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Abstract

The interaction between fluid damping controlled instability and acoustic resonance

in normal triangular tube arrays has been investigated by experimental means. Tests

are repeated for three array geometries with a single flexible cylinder free to oscillate

in the cross flow direction only. The duct acoustics are excited with speakers placed

adjacent to the tube array to artificially replicate flow-induced resonance at the second

acoustic mode. It is seen that the imposed acoustic field showed no apparent effect

on the vibration amplitude for the pitch ratio of 1.58. It is thought that the jet

switching observed in pitch ratio of 1.58 obscured the effect of acoustic resonance if it

existed. For P/d=1.32, acoustic resonance modifies fluidelastic vibration amplitude,

increasing the critical flow velocity and delaying the onset of fluidelastic instability.

In a post stable regime, a drop in the amplitude of tube vibration is observed with

increasing sound pressure level of the acoustic resonance. In terms of the system

dynamics, it is shown that acoustic resonance adds positive damping thus reducing

the negative fluid damping. To assess the interaction between fluidelastic instability

and acoustic resonance for P/d=1.32, two possibilities are examined based on the

framework proposed by Price & Paidoussis [1]. The first examines the effect of acoustic

resonance on the static fluid forces on a stationary cylinder and the second the effect

of acoustic resonance on the time delay. It is found that at a sound pressure level

of ∼ 140dB, acoustic resonance has no significant effect on the static fluid forces.

It is also observed that the assumption that fluid forces scale with dynamic head is

incorrect. A non-dimensional relationship is found for the drag force but no simple

parameterisation is found for the lift force. The effect of acoustic resonance on the

time delay between the tube motion and a point in the flow close to the instrumented
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cylinder is measured and for some positions acoustic resonance is seen to modify the

time delay. It is proposed that acoustic streaming is affecting the time delay process

resulting in the drop in fluidelastic vibration amplitude observed.
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Chapter 1

Introduction

Arrays of cylinders are common in many engineering structures such as offshore struc-

tures (e.g. oil rigs), chimney stacks, bundles of electrical cables or under water piping.

They are also found in power generation applications. Many of these power generation

plants have as a major component a large heat exchanger which consists of a bank of

circular tubes subject to a cross flow. It is the process of the fluid flowing across the

tubes that causes the tubes to vibrate. Flow induced vibration (FIV) is broadly recog-

nised under four phenomena; turbulent buffeting, vortex shedding, acoustic resonance

and fluidelastic instability (FEI). The first three are reasonably well understood, how-

ever, this is not the case for fluidelastic instability. Furthermore, it is has the potential

to be the most destructive of the phenomena. Indeed, fluidelastic instability can de-

stroy a unit within a few hundred hours of operation. Paidoussis [8] reported on a

large number of cases where catastrophic failures of tube bundles occurred as a result

of fluidelastic instability and to a lesser extent the other flow induced vibration mech-

anisms. The cost of repairs and the technical and financial implications of shutdowns

are of concern to the industry. In the case of nuclear plants, such failures can result

in a health and environmental hazard.

As the physical mechanism underlying fluidelastic instability is not well under-

stood, the design procedures to avoid fluidelastic instability are based almost entirely

on empirical data. As a consequence, and because of the potentially catastrophic

nature of fluidelastic instability, the design guidelines tend to be overly conservative.

However with rising costs of fuels and increased competition there is a drive for reduc-

ing costs. One such approach might be to operate at higher flow velocities, improving
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the heat transfer process and hence, improving efficiency, but this requires reducing

the overly conservative operating conditions. In nuclear plants similar approaches are

also utilised to use resources more efficiently explicitly to prolonging the useful life

of nuclear material by a technique known as stretch out. A paper [9] published by

Electricity de France at a recent conference detailed the technique. The approach

involves reducing the coolant temperature by reducing the fluid pressure but there are

operating constraints on the maximum allowable changes in pressure so the coolant

flow velocity has also to be increased thus increasing the possibility of fluidelastic

instability.

Such is the destructive potential of fluidelastic instability that a considerable re-

search effort into understanding the phenomenon has been undertaken in the past 40

years. Although the phenomenon is still not well understood some progress in un-

derstanding it has been made. It has been shown that there are two mechanisms:

fluid damping controlled instability and fluid stiffness controlled instability. It is also

apparent that there is a time delay between tube motion and the resulting fluid forces

but this has yet to be measured directly. However, there is uncertainty as to whether

the mechanism of fluidelastic instability is distinct or whether it could interact with

vortex shedding or acoustic resonance. There is evidence in the literature that there

might be an interaction between the phenomena. Meskell & Fitzpatrick [10] and

Price & Zahn [3] have reported on apparent interaction between fluidelastic instability

and acoustic resonance. However, the interaction was not quantified nor was the cou-

pling mechanism between the phenomena explored. One of the aims of this study is to

investigate the interaction between fluidelastic instability and acoustic resonance. The

first step is to quantify the effect and then examine the interaction between the two

phenomena. In addition, an attempt to measure the time delay will be undertaken in

this study, in the context of exploring the interaction between fluidelastic instability

and acoustic resonance.

It is envisaged that a better understanding of the underlying phenomenon will facil-

itate improved predictive models leading to less conservative designs. It is also thought

that if the interaction between fluidelastic instability and acoustic resonance is under-

stood and if a similar finding to the apparent interaction observed by Meskell & Fitz-
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patrick [10] occurs, that is, acoustic resonance suppressing fluidelastic instability. The

interaction could be used as a suppression technique to facilitate stretch out without

the onset of fluidelastic instability and/or higher flow velocities enhancing the heat

transfer process.

1.1 Objectives & Overview

Although there has been a considerable research effort in area of fluidelastic instability

in the last 40 years there are still many unknowns in this subject. The work described

in this study will concentrate on a number of objectives:

• To quantify the interaction between fluidelastic instability and acoustic reso-

nance. This is achieved by artificially exciting acoustic resonance and comparing

fluidelastic tube vibration with and without acoustic resonance. In addition, the

effect on the fluidelastic stability threshold and fluid damping is also quantified.

• To explore the interaction between fluidelastic instability and acoustic resonance.

This is achieved by examining the effect acoustic resonance on the magnitude of

the static fluid forces and the phase dependency. The latter requires the time

delay to be measured. Measuring the time delay in itself will further contribute

to the understanding of fluid damping controlled instability.

In attempting to achieve these principal objectives a number of smaller objectives have

also been completed:

1. A comprehensive set of experimental data has been measured to be used for

validation of models.

2. A better understanding of the force generation mechanism and quantification of

the effect of static displacement of a single cylinder in a rigid normal triangular

array.

3. An investigation into the relationship between the fluid forces (lift and drag) and

dynamic head.
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This thesis is organised as follows.

Chapter two reviews the state of the art, identifying deficiencies in the literature

and expanding on the ones that will be addressed in this document.

The objectives contained in this document will be attempted to be satisfied by

experimental means. Chapter three details the experimental facility as well as the

instrumentation used in this study.

Chapter four quantifies the interaction between fluidelastic instability and acoustic

resonance. Quantifying the effect on the tube vibration amplitude, threshold velocity

and the system dynamics (damping).

Chapter five presents some baseline tests for the mean pressure distribution and

forces on a cylinder in the third row of three normal triangular arrays. These tests are

also discussed in conjunction with the fluidelastic instability behaviour.

Chapter six explores two possibilities for the interaction between the two phenom-

ena. The first possibility examines the effect of acoustic resonance on the magnitude of

the static fluid forces. The second possibility examines the effect on acoustic resonance

on the phase dependency of the fluidelastic force i.e. the effect of acoustic resonance

on the time delay between tube motion and the resultant flow reorganisation close to

the measurement cylinder (essentially the fluid forces).

Chapter seven summaries the various observations of the study and presents the

conclusions drawn. Further work which might be explored in the future is also dis-

cussed.
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Chapter 2

State of the Art of FIV in Tube
Arrays

Flow induced vibrations (FIV) in tube arrays have been subject to much research in the

past. There are a number of reviews of the state of art in the literature [11, 12]. Flow

induced vibrations is broadly recognised under four phenomena; turbulent buffeting,

vortex shedding, acoustic resonance and fluidelastic instability. The first three of

the phenomena are reasonably well understood, however, the latter is not so well

understood and it is potentially the most destructive of the phenomena. This was

only too well illustrated by Paidoussis [8] who reported on the practical cases of the

destructive nature of flow induced vibrations and in particular the destructive nature

of fluidelastic instability. Such are the implications of flow induced vibrations, they are

now considered as a design criterion of nuclear steam generators and heat exchangers.

The tubes arrays studied in the literature vary in pitch and geometry. There

are four standard tube array geometries. A schematic of the geometries is shown in

Fig. 2.1. Normal square and rotated (parallel) triangular arrays are often referred to

as in-line arrays while normal triangular and rotated square are often referred to as

staggered arrays. This study is exclusively concerned with normal triangular arrays.

However, all array configurations will be considered in the literature survey. Primary

focus will be on single phase flow as two phase flow introduces further complexity

into an already complex problem. The literature review will examine the phenomena

independently and in the case of acoustic resonance, artificial excitation will also be

examined. In addition, the apparent interaction between fluidelastic instability and
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2.1. Turbulent Buffeting

vortex shedding and acoustic resonance will also be discussed.

Figure 2.1: Standard Tube Array Geometries

2.1 Turbulent Buffeting

High levels of broadband turbulence are inevitable in tube arrays. In fact it may

be desirable for enhanced heat transfer. The turbulence in the flow causes random

pressure fluctuations on the cylinders. Hence, each cylinder experiences a random

buffeting force and this occurs at all flow velocities. The magnitude of the force is

usually small. Nonetheless, because the mechanism is always active, it is important to

consider it when designing against fretting wear at the supports and fatigue damage.

Longer term, both fretting and fatigue damage will lead to tube failures. Although

the mechanism is well understood, prediction of vibration amplitude is poor. The

amplitude response is known to scale with some power of velocity. In Paidoussis’ [11]

review; Gibert et al. and Nicolet et al. reported that the vibration amplitude scales

approximately with U3/2 when cylinder response is primarily due to turbulent buffet-

ing. Price et al. [13] observed a linear relationship whereas Pettigrew & Gorman [14]

documented the velocity squared for liquid flow. In the review of Weaver & Fitz-

patrick [12], the authors suggest that a more complex dependency on flow velocity,

other than the generally assumed dynamic head, is required to fit the data. One

reason for the scatter in available data is because all geometries and pitch ratios are
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compared together. This approach would seem to be incorrect as the flow in in-line

arrays produces flow lanes and this is not the case for staggered arrays. Furthermore,

the flow in both staggered and in-line arrays for differing pitch ratios has also been

shown to be different. This can be observed when the pressure distribution around a

cylinder within an array is examined. Savkar [15] reported that the fluid forces are

dependent on the blockage and/or pitch ratio. The differences in flow for different

array geometries and the affect of blockage might help explain why such differences in

the amplitude response were reported.

It is well known that the first two rows of a tube array are not typical of a cylinder

deep inside a tube array. This is because the flow is evolving in the first two rows.

Deeper in the tube array, the tube array acts like a grid and generates high levels

of turbulence resulting in a pattern of its own. Such findings have been reported by

Zukauskas [16], Zdravkovich & Namork [17, 18] and others. Zdravkovich & Namork [17]

reported that the interstitial flow for a staggered array (PT = 1.375; PL = 1.1875)

changed up to the third row and then remained almost unchanged. Grover & Weaver [19]

using a rotated triangular array with air cross flow and P/d=1.375 reported that tur-

bulence intensity reached a maximum by the fifth row. Thereafter small changes in

the flow occurred. They suggested that five or six tube rows should be adequate

for simulating a tube bank [20]. Weaver & El-Kashlan [21] reported similarly. Fitz-

patrick & Donaldson [22] reported on the row depth effects in an in-line tube array

(PT = 1.75; PL = 1.97) on turbulence and acoustic resonance. The magnitude of tur-

bulence intensity was approximately constant beyond the seventh row. Chen & Jen-

drzejzcyk [23] reported that local turbulence levels reach a steady state once the flow

has passed three to four rows in an in-line array (P/d=1.75). Fitzpatrick et al. [24] re-

port on three twenty row in-line arrays (PL = 1.97, 1.73 and 1.73; PT = 1.97, 1.97 and

1.73) where it was found that turbulence structures were still evolving at the fifteenth

row but turbulence intensity had generally settled by the tenth row. The differences

in the literature regarding the development of turbulence levels throughout the arrays

results from the variety of geometries and pitches reported as well as the flow charac-

teristics associated with the Reynolds numbers tested. However, it is clear that in-line

and sparser staggered arrays need more rows to develop stationary turbulence.
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The effect of incident turbulence on the flow has also been widely reported. Batham [25]

found that the presence of a turbulent incident flow had a large effect on the pressure

distributions around the widely spaced tubes (P/d=2), but no effect on the narrowly

spaced (P/d=1.25) tubes (both where in-line arrays). Price & Paidoussis [26] reported

similarly. There are also a few studies that report on the effect of incident turbulence

on fluidelastic instability. Southworth & Zdravkovich [27] reported on the vibration

response of a single and double row of fully flexible cylinders in-line for a number of

pitch ratios. The fluidelastic response was completely changed resulting in an increased

critical velocity. Reports by Frankin & Soper [28] are in contraction, with a decrease

in critical velocity observed. Chen & Jendrzejczyk [29] indicated that turbulence may

either increase or decrease the critical flow velocity for fluidelastic instability, depend-

ing on the turbulence characteristics. Rottmann & Popp [30] reported that upstream

turbulence stabilised multiple flexible cylinders in the upstream rows of the rotated

triangular array (P/d=1.375). This was also found to be the case for a single flexible

cylinder in a previous study by Romberg & Popp [31]. Price et al. [13, 26] found that

turbulence generators had little effect on the onset of fluidelastic instability for rotated

square (P/d=2.12) and in-line (P/d=1.5) arrays, respectively. The differences in the

reported literature are due to the position of the tube being investigated. In the stud-

ies of Price et al. the tube position was deep in the array where the other researchers

referred to a cylinder in the front rows or upstream rows which are know not be rep-

resentative of a cylinder deep within a tube array and as pointed out by Price et al.,

the interstitial flow characteristics beyond the first few rows are governed by the array

itself, independent of upstream conditions. Theoretically, Rzentkowski & Lever [32]

reported that turbulence changes the limit cycle amplitude not the stability threshold

(for the case where there was no hysteresis in the response curve).
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2.2 Vortex Shedding

Flow periodicity in the absence of structural motion may result in self-controlled vi-

brations. The problem can be treated as a simple forced response if the frequency

of the flow periodicity is well removed from the natural frequencies of the structure.

However, if the flow periodicity coincides with the natural frequency of the structure,

resonance occurs. If the response amplitude becomes large, fluid excitation is con-

trolled by the structural displacement. The velocity range this occurs at is known as

the “lock-in” region.

Pre 1960’s, vortex shedding was assumed to be the major cause of vibration in heat

exchangers. Owen [33] argued that discrete vortex shedding could not occur in closely

packed arrays and attributes the excitation to a peak in the turbulence spectrum. The

work of Fitzpatrick & Donaldson [22] supported Owen’s argument. They observed two

Strouhal numbers up to the fourth row of an in-line array (PT = 1.75; PL = 1.97).

Thereafter differences in the flow structure were observed and the single peak becomes

more broadband similar to that suggested by Owen.

Flow visualisation studies were carried out to resolve the issue regarding vortex

shedding in tube arrays. Weaver & Abd Rabbo [34] published a flow visualization

study of water flow in a fully flexible in-line array (P/d =1.5), which shows periodic

vortex shedding. This was somewhat inconclusive as the tubes were vibrating and the

photos were not very clear. Several other flow visualisation studies followed for various

array geometries. Abd-Rabbo & Weaver [35] observed laminar vortex formation at low

Reynolds number for a rotated square array (P/d=1.41). Price et al. [36, 37] showed

photographs of vortex shedding in a rotate square (P/d=1.5) and parallel triangu-

lar (P/d=1.375) arrays, respectively. Weaver et al. [38] presented images of vortex

shedding in rotated square arrays (P/d=1.21-1.83). More recently, the images of Oen-

goren & Ziada [5, 39] who investigated both in-line and staggered array configurations

subject to water cross flow best illustrate vortex shedding in tube arrays.

The predication of vortex shedding by means of Strouhal number charts has also

received considerable attention. However, there was much confusion and scatter in the

available data. So much so, in their review in 1988, Weaver & Fitzpatrick [12] dismiss
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much of the earlier Strouhal data as unreliable as it was obtained from either tube

resonance or acoustic resonance data. They cite this as the reason for the confusion

in the stability maps of Fitz-Hugh [40] and Chen [41]. In the interim, much research

has been done in relation to Strouhal number charts for vortex shedding for all of

the standard array geometries. Weaver et al. [42] measured Strouhal numbers in

eight arrays at off resonance conditions with two different pitch ratios for all the four

standard arrays. Their results along with the data from the literature were plotted for

each of the four standard array configurations. Some scatter in the data exists and they

suggest that this was due to some Strouhal number data being obtained at resonance.

The scatter in the data was also attributed to multiple Strouhal numbers, measurement

position dependency and a Reynolds number dependency for some arrays as previously

reported by Fitzpatrick et al. [24]. Since then, many researchers have reported multiple

Strouhal numbers for all standard array configurations and the measurement position

dependency of Strouhal periodicities for example Weaver et al. [38].

Many researchers focused on one standard array geometry and proceeded to get

a better understand of vortex shedding in that geometry. Removing resonant data,

Weaver et al. [38] showed that Strouhal number data in the literature for rotated

square arrays fit reasonably well into two curves as a function of pitch ratio. Their

experimental results indicated that the higher Strouhal number was due to vortex

shedding in the front row and a lower Strouhal number for vortex shedding in the

inner rows the difference in frequency resulting from the difference in local flow and

both were caused by wake instability.

Oengoren & Ziada [5, 6, 43, 44] (Buhlmann [6]) have conducted a number of stud-

ies on in-line arrays suggesting that there are three different flow instabilities which

can generate flow periodicities in in-line arrays; jet instability, wake instability and

shear-layer instability (see Appendix A for explanations). For large spacing arrays,

both jet and wake instabilities can occur but not simultaneously. Only the wake in-

stability can excite acoustic resonance. For intermediate spacing arrays jet instability

occurs. Acoustic resonance can be excited by shear-layer instability but this mode was

suppressed at off-resonance conditions. Jet instability dominates for smaller spacing

arrays. Again, shear-layer instability was the excitation source of acoustic resonance.
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Strouhal number charts for vortex shedding and acoustic resonance are presented in

Ziada [45] where the former uses tube diameter and the latter uses streamwise tube

spacing as the length scale to be used in the Strouhal number formulation.

Ziada & Oengoren [7] produced Strouhal number charts for parallel triangular ar-

rays (P/d=1.2-4.2) as a function of pitch ratio. Three Strouhal numbers were observed.

The highest frequency term which was also the weakest component was found at low

Reynolds numbers in closely packed arrays and is caused by shear-layer instability.

A Strouhal number associated with vortex shedding from the front row was also ob-

served. The strongest but lowest frequency component was attributed to alternate

vortex shedding in the wakes of inner rows and was found to dominate at all rows for

higher Reynolds numbers. It was also found that natural vortex shedding phenomenon

did not excite acoustic resonance.

Polak & Weaver [46] and Oengoren & Ziada [39] studied vortex shedding phenom-

enon in normal triangular arrays and observed two different Strouhal numbers that

originated from different vortex shedding frequencies in the front and inner rows. Both

studies provide charts and empirical formulae to predict Strouhal numbers and cite

that the flow structure was dominated by wake instability. The former conducted

work on nine pitch ratios (P/d=1.14-2.67). It was observed that the lower frequency

component was caused by the second row alternate vortex shedding. The higher fre-

quency velocity fluctuations result from alternating vortex shedding in the first row

tubes. The smallest pitch ratio (P/d=1.14) was the only exception where no high fre-

quency component was observed. The Strouhal number charts and formulae presented

in [46] originate from Weaver et al. [38] and Zukauskas & Katinas [47]. Oengoren &

Ziada [48] reported on a range of pitch ratio (P/d=1.61, 2.08and3.41). They observed

three Strouhal numbers. A high frequency component was observed from alternate

vortex shedding in the front rows and a lower frequency component from alternate

vortex shedding in the rear rows. The third component resulted from a non-linear

interaction between the higher and lower shedding frequency components. The lower

frequency component at the rear rows was very weak in the compact arrays. It in-

creased in strength when the spacing was increased, until it dominated the whole

array at large spacing ratios, where the high frequency component reduces. It was

11



2.2. Vortex Shedding

also observed that Strouhal number charts based on vortex shedding can be used to

predict against acoustic resonance. Figure 2.2 presents Strouhal number charts con-

structed from empirical formulae of Weaver et al. [38], Zukauskas & Katinas [47] and

Oengoren & Ziada [48].
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Figure 2.2: Strouhal Number Charts

12



2.3. Acoustic Resonance

2.3 Acoustic Resonance

Acoustic resonance may occur in tube arrays subject to gas cross flow and is char-

acterised by an acoustic standing wave. The wave propagation is normal to the axes

of the tube and the flow direction. Noise levels in excess of 160dB (2000Pa 4.84m/s)

have been reported. In addition to the nuisance caused by the excessive noise, such

high sound pressure levels can cause structural damage. The frequency of acoustic

resonance in a duct containing a tube array was dependent on the number of tubes,

as outlined by Parker [49]. Parker refers to an effective speed of sound. In effect, the

speed of sound does not change, the distance travelled changes as the sound wave has

to travel around the tubes, resulting in the change in frequency.

Most of the papers in the literature that refer specifically to acoustic resonance are re-

lated to acoustic damping and the prediction and suppression of the acoustic resonance.

Several damping criteria can be found in the literature to predict whether acoustic

resonance will materialise or not. Chen [50] proposed a formula for the damping pa-

rameter of in-line arrays which included: Strouhal numbers, pitch ratio and Reynolds

number. Fitpatrick [51] pointed out that Chens criterion does not allow for geomet-

ric scaling. Fitzpatrick [52] re-worked Grotz & Arnold’s criterion [53] and accounted

for geometric scaling by introducing the Reynolds number alongside Mach number

at resonance and acoustic Strouhal number. A revised version of this criterion was

presented by Fitzpatrick & Donaldson [54] improving the data correlation and reduc-

ing the scatter in the data. These criteria [50, 52, 54] were only for in-line arrays.

Ziada et al. [6] outlined an alternative criterion which included a critical Reynolds

number (uses critical gap velocity). Like the other criterion, the geometry of the array

was included by introducing the pitch ratio. The last parameter was a scaling para-

meter which accounted for the effective speed of sound (Parker [49]) in the form of a

Reynolds number. Using the parameters outlined, two relationships were developed.

The first for in-line arrays, plots the criterion against square of longitudinal pitch. The

second was for staggered arrays and was plot against L/d where L was the distance

between first and third rows and d was tube diameter. The criterion correlated the

data reasonably well, however, some scatter still remains.
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There has also been much confusion about the excitation source of acoustic reso-

nance. Various researchers include turbulence, vortex shedding and jet instability and

combinations of the above. It is now apparent that the different excitation mechanisms

result from the different geometries. For staggered arrays, like normal triangular and

rotated square arrays it has been shown that vortices generated by wake instability

dominate the flow (Weaver et al. [38]; Polak & Weaver [46]; Oengoren & Ziada [48]).

For normal triangular arrays, Oengoren & Ziada [48] showed that acoustic resonance

was excited by the natural flow periodicities. Hence, Strouhal number charts associated

with off-resonant conditions can be used to predict acoustic resonance. In contrast,

Ziada & Oengoren [44] has shown for in-line arrays, vortices are generated by jet in-

stability and grow in size and strength with row depth and increasing velocity. Using

available data from the literature, Fitzpatrick [52] examined the techniques used to

predict resonance in in-line arrays. It was concluded that acoustic standing waves can

be excited by a combination of vortex shedding, turbulent buffeting and broadband

turbulence. Ziada & Oengoren [7] suggest that the acoustic excitation mechanism for

parallel triangular arrays was similar to in-line arrays citing alternate vortex shedding

caused by shear-layer instability as the excitation mechanism. It is suggested that the

Strouhal numbers charts based on natural flow periodicities at off-resonant conditions

cannot be used to predict the occurrence of acoustic resonance. Ziada et al. [6] at-

tributes this result to the symmetric shedding of vortices at off resonance conditions

not being able to excite transverse acoustic modes.

It has also been reported that acoustic resonance can influence flow periodicities.

Price & Zahn [3] reported that acoustic resonance organised the flow through a seven

row normal triangular tube array with pitch ratio of 1.375. Normally no flow period-

icities where found beyond the second row. Coincident with the acoustic resonance

(∼ 120dB downstream of array), flow periodicities where observed throughout the

whole array at a frequency equal to that of the acoustic tone. A number of researchers

have also used artificially excited acoustic resonance to influence vortex shedding and

these will be discussed below.

It is also important to note that other flow induced vibration phenomena can be

modelled using five or six rows of tubes but this in not the case for acoustic resonance.
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Fitzpatrick & Donaldson [55] reported on acoustic resonance in four in-line arrays

(PL = 1.97 1.97 1.5 and 1.3; PT = 1.73 1.97 1.73 and 1.9). For each configuration the

number of rows where increased from one to in excess of twenty rows. It was found

that row depth effects were considerable with the acoustic Strouhal number increasing

with increasing row depth. After fifteen rows the Strouhal number settles but this was

geometry dependent. The acoustic response of a tube array of less than ten rows was

different to that of a tube array of more than fifteen rows. Tube pitch ratio has also

to be considered. Hence, row depth effects are considerable when studying acoustic

resonance and this must considered when relating controlled experiments to that of

real world problems.

A number of techniques to suppress acoustic resonance have also been developed.

These included, increasing acoustic damping by introducing a liner or using Helmholtz

resonators; other researchers have removed cylinders; the most common approach ap-

pears to be the introduction of baffles. A comprehensive list of the suppression tech-

niques used can be found in [12, 56]. More recently, work conducted by Eisinger and

his colleagues examine the optimum location of baffles. Eisinger & Sullivan [57] show

that the decision to locate baffles on the basis of frequency was erroneous. They report

that baffles do not change the dominant acoustic frequencies. The introduction of baf-

fles distorts the acoustic waves increasing the resistance of the tube array to acoustic

resonance. A general procedure on the effectiveness of baffles based on acoustic par-

ticle velocity mode shape functions was also presented. However, Feenstra et al. [58]

reported that precise spacing of inserted double baffles was not required to suppress

the first and second acoustic modes.

2.3.1 Forced Acoustics

Forced acoustics has been widely used in ducts for various bluff bodies e.g. plates,

single tubes or tubes in tandem (for example [59, 60, 61, 62, 63, 64, 65]) as well as two

studies on tube arrays [66, 67]. There are also papers reporting an apparent interaction

between fluidelastic instability and acoustic resonance, these will be discussed later

(section 2.4.5) as the resonance was naturally occurring.

Forced acoustics can be applied using two approaches; internal and external excita-
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tion. External forced acoustics is more widely used and influences the wake. Sound is

applied in the region of the bluff body. Internal forced acoustics influences the bound-

ary layer of the bluff body and sound is introduced on the surface of the bluff body.

The current investigation employs external acoustic excitation and as such, will now

focus on this method of excitation. With external acoustic excitation the speakers

are generally located at the test section wall. Kacker & Hill [65] reported the impor-

tance of a break in continuity of the wall through which sound may be introduced as

without it, it was not possible to establish a standing acoustic wave in a wind tunnel

using an external sound source. The break in continuity of the wall causes it own

problems. Therefore, caution must be taken with the setup to avoid separation along

the tunnel walls. For example, Hall et al. [62] opening in the wind tunnel consisted

of perforating the side wall. Welsh et al. [68] removed part of the side walls and have

speakers on both sides connected in anti-phase. They placed a thin gauze over the

removed section of the side walls to prevent adverse flow effects. Positioning of the

speakers is important as noted by Welsh et al. [68]. The acoustic amplitude reduces

exponentially both upstream and downstream requiring speakers to be located close

to the bluff body. Furthermore, the positioning of sinks and sources are important in

relation to the position of the speaker as trying to excite acoustic resonance with the

speakers located at a sink will make excitation difficult. If the sound pressure level is

high enough the sound is fedback onto the separating shear layers causing the vortices

to be shed at the resonant sound frequency in a coherent manner. The sound pressure

level depends on a balance between the rate of conversion from flow energy to acoustic

energy and the rate of dissipation. The rate of dissipation is dependent on the number

of tubes; hence, the sound pressure level is dependent on the number of tubes in the

array. Also, when one sets out to excite the natural acoustic modes of the duct, it is

only natural that the correct excitation frequency must be obtained. With an array of

cylinders in the duct, the duct behaves differently as mentioned previously, Parker [49]

who referred to an effective speed of sound in a tube array. This effectively means a

change in the duct natural frequencies. So, to get the natural frequencies of the duct,

the measurement must be made in the array. Downstream of the array, the measured

frequency is higher than in the array but lower than an empty duct. All of the above
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need be considered for acoustic excitation.

For an in-line array (P/d=1.73) Fitzpatrick et al. [67] reported that the mean

pressure on the surface of a cylinders (thirteenth row) changed substantially when

acoustic excitation at the first acoustic mode was applied. At non-resonant conditions,

velocity gradients across the array were uniform, however, severe velocity gradients

were observed during resonance. For a single cylinder, Peterka & Richardson [59]

suggested that the velocity induced by the sound influenced vortex shedding not the

sound pressure level. Similar findings where reported by Kacker & Hill [65, 69] for a

single cylinder and two cylinders and Blevins [60] for a single cylinder. Feenstra et al.

[66] reported on acoustic induced vibration for a flexible tube located in the middle

row a of a fifteen row array (PL = 1.083; PT = 1.57) at three transverse positions.

Acoustic pressure gradient caused tubes to vibrate in the absence of flow. A review

of the available literature reveals that forced acoustics have been used in tube arrays

but not in conjunction with fluidelastic instability.
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2.4. Fluidelastic Instability

2.4 Fluidelastic Instability

Fluidelastic instability produces large amplitude self-excited vibrations at the natural

frequency of the structure. It is now recognised as the excitation mechanism with the

greatest potential for causing damage in tube arrays. However, this was not always the

case. Prior to the 1960s the prevailing thinking was that vortex shedding was the main

cause of the vibration problems. It wasn’t until 1962 when Roberts described a mech-

anism of self-excited oscillations (fluidelastic instability) in his PhD thesis. The study

was not published until 1966 [70] when it appeared as a monograph. Roberts reported

on the vibration of a single and a double row of cylinders and observed tube motions

in the in-flow direction with adjacent tubes moving out of phase. The mechanism he

described was jet-switching, where the jet between adjacent tubes switched direction

in phase with the tube motions. Roberts realised there was a hysteresis in the cylinder

drag. Hence, to sustain tube motion, the energy imparted to the structure had to be

greater than the energy dissipated by the structure. Roberts suggests that jet switch-

ing may occur only if reduced critical velocity, Uc/fnd, is approximately greater than

60. Roberts extended his analysis to develop an expression to calculate the flow veloc-

ity to initiate fluidelastic instability. He combined the traditional aeroelastic damping

parameter (mass-damping parameter) and critical reduced flow velocity.

Agreement between theory and Roberts own experimental data was quite good.

However, Price [71] reported that agreement between Roberts theory and with results

available from the literature was poor. This was the case as Roberts assumed cylinder

motion to be in the in-flow direction while most of the compared data report motion

mainly normal to the in-flow direction. Hence, the analysis was limited to predicting

vibration in the in-flow direction.

In 1970, Connors [72] proposed a FEI mechanism independent of jet switching for

a single row of tubes with P/d=1.41. Connors predicted the reduced velocity with a

similar form to that of Roberts expression:

Uc/fnd = Kδ0.5
r (2.1)

where K is dependent on the array geometry. Eqn. 2.1 became widely accepted. Many
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researchers have reported various forms of K and the power term in an effort to find the

“correct” values and are discussed in Price [73]. Price also discusses the deficiencies

of the Connors’ model and concludes that emphasis on improving the modelling of

fluidelastic instability rather than attempting to modify Connors equation to fit the

data should be pursued. It now recognised that the Connors equation has been misused

in situations for which it was not intended, notably for tube arrays where it has been

shown to underestimate the critical velocity, and for high enough Uc/fnd where jet

switching may occur.

In the following decade, the mechanism of fluidelastic instability reinforced its po-

sition as the flow induced vibration mechanism with the potential to be the most de-

structive mechanism. This was further supported by work published by Paidoussis [8]

who reported on practical cases of tube failures due flow induced vibrations. He revis-

ited cases where originally vortex shedding was deemed to have caused the damage,

and after reassessing the evidence, attributed the damage to fluidelastic instability. In

1981 Paidoussis [11] reviewed the state of the art of flow induced vibration in tube

arrays and concluded that the field was in considerable disarray. Similar conclusions

were also formed in the review of Weaver & Fitzpatrick [12].

2.4.1 Mechanisms

In the 1980s research concentrated on obtaining a better understanding of mechanisms

underlying fluidelastic instability using both theoretical and experimental approaches

with the ultimate goal of better predictive capabilities. The first major break through

was that of Chen [74, 75] in 1983. Chen’s model employed empirical fluid force coeffi-

cients obtained from data provided by Tanaka & Takahara [76]. Agreement between

the model and the experimental stability curves was quiet good. This was not sur-

prising as experimentally obtained fluid force coefficients were employed as empirical

input into the model. Unfortunately, these coefficients are highly dependent on array

type and pitch, hence, the results can not be generalised. Nonetheless, Chen’s analysis

gave an insight into the fluidelastic mechanism. Chen [74, 75] examined the instabil-

ity mechanisms and the stability criteria based on previously developed mathematical

model. His analysis resulted in the formulation of two instability mechanisms; fluid
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damping controlled instability and fluid stiffness controlled instability. The existence

of two distinct mechanisms was also later shown by Price & Paidoussis [1]. Experi-

mental validation of the existence of two vibration mechanisms did not occur until the

early 90s. Price & Kuran [77] using a rotated square array with P/d = 2.12 reported

a minimum of three flexible cylinders for fluidelastic instability to occur. This demon-

strated the existence of the fluid stiffness controlled mechanism which requires fluid

coupling between adjacent cylinders (multiple degrees of freedom). Prior to this, the

available experimental data was inconclusive, neither proving nor disproving the exis-

tence of the two mechanisms. This predicament occurred as much of the experimental

data was for a single flexible cylinder, proving the existence of one mechanism, fluid

damping controlled instability.

Chen [74, 75] and Price & Paidoussis [1] reported that fluidelastic instability was

controlled by damping controlled instability mechanism for low mass damping para-

meter, mδ/ρd2, and stiffness controlled for large mass damping parameter. Price &

Paidoussis [1] found a boundary between the two regimes at approximately mδ/ρd2 = 300.

For mδ/ρd2 < 300, one flexible cylinder will go unstable at approximately the same

onset velocity as a multiple flexible cylinder setup. This was later shown experimen-

tally by Lever and Weaver [78]. Both Chen and Price & Paidoussis reported damping

controlled instability was as a result of a negative fluid damping causing instability.

This was verified experimentally by Weaver & El-Kashman [79] who reported on par-

allel triangular array P/d=1.375 and air as the working fluid. Weaver & El-Kashman

found that the fluid damping increased linearly until 50% of the stability threshold

then approached zero at the onset of instability. Granger et al. [80] also reported

similar findings for a normal square array with a pitch ratio of 1.44. The phenomenon

was characterised by a decreasing cross-flow frequency and a near zero damping ratio.

The fluid damping increased first and then decreased towards zero where the onset of

fluidelastic instability occurs. More recently, Meskell & Fitzpatrick [10] measured both

the linear and non-linear cubic damping and stiffness terms for a normal triangular

array with P/d = 1.32 and air cross-flow where it was found that amplitude of the

limit cycle amplitude was determined by the non-linear damping term.

In the late 1980s Paidoussis & Price [81] attempted to further their findings from a
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previous paper [1] and shed light on the mechanisms underlying fluidelastic instability

of cylinder arrays in cross flow by means of quasi-steady fluid dynamic framework.

They provided links to well-known classical galloping and two degree of freedom wake

flutter mechanisms. Furthermore, they reported that classical galloping differs to that

(fluid damping controlled mechanism) observed in cylinder arrays and the latter was

dependent on the time delay associated with the wake flow adjusting to tube motion.

2.4.2 Time Delay

In addition to the existence of two types of fluidelastic instability mechanisms, it has

been suggested that there is a time delay between tube motion and the resulting fluid

forces at the root of fluid damping controlled instability. The exact nature of the time

delay is unclear and has yet to be measured directly. However, there is some evidence

that it exists; Granger & Paidoussis [82] indirectly measured the cause of the time de-

lay using experimental data and a quasi-unsteady model. Abd-Rabbo & Weaver [35]

conducted a flow visualisation on rotated square array with pitch ratio 1.41 and water

cross-flow. For a single flexible cylinder flow visualisation “revealed clear flow redis-

tribution with a phase lag” because of fluid inertia. Numerous studies have measured

fluid stiffness and damping from which the time delay could be inferred e.g. Tanaka

& Takahara [76] and Chen & Srikantiah [83].

The governing equation of motion for a single degree freedom cylinder, oscillating

in the direction normal to the mean flow only, is;

Msÿ + csẏ + ksy = E(y, ẏ, ÿ, U) (2.2)

where E is the dynamic fluidelastic force acting on the tube. Eqn. 2.2 assumes the

effects of vortex shedding and turbulent buffeting are ignored, which is not strictly

correct but sufficient for a simplified approach. However, the detail of the function

on the right is still unknown, however there are a number of models available in

the literature for it (review of models [71]). Many of the models decompose E into

a number of fluid force coefficients. However, all assume that the fluid forces are

dependent on the dynamic head. Hence, the fluidelastic behaviour of a single flexible

cylinder could be characterised by two fluid forces (lift and drag). It is also apparent
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that the inclusion of a time delay or phase lag is a prerequisite for the models developed,

as without the time delay the phenomenon cannot be modelled. The uncertainty as to

the origin of the time delay is borne out by the different physical mechanisms for the

inclusion of a time delay or phase lag in the models to predict fluidelastic instability

as will be discussed below.

Andjelic & Popp [84] have shown the importance of including a time delay in the

model and compared their experimental data with the “wavy wall channel model”

developed by Lever & Weaver [85]. The time delay proposed in the Lever & Weaver

model was obtained from various geometric length scales associated with the array

geometry. However, Andjelic & Popp found that the fit between this approach and

their experimental data was poor. By modifying the time delay, they obtained a much

better fit.

The importance of a time delay as well as the different physical interpretations for

the inclusion of a time delay have been discussed above. The next section examines

how the time delay associated with fluid damping controlled instability results in a

negative fluid damping leading to instability. In this example a quasi-steady analysis1

is used. The model consists of a single flexible cylinder free to oscillate in the lift

direction (y) only with all other cylinders in the array been rigid. The equation of

motion of the cylinder in the y direction is

Msÿ + csẏ + ksy = Fy (2.3)

Figure 2.3: Schematic of array and velocity vector diagram

1Quasi-steady assumption: the forces acting on the oscillating cylinder are approximately the
same as the static forces at each point of the cycle of oscillation, provided that the approach velocity
is properly adjusted to take into account the velocity of the cylinder.
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Fy may be written as

Fy =
1

2
ρU2

r ld (CLcos(−α)− CDsin(−α)) (2.4)

where Ur and α are

U2
r = [U2 + ẏ2]1/2 − α = sin−1(ẏ/Ur)

CL and CD are the static lift and drag coefficients, respectively. Assuming small

motions about the equilibrium position the linearised form is

CL = CL0 +

(
∂CL

∂y

)
y (2.5)

and similarly for CD. Substituting CL and CD with their linearised form and simpli-

fying the expression results in

Fy =
1

2
ρU2ld

[(
∂CL

∂y

)
y − CD0

(
ẏ

U

)]
(2.6)

Eqn. 2.6 describes the static fluid force on the cylinder. However, this expression does

not include the time delay between tube motion and fluid dynamic forces generated

thereby. As discussed above there are a number of different physical mechanisms for

the inclusion of a time delay. In this example the time delay used is the expression

used in Price & Paidoussis [1] ∆t = µd/U (µ ∼ 1). Taking the time delay into account

and assuming harmonic oscillations, Eqn. 2.6 maybe written as

Fy =
1

2
ρU2ld

[
e−iω∆t

(
∂CL

∂y

)
y − CD0

(
ẏ

U

)]
(2.7)

Combining Eqn. 2.3 and 2.7 yields;

ÿ +

[(
δ

π

)
+

1

2

(
ρUld

m

)
CD0

]
ẏ +

[
ω2

0 −
1

2

(
ρU2ld

m

)(
∂CL

∂y

)
e−iω∆t

]
y = 0 (2.8)

where ω0 is the natural frequency (radians) of the cylinder and δ is the logarithmic

decrement.

Introducing the time delay term ∆t = µd/U [1], the fluid damping term is now found

to be proportional to

[(
δ

π

)
ω0ω +

1

2

(
ρUld

m

)
ωCD0 +

1

2

(
ρU2ld

m

)(
∂CL

∂y

)
sin

(
µωd

U

)]
(2.9)
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If the fluid damping becomes negative, tube oscillations will be amplified. Hence, fluid

damping controlled instability occurs.

At the stability threshold U = Uc, fluid damping is equal to zero and if µωd/U is

small, the following expression is formed

Uc

f0d
=

[
4

−CD0 − µd(∂CL/∂y)

]
mδ

ρd2
(2.10)

Fluidelastic instability will occur if

−CD0 − µd(∂CL/∂y) > 0 (2.11)

CD0 is generally greater than zero. This implies that instability will only arise if

∂CL/∂y is sufficiently large and negative. It is also clear that if there was no time

delay, fluidelastic instability would not occur which is in agreement with the literature.

2.4.3 Models

The models discussed in this section use some form of a time delay between tube

motion and the resulting fluid forces to be included in their models. This section was

not intended to be a compendium of available theoretical models. A comprehensive

review of the available theoretical models was conducted by Price [71].

Two earlier models that included a time delay are those of Lever & Weaver [78, 85]

and Price & Paidoussis [1]. However, the different authors did not use the same phys-

ical arguments to justify the time delay. Both models simulated fluidelastic instability

for a single flexible tube vibrating in the lift direction within an otherwise rigid tube

array subject to cross-flow. The justification for the use of a single flexible cylinder in

an array of rigid cylinders was based on the experiments of Lever & Weaver [78] 2.

Lever & Weavers model does not require static fluid force coefficient data to be

measured. Instead, assumptions are made regarding the flow around a single flexi-

ble cylinder. The flow is represented by one dimensional and inviscid flow channel

2They reported that the essential features of fluidelastic instability in a tube array may be inves-
tigated using a single flexible tube in an otherwise fixed array. This was valid for low mass damping
parameter and in such cases one flexible cylinder will go unstable at approximately the same velocity
as an array of flexible cylinders. They postulated that the motion of the neighbouring tubes was not
fundamental to the underlying mechanism which produces the instability. They also reported that
a small change in the natural frequency of adjacent tubes in an array can have significant effects on
the fluidelastic stability threshold.
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streamtubes either side of the cylinder. The form of the streamtube was determined

from experimental observation and was fixed for each array geometry. The unsteady

fluid forces are caused by a change in the streamtube area as the cylinder vibrates.

For attached flow the redistribution in streamtube area is in-phase with the cylin-

der motion. However, the flow downstream of the cylinder lags behind the cylinder

because of fluid inertia, producing a phase-lag between the cylinder motion and the

resulting pressure forces on the cylinder. Flow visualisation presented by Abd-Rabbo

& Weaver’ [35] support the hypothesis of flow redistribution caused by fluid inertia

behind the cylinder as the cause of the time delay. Andjelic et al. [86] showed that

qualitative agreement of the Lever & Weaver model with experimental data was rea-

sonable but the quantitative agreement was poor. Andjelic et al. showed that the poor

agreement was related to the time delay as modifying it resulted in better agreement.

They also suggested the theory requires modification so that it can be used in closely

packed normal triangular tube arrays and supported their findings with flow visuali-

sation images. Yetisir & Weaver [87] modified the Lever & Weaver model introducing

a decay function in the area perturbation. The introduction of the decay function was

considered to be an improvement in the ability of the model to represent the underly-

ing mechanisms of fluidelastic instability, caused a deterioration in agreement between

the theory and experiments. They also agreed with the findings of Andjelic et al.

reiterating the importance of the time delay and the poor agreement of the model for

complex geometry. Rzentkowski & Lever [32] utilised the non-linearised one dimen-

sional flow equations from the Lever & Weaver model and noted that the formulation

of a new theory for a more rigorous treatment of the underlying fluid dynamics was

beyond the scope of their study. Hence, the validity of such a model is questionable

especially for more complex geometries where one dimensional flow is unreasonable.

Price & Paidoussis [1] in contrast makes use of a quasi-steady analysis with a fre-

quency dependent term. The fluid forces (lift and drag) are assumed to be identical

to those measured with the tube at rest in the same location. Although the analysis

was quasi-steady, the resulting fluid damping and stiffness matrices contain frequency

dependent terms resulting from the introduction of a time delay effect. In their pre-

vious study [88] the frequency dependent term was obtained by following a similar
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approach to Den Hartog’s for his analysis of galloping instability of overhead power

transmission lines. The derivation of the frequency dependent term was not strictly

correct and the authors now favoured a different approach. The formulation of the

time delay was based on the work of Simpson & Fowler [89]. The origin of the time

delay was twofold. Firstly, there was a time delay between the fluid particles leaving

an upstream row of cylinders and arriving at a downstream row cylinders. Secondly,

a flow retardation effect as the flow approaches the cylinder. Because the flow slows

down as it approaches the cylinder, the resulting fluid flow arrives at the cylinder at

some interval of time later than it would have done had the flow velocity been constant.

Quantitative agreement between the model and experimental data was poor, under-

estimating the experimental results by approximately 50% but qualitative agreement

was better with the shape of the curves for critical velocity showing better agreement.

Both Lever & Weaver and Price & Paidoussis’ analysis observed multiple stability

regions. It is doubtful that they will occur in practice due to non-linear effects and this

would be in agreement with the literature in general. However, careful experiments

by Chen & Jendrzejczyk [90] (tube row), Andjelic et al. [86] and Parrondo et al. [91]

have shown multiple stability boundaries exist. More recently Paidoussis et al. [92]

questioned the existence of multiple stability regions. Their argument was only in

“highly specialised and precisely controlled experiments” could multiple instability

regions occur like the experimental studies cited above. It was concluded that multiple

boundaries can exist but in reality they are extremely rare. So, the general consensus

is that the lowest critical velocity should be used, since once the tube goes unstable it

will remain so due to non-linearities.

Granger & Paidoussis [82] proposed an improvement to quasi-steady analysis util-

ising the concept of a memory effect (time delay function) in the flow rather than a

constant time lag used in previous models. When compared to experimental data the

model proved to be an improvement on the earlier models. This was not surprising

as the model required more experimentally determined coefficients. However, the for-

mulation of the time delay between structural motion and the fluid force was quite

interesting. The memory effect was as a result of the change in velocity of the cylinder.

This change generates a thin layer of vortices on the cylinder surface, diffused to the
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boundary layer and convected downstream by the mean flow. This process leads to

an unsteady perturbation in the velocity and the pressure fields in the region around

the cylinder, which decays continuously with time as the vortices are convected down-

stream. Eventually a new steady state is reached when motion-induced vorticity has

been transported sufficiently far from the cylinder, so that its influence on the pressure

at the cylinder surface becomes negligible. The resulting transient lift coefficient was

similar to that obtained by Wagner (Wagner Function) using unsteady aerodynamic

theory for aerofoils. However, the apparent success of the model does not give any

better indication to the underlying mechanisms in fluidelastic instability. Meskell [93]

used the hypothesis proposed by Granger & Paidoussis [82] that damping controlled

fluidelastic instability was due to the generation and convection of vorticity. A simple

wake model was used as the basis of the work combined with the memory function

proposed by Granger & Paidoussis [82]. The distinct difference was that Meskell [93]

determined the memory function without empirical data and in doing so strengthened

the case for vorticity transport as the primary mechanism for damping controlled flu-

idelastic instability. Today, Granger & Paidoussis’ work is widely accepted as the

most comprehensive justification for the inclusion of a time delay (memory effect) to-

date. However, this is merely conjectural as the time delay associated with fluidelastic

instability has yet to be measured directly.

2.4.4 Forces

It is clear from the previous sections that the key to obtaining good simulations of the

vibrational behaviour of cylinder arrays lies in the ability to predict the unsteady fluid

forces related to the tube motion.

There are two methods used to measure motion dependent fluid forces: the direct

and indirect method. The indirect method calculates the forces from measured tube

responses such as accelerations and displacements as the calculation of fluid force

coefficients directly is difficult. Granger et al. [80] used an indirect method to obtain

the fluidelastic forces. Using a time domain signal processing method developed in

Granger [94], fluidelastic forces are derived from the estimated modal characteristics

of the fluid-structure system from structural response data without any excitation
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measurement. Meskell & Fitzpatrick [10] used a similar approach, the main differences

being the post processing and the range of the recorded amplitude response. The

former measured small perturbations from the equilibrium position, while the latter

used large vibration amplitude not close to the equilibrium position.

Several researchers have measured the motion dependent fluid forces directly. Teh

& Goyder [95] measured fluid forces on a single flexible cylinder which was free to

oscillate in the lift or drag direction in a rigid tube array. These fluid forces were

related to the oscillating tube only; therefore, they can be used for fluid damping

controlled instability only. Chen et al. [96] measured all fluid force coefficients in

a tube row. In earlier studies only a portion of motion dependent fluid forces were

measured. For a long time the most extensive measurements of motion dependent

fluid forces were by Tanaka & Takahara [76], and Tanaka et al. [97], who measured

motion-dependent fluid forces for tube rows and square arrays with pitch ratios of

1.33 and 1.42. More recently, Chen & Srikantiah [83] experimentally measured fluid

forces for a tube row with P/d=1.35, normal triangular array with P/d=1.5 and two

in-line arrays with P/d=1.42 and 1.46. Motion dependent fluid forces are measured

directly and the method was based on unsteady flow theory. Forces were measured

on a minimum of four tubes simultaneously. Added mass, fluid damping and stiffness

terms were obtained. Then the response of the tube array could be predicted based

on unsteady flow theory.

Measured fluid forces can be used in predictive models. Although it is accepted that

an analysis based on the unsteady fluid dynamic forces (for example Tanaka & Taka-

hara [76]) will probably be more accurate than one of a quasi-steady approach. How-

ever using such a framework and/or obtaining unsteady fluid forces whilst it gives

information on the fluid stiffness and damping, and added mass, it does not eluci-

date the underlying fluid dynamics in fluidelastic instability. It is generally accepted

that a simplified model such as a quasi-steady analysis with fewer empirical inputs is

more favourable in the helping to understand the physical origin of the mechanism.

Such models as explained above, measure the fluid force coefficients on a static body

and used them in a dynamic analysis. Hence, the fluidelastic behaviour of a single

flexible cylinder could be characterised by two fluid forces (lift and drag) with all
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models assuming that the fluid forces are dependent on the dynamic head. One ap-

proach used, that of Price & Paidoussis [1], used a quasi-steady fluidelastic analysis

for a single flexible cylinder in a rigid array. Although the analysis was quasi-steady,

it includes a frequency dependent term which arises due to flow retardation around

the front stagnation region of the cylinder. This model was improved upon by the

quasi-unsteady model of Granger & Paidoussis [82] which accounts for the unsteady

mechanisms by the inclusion of a memory effect of the flow rather than a fixed time

delay. However, the pressure field was the same as that of the quasi-steady analysis

and the unsteadiness is due to the flow reorganisation. The model requires the fluid

force acting on the cylinder when the tube is displaced. There are two approaches for

measuring forces directly. The most common approach utilised is force measurement

using load cell type arrangements. The other less common approach is measurement

of surface pressure on the cylinder and integrating over the surface of the cylinder to

calculate the fluid forces. The former method does not give an indication into the

force generation mechanism whereas the latter does.

Achenbach [98], Zdravkovich & Namork [17, 99], Zukauskas [16] are some of the

papers in the literature that have measured the surface pressure measurements in

staggered arrays. However, the pressure distributions were measured for only a few

Reynolds numbers. Although in some of the papers the pressure distribution are pre-

sented for a number of rows. Furthermore, to the best of the authors knowledge,

there appears to be no comprehensive studies of the pressure field around a statically

displaced cylinder within a tube array available. Batham [25] presented a limited

study of the pressure distribution around a statically displaced cylinder in an array.

The configuration used was a ten row in-line array with pitch ratio of 1.25. It was

reported that the first three rows were displaced by 0.25mm which corresponds 0.5%

tube displacement and that the pressure distribution “completely changed”. However

no detailed results were presented. In addition, it was reported the mean pressure

distribution around a tube in the seventh row was insensitive to small movements in

the tube itself. Zdravkovich & Namork [99] moved the second row of a three row array.

This resulted in the geometry changing from a staggered arrangement at one extreme

to an in-line arrangement at the other extreme with two intermediate geometries in
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between. No data was presented on the displacement of a single cylinder within an oth-

erwise fixed array. There is literature available for the static displacements of cylinders

within an array and groups of cylinders where the fluid force coefficients are measured

using a load cell e.g. Price & Paidoussis [100]. Romberg & Popp [101] measured the

fluid forces (obtained using surface pressure measurements) on a oscillating cylinder

in a rigid array. Measurements were also made along the length of the cylinder. No

pressure distributions were presented; however, the results presented show when the

tube was unstable due to fluid damping controlled instability, the correlation length

of the forces acting on the length of the cylinder increases to large values. While there

is information on the fluid force coefficients in the literature, there is no indication of

the force generation mechanism. Furthermore, there appears to be no comprehensive

studies of the pressure field around a statically displaced cylinder within a tube array

available. In addition, all models assume that the fluid force coefficients scale propor-

tionally to dynamic head. It is not clear this assumption is correct. Firstly, a cylinder

in a tube array is subject to an increased blockage and higher levels of turbulence and

it has been reported (for example Zukauskas et al. [102]) that the critical conditions

occur at lower Reynolds numbers. The wake of the cylinder is also affected as is the

position of flow impingement especially in in-line arrays or sparse staggered arrays.

Furthermore, Weaver & Fitzpatrick [12] suggest that a more complex relationship be-

tween velocity and fluid forces may exist and cite the work of Price et al. [13] who

reported that turbulence response amplitude increased approximately linearly with

flow velocity.

2.4.5 Interaction between Fluidelastic Instability and Vortex
Shedding and/or Acoustic Resonance

It has also been reported that the flow induced vibration phenomena can co-exist.

However, there are also suggestions that there can be an interaction between the

phenomena. A number of papers can be found in the literature where an apparent

interaction between fluidelastic instability and vortex shedding may exist. Granger &

Paidoussis [82] suggest that the fluid structure phenomenon underling fluidelastic in-

stability for a fully flexible tube array, requires updating. They suggest that for
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low mass damping parameter, fluid damping controlled instability should consider

the effect of vortex shedding. Results in support of this argument are presented by

Granger et al. [80]. They reported on a flexibly mounted tube in the front-row (rather

than central row tubes) in an in-line array (P/d=1.44), interacting with periodic vor-

tex shedding influencing fluid damping controlled instability resulting in instability

occurring prematurely. However, the authors concede that their conclusion was con-

jectural. Nevertheless, similar findings were reported by Price & Paidoussis [26] who

reported on a single flexible cylinder in an in-line array (P/d=1.5) in air. They found

that the onset of fluidelastic instability and a Strouhal peak of 0.055 were coincident.

The authors hypothesised that the vortex shedding merely triggered FEI to occur at a

slightly lower velocity than it would otherwise have done. Furthermore, Price et al. [37]

observed the flow visualisation of a single flexible tube free to oscillate in the cross

flow direction in a parallel triangular array, (P/d =1.375). They suggests that for low

mass damping the resulting instability may be a combined fluidelastic instability and

vortex shedding, thus supporting Granger & Paidoussis’ view on FEI mechanisms.

Weaver & Yeung [103] reported on various array types with a pitch ratio of 1.5 with

water as the working fluid. For in-line arrays (parallel and square) vorticity resonance

occurred simultaneously with fluidelastic instability. The coincidence had the effect of

obscuring the critical velocity. However, the authors do not make reference to an inter-

action between the phenomena, rather a simultaneous occurrence which merely made

separation difficult. In these studies, the vortex shedding frequency and the structural

natural frequency are comparable. Thus, resonance with a flow periodicity and FEI

may sometimes occur almost coincidentally (i.e. at the same onset flow velocity). In

this situation, it is not clear whether the two vibration excitation mechanisms remain

distinct or if there is an interaction between the two phenomena.

In addition to the interaction between fluidelastic instability and vortex shedding,

an apparent interaction between fluidelastic instability and acoustic resonance has

also been reported. As discussed above, as the array of cylinders is enclosed within

a duct, the system may also experience acoustic resonance in addition to fluidelastic

instability, the frequency of which may be several orders of magnitude greater than

the fundamental frequency of the structure. Thus, it might be expected that these
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two phenomena would be independent. This perspective has been widely accepted in

relation to the interaction between fluidelastic instability and acoustic resonance as

there is such a large separation in the frequency of the phenomena. However, Price

& Zahn [3] reported on the fluidelastic behaviour of a single flexible tube in a normal

triangular tube array with pitch ratio of 1.375 in air. The flexible tube was free to

oscillate in both the lift and drag directions. They reported an interaction between

fluidelastic instability (∼ 7Hz) and acoustic resonance (733Hz). When the flexible

tube was mounted in the first row, fluidelastic instability was apparently triggered by

acoustic resonance. The acoustic resonance was also noted to have organised the flow

throughout the tube array. The authors also note that acoustic resonance sometimes

had a minor effect on the cylinder vibration amplitude. When the flexible tube was

positioned in rows 2-7, there was typically a change in the vibration amplitude coin-

cident with acoustic resonance. More recently, Meskell & Fitzpatrick [10] reported on

the fluidelastic behaviour of a centrally located tube with a natural frequency of 6.6Hz

in a normal triangular tube array with pitch ratio of 1.32. The flexible tube was free

to oscillate in the lift direction only. They reported that fluidelastic instability was

suppressed when the free stream flow velocity reached 9m/s. This was accompanied by

an acoustic resonance at 1050Hz corresponding to the second transverse mode of the

duct. It is not clear how these two phenomena with this large separation in frequency

could interact. It is possible that the acoustic resonance is interfering with the time

delay mechanism associated with fluidelastic instability. Granger & Paidoussis [82]

described a memory effect (cause of the time delay) due to the diffusion-convection of

vorticity from the surface of the cylinder. It is possible that acoustic resonance could

interact with this process modifying the time delay mechanism, hence the fluidelastic

vibration amplitude. At present this hypothesis is merely conjectural as in both arti-

cles [3, 10] where an apparent interaction between fluidelastic instability and acoustic

resonance was observed the authors note that the coupling mechanism was uncertain

and further work was necessary.
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2.5 Summary

There has been much work on the subject of flow induced vibrations in tube arrays.

This results from the potentially catastrophic effect it can have on heat exchangers in

power generation and process applications. It is also recognised that there are four

flow induced vibration mechanisms. Turbulent buffeting is reasonably well understood

but some questions remain regarding the relationship between amplitude response and

flow velocity. Likewise, vortex shedding and acoustic resonance are reasonably well

understood. Much research has been focused on the development of Strouhal number

charts for vortex shedding. It was found that excitation source of vortex shedding

was dependent on the array configuration. Furthermore, the array pitch was also an

important parameter in the Strouhal number charts, with different curves for small,

intermediate and large array pitches for some array geometries. The acoustic excitation

mechanism, was shown to be related to naturally occurring flow periodicities in normal

triangular and rotated square arrays. This was not the case for normal square and

parallel triangular arrays. A number of damping criteria for the occurrence of acoustic

resonance and methods for suppression of acoustic resonance are also available in the

literature.

Fluidelastic instability is not so well understood. As a result, design guidelines

tend to be overly conservative, this is partly due to the scatter in the data and the

doubt as to what parameters to use. While there is still considerable uncertainty, much

progress has been made. For instance, the identification of two type of mechanisms;

fluid damping and stiffness controlled instability. The former, requires only a single

degree of freedom, while the latter requires multiple degrees of freedom. Stiffness con-

trolled instability overcomes structural damping of the coupled modes by means of

fluid coupling between adjacent cylinders whereas damping controlled instability re-

sults from negative fluid damping. Some evidence also exists that there is a time delay

between tube displacement and the resulting fluid forces. However, this time delay

has yet to be measured directly. In addition, predication of fluid forces is difficult but

a number of models have been employed to predict the onset of fluidelastic instability,

which formulate a better understanding of the underlying mechanism. The empirical
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input to these models varies but all models assume that fluid forces scale with dynamic

head. However, the validity of this assumption is not clear. Hence, there is a need for

some rudimentary experimental data (surface pressure and force measurements) for

validation of models and some of the assumptions made in those models.

It is also unclear as to whether the phenomenon of fluidelastic instability can

interact with vortex shedding and acoustic resonance. Some evidence exists that there

may be an apparent interaction between vortex shedding and fluidelastic instability.

In this case the frequencies of the phenomena are similar and therefore is reasonable

to suggest that an interaction my occur. However, an apparent interaction between

acoustic resonance and fluidelastic instability has also been reported. In this case the

frequencies of the two phenomena are very distinct with over two orders of magnitude

difference. It is therefore difficult to comprehend the interaction. Nonetheless, the

apparent interaction has been reported but this has not been verified and the nature

of the interaction is uncertain.
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Chapter 3

Experimental Facility and
Instrumentation

This chapter describes the experimental facility and the measurement techniques em-

ployed in this investigation. An explanation of the experimental facility and its con-

stituent parts, as well as the instrumentation and the calibration processes associated

are discussed. Finally, the data acquisition will be described.

3.1 Experimental Facility

The experimental facility consists of a wind tunnel with the tube array under inves-

tigation installed in the test section. All tubes in the array are rigid except for one

which will be referred to as the instrumented tube. For the vibration tests, the instru-

mented tube was flexibly mounted and free to oscillate in one direction only. Vibration

was monitored using an accelerometer. For the force measurement tests, the instru-

mented tube has thirty six pressure taps at the mid-span around the circumference

of the cylinder. The cylinder can be statically displaced in the both the lift and drag

directions. Two speakers mounted on the side walls of the test section were used to

artificially excite acoustic resonance.

3.1.1 Wind Tunnel

The wind tunnel used in this investigation was an open loop draw down wind tunnel

with air as the working fluid. The wind tunnel was 6.2m long and consists of a number

of sections; intake, diffuser, fan/motor and the test section. These will be discussed
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below. The wind tunnel was already present in the lab and its design and construc-

tion followed well established guidelines. For more details on the design criteria see

Meskell [104]. A schematic of the wind tunnel is shown in Fig. 3.1.

Figure 3.1: Wind Tunnel Schematic

The intake opening was 1500mm square, contracting down to a working section

of 300mm square using a contraction ratio of 25:1. This ensured low flow velocities

at the inlet and good turbulence characteristics in the test section. The intake is

connected to the test section discussed below. The diffuser section is connected to

the other end of the test section and was constructed in two parts. The first section

provided a transition from a square cross section of the test section to an octagonal

cross section. The second section is a straight octagonal duct. A flexible plastic seal

connects the diffuser section to circular inlet of the fan. The flexible seal eliminates

a possible transmission path for vibrations from the fan/motor assembly to the test

section.
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The flow in the wind tunnel was provided by a Chemsys centrifugal fan driven by

a WEG 7.5kW three phase AC motor. An Allen-Bradley Power Flex 40 AC speed

controller controls the motor speed by changing the nominal operating frequency of

50Hz. The frequency ranged from 5-50Hz depending on the load on the motor. A

frequency resolution of 0.01Hz can be achieved, facilitating accurate control of motor

and hence, the flow velocity. The flow velocity measured in the test section with no

blockage ranged from 2.5m/s to 30m/s. The advantage of controlling the flow velocity

using the speed controller over that of a baffle plate at the exhaust of the fan was

smooth non pulsating flow for the whole range of velocities tested.

The test section dimensions are 300mm × 300mm cross section with a length of

750mm. A photograph and a schematic of the test section are shown in Fig. 3.2. The

test section consists of an exterior frame made of 50mm aluminium angle. This frame

supports the walls of the test section which are made from 10mm thick Perspex thus

enabling optical access. The top and bottom of the test section are removable. Hence,

this setup facilitates various tube array configurations to be tested. For each array

configuration φ38mm diameter holes were milled from perspex plates to locate the

rigid tubes in the correct position. Three tube arrays were investigated in this study.

The configurations under test were three five row normal triangular arrays with pitch

ratios of; 1.32, 1.58 and 1.97.

Figure 3.2: Test Section
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The tubes in the array are constructed of φ38mm diameter aluminium and are

310mm in length. The tubes are fixed vertically to the floor and ceiling of the wind

tunnel by clamping an o-ring with the end of the tube and a washer. This compresses

the o-ring which grips the perspex securely as illustrated in Fig. 3.3. In addition, the

set up is such that any of the rigid cylinders can be replaced with an instrumented

cylinder at any position in the array.

Figure 3.3: Tube Clamping

3.1.2 Instrumented Cylinder

In this study, both tube vibration measurements and surface pressure measurements

were made with and without acoustic excitation in the duct. This was achieved by

replacing one of the rigid cylinders in the array with an instrumented cylinder. There

where two different instrumented cylinders used in this study to satisfy the testing

criteria. These will be discussed in greater detail in the following paragraphs.

3.1.2.1 Flexible Cylinder

The fluidelastic behaviour was characterised using the instrumented cylinder which was

flexibly mounted as fluidelastic forces on a static body do not exist. Flexibly mounted

refers to the tube being rigid in construction. However, the tube was mounted on a

flexible cantilevered support outside and isolated from the wind tunnel, consisting of

two aluminium beams (3mm × 50mm × 500mm) 80mm apart in a parallel configura-

tion (see Fig. 3.4). This arrangement is different to many of the studies found in the

literature which uses piano wires. The reason for the cantilever setup was to facilitate

38



3.1. Experimental Facility

vibration in one direction only. Two beams were used to prevent torsional effects. A

sketch illustrating the top of the mounting scheme for the flexible tube can be seen

in Fig. 3.5. Also shown is the accelerometer mounted on the tube support which was

used to measure the tube oscillation.

Figure 3.4: Flexibly Mounted Tube & Support

The structural viscous damping was controlled by a simple non contact electro-

magnetic damper (EMD) shown in Figs. 3.5 and 3.6. The device consists of a coil,

a permanent magnet and a range of variable resistors. The coil was attached to the

flexibly mounted tube twin beam support as illustrated and sits in a narrow annular

gap between the pole caps of the permanent magnetic (similar to a speaker). The coil

was connected to a variable resistor to make a closed system. The level of damping

39



3.1. Experimental Facility

was set by modifying the resistance in the circuit. The advantage of this setup was

that there was no mechanical connection between the magnet and the coil so there

was no change in structural stiffness, [104].

Figure 3.5: Flexibly Mounted Tube with EMD

Figure 3.6: Electromagnetic damper in situ
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The electromagnetic damper system was also used as electromagnetic shaker (EMS)

by applying a voltage across the coil. The resulting electrical current reacts with the

steady magnetic field to provide a force on the structure. This force is approximately

proportional to the instantaneous current in the coil. This excitation mechanism was

used in the forced vibration tests.

3.1.2.2 Pressure Tapped Tube

In order to investigate the fluid forces on a rigid cylinder, an instrumented tube with

36 surface pressure taps with a diameter of 1mm and circumferentially space (i.e. not

along the tube axis) at 10o intervals located along the center span of the tube was

constructed.

The center of the cylinder where the pressure taps are located was constructed from

solid brass. Holes φ1.59mm were drilled to a depth of 20mm. Thirty six equispaced

holes at 10o intervals were then drilled around the circumference. The holes were

φ1mm and drilled in the direction towards the origin (center - axial direction) until the

φ1.59mm holes drilled in axial direction were reached. A φ1.59mm outer diameter brass

tubing was fit into the axially drilled holes and air tightness was secured by brazing

the connection. Two hollow brass tubes were fitted either side of the machined block.

A solid cap and base were push fit. Photographs of the various assembly stages can be

seen in Fig. 3.7. Schematics of the pressure tapped tube are contained in Appendix B.

The base extended outside of the wind tunnel where it was clamped. The length of

the cylinder assembly within the test section was 299mm with a diameter of φ38mm.

Beyond that the diameter was reduced to facilitate static displacement of the cylinder

with the otherwise rigid array. The cylinder was mounted on a bidirectional traverse

located outside the wind tunnel. Each pressure tapping was monitored with a Senotec

24 PC Series differential pressure transducer with the reference vented to atmosphere.

In effect the gauge pressure was measured. The instrumented tube was connected to

the pressure transducers with short lengths of 2mm internal diameter silicon tubing.
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3.1.3 Acoustic Excitation

Artificial excitation of acoustic resonance in the tube array was achieved using two

225W speakers (Eminence Beta 8) located on both side walls of the test section as

shown in Fig. 3.2. Welsh et al. [68] reported that the positioning of the speakers was

important as the magnitude falls off exponentially upstream and downstream of the

source. A finite element analysis of the tube array was conducted to identify the nodes

and anti-nodes of the acoustic modes and hence establish the optimal position of the

speakers (Appendix C). Furthermore, Kacker & Hill [65] reported of the importance of

a break in continuity of the wall through which sound may be introduced in establishing

a standing acoustic wave in a wind tunnel using an external sound source. The wind

tunnel walls were modified with the insertion of φ6mm diameter holes. The speakers

were driven by a HP35665A dynamic signal analyzer via USA 370 amplifier. To excite

the first acoustic mode, the speakers were wired in phase and excited at a frequency

of 592Hz. To excite the second acoustic mode the speakers were wired in anti-phase

and excited at a frequency of 1092Hz (P/d=1.32).
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3.2 Instrumentation

Pressure measurements (both steady and fluctuating), vibration amplitude as well

as flow velocity measurements were conducted in this study. The instruments used

to measure these quantities are described below. The error of uncertainty in the

measurement techniques is discussed in Appendix D

3.2.1 Accelerometer

An accelerometer was mounted to the twin beam structure to measure the acceler-

ation response of the flexibly mounted cylinder. Acceleration was measured using

PCB quartz shear accelerometer (PCB 353B03) with a useful range of 0.2 − 7000Hz

(based on a maximum 5% variation in sensitivity) with no external charge amplifier

required as it was built in. The accelerometer was powered using a PCB power supply

(PCB 441A101) and a sensor signal conditioner (PCB 441B104) both of which were

contained in a two slot chassis (PCB 441A42). The calibration of the accelerometer

was taken from the calibration data card that was issued by manufacturer with the

accelerometer and this was verified with a single frequency calibration using a Brüel

and Kjaer exciter Type 4294.

3.2.2 Microphones

The sound pressure level (SPL) was measured using G.R.A.S Type 40BH 1
4

High

Pressure Microphones with a SPL upper limit of 194dB with 3 percent distortion.

The microphones were connected to a Preamplifier Type 26AC via a Power module

Type 12AN (both G.R.A.S) and used to make sound pressure measurements on the

wind tunnel walls (as the acoustic pressure was a maximum at this position).

Four microphones were used in this study. Since phase and magnitude informa-

tion were important in this case, it was important to measure the transfer function

between a reference microphone and the other microphones to quantify the differences

in magnitude and phase sensitivity.

Calibration was achieved using the concept that in a cylindrical duct plane waves

propagate below a certain cut-off frequency (Eqn. 3.1). If two microphones are lo-
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cated in the same plane along the duct they are exposed to the same pressure wave

distribution for frequencies below the cut-off frequency.

fcut−off =
1.84csp

2πa
' 4kHz (3.1)

where csp is the speed of sound and a is radius of the duct. The duct used for cal-

ibration had a cut-off frequency of ∼4kHz. A calibration transfer function between

the microphones was obtained. This transfer function was then incorporated in the

data processing stage. The sensitivity of the microphones was obtained using a Brüel

and Kjaer Sound Level Calibrator Type 4231 at a frequency of 1000Hz and pressure

of 1Pa (94dB).

3.2.3 Pressure Transducers

The pressure transducers are differential pressure transducers (Senotec 24 PC Series)

with one of the ports vented to atmosphere. In effect the gauge pressure was measured.

The pressure transducers are based on a four active element piezo resistive bridge

construction. An input voltage was supplied and when a change in pressure occurs, a

change in the output voltage results. Using a conversion factor, the pressure can be

determined from the output voltage signal. The amplitude of the signal was small and

was of the order of millivolts. Hence, the signal was susceptible to noise. This was an

issue when supplying the operating voltage of 10V. A mains DC supply would be ideal.

However, even very expensive sources contain 50Hz noise and as the measurement is

of the order of millivolts, the 50Hz noise swamps the output voltage signal. The other

alternative was a real DC source like a battery. This would only be susceptible to

radiated noise. The drawback with the battery was that the supply voltage changes

over time and when current was drawn (when a pressure was applied). These effects

would result in a change in pressure transducer response to a given applied pressure.

The solution chosen was to use a voltage regulator circuit. Figure 3.8 shows a schematic

of the circuit used. It consists of a voltage regulator IC, input and output terminals

and two capacitors. The capacitors are employed to decouple the applied voltage

to the pressure transducer and are positioned before and after the voltage regulator

IC. This arrangement was supplied by a voltage in the range 12-24V to produce a
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constant voltage of 10V to supply the pressure transducer. The outputs from the

pressure transducers are connected to a BNC terminal. The components are mounted

on a printed circuit board. Twelve pressure transducers are housed in a metal casing to

shield the instrumentation from external noise sources. The casing was grounded with

respect to the data acquisition ground. Holes were drilled in the casing to allow one

port of the transducer to connect to the instrumented cylinder using a short length of

silicon tubing. Note all pressure transducers have individual power sources to prevent

cross talk between the measured signals.

Figure 3.8: Voltage Regulator Circuit

Figure 3.9: Pressure Transducer and Voltage Regulating Circuitry

The signal from the pressure transducer was acquired at a sample frequency of 64Hz

and the signal was averaged to give a mean value. From the viewpoint of calibration,

as no dynamic measurements or high frequency sample rates were used only a simple

calibration procedure was necessary. A known force was applied to a pressure trans-

ducer (will now be referred to as the reference pressure transducer). From this, the
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sensitivity of the pressure transducer was obtained, hence, a relationship between the

output voltage from the pressure transducer at a known pressure. The other pressure

transducers were then calibrated with respect to the reference pressure transducer.

3.2.4 Flow Velocity Measurement

Two approaches were employed to measure flow velocity. A pitôt-static was used to

calculate the free stream flow velocity, while local flow velocity measurements in the

tube array were conducted using hot-wire anemometry.

3.2.4.1 Pitôt-static Tube

A pitôt-static tube installed upstream of the tube array connected to a Furness Control

micromanometer (model FC015) measured the free stream flow velocity in the test

section. For a clean test section the velocity ranged from 2.5m/s to 30m/s. With the

installation of the arrays; P/d =1.32, 1.58 and 1.97 the maximum flow velocity reduces

to 10m/s and 14m/s and 18m/s respectively, as a result of blockage. The difference

in maximum flow velocity associated with the arrays was related to pressure drop and

hence the compactness of the arrays. Hence, the more compact array (P/d = 1.32)

has a lower maximum free stream flow velocity. As discussed above, the flow velocity

was controlled by the motor speed controller.

3.2.4.2 Hot-wire Anemometry

Hot-wire anemometry is used to measure fluid flow in gas flows. The hot-wire anemome-

ter used in this setup was a DISA 55M01 system with a 55M10 Constant-Temperature

Anemometer standard bridge.

It works on the principle that the probes resistance is proportional to the tem-

perature of the hot-wire. The bridge circuit is shown in Fig. 3.10. Air flowing past

the wire has a cooling effect on the wire. The servo amplifier tries to keep the probe

resistance constant. This is achieved by modifying the voltage across the wire. Hence,

a relationship between voltage across the wire and flow velocity can be obtained. The

hot-wire was calibrated by measuring the voltage across the wire, Ehw, for a known

velocity, u, flowing normal to the wire. This was done for a flow velocity range from
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0-42m/s. A third order polynomial curve was fit to the data.

u = 2.322E3
hw − 19.75E2

hw + 58.12Ehw − 58.76 (3.2)

Hot-wire anemometers, while extremely delicate, have extremely high frequency-

response and fine spatial resolution compared to other measurement methods. How-

ever, they are fragile and can only be used in clean gas flows. Also, as the probe is

physically in the flow, the method is intrusive.

Figure 3.10: Hot-wire Bridge Circuit

3.2.5 Flow Visualisation

A single lens reflex (SLR) camera (Canon EOS 20D) with a 8.2 MP CMOS sensor and

a variable focus length lens (24-50mm) was used to capture flow visualisation images.

This setup facilitated high resolution images at shutter speeds up to 1/6400 of a second

and a maximum of five frames per second. A CCD (Charge Coupled Device) camera

was also tried. Although the CCD camera facilitated a higher frame rate, the image

resolution was much poorer. The flow was seeded using an Antari Z1000 series fog

generator with a typical particle size of 1 to 50µm and the flow was illuminated using

a photography 100W modelling lamp with a reflector to disperse the light.
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3.3 Data Acquisition

The data was recorded on a National Instruments mainframe (NI PXI-1002) which

housed an 8 channel acquisition card (NI PXI-4472B) and an 8 channel analog output

card (NI PXI-6713) connected to a (TBX-68) termination accessory. The hardware

was connected to a desktop PC via PCI card. The PC controlled the mainframe using

LabView software. This system was capable of 8 differential voltage inputs simulta-

neously sampled using a 24bit analogue to digital conversion (ADC). The system had

the ability for AC or DC coupling depending on the measurement type. The hardware

had in-built programmable low pass filters to ensure that the anti-aliasing was adhered

to. The acquired data was stored on the PC, ready for post processing.
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Chapter 4

Effect of Acoustic Resonance on
Fluidelastic Instability Quantified

4.1 Fluidelastic Instability

As noted in chapter 2, there are a number of mechanisms which can cause flow induced

vibrations in tube arrays. The mechanism with the greatest potential to cause damage

is fluidelastic instability. Fluidelastic instability produces large amplitude vibrations

at (or close to) the natural frequency of the structure. In this study, unless otherwise

stated, the type of fluidelastic instability referred to is fluid damping controlled insta-

bility. These large amplitude vibrations occur when a critical flow velocity is exceeded

at which point the fluid damping goes negative. Tests were conducted to investigate

the fluidelastic instability threshold. The fluidelastic behaviour was characterised us-

ing the instrumented cylinder which was flexibly mounted as described in chapter 3.

Tests were conducted for a cylinder in the third row of three five row normal triangular

tube arrays with pitch ratios of 1.32, 1.58 and 1.97. Tests were conducted for three

levels of structural damping for the pitch ratios of 1.32 and 1.58 and one level of damp-

ing for the pitch ratio of 1.97. As described in section 3.1.2.1 the viscous structural

damping was modified by setting the resistance in the electromagnetic damper circuit.

For the different array pitches, different values of structural damping were used so that

the stability thresholds lay within the wind tunnel velocity range. In general, the level

of structural damping used increased with decreasing pitch ratio. Table 4.1 shows the

velocity range tested for the respective pitch ratios.
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4.1. Fluidelastic Instability

Velocity, U (m/s)
P/d min max
1.32 2 8.9
1.58 3 13
1.97 4 18

Table 4.1: Velocity range for threshold tests

At each flow velocity the tube was given time to establish a steady motion. Tube

acceleration was then measured for 600 seconds at a sample frequency of 64Hz to

acquire a steady RMS value of vibration amplitude. With anti-aliasing filters the

dynamic range was 0-29Hz. Within this frequency range only the first mode was mea-

sured with the higher frequency modes not included. From the tube acceleration data,

an estimate of the tube displacement was extracted. Dividing the tube acceleration by

the square of the tubes natural frequency in terms of radians yields an estimate of the

tube displacement. This approach is valid as the tube was lightly damped, so it can

be assumed that the system vibrates close to the natural frequency of the structure.

Hence, high levels of vibration at the natural frequency will ensue and the other low

magnitude frequency components can be ignored. This was further supported by the

fact that the dynamic measurement range was 0-29Hz and within that frequency range

there was only one structural mode of 6.6Hz (or 41.47 rad/s).

Figures 4.1, 4.2 and 4.3 show the RMS of non-dimensional tube displacement, y/d,

as a function of free stream flow velocity for pitch ratios of 1.32, 1.58 and 1.97, respec-

tively. For P/d=1.32 at low flow velocities, small vibration amplitudes (y/d < 1%)

are observed, which can be attributed to turbulent buffeting. As the flow veloc-

ity was increased, fluidelastic instability was apparent and was characterised by the

rapid increase in vibration amplitude. The change in slope of the vibration amplitude

curve has been used as a practical definition of threshold velocity, Uc (e.g. Auster-

mann & Popp [2]). The alternative definition of critical velocity based on amplitude

levels (rather than amplitude gradients) proposed by Yeung & Weaver [105] was also

satisfied. The critical velocity was shown to be dependent on structural damping sim-

ilar to reports in the literature. These tests illustrate that fluidelastic instability was

present in this tube array at the structural damping levels tested.
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Figure 4.1: P/d=1.32 RMS of tube motion at three levels of structural damping:
∆, δst = 0.077; ∇, δst = 0.098; ◦, δst = 0.123
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Figure 4.2: P/d=1.58 RMS of tube motion at three levels of structural damping:
∆, δst = 0.017; ∇, δst = 0.023; ◦, δst = 0.030

For P/d=1.58 at low velocities the vibration amplitude was small and again at-

tributed turbulent buffeting. In this case, as the flow velocity was increased the change

in vibration amplitude was not as rapid as that observed for P/d=1.32. The change

was more gradual but nonetheless there was a change in slope. Again, both crite-

ria outlined above for the determination of the critical velocity are satisfied implying
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4.1. Fluidelastic Instability

that fluidelastic instability occurs. However, there are differences in the post-stable

fluidelastic behaviour between the two arrays and this is discussed in section 5.4.
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Figure 4.3: P/d=1.97 RMS of tube motion: ∆, δst = 0.017

For the pitch ratio of 1.97, only one level of damping is presented and this was the

lowest level that could be achieved with this setup. It was observed that the vibration

amplitude generally increased as the flow velocity increased. Unlike P/d=1.32 and

1.58 no rapid change in vibration was observed. Hence, the observed vibration was

attributed to turbulent buffeting. Furthermore, the two criteria were also not satisfied

implying fluidelastic instability does not occur for the velocity range tested.

Two criteria for determining the critical velocity, Uc, are mentioned above. The

criterion proposed by Austermann & Popp [2] was used in this study. The tube re-

sponse against flow velocity was idealised with two straight lines above and below the

critical velocity. The critical velocity was obtained from the point of intersection of

the two lines. This process was done for both logarithmic and linear scaling of the

tube response plots where good agreement between the two approaches was found.

Irrespective of the method chosen to determine the critical velocity, using the tube

response against velocity to determine Uc is problematic as there is always going to

be an element of subjectivity when obtaining Uc especially where the change in tube

response is more gradual in less dense arrays. For the arrays where fluidelastic in-
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4.1. Fluidelastic Instability

Pitch Ratio (P/d) 1.32 1.32 1.32 1.58 1.58 1.58
Logarithmic decrement, δst 0.077 0.098 0.123 0.017 0.023 0.030
Critical velocity, Uc (m/s) 3.6 4.2 4.7 5.3 6.0 6.9
Reduced velocity, Uc/(fnd) 14.4 16.7 18.7 21.1 23.9 27.5
Reduced gap velocity, Vr 68.6 79.5 89.0 40.3 45.6 52.5

Table 4.2: Fluidelastic stability thresholds

stability was apparent (P/d=1.32 and 1.58), the values obtained for the critical flow

velocity are summarised in Table 4.2. The values obtained for Uc are also found to

be consistent with reports in the literature. Figure 4.4 plots the stability threshold in

terms of reduced gap velocity1 and mass damping parameter together with data from

Austermann & Popp [2] and Price & Zahn [3]. These two sources were chosen as they

have a similar set up to the current experiments (a single flexible cylinder in a normal

triangular array and air as the working fluid). It can be seen that the current results

compare favourably with the data available from these studies.
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Figure 4.4: Comparison of measured stability thresholds: ◦, Austermann & Popp [2],
P/d=1.25; ∇, Austermann & Popp [2], P/d=1.375; ∆, Price & Zahn [3], P/d=1.375;
¥, present, P/d=1.32; ¨, present, P/d=1.58.

1In an attempt to compare data from different array geometries and pitch ratios, Chen [106]
proposed the reduced gap velocity and has now become a common way to present such data.
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4.2. Tube Response with Acoustic Resonance

4.2 Tube Response with Acoustic Resonance

Price & Zahn [3] and Meskell & Fitzpatrick [10] reported an apparent interaction

between fluidelastic instability and acoustic resonance. In order to examine the inter-

action between the two phenomena and determine if the apparent interaction between

the phenomena was a coincidence (i.e. by chance) or otherwise, the duct acoustics

were artificially excited using speakers to excite the second acoustic mode of the duct

in this setup at a frequency of 1092Hz (P/d=1.32) at various loudness levels.
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Figure 4.5: P/d=1.32. Vibration amplitude against speaker power at U = 8.9m/s

It was observed that a single flexible cylinder went unstable due to fluidelastic

instability for the pitch ratios of 1.32 and 1.58. Hence, initial testing examined the

effect of acoustic resonance at the second acoustic mode for the two pitch ratios.

The preliminary tests examined the tube response at a given velocity (where the

tube response was classified to be in a post-stable regime) with and without forced

acoustics. The speaker power range2: 0, 1, 2, 4, 8, 16, 32 and 64W were used for

the levels of damping shown in Table 4.2. For P/d=1.32 a velocity of 8.9m/s was

used. Figure 4.5 shows the effect of acoustic resonance plotting non-dimensional tube

vibration amplitude, y/d, as a function of speaker input power at δst = 0.098. The

2The reason for using speaker power rather than sound pressure level is discussed later in this
section.
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Figure 4.6: P/d=1.58. Sequence of tests from left to right showing vibration amplitude
against speaker power at U = 9m/s. •, individual test; ∆, average of the five tests

results show that there was a drop in the tube vibration amplitude with increased

speaker input power. For P/d=1.58, Fig. 4.6 shows a sequence of tests conducted at

δst = 0.030 and U = 9m/s. The test sequence (1-7) moves from left to right with the

input power to the speaker varying accordingly (l to r: 0, 2, 0, 32, 0, 64, 0W). The

tests were repeated five times. It was observed that the acoustic resonance had no

significant effect on the vibration amplitude. The amplitude varied from test to test

independently of whether forced acoustics was applied or not. This was also shown

to be the case at U = 11m/s for the same level of damping and also for U = 7m/s

and 9m/s at δst = 0.017. This suggests a fundamental difference in the fluidelastic

behaviour between the two arrays tested. However, it is likely that the effect of acoustic

resonance could also have been obscured by the fact that for pitch ratio of 1.58 well

established limit cycles did not exist and this will be discussed in section 5.4.

Preliminary tests were also conducted at the first acoustic mode of 592Hz, this

resulted in small changes in the tube response but no coherent trend emerged with

increasing speaker power. It is likely that the first acoustic mode affected the tube

response but was not interacting with fluidelastic instability. Firstly, the variation

of the tube response with forced acoustics was larger than would be expected with
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4.2. Tube Response with Acoustic Resonance

randomness from one test to the next allowing for variations due to turbulent buffeting.

At a speaker input power of 64W the corresponding sound pressure level at the first

acoustic mode was ∼ 160dB, 20dB in excess of maximum level observed for the same

input power for the second acoustic mode. So, the pressure and acoustic particle

velocity were of the order of 4.84m/s and 2000Pa, respectively, which correspond to

an order of magnitude greater than the values observed for the second acoustic mode.

In this instance, it is thought the acoustic standing wave changes the velocity gradient

across the array resulting in a modified pressure distribution on the cylinder as was

illustrated by Fitzpatrick et al. [67] and this results in the increased spread in the

tube vibration response. Given that the first acoustic mode was not interfering with

fluidelastic instability, no further examination at this mode will be considered.

It was shown above that acoustic resonance at the second acoustic mode had an

effect on fluidelastic instability in the pitch ratio of 1.32 but no effect on the pitch ratio

of 1.58. Hence, the tests discussed below are related to the interaction between fluide-

lastic instability and acoustic resonance at the second acoustic mode for P/d=1.32.
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Figure 4.7: P/d=1.32. Vibration amplitude against against speaker power at U =
8.9m/s at first acoustic mode
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4.2. Tube Response with Acoustic Resonance

The first series of tests discussed examine the effect of acoustic resonance on flu-

idelastic instability in terms of the change in RMS level of tube vibration and this was

carried out by modifying three independent variables

• Speaker Power

• Flow Velocity

• Structural Damping

The test procedure was similar to that of the fluidelastic threshold tests. Tests were

conducted at a structural damping level of δst = 0.098 and for a range of speaker

power (0, 1, 2, 4, 8, 16, 32 and 64W). The tests were repeated for two free stream flow

velocities, 7m/s and 8.9m/s. The sound pressure level of the acoustic resonance was

controlled indirectly by the speaker input power. Figure 4.8 shows the relationship

between speaker power and measured sound pressure level in the tube array for the two

free stream velocities under test. For a given speaker power input, small differences in

the sound pressure level are observed at the two flow velocities. This was attributed

to the broadband noise generated by turbulent buffeting and was illustrated when

no imposed acoustics was applied where clear differences between the sound pressure

level at 7m/s and 8.9m/s were observed. It was for this reason that speaker power

rather than sound pressure level was used as an independent variable. However, it was

clear that as the speak power was increased, there was an increase in sound pressure

level, thus an increase in speaker power can also be considered as an increase in sound

pressure level.

Figure 4.9 shows non-dimensional tube vibration amplitude, y/d, as a function of

speaker input power. The results show that at both free stream flow velocities there

was a drop in the tube vibration amplitude with increased speaker input power. Similar

findings were also observed when the flow velocity was fixed at 8.9m/s and the level

of structural damping was modified, as illustrated in Fig. 4.10. It was apparent from

both Fig. 4.9 and 4.10 that the effect of acoustic resonance on fluidelastic instability

was not only dependent on sound pressure level but also the free stream flow velocity

and the level of structural damping.
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Figure 4.8: SPL against input power to speaker: ◦, 7m/s and ∆, 8.9m/s

Figure 4.11 shows the effect of acoustic resonance on the fluidelastic stability thresh-

old (δst = 0.088). The critical velocity was increased from 3.8m/s to 4.3m/s when sub-

ject to artificially excited acoustic resonance (speaker power = 32W). Furthermore,

reductions in the vibration amplitude as a result of the acoustic resonance are shown

at all velocities in the critical and post-stable regimes.
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Figure 4.9: Vibration amplitude against input power to speaker: ¦, 7m/s; and
/, 8.9m/s
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Figure 4.10: Vibration amplitude against input power to speaker: ∆, δst = 0.077;
∇, δst = 0.098; ◦, δst = 0.123

Figure 4.12 shows a time trace of tube displacement at δst = 0.088 and a flow

velocity of 4.5m/s with and without acoustic excitation. At t = 0s acoustic excitation

was applied with a speaker power of 64W. It was seen that the effect of acoustic

resonance was to reduce the vibration amplitude by more than 50% from an average

amplitude of 1.76mm to 0.82mm. It was also clear that there is a transition period

between the two regimes. This can be attributed to three transient effects: firstly, the

speaker power does not reach a maximum instantaneously; secondly, it take time for

the acoustic resonance to establish fully, and thirdly, the tube was already vibrating

at a higher level and time was required for the amplitude to decay to the new state.

As well as illustrating the effect of sound pressure level on fluidelastic instability

amplitude, Fig. 4.9 also shows a dependence on free stream flow velocity. This is more

clearly seen in Fig. 4.13 which plots the change compared to no acoustics (as a result

of acoustic resonance) in RMS level of non-dimensional tube displacement, ∆y/d. The

higher flow velocity (8.9m/s), shows the greatest reduction in vibration amplitude with

the largest reduction observed being ∼25% in comparisons to ∼8% for tests conducted

with a flow velocity of 7m/s. At the level of structural damping used in this case the

fluidelastic stability threshold without acoustic excitation was Uc = 4.2m/s, so at both
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Figure 4.11: RMS of tube vibration at δst = 0.088: ∆, without acoustic excitation and
◦, with artificially excited acoustic resonance (speaker power = 32W)

flow velocities the tube motion was in a post-critical regime. It seems that the effect

of the acoustic resonance on the limit-cycle amplitude is related to the tube vibration

amplitude as well as the cross flow velocity but the nature of this is uncertain as at

lower velocities closer to the critical velocity the change in vibration amplitude was

also large (see Fig. 4.11).
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Figure 4.12: Time trace of tube displacement. Acoustic excitation applied at t = 0s
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Figure 4.13: Change in vibration amplitude against input power to speaker: ¦, 7m/s
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Figure 4.14 plots the change in RMS level of non-dimensional tube displacement,

∆y/d, for three levels of structural damping (δst = 0.077, 0.098, 0.123). The lower

the structural damping, the more responsive the fluidelastic mechanism was to the

artificially excited acoustic resonance. This finding could intuitively be explained by

superposition of the independent damping mechanisms (i.e. additional energy dissi-

pation by the sound field). However, as will be shown below, this does not explain all

the experimental observations.
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Figure 4.14: Change in vibration amplitude against input power to speaker: ∆, δst =
0.077; ∇, δst = 0.098; ◦, δst = 0.123
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4.2. Tube Response with Acoustic Resonance

4.2.1 Fluidelastic Damping with Forced Acoustics

In this section the effect of acoustic resonance on effective total fluidelastic damping is

examined. A series of free decay tests were conducted in which the flexible tube was

given an initial displacement of 11mm and released from rest. Tests were conducted at

a flow velocity of 8.9m/s and various structural damping levels. The data acquisition

was triggered by the tube acceleration so it was possible to perform ensemble averaging

in the time domain. For each condition (speaker power and structural damping level),

20 records, each with 8s of data at a sample rate of 2048Hz were obtained and averaged.

This follows the same procedure outlined by Meskell & Fitzpatrick [10].

Identification Technique

The equation of motion for the tube under fluid loading is

msÿi + csẏi + ksyi = E(yi, ẏi, ÿi, U) + Ai(U, t) + Vi(U, t) + Ti(t) (4.1)

where yi is the displacement of the tube in test i, cs is the structural damping in

quiescent air; ks is the structural stiffness; E(yi, ẏi, ÿi, U) is the fluidelastic force which

is dependent on the flow velocity and tube displacement; Ai(U, t) is the fluid force due

to acoustic resonance at the acoustic resonance frequency and the acoustic interaction

with fluidelastic instability is embedded in E(yi, ẏi, ÿi, U); Vi(U, t) is the fluid force due

to vortex shedding and Ti(t) is the turbulent excitation in test i.

The total response was decomposed into the sum of the various excitation responses:

fluidelastic excitation, acoustic resonance, vortex shedding and turbulent buffeting,

yi(t) = yE(t) + yA(t) + yV (t) + yT (t) (4.2)

where yE(t), yA(t), yV (t) and yT (t) are defined by

msÿE + csẏE + ksyE = E(yE, ẏE, ÿE, U) (4.3)

msÿA + csẏA + ksyA = Ai(U, t) (4.4)

msÿV + csẏV + ksyV = Vi(U, t) (4.5)

msÿT + csẏT + ksyT = Ti(t) (4.6)
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4.2. Tube Response with Acoustic Resonance

This assumes that there is no interaction between the excitation mechanisms which

is not strictly correct as fluidelastic excitation depends on tube motion which will

inherently be influenced by the other phenomena, hence, an interaction between the

phenomena will exist. However, if the tube motion is large, this interaction will be

small due to the small contribution of the other phenomena. If n tests are conducted

with the same initial conditions, one would expect yE(t) to be identical for each test.

Neither acoustic resonance nor vortex shedding responses were phase locked to the

free decay motion, so when averaged each of the effects will sum towards zero. In

addition, the turbulent response will vary randomly from one test to the next. Thus

if the ensemble is averaged, only the fluidelastic force with the effect of the acoustic

interaction embedded will remain

y(t) =
1

n

n∑
i=1

yi(t) ≈ 1

n

n∑
i=1

yE(t) (4.7)

The equation of motion associated with the ensemble average response is

msÿ + csẏ + ksy = E(y, ẏ, ÿ, U) (4.8)

Since the fluid in this study was air, the added fluid mass, mf , can be assumed to

be negligible, and as it is generally assumed that the fluidelastic excitation does not

depend on tube acceleration. Hence, the equation of motion for the system assuming

E(y, ẏ, U) is linear, becomes

msÿ + (cs + cf (U))ẏ + (ks + kf (U))y = 0 (4.9)

where the subscript f denotes the fluid parameters. It must be noted that E is non-

linear in tube motion. However, the non-linearity is very weak and therefore it is still

valid to take E as effectively linear when a comparison is being made at a given level

of structural damping.
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4.2. Tube Response with Acoustic Resonance

Effective Negative Linearised Fluid Damping

Using Eqn. 4.9 to describe the ensemble data, the effective linear fluid and struc-

tural damping can be obtained. The results are summarised in Table 4.3. The struc-

tural damping values were obtained by tests conducted in quiescent fluid and are

shown along the top of the table. The left column details the various acoustic con-

ditions. Conditions (a), (b) and (c) correspond to a speaker power of 0, 8 and 64W,

respectively. The body of the table presents the total level of effective negative linear

fluid damping (i.e. the structural component has been removed). For the three test

cases shown in Table 4.3, there are differences in the effective linearised fluid damping

for each of the three different structural damping levels. It might be expected that

this data should collapse to a single value as the linear fluid damping is independent

of structural damping [10]. This is clearly not the case. In this study, the effective

linear fluid damping has been measured and the non-linear damping was implicitly

accounted for in this effective linearised damping. This does not compromise the va-

lidity of the comparison of the damping values for increasing speaker power at a given

level of structural damping as the initial value of displacement in the free decay tests

was constant. However, it should be noted that if the values of linearised damping

where used to predict the fluidelastic threshold the critical velocity obtained would be

overestimated.

Structural Damping, δst

Condition Speaker Power (W) 0.205 0.138 0.124
a 0 -0.112 -0.088 -0.080
b 8 -0.095 -0.076 -0.073
c 64 -0.088 -0.072 -0.070

Table 4.3: Effective Negative Linearised Fluid Damping, cf , with U=8.9m/s and var-
ious levels of Speaker Power

When the flexible tube was subject to fluid flow, negative fluid damping was ob-

served as has been widely reported in the literature. This is illustrated by condition (a)

which shows the effect free stream flow velocity with no acoustic input. Conditions (b)

and (c) highlight the effect of acoustic resonance on the effective linearised fluid damp-

ing. Condition (b) introduces acoustic resonance at a sound pressure level of ∼130dB
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4.2. Tube Response with Acoustic Resonance

(speaker power = 8W) measured at the test section wall. The drop in fluid damp-

ing was further augmented when the sound pressure level was increased to ∼140dB

(speaker power = 64W) as shown by condition (c). Conditions (b) and (c) demonstrate

that the effect of the acoustic resonance on fluid damping was to reduce the magnitude

(negative) increasing overall damping. Therefore, the acoustic resonance adds addi-

tional damping. Furthermore, the extent of the reduction in the effective linearised

fluid damping seen in Table 4.3 was related to the sound pressure level. As the sound

pressure level increases, the magnitude of the linearised effective fluid damping is re-

duced. These results are shown across the board irrespective of the initial structural

damping level. However, it was not clear from the test results presented in Table 4.3

whether the additional damping will also occur in quiescent fluid.
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4.3 Possible Physical Mechanisms

It is difficult to envisage the physics of a true interaction between fluidelastic instability

and acoustic resonance given that the phenomenon of fluidelastic instability typically

occurs at a frequency of approximately 6.6Hz while the acoustic resonance frequency

is two orders of magnitude larger, at 1092Hz. This sections examines alternatives

to an interaction between the two phenomena which could explain the observations

reported.

In the previous section it was shown that acoustic resonance adds positive damping,

it is not clear whether this would also occur in quiescent fluid. It might be argued that

the acoustics provides an additional damping force which was simply superimposed

on the structural damping and flow-induced damping and was independent of fluid

flow. In order to resolve this issue, a series of tests were conducted without flow.

Figure 4.15 shows three levels of structural damping plotted against input power to

the speakers. For all three levels of damping tested, there are slight variations in the

damping parameter, with a maximum deviation of 2% from the mean value. These

variations are consistent with random experimental error. It has been shown that the

sound field does not provide an additional damping force independently of the flow,

implying that superposition of independent phenomena can be excluded.
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Figure 4.15: Structural damping against input power to speaker
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4.3. Possible Physical Mechanisms

Acoustic resonance can cause a change in the pressure drop across the array, hence a

change in mean flow velocity. Such findings have been reported by Blevins & Bressler [107]

and Feenstra et al. [58]. In these studies, the acoustic resonance with a sound pressure

level in excess of 160dB modified the load on the wind tunnel fan, changing the free

stream flow velocity and hence the amplitude of vibration. However, throughout the

current tests the free stream flow velocity was monitored and no change was recorded

with acoustic resonance. So, although reports in the literature have shown acoustic

resonance may effect the free stream flow velocity, this did not occur in the present

study. The reason for this is due to the low sound pressure level of 140dB observed

here relative to the studies in the literature.
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Figure 4.16: Acoustic particle velocity and pressure curves at the second acoustic mode

The effect of acoustic particle velocity was also examined as it was thought it

may affect the local fluid mechanics in the vicinity of the flexible cylinder. This was

done by relocating the flexible cylinder position. At position 1, the acoustic particle

velocity was a minimum as shown in Fig. 4.16 and there was an interaction between

fluidelastic instability and acoustic resonance. When the tube was moved to position 2,

where the acoustic particle velocity was higher, the effect of acoustic resonance on

fluidelastic instability was still observable. This is illustrated in Fig. 4.17 which plots

the stability threshold with and without acoustic resonance. The behaviour of the

flexible cylinder when subject to acoustic resonance was similar at both position 1

and 2. This suggests that the effect of acoustic particle velocity was small, as different

magnitudes of acoustic particle velocity did not result in a change in the behaviour of

the interaction between fluidelastic instability and acoustic resonance. It was therefore
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4.3. Possible Physical Mechanisms

concluded that acoustic particle velocity was not the cause of the observed interaction

between the two phenomena. However, as will be shown later this does not mean

that the effect of acoustic particle velocity was zero. In fact at sufficient levels of

sound pressure levels the corresponding acoustic particle velocity can be of the same

order of magnitude as the bulk flow thus altering the local flow field and the pressure

distribution on the cylinder.
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Figure 4.17: RMS of tube vibration at position 2 at δst = 0.088: ∆, without acoustic
excitation and ◦, with artificially excited acoustic resonance (speaker power = 32W)

It has also been reported that acoustic resonance can organise the flow in a tube

array (for example Price & Zahn [3]). Granger & Paidoussis [82] and others have

reported an apparent interaction between fluidelastic instability and vortex shedding as

was discussed in section 2.4.5. It is conceivable that acoustic resonance was interacting

with vortex shedding which then modifies the fluidelastic behaviour. However, in

the current study no evidence of Strouhal dependency or lock-in phenomenon was

observed, suggesting that vortex shedding does not play a significant role.
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4.4. Summary

4.4 Summary

These tests have captured and quantified the effect of acoustic resonance. However, it

is not clear as to how the mechanism of fluidelastic instability at approximately 6.6Hz

can interact with acoustic resonance at a frequency of over two orders magnitude larger

at 1092Hz. A number of probable causes for the interaction were examined and have

been categorically discounted by experimental tests. Although the interaction has been

clearly demonstrated, it is not apparent what the physical mechanisms at work might

be. In an attempt to better understand the interaction between fluidelastic instability

and acoustic resonance for P/d=1.32 two possibilities are examined which are based

on the framework proposed by Price & Paidoussis [1] to model fluidelastic instability.

Section 6.1 will examine the effect of acoustic resonance on the static fluid forces on

a static cylinder. Whilst section 6.3 will examine the effect of acoustic resonance on

the time delay between tube motion and the resultant flow reorganisation close to the

measurement cylinder.
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Chapter 5

Pressure Distributions & Fluid
Forces

Reviewing the literature reveals that there is no comprehensive database on the surface

pressure distribution around a cylinder within an array. There are a number of papers

presented but the range of tests were small. It would be useful to have such a database

for the validation of models. It is also apparent that there are no comprehensive studies

available on the surface pressure distribution around a statically displaced cylinder

within a tube array and hence the formulation of the fluid forces as a result of a static

tube displacement. Since the pressure distribution around the cylinder results from the

local flow structure around the tube, these measurements provide information about

the actual flow conditions, which are of importance for the physical understanding

of the flow and may explain the behavioural differences in fluidelastic instability for

the pitch ratios of 1.32 and 1.58. More importantly, a detailed pressure survey is

a prerequisite for section 6.1 which examines the effect of acoustic resonance on the

surface pressure distribution around a cylinder.

5.1 Pressure Measurements

A series of tests were conducted to measure the mean pressure distribution around a

cylinder in the third row of three five row normal triangular tube arrays with pitch

ratios of 1.32, 1.58 and 1.97. Measurements were conducted for a range of free stream

flow velocities. Table 5.1 presents the free stream velocities (U) investigated and the

respective gap velocities (Ug) and Reynolds numbers (Re). Note the Reynolds numbers
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5.1. Pressure Measurements

presented are based on the gap velocities and the tube diameter. The mean pressure

distribution and resulting fluid forces were also measured for a tube statically displaced

within the array and these tests are outlined later.

P/d=1.32 P/d=1.58 P/d=1.97
U (m/s) Ug (m/s) Re (×104) Ug Re (×104) Ug Re (×104)

2 8.3 2.23 - - - -
3 12.5 3.34 8.2 2.19 - -
4 16.7 4.46 10.9 2.92 8.1 2.17
5 20.8 5.58 13.6 3.65 10.1 2.72
6 25.0 6.70 16.4 4.38 12.2 3.26
7 29.2 7.82 19.1 5.12 14.2 3.80
8 33.3 8.93 21.8 5.85 16.2 4.35
9 37.5 10.05 24.5 6.58 18.2 4.89
10 41.7 11.16 27.3 7.31 20.3 5.43
11 - - 30.0 8.04 22.3 5.98
12 - - 32.7 8.77 24.3 6.52
13 - - 35.4 9.50 26.4 7.06
14 - - 38.2 10.23 28.4 7.60
15 - - - - 30.4 8.15
16 - - - - 32.4 8.69
17 - - - - 34.5 9.23
18 - - - - 36.5 9.78

Table 5.1: Velocities and Reynolds numbers tested

5.1.1 Validation of the test set up

In the first instance the experimental setup was validated by measuring the mean

pressure distribution around an isolated cylinder and comparing the results with those

in the literature. The measurements were acquired at a sample frequency of 64Hz and

for 120 seconds. The data acquisition allowed eight channels to be measured simulta-

neously. Hence, five runs were required to achieve one complete pressure distribution

around the cylinder. The pressure distribution was non-dimensionalised and the re-

sults presented in terms of the mean pressure coefficient. The pressure coefficient, CP ,

was defined as

CP = 1− P0 − Pθ

1
2
ρU2

g

(5.1)
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5.1. Pressure Measurements

where P0 refers to the mean pressure at the front stagnation point (θ = 0), Pθ refers to

the local mean static pressure at a given angular distance (also referred to as position

angle) and is defined as the positive clockwise angle starting from the front of the

cylinder (see Fig. 5.1), Ug is the gap velocity (Ug = U( P
P−d

)) and ρ is the fluid density.

The pressure coefficient was expressed in this way as taking the free stream static

pressure as the reference pressure was not relevant as the mean static pressure varies

throughout the array.

Figure 5.1: Schematic of position angle

The mean pressure coefficient at a Reynolds numbers of 5.6 × 104 for an isolated

cylinder is shown in Fig. 5.2. The curve compares well with data in the literature.

However, small differences are observed which are attributed to the lower Reynolds

number tested in this study. Also surface finish and flow conditions are reported

to be important parameters which could contribute to the slight differences observed.

Nonetheless the comparison with the results from the literature was reasonable, demon-

strating the integrity of the setup.

5.1.2 Surface Pressure Measurements in Tube Arrays

Once it was established that the set up to be used provided qualitative agreement

with results in the literature, measurements of the surface pressure on a cylinder in the

third row of three five row normal triangular tube arrays with pitch ratios of 1.32, 1.58

and 1.97 were undertaken. Measurements of the surface pressure distribution around a

cylinder in staggered arrays have previously been conducted by a number of researchers

(for example [16, 17, 98, 99]). The pressure distributions are generally measured for
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Figure 5.2: Distribution of pressure coefficient over the surface of a cylinder: 1) –
, potential flow theory; 2) − · −, experimental data from the literature (Re = 8 ×
104), [4]; 3) N, experimental data (Re = 5.6× 104), current study

only a few Reynolds numbers whereas the current study presents a more comprehensive

data set with a minimum of nine Reynolds number in each of the arrays investigated.

Some of the investigations reported in the literature present pressure distributions

for a number of rows. Row dependence has not been investigated as the pressure

distribution data was acquired in conjunction with the vibration measurements also

made in the third row. However, the effect of a static tube displacement for a single

cylinder in the lift direction within an otherwise rigid array is presented and will be

discussed later.

Examining the mean pressure distribution in the third row of the three arrays

collectively it was clear that there are considerable differences dependent on the array

pitch as illustrated in Fig. 5.3. The losses increase with increasing pitch ratio. It

was also apparent that neighbouring cylinders in the more compact array has a larger

effect as shown by the deceleration in the flow passing through the inter-row gap. The

pressure reaches a minimum at the minimum gap (±90o) for P/d=1.32 but this occurs

a little earlier (80o − 90o) for P/d=1.58 and earlier again (70o − 80o) for P/d=1.97.

For all three arrays the pressure distribution was different to that observed for a single

cylinder at a similar Reynolds number. The pressure variation at the rear of the
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Figure 5.3: CP comparison at the three pitch ratios tested: ◦, P/d=1.32, Re = 8.93×
104; 4, P/d=1.58, Re = 8.77× 104; /, P/d=1.97, Re = 8.69× 104

cylinder was small resulting in a small recovery in energy. This indicates boundary

layer separation from the tube surface and the existence of a turbulent vortical wake.

Examining the pressure distribution around the whole cylinder it was seen that

there was slight asymmetry for P/d=1.32. This was attributed to a rotational offset in

the position angle. This resulted in a non zero lift force when the tube was un-displaced

(y/d = 0%). However, the offset was quantified and accounted for in the calculation of

the lift and drag forces and will be discussed later in this chapter. For P/d=1.58 the

pressure distribution was not well behaved showing large asymmetry, in this case the

large asymmetry was attributed to flow instability and will be discussed in section 5.2.

The pitch ratio of 1.97 showed asymmetry in the pressure distribution the form of which

varied with flow velocity. This resulted in a peculiar effect with the lift force fluctuating

about zero at lower Reynolds numbers and a net force generated at higher Reynolds

numbers. This was not attributed to a rotational offset and can only be explained by

a flow induced phenomena. Examining the time resolved pressure signal showed no

flow instability. Flow visualisation was attempted to further understand the nature

of the flow but proved to be unsuccessful. It was observed that different magnitudes

of fluctuations were found on both sides of the cylinder suggesting differences in the
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Figure 5.4: P/d=1.32; CP at y/d = 0% and U = 9m/s

wake of the leeward cylinder. Further experiments are required to better understand

the pitch ratio of 1.97. However, it was shown previously that a cylinder in the third

row of this array (P/d=1.97) did not go unstable due to fluidelastic instability. As

the primary focus of this work was to examine the effect of acoustic resonance on

fluidelastic instability, this pitch ratio will not be discussed further. For completeness,

data for this pitch ratio can be found in Appendix E.

The effect of Reynolds number was also apparent in all three arrays. For P/d = 1.32

there was a Reynolds number dependency at lower Reynolds number and at higher

Reynolds numbers CP collapses reasonably well. Examining CP at range of positions

around the cylinder (see Fig. 5.7) reveals that at the front of the cylinder at higher

Reynolds numbers CP becomes a constant indicating that the pressure in these regions

scales proportionally to dynamic head. At the rear and side of the cylinder CP does

not collapse as well, illustrating that the scaling between the pressure in these regions

with dynamic head is not as good. For P/d=1.58 the pressure distribution was found

to be evolving at all Reynolds numbers tested. Again examining CP against flow

velocity (see Fig. 5.9) on this occasion there is clearly not a relationship between the

pressure and dynamic head. It is thought that the poor relationship between pressure

and dynamic head for this array was caused by the flow instability.
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Figure 5.5: P/d=1.58; CP at y/d = 0% and U = 11m/s
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Figure 5.7: P/d=1.32; CP at various positions around the cylinder
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Figure 5.9: P/d=1.58; CP at various positions around the cylinder
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5.1. Pressure Measurements

5.1.2.1 Pressure distribution, tube displaced

Static tube displacements tests were also conducted for all arrays and are outlined

in Table 5.2. The displacements are quantified in terms of the tube displacement, y,

divided by tube diameter, d, resulting in the displacement presented in terms of per-

centage of tube diameter, (y/d). For each displacement the velocity range investigated

was detailed in Table 5.1.

y/d (%) 1.32 1.58 1.97
0 X X X
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X - -
7 X X X
8 X - -
9 X - -
10 X X X
-1 - X -
-2 - X -
-3 - X -
-4 - X -
-5 X X X
-6 - - -
-7 - X -
-8 - - -
-9 - - -
-10 - X -

Table 5.2: Tube Displacement chart

At all pitch ratios the stagnation point was found to move in the direction opposite

to the tube displacement. The change became less pronounced with increasing pitch

ratio. The implication of the stagnation point shifting was that the position of the

pressure tapping where the total available energy was a maximum was also shifting.

In order to retain the integrity of the non-dimensional pressure coefficient and thus

facilitate the direct comparison at different displacements, the reference pressure P0

at θ = 0o must be replaced with Pθmax where θmax is the position of the largest
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5.1. Pressure Measurements

amount of available energy (maximum pressure) which varied depending on tube dis-

placement and the pitch ratio used. The approach of moving the reference pressure

better reproduces the trends that emerge from pressure data but now in terms of a

non-dimensional pressure coefficient. However, in the pitch ratio of 1.58 the adverse

effects from the flow instability where also observed at the reference pressure position.

As a consequence using the pressure coefficient would not have yielded reliable results.

So, in this section the pressure distribution rather than the pressure coefficient is used

to present the results for the pitch ratio of 1.58.

Before examining the effect of tube displacement for the range of displacements,

preliminary tests were conducted to determine if positive and negative displacement

was important. Figure 5.10 presents the displacement of ±5% for two Reynolds num-

bers. The data obtained from y/d = −5% was transposed and plotted with the data

obtained from y/d = +5%. For both Reynolds numbers the data collapses reasonably

well especially at the front and rear of the cylinder. At the top and bottom of the

cylinder the scatter was increased slightly. This results from the asymmetry quantified

in the previous section. Nonetheless, the data collapses well and it is therefore accept-

able to examine the displacement of the cylinder in the positively defined direction

only.
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Figure 5.10: P/d=1.32; Comparison of CP for 4, y/d = +5%; circ, y/d = −5%;
(a) Re=6.7×104; (b) Re=1×105

Figures 5.11 and 5.12 plot the surface pressure distribution around a cylinder in

the third row for a number of static tube displacements for the pitch ratios of 1.32 and

1.58, respectively. Some general trends emerged that are applicable to all pitch ratios.
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5.1. Pressure Measurements

The stagnation point moved in the direction opposite to the tube displacement. In

the densest array geometry (P/d=1.32) tested, the rate at which the stagnation point

moves with tube displacement was related to Reynolds number. The shift in stagnation

point increased with decreasing Reynolds number. As the array pitch increases the

shift in stagnation point reduces. For P/d=1.58 the occurrence of jet switching makes

it difficult to categorically report a Reynolds number effect with respect to the shift

in the stagnation point.
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Figure 5.11: P/d=1.32; CP at various tube displacements, U = 7m/s

As detailed previously the most significant changes as a result of tube displacement

occurred in the more compact arrays which is not surprising as the geometry was the

most restrictive in the more compact arrays. The largest change in pressure coefficient

was observed in the region of the minimum gap between the cylinders both in the row

(90o, 270o) and inter-row (30o, 330o) gaps. This was as a result of the change in the

flow velocity in those regions caused by the change in the blockage. For P/d=1.58 the

largest changes occurred at the minimum gap and to a lesser extent at the inter-row

gap. Furthermore, the occurrence of jet switching sometimes obscured the effect of

the tube displacement as well as effecting the reference pressure used in CP .

For all array pitches, on the side of the cylinder were tube displacement resulted in

increased blockage (330o−360o), there was a drop in pressure with tube displacement.
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5.1. Pressure Measurements

The contrary was true on the far side of the cylinder. For P/d=1.32 this trend continues

until the minimum inter-cylinder gap. As the flow exits the minimum inter-cylinder

gap position on the front side of the cylinder (the regions 30o − 60o and 330o − 300o)

it might be expected that a similar flow regime exists. However, the pressure drop

observed in the region 330o − 360o dramatically changes to a pressure recovery and

the increase in pressure on the opposite side of the cylinder changes to a pressure

drop in the region 30o − 60o. Similar trends emerged for P/d = 1.58 for the regions

0o − 30o and 330o − 360o. There was a drop in pressure on the side of the cylinder

with increasing blockage and an increase on the opposite side. For P/d = 1.32 the

inter-row gap was the pivot point for a change in the flow behaviour on both sides

of the cylinder. For P/d=1.58 the inter-row gap only becomes apparent on the side

of the cylinder where the gap between neighbouring cylinders was reduced (blockage

increased) when the tube was displaced. In this case the transformation region was

larger and the change was more gradual. For tube displacements up to 5% there was a

long transformation period from approximately 320−290o. At the larger displacements

> 5% the transformation occurs as far forward as θ = 320o and the pressure recovery

was larger. On the opposite side of the cylinder (minimum gap increases) a slight

increase in pressure occurs as far back as 60 − 70o from the front of the cylinder was

observed.

In an attempt to further understand the pressure data, local flow velocity mea-

surements were made with a single hot-wire probe (see Fig. 5.13 for locations). For

P/d = 1.32 at θ = 270o when the blockage increases with displacement there was an

increase in pressure with tube displacement, the flow velocity in this region decreases.

This is different to what might be expected; that is, as the gap between neighbouring

cylinders reduces the velocity would increase but this does not occur. This would

imply that the flow redistribution occurs after the inter-row gap. In fact at position

x1 in Fig. 5.13, the magnitude of velocity measured reduces as the tube was displaced

supporting the argument of flow redistribution. This was observed at all the Reynolds

numbers tested. On the opposite side of the cylinder the drop in pressure would be

accompanied by an increase in velocity in a potential flow but this was not the case

implying that non-recoverable pressure losses are occurring in this region. One pos-
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Figure 5.12: P/d=1.58; CP at various tube displacements, U = 11m/s

sible explanation for the non-recoverable pressure losses was the fact that at position

x2, flow velocity increases with reducing blockage on that side of the cylinder. Hence,

the mixing effect of the merging streamtubes was greater resulting in additional losses

of the non-recoverable type.

As the position angle moves towards θ = 110o the trend showing a drop in pressure

continues. On the opposite side of the cylinder the pressure recovery continues. At

the rear of the cylinder, the pressure increases slightly but the rate at which the pres-

sure increases varies from position to position resulting in the non-symmetric pressure

distribution in this region. This is not surprising as there are considerable differences

between the distribution at the front and sides of the cylinder as a result of tube dis-

placement and if the distribution remained symmetric at the rear it would suggest that

the differences observed at front of the cylinder were not significant which is known

not to be the case. Furthermore, the asymmetry at the rear of the cylinder lends

weight to the argument that the mass flow rate does not split equally either side of

the cylinder when the tube was displaced. Hence, at the rear of the cylinder the flow

velocity changes on either side accordingly thus resulting in a smooth transition as

the flow merges at the back of the cylinder. This is supported by the lack of an no

additional increase in the C ′
P at the rear of the cylinder when the tube was displaced.
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5.1. Pressure Measurements

Figure 5.13: Schematic of tube geometry for P/d=1.32 showing the location of local
flow velocity measurements

For P/d=1.58, at the minimum pressure (80o − 90o) a variation in the pressure

exists but it appears to fluctuate about a mean value for displacements up to 5%. As

the displacement was increased to 7 and 10%, there was a pressure drop at all Reynolds

numbers. At the highest Reynolds number tested (U = 14m/s) where it was observed

that effect of the flow instability was less significant, the variation in pressure was

considerably smaller suggesting the larger variation at the other Reynolds numbers

was augmented by the flow instability. Irrespective of Reynolds number, the mean

pressure at θ = 270o − 280o was found to increase with tube displacement with the

largest change in pressure observed in this region. Although at times the trend was

broken as a result of the flow instability.

As the position angle tends towards the rear of the cylinder there was a pressure

drop after the minimum row gap on the side of reduced blockage. The opposite trend

emerges on the far side of the cylinder. This was quite pronounced at some Reynolds

numbers. It was likely that this results from the flow instability where generally

changes would occur but not to such an exaggerated extent. Further back at the rear

of the cylinder, at the lower Reynolds numbers there was an increase in the pressure

with increasing displacement similar to that observed for the pitch ratio of 1.32. As

the Reynolds number was increased the rate of increase in pressure recovery reduces.

At the higher Reynolds numbers (> 6.6× 104) the pressure distribution becomes self-

similar. At a comparable Reynolds number a change in the drag force behaviour was

also observed suggesting a change in the flow regime and this will be discussed later.
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5.2 Flow Instability

The mean pressure distribution for the pitch ratio of 1.58 showed significant asymme-

try. When tests were repeated the pressure distribution changed (most noticeably in

the region of the minimum gap between neighbouring cylinders) suggesting that the

asymmetry distribution was due to flow instability. Similar observations have been

reported previously in the literature (for example Zdravkovich & Stonebanks [108],

Zdravkovich [109] and others). Further investigation demonstrates that flow insta-

bility was the cause. Examination of the time resolved pressure signals (Fig. 5.14),

shows that there was significant variation in the pressure. At some positions where

the asymmetry was more pronounced, there appeared to be a bi-stable flow regime

(jet switching). Further experiments were conducted to examine both the local veloc-

ity field and the pressure field. In addition, some rudimentary flow visualisation was

performed to further support the findings from both the pressure and velocity data.
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Figure 5.14: Time resolved pressure signal; y/d = 0% at θ = 230o

The local flow velocity was measured using a hot-wire probe. Measurements were

made at θ = 20o, 70o, 110o and 160o and are shown in Fig. 5.15. Two velocity compo-

nents (u and v) were measured separately (single hot-wire probe used). Seven pressure

measurements on surface of the cylinder were also simultaneously acquired. The po-
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5.2. Flow Instability

sition of the pressure measurements (shown in Fig. 5.15) were based on the analysis

of earlier experimental results and the positions chosen were some of those positions

most affected by the flow instability. For these tests the pressure measurements were

used as a control to determine if jet switching occurred or not.

Figure 5.15: Positions of the velocity and pressure measurements

Evidence of jet switching was also found in the local flow velocity. The position

and the component of the velocity measurement were important. The first three

positions showed variability in the velocity signals consistent with jet switching. An

example of the variability is shown in Fig. 5.16 which shows the cross flow local velocity

component (v) at θ = 20o. At θ = 20o flow instability was observed normal to the

mean flow direction whereas at θ = 70o and 110o flow instability was observed in the

mean flow direction whilst no effect was observed at θ = 160o. This outcome is not

unreasonable and is now considered. The measurement positions are on a bisecting

line between the measurement cylinder and its neighbouring cylinders as shown in

Fig. 5.15. As the flow approaches the cylinder, flow was forced around the cylinder, so

a substantial portion of the fluid was flowing in the cross flow direction. Hence, if jet

switching was occurring this would explain why the cross flow component at θ = 20o

sees an effect. As the flow moves around the cylinder the bulk of the fluid motion was

in the mean flow direction, hence at θ = 70o and 110o if jet switching is observed, it

will be in the in flow velocity component. As the fluid travels back the flow separates

and wake region develops with various flow structures enveloped some of which the

flow direction is opposite to the mean flow. Thus, changes as a result of jet switching

are obscured by the highly turbulent nature of the fluid in this region. This is why no
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5.2. Flow Instability

effect of jet switching was observed at θ = 160o.
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Figure 5.16: Local velocity signal (v); (a) y/d = 0% and θ = 20o (b) y/d = 5% and
θ = 70o

Jet switching was also captured using flow visualisation. The setup was quite

rudimentary, it included a single reflex camera and the flow was illuminated using

a photographic lamp (see chapter 3 for details). The flow was seeded using a fog

generator. The seeding diffused rapidly because of the highly turbulent nature of a

tube array at these Reynolds numbers. The seeding was introduced discretely in front

of the instrumented cylinder. The flow visualisation was performed for free stream

velocities ranging from 7 - 11m/s as this velocity region showed the most pronounced

flow instability. The drawback of measuring at these velocities was that the seeding was

convecting and dispersing more quickly, increasing the difficulty in capturing images.

Figure 5.17 shows the jet switching observed at a flow velocity of 11m/s. The flow is

moving from left to right. In Fig. 5.17(a) the seeding stream moves over the bottom

half of the cylinder. The image in Fig. 5.17(b) was captured in the same sequence

(4t ∼ 0.2s). In this case the seeding stream travels around the top of the cylinder.
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5.2. Flow Instability

The occurrence estimate time separation of the flow changing path was not regular as

was seen in the pressure and velocity measurements presented above.

(a) (b)

Figure 5.17: Flow visualisation at U = 11m/s

Of the studies in the literature that observed flow instability, the array geometry

either side of the measurement cylinder was symmetric, as was also the case above.

In this situation it is understandable that bi-stable jet switching may occur as the

fluid has an equal chance of flowing either side of the measurement cylinder. In

the present study, the measurement tube was also displaced in some tests with the

tube statically displaced up to y/d = 10%. Most interestingly, the jet switching

also occurred even when symmetry was broken (i.e. for non-zero tube displacement)

and at all displacements (y/d = 1 − 10%) tested. Figure 5.19 shows the pressure

coefficient distribution around a cylinder (P/d=1.58) with the deviation from the

mean. Figure 5.18 clearly shows jet switching at y/d = 5% at a free stream velocity of

11m/s and at θ = 250o. At the largest tube displacement tested jet switching was also

observed as shown in Fig. 5.20. The effect of the jet switching was also borne out in the

lift force at all tube displacements and is discussed in section 5.3.2. As jet switching

was also observed at the largest displacement of y/d = 10%, this might suggest a strong

coanda effect in the leeward cylinders. Flow visualisation did not reveal anything to

verify this observation but this was not surprising as the jet switching observed using

flow visualisation was difficult to capture. It would also appear that the nature of

the flow instability changes somewhat at the larger displacements. Examining the

pressure distribution with the spread imposed shows that the spread was increased on
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5.2. Flow Instability

the front face of the cylinder (see Fig. 5.19). Examination of the temporal pressure

signal as shown in Fig. 5.20 reveals bi-stable flow (jet switching) occurs in this region.

As the nature of the fluid in a coanda effect is for the fluid to follow the curvature of

the body the fluid is flowing around. It is not unreasonable to suggest that fluid was

following the curvature of the leeward cylinders and detaching at some point. When the

displacement was small the detached fluid impinges in the region 40−70o and 290−320o

and as the displacement is increased this moves towards θ = 350o. Nonetheless, this

was the first time that jet switching has been observed when symmetry was broke.

The effect of the jet switching on the vibration behaviour of the single flexible cylinder

at the same position will be discussed later.
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Figure 5.18: Time resolved pressure signal; y/d = 5% at θ = 250o
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Figure 5.19: CP at various displacements illustrating the deviation from the mean as
a result of flow instability
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Figure 5.20: Time resolved pressure signal; y/d = 10% at θ = 250o
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5.3 Fluid Forces

Fluid forces associated with fluidelastic instability are dependent on structural mo-

tion. Hence, fluid forces associated with fluidelastic instability on a static cylinder do

not exist. However, it is possible to estimate the fluidelastic forces from static mea-

surements made on a displaced body but it must be clear that this is not the same

thing. This approach has been employed by many researchers in modelling fluidelastic

instability (quasi-steady analysis). In this section the static fluid forces on a cylinder

within an array are discussed. The fluid forces were obtained from the surface pressure

distribution around the cylinder and are presented in terms of the in flow drag force

and the normal lift force. The effect of a static tube displacement within a rigid array

on the fluid forces will also be discussed.

Using the pressure data, the drag and lift forces were obtained by decomposing the

pressure on the surface of the cylinder into the force contributions in the respective

directions at each of the measurement positions. The components were then integrated

over the surface of the cylinder to calculate the fluid forces. Eqn. 5.4 was used to

calculate the drag force whilst Eqn. 5.5 was used to calculate the lift force on the

cylinder. It was reported previously, that there was slight asymmetry in the pressure

distribution around P/d = 1.32 due to a rotational offset in the position angle. The

asymmetry was quantified and accounted when calculating the lift and drag forces and

the process is detailed below.

Taking the difference in position angle, ∆θ, as the difference between the actual

0o and the measured assumed 0o. The change in drag, D, and lift, L, as a function

of velocity, are ∆D and ∆L, respectively. The equations describing the process are

detailed:

∆D = k(u)∆θ (5.2)

D = −
∫ 2π

0

Pdlcos(θ)dθ (5.3)
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However, the offset angle has also got to be considered in 5.3

D = −
∫ 2π

0

Pdlcos(θ + ∆θ)dθ (5.4)

Similarly, the lift force including the offset angle is

L = −
∫ 2π

0

Pdlsin(θ + ∆θ)dθ (5.5)

5.3.1 Drag Force

The drag force on a cylinder in an array is comprised of friction and pressure drag

forces. At low Reynolds numbers, the inertia forces are small relative to the viscous

forces and friction drag dominates. As the Reynolds number increases, inertia forces

dominate to the extent were the contribution from friction drag can be neglected. In

the current study the lowest Reynolds number tested was greater than 2 × 104. At

these Reynolds numbers the friction forces are small and can be neglected. In the

literature, the pressure drag force, D, is presented in terms of drag coefficient, CD.

The drag coefficient has been defined in terms of the in-flow drag force, fluid density

(ρ), gap velocity (Ug), tube diameter (d) and tube length (l). The drag coefficient is

found experimentally using Eqn. 5.6.

CD =
D

1
2
ρdlU2

g

(5.6)

Figure 5.21 plots the drag force against the gap velocity for the pitch ratio of 1.32.

Note both scales are logarithmic. The data collapses well using a single line indicating

that the drag force is directly proportional to the gap velocity and is represented by

Eqn. 5.7. Using linear regression, the resultant index, n1, obtained was 1.67. Note

the drag force did not scale proportionally to dynamic head as assumed by models in

the literature e.g. Price & Paidoussis [1]. This outcome was not surprising as it was

shown in section 5.1.2 that pressure did not generally scale with dynamic head with

exception of the front of the cylinder for the higher range of Reynolds numbers tested.

When the tests were repeated, it was found that the index obtained fell within 2% of

the reported value. Similarly the maximum deviation from the fitted data was less
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Figure 5.21: P/d=1.32; Drag force, y/d=0%

than 2% illustrating the quality of the fit.

D = k1U
n1
g (5.7)

Inserting Eqn. 5.7 into Eqn. 5.6 gives the gap velocity in terms of non-dimensional

drag coefficient.

CD = k2U
n1−2
g (5.8)

Replacing the gap velocity terms with Reynolds number yields:

CD = k3Ren2 (5.9)

where n2 = n1 − 2 and Eqn. 5.9 is a fully non-dimensional form illustrating the

relationship between drag coefficient and Reynolds number.

When the tube was displaced the system behaved similarly with a line fitting

the data sets. Fig. 5.23 plots the extracted indices (in the form of n2) against tube

displacement. The index generally increases with tube displacement. A linear fit was

applied to this data (n(y/d) = 0.00859×(y/d)−0.314). Using this result the relationship

between drag coefficient and Reynolds number for all static tube displacements is

formed;

CD = k(y/d)Ren(y/d) (5.10)
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The constant k(y/d) was obtained by fitting a quadratic curve to the data.

k(y/d) = 0.0479× (y/d)2 − 1.56× (y/d) + 18.5
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Figure 5.22: P/d=1.32; Drag coefficient against Reynolds number at various tube
displacements

For the velocity range tested the effect of tube displacement resulted in a change

in the drag force of 12% at most. This suggests that the drag force was only weakly

affected by tube displacement. This was investigated further by examining the drag

force for a given flow velocity (or Reynolds number) at different displacements. If the
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drag force for all displacements at specific flow velocities is examined some interesting

results are observed. For the lower flow velocities the effect of tube displacement was

minimal with little variation in the force with tube displacement. However, as the

velocity is increased, the drag force increases with tube displacement. Further details

on this observation can be found in Appendix F.
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Figure 5.23: P/d=1.32; Index relating drag coefficient and Reynolds number

For P/d=1.58 the randomness in the drag force increased as demonstrated in Fig. 5.24

and was attributed to the jet switching observed in this array. Increasing the duration

of the tests and averaging the repeated tests reduced the spread in the data.
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Figure 5.24: P/d=1.58; Drag force: 4, Test 1; ◦, Test 2; (a) y/d=0% and (b) y/d=5%
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Figure 5.25: P/d=1.58; Drag force at y/d = 0%

Again, the drag force was plot against gap velocity with logarithmic axes. A

single line did not fit the data well. A quadratic fit resulted in an improvement at

lower Reynolds numbers but was poor at higher Reynolds numbers. In both fits the

residuals forces were not random and appeared to take a periodic form illustrating the

poor quality of the fits. The data collapsed well using two lines as illustrated in Fig.

5.25. Indices of 1.4 and 2.3 were obtained for the lower and higher Reynolds numbers,

respectively. The two lines suggest that there is a transition from one flow regime

to another (Re ≈ 6.6 × 104). This outcome is in agreement with the observations

in the literature where its reported that the critical region occurs at lower Reynolds

number for tube arrays where the transition region is dependent on array geometry

(isolated cylinder, Re ≈ 2 × 105). When the tube was displaced the system behaved

similarly with two lines collapsing the data. However, unlike P/d=1.32 the indices

did not increase with tube displacement, they fluctuated about mean values which

corresponded to 1.4 and 2.3 as shown in Fig. 5.26. For P/d=1.58 the effect of tube

displacement was smaller than the denser array. In addition the most significant

changes arising in the pressure distribution from the tube displacement occur at the

top and bottom of the cylinder where the contribution to the drag force was small.

As it was observed that effect of tube displacement on the drag force was small, the

99



5.3. Fluid Forces

drag force at all tube displacements was collapsed onto a single plot and was averaged

(Fig. 5.27). The resultant indexes obtained where 1.4 and 2.3 for lower and higher

Reynolds numbers, respectively. A similar observation was observed for P/d=1.97 and

is expanded on in Appendix E.
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Figure 5.26: P/d=1.58; Index relating drag force and gap velocity; ◦, Ug < 24.5m/s,
Re < 6.6× 104 and ∆, Ug > 24.5m/s, Re > 6.6× 104
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Figure 5.27: P/d=1.58; Drag force at all tube displacements with averaged fitted lines
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Using the same approach outlined for the pitch ratio of 1.32, a non-dimensional

relationship between drag coefficient and Reynolds number was obtained (Eqn. 5.11).

The pitch ratio of 1.58 requires two sets of indices to represent the data above and

below Re ≈ 6.6× 104 due to the change in behaviour reported above. However, as the

effect of tube displacement was small for this pitch ratio the indices can be applied at

all tube displacements examined in this study.

CD = kRen (5.11)
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Figure 5.28: P/d=1.58; Drag coefficient averaged at each velocity for all tube displace-
ments

For the pitch ratio of 1.32 the effect of tube displacement on pressure distribution

was clearly observable, however, the effect on the drag force was small. In P/d=1.58

the effect of tube displacement was smaller with the bulk changes in pressure at ±90o

and the regions fore and aft. However, the contribution to the drag force in these
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regions was small. For both arrays it was found that displacing the cylinder changed

the pressure distribution at the front of the cylinder where the contribution to the

drag force was more significant. However, the changes in pressure were generally

not converted into a net change in drag force. Hence, the contribution from the tube

displacement to alter the drag force was also deemed to be small as well. These findings

suggest that the drag force was largely dependent on the bulk pressure drop across

the array and was only weakly dependent on local flow characteristics. It was also

apparent that the drag force does not scale with dynamic head with the exception of

the sparsest array (P/d=1.97) at higher Reynolds numbers tested (see Appendix E). It

was observed that the relationship between fluid forces and flow velocity was dependent

on the pitch ratio and Reynolds number.
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5.3.2 Lift Force

The lift force for an isolated cylinder is generally assumed to be zero because it is

assumed that the flow around the cylinder is uniform and hence no net force in the

direction normal to the free stream flow occurs. When the lift force is discussed with

regard to a cylinder, it is generally in terms of a fluctuating lift force on an oscillating

cylinder or the lift force on a statically displaced cylinder. The lift force is given the

same form as the drag force with the drag coefficient term, CD, being replaced with

the lift coefficient term, CL (see Eqn. 5.12).

CL =
L

1
2
ρdlU2

g

(5.12)

For P/d=1.32 the lift force around a cylinder in an array at y/d = 0% fluctuated

around zero once the geometrical rotational offset had been quantified and corrected.

Once this correction was complete, the lift force appears to be very well behaved.

When the tube was displaced, a net lift force in the direction opposite to the tube

displacement results. The magnitude of the force generally increased with tube dis-

placement and velocity. This is more clearly observable from Fig. 5.29 which plots the

lift coefficient against Reynolds number. CL increases at the lower Reynolds number

range tested. As the Reynolds number is increased further the rate of change reduces

and at the higher Reynolds numbers CL starts to reduce. This occurs at all tube

displacements. The rate at which the lift force increases was related to the extent of

the tube displacement and the flow velocity and is discussed in Appendix F.

Although the lift force was well behaved, increasing in magnitude with increasing

displacement and velocity, no simple parameterisation in terms of displacement and

flow velocity was found. Normalising the lift force with respect to various different

parameters did not collapse the data. This was because the lift force was far more

susceptible to a change in displacement than the drag force. In fact, the lift force

increases from ∼ 0.5N to ∼ 3N , when the tube was displaced from y/d = 1% to

y/d = 10%. The upper value of the lift force approximately corresponds to ∼ 40%

of the drag force for the same setup and conditions. Unlike, the drag coefficient, the

lift force was not as dependent on the bulk pressure drop across the array but was

influenced by the local flow characteristics.
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Figure 5.29: P/d = 1.32; Lift coefficient against Reynolds number at various tube
displacements

The lift force for the pitch ratio of 1.58 was more complex than the pitch ratio 1.32

as a result of the jet switching observed in this pitch ratio. The lift force increased with

tube displacement, however on some occasions the force increase was more significant

and/or the force was in the opposite direction. When the data is plot in terms of the

lift coefficient there is significant scatter for the aforementioned reasons. However, the

magnitude of the lift coefficient generally increases with tube displacement as shown

in Fig. 5.30. Again no simple parameterisation was found in terms of velocity.
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Figure 5.30: P/d = 1.58; Lift coefficient against Reynolds number at various tube
displacements

It was reported above that no simple parameterisation between lift force and ve-

locity was obtained. In this instance it is clear that the lift force is a function of

flow velocity, tube displacement and array geometry (including both array configura-

tion and pitch) and this must be taken into account when including the lift force in

models.
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5.4 Effect on Fluidelastic Instability

It was shown in section 4.1 that a single flexible cylinder free to oscillate in the lift

direction in both P/d=1.32 and 1.58 went unstable due to fluid damping controlled

instability. P/d=1.97 on the contrary, did not go unstable due to fluidelastic instability

with the vibrations observed attributed to turbulent buffeting.

It was shown that there were differences in the stability thresholds for the two

arrays that went unstable due to fluidelastic instability. The more compact array

(P/d = 1.32) showed a rapid increase in vibration amplitude at the onset of fluidelastic

instability whilst the less dense array (P/d = 1.58) showed a more gradual change in

vibration amplitude as can be seen in Fig. 5.31. The gradual change in vibration

amplitude has also been observed in the literature, however, the working fluid was

water and in these cases the more gradual change has been attributed to the occurrence

of vortex shedding at the same flow velocity. As the current tests are in air, the vortex

shedding frequency will be at least an order of magnitude greater than the structural

natural frequency, and so this explanation is not applicable. The tube response at ((a),

(b), (c) and (d)) a number of flow velocities when the tube motion is considered to be

in a post-stable regime were examined to shed light on the behavioural differences of

the stability thresholds for the pitch ratios of 1.32 and 1.58. Figure 5.32 shows the tube

response signals at (a), (b), (c) and (d). Well established limit cycle amplitudes are

observed for the pitch ratio of 1.32 but not for P/d=1.58; the response was dominated

by the natural frequency, but the response was more akin to forcing by a narrow

band random excitation which could be explained by the jet switching observed (see

section 5.2).
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Figure 5.31: RMS of tube motion: ∆, P/d=1.32, δst = 0.123; ∇, P/d=1.58, δst =
0.030; ◦, P/d=1.97, δst = 0.017
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Figure 5.32: Further examination of tube motion from Fig. 5.31
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5.4. Effect on Fluidelastic Instability

Analysis of the pressure distribution around a static cylinder in the same positions

as the threshold tests gives an insight as to why such differences existed between the

pitch ratios of 1.32 and 1.58. For the pitch ratio of 1.32, the pressure distribution

around the cylinder was relatively symmetric and the flow through the array was

regular. The pitch ratio of 1.58 on the contrary showed an asymmetric distribution

which was found to change from test to test. Examining the raw pressure data as well

as velocity measurements and flow visualisation images indicated that flow instability

was occurring in the form of bi-stable jet switching. It was found that jet switching

still occurred even when symmetry was broken. It is thought that the jet switching

was responsible for producing not well established limit cycles. It is also likely that the

occurrence of jet switching resulted in the more gradual change in vibration observed

in the stability threshold curves at the onset of fluidelastic instability for the pitch

ratio of 1.58. Furthermore, it is likely that jet switching (P/d=1.58) was interfering

with the time delay mechanism (convection process) destroying any subtle changes in

the process caused by acoustic resonance. Hence, in this array the imposed acoustic

field showed no effect on fluidelastic vibration amplitude. Further work is required to

explore this hypothesis.
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Chapter 6

Interaction between Fluidelastic
Instability & Acoustic Resonance
Explored

In chapter 4 the interaction between fluidelastic instability and acoustic resonance was

captured and quantified. A number of obvious explanations for the observed interac-

tion were examined and discounted. In this chapter two possibilities are examined

which are based on the quasi-steady framework proposed by Price & Paidoussis [1] to

model fluidelastic instability. In simple terms this separates the fluidelastic force into

a magnitude dependent on the static fluid force and a phase component dependent on

the time delay.

6.1 Effect of acoustic resonance on static fluid forces

This section examines the effect of acoustic resonance on the surface pressure distri-

bution around a static cylinder in the third row of the array and hence determines

if the acoustic resonance alters the force magnitude on the cylinder resulting in the

change in vibration amplitude. It was reported in chapter 4 that acoustic resonance

was found not to have an effect on fluidelastic vibration amplitude for P/d=1.58, so the

discussion in this section is restricted to P/d=1.32. Tests were conducted for a num-

ber of flow velocities (U = 2, 4, 6, 7, 8, 10m/s); and at a range of tube displacements

(y/d = 0, 1, 3, 5, 7, 10%); at various speaker input power (0, 16, 32, 64W). The set up

and testing procedure were more rigorously discussed in the previous chapter where

the pressure distribution for all three arrays with no forced acoustics was discussed.
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6.1. Effect of acoustic resonance on static fluid forces

At the lower velocities of 2 and 4m/s, acoustic resonance has a small effect on the

mean pressure distribution. The pressure distribution at the higher velocities of 6,

7, 8 and 10m/s showed a lesser effect as a result of the imposed acoustics. Figs. 6.1

and 6.2 show the mean pressure distribution with and without forced acoustics at the

second acoustic mode of the duct.
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Figure 6.1: Pressure Distribution around at U=4m/s: –, no acoustics; − · −, Fre-
quency=1092Hz (SPL=140dB)
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Figure 6.2: Pressure Distribution around at (a) U=7m/s and (b) U=10m/s: –, no
acoustics; − · −, Frequency=1092Hz (SPL=140dB)

When the tube was displaced similar findings were observed. The small changes in

pressure distribution at lower velocities were not translated into any significant effect

on the lift and drag force. Figure 6.3 plots the lift and drag forces at y/d = 5%
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6.1. Effect of acoustic resonance on static fluid forces
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Figure 6.3: Lift and drag force against Ug with and without imposed acoustics. 4, 0W;
∇, 16W; ◦, 32W; ¤, 64W.

were slight changes in the forces were observed but these were comparable to the

random variation in the pressure data. Thus, the effect of the second acoustic mode

on the cylinder was minimal, suggesting that acoustic resonance was not affecting the

static forces on the cylinder surface. It was also not surprising that as the flow velocity

increases, and hence the mean pressure on the surface of the cylinder increases, that the

effect of acoustic pressure becomes less significant as the relative magnitude difference

(between flow velocity and acoustic particle velocity) increases. A maximum sound

pressure level of 140dB was used which corresponds to a pressure of 200Pa. However, it

is thought that at higher sound pressure levels that the effect of acoustic resonance on

the mean surface pressure would be more significant. For instance, Kacker et al. [69]

reported that a standing wave (first acoustic mode) of 162dB correlates vortex shedding

for a two row tube array whereas 142dB does not. The force experienced increases

by a factor of 6. They suggested that the dominant factor of increased force was

directly related to the acoustic resonance and that correlated vortex shedding would

contribute a force increase of 1.5. Fitzpatrick et al. [67] reported on the mean and

fluctuating pressure on the surface of cylinders (thirteenth row) in a twenty six row in-

line array (P/d=1.73) for non-resonant and artificially excited acoustic standing wave

flow regimes. Acoustic resonance substantially altered the pressure distribution on

the cylinder. It was reported that acoustic resonance changed the velocity gradients

across the array. In fact at non-resonant conditions, velocity gradients across the

array were uniform however severe velocity gradients were observed during resonance.
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6.1. Effect of acoustic resonance on static fluid forces

Differences exist between the studies in the literature and work conducted in this

study. Firstly, the first acoustic mode was excited and as explained the acoustic

particle velocity was a maximum in the center. Furthermore sound pressure levels

of 160dB were observed, far in excess of levels reported in this study (140dB). It

was shown by Fitzpatrick et al. [67] that at sufficient high sound pressure levels the

acoustic resonance may alter the velocity gradients across the array thus modifying

the force on the cylinder. In the current study, where the sound pressure level was an

order of magnitude lower than the studies reported in the literature, the effect on the

static fluid force was small. Hence, it is concluded that modification of the static fluid

force was not the cause of the observed interaction between fluidelastic instability and

acoustic resonance.
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6.2. Time Delay

6.2 Time Delay

When fluidelastic instability is discussed in the literature, a time delay between the

tube motion and the resulting fluid forces is thought to be at the root of fluidelastic

instability. The exact nature of the time delay is unclear and has yet to be measured

directly. There is some evidence that it exists; Granger & Paidoussis [82] indirectly

measured the cause of the time delay using experimental data and a quasi-unsteady

model. Abd-Rabbo & Weaver [35] conducted a flow visualisation on rotated square

array with P/d=1.41 and water cross-flow. For a single flexible cylinder, flow visual-

isation “revealed clear flow redistribution with a phase lag”. Numerous studies have

measured fluid stiffness and damping from which the time delay could be inferred e.g.

Tanaka & Takahara [76] and Chen & Srikantiah [83]. There are also a number of mod-

els in the literature to model fluidelastic instability. It is apparent that the inclusion

of a time delay or phase lag is a prerequisite for the models developed, as without

a time delay, the phenomenon cannot be modelled. However, the uncertainty about

the origin of the time delay results in different physical explanations for the inclusion

of a time delay in the models to predict fluidelastic instability. One of the objectives

in this section was to measure the time delay directly. The second objective was to

examine the effect of acoustic resonance on the phase dependency component, in the

quasi-steady framework proposed by Price & Paidoussis [1]. Explicitly the effect of

acoustic resonance on the time delay.

An attempt to measure a time delay between tube motion and a point in the flow

located near the flexible cylinder is discussed. In an ideal setup a time delay between

tube motion and fluid forces would be measured. This was not achievable due to

limitations in the setup. The justification for the current approach stems from the fact

that the fluid forces on the cylinder are as a direct consequence of what is happening

in the flow around the cylinder. Hence a relationship between the fluid flow and fluid

forces are closely related. It would therefore seem reasonable to measure the response

of the fluid instead of the fluid force as a first attempt to measure the time delay.

The flexible cylinder was forced to vibrate at its natural frequency of 6.6Hz.

This was achieved using the electromagnetic shaker (EMS) system described in sec-

113



6.2. Time Delay

tion 3.1.2.1. The input signal was generated using a HP35665A dynamic signal ana-

lyzer via a USA 370 amplifier. The excited vibration amplitude chosen corresponded

to 2.5% tube diameter (an RMS value of 1.8%). Using the electromagnetic damper

the maximum level of damping achieved was δst = 0.205. In an effort to reduce the

effect of turbulent buffeting additional damping was added. This was achieved by

adhering lengths of rubber to the cantilever support. This modification resulted in the

damping increasing from δst = 0.205 to 0.410. At the new level of damping the tube

did not go unstable due to fluidelastic instability for the velocity range of the wind

tunnel. Tests were conducted for three free stream flow velocities: 4, 7 and 10m/s.

The local velocity around the cylinder was measured using a single hot-wire probe.

The positions around the cylinder are shown in Fig. 6.4. The local flow velocity was

measured at θ = 15, 30, 60, 90, 120, 150 and 165o in both the in-flow (u) and cross flow

(v) directions. Each test was conducted for 15 seconds at a sample rate of 8192Hz.

With the excitation frequency of 6.6Hz this translates to 99 averages thus improving

the signal-to-noise ratio by a factor of 10.

Figure 6.4: Hot-wire positions around the instrumented cylinder

6.2.1 Analysis technique

In the first instance an analysis technique using the cross spectrum between the tube

response and the local flow velocity signal was attempted to extract the time delay.

However, this approach was limited to due frequency resolution that could be resolved

given the test parameters used in the current setup. The cross-correlation between the

two signals was also attempted. This provided improved resolution, however, it was not

possible rigorously determine the quality of result from cross-correlation. As discussed
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6.2. Time Delay

below, some of the measurement positions yielded poor results, yet an erroneous time

lag could still be extracted. An analysis technique to overcome the issues discussed

above will now be expanded on. For each test, tube motion, local flow velocity and

the output signal from the amplifier (input signal to EMS) was acquired. This signal

from the USA 370 amplifier was used as a reference in the analysis as it produced a

clean sinusoid whereas the flow velocity and tube response measurements includes a

random component as both were subject to turbulence in the flow. Note, the level of

turbulence in a tube array is very high. The reference signal was differentiated using

a central difference method;

g′(x0) ≈ [g(x0 + h)− g(x0 − h)]2fs (6.1)

where fs is the sample frequency.

Figure 6.5: Central Difference

The original and differentiated signals were normalised and the inverse tangent

taken on the resultant of the normalised original signal divided by the normalised

differentiated signal. This process presents the reference signal in the form of an

angular position. A snapshot of these signals is shown in Figs. 6.6(a) and (b). The

flow velocity and tube motion can now be related to an angular position. As the tube

motion was forced using a sinusoid at the natural frequency of the structure it might

be expected that this would also be observed in the flow surrounding the cylinder. It

can be seen that this is the case but there are significant cycle-to-cycle variations due

to turbulence in the flow. The underlying behaviour was extracted fitting a series of

harmonic sinusoids:
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6.2. Time Delay

vM =
∑

(AM sin Mθ + BM cos Mθ) + c (6.2)

where vM is the velocity, θ is the angular position of the reference signal, AM and BM

are constants. The constants AM and BM were obtained using a pseudo-inverse method

which yielded a least squares fit for an over determined set of equations (Keays & Meskell [110]).
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Figure 6.6: (a) –, Original signal; − · −, Differentiated signal (b) Angular position
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Ax = b (6.3)

x = A−P b (6.4)

In general:

v1 = A1 sin θ1 + B1 cos θ1 + c (6.5)

It was found that M=5 was sufficient in all cases on the basis of minimising the

normalised error between the fit and the raw data. However, the analysis technique
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6.2. Time Delay

employed to calculate the time delay between the tube motion and flow reorganisation

requires the data to be represented using a single harmonic curve. Figure 6.7(a) and (b)

presents the tube motion and flow velocity against angular position, respectively. Also

plotted is the respective single harmonic fits and it is observed that the single sinusoid

captures the underlying trend in both cases. In some instances the underlying trend

was not captured by a single harmonic curve and in these cases the analysis technique

cannot be used. The criteria required for the accurate determination of the time delay

using the analysis technique is described later in this section.
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Figure 6.7: First harmonic fit of the tube motion and flow velocity data

If the fits from the tube response and the flow velocity are stripped of the DC infor-

mation, normalised and plotted together (Fig. 6.8), there is a phase difference between

the two traces. Specifically, the flow velocity lags behind the tube response. Hence,

there is a time delay between tube motion and the fluid reorganising which would im-

ply a delay in the resultant force on the cylinder. Using the constants A1 and B1 the

phase with respect to the reference signal for both fits can be obtained by obtaining

the tan−1 A1

B1
. Subtracting the phases between the two traces yields a phase difference,

∆φ. This was converted into a time delay, ∆t, as the natural frequency is known:

∆φ = ω∆t (6.6)

where ω = 2πf
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6.2. Time Delay

Rearranging and isolating ∆t

∆t =
∆φ

2πf
(6.7)

A time delay of 9.3ms was obtained at U = 4m/s and θ = 165o with the flow

velocity component in the in-flow direction. The sceptic may argue that the measured

quantity is not a time delay but the time taken for the fluid to convect downstream.

Consider at U = 4m/s this corresponds to a maximum gap velocity of 16.667m/s.

The shortest distance between the cylinder and the velocity measurement position is

∼ 8mm. This corresponds to a convection time of 0.48ms. If half the maximum gap

velocity is used to calculate the convection time, the time is doubled giving a value

of 0.96ms. This is far less than the 9.3ms obtained. Hence, it would appear that the

time delay is that which is related to the reorganisation of the flow field surrounding

the cylinder resulting from the tube motion.

 −π −π/2   0 π/2  π  

−1

−0.5

0

0.5

1

θ

N
or

m
al

is
ed

 R
es

po
ns

es

Figure 6.8: −, Tube response, and − · −, velocity response, showing a time delay
between the two traces

The measured time delay was found to change slightly from test to test with the

extent of the deviation from the mean varying with measurement position. On average

a deviation of ∼ 10% was observed. This is not surprising given that the time delay

has been obtained from a measurement in a flow which is highly sheared and turbulent.
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6.2. Time Delay

It is envisaged that the spread in the measured delay would reduce if the delay was

directly measured from the fluid forces on the cylinder. This is likely as the static

surface pressure measurements showed smaller deviation from the mean compared to

the velocity measurements in the array when all tubes were rigid.

The drawback with this approach is that the tube response and flow velocity data

are fit using a single harmonic fit. As the tube was forced to oscillate at its natural

frequency using a single harmonic fit yields a good fit. However, the flow field around

the cylinder in a tube array is highly sheared and in some positions it was clear that

the flow velocity does not respond linearly to the tube motion. Even where the fit was

good there was considerable spread from the fitted sinusoid due to large fluctuating

velocities caused by the turbulence structures. Also separation regions and shear layer

positions will fluctuate compounding the problem. In those instances where the fit was

poor it was not possible to accurately measure a time delay as this process was highly

reliant on the data being fit using a single harmonic curve. It is therefore important

to consider how the quality of the fit was determined. This was determined using a

number of criteria. It would be incorrect and highly subjective for one to determine

the quality of the fit by visual means. The approach used in this study examined the

energy contribution at each harmonic in conjunction with the auto-correlation between

the actual data less the first harmonic fit.
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A good fit was deemed to have been achieved when the energy distribution at

the first harmonic was greater than 95% as illustrated by Fig. 6.10 (a). Below that

threshold the fit was deemed to be not of the base line quality. The second criteria also

had to be satisfied. This involved examining the auto-correlation of the raw data less

the fit of the first harmonic. If the fit was good random noise should be all that remains.

Viewing the auto-correlation of this signal determines if the resulting distribution was

random or if it contained periodic artifacts. A delta function is representative of

random noise (see Fig. 6.10(b) θ = 165o, u-direction). However, if the periodic artifacts

are present the auto-correlation also takes a periodic form. As noise (turbulence) was

also present this results in the correlation diminishing see Fig. 6.11 (b).
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Figure 6.11: Poor Fit: θ = 150o, v-dir; (a) Energy distribution at each harmonic
(U = 4m/s) (b) Auto-correlation (U = 7m/s)

The fits judged to be of acceptable quality level are presented in Table 6.1 with the

measured time delays. Although the single harmonic fit was poor at some measure-
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6.2. Time Delay

ment positions, it was observed using the qualitative approach described earlier that

a delay between tube motion and the flow reorganisation resulted but this could not

be quantified.

When the time delay is discussed in the literature, researchers refer to it as a

single quantity, which in the case of Granger & Paidoussis [82] was shown not to be

instantaneous. In this study the time delay was found to change with the measurement

location around the cylinder. There was no definitive trend relating the time delay

with measurement position but it does appear that it was smaller at the front of the

cylinder and increases at the rear. However, the largest delay was observed at side

of the cylinder (θ = 90o) in the in flow direction. The difference in the time delay

at various positions is not unreasonable as the diffusion-convection of vorticity would

also be evolving at different rates around the cylinder. However, it is not clear if this

result would be replicated if the pressure on the surface of the cylinder was measured

instead of the velocity at the point measurements. Further work is required to explore

this effect but was beyond the scope of the current study.

Position U = 4m/s U = 7m/s U = 10m/s
15o (v -dir) 3.0 3.5 4.4
30o (u -dir) 5.1 3.4 3.5
30o (v -dir) 6.6 4.9 5.8
90o (u -dir) 42.0 52.4 -
150o (u -dir) - 5.5 4.6
165o (u -dir) 9.3 7.9 7.0
165o (v -dir) 10.3 8.8 8.0

Table 6.1: Time Delay (ms) at a range of positions in the flow field

Another approach to measure the time delay between tube motion and the flow

field was attempted with no harmonic fitting of the data. This was achieved by not

forcing a sinusoidal response but by displacing the cylinder by a similar distance in

a short time (∼ 1ms). Effectively, the indicial response of the coupled fluid struc-

ture system was measured. The electromagnetic shaker was replaced with a solenoid.

However, the force produced by the solenoid was large and the tube overshot with a

resulting transient motion. A number of suppression measures such as using additional

damping, rubbing plates, stopping blocks and reducing the applied force reduced the
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6.2. Time Delay

transient effects somewhat but not sufficiently. To better resolve this issue the twin

beam support set up would need to be replaced with a system designed specifically for

this type of test.

It is also envisaged that the measurement on the surface of the cylinder (pressure)

rather than in the flow would result in a cleaner response, facilitating improved mea-

surements for both approaches outlined above to measure the time delay. It is likely

that the step response would be the better approach as it would not only quantify the

time delay but would also give rise to a function similar to the memory effect proposed

by Granger & Paidoussis [82].
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6.3. Effect of acoustic resonance on the Time Delay

6.3 Effect of acoustic resonance on the Time Delay

A number of attempts to explain the interaction between fluidelastic instability and

acoustic resonance have been discussed and discounted by experimental tests. It has

been reported in the literature that there is a time delay between tube motion and

the resulting fluid forces. The current study has measured a time delay of sorts, by

measuring the flow around a cylinder in response to tube motion. Andjelic & Popp [84]

showed the importance of a time delay, comparing their experimental data with the

“wavy wall channel model” developed by Lever & Weaver [85]. Andjelic & Popp found

that the fit between the analytical curve and experimental data was poor. Modifying

the time delay resulted in a much better fit. As it was observed that the stabil-

ity threshold was modified with acoustic resonance (AR), it is possible that acoustic

resonance interferes with the time delay. The time delay between tube motion and

flow velocity at a number of positions around the cylinder with and without acoustic

resonance was measured.

U = 4m/s U = 7m/s U = 10m/s
Position AR AR AR

15o (v -dir) 3.0 0 3.5 3.7 4.4 2.3
30o (u -dir) 5.1 1.4 3.4 5.7 3.5 3.6
30o (v -dir) 6.6 0 4.9 5.4 5.8 0
90o (u -dir) 42.0 45.9 52.4 51.1 - -
150o (u -dir) - - 5.5 9.1 4.6 3.4
165o (u -dir) 9.3 7.9 7.9 8.1 7.0 6.0
165o (v -dir) 10.3 8.1 8.8 9.1 8.0 6.8

Table 6.2: Time Delay (ms) at a range of positions in the flow field with and without
acoustic resonance. Shading - illustrates the hot-wire positions and velocities where
overlap between the individual time delays measured with and without forced acoustics
occurs

The series of tests discussed in section 6.2 were extended to measure the time delay

with forced acoustics and each test was repeated five times. Tests were repeated for

other flow velocities and also the other hot-wire positions. It was discussed previously

that the measured time delay was found to wander slightly from test to test. The av-

erage (five tests) time delays with and without acoustic resonance are summarised in

Table 6.2. In some instances a change in time delay with forced acoustics occurred but
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6.3. Effect of acoustic resonance on the Time Delay

there was an overlap between the individual time delays measured with and without

acoustic resonance. These are denoted by the shading in Table 6.2. In these instances

no conclusive outcome as to the influence of acoustic resonance was realised. How-

ever, at the other positions a definitive phenomenon emerged: the acoustic resonance

modified the time delay. In some instances the time delay was increased; more of-

ten the time delay was reduced. The reduced duration of the time delay resulting in

a reduction in tube oscillation is in agreement with the model proposed by Price &

Paidoussis [1]. Furthermore, the proposition that modification of the time delay shifts

the stability threshold is in agreement with the conclusions of Andjelic & Popp [84]

which were based on experimental considerations. Further work is required to explore

this result but this can only be rigorously examined when the time delay between tube

motion and fluid forces is measured.

Assuming that acoustic resonance modifies the time delay, how could this process

be justified physically? Granger & Paidoussis’ [82] formulation of a memory effect

(cause of the time delay) refer to vorticity generated on the surface of the cylinder

resulting from tube motion. This vorticity is diffused and convected downstream by

the mean flow. When the vorticity is convected far enough downstream a new steady

state is reached. It was shown that the effect of acoustic resonance on the static fluid

forces was negligible (i.e. the vorticity generation process). So, as acoustic resonance

was observed to have modified the time delay it must be interfering with the vorticity

diffusion-convection process. In Figs. 6.12 and 6.13 it was also observed that the

acoustic resonance shifted the mean velocity (both increasing and decreasing) at some

positions as well as the form of the distribution with reference to the angular position

of the tube vibration. This is curious, as at the current tube position the acoustic

particle velocity corresponds to a minimum in this region. In this instance it appears

that acoustic resonance is causing streaming. It is not unreasonable to suggest that

the acoustic streaming may be interfering with the diffusion-convection of vorticity

process from the surface of the cylinder suggested by Granger & Paidoussis.

It has been shown that acoustic resonance effects fluidelastic instability and this

has been quantified. Acoustic resonance does not change the static fluid force. It

has also been shown that at some hot-wire (local flow velocity) positions a definitive
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6.3. Effect of acoustic resonance on the Time Delay

change in the time delay between tube motion and the flow field around the cylinder

emerged as a result of acoustic resonance. It is also clear that acoustic resonance

modifies the mean velocity at some positions in this region where it is thought this

results from acoustic streaming. Further work is required to further explore the time

delay mechanism and hence the effect of acoustic resonance on it.
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Figure 6.12: Ensemble averaged Velocity data: – (blue), without acoustic excitation
and − · − (red), with artificially excited acoustic resonance (speaker power = 64W)
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6.3. Effect of acoustic resonance on the Time Delay
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Figure 6.13: Ensemble averaged Velocity data: – (blue), without acoustic excitation
and − · − (red), with artificially excited acoustic resonance (speaker power = 64W)
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Chapter 7

Conclusion

An investigation into the interaction between fluid damping controlled instability and

acoustic resonance in normal triangular tube arrays with pitch ratios of 1.32 and 1.58

has been investigated. This was achieved by experimental means. A single flexible

cylinder was free to oscillate in the cross flow direction only. The duct acoustics were

excited with speakers placed adjacent to the tube array to artificially replicate flow-

induced acoustic resonance (second acoustic mode). It was observed that the imposed

acoustic field showed no apparent effect on the vibration amplitude for the pitch ratio

of 1.58. For the pitch ratio of 1.32 acoustic resonance modified fluidelastic vibration

amplitude, increasing the critical flow velocity, delaying the onset of fluidelastic insta-

bility. In a post stable regime, a drop in the amplitude of tube vibration was observed

with increasing sound pressure level of the acoustic resonance. In terms of the system

dynamics, it has been shown that acoustic resonance adds positive damping, reducing

the apparent negative fluid damping associated with fluidelastic instability.

Using the quasi-steady framework proposed by Price & Paidoussis [1] to model

fluidelastic instability, two possibilities were examined to explain the interaction be-

tween the two phenomena. The first examined the steady effects, i.e. the effect of

acoustic resonance on the magnitude of the static fluid forces. It was observed that

static fluid forces were not affected by the imposed acoustic field (SPL≈140dB). The

second possibility examined the phase dependency of the fluidelastic force. This re-

quired the measurement of a time delay between tube motion and fluid forces. In

the current setup a time delay between tube motion and a point in the flow was

measured. Acoustic resonance was shown to modify the time delay associated with
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fluid damping controlled instability at some of the measurement positions (around the

measurement cylinder). It is proposed that acoustic streaming was interfering with

the diffusion-convection of vorticity process detailed by Granger & Paidoussis [82].

However, additional testing is required to better explore this hypothesis.

In addition, some baseline surface pressure measurements for a tube in the third

row of three normal triangular tube arrays have also been conducted with various

static displacements applied to the tube. This data provides a valuable reference for

validation of simulations of fluidelastic instability in staggered arrays.

The fluid forces did not scale proportionally to dynamic head as assumed by models

in the literature. It was found that the fluid forces which are related to fluidelastic

instability are dependent on Reynolds number and pitch ratio. A non-dimensional

relationship between drag coefficient and Reynolds number was found for all three

arrays. For P/d=1.32 the equation included tube displacement. This was not required

for the other pitch ratios as the effect of tube displacement was small. However, the

change in flow regime observed for P/d=1.58 and 1.97 resulted in different indices and

constants for lower and higher Reynolds number ranges. For all array pitches tested

no simple parameterisation was found for the lift force as it was observed to be highly

dependent on the flow velocity, array geometry and tube displacement.

A jet switching phenomenon was also observed in the pitch ratio of 1.58. It is

possible that the jet switching interfered with the time delay mechanism resulting in

the more gradual change in vibration at the onset of fluidelastic instability and the

poorly established limit cycle amplitudes. It is also likely that jet switching interfered

with the time delay mechanism destroying any subtle changes caused by acoustic

resonance. Further work is required to explore this hypothesis.
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7.1. Future Work

7.1 Future Work

From the conclusions drawn in this testing programme it is apparent that more work

is needed to understand the fluid dynamics underlying fluidelastic instability but also

the interaction with acoustic resonance.

To fully explore the physical mechanisms responsible for fluid damping controlled

instability an improvement in the technique to measure the time delay is required.

It is not possible to measure a time delay at all positions in the flow field due to

the highly sheared nature of the flow field and the process used to determine the

time delay. The setup and process used could be improved upon by a two pronged

approach. Firstly the measurement of the fluid forces on the cylinder as opposed to

the flow velocity, would be a more appropriate measure of the time delay. The force

measurements would be based on the measurement of the pressure distribution on the

cylinder undergoing sinusoidal vibration. This would require calibrating and adapting

the pressure transducers and pressure tapped cylinder for dynamic measurements.

This would not only quantify the time delay in terms of fluid force but would identify

the regions of relevance. The second approach would re-examine the idea of displacing

the cylinder by a small distance in a finite time (i.e. step response). This would require

the modification of the twin beam support setup or more preferably the design of a

new support which would enable the tube to be displaced in a finite time without the

adverse effects of a transient decay at the cylinders new position. This approach would

not only measure the time delay but would illustrate the transition process from one

steady state position to the next with the possibility of validating the framework of

Granger & Paidoussis [82].

Using both the improved time delay measurement techniques as well as the full field

velocity measurements would further clarify the relationship between the time delay

and acoustic resonance. In addition, the full field velocity measurements would help

identify if acoustic streaming was interfering with the convection-diffusion of vorticity

process.
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Appendix A

Terms related to Vortex Shedding

Symmetric vortex shedding - vortices are shed out of phase from the upstream wakes

resulting in vortices shed from both sides simultaneously of the cylinder downstream

of the wakes.

Anti-symmetric vortex shedding - vortices are shed alternatively and are in phase

with neighbouring cylinders. This results in alternate vortices shed in the next row of

cylinders.

Alternate vortex shedding - vortices are shed from alternate sides of the cylinder.

Figure A.1: Vortex Shedding

When tubes are arranged in an in-line configuration flow lanes develop. As the flow

proceeds past successive tube rows a jet-like profile develops. Jet instability is initiated

at locations of flow separation from tubes in the first row. It initial starts off as thin

shear layers of the jet. Vortices in jet shear layers roll up and grow in size and strength

as the flow proceeds past successive tube rows. This produces vortices both sides of
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the flow lane inside the tube wake. Figure A.2 shows an image from Ziada & Oengoren

[5] showing jet instability.

Figure A.2: Jet Instability [5]

Shear layer instability - When the tube spacing is more restricted again the flow

separates from the cylinder and two shear layers develop. Small vortices develop in

the shear layer as shown in Fig. A.3 (Ziada et al. [6]). For shear layer instability

to occur the shear layers at both sides of the flow lane oscillate. This results in an

unstable reattachment at the downstream cylinder causing increased oscillations and

shear layer instability.

Figure A.3: Shear layer Instability [6]
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Wake instability - flow separates from the cylinder and two shear layers develop

and role up shedding vortices which become distorted and stretched out as the two

shear layers interact and eventually become dissipated in the turbulent flow generated

within the array. See Fig. A.4 (Ziada & Oengoren [7]) for a visual representation.

Figure A.4: Wake instability [7]
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Appendix B

Pressure Tapped Tube Drawings

Figure B.1: Schematic of the Pressure Tapped Tube
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Appendix C

FEA Analysis of Test Section

FEA analysis was performed with ANSYS on the test section for two tube arrays

installed with pitch ratios of 1.32 and 1.58. This was done to measure the frequencies

of the transverse acoustic modes of the test section. The frequencies obtained were

found to be in reasonable agreement with the quantities measured experimentally. As

agreement between the FEA model and experiments was good, the FEA model was

used to determine sources (nodes) and sinks (anti-nodes) within the test section. From

Fig. C.1 it was observed that the sources were located at the center of the array and

at the side walls with a peak in energy at the third row. Determining the location of

the nodes and anti-nodes was important, because placing the speaker at an anti-node

would have made artificial excitation of acoustic resonance using speakers very difficult.

Hence, the speakers where located at a node. It was observed that a node was located

at the test section wall with the energy peaking at third row (middle). However, the

setup used had half cylinders mounted against the test section walls at first, third

and fifth (last) rows. So if the speakers had of been centered at those positions direct

propagation into the test section would have been restricted. Hence, the speakers

were located at the location closest to the highest available energy levels where direct

propagation into the test section could be achieved explicitly in line with the second

row. Once the speakers were installed the first and second acoustic modes could be

excited by wiring the speakers in different configurations as described previously.
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Figure C.1: FEA model showing the pressure distribution for the second acoustic mode
of the test section with P/d=1.32
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Appendix D

Error Analysis

In the chapter 3 the instruments used in this study were discussed. This section

examines the error of uncertainty in the measurement techniques. The uncertainty

associated with each technique is reported with a 95% confidence interval. The un-

certainty interval (±E) is the band about the reported result within which the true

value is expected to lie with 95% confidence. The uncertain is the combination of the

systematic error (S) and the random error (R) as detailed in Eqn. D.1.

E =
√

S2 + R2 (D.1)

Systematic errors are errors which tend to shift all measurements in a systematic

way so their mean value is displaced. Random errors are errors which fluctuate from

one measurement to the next. They yield results distributed about some mean value.

The random error is defined as twice the standard deviation.

The free stream velocity flow measurements were conducted using a Furness Con-

trol micromanomenter (model FC015). According to manufacturer’s specification the

instrument has an uncertainty of 1%. This flow meter has an output display with

a precision of three decimal places. The velocity measurements used in this study

were based on a ten second sample. However, due to the fluctuating velocity in the

flow using a precision of three decimals would have been erroneous. The measurement

was accurate to ± 0.03m/s. Given a 95% confidence interval the velocity was given a

precision of 0.1m/s.

The gap velocity was calculated from free stream flow velocity. It was obtained

by multiplying the free stream free velocity by a constant where the constant was
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obtained from the geometry of the array. As the geometry measurement was accurate

to 0.01mm, no significant additional uncertainty was introduced into the gap velocity

measurement.

Reynolds number was obtained using free stream flow velocity, tube diameter, fluid

density and fluid viscosity. The first two terms were measured. The latter terms where

available from standard tables. The largest uncertain in the Reynolds number is the

temperature, as the fluid density and viscosity are temperature dependent. The error

associated with the Reynolds was not possible to determine as the temperature was

not rigorously monitored. In this instance the error is systematic and would be applied

at all calculated values of Reynolds number.

The local flow velocity was measured using hot-wire anemometry. Hot-wire anemom-

etry was used in two experimental setups. In the first setup, local flow velocity mea-

surements were made with all tubes stationary. In the second setup, local flow velocity

measurements around an oscillating cylinder (time delay tests) were made. In the first

setup, it was possible to measure the random error using standard deviation of the

measurement signal. This resulted in an uncertainty of 20-40% depending on the mag-

nitude of the free stream flow velocity and position around the cylinder. The reason

for the large uncertainty is due to the high fluctuating velocities due to the high levels

of turbulence in the tube array. In the latter setup, a phase lag between the oscillat-

ing local flow velocity and the tube motion was extracted. Effects of turbulence were

observed in both signals. However, 99 oscillations were averaged reducing the noise

level by a factor 10. Using an analysis technique described in section 6.2, a phase lag

between tube motion and local flow velocity was extracted. This process was repeated

five times. The uncertainty in the measurement was position dependent, however on

average it was of the order of 10%. The value given in the uncertainty was only for the

time delay measurements deemed to be of acceptable quality (time delays presented

in Tables. 6.1).

The error associated with the measurements that utilised an accelerometer as a

measurement device were dependent on the measurement type. The accelerometer

was used to measure: structural and fluid damping, the stability threshold and tube

motion in the time delay measurements (discussed in previous paragraph).
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The uncertainty in structural and fluid damping measurements are given in terms

of standard deviation. For structural damping, there was no flow and as a result the

uncertainty in the measurement was approximately 2%. The fluid damping measure-

ment on the contrary was subject to flow. As the instrumented tube was subject to

high levels of turbulence, the uncertainty in the measurement increased five fold and

is why the tests were repeated twenty times to obtain a statically meaningful value.

The uncertainty in the stability threshold measurements was dependent on the

array pitch ratio. However as the measurement signal was oscillatory, using the stan-

dard deviation to determine the uncertainty was not applicable. The tube oscillation

at a fixed velocity was measured and the tests repeated 10 times. For P/d=1.32 the

uncertainty was generally less than 1.2% and similarly for the pitch ratio of 1.97. For

P/d=1.58 the uncertainty in the measurement was much larger at 30% when the tube

unstable due fluidelastic instability. The large uncertainty was due to jet switching

also observed in this pitch ratio.

The frequency resolution measured was dependent on the sampling frequency, the

duration of the test and the number of averages. When calculating the natural fre-

quency of the structure, a low sampling frequency was used. If the measurement length

was long the precision was high plus the number of averages was also high. The higher

the number averages the lower the noise level. The noise level reduced by a factor

of the square root of the number of averages. The precision of other measurements

taken were not required to be as accurate as above. The microphone measurements

required a higher sampling frequency to measure the higher frequency components. In

this instance a frequency resolution of 1Hz sufficed.

As discussed previously the pressure transducers where calibrated by applying a

fixed known pressure. The applied pressure was 5kPa and this was determined to

within ±0.01kPa. Applying this known pressure the uncertainty in the pressure trans-

ducer measurement was less than 1%. However, when the pressure on the surface of

the measurement cylinder was measured, pressure fluctuations due to turbulence in

the tube array increased the spread in the measurement signal. Furthermore, this was

a function of position and pitch ratio. Like the stability threshold uncertainty, the

pitch ratio of 1.58 showed the largest variation with an uncertainty of 32% caused by
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the jet switching in this array. For the pitch ratios of 1.32 and 1.97 the uncertainty

was smaller with the largest uncertain been 5.4% and 7%, respectively.

The pressure coefficient was obtained from pressure at the stagnation point, the

pressure at a given position angle, square of the gap velocity and fluid density. The

uncertainty in the pressure coefficient is therefore a combination of the uncertainties.

However, as the fluid density is temperature dependent and the temperature was not

rigorously monitored it was no possible to specify the uncertainty in the pressure

coefficient.

The uncertainty in the lift and drag force was obtained by repeating tests at given

parameters and measuring the static fluid forces. This was repeated for a number

of flow velocities in the pitch ratio of 1.32. The largest uncertainty in the lift and

drag force was at the lowest flow velocity (2m/s) with values of 34% and 6%, respec-

tively. The uncertainty reduces significantly as the flow velocity increases. In fact the

uncertainty reduces to 8% and 0.5% for the lift and drag forces, respectively.

The input power to the speakers was measured with a precision of 0.1W using

a digital multi-meter. The acoustic sound pressure level as a result of the speakers

was measured using G.R.A.S. microphones. The acoustic pressure sensitivity was

obtained using a Brüel and Kjaer Sound Level Calibrator Type 4231 at 1Pa (94dB).

According to manufacturer’s specification the sound level calibrator has an uncertainty

of ±0.2dB. However, the peak value of sound pressure level will reduced somewhat due

to leakage of energy when the spectral analysis was performed on the signal. As the

exact determination of sound pressure level was not necessary, the amount of leakage

was not measured. Hence, no measurement of uncertainty was determined.

Tube displacement was measured using a displacement gauge which was accurate to

0.01mm. As the displacement gauge was an analogue device, the degree of uncertainty

was ±0.01mm.
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Appendix E

Pitch Ratio of 1.97

E.1 Pressure Distribution

The pressure distribution around a cylinder in the third row was discussed in sec-

tion 5.1.2. The effect of Reynolds number and tube displacement will now be briefly

discussed. At the front of the cylinder at all Reynolds numbers the pressure coefficient

was relatively constant. This trend changes quickly at all other positions around the

cylinder. At higher Reynolds numbers CP collapses well, fluctuating about a constant

value indicating that the pressure scales with dynamic head. This change in behaviour

would suggest a change in the behaviour of the flow. This was shown to be the case

as will be demonstrated by the change in the drag force behaviour at a comparable

Reynolds number (∼ 6.8× 104).

The effect of tube displacement was least distinct with the pitch ratio of 1.97. This

was not surprising as the gap between neighbouring cylinders was larger. In fact, the

largest change as a result of tube displacement occurred at the front of the cylinder

and not at the minimum gap between neighbouring cylinders. This suggests that the

effect of the neighbouring cylinders was very small especially as the largest changes

resulted from the redistribution of the fluid impinging on the front of the cylinder.

There was no significant changes in pressure at the rear of the cylinder. This was not

surprising as there was only minimal changes on the front face of the cylinder. Hence,

no significant reorganization of the flow occurred.
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E.1. Pressure Distribution
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Figure E.1: P/d=1.97; y/d = 0, CP at all velocities tested
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E.1. Pressure Distribution
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E.2. Drag Force

E.2 Drag Force

For P/d = 1.32 and more so in P/d = 1.58 the effect of tube displacement on the drag

force was small. This trend continued as the array pitch increased (P/d=1.97) with the

effect of tube displacement reduced further. Plotting the drag force data at all tube

displacements resulted in the various traces collapsing well (see Fig. E.4), far better

than that observed for the pitch ratio of 1.58. This was as a consequence of there

been no flow instability in the tube array with pitch ratio of 1.97 unlike P/d = 1.58

were flow instability was dominant. Again, fitting a single line and a quadratic curve

provided an inferior fit compared to two lines. The indices obtained were 1.4 and 2 for

the lower and higher Reynolds numbers, respectively, with the transition in the flow

regime occurring at a slightly higher Reynolds number (≈ 6.8 × 104). For the sake

of brevity the respective indices obtained separately at all tube displacements tested

are shown in Fig. E.6. The indices again fluctuate about mean values illustrating the

minimal effect of tube displacement on the drag force.
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E.2. Drag Force
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Figure E.6: P/d = 1.97; Index relating drag force and gap velocity

Using a similar analysis to that carried out for other pitch ratios of 1.32 and 1.58.

The relationship between drag coefficient and Reynolds number is shown in Eqn. E.1.

Like P/d=1.58 the index, n and constant k for the lower and higher Reynolds number

range were different to account for the change in the flow regime.
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E.2. Drag Force
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E.3. Lift Force

E.3 Lift Force

It was discussed in section 5.1.2 that the lift distribution for P/d = 1.97 was peculiar

with the lift force fluctuating about zero at lower Reynolds numbers and a net force

generated at higher Reynolds numbers. The peculiarity in the lift distribution was

not attributed to a rotational offset and could only be explained by a flow induced

phenomena. Figure E.8 shows the lift coefficient for a range of tube displacements.

Further experiments are required to better understand the pitch ratio of 1.97.

10
4

10
5

10
6

−0.12

−0.08

−0.04

0

0.04

0.08
(a) y/d=0%

 

C
L

10
4

10
5

10
6

−0.12

−0.06

0

0.06
(b) y/d=1%

 

 

10
4

10
5

10
6

−0.08

−0.04

0

0.04

0.08 (c) y/d=3%

 

C
L

10
4

10
5

10
6

−0.14

−0.07

0

0.07

0.14
(d) y/d=5%

 

 

10
4

10
5

10
6

−0.1

0

0.1

0.2
(e) y/d=7%

Re

C
L

10
4

10
5

10
6

−0.12

−0.03

0.06

0.15

0.24 (f) y/d=10%

Re

 

Figure E.8: P/d=1.97; Lift Coefficient against Reynolds number at various tube dis-
placements
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E.3. Lift Force

The lift coefficient against tube displacement for a range of flow velocities was

also plot (see Fig. E.9). It can be seen that at the lower velocities the lift coefficient

behaves as would be expected, that is, increasing with tube displacement. However,

as the velocity was increased the peculiarity observed previously results in the lift

coefficient generated in the opposite direction (negative) fluctuating about a constant.
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Figure E.9: P/d=1.97; Lift coefficient against tube displacement at various velocities

162



Appendix F

Further Analysis of P/d=1.32 and
P/d=1.58

F.1 Pressure Coefficient; P/d=1.32
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Figure F.1: P/d = 1.32; CP at various tube displacements, U = 4m/s
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F.1. Pressure Coefficient; P/d=1.32

Figure F.2: Schematic of position angle
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Figure F.3: P/d = 1.32; CP at various tube displacements, U = 10m/s
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F.2. Pressure Coefficient; P/d=1.58

F.2 Pressure Coefficient; P/d=1.58
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Figure F.4: P/d = 1.58; CP at various tube displacements, U = 5m/s
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Figure F.5: P/d = 1.58; CP at various tube displacements, U = 8m/s
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F.3. Drag Force
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Figure F.6: P/d = 1.58; CP at various tube displacements, U = 14m/s

F.3 Drag Force

In section 5.3.1 results on the drag force and drag coefficient were presented. For

P/d = 1.32 it was reported that effect of tube displacement was small at low Reynolds

numbers. However, with increasing Reynolds number the drag coefficient increases

with tube displacement. This is illustrated in Figs. F.7 and F.8. The behaviour of

the drag force and drag coefficient is investigated in this section. This is achieved by

examining the additional contribution to the drag force resulting from tube displace-

ment. The change in drag profile as a result of tube displacement is shown in Figs.

F.9, F.10 and F.11. These where obtained by removing the drag profile at y/d = 0%

from the profile at the various displacements tested.

It was observed that there was a change in pressure at the front of the cylinder when

it was displaced. For all Reynolds numbers it was found that the additional positive

and negative contributions to the drag force either side of the front stagnation point

generally cancel resulting in a redistribution of the drag force around the cylinder

but no additional net force. In the region after the minimum inter-row gap it was

observed from the pressure distribution that a kink developed on the side of increasing

blockage as a result of tube displacement. At lower Reynolds numbers the additional
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F.3. Drag Force

contribution from this region was negligible cancelling with the opposite side of the

cylinder. As the Reynolds number was increased a net positive contribution to the

drag force resulted at all displacements. The other noticeable changes occurred at

the rear of the cylinder. At displacements up to 5% a negative contribution as a

result of tube displacement results. However, as the tube displacement (1 − 5%)

was increased the contribution diminishes. Beyond a tube displacement of 5% a net

positive drag contribution results. The observations at the rear of the cylinder applied

at all Reynolds numbers tested.
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Figure F.7: P/d = 1.32; Drag coefficient at various velocities. Part 1
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F.3. Drag Force
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Figure F.8: P/d = 1.32; Drag coefficient at various velocities. Part 2

For P/d = 1.58 the largest changes in pressure distribution as a result of tube

displacement where observed at the front of the cylinder and the region around the

base coefficient. Like P/d = 1.32 the net contribution to the drag force at the front of

the cylinder was small as the effects either side of the stagnation point were nullified. At

the region around the base coefficient the change in pressure was significant, however,

the contribution to the drag force in that region was small. So as concluded in section

5.3.1 the effect of tube displacement on the drag force was small for P/d = 1.58 with

the variability observed when the tube was displaced attributed to the jet switching

in this pitch ratio.
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F.3. Drag Force

0 180 360
−0.05

0

0.05 y/d=1%

θ

D
* 

(N
)

0 180 360
−0.1

0

0.1 y/d=3%

θ

D
* 

(N
)

0 180 360
−0.2

0

0.2 y/d=5%

θ

D
* 

(N
)

0 180 360
−0.5

0

0.5 y/d=7%

θ

D
* 

(N
)

0 180 360
−0.5

0

0.5 y/d=10%

θ

D
* 

(N
)

Figure F.9: P/d = 1.32; Drag Force generation, U = 4m/s, y/d = 1, 3, 5, 7 and 10%
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Figure F.10: P/d = 1.32; Drag Force generation, U = 7m/s, y/d = 1, 3, 5, 7 and 10%
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Figure F.11: P/d = 1.32; Drag Force generation, U = 10m/s, y/d = 1, 3, 5, 7 and
10%
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F.4 Lift Force

In section 5.3.2 it was detailed that the lift force increases with tube displacement

and increasing Reynolds number. The lift coefficient on the contrary increases at low

Reynolds numbers. As the Reynolds number is increased further, the rate at which

the lift coefficient increases, reduces. At higher Reynolds number the lift coefficient

reduces. Examining the lift force against tube displacement for all velocities tested,

it was observed (Figs. F.12 and F.13) that as the Reynolds number was increased

beyond 4.5× 104 the bulk of the lift generated occurred by y/d = 4%. Thereafter the

rate at which the lift coefficient increases with increasing tube displacement reduces.

To better understand how above trend occurs, the contribution to the lift force was

examined. Figures F.14 and F.15 show the contribution to the lift force for number of

tube displacements and flow velocities. The lift force generation at each velocity and

displacement was examined independently. The lift force was in the direction normal

to the free stream flow direction. So, the cylinder can be split along a center line

(0− 180o). The difference in the lift at the same position angle but either side of the

center was obtained (i.e. lift∆20o = lift20o + lift−20o). The values at each position

angle are normalised with respect to the overall lift generated.

It was observed that two main changes in the contribution to the lift force occur in

the regions (a) 45− 90o and (b) 90− 130o. At the lower Reynolds numbers examined

(< 3.34 × 104) the majority of the lift was generated at θ = 45 − 90o and peaks

at θ = 60 − 70o. This trend emerges at all displacements. As shown previously

the pressure distribution in this region shows one of the largest changes due to tube

displacement. A peak also emerges at region (b), it is thought that this peak was as

a consequence of the flow separating. For the lowest Reynolds number tested it was

found that as the displacement increased, the change in contribution to the lift force

from the different regions around the cylinder was small with the net contribution

increasing in the region 45− 90o.

With increasing Reynolds number at small displacements (y/d = 1%) the contri-

bution to the lift force changes from a larger amount in the region (a) to region (b).

A similar trend emerges as the tube displacement increases but rate at which energy
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redistribution occurs, reduces with increasing displacement. Only at higher Reynolds

numbers does the largest contribution to the lift force change from region (a) to re-

gion (b) occur. In fact at y/d = 5% the contribution to the lift force is similar in both

regions. As the displacement was increased further (6%), region (a) dominates at all

Reynolds numbers with contribution in this region reducing with increasing Reynolds

number. The contribution to the lift force increases in region (b) but not to the extent

as was observed for the smaller displacements.

Conversely, at the front of the cylinder (0− 35o) there was a negative contribution

to the lift force. The negative contribution reduced with increasing Reynolds number

but increased with increasing tube displacement. This suggests that the extent of the

non-recoverable pressure loss in this region was increased as the blockage increases.

For all Reynolds numbers the contribution to the lift force at the rear of the cylinder

(140 − 180o) was negligible up a tube displacement of 7%. As the displacement was

increased beyond 7% there was a very small change resulting in a negative contribution

to the lift force. Although a small negative contribution was observed, the contribution

to the overall lift generation was minimal and can realistically be ignored.

Examining the observations regarding lift generation as a whole, it was concluded

that the reason for the bulk of the lift been generated at displacements up to 4% for the

low-mid to high Reynolds numbers tested was as a result of the larger contribution

in region (b). Also as the displacement increases there was an increasing negative

contribution in the regions 0 − 35o at the front of the cylinder and to a lesser extent

at the rear of the cylinder (140− 180o).
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Figure F.12: P/d = 1.32; Lift coefficient at various velocities. Part 1
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Figure F.13: P/d = 1.32; Lift coefficient at various velocities. Part 2
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Figure F.14: P/d = 1.32; Lift Force generation at various displacements: 1, 3, 5, 7
and 10% at (a) U = 4m/s, (b) U = 7m/s and (c) U = 10m/s
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Figure F.15: P/d = 1.32; Lift Force generation at various velocities: U = 2, 4, 6,
8, and 10m/s at (a) y/d = 1%, (b) y/d = 3%, (c) y/d = 5%, (d) y/d = 7%, and
(e) y/d = 10%

For P/d = 1.58 it was reported that effect of jet switching resulted in the lift

force behaving poorly. In general, it was shown that lift force increases with tube

displacement and flow velocity, similar to that observed for the pitch ratio of 1.32.

Figure F.16 shows contribution to the lift force for the pitch ratio of 1.58. At small

displacements it was difficult to report definitively about the various contributions to

the lift force and this lack of clarity was attributed to the jet switching observed in
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this array. No real clarity in relation to the lift force generation was realised until a

displacement of 7%. At the rear of the cylinder there was a negligible contribution.

At the front of the cylinder there was a negative contribution which reduces with

increasing Reynolds number similar to that observed for the pitch ratio of 1.32. The

main contribution to the lift force was in the region 45−120o with a peak occurring at

70o. Because of the flow instability it is difficult to report if the contribution changes

with Reynolds number or tube displacement. If it does change, the change is thought

to be less than that observed for the pitch ratio of 1.32 as the geometry in the current

pitch ratio was not as restrictive. The disruptive nature of the flow instability further

provides evidence that, the lift force was mainly affected by local flow conditions and

was only weakly affected by the bulk pressure drop across the array. This was not

surprising as the affect of the bulk pressure drop on either side of the cylinder (0−180o)

and (180 − 360o) will cancel and hence, the local flow features will dominate in the

formulation of a lift force.
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Figure F.16: P/d = 1.32; Lift Force generation at various velocities: U = 5, 8, 11 and
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