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Abstract

This thesis is concerned with analysis of digital video through discontinuity detection. A
discontinuity here is a sudden change that corresponds to some meaningful event in the video
content.

The paradigm of discontinuity-based analysis is applied within three distinct contexts. Firstly,
the problem of shot-change detection is explored. This amounts to the detection of signal-level
discontinuities. An extensive review and bibliography of existing methods proposed for shot
change detection are presented.

The next area of activity focuses on discontinuities as events, specifically in snooker video.
It is described how many of the significant events within televised snooker play can be detected
by targeted discontinuity detection, exploiting the characteristics of sports footage. Techniques
for detecting ball pots and near misses, for summarising the episodes of play, and for tracking
individual balls are described.

Finally, the detection of discontinuities in local motion is examined. A number of methods
for the description of local motion in video are evaluated. The detection of extreme values in
these descriptions is established as a powerful means for edit point detection in dance video. As
part of this work, a Bayesian video segmentation algorithm is designed which incorporates new
refinements for maintaining temporal coherence in the segmentation over motion discontinuities.

Successful edit point detection in dance video is shown to enable a number of novel ap-
plications, including the resynchronisation of the dance video to a new music signal. A DVD

demonstrating some results of this technique is included.






Declaration

I hereby declare that this thesis has not been submitted as an exercise for a degree at this or

any other University and that it is entirely my own work.

I agree that the Library may lend or copy this thesis upon request.

Signed,

Hugh Denman

July 2, 2007.






Acknowledgments

After a long period of immersive study, I think it fair to claim that I am at present the
leading expert on the enduringly collegiate atmosphere of the Sigmedia group; my considered
pronouncement is that you couldn’t hope to work with a better bunch of people. I particularly
want to thank Dr Francois Pitié, Dr Francis Kelly, and Andrew Crawford for the pleasure of
working with them; Dr Claire Catherine Gallagher and Dr Naomi Harte for their invaluable help
in preserving my sanity in the final days; and Deirde O’Regan, Dan Ring, and Daire Lennon for
the enlivened atmosphere that attends them everywhere.

I have been generously funded in my research career by the Enterprise Ireland projects
MUSE-DTV (Machine Understanding of Sports Events for Digital Television) and DysVideo,
and the European Commission Framework projects BRAVA (BRoadcast Archives through Video
Analysis) and PrestoSpace (PREServation TechnOlogy: Standardised Practices for Audiovisual
Contents in Europe). The recent funding offered to the group by Adobe Systems Incorporated
has provided for equipment that proved instrumental to the completion of the work described
here. My thanks to all of these bodies.

I am profoundly grateful to my supervisor, Dr Anil Kokaram, for his unflagging support and
encouragement over more years than he expected. And to my parents and my brother Feargus,

for everything.






Contents

Contents xi
List of Acronyms xvii
1 Introduction 1
1.1 Thesisoutline . . . . . . . . . . .. 2
1.2 Contributions of this thesis . . . . . . . ... ... ... ... ... ... ... .. 3
1.3 Publications . . . . . . . . . . . 4

2 Image Sequence Modelling 7
2.1 Image Sequence Modelling Overview . . . . . . . . . ... .. .. ... ...... 7
2.1.1 Image-centric sequence modelling . . . . . . . .. ... ... 8

2.1.2  Scene-centric sequence modelling . . . . . . ... ... 9

2.1.3 Affective sequence modelling . . . . . .. .. ... ... ... 9

2.2 Global Motion . . . . . . . . . e e 10
2.2.1 Global motion models . . . . . . .. ... ... 10

2.2.2  Global motion estimation . . . . .. . ... ... ... .. ... ... ... 11

2.2.3 Robust estimation approaches . . . . . . .. . ... ... ... .. ... .. 11

2.2.4  Wiener solution approach . . . . .. . ... .. ... ... ......... 13

2.2.5 Fourier domain approaches . . . . . . .. .. ... 13

2.2.6 Integral projections . . . . . . . ... 14

2.3 Refined Global Motion Estimation for Simple Scenes . . . . . . . . .. ... ... 14
2.3.1 Diagnosing GME Failure . . .. .. ... .. ... ... ... .. ..... 15

2.3.2  Recovering from GME failure . . . . . . . . ... ... ... .. ...... 16

2.3.3 Results and Assessment . . . . . .. ... o o 16

2.4 Local Motion Estimation . . . . ... ... ... ... .. ... ... ... ..., 18
2.4.1 Problem statement . . . . . . .. ... 18

2.4.2 Correspondence matching . . . . . . . . . . ... ... 19

2.4.3 Gradient-based methods . . . . . . . . .. .. ... ... 20

2.4.4 Transform domain methods . . . . . . . . . ... ... ... ... ..... 22

2.4.5 Bayesian methods . . . . . . . ... L 22

x1



xii CONTENTS
2.5 Video Segmentation . . . . . . . .. Lo 23
2.5.1 Motion segmentation . . . . . . ... .o 23
2.5.2  Segmentation using motion and colour . . . . . .. ... ... L. 27

2.5.3 Video volume analysis . . . . . . .. ... oo 27
2.5.4 Other approaches . . . . . . . . ... 28

2.6 Multiresolution Schemes . . . . . . . . . ... 28
3 Video Shot Change Detection: A Review 29
3.1 Transitions in Video . . . . . . . . . . .. e 29
3.2 Shot Change Detection Systems . . . . . . . . . .. .. ... ... 32
3.3 Factors Complicating Shot Change Detection . . . . . .. ... ... ... .... 32
3.3.1 Similarity characteristics . . . . . . . . . ... ... 32
3.3.2 Film degradation . . . . . ... ... Lo 34
3.3.3 Shot dynamics . . . . . . . .. ... 34
3.3.4 Editing style . . . . ... 34
3.3.5 Non-Sequential Shot Structure . . .. ... ... ... ... ........ 35

3.4 Features for Shot Change Detection . . . . . .. ... .. ... ... ....... 35
3.4.1 Direct Image Comparison . . . . . . . .. . .. ... 37
3.4.2 Statistical Image Comparison . . . . . . . . .. .. .. ... ... 39
3.4.3 Block Based Similarity . . . . . . ... o oo 42
3.4.4  Structural feature similarity . . . . . . .. ... .. 45
3.4.5 Shot Modelling and Feature Clustering . . . . . . ... .. ... ...... 46
3.4.6  Frame Similarity in the Compressed Domain . . . . . . . ... ... ... 48
3.4.7 Genre Specific Approaches . . . . . . .. .. L oL 50

3.5 Transition Detection . . . . . . . . . . .. 50
3.5.1 Thresholding . . . . . . . . . ... 51
3.5.2  Multiresolution Transition Detection . . . . . . .. ... ... ... .... 53

3.6 Feature fusion . . . . . . . . ... 53
3.7 Transition Classification . . . . . . . . . . . . ... 54
3.7.1 Fade and Dissolve Transitions . . . . . . . . .. ... ... ... .. .... 55
3.7.2 Wipe Transitions . . . . . . . . . . .. L 57
3.7.3 Transition classification from spatio-temporal images . . .. .. .. ... 58

3.8 Statistical Hypothesis Testing . . . . . . . . . .. ... .. ... ... ....... 58
3.9 Directions in Shot Change Detection . . . . . . .. .. .. ... ... ... .... 60
4 New Approaches to Shot Change Detection 63
4.1 Cut Detection . . . . . . . . . . 63
4.1.1 Frame Similarity Measure . . . . . . . . .. ... Lo 63
4.1.2 Dissimilarity Likelihood Distributions . . . . . .. .. ... .. ... ... 67



CONTENTS xiii
4.1.3 Peak Analysis in the 6 Signal . . . . . . ... ... ... oL 68
4.1.4 Mapping The Auxiliary Functions to a Probability . . . .. ... ... .. 70
4.1.5 Performance Evaluation . . . . ... ... ... ... ... ..., 72

4.2 Frame Similarity for Dissolve Detection . . . . . . . ... .. .. ... ... ... 72
4.2.1 Similarity Measure and Likelihood Distributions . . . . . ... ... ... 73
4.2.2 Peak Analysis in the 692 Signal . . . . . . .. ... ... L. 74

4.3 Model-Based Dissolve Estimation . . . . . . . .. ... ... ... .. 78
4.3.1 Dissolve model . . . . . ... .. 79
4.3.2 Global motion . . . . . ... ... 80
4.3.3 Local motion . . . . . . . .. ... 82
4.3.4 Examples of a-curves . . . ... 83
4.3.5 Longer Dissolves . . . . . . . . . . 83
4.3.6 Changepoints in the a-curve . . . . . . . .. ... ... ... ... ... 87
4.3.7 Dissolve Detection using the a-curve . . . . . . . . ... ... ... 90
4.3.8 Comparison to other dissolve-detection metrics . . . . . .. ... .. ... 91

4.4 Integrated Dissolve Detection . . . . . . . . . ... . o 98

4.5 Conclusions and Future Work . . . . . . .. .. ... ... ... ... ... 99

5 Detecting Snooker Events via Discontinuities 101

5.1 Related Work . . . . . . . . e 102

5.2 Preliminaries . . . . . . . . .. 103
5.2.1 Shot-Change Detection . . . . . . . . . . . . ... ... .. .. .. ..., 104
5.2.2  Snooker Table Detection . . . . . . . . . . . .. ... ... .. ... 104
5.2.3 Table Geometry . . . . . . . . . e 106
5.2.4 Player Masking . . . . . . . . . . 108
5.2.5 Inmitial localisation . . . . . . . . .. .. L 110

5.3 Semantic Applications . . . . . . ... 112
5.3.1 Clip Summaries . . . . . . . . . . e 112
5.3.2 Pot Detection . . . . . . . . .. 114
5.3.3 Explicit motion extraction . . . . . . . . . . ... ... 117

5.4 Conclusion . . . . . . . . e e 120

6 Low-level Edit Point Identification 123

6.1 Instances of Percussive Motion . . . . . .. . ... ... ... ... ...... 124
6.1.1 Difficulties in Edit Point Localisation . . . . . . ... ... .. .. .... 124
6.1.2  Assessment of Edit Point Detection . . . . . ... ... .. ... ... .. 125

6.2 Edit Point Identification using Amount of Local Motion . . . . . ... ... ... 127
6.2.1 Computing the Motion Trace . . . . . . . . . .. ... ... .. .... 128
6.2.2 Minima in the Motion Trace . . . . . .. . ... ... ... ... ..... 128



Xiv CONTENTS
6.2.3 Peaks in the Motion Trace . . . . . . . . . . . ... ... ... .. ..... 132
6.2.4 Peak-relative location of edit points . . . . . . .. ... ... ... ... . 134
6.2.5 Peak Characteristics . . . . . . . . . . . . ... . 135
6.2.6 Peak Classification . . . . . . . . . . .. .. .. .. e 143
6.2.7 Edit Point Location and Peak Descent Slope . . . .. .. ... ... ... 146
6.2.8 Edit point detection using peak classification . . . . ... ... ... ... 148

6.3 Edit Point Identification using the Foreground Bounding Box . . . . .. ... .. 148
6.3.1 Filtering the bounding box traces . . . . . . . . .. .. .. ... ... ... 150
6.3.2 Trace Extrema as Edit Points . . . . . . . .. ... ... .. ........ 151
6.3.3 Mutual redundancy between bounding box traces . . . . . . . ... .. .. 152
6.3.4 Peaks in the bounding box traces . . . . . . . . .. ... ... ... 152
6.3.5 Classifying bounding box trace peaks . . . . ... ... .. ... ..... 155

6.4 Motion Estimation Based Edit Point Identification . . . . .. ... .. ... ... 157
6.4.1 Trace extrema as edit points . . . . . . .. .. ... L. 159
6.4.2 Mutual redundancy between vector field traces . . . . . . ... ... ... 159
6.4.3 Peaks in the vector field traces . . . . . ... ... ... ... ... ..., 159
6.4.4 Classifying vector field trace peaks . . . . . . ... ... ... ... .... 159

6.5 Motion Blur and Edit Point Identification . . . . . . ... ... ... ... .... 163
6.5.1 Motion blur in interlaced footage . . . . . . . . . ... ... ... ... .. 163
6.5.2 Motion blur in non-interlaced footage . . . . . .. ... ... ... ... 165
6.5.3 Extrema detection in the motion blur traces . . . . . . . ... . ... ... 165
6.5.4 Peaks in the motion blur traces . . . . . . . . ... ... ... ... 167
6.5.5 Classifying motion blur peaks . . . . . . ... ... ... ... ... ..., 167

6.6 The Video Soundtrack and Edit Point Identification . . . .. .. ... ... ... 168
6.6.1 Maxima in the audio trace . . . . . . . . .. ... ... 169
6.6.2 Peaks in the audio trace . . . . . . . . . ... L oo 169
6.6.3 Peak classification in the audio trace . . . . . . .. .. .. ... . 169

6.7 Combined-Method Edit Point Identification . . . . . . .. .. .. ... ... ... 169
6.7.1 Converting Traces to Edit Point Signals . . . . . . ... ... ... .... 171
6.7.2 Combining Probability Traces . . . . . . . . . . .. .. ... .. ...... 176
6.7.3 Assessment . . . . .. ... 182

6.8 Conclusion . . . . . . . . . e e 186

7 Segmentation For Edit Point Detection 191

7.1 Markovian Random Field Segmentation . . . . . . . ... ... ... ... .... 192

7.2 Colour Model . . . . . . . . . . e 193
7.2.1 Colourspace selection . . . . . . . . ... 193
7.2.2 Distribution distance . . . . . . . ... 194

7.2.3 Colour likelihood . . . . . . . . . . . 194



CONTENTS XV
7.3 The Edge Process . . . . . . . . . . e 195
7.4 Motion Models . . . . . . . . . e 199

7.4.1 Cartesian / Polar vector representation . . . .. ... ... .. ... ... 199
7.4.2 Wrapping the vector angle distribution . . . . . . . . ... ... ... ... 201
743 Vectormodels. . . . . . . . . . ... 201
7.4.4 Vector likelihood . . . . . . . . . .. 203
7.5 Vector confidence . . . . . . . . . .. 203
7.5.1 Image Gradient Confidence . . . . . ... ... .. ... ... ....... 203
7.5.2  Vector Confidence via the Mirror Constraint . . . . . . . ... ... ... 205
7.5.3 Vector Confidence via Vector Field Divergence . . . .. ... ... .... 205
7.5.4 Combining the Confidence Measures . . . . . . ... ... ... ...... 206
7.6 Encouraging Smoothness. . . . . . . . . . . . ... e 206
7.7 Label Assignment Confidence . . . . . . . . . . . . ... .. ... ... ..., 207
7.8 Changes in the Motion Content . . . . . . . . . . . . ... ... . ... ...... 208
7.9 The Segmentation Process in Outline . . . . . . ... ... ... .. ........ 209
7.10 New Clusters and Refining the Segmentation . . . . .. . ... .. .. ... ... 211
7.10.1 The No-Match Label . . . . . . . . . . .. .. ... ... ... . ..... 211
7.10.2 Splitting Existing Clusters . . . . . . . .. . . .. .. ... ... 212
7.10.3 Merging Clusters . . . . . . . . . . . 214
7.10.4 Cluster histories . . . . . . . . . . . . 215
7.11 Segmentation Assessment and Analysis. . . . . . . . .. ... ... ... ... 216
7.12 Conclusion . . . . . . . . e e 220

8 Applications of Edit Point Detection 223
8.1 Interactive Keyframe Selection . . . . . .. .. ... ... ... ... ....... 223
8.2 Motion Phrase Image . . . . . . . . . . . .. 224

8.2.1 MHI generation with global motion . . . . . . .. ... ... .. ... ... 224
8.2.2 Finding the foreground map of a video frame . . . .. . ... ... .. .. 229
8.2.3 Artificial rear-curtain effect . . . . . ... ..o 229
8.3 Frame Synchronisation . . . . . . .. .. Lo L 231
8.3.1 Related Work . . . . . . . . . ..o 231
8.3.2 Beat detection . . . . . . ... 233
8.3.3 Retiming the dance phrase . . . . . . .. . ... ... ... .. ... ... 233
83.4 Final points . . . . . . . . .. 235
8.4 Conclusion . . . . . . . . 236

9 Conclusion 237
9.1 ISSUES . . . . e e e 238
9.2 Final remarks . . . . . . . . . e 239



xvi CONTENTS

A Derivation of the optimal alpha value for dissolve modelling 241
B Sequence Sources 243
C Results 245
C.1 The Foreground Bounding Box . . . . . . . . ... ... ... ... 245
C.1.1 Minima Detection . . . . . . . . . . . .. . . 245

C.1.2 Peak Classification . . . . . . . .. . ... ... .. ... 249

C.2 Vector Field . . . . . . . . . . . e 256
C.2.1 Minima Detection . . . . . . . . . . . ... .. 256

C.2.2 Peak Classification Distributions . . . . . . . ... .. ... ... ..... 260

C.3 Sharpness . . . . . . . . e 268
C.3.1 Minima Detection . . . . . . . . . . . ... . 268

C.3.2 Peak Classification . . . . . . . . . . . . ... ... 269

C4d Audio . . . . . . e 271
C.4.1 Maxima Detection . . . . . . . . . . . ... .. 271

C.4.2 Peak Classification . . . . . . . . . . . . . . e 272

Bibliography 275



List of Acronyms

DCT Discrete Cosine Transform

DFD Displaced Frame Difference

EM Expectation Maximisation

EMD Earth Mover’s Distance

GME Global Motion Estimation

HMM Hidden Markov Model

ICM Tterated Conditional Modes

IRLS Iteratively Reweighted Least Squares
LDA Linear Discriminant Analysis

LMM Local Motion Map

LMMSE Linear Minimum Mean Least Square Error
MAD Mean Absolute Difference

MAP Maximum a posteriori

MHI Motion History Image

MSE Mean Squared Error

ROC Receiver Operating Characteristic

SVD Singular Value Decomposition

Xvil






Introduction

The digital video revolution began in earnest with the introduction of the DVD format in the
mid-1990s. Since that time, vast quantities of digital video have been produced, through the
increasing use of digital cinema technology in feature film production, the pervasive adoption of
the DVD format for consumer video cameras, and the digitisation of film material for re-release
in DVD and HD-DVD / Blu-Ray form.

Tools for manipulating digital video are thus in continuously increasing demand. A number
of these software tools for video manipulation are available, and the capacity of these tools
for digital video editing is increasing rapidly in line with the ever-expanding power of modern
computer systems. However, the nature of the operations which are facilitated by these systems
has remained essentially static, being limited to operations at the frame level. Manipulation
using higher level concepts, such as shots, scene settings, and story arcs, is not available because
the content of the video is opaque within these systems. The development of content-aware
systems to address this semantic gap is therefore an area of considerable research activity.

This thesis approaches content analysis through discontinuities. A discontinuity here is a
sudden change that corresponds to some meaningful event in the video content. This paradigm
of discontinuity-based analysis is applied within three distinct contexts. Firstly, the problem of
shot-change detection is explored. This amounts to the detection of signal-level discontinuities.
The next area of activity focuses on discontinuities as events, specifically in snooker video. Here
it is described how many of the significant events within televised snooker play can be detected
by targeted discontinuity detection, exploiting the characteristics of sports footage. Thirdly, the

detection of discontinuities in local motion is examined. It is shown that convincing analyses of
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dance video can be created by exploiting these methods.

In each application area, the approach adopted is the extraction of a targeted description
of the material, followed by the detection of discontinuities in this description. In shot change
detection, the video is described in terms of frame-to-frame similarity; in snooker, the description
targets the appearance of the table pocket areas and the ball tracks; and in dance video, the
motion characteristics of the foreground region are extracted. In each case, discontinuities in the
description of the media are found to correspond to time-points of interest in the video. This
approach is applied successfully to feature extraction across a range of semantic levels: low-level
in the case of shot changes, an intermediate level in the case of dance footage, and at a high

semantic level in the case of snooker video.

1.1 Thesis outline

The remainder of this thesis is organised as follows.

Chapter 2: Image Sequence Modelling

This chapter describes the key ideas underpinning image sequence modelling, outlining the main
approaches to global motion estimation, local motion estimation, and video segmentation. A
new technique for detecting and recovering from global motion inaccuracies in ‘simple’ scenes is
proposed. ‘Simple’ here refers to scenes with a well-contained foreground and a near-homogenous

background; counter-intuitively, global motion estimation is particularly difficult in such video.

Chapter 3: Video Shot Change Detection: A Review

Here the problem of shot change detection in video is described and analysed in some depth.
An extensive review and bibliography of the methods proposed for shot change detection are

presented.

Chapter 4: New Approaches to Shot Change Detection

In this chapter, two new contributions to the problem of shot change detection are presented.
The first is an approach to cut detection that performs well even in very difficult material. The
second is a new dissolve detection scheme based on explicit modelling of the dissolve process.

Both issues are considered as Bayesian classification problems.

Chapter 5: Detecting Snooker Events via Discontinuities

The work discussed here constitutes a number of tools facilitating the analysis of broadcast
snooker video. It is shown how analysis can be directed towards the most salient areas in the

video (the pockets and the balls), and the detection of events in these regions is constructed
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in terms of discontinuity detection. This chapter also introduces the use of Motion History

Image (MHI) for summarisation of sports events, here snooker shots.

Chapter 6: Low-level Edit Point Detection

This chapter introduces the problem of edit point detection in dance video. An extensive analysis
of various low-level approaches to edit point detection is presented, targeting several different
descriptors of the motion content of the video. The chapter concludes with a probabilistic

framework for fusion of these different descriptors for edit point detection.

Chapter 7: Segmentation For Edit Point Detection

In this chapter, a Bayesian video segmentation system is developed, designed for application to
edit point detection in dance video. This application requires strong temporal coherence in the
segmentation, particularly at motion discontinuities, and the novel contributions of this work

are directed at these aspects.

Chapter 8: Applications of Edit Point Detection

Here three applications of edit point detection in dance video are described: interactive edit point

browsing, dance phrase summarisation; and resynchronisation of dance video to new music.

Chapter 9: Conclusions

The final chapter assesses the contributions of this thesis and outlines some directions for future

work.

1.2 Contributions of this thesis

The new work described in this thesis can be summarised by the following list:

e A means for detecting and recovering from inaccuracies in global motion estimation in

simple scenes

Refinements to video cut detection particularly appropriate for very difficult sequences

A new technique for model-based dissolve transition detection

An algorithm for detecting full-table views in snooker footage

e A perspective-invariant approach to recovering in-game geometry from snooker and tennis

video
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e An algorithm for detecting and masking out the player, where the player occludes the

table, in snooker
e The use of the MHI for summarisation of sports events

e A method for the detection of ‘ball pot’ and ‘near miss’ events in snooker based on moni-

toring of the pockets
e A colour based particle filter approach to ball tracking, with applications to event detection

e The use of motion detection, foreground bounding box analysis, vector field analysis,
motion blur analysis, and sound track analysis for the detection of edit points in dance

video

e Refinements to video segmentation incorporating the use of the Earth Mover’s Distance
(EMD) for colour modelling, polar co-ordinates for vector modelling, and motion histories

for temporal coherence

e The use of edit points in dance video for interactive keyframe selection and dance phrase

summarisation

e The exploitation of edit points in dance video and music beat detection for real-time

resynchronisation of dance with arbitrary music

1.3 Publications
Portions of the work described in this thesis have appeared in the following publications:

e “Content Based Analysis for Video from Snooker Broadcasts” by Hugh Denman, Niall
Rea, and Anil Kokaram, in Proceedings of the International Conference on Image and
Video Retrieval 2002 (CIVR ’02), Lecture Notes in Computer Science, vol. 2383, pages
186-193, London, July 2002.

e “Content-based analysis for video from snooker broadcasts” by Hugh Denman, Niall Rea,
and Anil Kokaram, in Journal of Computer Vision and Image Understanding - Special
Issue on Video Retrieval and Summarization, volume 92, issues 2-3 (November - December
2003), pages 141-306.

e “A Multiscale Approach to Shot Change Detection” by Hugh Denman and Anil Kokaram,
in Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP ’04),
pages 19-25, Dublin, September 2004.

e “Gradient Based Dominant Motion Estimation with Integral Projections for Real Time

Video Stabilisation” by Andrew Crawford, Hugh Denman, Francis Kelly, Francois Pitié and
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Anil Kokaram, in Proceedings of the IEEE International Conference on Image Processing
(ICIP’04), volume V, pages 3371-3374, Singapore, October 2004.

e “Exploiting temporal discontinuities for event detection and manipulation in video streams”
by Hugh Denman, Erika Doyle, Anil Kokaram, Daire Lennon, Rozenn Dahyot and Ray
Fuller, in MIR ’05: Proceedings of the 7th ACM SIGMM International Workshop on Mul-
timedia Information Retrieval, pages 183-192, New York, October 2005.

e “Dancing to a Different Tune” by Hugh Denman and Anil Kokaram, in Proceedings of
the IEE European Conference on Visual Media Production (CVMP’05), pages 147-153,
London, November 2005.






Image Sequence Modelling

In this chapter the imaging process is introduced and an overview of image sequence modelling
techniques is presented. A new technique for refining global motion estimation in sequences
with low background detail is described. For additional material on the essential principles of

digital image processing, the reader is referred to the excellent book by Tekalp [298].

2.1 Image Sequence Modelling Overview

Figure 2.1 illustrates the three essential stages in the video process. A camera or other imaging
device is directed towards a three-dimensional scene in the real world, and captures a two-

dimensional projection of this scene. These images are recorded in succession to some storage

\\\;[ —— |FrameStore|—

Scene Imaging System Viewer

Figure 2.1: Stages in an imaging system
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medium. Finally, the images are presented to a viewer through some display technology.

To apply digital signal processing techniques to film, it is necessary that the film be available
in digital format. Modern video and film cameras record directly to digital, typically through
the use of a charge-coupled device, or CCD, as the light sensor. Early video cameras record
by analogue means, such as onto magnetic tape or optical film. This film can subsequently be
digitised in a separate stage. In either case, the result is a digital image sequence.

A digital image sequence is an ordered set of N rectangular arrays {I,(x) : 0 < n < N}.
Here n is the temporal index of the image in a sequence, and x = (r, c)T denotes the pixel site at
row r and column c of the image. For intensity images, [,,(x) is scalar valued; for colour images,
I,(x) is a vector indicating intensity and colour—for example, a three-tuple representing red,
green, and blue light intensities at the site.

For an image sequence arising from the continuous operation of one camera, changes in pixel
intensity are caused by four distinct processes. First, changes in the orientation and position of
the camera change which portion of the scene is depicted; this is the camera motion process.
To an observer, the scene background appears to move relative to the image space. As this
perceived motion is coherent across the entire image plane, it is termed global motion.

Secondly, individual objects in the field of view of the camera may themselves move; this is
designated object motion, or local motion. This motion may be translational or rotational, and
can include changes in size and self-occlusion.

Thirdly, changes in the illumination incident on the depicted scene will affect the readout
values of the image acquisition device.

Lastly, flaws and aberrations in the acquisition device, the digitisation process, or arising
during storage of the sequence, introduce noise to the image sequence.

An image sequence model is a set of hypotheses concerning the nature of the material de-
picted. From these hypotheses, constraints can be derived. These constraints facilitate analysis

of the variations at pixel sites over time in terms of the four processes identified above.

2.1.1 Image-centric sequence modelling

The essential hypothesis underlying image-centric sequence modelling is that the images depict
objects that are much larger than the pixel size. Thus adjacent pixels with similar intensity
values are likely to depict the same object.

Many image processing applications rely on constraints introduced by this hypothesis. Spa-
tial noise reduction, for example, exploits the constraint that object surfaces should be smooth.
Motion estimation generally relies on the constraint that adjacent pixels move identically, as
described below.

Motion estimation in image-centric sequence modelling was for many years centred on a
model in which motion in the sequence is modelled as deformations of a rubber sheet covering

the frame area. While this model has proven effective for simple sequences, it fails to account
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for the effects of occlusion and revealing. The layer model proposed by Wang and Adelson [321]
supercedes this rubber sheet model in these respects.

The directly perceived motion in a sequence is due to the displacement of spatial gradients.
The motion of the gradients is termed optic flow. Motion that does not result in the displacement
of gradients cannot readily be extracted from the sequence. For example, if a camera is directed
at a rotating smooth sphere under constant illumination, no optic flow results [149]. Optic flow

estimation is then the analysis of the motion through gradients.

2.1.2 Scene-centric sequence modelling

The hypotheses underlying scene-centric sequence modelling are in fact a description of the
imaging process itself. In other words, scene-centric sequence modelling treats video explicitly
as the perspective projection of three-dimensional objects onto the imaging plane. The goal is to
recover as much information as possible about the configuration of the objects being projected,
in terms of their relative position and size, the lighting conditions obtaining, and their three-
dimensional motion. Optic flow estimation is an essential precursor to scene-centric modelling.

The difficulty with this approach is that deriving constraints on the image sequence is very
difficult with a scene-centric model. For example, Nagel in [231] illustrates the ambiguity be-
tween changes in object depth (motion perpendicular to the image plane) and changes in object
size. Further ambiguities arise from illumination effects: changes in the light source and shadows
can result in intensity changes that are difficult to distinguish from motion. Even assuming that
object size and illumination are constant, recovering the three-dimensional scene from the optic
flow involves inherent ambiguities [3,295,338].

The scene-centric approach has been more common in the computer vision community than

in signal processing, and has resulted in a very considerable body of research [110,138].

2.1.3 Affective sequence modelling

Inasmuch as scene centric modelling considers real world objects rather than patches of pixels, it
is a higher level approach than image-centric modelling. Essentially, scene-centric modelling en-
compasses both the scene and imaging stages shown in figure 2.1, while image-centric modelling
is only concerned with the imaging stage. The next level of video modelling, then, encompasses
all three stages, including the human observer.

This affective media processing [136, 331] tries to infer the emotional content of a signal
and its likely effect on a human observer, and is still very much in its infancy. This aspect
of information processing in general was identified by Warren Weaver as early as 1949 [272].
He suggested that all information processing operates at a technical, semantic, or influential
level. In the case of video processing, as in media processing in general, present-day research
is principally at some intermediate stage between the technical and semantic levels. As more

sophisticated models are introduced to account for more of a signal’s meaning in relation to a
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human observer, the scope and relevance of computer-assisted media processing will increase to

encompass these affective aspects.

2.2 Global Motion

A marked distinction is drawn in the literature on motion estimation between global motion
estimation and local motion estimation [298]. In practical terms, this distinction is well founded.
However, from a theoretical standpoint, one is always fundamentally concerned with an image

equation of the form

Lu(%) = Li-1(F(x,0)) + €(x) (2.1)

The vector function F(x) represents co-ordinate transformation according to the motion model,
parameterized by 6. The term e(x) represents errors arising from noise in the image sequence, or
due to model inadequacy. In this section, motion models F(x, ®) suitable for global motion are
described, along with the means of estimating, or fitting, these models to the data. Section 2.4

section describes local motion models and estimation techniques.

2.2.1 Global motion models

Global motion estimation methods attempt to fit a single, low-order motion model to the image
sequence contents as a whole. An accessible discussion of global motion models and their rep-
resentational capacities has been presented by Mann and Picard [213]. The simplest choice for
the form of F is the translational model, ® = (dz,dy), F(x,0) = x + [dz,dy]”. The commonly
used affine model is given by ® = (A,d), F(x,0) = Ax +d. Here, A is a 2 x 2 transformation
matrix accounting for scaling, rotation, and shear; d = [dz,dy]” as before. This is the model
used throughout this thesis for global motion estimation. Higher-order models, including bilin-
ear and biquadratic models, can also be applied. These models are linear in that they can be

written in the form

F(x,®) = B(x)© (2.2)
where B(x) is a matrix-valued function of x. For example, in the case of the affine model,

1 X2 1 0 0 0
0 0 0 r1 T2 1
© = [a1,a2,d1,a3,a4,do)" (2.3)

B(x) =

where a;, d;, and x; are the components of A, d, and x.

The eight-parameter projective transform takes

B Ax+d

F(x.0) =1

(2.4)
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This model can exactly account for all changes due to camera motion, assuming that the scene
contents are effectively planar (the zero-parallax assumption). However, this is a non-linear

transform!, and as such more difficult to solve.

2.2.2 Global motion estimation

Once a model for the global motion has been chosen, it is necessary to estimate the parameters
that best account for the observed image data. Global motion estimation is normally carried
out between a pair of frames I,,, I,_1. The error associated with some parameter values @’ is

assessed via the Displaced Frame Difference (DFD)
DFDe(x) = Ih(x) — I—1(F(x,9)) (2.5)

In general parameter estimation terminology, the DFD measures the residuals for parameters
©. The aim then is to find the optimal parameters C) minimising some function of the DFD. A
least squares solution, for example, entails solving
© = arg minz DFD (x) (2.6)
(-) X
DFD(x) will have a high value if the parameters © do not describe the motion at site x.
For inaccurate parameters, this will be over much of the image. However, at sites x containing

local motion, DFD(x) will take a high value for all parameter values. Thus the minimisation

technique adopted should be robust against outliers.

2.2.3 Robust estimation approaches

Odobez and Bouthemy [244] applied an M-estimation approach to robust estimation for global

motion parameters. In M-estimation, the aim is to solve

O = arg@min Z p (DFDg(x)) (2.7)

X

where rather than squaring the DFD, a function p(.) is used to limit the influence of large

residuals on the optimal parameters. This formulation is equivalent to solving

= arg mlnz x) DFD% (x) (2.8)

for suitable weights at each site [351].

Tn the sense that x’ = F(x, ©) is related to x by

0 0 0 =1 22 1 —mah —w27h

xh |z oz 10 0 0 —z1T]  —zox)
zh |

T
, :| . [a17a27d17a37a4,d2701702]

with x” appearing on both sides of the equation.
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The optimal parameters © are determined using an iterative scheme. Two factors motivate
the iterative approach. Firstly, a Taylor series expansion must be used to linearise DFD(x) with
respect to ® around some initial estimate @Y. Thus, for some update u, the weighted DFD at
x, WDFDgo (%), is found by

WDFDgoy(x) = w(x) [I(x) — I,-1(B(x)©°)] — VI,_1(B(x)0®°)B(x)u + é(x) (2.9)

where é(x) represents both the higher-order terms of the series and the error term. The Taylor
series expansion is only valid for small updates u, and as such is applied iteratively until some
convergence criterion is met (typically a threshold on the magnitude of u). This also suggests
that a multi-resolution scheme be employed, as described in section 2.6.

The second reason that iterative estimation is used pertains to the choice of weights. The
weight at a site x should be high if x is subject to global motion, and low otherwise. Thus, the
ideal weights can only be determined where the global motion is already known. The weights
and parameters are therefore estimated iteratively, resulting in an Iteratively Reweighted Least
Squares (IRLS) estimation scheme.

At each iteration i, the value of u for which

OWDFD(x)
R v/ 2.1
5u 0 (2.10)
is found. This value is given by
= [GTW G I1GTWilg (2.11)

Here G is the matrix of gradient values {V1,_1(B(x)®"1)B(x)}x, W' is the vector containing
the weights over the entire image, and z is the vector of residuals {I,x — I,,_1(B(x)®'"!1,.

Given the parameters ©° at iteration 4, the weights W* can then be found by

_ p(DFDgi (x))

w(x) = DFDg, (x) (2.12)

where various choices for p can be used [351]. In [244], Tukey’s biweight function [156] is used
for p.

Dufaux and Konrad [93] also use M-estimation, with the function p taken as

ez ifle
p(e)z{ el <t (2.13)

0 otherwise

The threshold ¢ is chosen at each iteration so as to exclude the top 10% of absolute DFD values.
This is equivalent to using binary valued weights to exclude the influence of the sites having the
largest residuals. Their work targets the eight-parameter projective transform, and therefore

uses a gradient descent method to find the minimum [258].
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2.2.4 Wiener solution approach

Kokaram and Delacourt presented a Wiener-based alternative for finding the parameter up-
date [182]. In this approach,

= [GTWG + p I 'GTWz (2.14)

This introduces the regularising term g, = (age / agu), where o2, is the variance of the residuals

and o2, is the variance of the estimate for @i. In practice, p, = ]Wz]ﬁ—o, where ﬁ—o is the

condition number of [GTWG. + p,,1]. This regularisation limits the update where the matrix is
ill-conditioned or where the DFD takes large values. Binary weights are used in [182], although

other weighting functions could be used.

2.2.5 Fourier domain approaches

The normalised cross-correlation of two images can be efficiently computed in the spatial fre-
quency domain using the Fast Fourier Transform (FFT). This suggests an efficient approach for
computing translational displacement between two images. Let I, and I,,_1 be two frames that

differ only by a displacement d = [d,, d,] such that
L(@,) = I-s(@ + davy + dy) (2.15)
The corresponding Fourier transforms, F,, and F,,_1, are related by
F,(u,v) = 2mdatvdy) oy ) (2.16)
The cross correlation function between the two frames is defined as
cnp—1(2,y) = In(z,y) ® In_1(z,y) (2.17)

where ® denotes 2-D convolution. Moving into the Fourier domain results in the complex-valued

Cross-power spectrum expression
Crn—1(u,v) = Fp(u,v)Fy;_; (u,v) (2.18)
where F* is the complex conjugate of F. Normalising Cy, ,,—1(u,v) by its magnitude gives the

phase of the cross-power spectrum:

é (u,0) = Fo(u,v)Er_ (u,v)
mr R o) By ()] (2.19)
_ e—j27r(udm+vdy)

Taking the inverse Fourier transform of én,n_l(u, v) yields the phase-correlation function

Cnn—1(2,y) = 0(x — do,y — dy) (2.20)
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which consists of an impulse centered on the location [d,,d,], the required displacement.

The phase correlation method for translation motion, then, involves evaluating (2.19) and
taking the inverse Fourier transform. This yields a phase correlation surface; the location of the
maximum in this surface corresponds to the translational motion. Sub-pixel accuracy can be
obtained with suitable interpolation.

Phase correlation for translational motion was presented by Kuglin and Hines in 1975 [186],
for registration of astronomical images. In 1993, Bracewell published the affine theorem for
the two-dimensional Fourier transform [44]; a number of researchers then developed Fourier-
domain systems for affine image registration [209,261] and global motion estimation [147,188].
An accessible presentation of how Fourier domain methods can be used for affine global motion

estimation appears in [167, appendix A].

2.2.6 Integral projections

The vertical and horizontal integral projections 12, I" of an image I,, are the vectors formed by

summing along the rows (respectively columns) of the image:
o= 3 Ly (2.21)
o= S Ly (2:22)
y

The use of integral projections was originally proposed by Lee and Park in 1987 for block
matching in local motion estimation [191], described further below. In 1999, Milanfar showed
that motion estimation applied to these two one dimensional vectors reveals the global motion of
the image itself [222]. This work considered integral projections as a form of Radon transform,
and established the theoretical soundness of the approach on this basis; the affine motion model
is used. A differently motivated analysis appears in [71], targeting translation motion. The
appeal of this approach lies in its simplicity of implementation and suitability for real-time

applications.

2.3 Refined Global Motion Estimation for Simple Scenes

As described above, motion in an image sequence can only be directly estimated in picture
areas containing edge information. This can lead to difficulties in global motion estimation
for sequences with little detail in the background. This situation is common in videos depicting
theatrical dance performance, for example, where a dance is performed in front of a flat backdrop.
These can be considered ‘simple’ scenes, in the sense that there is a well-defined foreground actor
and a simple, flat background. In this section, some examples of this problem are illustrated, and
a new approach for improving Global Motion Estimation (GME) performance is described. The

global motion estimation algorithm described by Odobez and Bouthemy in [244] is used. The
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(a) Video frame (b) Result of inaccurate GME (c) Result of accurate GME

Figure 2.2: Improvement in global motion estimation wrought by excluding the foreground
region. The DFD after global motion compensation is superimposed in red in (b) and (c), along
with its bounding box.

global motion model here is affine, with multiplicative parameter A and translation parameter
d.

2.3.1 Diagnosing GME Failure

As described above, the DFD at frame n after global motion estimation is the difference between

compensated frame n — 1 and frame n:
DFD(x), = I,(x) — I,—1(Ax + d) (2.23)

Where GME has been successful, all the energy in the DFD will correspond to foreground
regions of the image sequence. Figure 2.2 shows DFDs for successful and unsuccessful motion
estimation. Figure 2.2 (a) shows a frame from the greenDancer sequence. There is no camera
motion at this frame of the sequence. Image (b) shows the DFD energy and bounding box in
red, after inaccurate global motion estimation. The DFD bounding box is the smallest rectangle
containing all non-zero elements of the DFD image. Image (c) shows the DFD energy and
bounding box after successful global motion estimation, using the technique described here.
Where GME is accurate, the DFD bounding box corresponds to the foreground region of the
frame.

Although the region of the frame corresponding to the foreground cannot be known in
advance, it can be assumed that GME is accurate more often than not, and so the DFD bounding
box usually contains the foreground motion. This assumption is generally justified, particularly
at the start of a sequence as the subject begins to move. Any sudden change in the DFD
bounding box can then be interpreted as an indication of GME failure.

The bounding box at frame n is defined by four components, for its top, bottom, left, and
right locations: BB, = [BBt,, BBb,, BBl,, BBr,]. Given the bounding boxes of the previous
k frames, a Gaussian distribution can be proposed to describe the expected location of the
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bounding box in the current frame. Hence BBt, ~ N (BBt,o?) and similarly for the other
bounding box components. These components can be estimated using the & measurements from

the previous frames by

n—1
1
BBt = - ‘Z BBt; (2.24)
j=n—k
n—1
o2 =1 > (BBt; — BBt)? (2.25)
t — k 7 :
j=n—k

GME failure is then diagnosed if any component k lies outside the 99% confidence interval for

the associated Gaussian, i.e. where

|BB), — BBy| > 2.5760, (2.26)

2.3.2 Recovering from GME failure

Once GME failure has been diagnosed at a particular frame, various methods to improve the
estimate can be employed. The simplest approach is to exploit the fact that camera motion is
temporally smooth in most cases, by proposing the GME parameters from the previous frame
as candidate parameters for the frame causing difficulty. These are designated 6%. A second
candidate set of parameters can be generated by performing GME a second time, but excluding
the region inside the DFD bounding box of the previous frame from the estimation. This prevents
the foreground motion from affecting the global motion estimate. The resulting parameters are
designated 63. A third, related candidate is generated by finding the median of the last N = 25
DFD bounding boxes, designated the median foreground rectangle. GME is then performed
with this region excluded from estimation, and the parameters found are designated 6*.

In cases where GME failure has been diagnosed, there are thus four candidate sets of
parameters—the original parameters and the three alternatives described above. These are des-
ignated 6, with i € {1...4}. Each of these parameter sets is used to generate a DFD, and
the bounding box of each DFD image is found. The set of GME parameters resulting in the
DFD bounding box having the closest match to the historic distribution is selected as the best
estimate for the current frame. Specifically, the selected parameters for frame n, 6, = {A,d},

are found by

(BBK!. — BBk)?
O%

6, = 6", where i = arg max Z exp < (2.27)
i€} el
Here BBE is bounding box component k resulting from candidate parameters 6".

The procedure is illustrated in flowchart form in figure 2.3.

2.3.3 Results and Assessment

Ground-truth global motion data is not available for the sequences analysed here, and therefore

a complete quantitative assessment of the improvements introduced by this technique is not
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Figure 2.3: The GME refinement algorithm. ‘BB’ stands for the DFD bounding box. The
‘BB match’ refers to the similarity between the current DFD bounding box and those found in

previous frames.

possible. Figure 2.4 (a) shows the location of the bottom edge of the DFD bounding box over 80
frames of the greenDancer sequence, identified by unmodified GME and also using the technique
described here. The refinement technique results in a considerably smoother signal, indicating
that GME performance has been improved.

Figure 2.4 (b) shows how often each set of global motion parameters was selected when
the refinement technique was applied to the 1900 frame greenDancer sequence. The initial
parameters, #', were found to be a poor match to the historic distribution in 699 cases. In

445 cases, the §' parameters resulted in the best fit of all candidate parameters. This suggests
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(a) Location of DFD bounding box bottom edge using (b) Selection counts of different candidate parameters.
unrefined GME and the technique described here. The N=699.

plot covers 80 frames from the greenDancer sequence.

Figure 2.4

that the refinement is being invoked somewhat more than necessary, and that a looser fit to
the historic distribution should be considered a match. Of the three alternative candidate
parameters, #3 most often results in the closest-matching bounding box, but each alternative is
selected for some frames.

Video material illustrating the application of this approach to a number of sequences is
provided in the accompanying DVD. These videos demonstrate that the technique results in a
considerable improvement in GME accuracy for numerous frames. It is noted that this technique
should not be incorporated into GME systems by default, but rather selected by an operator

for application to suitable sequences.

2.4 Local Motion Estimation

The problem of local motion estimation in image sequences has been the target of consider-
able research effort over a number of decades. A brief overview of the principles and principal
techniques is presented here. Comprehensive review material is available in a number of publi-
cations [94,214, 230, 288, 298, 314].

2.4.1 Problem statement

In local motion estimation, the aim is to describe the motion of each region of the image indi-

vidually. The equation for the image motion remains I,,(x) = I,,_1(F(x,®)), but the motion
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model F(x,®) varies with the site x. The most commonly used formulation is
F(x,0) =x+d;,—1(x) (2.28)

Here d,, ,—1(x) is a vector field describing the translational motion at each pixel. The effects of
zooming and rotation can be approximated as translational motion provided the motion between
frames is small.

Numerous approaches to fitting a model of the form (2.28) to an image sequence have been
developed, and will be outlined here. It is first noted that (2.28) fails to account for the effects of
occlusion and revealing in the image sequence. These effects are found in all sequences containing
motion: as any object moves, it will occlude some areas of the previous frame and reveal others.
Modelling these effects requires extensions to the motion model that are not described here;
approaches addressing this issue have been presented in [31, 160,179, 184, 286].

Consider motion estimation in video having dimensions M x N pixels. There are then M N
equations of the form

I(x) = L—1(x+dp pn-1(x)) (2.29)

and each equation is to be solved for the two components of d(x). There are thus twice as
many unknowns as there are equations, and so the problem is underconstrained. In fact, at
each site x, only the motion prependicular to the gradient at x can be estimated, known as the
‘normal flow’ [298, pp. 81-92]. This difficulty is known as the aperture effect, because in effect
the aperture, or window, used for motion estimation is too small.

The most common way of dealing with this difficulty is to assume that the motion is constant
over some window larger than one pixel, typically a block B pixels on a side. Motion estimation
within the block is then described by B? equations with two unknowns in total, and the problem
is no longer underconstrained. Motion estimation over blocks of pixels also improves resilience
to noise in the image sequence. The aperture effect can still arise where the block size is small
relative to object size. Using a larger block size reduces the effect of this problem, but for large

block sizes the assumption that the motion within the block is constant is less likely to hold.

2.4.2 Correspondence matching

Block matching is a robust, readily implemented technique for motion estimation. For each
B x B block b in frame n, the most similar B x B block in frame n — 1 is found. The motion
vector assigned to the block in frame n is then the displacement to the matched block.

Block similarity is measured by examination of the DFD over the block. The most commonly
used measures are the Mean Squared Error (MSE) and Mean Absolute Difference (MAD):

1

MSE(b,d) = 3 > (DFD(x,d))? (2.30)
x€B(b)
MAD(b,d) = é > [DFD(x,d)] (2.31)

x€B(b)
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where B is the set of sites x in block b, and DFD(x,d) = I,,(x) — I,,—1(x + d). The vector d
resulting in the lowest value of the error measure is assigned to block b. For translational motion
under constant illumination in a sequence uncorrupted by noise, the correct vector will result in
a zero block error.

A block matching scheme requires that two parameters be specified: the search width, and
the search resolution. The search width limits the maximum displacement magnitude that can
be estimated, while the search resolution limits the maximum obtainable accuracy. Increasing
the search width or search resolution results in a considerable increase in computational cost.
For a search width +w pixels in both the horizontal and vertical directions, with a resolution
of % pixels, block matching requires B?(2rw + 1)? operations per block. Fractional accuracy
imposes an additional cost for interpolation of the target frame (frame n — 1).

Evaluating every candidate vector in the search area is known as Full Motion Search. A
number of alternative schemes aiming to reduce the amount of computation required for a
given search width and resolution have been presented. These include Three Step Search [177],
Cross Search [119], and the Successive Elimination Algorithm [199], amongst others [46, 346].
Although these approaches do offer considerable computational savings, they are not as reliable
as full motion search block matching.

Integral projections were described for global motion estimation above, but were originally
proposed for local motion estimation, by Lee and Park [191]. This approach reduces the com-
putational cost of block matching by making comparing blocks cheaper. Rather than compare
all B? pixels across two blocks, the integral projections of the block are compared. Matching
block integral projections is shown to provide similar results to full block matching, at a cost of
only 2B operations per block comparison. This approach has been further developed by various
researchers [172,192].

2.4.3 Gradient-based methods

Block matching is effectively an exhaustive search approach to find the vector d minimising the
DFD at x. An alternative approach is to linearise the image model about d using a Taylor series

expansion, such that
In(x) = In—1(x) + djy ;1 (x) Vo1 (%) + eq(x) (2.32)

where V is the two-dimensional gradient operator and e, (x) accounts for both the higher order

terms in the Taylor series and any model error. Rearranging this equation yields
2(x) = dgn_l(x)VIn_l(x) + en(x) (2.33)

where z(x) = I,(x) — I—1(x). This approach was described in 1976 by Cafforio and Rocca [50].
The Taylor series approximation for linearisation about d is only valid over small displace-

ments. To allow for this limitation, estimation of d is performed iteratively, with an update u
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applied at each step. This scheme can be applied to single pixels, where the inital estimate for
the displacement at each site is taken from the previous pixel in raster-scan order. Hence these
schemes are described as pel-recursive approaches. When estimation is performed at pixel level,
the aperture effect means that the update at each iteration will be always be perpendicular to
the image gradient. The use of the pel-recursive scheme, however, means that the scheme can
converge to the two-dimensional motion after a number of pixels have been processed.

The earliest of these pel-recursive schemes was presented by Netravali and Robbins [236].

Here the update for the displacement at x is found using a steepest-descent approach, yielding
d'(x) = d'(x) — e DFD(x,d")VI,_(x — d°) (2.34)

where the step size ¢ must be chosen. Walker and Rao then proposed an adaptive step size given

by

B 1
2/[ViIp—1(x — d')[|?

€ (2.35)

This effectively reduces the step size in the neighborhood of large gradients, improving accuracy,
and increases the step size where the gradient is small, improving the speed of convergence.

Gradient-based motion estimation can also be applied to blocks of pixels, reducing the effect
of the aperture problem and imposing a stronger regularity constraint. The approach described
by Biemond et al.using Wiener estimation is the first example of this approach [27], being
essentially an extension of the Netravali-Robbins method applied to block motion in which the
error term e, (x) is not discarded [298]. Instead, the error is assumed to be effectively Gaussian.
This facilitates Linear Minimum Mean Least Square Error (LMMSE) estimation of the update,
such that

At (x) = di(x) + [GTG + 1] T G"z (2.36)

where G and z collect the gradient and image difference values for each pixel inside the block.

2
Uge . 0.2
?
a2, ee

variance of the estimate for the update u = d*!(x) — d(x).

1 is a damping parameter given by is the variance of the error values and o2, is the

The damping parameter p is designed to improve stability in the computation of [GTG] -
Errors in the motion estimation can nevertheless result when this matrix is very ill-conditioned.
This ill-conditioning can be measured by examining the ratio of the eigenvalues of the matrix, and
tailoring the update accordingly. This refinement has been explored by various researchers [40,

95]. Kokaram in [178] described a system in which

i ey if Qo o
v = aeT o if £ >‘T (2.37)
[G G+,uI] G*z otherwise
=l
T
a 2 Gy
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Here A\, and )\, are the largest and smallest eigenvalues of GTG, and e, is the eigenvector of
G”G corresponding to \;. « is a threshold on the conditioning of GT G. The idea here is that
where GTG is very ill-conditioned, the Martinez [214] solution is used; otherwise, the damping

parameter y is found as described by Driessen et al. [90].

2.4.4 Transform domain methods

The use of the Fourier transform for global motion estimation was described above. This ap-
proach can also be applied to individual blocks in an image for local motion estimation. Jain
and Jain used this method in 1978 for analysis of images from radar [161]; it has also been used
in frame rate conversion for television [301] and in motion estimation for restoration [276]. The

complex wavelet transform (CWT) has also been used for motion estimation [212].

2.4.5 Bayesian methods

The approaches described above can be considered maximum likelihood methods, in that they
are entirely data driven. As such, they do not explicitly take into account prior intuitions
concerning the nature of motion fields. In particular, motion fields are generally piecewise
smooth, and this smoothness can be incorporated as a constraint to condition the estimate.
This incorporation of prior knowledge, combined with data-driven evaluation of the likelihood,
results in a Maximum a posteriori (MAP) method. This is distinct from the implicit smoothness
introduced by pel-recursive schemes or motion estimation over blocks.

The a posteriori probability of a motion field D is given by Bayes’ theorem

p([n‘[n—la D)p(D)
D [n— 7In =
p( ‘ ! ) p(In’In—l)

Here p(I,|I,—1,D) is the likelihood of the vector field D, and p(D) is the prior probability of

D (typically some measure of smoothness). The denominator of this expression describes the

(2.38)

marginal probability of I,,, and does not vary with D. Thus the MAP estimate of D is given by

D= argglaxp(ln\fn_l, D)p(D) (2.39)
D here represents the entire flow field, and it is not generally feasible to maximise 2.39 over
a space of such large dimensionality. Therefore Bayesian schemes generally address flow field
smoothness at each site individually.
Maximising the a posteriori probability is equivalent to minimising the negative logarithm
of the probability, a quantity described as the energy of the flow field. The energies due to the
likelihood and prior may considered separately:

D = arg min L(D) + V(D) (2.40)
D

The likelihood energy L(D) is typically some DFD related measure such as the MSE. Thus

incorporating prior information is equivalent to adding some smoothness term to the error
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associated with a given vector. Conversely, any scheme in which a smoothness term is added
to the vector error can be described within the Bayesian framework. Kelly has described how
a number of estimation schemes, including the optical flow method of Horn and Schunck [148],
and the 3D recursive search block matching algorithm of de Haan et al. [76-78], can be unified
in the Bayesian framework in this manner [167].

More explicitly Bayesian methods incorporate iterative smoothing into the estimation of the
flow field. Konrad and Dubois employ stochastic relaxation techniques such as the Metropolis
algorithm and the Gibbs sampler [184]. Kelly has described motion smoothing using determinis-
tic methods such as Iterated Conditional Modes (ICM) and Belief Propagation [167]. Numerous
other variations on MAP estimation have been presented [2,350].

The presence of moving objects in a scene introduces discontinuities in the optic flow field. If
the smoothness constraint is applied globally, then, the motion vectors at object boundaries be-
come blurred. Numerous researchers have investigated approaches to this problem—encouraging
piecewise smoothness as opposed to global smoothness [31,140,160]. Using the oriented smooth-
ness constraint, introduced by Nagel [232,233], the optic flow field is smoothed perpendicular
to the image brightness gradient. Konrad and Dubois [184] and Heitz and Bouthemy [141] in-
troduced line fields for stochastic motion smoothing. A line field is a lattice in between pixel
sites controlling how much smoothness should be applied across adjacent pixels. These stochastic
techniques have a high computational cost. A number of researchers have recognised that dealing
with these motion discontinuities effectively requires some level of video segmentation—which is
itself often predicated on motion estimation. Thus motion estimation and video segmentation

are complementary problems [57, 58,140, 287].

2.5 Video Segmentation

Video segmentation is the problem of discovering a set of labels corresponding to each object in
an video, and assigning one of these labels to each pixel in each frame describing which object
that pixel depicts. A brief outline of some of the main methods is presented here; the review

article by Zhang and Lu [348] is recommended for further information.

2.5.1 Motion segmentation

Early approaches to the problem of video segmentation relied exclusively on motion features, and
as such were described as motion segmentation. The use of motion for segmentation is justified
by various findings in psychology. For example, the Gestalt psychologists realised that common
motion, or ‘common fate’, is one of the strongest cues for grouping in visual perception [323], and
more recently cognitive psychologists have shown that infants treat any surface that is cohesive,

bounded, and moves as a unit as a single object—ignoring shape, color, and texture [16,281,282].
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2.5.1.1 Dominant motion methods

A number of early motion segmentation techniques adopted a dominant motion approach [19,
157]. This is a recursive scheme relying on the assumption that where multiple motions are
present, one is the ‘dominant’ motion, in the sense that global estimation of motion over the
entire frame will result in a good estimate of this dominant motion. Those regions in the
image that obey this dominant motion can then be excluded from consideration, and estimation
applied to the remaining areas to find the next dominant motion. The procedure is recursively
applied until all of the frame is accounted for. These schemes are unreliable in processing video

containing a number of comparably dominant motions.

2.5.1.2 Expectation-Maximization methods

Dominant motion analysis is a global, or top-down, approach to motion segmentation, and
has been largely superseded by a local, bottom-up approach in which small areas undergoing
similar motion are merged. This approach is exemplified by the seminal work by Wang and
Adelson [320, 321], which also introduced the layer model underpinning much of the work in
motion segmentation. Here, rather than considering a single, piecewise smooth flow field, the
video sequence is considered as made up of occluding layers. Discontinuities in the motion field
arise as the result of occlusion between layers. Thus explicit piecewise smoothness need not be
imposed through regularisation [118,255] or robust estimation [30,73,82]; rather globally smooth
motion is estimated for each layer separately.

In [320], the motion of each layer is described using an affine model. In outline, the scheme
is as follows: First, optic flow estimation is carried out. The first frame is divided into blocks
to provide an initial set of regions. The frame is then segmented using a number of iterations

of the following steps:
1. An affine model is fitted to the motion vectors within each region, using linear least squares.
2. Adaptive k-means clustering is applied to merge similar motion models.

3. The regions are updated by assigning each pixel to the motion model best describing the

motion vector at that pixel.
4. Regions containing disjoint areas are split such that all regions are contiguous.
5. Small regions are discarded.

This is essentially an Expectation Maximisation (EM) scheme altering between estimation of
model parameters and maximisation of the likelihood given these models. Typically fewer than
20 iterations are required to segment the first frame. The segmentation of subsequent frames
is initialised using the final result of the previous frame, which encourages temporal coherence.

Once the layer assignments have been made for a number of frames in the sequence, resynthesis



2.5. Video Segmentation 25

of frames in the sequence from the layer models can be used to determine the depth relationship
of the layers.

A number of variants on this EM approach have been presented, including methods com-
bining segmentation with motion estimation [14,57,162]. Elias and Kingsbury in [97] presented
some refinements exploiting forward and backward optic flow for more accurate modelling of
uncovering and occlusion. Weiss presented a variant in which layer motion is modelled as a
smooth dense flow field rather than using the affine model [333].

In [41], Borshukov et al.point out that the adaptive k-means clustering used by Wang and
Adelson in [320] results in layers being assigned a mean affine motion model, averaged over
regions in the layer. They suggest replacing this clustering step with a merge, such that the
model chosen for each layer is the candidate model having the best fit. The implementation
of this approach is in a sense a combination of the dominant motion approach described by
Bergen [19] and the Wang-Adelson algorithm.

2.5.1.3 Bayesian approaches

A number of Bayesian approaches to motion segmentation have been described, from the early
work of Murray and Buxton in 1987 [226] to the more recent papers by Torr et al. [304], Vas-
concelos and Lippman [243], and Kumar et al. [187]. An accessible, representative example of
these approaches is the 1997 work by Chang et al.describing a Bayesian framework for simul-
taneous motion estimation segmentation and segmentation [58]. Their treatment is exemplary
and comprehensive, and is outlined here.

The aim is to find optimal flow field D and segmentation map M given frames [, and I,,_1:

(D, M) = argmax [p(D, M| Ly, I-1)
D,M

= arg max (2.41)

[p(InID, M, I,,—1)p(D|M, I),—1)p(M|I,—1)
D,M

p(In|In-1)
The denominator here is constant with respect to the unknowns and need not be considered.
The first term in the numerator, p(I,|D, M, I,,_1), describes how well D and M fit the given
frames. This is modelled by a Gibbs distribution with potential function U;(I,,|D,M,I,_1)
based on the DFD:
Ur(In]D,M, I, 1) = » | DFD(x,D(x))| (2.42)

p(D|M, I,,_1) describes how well the label assignments M accord with the motion field D;
the dependence on I, 1 is ignored. The motion of the object with label m is modelled as
a parametric mapping ©,, (a six parameter affine model is used in [58]). The flow field is
modelled by

D(x) = On(x) (%) + Dy (x) (2.43)

where @yy(x)(X) is the vector assigned to site x by the model for label M(x) and D, (x) is the

residual vector at x. A least-squares estimate for the motion models ©®,, can be found given
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estimates for D and M. The conditional pdf on the flow field is then modelled by a Gibbs
distribution with potential function Us(D|M), where

U(D|M) =aZHD — O (%)

+5Z Y IID(x) = DE)|P6(M(x) — M(x')) (2.44)

X x'eN(x)

The first term here encourages a minimum norm estimate of the residual vectors D,., and the
second is a piecewise smoothness constraint activated for adjacent sites sharing the same label.
N (x) is the neighborhood of x, typically taken to be represent four- or eight-way connectivity.
« and 3 are scalars governing the relative influence of these terms.

The third term of the numerator in (2.42) represents the a priori probability of the label
field M, and is designed to encourage smoothness—again, the dependence on I, _1 is ignored.

A Gibbs distribution is again used, with potential function Us(M) given by

M) =7 > Va(M(x),M(x)) (2.45)

x x'eN(x)

where v governs the influence of this term and

, -1 ifx=%
Va(x,x') = (2.46)
+1 otherwise

represents the potentials for two-pixel cliques.
Overall, then, the problem is to find D, M minimising the energy U;(-) + Us(-) + Us(+), i.e

| DFD(x, D(x))P
= arg min ta ZX ID(x) — ®M(X)( )||2
<D M) gDM Z +8> 4 Ex’eN(x) |ID(x) — D(x /)||25(M(X) ~ M(x)) (2.47)
7 Y Dowren () Va(M(x), M(x'))

Solving this is achieved by iteration over estimation of the motion field, estimation of the segmen-
tation map, and calculation of the model parameters. Initialisation is provided using optic-flow
based motion estimation [298] and an initial segmentation based on the method described by
Wang and Adelson [320]. This also determines the number of models used. Vasconcelos and
Lippman [243,311] describe an ‘empirical Bayesian’ approach in which the weights assigned to
the smoothness priors (o, 3, v) are determined from the data.

This scheme illustrates the essentials of Bayesian motion estimation and segmentation, and
the authors describe how (2.47) is a general framework within which many other motion esti-
mation and motion segmentation schemes can be described. For example, with a« = v = 0 and
disregarding the segmentation map (i.e. setting M(x) to 0 at all sites x) describes Bayesian

motion estimation with global smoothness [298]. The Bayesian scene segmentation approach of
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Murray and Stiller [226] is equivalent to setting 3 = 0 and disregarding the DFD term. The
Wang-Adelson approach relies on the « term for motion segmentation, with a threshold on a
DFD term (using the motion model ®,, rather than the optic flow vector [321, equation 9]).
The methods of Stiller [287] and Iu [160] are also shown to fit into this framework.

2.5.2 Segmentation using motion and colour

The schemes described above approach motion segmentation only. Colour information can also
be used, and is readily incorporated in the Bayesian framework described above [187,304].
Some researchers have used colour segmentation as a preprocessing stage which then informs
subsequent motion segmentation [20,299,334], but it is more common to combine motion and
colour features. Some of the earliest work in video segmentation, presented in 1980, takes this
approach [302]. Black [29] describes a Bayesian approach with priors on intensity, edge, and
motion smoothness. Khan and Shah [168] use colour and motion features, and also employ
spatial location as a feature (modelled non-parametrically) to encourage smoothness. In this
work, the weight affecting the influence of the motion feature relative to the colour feature varies

adaptively with motion estimation confidence.

2.5.3 Video volume analysis

The approaches described above are on-line, or frame-recursive, in that each frame is segmented
in sequence. A second class of segmentation algorithms are off-line and process the video as a
volume, or three-dimensional stack of images. The work of Shi and Malik in 1998 [273] falls into
this category. Here the video segmentation is considered as a graph partitioning problem, where
each pixel is a node in the graph and the edges of the graph connect pixels in a spatiotemporal
neighbourhood. The weight applied to each edge corresponds to the similarity of feature vectors
in the connected pixels. In this work only the motion at each pixel is used as a feature. The
normalized cut algorithm is applied recursively to find the most salient partitions of the video
volume. This paper is a part of a body of work exploring graph cuts for image and video
segmentation. The algorithms concerned have been known for some decades [309,347], but the
approach is attracting increasing attention in recent years as it becomes computationally feasible
to to apply these methods to image [163,327] and video [49] data.

Mean shift analysis is another example of a clustering algorithm of long standing [114]
recently applied to image and video segmentation. The technique is based on a local, kernel-
based estimate of the density gradient around each sample. For each sample a track can be found
from the sample to a local density maximum in the feature space. All the samples drawn to the
same local maximum are classified as belonging to the same cluster. The essential parameter of
the method is the bandwidth of the kernel used for density estimation.

The work of Comaniciu et al.brought this technique to prominence [67,87], demonstrating

applications to tracking [86,88] and image segmentation [84,85]. A mean-shift method for video
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volume segmentation was described by DeMenthon [79] in which multiple passes using increasing
kernel bandwidths are used; this improves computational efficiency, and also has sympathies with
the object-grouping behaviour of human vision [197]. Wang et al.describe video segmentation
using mean shift with an anisotropic kernel [318]. The kernel shape adapts to the covariance
matrix of samples in each neighbourhood. This approach has generated convincing results in

the generation of cartoon-like images from video [319].

2.5.4 Other approaches

The methods described above encompass the main techniques in use for two-dimensional video
segmentation. Some authors have proposed three-dimensional segmentation in which the video
is decomposed into layers and the depth of each pixel in each layer is also estimated; the paper
by Steinbach et al. [285] is representative. It is also noted that the advent of the MPEG-4 video
coding standard [225], with its emphasis on video object planes (VOPs, effectively video layers in
the Wang-Adelson sense), led to considerable research into video segmentation and video sprite
extraction [61,218,297]. Most of this work can be described in terms of the Bayesian framework

outlined above.

2.6 Multiresolution Schemes

It is briefly noted here that most image processing tasks can be applied using a multi-resolution
approach, in which the image is decomposed into a pyramid using successive low-pass filtering
and subsampling. Analysis of the smallest image in the pyramid (at the lowest resolution) is
computationally cheap and can be used to provide a good initial estimate for the image at the
next resolution level.

The first such representation was the Laplacian image pyramid described by Burt and Adel-
son [47], used for image coding. Image pyramid schemes are used in most global and local motion
estimation estimation algorithms, with early use described in block matching [28], phase corre-
lation [99], and pel-recursive [98] techniques. A number of multi-resolution image segmentation

approaches have also been described [251,322].
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One of the fundamental types of discontinuity in video is the shot change, connecting footage
from two different recordings. Detection of these shot change events is a key first step in any
video retrieval or analysis system of significant scale, and has been an active area of work for
over fifteen years. In this chapter, an problem overview and review of the literature is presented.
Because of the vast quantity of work done in this area, a fully comprehensive review is outside
the scope of this work. For further background, the reader is directed to the review papers
by Costaces [69], Koprinska and Carrato [185], Lienhart [202], Boreczky [37,38], and Ahanger
and Little [5]. The review paper by Lefevre et al. [195] focuses on real-time techniques in the

uncompressed domain.

3.1 Transitions in Video

The earliest films were made using a camera fixed in orientation and position, and consisted of
very short depictions of particular scenes. The technology of cinema developed rapidly, and the
narrative power of cinema was greatly increased by the advent of increased film stock lengths,
film editing techniques, and mobile cameras. At this stage, a film could be constructed by
concatenating individual shots. The shot is the fundamental film component, consisting of a
single contiguously recorded video sequence [75]. Within a shot, scene transitions such as a
movement from indoors to outdoors can be introduced by changes in camera position. Thus
film and video footage can contain both inter-shot transitions (or simply shot transitions) and

intra-shot transitions. Figure 3.1 shows a selection of shots from the 1999 film ‘La Fille sur Le

29
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Pont’ [190]. The shots are connected by cut transitions. Each row shows the first, middle, and
last frame of the shot.

Shot change detection, also called shot boundary detection and temporal video segmenta-
tion, has been an active area of video processing research since at least as early as 1990 [228],
and continues to attract attention in the present day [69]. It is a key prerequisite for auto-
mated and semi-automated video processing systems of any scale. In many video indexing and
content-based retrieval systems, the shot is the retrieval unit. Automatic video summarization
is generally shot-oriented, where representative frames from each shot are chosen to represent
the entire video. Spatiotemporal video processing algorithms, such as motion estimation, rely on
assumptions of temporal smoothness in video; shot boundary detection is required here because
shot boundaries violate these assumptions. In computer assisted video processing, having the
source material automatically decomposed into shots facilitates more rapid setting of parameters
than having the operator select ranges of frames.

As well as enabling the processing of individual shots as units, shot transitions in themselves
have considerable significance in film semantics. Rules informing the selection and juxtaposition
of shots constitute a significant portion of film grammar. Experiments by Kuleshov in 1918
showed how editing could dramatically affect an audience’s interpretation of film footage. The
montage theory developed by Sergei Eisenstein in the 1920s built on this phenomenon to describe
how artful editing techniques constitute in themselves an important part of the narrative and
affective content of a film [68]. Vasconcelos and Lippman [313] have shown that shot length is
correlated with genre.

The large majority of shot change detection algorithms target inter-shot transitions. The
detection of other, intra-shot transitions is considered a false alarm in this context. On the face
of it, this approach seems appropriate—however, there are two pertinent concerns. Firstly, shot
change detection in this strict sense is not always a well-posed problem, for reasons discussed
below. Secondly, in most applications of shot change detection, including those mentioned above,
significant intra-shot transitions are as important as inter-shot transitions [135].

Shot transitions are introduced at the editing stage, and fall into two principal types. Cuts
are transitions where two successive frames are from different shots. The abrupt nature of these
transitions makes them relatively easy to detect in most cases. Gradual transitions are slower,
involving a temporal region of overlap between two sources. There are various types, including
fade in and fade out transitions, where the shot is faded in from, or out to, a black background;
dissolves, where the overlapping regions of two shots are linearly blended; and wipes and page
turns, in which one shot appears move out of the frame to reveal or be replaced by the succeeding
shots, and morphs. These transition types have been categorised by Hampapur [133] into spatial
effects, including wipes and page turns, chromatic effects, being mostly fades and dissolves, and
spatio-chromatic effects, such as morphing. Of these gradual transition types, most work has
been directed towards the detection of fades and dissolves, with some researchers also targeting

wipe transitions.
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Figure 3.1: The first, middle, and last frames of six shots from the film ‘La Fille Sur Le
Pont’ [190].
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3.2 Shot Change Detection Systems

Shot change detection is predicated on the assumption that there will be a change in the image
content across the shot boundary. Therefore, all shot change detection systems rely on the
extraction of some features from the video stream to characterise the individual frames. Com-
paring the features of two frames then provides a measure of how similar they are. Adjacent
frames that are highly dissimilar are likely to belong to different shots. This process is illustrated
in overview in figure 3.2.

A wide variety of features for characterising frame content have been proposed in the shot
boundary detection literature, and for many kinds of features numerous similarity metrics have
been proposed. In figure 3.2, intensity histograms and points with high local gradient are pre-
sented as illustrative features. Whatever the features and feature comparison method selected,
they are used to generate dissimilarity traces, describing frame-to-frame similarity over the tem-
poral extent of the film. High dissimilarity values generally indicate that some transition has
occurred between two frames. The final stage of the process is then to classify this transition as
an inter-shot / editing transition, such as a cut or a fade, or an intra-shot transition resulting
from a change in camera position. Subsequent sections of this chapter present a comprehensive
review of the features and feature comparison methods used in shot change detection systems,
and of the techniques used to detect and classify boundaries in the dissimilarity traces. These
follow the section below, describing why automatic shot change detection is a challenging un-

dertaking.

3.3 Factors Complicating Shot Change Detection

Since the earliest shot change detection research, most papers in the area have reported very
good detection performance, particularly for cut detection. However, it must be borne in mind
that in a practical sense, the shot change detection task is getting more difficult as the limitations
on digital video storage capacity expand. For example, the cut detection method proposed by
Arman in 1993 [12] was tested on about 6 minutes of broadcast news footage, whereas in the
current TRECVID shot boundary detection task, 7.5 hours of video material is provided [275].
This vast increase in the size of the typical digital video corpus results in a much wider range
of video characteristics. The shortcomings of early, simpler shot change detection systems are
revealed in evaluation against these larger corpora, and continuing research in shot change
detection is driven by the challenge of maintaining high performance over an ever-widening

range of digital video material.

3.3.1 Similarity characteristics

Of the various characteristics of video that make shot change detection difficult, high intra-shot

activity is the most commonly mentioned. Fast camera or object motion, and rapid changes
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of illumination (as with camera flashes), can introduce high frame-to-frame dissimilarity, and
thereby a high false alarm rate.

The complementary issue is that of sequences with low inter-shot variation, for example
where successive shots have similar intensity distributions [210]. In sports footage, successive
shots can have very similar chrominance characteristics [1,56], for example where they show the

playing field from only slightly different angles.

3.3.2 Film degradation

It is generally more difficult to detect shot transitions in video or film footage exhibiting defects
or degradations, and various authors have presented shot change detection algorithms designed
with this consideration in mind. Flicker is a rapid temporal variation in the mean brightness of
a sequence [254]; several systems for shot change detection in the presence of flicker have been
presented [10,131]. Systems designed to be robust in the face of camera flashlight activity [144]
may also be expected to cope with flicker. Impulsive defects, such as dropout and dirt, can
trigger false cut detections, especially where adaptive thresholds are in use. A histogram-based
system using sub-frame blocks designed to be resilient to large blotch defects is described in [180].
Machi and Tripiciano suggest a semi-automatic shot cut detection system suitable for use with

heavily degraded footage [211].

3.3.3 Shot dynamics

The dynamics of shot changes in a particular sequence can introduce difficulties. The simplest
example of this is where shot changes occur in rapid succession, possibly violating a priori
assumptions regarding shot length. This causes particular difficulty when the shots in question
display high levels of motion activity—which is the kind of sequence in which rapid shot changes
is stylisticaly appropriate. The shot in the second row from the bottom in figure 3.1, for example,

is only 11 frames long, and the cut connects two shots with high activity.

3.3.4 Editing style

The great majority of mainstream and Hollywood movies are edited in a particular style known
as continuity editing. The aim of this style is to make the work of the film editor as unobtrusive
as possible, so that the audience’s attention is focused on the narrative. One of the conventions
of continuity editing is the 30° rule [139], which states that a shot change should involve a shift
in camera angle of at least 30°. Any smaller change of angle between shots (potentially including
0°, where the camera is stopped and started with no change in orientation) tends to be perceived
as a glitch in the film, rather than a shot change.

The 30° rule facilitates shot change detection in that the new camera angle will generally
introduce a substantial change in the video background and composition. However, it is a

convention commonly flouted in less mainstream material, where jump cuts [139] are often used.
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The technique was introduced in the 1960 film ‘A Bout de Souffle’ [120] and has been a hallmark
of nouvelle vague cinema since. Jump cuts are also commonly used in music videos. Figure 3.3
shows some examples of jump cuts from ‘A Bout de Souffle’; and figure 3.4 shows some from a
2004 music video [198]. Shot change detection in these cases is substantially more difficult than
in more conventionally edited sequences, because of the high similarity of frames on either side
of the shot change boundary. Furthermore, it is not always clear whether these small jump cuts
should be considered shot changes at all.

Some researchers have found that an observer-generated ground truth for cut transitions
exhibits variation between observers and inconsistency within repeated evaluations by a single

observer [116,117,166]. In other words, cut detection is in some degree a subjective measurement.

3.3.5 Non-Sequential Shot Structure

The assumption is generally made that video and film material consists of a sequence of shots,
each from a single camera, possibly having small areas of overlap at gradual transitions. Mod-
ern video compositing techniques violate that assumption. For example, a broadcaster’s logo, as
commonly displayed in an upper corner of the screen, will persist unaffected over cuts and dis-
solves, which can have implications for model-based approaches. In news footage, it is common
for a subtitle panel to be superimposed over the start of a segment, introducing the presenter
and location of the shot. This panel may persist over an early shot change in the segment, and
will usually abruptly disappear or fade out after a few seconds later. In some highly stylised
music video footage, shots are effectively not sequential at all, but rather overlapping and com-
posited by various techniques over the entire sequence. In all these cases, what is at work is the
superimposition of multiple sources, each of which can contain shot transitions or other discon-
tinuities. Two examples of this sort of effect are shown in the top two cuts of figure 3.4. In both
examples, footage of a face is composited over a background source, and a jump cut is introduced
in the face source while the background source remains continuous. These considerations are

not addressed by current work in shot change detection.

3.4 Features for Shot Change Detection

The first stage in shot transition detection is the choice of features to represent an image, along
with a measure to describe frame dissimilarity based on these features. As outlined above,
the design criteria for these features is that as far as possible, they should be insensitive to
camera motion, object motion, and changes in illumination. This section describes the commonly
employed features for shot change detection. For further review material specifically addressing
features for frame similarity, see the discussions presented by Otsuji et al. [246], Ford et al. [112]
and Bescos et al. [22].
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Figure 3.3: Two jump cuts from the film ‘A Bout de Souffle’ [120]. Each row of images shows

four consecutive frames. The cut occurs after two frames in each case.

Figure 3.4: Three jump cuts from the music video ‘Mutescreamer’ [198]. Each row of images

shows four consecutive frames. The cut occurs after two frames in each case.
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3.4.1 Direct Image Comparison

The simplest approach to measuring frame similarity is simply to compare pixel values at cor-
responding sites in a pair of frames. In its most basic form, this approach suggests the mean

absolute difference measure:

S S a(ry¢) = Lu(r,e)|
RC

Dyrap(n,n') = (3.1)

where n and n' are the frames being compared, and I,,(r,c) is the intensity value at site (r,c)
of frame n in a video with dimensions R x C. Use of Djr4p extends back at least to 1992 [170,
229,349].

The Djsap measure is sensitive to all intra-shot activity, including local and camera motion,
noise, and illumination changes. Local motion, in particular, can result in a small fraction of
pixels having a very high absolute intensity difference. Using Djsap, this is indistinguishable
from a shot change resulting in a greater number of pixels having a moderate intensity difference.
A slightly more complex distance measure disambiguates these situations. Instead of taking
the mean absolute difference, the fraction of pixel sites that change value by more than some

threshold T is used. The resulting measure is

_ Hre) s n(r,¢) = Im(r, ¢)| > T}

D
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(3.2)

where the subscript C'F stands for ‘change fraction’. Use of Do p actually precedes use of Dysap,
having been first presented for cut detection in 1991 by Otsuji et al. [174].

Most shot changes can still be perceived in video after considerable downsampling—and
downsampling, or smoothing, reduces the effects of image noise and motion. The more the
image is downsampled, the greater the attenuation of these effects. Thus downsampling the
image sequence prior to applying shot change detection can be helpful, particularly when using
direct image comparison measures.

Among the researchers to recognise this, Zhang et al.are among the earliest. They employed
a 3 x 3 averaging filter prior to pixel differencing in their 1993 paper [349]. Ardizzone et al.used
downsampling to an image size of 16 x 16 before applying pixel differencing [11]. This extensive
data reduction was motivated by the desire to facilitate real-time processing of the difference
image by a neural network, but the authors recognise that resilience to motion is introduced by
the downsampling. Good cut detection performance is reported, indicating that even 16 x 16 is
not too small for cut detection.

Any direct image comparison metric will be sensitive to camera motion, as this can introduce
changes in intensity values at a large fraction of pixel sites over the entire extent of the image.
Global motion compensation can be used to reduce this effect. One of the more sophisticated
implementations of this refinement was presented by Bouthemy in 1996 [42,43]. Here affine
camera motion parameters are estimated using an iterative robust estimation technique (outlined

in chapter 2); the number of pixels in the support region (i.e. those pixels obeying the affine
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model) is then used as the similarity measure. As the support region is updated according to
the pixelwise error after each iteration, this scheme is essentially an application of Dop with
global motion compensation.

The measures Dysap and Dop described above consider the pixel differences in aggregate,
i.e. summed or counted over the entire frame. A more sophisticated approach to direct image
comparison is to use the distribution of pixel value changes from one frame to the next. The
work by Aigrain and Joly [6] is an early example in this category. The distribution of absolute
intensity differences, pixel-to-pixel, is analysed with reference to models describing the expected
difference values for noise, motion (both local and global), and shot transitions. The number of
pixels in the difference histogram falling inside ranges determined by the models is counted, and
this count determines whether a shot transition is declared or not. Up to 100% performance on
cut detection is reported, and 80% for gradual transition detection.

The two-dimensional histogram H,, ,,/(7,4"), describing the number of pixels sites which
change from value i to value i’ between frames n and n’, can also be used for shot change
detection. For similar images, most of the mass of the histogram will lie along the main diago-
nal of H, as most pixel sites will not change in value.

One of the earliest applications of this two-dimensional histogram approach, introduced by
Li and Wei in 2000 [200], exploited this fact directly. Here the histogram is called the Joint
Probability Image (JPI). A scene change is declared if the fraction of histogram mass more than
five pixels away from the diagonal exceeds a fixed threshold. This measure is in fact equivalent to
thresholding Do, and so this paper does not offer an advance in transition detection. However,
the paper does describe how the JPI can be used for transition classification. This contribution
is summarised in the section on transition classification below.

Applying information theoretic measures to the change histogram does improve on the sub-

traction based methods, however. One such measure is the mutual information between frames,

defined as
Hyy (z,y) >

o)y (9) (3:3)

Dy (t,t') = — ZHt,t’ (z,y)log <
T,y
Here Hy(x) is the fraction of pixel sites having the value x in frame ¢.

The first use of Dy for shot change detection was by Butz and Thiran in 2001 [48]. The
mutual information is found using frame intensity values, and camera motion is compensated
for using an affine model.

D1 has also been deployed by Cernekova et al.in 2002 [55,56]. Here the similarity metric
is the sum of the mutual information over the R, G, and B image channels. An additional
information-theoretic measure, the joint entropy, is also employed. For a single channel, the

joint entropy is defined by

DJE(tat,) = - Zpt,t’ (33,31) logpt,t’(33>y) (3-4)

x7y

DjE is summed over the R, G, and B channels to obtain an additional dissimilarity measure.
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Figure 3.5: Joint probability images [200] within a shot and across a shot boundary

Dy suffices to detect cut transitions, while D ;g is used to detect fades. Good resilience against
the effects of camera flashes is demonstrated. However, this method is only applicable to fade
in and fade out transitions, and not to dissolves between shots. Global motion compensation is

not employed.

3.4.2 Statistical Image Comparison

The measures considered above are all based on quantifying the change in image value at corre-
sponding locations. Motion in the video sequence will inevitably be registered by these measures.
For the purposes of shot change detection, a difference metric insensitive to the effects of motion
is preferable.

In most cases, motion in an image sequence results in a displacement or re-arrangement of
the pixel values. The distribution of pixel values over the entire frame is largely unaffected
by motion. This consideration motivates statistical image comparison, using on features that
encapsulate the distribution of pixel values in a location-invariant way.

The fundamental feature for statistical image comparison is the pixel value histogram, Hy(j),

which describes the number of pixels having value j at time ¢. This is the earliest and most
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widely-employed feature for shot change detection, first exploited in 1990 [228].

A great variety of histogram based frame comparison systems have been proposed; the
variations include the resolution (bin width) of the histogram, the colour space used, and the
method used to calculate the difference between two histograms.

Varying the bin width of the histogram is generally motivated by computational concerns
and to avoid the ’curse of dimensionality’, especially in three-dimensional colour histogramming.
Using eight bits of resolution for each of three channels, for example, results in a 16 million bin
histogram. Much coarser colour histograms have been shown to have good performance for
shot change detection. For example, Zhang et al.use a histogram over R, G, B values where
each colour level is quantised to two bits, resulting in a 64-bin histogram [349]. Outside of
computational concerns, the question of whether there is an optimal bin width for shot change
detection has not been considered.

Many shot change detection algorithms operate using intensity information alone. Shot
transitions are readily perceptible to human observers in monochrome video footage, so there
is sufficient information in the intensity channel for detection. Furthermore, algorithms using
only intensity information are equally applicable to colour and monochrome material. However
there are advantages to incorporating colour information in a shot change detection algorithm.
For example, camera flashes introduce a change in the intensity histograms of video frames, but
will not affect the chrominance information. This suggests the use of a colourspace in which
luminance and chrominance are independent, such as YUV, HSV, or XYZ.

One difficulty in incorporating colour information in shot change detection is that chromi-
nance information is indeterminate where luminance levels are low. Lee and Ip presented a
system in 1994 operating in the HSV colourspace addressing this difficulty. Here each pixel
value is recorded in either the hue histogram or the intensity histogram, depending on whether
the saturation and brightness values both exceed fixed thresholds, or not. Frame comparison is
based on the difference of both the intensity and hue histograms.

Numerous measures for histogram comparison have been proposed for shot change detec-
tion, and much of the work in histogram-based shot change detection focuses on selection and
evaluation of this measure. The simplest histogram distance is the bin-to-bin difference, defined
by

Dras(t, ) = 5o S IH) = Huli) (35
J

where j is an intensity level, typically varying from 0-255, and Hy(j) is the number of pixels in
frame ¢ taking the value j. This measure is analogous to the Dj;41p measure for direct image
comparison. The system presented by Tonomura in 1991 [303] used Dpap.

A second commonly employed histogram comparison is the x? test

! 1 IT[t._‘Ht’.2
Dﬁ@J):(RCVE:’ Ugﬂﬁ(”‘ (3.6)
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also called the colour correlation. The x? test applied to image intensity histograms is the
earliest employed frame similarity measure for shot detection, used by Nagasaka in 1990 [228] and
numerous systems since then [155,229,308]. Squaring the difference value essentially introduces
a higher weight on large difference values, and so is supposed to enhance the dissimilarity across
a shot boundary. However, as histogram differences due to motion are also squared, performance
is not necessarily improved [349].

The histogram intersection [292] has also been proposed. In its basic form, it is defined by

A modified version was evaluated for shot change detection by Kasturi et al. [166], defined by

L min(Hy(j), Hy (7))
D=1 2]: max(Hy(j), Hy (j)) o

A comprehensive review and evaluation of histogram-based cut detection was presented by
Kasturi et al.in 1996 [166]. This work encompassed eight colour spaces (RGB; HSV; YIQ; XYZ;
L*a*b*; L*u*v*; Munsell; opponent colour axes) and four histogram comparison methods (bin-
to-bin; histogram intersection; average colour difference, bin differencing with a neighbourhood,
x?). No single histogram distance emerges as the clear winner in this evaluation.

The Kolmogorov-Smirnov measure, D g, is the maximum bin difference between cumulative
histograms:

Dgs(t,t') = mjaX(CHt(j) — CHy(j)| (3.9)

This measure was first proposed for shot detection by Patel and Sethi [248]. It was shown to

outperform Dpsp and D, 2; the improved performance is attributed to the smoothing inherent

X%
in the use of cumulative histograms.

In 2000, Ford et al.published a comprehensive evaluation of the histogram difference measures
proposed up to then for shot change detection [112], including those described above and some
others. This paper establishes that the D g measure has the best performance, in terms of the
ROC area, for global intensity histograms—though D, 2 is better for colour histograms. Tan et
al.in 2003 [296] proposed an improved Kolmogorov-Smirnov measure, Dy g. Their suggestion
is that the global smoothing of the cumulative histogram be combined with the sensitivity of

bin-to-bin comparison. The new measure is denoted Dy g/, where

Drcs(t,t'k
Drs(t,t) = % (3.10)
k

This is the sum of the Kolmogorov-Smirnov distances over sections k of the intensity range. The

distance over each section is found using

Dis(tt' k) = m?X(ICHt(j; k) — CHy (55 k)]) (3.11)
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and the cumulative histogram value for intensity level j in section k of the range is given by

EM+j—1
CHy(jik)= ) Hy(m) (3.12)
m=kM
where M is the section size.
More recently proposed histogram distance measures include the Kullback-Leibler histogram

distance

Distpna) = [ pta)tog B53de = [(1 = p(o))tog ;=2 (3.13)

and the cross-entropy measure

Dcg(p,q A/ ) log f: dw+B/ (z)log E ;dx (3.14)

Both of these measures have been described and evaluated by Kim and Park [173]. Both mea-
sures are shown to outperform the histogram difference and histogram intersection measures, in
particular on material with luminance changes.

Shih et al. [52] model the change in frame histograms as a flow and deploy the Reynolds
Transport Theorem [257] to detect significant changes in this flow, and thereby detect shot
changes. This approach is appealingly well-founded, and suited to detection of all kinds of shot
transitions. However, the authors do not show results on videos containing significant motion,
and suggest that the method would be less effective on such sequences.

The Earth Mover’s Distance (EMD) [264,265] is a histogram difference metric well-suited to
image histograms and widely used in image retrieval. It appears not to be extensively used in
shot change detection [262]. A description of this distance appears in chapter 7 of this thesis.

The great majority of of histogram-based shot change detection methods use pixel values.
In other words, frames are characterised by the distribution of intensity or colour levels they
contain. An interesting variation on the histogram approach developed by Sze et al. [294]
attempts to calculate the distribution over structural elements. Each frame is divided into small
blocks, and for each block the coloured pattern appearance model (CPAM) is found. The CPAM
is a representation of the structure and colour in a block, informed by the perceptual qualities
of the human visual system. Vector quantisation is used to reduce each block to one of 256
codewords, and frame similarity is computed based on histograms of the codewords in each

frame.

3.4.3 Block Based Similarity

A shot change generally introduces change across the entire spatial extent of the frame. This
suggests that global features will be sufficient for shot change detection. However, strong lo-
calised changes due to rapid motion, pathological activity such as explosions, or large frame
defects, can introduce large changes in global features and result in false alarms. Furthermore,

calculation and comparison of features over the entire frame extent can be relatively expensive
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in computation effort. For both of these reasons, block-based systems have been introduced, in
which the frame extent is divided into blocks, or windows, which may be overlapping or non-
overlapping. Comparison between multiple block pairs is then used as the frame dissimilarity
measure. Comparing the entire image block-by-block improves resilience to localised effects.
Alternatively, comparing only some subset of blocks introduces a computational saving.

Any block based scheme will be based on a difference measure between image regions. All the
direct and statistical image comparison methods described above can be applied to sub-blocks
for this purpose. Pixel differencing over individual blocks has been proposed by Zhang [349]
and Yusoff [342]. Systems using block-based histogram comparison have been developed by
Nagasaka and Tanaka [228,229], Ueda et al. [308], Swanberg [293], and Kokaram et al. [180).

A very simple approach to block comparison is to use block intensity statistics [132, 165].

Here, the block comparison measure is defined by

[(
Dig =

(3.15)

where f and (oF)? are the mean and variance of the gray values within block k of frame ¢. This
can be considered as a slightly more sophisticated approach to extreme downsampling, in that
the inclusion of the block variance gives a crude measure of how representative the block mean
is of the actual block content. The individual block differences can be summed to give a frame
difference, or the number of block differences exceeding a threshold can be used.

Normalised correlation in the frequency domain can also be used for block similarity [256,
315]. This provides some resilience to changes of illumination, and it is also noted that high
performance Fourier transform implementations are available for most platforms.

Various refinements to block-based shot change detection systems can be considered, irre-
spective of the block difference measure used. For example, in early schemes blocks are compared
in spatially corresponding pairs. The effects of motion can be mitigated by comparing each block
in frame n with the most similar block in some neighborhood in frame n + 1. This was first pro-
posed by Shahraray [271], and has been used in numerous systems since then [135,256,335,342].
The result is a discontinuity measure essentially the same as the displaced frame difference
(DFD)

rp+M—1y+M-—1
Dprp(t,t' k) = _M<uU<MM2 D (L@ +uy+v) —Tu(z+u,y+ov)) (3.16)

T=T) Y=Y
where block number £ has its top left corner at image coordinates x;, y;.

Establishing these block correspondences in the best-match sense is closely related to optic
flow estimation, which has itself been used for shot change detection. Within a shot, adjacent
blocks are likely to move together, while across a shot boundary the blocks will be matched some-

what randomly and the coherence of the flow field will be lost. Thus the flow field smoothness
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can be used as a frame similarity measure. Systems exploiting this include the work of Akutsui
in 1992 [7] using block matching, and the more recent approach of Cheong and Huo [59, 60],
exploiting the optic flow constraint.

Park et al. [247] have pointed out that the the blur introduced by fast motion can introduce
a high blockwise difference within a correctly matched pair of blocks. They propose inversely
weighting Dprp by the Euclidean distance between matched blocks to account for this.

As a scene change will affect the entire spatial extent of an image, it may be sufficient to
compare a portion of the blocks to determine whether a scene change has occurred. The work
of Xiong et al. [329,330] uses comparison of block mean value in less than half of the block
windows to detect transitions; this approach is called net comparison. Adjeroh et al. [4] present
a formalised approach for determining the appropriate block size, given a tolerable probability
p of a false match between frames. The calculations are an extension of work on probabilistic
histogram matching [193]. The minimum proportion of the image to match to attain the desired
probability of error, finin, is given by:

log(p)
()

where € is a small constant (e.g. 0.001) relating to the amount of noise in the image sequence.

The optimal window size, W, which minimizes the number of comparisons necessary, is found

by
W, = [N <1 _exp <% In <ﬁ)>)] (3.18)

and the dimensions of this optimal window size, R, x C,, for an image with dimensions R x C,

1 1
W,R\ 2 W,C\ 2
o = ;Lo = q
R < . > c < o > (3.19)

The block grid will contain N, = N/W, windows. Of these, the number that should be compared

to attain a probability of false match, p, is the smallest integer N, satisfying.

are then

Nmin 2 Nofmin (320)

For example, for an image sequence with dimensions 720 x 576, the optimal window size
according to 3.18 is about 16 x 12. With the p and e parameters set to 0.0001 and 0.0001
respectively, the f,.;, parameter is found to be 0.155, and so 335 of the 2160 blocks should be
compared to assure a match. The authors note that for some combinations of N, p, and ¢, the
formulae result in f,,;,, > 1. This suggests that the specified probability of a false match cannot
be attained given the noise characteristics of the image sequence. In the absence of further
elaboration of the quantitative relationship of the e parameter to the noise characteristics, it is
difficult to make a definitive interpretation.

Two aspects of these calculations are not addressed in [4]. The authors do not investigate

how the chosen fraction of windows should be distributed about the block grid, although they
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do identify this as a topic for investigation. Of greater concern is the fact that the derivations
of the formulae do not seem to have been published.

Whether all blocks are being compared, or only a subset, it is likely to be the case that the
largest block differences between two frames in the same shot will be due to localised effects such
as motion. Thus discarding the largest block differences reduces the effects of large localised
motion and image defects [68,180,256]. The earliest shot detection system recognised this fact,
in which colour histograms are compared for 16 blocks spanning the frame, and the sum of
the 8 smallest block difference measures used as the frame similarity measure [228]. In 1995,
Shahraray [271] introduced a non-linear order statistics filter to combine block match values.
Here the weight assigned to a block match value depends on its rank in an ordered list of match

values, such that poorer matches are assigned lower weights.

3.4.4 Structural feature similarity

The similarity measures described above are essentially ‘blind’, or content-unaware, in that no
analysis of the video content is made to inform how frames can be compared most effectively
for shot change detection. The approaches considered here are feature-based, in that the most
informative or important regions of the video frames are detected, and shot change detection is
based on analysis of these regions in particular. Because successive frames within a shot depict
very similar scenes, the location of most of these local features should not change significantly
between two successive frames in the same shot. The similarity measure is thus based on the
extent to which features can be tracked from one frame to the next.

One of the earliest works in this vein is the edge-based system published by Zabih et
al. [344,345]. They define the edge change fraction as their similarity measure, based on thresh-
olding the distance from an edge pixel in one image to the closest edge pixel in an adjacent image.
A translational global motion compensation step is included to account for camera movement—
interestingly, the authors reject the use of MPEG compression vectors for camera motion ex-
traction. Their algorithm generates smoother dissimilarity traces than both intensity histogram
difference and the chromatic scaling method of Hampapur [133]. However Lienhart states that
overall, histogram techniques can be just as effective as this edge tracking method [202].

Finer-grained feature tracking has also been proposed for shot change detection. Whitehead
et al. [324] have presented a system using corner tracking in the intensity channel, with a
translational motion gradient-based feature tracking algorithm. The scheme is applied using a
multi-resolution image pyramid, for robustness to large motion. Because of the lack of spatial
context implied by the small scale of the features used, features may occasionally be erroneously
tracked across a shot cut boundary. However, because features are generally tracked in clusters
corresponding to objects in the scene, the erroneous matches can be removed by analysis of
the minimum spanning trees of the tracked and untracked features. The algorithm is shown

to outperform histogram based and pixel-differencing approaches on a variety of genres with
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challenging cut dynamics.

An interesting variation on feature tracking for shot change detection has recently been
presented by Boccignone et al. [34,35]. This method is grounded in properties of attention in
the human visual system. In particular, the fovea, the high-acuity area of the retina, is so small
that only a small proportion of a scene can be taken in in a glance. To compensate for this,
the eyes saccade (move rapidly) over a scene, taking in localised windows at each movement.
This gives the illusion of perception of the entire scene, but in fact changes to visual detail
across scene cuts, and continuity errors, are rarely noticed by an observer due to this property
of foveated attention. An idealised model of a human observer is used to detect features and
rank them in order of saliency. This results in a spatio-temporal visuomotor trace, essentially
an idealisation of the foveation points of an idealised observer when presented with the scene.
The colour, shape, and texture characteristics of each foveation point are extracted. The frame
similarity measure is then based on comparison of the visuomotor traces for each frame, using
the characteristics of corresponding foveation points.

Some researchers perform object segmentation of frames in the video, and compare the results
of this segmentation between frames as their similarity measure. The work of Hsu [150, 151]
presented in 1994 uses implicit segmentation to extract video elements in the 3-D video volume.
Motion discontinuities can be detected by consideration of the sign of the Gaussian and mean
curvature of these volumes, or spatiotemporal surfaces. Heng and Ngan use edge tracing and
tracking over multiple frames to delineate object boundaries [142, 143], incorporating colour
information from each side of the edge as an additional feature. The approach is shown to
have smoother behaviour than the edge change factor presented by Zabih [344] over gradual
transitions. More recently, Vadivel [310] uses segmentation of the I-frames of MPEG-compressed
video in the HSV colour space, and compares the locations, sizes, and colours of the resulting

objects to detect a transition.

3.4.5 Shot Modelling and Feature Clustering

The systems described above are all based on comparison between two frames. No wider context
is incorporated in direct or statistical image comparison. A different approach to shot change
detection is to perform feature extraction for the entire sequence first, and then to consider the
features for all frames simultaneously for shot change detection.

These approaches can be thought of as constructing a spatio-temporal image, or sequence
matrix, summarising the video sequence. Shot transitions are then supposed to be readily
identifiable within this image. An early example of this approach is due to Han, presented in
1999 [134]. Here each frame is represented by its horizontal and vertical projections. Figure 3.6
(a) shows a spatiotemporal image made up of the horizontal projections of some news footage.
In [134], PCA is applied to these matrices and the largest principal component is disregarded

to reduce the effect of luminance changes.
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(a) Horizontal projection image (b) Visual rhythm image

Figure 3.6: Two varieties of spatio-temporal image for 640 frames of news footage; the columns
of the spatio-temporal images correspond to the frames of the video. The shot transitions in the
video are clearly visible in these images. It also clear in these images how compositing effects
can break the strict sequential shot model. The rectangular feature in the lower middle of both
images and the unbroken white line near the top of (b) correspond to composited image elements

that persist over shot transitions in the underlying video.

The wvisual rhythm, presented by Chung in 2000 [66], constructs a similar spatio-temporal
image made up of pixels sampled uniformly along the main diagonal of each frame. An example
of a visual rhythm image is shown in figure 3.6 (b). Transitions such as cuts, wipes, and
dissolves can then be identified by analysis of the image. The visual rhythm is also employed
by Guimaraes [127-129].

The approaches above use spatial domain features to construct the spatio-temporal im-
age. The sequence matrix can also be constructed using frame histograms. Guimaraes in 2002
presented an approach where the sequence matrix is described as the ‘visual rhythm by his-
togram’ [126]. Here fades are detected by direct analysis of this image.

Recent work by Lu and Tan [207,208] uses image histograms in HSV space computed over the
entire sequence. Their system is presented for the refinement of an existing temporal segmen-
tation, but could equally be used for ab initio shot change detection with an inital assumption
that the entire sequence is a single shot. The colour histogram for each shot is simply the
bin-wise median of the histograms of the frames within the shot. The model for each shot is
the shot histogram along with a truncated exponential describing the distribution of histogram
differences within the shot. The likelihood of a frame histogram X; being generated by shot k

1S

Ok exp(—ag| Xy — Sk|), if0<|Xp—Sg <1

_ (3.21)
0, otherwise

Pre(X) = {

The parameter oy relates to the visual activity in the shot and can be determined from the
data. (i is a normalising constant which can be determined analytically.

Given an M-frame sequence divided into two shots S7 and S, the log-likelihood ratio for
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shot membership of a frame at ¢ with histogram X is

o M (Xn) _ M B2 eXP(—az|Xi—Sa])
J(t) = Yt i (Xe) = Xon=t B X[ Xi—Si)
= YL (—aa| Xy — So| + 1| Xy, — 81| + (M — t + 1) log(5) (3.22)

New shot detections are detected by splitting each initial shot .S into two proposed shots of equal
length 57 and SS9, and evaluating the log-likelihood ratio of the shot membership hypotheses for
each frame in S. This partitioning introduces discontinuities in the slope of the log-likelihood
ratio at shot boundaries. The procedure is recursively applied until no further shot boundaries
are found. The log-likelihood test can also be used to detect false shot boundaries in the initial
temporal segmentation.

Sequence matrices made up of image histograms, especially colour histograms, can be very
large, and suggest dimensionality reduction for shot change detection. For example, in the work
by Gong and Liu [121], each column of the sequence matrix is the 1125-dimensional vector
comprising the 125-bin 3D RGB histogram of each of nine blocks covering the spatial extent
of the frame. The singular value decomposition (SVD) of the matrix is found, and the 150
largest singular values retained. The frame difference measure is then the weighted Euclidean
distance between their feature vectors in this reduced-dimensionality space. Cernekova et al.have
presented a similar approach, also employing SVD on the sequence matrix and using a cosine
similarity measure [53, 54].

The approaches described above are off-line, in that shot changes are detected using data
from the entire sequence, after an initial feature extraction pass. On-line sequence modelling
can also be used. Liu and Chen [204] use PCA to analyse the temporal statistics of frame
features. The model is recursively updated with temporal decay. The similarity measure is then
the reconstruction error after projection of the feature vector into the eigenspace found by the

model.

3.4.6 Frame Similarity in the Compressed Domain

A vast quantity of digital video material is stored and transmitted in compressed form. Most
of this material is compressed using MPEG compression; DVD video and digital television use
MPEG-2, while MPEG-4 is very popular for internet video. There has been considerable re-
search into video processing in the compressed domain, i.e. into systems that can process stored
digital video without fully decompressing it. The chief advantage of this is that the computa-
tional overhead of fully decompressing the video can be avoided. Furthermore, in some cases
the information in the compressed data can be exploited, taking advantage of the computa-
tional effort already expended in compressing the material. For example, video compression
schemes generally incorporate motion estimation, and for some purposes the motion vectors in
the compressed data can be used instead of decompressing the material and applying optic flow

analysis.



3.4. Features for Shot Change Detection 49

Numerous systems for shot change detection in the compressed domain have been pre-
sented [21,25,51,107,108,145]. Wang et al.have recently presented a clear review of features in
MPEG-compressed data for indexing and analysis [316]. Systems for shot change detection in
the compressed domain can be categorised in two classes. Image-based approaches use methods
similar to those described above for uncompressed data, adapted and applied to compressed
video. Generally, the advantage of these schemes is the computational saving of avoiding full
decompression. Non-image-based approaches exploit the compression characteristics of the com-
pressed data, such that the compression of the video is used as a useful preprocessing step to
furnish additional features for shot change detection.

Most video compression schemes use a blockwise Discrete Cosine Transform (DCT) trans-
form for spatial compression. This results in two sets of features that can be used for shot
change detection: the DC coefficients, related to the average luminance / chrominance in the
block, and the AC coefficients, which account for variations within the block. The DC coeffi-
cients together make up the DC sequence, which is essentially a heavily downsampled copy of
the original sequence. The downsampling factor is the same as the block size of the compression
scheme, typically 8 x 8 or 16 x 16. As described above, downsampling does not introduce difficul-
ties in shot change detection, and can be advantageous. Therefore, most shot change detection
techniques developed for uncompressed data can be applied directly to the DC sequence.

Examples of schemes targeting the DC sequence include Yeo and Liu [336], who use pixel dif-
ferencing, and Patel and Sethi [248], who use intensity histogram differencing. Hanjalic describes
a block-matching approach designed to be particularly suited to a DC sequence [135]. Increas-
ingly, researchers present results obtained on both uncompressed and compressed video [104,
105,173].

Several researchers have recognised that edge features can be extracted or approximated
directly from the AC coefficients, resulting in compressed domain analogues of edge matching
techniques. including Lee et al. [194] and Song and Ra [278]. Song and Ra [277] have also
developed a system for prediction of AC coefficients using only the DC coefficients, which has a
lower computational cost than decoding and processing the AC coefficients in the video stream.

One of the earliest schemes targeting compression characteristics, due to Arman et al., used
an innner product of the DCT coefficients in JPEG-encoded video to quantify frame similar-
ity [12,13]. Bao and Guan [17] use histogram differencing on the DCT coefficients of each
frame.

A significant source of temporal compression in MPEG video is the bi-directional encoding of
some frames. Each frame is made up of macroblocks 16 pixels on a side, and in a bidrectionally
predicted frame (B-frame) each macroblock can be intra-coded (I-block), prediction encoded (P-
block), or bi-directionally encoded (B-block). I-blocks use spatial compression only. P-blocks
are encoded with reference to a preceeding frame, and B-blocks with reference to a succeeding
frame, or both the succeeding and preceding frames. P- and B- blocks, collectively known as

inter-blocks, exploit the temporal redundancy typical in video material. The encoder chooses
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block types within B-frames to maximise compression while preserving fidelity.

Because frames on either side of a shot transition are dissimilar, there is little temporal
redundancy between them. This affects the block types chosen by the encoder for B-frames.
Specifically, a B-frame that is the first frame of a shot will have few or no P-blocks, as the
preceding frames are not useful for compression here. Similarly, where a B-frame is the last
frame of a shot, very few B-blocks will be used. The ratio of B-frames to other frame types is an
encoding parameter, and is generally high enough to facilitate shot change detection by analysis
of B-frames.

Several cut detection methods exploit this property [51,106,176,219,249,250,349]. A method
tuned to video encoded using H.264/AVC compression [205] uses a histogram of the intra-block
prediction modes within a GOP to locate GOPs potentially containing a shot boundary, and
uses the number of macroblocks with different inter-prediction modes within the GOP to localise
the transition.

Each inter-coded block have an associated translational displacement, or motion vector, for
motion-compensated compression. These motion vectors are also useful for transition detection
and classification [109]. Haoran et al.have described a method for extracting both shot transi-
tions and subshot transistions such as camera pan, tilt, and zoom, using the macroblock types
to detect cuts and gradual transistions, and an analysis of the motion vectors to recover camera
motion with a six-parameter affine model [137]. Camera motion from vectors and cut detection

from macroblock types and vectors are also employed by Hesseler [146].

3.4.7 Genre Specific Approaches

Various shot change detection schemes targeting particular genres, particularly sports footage,
have been presented. Rea in [260] characterises the geometry of a scene using the second or-
der moment of the Hough transform; this approach works well for snooker and tennis video.
Tekalp [1] has developed an approach suited to soccer footage, which is robust to changes of

dominant colour.

3.5 Transition Detection

The feature extraction and comparison stage results in a dissimilarity measure between two
frames, denoted d(t,t'). For similarity comparisons of adjacent frames, the dissimilarity trace
d(t) can be considered, where §(t) = 6(t—1,¢) and §(0) = 0. The problem of transition detection
then becomes that of detecting those values of §(¢,¢") which correspond to a shot transition.
Figure 3.7 shows a difference trace created by direct pixel differencing for a sequence of almost
2000 frames from the film ‘La Fille Sur Le Pont’. The locations of scene cuts are indicated by
red circles. It is evident that in some regions of the difference trace, the scene cuts are marked

by isolated spikes in the difference trace. However in more challenging regions of the sequence,
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Figure 3.7: Difference trace over 1924 frames from ‘La Fille Sur Le Pont’, using frame-to-frame

mean absolute difference of intensity values. Cuts are indicated by red circles.

the intra-shot differences are comparable in magnitude to the inter-shot differences. A more
sophisticated frame difference measure would produce a cleaner difference trace, in which the
scene transitions are better separated from intra-shot frame differences. Various degrees of
sophistication can also be applied to the problem of identifying those difference values which
correspond to a transition; it is this aspect of the transition detection problem that is now

considered.

3.5.1 Thresholding
3.5.1.1 Fixed thresholds

The simplest method for transition detection is to detect locations where §(t) exceeds a fixed

threshold. The set of cut locations C' is simply
C={t:6(t)>r1} (3.23)

where 7 is some empirically determined threshold. This approach is used in numerous sys-
tems [13,174,200,228]. Zabih et al. [344] require that a discontinuity value exceed a threshold,
and also that it be the largest value in some window, before the location is declared a scene
break.

While cuts introduce a single spike in §(t), over a fade or dissolve transition a lower plateau
may be expected. The twin-comparison method due to Zhang et al. [349] relies on this behaviour
using two thresholds: a high threshold 7}, and a low threshold 7;. Wherever the dissimilarity

measure exceeds T}, a cut transition is declared. Potential gradual transitions are supposed
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to start where §(t) transitions from below T} to above T;. If ¢s is the start of the potential

transition, the end point, t., is the largest ¢ such that
(t>ts) A (V€ [ts...t].6(1") > Tp) (3.24)

If the sum of §(t) over [ts...t.] exceeds T}, a gradual transition is declared.

Bouthemy et al.employ the cumulative sum Hinkley’s test [18] to detect jumps in the frame
dissimilarity measure in their shot change detection systems [42,43]. They advocate the test on
the strength of its simplicity and low computational load, the fact that the entire signal history
is taken into account, and the suitability of the test for detecting both gradual and abrupt
transitions without modification of the parameters. Two thresholds are required in this scheme;
it is reported in [43] that the same values were found effective over a range of footage types.

Various authors have proposed different schemes for smoothing the difference trace before
applying a fixed threshold for cut detection. For example, Otsuji and Tonomura presented a
projection detecting filter in 1993 [245,246]. This is essentially the application of one-dimensional
dilation and erosion to better isolate peaks due to cuts. It is described as especially effective
at dealing with the effects of film-to-video conversion, slow motion, and animation. Han and
Tewfik describe a progressive nonlinear filtering step to isolate impulsive changes and smooth
gradual transitions [134]. This approach is based on successive smoothing by averaging, but
using the unsmoothed difference value where 6(¢) has a high rate of change. They show that
this smoothing is more effective than Gaussian, Wiener, and wavelet-based smoothing. Ewerth
and Freisleben [100, 101] have a refinement for filtering difference traces arising from MPEG
data.

In the work by Bescos et al. [23], an empirically determined fixed threshold is employed,
along with other tests on the local characteristics of the difference trace including the slope, the
average value, and others. Although described as clustering, the process as described is more a

hierarchical decision process.

3.5.1.2 Adaptive thresholds

For the frame difference measures currently proposed, there will be no difference fixed threshold
separating transitions from inter-shot differences in all footage. It is more prudent to use adaptive
thresholding such that the data can itself be used to determine whether a value is significantly
large or not. One of the first systems to use adaptive thresholds was described by Yeo and Liu
in 1995 [336]. Here a shot cut is declared at time ¢ if

(6(t) = max({6(t') : t —m <t <t+m})) A(O(t) > ndsm) (3.25)

i.e. where the §(¢) is the maximum value in a sliding window of size 2m, and 6(t) is n times
bigger than the second biggest value in the window, denoted d4,,. The second criterion here

is useful in distinguishing camera flashes from shot transitions; although both introduce high
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difference values, a camera will result in two spikes in rapid succession, whereas a shot cut
introduces a single, isolated spike.

Numerous other researchers have adopted similar approaches [36,247,263,343]. Truong et
al.have proposed using a slightly modified ratio test [307]:

c+6t)>n|c+ > 5(t) (3.26)

t'e{t—m...t+m}t

Rather than using a sliding window, the threshold can be determined from consideration of
difference values over the entire sequence. For example, Giinsel et al. [130] presented a system
in 1998 using K-means clustering to divide values from a single similarity measure into two
classes, a transition class and a no-transition class. The entropic thresholding described by Sze
et al. [294] chooses the threshold value so as to maximise the combined entropy of the transition

values and the no-transition values.

3.5.2 Multiresolution Transition Detection

While cut transitions can in general be detected by comparing successive frames, gradual tran-
sitions require a wider window of comparison. Here comparisons are made between frames
separated by a skip parameter, typically 15 or 20 frames. The intention is that the interval
should span the transition, or enough of it, such that the frames being compared show a signif-
icant difference. Differencing frames with a high skip parameter increases the effects of camera
and local motion, and so the resulting difference traces tend to be noisier than those calculated
with successive frames.

As well as facilitating detection of gradual transitions, examining the video at a coarse tem-
poral resolution is quicker than comparing all pairs of frames. A fine-grained frame comparison
can then be invoked to isolate a transition identified within the skip interval. The system de-
scribed by Drew et alin 1999 [89] takes this approach, where a skip of 32 frames is used to
localise transitions and binary search used within the interval for precise detection.

Bescos et al.calculate differences at every multiple of 5 frames from 5 up to 40, and detect shot
transitions at each scale [24]. Intra-shot transitions due to fast camera motion are considered
desirable along with inter-shot transitions. A transition introducing a peak in the difference
trace at one scale will manifest as a plateau at all coarser scales, while a visual discontinuity,
such as a camera flash or large local motion, will result in two peaks at all scales. This property
is exploited to distinguish these two event types.

Chua et al. [65] apply Canny wavelet analysis to colour histogram difference values to detect
both sudden and gradual transitions. The locations of all maxima in the difference trace at the
finest resolution are considered potential transition points. Of these, locations that are not also

maxima at coarser resolutions are rejected as due to noise.
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3.6 Feature fusion

Many features have been described for measuring frame similarity, and it is unlikely that any
single such feature will be appropriate for all footage. Various schemes for combining multiple
features have been proposed to improve the performance of shot detection systems.

One straightforward consideration is that often the simplest and computationally cheapest
features have poor performance, while more sophisticated measures have considerably higher
computational cost. In this situation, the simple method can be applied first, and if it exceeds
a ‘certainty threshold’ 7., a cut is declared. If the difference value is less than 7., but greater
than a ‘possible-cut threshold’ 7;,, the more expensive similarity measure is invoked to make the
decision. This is the approach adopted by Arman in 1993 [12] for compressed data, where the
inner product of the DCT coefficients is the simple measure, and colour histogram comparison
(which requires full decompression of the frames in question) is used as the expensive measure.
A similar approach has been described by Huang [155].

Various authors have suggested the use of multidimensional clustering to detect video tran-
sitions. Here the values of each of the difference measures are combined to form a feature vector
in a multidimensional space. Ferman and Tekalp use K-means in two dimensions, where the
similarity measures used are a histogram difference and pixel differencing [103]; they report an
improvement over the performance attainable with either measure alone. A similar approach
has been proposed by Gao and Tang [115], using fuzzy c-means in two dimensions; the similarity
measures here are again a histogram difference and pixel differencing.

Ren and Singh in their 2004 paper [262] evaluate both k-nearest neighbour and neural
network classification for detection of cut, fade, dissolve, tilt, and pan transitions. In this
work 18 features are combined, selected from a total of 139 similarity measures using sequential
forward feature selection. It is found that neural network classification slightly outperforms the
k-nn technique, with a 99.7% recognition rate and a 0.3% false alarm rate. The combined-feature
classification approach is shown to outperform histogram comparison and motion comparison
approaches.

Cernekova et al.in 2005 applied clustering to 11-dimensional feature vectors consisting of 10
features from Singular Value Decomposition (SVD) and 1 feature from a mutual information
metric [53]. This approach is referred to as feature level fusion.

Instead of using clustering for classification of difference values, the temporal evolution of the
features can be modelled. The most popular framework applied to this is the Hidden Markov
Model (HMM) approach. One of the earliest such approaches was presented in 1998 by Boreczky
et al. [39]. The dissimilarity measures here are luminance difference, motion vectors, and audio
cepstral vector difference. In this work, each camera transition type is a state in the model.
This limits the capacity of the model to capture within-state temporal behaviour of the feature
vectors. In the more recent work by Bae et al. [15], three HMMs are used: one for each of the

non-transition, gradual transition, and abrupt transition events. The feature vector in this case
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Figure 3.8: A plot showing the variance of intensity values across a dissolve transition. The

start and end points of the transition are marked with red circles.

comprises the frame-to-frame colour histogram difference, the change in low-frequency audio
energy, and differences in colour histogram, texture, and edge distribution evaluated over a

10-frame interval.

3.7 Transition Classification

As described above, transitions in video can be abrupt (cuts), gradual (fades and wipes), or intra-
shot (flash photography, camera motion).The modelling and clustering approaches described
above detect each transition type separately, and further classification is not necessary. However
threshold-based systems do require further analysis to determine what kind of transition has
occurred. Considerable research effort has been expended on examining what features in the
local region of the difference trace, or in the frames in the region of the suspected transition,

can be used for transition classification. Some of these features are examined in this section.

3.7.1 Fade and Dissolve Transitions

The characteristics of dissolve transitions are most easily considered with reference to the dissolve
generation process. In a dissolve, two shots are overlapped and mixed with a dissolve parameter
« which increases monotonically from 0 to 1 over the duration of the dissolve. Each frame within

the dissolve transitions is then generated by
fi(x) = (1 — )8} (x) + aSF(x) (3.27)

where S} and S? are frames from the overlapping shots at time t. In a fade in or fade out, S*
or S? will be 0 everywhere. Consideration of 3.27 informs most dissolve detection approaches.
One of the earliest recognised characteristics of dissolves arising from this model is that under

most circumstances, the variance of intensity values for frames in the dissolve region will follow
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a downward parabolic curve. To see why, let o1 and o9 be the variances of intensity within the
connected shots (assuming here that these variances do not vary with time). The variance of

intensity values within a frame in the dissolve region is then
ot = (1 —ay)’o1 + oy (3.28)

and given that 0 < ay < 1, oy will always be less then max(o1,09), and in dissolves generally
less than both o1 and o9. In the case of a fade in or a fade out, o1 or o9 will be 0, and so the
intensity variance will follow a descending parabola that does not rise from the minimum (0).
This characteristic was first remarked by Alattar in 1993 [8] and has been used in numerous
systems since then [135,219]. Systems detecting frames with zero intensity variance as a starting
point for fade detection have also been proposed [201,306]. Figure 3.8 shows an example of this
behaviour.

Over the duration of a fade in or fade out, assuming that the effects of motion are negligible,

the relative frame difference
ft+1(X) - ft(X)
fr+1(x)

should be a constant. This has been exploited by Corridoni and del Bimbo [68] and Hampapur

(3.29)

et al. [133]. In both papers, it is suggested that a dissolve be modeled as a fade-out followed by
a fade-in. This approach is only effective where the frame-to-frame change is dominated by the
dissolve effect, rather than by any motion in the sequence, and as such it has not been widely
employed since 1995.

The dissolve generation equation can be used as a direct model for the video in the dissolve
transition. In this approach, the frames on either side of the suspected transition are used to
predict intermediate frames, assuming a dissolve is taking place. Comparing the predicted frame
against the observed frame gives an indication of whether a dissolve is actually occurring.

The earliest model-based system is the double chromatic difference (DCD) method, presented
in 1997 by Yu et al. [340]. Here a single frame is synthesised from the frames at either end of
the transition region and compared to all the intervening frames. If the difference values follow
a bowl-shaped curve, the transition is accepted as a dissolve.

The disadvantages of this system are that only one synthesised frame is used for comparison,
and that it is very sensitive to the initial localisation of potential transition locations. These
shortcomings are recognised and addressed in the analysis by synthesis method, presented by
Covell and Ahmed in 2002 [70]. In this approach, an entire dissolve is synthesised between
the endpoints of the suspected transition, and compared frame-by-frame to the observed video.
An advantage of this method is that the region being analysed need not correspond exactly to
the range of the dissolve; partial dissolves can be recognised and merged. In consequence, this
method is much less sensitive to the initial transition detection approach, and in fact almost the
entire video is analysed for dissolve characteristics. Good recall and precision are reported, and

the method is computationally efficient. However, dissolves containing strong camera motion
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cause difficulties, and the authors do not discuss how local motion in the dissolve region affects
performance.

An interesting variant on the use of synthesis for dissolve analysis was presented by Lienhart
in 2001 [203]. Here it is recognised that one drawback to applying machine learning techniques
to dissolve detection is the tedium involved in labelling examples for training. This is overcome
here by deploying a dissolve synthesiser, which can generate an effectively infinite number of
dissolves from a video database. These generated dissolves are used to train a neural-network
classifier, where the features are the contrast strength of the frames and a 24-bin YUV histogram.
A post-processing step applies global motion estimation to filter out transitions due to camera
pans and tilts. The reported performance is a detection rate of 75% and 16% false alarm rate.
The effects of local motion in the dissolve region are not discussed.

A recent model-based approach is described by Denman and Kokaram in [80], in which a
maximum-likelihood method is used to estimate the values of the mix parameter « in a transition
region. If the estimated values follow the pattern expected for a linear mix between two shots,
the transition is declared a dissolve. This approach is one of very few taking explicit account of
local motion in the dissolve region. A full description of the method appears in the next chapter.

Huang and Liao have shown that a difference trace made up of dissimilarity values between
a fixed frame and each following frame has different characteristics depending on whether the
fixed frame is at the start of a dissolve or not [155]. Let §'(¢) be the ‘rooted’ difference trace,
given by

§(t)=0(T, T +1t) (3.30)

where T is the index of the frame under consideration. If fr is the first frame of a dissolve, §'(t)
will increase linearly over the duration of the dissolve, and will subsequently be approximately
constant. If fr is not at the start of a dissolve, but rather in the middle of a contiguous shot,
' (t) will increase exponentially up to a limit value. This characteristic is found in dissolves from
a wide range of sources, and the reported performance on gradual transition is 93% recall, 78%

precision.

3.7.2 Wipe Transitions

A wipe transition is a spatial mix between two sources, as opposed to the chromatic mix of a
fade or dissolve transition. In other words, in any frame in the transition region, some fraction
p1 of pixels will take their values from the first shot, and the remaining portion, 1 — py, from
the second. p; declines from 1 to 0 over the duration of the transition. The spatial organisation
of the pixel sites varies with the style of wipe transition. For example, the second shot may be
‘revealed’ by a sliding boundary; it may slide in, appearing to displace the first shot; or pixel
sites may be switched from the first shot to the second according to a random schedule. Wipes
very rarely occur in feature film material, but are quite frequently introduced in broadcast sports

footage and home video.
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As the wipe progresses, the image statistics will change smoothly from the values for the
first shot to those for the second. For example, in video where a wipe transition connects two

shots over frames K ... L, the mean intensity value at frame ¢ will be governed by

mq ift< K
m(t) =4 % (p1(n)Nmy + (1 —pi(n))Nmy) if K <t <L (3.31)
mo ift > K

where m; and mg are the the means of the two shots (assumed constant), and p;(n) is the
fraction of sites taking their value from the first shot at frame n. A similar equation holds for
the variance of intensity values o(t) across the wipe transition.

The transition values will follow the same curve shape as p;(t). For example, in a random
wipe the number of pixels from each shot varies linearly, whereas for an iris wipe (in which
the region of the second shot is an expanding rectangle centered in the frame) p;(¢) follows a
quadratic curve. In either case, the transition can be detected by consideration of the derivatives
of m(t): the transition will be delimited by spikes in the second derivative, and the first derivative
will have a non-zero average value over the transition region. This is the basis of one of the
earliest algorithms specifically targeting wipes, presented in 1998 by Alattar [9]. Note that
equation 3.31 assumes that the statistics of the pixels from each shot in the wipe will be the
same as the statistics of the entire frames from each shot. This is more likely to hold true for
wipes where the pixel sites are switched to the second shot in a spatially uniform schedule, such
as a random wipe. For other kinds of wipe, the pixel sites from the second shot will all be from
some small sub-area in the frame, and so their statistics are less likely to be the same as those
of the entire frame in that shot.

A second system for wipe detection based on the center of mass of a frame difference image
was proposed by Yu and Wolf in 1998 [341]. This approach is less versatile than that of Alattar,
in that only ‘sliding” wipes, where a moving boundary reveals the second shot, can be detected.

The paper is very short on implementation details.

3.7.3 Transition classification from spatio-temporal images

Each of the various transition types introduces a discontinuity on some scale in the spatio-
temporal images described above. Cuts result in a hard vertical edge, dissolves in a soft vertical
edge, and some kinds of wipe result in a diagonal edge. This property has been exploited for
transition detection and classification by a number of researchers. Kim et al.use detection of
lines and curves to locate wipes [171]. Ngo et al.have published numerous systems targeting
spatio-temporal images. One such system applies directed derivative-of-Gaussian and Gabor
filters to characterise the local coherency of the spatio-temporal image; low local coherency
indicates a discontinuity in the image and hence a transition [237,238]. An adaptive threshold
on local coherency is used to identify cuts; for wipes the Hough transform is applied. They have

also explored the use of tensor histograms [239,240]
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The more recent approach by Bezerra [26] exploits the longest common subsequence of suc-

cessive video slices to detect shot transitions.

3.8 Statistical Hypothesis Testing

The various aspects of transition detection and classification described above include methods
for detecting outliers in the difference trace, incorporating intuitions regarding shot length, and
algorithms for examing video data in the region of a suspected transition to determine whether a
transition is present and what class of transition it is. It is desirable that a shot change detection
algorithm incorporating these aspects should avoid ad-hoc decision processes and arbitrarily
chosen threshold parameters. A Bayesian approach, also called statistical hypothesis testing,
enables combination of these features in a rigorous way and also removes the need for threshold
selection.

For any two frames ¢t and t/, two hypotheses are under consideration:
e Ho: both frames belong to the same shot (event B)
e Hi: each frame belongs to a different shot (event B)

The optimal decision rule is then that a transition is declared if

(9|B) L 1= Pu(B)
O1B) ls=stry  Pr(B)

Py (B) can be decomposed into an a priori probability P2*(B) depending only on the number of

3

(3.32)

S
&

frames since the last declared shot boundary, and a conditional probability Py (B|¢(t')) taking
into account certain features extracted from the video in the region of frame t' [135].

In these systems, the likelihoods p(§|B) and p(8|B) are generally determined via fitting
parametric distributions to empirically obtained data.

One of the first presentations of this Bayesian approach is due to Vasconcelos and Lipp-
man [312,313]. Here the a priori information incorporated is a distribution over shot lengths.
The Poisson, Erlang, and Weibull distributions are considered, where the parameters for each
distribution are obtained via a maximum-likelihood fit to empirically obtained shot-length data.
The Weibull assumption is shown to yield the best performance, resulting in a 20% reduction in
the error rate versus the optimal fixed threshold. The approach is conceptualised as an adaptive
threshold method in which the dissimilarity threshold is very high immediately after a transi-
tion, and decays with distance from the last shot boundary. This behaviour is illustrated in
figure 3.9. The bin-to-bin colour histogram distance is used as the dissimilarity metric.

In 2002, Hanjalic developed this approach further [135]. A more sophisticated similarity
measure based on block matching is used here, for improved resilience to the effects of motion.
Frame similarity is computed for adjacent frames and also over a 22-frame interval, and the

intra-shot distribution p(§|B) is shown to be essentially the same at both scales.
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Figure 3.9: The influence of the Weibull prior on shot duration proposed by Vasconcelos. The
blue line shows the difference values, and the red line shows the threshold value. In the lower
graph, the optimal fixed threshold is shown; the upper graph shows the influence of the prior.

Cut transitions are marked with circles. Reproduced from [313].

The principal contribution of [135] is the introduction of the data-conditional probability
Py (B|¢(t')). This function incorporates examination of data in the region of a suspected tran-
sition, seeking the characteristics corresponding to various transition types. For example, for

cuts, the conditional probability is

S(t—1,t)—zsm
100 - 25,
ge(k) =q if6(t—1,¢) =max ({§(t—1,¢):te (f=22 t+ 221 1)} (3.33)
0 otherwise

where dg,, is the second largest value § in the neighbourhood of ¢, and N is the size of this
neighbourhood. This encodes the intuition that the dissimilarity across a cut should be much
larger than nearby dissimilarity values. For dissolve transitions, two data-dependent functions
are applied. Firstly, over a dissolve transition, a triangular peak is expected in the dissimilarity
trace at the coarse scale §(t —22,t). A function ¢4 (t) is proposed to detect such peaks, taking
the value 1 if characteristics indicative of a triangular shape centered on k are found, and 0
otherwise. Secondly, as described above, the variance of intensity values for frames across a
dissolve ideally follows a downward-parabolic pattern [8,219]. A function ¢go(t) is introduced
quantifying the relative change in intensity variance between the middle of the window and the
edges to detect this behaviour.

Boccignone et al. [35] use a similar analysis of dissimilarity traces to inform probabilistic

detection of cuts and fades.
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3.9 Directions in Shot Change Detection

At this stage, shot change detection is a very mature area of research and impressive results have
been reported on a wide variety of footage. The broad features of a cut detection system are
unlikely to evolve significantly in future research. Frame-to-frame similarity can be measured
quite reliably, and incorporated into the Bayesian decision framework to allow for prior intuitions.
It is likely that future cut detection work will be increasingly application-specific, and as such
undertaken by industrial researchers. On the other hand, considerable improvement is desirable
in detection of other transitions, such as dissolves and wipes.

The chief difficulty in comparing shot change detection systems is the lack of a common
corpus of video material to form a basis for assessment. The activities of the TRECVID confer-
ence [275] are addressing this concern. Each system submitted to this conference is evaluated
against a large supplied test set of commercial video for which the ground truth data is available.
This makes comparison of different systems considerably easier. At present, the conference cor-
pus is only available to participants, and participation is limited to some eighty institutions per
year. However, as the conference grows it is expected to become the principal focus of research

in shot change detection.






New Approaches to Shot Change Detection!

In the previous chapter, a comprehensive review of shot change detection techniques was pre-
sented. In this chapter, two new contributions to the shot change detection problem are pre-
sented. The first is a video analysis technique for detecting dissolve transitions based on direct
modelling of the dissolve process. The second is a refinement to the transition detection tech-

nique described by Hanjalic [135], which improves performance on challenging video sequences.

4.1 Cut Detection

The Bayesian approaches to shot change detection developed by Vasconcelos [313] and Han-
jalic [135] are close to the state of the art. The Bayesian formalism enables combining sophis-
ticated frame similarity measures with a-priori intuitions concerning shot length and feature
analysis from frames in a suspected transition region. The approaches described by these au-
thors can still fail for very difficult sequences. In this section, a very difficult video is analysed

and a number of refinements for cut detection are proposed on the basis of this analysis.

4.1.1 Frame Similarity Measure

As in the previous chapter, the similarity measure between frames ¢ and t' is denoted (¢, ).

For a fixed interval n, §(¢t,t —n) is denoted 9,,(¢). The block matching frame similarity measure

'An early version of the work described here was published as “A Multiscale Approach to Shot Change
Detection” by Hugh Denman and Anil Kokaram, in Proceedings of the Irish Machine Vision and Image Processing
Conference (IMVIP ’04), pages 19-25, Dublin, September 2004

63
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used in [135] is also used in this work. Frame I; is divided into B non-overlapping blocks b(3).
For each block, the most similar block in frame ¢’ is found. The block similarity measure is the

absolute difference in the average Y, U, and V values of each block:
D(bi(t),0;(t') = Y2 — Yo 4l + [Uri — Up j| + | Vai — Vir (4.1)

where }7}1 is the average value of Y values in block 7 of frame t. The index of the best match,
l;ut/(z'), is given by

by (i) = arg jmin (D(bi(t),b;(t))) (4.2)

The frame difference measure is then the sum of most-similar-block differences over the entire

frame:
B
5t 1) = = 3 D(buli), B () (13)
i=1

This measure is closely related to the Displaced Frame Difference (DFD) as formulated for local
motion estimation.

A number of parameters need to be specified to implement this similarity measure, specif-
ically the block size, the search range, and the search resolution. Appropriate values for these
parameters depend on the resolution of the video and the interval between frames being com-
puted, and also on the desired compromise between computational cost versus motion resilience.
Small block sizes, wide search ranges, and fine search resolution improve the motion resilience
but increase the computational cost, and can also reduce the value of §(t,t') across a scene
change, when blocks are matched across the transition. In this work, video is processed at a
resolution of 180 x 144, using square blocks 4 pels on a side, with 1-pixel search resolution. As
in [135], a search range of 1 block (4 pels) is used for computing 01 (t).

As a case study of cut detection in a particularly challenging sequence, figure 4.1 shows
values for the ; measure calculated over 2000 frames from the film ‘La Fille Sur Le Pont’. Two
factors make detection of the shot transitions difficult in these signals. Firstly, some shots in this
sequence are very short; for example, those occurring near frames 200 and 1400. These result in
nearby peaks that should both be detected. Secondly, the sequence contains significant motion
and lighting changes, in footage depicting splashing and swimming, and ambulance lights. These
factors result in the high dissimilarity levels between frames 800 and 900, and towards the end
of the sequence. Figure 4.2 shows how a low §; value can be found across a cut transition.
Figure 4.3 shows an example of footage where §; values between some frames within a shot are

as high as the values across a cut transition.
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Figure 4.2: A cut for which the block-matching dissimilarity measure d1(¢) gives a low value. In
the dissimilarity signals, the cut illustrated is marked with a green circle, and other cuts in the

sequence are marked with red circles. This is particularly pronounced in the signal produced

using a block size of 16 pels.
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(a) Two consecutive frames across a cut transition from (b) Two consecutive frames within a shot from ‘La Fille
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Figure 4.3: This figure illustrates how difference values within a shot can be as large as those
occurring over a cut. The cut shown in (a) is indicated in the difference traces by a red circle.
The location of the pair of frames shown in (b) is indicated by a black circle; these frames are
taken from a shot containing a close-up of flashing ambulance lights with considerable global
motion. A number of the difference values within the shot are comparable in magnitude to that

corresponding to the cut.
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4.1.2 Dissimilarity Likelihood Distributions

The frame difference signal d1(t) is the starting point for detection of cuts in a video sequence.
It is expected that in the main, peaks in this signal should correspond to cuts in the video. As
described in the previous chapter, in the contemporary Bayesian approach, the optimal decision

rule is to declare that a shot boundary exists between frames t and ¢’ if

P(5|B) _1-RA(B)
P(81B) |s=srr) Py(B)

(4.4)

Here B and B are the events ‘cut has occurred’ and ‘cut has not occurred’, and P(§|B) and
P(§|B) are found using likelihood distributions determined with reference to ground-truth-
marked video data. Figure 4.4 shows these distributions determined using 170742 frames of
video. The blue curves show parametric probability distribution functions fit to this data; a
distribution is used for the within-shot values, and a Gaussian distribution used for the inter-shot
values. The method of moments is used to form an initial estimate of the parameters, followed
by a number of iterations of a maximume-likelihood refinement procedure. Further details of this
approach are given in chapter 6.

If these distribution functions are used directly, then for very low difference values ¢, including
§ = 0, P(6| B) will be greater than P(§|B)—in other words, low § values will have a higher ‘cut’
likelihood than ‘no cut’ likelihood. There are two reasons for this. Firstly, the v distribution
for p(§|B) will always assign a value of 0 to the likelihood of a § value of 0, where the Gaussian
p(6|B) will be nonzero. Secondly, very low intra-shot ¢ values may not be encountered in great
numbers in the training set, resulting in the estimated ~ distribution taking a low value for
these values—possibly lower than those given by the Gaussian p(6|B). It is clear that very low
0 values are more likely to be found within a shot than across a shot boundary, and so some
manipulation of the distributions to avoid these effects is justified.

Firstly, before the parameters of the ~ distribution for p(§|B) are found, the histogram of
intra-shot 0 values is manipulated such that all counts to the left of the mode value, ) 5, are
set to be equal to the histogram value at the mode. Secondly, the mathematical forms of the

distribution functions are modified, such that

) . if 5 =0

. , s 45
p(d|B) (%)7 exp <_BFL(V)> otherwise o)
p )= —\/227 exp (‘%C;z” )2> otherwise (46)

Here I'(x) is the Gamma function

F(x):/ tE=De~tqgt (4.7)
0
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The parameters of the Gaussian distribution can be estimated directly from the data: p and
and o2 are the sample mean and variance for values across a cut transition. The parameters of

the Gamma distribution, v and 3, are estimated using the method of moments [72]:

Iu/2 012
. - 4.
) ()ﬁ § (4.8)

O-/

where 1/ and o’ are the sample mean and standard deviation for values within a shot.
These modifications ensure that p(5|B) < p(d|B) for & values less than ¢ 5.

4.1.3 Peak Analysis in the § Signal

P,(B) is composed of two elements. The a priori distribution Pf(B) encodes prior knowledge
concerning typical shot lengths, and depends only on the number of frames since the last de-
clared shot boundary. The data-conditional probability P,(B|¢(t)) allows additional analysis,
supplementary to the value of 1 (¢), to be incorporated via an auxiliary function (¢). This can
include analysis of the shape of the § signal in the region of ¢, and / or information obtained
by further examination of the frames in this region.

Peak Shape Function: The peak shape auxiliary function () is intended to detect isolated
peaks within some temporal window. A cut should not be declared at a point that is not a local
maximum in 01(¢), so ¥ (t) is zero in this case. If d;(¢) is at a maximum within the local window,

1(t) is some measure of the magnitude of the peak relative to the values in the window. In [135],
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these considerations lead to the function

bro(t) = { %&;m if 61(t) = MAXy ¢ (¢—10,4410) 81(t)

(4.9)
0 otherwise

where zg, is the second largest value in the the local window.

In this work, a similar v (¢) function is used to quantify the peakiness of d;(t) at a given
point, but a slightly different approach is adopted.

Firstly, two asymmetric neighbourhood regions are used, rather than a symmetric window
centered on the point in question. This is motivated by consideration of material with very high
inter-shot dissimilarity, as shown earlier, where the value of 41 (¢) at a shot cut is of comparable
magnitude to some inter-shot values in an adjacent shot. Provided the ; value at the cut
is larger than the values typical of the other shot, use of an asymmetric window is helpful in
detecting cuts in such instances.

Secondly, the d; () is evaluated with reference to the distribution of local values, rather than
using the second largest value in a window alone. Using the local distributions in this way means
that rather than modelling difference values entirely in terms of within shot / between shot, to
some extent the difference value process for each shot is modelled. If the 01 (¢) value is atypical
of either of the local distributions, a shot change is declared.

The two considerations described above lead to an auxiliary function for cuts of the form

Dp(t), Dr(t if 91(¢) = / o (¢
0 otherwise
where Dy, is a measure of the magnitude of §;(¢) compared to the N preceding values
Di(t) = min(100, 2L ) (4.11)
e = & il N ot —1) (4.12)
oL = w7 ity 00 —1) = ur)? (4.13)

and Dg is a similar measure based on the succeeding values. The window size N used here is 22
frames. Because the use of this window implicitly incorporates an idea of minimum shot length,
a separate shot-duration prior is not incorporated in this approach.

To compare this asymmetric peak shape function to that proposed by Hanjalic, each measure
was applied to the difference values shown in figure 4.1. The performance of each was then char-
acterised by their Receiver Operating Characteristic (ROC) curves. For the measure proposed
by Hanjalic, the area under the ROC was 0.912, and optimal performance, in the sense of the
maximum mean of precision and recall, was 75% recall and 100% precision, obtained with a
threshold of 42. The v (¢) measure described above had an area under the ROC of 0.987, with
100% recall and and 91.4% precision obtained using a threshold value of 7.6. The new v (t),

then, offers greater separation of peaks in d1(¢) due to cuts from other values.
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Multiresolution Peak Detection: A second auxiliary function for cuts is introduced using a
multi-resolution approach. Here information from the d; (¢) signal is combined with frame com-
parison at a greater interval, i.e. the §(t,t —n) signal with n > 1. This facilitates distinguishing
peaks in §1(t) due to a cuts from those due to some sudden extreme effect such a flashing light.
Where a cut has occurred at some time 7', all frames after T" are dissimilar to all frames before
T, and so there will be a plateau in §(t,t —n) from T to T + n. In the case of a peak due to a
sudden event at time T', however, frame 1"+ 1 should be similar to frame T+ 1 —n—provided the
event has a duration less than n. Thus if the peak at 7" is due to a sudden event, the values of
d(t,t —n) should decline after time 7". These considerations lead to a second auxiliary function

for cut detection
1o(t) = min (17 1.2 — %ﬁm)
i On(t=1)—dn
X min (1, 1.2 — M) "

The first term in the product penalises regions where the dissimilarity at time ¢ declines by more
than 20% at time t + 1. The second term penalises locations where the dissimilarity value has
dropped by over 20% of the previous value. This term is introduced as the ¢, signal should be
rising, rather than falling, at a cut transition. This additional auxiliary function is combined
with ¢, to give the final auxiliary function for cuts ¢.(t) = 11 ()2 (t). Although introducing
the 19 has no effect on detection performance using the data in figure 4.1, it can be seen to
attenuate those peaks introduced by extreme factors. Figure 4.5 shows this effect for a subset

of the frames from this sequence.

4.1.4 Mapping The Auxiliary Functions to a Probability

The auxiliary function for cuts must be mapped to a conditional probability P(B|¢.(t)). As

in [135], a soft mapping based on the erf function is employed for this purpose.

P(Bliw(t)) = % (1 +erf (M)) (4.15)

Oec

where 5 .
erf(z) = —/ e_tzdt 4.16

The values of 1).(t) were found for 170742 frames of video, for which the ground truth data was
previously prepared. Estimates of P(B|i.(t)) for various values of 1.(t) were determined from
this data, shown by the blue stems in figure 4.6 (a). Inspection of these values suggested p. = 0.5
and o, = 0.001 as appropriate initial parameters. A Nelder-Mead minimisation strategy [235]
was then used to refine the parameters, based on a weighted square error function. It was found
that estimation of the optimal parameters was unstable, due to the very uneven distribution
of the weights. To allow for this, the minimisation procedure was performed 100 times, using
randomly perturbed initial parameters, and the best fit of all iterations accepted. The best fit

curve had parameters p. = 0.283, o, = 0.118; this curve is shown in green in figure 4.6 (a).
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4.1.5 Performance Evaluation

At this stage, all the elements required to employ the decision rule for cuts

p(9|B) 1 — P(Blt(1))
P(8|B) 5=, 1 P(Bte(t))

have been found. Performance on the difficult sequence shown in 4.1 is very good, with 93.75%

(4.17)

recall and 100% precision. An example of the output is shown in 4.7. The measure was also
tested on 12 videos from the TrecVid02 collection, totaling 288702 frames. Here 93.7% recall
was achieved, with 84% precision. The precision here is reduced, however, by the presence
of numerous fast dissolve transitions in the corpus, which are detected as cuts. As these are
instances of shot transitions, they can be considered acceptable detections. When this provision

is made, precision rises to 90%.

4.2 Frame Similarity for Dissolve Detection

Dissolve transition detection is based on three components: the value of a dissimilarity signal,

the shape of the peak in the dissimilarity signal, and examination of the frames in the region
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of the peak. These are combined using the same Bayesian decision framework applied to cut
detection above. The decision rule is

p(61B) 1= P(BIult)
p((;’B) 0=022(t) P(BW}d(t))

(4.18)

where 099 is the dissimilarity signal, described below, and 14(t) is a data-conditional function
combining consideration of the peak shape with analysis of the frames in the peak region.

In this section, the J99 signal is described, and an method for peak detection in this signal
is introduced. It is shown that examination of peak shape alone is not sufficient to distinguish
dissolves from other transitions or the effects of motion. Thus examination of the video frames
in peak regions is necessary. In the preceding chapter, two previously proposed methods for
detecting dissolves by examination of frame data were described. Firstly, the variance of inten-
sity values in each frame is expected to follow a downward parabola over the dissolve region.
Secondly, the median pixel-to-pixel intensity difference is expected to be a non-zero constant
over a dissolve region. In the section following this one, a new model-based approach to de-
tecting whether a sequence of frames contains a dissolve is introduced and compared to these
previous methods. The final section of this chapter illustrates how the model-based approach is
incorporated into a dissolve detection system.

In this section and those following, the characteristics and parameters of various components
of a dissolve-detection system are presented. These parameters are computed with reference to
a training set of 288 dissolve transitions (including fades). These transitions were taken from a
training corpus of 170742 frames, consisting of a subset of the TrecVid02 [275] test data.

4.2.1 Similarity Measure and Likelihood Distributions

The block-matching approach to frame similarity is used for dissolve detection as well as cut
detection here. Because the difference between successive frames over a dissolve is generally much
lower than that typical of an abrupt cut transition, the frame dissimilarity must be computed
over some interval of several frames. Comparing frames over a larger interval increases the effects
of pans, zooms, and motion in the video footage, and so the search area for block matching must
be increased. However, this larger search window can reduce the dissimilarity values found
across shot transitions, as the chance of randomly finding a good match for a block across a shot
transition are increased. In this work, as in that described in [135], an interval of 22 frames is
used, applied to videos of dimension 160 x 120 pixels. The block size is 4 pixels on a side, with
a search region width of 40 pixels. The resulting signal is denoted da2(n) = d(n,n — 22), which
is the starting point for dissolve detection.

Figure 4.8 (a) shows the distribution of d92 values within a shot, and the ~ distribution used
to approximate p(Jo2|B). The v parameter for this distribution is found to be 7.68, considerably
higher than the value 1.83 found for p(§;|B). This is due to the amplification of the effects

of motion by the 22-frame interval. Figure 4.8 (b) shows the distribution of values of 099
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Figure 4.8

corresponding to dissolve transitions; the largest value of do9 within each transition region was
taken to build this distribution.

As was done in the case of p(61|B) and p(61|B), the histogram data and distributions are
modified to ensure that for § values less than the mode value, dg, p(8§|B) < p(d|B). Specifically,
the histogram of intra-shot d99 values is manipulated such that all counts to the left of 5 B are set
to be equal to the histogram value at the mode, and the mathematical forms of the distribution

functions are modified such that

_ 1 if 690 = 0
d99|B) = -1 329 4.19
p(922|B) (‘%2)7 exp (—ﬁr%)> otherwise (4.19)
107 if 090 =< SB
p(522|B) = { 1 exp (—(13—#)2> otherwise (4.20)
V2oro?2 202

where 7, 3, p, and o2 are distribution parameters estimated from the data, and I'(z) is the

Gamma function as before.

4.2.2 Peak Analysis in the d,, Signal

Figure 4.9 (a) shows the two kinds of peak that are introduced in d22 by cuts and dissolves. Cuts
are visible as a sharply delineated plateau in the signal, while fades result in a smooth triangular
peak. The specific shape of the peak—the width, height, and the slope of the sides—will be

different for each transition, depending on the dissolve speed and the similarity of the connected



4.2. Frame Similarity for Dissolve Detection 75
30} 8,00 30 —5,,(0 1
——10 y_Jt ——10 y_ (1),
25¢ 22 25 22( 1
0.8
20 20
S 0.6
151 15 :g
&
T 0.4
101 10
5l 5 h h h 02
e | Ly l |
0 7600 7650 7700 7750 7800 0 7250 7300 7350 7400 7450 00 0.2 0.4 0.6 0.8 1

Frame (t)

(a) The blue trace shows the d22
signal; the peak detection function
The

footage used contains a cut, marked

122(t) is shown in green.

with a black circle, and a dissolve

Frame (t)

(b) The 22 signal and the peak de-
tection function 22 (t) over very vi-
sually active footage of violent waves
at sea. A cut occurs in this sequence,

marked with a black circle.

1 - Recall

(c) ROC of peak detection using
thresholds on 22 (t).
der the ROC is 75%.

The area un-

transition, shown by the red circles.

Figure 4.9: Peak detection in do9.

shots. Similar smooth peaks may also be introduced in the signal by other kinds of gradual
transition, such as camera pans, or in very active footage. Figure 4.9 (b) shows an example
of peaks in d99 that do not correspond to gradual transitions in the video. This confirms that
analysis of the similarity signal is not sufficient in itself for dissolve detection; examination of

the video frames in the regions corresponding to these peaks is also necessary.

4.2.2.1 Peak Detection:

Several criteria are combined to detect triangular peaks in the doo signal. These are expressed
through the function 99 (t)

ML(t)MR(t)DL(T)DR(t)KL(t)KR(t) maX(PL(t), PR(t))
if 51 (t) = maxtfe(t_47t+4) 5(t/, t— 1)

0 otherwise

Yaa(t) = (4.21)

taking values in the range 0 — 1. The intention is that t92(t) should take a high value when
there is a peak at ¢ that matches the triangular shape expected at a dissolve. Each component
of the function accounts for one of the peak shape criteria being applied. Each criterion is
applied twice, to the neighbourhood on the left (indicated by the subscript L), and on the right
(subscripted R), of the point under consideration. The neighbourhood size is fixed at N = 22
frames.

If there is a triangular peak at ¢ in o9, the largest value in the neighbourhood to either side
should be similar in value to the maximum at ¢. This is not the case for isolated spikes in d92(t),

which can be introduced by extreme events such as a camera flash going off. M, (t) is a function
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that ensures that 199(t) takes a low value at such isolated spikes. The peak at d92(t) is penalised
if the maximum in the neighbourhood to the left, My, is less than 0.9d22(%), according to

My (t) = min (1, 11— %) (4.22)

For a triangular peak at t, the location of the largest value in each neighbourhood should
be close to t. Dy (t) penalises peaks in d9o(t) where this is not the case, based on how far the
maximum to the left is from ¢ relative to the window size:

i - (1- 522) oz

Here Iy, is the index of the maximum value in the neighbourhood to the left. This is an additional
penalty on isolated spikes in do2(t), especially where two such spikes occur in rapid succession.

Kp(t) is designed to eliminate the plateaus that are introduced to doa due to cuts. This
function penalises the peak at ¢ if there are large discontinuities in the value of Joo(¢) in the
neighbourhood to the left. Let M be the largest absolute difference between successive values
of d99 in the neighbourhood to the left. Then

K (t) = max (0, 1— 5324(@)) (4.24)

The last component, the function Pf(t), gives an indication of the relative magnitude of the
peak at d22(t), based on the difference between d99(¢) and the minimum value in the neighborhood
to the left, mp, relative to do2(¢). If this is less than 0.3, the maximum is considered ‘not
significant’, and K, (t) is set to 0. If the relative difference is greater than 0.7, no penalty is
applied to the peak at t.

d22(t)—m
max (O, %@)L — 0.3)

0.4

Pr(t) =min | 1, (4.25)
Performance Assessment: Figures 4.9 (a) and (b) show that the 122(t) function is effective
in detecting rounded peaks while rejecting the plateaus introduced by cuts. The ROC curve for

peak detection, using increasing thresholds on 92(t), is shown in figure 4.9 (c); the area under
the ROC curve is 78%.

4.2.2.2 Peak Width Estimation

Most peaks due to dissolves in the d99 signal have clearly visible start and end points. Where
a peak does correspond to a dissolve, the dissolve transition starts at the start of the peak and
ends 22 frames before the end of the peak. Estimating the start and end points of a peak is
then useful in two ways. It gives an indication of which frames should be examined for dissolve
characteristics, as described in the next section, and also means that where a dissolve is detected,

an estimate can be given of its start and end frames.
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Figure 4.10: Peaks corresponding to dissolves in d3(t). The red stems show the start and end

frames of the dissolves. The black stem marks the frame 22 frames after the end of the dissolve.

Figure 4.10 illustrates some of the peak shapes typical of dissolves in d92. The correspondence
between the peak extent and the frames in the dissolve is clear. Three methods for estimating
the peak extent have been investigated, and these are now described. Once a peak has been
identified, the values of doy on either side are examined to find the end of the peak on that side.
Each side of the maximum is treated identically; the problem is essentially one of changepoint
detection in these windows. The window is designated W (t).

Line fitting: The first approach adopted relies on fitting a line to the first N values in the
window, and detecting where the fit between the line and the window values starts to exceed
some threshold. Here N is set to 20, and an iteratively reweighted least squares scheme is used
to estimate the line parameters, o, \. The threshold F; is the maximum squared error over the

first N frames of the window:
E; = max{(W(t) — (o + X-t))*} (4.26)

A ‘large error’ signal, L(t), is then found, according to

Lo = { 1 if (W) = (o+ A1) > B (427)

0 otherwise

This signal is then filtered with a 5-tap median filter to produce I:(t) The changepoint is then
defined as
¢ = min{t : V' > t.L(t) == 1} (4.28)

On-line Slope Change Detection: In this approach, the changepoint is declared at the first
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Method H E, 0%5 H E, J%e
Line fit 0.48 60.3851 0.13 29.5
Slope Change 1.05 61.61 || 1.02 55.94

Gaussian Separation || 0.88 55.255 ||-0.36 23.1

Table 4.1: Peak start and end detection performance. E and J%S are the mean and variance
of the error in estimating the peak start. F, and a%e are the mean and variance of the error in

estimating the peak end.

index where the window value stops descending.

co = min{c : meany g opay (W(c')) < meanyegers 01 (W(c))} (4.29)

This is an on-line method, and as such is insensitive to the window size used.
Separation of Gaussians: Here it is assumed that the derivative of the window can be
modelled as two sequential Gaussian distributions, one for the peak descent and one for the
post-descent region. The changepoint is declared at cg, where
ma(c) —my(c

ce{12...|W|—8} oa(c)oy(c) (4.30)

where m(c) and o1(c) are the mean and variance of W (t) — W(t — 1) over 1...¢, and ma(c)
and oy(c) are the mean and variance of W (t) — W (t —1) from ¢+ 1 to the end of the window. A
separation point where the slope increases is desired, rather than one where the slope decreases.
Therefore the absolute value of the distance is not taken. This is a global method, and is
observed to give very good results when the window stretches over two distinct regions, the side
of the peak and a flat or ascending following region. The method is prone to failure when values
from an adjacent peak are included in the window.

Performance Assessment: The dyo signal for the videos in the training set was found, and
the peak detection procedure 199 (t) applied. Those peaks for which 195(¢) > 0.1, which also
corresponded to a dissolve, were found. The start and end points of these peaks were estimated,
and compared to the start and end points of the dissolve as indicated by the ground truth.
Table 4.1 shows the results of this assessment. Detection of peak end-points is more reliable
than detection of peak start points for all methods. This can be ascribed to the fact that for most
peaks, the descent is smoother than the ascent. The Gaussian separation method is adopted for

finding the peak start- and end-points.

4.3 Model-Based Dissolve Estimation

As described in the previous chapter, gradual transitions in video may be inter-shot transitions

introduced by editing, such as dissolves or wipes, or they may be intra-shot transitions due to
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camera motion or lighting changes. Such gradual transitions are typically detected by frame
differencing at a coarse temporal scale, i.e. with an interval of 10 or 20 frame times between the
frames being compared. Once a coarse-scale transition has been identified, the question of how
to identify the kind of gradual transition arises. In this section a dissolve modeling approach is
introduced. Assuming that the transition region does contain a dissolve, a dissolve parameter
« is estimated for each frame. The values for each frame form an a-curve, and examination of

this curve then informs classification of the video region as being a dissolve, or otherwise.

4.3.1 Dissolve model

A dissolve is made by mixing two shots chromatically, according to a mix parameter a. The

values in each channel of the transition are generated by
I(x) = ()T} (x) + (1 — @) I2(x) (4.31)

where x is a pixel site, I} and I? are images from the two overlapping shots at time ¢, and I; is
the final composited image.
Given the images I}, I?, and I; at a particular time ¢, the likelihood of a dissolve parameter

value « is governed by

p(al I}, 12, 1) o exp(= Y [L(x) = (al} (x) + (1 — )T} (x))]) (4.32)

X

However, in general the unmixed frames I}, I? are not available. To facilitate analysis, the
contents of the two shots over the dissolve region are approximated using two template frames,
designated I7, and I7,. These frames are chosen from positions preceding and succeeding the
transition region. The image predicted by this model for a given crossdissolve strength « is
designated I/(q), where

Inp(a)(x) = alr, (x) + (1 — a) Iz, (x) (4.33)

The likelihood of a given value of o can now be approximated using the agreement between the

image predicted by the model and the observed image at time ¢:

plally) o exp(— 3 [I(x) — Ins(ay(x)]%) (4.34)

X

The maximum-likelihood value of alpha given Ir,, I1,, I; can be estimated by solving

L paly =0 (435)

and it transpires that the optimal value is given by

oy — LVt =2 InVnmn
opt — 2
ZVTO,Tl

where V7o 7, is the difference image I, — I7,. The derivation is presented in appendix A.

(4.36)
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The assumption underpinning this model is that the template frames Iz, and I7, closely
approximate the actual frames mixed in the dissolve transition. For ideal dissolves, in which
two static shots are mixed, this will be be the case. However, this will not hold where the shots
contain camera or object motion in the dissolve region. These motion effects are now considered

and addressed.

4.3.2 Global motion

Changes in camera orientation and zoom introduce a difference between successive frames that
reduces the extent to which a template image Iz, is representative of the frames in a shot. To
counteract this effect, global motion compensation is applied. Any global motion estimation
technique can be employed; in this work a robust estimator presented by Odobez and Bouthemy
is used [244]. A six-parameter affine motion model is used; the motion parameters between
frames I;, Iy are a 2 x 2 matrix A and a displacement vector d. For image content subject to

global motion, the two frames will be related by
Iy(x) = L,(Ax +d) (4.37)

For convenience of computation, the affine parameters are combined into a matrix M

A Aor O
Mgy =1 Ao A 0 (4.38)
do di 1

which can be applied to homogeneous coordinates.

For the purposes of a-curve estimation, the global motion is estimated between every pair of
frames Iy, I;+1. This is the forward global motion. The backward global motion is the parameters
relating frame I;,1 to I3, and is assumed here to be the inverse of the forward parameters, i.e.
Mpr1,) & (Mg eqn))

These parameters are then used to compensate both template images to register them with
image I; before the estimation of « is carried out. Rather than estimate Mg, ;) directly, the

intermediate global motion estimates are combined according to
t—1
M1, 1) & H M 41) (4.39)
=T,

and the cumulative backward motion is found similarly.

After these compensations, only a partial region of each template frame will contain valid
data. Estimation of « is performed over the area of intersection of the two valid regions. One
potential difficulty here is that where the global motion is very fast, the valid regions of the
temporal frames will have no overlap. For example, the motion Mz, 4y, with ¢ = T + 10, may

be so large that Iy, and I; have no content in common. Where this happens, there is no basis
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Figure 4.11: Global motion prediction errors for three different prediction orders. The data set

was 14399 frames of broadcast cricket footage, containing a wide variety of camera motion types.

for estimating « using the template frames. Such fast global motion is very rarely encountered
in standard video, and still less often within a dissolve region. If no common region is available,
then, the transition is classified as ‘not a dissolve’.

Estimation of the global motion Mz, ;) may be particularly difficult if there is a partial
dissolve between frames Iz, and I;, as the global motion estimation cannot take the effects of
the dissolve into account. One approach to this problem is to rely on extrapolating global motion
parameters from the frames outside the suspected transition into the transition range, rather
than using motion estimation within this region. Three simple prediction methods are assessed

here, generated by

M, = (Mzy.m41) "™ 0-diff method (4.40)

Ml o = T M me1) + 8 (Mg men) — My 17)) - 1-diff method (4.41)

MY = 1 Mgy 1) + 1 (VM) 3-diff method (4.42)

where VM = % Z?:o M7, —imo—it1) — M(my—im1,10—40) (4.43)

The 0-diff method assumes that the global motion is essentially constant over short intervals. In

the the I-diff method, each parameter is modeled linearly; in other words, here dd—l\t/l is assumed

constant. The 3-diff method relies on the same assumption, but incorporates a smoothing of the
slope by taking the average of three preceding values of %. The performance of these prediction
methods over an interval of 10 frames over within-shot footage (i.e. footage not containing cuts
or partial dissolves) is shown in figure 4.11. Equation 4.39 is used to generate the correct M7, 4.

The error measure employed is the displacement of the centre pixel, for example

@ =(0 0 1) (Mg - M) (4.44)
Figure 4.11 shows that none of these measures is consistently reliable for prediction over a 10-
frame interval. Furthermore, it is found that simply using global motion estimation directly
across the fade region results in acceptable a-curves over a wide variety of dissolve transitions.

For these reasons, the use of motion extrapolation has not been pursued.
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(a) I, (frame 487) (b) I, (frame 507) (¢) Im, (frame 527) (d) Residual image, I.

Figure 4.12: Residual image after one iteration of v estimation for a cut. It can be seen that the
highest residual values correspond to local motion in this example. These locations are assigned
a low weight in subsequent iterations. In this example, the inital value for a is 0.944, and after

10 iterations it has risen to 0.985, closer to the ideal value of 1.0.

4.3.3 Local motion

Local motion in the dissolve region will introduce localised discrepancies between the template
image and the current frame. These discrepancies violate the fade model assumptions, and so
confound the « estimation process. This local motion effect can be greatly reduced using an
iteratively reweighted least-squares (IRLS) method. The idea is to assign a low weight to pixel
sites where the model error is very high, to reduce the influence of these sites on the a estimation.

An estimate for « is obtained by maximizing the weighted likelihood

p(a|l;) o< exp(— Z w(x) [It(x) = Ini(a) (x)]2) (4.45)

X

at each iteration, using
2 2
o = WV — X I wi Vi
opt — o2
Z Wy VT07T1

For the first iterations, the weights are initialised to 1 everywhere. The weights are updated

(4.46)

according to the residual image, Ie = Ip;(q) — It, according to

w(x) = (1—+12W (4.47)
where r(x) = % (4.48)
median(|/e —median (/e
. (e —mecdian1e)) 4.49)
2 X
h(x) = Z{f}ggx) (4.50)

This is a Cauchy weighting function where the residuals I.(x) are being scaled to take into
account the leverage h. s is a robust estimator for the standard deviation of the residuals. 7
is a tuning constant; the value 2.385 is standard for Cauchy weighting. Further details on this
approach are available in any work on robust statistics, such as [156].

The estimation is terminated when either of two conditions is met:
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e The number of residuals exceeding a certain threshold is small.
e The number of iterations exceeds a fixed limit.

The appropriate thresholds must be chosen; currently « estimation is discontinued if less than
2% of the image has an error of more than 20 graylevels, and the number of iterations is limited
to 10. These limits have been found to generate good results for a variety of sequences. In
general termination will only be triggered by the first condition in sequences with negligible
local motion; for many sequences, the procedure runs to the limit of iterations. It is observed
that the value of « found has almost always stabilised at this stage.

Figure 4.12 shows the residuals found for « estimation across a cut transition.

4.3.4 Examples of a-curves

Figure 4.13 shows a-curves calculated for a variety of sections of footage. The characteristic
shape of the a-curve for a dissolve transition is shown in figure 4.13 (c). This is made up of
three regions: where « is close to 1, as frames are from the first shot; a smoothly descending
region within which « changes from 1 to 0 (usually linearly); and a final flat region where the
frames are from the second shot, where « is close to 0.

The figure shows a-curves for some other transition types as well. The curves for the cut and
wipe transitions are somewhat similar to that of the dissolve transition, differing in the steepness
of the transition region. Cuts result in a large drop in the o value across the cut boundary, while
wipes introduce a descent region steeper than that of the typical dissolve. However, dissolves
of only one frame’s duration have been observed. These cannot be distinguished from wipes on
the basis of the a-curve alone.

The effectiveness of the motion compensating techniques described above is illustrated in
figure 4.14. Some frames from a particularly difficult dissolve is shown in figure 4.14 (a). Here
there is a fast pan in both shots over the dissolve region, and significant local motion is also
present. Figures 4.14 (b)-(d) show the a-curves found by estimation over these frames with
each combination of global and local motion compensation. Only when both global motion
compensation and local motion reweighting are applied is the a-curve shape characteristic of a

dissolve observed.

4.3.5 Longer Dissolves

The examples shown thus far have shown dissolves of between ten and twenty frames’ duration.
Some dissolves can be considerably longer, which has implications for their characterisation by
this method. In particular, the template images may be less representative of the shot content
within the transition. In archival footage, the increased transition length means that there is
a greater probability of some defect, such as flicker or large blotches, occurring in the footage

and violating the dissolve model. These considerations are offset to some degree by the fact
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Figure 4.13: a-curves for a variety of shot content types.
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(a) A dissolve between two shots with significant global and local motion.
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Figure 4.14: Alpha estimation across a fast dissolve with significant global and local motion.

The dissolve starts at frame 19 and ends at frame 27.
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Figure 4.15: Alpha traces computed over a 70 frame dissolve.

that stylistically, longer transitions are generally considered appropriate for footage with little
motion. In less active footage, the template frames will be representative of the shot content
over a wider temporal range.

The dissolve model equation is also valid over a partial dissolve region. This can be exploited
to improve performance in analysis of a long transition region. The area of the video containing
the suspected transition can be split into two non-overlapping windows, and the a-curve for
each computed separately. Let the transition region under investigation consist of N frames.
This range is split at frames S = N/2, and the a-curves for each region, denoted o, and «y, are

found. The overall curve «(t) is found by

alt) = (4.51)

0.5+ 0.5a,(t), if0<t<S$
05a0(t—S), ifS<t<N

Figure 4.15 shows an example of a values computed over a long (70 frame) dissolve. In
figure 4.15 (a), the values are computed over the entire transition duration in one pass, whereas
in figure 4.15 (b) the values are found over two adjacent windows. The second trace improves on
the first in a number of respects. The downward sloping region corresponds more closely to the
actual duration of the dissolve; the flat regions corresponding to the regions outside the dissolve
transition are smoother; and the spike in the curve at frame 14225, which is due to momentary
strong flicker in the video, is considerably attenuated in the second trace. This factors make

analysis of the dissolve curve easier, as described below.
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4.3.6 Changepoints in the a-curve

The « values for each frame in the transition region form the a-curve. The transition is to be
classified as a dissolve or not a dissolve on the basis of this curve. It has been observed that the
a-curve over a dissolve transition consists of two flat regions connected by a smoothly descending
transition region corresponding to the duration of the dissolve. Classification of a-curves into
those corresponding to dissolves versus other transitions is based on the assumption that each
of the three segments can be modelled as approximately linear. The method is to fit three lines
to consecutive segments of the curve. If these fits have a low error, and the slopes of the lines
correspond with those expected for a dissolve, the curve is classified as such.

A general-purpose model estimation technique, such as Expectation Maximization (EM),
could be used to find an optimal three-line fit to the curve. However, these techniques are not
generally designed to exploit a priori information regarding the ordering of the data. In this
case, it is known that the points assigned to each line will be adjacent, and so the problem
reduces to finding the optimal changepoints along the curve. While numerous sophisticated
changepoint detection have been presented, a simple exhaustive search approach is adopted
here. Two changepoints need to be found, so an exhaustive search is an order N? computation,
where N is the length of the curve. The curve only contains 40 to 80 values, so the computation
is feasible.

For an a-curve ranging over frames 77 ...T5, the optimal changepoints C' = {é,¢é} are

found by solving
C = arg min (wE(T1,c1) + E(c1,c2) + wE(c2,T2)) (4.52)

C1,C2
using exhaustive search, with the constraints ¢; < T — 5 and c2 > ¢1 + 2. E(t1,t2) is a sum
squared error function describing how well the points ¢ ... ¢y along the a-curve can be modelled

using a line:
to
E(ty,ta) = > (Ot ta) + (t — t1)A(t1, t2) — a(t))” (4.53)
t=ty

O(t1,t2) and A(t1,t9) are the least-squares estimate of the parameters of the line along the a-
curve over ty...ts. w is a weight intended to bias the procedure such that a good fit in the first
and third segments is more important than a good fit over the second (dissolve) section. This
is introduced because the value of o may not change linearly over the dissolve; for example, a
manually controlled dissolve will have a more rounded a-curve.

To evaluate the accuracy of this changepoint detection method, the a-curves and change-
points of the dissolve transitions in the training data were found. The changepoints of each
a-curve were found, and compared to the start and end of the dissolve transitions as indicated
by the ground truth data. Let Fq be the error in estimating the dissolve start from the a-curve
(in frames), and E, be the error in estimating the dissolve end. The mean and variance of these

two error measures over the 288 dissolves in the training set were found as shown in table 4.2.
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w E'1 J%l E'g 0%2
20 11 0.788194 5.46369 || -1.40278 6.97309
21 11 0.621528 5.05835| -1.0625 4.64416
22 | 0.517361 4.81503 ||-0.961806 4.62223
23 || 0.368056 4.51215|-0.857639 4.24099
24 || 0.211806 4.23721/-0.670139 4.57722
25 110.0173611 4.35858 || -0.4375 4.58841
26 11-0.305556 4.82617 ||-0.138889 5.14441
27 1/-0.628472 5.89285| 0.1875  5.3027
28 11-0.986111 7.28204 || 0.545139 6.21398
29 || -1.40972 8.44478| 0.9375 6.92988
21011 -2.01736 8.81851 | 1.55903 7.84319

Table 4.2: Performance of dissolve endpoint detection based on a-curve analysis, for different

values of w.

It is evident that w values greater than unity improve performance up to about 2°; this is the
value is adopted for use in the procedure.

Figure 4.16 shows some examples of a-curves partitioned using the method described above.
In the figures in the left column, w is set to 1, i.e. no weighting. In the figures in the right
column, w is set to 2° = 32, as described in the previous paragraph. The value of w has no
effect on the segmentation in example (a), as this a-curve is almost perfectly linear in each of
the three segments.

In example (b), the non-linearity of the a-curve in the dissolve section has resulted in a mis-
segmentation for w = 1. With w = 32, errors in the dissolve section are preferred to errors in the
first and third sections, allowing for the non-linearity and resulting in an accurate segmentation.

The line-fitting procedure is such that points in the pre- and post-dissolve regions of the
a-curve can be assigned to the middle segment even when they have a lower error when assigned
to an adjacent segment. This occurs where the a-curve is noisy in the dissolve region. Example
(c) illustrates a case where this has occurred.

The use of w > 1 can cause problems where the pre- and post-dissolve regions are noisy,
as shown in example (d). Here the start of the dissolve is missed by 6 frames where w = 32,
as opposed to 2 frames when w = 1. On the other hand, detection of the dissolve end is
more accurate with w = 32. The results in table 4.2 suggest that non-linear dissolves are more
common than non-linear pre- and post-dissolve regions, as overall detection performance is best
with w = 32.

Various adjustments to the line-fitting procedure were investigated to address the issues

raised by examples (c) and (d) above. In example (c), noise in the dissolve region of the a-curve
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Figure 4.16: Examples of a-curves and the lines fitted to them. The ground truth data for the

dissolve region is indicated by black circles. The detected changepoints are indicated by red

circles.
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resulted in the some points of the flat, post-dissolve region being assigned to the dissolve region.
Two refinements to address this were evaluated. The first was an alternative fitness function,
designed to encourage a segmentation with as short a dissolve region as possible while ignoring
the goodness-of-fit of the line over the dissolve region. Here the changepoint estimation equation
was modified to

C = arg min (W'(c; — 1) + E(T1, ¢1) + E(c2, T3)) (4.54)

c1,¢2
Performance of this measure was evaluated for values of ' ranging from 271 to 2725 (i.e. of
comparable magnitude to the mean squared error of the lines fit in the pre- and post-dissolve
regions). However, no value of w’ resulted in detection performance better than that obtained
with w = 32.

The second modification investigated was to refine the changepoints after the best-fit lines
had been found. Let O; and \; be the parameters of the line ¢. The pre- and post- dissolve
regions a-curve are then extended to the last point that is closer to the associated line than

either of the other two, as follows:

él = sup{cl : E(Ol,)\l,cl) < min (E(Og,Ag,cl),E(Og,)\g,Cl))}
Cy = inf{62 : E(O3,)\3,C2) < min (E(Ol,/\1,62),E(02,/\2,62))} (4.55)

Here E(O1,\1,¢1) is the squared distance from «(cp) to the line defined by (Oj, A1). While
this did improve performance in some cases (including that illustrated in example (c) above),
segmentation performance overall was not greatly affected.

Example (d) illustrates the problems that arise with non-linear pre- and post-dissolve regions.
An Tteratively Reweighted Least Squares (IRLS) technique for estimation of the line parameters
(O, A) within the exhaustive search procedure was implemented to address these issues. This

was not found to improve performance, and increased processing time considerably.

4.3.7 Dissolve Detection using the a-curve

The technique discussed above is a means to identify the dissolve start and end points, given an
a-curve generated from a sequence in which a dissolve does occur. Deciding whether a sequence
contains a dissolve, based on analysis of the a-curve, is a separate issue.

Eight parameters of the segmented a-curve are exploited for this purpose. These are the
slopes of the three line segments, denoted Aj_3; the error in estimation of the dissolve start
and end points relative to other indicators, denoted ¢; 2; and the error in the line fit over each
segment, F_3.

These heuristics are used to generate an Bayesian «-curve classifier, using likelihood dis-
tributions for each parameter. For example, for the slope of the first linear segment A\, the
distributions p(A{|D) and p(\1|D) are found, where D is the event ‘dissolve’. An a-curve can
be classified as corresponding to a dissolve (event D) or a non-dissolve (event D) based on

comparison of these likelihood distributions.
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The 192(t) function described in the previous section is used to identify candidate regions
in the training set; a-curve estimation is undertaken everywhere t99(t) > 0. These frames
correspond to peaks in dog. The width of the peak is estimated as in the previous section.
Denote the estimated peak start and endpoints by Py and P,. As outlined above, the end of the
dissolve is expected to be at P, — 22, as frames are compared over a 22 frame interval. a-curve
estimation is then carried out over the frames T3 = Py —10... Ty = P, — 22+ 10, i.e. ten frames
are added on either side of the expected dissolve region. The changepoints in the a-curve should
then be found ten frames from either end. The ¢; » metrics used for classification of the a-curves
are then defined by

~ |61 — 10|
AT (4.56)

N ‘10—(T2—61)‘
_ 4.57
T T (4.57)

Figures 4.17 - 4.19 show the distributions of these metrics for dissolve and non-dissolve a-
curves.The distributions of the slope metrics A1 and A3, as well as the line fit errors, are modelled
with exponential distributions. The distributions of slope over Ry are modelled as Gaussians,
and the changepoint error metrics ¢; 2 are modelled using a gamma function. Some metrics are
multiplied by a constant to increase their range of values; these constants are indicated in the
figures. Some of the distributions for the non-dissolve metrics have spikes at the upper end of
the range of values that are not explicitly modelled by the approximating function. This is not
of concern, however, as in all cases the approximating function of the non-dissolve regions is
several orders of magnitude larger than that of the dissolve regions for these values.

Classifying an a-curve as either a dissolve transition or not can then be achieved by evaluation
of

P(M, A2, A3, é1, 2, B1, o, Eo|D)P(D)
P(M, A2, A3, ¢1, 2, B, Ba, E5|D)P(D)
P(A1|D)P(X2| D) P(A3| D) P(é1| D) P(éo| D) P(E) D) P(Ey| D) P(E5|D)P(D)
P(Ai|D)P(X2| D)P(X3|D)P(é1|D)P(2| D) P(E1|D)P(E»|D)P(E2| D) P(D)

(4.58)

12

If ¢!, > 1, the likelihood distributions suggest that the a-curve corresponds to a transition. The
prior probability for the presence of a dissolve, P(D), was found to be 0.0932, with P(D) =
1— P(D).

4.3.8 Comparison to other dissolve-detection metrics

As described in the previous chapter, other measures have been proposed for dissolve analysis,
intended to be used in a similar fashion to the a-curve. The median relative frame difference [68,
133] is defined as

M(t) = median <M> (4.59)
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Figure 4.17: Distributions of a-curve slope metrics
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Figure 4.18: Distributions of a-curve changepoint metrics

which should be zero within a shot, and some non-zero constant over a dissolve. The variance
of intenstity values [8] is simply
o(t) = varx ([4(x)) (4.60)

which should follow a downward parabola over the dissolve region. Two aspects of these signals
are under discussion here. Firstly, the overall quality of each of the signals can be considered,
i.e. how well they conform to their expected shape over a dissolve region. Figure 4.20 shows
the curves generated by each of these measures over a dissolve from a cricket sequence. For
this dissolve, the a-curve generates a smoother sequence of values than either of the other two
measures. A separate question is how to quantify how close the curve is to the shape expected

for a dissolve. This is achieved via some shape analysis function 1 (t), similar to the peak shape
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Figure 4.19: Distributions of a-curve line-fit error metrics
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(a) Frames from a dissolve transition in cricket footage
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Figure 4.20: Three different means of characterising frames for dissolve detection. The a-curve

is the ‘best-behaved’ measure.

analysis functions applied to the §(¢) signals above.

To further examine the relative reliability of the three dissolve characteristics above, the

median difference, intensity variance, and a-curves were found for the dissolves in the training
set. For each dissolve in the training corpus, three regions were defined: the pre-dissolve region,
r1, consisting of 10 frames before the start of the dissolve; the dissolve region, 79, consisting of
the dissolve frames; and the post-dissolve region, r3, consisting of 10 frames after the end of the
dissolve. The properties of M(t), o(t), and «(t) in each of these regions, for each dissolve, are
used to characterise their reliability.
Median frame-to-frame relative intensity difference: M (t), is expected to be zero within
a shot, and non-zero within a dissolve transition. Figure 4.21 shows how well the dissolves in
the training corpus conform to these criteria. Within the pre- and post-dissolve regions, the
fraction of frames having a zero median intensity difference is close to 1 for most of the dissolves
in the training set. However, the fraction of frames for which M (t) is nonzero within ry is much
more variable. For almost 15% of the 288 training dissolves, M (t) = 0 for all frames in r9; these
are found to be gradual dissolves between similar scenes. On this evidence, the median relative
intensity difference is not a very reliable tool for dissolve detection.

Variance of frame intensity values: It was shown in the previous chapter that the variance of
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Figure 4.21: The reliability of the median intensity difference as a dissolve detection metric.

intensity values of frames within a dissolve should be less than that of the frames in the adjoining
shots. Figure 4.22 (a) illustrates an example of a well-formed o(t) signal over a dissolve. The
curve is flat over r; and r3, and dips in a downward-parabolic shape over rs.

It is notable that the frame having minimum variance within the dissolve, designated ¢, is
not always in the middle of the dissolve. Where one of the connected shots has a much lower
characteristic intensity variance than the other, the minimum value is at the start or end of the
dissolve. The curve in this case is smoothly descending or ascending, as shown in the example
in 4.22 (b). Fade transitions are a particular instance of this, as one of the connected shots is
black and therefore has a variance of zero. Of the 288 dissolves in the training set, 18, or 6.25%,
exhibit a descending or ascending o(t) curve.

The relative position D(rs) is a measure of how far the # is from the midpoint of the dissolve,

T9o:

D(TQ) — 2(£—f2) Where fZ — maX(T’z)-zi-min(T’z)

[ra]

(4.61)

In a dissolve for which D(ry) = 0, # is exactly in the middle of 7o. Where D(ry) = +1, the
minimum is at one end. Figure 4.22 (c) shows the distribution of Dr(2) for the dissolves in the
training set. While 0 is the mode value, most of the dissolves exhibit some measure of assymetry.

A shape function, 1(t), is required to quantify how well a given o-curve corresponds to one of
the shapes characteristic of a dissolve. Hanjalic uses the function shown in equation 4.62 [135].
This function is based on the assumption that the variance of a frame in the middle of a dissolve
should be less than that of the frames at either side of the transition. N here is the size of
the analysis window, set to 21 frames. The function is applied at a point ¢ = ¢t — 11, where
t is the location of a maximum in d9o, and 11 corresponds to half the interval used for frame

differencing. Figure 4.23 shows the values taken by ¢ (t) over the dissolves in the training set.
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The g function was applied to detection of dissolves in the training set for performance

assessment. The area under the ROC curve was found to be 66.4% percent. This suggests that

while analysis of the o-curve can be informative in dissolve detection, it is not in itself sufficient.

The chief difficulty is that ¢z essentially measures the relative change in intensity variance, and

the variance of frame intensity values can change when a dissolve has not occurred. This is

particularly common in sports footage, where a camera pan ranges over an empty section of the

playing field, or sky (as in a tracking shot in golf). To characterise a o-curve as a dissolve or not,

it would be preferable to exploit the quadratic characteristics predicted by the theory. Detecting
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Figure 4.24: Determining P(D|¢,(t) based on 169,000 training frames.

where a o-curve exhibits quadratic change over some region could be expected to yield more
reliable dissolve detection. However, characterising this quadratic behaviour is challenging, as
the o-curve can be affected by noise and, in the case of fast dissolves, is too short to be analysed

reliably.

4.4 Integrated Dissolve Detection

The auxiliary function for cuts must be mapped to a conditional probability P(D|¢4(t)). The

erf function is used for this mapping, as in section 4.1.4:

P(D|gu(t)) = % <1 +oerf (W)) (4.63)

Oec

Again, the parameters for the erf function, u. and o, are determined by examination of training
data. The values of 1 (t) were found for over 170742 frames of video, for which the ground truth
data was previously prepared. Estimates of P(D|t,(t)) for various values of 1, (t) were deter-
mined from this data, shown by the blue stems in figure 4.24 (a). These values suggested p. = 0
and o, = 1 as appropriate initial parameters. As in the case of cuts, a Nelder-Mead minimisation
strategy with a weighted square error function was then used to refine the parameters. Also
as in the case of cut detection, the very uneven distribution of the weights made estimation of
the optimal parameters unstable. The minimisation procedure was performed 100 times, using
randomly perturbed initial parameters, and the best fit of all iterations accepted. The best fit

curve had parameters p. = 1.694, o, = 1.554; this curve is shown in green in figure 4.24 (a).
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The decision rule can then be applied, such that a dissolve is declared at locations ¢ where

p(d|B) 1= P(DlYa (1))
POIB) |5 sy~ POID) (164

A weight w has been introduced to allow a weighting factor to be applied to the v, function.
Table 4.3 shows the performance obtained in dissolve detection for different values of w.

Performance was evaluated on the full corpus (including training material), and also on the
training material only. In both cases, the best performance (in the sense of highest mean value of
precision and recall) was obtained with w = 2* = 16. The system obtains 85% precision and 59%
recall on the full corpus, for a mean performance of 72%. On the training corpus, performance is
considerably better; 89% precision and 81% recall are obtained, for a mean performance of 85%.
This suggests that the distributions of dissolve characteristics found in the training data are not
representative of those over the corpus as a whole. Examination of some of the dissolves included
tends to support this conclusion. For example, in the training set, a number of the dissolves
included are transitions where programme credits are faded in over a static background, a kind
of transition much less common in the non-training data.

The system published by Hanjalic in [135] achieved 80% in both recall and precision for
dissolve detection. It is noted that the test corpus used in that work contains only 23 dissolve
transitions, and the video corpus used is not available for comparative evaluation. As mentioned
previously, the video data and ground truth used here are the data set from the TrecVid 2002 shot
boundary detection task. The performance of the participants in this project is available [275],
and most systems evaluated obtain performance comparable to that reported here. The best of

these systems reported mean performance values around 75%.

4.5 Conclusions and Future Work

The ideas presented in this chapter offer refinements to cut detection, and a new approach to
dissolve transition analysis. For cuts, the use of an asymmetric window and a multiscale peak
detection have been proposed. These are shown to be beneficial to cut detection in very difficult
sequences.

The a-curve is an entirely novel approach to dissolve analysis. It is theoretically well-founded
and the results described here indicate that it has considerable use as a tool for dissolve detec-
tion. The computational cost of this measure is considerably higher than that of other metrics,
such as the variance of intensity values. This aspect may be ameliorated by careful selection of
the areas to compute a-curves over or computing a-curves over every second frame. As com-
puting performance continues to increase, the computational cost will become less important. It
must also be noted that dissolve detection via the a-curve relies on the reliable performance of
many components, including the frame similarity measure, peak finding procedure, peak width

estimation, and global motion estimation. The true potential of the a-curve approach can only
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Full corpus Training corpus

w Precision =~ Recall ~Mean(P,R) || Precision Recall Mean(P,R)
271011 0.638498  0.683417  0.660957 || 0.756598 0.895833 0.826216
279 || 0.64988  0.680905 0.665392 || 0.762611 0.892361 0.827486
278 || 0.664198 0.675879  0.670038 || 0.772727 0.885417 0.829072
277 || 0.670854 0.670854  0.670854 || 0.776074 0.878472 0.827273
276 11 0.685567 0.668342  0.676954 0.7875 0.875 0.83125
275 || 0.698413  0.663317  0.680865 || 0.791139 0.868056 0.829597
274 11 0.713115  0.655779  0.684447 || 0.796774 0.857639 0.827207
273 11 0.733711  0.650754  0.692232 || 0.80456 0.857639  0.8311
272 || 0.745665 0.648241  0.696953 || 0.811881 0.854167 0.833024
271 |1 0.764179  0.643216  0.703698 || 0.822148 0.850694 0.836421
20 0.780186 0.633166 0.706676 || 0.84083  0.84375  0.84229
21 0.786834 0.630653  0.708744 || 0.84669 0.84375  0.84522
22 0.794872  0.623116  0.708994 || 0.854093 0.833333 0.843713
23 0.814815 0.60804  0.711428 || 0.867159 0.815972 0.841565
2% 1/0.835664 0.600503 0.718083 ((0.889734 0.8125 0.851117
2° 0.857143 0.572864  0.715004 || 0.910931 0.78125 0.846091
26 0.865079  0.547739  0.706409 || 0.915612 0.753472 0.834542
27 0.870293 0.522613  0.696453 || 0.915929 0.71875  0.81734
28 0.876712  0.482412  0.679562 || 0.914286 0.666667 0.790476
29 0.897959 0.442211  0.670085 || 0.921466 0.611111 0.766289
210 11 0.914634 0.376884  0.645759 || 0.925926 0.520833  0.72338

Table 4.3: Dissolve detection performance over the test and training video corpus for different

values of w. The bold line indicates the value of w achieving highest mean performance.

be assessed when all the requisite components are optimally implemented. This would require
a very considerable quantity of training material, and is outside the scope of this work. The ap-
proach adopted by Lienhart [203], in which an arbitrary quantity of training data is generated by
synthesising dissolves from a library of footage, would be necessary for a complete investigation.

An aspect of a-curve analysis not investigated here is how the spatial evolution of the local
motion map can inform transition detection. For example, in a wipe or pan transition, the error
map will be spatially coherent, while in a dissolve it would be expected to be more randomly
distributed. This is left for future work.



Snooker Events via Discontinuities?

The preceding chapters have described approaches to shot change detection. This is spatially
coarse discontinuity detection for video signals in general, and as such is domain agnostic. Such
domain-agnostic systems are limited to event detection at a semantically low level.

Higher level events are those that convey information about the meaning of the video. How-
ever, it is presently not feasible to design domain-agnostic systems for high-level event detection
in general. Consideration is restricted therefore restricted to some specific genre of video, such
that a priori domain specific knowledge can be exploited. This enables content-aware video pro-
cessing applications, in which video can be manipulated using high-level concepts such individual
characters, scene settings, or narrative events.

In this chapter, a number of techniques for high level event detection and summarisation of
broadcast snooker footage are discussed. These techniques form the essential components of a
domain-specific system, enabling analysis of snooker video as snooker video. The key to this
high level event detection is selection of the most salient regions of each frame—specifically, the
snooker table and pockets. Feature extraction is then applied to these regions. These features
are chosen so that discontinuities in the feature values correspond to events in the game.

Three new tools for analysing and summarising snooker footage are presented here, based

!The material in this chapter has been published as “Content-based analysis for video from snooker broadcasts”
by Hugh Denman, Niall Rea, and Anil Kokaram, in Journal of Computer Vision and Image Understanding -
Special Issue on Video Retrieval and Summarization, volume 92, issues 2-3 (November - December 2003), pages
141-306. The work was sponsored by Enterprise Ireland Project MUSE-DTV (Machine Understanding of Sports

Events for Digital Television)
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on identifying meaningful table views and ball movement events. The tools are a technique for
effectively summarising snooker shots in the game; a means for detection of ‘ball pot’ events;
and an approach to ball tracking suitable for event detection. Unlike previous work in sports
retrieval [289], the content analysis engine does not need to extract the 3D scene geometry to
parse the video effectively.

This chapter proceeds with a brief review of related work in semantic-level event detection
for sports footage. In the following section, some prerequisite techniques for snooker video
processing are presented, including localisation of the snooker table and the table geometry, and
locating and removing the player. The new tools are then described.

The scope of this work is limited to the development and initial assessment of the tools de-
scribed. Other researchers in this laboratory subsequently refined and integrated the techniques
into a complete system, showing how they generalise to other sports with strong geometry such
as tennis [241,259,260).

5.1 Related Work

The domain of sports video analysis has attracted considerable attention for a number of reasons.
Sports footage lends itself to machine analysis in ways that film and video in general (e.g. feature
films) do not. The action takes place in some well-delineated space with clearly marked features;
these features can be used to situate analysis in the domain of play. Within a given sport, the
variety of possible episode types is not large, and there are rigid constraints on how events can
follow each other in sequence. Ultimately, because sports are governed by rules, sports footage
is rule-bound to a far greater extent than other video material. These rules reduce the space of
admissible interpretations greatly, facilitating machine analysis.

A second factor is the significance of sports culturally and commercially. For major sports,
broadcast audiences are potentially global and are a major revenue source to broadcasters. From
this perspective, technologies that can enhance or streamline sports broadcasting are highly
desirable.

One of the first stages in sports video retrieval is distinguishing sports video from other kinds
of video; an example of this is the work by Kobla et al.which detects slow motion replays (which
are most commonly used in sports footage) in the compressed domain [175]. The next stage
is identification of which sport is present. Killeretal et al. [63] have described a method using
texture and colour-pair features to identify athletics, boxing, swimming, and tennis footage.

A number of systems targeting analysis of specific sports have been presented. Commonly
addressed sports include basketball [267, 332], tennis [169, 252, 289, 317], soccer [96, 122, 305,
328, 339], and baseball [64,266,274]. All of these systems exploit the constrained structure of
broadcast sports footage for parsing, event detection and summary generation. Snooker and
pool have not been addressed by other researchers.

Recently a number of researchers have become interested in exploiting the features common
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Figure 5.1: A typical full-table snooker shot

to all sports analysis, and have begun discussing sports analysis frameworks suitable for spe-
cialisation to a variety of related sports. Examples include the work of Zhong and Chang [352],
Duan et al. [91], and Kokaram et al. [183].

The potential of sports video analysis for analysing and improving athlete performance has
been recognised [196]. Many well-known sports coaches offer consulting services in which a
team sends in video of training sessions and the coach offers recommendations based on the
video; a number of commercially available systems aiming to offer this functionality through
computer assisted parsing and assessment of sports footage have become available in recent
years [74,206,217,283,284]. These are intended for use at the training ground as part of the

training regimen.

5.2 Preliminaries

In this section, some preprocessing techniques necessary to summary generation and event de-
tection are described. Firstly, the snooker footage must be parsed into individual camera shots?
Secondly, those shots containing a view of the entire snooker table, as shown in figure 5.1, are de-
tected. These shots are the most informative, and they are the focus of the techniques described
here. A novel means for extracting the table geometry, without the use of three-dimensional
perspective analysis, is then described.

Once the table is located, analysis is directed to the table surface; it is the motion of the
balls in this area that constitutes the snooker game. However, as the players walk around the
table, they will introduce uninformative motion in the table region. To suppress this, a means

for ‘player-masking’ is described: replacing the player regions that occlude the table with a

2Snooker video contains two kinds of ‘shot’ entity: camera shots and snooker shots.
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table-like texture, inhibiting detection of the motion of the player. Lastly, a heuristic method

for identifying the initial locations of the balls in the table is presented.

5.2.1 Shot-Change Detection

Shot cut detection is accomplished using the normalised bin-to-bin histogram difference method,
in the YUV colourspace. The normalised histogram of the Y component of frame F, Hg/F, is

computed according to

Hy, (i) = Yy,_;1, i€ {0..255} (5.1)
. H- )
HY, (i) = T (5.2)

The U and V histograms are computed in an analogous fashion. The bin-to-bin histogram

difference between successive frames F', F + 1 is
> |, 6) - L6 (5.3)
i

for the Y component, and similarly found for the U and V components. If any two bin-to-bin
differences exceed 0.5, a shot change is deemed to have occurred.

Compared to the shot change systems described in the previous two chapters, this is a
relatively straightforward approach. It is found to work effectively in detection of the simple

transitions typical of broadcast snooker footage.

5.2.2 Snooker Table Detection

Once the shot boundaries have been found, the first frame of each shot is analysed to determine
whether it contains full-table footage. The frame is converted from the YUV colourspace into
RGB, made up of red (R), green (G), and blue (B) components, and a mask corresponding
to the green area of the frame is generated. The mask is a binary image M generated by the

conjunction of the two binary images

M(x) { 1 if (G(x) — R(x)) > 7 A (G(x) — B(x)) > T -

0 otherwise

For component values in the range [0..255], a threshold of 7 = 25 is used. This threshold was
found empirically and has proved suitable for footage captured from a variety of sources. The
table mask is then convolved with a Gaussian blurring kernel, to remove interlacing and noise
artifacts. An example of a mask generated by this method is shown in figure 5.2 (a).

The edges in the table mask are found using Sobel edge detection, as shown in figure 5.2
(b). Tt is then necessary to determine the dominant straight lines in this edge map, to find the
table boundaries. These lines are detected using the linear Hough (Radon) transform. Briefly,

the Hough transform maps each point in the edge map to a set of accumulators corresponding
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to all the lines in the parameter space which pass through that point. For each nonzero point
in the edge map, all the corresponding accumulators are incremented. Peaks in the parameter
space then correspond to lines in the image. The parameter space ranges over p, the distance of
the line from the origin, and 6, the angle the line makes with the x-axis; the equation of a line
in this formulation is ysin(f) + = cos(#) = p.

For the purpose of table detection, 6 is restricted to the the regions of parameter space
where the table edges are likely to be found. These are angles in the ranges [3..25], [89..90],
and [155..177]. Restricting € in this way increases computation speed considerably. Lines in the
configuration corresponding to a snooker table create a characteristic pattern in the transform
space: one peak in the range 6 € [3..25], one in the range 0 € [155..177], and two in the range
0 € [89..90]. If peaks in this configuration are found, the shot is selected as a full-table footage
shot. The Hough transform of a table edge map is shown in figure 5.2 (c¢). The four peaks in
the transform space are clearly visible. The four lines corresponding to these peaks are shown
superimposed on the table in figure 5.2 (d).

Figure 5.3 shows how this method deals with a variety of snooker video frames. Figures 5.3
(a)-(d) show the frames being processed; figures 5.3 (e)-(h) show the green edges of each frame,
and figures 5.3 (i)-(1) show the Hough transforms of the green edges of each frame. The char-
acteristic pattern corresponding to a snooker table is detected in figures 5.3 (i) and (1), and not
in figures 5.3 (j) or (k).

The implementation described here uses a threshold on the Hough transform image in the
regions expected to contain peaks to determine if the pattern characteristic of a snooker table
is present. This is found to be effective against a number of footage clips.

Many sports such as tennis, snooker, badminton, and cricket, occur within predefined playing
limits. Most of the video footage from these events contains well delineated field lines in those
views which contain the most information about the play - for example, the court lines in tennis,
and the edge of the table in snooker. Because of this, the Hough transform is a powerful tool for
characterising shots of interest in sports footage, as it encapsulates the geometry of the camera
view. In fact, Hough transform features can be used to characterise the camera view of every
frame in sports footage, and thus applied to shot change detection as well as view detection.
This immediately exploits the context of such sports video and is a more powerful approach
than the generic use of histogram based shot cut detection. The importance of each shot for
summary purposes can be assessed based on the geometry of the view. For instance, in both
tennis and snooker, shots of the crowd and of the players can be considered less important than
shots containing game events, and summarised simplistically, or discarded entirely. These ideas
are developed in a system described in [259], building on the work described here. Here Hidden
Markov Models are used to analyse the evolution of the second order moment of the linear Hough
transform of each frame. It is shown that unified shot change detection and view identification

can be effectively achieved by these means.
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(a) M(x), the green region of the frame.

3 8 13 18 23 90 157.25 162.25 167.25 172.25 177
Line angle (8)

(¢) The restricted-domain linear Hough transform. (d) Lines found in (c) overlaid on the original image.

Figure 5.2: Steps in the table finding algorithm. The disposition of the four peaks in (c) is

characteristic of lines corresponding to a snooker table.

5.2.3 Table Geometry

Having determined that a given shot contains full-table footage, the next stage is to find the
frame-relative table geometry—i.e. the locations in the video frame corresponding to the ball
spots and the pockets. This relies on knowledge of the real-world dimensions of a championship
snooker table, as shown in figure 5.4. Various approaches to this problem are possible. As
the table is distorted by a perspective projection resulting from the camera angle in full-table
footage, attempting the inverse perspective transform is an obvious candidate. However, this
is not practical: the inverse perspective transform is an ill-posed computation, especially when
only one view is available.

Here a new method is proposed relying only on detection of the table. First, the corner
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Figure 5.3: Examples of table finding. The top row shows original frames from the snooker
footage. The middle row presents the edges found in the green mask. In the bottom row, the
Hough transforms of these edge maps are shown. The characteristic four-peak pattern is present

only in those frames containing the full-table view.

pockets are located; these are at the points of intersection of the edges of the table. The use of
the Hough transform space to find the edges gives direct access to the parameters p and 6 for

each edge. The point of intersection (x,y) for any two lines (61, p1), (02, p2) can be found using

[ x ] _ [ cos(#1) sin(6;) ]_1 [ p1
Y cos(fz) sin(62) 02

It remains to find the other points of interest on the table. A key point here is that the

(5.5)

perspective distortion typical to full-table snooker shots consists of foreshortening along the
vertical axis. Relative distances along the horizontal are not affected. The perspective distortion
is dealt with in this work by exploiting a perspective-invariant geometric property. The invariant
used is that the diagonals of a trapezoid intersect at the midpoint of the trapezoid, irrespective

of perspective transformation. This is a novel approach to geometry localisation.
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Figure 5.4: Championship snooker table dimensions

The invariant can be used to find the real-world midpoint of any trapezoid in frame-space—
such as the table. Furthermore, the table can be repeatedly subdivided vertically to find any
vertical position. For example, the black spot is 320 mm up from the bottom edge of the table,
whose total length is 3500mm. 320/3500 expressed in binary is approximately 0.0001011101,
s0 320 = 3500 (274 +276 4277 + 278 1 2710) Each of these negative powers of two can be
found by division along the vertical dimension of the table. In practice, the position of the black
ball is adequately approximated with 0.00011, or 3/32 along the vertical. Repeated subdivision
along the vertical yields the positions 1/8 and 1/16 of the way up; subdivision between these
two points yields the black spot approximation, 3/32 of the way up.

As perspective projection does not affect horizontal proportion, the table dimensions can be
used directly to find horizontal positions. For example, the black, pink, blue, and green balls all
lie exactly half-way between the vertical table edges, despite being at varying depths.

An example of a successfully extracted table geometry is shown in figure 5.5. While the spot

positions are not exact, they are quite close enough for the purpose.

5.2.4 Player Masking

Event detection in snooker footage is essentially concerned with the movements of the balls.
In general, motion of the balls can be detected simply by performing motion detection on the
table region of the video. However, where the player is obscuring some portion of the table, it is
difficult to distinguish ball motion from player motion. For this reason, a technique is developed
here whereby the region of the table obscured by the player can be identified and filled-in with

a synthesised table-like texture. This simplifies the initial detection of the balls, and suppresses
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Figure 5.5: Table geometery extraction.

any motion due to the player.

In snooker, the players’ clothing typically uses colours darker or brighter than the table,
such as black and white. Similarly, the snooker cue is composed exclusively of dark and bright
regions. The table is found to have a moderately high brightness. Thus extreme intensity values
are more likely to correspond to the player than the table. Regions with extreme intensity values

that are connected to the edge of the table are made part of the player mask:

P(x) = { 1 if (M(x) = 1) A(I(x) <7 VI >7)

] (5.6)
0 otherwise

where I(x) is the intensity component of pixel x. 71 is set to 100 and 75 set to 180; these values
have been found effective for footage captured from a a variety of sources. Any region in this
map touching the edge of the table is considered to be the player, and filled with a table-like
texture. Some examples of successful player masking are shown in figures 5.6.

Some areas of the table have very low intensity, including the pockets and the shadow under
the lip of the topmost table edge. This shadow can cause problems when the player is leaning
over it and there are balls near the top of the table. In this circumstance, the balls will be part
of a region have extreme intensity, connected to the edge of the table by the shadow and the
player, and thus will be add to the mask. Such a situation is shown in figure 5.6 (c); both the
white ball and the targeted red would be lost if the mask were made on the basis of extreme
intensity values alone.

To address this, balls near the edge under the upper lip are detected and removed from the
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player mask. First, the shadow at the top of the table is found; all dark regions close to the
top of the table are considered part of this shadow. Secondly, this shadow region is segmented
into table and non-table regions, on the basis of hue values. The most commonly occurring hue
values in the frame will be those of the table. To find the range of hue values that correspond
to the table, Hy ... Hs, the 255-bin normalised histogram of hue in the frame is computed. The
largest peak in this histogram will correspond to the table; starting at this peak, the range of
hue values is expanded until 75% of the pixels is accounted for. This expansion is done according
to a greedy algorithm: the range is expanded, either to the left or the right, so as to incorporate
the larger of the two adjacent bins. The resulting peak bounds are H; and Hs, the upper and
lower limits of the table hue range. Regions in the shadow mask having a hue outside this range
are considered balls, and removed from the player mask.

The area corresponding to the player mask is filled with a green texture similar to the table.
The fill-in texture is generated by finding a region of the table with no high frequency compo-
nents. To find this region, the table region is filtered using a differential filter [—1,0, 1]7.[-1,0, 1],
and a square region 20 pixels on a side is found where the difference values are all less than 15.
It is assumed that this region contains only empty table and is free of balls or holes. Each point

in the player mask is filled in by randomly sampling the pixel values in this region.

5.2.5 Initial localisation

Once the table and player regions have been identified, the next step is the identification and
localisation of the individual balls. This is achieved using analysis of the first frame of each
shot. The first step is a first-approximation segmentation using the watershed algorithm. An
example of a such a segmentation is shown in figure 5.7 (a).

Next, objects that are too small (containing fewer than twenty pixels) or too large (containing
more than 100 pixels) are discarded. Objects that are long and thin are also discarded, i.e. where
the ratio of the long side of the object bounding box to the short side is greater than three. The
frame after these tests is shown in figure 5.7 (b). The binary objects found are then classified
based on their relative colour properties.

First, the three brightest balls are found. These are the pink, yellow, and white balls. Of
these balls, the yellow ball has the highest saturation. Generally, the pink ball will have a higher
hue than the white, so these two can be distinguished on that basis.

The black ball is the ball with the lowest median brightness. The green and the blue balls
will have the highest hue values, with the blue having the higher hue value in most cases. The
remaining balls are the brown and the red balls. While the brown ball has a slightly lower hue
value, it is difficult to reliably distinguish these on the basis of their colour properties.

Leaving the brown / red distinction aside, this simple initialisation scheme is found to work
well in a variety of footage; two examples of successful ball finding are shown in figures 5.7 (c)

and (d). Not considered here are the further cues for object localisation which would become
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Figure 5.6: Three examples of player masking.

available if the analysis techniques described here were integrated into a single system. For
example, at the start of play the balls are located at their ‘spot’ positions. Where player
masking is successful, the white ball will usually be a bright object close to the player mask; this
could be used to assist in pink / white disambiguation. Ball tracking, described below, can be
used to update an estimate of ball position from one shot to the next. Finally, the game state
can also provide cues. For example, if the player should be shooting at a red, then the ball the
white first collides with is probably not the brown. Some of these higher level aspects have been
developed in [259].
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Figure 5.7: Two successful examples of ball finding. The watershed segmentation is shown on
the left, and the ball labels are shown on the right. Note that the red and brown balls are not
distinguished.

5.3 Semantic Applications

5.3.1 Clip Summaries

A clip of snooker footage generally shows a single snooker shot: an event starting with the
contact of the cue with the white ball, and lasting until no balls are moving. In this section, a
means for summarising clips showing a snooker shot in a single frame is presented. This is a

novel application of the the Motion History Image (MHI) [32,33], originally proposed by Bobick
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and Davis for gesture recognition. The MHI of frame ¢ is defined by

M if |I(x,t) —I(x,t —1)] > 7y
MHI(x, t) = (5.7)
max (0, MHI(x,t — 1) — 1) otherwise

where I(x,t) is the intensity value of pixel site x at time ¢, 7, is a motion detection threshold,
and M is a large constant. High values of the MHI correspond to recent motion. The value M is
chosen to determine how long the effects of motion persist. A sample MHI is shown in figure 5.8
(a). Shot summaries can then be generated by averaging the first and last frames of the shot,
as shown in figure 5.8 (b) and overlaying the MHI on this composite. In order that the the
summary trace should not obscure the positions of the balls in the ghosted composite, regions
of the MHI corresponding to very early or very recent motion are suppressed. This ensures that
the original and final positions of the balls are visible in the final summary image. An example
result is shown in figure 5.8 (c¢). The value of M is chosen to be equal to the length of the clip
being summarised.

The motion of the player can introduce significant ‘motion clutter’ in the MHI-i.e. unde-
sired motion regions which obscure the motion of the balls. An example of this is shown in
figure 5.8 (d). Applying the player masking algorithm described above reduces this motion
clutter considerably, as shown in figure 5.8 (e).

An entire video shot, as defined by the result of shot change detection, often includes footage
before the snooker shot begins. This footage typically consists of the player walking around the
table, considering angles and ball positions, and it is not desired to include this footage in the
clip summary. Using player masking enables the isolation of the footage containing the actual
snooker shot. Summary generation is not initiated until motion is detected in the table region—
which, when player masking is in use, will be due to the commencement of ball motion. When
detecting the start of ball motion, motion regions containing fewer than 5 pixels are assumed
to be due to noise. Summary generation begins only when a motion region in the table area
contains more than five pixels. Similarly, summary generation is terminated at the end of the
shot, or when no significant motion is detected in the table region.

The techniques described above for refinement of the summary image can only be applied
where the footage contains the full table view considered for table detection and player masking.
However, the MHI can still be used to generate effective summaries of clips containing other
camera views in snooker footage. Figure 5.9 shows an MHI-based summary of 2421 frames of a
snooker game. In the bottom-left image, camera motion (here zoom) has introduced motion
clutter. This problem could be alleviated by using global motion estimation and compensation.

Summary images 4 and 9 illustrate the result of event detection; ball pot events have been
automatically highlighted with a red circle is overlaid on the target hole. In image 4, the motion
track of the white ball is overlaid on the MHI summary image. These two aspects of the summary

generation system are described next.
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(a) MHI image (b) Composite of first and last (c) Summary image: MHI overlaid

frames on composite
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(d) Summary image generated without player masking (e) Summary image generated with player masking

Figure 5.8: Use of the MHI and player masking to generate summary images for snooker shots.

5.3.2 Pot Detection

The most important events in snooker are ball-pot events, and in this section a method to detect
these events is described. The method exploits the extracted in-frame geometry to define regions
of interest around each of the pockets of the snooker table. These regions can be monitored to
detect object disappearances. When the player masking described earlier is in use, the only
moving objects on the table are the snooker balls. When an object disappears in the vicinity of
a pocket, it can safely be inferred that a ‘ball-pot’ event has occurred.

Two regions around each pocket are monitored, for a total of twelve regions in total. At
each pocket, a small, inner region and a larger region encompassing the smaller are defined. The
regions must be large enough that fast moving balls cannot traverse them in less than 1 frame
time while in motion. The sizes used are 1/15 of the table width on a side for the small regions,
and 1/8 of the table width on a side for the large regions. Figure 5.10 shows the locations and
sizes of these regions on a snooker table.

Having defined the regions, the next stage is to detect when objects enter and leave these
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Figure 5.9: MHI summary of 2421 frames of broadcast snooker footage.

regions. This is achieved using detection of non-table pixels within in region. Let T} be the frame
time at the start of the first shot containing a full-table view. Then I(x,T}) is the intensity
image at the start of the shot. It is assumed that no balls are in any of the regions at this time.

The detection of non-table pixels within each region at frame ¢, Mg(t), is defined by
Mpg(t) = {(x € R) A ([(x,t) = I(x,T1)[ > 7m) }| (5.8)

where R € (1...12) is the region under consideration. The difference threshold 7, is set to
30 intensity levels. As pixels corresponding to the player are replaced with table-like values
via player masking, changes in Mpg(t) are assumed to be generated by ball motion. Peaks are
generated in the traces by balls entering and leaving the regions.

The start and end points of peaks in the Mp(t) correspond to balls entering and leaving the
region. Comparing the ball entry and exit times between the large and small regions for each

hole can be used to detect pots and near misses. As a ball approaches a hole, it will enter the
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Figure 5.10: Regions monitored for ball potting detection.

large region first, and then subsequently enter the small region. If the ball is potted, it will be
detected leaving both regions simultaneously. If it leaves the small region first, and then the
large, it has bounced back from the cushion and has not been potted. If it enters the small
area but does not leave, it has stopped moving in close proximity to the hole. These latter two
scenarios are ‘near miss’ events, of interest in themselves in summary generation.

To detect the event scenarios described above, thresholding is applied to the traces for each
region. At least 20 pixels within the region must be ‘non-table’ for the motion to be considered
significant. Values greater than 80 in the trace indicate that nearly all the pixels are non-table,
suggesting that the object in the region is too large to be a ball. Such large values are usually
caused by a failure in the player masking algorithm, and so these values are excluded. The

thresholded signal is then

. 1 if 20 < Mg(t) < 80
ity = L0 S Ml (5.9
0 otherwise
This signal is then filtered with a three-tap median filter, to remove the effects of noise.
Mpg(t) = median({ My (t — 1), Mp(t), Mp(t +1)}) (5.10)

Figure 5.11 shows how the traces for each region evolve for a pot and a near miss. In the
images on the left, the blue ball is potted into the left center pocket. The purple traces in the
graphs on the left show the non-table pixel count for the large and small regions around this
pocket. The ball enters the large region at frame 20, and the small region at frame 25. It leaves
both regions simultaneously, at frame 33. These events are reflected in the start and end points

of the purple peaks, and thus the pot is detected.
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The images on the right of figure 5.11 illustrate detection of a near miss, in which a red is
almost potted to the bottom left pocket. The ball enters the large area in frame 17 and the
small area in frame 18. It leaves the small area in frame 25, and then the large area in frame 27.
A near miss is flagged. Both traces return to zero briefly at frame 22. This is due to a failure
in the player masking algorithm, and is dealt with by median filtering.

The event detection algorithm was applied to a 16-minute game of snooker, consisting of
24250 frames and including 14 pots. All pots were selected correctly, along with 5 false alarms,
for 100% recall and 74% precision. The false alarms were caused by failures in the player masking
algorithm. The same footage contained four near misses, of which three were found, with no
false alarms: thus 75% recall and 100% precision for near miss detection. The missed ‘near miss’

event was again due to a malfunction of the player masking algorithm.

5.3.3 Explicit motion extraction

MHI summary images convey motion information implicitly, in a form suitable for a viewer.
This representation is not suited to machine analysis of ball motion, as it does not explicitly
describe information regarding how many balls are moving; which balls are moving; whether
balls have collided; and the position of the balls at each moment in time. Information at this
level can only be extracted using explicit tracking to establish the trajectories of balls in motion.

Object tracking is achieved here using a colour-based particle filter. It is noted that a
similar tracking system has been presented by Nummiaro et al. [242]; the system described here
was developed independently [81]. The underlying algorithm is called condensation [159] (for
conditional density propagation), and can be thought of as a non-parametric Kalman filter. In
outline, the algorithm operates as follows. Let p(x;) be the time-varying distribution of interest
(here the position of the ball at time ¢), and z; be observations at time ¢ (here colour values at

particular pixels). By Bayes’ law

P(Xtr1|Ze41) X P(Zey1[Xe1)D(Xe41|2¢) (5.11)

Here p(z¢41|x¢+1) is the likelihood of observing z;,; at time ¢ given that the ball is at position

X¢+1. The prior distribution, p(x;+1|z¢), is generated according to

p(xesnlz) = / P[0 )p (e 22) (5.12)

The distribution p(x¢|z¢) is represented by N samples s, i € 1... N. Each sample has an
associated weight 7%, corresponding to the likelihood at that location P(z|x;) = si). At each

iteration, the samples are updated according to a linear model
Siy1 =S, + (X — Xt_1) + €, where € ~ N(0,0) (5.13)

where X; is the weighted mean of the samples at time ¢, and o introduces a random scattering

of the particles.
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Figure 5.11: Event detection via region monitoring. The images on the left show a pot. Those

on the right show a near miss.
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At each stage the distribution of colour values corresponding to the ball is represented by a
Gaussian distribution for each of the H, S, and V channels. Where H;, U?{t are the mean and
variance of the distribution of hue values of the ball, and h, s, v are the values observed in z, the
likelihood is

P(Zt|><t)=1 Hi—h, Si—s Vi—v (5.14)
3| 2 5 5
O-Ht O-St O-Vt

These distributions are updated at each iteration based on the sample set:

it = o= > HE (5.15)

o = oD Is g ™ (i~ HED)’ (5.10)
N ) i

(5.17)

The tracking algorithm will sometimes fail to locate the ball in a particular frame. This is
the problem of ‘loss of lock’. Failure to locate the ball can be diagnosed by examining the sum of
the particle likelihoods; if the sum is less than a threshold, the new position of the ball has not
been located. In this case, the scatter parameter o can be increased according to some schedule,
and the particles redistributed in a widening pattern until the ball is found. If the ball is not
found after several iterations of this widening procedure, it is assumed not to be on the table,
and thus potted. This assumption is reinforced if the last known location of the ball is near a
pocket.

Equation 5.13 represents a semi-deterministic update of the ball position, assuming that the
ball motion is essentially constant. Incorporating this update greatly speeds acquisition of the
ball from frame to frame. A more complicated motion model that detects when the ball is about
to hit the table edge could be used, to automatically incorporate bounces as a reflection in the
horizontal or vertical velocity. The linear model described was found to deal with bounces in all
the test footage, so the more sophisticated model was not deployed.

Two examples of successful ball tracking using this method are shown in figure 5.12. Video
examples of this tracking algorithm are presented in the accompanying DVD.

Figure 5.13 illustrates a preliminary approach to extracting semantic information from the
results of object tracking. The bounces of the white ball can clearly be seen in the position
and speed graphs, and the position of the ball at the time of each bounce is known. All three
bounces are at a table edge, so it is likely that in this track, the white ball has not hit any other
ball. The speed of the white ball decreases to zero in the clip, so it can be assumed that this
video clip represents the complete snooker shot. Thus, there is a higher than normal probability

that this shot is a foul (as it is a foul in snooker not to strike a coloured ball with each shot).
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(a) White ball track superimposed on snooker frame. (b) Yellow ball track superimposed on snooker frame.

Figure 5.12: Ball tracking via condensation

5.4 Conclusion

The work described in this chapter offers powerful tools for summarising sports footage, and a
basis for machine understanding of snooker video. It is useful to note that manually generated
summaries of sports in general simply do not exist in this form. Sports summaries are typically
shortened video footage, and textual annotation can take 10 hours for 1 hour of summary
generation [63]. The computational load of the tools presented here is not high. Furthermore, as
the techniques are designed for batch use, running entirely unattended, performance optimised
implementation of these tools has not been necessary; many of the tools are implemented in
Matlab. Aside from player masking, the tools, run in cascade on a single 1 GHZ PIII, take about
3 hours to summarise 16 minutes of footage. Player masking introduces significant computational
load; this can take up to 7 seconds per frame, principally because of its use of morphological
operations such as dilation.

Three new ideas for sports summarisation have been presented here. The most important of
these is that 3D information is not necessary to summarise footage according to geometry. Using
in-image analysis, Hough transform analysis, and a-priori knowledge about diagonal intersections
allows a great deal of content-rich information to be extracted from the footage. The results
presented show successful detection of table view shots and ball-potting events, and tracking
of ball trajectories. The use of the MHI is a novel concept in the generation of content rich
summary key frames. Further research undertaken subsequent to that described here has shown
that the use of the Hough transform to characterise frame geometry, and the use of the MHI to

generate summary images, are particularly applicable to a wide range of court sport events.
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locations are indicated by red circles.

Figure 5.13: An example of a foul, in which the white ball does not strike a colour. The two

graphs are of white ball position and speed. Observe that bounces are clearly visible in the

graphs.






Low-level Edit Point Identification !

In this chapter ways to exploit low level video characteristics for the detection of edit points are
considered—in particular, edit points in dance video suitable for synchronisation with a beat
event in a stream of music. The term ‘low-level’ is employed here as a characteristic of algorithms
that operate with no concept of an object. In the methods presented here, no attempt is made
to explicitly segment the video stream into its constituent objects. Video object segmentation is
considered in the next chapter. In this chapter, implicit characteristation of the motion content
of the scene is sought, in the interest of robustness and more general applicability. Several of the
techniques presented rely only on motion detection, which is a particularly low level of image
sequence analysis, but has the advantage that it can be robustly applied in many more situations
than more high level processes.

Edit points in a video stream arise predominantly as a result of the motion content of the
video. Therefore the techniques described in this chapter rely on low-level characterisation of
the motion in each frame of the video under consideration. However, meaningful edit points
are always generated by the motion of a specific object. The approaches described below will
thus be most successful in footage where the motion content over the entire spatial extent is
representative of the motion of an object—for example, when only one object is depicted in the
video. For example, consider pieces of footage which portray a dancer performing in front of a

relatively homogeneous background; motion detection applied to such streams can reveal points

'An early version of this work was described in “Dancing to a Different Tune” by Hugh Denman and Anil
Kokaram, in Proceedings of the IEE European Conference on Visual Media Production (CVMP’05), pages 147-153,
London, November 2005

123



124 Low-level Edit Point Identification

where the dancer stops or starts suddenly. These edit points are instances of percussive motion,
a term introduced here to describe movements in dance that are analogous to beats in music.
The first section of this chapter presents some examples of such target edit points, along
with a short discussion outlining the difficulty of automatically assessing edit point detection.
This is followed by a description of a method for locating edit points based on motion detection.
Within this section, techniques for parsing a signal, or trace, into peaks, and classifying these
peaks as desired (corresponding to an edit point) or undesired, are developed. There then follow
several sections describing other low-level signals for edit point detection. These analysis of
the DFD bounding box (introduced in chapter 2), local motion vector analysis, motion blur
detection, and audio energy analysis. The same approach for parsing a signal into peaks and
then classifying the peaks is applied to each of the resulting low-level traces. A framework for
probabilistic fusion of these signals is then described. The chapter concludes with an assessment

of the techniques presented.

6.1 Instances of Percussive Motion

In order to consider resynchronising footage of a dance performance to a new music track, it is
first necessary to describe what aspects of a dance video give rise to the percept of synchronisa-
tion in the original footage. For many conventional forms of dance, the movement of the dancer
can be viewed as consisting of a succession of phrases. These phrases are presented in succession,
in time to the accompanying music; in particular, dance phrases generate a compelling aesthetic
effect when they start and end simultaneously with beats in the music.

The key enabling assumption for this work is that there are some intrinsic characteristics
particular to the movement between phrases. The term percussive movement is introduced
as characterising this kind of motion. This term is chosen to reflect the supposition that the
function of these particular motions is to imply or reinforce the perception of rhythm, similar
to the role played by percussion instruments. Typical examples include a sudden change of
direction of a limb, or the stamping of a foot. Among the most salient percussive motion events
are those in which the motion of the dancer suddenly stops or starts. The focus of this chapter

is therefore on the identification of these local motion discontinuities.

6.1.1 Difficulties in Edit Point Localisation

The chief difficulty in assessing tools for edit point detection lies in the lack of a well-specified
ground-truth for a given sequence. A number of factors making establishing a ground truth a
difficult problem are now described. Each factor is illustrated by video material on the accom-
panying DVD.

Firstly, edit point selection is essentially a subjective judgment. While the larger gestures of

a dance can be clearly demarcated, many more subtle movements could be considered either as
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dance phrases in their own right, or as constituent parts of a larger gesture.

Secondly, few dancers have sufficiently precise motor control for a stop or phrase transition
to be localised to one frame of video (typically a forty millisecond interval). For example, the
dancer’s foot may land three or four frames before her hand comes to rest. In such cases, there
is some ambiguity as to which frame represents the end of the movement; while the movement is
clearly at an end when both limbs have stopped, the perception of the stop is more likely to be
associated with the foot motion. This problem is exacerbated when several dancers are dancing
to the same music, as the lack of frame-level precision is more marked with multiple dancers.
Figure 6.1 illustrates an example of this phenomenon.

A related issue is that a dancer may decelerate the motion of a limb rapidly to coincide with
a musical beat, but allow the limb to continue moving at a lower rate until it comes to rest a
short time later. While the strong deceleration is the movement correlated with beat, it may
not be the most appropriate choice of edit point, as it is not the end of the dance phrase.

A technical difficulty with edit point identification is that while the sudden stopping of a
limb might be clearly visible to a human observer, the ‘low level stop’ visible in the sequence
in terms of scene motion content may not occur until several frames later due to the motion of
the dancer’s clothing or hair. The distinction between a dancer’s limb and her clothing is an
example of semantic content in a sequence and, as previously discussed, this is a level of signal
interpretation not readily available to signal processing techniques.

Finally, not all dance movements are demarcated by motion stops. A commonly occurring
example is that of a dancer executing a series of spins. Here, each spin can be considered an
independent phrase, but the choice of where one spin starts and another ends is somewhat

arbitrary, and need not correspond to signal-level ‘stops’ at all.

6.1.2 Assessment of Edit Point Detection

To facilitate assessment of the techniques presented here, ground truth data was prepared for
several sequences. The set of ground truth frames is designated G. In the presentation of
detection performance below, it should be borne in mind that different assessors would have
marked the sequences differently—in particular, some frames detected by these techniques are
defensible as edit points despite their not appearing in the prepared ground truth.

The performance of edit point identification algorithms is assessed with reference to a ground
truth prepared by hand for several sequences. It has been outlined above why establishing a
precise ground truth for a sequence is a difficult undertaking. A further difficulty in assessing
edit point detection performance is that the ‘cost’ of a missed, spurious, or inaccurately localised
edit point will vary with the application for which the edit points are destined. In the main
application under consideration in this thesis, dance footage is to be resynchronised such that
edit points are aligned with a new beat sequence (described in chapter 8. Here spurious edit

points are often less offensive than missed edit points, and the impact of inaccuracies in edit
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Figure 6.1: Sudden stops are not always localised to within one frame; here, the dancer’s foot
stops first, followed by her hand (indicated by red circles); her dress continues to move for some

frames after.
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point localisation depends greatly on the edit point in question. The numerical results presented
in this chapter should therefore be considered as roughly indicative of the relative performance
of different approaches, rather than as an objective measure of the absolute quality of the result.
At the end of the chapter, and in the accompanying videos, detected edit points are visually
presented, and this gives a more accurate indication of detection performance.

An edit point detection procedure results in a set ep of estimated edit points, which is
compared to some ground truth for the sequence, designated G. An estimated edit point is
considered a match if it lies within 5 frames of an edit point in the ground truth data. For edit
point detection schemes described in this chapter, performance in detection is described in terms
of the number of hits, number of false alarms, and number of missed edit points. These three
measures are denoted by #H, #FA, and #M, respectively. The recall and precision, denoted by
R and P, are also presented.

The set of matched edit points, €p, can be assessed in its own right by the distribution of
distances between matched pairs €p(g) —G(g'), where G(¢') is the ground truth edit point closest
to €p(g). The distribution is assessed by

M Dipedian = mecgiian {ép(g) = g(g/))} (61)
M Diean =meang {€p(g) = G(g')} (6.2)
M Dy =varg {ép(g) = g(g,)} (63)

For all these measures, lower magnitude represents better performance, in the sense of a closer
correspondence between estimated edit points and the corresponding ground truth edit points.

In the first sections of this chapter, the results described are for the three training sequences
described in appendix B. This numerical assessment of edit point detection is used primarily to
determine the optimal parameters for the different techniques. The final section of the chapter,
and the accompanying DVD, present results on other sequences to illustrate how the techniques

described here generalise to other material.

6.2 Edit Point Identification using Amount of Local Motion

One of the simplest ways to characterise the motion content of a video sequence is to consider
only the amount of motion in each frame. In this section, a method for edit point identification
is presented which relies on analysis of the motion trace. This is a signal representing the
amount of local motion at each frame of a sequence. Sudden decreases in the motion trace are
found where the amount of local motion in the sequence decreases suddenly; these locations
often correspond to a particular kind of edit point termed a sudden stop. In outline, then, the
approach proceeds by computing the motion trace of a sequence, dividing it into a series of
peaks, and considering the minima between peaks as candidate edit points. Not all edit points
in a sequence will correspond to minima in the motion trace, nor will all minima correspond to

edit points—but the approach generates aesthetically pleasing results nevertheless.
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6.2.1 Computing the Motion Trace

The first stage in computing the motion trace is to quantify the amount of local motion between
a pair of frames. This is approximated by the Displaced Frame Difference (DFD) after global
motion compensation, using the refinement method described in chapter 2. This DFD is then
thresholded with a a value of 15, generating the Local Motion Map (LMM): a map such that
LMM (x) = 1 wherever local motion has been detected. Small blotches in the LMM arising due
to noise or defects in the video are suppressed by discarding any connected regions in the LMM

containing fewer than 20 pixels. The motion trace is then defined by

motion(n) = Z(LMMn(X)) (6.4)

X
Using the DFD values themselves to quantify the amount of local motion was found to be
less effective than the binary-valued LMM. This is because the DFD values are sensitive to

variations in the contrast between background and foreground regions.

6.2.2 Minima in the Motion Trace

As described above, it is expected that edit points in the sequence should correspond to local
minima in the motion trace. Figure 6.2 shows this effect for an number of frames from the
greenDancer sequence. In this section, the approach to minima detection used is described. The
motion trace will be referred to as M (n) for clarity in this section and the next.

Minima are detected using the sign of the first derivative of the motion trace. The first
derivative is designated d(n) = M(n) — M(n — 1), and the sign of d(n) is denoted by s(n) =
sgn(d(n)). Minima in the motion trace are identified wherever the s(n) changes from -1 to 0 or
1. The set of minima resulting is denoted M.

Only significant minima in the motion trace will correspond to edit points; minima arising
due to noise or small changes in the signal value will not. Three filtering components for

suppressing detection of such spurious minima are now described.

6.2.2.1 Savitzky-Golay filtering

The motion trace is typically a very noisy signal, and spurious local minima arising due to noise
are common. Dealing with this noise is the first consideration. The first stage of processing is
therefore the application of Savitzky-Golay filtering [258, 268].

In this smoothing method, a smoothed value, M (n), is obtained by fitting a polynomial to
a window of values about M (n). For this work, a polynomial order of 3 and a window size of
7 points are used. Consider that fitting a polynomial of order 3 to {(m, M (m)) : |m —n| < 3|}
results in coefficients «, 3, v, §. The smoothed value is then given by M(n) = an®+pn?+yn+0.
This smoothing method is chosen as peaks and troughs in the smoothed signal are comparatively

well preserved, whereas these features can be attenuated if simpler low-pass filtering is employed.
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Figure 6.2: A motion trace and the corresponding frames from a sequence depicting a dancer.
Sudden stop locations are identified by vertical lines traversing the motion trace, and by a black
border surrounding the corresponding video frames. It can be seen that minima in the motion

trace correspond to locations which constitute a parsing of the phrases in the dance.
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One drawback of polynomial filtering methods such as the Savitzky-Golay technique is that
values outside of the range of the original signal can be introduced. In particular, where the
motion trace rises suddenly from zero, the smoothed trace will contain values below zero. These
values are replaced with zero.

Figure 6.3 (a) shows how this effects the motion trace. The two lower traces in the figure

show how the s(n) is also smoothed by this filtering, resulting in fewer detected minima.

6.2.2.2 Relative difference gating

Using the sign change of d(n) to detect minima results in undesired detection in portions of the
signal where the actual changes in signal level are relatively small. Signal differences are gated
using a locally defined threshold to prevent detection of these minima. The threshold d(n) is
found by

— 3 /!
dn) = _median (jd()]) (6.5)

d(n) is then gated according to

d(n) = (6.6)

d(n), d(n) > 0.4d(n)
0, d(n) < 0.4d(n)

Figure 6.3 (b) shows how small changes in the signal are flattened out by this method, thereby

suppressing spurious minima.

6.2.2.3 Median filtering the sign signal

Brief changes in the sign of d(n) are unlikely to correspond to significant minima in the motion
trace. Figure 6.3 (c) shows a segment of the motion trace in which two spurious minima are
detected due to noise in the signal. These spurious minima are visible as spikes in the middle
plot. Median filtering is the preferred method for dealing with such impulsive noise; here, a
three-tap median filter is applied. The median filtered sign signal is designated §(n). The

bottom trace in figure 6.3 (c) shows §(n), where the spurious minima have been removed.

6.2.2.4 Trace minima as edit points

To investigate the effectiveness of the filtering methods described above, edit point detection
is evaluated using all the located minima as candidate edit points, for each possible filtering
scheme. Table 6.1 illustrates the performance of each filtering approach for three sequences.

In the table, M is the unfiltered motion trace and M is the trace with Savitzky-Golay
filtering applied. The subscript s indicates that median filtering of s(n) has been applied, and
the subscript r shows that relative difference gating has been applied. A total of eight possible
smoothing schemes are possible by combining these steps.

No single scheme attains the best performance (in the Mpgr—mean of precision and recall—

sense) in all three sequences. However, in each case the best performing scheme incorporates
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Figure 6.3: Minima detection in the Motion Trace.
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Savitzky-Golay smoothing. On the basis of the table, the M, signal is chosen as the best
compromise over all three sequences. In the remainder of this work, the motion trace filtered
with Savitzky-Golay filtering and relative difference gating, but median filtering is not applied
to s(n).

The low precision scores evident in the table suggest that not all spurious minima are due
to noise. There are motion characteristics that introduce minima in the motion trace which do
not correspond to edit points. For example, in sequences with a non-homogeneous background,
the movement of a dancer’s limb over background areas of differing colour can result in different
levels of motion detection, despite the actual motion remaining constant. A related problem
is that of self-occlusion, where a dancer’s limbs cross one in front of the other. The limbs are
generally the same colour, so as they cross over the amount of motion detected drops suddenly.
Such cases will introduce false alarms even when the smoothing and minima detection schemes

applied are optimal.

6.2.3 Peaks in the Motion Trace

As a higher level of motion trace analysis, the signal can be considered as a series of peaks. Each
peak is expected to correspond to a movement in the video, and it is at the end of each peak
that the percussive motion is found. The set of minima found in the motion trace as described
above are used to parse the trace into peaks: each peak is the region between two successive
minima. The goal is to classify peaks in the motion trace to inform whether they correspond to
movement in the dance or not.

The pth peak is specified by its start and end locations and the location of the maximum

value within the peak:

Cieftmin (p) = M(p) (6.7)
Crightmin(p) = M(p + 1) (68)
Cmaz (p) = arg max M(p) (6.9)

p'€(M(p),M(p+1))

The widths of the ascent and descent regions of the peak are denoted by C(uscentwiagrn(p) and

Cdescentwidth (p)7 given by

Cascentwidth (p) = Cmaz (p) - Cleftmin (p) (6 10)
Cdescentwidth (P) = grightmm (P) — Cmae (p) (6 1 1)

These characteristics are illustrated in figure 6.4.
The remainder of this section is concerned with classifying peaks into desired and undesired

for the purpose of identifying sudden stop edit points.
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[#H #FA #M| P R Mpr|MDuedian MDnean MDiar
Sequence greenDancer
No Savitzky-Golay filtering
M | 77 297 2 |0.21 0.97 0.59 1 0.91 3.35
Mg | 65 130 14 {0.33 0.82 0.58 0 0.35 6.08
M. |79 275 0 |0.22 1.00 0.61 0 0.47 3.15
M, 66 112 13 |0.37 0.84 0.60 0 0.50 6.99
With Savitzky-Golay filtering
M |63 116 16 [0.35 0.80 0.57 1 0.81 6.90
M, |59 8 20 /042 0.75 0.58 1 0.75 7.12
M, | 66 108 13 |0.38 0.84 0.61 1 059  7.51
M,s| 63 70 16 |0.47 0.80 0.64 1 0.71 7.85
Sequence maleDancer
No Savitzky-Golay filtering
M |100 328 3 |0.23 0.97 0.60 1 0.55 3.38
M, | 87 124 16 |{0.41 0.84 0.63 1 0.80 6.58
M, 101 315 2 |0.24 0.98 0.61 1 0.63 3.01
M,s| 86 107 17 |0.45 0.83 0.64 1 0.80 5.38
With Savitzky-Golay filtering
M |91 122 12 |0.43 0.88 0.66 2 1.21 5.68
M, |73 72 30050 0.71 0.61 2 111 6.35
M, |8 114 14 |0.44 0.86 0.65 1 0.87 5.32
M| 75 69 28 [0.52 0.73 0.62 1 1.08  5.89
Sequence ballet2
No Savitzky-Golay filtering
M |115 130 4 |0.47 0.97 0.72 1 0.57 2.98
M, |105 47 14 {0.69 0.88 0.79 0 0.32 3.95
M, |115 134 4 |0.46 0.97 0.71 0 0.05 2.40
M,s1108 46 11 |0.70 0.91 0.80 0 -0.09 3.62
With Savitzky-Golay filtering
M [110 50 9 [0.69 0.92 0.81 0 029  3.55
M,|101 34 18 |0.75 0.85 0.80 0 0.30 3.51
M, |111 54 8 |0.67 0.93 0.80 0 0.04 3.49
M,,[101 39 18 [0.72 0.85 0.79 0 0.07 3.17
Table 6.1: Motion trace minima as edit points: performance in three sequences
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Figure 6.4: Anatomy of a peak.

6.2.4 Peak-relative location of edit points

In order to describe the location of a frame relative to peak features, the peak-relative location
is introduced, defined by

1 n_CIeftmin (») if n S Cmaz (p)

o Cascentwidth (p) !

N—Cmax .
oo P, i n > Gas (D)

such that values from -1 to 0 cover the ascent region of the peak, and 0 to 1 lie in the descent
region. The peak-relative location is also illustrated in figure 6.4.

It has been outlined above that due to noise, differences in background contrast, and self-
occlusion, not all minima in the motion trace correspond to edit points. Analysis of the peak-
relative location of stops in the ground truth data shows that nor are all edit points located at
minima in the motion trace. The distributions of peak-relative location for the ground-truth
edit points in three sequences are shown in figure 6.5.

In general, this phenomenon is due to the fact that a ‘stop’ or phrase transition in a dance
is rarely located within a single frame. As described above, a dancer coming to rest rarely
exhibits a single stop frame due to a lack of synchronisation between limbs, residual motion
in the dancer’s clothing, or simply the difficulty of decelerating instantaneously to a full stop.

This is true in particular of sequences where the dancer is wearing flowing clothing, where the
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Figure 6.5: Edit point location within peaks.

dancer is shot relatively close up (this amplifies the residual motion after a stop), and where the
dance is characterised more by definite stops, as in flamenco dance, than in flowing dance such
as ballet.

These factors account for the differences in the three distributions shown in figure 6.5. The
greenDancer and maleDancer sequences depict flamenco dance. This staccato dance style fea-
tures numerous very definite stops, which means that the peaks in the motion trace have long
descents. Therefore the location of the edit point within the peak descent need not correspond
to the peak minimum. In the greenDancer sequence in particular, the motion due to the dress
often results in a long, shallow peak descent after the dancer herself has stopped moving.

The ballet2 sequence depicts a ballet dancer dancing a solo ballet routine. As this dance is
much more flowing, transitions between dance phrases are more likely to consist of deceleration
followed by acceleration than to stops where the motion trace declines to zero. For this sequence,
then, peaks in the motion trace correspond more exactly to individual dance movements. Fur-
thermore, the dancer’s clothing in this sequence is relatively inert, and does not exhibit great
amounts of secondary motion. For these reasons, many more edit points are located exactly at

the peak minimum.

6.2.5 Peak Characteristics

Various characteristics of the peak can be employed to determine which peaks are most likely
to correspond to a distinct motion phrase in a video. These heuristics are combined to rank
the peaks according to the likelihood of their corresponding to a stop. In this section, four
peak characteristics are described, and the distributions found for each characteristic in desired
and undesired peaks are presented. Classification can then proceed based on parametric or
non-parametric representation of these distributions.

Desired peaks are those which correspond to motion phrases, and so their minima correspond

to edit points. In this analysis, a peak is taken to correspond to an edit point if there is a ground-
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truth edit point in the peak’s descent region, i.e. if

H(Z)g(z) € [(maﬂc, (rightmm + 3] (6.13)

where a tolerance of three frames after the peak’s right minimum is allowed.

For each characteristic described, a histogram of the distribution of the characteristic values
in desired and undesired peaks is found. These distributions must then be represented by some
means appropriate for classification. Two approaches to this issue, parametric and nonpara-
metric distribution modelling, are now described. A description of the four peak characteristics

used follows.

6.2.5.1 Parametric Peak Distributions

To model an empirical distribution, i.e. a histogram of values, as a parametric distribution,
the appropriate form of distribution must first be chosen. This is achieved by comparing the
histogram to a ‘gallery’ of distribution functions, such as that which appears in [72]. The
parameters for the analytic distribution are then found by obtaining an initial estimate via the
method of moments, and then refining this estimate by some iterative procedure. In this work,
the parameters are refined using a simplex search [235,258] to minimize the sum of the squared
bin-to-bin differences between the histogram and the estimated distribution; the parameters

found by this criterion are then the least-squares estimate.

6.2.5.2 Nonparametric Peak Distributions

Instead of choosing a parametric probability distribution function by inspection of the histogram,
the histogram can itself be used as the distribution after suitable smoothing. This is approach is
referred to as nonparametric density estimation, though in most cases some parameter must in
fact be chosen to determine the amount of smoothing applied. Here, a Parzen density estimation
approach is adopted. The probability of a value z, according to an existing set of samples X, is

given by X
Pparzen(?) = X Z K(z,z) (6.14)

where K is some suitable kernel. In this work, a Gaussian kernel function is used:

K(z2) = ﬁ exp <—%(z _ a:)2> (6.15)

(27

2

The smoothing parameter is the variance of the Gaussian, ¢“, and is set to 0.5 times the

histogram bin width.

6.2.5.3 Peak Descent

The first characteristic considered is the peak descent. The descent of peak p, designated

Cdescent (D), is the fall in the value of the motion trace between the peak maximum and the
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peak’s end.
Cdescent = M(Cmaz (p)) - M(Crightmm (p)) (616)

It is expected that smaller decreases in the amount of motion in the sequence are less likely
to be significant. Peaks are classified on 10g(Cgescent (P)), as the range in descent values is very
high. Figure 6.6 illustrates the distributions of log peak descents for desired and undesired
peaks in several sequences. It can be seen from the figure that in each sequence, the distribution
for undesired peaks is different to that for desired peaks, having a greater propensity to lower
descent values. To capture the asymmetry of the distribution, it is modelled as a Gumbel
minimum distribution:

1 —(z—p) (z—p)
—F e ) (6.17)

6.2.5.4 Peak Symmetry

A second consideration is that a peak that descends only a small fraction of its ascent is unlikely
to correspond to a desired stop. Define the peak ascent to be the rise in the value of the motion

trace between the peak start and the maximum point,

(ascent = M((maﬂc (p)) - M(gleftmm(p)) (618)

Then the logarithm of the ratio of the peak descent to the peak ascent is a measure of the peak

Symmetry:

Csymmetry = log (Cdescent> (6.19)

Cascent
Figure 6.7 illustrates peak symmetries for desired and undesired peaks in several sequences. An
asymmetric distribution is chosen for the symmetry values, as a peak whose descent is greater
than its ascent may well correspond to a desired stop. Therefore, this characteristic is modelled

using the Gumbel maximum distribution.
f(z) = =e Toele P ) (6.20)

However, it is evident from the empirical distributions that several peaks have very skewed
asymmetries, saturating the histogram range. To accommodate this feature of the histogram,
it is modelled as a mixture distribution, where the Gumbel maximum distribution parame-
ters are found over the histogram excluding the final bin, and a third parameter is added, pq,

corresponding to the fraction of peaks having symmetry scores greater than or equal to 5.

6.2.5.5 Peak Relative Descent

A further characteristic is the magnitude of the descent of a peak, and hence the corresponding

stop, relative to the amount of motion at that point in the sequence. This is designated the
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Figure 6.6: Peak descent histograms: from top to bottom, the greenDancer, maleDancer, and

ballet? sequences. The estimated Gumbel minimum distribution is shown.
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Figure 6.7: Peak symmetry histograms: from top to bottom, the greenDancer, maleDancer, and

ballet? sequences. The estimated Gumbel maximum distribution is shown.
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peak relative descent:

Creldesc _ Cdescent (621)

M (Gmas)
Figure 6.8 illustrates the distribution of this value for several sequences. As this characteristic

is limited to the range 0... 1, the distribution of values is modelled as a Beta distribution.

B a:(p—l)(l — x)(q—l)
fle)= B(p,q)

Where the motion trace ascends suddenly from a low magnitude, Savitzky-Golay filtering

for0<zxz<1,pg>0 (6.22)

can introduce values below zero. This results in an artificially high relative descent score for
the preceding peak, particularly in the maleDancer and ballet2 sequences. To allow for this,
the Beta distribution is fit to the histogram excluding the final bin, and the fraction of peaks
having relative descent 1 is considered a third parameter of the distribution, designated p;. This
third parameter has little discriminatory power, and the chief benefit of the approach is more

accurate characterisation of the remainder of the histogram by the Beta distribution.

6.2.5.6 Peak Noise

Many spurious peaks are the result of excessive levels of noise in the motion trace. Therefore,
more confidence is associated with peaks in regions where the motion trace is relatively smooth.
To quantify this, the absolute difference between the smoothed motion trace M (n) and the
unfiltered M (n) is found for each point in the peak descent, and the median of these values

found.
Cnoise(p) =  median {\M(n) — EM)(n)])} (6.23)

N CmazSnSCdcsccnt
Higher median values correspond to noisier sections of the motion trace, and thus less reliable
peaks. Figure 6.9 illustrates that peaks with very high noise scores are more likely to be false

alarms. The distribution of this characteristic is modelled as a Gamma distribution.

fay= s (6.24)
)= ———— forxz> .
I'(v)

6.2.5.7 Summary

Four peak characteristics have been described, and their distributions for each of three sequences
presented. The peak shown in figure 6.4 illustrates these characteristics: this peak has an ascent
of 3617 motion pixels and a descent of 2687; the symmetry score is 0.74, and the relative descent
0.85. The median relative noise in the ascent region is 0.12, while in the descent region it is
0.04.

Figure 6.10 show the distributions obtained by combining the peaks for each of the three
sequences, and the least-squares fit for the parametric distributions shown. Figure 6.11 shows

the Parzen window fit to the same distributions. These combined distributions are then used
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Figure 6.8: Peak relative descent histograms: from top to bottom, the greenDancer, maleDancer,

and ballet? sequences. The estimated Beta distribution is shown.
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ballet?2 sequences. The estimated Gamma distribution is shown.
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for peak classification. The prior probability that a peak in the motion trace should correspond

to an edit point was found to be 0.507.

6.2.6 Peak Classification

The distributions derived above for peak characteristics can be used to build a classification
system distinguishing undesired peaks from desired peaks. Consider peak classification based
on only one of the characteristic distributions developed above, the peak descent. Let ((p) be a
random variable taking the value 1 when peak p is desired, and 0 otherwise, and gescent(p) is

the descent of the pth peak. Applying Bayes’ law gives

P(C(p) = 1’ IOg(Cdescent(p)) = 0) X P(log(Cdescent(p)) - 0’<descent(p) = 1)P(C(p) = 1) (625)

P(C(p) = 0’ log(Cdescent(p)) = 9) o8 P(log(Cdescent(p)) = 0’((])) = O)P(C(p) = O) (626)

where the normalising factor P(10g(Cgescent(P)) = @) has been disregarded, as it is common to
both expressions. The distributions P(10g((gescent(p)) = 0|¢(p) = 1) and P(log(Cgescent(p)) =
0|¢(p) = 0) are determined empirically, as described above; these are the likelihood distributions.
The prior distribution over P({(p)) can be determined from ground truth data. The peak is
then classified according to the class having higher posterior probability.

Class assignments are computed using the negative logarithm of the posterior, a quantity
referred to here as the energy associated with a particular classification. Peaks are assigned
to the class having lower energy, which is equivalent to the class having the higher posterior
probability. This avoids issues of numerical stability.

The usual approach to classification when multiple features are being combined is to assume
that the features are independent. The posterior probability for features Fi, Fb, F3 can then be

factorised:
P(C(p)|Fr, Fo, F3) o< P(F1|((p)) P(F2[C(p)) P(F3]C(p)) P(C(p)) (6.27)

This is equivalent to summing the energies for each feature. However, the four peak character-
istics described above are not necessarily independent, so this approach may be erroneous. To
investigate this, the classification system is also evaluated where each class energy is taken as

the minimum energy of the combined features, which corresponds to

P(C(p)|Fy, F, F3) o max {P(F1[C(p)), P(F2[C(p)), P(F5[C(p))} P(¢(p)) (6.28)

More sophisticated techniques, such as the use of Linear Discriminant Analysis (LDA) [92] to
form a weighted combination of each of the likelihood values, could also be applied.
6.2.6.1 Classification Performance

The main lobes of the distributions for each peak characteristic are generally overlapping, and

so classification of peaks is a difficult problem. A number of variations are possible within the
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Figure 6.10: Maximum Likelihood estimation of densities for peak statistics of the greenDancer,

maleDancer, and ballet2 sequences combined.
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Figure 6.11:

maleDancer, and ballet2 sequences combined.
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Characteristics [ ROC Area Characteristics | ROC Area Characteristics [ ROC Area

0001 0.78558 0001 0.776828 0001 0.791739
0010 0.567169 0010 0.60421 0010 0.636308
0100 0.689396 0100 0.689271 0100 0.698463
1000 0.531386 1000 0.545382 1000 0.550925
0011 0.786952 1101 0.781299 1111 0.806034
0001 0.78558 0001 0.776828 0001 0.791739

(a) Parametric, Method of Mo- (b) Parametric, Least Squares fit (c) Parzen fit

ments fit

Table 6.2: Peak classification performance as area under the ROC curve. In this table, com-
binations of peak characteristics are represented as a four-digit binary number whose digits,
from left to right, correspond to the Cnoises Creidescs Csymmetry, and 10g(Cgescent) characteristics.
For example, the 1101 classifier uses all characteristics except symmetry. The top four rows
present the result for each of the four characteristics in isolation. The next row shows the best
feature combination with factorised likelihood, as in equation 6.27, and the last shows the best

combination using 6.28.

classification system: the combination of peak characteristics to employ; whether to represent
the distributions parametrically or using Parzen density estimation; and whether to assume the
features are independent, as in equation 6.27, or to classify on the basis of the minimum feature
energy as in equation 6.28.

The standard measure of performance for classification systems is the area under the Receiver
Operating Characteristic (ROC) curve [92]. Table 6.2 shows the value of this metric for each
approach to classification. The best classifier uses Parzen density estimation and all four peak
characteristics, achieving an area under the ROC of 0.80. It is clear that most of the classification
power is generated by the (gescens characteristic, which used alone results in an area under the
ROC curve of 0.79.

6.2.7 Edit Point Location and Peak Descent Slope

Where peaks in the motion trace correspond to movements constituting a sudden stop in the
dance, it is not always the case that the respective edit point is exactly at a minimum in the
motion trace. In some sequences it is found that the edit point is more likely to in fact lie at
some intermediate point along the descent. For example, as described above, in the greenDancer
sequence the continued motion of the dancer’s clothing after the dancer’s stop results in edit
points being more likely to occur at some point between the peak maximum and its minimum
point.

Observation of edit point locations in the motion trace suggests that edit points are more
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Figure 6.12: Location of edit points against the descent slope of the associated peak. Negative
values indicated that the edit point is before the peak minimum. The black line indicates the

most likely location for a given slope.

likely to be close to the minimum point of a motion peaks with steeper descents. Figure 6.12
shows the distribution of edit point location relative to the peak minimum, versus peak descent
slope. The black line traversing the figures shows the offset from the peak minimum most
likely to correspond to the edit point for each slope value. As anticipated, the variance of the
distance from the edit points to the peak minimum is greatest for shallow peak descents. This
is particularly true of the greenDancer and maleDancer sequences. Figure 6.12 (d) shows this
distribution found over the three training sequences. Here it is clear that overall, the most likely
location for an edit point is about one frame before the peak minimum, for all peak descent

slopes.
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6.2.8 Edit point detection using peak classification

Recall that the classification procedure operates by assigning to each peak an energy, and as-
signing each peak to the class having the least energy. The difference between the two energies
is effectively a confidence measure pertaining to the classification. Thresholds on this confidence
measure can be used to bias the classification procedure towards higher precision, or higher re-
call; different values of the threshold correspond to different points on the ROC curve. Table 6.3
illustrates the application of this threshold.

Each line of results for each sequence is the outcome of edit point detection after peak
classification using the 1111 classifier (i.e. all four peak characteristics), with Parzen density
estimation and product-likelihood. Where the bias is log(0.5), a peak is only classified as desired
if (P(¢(p)) =1) > 2(P(¢(p) =0)). The second line corresponds to a bias of 0, and hence a peak
is classified as desired if (P({(p)) = 1) > (P(¢(p) = 0)). In the third line, peaks are classified as
undesired only where (P(¢(p)) = 0) > 2(P({(p) = 1)), and the last line has ‘infinite bias’—in
other words, all peaks are accepted. Increasing the bias value improves the recall at the expense
of precision.

In these analyses, the edit point associated with each peak is placed at the peak minimum.
While figures 6.5 and 6.12 illustrate that this is not always accurate, it remains about the best
compromise for edit point location, as evidenced by the low scores in table 6.3 in the M D,,.cdian
and M D,,cqn, measures.

For the maleDancer sequence, using peak classification introduces a considerable improve-
ment in performance, in the Mpgr sense. The best result achieved with classification is 0.75,
compared to 0.66 using the minima only (table 6.1). No improvement is achieved for the other
two sequences tested. However, using peak classification does allow each detected edit point
to be measured for confidence. To some extent, this confidence accords with the perceptual
strength of the edit point, as illustrated on the accompanying DVD. For these reasons, the peak
classification approach is key to edit point detection using a combination of traces, described at
the end of this chapter.

6.3 Edit Point Identification using the Foreground Bounding
Box

The bounding box of the local motion map, equivalent to the DFD bounding box introduced
in chapter 2, can be useful in the identification of some edit points. This is because often a
dance phrase culminates in a limb outstretched to its maximal extent. Furthermore, points in
the sequence where a dancer’s limbs are at maximal extent can be satisfying edit points even
where these points do not demarcate dance phrase transitions.

The foreground bounding box can be characterised by the position of each edge, and also

its width and height. Figure 6.13 shows each of these measures over a range of 81 frames in the
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bias |#H #FA #M| P R Mpgr|MDynedian MDuean M Doy
Sequence greenDancer
log(0.5)| 38 21 41 [0.64 0.48 0.56 2 1.32 8.60
log(1) | 52 39 27 [0.57 0.66 0.61 1 0.88 8.30
log(2) | 58 47 21 |0.55 0.73 0.64 1 0.93 7.54
00 66 108 13 [0.38 0.84 0.61 1 0.59 7.51
Sequence maleDancer
log(0.5)| 48 6 55 [0.89 0.47 0.68 1 1.08 5.48
log(1) | 66 10 37 |0.87 0.64 0.75 1 1.24 5.02
log(2) | 73 31 30 [0.70 0.71 0.71 1 0.99 5.74
00 89 114 14 |0.44 0.86 0.65 1 0.87 5.32
Sequence ballet2
log(0.5)| 88 38 31 [0.70 0.74 0.72 0 0.17 3.18
log(1) | 97 42 22 |0.70 0.82 0.76 0 0.07 3.30
log(2) {103 50 16 [0.67 0.87 0.77 0 0.15 3.11
00 111 54 8 ]0.67 0.93 0.80 0 0.04 3.49

Table 6.3: Motion trace minima as edit points: biased peak classification

greenDancer sequence. There are four edit points in the ground truth for this sequence; their
locations are shown by the vertical lines in the bounding box trace, and the edit point frames
themselves are shown above the plots. Each edit point is located at or near a local extremum
in the various bounding box traces.

The question of whether to use the location of the bounding box edges, as shown in figure 6.13
(a), or to use the derived measures of the bounding box width and height, shown in figure 6.13
(b), has been given some consideration. Clearly, the mutual information between these two
approaches is very high. The more intuitively appealing measure is the bounding box dimensions,
and the correspondence between edit points and trace extrema is more apparent here. However,
estimates of the foreground region bounding box are highly susceptible to even slight global
motion failure, and this can result in very high levels of noise in the bounding box trace. Where
this happens, it may be that only one side of the bounding box is affected by global motion
estimation failure. The opposite side, unaffected by this failure, may still be useful for edit point
identification. If the derived measures of bounding box dimension are used, on the other hand,
the ‘clean’ information in the uncorrupted side is lost. Therefore, all six traces are assessed for
their relevance to edit point detection. These are designated the bbyin,, bbmaz,, bbmin,, bbmaz,

bbwidth, and bbpeign; traces.
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Figure 6.13: Edit points and the foreground bounding box. The vertical blue lines correspond
to the four edit points shown. Some bounding box traces have been vertically shifted to improve

separation.

6.3.1 Filtering the bounding box traces

Detecting the foreground bounding box reliably depends on a static background, a localised
foreground region, and highly accurate global motion estimation. It is found that this last
factor in particular introduces a high level of impulsive noise into the bounding box traces.
While the refinement to global motion estimation presented in chapter 2 improves the quality
of the bounding box greatly, failures can still occur. These failures are often associated with

particularly difficult passages in the sequence, and so multiple temporally adjacent failures are
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common. Median filtering is an appropriate technique for mitigating the effect of Global Motion
Estimation (GME) failure on the traces.

The effect of the resulting noise can be seen in the top trace in figure 6.14. It can be seen
that in several regions, multiple adjacent values are lost. Dealing with these large areas of loss
requires a very large median filter. However, median filtering the whole signal with a large filter
would result in considerable loss of resolution. Therefore, an iterative scheme is employed where
the signal is repeatedly smoothed with progressively larger median filters.

Denote the trace before smoothing by ¢y3. The smoothing scheme is

" = medianFilter(;, 20 4 3) (6.29)

tiin ):{ ti"(n), |ti(n) —ti(n —1)] < 100

. (6.30)
ti(n), otherwise

Here medianFilter(S,n) denotes the result of median filtering a signal S with a median filter
of width n. Jumps in the trace value of more than 100 pixels are taken to be due to noise.
These noisy values are then replaced with values from the signal after median filtering, where
the median filter width is increased by two at each iteration. The algorithm is terminated when
there are no jumps greater than 100 in the trace, or when the median filter width is greater than
50.

The lower trace in figure 6.14 illustrates the results of the process, applied to the bb,y;,, trace
of the maleDancer sequence. This process is applied to all six bounding box traces. It is noted

here that noise detection based on comparison of the filtered signal with the original, i.e. using

by = { £(n), |ti(n) — £ (n)] < 100 (6.31)

ti(n), otherwise

might be considered a more intuitive scheme for noise reduction with median filtering. This

scheme was evaluated, and found to yield worse results for trace smoothing than 6.30.

6.3.2 Trace Extrema as Edit Points

To first establish whether bounding box trace extrema can be of any use in dance phrase de-
tection, the correspondence between all trace extrema and ground truth edit points is assessed.
Here every local minimum in the trace is taken as a candidate edit point. Minima detection in
each trace was assessed using each of the eight smoothing schemes described in section 6.2.2.4.
The results are presented in appendix C.1.1.

For these traces, the best smoothing scheme overall includes Savitzky-Golay filtering and
relative difference gating, but not median filtering of the sign of the first derivative. Performance
is lower than in the motion trace, with precision values between 0.45 and 0.55 and recall typically
in the range 0.7—0.8.
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Figure 6.14: Impulsive noise reduction in the bb,,;,, trace of the maleDancer sequence. The

upper figure shows the unfiltered values, while the lower plot shows the values after filtering.

6.3.3 Mutual redundancy between bounding box traces

The extent to which these traces are mutually redundant can be investigated by examining how
many ground truth edit point detections are unique to each one. This information is shown
in figure 6.15. The minima detected by each trace were detected, and the overlap between the
edit points thus detected was found. For example, figure 6.15 (a) shows that the bby;qy, trace
discovered 7 edit points that were not also discovered by either the bby,,, or bby,q., traces. 192
edit points were found common to all three traces, and 4 edit points were missed by all three.
A similar analysis has been applied to the false alarms detected by the bounding box traces.

It is apparent that each trace discovers some unique edit points. Furthermore, the false
alarms detected by each trace are moderately disjoint. It is therefore to be expected that some
combination of the traces should improve edit point detection performance. Edit point detection

through combined trace analysis is investigated in the final section of this chapter.

6.3.4 Peaks in the bounding box traces

The six bounding box measures are parsed into a succession of peaks in the same way as the
motion trace, described above. Figure 6.16 shows the distribution of peak-relative locations for
ground truth editpoints, aggregated over three sequences. The figure illustrates that in most
cases, the distribution is quite close to uniform—in other words, many edit points are not located
near extrema in the bounding box traces. There are moderate peaks at 0 and 1 in most of the
distributions, suggesting that between 10 and 20 percent of edit points are located at local
extrema. It may be speculated that these should be amongst the more visually arresting edit

points.
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Figure 6.15: Overlap in edit point detection and false alarms for the bounding box traces, over

the greenDancer, maleDancer, and ballet2 sequences.

(e) Bounding box trace matches

(f) Bounding box trace matches
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Figure 6.16: Peak-relative location distributions for edit points relative to peaks in the fore-
ground region bounding box traces, in the greenDancer, maleDancer, and ballet? sequences

combined.
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bbmin, 0.51895 | bbpmaz, 0.42776 | bbpiy, 0.51843
bbmaz, 0.49422| bbyiay 0.43799 | bbpeigne 0.41972

Table 6.4: Prior probability of a peak’s corresponding to an edit point for the bounding box

traces.

6.3.5 Classifying bounding box trace peaks

As in the case of the motion trace, classifying the peaks in each trace as either desired or
undesired should improve edit point detection. To this end, the distributions of the four peak
characteristics introduced previously have been examined for desired and undesired peaks in
each of the six traces. Here, a desired peak is one which contains a ground truth edit point near

its maximum point or either minimum, i.e. those peaks for which

H(Z)g(l) € [Cmax - 0-1<ascentwidth7 (max + 0-1<descentwidth]
\/EI(Z)Q(Z) € [Cleftmina Cleftmin + O-1<ascentwidth] (632)

\/EI(Z)Q(Z) S [Crightmm - O'1Cdescentwidtha Crightmm]

The same four peak characteristics are used as for the motion trace, with the variation that here
the peak noise characteristic is assessed over the entire peak range rather than over the descent
only. The distributions found are presented in appendix C.1.2. The prior probabilities for each
trace are shown in table 6.4.

The histograms show that the peak features have very similar distributions in both the
desired and undesired classes in all six bounding box traces. The similarity of the classes makes
distinguishing between them a challenging undertaking. Classification performance is presented
in table 6.5. As in table 6.2, the performance of classifiers using each characteristic singly is
presented, followed by the best combination of classifiers with product-likelihood, and the best
combination with best-likelihood. In all cases, Parzen density estimation is used to represent
the peak characteristic distributions.

In the case of most traces, the best scoring single characteristic is the peak symmetry, while
the noise and relative descent characteristics offer comparatively poor performance. The best
performance overall is achieved in the bb,;,, trace, with an area under the ROC curve of 0.77.

Performance of edit point detection using the bounding box traces after peak classification
is not assessed here. However, the traces and classification scores will be employed in a method

combining all traces for edit point detection, described in section 6.7.
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Characteristics | ROC Area Characteristics | ROC Area Characteristics | ROC Area
0001 0.656869 0001 0.657609 0001 0.633026
0010 0.670318 0010 0.619706 0010 0.670392
0100 0.581573 0100 0.611278 0100 0.643503
1000 0.492788 1000 0.524403 1000 0.526547
1111 0.777469 0011 0.694991 0011 0.734637
0010 0.670318 0001 0.657609 0010 0.670392

() bbymin, (b) bbmas, (c) bbmin,

Characteristics | ROC Area Characteristics | ROC Area Characteristics | ROC Area
0001 0.582663 0001 0.609192 0001 0.606779
0010 0.660786 0010 0.649232 0010 0.623221
0100 0.547858 0100 0.583862 0100 0.573015
1000 0.607486 1000 0.639986 1000 0.524777
1011 0.689373 1011 0.706823 1111 0.684614
0010 0.660786 0010 0.649232 0010 0.623221

(d) bbma, (e) bbuwidmn (f) bbheignt

Table 6.5: Peak classification performance for foreground bounding box traces: area under ROC
curve. Again, combinations of peak characteristics are represented as a four-digit binary number

whose digits, from left to right, correspond to Cpoise, Creidescs Csymmetry, and 10g(Caescent )-
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Figure 6.17: An edit point and the local motion vectors pertaining to it. The change of direction
in the dancer’s foot is clearly reflected in the vector field in that region. The vectors shown are

backward motion, at a blocksize of 17x17.

6.4 Motion Estimation Based Edit Point Identification

Local motion estimation, introduced in chapter 2, assigns a motion vector to each block in a
video frame, intended to indicate the position of the corresponding block in an adjacent frame.
This analysis yields considerable information regarding the motion content of the sequence,
which could be expected to be of use in identifying edit points. Figure 6.17 shows how a change
in direction of a dancer’s limb is reflected in the associated vector field.

Seven measures are extracted from the vector fields for each sequence. The first is the mean
vector magnitude, with gives an alternative measure of the amount of motion in each frame
(alternative to the motion trace, which uses motion detection). Where this measure descends
to a low value, a drop in the amount of motion in the sequence is expected—perhaps indicating
a sudden stop edit point in the sequence. This trace is designated vfy.

The relationship between the mean vector magnitude in a frame and the amount of motion
is clear. However, in some cases an individual component of the vector can be more informative
than the overall vector magnitude. For example, a dancer’s ‘bounce’ may involve a transition
from moderate-magnitude positive y vector components, to moderate-magnitude negative y
components. This change in direction need not be indicated in the vfy; trace, and so the mean
x and y components of the vector field are also considered, in traces designated vf, and vfy.

These changes of direction will appear as zero crossings in the traces. Points where either
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Figure 6.18: Taking the absolute value of vector component values converts zero crossings to
peak minima. The trace shown is the vf, trace over some 70 frames of the ballet2 sequence;
the upper trace is the original signal, and the lower shows the full-wave rectified version. The

vertical stems mark ground-truth edit points.

component declines to zero are also of interest, so the traces are calculated using the absolute
mean magnitude. Both such points of interest then correspond to peak endpoints, as in other
traces. Figure 6.18 illustrates this correspondence.

A second way to incorporate direction changes in the vector field is to employ the mean
vector angle; this trace is designated vfy. In the case of this trace, changes in the angle are of
interest, and so both maxima and minima can be considered candidate edit points.

Finally, because most of the vectors in a vector field for a sequence depicting a single dancer
will be background vectors, with a magnitude of zero, the variance of the vector field magnitude
as a whole is at a minimum when the local motion vectors are also close to zero. The three
magnitude traces, then, are supplemented by the variances of the same measures. The resulting
three traces are designated Ufoiﬂ Ufy2, and vfog, and correspond to the variance of the vector
magnitudes, vector x components, and vector y components, over the entire vector field. These

may be expected to offer more robust detection of sudden stops than the magnitude measures.
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6.4.1 Trace extrema as edit points

As a first measure of the usefulness of the vector field traces in edit point identification, the
performance of vector field trace extrema as edit point detectors is assessed. For the vfy trace,
both trace minima and maxima are considered; in all other cases, trace minima only are se-
lected. Each of the eight smoothing methods was evaluated, and the results are presented in
appendix C.2.1. The best smoothing scheme overall uses Savitzky-Golay smoothing, relative
difference gating, and median filtering of the sign of the first derivative. All the vector field

traces achieve mean precision / recall performance in the 0.60 to 0.70 range.

6.4.2 Mutual redundancy between vector field traces

A second initial assessment is to determine the overlap amongst the seven traces derived from
the motion vector field. This is assessed in a similar manner to the bounding box traces. The
results are shown in figure 6.19. It can be seen that each trace discovers some unique edit points,

and that the false alarm sites are moderately disjoint.

6.4.3 Peaks in the vector field traces

The traces are smoothed and parsed into peaks in the same way as the motion trace, described
above. To confirm the intuitions presented above, the location of ground truth edit points
relative to peaks in the traces was investigated. The results are presented in figure 6.20. The
top row shows that edit points are indeed associated with minima in the vfy, vfy, and vf,
traces. Figure 6.20 (d) shows that for the vfy trace, edit points are most likely to be found at
changepoints in the signal—i.e. peak maxima and minima. Lastly, in the bottom three plots, it
is observed that in the vfai{, Ufy2, and vfag traces, edit points are more likely to occur further

away from peak maxima.

6.4.4 Classifying vector field trace peaks

Peak classification is also attempted for each of the seven traces. The distributions found for
the peak characteristics are shown in appendix C.2.2. For the vfys, vf;, and vf, traces, a peak

is classified as desired if there is an edit point near the right minimum, i.e. if

H(Z)g(l) € [Crightmm - 0-1Cdescentwidtha Crightmm + 3] (633)

In the case of the vfy trace, the criterion is

H(Z)g(l) € [Cmax - 0-1<ascentwidth7 (max + 0-1<descentwidth]
/\El(z)g(z) € [Cleftmina Cleftmin + O-1<ascentwidth] (634)

/\El(z)g(z) S [Crightmm - O'1<descentwidtha Crightmm]
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Figure 6.19: Overlap in edit point detection and false alarms for vector field traces, over the

greenDancer, maleDancer, and ballet? sequences.
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Figure 6.20: Peak-relative locations of edit points in the vector field traces, for the greenDancer,

maleDancer, and ballet? sequences combined.

Figures 6.20 (e)-(g) show that in the case of the vj;,?w, Ufy2, and vj;,g traces, the probability of
the peak-relative location of an edit point is quite well correlated with increasing distance from
the peak maximum. For these traces, then, a peak that contains an edit point anywhere within
its support is considered desired, and edit-point detection biased away from the maxima of these
peaks in the section on Combined Edit Point Detection, below. Classification performance is

shown in table 6.7. The highest performance is achieved by the vector field variance traces.
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ufy 028539 | uf, 0.22364] vf, 0.25411
uf,2, 0.58606 | vf,2 0.55983 | vf,2 0.57971
ufy | 0.3557

Table 6.6: Prior probabilities of a peak’s corresponding to an edit point for the vector field
traces.

Characteristics | ROC Area Characteristics | ROC Area Characteristics | ROC Area
0001 0.681342 0001 0.675285 0001 0.67234
0010 0.586037 0010 0.58881 0010 0.598405
0100 0.581115 0100 0.606326 0100 0.603507
1000 0.66962 1000 0.592294 1000 0.584796
1011 0.771903 0111 0.705253 1111 0.698717
0001 0.681342 0001 0.675285 0001 0.67234

(a) vfm (b) vfe (c) ufy

Characteristics | ROC Area

0001 0.635128

0010 0.64456

0100 0.590275

1000 0.544593

1011 0.721124

0010 0.64456

(d) vfe
Characteristics | ROC Area Characteristics | ROC Area Characteristics | ROC Area
0001 0.793779 0001 0.765647 0001 0.765816
0010 0.651292 0010 0.641531 0010 0.651764
0100 0.745439 0100 0.712049 0100 0.683894
1000 0.613479 1000 0.60677 1000 0.613533
1111 0.853028 1111 0.823331 1111 0.807915
0001 0.793779 0001 0.765647 0001 0.765816
(e) vfpz, () vfo2 (2) vfo2

Table 6.7: Peak Classification Performance: Area Under ROC Curve
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6.5 Motion Blur and Edit Point Identification

A prominent feature of many images corresponding to edit points is that they exhibit much less
motion blur than images depicting dance phrases in execution. Assessing the level of motion
blur in each frame, then, could be a powerful aid to the detection of edit points. The frames in
figure 6.22 illustrate this phenomenon; the dancer’s foot is most sharply resolved in the middle
image, which is suitable as an edit point separating the leg’s ascent from its descent.

Assessing images for blur has been an active area research in digital image processing for
some decades. Most work focuses on blur due to defects in the imaging system, such as when
the objective lens is out of focus [326], or on blur arising due to camera motion [62,234]. Fewer
systems targeting motion blur have been described.

For this work, relatively simplistic approaches involving the AC energy of the Fourier spec-
trum have been employed. The specific approach has to be tailored to the sequence in question,

depending on the process chain involved in its preparation.

6.5.1 Motion blur in interlaced footage

Video cameras typically produce interlaced footage. Each frame of the video is in fact two
separate half-height fields, interlaced so that one field supplies the even lines, and the other the
odd lines. Exposure times for the individual fields are typically about 1/250 to 1/1000 of a
second, and so motion blur within each field is rare. However, the fields are sampled at twice
the frame rate, so the fields in one frame are separated by 1/50 or 1/60 of a second. Fast motion
is then clearly visible in the disparity between fields, introducing interlacing artifacts. When the
video is played back, these interlacing artifacts are perceived as a kind of motion blur.

Detecting stop frames in interlaced footage, then, can be approached by seeking frames in
which the effects of interlacing are locally least visible. As the fields are interleaved line-by-
line, the disparities due to interlacing are perceived as lines in the image at very high vertical
frequencies. Figure 6.21 shows how the Fourier energy is distributed over horizontal (figure 6.21
(a)) and vertical (figure 6.21 (b)) frequencies, for three frames. For all three frames, high energy
in vertical frequencies near 7 radians / sample is apparent, corresponding to interlacing artifacts.
Furthermore, this energy is least for the desired middle frame, corresponding to the green trace.

To quantify this effect, the relative energy at high vertical frequencies is defined. This is
given by

Zm:O...g;y:%...w FEn((L', y)
freqmterlace (n) - Z - FEn(a:,y)

(6.35)
m:O...%yzO

where FE,(x,y) is the Fourier spectrum magnitude at spatial frequency (x,y) for frame n.
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Figure 6.21: Sharp frame detection for interlaced footage. Frames 152, 154, and 156 from the

ballet? sequence are shown at top; frame 154 is the desired sharpest image.
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6.5.2 Motion blur in non-interlaced footage

Film cameras operate at 24 frames per second, and typically use exposure times of 1/50 to 1,/200.
This can be sufficiently slow for motion blur to be visible in the resulting frames. However, when
material shot on film is to converted to NTSC video, temporal resampling from 24 fps to 60
fields per second is necessary. The resampling scheme used is called 3:2 pulldown [164], and
it results in video in which interlacing artifacts are introduced to certain frames. In straight
3:2 pulldown conversion, two out of every five frames will be interlaced. However, variations
in the transfer and encoding scheme can mean that this pattern is not always observed. The
greenDancer and maleDancer sequences, for example, show evidence of having been converted
from film, where slight interlacing artifacts and higher noise values are apparent in every third
frame.

The approach adopted is to assess the image sharpness by examining the energy at non-zero
spatial frequencies in the Fourier spectrum of each frame. This results in the fregsqrp trace,
found by

fregsharp (n) = Z FE,(z,y) (6.36)

2£0VY#0

However, some smoothing of this trace may be necessary depending on the production chain of
the video in question. An approach appropriate to the greenDancer and maleDancer sequences
is illustrated here. Figure 6.22 (a) shows the energy of the Fourier spectrum of three frames,
summed along columns. This shows how the energy is distributed among horizontal frequencies;
the green trace corresponds to the middle frame (containing the desired edit point), and the
peak at 7/8 can be assumed to correspond to the increased resolution due to the stop in the
region of the shoe. Note that the red trace is slightly higher than the other two at all frequencies.
Figure 6.22 (b) shows how Fourier energy is distributed over vertical frequencies. The peaks at 7
in the vertical energy spectrum common to all three traces suggest that some interlacing artifacts
are still present. Again, the red trace has more energy at all frequencies, but particularly at
the Nyquist rate, characteristic of interlacing artifacts. In this sequence, every third frame has
markedly higher high frequency energy, resulting in the noise pattern shown in figure 6.22 (c).
Every third value is a spike, including frame 292. To discount the effects of this phenomenon,
the affected values are replaced with the average value of their two neighbours. The underlying
trend in the AC energy of the video frames is then visible. The edit point shown is at frame
290, and this is the highest value in the smoothed trace—in other words, this frame is detected

as a notably sharp image.

6.5.3 Extrema detection in the motion blur traces

To assess the correspondence of edit points to extrema in the motion blur traces, edit point
detection was assessed for each trace. The maxima of the freqs,, trace are used as candidate

edit points, while for the fregnieriace trace the minima are used. Minima detection was assessed
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Figure 6.22: Sharp frame detection for 3:2 pulldown footage. Frames 288, 290, and 292 from

the greenDancer sequence are shown at top; frame 290 is the desired sharpest image.
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Figure 6.23: Edit point location relative to peaks in the motion blur traces.

for each of the eight smoothing schemes described; the results for edit point detection using
these minima are presented in appendix C.3.1. For the fregnqrp trace, no smoothing gives the
best performance. Savitzky-Golay filtering is applied to the freginteriace trace. In both cases,

recall is good but precision is poor, at 0.24 and 0.19 for the two traces.

6.5.4 Peaks in the motion blur traces

As in the case of the other traces, the freginteriace and freggnarp traces can be parsed into peaks
and these peaks used to isolate trace features proposed for edit points. Edit points are expected
to occur at minima in the case of the freginieriace trace and maxima in the case of the fregsarp
trace. Figure 6.23 shows that these are the most probable peak-relative locations for edit points
in these traces.

To establish the ground truth for purposes of peak classification, a peak ((p) in the freginseriace

trace is designated as desired if

H(Z)g(l) S [Cmaaa + O-QCdescentwidtha Crightmm + 3] (637)

For the fregsnqrp trace, a peak is desired if

H(Z)g(l) € [Cmax - 0-1Cascentwidth7 Cmaaa + 0-1Cdescentwidth] (638)

6.5.5 Classifying motion blur peaks

Classification of the peaks in the motion blur traces is undertaken using the same four peak

characteristics described previously. The distributions found are shown in C.3.2. The prior
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Characteristics | ROC Area Characteristics | ROC Area
00 0001 0.609678 0001 0.576721
0010 0.520234 0010 0.532287
0100 0.615032 0100 0.545496
1000 0.367559 1000 0.598621
1111 0.669115 1000 0.598621
0101 0.615032 1000 0.598621
(a) freginteriace (b) freqsharp

Table 6.8: Peak classification performance for the motion blur traces.

probability that a peak in the freggpqrp trace corresponds to an edit point was found to be 0.076.
For the fregnieriace trace, the prior probability was 0.3319.

Table 6.8 presents the results of peak classification performance for the freguieriace and
fregsharp traces. Again, it is apparent that classifying peaks in these traces is a challenging
undertaking. The motion blur traces are incorporated in the combined method approach to edit

point detection, described below.

6.6 The Video Soundtrack and Edit Point Identification

The audio track of videos can be a rich source of information regarding edit points in the video.
For example, in video of dance accompanied by music, beat locations in the music could be
expected to be temporally close to dance phrase transitions. Also, many percussive motions
give rise to a simultaneous sound—the stamp of a dancer’s foot, for example.

The audio analysis undertaken here is a simple characterisation of the audio energy associated
with each frame. This is found by the mean of the samples associated with each frame after
full-wave rectification of the waveform. Let w(i) represent the orig