scalability
of the network. As all the traffic travelling from one branch (and
cluster) to another grows, the routing overhead in the Root node
also grows. For this reason, to maximise scalability, it is
necessary to minimise the size of the routing table at the root
node, and optimise its searchability.

Figures 9 and 10 clearly show that for the application
characteristics, KBN configurations, and scenarios introduced
above, the subscription tree / routing table in the root node is
reduced and converges to smaller size when even rudimentary
semantic clustering is performed. In addition, since the
subscribing clients do not send subscriptions directly to the Root
node, the only subscriptions reaching the Root node come from
the “root” subscriptions of the nodes on level 2 of the hierarchy.
As a result of only receiving more general subscriptions, there is a
much smaller difference between the total subscription tree size
and the number of “root” subscriptions in the node. Shown in,
specifically Figure 10, are the root subscriptions which are the
covering subscriptions. The figures show the roots subs reaching
maximum capacity, which with the introduction of new
subscription content would begin a reversal of this trend.

6 RELATED WORK
There has been little examination of the use of ontology-based
semantics in content-based networking in the scientific literature.
In [17] a semantic publish-subscribe system is presented, but it is
based on a centralized (pub-sub bus) implementation and thus is

Figure 5: “Root” subscriptions in a level 2 router

Figure 7: “Root” subscriptions in a level 4 router

0

20

40

60

80

100

120

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

`root` subscriptions - Router on Level 4

No Cluster: `root` subscriptions

2 Clusters: `root` subscriptions

3 Cluster: `root` subscriptions

Simulated Hours

Figure 8: “Root” subscriptions in a level 5 router

Figure 6: “Root” subscriptions in a level 3 router

Figure 10: Subscription tree size in the Master/ Root node.

 167

limited to enterprise scale and does not offer true CBN
capabilities. In [35], semantics can be used in messages in a pub-
sub middleware; however, the semantics are used only at the edge
of the network in a manner similar to a small scale study
presented in [30]. The KBN presented in this paper uses semantics
deep in the forwarding algorithm of each message router within
the network. Much work to date on content-based networks has
focused on how efficiency in routing can be gained through
subscription aggregation and merging. Recent progress with the
XNET CBN has shown that perfect routing can be achieved in a
scaleable manner independently of subscriber joins and leave
rates though subscription aggregation [33]. The HERMES CBN
[22], ToPSS [18] and the REBECCA CBN [24] have all applied
peer to peer distributed hash table (P2P DHT) mechanisms to the
formation of routing tables in CBN nodes. This is interesting in
that it may form the basis for a flexible and robust clustering
mechanism for routing in KBNs. It should be noted that though
P2P systems themselves are concerned with efficiently routing
queries to matching information sources in a query-response
manner, they do not address the CBN concern of optimally
routing a sequence of asynchronous replies back to the set of
querying, or in CBN terms, subscribing clients. P2P DHTs
provide efficient routing by using a cost metric keyed to the
physical topology of the network resulting in average hop-counts
for a route in the order of the log of the number of nodes in the
network i.e. O(log(N)). However a difficulty remains in the
mapping of content based subs to a key space suitable for DHTs.

There are several attempts at applying P2P DHT techniques to the
retrieval of distributed ontology encoded knowledge information,
e.g. in RDF, in semantic overlay networks [11, 15, 23]. In
supporting an ontology-driven DHT-based P2P routing
mechanism for the KBN, the approach outlined in [15] seems
most promising due to its support for peer clustering. Used in this
way, peer clustering introduces a hierarchy of peer groups based
on policies. Such policies could admit nodes based on semantic
closeness, recorded performance, administrative domains or
indeed reasoning capabilities. It therefore provides a mechanism
for these different routing configuration strategies to co-exist,
serving different application domains or user communities in a
way that supports incremental deployment and innovation.

Like the preliminary approach taken in this paper, the design
presented in [5] uses the semantics of the message and knowledge
of the entire network to decide where a subscription should be
inserted into the network to minimise the routing table at
individual nodes. A slightly different approach in [2] requires the
entire network to be searched for a cluster before a subscription is
submitted. However, these systems remain CBNs rather than
KBNs because the semantics of the message cannot be used in
subscriptions and so lacks the expressiveness of the system
physically evaluated in this paper. In the presented KBN, it is
planned to employ more sophisticated and dynamically
reconfigurable clustering schemes, that can be without the need
for the complete knowledge of the semantics of all of the network,
either before hand or by searching, so improving scalability [29].

7 CONCLUSIONS AND FUTURE WORK
This paper raises some of the scalability issues involved in
building a global Knowledge-Based Network. Fundamental to this
is the need to support a large array of heterogeneous types in
notification messages to accommodate the global variety in

message sources and in the subscriptions to those messages. The
performance of a KBN implementation which extends the Siena
CBN has been explored. One part of the extension provides
ontological concepts as an additional message attribute type, onto
which subsumption relationships can be applied. The other part
provides for a bag type to be used that allows bag equivalence,
sub-bag and super-bag relationships to be used in subscription
filters, composed with different bag element comparators. These
two extensions augment the expressiveness of CBNs to directly
support two major evolutions in the typing of data on the web, the
use of ontologies in the Semantics Web and the use of string
based tagging and folksonomies in Web 2.0. These evolutions
allow the WWW to cope with a dramatic increase in the number
of sources of information by providing richer meta-data about
content; however the widespread use of rich semantics in meta-
data is still not in evidence.

One of the main questions that surround the use of ontologies
deep in the network at the routing layer remains the evaluation of
the resulting performance overhead. Previous small scale studies
in this area [29, 30, 31] show a definite performance penalty, but
this may be acceptable when offset against the increased
flexibility and expressiveness of the KBN subscription
mechanism. Further research is required to evaluate how the
performance of “off-the-shelf” ontology tools will affect the
scalability of KBNs within larger scales. These results point to the
potential importance of semantic clustering for efficient network
and performance scalability. It is acknowledged that the
experiments in this paper demonstrate only rudimentary semantic
clustering. However, the experiments in this paper clearly
demonstrate how even inflexible and static clustering can have a
substantial positive effect. Ongoing research will focus on how
clustering can be performed dynamically as the semantics of the
data within the network changes.

Work is also focusing on integrating policy-based cluster
management for the KBN [29] to support much more
sophisticated cluster schemes, e.g. overlapping clusters and
hierarchies of clusters under separate administrative control.
Policy-driven clustering enables the size and granularity of peer
clusters to reflect different application domains. For example, the
clustering policy may be specified in terms of accuracy, latency
or reasoning resources as well as the semantic spread of the
query-able knowledge-base, or in terms of queries across a peer
population and of the querying load across that population. In
addition, the effect of semantic interoperability in node matching
functions and in inter-cluster communications will be assessed.
This requires evaluation of different schemes for injecting newly
discovered semantic interoperability mappings into the
ontological corpus held by any given cluster, as well as how these
mapping are shared between clusters. We expect that any
practical system will need to adapt its clustering to reflect the
constantly changing profile of semantics being sent and
subscribed to via the KBN, thus creating a network environment
in which messages are passed from node-to-node, cluster-to-
cluster based not on the data’s destination but based on the
messages semantic data.

Acknowledgement. This work is funded by Science Foundation
Ireland under Grant No 05/RFP/CMS014.

 168

REFERENCES
[1] Web 2.0: Predictions and Pithy Analysis Charles Buchwalter,

VP Industry Solutions, Nielsen//NetRatings – Nov 2006
[2] Anceaume, E., Gradinariu, M., Datta, A. K., Simon, G.,

Virgillito, A., “A Semantic Overlay for Self- Peer-to-Peer
Publish/Subscribe”, Int’l Conf. on Distributed Computing
Systems (ICDCS'06), 4-7 July 2006, Lisboa, Portugal.

[3] “Pew Internet Project Data memo”, Mary Madden, Pew
Internet and American Life Project, Nov 2006

[4] “The Economics of Podcasting” ,Nielson Media Research,
July 2006

[5] Chand, R., Felber, P., “Semantic Peer-to-Peer Overlays for
Publish/Subscribe Networks”. EuroPar 2005, European
Conference on Parallel Processing, Lisboa, Portugal, 2005.

[6] Chand, R., Felber, P., Garofalakis, M., “Tree-Pattern
Similarity Estimation for Scalable content-based Routing”.
ICDE 2007, Int’l Conf. on Data Engineering, Istanbul, Turkey,
16-20 April, 2007.

[7] Apple - iTunes - iTunes Store - Podcasts - Technical
Specification. Retrieved March 18th, 2007 from:

 www.apple.com/itunes/podcasts/techspecs.html
[8] Swoogle's Statistics of the Semantic Web Retrieved March

18th, 2007 from:
 http://swoogle.umbc.edu/index.php?option=com_swoogle_stats&Itemid=8
[9] “RSS - Crossing Into the Mainstream”, Joshua Grossnickle,

Yahoo! White Paper, Oct 2005
[10] Peterson, L., et al, “Experiences Building PlanetLab”,

Symposium on Operating System Design and Implementation
(OSDI '06) - Nov 2006

 [11] Cai, M., Frank, M., “RDFPeers: A scalable distributed RDF
repository based on a structured peer-to-peer network”, WWW
conference, May 2004, NewYork, USA.

[12] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001).
Design and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems, 19(3).

[13] Weisstein, E. W. (2002). Multiset. MathWorld – A Wolfram
Web Resource. Retrieved July 19, 2006, from

 http://mathworld.wolfram.com/Multiset.html.
[14] Jiang J. Conrath D., “Semantic Similarity based on corpus

statistics and lexical taxonomy”, Intl Conference on Research
in Computational Linguistics, 1997.

[15] Loser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U.,
“Semantic overlay clusters within super-peer networks”, Int’l
Workshop on Databases, Information Systems and Peer-to-
Peer Computing in Conjunction with the VLDB 2003

[16] Lynch, D., Keeney, J., Lewis, D., O’Sullivan, D., “A
Proactive Approach to Semantically Oriented Service
Discovery”. Innovations in Web Infrastructure (IWI 2006). at
World-Wide Web Conf., Edinburgh, Scotland. May 2006.

[17] Li, H., Jiang, G., “Semantic Message Oriented Middleware
for Publish/Subscribe Networks”, in proc of SPIE, Volume
5403, pp 124-133, 2004

 [18] Muthusamy, V., Jacobsen, H.A., “Small–scale peer-to-peer
publish/subscribe” in proc Workshop on Peer-to-Peer
Knowledge Management, San Diego, USA, July 2005

[19] Rada R., Mili H., Bicknell E., Blettner M., “Development
and application of a metric on semantic nets”, IEEE
Transactions on Systems, Man, and Cybernetics 19, 1989.

[20] Rutherford, M. J. (2004). “Siena Simplification Library
Documentation 1.1.4.” University of Colorado – Web

Resource. Retrieved August 13, 2006, from
http://serl.cs.colorado.edu/carzanig/siena/forwarding/ssimp/namespacesiena.htm
l

[21] Segall, B. et al, “Content-Based Routing in Elvin4”, In proc
AUUG2K, Canberra 2000.

[22] Pietzuch, P., Bacon, J., "Peer-to-Peer Overlay Broker
Networks in an Event-Based Middleware". Distributed Event-
Based Systems (DEBS'03). At the ACM SIGMOD/PODS
Conference, San Diego, California, June 2003

[23] Tempich, C., Staab, S., Wranik, A., “REMINDIN’: semantic
query routing in peer-to-peer networks based on social
metaphors” WWW 2004, New York, USA, 2004.

[24] Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A.,
Buchmann, A.P., “A peer-to-peer approach to content-based
publish/subscribe”, in proc of DEBS 2003, ACM Press 2003

[25] Keeney, J., Lewis, D., O'Sullivan, D., "Benchmarking
Knowledge-based Context Delivery Systems", in proc of ICAS
06, Silicon Valley, USA, July 19-21, 2006.

[26] Carzaniga, A., Wolf, A. L., “A Benchmark Suite for
Distributed Publish/Subscribe Systems”, Technical Report
CU-CS-927-02, Dept. of Computer Science, University of
Colorado. Apr 2002,
http://serl.cs.colorado.edu/~carzanig/papers/

[27] Crowcroft, J., Bacon, J., Pietzuch, P., Coulouris, G., Naguib.
H., “Channel Islands in a Reflective Ocean: Large-Scale Event
Distribution in Heterogeneous Networks”, IEEE
Communications, Vol 40 No. 9, Sept 2002.

[28] Petrovic, M., Burceaa, I., Jacobsen, H.A. “S-ToPSS – a
semantic publish/subscribe system” in proc VLDB, Berlin,
Germany, September 2003

[29] Lewis, D., Keeney, J., O'Sullivan, D., Guo, S., "Towards a
Managed Extensible Control Plane for Knowledge-Based
Networking", Distributed Systems: Operations and
Management Large Scale Management, (DSOM 2006), at
Manweek 2006, Dublin, Ireland, 23-25 October 2006

[30] Keeney, J., Lewis, D., O'Sullivan, D., Roelens, A., Boran,
A., Richardson, R., "Runtime Semantic Interoperability for
Gathering Ontology-based Network Context", Network
Operations and Management Symposium (NOMS 2006),
Vancouver, Canada. 3-7 April 2006.

[31] Keeney, J., Lewis, D., O'Sullivan, D., "Ontological
Semantics for Distributing Contextual Knowledge in Highly
Distributed Autonomic Systems", Journal of Network and
System Management, Vol 15, March 2007

[32] Muhl, G., Fiege, L., Gartner, F., Buchman, A., “Evaluating
Advanced Routing Algorithms for Content-Based
Publish/Subscribe Systems”, Int’l Symp. On Modelling,
Analysis and Simulation of Computer Telecommunications
Systems (MASCOT’02), 2002

[33] Chand, R., Felber, P., “XNet: a Reliable Content Based
Publish Subscribe System”. SRDS 2004, Symp. on Reliable
Distributed Systems, Florianopolis, Brazil, October 2004.

[34] Roblek, D., "Decentralized Discovery and Execution for
Composite Semantic Web Services", M.Sc. Thesis, Computer
Science, Trinity College Dublin, Ireland, December 2006.

[35] Cilia, M., Bornhövd, C., Buchmann, A. P., “CREAM: An
Infrastructure for Distributed, Heterogeneous Event-Based
Applications”. CoopIS 2003, Catania, Sicily, Italy, Nov2003

[36] Carzaniga, A., Wolf, A. L., “Forwarding in a Content-Based
Network” SIGCOMM’03, Kaelsruhe, Germany. August 2003

 169

Appendix B

confOf.txt Page 1 of 2

1: Suggested that MEDOID: Camera_Ready_event joins cluster: http://confOf#Administrative_event
2: Suggested that MEDOID: Social_event joins cluster: http://confOf#Social_event
3: Suggested that MEDOID: South_America joins cluster: http://confOf#Country
4: Suggested that MEDOID: Assistant joins cluster: http://confOf#Person
5: Suggested that MEDOID: Company joins cluster: http://confOf#Organization
6: Suggested that MEDOID: Science_Worker joins cluster: http://confOf#Person
7: Suggested that MEDOID: Scholar joins cluster: http://confOf#Person
8: Suggested that MEDOID: Administrator joins cluster: http://confOf#Person
9: Suggested that MEDOID: Event joins cluster: http://confOf#Event
10: Suggested that MEDOID: Topic joins cluster: http://confOf#Topic
11: Suggested that MEDOID: Asia joins cluster: http://confOf#Country
12: Suggested that MEDOID: Tutorial joins cluster: http://confOf#Working_event
13: Suggested that MEDOID: Trip joins cluster: http://confOf#Social_event
14: Suggested that MEDOID: Submission_event joins cluster: http://confOf#Administrative_event
15: Suggested that MEDOID: Organization joins cluster: http://confOf#Organization
16: Suggested that MEDOID: Participant joins cluster: http://confOf#Participant
17: Suggested that MEDOID: Student joins cluster: http://confOf#Participant
18: Suggested that MEDOID: Member joins cluster: http://confOf#Participant
19: Suggested that MEDOID: North_America joins cluster: http://confOf#Country
20: Suggested that MEDOID: Short_paper joins cluster: http://confOf#Contribution
21: Suggested that MEDOID: Author joins cluster: http://confOf#Person
22: Suggested that MEDOID: Workshop joins cluster: http://confOf#Working_event
23: Suggested that MEDOID: Volunteer joins cluster: http://confOf#Organization
24: Suggested that MEDOID: Africa joins cluster: http://confOf#Country
25: Suggested that MEDOID: Reviewing_event joins cluster: http://confOf#Administrative_event
26: Suggested that MEDOID: Working_event joins cluster: http://confOf#Event
27: Suggested that MEDOID: Contribution joins cluster: http://confOf#Contribution
28: Suggested that MEDOID: Administrative_event joins cluster: http://confOf#Event
29: Suggested that MEDOID: Paper joins cluster: http://confOf#Contribution
30: Suggested that MEDOID: Conference joins cluster: http://confOf#Working_event
31: Suggested that MEDOID: Person joins cluster: http://confOf#Person
32: Suggested that MEDOID: Registration_of_participants_event joins cluster: http://confOf#Administrative_event
33: Suggested that MEDOID: Country joins cluster: http://confOf#Country
34: Suggested that MEDOID: Banquet joins cluster: http://confOf#Social_event
35: Suggested that MEDOID: City joins cluster: http://confOf#City
36: Suggested that MEDOID: University joins cluster: http://confOf#Organization
37: Suggested that MEDOID: Reviewing_results_event joins cluster: http://confOf#Administrative_event
38: Suggested that MEDOID: Australisa joins cluster: http://confOf#Country
39: Suggested that MEDOID: Regular joins cluster: http://confOf#Participant
40: Suggested that MEDOID: Reception joins cluster: http://confOf#Social_event
41: Suggested that MEDOID: Poster joins cluster: http://confOf#Contribution
42: Suggested that MEDOID: Chair_PC joins cluster: http://confOf#Organization
43: Suggested that MEDOID: Europe joins cluster: http://confOf#Country
44: Suggested that MEDOID: Member_PC joins cluster: http://confOf#Organization
45: Suggested that MEDOID: Autonomic_Actions joins cluster: http://confOf#Topic
46: Suggested that MEDOID: Carlow joins cluster: http://confOf#City
47: Suggested that MEDOID: Ireland joins cluster: http://confOf#Country
48: Suggested that MEDOID: Middleware joins cluster: http://confOf#Topic
49: Suggested that MEDOID: Academic_Andrew joins cluster: http://confOf#Person
50: Suggested that MEDOID: Keeney_John joins cluster: http://confOf#Person

confOf.txt Page 2 of 2

51: Suggested that MEDOID: Dublin joins cluster: http://confOf#City
52: Suggested that MEDOID: Dynaism joins cluster: http://confOf#Topic
53: Suggested that MEDOID: Fomal_Methods joins cluster: http://confOf#Topic
54: Suggested that MEDOID: Galway joins cluster: http://confOf#City
55: Suggested that MEDOID: Short_paper_19 joins cluster: http://confOf#Contribution
56: Suggested that MEDOID: Jones_Dominic joins cluster: http://confOf#Person
57: Suggested that MEDOID: Poster_1 joins cluster: http://confOf#Contribution
58: Suggested that MEDOID: Policy-based_Network_Managment joins cluster: http://confOf#Topic
59: Suggested that MEDOID: Rome joins cluster: http://confOf#City
60: Suggested that MEDOID: Trintiy_College_Dublin joins cluster: http://confOf#Organization
61: Suggested that MEDOID: Paper_17 joins cluster: http://confOf#Contribution
62: Suggested that MEDOID: Fortaleza joins cluster: http://confOf#City
63: Suggested that MEDOID: Lewis_Dave joins cluster: http://confOf#Person

 170

ekaw.txt Page 1 of 2

1: Suggested that MEDOID: Invited_Talk_Abstract joins cluster: http://ekaw#Abstract
2: Suggested that MEDOID: Assigned_Paper joins cluster: http://ekaw#Assigned_Paper
3: Suggested that MEDOID: Multi-author_Volume joins cluster: http://ekaw#Multi-author_Volume
4: Suggested that MEDOID: Organisation joins cluster: http://ekaw#Organisation
5: Suggested that MEDOID: Location joins cluster: http://ekaw#Location
6: Suggested that MEDOID: Invited_Speaker joins cluster: http://ekaw#Presenter
7: Suggested that MEDOID: Submitted_Paper joins cluster: http://ekaw#Submitted_Paper
8: Suggested that MEDOID: Demo_Chair joins cluster: http://ekaw#Conference_Participant
9: Suggested that MEDOID: Poster_Session joins cluster: http://ekaw#Session
10: Suggested that MEDOID: Early-Registered_Participant joins cluster: http://ekaw#Conference_Participant
11: Suggested that MEDOID: PC_Chair joins cluster: http://ekaw#PC_Member
12: Suggested that MEDOID: OC_Chair joins cluster: http://ekaw#OC_Member
13: Suggested that MEDOID: Tutorial_Chair joins cluster: http://ekaw#PC_Member
14: Suggested that MEDOID: Track joins cluster: http://ekaw#Scientific_Event
15: Suggested that MEDOID: Evaluated_Paper joins cluster: http://ekaw#Assigned_Paper
16: Suggested that MEDOID: Abstract joins cluster: http://ekaw#Abstract
17: Suggested that MEDOID: Programme_Brochure joins cluster: http://ekaw#Document
18: Suggested that MEDOID: Tutorial_Abstract joins cluster: http://ekaw#Abstract
19: Suggested that MEDOID: Organising_Agency joins cluster: http://ekaw#Organisation
20: Suggested that MEDOID: Agency_Staff_Member joins cluster: http://ekaw#Person
21: Suggested that MEDOID: PC_Member joins cluster: http://ekaw#PC_Member
22: Suggested that MEDOID: Research_Topic joins cluster: http://ekaw#Research_Topic
23: Suggested that MEDOID: Proceedings joins cluster: http://ekaw#Multi-author_Volume
24: Suggested that MEDOID: Workshop_Session joins cluster: http://ekaw#Session
25: Suggested that MEDOID: Regular_Session joins cluster: http://ekaw#Session
26: Suggested that MEDOID: Web_Site joins cluster: http://ekaw#Document
27: Suggested that MEDOID: Session joins cluster: http://ekaw#Session
28: Suggested that MEDOID: SC_Member joins cluster: http://ekaw#PC_Member
29: Suggested that MEDOID: Workshop_Chair joins cluster: http://ekaw#PC_Member
30: Suggested that MEDOID: Negative_Review joins cluster: http://ekaw#Review
31: Suggested that MEDOID: Workshop joins cluster: http://ekaw#Scientific_Event
32: Suggested that MEDOID: Conference_Paper joins cluster: http://ekaw#Paper
33: Suggested that MEDOID: Research_Institute joins cluster: http://ekaw#Academic_Institution
34: Suggested that MEDOID: Possible_Reviewer joins cluster: http://ekaw#Possible_Reviewer
35: Suggested that MEDOID: Scientific_Event joins cluster: http://ekaw#Scientific_Event
36: Suggested that MEDOID: Document joins cluster: http://ekaw#Document
37: Suggested that MEDOID: Workshop_Paper joins cluster: http://ekaw#Paper
38: Suggested that MEDOID: Person joins cluster: http://ekaw#Person
39: Suggested that MEDOID: Individual_Presentation joins cluster: http://ekaw#Scientific_Event
40: Suggested that MEDOID: Rejected_Paper joins cluster: http://ekaw#Evaluated_Paper
41: Suggested that MEDOID: Session_Chair joins cluster: http://ekaw#PC_Member
42: Suggested that MEDOID: Proceedings_Publisher joins cluster: http://ekaw#Organisation
43: Suggested that MEDOID: Academic_Institution joins cluster: http://ekaw#Organisation
44: Suggested that MEDOID: Flyer joins cluster: http://ekaw#Document
45: Suggested that MEDOID: Review joins cluster: http://ekaw#Document
46: Suggested that MEDOID: Industrial_Session joins cluster: http://ekaw#Conference_Session
47: Suggested that MEDOID: Demo_Session joins cluster: http://ekaw#Session
48: Suggested that MEDOID: Camera_Ready_Paper joins cluster: http://ekaw#Paper
49: Suggested that MEDOID: Accepted_Paper joins cluster: http://ekaw#Evaluated_Paper
50: Suggested that MEDOID: University joins cluster: http://ekaw#Academic_Institution

ekaw.txt Page 2 of 2

51: Suggested that MEDOID: Conference joins cluster: http://ekaw#Scientific_Event
52: Suggested that MEDOID: Positive_Review joins cluster: http://ekaw#Review
53: Suggested that MEDOID: Presenter joins cluster: http://ekaw#Presenter
54: Suggested that MEDOID: Social_Event joins cluster: http://ekaw#Social_Event
55: Suggested that MEDOID: Demo_Paper joins cluster: http://ekaw#Paper
56: Suggested that MEDOID: Conference_Proceedings joins cluster: http://ekaw#Proceedings
57: Suggested that MEDOID: Contributed_Talk joins cluster: http://ekaw#Individual_Presentation
58: Suggested that MEDOID: OC_Member joins cluster: http://ekaw#OC_Member
59: Suggested that MEDOID: Paper_Author joins cluster: http://ekaw#Person
60: Suggested that MEDOID: Student joins cluster: http://ekaw#Person
61: Suggested that MEDOID: Tutorial joins cluster: http://ekaw#Individual_Presentation
62: Suggested that MEDOID: Poster_Paper joins cluster: http://ekaw#Paper
63: Suggested that MEDOID: Conference_Trip joins cluster: http://ekaw#Social_Event
64: Suggested that MEDOID: Regular_Paper joins cluster: http://ekaw#Paper
65: Suggested that MEDOID: Late-Registered_Participant joins cluster: http://ekaw#Conference_Participant
66: Suggested that MEDOID: Invited_Talk joins cluster: http://ekaw#Individual_Presentation
67: Suggested that MEDOID: Paper joins cluster: http://ekaw#Document
68: Suggested that MEDOID: Conference_Participant joins cluster: http://ekaw#Person
69: Suggested that MEDOID: Industrial_Paper joins cluster: http://ekaw#Paper
70: Suggested that MEDOID: Conference_Session joins cluster: http://ekaw#Session
71: Suggested that MEDOID: Neutral_Review joins cluster: http://ekaw#Review
72: Suggested that MEDOID: Conference_Banquet joins cluster: http://ekaw#Social_Event
73: Suggested that MEDOID: Event joins cluster: http://ekaw#Event

 171

iswc.txt Page 1 of 2

1: Suggested that MEDOID: Event joins cluster: http://annotation.semanticweb.org/2004/iswc#Event
2: Suggested that MEDOID: Formal_Language joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
3: Suggested that MEDOID: University joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
4: Suggested that MEDOID: Faculty_Member joins cluster: http://annotation.semanticweb.org/2004/iswc#Faculty_Member
5: Suggested that MEDOID: Application_Domain joins cluster: http://annotation.semanticweb.org/2004/iswc#Application_Domain
6: Suggested that MEDOID: Workshop joins cluster: http://annotation.semanticweb.org/2004/iswc#Event
7: Suggested that MEDOID: Employee joins cluster: http://annotation.semanticweb.org/2004/iswc#Person
8: Suggested that MEDOID: Associate_Professor joins cluster: http://annotation.semanticweb.org/2004/iswc#Faculty_Member
9: Suggested that MEDOID: Institute joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
10: Suggested that MEDOID: Lecturer joins cluster: http://annotation.semanticweb.org/2004/iswc#Faculty_Member
11: Suggested that MEDOID: Project joins cluster: http://annotation.semanticweb.org/2004/iswc#Project
12: Suggested that MEDOID: Application joins cluster: http://annotation.semanticweb.org/2004/iswc#Application
13: Suggested that MEDOID: Association joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
14: Suggested that MEDOID: Tutorial joins cluster: http://annotation.semanticweb.org/2004/iswc#Event
15: Suggested that MEDOID: Topic joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
16: Suggested that MEDOID: Organization joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
17: Suggested that MEDOID: Research_Funding_Institution joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
18: Suggested that MEDOID: Method joins cluster: http://annotation.semanticweb.org/2004/iswc#Method
19: Suggested that MEDOID: Department joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
20: Suggested that MEDOID: Tool joins cluster: http://annotation.semanticweb.org/2004/iswc#Tool
21: Suggested that MEDOID: Book joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
22: Suggested that MEDOID: Algorithm joins cluster: http://annotation.semanticweb.org/2004/iswc#Algorithm
23: Suggested that MEDOID: Report joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
24: Suggested that MEDOID: Person joins cluster: http://annotation.semanticweb.org/2004/iswc#Person
25: Suggested that MEDOID: Student joins cluster: http://annotation.semanticweb.org/2004/iswc#Person
26: Suggested that MEDOID: Full_Professor joins cluster: http://annotation.semanticweb.org/2004/iswc#Faculty_Member
27: Suggested that MEDOID: InProceedings joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
28: Suggested that MEDOID: PhDStudent joins cluster: http://annotation.semanticweb.org/2004/iswc#Student
29: Suggested that MEDOID: Conference joins cluster: http://annotation.semanticweb.org/2004/iswc#Event
30: Suggested that MEDOID: Researcher joins cluster: http://annotation.semanticweb.org/2004/iswc#Person
31: Suggested that MEDOID: Proceedings joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
32: Suggested that MEDOID: Publication joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
33: Suggested that MEDOID: Enterprise joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
34: Suggested that MEDOID: RDF joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
35: Suggested that MEDOID: Web_Services joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
36: Suggested that MEDOID: Java joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
37: Suggested that MEDOID: Machine_Learning joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
38: Suggested that MEDOID: C joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
39: Suggested that MEDOID: Knowledge_Discovery joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
40: Suggested that MEDOID: SQL joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
41: Suggested that MEDOID: e-Business joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
42: Suggested that MEDOID: Ontology_Learning joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
43: Suggested that MEDOID: Semantic_Web_Iinfrastructure joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
44: Suggested that MEDOID: Agents joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
45: Suggested that MEDOID: OXML joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
46: Suggested that MEDOID: Knowledge_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
47: Suggested that MEDOID: Semantic_Web_Languages joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
48: Suggested that MEDOID: Business_Engineering joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
49: Suggested that MEDOID: KAON joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
50: Suggested that MEDOID: Ontology-based_Knowledge_Management_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic

iswc.txt Page 2 of 2

51: Suggested that MEDOID: RDFS joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
52: Suggested that MEDOID: Logic joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
53: Suggested that MEDOID: University_of_Karlsruhe joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
54: Suggested that MEDOID: Office_Information_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
55: Suggested that MEDOID: Information_Retrieval joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
56: Suggested that MEDOID: Network_Infrastructure joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
57: Suggested that MEDOID: DAML_OIL joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
58: Suggested that MEDOID: Semantic_Web joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
59: Suggested that MEDOID: TowardsSemanticWebMining joins cluster: http://annotation.semanticweb.org/2004/iswc#Publication
60: Suggested that MEDOID: Modeling joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
61: Suggested that MEDOID: Artificial_Intelligence joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
62: Suggested that MEDOID: Semantic_Annotation joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
63: Suggested that MEDOID: Ontology_Engineering joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
64: Suggested that MEDOID: Knowledge_Management joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
65: Suggested that MEDOID: Query_Languages joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
66: Suggested that MEDOID: Information_Extraction joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
67: Suggested that MEDOID: XML joins cluster: http://annotation.semanticweb.org/2004/iswc#Formal_Language
68: Suggested that MEDOID: Agent_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
69: Suggested that MEDOID: Text_Mining joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
70: Suggested that MEDOID: AIFB joins cluster: http://annotation.semanticweb.org/2004/iswc#Organization
71: Suggested that MEDOID: Knowledge_Representation_Languages joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
72: Suggested that MEDOID: Data_Mining joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
73: Suggested that MEDOID: Knowledge_Representation_And_Reasoning joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
74: Suggested that MEDOID: World_Wide_Web joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
75: Suggested that MEDOID: Knowledge_Reasoning joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
76: Suggested that MEDOID: Human_Computer_Interaction joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
77: Suggested that MEDOID: Matching joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
78: Suggested that MEDOID: Databases joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
79: Suggested that MEDOID: ISWC_2002 joins cluster: http://annotation.semanticweb.org/2004/iswc#Event
80: Suggested that MEDOID: Information_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
81: Suggested that MEDOID: Knowledge_Management_Methodology joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
82: Suggested that MEDOID: Development_of_Knowledge_Management_Systems joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic
83: Suggested that MEDOID: Knowledge_Portals joins cluster: http://annotation.semanticweb.org/2004/iswc#Topic

 172

swrc Page 1 of 2

1: Suggested that MEDOID: InProceedings joins cluster: http://swrc.ontoware.org/ontology#Publication
2: Suggested that MEDOID: TechnicalReport joins cluster: http://swrc.ontoware.org/ontology#Report
3: Suggested that MEDOID: Student joins cluster: http://swrc.ontoware.org/ontology#Student
4: Suggested that MEDOID: Lecture joins cluster: http://swrc.ontoware.org/ontology#Event
5: Suggested that MEDOID: FullProfessor joins cluster: http://swrc.ontoware.org/ontology#FacultyMember
6: Suggested that MEDOID: ResearchProject joins cluster: http://swrc.ontoware.org/ontology#Project
7: Suggested that MEDOID: Conference joins cluster: http://swrc.ontoware.org/ontology#Event
8: Suggested that MEDOID: Graduate joins cluster: http://swrc.ontoware.org/ontology#Student
9: Suggested that MEDOID: Article joins cluster: http://swrc.ontoware.org/ontology#Publication
10: Suggested that MEDOID: PhDThesis joins cluster: http://swrc.ontoware.org/ontology#Thesis
11: Suggested that MEDOID: Manual joins cluster: http://swrc.ontoware.org/ontology#Publication
12: Suggested that MEDOID: Meeting joins cluster: http://swrc.ontoware.org/ontology#Meeting
13: Suggested that MEDOID: Topic joins cluster: http://swrc.ontoware.org/ontology#Topic
14: Suggested that MEDOID: Institute joins cluster: http://swrc.ontoware.org/ontology#Organization
15: Suggested that MEDOID: ResearchGroup joins cluster: http://swrc.ontoware.org/ontology#Organization
16: Suggested that MEDOID: Association joins cluster: http://swrc.ontoware.org/ontology#Organization
17: Suggested that MEDOID: Lecturer joins cluster: http://swrc.ontoware.org/ontology#AcademicStaff
18: Suggested that MEDOID: Product joins cluster: http://swrc.ontoware.org/ontology#Product
19: Suggested that MEDOID: ProjectMeeting joins cluster: http://swrc.ontoware.org/ontology#Meeting
20: Suggested that MEDOID: Department joins cluster: http://swrc.ontoware.org/ontology#Organization
21: Suggested that MEDOID: AssociateProfessor joins cluster: http://swrc.ontoware.org/ontology#FacultyMember
22: Suggested that MEDOID: Person joins cluster: http://swrc.ontoware.org/ontology#Person
23: Suggested that MEDOID: FacultyMember joins cluster: http://swrc.ontoware.org/ontology#FacultyMember
24: Suggested that MEDOID: University joins cluster: http://swrc.ontoware.org/ontology#Organization
25: Suggested that MEDOID: Exhibition joins cluster: http://swrc.ontoware.org/ontology#Event
26: Suggested that MEDOID: Employee joins cluster: http://swrc.ontoware.org/ontology#Person
27: Suggested that MEDOID: MasterThesis joins cluster: http://swrc.ontoware.org/ontology#Thesis
28: Suggested that MEDOID: SoftwareComponent joins cluster: http://swrc.ontoware.org/ontology#Product
29: Suggested that MEDOID: Book joins cluster: http://swrc.ontoware.org/ontology#Publication
30: Suggested that MEDOID: Report joins cluster: http://swrc.ontoware.org/ontology#Report
31: Suggested that MEDOID: PhDStudent joins cluster: http://swrc.ontoware.org/ontology#Graduate
32: Suggested that MEDOID: TechnicalStaff joins cluster: http://swrc.ontoware.org/ontology#Employee
33: Suggested that MEDOID: Manager joins cluster: http://swrc.ontoware.org/ontology#Employee
34: Suggested that MEDOID: Undergraduate joins cluster: http://swrc.ontoware.org/ontology#Student
35: Suggested that MEDOID: Project joins cluster: http://swrc.ontoware.org/ontology#Project
36: Suggested that MEDOID: Misc joins cluster: http://swrc.ontoware.org/ontology#Publication
37: Suggested that MEDOID: Event joins cluster: http://swrc.ontoware.org/ontology#Event
38: Suggested that MEDOID: InBook joins cluster: http://swrc.ontoware.org/ontology#Publication
39: Suggested that MEDOID: ResearchTopic joins cluster: http://swrc.ontoware.org/ontology#Topic
40: Suggested that MEDOID: Publication joins cluster: http://swrc.ontoware.org/ontology#Publication
41: Suggested that MEDOID: Proceedings joins cluster: http://swrc.ontoware.org/ontology#Publication
42: Suggested that MEDOID: ProjectReport joins cluster: http://swrc.ontoware.org/ontology#Report
43: Suggested that MEDOID: Unpublished joins cluster: http://swrc.ontoware.org/ontology#Publication
44: Suggested that MEDOID: Workshop joins cluster: http://swrc.ontoware.org/ontology#Event
45: Suggested that MEDOID: Booklet joins cluster: http://swrc.ontoware.org/ontology#Publication
46: Suggested that MEDOID: AssistantProfessor joins cluster: http://swrc.ontoware.org/ontology#FacultyMember
47: Suggested that MEDOID: Thesis joins cluster: http://swrc.ontoware.org/ontology#Publication
48: Suggested that MEDOID: InCollection joins cluster: http://swrc.ontoware.org/ontology#Publication
49: Suggested that MEDOID: AcademicStaff joins cluster: http://swrc.ontoware.org/ontology#Employee
50: Suggested that MEDOID: Organization joins cluster: http://swrc.ontoware.org/ontology#Organization

swrc Page 2 of 2

51: Suggested that MEDOID: AdministrativeStaff joins cluster: http://swrc.ontoware.org/ontology#Employee
52: Suggested that MEDOID: Enterprise joins cluster: http://swrc.ontoware.org/ontology#Organization
53: Suggested that MEDOID: SoftwareProject joins cluster: http://swrc.ontoware.org/ontology#DevelopmentProject
54: Suggested that MEDOID: DevelopmentProject joins cluster: http://swrc.ontoware.org/ontology#Project

 173

security Page 1 of 10

1: Suggested that MEDOID: IPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkLayerPacket
2: Suggested that MEDOID: _ProgramFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_File
3: Suggested that MEDOID: HostOnInternet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
4: Suggested that MEDOID: Scavenging joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PassiveAttack
5: Suggested that MEDOID: MACAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MACAlgorithm
6: Suggested that MEDOID: _Recovery joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
7: Suggested that MEDOID: Credential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
8: Suggested that MEDOID: _Heap joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataOnVolatileMedia
9: Suggested that MEDOID: FormatStringAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MalformedInput
10: Suggested that MEDOID: HostOnWiredNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
11: Suggested that MEDOID: LibertyFramework joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SingleSignOnSystem
12: Suggested that MEDOID: CertificateData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CertificateData
13: Suggested that MEDOID: WiredNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
14: Suggested that MEDOID: Checksum joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Checksum
15: Suggested that MEDOID: Model joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Model
16: Suggested that MEDOID: _Availability joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
17: Suggested that MEDOID: MD4 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
18: Suggested that MEDOID: Hardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Hardware
19: Suggested that MEDOID: Damage joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalThreat
20: Suggested that MEDOID: DiscreteLogarithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DiscreteLogarithm
21: Suggested that MEDOID: NetworkedHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
22: Suggested that MEDOID: BiometricAuthenticationSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BiometricAuthenticationSystem
23: Suggested that MEDOID: _Iris joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_PhysicalBiometricCredential
24: Suggested that MEDOID: _DataInTransit joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataInTransit
25: Suggested that MEDOID: _Trust joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
26: Suggested that MEDOID: Least-Privilege joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlModel
27: Suggested that MEDOID: Harddisk joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Hardware
28: Suggested that MEDOID: Rootkit joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MaliciousCode
29: Suggested that MEDOID: Technology joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Technology
30: Suggested that MEDOID: MandatoryAccessControl joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlModel
31: Suggested that MEDOID: UseOfVulnerableProgrammingLanguage joins cluster: http://www.ida.liu.se/~almhe/

Security.owl#UseOfVulnerableProgrammingLanguage
32: Suggested that MEDOID: RIPE-MAC3 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RIPE-MAC
33: Suggested that MEDOID: Definition joins cluster: http://www.ida.liu.se/~almhe/SecurityLiterature.owl#Definition
34: Suggested that MEDOID: Skipjack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SymmetricAlgorithm
35: Suggested that MEDOID: _ConfigurationFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_File
36: Suggested that MEDOID: MalformedInput joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MalformedInput
37: Suggested that MEDOID: _Human joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Human
38: Suggested that MEDOID: MessageDigestData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
39: Suggested that MEDOID: Cryptography joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography
40: Suggested that MEDOID: MessageDigest joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MessageDigest
41: Suggested that MEDOID: AnomalyDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByDetectionMethod
42: Suggested that MEDOID: ClientHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
43: Suggested that MEDOID: _Receiver joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Human
44: Suggested that MEDOID: KeyExchange joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography
45: Suggested that MEDOID: _LoginName joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
46: Suggested that MEDOID: _Credential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
47: Suggested that MEDOID: _DataOnNon-VolatileMedia joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataOnNon-VolatileMedia
48: Suggested that MEDOID: OnionRouter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
49: Suggested that MEDOID: _Anonymity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ConfidentialitySimilars

security Page 2 of 10

50: Suggested that MEDOID: StackOverflow joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BufferOverflow
51: Suggested that MEDOID: TrojanHorse joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MaliciousCode
52: Suggested that MEDOID: WirelessAccessPoint joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Router
53: Suggested that MEDOID: Worm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Worm
54: Suggested that MEDOID: _2TDES joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TripleDES
55: Suggested that MEDOID: Human joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Human
56: Suggested that MEDOID: NAT joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
57: Suggested that MEDOID: _Detection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
58: Suggested that MEDOID: Network joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Technology
59: Suggested that MEDOID: Data joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Technology
60: Suggested that MEDOID: _ClientHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
61: Suggested that MEDOID: PassiveAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PassiveAttack
62: Suggested that MEDOID: RaceCondition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RaceCondition
63: Suggested that MEDOID: _BiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
64: Suggested that MEDOID: MSPassport joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SingleSignOnSystem
65: Suggested that MEDOID: Monitoring joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
66: Suggested that MEDOID: Factorisation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographyModel
67: Suggested that MEDOID: Spyware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Spyware
68: Suggested that MEDOID: SigningWithCertificate joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SigningWithCertificate
69: Suggested that MEDOID: _Integrity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
70: Suggested that MEDOID: One-TimePassword joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Password
71: Suggested that MEDOID: Product joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Product
72: Suggested that MEDOID: ReferenceMonitor joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlMechanism
73: Suggested that MEDOID: StreamCipher joins cluster: http://www.ida.liu.se/~almhe/Security.owl#StreamCipher
74: Suggested that MEDOID: MD2 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
75: Suggested that MEDOID: Router joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
76: Suggested that MEDOID: UntrustedNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
77: Suggested that MEDOID: EncryptionKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
78: Suggested that MEDOID: DigitalSigning joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Checksum
79: Suggested that MEDOID: DiscretionaryAccessControl joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlModel
80: Suggested that MEDOID: SecurityHardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Hardware
81: Suggested that MEDOID: DNSSEC joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
82: Suggested that MEDOID: InternetInfrastructureDenialOfService joins cluster: http://www.ida.liu.se/~almhe/

Security.owl#InternetInfrastructureDenialOfService
83: Suggested that MEDOID: X.509CertificateData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CertificateData
84: Suggested that MEDOID: RIPE-MAC1 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RIPE-MAC
85: Suggested that MEDOID: SSL joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
86: Suggested that MEDOID: Smurf joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
87: Suggested that MEDOID: ContinuousIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByUsageFrequency
88: Suggested that MEDOID: _Stack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataOnVolatileMedia
89: Suggested that MEDOID: _StationaryData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_StationaryData
90: Suggested that MEDOID: CPU joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Hardware
91: Suggested that MEDOID: Blowfish joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
92: Suggested that MEDOID: HasGoal joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
93: Suggested that MEDOID: StackAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
94: Suggested that MEDOID: HMAC joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MACAlgorithm
95: Suggested that MEDOID: Stack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataOnVolatileMedia
96: Suggested that MEDOID: _Technology joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
97: Suggested that MEDOID: Receiver joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Human
98: Suggested that MEDOID: PHPInjection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CodeInjection

 174

security Page 3 of 10

99: Suggested that MEDOID: Sanitizer joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Sanitizer
100: Suggested that MEDOID: DefenseStrategy joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
101: Suggested that MEDOID: Vulnerability joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Vulnerability
102: Suggested that MEDOID: _ConfidentialitySimilars joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
103: Suggested that MEDOID: Keynote joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TrustManagement
104: Suggested that MEDOID: LoginSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#LoginSystem
105: Suggested that MEDOID: _SecurityHardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_SecurityHardware
106: Suggested that MEDOID: DataOnNon-VolatileMedia joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataOnNon-VolatileMedia
107: Suggested that MEDOID: _Authorisation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
108: Suggested that MEDOID: ActiveIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByBehaviourOnDetection
109: Suggested that MEDOID: Role-BasedAccessControl joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlModel
110: Suggested that MEDOID: _BastionHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
111: Suggested that MEDOID: _CPU joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Hardware
112: Suggested that MEDOID: _X.509CertificateData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_CertificateData
113: Suggested that MEDOID: _SmartCard joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
114: Suggested that MEDOID: HWDeveloper joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OfficeUser
115: Suggested that MEDOID: RSA joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Public-KeyEncryption
116: Suggested that MEDOID: _Retina joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_PhysicalBiometricCredential
117: Suggested that MEDOID: ChecksumData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
118: Suggested that MEDOID: HostOnIntranet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
119: Suggested that MEDOID: BufferOverflow joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MalformedInput
120: Suggested that MEDOID: RoutingTablePoisoningThroughLink joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RoutingTablePoisoning
121: Suggested that MEDOID: Encryption joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Encryption
122: Suggested that MEDOID: Goal joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
123: Suggested that MEDOID: BruteForceAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BruteForceAttack
124: Suggested that MEDOID: Steganography joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography
125: Suggested that MEDOID: Heap joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataOnVolatileMedia
126: Suggested that MEDOID: CBC-MAC joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MACAlgorithm
127: Suggested that MEDOID: DataInTransit joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Data
128: Suggested that MEDOID: _HostOnWirelessNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
129: Suggested that MEDOID: BypassingIntendedControls joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BypassingIntendedControls
130: Suggested that MEDOID: ThreatThreatensGoalOfAsset joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
131: Suggested that MEDOID: DoS-TCP joins cluster: http://www.ida.liu.se/~almhe/Security.owl#InternetInfrastructureDenialOfService
132: Suggested that MEDOID: HasThreat joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasThreat
133: Suggested that MEDOID: _NetworkLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataInTransit
134: Suggested that MEDOID: Host-BasedIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByAuditSourceLocation
135: Suggested that MEDOID: MD5 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
136: Suggested that MEDOID: SSH joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
137: Suggested that MEDOID: Unix joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OperatingSystem
138: Suggested that MEDOID: PhysicalBiometricRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BiometricAuthenticationSystem
139: Suggested that MEDOID: RC4 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#StreamCipher
140: Suggested that MEDOID: PacketMistreatment joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PacketMistreatment
141: Suggested that MEDOID: _3TDES joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TripleDES
142: Suggested that MEDOID: _HandMeasurement joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_PhysicalBiometricCredential
143: Suggested that MEDOID: Disruption joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Disruption
144: Suggested that MEDOID: _ProgramSourceCodeFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_File
145: Suggested that MEDOID: FileAccessControl joins cluster: http://www.ida.liu.se/~almhe/Security.owl#FileAccessControl
146: Suggested that MEDOID: HTMLScriptInjection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CodeInjection
147: Suggested that MEDOID: VulnerabilityInCode joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Vulnerability
148: Suggested that MEDOID: DigitalSignatureData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MessageDigestData

security Page 4 of 10

149: Suggested that MEDOID: PolicyMaker joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TrustManagement
150: Suggested that MEDOID: VoiceRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BehaviouralBiometricRecognition
151: Suggested that MEDOID: OperatingSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Product
152: Suggested that MEDOID: IPSec joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
153: Suggested that MEDOID: ManInTheMiddle joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
154: Suggested that MEDOID: PrivateKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Data
155: Suggested that MEDOID: Auditing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
156: Suggested that MEDOID: PrivateUser joins cluster: http://www.ida.liu.se/~almhe/Security.owl#User
157: Suggested that MEDOID: SourceRoutingAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BypassingIntendedControls
158: Suggested that MEDOID: GaitRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BehaviouralBiometricRecognition
159: Suggested that MEDOID: _Hardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
160: Suggested that MEDOID: ProgramFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#File
161: Suggested that MEDOID: _HostOnIntranet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_HostOnIntranet
162: Suggested that MEDOID: _ChecksumData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
163: Suggested that MEDOID: OfficeUser joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OfficeUser
164: Suggested that MEDOID: MessageAuthenticationCodeData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DigitalSignatureData
165: Suggested that MEDOID: MissingErrorHandling joins cluster: http://www.ida.liu.se/~almhe/Security.owl#VulnerabilityInCode
166: Suggested that MEDOID: Database joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Product
167: Suggested that MEDOID: DistributedDenialOfService joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
168: Suggested that MEDOID: _One-TimePassword joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Password
169: Suggested that MEDOID: SQLInjection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CodeInjection
170: Suggested that MEDOID: InsecureDefaultSettingUnchanged joins cluster: http://www.ida.liu.se/~almhe/Security.owl#InsecureDefaultSettingUnchanged
171: Suggested that MEDOID: Compartmentalisation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlModel
172: Suggested that MEDOID: _EncryptionKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
173: Suggested that MEDOID: ApplicationLevelGateway joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Firewall
174: Suggested that MEDOID: SigningWithX.509Certificate joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SigningWithCertificate
175: Suggested that MEDOID: KerberosArchitecture joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SingleSignOnSystem
176: Suggested that MEDOID: Gait joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BehaviouralBiometricCredential
177: Suggested that MEDOID: _Degausser joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_SecurityHardware
178: Suggested that MEDOID: _DataOnVolatileMedia joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_StationaryData
179: Suggested that MEDOID: _PhysicalBiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_BiometricCredential
180: Suggested that MEDOID: _PolicyCompliance joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
181: Suggested that MEDOID: _MessageDigestData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
182: Suggested that MEDOID: SourceCodeAnalysis joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
183: Suggested that MEDOID: _LocalHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_HostOnIntranet
184: Suggested that MEDOID: _PrivateKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_EncryptionKey
185: Suggested that MEDOID: _UnconnectedHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
186: Suggested that MEDOID: IntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
187: Suggested that MEDOID: SignatureAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography
188: Suggested that MEDOID: Intranet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
189: Suggested that MEDOID: RoutingTablePoisoning joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RoutingTablePoisoning
190: Suggested that MEDOID: CodeInjection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MalformedInput
191: Suggested that MEDOID: _CertificateData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_CertificateData
192: Suggested that MEDOID: _Authenticity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
193: Suggested that MEDOID: ChecksumAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography
194: Suggested that MEDOID: AuthenticationGoals joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
195: Suggested that MEDOID: _HostOnWiredNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
196: Suggested that MEDOID: VulnerabilityInConfiguration joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Vulnerability
197: Suggested that MEDOID: PacketFilter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PacketFilter
198: Suggested that MEDOID: _Fingerprint joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_PhysicalBiometricCredential

 175

security Page 5 of 10

199: Suggested that MEDOID: VulnerabilityInUse joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Vulnerability
200: Suggested that MEDOID: _TrustedNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
201: Suggested that MEDOID: TrustedNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
202: Suggested that MEDOID: User joins cluster: http://www.ida.liu.se/~almhe/Security.owl#User
203: Suggested that MEDOID: P3P joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
204: Suggested that MEDOID: _Deflection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
205: Suggested that MEDOID: Bacteria joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Virus
206: Suggested that MEDOID: E-Mail joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ApplicationLayerPacket
207: Suggested that MEDOID: DenialOfService joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
208: Suggested that MEDOID: _BackupFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_File
209: Suggested that MEDOID: DNSHacking joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DNSHacking
210: Suggested that MEDOID: _DatabaseDataFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_File
211: Suggested that MEDOID: Anti-VirusSoftware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
212: Suggested that MEDOID: _Prevention joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
213: Suggested that MEDOID: FacialPatternRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricRecognition
214: Suggested that MEDOID: Firewall joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
215: Suggested that MEDOID: Literature joins cluster: http://www.ida.liu.se/~almhe/SecurityLiterature.owl#Literature
216: Suggested that MEDOID: VPN joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
217: Suggested that MEDOID: Backup joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
218: Suggested that MEDOID: JavaSandbox joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlMechanism
219: Suggested that MEDOID: Remailer joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
220: Suggested that MEDOID: _UDPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_TransportLayerPacket
221: Suggested that MEDOID: ConfidentialityGoals joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
222: Suggested that MEDOID: Threat joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Threat
223: Suggested that MEDOID: ByAuditSourceLocation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#IntrusionDetectionSystem
224: Suggested that MEDOID: FacialPattern joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
225: Suggested that MEDOID: _E-Mail joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataInTransit
226: Suggested that MEDOID: Windows joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OperatingSystem
227: Suggested that MEDOID: PeriodicIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByUsageFrequency
228: Suggested that MEDOID: SHA-1 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
229: Suggested that MEDOID: S-HTTP joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
230: Suggested that MEDOID: _TransportLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataInTransit
231: Suggested that MEDOID: _Router joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Router
232: Suggested that MEDOID: TrafficAnalysis joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Eavesdropping
233: Suggested that MEDOID: Disclosure joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Threat
234: Suggested that MEDOID: Standard joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
235: Suggested that MEDOID: ServerHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
236: Suggested that MEDOID: TCPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TransportLayerPacket
237: Suggested that MEDOID: DNSSpoofing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DNSHacking
238: Suggested that MEDOID: FingerprintRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricRecognition
239: Suggested that MEDOID: Password joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
240: Suggested that MEDOID: RadiationMonitoring joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SideChannelAttack
241: Suggested that MEDOID: HTTPS joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
242: Suggested that MEDOID: ByUsageFrequency joins cluster: http://www.ida.liu.se/~almhe/Security.owl#IntrusionDetectionSystem
243: Suggested that MEDOID: EmissionsSecurity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
244: Suggested that MEDOID: BastionHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
245: Suggested that MEDOID: _Data joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
246: Suggested that MEDOID: EncryptionHardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecurityHardware
247: Suggested that MEDOID: MemoryProtection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
248: Suggested that MEDOID: IPAddressSpoofing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation

security Page 6 of 10

249: Suggested that MEDOID: TrafficPadding joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
250: Suggested that MEDOID: PhysicalBiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
251: Suggested that MEDOID: SWDeveloper joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OfficeUser
252: Suggested that MEDOID: RIPE-MAC joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MACAlgorithm
253: Suggested that MEDOID: StatisticalAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PassiveAttack
254: Suggested that MEDOID: SecureNetworkCommunication joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecureNetworkCommunication
255: Suggested that MEDOID: HeapOverflow joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BufferOverflow
256: Suggested that MEDOID: _PublicKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_EncryptionKey
257: Suggested that MEDOID: Theft joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalThreat
258: Suggested that MEDOID: MisuseDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByDetectionMethod
259: Suggested that MEDOID: Asset joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Asset
260: Suggested that MEDOID: BehaviouralBiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BehaviouralBiometricCredential
261: Suggested that MEDOID: _Voice joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_BehaviouralBiometricCredential
262: Suggested that MEDOID: _Host joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
263: Suggested that MEDOID: HostOnWirelessNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NetworkedHost
264: Suggested that MEDOID: SymmetricAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SymmetricAlgorithm
265: Suggested that MEDOID: HasAsset joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasAsset
266: Suggested that MEDOID: _Correctness joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
267: Suggested that MEDOID: AccessControlModel joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Model
268: Suggested that MEDOID: RoutingTablePoisoningThroughRouter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RoutingTablePoisoning
269: Suggested that MEDOID: PublicKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Data
270: Suggested that MEDOID: CrossSiteScripting joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CodeInjection
271: Suggested that MEDOID: _Dongle joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
272: Suggested that MEDOID: X.509 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
273: Suggested that MEDOID: DatabaseDataFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#File
274: Suggested that MEDOID: Impersonation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
275: Suggested that MEDOID: HasCountermeasure joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasCountermeasure
276: Suggested that MEDOID: InternetInfrastructureAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#InternetInfrastructureAttack
277: Suggested that MEDOID: _HostOnInternet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
278: Suggested that MEDOID: CircuitLevelGateway joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Firewall
279: Suggested that MEDOID: LogMonitoring joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
280: Suggested that MEDOID: Knowledge-BasedIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByDetectionMethod
281: Suggested that MEDOID: SideChannelAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PassiveAttack
282: Suggested that MEDOID: TimeOfEmployment joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
283: Suggested that MEDOID: _HTTPData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ApplicationLayerPacket
284: Suggested that MEDOID: MS_Word joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Editor
285: Suggested that MEDOID: LocalHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HostOnIntranet
286: Suggested that MEDOID: PhysicalThreat joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Disruption
287: Suggested that MEDOID: _Sender joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Human
288: Suggested that MEDOID: _Authentication joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
289: Suggested that MEDOID: DBAccessControl joins cluster: http://www.ida.liu.se/~almhe/Security.owl#FileAccessControl
290: Suggested that MEDOID: PassiveIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByBehaviourOnDetection
291: Suggested that MEDOID: _ServerHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
292: Suggested that MEDOID: AccessControlMechanism joins cluster: http://www.ida.liu.se/~almhe/Security.owl#AccessControlMechanism
293: Suggested that MEDOID: _ApplicationLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataInTransit
294: Suggested that MEDOID: Dongle joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
295: Suggested that MEDOID: BiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
296: Suggested that MEDOID: _Accountability joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
297: Suggested that MEDOID: _Non-Repudiation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
298: Suggested that MEDOID: NetworkLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataInTransit

 176

security Page 7 of 10

299: Suggested that MEDOID: DefaultPasswordUnchanged joins cluster: http://www.ida.liu.se/~almhe/Security.owl#InsecureDefaultSettingUnchanged
300: Suggested that MEDOID: DiffieHellman joins cluster: http://www.ida.liu.se/~almhe/Security.owl#KeyExchange
301: Suggested that MEDOID: _File joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DataOnNon-VolatileMedia
302: Suggested that MEDOID: TripleDES joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SymmetricAlgorithm
303: Suggested that MEDOID: Masquerading joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Masquerading
304: Suggested that MEDOID: WindowAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
305: Suggested that MEDOID: PasswordSniffing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Eavesdropping
306: Suggested that MEDOID: Backdoor joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MaliciousCode
307: Suggested that MEDOID: Virus joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Virus
308: Suggested that MEDOID: UDPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TransportLayerPacket
309: Suggested that MEDOID: Overclocking joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ActiveHardwareMisuse
310: Suggested that MEDOID: _Process joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
311: Suggested that MEDOID: PacketMistreatmentRouter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PacketMistreatment
312: Suggested that MEDOID: IntegerOverflow joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BufferOverflow
313: Suggested that MEDOID: TimeOfCheckToTimeOfUse joins cluster: http://www.ida.liu.se/~almhe/Security.owl#RaceCondition
314: Suggested that MEDOID: Rabbit-Worm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Worm
315: Suggested that MEDOID: _Secrecy joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ConfidentialitySimilars
316: Suggested that MEDOID: HasMechanismType joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
317: Suggested that MEDOID: ElGamalSignatureScheme joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
318: Suggested that MEDOID: Firefly joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
319: Suggested that MEDOID: ProgramSourceCodeFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#File
320: Suggested that MEDOID: NaryRelation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#NaryRelation
321: Suggested that MEDOID: PowerMonitoringAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SideChannelAttack
322: Suggested that MEDOID: AdHocNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
323: Suggested that MEDOID: _WirelessNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
324: Suggested that MEDOID: Eavesdropping joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PassiveAttack
325: Suggested that MEDOID: HandMeasurementRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricRecognition
326: Suggested that MEDOID: IntegrityGoals joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
327: Suggested that MEDOID: _FacialPattern joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_PhysicalBiometricCredential
328: Suggested that MEDOID: StatefulInspectionPacketFilter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PacketFilter
329: Suggested that MEDOID: Heat joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalThreat
330: Suggested that MEDOID: Flooding joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DenialOfService
331: Suggested that MEDOID: Keylogger joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Spyware
332: Suggested that MEDOID: ConfigurationFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#File
333: Suggested that MEDOID: _Identification joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
334: Suggested that MEDOID: Voice joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BehaviouralBiometricCredential
335: Suggested that MEDOID: SingleSignOnSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#LoginSystem
336: Suggested that MEDOID: _WiredNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
337: Suggested that MEDOID: TechnologyMistakenlyUsedAsCountermeasure joins cluster: http://www.ida.liu.se/~almhe/

Security.owl#TechnologyMistakenlyUsedAsCountermeasure
338: Suggested that MEDOID: BehaviouralBiometricRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BiometricAuthenticationSystem
339: Suggested that MEDOID: _WirelessAccessPoint joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Router
340: Suggested that MEDOID: CryptographicHashFunction joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SignatureAlgorithm
341: Suggested that MEDOID: TrustManagement joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TrustManagement
342: Suggested that MEDOID: TimingAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SideChannelAttack
343: Suggested that MEDOID: _Network joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Technology
344: Suggested that MEDOID: AES joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
345: Suggested that MEDOID: Host joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Technology
346: Suggested that MEDOID: _AdHocNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
347: Suggested that MEDOID: CachePoisoning joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DNSHacking

security Page 8 of 10

348: Suggested that MEDOID: ByDetectionMethod joins cluster: http://www.ida.liu.se/~almhe/Security.owl#IntrusionDetectionSystem
349: Suggested that MEDOID: DNSServerCompromising joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DNSHacking
350: Suggested that MEDOID: SmartCard joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
351: Suggested that MEDOID: GuessingAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BruteForceAttack
352: Suggested that MEDOID: TargetConnectedToNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Vulnerability
353: Suggested that MEDOID: Logging joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
354: Suggested that MEDOID: EllipticCurveCryptography joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Public-KeyEncryption
355: Suggested that MEDOID: LoginName joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Credential
356: Suggested that MEDOID: S-MIME joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
357: Suggested that MEDOID: Sender joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Human
358: Suggested that MEDOID: MaliciousCode joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
359: Suggested that MEDOID: Spoofing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Spoofing
360: Suggested that MEDOID: BackupFile joins cluster: http://www.ida.liu.se/~almhe/Security.owl#File
361: Suggested that MEDOID: _Privacy joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ConfidentialitySimilars
362: Suggested that MEDOID: EllipticCurveDiscreteLogarithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DiscreteLogarithm
363: Suggested that MEDOID: _Deterrence joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
364: Suggested that MEDOID: SystemModification joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ActiveAttack
365: Suggested that MEDOID: _UntrustedNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
366: Suggested that MEDOID: Iris joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
367: Suggested that MEDOID: HoneyPot joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TechnologyMistakenlyUsedAsCountermeasure
368: Suggested that MEDOID: ActiveHardwareMisuse joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Disruption
369: Suggested that MEDOID: DictionaryAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#GuessingAttack
370: Suggested that MEDOID: OpenPGP joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
371: Suggested that MEDOID: Usurpation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Usurpation
372: Suggested that MEDOID: PingOfDeath joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BufferOverflow
373: Suggested that MEDOID: MacOS joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OperatingSystem
374: Suggested that MEDOID: IrisRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricRecognition
375: Suggested that MEDOID: Deception joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Deception
376: Suggested that MEDOID: Editor joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Product
377: Suggested that MEDOID: FormatStringMisuse joins cluster: http://www.ida.liu.se/~almhe/Security.owl#MisuseOfLanguageConstruct
378: Suggested that MEDOID: BlockCipher joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BlockCipher
379: Suggested that MEDOID: VulnerableServiceStartsAutomatically joins cluster: http://www.ida.liu.se/~almhe/

Security.owl#InsecureDefaultSettingUnchanged
380: Suggested that MEDOID: _DigitalSignatureData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ChecksumData
381: Suggested that MEDOID: Rabbit joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Virus
382: Suggested that MEDOID: _TCPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_TransportLayerPacket
383: Suggested that MEDOID: MessageAuthenticationCode joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Checksum
384: Suggested that MEDOID: DSA joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
385: Suggested that MEDOID: DES joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
386: Suggested that MEDOID: ByBehaviourOnDetection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#IntrusionDetectionSystem
387: Suggested that MEDOID: MissingInputValidation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#VulnerabilityInCode
388: Suggested that MEDOID: ActiveAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Threat
389: Suggested that MEDOID: _Gait joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_BehaviouralBiometricCredential
390: Suggested that MEDOID: PacketMistreatmentLink joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PacketMistreatment
391: Suggested that MEDOID: _Confidentiality joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_ConfidentialitySimilars
392: Suggested that MEDOID: MisuseOfLanguageConstruct joins cluster: http://www.ida.liu.se/~almhe/Security.owl#UseOfVulnerableProgrammingLanguage
393: Suggested that MEDOID: TinyFragmentAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BypassingIntendedControls
394: Suggested that MEDOID: _EncryptionHardware joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_SecurityHardware
395: Suggested that MEDOID: Phishing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
396: Suggested that MEDOID: EncryptionAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Cryptography

 177

security Page 9 of 10

397: Suggested that MEDOID: IPSplicing joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SessionHijacking
398: Suggested that MEDOID: Behaviour-BasedIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByDetectionMethod
399: Suggested that MEDOID: StationaryData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Data
400: Suggested that MEDOID: Fingerprint joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
401: Suggested that MEDOID: EMailFilter joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Monitoring
402: Suggested that MEDOID: ShellInjection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CodeInjection
403: Suggested that MEDOID: CountermeasureProtectsGoalOfAssetThroughType joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasGoal
404: Suggested that MEDOID: HTTPData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ApplicationLayerPacket
405: Suggested that MEDOID: DoS-ICMP joins cluster: http://www.ida.liu.se/~almhe/Security.owl#InternetInfrastructureDenialOfService
406: Suggested that MEDOID: HostCompromising joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Disruption
407: Suggested that MEDOID: RIPE-MD-160 joins cluster: http://www.ida.liu.se/~almhe/Security.owl#CryptographicHashFunction
408: Suggested that MEDOID: TransportLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataInTransit
409: Suggested that MEDOID: _IPPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_NetworkLayerPacket
410: Suggested that MEDOID: Network-BasedIntrusionDetectionSystem joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ByAuditSourceLocation
411: Suggested that MEDOID: SessionHijacking joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
412: Suggested that MEDOID: WirelessNetwork joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Network
413: Suggested that MEDOID: Countermeasure joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
414: Suggested that MEDOID: DBMS joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Product
415: Suggested that MEDOID: SwitchingOffFan joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Heat
416: Suggested that MEDOID: HandMeasurement joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
417: Suggested that MEDOID: NAKAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#ActiveAttack
418: Suggested that MEDOID: SAML joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
419: Suggested that MEDOID: SystemAdministrator joins cluster: http://www.ida.liu.se/~almhe/Security.owl#OfficeUser
420: Suggested that MEDOID: Retina joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricCredential
421: Suggested that MEDOID: Degausser joins cluster: http://www.ida.liu.se/~almhe/Security.owl#SecurityHardware
422: Suggested that MEDOID: _BehaviouralBiometricCredential joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_BiometricCredential
423: Suggested that MEDOID: _NetworkedHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Host
424: Suggested that MEDOID: SymmetricKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Data
425: Suggested that MEDOID: _Harddisk joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Hardware
426: Suggested that MEDOID: RetinaRecognition joins cluster: http://www.ida.liu.se/~almhe/Security.owl#PhysicalBiometricRecognition
427: Suggested that MEDOID: _SymmetricKey joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_EncryptionKey
428: Suggested that MEDOID: Replay joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Impersonation
429: Suggested that MEDOID: ApplicationLayerPacket joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataInTransit
430: Suggested that MEDOID: TDES-EDE joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TripleDES
431: Suggested that MEDOID: ElGamalAlgorithm joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Public-KeyEncryption
432: Suggested that MEDOID: Process joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Technology
433: Suggested that MEDOID: CryptographyModel joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Model
434: Suggested that MEDOID: _Intranet joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Network
435: Suggested that MEDOID: CodeSigning joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DigitalSigning
436: Suggested that MEDOID: KerberosAuthenticationProtocol joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Standard
437: Suggested that MEDOID: _Password joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_Credential
438: Suggested that MEDOID: UnconnectedHost joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Host
439: Suggested that MEDOID: _MessageAuthenticationCodeData joins cluster: http://www.ida.liu.se/~almhe/Security.owl#_DigitalSignatureData
440: Suggested that MEDOID: Public-KeyEncryption joins cluster: http://www.ida.liu.se/~almhe/Security.owl#EncryptionAlgorithm
441: Suggested that MEDOID: ScanningAttack joins cluster: http://www.ida.liu.se/~almhe/Security.owl#BruteForceAttack
442: Suggested that MEDOID: _Correction joins cluster: http://www.ida.liu.se/~almhe/Security.owl#HasMechanismType
443: Suggested that MEDOID: File joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DataOnNon-VolatileMedia
444: Suggested that MEDOID: VulnerabilityScanner joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Countermeasure
445: Suggested that MEDOID: DataOnVolatileMedia joins cluster: http://www.ida.liu.se/~almhe/Security.owl#StationaryData
446: Suggested that MEDOID: Authentication joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal

security Page 10 of 10

447: Suggested that MEDOID: Anonymity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
448: Suggested that MEDOID: Correctness joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
449: Suggested that MEDOID: AC-CCITT joins cluster: http://www.ida.liu.se/~almhe/SecurityLiterature.owl#Definition
450: Suggested that MEDOID: Integrity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
451: Suggested that MEDOID: Authenticity joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
452: Suggested that MEDOID: Detection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
453: Suggested that MEDOID: AtLoadTime joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
454: Suggested that MEDOID: Correction joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
455: Suggested that MEDOID: CCITT joins cluster: ***************** No Cluster Suggested. *****************
456: Suggested that MEDOID: Identification joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
457: Suggested that MEDOID: Confidentiality joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
458: Suggested that MEDOID: Secrecy joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
459: Suggested that MEDOID: AtCompileTime joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
460: Suggested that MEDOID: Deterrence joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
461: Suggested that MEDOID: Security.owl joins cluster: ***************** No Cluster Suggested. *****************
462: Suggested that MEDOID: Trust joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
463: Suggested that MEDOID: Sch96 joins cluster: http://www.ida.liu.se/~almhe/SecurityLiterature.owl#Literature
464: Suggested that MEDOID: AtRuntime joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
465: Suggested that MEDOID: Prevention joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
466: Suggested that MEDOID: Periodically joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
467: Suggested that MEDOID: AtWriteTime joins cluster: http://www.ida.liu.se/~almhe/Security.owl#TimeOfEmployment
468: Suggested that MEDOID: Non-Repudiation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
469: Suggested that MEDOID: KLK05 joins cluster: http://www.ida.liu.se/~almhe/SecurityLiterature.owl#Literature
470: Suggested that MEDOID: Recovery joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
471: Suggested that MEDOID: Accountability joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
472: Suggested that MEDOID: Deflection joins cluster: http://www.ida.liu.se/~almhe/Security.owl#DefenseStrategy
473: Suggested that MEDOID: Authorisation joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
474: Suggested that MEDOID: PolicyCompliance joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
475: Suggested that MEDOID: Availability joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal
476: Suggested that MEDOID: Privacy joins cluster: http://www.ida.liu.se/~almhe/Security.owl#Goal

 178

Appendix C

POLICY_1.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Subscriber;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
6:
7:
8: rule "Where should Subscribers be placed (within the network) in the first Instance."
9:
10: when
11:
12: actioner : Actioner();
13: sub : Subscriber();
14:
15: clusCrea : ClusterCreator(brokersSize >= 2,
16: brokersRunning == true);
17:
18: then
19:
20: actioner.performSubscrClustering(sub.getmaster(), sub.getsubscriberID() , sub.getmedoid());
21:
22: end
23:

POLICY_2.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5:
6: rule "When should a publisher push in their Medoids."
7:
8: when
9:
10: actioner : Actioner();
11: clusCrea : ClusterCreator(brokersSize >= 0,
12: brokersRunning == true);
13:
14: then
15:
16: actioner.requestBrokerMedoids("tcp:127.0.0.1:2002", 2);
17:
18: end

 179

POLICY_3.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Broker;
6: import java.util.Iterator;
7:
8: rule "Identify the broker on which clustering should occur."
9: when
10: $highestSpread : Broker()
11: from accumulate($bm : Broker(),
12: init(Broker highest = new Broker();),
13: action(
14: if ($bm.getSpread() > highest.getSpread()){
15: highest = $bm;
16: }),
17: result(highest))
18: then
19: System.out.println("Broker with the Highest Spread: " + $highestSpread.getBrokerID());
20: $highestSpread.setHighestSpreadTrue();
21: end
22:

POLICY_4.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Broker;
5: import java.util.Iterator;
6:
7: rule "Find the Medoid with the highest Number of Subscribers."
8: when
9: actioner : Actioner();
10: broker : Broker(highestSpreadTrue == true);
11:
12: then
13:
14: if (broker.getNumberOfSubs1() < broker.getNumberOfSubs2()){
15: System.out.println("Medoid with the Smallest Number of Subscribers = " + broker.getMedoid1() + " from broker " + broker.getBrokerID());
16: //actioner.performBrokerClustering(broker.getBrokerID(), broker.getMedoid1());
17: }else if (broker.getNumberOfSubs2()< broker.getNumberOfSubs1()){
18: System.out.println("Medoid with the Smallest Number of Subscribers = " + broker.getMedoid2() + " from broker " + broker.getBrokerID());
19: //actioner.performBrokerClustering(broker.getBrokerID(), broker.getMedoid2());
20: }else if (broker.getNumberOfSubs2()== broker.getNumberOfSubs1()){
21: System.out.println("Uh Oh... There are an equal number of Subs for both Medoids!");
22: }
23: end
24:

 180

POLICY_5.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5:
6: rule "When should a publisher push in their Medoids."
7:
8: when
9: actioner : Actioner();
10: clusCrea : ClusterCreator(brokersSize >= 0,
11: publishersSize >= 1,
12: numberOfClusters >=1,
13: brokersRunning == true);
14:
15:
16:
17: then
18: actioner.requestPublishersMedoids("tcp:mahler.cs.tcd.ie:2002");
19: end

POLICY_6.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Publisher;
5: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
6: import java.util.Iterator;
7:
8: rule "Where should a Publisher be clustered when they report their medoid"
9: when
10: actioner : Actioner();
11: publisher : Publisher();
12:
13: clusCrea : ClusterCreator(brokersSize >= 0,
14: publishersSize >= 1,
15: subscribersSize >= 0);
16:
17:
18:
19: then
20:
21: actioner.performPublisherClustering(publisher.getpublisherID(), publisher.getmedoid());
22: end
23:

 181

POLICY_20.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Subscriber;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5:
6: rule "When should notification reports be requested."
7:
8: when
9:
10: actioner : Actioner();
11:
12: then
13:
14: actioner.requestNotificationReports("tcp:127.0.0.1:50000", 10);
15:
16:
17: end

POLICY_21.drl Page 1 of 1

1: package ie.tcd.cs.kdeg.mecon.DROOLS.RULES;
2:
3: import ie.tcd.cs.kdeg.mecon.DROOLS.MIBS.Subscriber;
4: import ie.tcd.cs.kdeg.mecon.DROOLS.RULES.Actioner;
5: import ie.tcd.cs.kdeg.mecon.Cluster_Mgmt.ClusterCreator;
6:
7: rule "Are notifications sourced from too far across the network?"
8: when
9: actioner : Actioner();
10: sub : Subscriber(latestMean > 1.5,
11: latestStdDev >= 0.0);
12: clus : ClusterCreator();
13:
14: then
15:
16: System.out.print("Performing Subscriber re-clustering with: ");
17: System.out.println(sub.getsubscriberID() + " has a StdDev of " + sub.getLatestStdDev() + " and a Mean of " + sub.getLatestMean());
18: //actioner.performSubscrClustering(sub.getmaster(), sub.getsubscriberID(), sub.getmedoid());
19: actioner.tester(sub.getsubscriberID());
20:
21: end
22:
23: rule "Are notifications **NOT** sourced from too far across the network?"
24:
25: dialect "java"
26:
27: when
28:
29: actioner : Actioner();
30: sub : Subscriber(latestMean >= 5.0,
31: latestStdDev >= 3.0);
32: clus : ClusterCreator();
33:
34: then
35:
36: System.out.println(sub.getsubscriberID() + " has a StdDev of " + sub.getLatestStdDev() + " and a Mean of " + sub.getLatestMean());
37: System.out.println("No action needs to be taken - Going back to monitoring for Noitfication Reports!");
38:
39: end
40:

 182

Appendix D

A data DVD is provided with this thesis and includes:

1. Copy of this thesis in Adobe Acrobat PDF format.

2. All Evaluation data sets.

3. Publication and Subscription Data sets used.

4. All ontologies (in *.owl format) used in this thesis.

5. Results of clustering algorithm applied to sample ontologies.

6. All policies used in KBNCluster.

7. Copies of papers published around this thesis.

 183

Appendix E

For a number of experiments the data value presented does not suffer from any change, regardless

of the number of times the experiment is run. For example in the experiments regarding the

number of hops taken to deliver a message, regardless of how many times the experiment is run

the number of hops taken stays exactly the same.

There are some experiments, particularly those involving measuring time, where when run there

is a slight variance in the measurement recorded. In addressing this variance in each of these

experiments the data point is calculated for 1,3,5,10 and 15 runs. So in the first experiment (1 run)

only 1 value is recorded, in the second experiment (3 runs) the mean from 3 experiments is

recorded, the same for 5, 10 and 15 experimental runs.

The trend between each of the mean values (1, 3, 5, 10, 15 runs) is compared to establish whether

with more experimental data points, the mean value changes i.e. whether as more experimental

runs are added to the mean calculation is there a fluctuation in the data values recorded. From this

sensitivity analysis the choice of using five mean experimental runs is justified.

In this appendix sensitivity analysis is presented, in graphical form for the following experiments:

• 6.3.2 Subscription Tree Search Time

• 6.4.2.4 Subscription Processing Times

• 6.4.2.5 Publication Processing Times

• 6.4.2.6 Pub-to-Sub Delivery Times

• 6.4.3.1 Moving Broker & Moving All Subscribers

For experiments (6.4.2.4, 6.4.2.5 and 6.4.2.6) data is only presented for 1, 3 and 5 experimental

runs, as these experiments are particularly sensitive to network delays in processing and

delivering messages. Additionally due to the unpredictable and high costs involved in

management message collection, and as discussed in the evaluation chapter of this thesis the

approach taken in these experiments is not used in the final KBNCluster implementation. For the

remainder of the experiments, used in the final implementation of KBNCluster, full sensitivity

analysis, for 1, 3, 5, 10 and 15 experimental runs, is presented.

 184

Subscription Tree Search Times

47.63& 47.29& 46.89&
48.63& 48.72&

28.60& 29.00& 28.73& 29.46& 29.38&

10.81& 10.95& 11.20& 11.24& 11.19&

5.85& 5.68& 5.53& 5.47& 5.46&

0.00&

10.00&

20.00&

30.00&

40.00&

50.00&

60.00&

1&Run& Mean&3&Runs& Mean&5&Runs& Mean&10&Runs& Mean&15&Runs&

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Subscrip3on%Tree%Search%Times%6%Seman3c%

6000&Subscrip:ons&

&4000&Subscrip:ons&

&2000&Subscrip:ons&

&1000&Subscrip:ons&

6.34% 6.36%
6.26% 6.31% 6.24%

4.33%
4.45% 4.42% 4.51% 4.64%

2.59% 2.57% 2.58% 2.63% 2.75%

1.76% 1.66% 1.73% 1.79% 1.77%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1%Run% Mean%3%Runs% Mean%5%Runs% Mean%10%Runs% Mean%15%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Subscrip3on%Tree%Search%Times%6%Non%Seman3c%

6000%Subscrip:ons%

%4000%Subscrip:ons%

%2000%Subscrip:ons%

%1000%Subscrip:ons%

 185

Subscription Processing Times

6.49% 6.49% 6.57%

8.77% 8.59%
9.29%

13.31%

12.08% 11.77%

15.02%
14.65% 14.83%

17.34%

19.32% 19.37%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1%Run% Mean%3%Runs% Mean%5%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Sub%Processing%Times%5%Mgnt%Message%1%

6.79% 6.67% 6.59%

8.16%
9.38%

8.67%

12.51%
13.55% 13.72%

14.36% 14.52% 14.76%

19.74%

17.43%
18.33%

26.82% 26.31%

23.08%

4.00%

8.00%

12.00%

16.00%

20.00%

24.00%

28.00%

1% 2% 3%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Sub%Processing%Times%5%Mgnt%Message%2%

 186

Publication Processing Times

6.98% 7.14% 6.61%

189.00% 189.70% 187.74%

340.28% 324.44% 310.17%

386.92%
406.31% 418.81%

596.30%
565.95%

590.16%

747.24% 738.72% 727.52%

0.00%

100.00%

200.00%

300.00%

400.00%

500.00%

600.00%

700.00%

800.00%

1%Run% Mean%3%Runs% Mean%5%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Pub%Processing%Times%4%Mgnt%Message%1%

6.06$ 6.49$ 6.39$

190.99$
210.24$ 194.26$

282.53$ 280.57$ 292.11$

551.55$
508.50$ 504.01$

625.57$
649.86$

615.84$

723.04$
699.71$

720.32$

0.00$

100.00$

200.00$

300.00$

400.00$

500.00$

600.00$

700.00$

800.00$

1Run Mean3Runs$ Mean5Runs$

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Pub%Processing%Times%4%Mgnt%Message%2%

 187

Pub-to-Sub (End-to-End) Delivery Times

13.74& 14.01& 15.43&

295.43&

251.16&
225.38&

446.03&
404.33&

343.29&

478.86&
447.54& 456.22&453.77& 454.87&

605.89&

782.29&

736.07&
714.04&

0.00&

100.00&

200.00&

300.00&

400.00&

500.00&

600.00&

700.00&

800.00&

1&Run& Mean&3&Runs& Mean&5&Runs&

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

End%To%End%Delivery%Times%5%Mgnt%Message%1%

0&Mgmt&Messages&

2&Mgmt&Messages&

4&Mgnt&Messages&

6&Mgnt&Messages&

8&Mgnt&Messages&

10&Mgnt&Messages&

11.86% 14.27% 15.55%

256.66% 242.64% 249.49%

321.68% 336.01%

387.91%

339.11%

447.20%

502.91%
523.06%

741.63%

689.41%

632.06%

777.79%
757.13%

0.00%

100.00%

200.00%

300.00%

400.00%

500.00%

600.00%

700.00%

800.00%

1%Run% Mean%3%Runs% Mean%5%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

End%To%End%Delivery%Times%5%Mgnt%Message%2%

0%Mgmt%Messages%

2%Mgmt%Messages%

4%Mgnt%Messages%

6%Mgnt%Messages%

8%Mgnt%Messages%

10%Mgnt%Messages%

 188

Moving Broker and Moving All Subscribers

11482%
11017% 10943% 10947% 11133%

9548%
9282% 9395% 9445% 9463%

7832%
7774% 7939% 7730% 7691%

5854% 5929% 5901%
6109% 6175%

4072% 4182% 4085% 4091% 4144%

3000%

5000%

7000%

9000%

11000%

13000%

1%Run% Mean%3%Runs% Mean%5%Runs% Mean%10%Runs% Mean%15%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Moving%Broker%&%All%Subscribers%

%1000%Subscrip9ons%

%800%Subscrip9ons%

%600%Subscrip9ons%

%400%Subscrip9ons%

%200%Subscrip9ons%

17572% 17427% 17406% 17305% 17428%

15002%
15203% 15204%

14986% 15196%

12887% 12829% 12840% 12923% 12926%

11448% 11137% 11161% 11184% 11084%

9737% 9530% 9615% 9444% 9575%

8000%

10000%

12000%

14000%

16000%

18000%

1%Run% Mean%3%Runs% Mean%5%Runs% Mean%10%Runs% Mean%15%Runs%

M
ea
n%
Ti
m
e%
Ta
ke
n%
(m

s)
%

Moving%All%Subscribers%

1000%Subscrip9ons%

%800%Subscrip9ons%

%600%Subscrip9ons%

%400%Subsc9p9ons%

%200%Subscrip9ons%

