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Summary

Solar Coronal mass ejections (CMEs) are large-scale ejections of plasma and

magnetic field from the corona, which propagate through interplanetary space.

CMEs are the most significant drivers of adverse space weather on Earth, but

the physics governing their propagation through the Heliosphere is not well

understood. This is mainly due to the limited fields-of-view and plane-of-sky

projected nature of previous observations. The Solar Terrestrial Relations Ob-

servatory (STEREO) mission launched in October 2006, was designed to over-

come these limitations.

In this thesis, a method for the full three dimensional (3D) reconstruction

of the trajectories of CMEs using STEREO was developed. Observations of

CMEs close to the Sun (< 15R�) were used to derive the CMEs trajectories

in 3D. These reconstructions supported a pseudo-radial propagation model.

Assuming pseudo-radial propagation, the CME trajectories were extrapolated

to large distances from the Sun (15 – 240R�). It was found that CMEs slower

than the solar wind were accelerated, while CMEs faster than the solar wind

were decelerated, with both tending to the solar wind velocity.

Using the 3D trajectories, the true kinematics were derived, which were free

from projection effects. Evidence for solar wind (SW) drag forces acting in

interplanetary space were found, with a fast CME decelerated and a slow CME

accelerated toward typical SW velocities. It was also found that the fast CME

showed a linear dependence on the velocity difference between the CME and the

SW, while the slow CME showed a quadratic dependence. The differing forms

of drag for the two CMEs indicated the forces responsible for their acceleration

may have been different. Also, using a new elliptical tie-pointing technique the

entire front of a CME was reconstructed in 3D. This enabled the quantification

of its deflected trajectory, increasing angular width, and propagation from 2

to 46R� (0.2 AU). Beyond 7R�, its motion was shown to be determined by

aerodynamic drag. Using the reconstruction as an input for a 3D magnetohy-

drodynamic simulation, an accurate arrival time at the L1 Lagrangian point



near Earth was determined.

CMEs are known to generate bow shocks as they propagate through the corona

and SW. Although CME-driven shocks have previously been detected indirectly

via their emission at radio frequencies, direct imaging has remained elusive due

to their low contrast at optical wavelengths. Using STEREO observations,

the first images of a CME-driven shock as it propagates through interplanetary

space from 8R� to 120R� (0.5 AU) were captured. The CME was measured to

have a velocity of ∼ 1000 km s−1 and a Mach number of 4.1±1.2, while the shock

front standoff distance (∆) was found to increase linearly to ∼ 20R� at 0.5

AU. The normalised standoff distance (∆/DO) showed reasonable agreement

with semi-empirical relations, where DO is the CME radius. However, when

normalised using the radius of curvature (∆/RO), the standoff distance did not

agree well with theory, implying that RO was underestimated by a factor of

∼ 3 – 8. This is most likely due to the difficulty in estimating the larger radius

of curvature along the CME axis from the observations, which provide only a

cross-sectional view of the CME. The radius of curvature of the CME at 1 AU

was estimated to be ∼ 0.95 AU
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3.9 Sample EIT 171Å Observation . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.10 Schematic of C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.11 Schematic of C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 Sample LASCO C3 Observation . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.13 Schematic of the STEREO B Spacecraft . . . . . . . . . . . . . . . . . . . . 94

3.14 STEREO Orbit Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.15 Schematic of EUVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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Chapter 1

Introduction

In this chapter I will introduce the fundamental physics and concepts that are discussed in

this thesis, beginning with a short introduction to the Sun, its various layers, atmosphere,

and activity. This is followed by an introduction to coronal mass ejections (CMEs) which

consists of a historical account of CME observations and their interpretation and a brief

review of the modern perspective on CMEs. Finally, I discuss some of the open questions

surrounding CMEs.
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1. INTRODUCTION

“Physicists say we are made of stardust. Intergalactic debris and far-flung

atoms, shards of carbon nanomatter rounded up by gravity to circle the sun.

As atoms pass through an eternal revolving door of possible form, energy and

mass dance in fluid relationship. We are stardust, we are man, we are thought.

We are story.”

Glenda Burgess (The Geography of Love: A Memoir)

Since the dawn of mankind the Sun has been a source of great wonder and fascination.

Some early civilisation worshipped the Sun as deity, indeed some of our oldest antiqui-

ties such as Newgrange and Stonehenge are believed to be solar observatories of a form.

Building these monuments required detailed knowledge of the Sun’s motion relative to the

Earth, and ever since then we have been increasing our knowledge of the Sun. As science

and technology advanced we began to probe the Sun’s structure, composition and energy

source. This led to a picture of the Sun, in terms of stellar equations, as a hot ball of gas in

equilibrium, with gravitational contraction being balanced by the energy released during

nuclear fusion. The modern era of space borne observations has revealed the dynamic and

active nature of the Sun in the form of sunspots, filaments, prominences, flares and coronal

mass ejections (CMEs). The Sun is the power source for all life on Earth and will also

ultimately be the cause of its death.

1.1 The Sun

The Sun, our nearest star, is a main sequence star of spectral type G2V. The Sun has a

total luminosity L� = (3.84± 0.04)× 1026 W, mass M� = (1.9889± 0.0003)× 1030 kg and

a radius R� = (6.959± 0.007)× 108 m (Foukal, 2004). As all stars, the Sun was born from

a giant molecular cloud of approximate mass 104− 106M� which began to gravitationally

collapse and fragment. The process of collapse and fragmentation continued until one

of these fragments attained a central temperature large enough to start hydrogen fusion,

about 4.6 × 109 years ago (Prialnik, 2009). At this point fusion taking place in the core

produced enough energy to counterbalance the gravitational collapse. Currently the Sun

is in a stable configuration, on the Main Sequence, where it is in hydrostatic equilibrium

(∇P = −ρg). The Sun will continue to maintain this stable state for about another 5×109

years before entering the red giant phase. At this point the Sun will expand to about 100

times its current size and begin shedding its outer layers, due to successive nuclear burning

in ever more distant shells. This ultimately leads to the total loss of the outer envelope

exposing a degenerate core, in which all nuclear burning has ceased, called a white dwarf

(Phillips, 1995).
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1.1 The Sun

1.1.1 Solar Interior

The modern picture of the Sun’s interior structure has been built up over time, the three

most important contributions to this have been the ‘standard solar model’ (SSM; Bahcall

et al. 1982), helioseismology, and solar neutrino observations. As we cannot directly ob-

serve the interior of the Sun we have to model its structure and then compare the model

to observed properties, iteratively changing the model parameters until they match the

observations. The SSM is essentially several differential equations derived from fundamen-

tal physics principles, which are constrained by boundary conditions (mass, radius, and

luminosity). The SSM treats the Sun as a spherically symmetric, quasi-static system which

is powered by nuclear reactions at its hottest part, the core. The system is assumed to

start out as a cloud of primordial gas which collapses under gravity. The composition of

this cloud and hence the Sun can only be altered by the process of ‘nuclear burning’ in the

core. All the energy generated by the nuclear burning is transported by radiation except

where convection is a more efficient process.

The process of ‘nuclear burning’ or nuclear fusion occurring in the core at about 1.5×
107 K, is the power source of the Sun. The proton-proton (p-p) chain describes the basic

process which occurs:

1
1H + 1

1H→ 2
1H + e+ + νe (1.1)

2
1H + 1

1H→ 3
2He + γ (1.2)

3
2He + 3

2He→ 4
2He + 211H (1.3)

where 1
1H is hydrogen, 2

1H is an isotope of hydrogen (deuterium), 4
2He is helium, 3

2He is an

isotope of helium with one neutron, e+ a positron, νe an electron neutrino and γ a photon.

The p-p chain splits off into three branches at (1.2) which operate simultaneously, their

reaction rates are determined by the density, temperature, and elemental abundances in

the core. The net result of the p-p chain is the fusion of 4 hydrogen nuclei to from a Helium

nuclei or α-particle:

4 1
1H→ 4

2He (1.4)

with the products weighing less than sum of the initial masses by 0.02866 amu or 4.8 ×
10−29 kg. Using Einstein’s mass energy relation E = mc2 this results in a energy output of

4.28 × 10−12 J (26.73 MeV) of which varyingly small proportions are carried away by the

neutrinos (Foukal, 2004; Phillips, 1995). Comparing the total energy output of the Sun

(L�) to the energy released during one cycle of the p-p chain we can estimate the reaction

rate to be 8.97×1037 s−1. The region where the temperatures and densities are high enough

3



1. INTRODUCTION

Figure 1.1: At the centre of the Sun is the core (≤0.25R�) where temperatures reach
∼1.5×107 K, high enough for fusion to take place. The energy generated at the core from
the fusion process is transported towards surface via thermal radiation in the radiative zone
(0.25 – 0.70R�). At this point the solar plasma is cool enough to from highly ionised atoms
and becomes optically thick. As a result it is convectively unstable and energy is transported
through mass motions in the convection zone (0.7 – 1.0R�). The visible surface of the Sun, the
photosphere, is a thin layer in the atmosphere where the bulk of the Sun’s energy is radiated,
its spectra is well matched to a blackbody with peak temperature of 5,600 K. Above the Sun’s
visible surface lies the chromosphere and finally the corona where the temperature soars back
up to 1 – 2× 106 K. Image courtesy of Steele Hill NASA/GSFC.

4
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1.1 The Sun

for fusion to occur is known as the core, and extends out to about 0.25R� (Figure 1.1).

Outside of the core is the radiative zone (0.25 – 0.70R�) where thermal radiation is the

most efficient means of transporting the intense energy generated in the core, in the form of

high energy photons, outward. The temperature drops from about 7×106 K at the bottom

of the radiative zone to 2 × 106 K just below the convection zone. As the radiation is

thermal it is described by the Planck (blackbody) equation, the specific radiative intensity

is given by:

Bλ(T ) =
2hc2

λ5
1

exp
(

hc
λkBT

)
− 1

[
W

m2 sr m

]
(1.5)

where h is the Planck constant, c is the speed of light, k is the Boltzmann constant. The

peak of this function is given by Wein’s displacement law λmax = 2.8977 × 10−3 T−1 m K

thus the radiative zone is dominated by x-ray and gamma-ray photons. Due to the still

high densities (2 × 104 – 2 × 102 kg m−2) in the radiative zone the mean free path of the

photons is very small (∼ 9.0 × 10−2 cm) hence it can take tens to hundreds of thousands

of years to escape (Mitalas & Sills, 1992). As the temperature continues to fall, highly

ionised atoms begin to form once an appreciable number of atoms have formed the plasma

becomes optically thick, and as a result, becomes unstable as indicated by the upper limit

of the Eddington luminosity:

κF < 4πcGm (1.6)

where κ is the opacity, F the radiation flux, G the gravitational constant, c the speed of

light and m the mass coordinate (Prialnik, 2009). The sudden increase in opacity above

the radiative zone causes the plasma to become convectively unstable. In this region called

the convection zone (0.7–1.0R�), convection is the dominant form of energy transport. If

the mass motions are rapid enough to assume they are adiabatic, and radiation pressure

negligible, the Schwarzchild criterion for stability against convection may be used:

∣∣∣∣
dT

dr

∣∣∣∣
star

=

(
γ − 1

γ

) ∣∣∣∣
dP

dr

∣∣∣∣
star

(1.7)

where γ = CP /CV is the ration of specific heats (Prialnik, 2009). This gives a lower limit

on the conditions necessary for convection to occur. In other words for convection to occur

the temperature gradient must be larger than the adiabatic gradient.

Helioseismology allows us to probe the solar interior by studying the propagation of

sound waves in the Sun. Solar pressure waves (p-modes) are believed to be generated by the

turbulence in the convection zone near the surface of the sun. Only certain allowed modes

(spherical harmonics) can persist, as a result the Sun ‘rings’ like a bell. As these acoustic
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1. INTRODUCTION

Figure 1.2: This plot shows the relative differences between the squared sound speed in the
Sun inferred from two months of Michelson Doppler Imager (MDI) data and from the SSM.
The feature at about 0.7 r/R corresponds to the tachocline. The horizontal bars show the
spatial resolution, and the vertical bars are the error estimates. Image courtesy of Stanford
Solar Oscillations Investigation (SOI).

waves travel, they are refracted due to the waves’ speed dependance on temperature, hence

depth. This means that for all allowed modes the waves will be propagating normal to

the solar surface when they reach it. This motion of the wave can be detected as Doppler

shifts at the surface. Different modes penetrate to different depths and by combining a large

number, the entire solar interior can be studied. The comparison of the properties derived

from helioseismology, and that of the SSM can be used to change the model parameters to

better fit the data, and the modern comparisons are extremely good as shown in Figure 1.2

During the fusion process a large number of neutrinos are produced and escape the

Sun. These neutrinos can be detected on Earth and the flux compared to predictions

from the SSM. When this was first done for the rare 8B neutrino flux (p-p III chain;

Prialnik, 2009), there was a large discrepancy between the predicted flux and the observed

6
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1.1 The Sun

Figure 1.3: Left: Shows the Sun’s bipolar field. Middle: The magnetic field is being twisted
by differential rotation. Right: Loops of magnetic field begin to break the surface forming
sunspots. (From The Essential Cosmic Perspective, by Bennett et al)

flux, which was only ∼ 0.4 of the predicted value and led to the so-called ‘solar neutrino

problem’ (Bahcall, 2003). Results from helioseismology strongly suggested that the SSM

was correct, but the experimental neutrino results were rigorously tested and found to be

correct, leaving a serious issue with either the standard model for particle physics, or with

the SSM. The problem was resolved when it was theorised that neutrinos could oscillate,

that is an electron neutrino (νe) could become a muon neutrino (νµ) as it propagated

from the Sun to the Earth. This was a large step as it required the neutrino to have a

small but finite mass. It became clear that the early experiment to measure the neutrino

flux was only sensitive to electron neutrino (νe) and so could have ‘missed’ some of the

flux. Today the 8B measured neutrino flux (from the 3 flavours, electron, muon, and

tau) is (5.44± 0.99)× 106 neutrinos/cm2 s in good agreement with the SSM prediction of

(5.05+1.0
−0.8)× 106 neutrinos/cm2 s (Bahcall, 2003).

The core and the radiative zones of the Sun rotate rigidly (as a solid body) but the

convection zone rotates differentially, there is a thin interface between the two regions

known as the tachocline. Due to the meeting of the two bodies rotating at different rates

7



1. INTRODUCTION

this region is subjected to large shear flows. These flows are believed to be the mechanism

that generates the Sun’s large-scale magnetic field and powers the solar dynamo. The Sun’s

magnetic field is mainly dipolar and aligned to the rotation axis, thus each hemisphere has

an opposite dominant polarity (Figure 1.3 left). The differential rotation of the convection

zone winds-up this field. This large scale twisting which transforms poloidal field to toroidal

field is know as the Ω-effect (Figure 1.3 middle). As the field is twisted up the magnetic

pressure increases and bundles of magnetic field lines (flux ropes) can become unstable and

rise up in the from of loops. Due to solar rotation, the Coriolis effect twists these loop back

towards north-south orientation reinforcing the original poloidal field, this is known as the

α-effect (Figure 1.3 right) and completes the αΩ-dynamo. When magnetic loops become

buoyant and rise up through the surface they are visible as sunspots on-disk and mark the

footprints of large loops which extend into the solar atmosphere. In a given hemisphere the

leading sunspot and trailing sunspot will have opposite polarities, this order is reversed in

the other hemisphere (Hale’s Law). Also the tilt angle of the sunspots pairs have a mean

value of 5.6◦ relative to the solar equator (Joy’s Law). Sunspots are known to migrate from

high latitudes towards the equator over an 11 year cycle (Sporer’s Law; see Figure 1.4).

The net affect is an increase in opposite polarity field at the poles, ultimately the majority

of the field will be oppositely oriented and the dipole will flip. This occurs every 11 years,

thus a complete cycle takes 22 years (N to S to N). The activity of the Sun, in the form

of active regions, flares, transient events, and other associated phenomenon, is modulated

by this cycle (see Figure 1.4 lower).

1.1.2 Solar Atmosphere

The Sun’s atmosphere is composed of all the regions above the photosphere. Until now

we have referred to the photosphere as the visible surface of the Sun, it is in fact a very

thin layer of the solar atmosphere. The solar atmosphere is usually separated into three

regions, the photosphere, chromosphere and corona based on their density, temperature,

and composition as shown in Figure 1.5. However, this separation is a simplification as

the atmosphere is an in-homogenous mix of different plasma properties due to up-flows,

down-flows, heating, cooling and other dynamic processes. The density of the plasma gen-

erally decreases through these regions with increasing height. The temperature decreases,

reaching a minimum in the chromosphere, then slowly rises until there is a rapid increase at

the transition region which continues into the corona. This rapid increase in temperature

leads to the so-called ‘coronal heating problem’.

An important parameter in describing the solar atmosphere is the plasma-β term, the

8
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http://science.nasa.gov/ssl/pad/solar/images/bfly_new.ps NASA/NSSTC/HATHAWAY 2005/10

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Figure 1.4: The position of the sunspots in equal area latitude strips, averaged over a solar
rotation with respect to time (top). The butterfly pattern is clear as the decrease in the upper
limit of sunspot latitudes with time. (bottom) The average sunspot area as a function of time.
The 11 year modulation is clear in both of these plots. Image courtesy of NASA MSFC.

ratio of the thermal to magnetic pressures:

β =
pth
pmg

=
nkBT

B2/2µ0
, (1.8)

where n is the number density and µ0 the permeability of free space. In the photosphere

the plasma-β is large and the plasma motions carry the field with them (Figure 1.6).

Ascending into the chromosphere and corona the plasma-β becomes small and the plasma

is constrained to follow the magnetic fields. Continuing upwards the plasma-β drops again

and the magnetic field is advected out with the solar wind plasma flow and ultimately

forms the Parker spiral (Figure 1.6).

9
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1. INTRODUCTION

Figure 1.5: A 1D model of the electron density Ne [cm−3] and temperature Te [K] profile
thought the solar atmosphere from Gallagher (2000) after Gabriel & Mason (1982). Neutral
atoms are present in the photosphere and chromopshere but the plasma is fully ionised in the
corona due to the higher temperature.

1.1.2.1 Photosphere

The photosphere is the visible surface of the Sun and is defined as the height where the

optical depth, at visible wavelengths, equals 2/3 (τ5000 ≈ 2/3, I = I0e
−τ ). This is the

mean optical depth at which the photospheric radiation is emitted or where the effective

temperature (Teff = 5776) and blackbody temperature of the photosphere match. This

can be seen substituting B(T ) = σ/πT 4 and F = σT 4
eff , where F is the total radiative

flux, in the general solution of the radiative transfer equation:

B(τ) =
3

4
(τ + 2/3)

F

π
(1.9)

which gives,

σT 4 =
3

4
(τ + 2/3)σT 4

eff (1.10)

implying that τ = 2/3 (Foukal, 2004). The temperature drops from 6,400 K at the base of

the photosphere to 4,400K at the top. The spectrum of photospheric radiation is that of

a blackbody with a large number of absorption features, Fraunhofer lines, due the upper

10



1.1 The Sun

Figure 1.6: Plasma-β in the solar atmosphere as a function of height for two magnetic
field strengths of 100 G and 2500 G. The layers of the atmosphere are segregated by the dotted
lines. The corona is the only region in which the magnetic pressure dominates over the thermal
pressure, a low β plasma (Aschwanden, 2006).

layers of the atmosphere superimposed on it. The photospheric number density ranges

from ∼1019 – 1021 m−3 over the depth of the photosphere (500 km).

One of the main observable features in the photosphere is granulation due to the con-

vective motions. Granules are small-scale features made up of brighter regions isolated by

darker lanes, this interpreted as the upflow of hot, bright material to the surface which

then flows horizontally and cools, flowing back down in the dark lanes. The plasma-β is

much larger than one throughout the photosphere which means the magnetic fields are tied

to the flows. Typical granules are of the order of 1,000 km in diameter and have lifetimes of

5 – 10 minutes with vertical flow velocities of hundreds to thousands km s−1. There are also

larger scale flow patterns know as mesogranulation and supergranulation. Mesogranules

are typically 7000 km in diameter, have lifetime of hours with vertical flows of the order of

tens of m s−1. Supergranules are larger still at diameters of 3× 104 km, and consequently

have longer lifetimes of days, they have large horizontal flows and smaller vertical flows

of the order of 0.5 km s−1. Sunspots are also found in the the photosphere they appear as

darker regions due to their lower temperature (4,000 K) as convection is suppressed by the

strong magnetic fields (kG). Sunspots play an important role in the activity of the Sun as

11



1. INTRODUCTION

they are the source of solar flares and many CMEs.

1.1.2.2 Chromosphere

The chromosphere lies above the photosphere, the temperature initially decreases to a

minimum of ∼ 4,500 K before increasing to ∼ 20,000 K with increasing height. It occupies

a region approximately 2,000 km thick and with a density of about 1016 m−3 but the mass

density decreases by a factor of 106. The structure of the chromosphere is split between the

hot bright magnetic network and the cooler darker internetwork (Gallagher et al., 1999).

Jet-like structures, called spicules, with diameters of hundreds of kilometers and attaining

heights of tens of thousand of kilometers, with flows of the order of 30 km s−1 lasting 5 – 10

minutes are ubiquitous.

The source of the chromosphere’s increasing temperature is not fully understood, but

looking at the details we can infer some physical properties. The initial decrease in tem-

perature is due to the decrease in the density of H− ions, decreasing the plasmas’ ability to

absorb radiation from below, thus the temperature falls. Further out, some non-radiative

form of energy is deposited, energy which ionises the hydrogen. The free electrons produced

excite atoms which de-excite by line emission such as H-α, Ca ii and Mg ii. There is a

balance between the energy input and radiative losses, forming a broad plateau in temper-

ature at about 6,000 K. This balance is limited by the supply of neutral hydrogen, as this

decreases the number of neutral or partially ionised atoms decreases, and the temperature

rapidly rises. At about 20,000 K there is thought to be another plateau due to Lyman-α,

but as height increases the ionisation of hydrogen increases and Lyman-α emission can no

longer balance the energy input and the temperature rises rapidly. This transition marks

the edge of the chromosphere and the start of the transition region.

While the nature of the heating mechanism is unclear, from the observations it is

clear there must be some form of energy deposition occurring. Neither radiation nor

conduction can not be the source as the temperature is lower at the base of the lower

chromosphere and photosphere than in chromosphere proper (and would thus violate the

laws of thermodynamics). Mass motions are neither observed nor applicable since the

chromosphere is in hydrostatic equilibrium. The most likely source of the energy (heat flux)

is the dissipation of compressional or sound waves as proposed by Biermann (1946) and

Schwarzschild (1948). In this paradigm, the convective plasma motions of the photosphere,

launches sound waves into the chromosphere which travel upwards with little dissipation.

As the density drops, the waves steepen and form shocks which rapidly dissipate energy,

heating the chromosphere. This type of acoustic heating is not appropriate in the network

regions where the strong magnetic field suppress the convective motions which drive the

12
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waves. This led to the idea of Alfvén wave heating, first introduced by (Osterbrock, 1961).

Aflvén waves are magneto-hydrodynamic waves which propagate along magnetic fields, the

restoring force is provided by magnetic tension and the ion mass provides the inertia. Here

the magnetic field itself is responsible for transporting and depositing the energy from the

photospheric motions. This type of heating matches well with observations of plage and

emerging flux regions, which both show strong heating, implying the heat flux is related

to the magnetic field strength.

Filaments are seen as dark channels in on-disk Hα observations often over active regions

or as prominences when observed on the limb as bright features. Spicules which are jets

of plasma are also observed on the limb, typically reaching heights of ∼3,000 – 10,000 km

above the solar surface and lasting only ∼5 – 15 minutes. The transition region lies be-

tween the chromosphere and corona, here the temperature rapidly jumps (over 100 km) to

above 1 MK. Above the transition region the magnetic field dominates and determines the

structures. The high temperatures result in prominent emission from carbon, oxygen and

silicon ions in the UV and EUV.

1.1.2.3 Corona

The tenuous, hot, outer layer of the atmosphere is known as the corona. The electron

density of the corona ranges from ∼1014 m−3 at its base, 2,500 km above the photosphere,

to .1012 m−3 for heights &1R� (Aschwanden, 2006). The density varies depending on the

feature, the open magnetic structures of coronal holes can have densities in the region of

(0.5 – 1.0)×1014 m−3, streamers (3 – 5)×1014 m−3 while active regions have densities in the

region of 2×1014 – 1015 m−3. The temperature in the corona is generally above 1×106 K but

again varies across different coronal features. Coronal holes have the lowest temperature

(less than 1 × 106 K) followed by quiet Sun regions at 1 – 2×106 K, and active regions

are the hottest at 2 – 6×106 K with flaring loops reaching even higher temperatures. The

high temperatures reached in the corona give rise to EUV and X-ray emission with highly

ionised iron lines being a prominent feature. The visible corona during eclipses is due to

Thomson scattering of photospheric light from free electrons in the coronal plasma. The

corona has a number of components:

• K-corona (kontinuierliches spektrum) is composed of Thomson-scattered photospheric

radiation and dominates below ∼2R�. The scattered light is strongly polarised par-

allel to the solar limb as a result of the Thomson scattering mechanism. The high

temperatures mean the electrons have high thermal velocities which wash out (due to

thermal broadening) the Fraunhofer lines, producing a white-light continuum. The
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1. INTRODUCTION

intensity of the K-corona is proportional to the density summed along the line-of-

sight.

• F-corona (Fraunhofer corona) is composed of photospheric radiation Rayleigh-scattered

off dust particles, and dominates above ∼2R�. It forms a continuous spectrum with

the Fraunhofer absorption lines superimposed. The radiation has a very low degree

of polarisation. The F-corona is also know as Zodiacal light and can be seen with

the naked eye at dawn or dusk under favourable conditions.

• E-corona (Emission) is composed of line emission from visible to EUV due to various

atoms and ions in the corona, containing many forbidden line transitions, thus it

contains many polarisation states. Some of the strongest lines are Fe xiv 530.3 nm

(green-line; visible), H-α at 656.3 nm (visible), and Lyman-α 121.6 nm (UV).

• T-corona (Thermal) is composed of thermal radiation from heated dust particles.

It is a continuous spectrum according to the temperature and colour of the dust

particles.

The earliest descriptions of the corona were based on a static model with a heat input

at some level r0 which is described by T0, in a spherically symmetrical corona (Chapman

& Zirin, 1957). The goal then was to derive the density, pressure, and temperature with

respect to this reference level. The equation of hydrostatic equilibrium is:

dp

dr
= −ρGM�

r2
(1.11)

where the density of the plasma is ρ = nmp and the pressure due to electrons and protons

is p = 2nkBT . Rewriting the pressure in terms of density, and substituting into (1.11)

gives:

dp

p
= −GM�mp

2kBT

dr

r2
(1.12)

and integrating:

p(r) = p0 exp

(
−GM�mp

2kB

∫ r

r0

dr

r2T

)
. (1.13)

Due to the high coronal temperatures, conduction should play an important role. The

temperature distribution is determined by the conservation of conductive flux q = k∇T
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1.1 The Sun

where k is the thermal conductivity which in the absence of sources or sinks reduces to:

∇ · q = 0. (1.14)

In the case of spherical symmetry, this can be written:

1

r2
d

dr

(
r2k

dT

dr

)
= 0. (1.15)

this implies that:

r2k
dT

dr
= constant. (1.16)

For a fully ionised hydrogen plasma to a good approximation we have k(T ) = k0T
5/2

(Spitzer, 1962) thus we can write (1.16):

r2T 5/2dT

dr
= constant (1.17)

integrating yields:

T (r) = T0

(r0
r

)2/7
. (1.18)

The integral from (1.13) may be evaluated:

∫ r

r0

dr

r2T0
(
r0
r

)2/7 =
7

5

1

T0r0

(
1−

(r0
r

)5/7)
(1.19)

and from 1.13 pressure is given by:

p(r) = p0 exp

(
−GM�mp

2kB

7

5

1

T0r0

(
1−

(r0
r

)5/7))
, (1.20)

and similarly for density:

ρ(r) = ρ0

(r0
r

)2/7
exp

(
−GM�mp

2kB

7

5

1

T0r0

(
1−

(r0
r

)5/7))
. (1.21)

Inspecting (1.21) and (1.20), as r → ∞, the pressure tends to a constant value while

the density goes to infinity which is clearly unphysical. Even ignoring the density issue,

the pressure value the static model tends to is some seven orders of magnitude greater

than pressure in the interstellar medium (ISM) which must provide a boundary condition
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at large radii.

1.1.3 Solar Wind and Heliosphere

Eugene Parker was one of the next scientists to tackle the problem and ultimately solve

it in the form of the solar wind. To explain the observation that comet tails always point

away from the Sun, both when approaching it and receding from it, Biermann, in 1953

suggested that there must be a continuous outflow from the Sun (Biermann, 1957, and

references therein) . Parker (1958) was the first person to make the connection between

Biermann’s and Chapman’s work: that the heat flow in Chapman’s static corona could

drive the stream of particles (solar wind) Biermann speculated must exist.

The Parker model is a spherically symmetric, static, isothermal model of the corona

with only radial flows. The conservation of mass equation (∇· (ρv) = 0) for this system is:

d

dr
(r2ρv) = 0, (1.22)

therefore

r2ρv = constant. (1.23)

The radial component of the momentum equation (ρ(v · ∇v) = −∇P + ρg) can then be

written:

ρv
dv

dr
= −dp

dr
− GM�ρ

r2

v
dv

dr
= −1

ρ

dp

dr
− GM�

r2
. (1.24)

As the model is isothermal we can write the equation of state p = 2ρkBT/mp so (1.24) can

be written by eliminating ρ using the equation of state:

(
v − 2kBT

mp

1

v

)
dv

dr
=

4kBT

rmp
− GM�

r2
. (1.25)

A critical point occurs when dv/dr → 0 hence we define:

vc =

√
2kBT

mp
rc =

GM�
2v2c

(1.26)
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7.2. PARKER’S SOLAR WIND MODEL 67

Figure 7.1: The solar wind velocity, v, as a function of the radius, r for various values of the constant C.
The five different classes of solution are indicated.

• Solution II is also double valued and it does not even start from the solar surface. So it is
also unphysical.

• Solution III starts with a velocity greater than the sound speed, but such a fast steady
outflow is not observed. Hence, this solution must also be neglected.

• Solution IV , the solar breeze solution, gives small v as r −→ ∞. Using Figure 7.1, we
see that v tends to zero as r tends to infinity. Thus, as r −→ ∞, (7.9) may be approximated
by

− log

(
v

csi

)2

≈ 4 log

(
r

rc

)
⇒ v

csi

≈
(rc

r

)2

⇒ r2v ≈ r2
ccsi

Thus the mass continuity equation gives the density as

ρ =
D

r2v
=

D

r2
ccsi

= const.

Since the density tends to a constant value and the plasma is isothermal, p = c2
siρ, so will

the pressure. Thus, the solar breeze solution is unphysical since it cannot be contained by
the extremely small interstellar pressure.

• Solution V passes through the critical point (r = rc, v = csi) also called the sonic point.
For solution V we must choose the constant C ′ so that r = rc and v = csi and this requires
C ′ = −3.

Figure 1.7: The solar wind velocity v as a function of radius r for various values of the
constant C. The five different classes of solution are indicated by the labels I-V. cs is the
sound speed vc and rc is the sonic radius rc

and rewrite (1.25):

(
v2 − v2c

) 1

v

dv

dr
= 2

v2c
r2

(r − rc) . (1.27)

Integrating (1.27) equation yields:

(
v

vc

)2

− ln

(
v

vc

)2

= 4 ln

(
r

rc

)
+ 4

rc
r

+ C, (1.28)

Parker’s equation.

The various possible solutions to (1.28) depend on the constant C and are shown

in Figure 1.7. While they are all mathematically valid most have unphysical properties.

Solution I is double-valued which is unphysical as it implies the SW leaves the solar surface

with sub-sonic velocities, reaches a maximum radius and returns to the surface at super-

sonic velocities. Solution II is double-valued and never reaches the solar surface so is

clearly unphysical. Solution III starts at super-sonic velocities at the solar surface which is

not observed so this solution is neglected. Solution IV know as the ‘solar breeze’ because

inspecting Figure 1.7 we see that as r → ∞ that v → 0 thus at large distances we may
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approximate (1.28) with

− ln

(
v

vc

)2

≈ 4 ln

(
r

rc

)
=⇒ v

vc
≈
(rc
r

)2
=⇒ r2v ≈ r2cvv = constant. (1.29)

Inserting this into the mass continuity equation ρ = const/r2v = const/r2cvc the density

tends to a constant and as the plasma is isothermal the pressure must also be a finite

constant. This is not physical as the extremely small ISM pressure cannot balance the

SW pressure. Solution V crosses through a critical point at r = rc, v = vc called the

sonic point. This point can be used to constrain the integration constant C = −3. Again

inspecting Figure 1.7 we see as r →∞ that v � vc so (1.28) is approximated by

(
v

vc

)2

≈ 4 ln

(
r

rc

)
=⇒ v

vc
≈ 2

√
ln

(
r

rc

)
. (1.30)

From the mass continuity equation the density is given by

ρ =
const

r2v
≈ const′

r2
√

ln
(
r
rc

) (1.31)

so the density will tend to zero, and as the plasma is isothermal so will the pressure thus this

solution can match the ISM pressure. So the Parker solar wind solution is given by solution

V which starts off sub-sonically at the solar surface, the velocity increases monotonically

with height, reaching the sound speed at the critical point (or sonic point), and propagates

super-sonically thereafter. We can estimate the critical radius and velocity by assuming

a typical temperature for the solar wind of T ≈ 106 K, deriving vc ≈ 120 km s−1 and

rc = 12 R� which corresponds to a solar wind velocity at 1 AU of 430 km s−1 very close to

the measured velocity of ∼400 km s−1. In 1959 the first indications of the presence of the

solar wind came from the Russian Lunik III and Venus I spacecraft and was confirmed in

1962, just four years after its prediction, by Mariner II spacecraft measurements analysed

by Neugebauer & Snyder (1962).

As the plasma-β of the solar wind is much larger than one, (see Figure 1.6) the magnetic

field will be advected outward with the solar wind as the field lines are ‘frozen in’ (see

Section 2.1.3). The combination of this radial advection with the rotation of the Sun forms

what is known as the Parker spiral. If we assume that solar gravitation and solar wind

acceleration can be neglected beyond some distance r0, then the radial outflow velocity

(vr) can be approximated by a constant v. In a spherical coordinate system which rotates
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1.1 The Sun

with the Sun we can write the velocity components as:

vr = v, vθ = 0, vφ = ω (r − r0) sin θ (1.32)

where ω is the angular velocity of the Sun (ω = 2.7×10−6 rad s−1). A differential equation

for the velocity stream lines can be obtained from v × dS = 0:

dr

vr
=
rdθ

vθ
=
r sin θdφ

vφ
(1.33)

Integrating this equation from r0 to r and from φ0 to φ gives:

r

r0
− 1− ln

(
r

r0

)
=

v

r0ω
(φ− φ0) , (1.34)

when r > r0 this equation can be approximated by:

(r − r0) ≈
v

ω
(φ− φ0) (1.35)

which is in the form of an Archimedean spiral shown in Figure 1.8.

As the magnetic field ‘frozen in’ to the flow and considering that ∇ · B = 0 we may

write:

Br(r, θ, φ) = B(θ, φ0)
(r0
r

)2

Bθ(r, θ, φ) = 0

Bφ(r, θ, φ) = B(θ, φ0)
(ω
v

)
(r − r0)

(r0
r

)2
sin θ

(1.36)

where B(θ, φ0) is the magnetic field at r = r0. The angle of the magnetic field with respect

to the radial direction can be obtained from:

tanψ =
Bφ
Br

=
(ω
v

)
(r − r0) sin θ (1.37)

and when r is large this is approximated by:

tanψ =
Bφ
Br

=
(ωr
v

)
sin θ. (1.38)

Inserting typical values of the solar wind at Earth of v = 400 km s−1, ω = 2.7 × 10−6
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Figure 1.8: The interplanetary magnetic field showing the Parker spiral geometry for a solar
wind speed of 600 km s−1 and a field line starting at a Carrington longitude of 0◦.

rad s−1 and using r = 1 AU = 1.5 × 108 km and sin(90◦) = 1 we find ψ ∼ 45◦ close to the

measured value (M. Goossens, 2003).

It is now known that the solar wind consists of two components: the slow solar wind

with typical 1 AU values for velocity, density, and temperature of ∼400 km s−1, ∼10 cm−3,

∼1.4×105 K respectively; and the fast solar wind with typical 1 AU values for velocity,

density, and temperature of 800 km s−1, ∼3 cm−3, and ∼1.0×105 K respectively originating

from open magnetic field regions (see Figure 1.9). The two different speed streams can

interact to form co-rotating interaction region (CIRs) where the fast wind ploughs into the

slow solar wind and can form shocks. Another feature of the solar wind is the heliospheric

current sheet (HCS) which separates the two opposite polarities of the Sun’s magnetic,

field forming what is know as the ‘ballerina skirt’.

The solar wind cannot expand forever and eventually runs into the ISM at what is

known as the termination shock, where the solar wind transitions back to sub-sonic veloc-
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in SC 23, over Ulysses’ third orbit, compared to those taken
during its first orbit at a very similar phase of cycle 22. We
also examine the properties of the in-ecliptic solar wind,
comparing long term trends in the low latitude Ulysses data
with data from the Solar Wind Electron Proton Alpha
Monitor (SWEPAM) [McComas et al., 1998b] on the
Advanced Composition Explorer (ACE).

2. Observations

[7] Figures 1a–1c show polar plots of the solar wind
speed over all three of Ulysses’ orbits. Underlying the
SWOOPS data are composite images of the Sun and corona,
which illustrate the solar conditions for each orbit: mini-
mum in SC 22, maximum in SC 23, and minimum in SC 23,
respectively. Figures 1a and 1b are essentially replots of
figures by McComas et al. [1998a, 2003]. Figure 1d dis-
plays the smoothed sunspot number (black) and averaged
current sheet tilt relative to the solar equator (red), taken
from the Wilcox Solar Observatory (WSO).
[8] Around minimum in SC 22, the band of solar wind

variability was narrow, and confined to low latitudes
(!30! to !20! north) [Gosling et al., 1995, 1997;
McComas et al., 1998a]. This configuration was consis-
tent with the small dipole tilt angles seen at the time and
confinement of the helmet streamers to low latitudes. In
contrast, the tilt of the heliospheric current sheet has
remained substantially higher thus far through the minimum
of SC 23, even though the sunspot number declined to very
low values. Figure 1c shows the comparable plot for
Ulysses’ third orbit. Generally, Figures 1a and 1c look very
similar except for the reversed solar magnetic field. Also
note that the band of solar wind variability extends to
somewhat higher latitudes in the third orbit observations.
The brief low speed interval (!5:30 position) in the
otherwise fast PCH wind was caused by significant mass
loading of the flow by comet McNaught [Neugebauer et al.,
2007].

[9] Figure 2 shows a comparison of various plasma
properties taken as a function of heliolatitude for the
PCH flows observed over Ulysses’ first and third orbits.
From top to bottom, the plots show proton speed, proton
density normalized by R2, proton temperature normalized
by R [McComas et al., 2000], the alpha particle to proton
ratio, and the full normalized momentum flux, or dynamic
pressure, mp(npvp

2 + 4nava
2)(R/Ro)

2. We separated the one-
hour averaged SWOOPS data into 4! bins in heliolatitude
from 40! to 80! and calculated mean values (symbols) and
±1s variations (bars) for each bin.
[10] While there were small variations between the fast

and slow latitude scans (small vs. large symbols) and
northern and southern PCH observations (circles vs.
squares), the most significant differences in Figure 2 are
clearly between first (red) and third (blue) orbits. The PCH
solar wind observed in Ulysses’ third orbit is significantly
slower, less dense and cooler than that observed in Ulysses’
first orbit. Of these, the speed shows the least difference,
particularly at the highest latitudes, although in combination,
these four-degree binned samples show a consistently lower
speed in the third orbit. In addition, the speed also continued
to show its characteristic, but still unexplained, increase of
!1 km s"1 per degree of heliographic latitude [McComas et
al., 2000, 2002, 2003]. Because the wind was slower and
less dense, the dynamic pressure was also lower in the third
orbit. In contrast to these bulk properties, however, the alpha
to proton ratio, which is a measure of the plasma composi-
tion, was essentially identical.
[11] Table 1 provides the mean values for selected plasma

parameters. All values were calculated by averaging all one-
hour averaged data samples obtained above 40! heliolatitude.
The columns show the first orbit mean value, the third
orbit mean value, and the percentage change of the third
orbit value compared to the first. The short interval around
the comet McNaught encounter was removed so as not to
bias the sample. Clearly, the PCH solar wind was consis-

Figure 1. (a–c) Polar plots of the solar wind speed, colored by IMF polarity for Ulysses’ three polar orbits colored to
indicate measured magnetic polarity. In each, the earliest times are on the left (nine o’clock position) and progress around
counterclockwise. (d) Contemporaneous values for the smoothed sunspot number (black) and heliospheric current sheet
tilt (red), lined up to match Figures 1a–1c. In Figures 1a–1c, the solar wind speed is plotted over characteristic solar
images for solar minimum for cycle 22 (8/17/96), solar maximum for cycle 23 (12/07/00), and solar minimum for cycle 23
(03/28/06). From the center out, we blend images from the Solar and Heliospheric Observatory (SOHO) Extreme
ultraviolet Imaging Telescope (Fe XII at 1950 nm), the Mauna Loa K coronameter (700–950 nm), and the SOHO C2
white light coronagraph.

L18103 MCCOMAS ET AL.: WEAKER SOLAR WIND L18103
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Figure 1.9: (a-c) Polar plots of solar wind speed with the magnetic field polarity indicated by
colour for three Ulysses orbits. The background image are blended composites from SOHO/EIT
195 Å, the Mauna Load K coronameter and SOHO/LASCO C2. (d) Show smooth sunspot
number and heliospheric current sheet tilt angle (McComas et al., 2008).

ities (Figure 1.10). The Voyager II spacecraft recently (and previously Voyager I) passed

though this region at some 70 – 90 AU, details of these shock crossings can be found in

Richardson et al. (2008), Burlaga et al. (2005) and Decker et al. (2008). Outside of the

termination shock lies the heliosheath where the ISM and SW are in pressure balance, its

outer boundary is the heliopause which also marks the edge of the Heliosphere. In this

region the interaction between the ISM and SW causes turbulence and heating of plasma.

As the Sun travels around our galaxy and encounters the ISM a bow shock is believed to

from ahead of the heliopause (Figure 1.10).

1.2 Coronal Mass Ejections

“We define a coronal mass ejection to be an observable change in coronal

structure that (1) occurs on a time scale between a few minutes and several

hours and (2) involves the appearance (and outward motion) of a new, discrete,

bright, white-light feature in the coronagraph field of view.”

-Hundhausen et al. (1984)

Coronal Mass Ejections (CMEs) are large scale eruptions of plasma and magnetic field

which propagate from the Sun into the Heliosphere. A typical CME has a magnetic field

strength of tens of nT, a mass in the range of 1013–1016 g (Vourlidas et al., 2002) and
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1. INTRODUCTION

Figure 1.11: The 3D structure of the heliospheric magnetic field. Figure courtesy
of Steve Suess, NASA/MSFC.

28

Figure 1.10: Depiction of the Heliosphere and its prominent features. Shown are the spiralling
magnetic field lines, termination shock, heliopause, and bow shock. Image courtesy of Steve
Suess, NASA/MSFC.
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1.2 Coronal Mass Ejections

Advanced Image Processing for STEREO 

 1 

1. What is the question this proposal addresses? 

Solar coronal mass ejections (CMEs) are spectacular eruptions of plasma and 

magnetic fields that drive space weather in the near-Earth environment. Despite nearly thirty 

years of study, the basic physics that expels these plasma clouds into the solar system is still 

not well understood. The Sun-Earth Connection Coronal & Heliospheric Investigation 

(SECCHI
1
) aboard NASA’s recently launched Solar Terrestrial Relations Observatory 

(STEREO
2
) is designed to explore various manifestations of the CME process in three 

dimensions. The SECCHI instrument compliment combines comparable solar disk, 

coronagraph, and heliospheric observations from two distinct views and is well suited to 

exploring the physics of CMEs, both at the source and during their propagation to Earth 

(Howard et al. 2002). This therefore offers us a unique opportunity to investigate the 

detailed physics involved in initiation and accelerating CMEs. We propose to develop 

advanced image processing methods to extract the evolving morphology and kinematics of 

CMEs and to compare these results with as yet unconfirmed predictions of theory.  

 

1.1 Theoretical Models 

From a theoretical perspective, several models have been proposed to describe the 

observed properties of CMEs shown in Figure 1. The two-dimensional flux-rope model was 

first proposed by Priest & Forbes (1990) and subsequently developed by Isenberg, Forbes & 

Demoulin (1993) and Forbes & Priest (1995). In this model, the CME is assumed to be 

initially located at the centre of a bi-polar field configuration as shown in Figure 2a. The 

field foot-point separation (!) is gradually decreased, and an eruption is triggered by a loss 

of equilibrium or instability in the field. The flux-rope then accelerates away from the 

surface as overlying fields are sequentially disconnected from the surface by magnetic 

reconnection (Figure 2b-d).  

A more recent model that builds on the basic 

features of these two-dimensional ideas, is the three-

dimensional magnetic flux-rope model of Krall et al.
 

(2001) and Chen & Krall (2003). They assumed that the 

kinematics of an erupting flux-rope could be described 

using the force-balance equation, 

! 

m
d
2
h

dt
2

= "#P " $g + j%B, (1) 

where h is the height, and the terms on the right describe 

gas pressure, gravity and the Lorentz force. Dropping 

the small gravitational force and initially small drag, the 

acceleration can be expressed as 

! 

d
2
h

dt
2
~

"p

2

[R ln(8R /af )]
2
fR , (2) 

where "p
 
is the (poloidal) magnetic flux inside the tube, 

fR the force in the radial direction, af the flux-rope 

radius, and R its radius of curvature (see Chen & Krall 

2003 for details). The flux-rope acceleration is therefore 

dependent on its geometrical properties, including 

                                                
1
 http://secchi.nrl.navy.mil 

2
 http://stereo.gsfc.nasa.gov 
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Figure 1.11: The typical components of a CME observed by the LASCO coronagraph on
SOHO spacecraft.

velocity between ∼10 – 2,000 km s−1 some times even reaching 3,500 km s−1 close to the

Sun (Yashiro et al., 2004). At 1 AU, CME velocities (300 – 1,000 km s−1) tend to be closer

to the solar wind speed (Gopalswamy, 2006; Lindsay et al., 1999; Wang et al., 2005). The

energies associated with CMEs are of the order of 1024–1025 J making CMEs the most

energetic events on the Sun (Vourlidas et al., 2002). Although CMEs often exhibit a three-

part structure which consists of a bright front followed by a dark cavity and bright core

(see Figure 1.11), they may also exhibit more complex structures (Pick et al., 2006). In fact

less than ∼30% of CME events possess all the three parts (Webb & Hundhausen, 1987).

CMEs are know to be the most important driver of adverse space weather on Earth and

in the near-Earth environment as well as on other planets (Prangé et al., 2004; Schwenn

et al., 2005). The most famous phenomena associated with space weather is the Aurora

Borealis or Northern Lights (see Figure 1.12). The Aurora is caused by energetic particles

traveling along the Earth’s magnetic field lines interacting with atoms (mainly nitrogen

and oxygen) in the upper atmosphere producing emission (resonance or recombination).
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Figure 1.12: Two images of the aurora from Eielson Air Force Base at Bear Lake, Alaska
(top) and from onboard the ISS (bottom). Images courtesy of Wikimedia Commons.
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One of the most extreme space weather events in recent history occurred on 2 September

1859 (Carrington, 1859). This event was associated with a white light flare observed by

Carrington. About 18 hours after the flare a severe geomagnetic storm occurred causing

widespread sightings of the Aurora down to latitudes as low as 18◦ North and the loss

of a significant portion of the telegraph service for many hours (Green et al., 2006). As

society has become more reliant on technology it has also become more susceptible to

the adverse affects of space weather. On the 13 March 1989 a geomagnetic storm caused

large geomagnetically induced currents (GIC) which caused the failure of a transformer

that ultimately led to collapse of the Hydro-Québec network. This left some six million

people without power for nine hours causing substantial economic losses upwards of $13.2

million (Bolduc, 2002). The storm was caused by a CME ejected from the Sun on 10

March 1989 impacting the Earth some ∼ 50 hours later. Other CMEs have knocked-out or

caused damage to satellites, most recently on 5 April 2010, when Galaxy 15 or ‘Zombiesat’

(Intelsat) stopped responding to ground commands. The satellite continued to broadcast

while it drifted forcing other satellites to take evasive action to avoid interference from

‘Zombiesat’. Galaxy 15 was subsequently recovered and placed into a safe mode. More

generally, the increased radiation due to space weather poses hazards to astronauts and

passengers on long distance flights, especially those over the poles. Also, polar flights may

be restricted due to communications blackouts caused by space weather. In the modern era,

society’s dependence on GPS, communication satellites and inter-connected power grids

mean space weather is an increasing concern. The cost of a severe space weather event

was estimated to be up to $2 trillion in a recent report by the National Research Council,

(Committee On The Societal & Economic Impacts Of Severe Space Weather Events, 2008).

As such ,the monitoring and prediction of space weather is of the utmost importance to

society. Understanding the formation, acceleration and propagation of CMEs is vital to

this goal as they are the main drivers of adverse space weather.

1.2.1 Historical Observations

The earliest observation of a CME probably dates back to the eclipse of 1860 in a drawing

recorded by G. Temple shown in Figure 1.13. It took 113 years for the CME to be for-

mally discovered, the first definitive observation being made by Tousey (1973) using the

coronagraph on-board the seventh Orbiting Solar Observatory (OSO-7). Following this

a number of space-borne coronagraphs recored numerous CMEs. While the first imaging

observation of a CME was in 1973, it is now apparent that CMEs and their effects had

been observed much earlier, in a number of different types of observations. For example,
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Figure 1.13: Drawing of the 1860 eclipse recorded by G. Temple from Torreblanca , Spain
with what is probably a CME (Eddy, 1974).

geomagnetic disturbances caused by CMEs had been recorded as early as 1724. CMEs

were also observed in radio observations via interplanetary scintillation (IPS) from the

1960s, however it was not until 1980s that the IPS could be directly related to the CMEs.

Also fast CMEs produce shock waves and these shock waves then produce radio emissions

at the local plasma frequency. These are known as Type II bursts and lead indirectly to

the first height-time plot of a CME or at least the shock it drove as shown in Figure 1.14.

These shock waves can also be detected in measurements of the solar wind plasma in situ.
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1.2 Coronal Mass Ejections

Figure 1.14: A height-time plot derived from Type II and III radio burst from Wild et al.
(1954).

It became clear, soon after the sunspot cycle was first discovered, that there was a link

between the sunspot cycle and geomagnetic activity. One of the first people to suggest that

transient ejections of plasma from the Sun could be the source of geomagnetic storms was

Lindemann (1919), and later Chapman and Ferro also suggested that coronal transients

could account for the geomagnetic activity (Chapman & Ferraro, 1931a,b, 1932). At this

time there were two main interpretations of these transients: flare induced transient ejec-

tions of plasma from formerly closed regions which drag the magnetic field outward with

them (Gold, 1962; Piddington, 1958); and shocks formed in open regions by the rapidly

increasing expansion speed of the solar wind caused by the flare which would not drag any

magnetic field with them (e.g., Parker, 1963).

There were many signatures of these interplanetary transients such as solar energetic

particle (SEP) events detected at Earth (Forbush, 1946). Wild et al. (1963) suggested a

two stage mechanism was required to accelerate the particles up to the observed energies:

an initial flare acceleration followed by further acceleration by an outwardly-moving fast

magnetohydrodynamic shock. The radio signatures of such moving shock fronts were

commonly detected as Type II radio bursts.

IPS is caused by the diffraction of radio-waves, from distant pulsars, by inhomogeneities

in the solar wind plasma: as the solar wind is moving it produces a time-varying intensity

signal which can be detected at Earth. This technique led to the detection and study of

many transient events from the 1960s onward (e.g. Houminer, 1973; Houminer & Hewish,

27



1. INTRODUCTION

1972). Correlations were found between these events and in situ measurement at Earth

(Houminer & Hewish, 1974; Rickett, 1975) and in geomagnetic activity indexes (Vlasov,

1982). The exact nature of the transient density variations and their relationship, or

lack thereof, to coronal transients was unclear. Attempts were made to relate the IPS

observations with solar source features (Hewish, 1988; Tappin et al., 1983) but with limited

success.

Entry into the space age allowed direct measurements of the properties of these coronal

transients. The in situ signatures of the outwardly propagating shocks were fist discovered

in Mariner 2 observations (Sonett et al., 1964), and later in Vela 3 observations (Gosling

et al., 1968). It was found that the plasma driving these shocks had different properties

compared to that of the normal solar wind. The material often showed enhanced helium

content (Hirshberg et al., 1972), and low proton and electron temperatures (Gosling et al.,

1973). These early in situ observations indicated the Parker model was incorrect, and

that the disturbances were associated with previously closed field regions. In some cases,

streaming super-thermal electrons were found, suggesting the field lines threading the

plasma were either connected to the Sun at both ends, or disconnected from it entirely.

Hundhausen et al. (1970) used observations of shock disturbances to estimate the mass

and energy associated with a large shock to be ∼ 1013 kg and ∼ 1025 J∗.

The magnetic signature of these transient events was first observed by Burlaga et al.

(1981) in observations from five different spacecraft. The signature was a smooth rotation

of the magnetic field vector following the shock, which they called a ‘magnetic cloud’

(MC) citing earlier theoretical work. However, the link between this signature and the

coronal transients was not made until a following paper (Klein & Burlaga, 1982), which

also identified the basic combination of properties that defines a MC which are still used

today namley; low temperatures, high magnetic field strength, and a smoothly-rotating

magnetic field vector.

Around this time, the first space-borne coronagraphs were appearing. This led to the

first remote imaging observation of these coronal transients (Tousey, 1973). Soon after, a

direct link between these transients and radio Type II bursts was made (Stewart et al.,

1974a,b). The near continuous monitoring of the solar corona by various coronagraphs in

the 1970s provided some unexpected results. Far more ejections were found than would

have been expected on the frequency of occurrence of shock wave disturbances, and the

ejections were far more commonly associated with eruptive prominences than impulsive

flares (Gosling et al., 1974; Munro et al., 1979). However many were followed by long-

duration soft X-ray events lasting hours (Sheeley et al., 1975; Webb et al., 1976). Also,

∗These values are remarkably close to the modern measurements of CME mass and energy.
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surprisingly, most of the material in the ejection was of coronal origin rather than flare

or prominence ejecta (Hildner et al., 1975). The ejections also showed a wide range of

speeds from hundreds of kilometres a second to greater than 1,200 km s−1 (Gosling et al.,

1976), morphologies, and energetics (Howard et al., 1985). The unexpected results led to

the so-called ‘Solar Flare Myth’. The first use of the term ‘coronal mass ejection’ appears

to be from Gosling et al. (1976), and likely arose from the more tentative ‘mass ejection

coronal transient’ which first appeared in (Hildner et al., 1975).

1.2.2 The ‘Solar Flare Myth’

Up until the early 1990s, despite all the unexpected results, all the activity discussed above

was primarily attributed to solar flares, and CMEs were believed to be the result of flare-

driven shock waves. However the evidence against such an interpretation had been growing

throughout the 1970s and 1980s. For example, CMEs and geomagnetic storms were often

not associated with flares, and the energy required to launch the CME was greater than the

flare (MacQueen, 1980). Also, coronagraphic observations demonstrated that the flanks

of the CMEa did not move laterally as the loop top moved outward through the corona

which was not consistent with the shock interpretation (Sime et al., 1984). Further, in a

number of papers which back-projected CMEs to find their onset times, none were found

to be coincident with flares and typically, the flare occurred some time after the CME onset

(Harrison & Sime, 1989; Harrison et al., 1990). The debate continued and intensified with

publication of Gosling’s 1993 paper entitled ‘The solar flare myth’ in which the author

demonstrated that the source of interplanetary shocks and of most geomagnetic storms

were CMEs not flares, and that the CME flare relationship was secondary at best. In this

paper Gosling proposed a “modern paradigm” describing the relationship between flares,

CMEs, and geomagnetic activity shown in Figure 1.15

1.2.3 Current Understanding

CMEs originate wherever flares and prominence eruptions occur. Both flares and promi-

nences are associated with active regions (ARs), which are regions of high magnetic field

with or without sunspots. The most energetic CMEs seem to come from ARs which contain

sunspots of opposite polarity. Cool prominences suspended above ARs also often produce

CMEs, prominences can also form above neutral lines between sunspots of opposite polar-

ities in ARs. Studies of in situ measurements of CMEs at 1 AU indicate CMEs probably

remain attached at the Sun. The counter-streaming (bi-directional) particles in CMEs

indicate that the ‘legs’ remain anchored on either side of the neutral line (Farrugia et al.,
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Figure 1.15: Gosling’s interpretation of the relationship between flares, CME and geomag-
netic activity. Note the flare is at best from a common process “evolving solar magnetic fields”
(reconnection) or secondary to the CME launch process Gosling (1993).

1993a,b; Kahler & Reames, 1991). So closed magnetic structures seem to be the basic

characteristic of CME-producing regions on the Sun. Thus the energy required to power

the CME must ultimately come from the magnetic field itself.

The general appearance of a CME was shown previously in Figure 1.11, but not all

CMEs share this appearance. CMEs are also associated with on-disk ‘dimming’ regions,

typically on either side of the neutral line (see review by Sterling in Wilson, 2003). Dim-

ming is the reduction in the intensity of radiation due to physical changes in the plasma

(mass motion, density, temperature) typically observed in X-rays (Bastian et al., 1999) or

EUV (Gopalswamy & Thompson, 2000). The long term observations of LASCO have also

discovered a number of unclassified morphologies, flux ropes (Chen et al., 2000; Plunkett

et al., 2000), prominence-less CMEs (Gopalswamy et al., 2001; Yashiro et al., 2003), and
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 ! e early acceleration phase results from the rapid release 
of energy when the CME dynamics are dominated by outward 
magnetic and gas pressure forces. Di" erent models can reproduce 
the early acceleration pro# les of CME observations, although it is 
di$  cult to distinguish between them with absolute certainty 45,46 . For 
this event, the acceleration phase coincides with a strong angular 
expansion of the CME in the low corona, which tends towards a con-
stant in the later observed propagation in the solar wind. Although, 
statistically, expansion of CMEs is a common occurrence 47 , it is 
di$  cult to accurately determine the magnitude and rate of expan-
sion across the two-dimensional plane-of-sky images for individual 
events. Some studies of these single-viewpoint images of CMEs 
use characterizations such as the cone model 20,21  but assume the 
angular width to be constant (rigid cone), which is not always true 
early in the events 12,38 . Our 3D front reconstruction overcomes 

the di$  culties in distinguishing expansion from image projection 
e" ects, and we show that early in this event there is a non-constant, 
power-law, angular expansion of the CME. ! eoretical models of 
CME expansion generally reproduce constant radial expansion, 
based on the suspected magnetic and gas pressure gradients between 
the erupting % ux rope and the ambient corona and solar wind 14,48,49 . 
To account for the angular expansion of the CME, a combination of 
internal overpressure relative to external gas and magnetic pressure 
dropo" s, along with convective evolution of the CME in the diverg-
ing solar wind geometry, must be considered 13 . 

 During this early-phase evolution, the CME is de% ected from a 
high-latitude source region into a non-radial trajectory, as indicated 
by the changing inclination angle ( Fig. 3b ). Although projection 
e" ects again hinder interpretations of CME position angles in single 
images, statistical studies show that, relative to their source region 
locations, CMEs have a tendency to de% ect towards lower latitudes 
during solar minimum 39,50 . It has been suggested that this results 
from the guiding of CMEs towards the equator by either the mag-
netic # elds emanating from polar coronal holes 8,9  or the % ow pattern 
of the background coronal magnetic # eld and solar wind / streamer 
in% uences 19,51 . Other models show that the internal con# guration 
of the erupting % ux rope can have an important e" ect on its propa-
gation through the corona. ! e orientation of the % ux rope, either 
normal or inverse polarity, will determine where magnetic recon-
nection is more likely to occur, and therefore change the magnetic 
con# guration of the system to guide the CME either equator- or 
poleward 10 . Alternatively, modelling the # lament as a toroidal % ux 
rope located above a midlatitude polarity inversion line results in 
non-radial motion and acceleration of the # lament, because of the 
guiding action of the coronal magnetic # eld on the current motion 11 . 
Both these models have a dependence on the chosen background 
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       Figure 3    |         Kinematics and morphology of the 3D reconstruction of the 
CME front of 12 December 2008. ( a ) Shows the velocity of the middle 
of the CME front with the corresponding drag model and, inset, the early 
acceleration peak. Measurement uncertainties are indicated by one 
standard deviation error bars. ( b ) Shows the declinations from the ecliptic 
(0 ° ) of an angular spread across the front between the CME fl anks, with 
a power-law fi t indicative of non-radial propagation. It should be noted 
that the positions of the fl anks are subject to large scatter: as the CME 
enters each fi eld of view, the location of a tangent to its fl anks is prone 
to moving back along the reconstruction in cases in which the epipolar 
slices completely constrain the fl anks. Hence the  ‘ Midtop / Midbottom of 
Front ’  measurements better convey the southward-dominated expansion. 
( c ) Shows the angular width of the CME with a power-law expansion. 
For each instrument, the fi rst three points of angular width measurement 
were removed as the CME was still predominantly obscured by each 
instrument ’ s occulter.  
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  Figure 4    |          In situ  solar wind plasma and magnetic fi eld measurements 
from the WIND spacecraft. From top to bottom, the panels show proton 
density, bulk fl ow speed, proton temperature and magnetic fi eld strength 
and components. The red dashed lines indicate the predicted window of 
CME arrival time from our ENLIL with Cone Model run (08:09 – 13:20 UT 
on 16 December 2008). We observed a magnetic cloud fl ux rope signature 
behind the front, highlighted by the blue dash-dotted lines.  

Figure 1.16: Top to bottom, the panels show proton density, bulk flow speed, proton temper-
ature and magnetic field strength and components. The red dashed lines indicate a predicted
window of CME arrival time. The magnetic cloud flux rope signature is behind the front,
highlighted by the blue dash-dotted lines (Byrne et al., 2010).

jet-like CMEs (Yashiro et al., 2003) which contain no aspect of the three-part structure.

Much of the material contained in CMEs is already present in the corona so it is

expected to have coronal temperatures and densities. This is not true of the cool (400 –

8,000 K), dense (1010 – 1011 cm−3) prominence material of the core. The cavity is believed
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1 shock only

2 shock + sheath 4 ejecta?

SUN SUN

5 ejecta?

6 MC only3 shock + sheath + MC

Figure 2. Six possible tracks of an observing spacecraft through an MC with a leading shock (left)
and another without (right). Tracks 1 and 2 never encounter the MC proper. They pass through the
shock and the compressed ambient medium in one of the flanks of the MC. Track 4 passes through
the nose of the MC. This situation arises when the observing spacecraft is along the Sun-Earth line
and a fast and wide CME erupts from close to the Sun center. Trajectory 4 passes through the shock,
sheath, and through the edge of the MC. Tracks 5 and 6 are similar to 4 and 3, respectively, except that
the MC is slow and hence it does not drive a shock. Trajectories 4 and 5 are not expected to observe
an MC structure.

the cloud. In addition, the azimuthal angle shows a smooth rotation from east to
west, so such clouds are called ESW cloud. The solar wind density is enhanced in
the region between the cloud and the shock (a region known as the shock sheath).
The proton thermal speed also has a jump in the sheath and is low in the cloud.
The MC was expanding, evidenced by the smooth decrease in speed from the front
(738 km/s) to the back (531 km/s), with an average value of 625 km/s. There
was a slight increase in speed after the MC, probably due to a high speed stream
originating from a coronal hole. The plasma β is extremely low during the cloud
interval, showing the dominance of the magnetic field. The duration of the cloud
is ∼14 h. Since the cloud was moving with an average speed of ∼625 km/s, this
duration corresponds to a cloud thickness of ∼0.21 AU. This thickness is consistent
with the cloud diameter inferred from multi-spacecraft observations. For example,
Burlaga et al. (1990) used Helios 1, Helios 2, IMP-8 and Voyager-2 data ICMEs
to infer a loop-like structure (see Figure 2) with a radius of curvature of ∼0.35 AU
and a cloud diameter of 0.25 AU. They also inferred that the legs of the loop must
be connected to the Sun at both ends.

As the observing spacecraft passes from the outer boundary of the loop structure
in Figure 2 to the axis and then to the inner boundary, the azimuthal field changes
sign at the axis, indicating the rotation of the field direction. The magnitude of the
azimuthal component also changes, peaking at the axis and falling off on either side.
The cloud can drive a shock if it is super-Alfvenic. The shock standoff distance
corresponds to a lead time of ∼0.5 day. i.e., a spacecraft in the solar wind first
encounters the shock and then the cloud several hours later. The trajectory of the

Figure 1.17: Possible spacecraft tracks through a fast shock driving CME, slow CME and
corresponding features which would be sampled Gopalswamy (2006).

to be of coronal temperature but lower density than the front and core. This is often

interpreted as a flux rope geometry often seen in 1 AU in situ measurements, Figure 1.16

shows an example. The decreased density, temperature, increased magnetic field strength

and smooth rotation of the magnetic field are the classic signatures of a MC. Not all

CMEs measured at 1 AU have MC structures, one possible explanation of this is that the

spacecraft trajectory though the CME cloud only samples one part and misses the MC as

shown in Figure 1.17.

CMEs have a wide range of speeds, accelerations and widths (see Gopalswamy, 2004,

for an overview). The kinematic evolution of CMEs is complex, consisting of multiple

phases. Sheeley et al. (1999) first classified CMEs into two classes: (1) slow gradual CMEs

associated with prominences; and (2) impulsive fast CMEs often associated with flares.

Studies based on larger samples indicate that slow CMEs arise from prominence lift-offs

and streamer blowouts, and fast CMEs from ARs and flares (González-Esparza et al., 2003;

Gopalswamy & Thompson, 2000). Zhang & Dere (2006); Zhang et al. (2001) suggest a three

phase model of initation, acceleration and propagation and relate this to other observable

properties such as soft X-rays. Numerous studies have attempted to relate the observed

projected kinematics to the true kinematics: dal Lago et al. (2003) found vrad = 0.88vexp;

while Schwenn et al. (2005) found the 1 AU travel time followed Tar = 203.0−20.77 ln vexp.

These type of statistical studies only provide a rough estimate of the corrections (Vršnak

et al., 2007), which are not accurate enough for detailed comparisons to models. Detailed

studies of single events are necessary to make such comparisons.

One such study was conducted by Zhang et al. (2001) who found a strong correlation

between the soft X-ray flux and CME accleration. Figure 1.18 shows the velocity evolution
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FIG. 3.ÈIllustration of three phases of the CME velocity-time proÐle
(dotted line) and the Ñare soft X-ray Ñux temporal proÐle (solid line) for the
event on 1998 June 11. Note that the CME impulsive acceleration phase
coincides well with the Ñare rise phase.

CME/Ñare events. In the impulsive acceleration phase, the
acceleration rate is 410 m s~2 (increments of 1075 km s~1
over 44 minutes). In terms of the gravitational acceleration
at the surface of the Sun, the of 274 m s~2, the acceler-g

sation rate of this CME is 1.5 during the impulsive acceler-g
sation phase. In the following subsections, we will present

the observations of three other CME/Ñares events using the
same rules and illustrations as for the 1998 June 11 event
presented above.

3.2. 1997 February 23 Event
The CME on 1997 February 23 is associated with a

GOES B7.2 class Ñare (background Ñux at A2 level). The
source region of this event is NOAA AR 8019, which was
located very close to the east limb (about N25¡, E78¡) at the
time of eruption. Dere et al. (1999) have reported this CME
event in detail, concentrating on its helical structure. Here
we report on its initiation process and the corresponding

Ñare. Figures 4a, 4b, and 4c display the di†erence images of
C1 at 01 :40 UT (after subtracting the 00 :55 UT image,
j5302), C1 at 02 :10 UT (after subtracting the image at
01 :40 UT, j5302), and the EIT j304 image at 02 :08 UT,
respectively. These three images have been aligned and
scaled to the same size.

The CME is initiated at 01 :40 UT when its front is seen
as a semicircular rim above the active region in the di†er-
ence image (Fig. 4a). It has an initial height of 0.47 orR

_
,

330,000 km above the limb. This event is also accompanied
by an erupting Ðlament as seen in Figure 4c (the eruption
process of this Ðlament has been shown in a sequence of
EIT j304 images in Dere et al. 1999). The Ðlament trails the
CME front, e.g., when the CME front is at 0.50 (Fig. 4b),R

_the Ðlament is at 0.14 (Fig. 4c) above the limb. TheR
_associated Ñare, whose position (Fig. 4, plus signs) is deter-

mined by the post-Ñare loops seen in later EIT images, is
located at the southern leg of the erupting Ðlament and also
close to the southern leg of the CME.

The height-time and velocity-time plots of the CME
along with the temporal proÐles of the GOES soft X-ray Ñux
are shown in Figure 5. Compared with the event of 1998
June 11, these two events show similar characteristics in
terms of CME velocity proÐle and Ñare Ñux proÐle,
although the Ñare magnitude is much di†erent (B7.2 vs.
M1.4). The temporal proÐle of the X-ray Ñux can be divided
into three phases : a preÑare phase of 46 minutes (from
01 :35 to 02 :21 UT), a rise phase of 72 minutes (from 02 :21
to 03 :33 UT), and a decay phase of about 9 hr after 03 :33
UT. The CME velocity proÐle, which follows the trend of
the Ñare Ñux, can be divided into an initiation phase, impul-
sive acceleration phase, and propagation phase, respec-
tively. During the initiation phase (from 01 :40 to 02 :10
UT), the CME slowly ascended from a height of 0.47È0.50

the average speed is only 11 km s~1. During the impul-R
_

;
sive acceleration phase (from 02 :21 to 03 :45 UT), the CME
speed rapidly increased to a maximum of nearly 900 km s~1
at around the time of the Ñare peak. The acceleration rate
during this phase is 210 m s~2 or, equivalently, 0.80 Afterg

s
.

the time of the Ñare peak, the CME maintained an almost
constant speed of about 800 km s~1 until leaving the
LASCO Ðeld of view.

3.3. 1997 May 16 Event
The 1997 May 16 CME event is associated with a small

GOES B2.1 class Ñare (background Ñux at A3 level) and an
Ha subÑare located at N22¡, W69¡. Their source region is
NOAA AR 8038. In Figure 6, we show the C1 running

FIG. 4.ÈRunning di†erence images of C1 (a and b) and direct EIT j304 image (c) of the CME on 1997 February 23. Their timings are indicated at the top
of each panel. The white circle in each panel indicates the 1.0 solar limb. The plus sign indicates the position of the corresponding Ñare.R

_

Figure 1.18: Evolution of a CME velocity (LASCO) in terms of a three phases profile (dashed
line) and the flare (GOES) soft X-ray flux temporal profile (solid line) for the event on 1998
June 11 (Zhang et al., 2001).

for a CME, and the x-ray light curve: notice that the two vary nearly in step. Gallagher

et al. (2003) conducted a similar study, but extended the data set back towards the Sun

using UCVS and TRACE. They used a double exponential profile:

a(t) =

[
1

ar exp(t/τr)
+

1

ad exp(t/τd)

]
(1.39)

to fit the acceleration where ar, ad are the initial accelerations and τr, τd are the e-

folding times for the rise and decay phase. Using this they found an acceleration peak

of ∼1,500 km s−2 which corresponded to the soft X-ray rise phase (Figure 1.19) and sup-

ported a relationship between the X-ray flux and CME acceleration. This relationship,

between X-ray flux and CME acceleration, was fully realised in a paper by Temmer et al.
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Fig. 3.—(a) The height-time profile for ∼00:47–03:20 UT; (b) and (c) give
the velocity and acceleration profiles, obtained by taking the first and second
numerical derivatives, respectively. The first-difference values are given as
filled circles, while the three-point difference values are given using the same
symbol scheme as (a). The solid line gives the best fit to the data using
eq. (4). (d) The GOES-10 soft X-ray flux for the corresponding time period.

C2. Error bars on the data points represent our best estimates
of the uncertainties based on the difficulty in identifying the
CME LE in each image.
Of particular interest is the acceleration time history, since

this is related directly to the driving forces involved. This can
be readily derived from the height-time profile by double dif-
ferentiation. First, the CME velocity points plotted in Fig-
ure 3b were calculated from the altitude measurements using
both first-difference and three-point numerical differentiation.
It can be seen that the velocity initially rises rapidly before
reaching a constant value of ∼2500 km s!1 after ∼01:30 UT.
The acceleration points plotted in Figure 3c were calculated
from the velocity points in a similar way. They show a rapid
increase in acceleration up to a peak at ∼01:10 UT, with a
falloff to near zero by ∼02:30 UT.
To quantify the height-time profile, we consider three ac-

celeration models. The first assumes constant acceleration, the
second a simple exponential rise, while the third includes an
exponential rise followed by an exponential decay. Each ac-
celeration model can be numerically integrated to obtain the
height-time profile as follows:

t t

h(t) p h " v t" a(t)dt dt, (1)0 ! !0
0 0

where t is the time after initiation (taken to be ∼00:47 UT), h0

and are the initial height and velocity, respectively, and a(t)v0
is the acceleration.
Following Alexander et al. (2002), the simple case of con-

stant acceleration that might apply early in the time history is
considered. This results in a height-time profile of the following
form:

1 2h(t) p h " v t" at . (2)0 20

The best-fit to the data points up to 01:06 UT gives h0 p 24!
3 Mm, km s!1, and m s!2. As canv p 13! 13 a p 117! 240
be seen from Figure 2, the fit does not well represent the UVCS
and LASCO C2 data points but is acceptable for heights within
the TRACE field of view.
An exponentially varying acceleration of the form

results in the following height-time relationship:a exp (t/t)0

2h(t) p h " v t" a t exp (t/t). (3)0 00

As seen in Figure 2, this function, with Mm,h p 12! 30
km s!1, m s!2, and s,v p 0! 13 a p 48! 2 t p 486! 800

provides an acceptable fit to the TRACE, UVCS, and LASCO
C2 points.
The acceleration time data in Figure 3b suggests an expo-

nential rise, followed by an exponential decay. A function that
shows this behavior is

!1

1 1
a(t) p " , (4)[ ]a exp (t/t ) a exp (!t/t )r r d d

where ar and ad are the initial accelerations and tr and td give
the e-folding times for the rise and decay phases. A best fit to
the height, velocity, and acceleration data was obtained with

Mm, km s!1, m s!2,h p 25! 2 v p 40! 4 a p 1! 10 r0
s, m s!2, andt p 138! 26 a p 4950! 926 t p 1249!r d d

s and is shown in Figure 3.122
It is interesting to note that the start of the acceleration at

∼00:47 UT coincides with the start of the hard X-ray emission
at energies above ∼25 keV as measured with the Ramaty High
Energy Solar Spectroscopic Imager (RHESSI; Gallagher et al.
2002). Furthermore, the maximum acceleration occurs at about
the same time as the peak flux in ≥25 keV emission. This
suggests a possible connection between the nonthermal flare
energy release and the CME driving force. Another interesting
temporal coincidence is the end of the CME acceleration
(∼02:50 UT) and the change in the upward velocity of the soft
X-ray–emitting region from ∼10 to ∼2 km s!1 (at approxi-
mately 03:00 UT), also measured with RHESSI (Gallagher et
al. 2002).

4. DISCUSSION AND CONCLUSIONS

The acceleration and propagation of the (X1.5 related) fastCME
of 2002 April 21 has been analyzed using a combination of data
from TRACE, UVCS, and LASCO. A looplike feature is first
observed in TRACE 195 Å difference images at 00:48:54 UT, or
approximately 5 minutes after a pair of simultaneous brightenings
are observed. Following this, the CME passes rapidly through the
TRACE, UVCS, and LASCO fields of view. The CME initially
accelerates to a velocity of ∼900 km s!1 within approximately 20
minutes, with acceleration peaking at ∼1500 m s!2 at ∼1.7 R, (at
∼01:10 UT). Following this peak, the acceleration then decreases
with an e-folding time of s. At heights beyond1249! 122
∼3.4 R,, the height-time profile is well approximated with a con-

Figure 1.19: The (a) height, (b) velocity, (c) acceleration profiles and (d) the GOES soft
X-ray flux (Gallagher et al., 2003). The velocity was obtained by taking the first and second
numerical derivatives: the first-difference values are also shown as filled circles. The solid line
gives the best fit to the data using a double exponential acceleration profile (1.39).

(2008). They compared the CME kinematics to the hard X-ray flux and found the peak

acceleration corresponded to the peak X-ray flux Figure 1.20. This is consistent with the

previous observation as the derivative of the soft X-ray flux is often used as a proxy for
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1.2 Coronal Mass EjectionsNo. 1, 2008 SYNCHRONIZED CME ACCELERATION AND HXR BURSTS L97

Fig. 2.—Event of 2005 January 17. From top to bottom, distance-time profile
, velocity , and acceleration of the CME as observed by differentd(t) v(t) a(t)

instruments (different plot symbols specified in the legend). In the bottom
panel, we plot also the RHESSI 50–100 keV HXR flux of the associated flare.
The left panels show the full CME height range covered by the LASCO FOV,
i.e., up to 30 . The right panels zoom into the early acceleration phase ofR,

the CME as observed against the solar disk in SXI. The solid curves connects
the black features measured in the SXI running ratio images and subsequent
LASCO measurements, the dashed curves refer to the white features. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Same as Fig. 2, but for the 2006 July 6 event. In the bottom panel,
we plot also the RHESSI 30–50 keV HXR flux of the associated flare. The
left panels show the full CME height range covered by the LASCO FOV. The
right panels zoom into the early acceleration phase of the CME as observed
by TRACE and EIT. [See the electronic edition of the Journal for a color
version of this figure.]

From this raw distance-time measurements, , we derivedd(t)
the CME plane-of-sky 1 velocity and acceleration pro-v(t) a(t)
files by numerical derivative methods (analogous to the pro-
cedure used in Zhang et al. 2004). We used a Lagrangian in-
terpolation over three neighboring points before calculating the
first and second derivative at any given data point. Tod(t)
estimate the LE measurement uncertainties in the different data
sets, we applied several independent measurements, and ob-
tained typical uncertainties of !0.015, !0.04, !0.05, !0.1,
and !0.5 for TRACE, SXI, EIT, C2, and C3 images,R,

respectively.

4. RESULTS

Figure 2 shows the derived kinematics for the event of 2005
January 17. We show (from top to bottom) the time-distance
measurements of the CME LE as observed in SXI andd(t)
LASCO C2 and C3 images, the velocity , and the accel-v(t)
eration together with the RHESSI HXR flux. In our mea-a(t)
surements, we followed the main CME element that propagated
into the northwest direction (cf. Fig. 1, top row). The left panels
show the whole CME evolution, i.e., from its early phase as
observed on-disk in SXI images up to the full LASCO FOV
of 30 . The right panels show the same curves but focusR,

on the early CME evolution in the inner corona, where the
main acceleration takes place. The main acceleration starts
around 09:40–09:42 UT, has a peak of km s at!24.4 ! 0.3
09:46 UT, and ends at ∼10:06 UT. If we follow the white
features in the SXI running difference images, then the accel-
eration peak occurs about 2 minutes earlier with a peak value
of km s .!23.5 ! 0.3

It is worth noting that the kinematical curves derived from
the white and black features in the SXI running ratio images
are consistent with each other within the given limitations of
the measurements. We also note that, although we have an

1 We note that projection effects only result in a multiplication factor (e.g.,
Vršnak et al. 2007) and do not alter the profile of the derived kinematical
curves.

exceptionally good coverage of the acceleration phase of this
extremely fast CME in nine SXI frames, it is still not ideally
covered. There is a gap of ∼8 minutes between the last SXI
data point and the first LASCO C2 data point. Therefore, we
have to consider that the CME acceleration peak could happen
a few minutes later than we derived.

The RHESSI 50–100 keV HXR flux of the associated X3.8
flare shows an impulsive increase at 09:42 UT, peaks at
09:44 UT, and ceases at ∼10:10 UT. Comparing the flare HXR
burst profile and the CME acceleration profile (cf. Fig. 2, bottom)
we find that both curves are closely synchronized, with the de-
rived start, end and peak times differing by certainly less than
5 minutes.

Figure 3 shows the , , and curves derived for thed(t) v(t) a(t)
CME of 2006 July 6. The impulsive CME acceleration starts at
08:16–08:18 UT, peaks at 08:20 UT with kma p 1.1 ! 0.5
s , and has already ended at 08:54 UT when we first observe!2

the CME in LASCO C2. It is important to note that in this event,
the main CME acceleration phase is fully covered by the TRACE
and EIT observations and is finished before the CME appears
in the FOV of the LASCO coronagraphs. The RHESSI 30–50
keV HXR flux of the associated M2.5 flare starts to increase
around 08:18 UT, peaks at 08:23 UT, and is ceased at ∼08:40
UT. Again, the CME acceleration profile is tightly synchronized
with the HXR flux of the associated flare, and onset and peak
times are simultaneous within a few minutes.

5. DISCUSSION AND CONCLUSIONS

We studied two fast CMEs where we could identify CME
signatures in on-disk images (SXI, TRACE) with high time
cadence during the impulsive acceleration phase, and where
we also had full HXR coverage of the associate flare’s im-
pulsive phase. The derived kinematical curves for both events
smoothly continue from on-disk to LASCO observations and
the morphology of all the CME signatures measured in the
different data sets are very similar (see Fig. 1). In addition, for
the 2006 July 6 event the major part of the impulsive accel-
eration phase had finished before the CME appeared in C2;
i.e., the kinematical and dynamical curves are derived from
homogeneous data sets (TRACE 171 and EIT 195 ), and˚ ˚A A
we can exclude that the derived velocities and accelerations

Figure 1.20: Event kinematics from top to bottom, distance-time profile d(t), velocity v(t),
and acceleration a(t) of the CME as observed by GOES SXI and LASCO and (bottom) the
RHESSI 50 – 100 keV hard X-ray flux of the associated flare (Temmer et al., 2008). The left
panels show the full CME height range covered by the LASCO FOV the right panels zoom
into the early acceleration phase of the CME.

hard X-ray flux. The relationship between the peak acceleration and hard X-ray flux indi-

cates a strong relationship between magnetic reconnection and acceleration. This could be

interpreted as reconnection occurring in a current sheet behind the flux rope as suggested

by a number of models (Section 2.2.1). Lin et al. (2010) tried specifically to test the CME

kinematics against a number of models. They found peak accelerations of ∼1,500 km s−2

and ∼600 km s−2 close to the Sun (< 3R�). The authors show it is difficult to give merit to

one model above another, as within the inherent scatter they all reproduce the kinematics

to a good degree.

The above studies are subject to large uncertainties due to projection effects. A number

of efforts have been made to overcome this limitation, such as forward modelling, tomo-

graphic, and polarimetric techniques. Forward modelling uses a pre-assumed geometry

such as the cylindrical model (Cremades & Bothmer, 2004), or cone model (Xie et al.,

2004; Xue et al., 2005; Zhao et al., 2002), and varies the model parameters to best match
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1. INTRODUCTION

plane of the sky and z is the coordinate
along the line of sight. The measured ratio
of polarized-to-unpolarized electron-scattered
brightness for a scattering point, rm ! Ip,cme/
Iu,cme, must equal the theoretical ratio, rt, which
can be expressed as a function of " !

!x2 # y 2 and !z!:

rm ! rt (", "z ") (9)
The values of rt are computed for a range

of " spanning the coronagraph field of view
and for an equivalent range in "z", yielding a
two-dimensional array, rt, with " and "z" axes.
To determine the "z" value at each CME pixel,
we computed the value of " and extracted the
corresponding column in the rt array. Then,
the "z" value along the column at which rm !
rt is found by inspection. Because rt is a
monotonically decreasing function of "z"
for all ", the solution is unique. The resulting
"z" value is a mean distance from the plane of
the sky. If there is a single object along the
line of sight, the value will lie within the
object, and if there are two structures along
the line of sight, the value obtained will lie
between the two "z" values of the two objects.
The method yields a mean distance from the
plane of the sky but not the sign, because the
dependence of rt on sin $ is quadratic: An
object yields the same ratio for a given dis-
tance whether it is on the front or back of the
Sun. The sign of $ may often be determined
with the use of other observations that record
disk flares or filament eruptions, such as the
SOHO/Extreme Ultraviolet Imaging Tele-
scope (EIT) ultraviolet imaging instrument
(11), or through measurements of bulk Dopp-
ler shifts. If there is no disk activity associ-
ated with a CME, its origin is usually on the
back side.

Only "z" values for pixels with values of Ip

and Iu above 5% of the mean are computed.
This reduces artifacts in the three-dimension-
al reconstruction. The uncertainty in measur-
ing $ is determined by the relative error in rm,
which is estimated at 0.04. The change in $
corresponding to a relative change in rt of
0.04 was found by inspection for several
angles. The uncertainties in $ at 20°, 45°, and
70° were found to equal 0.21°, 2.1°, and 1.6°.
Fortuitously, the uncertainty is lowest for
CMEs directed along the Earth-Sun line.

The loop CME observed on 31 October
1998 was not associated with a disk event and
therefore most likely originated on the back
side of the Sun. A filament visible in the
southwest quadrant several days before the
CME was the probable source of the eruption.
After subtracting binned pre-CME polarized
frames recorded on the same day from the
CME polarized images, the polarized, unpo-
larized, and total brightnesses were computed
from two observation sequences 1 h apart.
The total brightnesses [(x, y) plane views,
Figs. 1A and 2A] show an expanding loop-

A B

C D

Fig. 1. (A) Total brightness of the loop-like CME occurring on 31 October 1998 at 3:56 UT
(front view), (B) a reconstructed side view of the CME in the (z, y) plane, (C) a reconstructed
top view of the CME in the (x, z) plane, and (D) a topographical map of the CME displaying
distance from the (x, y) plane. The color bar indicates distance from the sky plane in RJ. The
solar disk is outlined.

A B

C D

Fig. 2. (A) Total brightness of the loop-like CME occurring on 31 October 1998 at 4:56 UT
(front view), (B) a reconstructed side view of the CME in the (z, y) plane, (C) a reconstructed
top view of the CME in the (x, z) plane, and (D) a topographical map of the CME displaying
distance from the (x, y) plane. The color bar indicates distance from the sky plane in RJ. The
solar disk is outlined.
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Figure 1.21: (A) Total brightness a CME occurring on 31 October 1998 at 4:56UT (front
view), (B) a reconstructed side view of the CME in the (z, y) plane, (C) a reconstructed top
view of the CME in the (x, z) plane, and (D) a topographical map of the CME displaying
distance from the (x, y) plane (Moran & Davila, 2004). The colour bar indicates distance from
the sky plane in R�. The solar disk is outlined.

the 2D observations. The kinematics can then be derived from these best-fit models, how-

ever they are subject to the large and unknown errors about the pre-supposed geometry.

The polarimetric technique of Moran & Davila (2004) uses the ratio of unpolarised

to polarised brightness of the Thomson-scattered K-corona to estimate the average line-

of-sight distance from the instrument plane of sky. An example of this reconstruction

technique is shown in Figure 1.21. This technique is only applicable up to 5R� as beyond

this the F-corona can no longer be considered unpolarised. Yet other studies attempt to

tie on-disk or in situ signatures of CMEs together: Démoulin et al. (2008); Howard et al.

(2008b). These studies have made progress but the fundamental problem of uncertainties

in the derived kinematics still remain a problem.

From comparing CME speeds close to the Sun to those at 1 AU (see Figure 1.22), and

by studying the derived speed from radio observations (see Figure 1.23), it is clear that

CMEs are accelerated as they propagate. This has been studied in terms of a ‘drag’ force

(Cargill et al., 1996; Tappin, 2006; Vršnak & Gopalswamy, 2002) and an extended Lorentz

force (Chen, 1996). The limited spatial nature of coronagraphic and in situ measurements,

and both temporal and spatial limitation of radio and heliospheric imagers, mean that
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1.2 Coronal Mass Ejections
CME PROPAGATION FROM SUN TO EARTH 359

Figure 5. Representative speed–distance, V (R), profiles plotted on log–log scale. Average initial
speed of the CME increases from bottom (∼300 km s−1) to top (∼2500 km s−1). The date and the
start time of each CME are shown. These profiles converge toward the ambient solar wind speed at the
Earth’s orbit. The data points at R ≤ 30 R$ and R ≥ 80 R$ are from LASCO and IPS measurements,
respectively. The straight-line fit to the data points at R ≥ 100 R$ gives the slope, α, according to
V ∼ R−α (refer to Section 4.2). The vertical line indicates the Earth’s orbit (R ≈ 215 R$).

Figure 6 shows the index α plotted as a function of the initial speed of the CME.
The horizontal dashed line at α = 0 indicates a null acceleration line at distances
R ≥ 100 R$. A number of events are believed to include complex situation wherein
the CME interacts with a preceding one and these events are boxed with the square
symbol in Figure 6 and in later figures. The events originating at longitude or
latitude greater than 35◦ are enclosed in circles. The data points lying above the
null-acceleration line (i.e., α < 0) go through a moderate to severe deceleration. It
is important to note that 26 out of 30 events have shown deceleration in the IPS
distance range. The steepening of the speed profile increases with the initial speed
of the CME. The solid curve is the second-order least-square fit to the data points
and it relates the index α with the initial speed, VCME, at R ≥ 100 R$, as given by,

α = 0.2–6.4 × 10−4VCME + 1.1 × 10−7V 2
CME. (1)

Figure 1.22: Speed-distance profiles plotted on a log-log scale (Manoharan, 2006). Average
initial speed of the CME increases from bottom (∼300 km s−1) to top (∼2500 km s−1). The
date and the start time of each CME are shown. These profiles converge toward the ambient
solar wind speed at the Earth’s orbit. The data points at R ≤ 30R� and R ≥ 80R� are from
LASCO and IPS measurements, respectively.

little can really be said about the exact nature of the forces governing CME propagation.

However, it is clear there is some force at play which tends to equalise the CME velocity

to that of the background solar wind speed.

The STEREO mission was proposed to remove or diminish many of the issues outlined

above. The STEREO mission aims to achieve this by providing dual perspective views

along the entire Sun-Earth line. It will facilitate the tracking of CME signatures close

to the Sun all the way to Earth, and their association to the in situ measurements. The

high resolution and cadence images from dual perspectives will allow the 3D trajectory

of CMEs to be reconstructed over an extended range, allowing accurate kinematics to

be extracted and compared to theory in an attempt to answer some of the fundamental

questions outlined above.
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1. INTRODUCTIONINTERPLANETARY CORONAL MASS EJECTIONS

Figure 7. The speed distribution of CMEs (left) and ICMEs (right) for a set of 59 CME-ICME pairs.
This is an updated version of the original figure in Gopalswamy et al. (2000).
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Figure 8. (left) CME and MC speeds for the 59 CME-MC pairs. The straight line is Lindsay et al.
(1999) formula. The parabolic curve is from Gopalswamy et al. (2001b). (right) the empirical shock
arrival model for (solid curve) with some very fast events (diamonds) including the Carrington events
of 1859 September 1 (marked 1) and August 4, 1972 (marked 2). The squares are actual measurements
of CME speeds from SOHO and the observed shock transit times.

MC and white light CME speeds, along with the final-speed curves according to
Lindsay et al. (1999) and Gopalswamy et al. (2001b). The regression line (VMC =
309 + 0.26VCME) in Figure 8 is almost the same as the one obtained by Lindsay
et al. (VMC = 360 + 0.25VCME). White light CMEs have been observed to have
speeds exceeding 2500 km/s. For these CMEs, Lindsay et al. (1999) formula gives
a final speed of only ∼985 km/s. During the October November 2003 period, one
ICME exceeded a speed of ∼1500 km/s, while the progenitor CME had a speed of
∼2500 km/s (Gopalswamy et al., 2005c). For such high speed ICMEs, the parabolic
curve suits better. It must be pointed out that the IP acceleration was obtained from
quadrature observations, so the projection effects are minimal. The CME speeds
used in Figure 8 are in the plane of the sky. Using space speeds should yield a
better comparison. The IP acceleration can also be used to estimate the arrival time
of ICMEs based on the speed and onset time at the Sun. The tight relationship
between IP shocks and the driving ICMEs shown in Figure 6 has been used to
extend the CME arrival model to shock arrival model shown in Figure 8 (right).

Figure 1.23: The speed distribution of CMEs (left) and ICMEs or MCs (right) for a set of 59
CME-ICME pairs (Gopalswamy, 2006). The average of the distribution is indicated on each
panel.

1.2.4 Open Questions

While our knowledge of CMEs has greatly expanded with improving observations and

theoretical interpretations, new questions have been raised. Some of the most fundamental

questions about CMEs still remain unanswered. How is the energy required to launch a

CME built up and stored? While a number of models have been developed to answer this

(see Section 2.2.1), there is still no consensus on the matter. Another key question is what

leads to the release of this energy and the eruption of a CME? A related question is: are

CMEs pre-existing structures, or are they formed during the eruption? Again a number

of models attempt to answer these questions but, as of yet, still fall short. Some authors

claim (Zhang et al., 2001) that there are two (or more) types of CME: slow, gradual CMEs

which are accelerated slowly over large distances; and impulsive fast CMEs accelerated low

in the corona, often associated with flares. It is not clear if these two distinct types of CME

exist, and are due to different processes, or if they are the extreme ends of a continuous

spectrum of CME properties.

Once CMEs leave the Sun they are accelerated by an interaction with the solar wind;

very little is known about this interaction other than that it tends to accelerate most CME

towards the solar wind speed while others seem to be unaffected. Attempts have been made

to model this interaction as a form of drag, or by the action of an extended Lorentz force.

A combination of limited observations, and uncertainties in what observations there are,

have left this particular question wide open. Also at 1 AU why do some CMEs contain MC
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structures, and others not, and if not, are they still connected to the Sun? This could be an

observational effect, but it could also be a manifestation of different underlying structures

and mechanisms at play in some CMEs.

1.3 Thesis Outline

The work undertaken for this thesis enhances the understanding of the kinematics and

morphologies of CMEs as they propagate through the inner Heliosphere. Until now, stud-

ies of these properties have been hampered for a number of reasons. The most significant

of these are projection effects which affect not only the morphology but also the kine-

matics. Also, the lack of contiguous high resolution and high cadence CME observation

through the inner heliosphere has lead to significant uncertainties in the interplanetary

CME kinematics.

Chapter 2 discusses CME theory and related phenomena. Chapter 3 details CME

observations, instrumentation, as well as the data reduction, and conversion to physical

units used in this work. Chapter 4 details the methods used to analyse the observations.

Crucial to this work are the 3D reconstruction techniques which are outlined as well as the

drag modelling and fitting. The 3D reconstructions are the basis for the work undertaken

in Chapter 5, where the trajectories of a number of CMEs were reconstructed and are

presented. Chapter 6 presents results from drag modelling efforts on a number of CMEs.

Also presented are the results from a new 3D reconstruction method called ‘elliptical tie-

pointing’ and the drag modelling results from this. In Chapter 7, a CME-driven shock is

studied and compared with semi-empirical shock relations. Finally, Chapter 8 presents the

main conclusions of the thesis and details possible future work that could follow on from

these new developments.
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Chapter 2

Coronal Mass Ejections and

Related Theory

In this chapter the details of the theoretical framework used to describe CMEs and CME

related phenomena are presented. We have seen in the previous chapter that magnetised

plasmas are ubiquitous on the Sun and throughout the Heliosphere. The complex interac-

tion of these plasmas may be understood in terms of magnetohydrodynamics (MHD). The

application of this theory to the various aspects of CME evolution is presented. Some of the

current CME models associated with initiation, acceleration, and propagation are reviewed.

The relevant theoretical description of shocks and its relation to CME-driven shocks is also

presented.
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2. CORONAL MASS EJECTIONS AND RELATED THEORY

2.1 Magnetohydrodynamic (MHD) Theory

Magnetohydrodynamics combines Maxwell’s equations with the theory of fluid mechanics

in an attempt to describe the interplay between the plasma flow’s effect on the magnetic

field, and the altered magnetic fields effect on the plasma flow. Simply put, moving charges

(plasma flow) will generate a magnetic field, this field will affect any other changes, altering

their motion and thus a feedback between the flow and magnetic field is set up. In MHD

this feedback is described by the induction equation.

2.1.1 Maxwell’s Equations

Maxwell’s equations form a closed set of equations and describe the interaction of magnetic

(B) and electric (E) fields. They can be written in a derivative form in vacuum as follows:

∇×B = µ0j +
1

c2
∂E

∂t
(2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B

∂t
(2.3)

∇ ·E =
1

ε0
ρ (2.4)

where j is the current density, ρ is the charge density, µ0 is the magnetic permeability of

vacuum, ε0 is the permittivity of free space and c is the speed of light. If the typical plasma

velocities are much less than the speed of light, the second term in Ampère’s law (2.1) may

be neglected giving:

∇×B = µ0j. (2.5)

2.1.2 Fluid Equations

The fluid equations, or Navier-Stokes equations, arise from applying Newton’s Second Law

(F = ma) to a fluid (continuum), and can be written in the most general form (Cauchy

momentum equation; momentum conservation):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · T + f (2.6)

where v is the velocity vector, p is the pressure, T is the stress tensor and f represents

other body forces. Using the convective derivative (D/Dt = ∂/∂t+ v · ∇), makes it more
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2.1 Magnetohydrodynamic (MHD) Theory

clear that it is just a statement of Newton’s Second Law:

ρ
Dv

Dt
= −∇p+∇ · T + f . (2.7)

Generally, the mass continuity equation (mass conservation):

∂ρ

∂t
+∇ · (ρv) = 0, (2.8)

is used in conjunction with the fluid equations. This is an incomplete description, the stress

tensor T is still unknown, however using knowledge of the viscous behaviour of the fluid,

we may make some assumptions on the form and properties of T. For an incompressible

Newtonian fluid the equations may be written:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (2.9)

where µ is the (constant) dynamic viscosity, and the mass continuity equation reduces

to ∇ · v = 0. The Navier-Stokes equations are strictly an expression of conservation of

momentum and do not fully describe the system: additional information such as an energy

equation, or an equation of state is necessary. An energy equation which is often used is:

D

Dt

(
p

ργ

)
= L (2.10)

where L is the total loss function. Assuming the fluid is described by an ideal gas p = ρRT ,

then for adiabatic processes L = 0, thus (2.10) becomes:

∂ρ

∂t
+ v · ∇p = −γp∇ · v (2.11)

The Navier-Stokes equations can be non-dimensionalised by scaling each of the quantities

by a characteristic measure:

x′ =
x

L
, v′ =

v

V
, t′ =

V

L
t, ∇′ = 1

L
∇
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where L is characteristic length, V characteristic velocity, L/V characteristic time scale.

Then, depending on the regime under study, the equation can be normalised by:

p′ =
1

ρV 2
p, if viscous effects are small, (2.12)

or by p′ =
L

µV
p, if viscous effects are large. (2.13)

The Navier-Stokes equations thus become:

∂v′

∂t′
+ v′ · ∇′v′ = −∇p′ + 1

<∇
′2v′ + f ′ (2.14)

and:

<
(
∂v′

∂t′
+ v′ · ∇′v′

)
= −∇p′ +∇′2v′ + f ′ (2.15)

where < is the Reynolds number (< = ρV L/µ). In the low Reynolds number regime

where viscous effects dominate, the pressure is provided by the viscosity of the fluid (p ∼
µL/V ); in the high Reynolds number regime where inertial effects dominate, the pressure

is provided by dynamic or ram form (p ∼ ρV 2). Equations (2.14) and (2.15) can be solved

to give the force acting on a body in a hight < flow:

F =
1

2
CDAρV

2 (2.16)

where CD is the drag coefficient, A is the cross-sectional area of the object perpendicular

to the flow direction and a low < flow or Stokes flow:

F = 6πµaV (2.17)

where a is the radius of the object. The drag coefficient (CD) is defined as the drag force

normalised by ρU2 and the area A.

2.1.3 MHD equations

The ideal and resistive MHD equations are obtained by taking the adiabatic, inviscid

(viscosity neglected) fluid equations, assuming that the only body forces are due to gravity
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and the Lorentz force, namely:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ j×B + ρg (2.18)

∂ρ

∂t
+ v · ∇p = −γp∇ · v (2.19)

∂ρ

∂t
+∇ · (ρv) = 0 (2.20)

these may be combined with Maxwell’s equations through Ohm’s law:

j = σ(E + v ×B) (2.21)

where σ is the conductivity of the plasma. Ohm’s law can be rewritten using Ampere’s

law (2.4) to obtain:

E = −v ×B +
1

µ0σ
∇×B, (2.22)

and so Faraday’s Law (2.3) becomes:

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B) , (2.23)

where η = 1/µ0σ is the magnetic diffusivity. Assuming that η is constant (2.23) becomes:

∂B

∂t
= ∇× (v ×B)− η∇× (∇×B) (2.24)

using a vector identity this can be written:

∂B

∂t
= ∇× (v ×B)− η

[
∇2B−∇(∇ ·B)

]
. (2.25)

Using the solenoid constraint ∇ ·B = 0 we obtain the induction equation:

∂B

∂t
= ∇× (v ×B)− η∇2B. (2.26)

This equation is vital for any model that considers a magnetised plasma, as it describes

how a magnetic configuration will respond to fluid motions and vice versa – which is more

dominant depends on the ratio of the terms. In a similar fashion to the fluid equations,
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2. CORONAL MASS EJECTIONS AND RELATED THEORY

we may define a dimensionless quantity RM , called the magnetic Reynolds number to be:

RM =
∇× (v ×B)

η∇2B
, (2.27)

=
V L

η
, (2.28)

This can thought of as providing two different timescales (1) changes due to fluid motion

dominating when RM is large:

B

τmotion
≈ V

L
B =⇒ τmotion ≈

L

V
(2.29)

where t = V/L is the characteristic time scale, and (2) changes due to diffusion of the field

when RM is small:

B

τdiffusion
≈ ηB0

L2
=⇒ τdiffusion ≈

L2

η
(2.30)

Let us consider a typical sunspot with L = 107 m, η = 1 m2 s−1 and V = 106 m s−1, so

the magnetic Reynolds number will be:

RM =
107106

1
= 1013 � 1, (2.31)

so the sunspot is dominated by plasma motions and we can estimate the diffusion time

scale to be:

τdiffusion =
L2

η
=

(107)
2

1
≈ 1014 ≈ 31, 000 years (2.32)

In the case of a perfectly conducting fluid (RM → ∞) the magnetic field lines must

move with the plasma, or are ‘frozen in’ to the plasma (Alfvén, 1943) and the induction

equation reduces to:

∂B

∂t
= ∇× (v ×B) (2.33)

which forms the basis of ideal MHD. In this case, the magnetic field is tied to the plasma

motions.
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2.1 Magnetohydrodynamic (MHD) Theory

Figure 2.1: Geometry of the Sweet-Parker (top) and Petshek (bottom) reconnection models
(Aschwanden, 2006). The diffusion region has a length ∆ and width δ.

2.1.4 Magnetic Reconnection

It is clear from a comparison of the lifetimes of sunspots of days to weeks, and our estima-

tion of the lifetime of a sunspot, thousands of years (2.32) that some other process must

play a role in the dynamic evolution of magnetised plasmas. That process is magnetic

reconnection. This is also indicated from the rapid energy release associated with CMEs

and flares. Magnetic reconnection is generally defined as a change in the connectivity of
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2. CORONAL MASS EJECTIONS AND RELATED THEORY

field lines with time, where the energy stored in the magnetic field is converted into par-

ticle, thermal, and kinetic energies. In an ideal plasma, the field lines are ‘forzen-in’ and

thus coupled to the plasma motion. However when regions of opposite polarity flux are in

close proximity a boundary layer with large currents must form to separate the two regions

(this can be seen from (2.5)). The small but non-zero resistivity (or large but not infinite

conductivity) in the boundary layer opposes these currents. At the very centre of the

boundary layer the neutral layer the magnetic field must go to zero, so the field smoothly

and continuously changes across the region. The total pressure in this region must balance

on both sides, B1 + p1 = pnl = B2 + p2 where p is thermal pressure and B the magnetic

pressure. Thus, in the neutral layer ,the plasma-β becomes large and non-ideal effects,

such as diffusion can take place. This region is known as the diffusion region, grey area

in Figure 2.1. This formalism was first developed by Sweet (1958), who showed diffusion

could occur in the boundary layer, and then Parker (1957) who derived the scaling laws

and together is known as Sweet-Parker reconnection.

2.1.4.1 Sweet-Parker Reconnection

The same MHD equations cannot be applied simultaneously to describe inside and outside

the diffusion region. However, using some simplifications, separate solutions for the two

regions can be found and matched. The Sweet-Parker model is a steady-state 2D model

where the diffusion region is assumed to be much longer than it is width (∆ � δ; Fig-

ure 2.1 (top)). For a steady state incompressible flow (∇ · v = 0), we can see that the

inflow and outflow must balance vin∆ = voutδ. Outside of the diffusion region, ideal MHD

applies so there are no currents and the z-component of Ohm’s law (2.21) is Ez+vinBx = 0.

Inside the diffusion region there are large currents and the flow has stagnated (v = 0), thus

the z-component of Ohm’s law is Ez = ηJz. For a steady state flow, this implies that the

electric field Ez inside and outside the diffusion zone must be the same by Faraday’s Law

(2.3). Thus we can write vinBx = ηJz or vin = ηJz/Bx and integrate Ampere’s Law (2.5)

around the region to obtain Bx = µJzδ, and thus we arrive at:

vin =
η

δ
. (2.34)

Now, if we assume the x-component of the magnetic field is completely destroyed, then by

conservation of energy Bx/2µ = 1/2ρv2out and thus vout = Bx/
√
µρ ≡ vA and we can write
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in inflow velocity in terms of the outflow velocity (or Alfvén velocity):

v2in =

(
vin

δ

∆

)(η
δ

)
or v2in = v2out

(
η

vA∆

)
. (2.35)

The rate of reconnection is given by the ratio of the inflow to outflow velocities:

M =

(
vin
vout

)1/2

=

(
η

vA∆

)1/2

=
1√
S

(2.36)

where S = LvA/η is the Lundquist number (or magnetic Reynolds number). The Lundquist

number can be estimated from typical values of L = 107 m and vA = 106 m s−1 to obtain

S ≈ 1013 and hence M ≈ 10−7.

For a typical solar flare/CME some ∼ 1023 J are released over a time scale of about

102 s, which means an energy release rate of ∼ 1021 J s−1. Assuming all this energy comes

from magnetic reconnection we can write:

dEM
dt

=
B2

2µ

dV

dt
≈ B2

2µ
L2vout ≈

B2

2µ

L2vA√
S
. (2.37)

where EM the magnetic energy. Taking a field strength of 10−2 T we get an energy release

rate of ∼ 1015 J s−1, which corresponds to a time of tens of days for a flare rather then

minutes much too long compared to observations. Sweet-Parker reconnection is thus too

slow, with the limiting factors being the ratio of the width to length of the diffusion region

and the Alfvén velocity.

2.1.4.2 Petschek Reconnection

Petschek (1964) put forward an altered version of the Sweet-Parker model, this altered

configuration is shown in Figure 2.1 (bottom). In this configuration the size of the diffusion

region is very compact (δ ≈ ∆) compared to Sweet-Parker (∆ >> δ). Due to the smaller

size, the propagation time through the diffusion region is reduced and reconnection can

proceed at a faster rate. However, as the size is reduced so is the amount of plasma that

can flow through the diffusion region. The result of this is that much of the inflowing

plasma turns around outside of the diffusion region and two slow mode shocks form due to

the abrupt changes from vin to vout. These shock waves are the main site where inflowing

magnetic energy is converted to heat and kinetic energy. By assuming a potential field

in the inflow region Petschek (1964) found the external field scales logarithmically with

distance L. Using this he estimated the reconnection rate, at a distance L, where the
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Emerging Parameter Space Map of Magnetic Reconnection

top panel. As the simulation proceeds, plasmoids are observed to grow within the resistive
layer which gives rise to an enhancement in the current density between islands. An abrupt
increase in the reconnection rate is observed when the thickness of these layers approach
δ ≈ ρi consistent with the expectations outlined in the previous section. However, we should
emphasis that ρi is only a factor of 2 smaller than di for these parameters, so in the future
it is important to consider stronger guide fields to better separate these scales. Nevertheless,
these preliminary results confirm that plasmoids are playing a crucial role in facilitating the
transition to kinetic regimes.

5 Summary of Results

In order to quickly understand the relevance of these results for any given problem, it is use-
ful to summarize these scalings in graphical form using two dimensionless parameters: the
global Lundquist number S and the system size in units of the ion gyroradius L/ρi . As illus-
trated in Fig. 3, this allows us to quickly summarize all of the results in this manuscript. The
dashed blue line corresponds to (2) which gives the transition estimate when Sweet-Parker
layers are stable (S < Scrit). For S ! Scrit the layers are unstable and MHD calculations
indicate the critical Lundquist number is Scrit ∼ 104 as shown by the green line, but with tur-
bulent fluctuations in the initial conditions (Matthaeus and Lamkin 1985) it appears this may
be reduced to Scrit ∼ 2000. This value is closer to what is observed in the collisional kinetic
PIC simulations (Daughton et al. 2009a) which also have finite fluctuations from thermal
noise. Regardless of the precise value, the range of parameter space where the Sweet-Parker
scaling applies is really quite limited.

The solid blue line in Fig. 3 corresponds to (9). For the white region below this curve, the
MHD description remains valid and reconnection will proceed through a dynamic scenario
with continuous plasmoid formation. Above this curve in the yellow region, the development
of plasmoids will always induce a transition to kinetic scales δ ≤ ρi and thus the MHD model
is no longer valid. It is possible that two-fluid models may be valid in a limited portion of
this yellow region. The two-fluid closures are most appropriate in the region where the
reconnection electric field remains less than the runway limit, corresponding to the yellow
region between the red and solid blue curves. From (5), one can see that the size of this

Fig. 3 Emerging parameter
space map of magnetic
reconnection. The red curve
corresponds to Er = ED and for
this figure was estimated
assuming a hydrogen plasma
with β = 0.2 and R = 0.05. Note
that Lsp is assumed to scale with
macroscopic system size L

Figure 2.2: The emerging parameter space for the various reconnection regimes. S is the
Lunquist number, and Lsp is the length of the reconnection region normalised by density
(Daughton & Roytershteyn, 2011).

magnetic field dropped to half its original value, to be:

M =
π

8 ln(L/∆)
≈ π

8 ln(S)
. (2.38)

The reconnection rate only logarithmically depends on the Lundquist number (or RM )

using our previous estimate of S this gives M ≈ 0.01 which is four orders of magnitude

faster than Sweet-Parker.

Both of the models discussed have no external driver, such as an inflow. They also

require a potential field in the inflow region. Relaxation of these simplifications has led

to a family of solutions. These generalisation of 2D reconnection can be summarised in

terms of internal Alfvén Mach number at the entrance to the diffusion region MAi, and

the Alfvén Mach number at the exterior inflow MAe ,as:

(
MAi

MAe

)1/2

= 1− 4

π
(1− b)

[
0.834− ln tan

(π
4
S−1M−1/2Ae M

−3/2
Ai

)]
(2.39)

This contains the Sweet-Parker, Petschek (b = 0) and other hybrid solutions (Aschwanden,
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2006; Priest & Forbes, 2000; Schrijver & Siscoe, 2009). Figure 2.2 shows how as the length

scales (Lsp) and Lundquist number (S) vary, different regimes become important. 3D

reconnection is significantly different from 2D reconnection in many regards for example

in the 3d case x-point less reconnection can occur, as well as reconnection where the

magnetic field lines have the same topology. Reconnection plays a vital role in many CME

models and in the interpretation of observations, although not all models require magnetic

reconnection.

2.2 Coronal Mass Ejection Theory

CMEs are known to be associated with flare and filament eruptions, but the exact mecha-

nism of their driver is unknown. Additionally, there is a debate about whether the flux rope

(which becomes the CME) is a pre-existing structure, or is formed during the eruption. A

number of theoretical models have been put forth to describe the forces and mechanisms

responsible for the initiation and acceleration of CMEs. In nearly all models some instabil-

ity is the trigger for the eruption, these instabilities may be understood using the cartoon

mechanical analogies shown in Figure 2.3.

• Thermal Blast: Early models proposed that the rapid increase in thermal pressure

caused by a flare cannot be constrained by the magnetic field and thus drives the

CME outward. Observations suggest this is not correct as many CMEs have no

associated flare, or the flare occurs after the CME (see Section 1.2.1 and 1.2.2)

• Dynamo: These models require the rapid generation of magnetic flux by stressing

of the magnetic field (Klimchuk, 1990). This driver, known as flux injection (Krall

et al., 2000), corresponds to one of the following cases; (1) pre-existing field lines

become twisted; (2) new ring shaped field lines rise up and become detached from

the photosphere; or (3) arch shaped field lines rise up while remaining rooted in the

photosphere. The first case requires footpoint motion some two orders of magnitude

faster then observed (Krall et al., 2000). The second case has not been observed and

there is no obvious force to lift the mass. The third case is the most plausible for

this model.

• Mass Loading: The slow build up of mass which is then removed causes an eruption.

In terms of observations it is consistent with growing quiescent and eruptive filaments.

Theoretically, the magnetic energy pre- and post-eruption are compared to show the

plausibly of the transition from a higher to lower energy state (e.g. Low, 1999). Two
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17.1. THEORETICAL CONCEPTS OF CMES 705

Figure 17.1: Physical (mechanical) analogues of five different coronal mass ejection (CME)
models: (a) thermal blast model, (b) dynamo model, (c) mass loading model, (d) tether cutting
model, and (e) tether straining model (Klimchuk 2001).

Figure 2.3: Cartoons showing the mechanical analogues for different CME eruption mecha-
nisms (Klimchuk, 2001).
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possible forms of mass loading are: (1) by prominences with dense cool material

contained in a compact volume; (2) by relatively less dense material spread over a

large volume, which is susceptible to the Rayleigh-Taylor instability. The first concept

is supported by numerous observations of coincident filament and CMEs, where the

derived mass of the filament is a critical constraint (Zhang & Low, 2004). The second

concept is supported by low density cavities observed in some helmet streamers, but

there are also many which do not contain low density cavities (Hundhausen, 1999).

• Tether Release: Magnetically dominated loops, such as those in the corona, remain

stable due to a balance between the upward force of magnetic pressure (∇B2/2µ0)

and the inward force of magnetic tension ((B·∇)B/µ0). The field lines which provide

the tension are sometimes called tethers. In the mechanical analogy, once a tether is

released then the tension on the remaining tethers increases, this can continue until

the stain becomes so large that the remaining tethers fail and the spring (CME)

is launched upwards. A 2D model recreates this type of behaviour by driving the

footpoints towards each other, until a catastrophic loss of equilibrium occurs and

the x-point jumps discontinuously to a new height (e.g. Isenberg et al., 1993). In

non-ideal MHD, reconnection at the x-point after the tethers are cut would launch

the CME (e.g. Amari et al., 2000; Lin & Forbes, 2000; Mikic & Linker, 1999).

• Tether Straining: This is very similar to the tether release model except the strain

is increased by some external force rather than a constant strain being redistributed

among fewer and fewer tethers. A physical model of this is the ‘magnetic breakout’

model (Antiochos et al., 1999; Aulanier et al., 2000). This type of behaviour can

also found using mass loading (Zhang & Low, 2002). The equilibrium loss model of

Forbes & Priest (1995a) is also of the tether straining type, as are the sheared arcade

model of Mikic & Linker (1994); Linker & Mikic (1995) and flux rope models of Wu

et al. (1995, 2000).

The last three models are known as storage and release models where magnetic stress is

slowly built up over time before the eruption, some of which is then rapidly released during

the eruption. The tether straining and release models seem the most likely scenarios, as

they are able to reproduce a number of observable features through 2D and 3D modelling.

The full dynamical evolution of CMEs includes three phases: initiation, acceleration and

propagation (Zhang et al., 2001). Below I will outline a representative number of models

which describe the initiation and acceleration (Section 2.2.1) of CMEs and, separately,

their propagation (Section 2.2.2).
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2.2.1 Initiation and Acceleration

One of the initial problems facing storage and release CME models was the apparent

paradox that the pre-eruption closed field system was of lower magnetic energy than post-

eruption open field system (Sturrock et al., 1984). It was argued that the relaxation

of the pre-existing field releases more energy than it takes to open the field or the free

magnetic energy stored in the field should be greater than the energy required to open

the field (Barnes & Sturrock, 1972). Following this Kopp & Pneuman (1976) proposed a

three stage model for eruptive flares: (1) energy is stored in a force free arcade or flux

rope; (2) the eruption occurs, fully opening the field; and (3) the open field is closed via

reconnection to a nearly force-free state. The transition from 1) to 2) would be ideal and 2)

to 3) non-ideal. Aly (1984) conjectured that this scenario was energetically unfeasible. He

argued that the open field configurations must always have higher magnetic energy than

corresponding force-free configurations, as long as the field is simply connected. In 1991

both Aly (1991) and Sturrock (1991) developed proofs of Aly’s conjecture. These results

seemed to imply that CMEs were energetically impossible, however there are a number

of ways to avoid this problem: the field may not be simply connected but contain x- and

o-points, the field lines are not opened up to infinity or only a portion of the closed field

lines are opened.

2.2.1.1 Catastrophe Model

In these models a 2D flux rope catastrophically loses equilibrium and erupts due to foot-

point motions in the photosphere (Forbes & Isenberg, 1991; Forbes & Priest, 1995b; Isen-

berg et al., 1993; Priest & Forbes, 1990). Figure 2.4 illustrates one such model where a

flux rope is suspended above the photosphere due to an equilibrium between the upward

magnetic pressure gradient force and the downward magnetic tension force. As the foot-

point separation distance (λ) is reduced, the flux rope moves downward due to increasing

magnetic tension, and as the magnetic pressure grows the magnetic energy of the system

also increases. When the critical footpoint separation is reached and equilibrium is lost, the

pressure gradient force becomes larger than the tension force and the flux rope is propelled

upwards. If all the kinetic energy is dissipated then the flux rope will stabilise at the upper

equilibrium, as shown in Figure 2.4. If not, the flux rope will oscillate between the critical

height and some point above the upper equilibrium height. If reconnection occurs in the

current sheet which forms below the flux rope, it will increase in height without limit. An

analytical expression for the kinematics of the flux rope, provided it is thin (R� h), and
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Figure 2.4: The theoretical evolution of a 2-D flux rope of radius R0/λ0 = 0.1 (Forbes &
Priest, 1995b). (b-c) The footpoints are slowly moved towards each other and flux rope height
decreases. (d) At some critical distance λ0 the flux rope loses equilibrium and abruptly jumps
in height. (a) Shows the resulting height evolution as a function of the footpoint separation λ.
All coordinates are in units of λ0.

before the formation of the current sheet h/λ0 � 2 (Priest & Forbes, 2000), is:

ḣ ≈
√

8

π
vA0

[
ln

(
h

λ0

)
+
π

2
− tan−1

h

λ0

]−1/2
+ ḣ0 (2.40)
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where h is the flux rope height, ḣ is the velocity of the flux rope, ḣ0 is an initial perturbation

velocity, λ0 is the critical footpoint separation, and vA0 is the Alfvén speed at h = λ0.

Simplified expressions may be obtained by separating the evolution into an ‘early’ (t �
λ0/vA0, h/λ0 � 1) phase:

ḣ ' ḣ0 +
2vA0√

3π

(
ḣ0
λ0

)3/2

t3/2 (2.41)

and a ‘late” (h/λ0 � 1, lnh� lnR) phase:

ḣ ≈
√

8

π
vA0

[
ln

(
h

λ0

)
− π

2

]1/2
. (2.42)

Once the current sheet forms, analytical solutions of the CME evolution can no longer be

derived.

2.2.1.2 Toroidal Instability Model

This model consists of an extension of the 2D flux rope to a 3D magnetic flux rope sus-

pended above the photosphere, which is anchored in the photosphere at both ends Fig-

ure 2.5 (Chen, 1989, 1996; Chen et al., 2000; Krall et al., 2000, 2001). It is initially in

equilibrium, and erupts as a result of poloidal magnetic flux being injected into the flux

rope, triggering the toroidal instability (TI). There are two dominant forces acting on the

flux rope: the outward Lorentz self-force (hoop force), and the inward Lorentz force due

to the background field. The flux rope is susceptible to an eruptive instability if the back-

ground magnetic field (BS) decreases sufficiently quickly and vanishes at infinity. A sudden

increase in the poloidal flux would then lead the flux rope to rapidly and continually ex-

pand, triggering a CME eruption. The condition on the background magnetic field for this

to occur is:

−RdlnBS
dr

> 3/2 (2.43)

where R is the major radius of the flux rope see Figure 2.5 (top). An equation of motion

for this system may be written:

M
dZ

dt
= FR + Fg + Fd (2.44)
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Figure 2.5: (top) A 3D flux rope modelled as a current loop with subscripts “t” and “p”
referring to toroidal and poloidal directions. (bottom) Geometry of the flux rope as a model
for a prominence as indicated by vertical hash lines. The ambient field BS marks the boundary
of the flux rope (Chen, 1996).
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Figure 2.6: Toroidal instability simulation. (a) The height of the apex (thick), centre of
mass (thin), and trailing edge (dashed). (b) Corresponding speed. (c) The minor radius a(t)
in 105 km and w(t) in 10 km s−1 (Chen, 1996).

where FR, Fg and Fd are radial, gravitational and drag forces respectively. The radial

component can be written:

FR =
I2t
c2R

[
ln

(
8R

a

)
+

1

2
βp −

1

2

Bt
2

Bpa
2 + 2

(
R

a

)
Bs
Bp
− 1 +

ξi
2

]
+ Fg + Fd (2.45)

where ξi is the internal inductance, βp is the ratio of the average gas to magnetic pressure

at the flux rope boundary. This equation is too complex to find analytical solutions, but

has been numerically solved an example is shown in Figure 2.6.

Kliem & Török (2006) were able to derive an analytical solution based on a simplified

model. They assumed only two counteracting Lorentz forces acted on the flux rope, ignored

changes in the external field its effects on the flux rope, and assumed a simple profile for

the external field (BS(H) = B0H
−n). They found that at the beginning the instability

can be approximated by:

h(τ) =
P0

P1
sinh(P1τ), h ≡ H

H0
− 1� 1 (2.46)
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ideal MHD instability (the helical kink in this case) and recon-
nection similar to the run shown in Figure 8, but with an initial
velocity of !0:01VA, the rise was clearly exponential.

While all data in Figure 7 and the solid line in Figure 8monitor
the apex of the magnetic axis of the flux rope, the dashed lines in
Figure 8 show the rise of a fluid element near the bottom of the
flux rope, which is a likely location for the formation of filaments.
Lying initially at 0:65h0, it belongs to an outer flux surface of the
rope. Although the flux rope in the simulation expands during
the rise, both the axis and the bottom part show an approximately
constant jerk and no significant timing differences between the
acceleration profiles.

3.1. Scaling Simulation to Observation

Figure 8 presents a scaling of the simulation data to the rise
profile of the 2005 June 16 eruption, determined in three steps.
First, the time of the velocity minimum near 10!A in the simula-
tion is associated with the onset time, t0, of the rapid-acceleration
phase, 19:54:58 UT, as obtained in x 2. Second, the time t1 of
maximum simulated velocity is associated with a time halfway
between the final MLSO data points, which yields a substan-
tially better match between the acceleration profiles than is
found assuming that the acceleration ceased at or after the final
MLSO data point. These two choices yield !A ¼ 32:5 s. Third,
the simulated and observed heights are matched at t1, resulting
in a length unit for the simulation of h0 ¼ 44:4 Mm, an Alfvén
speed VA ¼ h0/!A ¼ 1370 km s#1, and a normalization value

for the acceleration of a0 ¼ VA/!A. Figure 8 shows the observed
heights on a linear scale, with derived velocity and acceleration
data (based on central differences, with seven-point boxcar aver-
aging to smooth the heights and velocities and five-point boxcar
averaging for the accelerations).
Both the rise of themagnetic axis of the flux rope (Fig. 8, solid

line) and the rise of a fluid element originally below themagnetic

Fig. 9.—Side view of a TI simulation (see Fig. 8). The field lines of the torus
are shown lying in a flux surface at half the minor torus radius. Sample field lines
for the overlying field are also shown. The starting points in the bottom plane for
the traced field lines are the same for all panels. The times (expressed in Alfvén
crossing times, as in Figs. 7Y11) are 0, 20, 30, and 40, respectively. The motion of
the loop apex marked by an asterisk is shown in Fig. 11.

Fig. 8.—Nearly constant-jerk rise profile for an unperturbed torus-unstable
flux rope equilibriumwith steeper field decrease above the flux rope than in Fig. 7.
The field decay index in this case is n $ 2:85, i.e., near the value for the far field in
the dipolar case (see text for other parameter differences for aspect ratio and initial
torus depth). Solid lines show the rise profile of the apex point of the magnetic
axis as in Fig. 7; dashed lines show the rise profile of a fluid element below the
apex, initially at h ¼ 0:65h0. The simulation data for this lower fluid element are
scaled to the rise profile of the 2005 June 16 filament eruption, and the resulting
Alfvén time, Alfvén speed, and footpoint distance are given.

SCHRIJVER ET AL.592 Vol. 674

Figure 2.7: Side view of a 3D toroidal instability (Schrijver et al., 2008). The field lines of
the torus are shown lying in a flux surface at half the minor torus radius. Sample field lines
for the overlying field are also shown. The starting points in the bottom plane for the traced
field lines are the same for all panels. The times (expressed in Alfvén crossing times) are 0,
20, 30, and 40, respectively.
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V.S. Titov & P. Démoulin: Basic topology of twisted magnetic configurations in solar flares 709

Fig. 2. The magnetic field under study is modeled by a force-free cir-
cular flux tube with the total current I , a pair of magnetic charges−q,
q and a line current I0. Below the photospheric plane z = 0 this con-
figuration has no real physical meaning: it is used only to construct the
proper magnetic field in corona.

on the large-scale features of the current distribution. So we
probably do not lose too much in understanding the topology of
a generic twisted configuration if one concentrates all the cur-
rent within an arc-like loop of a force-free tube embedded into
a potential magnetic field.

To construct this configuration, let us introduce a Cartesian
system of coordinates in which the z-axis points in the verti-
cal direction and the plane z = 0 represents the photosphere
(Fig. 2). The whole magnetic field is obtained here by superim-
posing three components denoted byBI ,Bq andBθ. The first
componentBI is the field created by a ring current I uniformly
distributed over its circular cross section of radius a. The plane
of symmetry of the ring coincideswith the planex = 0, while its
axis of symmetry is parallel to the x-axis and submerged under
the photosphere by a depth d, so that in corona only an arc of the
ring with major radiusR is present. The second componentBq

is created by the leading and following spots of the modeling
active region, which are represented here by two charges −q
and q lying on the axis of symmetry of the ring from both sides
of the plane x = 0 on the distance L. The third componentBθ

is created by a line current I0 flowing exactly along the axis of
symmetry of the ring. In this model, of course, only the field
above the photospheric plane z = 0 has a real physical mean-
ing, while the sub-photospheric currents and sources play an
auxiliary role in constructing the configuration. One can ignore
its sub-photospheric part and regard that the coronal force-free
field is in fact determined by the vertical components of the field
Bq + BI + Bθ and current density on the photosphere (only
in one polarity for the current).

The region occupied by the ring current is further assumed
to be thin, so that the equilibrium of this current can be in-
vestigated by using appropriate asymptotic expansions in small
parameters a/R and a/L. In zero order approximation, this
problem reduced to a force free condition in the cross section of
the flux tube – which we will futher call the “internal equilib-
rium”. In the next order, it reduces to an equilibrium condition

for each current element of the tube in themagnetic field created
by external sources and the rest current elements – which we
will call the “external equilibrium”. Such a decomposition of
the equilibrium problem is true both in purely 2D case (Isen-
berg et al.1993) and in more general 3D case (Lin et al. 1998).
The internal equilibrium is very simple in our case, since it just
coincides with a force free equilibrium of a straight flux tube
having a circular cross section. The corresponding solution is
well known and, in particular, it allows the possibility assumed
here that the toroidal current density is uniformly distributed
in the cross section of the flux tube. The details of how these
internal and external solutions can be sewed are described in
Sect. 2.2.

The external equilibrium here corresponds to the equilib-
rium of a ring current in an axisymmetric potential field. Due
to the present axial symmetry, the respective equilibrium condi-
tion is the same for each element of the flux tube and, is reduced
to the balance of only two forces: the Lorentz force F q caused
by interaction of the current I with the fieldBq and the Lorentz
self-forceF I resulting from the curvature of the tube axis. Both
forces act along the normal n to this axis and can be written as

F q = − 2qLIn

(R2 + L2)3/2
, (4)

F I =
µ0I

2

4πR

(
ln

R

a
+ ln 8 − 3/2 + li/2

)
n , (5)

where li is the internal self-inductance per unit length of the
tube (Shafranov 1966). It is always of the order of unity and
so the contribution of li is smaller than ln(R/a) at R/a >∼ 1.
For example, li = 1/2 in our case of the uniform distribution
of toroidal current in the flux tube. We shall further retain this
current distribution with such an li, realizing that its variation
must yield nearly the same results.

From the force balance F q + F I = 0 we obtain the total
equilibrium current

I =
8πqLR(R2 + L2)−3/2

µ0 [ln(8R/a) − 3/2 + li/2]
, (6)

which flows in the corona. The toroidal field component Bθ

does not participate here explicitly, but its presence provides an
internal force-free equilibrium of the flux tube. One can expect
that the greater the value ofBθ, the more stable the equilibrium
of the tube is (in particularwith respect to kinkmode instability).
Also the above mentioned robustness of the magnetic topology
to spatial variations of the current density enables us to ignore
the corrections of higher orders (proportional to (a/R)2 and
a/L) to the magnetic field under study.

Suppose now that the modeling configuration is formed due
to an emergence from the photosphere of the flux tube with
gradually increasing R. This corresponds to typically observed
diverging movements of two magnetic polarities represented in
our model by the photospheric intersections of the flux tube. In
particular, such a scenario is suggested by recent measurements
of magnetic field vectors (Leka et al.1996; Lites et al.1995).
Suppose that the flux tube under the photosphere is twistedmore

Figure 2.8: Model for Kink instability the magnetic field under study is modeled by a force-
free circular flux tube with the total current I, a pair of magnetic charges −q, q and a line
current I0 (Titov & Démoulin, 1999).

where H is the height of the flux rope, H0 is the height of the flux rope at on-set of the

instability, τ is time normalised by Alfvén time, P0 comprises initial parameters of the flux

rope and P1 is associated with the external magnetic field profile. A distinctive feature

of their expression and simulation was that the acceleration shows a fast rise and a more

gradual decay. However, Schrijver et al. (2008) was able to demonstrate that the evolution

of the instability can be changed by tuning the initial conditions. The hyperbolic height

dependance can change to a polynomial form, which changes the acceleration profile to a

more gradual one. One issue with these models is that they contain no twist as is often

observed in CME eruptions (see Figure 2.7). Still, a number of studies have shown good

agreement between simulations and observations (Krall et al., 2000, 2001). Recent attempts

have tried to establish the amount of energy available from the photosphere to create the

instability. Using an ideal flux rope event Schuck (2010) found there was insufficient energy

to launch the CME.

2.2.1.3 Kink Instability Model

The kink instability (KI) aries from a similar set up as the TI, except it involves the twisting

of the photospheric footpoints (increasing the toroidal flux) of an initially potential flux

bundle see Figure 2.8 (Fan & Gibson, 2003; Rachmeler et al., 2009; Török & Kliem, 2003,

2005; Török et al., 2004). The twisting motion serves to both form the flux rope, and also

to move it into a region of possible instability. The continual twisting of a flux rope of
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finite length must lead to a KI. The threshold for such an instability depends on the ratio

of the azimuthal to axial field components (Bφ/Bz), the length-to-width ratio of the flux

rope (L/r), and the radial profile of the flux rope. It can be expressed in terms of the flux

rope twist:

Φ =
LBφ(r0)

r0Bz(r0)
(2.47)

where r0 is a characteristic radius of the flux rope. For a straight cylindrically symmetric

flux rope with fixed ends of uniform twist (Gold-Hoyle equilibrium), the threshold was

numerically found to be ΦGH = 2.49π (Hood & Priest, 1981). There are no analytical

solutions for the kinematics of the KI model, but it has been studied extensively using

numerical simulations. Once the flux rope achieves “supercritical twist” two current sheets

form, the first helical wrapping the rising kinked flux rope, and the other a vertical sheet

below the flux rope (Fan & Gibson, 2003, 2004; Titov & Démoulin, 1999). The formation

of the vertical current sheet enables the eruption to proceed with, or without, reconnec-

tion. The KI model recreates some of the phenomena observed in CME-related eruptions

including soft x-ray sigmoids (Kliem et al., 2004) and the twisted structures which often

appear in CMEs and prominences (see Figure 2.9). Significantly it also enbles the build

up of substantial mass and can release up to 25% of the stored energy (Török & Kliem,

2005). However not all simulations of the KI form current sheets and so remain confined

i.e., with no CME eruption (Fan, 2005), and the amount of twist required to produce an

explosive eruption may be non-physical.

2.2.1.4 Magnetic Breakout Model

In the magnetic breakout (BO) model the CME eruption is triggered by shearing which

causes reconnection between the overlying field and the multipolar field below it, as shown

in Figure 2.10 (Antiochos et al., 1999; DeVore & Antiochos, 2005; Lynch et al., 2004, 2008;

MacNeice et al., 2004). This configuration has four distinct flux systems: a central low-

lying arcade straddling the equator (Figure 2.10 a-blue); two low-lying side arcades (one

on each side of the central arcade Figure 2.10 a-green); and a large scale (polar) arcade

overlying the three low-lying arcades (Figure 2.10 a-red). There is a null point above

the central arcade. Shearing concentrated at the equatorial neutral line causes the central

arcade to rise, distorting the null point into an x-point (Figure 2.10 b). Continued shearing

causes the central arcade to rise even more, stretching the x-point to form a current sheet.

Reconnection occurring in the current sheet transfers flux from the overlying field and

the un-sheared field to the side arcades (Figure 2.10 c), thus creating a passage for the
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Fig. 2.—Sequence showing the three-dimensional evolution of the coronal magnetic field resulting from run A. Note that the domain outlined by the black lines
corresponds to the range of r ¼ 1 3.6 R" and is not the full simulation domain. The marked times are in units of R"/vA0. This figure is also available as an mpeg
animation in the electronic version of the Astrophysical Journal. Another mpeg animation showing the three-dimensional evolution for run B, in which the flux
emergence is stopped earlier and there is no eruption, is also available in the electronic version of the Astrophysical Journal.

Figure 2.9: Simulation of the kink instability (Fan, 2005). The black lines corresponds to the
range of r = 1 – 3.6R� and is not the full simulation domain. The marked times are in units
of R�/vA0.
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processed, the side arcades come together and reconnect at the
flare current sheet. These side-lobe fields tend to be much less
sheared and their reconnection proceeds in a slower, less ener-
getic manner corresponding to the ‘‘gradual’’ phase often observed
in flares. When the (green region) side-lobe fields reconnect, they
restore both the inner (light blue region) and overlying (red region)
flux systems—denoted by the green arrows showing the side-lobe
separatrix surfaces shrinking. Since this topological evolution is
the reverse of the original breakout reconnection, one can think of
the posteruption restoration of the original flux system configura-
tion as ‘‘antibreakout’’ reconnection. The antibreakout reconnection

eventually dissipates the radial current sheet and eventually re-
stores the coronal null point.
The erupting flux rope structure continues to propagate through

the background dipole field lines, and in our axisymmetric picture,
this means continual breakout reconnection at the interface of the
oppositely oriented flux rope configuration and the overlying
field. However, there is an important topological distinction to be
made between the overlying field that has yet to encounter the
ejecta and that which has either been reformed behind the flux
rope (from antibreakout reconnection) or has recently encountered
the flux rope and has undergone reconnection such that it now

Fig. 1.—Left: Schematic showing the main four stages of topological evolution during the axisymmetric (2.5D) breakout CME scenario. (a) Initial topology and the
shear channel, (b) Shearing phase required to energize the system and the onset of magnetic breakout reconnection at the distorted null line, (c) Beginning of flare
reconnection that starts deep in the shear channel and creates the magnetic flux rope, and (d ) Antibreakout reconnection phase that describes the system relaxation and
topological restoration. Right: Corresponding field line plots from the MacNeice et al. (2004) MHD simulation. See text for further details.

LYNCH ET AL.1194 Vol. 683

Figure 2.10: Schematic showing topological layout (left) and evolution of breakout model
(Lynch et al., 2008). (a) Initial multipolar topology, (b) shearing phase which energises the
system causes magnetic breakout reconnection at the distorted null line, (c) flare reconnection
occurs low down and forms the flux rope, and (d) the system relaxing after the eruption.
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plasma swept up by the expanding eruption. It is difficult to
quantitatively compare the rim brightness with coronagraphic
data because our density falls off as r!7 (to keep the simulation
plasma ! reasonably low), much faster than the solar wind
density. Since the simulation models an active region–type
field expanded over the whole Sun, the closed-field contribu-
tion to the bright rim represents a helmet streamer configura-
tion, which the eruption would blow out.

The evolution of the core is interesting because the tenuous
plasma in the central bubble of the CME appears to coalesce
during evolution. Even though we do not begin with any dense
prominence material in this simulation, a density enhancement
forms at the trailing end of the plasmoid’s magnetic field lines
because of the inertia of the plasma. As the plasmoid accel-
erates outward, material slides down along the field and col-
lects in the concave-up portion of the field. This core density
makes only a small contribution to "IB because it does not
represent much of an enhancement over the background, and
with the 2.5-dimensional symmetry the cavity is unrealistically
extensive (a giant torus encircling the Sun). To increase the
core’s contribution to the relative brightness, additional mass
representing prominence material could be included in the low-
lying, preeruption, sheared-flux region. But it is interesting to
note that filament ejection is not required for a CME to have a
distinct three-part density structure.

3.2. Coronaggraphic Dynamics

The cadence of the LASCO instruments is sufficient to
measure in detail the dynamics of a CME as it propagates
through the 30 R" field of view. Movies of these transient
events, their evolution through the corona, and their effect on
the existing background structure have provided new insights
into the associated physical processes. Height-time plots, typ-
ically made from running-difference movies, describe the

projected plane-of-the-sky velocity and acceleration profiles.
This technique has been used to define the two dynamical types
of CMEs on the basis of the shape of their height-time curves
(Sheeley et al. 1999). The ‘‘slow’’ CME events have a height-
time profile that gradually builds speed toward an asymptotic
final velocity, usually the ambient solar wind speed, #300–
500 km s!1. The ‘‘fast’’ CMEs start at the edge of the C2 oc-
culting disk (2.5 R") with very high speeds, often greater than
1000 km s!1, and decelerate during their transit through the
C3 field of view. Having constructed a running-difference
movie of the breakout model density, we can use the same
LASCO height-time analysis to compare the simulation with
actual CME observations.

Figure 3 shows an image from the running-difference movie,
with arrows indicating the leading edge of the initial density
enhancement, the leading edge of the dark cavity, and the
leading edge of the central core. Figure 4 (top) plots the height-
time tracks from the running-difference movies in the style of
the Sheeley et al. (1999) figures. Figure 4 (bottom) plots the
same data as points, with the solid lines showing quadratic fits
to the height-time data of the form

r(t) ¼ r0 þ v0 t ! t0ð Þ þ 1
2 a0 t ! t0ð Þ2: ð4Þ

The constant accelerations were 8.9, 8.0, and 4.2 ms!2 for the
CME front, cavity, and core running-difference features, re-
spectively. From these fits, the final velocities are 466.9 km s!1

for the CME front, 377.3 km s!1 for the cavity, and 266.7 km
s!1 for the core.

All three of these curves show the characteristic shape of
‘‘slow’’ CMEs. A large majority of the observations of three-
part CMEs and those inferred to contain helical field structure
have the ‘‘slow’’ CME profile (Dere et al. 1999; Sheeley et al.
1999; Krall et al. 2001). This result may seem unexpected,
because the breakout model was originally proposed as an
explanation for fast eruptions (Antiochos 1998; Antiochos

Fig. 3.—Contrast-enhanced running difference image from the breakout
density movie. The arrows indicate the leading edges of the bright CME front,
the dark cavity, and the central core region. The height-time profiles of these
features are plotted in Fig. 4. The field of view is the same 20 R" box as in
Fig. 2, and the time stamp merely indicates the date of analysis and the elapsed
simulation time.

Fig. 4.—Top: Simulation height-time figure from the LASCO data analysis
routines (cf. Figs. 1b and 3b of Sheeley et al. 1999). The arrows denote the
tracks for each of the three running-difference features labeled in Fig. 3.
Bottom: Data points from the simulation, showing constant acceleration fits
(solid lines), with parameters listed in the text. While all three curves have the
characteristic shape of the most common height-time profile for three-part
CMEs, we note that the CME front reaches the Alfvén speed of the numerical
simulation; therefore, these represent ‘‘fast’’ CME eruption speeds.

OBSERVABLE PROPERTIES OF BREAKOUT CME 593No. 1, 2004

Figure 2.11: Running difference image from the breakout model density data (Lynch et al.,
2004). The arrows indicate the leading edges of the bright CME front, the dark cavity, and the
central core region. The time stamp indicates the date of analysis and the elapsed simulation
time.

CME without opening the field. As the central arcade continues to rise a current sheet

forms behind it (Figure 2.10 d). A disconnected flux rope is created due to reconnection

in this current sheet which will result in flare activity. The feedback between the outward

expansion drives faster breakout reconnection which, in turn, causes more expansion and

leads to an explosive eruption. After the secondary reconnection cutsoff the current sheet,

the side arcades will move inward and a third reconnection phase begins to restore and

reform the magnetic fields (flare ribbons). There are no analytical expressions for the

kinematics of the BO model though a number of simulations have produced kinematic

profiles. Lynch et al. (2004) used a 2.5D simulation to show that the kinematics could be

well represented with a constant acceleration profile:

h(t) = h0 + v0(t) +
1

2
a0t

2. (2.48)

3D simulations by Lynch et al. (2008) resulted in more complex kinematics which consisted
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of three phases of constant acceleration: 1) extended low acceleration during shearing

and breakout; 2) followed by a short period of high acceleration due to the secondary

reconnections; 3) and the final phase of zero acceleration or constant velocity. DeVore &

Antiochos (2008) found a similar but not identical profile with three phases of constant

acceleration: 1) extended low acceleration during shearing; 2) short fast acceleration with

breakout and secondary reconnections; 3) and a fast deceleration during the restoration

phase.

The DeVore & Antiochos (2008) results may not be applicable to CMEs as they led to

confined events. The BO model reproduces some observed CME and CME related phenom-

ena (van der Holst et al., 2007) and flares occur during the secondary (flare reconnection)

and also during the third phase (ribbon flares). It also reproduces the classic three-part

CME structure (Lynch et al., 2004) as shown in Figure 2.11. It avoids the Aly-Sturrock

problem (Section 2.2.1) by opening only a portion of the field and not the entire field. The

BO model can also proceed without reconnection using an ideal instability as shown by

Rachmeler et al. (2009).

2.2.2 Propagation

During the propagation phase the dynamics of CMEs are not very well understood and the

forces causing the residual acceleration which is sometimes observed are not known. Some

models have been developed in an effort to understand it in the context of a “drag” force

– for example, the ‘snow plough’ model (Tappin, 2006), or the aerodynamic drag model

(Cargill, 2004), and others model it in terms of a Lorentz force “flux rope” model (Chen,

1996). Examining the physical properties of the CME and the environment into which it is

launched can give some insight into the mechanisms that might be at play. The solar wind

is a high-β plasma which means that magnetic effects such as reconnection and magnetic

pressure are less of an influence than the hydrodynamics of the plasma. This also means

that Alfvén waves transporting energy can more easily be converted to fast mode waves

which efficiently dissipate their energy in the corona. However, CMEs are typically low-β

structures even at 1 AU, with plasma-β of 0.1 common. This means treating CMEs as solid

bodies moving through a flow is not a bad approximation. CMEs often drive shocks which

build-up a compressed plasma region ahead of them, called the sheath. Many CMEs also

contain the structured magnetic field of a flux rope or, magnetic clouds.
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2.2.2.1 Aerodynamic Drag

The aerodynamic drag model invokes the drag caused by fluid flow over a fixed body. If

we define the Lorentz, gravitational, pressure gradient and drag forces as FL, FG, FP and

FD respectively, we can rewrite the equation of motion (F = ma) of a CME moving in the

solar wind as:

M∗
dvi
dt

= FL + FG + FP + FD

= FL + FG + FP − ρeACD(vi − ve)|vi − ve| (2.49)

with FL = J × B, FG = −GMm/r2 and FP = −∇p, where A is the cross-sectional area

of the CME, CD is the drag coefficient and subscript i or e refers to internal CME or

external solar wind quantities respectively, and M∗ = M + MV where MV is the virtual

mass MV ≈ ρe/2τ , and τ is the CME volume. The gravitational force FG, and pressure

gradient FP far from the Sun are assumed to be negligible, and the Lorentz force FL has

been shown to be negligible in full MHD simulations of the CME dynamics Cargill et al.

(1996). Equation 2.49 can be re-written in the following manner:

dv

dt
=
FD
M∗

= −γCD(vi − ve)|vi − ve|, where γ =
ρeA

τ(ρi + ρe/2)
(2.50)

this is a first-order differential equation in terms of v, and can be numerically integrated

given the initial conditions.

In order to arrive at the aerodynamic drag model, a number of implicit assumptions

have been made. The first of these is that the CME can be treated as a solid body in a

fluid flow, and that there is no feedback between the CME and solar wind; the second that

the magnetic nature of the CME and solar wind plays no significant role in the interaction.

Finally, that the assumption that the plasma of the solar wind can be represented as a

typical fluid. Simulations of flux-ropes in plasma flows have shown that, in most cases, the

feed-back between the flux-rope and solar wind is small, and they also show that CD ∼ 1.

Note that the drag coefficient determined from MHD simulations will include some of the

magnetic and plasma effects that would be left out of the aerodynamic equation.

It should be noted that in the above equations that ρe, ρi, τ , A and ve are all functions

of r. If we wish to describe the total CME evolution then we would need to use the equation

of state describing the internal pressure, temperature, etc. in balance with the external

parameters, and let the CME evolve accordingly. This would yield the theoretical evolution

of the parameters mentioned above, but as of yet none of the models have encompassed

this much detail. However, statistical studies have been performed, and values extracted,
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by fitting a function of the form < γ >= αRR
−βR to velocity-time data and best-fit

parameters were obtained (Vršnak, 2001). In Figure 2.12 we see a number of simulations

of the deceleration a CME due to aerodynamic drag, which were obtained by numerical

integration of Equation 2.51 using a combination of the best-fit parameters from Vršnak

(2001) and realistic estimates. Various simulations were carried out for different initial

distances and velocities Figure 2.12

dvcme
dr

= R�αRR−βR
(

1− vcme
vsw

)
|vcme − vsw| (2.51)

Reiner et al. (1998) pointed out that, at least for some fast CMEs, a quadratic form of drag

was inconsistent with the observations. Specifically they found that the velocity profile de-

rived from CME-driven shocks producing Type II radio bursts could not be reproduced by

a quadratic drag model. Instead the authors suggested a linear model was more appropri-

ate in reproducing the observed kinematics and Vršnak & Gopalswamy (2002) and Vršnak

(2006) also investigated a linear model. A generalised drag equation can be written which

will take both possibilities into account:

dvcme
dr

= αRR
−βR 1

vcme
(vsw − vcme)δ (2.52)

where the sign of the force must be taken into account positive if vsw > vcme, negative

otherwise. The α and β values will be different depending on the form of the drag which

is specified by setting δ = 1 for linear and δ = 2 for quadratic models.

2.2.2.2 ‘Snow Plough’ Model

The ‘snow plough’ model is based on the conservation of momentum. As the CME sweeps

up the solar wind ahead of it, theismaterial must be accelerated, thus momentum is trans-

ferred from the CME to the swept up material. This process gives rise to two coupled

differential equations:
dv

dt
= −dM

dt

(vi − ve)
M

(2.53)

dM

dt
= ρeA(vi − ve) (2.54)

We can combine these two equations and substitute in the equation for mass to get:

dv

dt
= − ρe

τρi
A(vi − ve)(vi − ve) (2.55)
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wind speed model, a numerical integration of (3) or (4) gives u(R)
and so R(t).
[18] Bearing in mind the scatter of data points about the mean

g(R) curves (see Figure 5 in paper 1) the integration was performed
using a range of parameter values a and b. In Figure 1 the IP
motion of CMEs is illustrated by showing the results of a
numerical integration of (3) where different initial velocities u0 =
u(t = 0) and several values of a1 and b1 are applied. The solar wind
model by Sheeley et al. [1997],

w Rð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1$ e$
R$2:8
8:1

p

; ð5Þ

was adopted. The asymptotic solar wind speed w0 = 298.3 km s$1

proposed by Sheeley et al. [1997] was replaced in the calculations
by w0 = 400 km s$1 according to measurements of the 1-AU solar
wind velocities [Intriligator, 1977]. Finally, it was assumed that the
driving force is switched off at different heliocentric distances R0 in
the range 5 < R < 30. It was found that the choice of the driving
force switch-off distance R0 plays a minor role in comparison with
the choice of parameters a, b, and w0.
[19] The results for u0 = 1000 km s$1 are shown for different

values of a1 and b1 to illustrate how the choice of these parameters
affects the results. A similar outcome is found integrating (4) and
using an appropriate choice of a2 and b2, e.g., a2 = 5 % 10$6 km$1

and b2 = 1.5, or a2 = 60 % 10$6 km$1 and b2 = 2. Figure 1 clearly
shows a convergence of velocities toward the solar wind speed.
The distribution of velocities of 23 CMEs and the associated IP
ejecta presented by Gopalswamy et al. [2000] shows that the span
of CMEs’ velocities of 150–1050 km s$1 reduced at 1 AU to only
350–650 km s$1. Bold curves in Figure 1 reproduce fairly well
such behavior, indicating that a1 = 2 % 10$3 s$1, b = 1.5, and w0 =
400 km s$1 are a suitable set of parameters to reproduce the
statistical behavior of the overall IP acceleration of ejecta.

3. Results

[20] Equations (3) and (4) were integrated numerically to
determine the model transit times (T1AU) and velocities (u1AU) of
ejecta at 1 AU as a function of the initial velocity u0. The initial

velocity range u0 = 200–1500 km s$1 was considered. The solar
wind velocity w(R) described by (5) was applied, with w0 ranging
between 300 and 500 km s$1. A set of values for a and b was used,
bearing in mind the average coronal values obtained in paper 1.
The heliocentric distance at which the deceleration begins was
provisionally taken as R0 = 10. The 1-AU transit time was then
found as T1AU = T 0 + T 0, where T 0 is the travel time obtained
integrating (3) or (4) and T 00 is the time needed to reach R0 by the
constant velocity u0. Let us stress that the results do not change
much for any other reasonable choice of R0, say, in the range 5–30
solar radii.
[21] The curves shown in Figure 2 are the model results

T1AU(u0) and u1AU(u0) for several combinations of a, b, and w0

which are chosen to illustrate a range of parameter values compat-
ible with the observations. Solid circles show the observed arrival
times of the leading edge of the ejecta from the list presented by
Gopalswamy et al. [2000]. Crosses display the values Te = T + t,
where t is the duration of a given IP ejection at 1 AU, i.e., Te
represents the 1-AU transit time for the trailing edge of an IP
ejection.
[22] Analogous results obtained by integrating (4) are shown in

the insets. Comparing these results with those obtained using (3),
one finds that both models reproduce well the observed 1-AU
transit times across the whole initial velocity range. However,
Figure 2b indicates that the model based on (3) shows a better
agreement with the observations when u1AU velocities are consid-
ered. Let us stress that among those shown, only the curves
denoted by 1 in Figures 2a and 2b consistently reproduce the
observed T1AU and u1AU. For example, the curves labeled 3a and
3b in Figure 2a maybe better reproduce the observed arrival times
T1AU than curve 1, but the same set of parameters does not provide
a good match with the observed values of u1AU (see curves 3a and
3b in Figure 2b).
[23] In Figure 3 some other models are compared with the

observations. Beside the models governed by (3) and (4), the
results obtained using a = 0 and a = const [Gopalswamy et al.,
2000] are shown (curves labeled 3 and 4, respectively). Further-
more, the model considering a linear decrease of a(R) is presented
(alin; curve 5), adjusted to reproduce the average accelerations
found by Gopalswamy et al. [2000].
[24] A discrepancy between the a = 0 model and the observa-

tions clearly shows that the drag acceleration is an essential feature
of the IP motion of CMEs. The a = const and alin models are
sufficiently accurate to predict the arrivals of fast CMEs, but slow
CMEs with u0 ] 300 km s$1 arrive 1–2 days earlier than
calculated. Furthermore, the dependence u1AU(u0) is poorly match-
ing the observations in the whole velocity range.
[25] The models based on (3) or (4) reproduce the observations

better than the other models considered: The curves for T1AU(u0)
labeled 1 and 2 in Figure 3a lie by the slow events’ data closer than
the other three. Furthermore, the u1AU(u0) dependence ismuch better
reproduced (see Figure 3b), especially by the model based on (3).

4. Discussion and Conclusions

[26] In the proposed model it is taken into account that the main
deceleration of fast IP ejecta occurs in the high corona. The transit
times and velocities at 1 AU can be modeled reasonably well by
using the simplest approximation for the drag acceleration adrag =
$g(u $ w). Adopting the empirical model by Sheeley et al. [1997]
for the solar wind velocity and using g = 2R$1.5, the model
reproduces well the observations in the statistical sense.
[27] The calculated dependences T1AU(u0) and u1AU(u0) show

that the 1-AU transit times and velocities in the events of a low
initial speed depend on the solar wind speed more than those
having a high initial speed. Inspecting the consistency of T1AU(u0),
Te(u0), and u1AU(u0) model curves with the observations, it can be
concluded that in the statistical sense the model results fit the best
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Figure 1. Motions u(R) modeled using (3) and (5). The
asymptotic solar wind speed was taken as w0 = 400 km s$1, and
different distances of the driving force switch-off were assumed.
Bold lines represent the deceleration with a1 = 2 % 10$3 s$1 and b
= 1.5 for initial velocities of u0 = 1000, 600, 400, and 200 km s$1

(curves labeled 1a, 2, 3, and 4, respectively). The curves labeled 1b
and 1c represent the motion with a1 = 10$3 s$1, b = 1.5 and a1 =
2 % 10$3 s$1, b = 1, respectively, using u0 = 1000 km s$1.
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Figure 2.12: Numerical integration of Equation 2.51 for various parameters. All simulations
use a model solar wind with asymptotic speed of 400 km s−1, different distances for the driving
force cut-off were assumed. Bold lines show deceleration for αR = 2 × 10−3 and βR = 1.5
for initial velocities v0 =1000, 600, 400 and 200 km s−1 (curves 1a, 2, 3 and 4 respectively).
The curves labelled 1b and 1c correspond to the deceleration with αR = 10−3, βR = 1.5 and
αR = 2 × 10−3, βR = 1 respectively both with v0 =1000 km s−1 (Vršnak & Gopalswamy,
2002). The x-axis units are RSun.

which is a firstorder differential equation describing the motion of a CME due to a ‘snow

plough’ interaction. Figure 2.13 shows a comparison of modelled CME propagation to the

observations for the ‘snow plough’ and aerodynamic drag models.

By looking at (2.55) and (2.50) we can see that while the physical mechanisms behind

the snow plough and aerodynamic drag models are different, they have very similar math-

ematical forms. From (2.50) we can see that in the limit when ρe � ρi we recover the

simpler snow plough model.

2.2.2.3 Flux Rope Model

Chen (1996) has extended his model to include the interplanetary propagation of CMEs:

close to the sun the forces on the flux rope are described by 2.45, and far from the Sun

the forces due to gravity, coronal pressure and the solar magnetic field are not significant.

The equation of motion is reduced to:

FR =
I2t
c2R

[
ln

(
8R

a

)
− 1

2

Bt
2

Bpa
2 − 1 +

ξi
2

]
+ Fd (2.56)
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Figure 7. The modelled height-time profiles for the transient using the snow plough (dashed curve)
and aerodynamic drag (dash-dot curve) models, on the assumption of a solid angle of 0.5 sr and a
speed of 1020 km/s at 20 R!, compared with the LASCO, SMEI and Ulysses observations (heavy
lines and + signs). The Ulysses shock speeds are indicated by the dotted line segments through their
locations.

particularly precise this is unreasonable and would bring the transient to Ulysses
on 16 April. Therefore we cannot escape the conclusion that some extra source of
propulsion for the disturbance must be present over at least a part of its transit to
1 AU. It is also qualitatively evident that if the CME is driven sufficiently to match
the SMEI observations, it is not then possible to decelerate it to arrive at Ulysses on
21 April as that would require that the transient be decelerated to below the speed
at Ulysses and then accelerated again, therefore we believe that the 18 April shock
must be the one associated with this disturbance. As an aside it should be noted
that Cargill (2004) predicts that the value of γ in Equation (3) will tend to decrease
with distance while we have used a constant, this will tend to bring the two curves
closer together.

The 18 April disturbance has a reasonably well-defined density drop at the back
edge at 21:03 (the velocity and field are less clear). Taking this as the limit of the
disturbance gives a mass of 9 × 1012 kg on the assumption of a 0.5 sr solid angle.
This is significantly above the initial mass, but well below that predicted by the
simple snow plough model at 4.81 AU which is 3 × 1013 kg. The implication is
that a minimum of 20% of the mass encountered by the transient in propagating to
Ulysses is swept up by it; however since Ulysses appears from Figure 2 to be near
the northern limit of the original CME, this is probably a relatively weak lower
limit.

Figure 2.13: Modelled height-time profiles for a transient using the ‘snow plough’ (dashed
curve) and aerodynamic drag (dash-dot curve) models compared with the LASCO, SMEI and
Ulysses observations (heavy lines and + signs). The Ulysses shock speeds are indicated by the
dotted line segments through their locations (Tappin, 2006).

far from the Sun. He assumed that the drag force was an aerodynamic type of the form:

Fd = CDρamiA(vsw − v)|vsw − v| (2.57)

where ρa is the solar wind density and mi is the internal mass of the flux rope. Figure 2.14

shows the evolution of CME in this model out into interplanetary space. The CME is

accelerated by the Lorentz force over the first ∼24 hours before drag takes over and begins

to equalise the CME’s speed to the background solar wind. For the initial speed used

in this simulation this corresponds to a distance of about 70R� or an elongation of 20◦.

While the exact source of long duration acceleration is not known it has been observed

in a number of CMEs at large distances from the Sun (Howard et al., 2007; Manoharan,

2006; Manoharan et al., 2001; Tappin, 2006).

2.3 Shocks

A shock wave or simply a shock is a disturbance across which properties of the medium

such as pressure, density, velocity, temperature change in a nearly discontinuous manner.

Shock waves may be generated through a number of mechanisms: 1) abrupt changes in the

properties of the medium, for example caused by explosions; 2) propagation at supercritical

velocities such as supersonic aircraft; and 3) a non-linear wave steepening, for example

waves in the ocean. Shocks are formed across many scales and in different conditions,
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Figure 2.14: Toroidal instability simulation of CME propagation (Chen, 1996). (a) Apex
height, (b) apex velocity and (c) minor radius dynamics a(t) in 107 km and w(t) in 50 km s−1.
Dotted curve simulation with more faster flux injection. (botton) The Lorentz and drag forces
acting on the CME, dashed curve is net force. The units are in 1017 dyn.

from astrophysical shocks such as planetary bow shocks (Slavin & Holzer, 1981), or the

shock at the edge of the Heliosphere (Decker et al., 2008; van Buren et al., 1995) to

shocks generated by the re-entry of the Apollo mission capsules (Glass, 1977). Figure 2.15

illustrates the bow shock caused by a supersonic projectile in a wind tunnel and from a star

moving through the ISM. Shocks can be categorised in terms of the angle between the flow

direction and the shock normal as, parallel (or normal), perpendicular, or oblique, and as

moving or stationary shocks. Shocks caused by supersonic flows over bodies form attached

to the body or, if the flow is deflected more than some critical angle a detached shock

will form. The distance at which the detached shock forms called the stand-off distance is

a complex function of both the shape of the object and properties of the medium. Bow
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Figure 2.15: (top) A shadowgraph of a bullet traveling through air at about 1.5 times the
speed of sound (or M = 1.5) a bow shock can be seen ahead of the bullet and a turbulent wake
behind it. (bottom) A Hubble Space Telescope observation of the bow shock around the very
young star, LL Ori in the Orion nebula. Images courtesy of NASA.GOV

shocks are detached shocks which occur when a blunt object moves relative to a medium at

supersonic (supeaflvénic) speeds (Rathakrishnan, 2010). The difference between a moving
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and standing shock can be understood as follows: in a moving shock the shock moves

through a medium supersonically, while in a standing shock the shock is at rest and the

medium flows supersonically. The difference between them is only the frame of reference

so the system is invariant under Galilean transforms.

In gas-dynamic shocks (collisional shocks), the important physical processes are the

collisions between the molecules. They allow temperature and density perturbations to

propagate, and the associated viscous forces lead to dissipation. Collisions also allow the

temperature equalisation of different species of molecules. Gas-dynamic shocks are often

understood in terms of the macroscopic fluid equations containing quantities such as den-

sity, temperature and bulk (rather than thermal) velocity. Space plasmas, on the other

hand, are rarefied and as a result collisions are very infrequent. The lack of collisions means

that different particles can have very different temperatures which can be non-Maxwellian,

and in the presence of magnetic fields can even lead to anisotropic temperature distribu-

tions. The dissipation mechanisms are complex, involving the interaction between fields

and particles. In these collision-less shocks the ensemble interaction of the particles and the

fields is the important physical processes. MHD describes these interactions between the

large scale field and particles in terms of macroscopic density, pressure and bulk velocity,

similar to the gas-dynamic case.

In either gas dynamic or MHD cases, these continuum descriptions can not describe

the shock itself, as they can not represent the kinetic microscopic processes that control

the shock; particle collisions in the gas-dynamic case and wave-particle interactions in

plasma shocks. However, the continuum descriptions are applicable on either side of the

shock. Shocks are often considered to be an infinitely thin interface, this this is a good

approximation when the shock is physically thin compared to the length scales involved,

but thick with respect to the mean free path or the Debye and ion gyro-radius, in gas-

dynamic and plasma shocks respectively. By applying the mass, momentum and energy

conservation laws across the shock, the jump conditions or Rankine-Hugoniot equations

can be derived. In the following sections, the notation [X] = Xu −Xd is used to give the

difference between quantity X upstream and downstream of the shock.

2.3.1 Gas-dynamic Shocks

The simplest description of a shock is in the shock rest frame, where gas moving superson-

ically (faster than information can be transmitted) flows into the shock from upstream. At

the shock irreversible processes alter the speed, density and temperature of the medium

and ,as a result the out flow downstream is subsonic. A shock is thus an entropy-increasing,
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Figure 2.16: (left) Normal incidence shock frame and (right) de Hoffmann-Teller frame
(Kallenrode, 2004).

or irreversible, wave that causes the transition from supersonic to subsonic flow. The Mach

number (M = v/vc) is defined as the ratio of the shock speed in the upstream medium to

the sound speed. The Mach number is always greater than unity upstream, and less than

unity downstream. In the rest frame of the shock, the application of the conservation of

mass energy and momentum gives the Rankine-Hugoniot equations:

[ρun] = 0 (2.58)
[
ρu2n + p

]
= 0 (2.59)

[ρunut] = 0 (2.60)
[(

ρu2

2
+

γ

γ − 1
p

)
un

]
= 0 (2.61)

where u is the flow speed, and un (ut) is the normal (tangential) component to the shock and

the other symbols have their usual meaning. Combining (2.58) and (2.59) gives [ut] = 0, so

the tangential component of the flow is continuous and thus we can consider a coordinate

system moving along the shock with speed ut. In this the normal incidence frame (see

Figure 2.16 (left)) the flow speeds u and un are identical. Making a Galilean transform into

the laboratory frame, the mass continuity equation (2.58) can bewritten [ρ(vs − un)] = 0.

This can be rearranged in terms of the shock speed vs:

vs =
ρdun,d − ρuun,u

ρd − ρu
. (2.62)

It should be noted that the shock speed alone is not a good indicator of the energetics

involved, as small density change can result in a high shock speed but the total energy in

terms of the compression ratio and mass motion may be low.
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2.3.2 Magnetohydrodynamic Shocks

A crucial difference between the gas-dynamic and MHD shocks is the magnetic field. This

must be accounted for in the conservation equations and also in terms of both the flow

direction and magnetic field direction, as these do not have to be parallel. In the normal

incidence frame Figure 2.16 (left) the upstream flow is normal to the shock and oblique to

the magnetic field, downstream the flow is oblique to both the flow and shock normal. A

transformation can be made under which the flow becomes parallel to the magnetic field.

This is known as the de Hoffmann-Teller transformation or frame. This reference frame

moves parallel to the shock at the de Hoffmann-Teller speed (vHT ×B = −E). Thus, the

induced field in the shock front vanishes. The Rankine-Hugoniot equations for an MHD

shock are:

[ρu · n] = 0 (2.63)
[
ρu(u · n) +

(
p+

B2

2µ0

)
n− (B · n)B

µ0

]
= 0 (2.64)

[
u · n ·

(
ρu

2
+

γ

γ − 1
p+

B2

µ0

)
− (B · n)(B · u)

µ0

]
= 0 (2.65)

[B · n] = 0 (2.66)

[n× (u×B)] = 0. (2.67)

The normal component of the magnetic field (Bn) must be continuous from (2.66), and

from (2.67) the tangential component of the electric field must also be continuous. Thus,

the Rankine-Hugoniot jump conditions are a set of five equations for the five unknowns ρ,

u, p, Bn and Bt. The jump conditions allow the calculation of the downstream parameters

from knowledge of the upstream conditions, or vice versa.

The solutions to the jump conditions actually describe a number of discontinuities

which are not necessarily shocks. A contact discontinuity is formed when there is no

flow across the discontinuity (un = 0) and is associated with a density jump while all

other parameters remain unchanged. The magnetic field has a component normal to the

discontinuity (Bn 6= 0), so the two sides are not completely separate, but tied to move at

the same tangential speed ut. A tangential discontinuity completely separates two regions

no flux crosses the boundary (Bn = 0 and un = 0), and the tangential components change

([Bt] 6= 0 and [ut] 6= 0). The plasma and field properties can change arbitrarily across the

boundary, but static pressure balance is maintained, i.e. [p + B2/2µ0] = 0. A rotational

discontinuity requires pressure equlibrium but flux flow across the boundary un 6= 0 and

Bn 6= 0. The normal flow speed is un = Bn/
√
ρµ0 and the change in the tangential flow
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speed is related to the change in the tangential magnetic field [ut] = [Bt/
√
ρµ0]. These

rotational discontinuities can be viewed as large amplitude waves and are related to the

transport of magnetic signals through their dependance on the Alfvén speed.

A shock differs from the discontinuities above as there is a flow across the boundary

(un 6= 0) with compression and changes to the flow speed. An important parameter for

MDH shocks is the angle between the magnetic field and shock normal θBn and this leads to

classification as perpendicular (θBn = 90◦), parallel (θBn = 0◦) or oblique for intermediate

values. Oblique shocks are often subdivided into quasi-parallel (0◦ < θBn < 45◦) and quasi-

perpendicular (45◦ < θBn < 90◦) shocks. In a parallel shock Bt = 0 and the magnetic

field is unchanged by the shock and behaves like a gas-dynamic shock except the collective

interactions are mediated by the field, and not through collisions. In a perpendicular shock

Bn = 0, and both the pressure and magnetic field strength change. For the MHD jump

conditions we can write the shock speed as:

vs =
ρdud − ρuuu
ρd − ρu

· n. (2.68)

In a gas-dynamic shock there is only one critical speed called the sound speed, vc,

while in the MHD case different wave modes have different critical speeds resulting in

three critical speeds – the slow, fast, and Alfvén speeds. Only the slow and fast mode are

compressive and form true shocks; the Alfvén mode only forms shocks in an anisotropic

plasma, while in an isotropic plasma it results in a rotational discontinuity. The phase

speed of the slow and fast modes is given by:

2v2sl,fa = (v2c + v2A)±
√

(v2c + v2A)2 − 4v2cv
2
A cos2 θ (2.69)

taking the positive value gives the fast mode, and the negative gives the slow mode. Taking

θ = 90◦ gives the fast magnetosonic speed as vms =
√
v2c + v2A, on the other hand taking

θ = 0◦ gives two solutions vA and vs. As in the gas-dynamic case we can define critical ratios

in terms of the characteristic speed, the fast magnetosonic Mach number (Mms = v/vms)

and the Alfvén Mach number (MA = v/vA).
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Chapter 3

CME Observations and

Instrumentation

In this chapter the details of CME observations, instrumentation, the data reduction pro-

cess, and conversion of data to physical coordinates are described. This begins with an

introduction to the mechanism which allows CMEs to be imaged namely Thomson scatter-

ing and its effect on the observations. Next, the design principles behind the first corona-

graph are outlined. Following this detailed descriptions of the relevant instruments from the

Solar and Heliospheric Observatory (SOHO) and Solar Terrestrial Relation Observatory

(STEREO) missions are given. Finally, a discussion on the conversion of data coordinates

to physical coordinates and the various coordinate systems is presented.
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3.1 Observations of Coronal Mass Ejections

The majority of the radiation from a CME is due to the scattering of photospheric radia-

tion by free electrons in the CME plasma. While some CMEs contain bright prominence

material which primarily emits at Hα (6563 Å), most CMEs are dominated by the scattered

radiation. The scattering mechanism is Thomson scattering which is a special case of the

general theory of the scattering of electromagnetic waves (Jackson, 1975). Thomson scat-

tering applies when: (1) the coherence length of the radiation is small compared with the

separation of the particles or, in the case of an incoherent source such as the photosphere,

the wavelength must be small compared to the typical separation of the particles; and (2)

the rest mass energy of the scatterers greatly exceeds the photon energy. This is the case

throughout the corona for white-light. In the case of radio waves condition (1) is not met

and coherent theory must be used.

3.1.1 Thomson Scattering

An unpolarised monochromatic plane electromagnetic (EM) wave incident on an electron

will accelerate the electron which will then radiate symmetrically about the direction of the

incident wave. Since the electric field of an EM wave is always perpendicular the direction

of propagation, the acceleration of the electron will be confined to the plane perpendicular

to the propagation direction. An observer at a scattering angle (χ) of 0◦ or 180◦ would

see unpolarised light, while one at χ = 90◦ would see only linearly polarised light, though

both observe the same intensity (see Figure 3.1). The differential cross-section for Thomson

scattering by an electron is:

dσ

dω
=

1

2

(
e2

4πε0mec2

)2

(1 + cos2 χ) (3.1)

where σ is the cross-section, dω is solid angle element at the scattering angle χ, e is the

electron charge and me is the mass of the electron. Integrating over all solid angles gives

the total cross-section for scattering as:

σt =
8π

3

(
e2

4πε0mec2

)2

=
8π

3
r2e [m2] (3.2)
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1. The coherence length of the radiation is small compared with the separation of the par-
ticles, which in the case of incoherent sources means that the wavelength must be small
compared with the separation. If this is not met (as is typically the case for radio waves)
then the theory of coherent scattering must be used;

2. The energy of the photons is negligible compared with the rest mass energy of the scat-
tering particles. If this is not met (e.g. for x-rays) then the theory of Compton scattering
must be used.

For optical wavelengths and the densities encountered in the corona and solar wind, both of
these conditions are comfortably met so we can safely use the Thomson theory throughout.

A rigorous derivation of the scattering of an electromagnetic wave by an electron is
presented by Jackson (1975) and other textbooks on electrodynamics, so in this review we
present a more pictorial version that allows the important features of the scattering to be
visualised in preparation for the application of the theory to the Sun and the corona.

Let us consider an unpolarised monochromatic plane wave incident on an electron, as
in Fig. 1(a). The electric field in the wave will cause an acceleration of the electron. The
electron will then re-radiate in a pattern symmetrical about the direction of the incident wave.
Since the electric field of an electromagnetic wave is always perpendicular to the direction

Fig. 1 Schematic demonstrating how the angular variation in Thomson scattering arises (a) the conceptual
set up, the scattering angle χ is included for the oblique observer (O2), (b)–(d) the scattered electric vectors
as seen by observers at O1 at χ = 180°, O2 at χ = 60° and O3 at χ = 90° respectively

Figure 3.1: Schematic demonstrating how the angular variation in Thomson scattering arises
(a) the conceptual set up, the scattering angle χ is included for the oblique observer (O2),
(b)(d) the scattered electric vectors as seen by observers at O1 at χ = 180◦, O2 at χ = 60◦

andO3 at χ = 90◦ respectively (Howard & Tappin, 2009).

where re is the classical electron radius. The differential cross-section for perpendicular

scattering, σe, can be written as:

σe =

(
e2

4πε0mec2

)2

= r2e [m2 sr−1]. (3.3)

Thus far, we have only considered the scattering of light from a point source by a single

electron. The solar photosphere is neither a point source nor uniform, and so it is necessary

to integrate the scattering component over the light from the whole visible disk. The

intensity of radiation from the solar photosphere decreases towards the limb, this is known

as limb darkening and can be characterised by:

I = I0(I − u+ u cosφ) (3.4)
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where u is the limb-darkening coefficient (a function of wavelength), and φ is the angle

between the emitted radiation and the radius vector of the emitting point. The tangential

(IT ) and radial (IR) vector components of Thomson-scattered radiation from a single

electron in the solar corona may be calculated in terms of a small number of measurable

parameters (Billings, 1966; Howard & Tappin, 2009; Minnaert, 1930; van de Hulst, 1950)

as:

IT = I0
πσe
2z2

[(1− u)C + uD] (3.5)

and

IP = I0
πσe
2z2

sin2 χ [(1− u)A+ uB] (3.6)

where

A = cos Ω sin2 Ω, (3.7)

B = −1

8

[
1− 3 sin2 Ω− cos2 Ω

sin Ω
(1 + 3 sin2 Ω) ln

(
1 + sin Ω

cos Ω

)]
, (3.8)

C =
4

3
− cos Ω− cos3 Ω

3
, (3.9)

D =
1

8

[
5 + 3 sin2 Ω− cos2 Ω

sin Ω
(5− sin2 Ω) ln

(
1 + sin Ω

cos Ω

)]
, (3.10)

and Ω is the solid angle of the Sun as seen by the scatterer and IP = IT − IR. The total

scattered light intensity is therefore:

Itot = (IT + IR) = 2IT − IP . (3.11)

The locus of all the points that maximise the scattered intensity form what is known

the Thomson sphere (TS) as shown in Figure 3.2 (left). Figure 3.2 (right) shows the ratio

of the correct to assumed plane-of-sky brightness and indicates it is a valid assumption

out to about 70R�m, after which the brightest feature may be far from the plane-of-sky.

There is an often quoted misconception that scattering efficiency is maximised on the TS

which it is not in fact the opposite occurs as the cross-section for scattering is minimised

on the TS. However the TS also indicates the point of closest approach, thus the amount

of incident radiation is maximised as is the density of scatterers, and hence the scattered

intensity is maximised for the above constraint.

While the effects of Thomson scattering on the plane-of-sky assumptions may be neg-
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two-dimensional projection since the situation is rotationally
symmetric along the Sun-observer line.

The introduction of the concept of the TS as the location of
the maximum scattering (and hence of the maximum white light
emission) is the main point of our paper. The planes of the sky
and of the solar limb do not play a special role in the treatment of
coronagraph observations (although they are convenient approx-
imations close to the Sun). The brightness analysis should be
made relative to the TS. An obvious question concerns the im-
plication of this proposed change in the brightness calculations
in past CME analyses.

2.1. Comparison with Standard Approximation

The standard approximation for all CME (and streamer) bright-
ness analyses has been to assume the plane of the solar limb to be
the maximum scattering plane. We have shown that the appro-
priate surface should be the TS. To find the range of validity of
the standard approximation we calculate the brightness of a sin-
gle electron located at the limb (Blimb) and the brightness of the
same electron located on the TS (B0). In Figure 2we plot the ratio
(Blimb /B0) as a function of projected heliocentric distance. The
plot demonstrates that the ratio is close to 1 out to at least 70 R!.
It deviates significantly from unity only for distances close to the
observer (taken at 1 AU in this case). Since almost all corona-
graph analyses have been for heights below 30 R!, the results
of Figure 2 demonstrate that there is no need to reexamine past
results. They also show the need to adopt the TS formalism for
tracking and interpreting the CME brightness over large elon-
gations if we want to obtain consistent results. However, this is
not the only implication of adopting the TS.

2.2. Implications for CME Observations

A careful inspection of Figure 1 leads to two important obser-
vations: (1) The TS presents us with a changing surface of max-
imum scattering instead of the constant plane of the sky, and
(2) the scattering geometry is not symmetric with respect to the

solar limb but favors the Sun-observer side or rather the front side
of the disk. We expect therefore that the brightness of a given
CME will depend critically on the CME launch longitude rela-
tive to the position of the TS.

To get an appreciation for the magnitude of these effects we
performed some simulations. To keep them simple, we did not
address the CME structure along the LOS, which is unknown
and would involve a large number of additional assumptions. In-
stead, our simulated CMEs consist of a single electron propagat-
ing radially away from the Sun at various angular distances from
the solar limb. This simple assumption is sufficient to provide im-
portant physical insights into the CME brightness behavior and
can also be quantitatively accurate. For example, we used sim-
ilar simulations to estimate the degree of underestimation of Large
Angle and Spectrometric Coronagraph Experiment (LASCO)
mass measurements toP50% (Vourlidas et al. 2000). Our results
were subsequently confirmed by detailed three-dimensionalMHD
CME simulations (Lugaz et al. 2005). Final verification for such
predictions will hopefully be provided by future STEREO ob-
servations. Keeping the above assumptions in mind, we use,
from now on, the single electron results to investigate the CME
brightness.

First we examine those events originating from the front side
of the Sun. In Figure 3 we plot the brightness versus elongation
for a single electron propagating radially at various longitudes
(the solar limb is at 0"). The plot indicates the following:

1. There is a sharp brightness falloff for all launch longitudes
within the first 20–30 R!.

2. CMEs originating at and propagating along the solar limb
have a similar brightness behavior as CMEs from other longi-
tudes up to about 100R!. Then their brightness decreases sharply,
especially beyond 150 R!. The obvious implication is that limb
events that are bright and easily detectable by near-Sun coro-
nagraphs, such as Solar and Heliospheric Observatory (SOHO)
LASCO or SECCHI COR2, are unlikely to be detected by he-
liospheric imagers at large elongations.

3. CMEs originating at longitudes close to the Sun-observer
line (e.g.,k40") reach a brightness plateau at around 50 R! or so.
This plateau is almost the same for a wide range of launch lon-
gitudes and has a very shallow gradient, even for large distances

Fig. 1.—Generalized Thomson scattering geometry. [See the electronic edition
of the Journal for a color version of this figure.]

Fig. 2.—Range of validity of the plane-of-the-sky assumption currently used
for CME brightness calculations. The ratio Blimb /B0 is the ratio of the bright-
ness calculated using the assumption over the brightness derived from the full
treatment.
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of the disk. We expect therefore that the brightness of a given
CME will depend critically on the CME launch longitude rela-
tive to the position of the TS.

To get an appreciation for the magnitude of these effects we
performed some simulations. To keep them simple, we did not
address the CME structure along the LOS, which is unknown
and would involve a large number of additional assumptions. In-
stead, our simulated CMEs consist of a single electron propagat-
ing radially away from the Sun at various angular distances from
the solar limb. This simple assumption is sufficient to provide im-
portant physical insights into the CME brightness behavior and
can also be quantitatively accurate. For example, we used sim-
ilar simulations to estimate the degree of underestimation of Large
Angle and Spectrometric Coronagraph Experiment (LASCO)
mass measurements toP50% (Vourlidas et al. 2000). Our results
were subsequently confirmed by detailed three-dimensionalMHD
CME simulations (Lugaz et al. 2005). Final verification for such
predictions will hopefully be provided by future STEREO ob-
servations. Keeping the above assumptions in mind, we use,
from now on, the single electron results to investigate the CME
brightness.

First we examine those events originating from the front side
of the Sun. In Figure 3 we plot the brightness versus elongation
for a single electron propagating radially at various longitudes
(the solar limb is at 0"). The plot indicates the following:

1. There is a sharp brightness falloff for all launch longitudes
within the first 20–30 R!.

2. CMEs originating at and propagating along the solar limb
have a similar brightness behavior as CMEs from other longi-
tudes up to about 100R!. Then their brightness decreases sharply,
especially beyond 150 R!. The obvious implication is that limb
events that are bright and easily detectable by near-Sun coro-
nagraphs, such as Solar and Heliospheric Observatory (SOHO)
LASCO or SECCHI COR2, are unlikely to be detected by he-
liospheric imagers at large elongations.

3. CMEs originating at longitudes close to the Sun-observer
line (e.g.,k40") reach a brightness plateau at around 50 R! or so.
This plateau is almost the same for a wide range of launch lon-
gitudes and has a very shallow gradient, even for large distances
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of the Journal for a color version of this figure.]

Fig. 2.—Range of validity of the plane-of-the-sky assumption currently used
for CME brightness calculations. The ratio Blimb /B0 is the ratio of the bright-
ness calculated using the assumption over the brightness derived from the full
treatment.
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Figure 3.2: Thomson sphere geometry (left) and the range of validity of the plane-of-the-
sky assumption (right).The ratio Blimb/B0 is the ratio of the brightness calculated using the
plane-of-the-sky assumption over the brightness derived from the full treatment (Vourlidas &
Howard, 2006).

ligible close to the Sun they severely impede the ability to unambiguously identify CME

structures in observations, as Figure 3.3 shows. The observations (Figure 3.3 left) the show

the graduated cylindrical shell (GCS) model (Thernisien et al., 2006) almost edge-on and

nearly side-on, but in the synthetic data (Figure 3.3 right) or observations it is nearly im-

possible to disguising between the two orientations and certainly not unambiguously. This

highlights the problems in interpreting coronagraph observations and trying to compare

them to theory.

3.1.2 Projection Effects

Close to the Sun, the plane-of-sky assumption will only affect the magnitude of the de-

rived kinematics, but not their profile shape. For example, any acceleration seen is real,

but its magnitude is subject to possibly large uncertainties. Using on-disk features and
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2001/12/20 01:54 2001/08/21 13:27 

2002/01/04 10:06 1999/07/25 14:06 

Fig. 8.—Comparison between four LASCO C2 events (left ) and the corresponding modeling (right). These examples are the same as in CB04.

Fig. 9.—Comparison between observed and simulated brightness profiles. The layout and the events correspond to Fig. 8. The solid line is the LASCO data profile, and
the dashed line is the fit.

Figure 3.3: LASCO observations (left) and the graduated cylindrical shell (GCS) model
synthetic images (right) from Thernisien et al. (2006). The wire frame on the LASO data
indicates the orientation of the GCS axis.

assumptions about the propagation direction can allow accurate kinematics to be derived

for selected events, especially those on the limb. Even then, care must be taken in their

interpretation (Byrne et al., 2009). However, far from the Sun the Thomson scattering and

its effects on the plane-of-sky assumption become much more important. Figure 3.4 shows

both bubble and shell models of a CME at different times in its propagation. The differ-

ences between the observed (×), true (©) and inferred (+) fronts are clear, and become

extremely large as the CME reaches observer-like distances. The effects of making the

plane-of-sky assumption when deriving kinematics are shown in Figure 3.5 which shows

simulations of the true kinematics (black), as well as those that would be observed from

STEREO A (red) and B (green) like positions for a point-like CME propagating 12◦ east of

the Sun-Earth line. The CME is close to the plane-of-sky for STEREO B but far from A as

seen in the inset (Figure 3.5 d). Not only are the kinematics significantly under estimated

close to the Sun from and B, as the CME distance increases apparent acceleration, due to

the plane-of-sky assumption begins to take place. It should be clear that the plane-of-sky

assumption is unsuitable for studying CMEs at large distances from the Sun. Other ap-

proaches have been developed such as the “point-P” method or the “fixed-φ” method. The

“point-P” method (Howard et al., 2006) assumes the CME is intrinsically a very broad,

uniform, spherical front, centred on the Sun, with the relation ship between the observed

elongation to height given by:

r = d sin ε (3.12)
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Figure 3.4: Basic CME structures. (a) The expanding bubble and (b) a simple shell with
an angle of 30 at three different times during their propagation. The tangent drawn from the
observer O across the CME surface shows the location of the relative leading edge. The ×
symbols represent the location of the leading edge seen by the observer the © symbols show
the true location of the leading edge at the central location and the + symbols the inferred
location of the leading edge based on the central location (Howard & Tappin, 2009).

where d is the Sun-observer distance, and ε is the elongation angle. The “fixed-φ” method

(Kahler & Webb, 2007) assumes that the CME is a relatively narrow, compact structure

travelling on a fixed, radial trajectory at an angle, φ relative to the observer’s line-of-sight

to the Sun and the derived height is given by:

r =
d sin ε

sin ε+ φ
. (3.13)

More recently another method known as the “harmonic mean” has been developed (Lugaz

et al., 2009). This is so called as it corresponds to the harmonic mean of values calculated

from the other two methods the derived height is given by:

r =
2d sin ε

1 + sin ε+ φ
. (3.14)

3.2 Coronagraphs

A coronagraph is a telescope which aims to reproduce the spectacular images of the solar

corona during eclipse observations. The two main problems with developing a coronagraph

are: the scattered light in the telescope, and the sky brightness itself, both of which will
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3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.5: Plane-of-Sky projected kinematics representative of STEREO A (Red), STEREO
B (green) and true (black) for a CME propagating 12◦ east of the Sun-Earth line. (a) Height,
(b) velocity (c) acceleration and (d) geometry of simulation.

overwhelm the weak corona. Bernard Lyot solved these problems and constructed the first

coronagraph in 1930 (Lyot, 1939). The optical layout of this coronagraph (see Figure 3.6)

is designed to reduce internal scattering and blockoff the solar disk. The first element was

an objective lens that was free from inclusions, and highly polished to reduce scattering

and reflections. Directly behind the objective lens (O1), and in its focal plane, is the

artificial moon or occulter which reflects away the bright solar disk image. The first field

lens (F1) forms an image of the objective lens, and a screen placed here would show an

image of the objective with a bright halo and central bright spot due to refraction, and

double reflection, respectively. Lyot introduced what are now known as the Lyot spot and

Lyot stop to remove these aberrations. Finally the second objective lens (O2) forms an
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3.2 Coronagraphs

Figure 3.6: Optical layout of Lyot internally occulted coronagraph adapted from Lyot (1939).

image of the occulter (blocking the solar disk) and corona on to the detector plane.

There are two different configurations for coronagraphs, internally occulted (occulter

is inside the first optical element, O1 in Figure 3.6), and externally occulted (occulter

outside of the first optical element, O1 in Figure 3.6). Each configuration has its own

unique advantages and disadvantages. The internally occulted coronagraph allows the

very inner corona to be imaged, but as the front lens and aperture are directly illuminated

by the solar disk, scattered light within the telescope is a problem. The externally occulted

coronagraph cannot image the inner corona due to the diffraction limit (in space, the sizes

of the telescopes are limited), but scattered light is not as much of a problem as the aperture

and objective lens are not directly illuminated by the solar disk. Modern coronagraphs

use the same basic design, but have added baffles to reduce internal stray light further and

polarisers to separate the signature of CMEs from that of the corona. The coronal light is

a combination of polarised and unpolarised light, while CMEs contain only polarised light.

Polarisers block some of the coronal light, allowing the CME to be more easily identified.

Coronagraphs are limited to observe only a small distance (≤30R�) from the Sun

and cannot image CMEs as they propagate to the Earth at ∼215R�, though this isone

of the ‘holy grails’ of solar physics. Extended coronagraphs or heliospheric imagers aim

to fulfil this goal and two instruments have already validated the ability to measure the

electron scattered CME signal against the strong zodiacal light and stellar background. The

Zodiacal Light Photometer (Pitz et al., 1976) on the Helios spacecraft launched in 1974,
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3.3 Solar and Heliospheric Observatory (SOHO)

and the Solar Mass Ejection Imager (SMEI; Eyles et al. 2003) instrument, on the Coriolis

spacecraft launched in 2003, have demonstrated the ability to detect and track CMEs far

from the Sun (Tappin et al., 2004). The Heliospheric Imagers on-board STEREO image

from ∼4 – 88◦ elongation (15 – 215R�∗) and thus, for the first time, allow CMEs to be

tracked from the Sun to the Earth from two perspectives. The results in this thesis are

largely based on STEREO SECCHI observations in particular simultaneous (A and B)

observations of CMEs in COR1, COR2, and HI. A summary of the instruments and their

important features and properties is listed in Table 3.1.

3.3 Solar and Heliospheric Observatory (SOHO)

SOHO (Domingo et al., 1995) was a joint ESA NASA mission which was launched on

December 2, 1995 by an Atlas II rocket. SOHO was launched into an orbit around the

first Lagrange point (L1), located along the Sun-Earth line, about 1% of the distance to

the Sun, thus allowing continual monitoring of the Sun. The main scientific goals of the

mission were to: (i) study the solar interior using helioseismology techniques; (ii) study the

heating of the solar corona; and, (iii) investigate the solar wind and its acceleration. There

are twelve complementary instruments onboard: 3 devoted to helioseismology probing

the inner structure of the Sun by observing solar oscillations; 3 measuring in-situ plasma

properties (densities, velocities, magnetic field, composition, etc.) of the solar wind; and

6 telescopes with imagers or spectrometers studying the solar disk and atmosphere. A

schematic of the SOHO spacecraft and its instruments is shown in Figure 3.7.

Both Extreme-Ultraviolet Imaging Telescope (EIT) and Large Angle Spectrometric

Coronagraph (LASCO) use the same CCD detectors, which are STIe (formerly Tektronics)

1024×1024, three-phase, multi-phased-pinned type with square pixels of 21µm. The full-

well capacity of the CCDs is about 150,000 electrons and the quantum efficiency is about

0.3-0.5 in the optical range 500 – 700 nm when using front side illumination. For EIT, the

CCDs were thinned, back-side illuminated, and had anti-reflective coatings applied in order

to keep the quantum efficiency high at 0.27 – 0.36 in the EUV 171.4 – 303.8 Å range. The

CCDs have 40 non-imaging (over- or under-scan) pixels on each line which can be used for

calibration and engineering purposes.
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Figure 3.7: A schematic of the SOHO spacecraft and instruments (Domingo et al., 1995).

Figure 3.8: Schematic of the EIT telescope (Delaboudinière et al., 1995).

3.3.1 Extreme-Ultraviolet Imaging Telescope (EIT)

EIT (Delaboudinière et al., 1995) is a Ritchey-Chrétien telescope which images the corona

and transition region on the solar disk, and up to 1.5R� above the solar limb. Light

∗Depends strongly on the distance of the object from the plane-of-sky
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Figure 3.9: Observation showing active regions and magnetic loops as recorded by EIT in the
Fe IX/X 171 line. The temperature of this material is about 1 million K in the lower corona.
Image courtesy of the SOHO website.

enters the telescope through an initial filter of 700 Å of cellulose sandwiched between

two 1500 Å thick aluminium films, which reject visible and IR radiation, and then passes

through a quadrant selector (see Figure 3.8). Each quadrant of the primary and secondary

mirrors has multilayer coatings of molybdenum and silicon deposited on them, each was

optimised to reflect in a different wavelength bands centred on 304 Å, 284 Å, 195 Å, and

171 Å. Probing the solar atmosphere at peak temperatures of 8.0 × 104 K, 2.0 × 106 K,

1.6× 106 K, and 1.3× 106 K respectively (assuming quiet sun conditions). Finally, a set of

filters just in front of the focal plane block long wavelength radiation before imaging, and
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3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.10: Optical layout of the C2 coronagraph (Brueckner et al., 1995).

a shutter controls the exposure time. An image is formed on the CCD and as EIT has a

field-of-view 45 arcmin square, each pixel is 2.6 arcsec in size. A typical image from EIT

from the 171 Å channel dominated by Fe ix and x lines is shown in Figure 3.9.

3.3.2 Large Angle Spectrometric Coronagraph (LASCO)

The LASCO (Brueckner et al., 1995) instrument consist of three coronagraphs which im-

age the corona from 1.1 – 30 R� (C1: 1.1 – 3R�, C2: 1.5 – 6.0R�, C3: 3.7 – 30R�). The

C1 coronagraph has not operated since the loss and subsequent recovery of the spacecraft

in 1998. C2 is an externally occulted Lyot type coronagraph. Light enters the C2 coron-

agraph and encounters the external occulter, which was a new design a cone with sharp

threads whose cone angle is slightly larger than the angle subtended by the Sun from L1

(Figure 3.10). This design achieves a light rejection level of 1.5×10−5, and at this level,

light refracted by the next element in the path (the entrance aperture) becomes a concern.

As a result, a polygonal serrated aperture was developed, with each side behaving as a knife

edge, such that its direct diffraction avoids O1 (Figure 3.10). Light then passes through
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an oversized diaphragm A2, preventing propagation of light scattered off the edges of the

aperture, and enters the objective O2. O2 is a two element design which apodises light

diffracted by O1, and ghost images created by O1 are blocked by the Lyot spot (a metallic

layer deposited onto O3). The final element, O3, is a four element design which magnifies

and focuses an image of the corona seen by O2 onto the CCD detector, and results in an

angular resolution of 11.4 arcmin per pixel. Two plane mirrors fold the optical path to

reduce the over all instrument length. The shutter and filter wheel are mounted as close

to the final pupil as possible, and behind O3, respectively. The polariser is placed closer

to the image plane, in front of the CCD detector. The pointing error system detects any

imbalance in the penumbra created by O1 using four photodiodes behind four symmetric

holes located about O1. The differential output of paired diodes is amplified, coded, and

telemetered to the ground where commands can be sent to move the pointing legs until

satisfactory pointing is achieved.

C3 is also an externally occulted Lyot type coronagraph. Light enters the instrument

through A0, where the occulting disk shadows the coronagraph entrance aperture, A1, from

direct sunlight (Figure 3.11). The occulting disk is an assembly of three disk on a common

spindle configured to minimise diffracted sunlight falling on A1 and the primary lens. The

primary lens forms an image of the occulted corona and is followed by the internal occulter

which blocks the image of the external occulter and halo. Behind this is the field lens, a

multi-element anti-reflection coated lens which forms a collimated image of the corona on

the relay lens. It also presents a sharp image of the instrument aperture A1 to the Lyot

stop. The elements of the relay lens are all placed behind this stop to minimise diffracted

light falling on it. The relay lens focuses an image of the corona on to the CCD detector,

and it also contains the Lyot spot. The resulting pixel resolution is 56 arcmin per pixel.

Between the relay lens and CCD lies a triple mechanism containing the filter, polariser,

and shutter. Centred baffles are placed along the instrument so that the field, objective

and relay lenses see only the rear of the baffles, or the walls shadowed by the preceding

baffle. All the surfaces are anodised and coated in a dense black paint.

Both C2 and C3 have a number of filters in the range 400 – 850 nm for C2, 400 – 1050 nm

for C3 and polarisers at 0◦, ±60◦. The polarisers are used to obtain total brightness B,

or polarised brightness pB, images via a combination of observations taken at polariser

positions Ia = −60◦, Ib = 0◦, Ic = +60◦, combined using (Billings, 1966):

B =
2

3
(Ia + Ib + Ic) (3.15)

pB =
4

3

[
(Ia + Ib + Ic)

2 − 3 (IaIb + IaIc + IbIc)
]1/2

. (3.16)

91



3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.11: Optical layout of the C3 coronagraph (Brueckner et al., 1995).

A sample LASCO observation from C3 is shown in Figure 3.12.

3.4 Solar Terrestrial Relation Observatory (STEREO)

The NASA STEREO (Kaiser et al., 2008) mission was lunched on a Delta 2 rocket on

October 26, 2006. The mission consists of two near-identical spacecraft which after a

series highly eccentric Earth orbits and Moon sling shots, were placed in orbit around

the Sun. The Ahead spacecraft (STEREO-A) travels ahead of the Earth, slightly closer

to the Sun and the Behind spacecraft (STEREO-B) lags behind Earth, slightly further

from the Sun. The spacecraft separate at about ∼ 22◦ per year from Earth, or ∼ 45◦ as

viewed from the Sun. Figure 3.14 shows the positions of the spacecraft at three different

times. The STEREO mission was designed to study the causes and mechanisms behind
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Figure 3.12: A typical C3 observation, the occulter, support pillar and non-imaging pixel
have been set to zero. The white circle on the occulter indicates the Sun’s size. A CME is
visible off to the right of the occulter. Image courtesy of the SOHO website.

the initiation of CMEs, and then follow their propagation through the inner Heliosphere.

STEREO will also be used to study the site of energetic acceleration and develop 3D

models of solar wind properties such as magnetic topology, temperature, velocity, and

density. As such, the STEREO spacecraft carry an almost identical payload consisting of

optical, radio, as well as in situ particle and field instruments. These are divided into four

suites: Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI; Howard
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3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.13: Schematic of the STEREO B spacecraft . The positions of the some of the
instruments and their detectors are indicated (Kaiser et al., 2008).

et al. 2008a); In situ Measurements of PArticles and CME Transients (IMPACT; Luhmann

et al. 2008); PLAsma and SupraThermal Ion Composition (PLASTIC; Galvin et al. 2008);

and STEREO/WAVES (S/WAVES; Bougeret et al. 2008). Figure 3.13 shows one of the

STEREO spacecraft and its instruments.

3.4.1 Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)

The remote sensing optical suite, SECCHI, consist of an extreme ultraviolet imager (EUVI)

which images the solar disk in four wavelengths 171 Å, 195 Å, 284 Å and 304 Å, two coro-

nagraphs (COR1 and COR2) which image the corona from 1.4 – 15R� in white-light, and

the Heliospheric Imagers (HI) which image the inner Heliosphere (∼4 – 88◦ elongation) in

white-light. This combination of instruments can image from the solar surface to beyond

1 AU from two perspectives. Combining the two perspectives allows for the possibility of

3D reconstructions of solar features such as, loops, prominences and CMEs.

Each of the scientific instruments on SECCHI uses a three-phase, back-illuminated,

non-inverted mode (to ensure good full well capacity, 150k to 200k electrons) CCD model

CCD42-40 manufactured by E2V in the United Kingdom. There are 2048×2052 image

pixels, each measuring 13.5µm on a side and providing a total imaging area of 27.6 mm

square. The total readout is 2148×2052 pixels, providing 100 columns of non-imaging
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3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.15: A cross section of the EUVI telescope (Wuelser et al., 2004)

over- and under-scan regions for calibration and engineering purposes. The CCDs used

for visible light detection (COR-1, COR-2, HI-1 and HI-2) have an anti-reflective coating

on their backside (illuminated side). The quantum efficiency (QE) of these devices varies

from roughly 80% at 500 nm, to 34% at 900 nm. The backside of the EUVI CCD has no

coating in order to provide sensitivity at shorter wavelengths, with a quantum efficiency

of 74% at 17.1 nm, and 70% at 30.3 nm.

3.4.1.1 Extreme Ultraviolet Imager (EUVI)

EUVI (Wuelser et al., 2004) is of similar design to that of SOHO/EIT except it provides

higher resolution (40% better) and cadence capabilities. It is a Ritchey-Chrétien telescope

which images the solar disk and atmosphere up to 1.7R�. It provides pixel limited res-

olution of 1.6 arcsec per pixel across the entire field-of-view. Light enters the telescope

through the entrance filter (150 nm thick aluminium) which blocks undesired UV, optical

and IR radiation, and passes through the aperture selector to one of the four quadrants.

Each quadrant of the primary and secondary mirrors uses multilayer reflective coatings,

optimised for four wavelength bands centred on 171 Å, 195 Å, 284 Å and 304 Å. The light

continues through a filter wheel with redundant thin aluminium filters to remove the re-

mainder of visible and IR radiation. The image is then formed on the CCD, and a rotating

blade shutter controls exposure times. Figure 3.15 shows the layout of EUVI. A typical

EUVI observation in the 195 Å is shown in Figure 3.16.

3.4.1.2 COR1 and COR2

The inner SECCHI coronagraph, COR1, is a Lyot internally occulted refractive telescope

which images the corona from 1.4 to 4R� at 656 nm (Hα) at 7.5 arcsec per pixel (with

onboard 2×2 binning). It is the first space-borne internally occulted refractive telescope
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Figure 3.16: Image of the Sun, taken by the SECCHI Extreme Ultraviolet Imager (EUVI)
on the STEREO Ahead observatory on March 21, 2011 at 02:40:30 UT. The 195 Angstrom
bandpass is sensitive to the Fe xii ionisation state of iron, at a characteristic temperature of
about 1.4 million degrees Kelvin. Image courtesy of the Stereo Science Centre.

(in contrast to the internally reflective design of LASCO/C1) and this design enables

better spatial resolution closer to the limb than an external design. COR1 is dominated

by instrumentally scattered light which cannot be removed by Lyot principles, but as it

is largely unpolarised it can be removed by talking polarised observations and calculating

pB images.

Figure 3.17 shows the opto-mechanical layout of the instrument. Light enters through

the front aperture where the singlet objective lens focuses the solar image onto the occulter.

The occulter is mounted on a stem at the centre of the field lens, and the tip of the occulter
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Figure 3.17: A cut away view of the COR1 coronagraph (Howard et al., 2008a).

is cone-shaped to direct sunlight into the surrounding light trap. The light trap is wedge-

shaped, and as a result the light must reflect many times before it can escape and is thus

effectively absorbed. Two doublet lenses act as a telephotolens and focus the coronal image

onto the CCD while maintaining diffraction-limited resolution (Figure 3.17). A bandpass

filter 22.5 nm wide centred on the Hα line at 656 nm is placed just behind the first doublet.

The Lyot stop, spot, first doublet, and bandpass filter all form a single linear optical

assembly (Figure 3.17). A linear polariser mounted on a hollow core motor rotational

stage is located between the two doublets and a rotating blade shutter is located just in

front of the focal plane detector assembly (Figure 3.17).

The objective lens only focuses the solar image accurately at one wavelength (Hα),

due to chromatic aberration, so the internal occulter is designed to block all other the

solar photospheric light between 350 – 1100 nm. Diffracted light from the front aperture is

focused onto a Lyot spot by the field lens, this removes the largest source of stray light.

Placing baffles at various points between the front aperture and the Lyot stop removes

additional stray light. To remove ghosting from the objective lens a Lyot spot is glued to

the front surface of the doublet lens immediately behind the Lyot stop (Figure 3.17). A

focal plane mask located between the shutter and detector removes light diffracted from

the edge of the occulter. At orbital perigee at the design wavelength the resulting solar

image is completely occulted to 1.4R� and vignetted to 1.9R�.
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Figure 3.18: A cut away view of the COR2 coronagraph (Howard et al., 2008a).

The outer coronagraph COR2 is an externally occulted Lyot coronagraph, of similar

design to that of the SOHO/LASCO C2 and C3 coronagraphs, which images the corona in

white light (650 – 750 nm) from 2.5 – 15 R� with 14.7 arcsec per pixel (2048×2048; Howard

et al. 2008a). Solar radiation enters the instrument through the aperture A0 (see Fig-

ure 3.18) where a three-disk occulter shades the objective lens from direct solar radiation

and creates a deep shadow at the lens aperture A1. A mirror rejects heat back through the

entrance aperture. The objective lens (O1) focuses an image of the external occulter onto

the internal occulter, and the field lens (O2) focuses the A1 aperture onto the A3 aperture

or Lyot stop. The objective lens also creates an image of A0 onto the field stop A2. The

internal occulter and aperture stops block images of the brightly illuminated edges of the

external occulter, A0, and A1 apertures. Between the O2 and O3 elements lies a linear

polariser mounted in a hollow-core motor. The third lens group forms an image of the

corona onto the focal plane where the detector is located. A bandpass filter transmits

radiation from 650 – 750 nm (FWHM) optimising throughput, and a rotating blade shutter

controls exposure time. A typical COR2 observation is shown in Figure 3.19

Both COR1 and COR2 take sequences of three polarised observations at 0◦ and±60◦ for

a complete polarisation sequence. This results in a cadence of 8 and 15 minutes respectively.

These images are telemetered to the ground where they can be combined to give both total
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Figure 3.19: Image of the solar corona, taken by the SECCHI outer coronagraph (COR2)
on the STEREO Behind observatory on February 15, 2011 at 03:54:33 UT. Image courtesy of
the Stereo Science Centre.

brightness (B) and polarised brightness (pB) images.

3.4.1.3 Heliospheric Imager (HI)

The HI instrument is a combination of two refractive optical telescopes (HI1 and HI2)

with a multi-vane, multi-stage light rejection system which images the inner Heliosphere

in white-light (HI1: 630–730 nm, HI2: 400–1000 nm ). HI1 has a FOV of 20◦ degrees

centred on an elongation of 13.28◦ degrees with 70 arcsec pixel−1 plate scale, while HI2

has a FOV of 70◦ degrees centred on an elongation of 53.36◦ degrees from the Sun with 2
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arcmin pixel−1 plate scale (Eyles et al., 2009).

The HI concept is based on the laboratory measurements of Buffington et al. (1996),

who determined the scattering rejection as functions of the number of occulters and their

angle below the occulting edge. The baffle system consists of the forward, internal, and

perimeter baffles (see Figure 3.20(a)). The forward baffle system uses Fresnel diffraction

with the positions and heights of the vanes arranged in an arc such that the (n + 1)th

vane lies below the shadow line of the (n − 1)th and nth vanes (see Figure 3.21). The

forward baffle is the primary source for light rejection in the instrument and provides the

low levels of residual light needed of 10−10–10−12, as computed using Fresnel’s second order

approximation of the Fresnel-Kirchhoff diffraction integral for a semi-infinite half-screen

see (Figure 3.22 Right). These high levels of light rejection are vital to detect faint CMEs

(see Figure 3.22 Left)

The internal baffle consists of five principal vanes and a number of secondary vanes

(see Figure 3.20(a)). The system is designed to attenuate unwanted light entering the HI

optical systems through multiple reflections in the baffles. Finally the perimeter baffles

(side and rear baffles) are designed to shield the HI optical systems from reflections of

photospheric light below the horizon defined by the baffles.

The optical configurations of the two HI telescopes is shown in Figure 3.23. Neither

of the telescopes is diffraction limited as such they are optimised to minimise the rms

(root mean square) spot diameter over the operational temperature range. The design

of the HI1 optics was mainly constrained by the location of the first lens which must

lie in the appropriate position in the shadow pattern of the forward baffle and the lens

barrel and housing must be below the shadow line cast by the first baffle, so direct sunlight

cannot reach these components. The spectral response is controlled by means of multilayer

coatings on two internal lenes which have the minimum angles of incidence. All the lenses

are coated with anti-reflective (AR) coatings to minimise ghost images. The HI2 optics

were designed to give a wide field-of-view, wide bandpass and minimise ghosting. Due to

the wide bandpass the effectiveness of the AR coatings is minimised. To combat this effect

the optics were designed to spread out ghost images over large regions of the focal plane.

So the ghost images from bright objects contribute to the overall background rather than

generating multiple images, with their spacing dependant on the position of the object in

the FOV. The lens barrels were optimised using ray-tracing software, with some cavities

being added to act as light traps. All the internal surfaces and mountings were treated

with either black copper oxide, or black chromium coatings. Due mainly to mechanical

constraints neither of the HI telescopes have a shutter mechanism.

The images from both HI1 and HI2 are binned on-board to give 1024× 1024 pixels at
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C.J. Eyles et al.

Figure 3 (a) The Heliospheric Imager design concept. (b) A cross-sectional view through the instrument,
showing the fields of view of the two telescopes.

approximately 4.8 seconds, including overheads. Mainly because of mechanical accommo-
dation constraints, the cameras do not have shutters, so the fact that the readout time is not
insignificant compared with the exposure time results in the images being smeared during
the readout process. However, as discussed in Section 10.1.2, this image smearing resulting

Figure 3.20: (a) Heliosphereic Imager concept. (b) Cross sectional view through the instru-
ment, showing the fields-of-view of the two telescopes (Eyles et al., 2009).
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Figure 3.21: Concept of the cascade of knife-edge diffraction system, also shown are the
positions of the entrance apertures for HI1, HI2 and the form of the rejection function (Eyles
et al., 2009).

The Heliospheric Imagers Onboard the STEREO Mission

Figure 5 The field-of-view
geometry of the HI telescopes
and the anticipated intensities of
the corona and typical CMEs,
adapted from Socker et al.
(2000).

function of elongation angle, based on the calculations of Koutchmy and Lamy (1985),
together with the typical CME intensity, both in units of B!, the solar disc intensity. It is
immediately evident that the total coronal intensity is about two orders of magnitude brighter
than the anticipated CME signal and this defines the basic operational requirements for the
instrument. As a consequence, one must accumulate for long durations so that the CME
signal is larger than the statistical accuracy to which the background corona is measured, to
extract the weak CME signal.

In order that the instrument stray-light level does not contribute significantly to the sta-
tistical error in measuring the coronal signal, it must be at least an order of magnitude lower,
which can be seen from Figure 5 to require levels of better than ∼10−13B! for HI-1 and
∼10−14B! for HI-2.

The brightness sensitivity requirements stated in Table 1 are based on the need to extract
the CME signal from the other signal sources, which demands the detection of CME inten-
sities down to 3 × 10−15B! and 3 × 10−16B!, for the two telescopes. The complexity of
the extraction of the CME signal from the raw data deserves further description, and this is
addressed in detail in Section 10.

The principal hardware development for HI was centred at Birmingham University, UK,
with camera design and development work and some thermal work provided by the Sci-
ence and Technologies Research Council Rutherford Appleton Laboratory (RAL), UK. The
Centre Spatial de Liège (CSL), Belgium, provided design of the optical and baffle systems,
stray-light analysis and tests, and instrument calibration and qualification. Various aspects
of the assembly, integration and test work, and the overall SECCHI management have been
performed by the U.S. Naval Research Laboratory. The HI concept was developed by Den-
nis Socker of the Naval Research Laboratory. The operational and scientific lead for the HI
instruments is provided through RAL.

The Heliospheric Imagers Onboard the STEREO Mission

Figure 9 The calculated
rejection factor of the forward
baffles as a function of distance
below the horizontal shadow line
cast by the first vane, at nominal
spacecraft attitude. The
approximate locations of the
entrance apertures of HI-1 and
HI-2 optics are also shown.

3.1.2. The Internal Baffle

The internal baffle system consists of a set of five principal vanes, complemented by a set of
two small linear vanes located between the HI-1 and HI-2 entrance apertures, a set of three
small linear vanes located under the HI-2 aperture, and a linear vane located just behind
the forward baffles. The principal vanes have oval-shaped cutouts so that their edges lie just
outside (nominally by 1° – 2°) the conical field of view of the HI-2 optics (see Figure 3). The
performance of this baffle system is determined by the location of the tip of each vane and the
angles of the vanes relative to the optics field-of-view direction. The system attenuates the
intensity of unwanted light (from stars, planets, the Earth, zodiacal light, and the SWAVES
antenna) entering the HI-1 and HI-2 optical systems, by means of multiple reflections in the
baffles. Although some of these objects may potentially be within the HI fields of view, the
baffles limit the uniform background scattered into the optical systems from them.

The performance of the internal baffles was computed by using the Advanced Systems
Analysis Package (ASAP) stray-light analysis software from Breault Research Organisation.
Figure 10 shows a representation of the finite-element model used. The results indicated a
rejection factor better than 104 for every incident direction, with efficiency optimised for
light sources coming from the rear of the instrument (in particular the SWAVES antenna).

3.1.3. The Perimeter Baffle

The perimeter baffle (side and rear baffles) is a three-sided rectangular system composed of
two edges, similar to the forward baffle, that protects the HI optical systems from reflection
of photospheric light by spacecraft components lying below the horizon plane defined by
the baffles, including the low-gain antenna and the HI door mechanism.

It should be noted that one spacecraft component does rise above the plane of the perime-
ter baffles, namely one of the 6-m-long monopole antennae of the SWAVES instrument, al-
though it is not within the field of view of either telescope (see Figure 2). As discussed pre-
viously, calculations show that scattered light from the monopole will be adequately trapped
by the internal baffle system.

Figure 3.22: Left) The fields-of-view and geometry of the HI telescopes and anticipated
intensity of a typical CME and coronal background. Right) Theoretical light rejection levels
for HI in typical conditions as a function of distance below the shadow of first vane. Also
shown are the approximate positions of HI1 and HI2 optics (Eyles et al., 2009).

stated plate scale. In order to attain the required signal-to-noise ratio needed to image the

extremely faint CMEs, the HIs need long exposure time images. Due to limited dynamic

range, and to avoid cosmic ray swamping, a series of shorter exposures are taken and

summed on-board: in the case of HI1 30 images of 40 s exposure each are summed (total

exposure time 1200 s) and the resulting cadence is 40 minutes; for HI2 99 images with a

50 s exposure time each are summed (total exposure time 4950 s) resulting in an image
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Figure 3.23: Optical layout of the HI1 (a) and HI2 (b) telescopes. The Schott glass type is
indicated beside each element (Eyles et al., 2009).

cadence of 2 hours. Neither HI1 nor HI2 have shutters and hence all images must be

corrected for the smearing caused by shutterless readout (i.e., each row sees the scene from

the pixel below it). Some of the objects in the HI FOV are bright enough to saturate

the CCD, which was designed to bleed along columns allowing these to be identified and

corrected later (Eyles et al., 2009). A typical HI1 observation is shown in Figure 3.24, and

Figure 3.25 shows a CME as it progresses through the the HI1 field-of-view and into HI2.

3.5 Data Reduction

The data were reduced and calibrated using SolarSoft library (Freeland & Handy, 1998).

Each of the instruments has its own data reduction software which corrects for various

effects and produces science-grade observations. The data reduction can consist of the

following:
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Figure 3.24: Image of the solar corona, taken by the SECCHI inner Heliospheric Imager (HI-
1) on the STEREO Behind observatory on February 15, 2011 at 14:09:34 UT. Image courtesy
of the Stereo Science Center.

• On-board processing: numerical operations applied on board the spacecraft to

keep the data within the valid range of the compression algorithm, which may include

taking the square root of the image or dividing the image by 2, 3 or 4 multiple times,

the operations are noted in the image header and corrected for when the data is

reduced.

• De-biasing is the removal of the electronic offset applied to each pixel. CCD elec-

tronics are designed to produce a positive offset value to avoid issues with negative

numbers. For most science grade CCDs the bias is derived from the overscan pixels
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3.5 Data Reduction

on the detector chip, recorded in the image header and subtracted off when the data

is reduced.

• Flat-Fielding is the correction of the image for non-uniform illumination (including

vignetting) of the detector, and pixel-to-pixel variations (hot pixels) in the CCD

response. Once a flat-field is derived all the images are divided by this to flatten the

CCD response when that data is reduced.

• Bleeding occurs when the a signal exceeds the full well capacity of a pixel. The

excess charge “bleeds” into adjacent pixels in the same column, causing columns of

saturated pixels and in severe cases there can be horizontal bleeding as well. These

regions can be flagged and removed during data reductions.

• Distortions the optics of telescopes produce distortions such as pin cushion or barrel

distortion. The images can be geometrically corrected for these during date reduction.

• Calibration involves converting the digital numbers (DN) to a physical unit such

as mean solar brightness (MSB).

For some instruments, backgrounds which aim to remove the static coronal signature

can be subtracted during the reduction process (default for COR1) or after, to enhance

the faint coronal signatures. In the case of the HIs which have no shutter, additional

corrections need to be applied to account for pixel smearing during readout. Smearing is

the effect of the extra exposure time a pixel will experience during readout and clear phase

as a result of there being no shutter. In the case of HI this means a bright object (such

as a star) will leave vertical trails above the position during read out. Also during the

clear phase the pixels are exposed leaving vertical trails in the opposite direction. As the

readout, exposure, and clear times are known this effect can be correct using

I = T−1R (3.17)

where I is the corrected image, T is a matrix with the exposure time along the diagonal,

the readout time above the diagonal and the clear time below, R is the uncorrected image.

Finally, the pointing information in the HI headers are updated with pointing information

derived from the star fixes in the images, as dust impacts on the telecscopes can shift the

optical alignment (Brown et al., 2009).

107



3. CME OBSERVATIONS AND INSTRUMENTATION

Figure 3.26: Geometry of the azimuthal (zenithal) perspective projections (Left), the point
of projection at P is one spherical radius from the centre of the sphere; the three important
special cases (right) from Calabretta & Greisen (2002).

3.6 Coordiante Systems

The derivation of phyical coordinates from pixel coordinates is a multi step procedure. In

the first step pixel coordinates are transformed to intermediate coordinates i.e., they are

converted into the relevant units (meters, degrees, arcsec), but they are not adjusted for the

reference point of the observations or projection/geometrical effects. These intermediate

coordinates are then transformed by the various possible projections and rotated into

celestial coordinates. The conversion from pixel to intermediate coordinates is given by:

xi = si

N∑

j=1

mij (pj − rj) (3.18)

where pi refers to pixel coordinates, rj is the reference pixel, mij is a linear transformation

matrix and si is a scale function, with subscript i referring to pixel axes and subscript j

referring to coordinate axis (Calabretta & Greisen, 2002).

Traditionally almost all solar imaging telescopes use the gnomonic or ‘TAN’ projection.

In this projection a feature at an angle θ to the instrument’s optical axis or bore-sight is

projected onto the image plane at a radial distance Rθ given by:

Rθ = F tan(θ) (3.19)

where F is the focal length of the optical system, assuming symmetry about the optical
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axis. The position of the feature in the image plane is given by:

x = Rθ cos(φ) (3.20)

y = Rθ sin(φ) (3.21)

where φ is the angular position of the feature about the optical axis. However, for the

wide-angle optics of HI, this type of projection is not adequate, and it was found that a

Azimuthal Perspective (AZP) could accurately represent the behaviour of the HI optics.

In this projection R is given by:

Rθ = Fp
(µ+ 1) sin(α)

µ+ cosα
(3.22)

where Fp is the paraxial focal length, and µ is the distortion parameter. Inspecting (3.22)

it should be clear that the gnomonic projection is a special case of the AZP projection

with µ = 0. Figure 3.26 shows the AZP projection for a unit sphere and three special

cases. This figure shows why, for most solar telescopes which have a narrow field-of-view

a gnomonic projection is suitable. Once the coordinates have been de-pojected they can

be converted to the Sun-centred physical coordinates.

3.6.1 Heliographic Coordinates

The well-known solar coordinate system expresses the position of a feature on the solar

surface in terms of latitude, Θ, and longitude, Φ, and can be extended to 3D by adding

the radial distance, r, from the centre of the Sun. There are two basic variations of the

heliographic coordinate system called Stonyhurst and Carrington which both use the same

rotation axis only differing in longitude.

3.6.1.1 Stonyhurst

The origin of the Stonyhurst coordinate system is at the intersection of the solar equator

and central meridian as seen from Earth. Θ and Φ are given in degrees increasing north-

wards and westwards, respectively, and r is either physical the absolute physical distance

in m or relative to R� as shown in Figure 3.27.

3.6.1.2 Carrington

While Stonyhurst is fixed with respect to the Sun-Earth, line Carrington coordinates rotate

at the mean solar rotation rate with the first rotation commencing on 9 November 1853 and
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Figure 3.27: A diagram of the Sun showing the Stonyhurst coordinate system (Thompson,
2006).

being sequentially numbered thereafter. Both of these systems have limitations, especially

in representing features far off the solar disk.

3.6.2 Heliocentric Coordinates

Heliocentric coordinates express the true position of a feature in terms of physical units

from the centre of the Sun. Heliocentric Aries Ecliptic (HAE), Heliocentric Earth Ecliptic

(HEE) and Heliocentric Earth Equatorial (HEEQ) are all examples of heliocentric coor-

dinate systems consisting of three mutually perpendicular axes X, Y and Z. HEEQ is

closely related to Stonyhurst heliographic by

Θ = tan−1(ZHEEQ/
√
X2
HEEQ + Y 2

HEEQ), (3.23)

Φ = arg(XHEEQ, YHEEQ)

XHEEQ = r cos(Θ) cos(Φ) (3.24)

YHEEQ = r cos(Θ) sin(Φ)

ZHEEQ = r sin(Θ)

No single perspective solar observation can be truly accurately transformed into he-

liocentric coordinates. Sun-Observer lines-of-sight are not truly parallel, so the physical

position will depend somewhat on the distance along a line-of-sight, also no distinction is
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Figure 3.28: A diagram of the Sun with lines of constant Heliocentric cartesian (x, y) overlaid.
The z axis would point out of the page (Thompson, 2006).

made between the possible projections. However even with these problems Heliocentric

coordinates are useful, especially for representation of the results of 3D reconstruction and

form the basis of the helioprojective coordinate system.

Both of the coordinate systems discussed below are observer specific i.e. non-terrestrial

observers will measure different coordinates to those measured from Earth. As such, in-

formation about the position of the observer must be provided to properly define the

coordinate system.

3.6.2.1 Heliocentric-Cartesian

Heliocentric-Cartesian coordinates are a true cartesian system with each of the axes being

mutually perpendicular, and all lines of constant x (y or z) being parallel, see Figure 3.28.

The z-axis is defined to be parallel to the observer-Sun line and pointing towards the

observer. The y-axis is defined to be perpendicular to z and in the plane containing the

solar North pole axis and increasing northwards. The x-axis is perpendicular to both x

and y and increases westward. The distance along each axis is expressed in a physical

distance of meters, or relative to R�

3.6.2.2 Heliocentric-Radial

Heliocentric-Radial coordinates share the same z axis as the previous coordinate system,

but x and y are replaced with ρ and φ. The impact parameter φ is the radial distance
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from the z-axis, again expressed in a physical unit or relative to R�. The position angle φ

is measured in degrees counterclockwise from solar north as viewed by the observer.

3.6.3 Projected Coordinate Systems

It has already been stated that observations from a single viewpoint can only approximate

heliocentric coordinates. The observations are projected against the celestial sphere and

this needs to be accounted for, in order to accurately describe the observations. Helio-

projective coordinates mimic heliocentric coordinates but replace physical distances with

angles. All angles are measured from Sun centre as seen by the observer. As the coordinates

are spherical in nature they take into account exactly what projections are used.

3.6.3.1 Helioprojective-Cartesian Coordinates

This is the projected version of heliocentric cartesian coordinates where x and y have

been replaced by θx and θy. The helioprojective equivalent of z is ζ = D� − d surface

of constant ζ represent spheres centred on the observer, with the sphere of ζ = 0 passing

through the centre of the sun. The relationships between helioprojective-cartesian and

heliocentric-carteian are

x = d cos(θx) sin(θy), (3.25)

y = d sin(θy),

z = D� − d cos(θx) cos(θy),

d =
√
x2 + y2 + (D� − z)2, (3.26)

θx = arg(D� − z, x),

θy = sin−1(y/d).

where D� is the observer-Sun distance, and d is the observer feature distance. Close to

the Sun, where the small angle approximation holds, the relationship reduces to

x ≈ d
( π

180◦

)
θx ≈ D�

( π

180◦

)
θx (3.27)

x ≈ d
( π

180◦

)
θy ≈ D�

( π

180◦

)
θy.

(3.28)

These are the default coordinates for STEREO SECCHI observations.
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3.6 Coordiante Systems

3.6.3.2 Helioprojective-Radial Coordinates

The helioprojective version of helcentric-radial is where the impact parameter ρ is replaced

with the angle θρ.
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Chapter 4

Data Analysis and Techniques

In this chapter the methods used to enhance and analyse the STEREO observations are

described. CMEs can be extremely faint compared to the coronal background and in order

to detect and track them image processing methods are applied to enhance the CMEs sig-

nature. Once the CMEs are identified, 3D reconstruction techniques are applied to the two

perspective views to derive their true position. Using the true position of the CME derived

from a number of observations, the kinematics can be calculated and compared to the var-

ious models. Due to the large number of ill-determined parameters in the drag models a

rigorous statistical procedure was used to test if the drag models appropriately reproduce

the observations. This chapter is based on methods described in Maloney, Gallagher &

McAteer, Solar Physics, 2009 and Byrne, Maloney, McAteer, Refojo & Gallagher, Nature

Communications, 2010.
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4.1 Image Processing

In coronagraph observations, CMEs are observed as outwardly moving regions of stronger

brightness intensity relative to the background corona. As CMEs can be extremely faint

compared to the background, imaging processing techniques are applied to enhance and so

enable their identification and tracking. Coronagraph observations are dominated by the

K and F corona with an occasional star, comet or planet overcoming this signal. Thus the

main goal in processing coronagraph images ia the removal of the static coronal signal, and

the enhancement of the CME signal. This is accomplished through a number of techniques:

• Background Subtraction: Long term (days to weeks) background subtraction

removes instrumental stray light and static coronal signals such as the F and K

corona. The backgrounds are derived by taking the average, mean, minimum, or

some combination of these operations applied to the series of images. Short term

(hours to days) variations can also be subtracted to remove further semi-transient

features.

• Running Difference: Running difference images are created by subtracting the

previous image from the current image and thus help in enhancing moving features.

Formally this can be defined as:

I ′(x, y)i = I(x, y)i − I(x, y)i−1 (4.1)

where I ′i(x, y) is the running difference intensity at pixel (x, y), I(x, y)i is the current

pixel intensity, and I(x, y)i−1 the previous pixel intensity.

• Base Difference: Base difference images are formed by removing a base image from

every subsequent image, usually the base image is a pre-event image.

• Normalised Radial Gradient filter: It is well known that the intensity of radia-

tion falls steeply falls moving away from the Sun, by a factor ∼104 between the limb

and ∼3R�. The normalising-radial-gradient filter (NRGF) (Morgan et al., 2006)

attempts to account for this radial falloff using:

I ′(r, φ) =
[
I(r, φ)− I(r)〈φ〉

]
/σ(r)〈φ〉 (4.2)

where I ′(r, φ) is the NRGF intensity at height r and position angle φ, I(r, φ) is

the original intensity, and I(r)〈φ〉, σ(r)〈φ〉 are the mean and standard deviation of

intensities calculated over all position angles at height r
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4.1 Image Processing

The standard procedure used was to reduce the data as described in Section 3.5 to produce

total brightness (B) images from which backgrounds are then subtracted. The images were

then spacially median filtered and smoothed, and at this point the various different types of

image were created. The effects of processing COR1 observations are shown in Figure 4.1.

Figure 4.1 (a) shows the reduced data, with instrumental stray light apparent even on

the occulter, as is the dominant K and F corona. Figure 4.1 (b) has had a background

subtracted and a binary mask applied to remove all non-imaging pixels and some of the

artefacts know as “nails”. Figure 4.1 (c) shows the effect of removal of an additional short

term background from (b) while (d) shows a base difference image, (d) a running difference

image and (f) NRGF applied to (c). Figure 4.2 shows the same but for COR2 observations.

4.1.1 Image Processing for the Heliospheric Imager

In the case of HI, the images are dominated by the static F corona, and upon removal of

this stars, the HI can image down to a 13th magnitude star. The CME signal per pixel is

often comparable to the background and far smaller than the contribution from stars. Thus

the removal of the star field is critical for detecting CMEs far from the Sun. The exposure

times for HI1, HI2 observations are 1,200 s and 4,950 s respectively (Section 3.4.1.3). The

star field in the field-of-view of the instrument can be very well approximated as static over

this time period, but there will be a shift (∼1 pixel per image in HI1 and HI2) due to the

motion of the satellite. A standard running difference image would then be contaminated

with large signals due to this moving star field (see Figure 4.3(c) and Figure 4.4(c)). If the

offset between two subsequent images can be found, then the images can be shifted and

subtracted and only transient features will be left. Formally this can be defined as:

I (x, y)i = I (x, y)i − I (x+ α, y + β)i−1 (4.3)

where α and β are the x and y offsets due to the motion of the satellite. However, there is

a geometrical optical distortion in the HI images which makes this difficult. We developed

a method to approximate this offset. A region (512x512) is extracted from both images

and a local cross-correlation is performed in a running window (128x128) around these

sub-images. The average offset from this procedure is used to shift the image. In a similar

manner to the NRGF the HI images can be flattened to account for the radial falloff in

intensity. The NRGF cannot be directly used as the HI images only sample a small range

of φ. However, by summing down the columns of a HI image, and then median filtering

this with respect to time a pseudo NRGF can be derived which flattens the HI images as

shown in Figure 4.3 (d). Figure 4.4 (d) shows the results of this modified running difference
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4. DATA ANALYSIS AND TECHNIQUES

Figure 4.1: A COR1 observation from 08 November 2007 05:52UT. Different processing
steps are shown: (a) reduced data, (b) processed and standard background subtraction, (c)
additional background subtraction, (d) base difference, (e) running difference, and (f) NRGF
of (c).
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4.1 Image Processing

Figure 4.2: A COR2 observation from 09 November 2007 01:22UT. Different processing
steps are shown: (a) reduced data, (b) processed and standard background subtraction, (c)
additional background subtraction, (d) base difference, (e) running difference, and (f) NRGF
of (c).
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4. DATA ANALYSIS AND TECHNIQUES

on HI1 and HI2 observations. The effects of the distortion are especially clear in the HI2

images.

4.2 Three Dimensional Reconstruction

The concept of stereoscopy was first suggested by Wheatstone (1839). The reconstruction

of three dimensional (3D) information from images of an object observed from two different

perspectives is well studied and the general reconstruction methods are well developed.

The main technique used in this thesis is known as ‘tie-pointing’ and relies on the epipolar

constraint. This states that any feature identified on an epipolar line in one STEREO

image must lie along the same epipolar line in the other stereo image (Inhester, 2006). An

epipolar line is the projection of the epipolar plane (the plane containing the two observers

and the point P) in the stereo images (see Figure 4.5).

4.2.1 Tie-pointing

One possible implementation of this method of stereoscopy is outlined below. We implicitly

assume that two simultaneous observations of a feature (the point P; see top panel of

Figure 4.6) from two different perspectives are available. If the feature is identified in one

of the images (from A for example), the angles θAx and θAy (bottom panel Figure 4.6) can

be derived, and the only unknown is the depth of the feature or the distance along the

line-of-sight d (see bottom panel of Figure 4.6). One can arbitrarily pick two values for d

(d0, d1) thereby giving two sets of 3D coordinates
[
θAx , θ

A
y , d0

]
and

[
θAx , θ

A
y , d1

]
, which can

then be transformed into Heliocentric-Cartesian as described in Section 3.6.3.1

These coordinates (of the line-of-sight), as viewed from the second perspective, can

then be derived by reversing the transform, and the epipolar line can be over-plotted on

the second image. If the position of the same feature along this epipolar line can be found,

this gives all the information needed to complete the reconstruction. The same procedure

is carried out for this second point, selecting two values of d and transforming these into

the reconstruction coordinate system. Now the problem is reduced to finding the point of

intersection of two lines in 3D, which can be simplified to solving for the intersection point

of two lines in 2D in two planes, for example the x− y and x− z plane (see bottom panel

of Figure 4.6).

Due to the nature of the HI instruments, there are often only observations available

from one spacecraft as a result, an additional constraint is needed. In the HI FOV, the

CMEs are at large distances from the Sun so we assume that the CME propagates pseudo-

radially, continuing along the trajectory that it followed in the COR1/2 FOV. Based on this
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4.2 Three Dimensional Reconstruction

Figure 4.3: A HI1 observation from 10 November 2007 09:29UT. Different processing steps
are shown: (a) reduced data, (b) standard background subtraction, (c) running difference, (d)
‘radial’ filtered, (e) modified running difference (4.3), and (f) intensity histogram of (b) the
solid vertical lines show the thresholds used to display (b) and the dashed line is the mean of
image (b).
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Figure 4.4: A HI2 observation from 12 November 2007 06:10UT. Different processing steps
are shown: (a) reduced data, (b) standard background subtraction, (c) running difference and
(d) modified running difference (4.3).

assumption, we use the best fit of the trajectory COR1/2 data in the x− y (ecliptic) plane

and constrain the CME to propagate along this fit. This fit line is treated exactly the same

as the line-of-sight above. The equations are solved for the point of intersection between

this fit line and the observed line-of-sight, yielding the x, y position. The z coordinate

is then calculated by assuming two distances along the line-of-sight to find the equation

of the line with respect to x or y, and substituting in the relevant coordinate calculated

yields the corresponding z value.
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4.2 Three Dimensional Reconstruction

Figure 4.5: Orientation of epipolar planes in space and the respective epipolar lines in the
stereo images for two observers looking at the Sun (Inhester, 2006).

4.2.2 Elliptical Tie-pointing

The tie-pointing technique is best suited to study small features close to the Sun, such

as coronal loops (Aschwanden et al., 2008). When applied to study CMEs a number of

the assumptions do not hold. Firstly, as CMEs are large and curved the lines-of-sight

will not intersect upon it but ahead of it, see Figure 4.7 and Figure 4.8 (a). Also, due

to the motion of the CME and the Thomson scattering geometry, the same part of the

CME cannot be rigorously identified from both perspectives. Consequently CMEs cannot

be fully reconstructed by tie-pointing alone, though their position in 3D space can be

localised by the intersection of sight lines tangent to the CME front (de Koning et al.,

2009; Pizzo & Biesecker, 2004).

Characterising the CME front as an ellipse from both view points allows this localisation

to be carried out for a series of epipolar planes or slices. Each slice corresponds to a

quadrilateral in 3D. As the CME is known to be a curved object, an ellipse is inscribed in

the quadrilateral such that it is it tangent to each side (line-of-sight), giving an optimal
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4. DATA ANALYSIS AND TECHNIQUES

Figure 4.6: (top) 3D representation of the geometry of the observations with the lines-of-sight
(LOS) from the two spacecraft (solid), spacecraft Sun centre lines (dashed) and the point to be
reconstructed P. (bottom) Projection in the x− y plane showing the angles θAx and θBx , where
x corresponds to image pixel axis. The point P is found by solving the equations of the LOS
for their intercept. The same can be done in the x− z plane for θy.
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4.3 Drag Modeling

reconstruction of the CME front in that slice (Byrne et al., 2010). By repeating this for

a number of slices the entire CME can be reconstructed. Then, applying this method to

series of observations, allows the 3D reconstruction to be studied as a function of time.

For a more detailed discussion of this technique see the PhD thesis by Byrne (2010).

4.3 Drag Modeling

In Section 2.2.2 a number of possible drag models were shown and a generalised drag

equation (2.52) was written:

dvcme
dr

= αRR
−βR 1

vcme
(vsw − vcme)δ (4.4)

where vsw = f(R, v asymptotic
sw ). There are a number of solar wind models which could be

used in the drag model, for example the Parker solar wind as described in Section 1.1.3

but the one chosen for this work was based on coronagraphic measurements of blobs in the

solar wind (Sheeley et al., 1997):

vsw = v asymptotic
sw

√
1− e(R−2.8)/8.1. (4.5)

It should be clear that this is a non-linear ordinary differential equation and has no an-

alytical solutions. In oder to evaluate this equation, a numerical integration scheme was

used, 4th order Runge-Kutta (RK4). This method is outlined below:

y′ = f(t, y) where y(t0) = y0

[
y′ =

dy

dt

]
(4.6)

then the RK4 solution to this problem is:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (4.7)

tn+1 = tn + h (4.8)
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where yn+1 is the RK4 approximation at tn+1 and:

k1 = hf(tn, yn), (4.9)

k2 = hf(tn +
1

2
h, yn +

1

2
k1), (4.10)

k3 = hf(tn +
1

2
h, yn +

1

2
k2), (4.11)

k4 = hf(tn + h, yn + k3). (4.12)

The k are the changes in the y values estimated from the slope at the begining (k1),

midpoint (k2, k2) and end (k4), which are then averaged with greater weight given the

estimates at the midpoint. The RK4 method is a 4th order method so the accumulated

error is O(h4) while the error per step is O(h5). Figure 4.9 shows the results of this

numerical integration of (4.4) for a number of values of α and β in the both the quadratic

(δ = 2) and linear cases (δ = 1), as described in Section 2.2.2.

4.4 Bootstrap Technique

The bootstrap technique (Efron & Tibshirani, 1993) is part of a broader group of techniques

knows as resampling methods. These methods allow a series of ‘numerical’ experiments to

be carried on data already gathered. The basic idea is to take original data, F , consisting

of n independent and identically distributed (i.i.d.) points and resample it to obtain m

sub samples and m estimates of θ, the parameter(s) of interest.

F (X : x1, x2, . . . , xn) , θ →





F ∗1 (X : xi, xi+1, xj) θ
∗
1

F ∗2 (X : xi, xi+1, xj) θ
∗
2

...

F ∗m (X : xi, xi+1, xj) θ
∗
m

(4.13)

The simplest resampling method is known as the ‘jack-knife’. In this method, given a set

of observations from some distribution X = (x1, x2, x3, . . . , xn) each data point is in turn

removed from the set and the measurements of interest the mean and standard deviation

for example, are recalculated and stored. This allows n − 1 resamples to be computed.

The next resampling method is knows as the ‘m-out-of-n’ or ‘deleted-D jackknife’ where

m out of n data points are removed this allows
(
n
m

)
resamples to be carried out, however

caution must be taken to ensure m is not made too large. The methods outlined above are

generally applicable when the data is from a distribution, as the samples need to be i.i.d.
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However there are other methods which can be applied to non-i.i.d. data such as ‘cross

validation’. In ‘cross-validation’ the data is split up into roughly k equal parts for each of

the kth parts, fit all other parts and compute θ∗. Or, if testing a model, the model can be

fitted to the other k − 1 parts and then the prediction compared to the kth.

4.4.1 The Bootstrap

The bootstrap can be thought of as an extension to the jackknife though its mathematical

foundation and insight into the data are very different. Instead of removing m data points

we randomly sample, with replacement, from the original sample making a data set of the

same size. The bootstrap technique is outlined below

1. Collect n data points to form X = x1, x2, . . . , xn

2. Randomly resample with replacement n from X to form X∗ the bootstrap sample.

3. Compute parameters of interest θ∗

4. Repeat steps 1 and 2 N times

N is chosen to be very large 1,000 to 10,000 depending on the requirements.

4.4.2 Linear Regression

In linear regression the problem is generally to find the correct values of some predictor

to match the responses, for example the kinematic constants for a ball under parabolic

motion. The data sets for linear regression consist of two parts: the predictor ci and the

response yi, and together they can be written

xi = (ci, yi), (4.14)

where ci is a 1 × p vector ci = (ci1, ci2, . . . , cip). For a given set xi, the conditional

expectation given the predictor ci is

µi = E (yi|ci) (i = 1, 2, . . . , n) . (4.15)

The term ‘linear’ applies to the key assumption that the expectation value µi is a linear

combination of the components of the predictor ci or,

µi = ciβ =
10∑

j=1

cijβj . (4.16)
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β is the parameter vector or regression vector, β = (β1, β2, . . . , βp)
T , and the goal of

regression is to determine these values. Going back to a ball under parabolic motion, the

regression parameter could have the form β = (h0, v0, a0), and in this case the predictor

would be ci = (1, t, 1/2t2). This may seem to be nonlinear but again the linear term applies

to the form of the expectation value (a linear combination of ci) and the fact that is it a

quadratic function of t doesn’t matter.

Regression problems are usually expressed as:

yi = ci1β1 + ci2β2 + . . . cipβp + εi = ciβ + εi for i = 1, 2, . . . , n (4.17)

where εi are assumed to be errors from a random sample of a unknown distribution F with

a mean or expectation value of 0,

F → (ε1, ε2, . . . , εn) = ε where EF (ε) = 0. (4.18)

The goal is to estimate the parameter vector β from the pairs of (c1, y1), (c1, y1), . . . , (cn, yn).

If we assume a trivial value of b for β the residual squared error (RSE) can be found

RSE(b) =
n∑

i=1

(yi − cib)2. (4.19)

Finally the least-squares estimate of β, or the value of b that minimises the RSE giving,

β′ is

RSE(β′) = min
b

[
n∑

i=1

(yi − cib)2

]
. (4.20)

An extremely usefully consequence of the linear regression formulation is that we can write

it as a series of matrix operations. If we set a matrix C an n × p matrix with its ith row

ci (the design matrix), and let y be (yi, yi, . . . , yn)T , then we can write

CTCβ = CTy, (4.21)

which gives β′ as

β′ = (CTC)−1CTy. (4.22)
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4.4.3 Bootstrap Linear Regression

The model for linear regression has two components: the parameter vector β, and F the

probability distribution of the errors,

P = (β, F ) (4.23)

The general bootstrap algorithm outlined above requires that we estimate P , we have

least-squares estimates of β, β′ but no measure of F . If β was known we could directly

calculate the errors (or residuals) εi = yi − ciβ but we don’t know β. However we can get

an approximate error distribution using β′,

ε′i = yi − ciβ
′. (4.24)

The simplest approximation to F is the empirical distribution of ε′i, so F ′ is this distribution

with a probability of 1/n and each residual.

With our estimate of the error distribution F ′ we can now calculate P ′ = (β′, F ′) or

P ′ → x∗, which must be the same as P → x. To generate the x∗ we select a random

sample of bootstrap error terms

F ′ → (ε∗1, ε
∗
2, . . . , ε

∗
n) = ε∗, (4.25)

where each is ε∗ is a randomly drawn from ε′. The bootstrap responses are then generated

according to

y∗i = ciβ
′ + ε∗i (4.26)

notice that β′ is a constant for all data points. Finally, the bootstrap least-squares estimate

β′∗ is the b that minimises of the RSE of the bootstrap data,

n∑

i=1

(y∗i − ciβ
′)∗ = min

b

[
n∑

i=1

(y∗i − cib)

]
. (4.27)

Errors and confidence intervals may be constructed from the bootstrap distributions of the

of β∗.

It should be clear that there are two possible ways to use the bootstrap, with linear
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regression the xi = (ci, yi) pair in which case the bootstrap sample is:

x∗ = {(ci1 , yi1), (ci2 , yi2), . . . , (cin , yin)} (4.28)

or bootstrap the residuals in which case the bootstrap sample is:

x∗ =
{

(c1, c1β
′ + ε′i1), (c1, c1β

′ + ε′i2), . . . , (c1, c1β
′ + ε′in)

}
(4.29)

where i1, i2, . . . , in are random samples of the integers from 1 to n. The choice of which to

use depends on the problem at hand, but in the limit as n, the number of samples grows

large, both tend to the same result.

4.4.4 General Bootstrap fitting

Bootstrapping the residuals can also be applied in a broader manner in the following way:

1. Make an initial fit of a model y = f(x,θ) to the data yi (this need not be via

least-squares), and obtain fit parameters θ

2. Construct an empirical residual distribution ε′i = yi − f(x,θ′)

3. Construct abootstrap residual sample ε∗ by randomly sampling from the equally

weighted empirical distribution ε′.

4. Make a bootstrap data set y∗i = f(x,θ′) + ε∗

5. Fit a model to the bootstrap data y∗ = f(x,θ∗), and obtain bootstrap estimate of

θ, θ∗

6. Repeat steps 3-5 N times

Where the fitting of the model to the data can be carried out by any number of means.

With computational power of modern computers N is often chose to be very large, e.g.

10,000 – 100,000.
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observer 1
observer 2

observer 1
observer 2

projection
surfaces

observer 1
observer 2

Figure 1: Backprojection to reconstruct point-like, curve-like and surface-like objects to demonstrate the
different conditions of solvability.

2

Figure 4.7: A schematic of tie-pointing a curved 3D surface within the epipolar geometry.
As the lines-of-sight are tangent to different surfaces they may not insect upon it limiting the
accuracy of the reconstruction (Inhester, 2006).
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the W
ang-Sheeley-Arge m

odel). At large distances from
 the Sun, 

during this postulated drag-dom
inated epoch of CM

E propagation, 
the equation of m

otion can be cast in the following form
:   
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  ! is describes a CM
E of velocity  v  cm

e  , m
ass  M

  cm
e   and cross-sectional 

area  A  cm
e   propagating through a solar wind " ow of velocity  v  sw   

and density   ρ   sw  . ! e drag coe#  cient  C  D   is found to be of the order 
of unity for typical CM

E geom
etries 18 , whereas the density and 

area are expected to vary as power-law functions of distance  r . 
! us, we param

eterize the density and geom
etric variation of the 

CM
E and solar wind using a power law 43  to obtain   

 
d

d cm
e

cm
e

sw
cm

e
v

r
r

v
v

v
=

−
−

−
a

b
g

1
(

)
 

(2)

  where   γ   describes the drag regim
e, which can be either viscous 

(  γ      =    1) or aerodynam
ic (  γ      =    2), and   α   and   β   are constants prim

arily 
related to the cross-sectional area of the CM

E and the density ratio 
of the solar wind " ow to the CM

E (  ρ   sw   /   ρ   cm
e  ). ! e solar wind velocity 

is estim
ated from

 an em
pirical m

odel 44 . W
e determ

ine a theoretical 
estim

ate of the CM
E velocity as a function of distance by num

eri-
cally integrating  Equation (2)  using a fourth order Runge – Kutta 
schem

e and $ tting the result to the observed velocities from
  ~ 7 to 

46  R
!   . ! e initial CM

E height, CM
E velocity, asym

ptotic solar wind 
speed and   α  ,   β   and   γ   are obtained from

 a bootstrapping procedure 
that provides a $ nal best $ t to the observations and con$ dence 
intervals of the param

eters (see M
ethods section). Best-$ t values for 

  α   and   β   were found to be ( 4
55

3
27

2
30

.
. .

− +
  ) × 10     −    5  and  −

− +
2

02
0

95
1

21
.

. .
  , which 

agree with values found in previous m
odelling work 44 . ! e best-$ t 

value for the exponent of the velocity di' erence between CM
E and 

the solar wind,   γ  , was found to be  2
27

0
30

0
23

.
. .

− +
  , which is clear evidence 

that aerodynam
ic drag (  γ      =    2) functions during the propagation of 

the CM
E in interplanetary space. 

 ! e drag m
odel provides an asym

ptotic CM
E velocity of  

555
42 114

− +
     km

   s     −    1  when extrapolated to 1 AU, which predicts the CM
E 

to arrive  ~ 1 day before the Advanced Com
position Explorer (ACE)  

or W
IN

D
 spacecra(  detects it at the L1 point. W

e investigate this 
discrepancy by using our 3D

 reconstruction to sim
ulate the con-

tinued propagation of the CM
E from

 the Alfv é n radius ( ~ 21.5  R
!   ) 

to Earth using the EN
LIL with Cone M

odel 21  at NASA ’ s Com
m

u-
nity Coordinated M

odeling Center. EN
LIL is a tim

e-dependent 
3D

 m
agneto hydrodynam

ic code that m
odels CM

E propagation 
through interplanetary space. W

e use the height, velocity and width 
from

 our 3D
 reconstruction as initial conditions for the sim

ula-
tion, and $ nd that the CM

E is actually slowed to  ~ 342   km
   s     −    1  at 1 

AU. ! is is a result of its interaction with an upstream
, slow-speed, 

solar wind " ow at distances beyond 50  R
!   . ! is CM

E veloc-
ity is consistent with  in situ  m

easurem
ents of solar wind speed 

( ~ 330   km
   s     −    1 ) from

 the ACE and W
IN

D
 spacecra(  at L1. Track-

ing the peak density of the CM
E front from

 the EN
LIL sim

u-
lation gives an arrival tim

e at L1 of  ~ 08:09 U
T on 16 D

ecem
ber 

2008. Accounting for the o' set in CM
E front heights between 

our 3D
 reconstruction and EN

LIL sim
ulation at distances of 21.5 

 R
r

R
!

!
<

<
46

   gives an arrival tim
e in the range of 08:09 – 13:20 

U
T on 16 D

ecem
ber 2008. ! is prediction interval agrees well 

with the earliest derived arrival tim
es of the CM

E front plasm
a 

pileup ahead of the m
agnetic cloud " ux rope from

 the  in situ  data 
of both ACE and W

IN
D

 ( Fig. 4 ) before its subsequent im
pact on 

Earth 34,36 .    

 D
iscussion 

 Since its launch, the dynam
ic twin viewpoints of STEREO

 have 
enabled studies of the true propagation of CM

Es in 3D
 space. O

ur 
new elliptical tie-pointing technique uses the curvature of the CM

E 
front as a necessary third constraint on the two viewpoints to build 
an optim

um
 3D

 reconstruction of the front. H
ere, the technique is 

applied to an Earth-directed CM
E, to reveal num

erous forces that 
take e' ect throughout its propagation. 
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pointing technique w
ithin epipolar planes containing the tw

o STEREO
 spacecraft 27 . For exam
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M
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 and B. ( a ) Illustrates how
 the resulting four sight lines intersect in 3D

 space 
to defi ne a quadrilateral that constrains the C

M
E front in that plane 56,57 . Inscribing an ellipse w

ithin the quadrilateral such that it is tangent to each sight 
line 58,59  provides a slice through the C

M
E that m

atches the observations from
 each spacecraft. ( b ) Illustrates how
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 the epipolar slices. A

s the positions and curvatures of these inscribed ellipses are constrained by the characterized 
curvature of the C

M
E fronts in the stereoscopic im

age pair, the m
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M
E front is considered to be an optim
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 reconstruction of the true C
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E front. 

( c ) Illustrates how
 this is repeated for every fram

e of the eruption to build the reconstruction as a function of tim
e and view

 the changes to the C
M

E 
front as it propagates in 3D
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4.4 Bootstrap Technique

Figure 4.9: The results of numerically integrating the drag equation using input values for a
number of possible scenarios.
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Chapter 5

CME Trajectories in Three

Dimensions

Before STEREO, single view-point observations obscured the true trajectories of CMEs.

The STEREO mission provides two perspective views of CMEs in the inner Heliosphere.

This, for the first time, enables the reconstruction of the 3D trajectories of CMEs in a range

of heliocentric elongations (∼2 – 88 degrees). In this work, a number of CMEs, which were

simultaneously observed by COR1 and COR2 from both STEREO satellites, were selected.

These observations were then used to derive the CMEs trajectories in 3D out to ∼15 R�.

The reconstructions using COR1 and 2 observations support a radial propagation model.

Assuming pseudo-radial propagation at large distances from the Sun, the CMEs 3D posi-

tions were extrapolated into the HI field-of-view. This enables the 3D trajectories of CMEs

to be reconstructed from ∼1.4 – 240 R�. It was demonstrated that CMEs undergo accel-

eration in the inner Heliosphere; CMEs slower that the solar wind are accelerated, while

CMEs faster than the solar wind are decelerated, both tending to the solar wind velocity.

This effect will have a significant impact on the forecasting of CME arrival times at 1 AU

and hence space weather. This chapter is based on work published in Maloney, Gallagher

& McAteer, Solar Physics, 2009.
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5.1 Introduction

Prior to the launch of STEREO, CMEs could only be routinely observed in white light up

to 32 R� in the plane-of-sky using the SOHO LASCO (Section 3.3.2), and rarely to Earth

using the Solar Mass Ejection Imager (SMEI) instrument (Howard et al., 2007; Jackson

et al., 2004). CME related shocks are observed in radio data, but rely on density models to

relate the observations to heights in the corona, and provide no information on the direction

of propagation. Some work has been done using radio observations from two observatories

to reconstruct 3D positions from radio triangulation (Reiner et al., 1998, 2007). Another

possibility to track CMEs over large distances is during fortunate quadrature observations

such as SOHO-Sun-Ulysses (Bemporad et al., 2003). CMEs have also been tracked out into

the Heliosphere when they interact with various spacecraft such as Wind, ACE, Ulysses,

Cassini, Voyager 1 and 2 (Gopalswamy et al., 2005b; Lario et al., 2005; Richardson et al.,

2005, and references therein).

The identification of events over interplanetary time/distance scales when these are

not available requires the comparison of coronagraph observations with in situ data. The

relationship between images and the in situ data is complex: coronagraphs image solar

radiation which has been Thomson scattered by electrons in the CME and in-situ mea-

surements provide the actual densities and magnetic fields of a track through the CME.

All of these problems are compounded when multiple events occur in a short time frame.

In an attempt to overcome some of these problems, statistical studies have been carried

out to try to extract physics from the observations, however these types of study can miss

vital event-to-event variations (Gopalswamy et al., 2005a). In a recent paper Owens &

Cargill (2004), compared a number of empirical models to predict the arrival time of

CMEs at 1 AU. They cited the main sources of error as projection effects, assuming that

solar wind conditions are the same for all CMEs, and the determination of the point of

intersection of the CME with the spacecraft with respect to in situ measurements.

Coronagraph observations are subject to projection effects (Section 3.1.2) which are

one of the leading sources of uncertainty in determining kinematics (Howard et al., 2008b).

Other methods of deriving height from observations such as the “point-P”, “fixed-φ”, and

“harmonic mean” have been used, but a recently study of these methods on simulated data

shows the problems associated with them. Figure 5.1 shows the height, error in the height,

and velocities derived from synthetic observations from the various methods, from which

it is clear none of them accurately produce the CME kinematics.

Various techniques have been developed to overcome some of these limitations such as

tomographic techniques which use the fact that the observations are taken in a rotating
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3482 N. Lugaz et al.: Deriving CME radial distances from elongation angles

Point-P
Fixed-φ

90°
80°
70°
Thomson Sphere

Harmonic Mean

Point-P - 90°
Fixed-φ − 90°

Point -P - Thomson Sphere
Harmonic Mean - 90°

Point-P
Fixed-φ

90°
Harmonic Mean

Fig. 2. Position (top), error (center) and speed (bottom) of the sec-
ond CME front at PA 90 from the simulation and as derived from
the synthetic SECCHI images with the different methods.

RFφ = dSTEREO
sin �

sin(� + φ)
,

where φ is the angle between the Sun-observer line and the
trajectory of the particle. The position obtained from this ap-
proximation is noted as RFφ in the left panel of Fig. 1. Obvi-
ously, this approximation is well adapted for CIRs (Rouil-
lard et al., 2008) and small “blobs” (Sheeley et al., 2008,

2009; Rouillard et al., 2009). However, since it assumes that
what is tracked is a single point, the method is expected to
work poorly for wide CMEs. The equation can be fitted for
φ (assuming no or constant acceleration), giving the origin
of the transient (Rouillard et al., 2009) and/or the speed. The
main limitation of this method is that it completely ignores
the CME geometry. It also does not take into account the
angle dependency of the Thomson scattering.

3.2 Comparison with 3-D simulated data

We test the two methods with our synthetic line-of-sight pro-
cedure and compare the resulting positions to the 3-D simu-
lation for the second CME (25 January CME) at PA 90. This
work is the continuation of Sect. 4.3 from Lugaz et al. (2009)
and its associated Fig. 6. We derive the elongation angles and
radial distances of the CME front as follows: for the line-of-
sight images, we use elongation angles measured at the point
of maximum brightness at PA 90. For the numerical simula-
tion, we use the position of maximum density along different
radial trajectories (at longitudes 90◦, 80◦ and 70◦ east of the
Sun-Earth line) and on the Thomson sphere, all of these in
the ecliptic plane (PA 90). Results are shown in the top panel
of Fig. 2.
Below approximately 100R⊙, the two methods give sim-

ilar results differing by less than 10%. The Fφ method
gives slightly better results when compared to the nose of
the CME; the PP approximation works best if one assumes
it tracks the intersection of the CME front with the Thom-
son sphere (see middle panel of Fig. 2). Above 100R⊙,
the two methods give increasingly different results. Com-
pared to the simulation results along all three radial trajec-
tories presented here, the PP approximation results in a too
large deceleration of the CME, whereas the Fφ results in an
apparent acceleration. This acceleration appears unphysical,
since CMEs faster than the ambient solar wind are expected
to monotonously decelerate due to a “drag” force. Simi-
lar results have been reported, most recently by Wood et al.
(2009). The middle panel of Fig. 2 shows the errors between
the position of the CME front at the limb and the position
from each of the two methods, as well as the error between
the PP position and the intersection of the CME front and
the Thomson sphere. Although the errors are fairly low, they
can result in large errors in the velocity and acceleration of
the CME (see bottom panel of Fig. 2). These methods can
provide an average speed of the CME front within the first
100R⊙, but they cannot be relied upon to study complex
physical mechanisms such as CME-CME interaction.

4 Improved method to determine CME position

Based on the relatively poor results for the PP and Fφ meth-
ods, we propose another analytical method based on simple
geometric considerations and a simple model of CMEs. We

Ann. Geophys., 27, 3479–3488, 2009 www.ann-geophys.net/27/3479/2009/

Figure 5.1: Position (top), error (center) and speed (bottom) of a simulated CME and as
derived from the synthetic SECCHI images from a 3D MHD simulation with the different
methods (Lugaz et al., 2009).

reference frame to reconstruct the 3D nature of the corona (at the loss of time resolution;

Frazin (2000)). Another possibility is the polarimetric technique of Moran & Davila (2004).

Other methods that use a priori knowledge of the system can also be use to infer the 3D

position, such as pre-assuming the CME geometry. This type of analysis, known as forward

modelling, has been applied both to single view point and stereoscopic observations. In

the later case, the model parameters are modified in either a semi-automatic or manual

fashion to simultaneously fit the observations from both perspectives (Boursier et al., 2009;

Thernisien et al., 2009).

Stereoscopy has been used in astrophysics for a long time, with one of the earliest ap-

plications being the determination of the distances to near-by stars using parallax. Using

137



5. CME TRAJECTORIES IN THREE DIMENSIONS

stereoscopy techniques, the reconstruction of the 3D coordinates of features identified in

images from two vantage points is a well-defined linear problem (Inhester, 2006). The

biggest challenge in using this method is the identification and matching of features in the

stereo image pairs. Stereoscopy has been successfully applied to on-disk features such as

coronal loops (Aschwanden et al., 2008) and extended to prominences and CMEs (Liewer

et al., 2009; Mierla et al., 2008; Srivastava et al., 2009; Temmer et al., 2008; Thompson,

2011). Also, assuming CMEs travel at constant velocity at large distances from the Sun,

the trajectory can be derived by inverting the equation for the fixed-φ case (Sheeley et al.,

2008). For a recent review of the methods which have been applied to coronagraph obser-

vations see Mierla et al. (2010).

In order to better understand the acceleration and propagation of CMEs the true 3D

trajectory needs to be known to facilitate comparison between observations and theory.

From a space weather perspective, knowing the 3D trajectory will lead directly to better

predictions and also indirectly through a better understanding of CME acceleration and

propagation.

In this chapter the trajectories four CMEs are reconstructed in 3D. The observations

are presented in Section 5.2. The true 3D trajectories of the four events are presented

Section 5.3. Section 5.4 contains a discussion of the results, the conclusions drawn, and

future work.

5.2 Observations

The dates of the observations are 2007 November 18, 2008 March 25, 2008 April 9 and

finally 2008 April 10. The CME catalogue hosted at the Coordinated Data Analysis Work-

shop (CDAW1; Gopalswamy et al. (2009)) provided heights derived from SOHO/LASCO

observations which were deprojected and used to corroborate the accuracy of the 3D re-

construction. Figures 5.2, 5.3, 5.4, 5.5 show the reduced and processed observation from

COR1, COR2, HI1 and HI2.

5.2.1 Uncertainties in the Reconstructed Heights

In order to compare our results to theory we need to have an estimate of the uncertainties

in our reconstruction. We use a statistical approach to find the spread of the data which

we can then use as an estimate of the uncertainty. The 3D height data is de-trended with

a third order polynomial and the moments of the distribution of the residuals are then

1http://cdaw.gsfc.nasa.gov/CME list
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Figure 3 Sample images from
8 – 13 October 2007 event.
(a) COR1 Behind 13:45 UT.
(b) COR1 Ahead 13:45 UT.
(c) COR2 Behind 22:23 UT.
(d) COR2 Ahead 22:22 UT.
(e) HI1 Behind 10 October 2007
15:29 UT. (f) HI2 Behind 13
October 2007 04:10 UT. The Sun
is to the left in both of the HI
images.

loop-like features in COR2 A, HI1 B and HI 2 B (see Figure 3) apparent in movies of the
event.

4.2. Event 2: 25 – 28 March 2008

The second event was first observed on 25 March 2008 at 18:55 UT in both COR1 A and B
off the east limb, the last data point used was observed at 02:09 UT on 27 March 2008. The
CME was well observed in COR1 A and B but was somewhat faint and diffuse in COR2.
The CME launch angle in the x – y plane was found to be −74◦, which corresponds to a
front side event, while the angle with respect to the ecliptic plane was −22◦ (see Figure 8).
The velocity in the COR2 FOV as viewed from A was found to be 863 km s−1, from B,
1010 km s−1 and from the 3-D reconstruction, 1020 km s−1. The velocity over the entire
event was found to be 478 km s−1. The height was tracked from 1.9 – 139.7 R# with an
estimated error of 0.3 R# in HI1 and 0.6 R# in HI2. There were not enough data points in
the COR1/2 FOV to estimate the error. The morphologies from both perspectives are very
similar. A nearly circular profile consisting of one faint loop-like structure which propagates
all the way out into the COR 2 FOV (see Figure 4). In the HI1 FOV, there appears to be a
second loop-like feature behind the main front which is expanding at a similar rate as the
main front. The CME is tracked until about half way across the HI2 FOV before it became

Figure 5.2: Sample observations from 2007 October 08-13 event from: (a) COR1 Behind
13:45 UT, (b) COR1 Ahead 13:45 UT, (c) COR2 Behind 22:23 UT, (d) COR2 Ahead 22:22 UT,
(e) HI1 Behind 2007-10-10 15:29 UT, (f) HI2 Behind 2007-10-13 04:10 UT.
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Figure 4 Sample images from
the 25 – 28 March 2008 event.
(a) COR1 Behind 19:15.
(b) COR1 Ahead 19:15 UT.
(c) COR2 Behind 20:22 UT.
(d) COR2 Ahead 20:22 UT.
(e) HI1 Behind 26 March 2008
06:09 UT. (f) HI2 Behind 27
March 2008 14:09 UT. The Sun
is to the right in both of the HI
images.

Table 1 The velocities derived for the events using a 2-D (plane-of-sky assumption) and 3-D data. The
COR2 velocities are calculated using the first and last data point in the COR2 FOV while the for the average
event velocity the first and last data points from the entire event were used.

Event Date COR2 Velocities (km s−1) Event 〈V 〉 (km s−1)

A B 3-D 3-D

1 08 – 13 October 2007 191 ± 6 157 ± 6 217 ± 6 420 ± 9

2 25 – 28 March 2008 863 ± 39 1010 ± 39 1020 ± 39 478 ± 20

3 09 – 10 April 2008 505 ± 58 513 ± 58 542 ± 58 300 ± 8

4 09 – 13 April 2008 110 ± 23 218 ± 23 189 ± 23 317 ± 12

too difficult to identify. The second loop-like structure could be associated with a second
flux rope or perhaps prominence material.

4.3. Event 3: 9 – 10 April 2008

This event was first observed on 9 April 2008 in both COR1 A and B at 10:05 UT off the
south west limb (see Figure 5). The last data point was observed at 15:29 UT on the 10

Figure 5.3: Sample observations from 2008 March 25-28 event from: (a) COR1 Behind 19:15,
(b) COR1 Ahead 19:15 UT, (c) COR2 Behind 22:22 UT, (d) COR2 Ahead 22:22 UT, (e) HI1
Ahead 2008-03-26 06:09 UT, (f) HI2 Ahead 2008-03-27 14:09 UT.
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Figure 5 Sample images from
the 9 – 10 April 2008 event.
(a) COR1 Behind 11:25 UT.
(b) COR1 Ahead 11:25 UT.
(c) COR2 Behind 13:22.
(d) COR2 Ahead 13:22 UT.
(e) HI1 Behind 10 April 2008
05:29 UT. The Sun is to the left
in the HI image.

April 2008 in HI1 B. The CME was well observed in A and B images from both COR1
and COR2. The CME launch angle in the x – y plane was found to be −71◦, which cor-
responds to a front side event, while out of the ecliptic plane −60◦. Due to the large out
of ecliptic angle the CME does not pass through the FOV of HI2 B. The velocity in the
COR2 FOV as viewed from A was found to be 505 km s−1, from B, 513 km s−1 and from
the 3-D reconstruction, 542 km s−1. The average velocity over the entire event was found to
be 300 km s−1. The height was tracked from 1.9 – 50.4 R# with an estimated error of 0.5 R#
in HI1. There were not enough data points in the COR1/2 to estimate the errors. The CME
appears to be narrower in COR1 A than in COR1 B. When the CME enters the COR2 FOV
it appears the same size in A and B (see Figure 5). The CME has a more elliptical shape in
HI1 and continues to propagate at a steep angle. There is no obvious trend of the trajectory
back towards the ecliptic plane which one may have expected (see Figure 9).

4.4. Event 4: 9 – 13 April 2008

This event was first observed off the east limb on the 9 April 2008 at 15:05 UT by both
COR1 A and B instruments (see Figure 6). The last data point was observed by HI2 A at
00:09 UT on 13 April 2008. The CME was extremely faint in both A and B COR1 but a
small number of data points were able to be recorded. The CME was reasonably clear in

Figure 5.4: Sample observations from 2008 April 09-10 event from: (a) COR1 Behind
11:25 UT, (b) COR1 Ahead 11:25 UT, (c) COR2 Behind 13:22, (d) COR2 Ahead 13:22 UT, (e)
HI1 Behind 2008-04-10 05:29 UT.
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Figure 6 Sample images from
9 – 13 April 2008 event.
(a) COR1 Behind 15:05 UT.
(b) COR1 Ahead 15:05 UT.
(c) COR2 Behind 23:22 UT.
(d) COR2 Ahead 23:22 UT.
(e) HI1 Behind 11 April 2008
09:29 UT, (f) HI2 Behind 12
April 2008 18:09 UT. The Sun is
to the right in both of the HI
images.

COR2 A but very faint in B. As a result, the CME front was not visible and for this event
a dark linear feature was tracked instead (see Figure 6). The CME launch angle in the x – y

plane was found to be −51◦ which corresponds to a front side event, while out of the ecliptic
plane 16◦ (see Figure 10). The velocity in the COR2 FOV as viewed from A was found to be
110 km s−1, from B, 218 km s−1 and from the 3-D reconstruction, 189 km s−1. The average
velocity over the entire event was found to be 317 km s−1. The CME’s height was tracked
from 2.2 – 128.0 R# with an estimated error of 0.8 R# in HI1 and 1.1 R# in HI2 (there were
not enough data points in the COR1/2 to estimate the errors). The CME appears very narrow
in COR2 B images which could be a loop-like structure with it’s axis nearly perpendicular
to the plane of sky. The CME has an elliptical shape in HI1 with some material in the centre
(see Figure 6). This shape is held into HI2 where the CME is lost as it crosses in front of the
Milky Way (where the background subtraction technique did not perform well).

5. Discussion and Conclusions

We have reconstructed the 3-D trajectories of CMEs in the inner Heliosphere using
STEREO/SECCHI observations. These 3-D reconstructions give the true positions of the
CMEs studied in the range between ∼2 – 240 R# as a function of time. The COR1/2 data

Figure 5.5: Sample observations from 2008 April 09-13 event from: (a) COR1 Behind
15:05 UT, (b) COR1 Ahead 15:05 UT, (c) COR2 Behind 23:22 UT, (d) COR2 Ahead 23:22 UT,
(e) HI1 Behind 2008-04-11 09:29 UT, (f) HI2 Behind 2008-04-12 18:09 UT.
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calculated. The standard deviation (σ) of the distribution is taken as a good measure of

the uncertainty. As a check on the statistics, the number of data points greater than one σ

from the mean were calculated and compared to the 31.8% which we expect if the data is

normally distributed. If the number of points in the individual fields-of-view are too small

this approach will not work. In Figure 5.6 we show data from the 2007 October 09 event

for COR2 and HI2 as examples. The top plots show the height-time data as well as the

best fit line using a 3rd order polynomial. The bottom plots show the de-trended data,

mean, and one standard deviation (σ) either side of the mean. The value of the 1σ and

the number of points greater than 1σ from the mean are indicated on the plots.

5.3 Results

The observed apex of each CME was identified using point and click methods on the data.

These points were then used to calculate the 3D coordinates and thereby plot the 3D

trajectories. From these we were able to calculate the CMEs launch angles with respect to

the ecliptic plane, and in the ecliptic plane with respect to the Sun-Earth line. To highlight

the advantages these new data give, we estimated the velocity of the CME as viewed

from A and B using a plane-of-sky assumption, as well as from the 3D reconstruction.

These estimates were calculated using the first and last data point in the COR2 FOV and

v = ∆h/∆ t where h and t are the heights and times of the first and last observations. We

also estimated the velocities on larger time/distance scales by using the first COR2 data

point and the last data point (from HI1 or HI2) in the same manner.

Using the derived launch angles observations from other spacecraft can be de-projected

and compared to the heights derived from the 3D reconstruction. Figure 5.7 shows one

such comparison of the deprojected heights derived from LASCO C2 and C3 taken from

the CDAW catalogue and STEREO COR2 and HI1. Within errors (approximately the

symbol size) the reconstructed and de-projected heights agree in the range of the range 5 –

18R�. This demonstrates the CME reconstruction method is suitable and gives accurate

CME height and launch angles.

5.3.1 Event 1: 2007 October 08–13

This event was first observed in COR1 B on 2007 October 8 at 10:15 UT off the western

limb, but was extremely faint in images from both spacecraft so the COR1 data were not

used for the 3D reconstruction. The first data point used for the 3D reconstruction was

observed at 15:52 UT on the same day by COR2 A and B instruments, the last data point

was observed at 04:01 UT on 2007 October 13 by the HI 2 B instrument. From the 3D
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Figure 2 Top row: Height versus time data for the 8 – 13 October 2007 event in the COR2 and HI2 FOV,
the line is the best fit to the data with a 3rd order polynomial. Bottom row: The de-trended data. The standard
deviation σ and the percentage of points out side of a one σ error are shown. The dashed lines are plotted at
±1σ .

for the 3-D reconstruction (see Figure 3). The first data point used for the 3-D reconstruction
was observed at 15:52 UT on the same day by COR2 A and B instruments, the last data point
was observed at 04:10 UT on 13 October 2007 by the HI 2 B instrument. From the 3-D data,
the launch angle in the x – y plane was found to be 56◦ (where 0◦ corresponds to an Earth
directed CME and 90◦ to a CME off the western limb), thus this was a front side event (see
Figure 7). The CME also had an out of ecliptic component of 11◦ (where 0◦ corresponds to
in ecliptic while 90◦ corresponds to solar north). The velocity in the COR2 FOV as viewed
from A was found to be 191 km s−1, from B, 157 km s−1, and from the 3-D reconstruction,
217 km s−1. The average velocity over the entire event was found to be 420 km s−1. The true
height was tracked from 5.7 – 239.4 R# with an estimated error of 0.15 R#, 0.25 R# and
2 R# in COR2, HI1 and HI2 respectively. The morphology evolves from a nearly circular
loop-like structure in COR1 B and COR2 A and B to a elliptical structure with much larger
extent in the vertical than the horizontal direction in HI1 (see Figure 3). In HI2, the front
evolves from nearly linear to a concave front where the wings/flank of the CME are ahead
of what was originally the CME apex (see Figure 3). There is some indication of a multiple

Figure 5.6: Height-time plots for the 2007 October 09 event in the COR2 and HI2 FOV, the
line is the best fit to the data with a 3rd order polynomial (top row). The de-trended data,
standard deviation σ and the percentage of points out side of a one σ error (bottom row). The
dashed lines are plotted at ± 1σ from the mean (Maloney et al., 2009).

data, the launch angle in the x-y plane was found to be 56◦ (where 0◦ corresponds to an

Earth-directed CME, and 90◦ to a CME off the western limb), thus this was a front side

event (see Figure 5.8). The CME also had an out of ecliptic component of 11◦ (where 0◦

corresponds to in-ecliptic while 90◦ corresponds to Solar North). The velocity seen from A

was found to be 190 km s−1, from B 157 km s−1, and from the 3D reconstruction 216 km s−1.

The mean velocity over the entire event was found to be 430 km s−1. The CMEs true height

was tracked from 5.7 – 239.4 R� (Figure 5.6, top right) with an estimated error of 0.15 R�,

0.25 R� (Figure 5.6, bottom left) and 2 R� (Figure 5.6, bottom right) in COR2, HI1 and
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Figure 5.7: STEREO 3D CME Height from COR2 and HI1 and LASCO CDAW deprojected
height using the propagation angle derived (from the 3D reconstruction) for the CME. The
x-axis is the time of day in hours.

HI2 respectively. The CMEs morphology evolves from a nearly circular loop in COR1 B

and COR2 A and B, to an elliptical structure with much larger extent in the vertical than

the horizontal direction in HI1 (see Figure 5.2). In HI2, the front evolves from nearly linear

to a concave front where the wings/flank of the CME are ahead of what was the CME

apex (see Figure 5.2). There is some indication of a multiple loop CME in COR2 A, HI1

B, and HI 2 B (see Figure 5.2).

5.3.2 Event 2: 2008 March 25-27

The second event was first observed on 2008 March 25 at 18:55 UT in both COR1 A and

B off the eastern limb. The last data point used was observed at 02:09 UT on 2008 March

27. The CME was well observed in A and B COR1 but was somewhat faint and diffuse in

COR2. The CME launch angle in the x-y plane was found to be −74◦ which corresponds

to a front-side event, while the angle with respect to the ecliptic plane was −22◦ (see

Figure 5.9). The velocity from A was found to be 863 km s−1, from B 1009 km s−1, and

from the 3D reconstruction 1020 km s−1. The velocity over the entire event was found to

be 494 km s−1. The CMEs height was tracked from 1.9 – 139.7 R� with an estimated error

of 0.3 R� in HI1, and 0.6 R� in HI2. There were not enough data points in the COR1/2

FOV to estimate the error. The morphologies from both perspectives are very similar a

nearly circular profile consisting of one faint loop which propagates all the way out into

the COR 2 FOV (see Figure 5.3). In the HI1 FOV there appears to be a second loop-like

feature behind the main front which is expanding at a similar rate as the main front. The
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Figure 5.8: CME trajectory for the 2007 October 08-13 event (Figure 5.2): Cut in the x-
y plane (top left), cut in the y-z plane (top right), cut in the x-z plane (bottom left), 3D
trajectory (bottom right) from Maloney et al. (2009).

CME is tracked until about halfway across the HI2 FOV before it becomes too difficult

to identify. The second loop-like structure could be associated with a second flux rope, or

perhaps prominence material.

5.3.3 Event 3: 2008 April 09–10

This event was first observed on 2008 April 08 in both COR1 A and B at 10:05 off the

western limb toward the South. The last data point was observed at 15:29 UT on the 2008

April 10 in HI1 B. The CME is well observed in A and B images from both COR1 and

COR2. Due to the large out-of-ecliptic angle the CME does not pass through the FOV of

HI2 B. The CME launch angle in the x-y plane was found to be −71◦ which corresponds to
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Figure 5.9: CME trajectory for the 2008 March 25-27 event (Figure 5.3): cut in the x-y plane
(top left), cut in the y-z plane (top right), cut in the x-z plane (bottom left), 3D trajectory
(bottom right) from Maloney et al. (2009).

a front side event, while the out-of- ecliptic plane angle was −60◦. The velocity from A was

found to be 504 km s−1, from B 513 km s−1, and from the 3D reconstruction 542 km s−1. The

velocity over the entire event was found to be 354 km s−1. The CMEs height was tracked

from 1.9 – 50.4 R� with an estimated error of 0.5 R� in HI1. There were not enough data

points in the COR1/2 to estimate the errors. The CME appears to be narrower in COR1

A than in COR1 B. When the CME enters the COR2 FOV it appears the same size in

A and B (see Figure 5.4). The CME has a more elliptical shape in HI1 and continues to

propagate at a steep angle. There is no obvious trend of the trajectory back towards the

ecliptic plane, which one may have expected (see Figure 5.10).
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Figure 5.10: CME trajectory for the 2008 April 09–10 event (Figure 5.4): cut in the x-y plane
(top left), cut in the y-z plane (top right), cut in the x-z plane (bottom left), 3D trajectory
(bottom right) from Maloney et al. (2009).

5.3.4 Event 4: 2008 April 09–13

This event was first observed off the eastern limb on the 2007 October 9 at 15:05 UT by

both COR1 instruments. The last data point was observed by HI2 A at 00:09 UT on 2008

April 13. The CME was extremely faint in both A and B COR1, but a small number of

data points were able to be recorded. The CME was reasonably clear in COR2 A, but very

faint in B. As a result the CME front was not visible and for this event a dark linear feature

was tracked instead. The CME launch angle in the x-y plane was found to be −51◦ which

corresponds to a front-side event, while the out-of-ecliptic angle was 16◦ (see Figure 5.11).

The velocity from A was found to be 109 km s−1, from B 217 km s−1, and from the 3D

reconstruction 189 km s−1. The velocity over the entire event was found to be 338 km s−1.
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Figure 5.11: CME trajectory for the 2008 April 09–13 event (Figure 5.5): cut in the x-y plane
(top left), cut in the y-z plane (top right), cut in the x-z plane (bottom left), 3D trajectory
(bottom right).

The CMEs height was tracked from 2.2 – 128.0 R� with an estimated error of 0.8 R� in

HI1 and 1.1 R� in HI2 (there were not enough data points in the COR1/2 to estimate the

errors). The CME appears very narrow in COR2 B images, and could be a loop structure

with its axis nearly perpendicular to the plane of sky. The CME has an elliptical shape in

HI1 with some material in the centre (see Figure 5.5). This shape is held into HI2 where

the CME is lost as it crosses in front of the Milk Way, where the background subtraction

technique does not work as well.
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5.4 Discussion and Conclusions

We have shown it is possible to reconstruct the 3D trajectories of CMEs in the inner He-

liosphere using STEREO/SECCHI observations. These 3D reconstructions give the true

position of the CMEs studied in the range between ∼2–240 R� as a function of time. The

COR1/2 data indicates that a radial propagation model is appropriate once the CME is

above a few solar radii. This is in agreement with what we expect, as the forces acting on

CMEs fall off steeply with increasing radius (especially forces which would act perpendic-

ular to the propagation direction in the ecliptic). We have also shown that the velocities

that would be derived from either of the spacecraft alone can be very different to that of

the 3D velocity. Also we have shown that CMEs do undergo acceleration in the Heliosphere

as the velocities in the COR2 FOV can be very different to those calculated using the first

and last data points. The reconstructions can also be of significant value for space weather

forecasting. Using an empirical formula such as used in Gopalswamy et al. (2005a) we can

try and estimate the arrival time of these CMEs at 1 AU. The arrival time of a CME at

one 1 AU is given by:

τ =
−U +

√
U2 − 2ad

a
(5.1)

where

a =
V (1 AU)− U

τ
(5.2)

with V (1 AU) the velocity at 1 AU, U the velocity in low corona, τ the time between the

two measurements, and d in this case 1 AU. Now as we have no in-situ data at 1 AU we

use the fact that in all the events the CMEs have tended towards a typical solar wind

value. This should be a good proxy for the velocity at 1 AU. Using the 3D velocity and the

velocity that differs the most, we can make estimates of the CME arrival time τ . For the

first event τ was calculated to be 5.39 days using the velocity derived from the B spacecraft,

and 5.11 day from the 3D velocity. The difference between the two calculated arrival times

for the events are ∆τ =0.28 days, ∆τ =0.39 days, ∆τ =0.17 days, and ∆τ =0.10 days for

the four events respectively. Unfortunately, as none of the CMEs were detected in-situ

near 1 AU we can not tell if these differences correspond to improvements or not. Another

major advantage is the ability to predict if the nose or flank of the CME will interact with

Earth –this was identified as one of the major sources of error in Owens & Cargill (2004).

The geo-effectiveness will be affected by which part of the CME interacts with the Earth,

and also the arrival times will be affected as the CME flank should take longer to arrive

at Earth.

There are a number of outstanding issues with the reconstructions. Some of these are
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the results of the reconstruction method, while others are related to the data used or its

interpretation. The stereoscopy method requires that we can identify the same feature in

both images and this is extremely difficult in some cases as the CME is very faint or has

a very different appearance from each spacecraft. For example, COR1 observations for

the first event were so faint the CME could not be identified in the A images (se Figure

5.2), and in both the third and fourth events the identification of the same feature was

extremely difficult as the CME has a different appearance in each image (see Figures 5.4

and 5.5). This is evident in the reconstructions as they are less contiguous, and there

are large changes in the CME trajectory which do not make physical sense as there is no

known source for such large forces out in the Heliosphere.

The different sensitivities and light rejection levels of the different instruments mean

the CME may appear bigger or smaller just due to instrumental effects. It is believed that

the discontinuities of the first event are due to this type of effect. Also as the front of the

CME imaged is a line-of-sight integration through the CME (flux rope or magnetic bubble),

the front seen from each spacecraft will be different. This is especially important in the HI

FOV as CMEs can expand up to large sizes and we only have one point of view, but will

also have an effect in COR1/2. This means the positions, and thus heights derived, will

always be an upper limit on the actual values. If a model shape for CMEs is used – such

as an ellipse or circle – we can estimate the size of this effect. A CME which passes one of

the spacecraft taking in situ measurements would allow a comparison of the reconstructed

CME path and the actual CME path and provide a welcome test of the methods.

A number of interesting observations arise from these data, such as the possible multi-

loop nature of two of the CMEs, the complex structure seen at the rear of the CMEs

(especially in HI1), and finally the distortion of the CME front in Event 1. Firstly events

1 and 2 show possible multi-loop structures (see Figures 5.2 and 5.3): these could be

attributed to a second flux rope or possibly due to prominence material. These features

are only visible because of the unique features of the HI1 and HI2 instruments. Secondly,

most of the events show complex structure at the rear of the CME. This is very apparent

in Figures 5.2, 5.4 and 5.5. This type of structure could be interpreted as the rear part of

a flux rope if the flux rope axis was into, or out of, the image plane. Finally, the distortion

of the CME front in event 1 as it progresses through the Heliosphere could be caused by a

number of processes. This may be a Thomson scattering effect i.e., we are seeing different

parts of the CME from different planes, and it only appears as though the CME front is

distorted with the flanks ahead of the nose. The other possibility is that as the CME has

expanded to extremely large size at this point and the nose and flanks are experiencing

very different ambient solar wind conditions. As such, the CME flank may be in the high
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speed solar wind region (hence accelerated by aerodynamic drag), or the nose may be in

a relative density-enhanced region due to the heliospheric current sheet and experiencing

more drag than the CME flanks. This effect has previously suggested to occur and is

known as ‘pancaking’.

These reconstructions are the first steps towards detailed study of CME kinematics in

the heiloshpere. Using these trajectories, we can derive the full 3D CME kinematics which

will not be subject to projection effects. When we combine these with CME mass estimates

we will have all the information needed to study the forces acting on CMEs from ∼2R�
to beyond 1 AU. We plan to compare the derived forces with those predicted by the flux

rope, ‘snow plough’, and aerodynamic drag models (Cargill, 2004; Vršnak, 2006; Vršnak

& Gopalswamy, 2002). Having the 3D information will finally allow for a full comparison

between the various theories and the data. In doing so we will be able to gain insight into

some the interesting observations discussed here.
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Chapter 6

CME Kinematics in Three

Dimensions

The forces governing CME evolution during both their early acceleration, and later prop-

agation are still unclear, although plane-of-sky coronagraph measurements have provided

some insight into their kinematics near the Sun (<32 R�). The dual perspectives of the

STEREO spacecraft are used to derive the 3D kinematics of CMEs over a range of he-

liocentric distances (∼2 – 250R�). Evidence for solar wind (SW) drag forces acting in

interplanetary space, with a fast CME decelerated, and a slow CME accelerated, towards

typical SW velocities was found. It was also found that the fast CME showed a linear

dependence on the velocity difference between the CME and the SW, while the slow CME

showed a quadratic dependence. The differing forms of drag for the two CMEs indicate

the forces and thus mechanisms responsible for their acceleration may be different. Fur-

ther, using an advanced 3D reconstruction technique and statistically rigorous fitting, we

were able to show that a CME underwent aerodynamic drag at distances greater than 7R�.

This chapter is based on work published in Maloney & Gallagher, Solar Physics, 2010 and

Byrne, Maloney, McAteer, Refojo & Gallagher, Nature Communications, 2010.
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6.1 Introduction

The kinematic evolution of CMEs can be broken into three phases: initiation, accelera-

tion, and propagation (Zhang et al., 2001). During the acceleration phase magnetic forces

such as the Lorentz force are thought to dominate and drive the eruption (Section 2.2.1).

During the propagation phase, the initial acceleration has ceased, and the CME motion is

dominated by the interaction between the SW and the CME (Section 2.2.2). The “snow

plough”, aerodynamic drag, and flux-rope models all aim to explain the motion of CMEs

in the SW (Borgazzi et al., 2009; Cargill, 2004; Chen, 1996; Tappin, 2006; Vršnak et al.,

2010).

Before the launch of the STEREO mission, synoptic white-light CME observations were

limited to 32R� using LASCO, while SMEI sometimes tracked CMEs to Earth (∼215R�).

In radio observations, fast CMEs which drove shocks could be tracked to Earth (Reiner

et al., 2007). Interplanetary Scintillation (IPS) observations provided density and velocity

measurements for both CMEs and the SW from 50R� to beyond 1 AU, and using tomo-

graphic techniques, can give 3D information (Manoharan, 2006, 2010). CMEs are also

observed in in situ measurements with WIND and ACE at L1 (∼1 AU), and occasionally

CMEs can be tracked up to very large distances of up to 5 AU using additional spacecraft

(Tappin, 2006).

Numerical modelling has been used to study CME propagation with numerous ap-

proaches such as 1D Hydro simulations, 2.5D MHD simulations, and full 3D MHD sim-

ulations (Cargill & Schmidt, 2002; Cargill et al., 1996; Falkenberg et al., 2010; González-

Esparza et al., 2003; Odstrcil & Pizzo, 1999; Odstrcil et al., 2004; Smith et al., 2009).

Cargill et al. (1996), Cargill & Schmidt (2002), and Cargill (2004) used MHD simulations

to show that aerodynamic drag was an appropriate description of a flux rope in a mag-

netohydrodynamic flow, and found that the drag coefficient was normally around unity,

but can range between approximately 0.0 – 10.0. He also found that there was a feedback

interaction between the flow and flux rope which could significantly distort the flux rope

depending on the strength of the magnetic field (see Figure 6.1). Smith et al. (2009) us-

ing Hakamada-Akasofu-Fry version 2 (HAFv2; Fry et al. 2003), a modified kinematic code,

simulated a series of events, predicting up to 89% of the observed events. Falkenberg et al.

(2010) using the ENLIL (Odstrčil & Pizzo, 1999a,b) code with a cone model, which is a

3D time-dependent MHD code, modelled an observed CME and compared the simulation

to the measured in situ data, and found it showed good agreement given the correct input

parameters. While ENLIL is a MHD code, the CMEs are simulated by time dependent

velocity, density and temperature perturbations at the inner boundary, with no magnetic
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6.1 Introduction

Figure 6.1: Magnetic field lines projected in the x-z plane (a), (c), and (e). Contours of
constant BD = By −By0/By0 where By0 is the initial external field strength (b), (d), and (f).
Solid and dashed lines represent BD less than and greater than zero. Time is normalised to
the Alfvén wave crossing time of the flux rope t0 = 2a0/vA0 (Cargill et al., 1996).
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field component similar to HAVv2. The fact both ENLIL and HAVv2 do not model the

CME magnetic field but still give accurate predictions may indicate that the magnetic field

is not crucial in determining CME dynamics, while Cargill’s results indicate it is for CME

morphology.

Statistical studies comparing in situ with white light observations indicate a trend of

CME velocity converging towards the SW velocity as they propagate to 1 AU (Gopalswamy,

2006). Other studies based on white light observations have indicated that aerodynamic

drag of some form may explain this trend (Shanmugaraju et al., 2009; Vršnak, 2001). Radio

observations suggest that a linear form of aerodynamic drag may be most appropriate for

fast CMEs (Reiner et al., 2003). Tappin (2006) showed that acceleration can continue

far out (5 AU) into the Heliosphere. However, these studies are subject to the difficulties

associated with the observations they are based on. For example, white light observations

were limited to single, narrow, fixed, view-points meaning only observations of the inner

Heliosphere could be made, and even these were subject to projection effects (Howard

et al., 2008b). Also, linking features in imaging and in situ observations is complex and

can be ambiguous, a problem exacerbated during periods of high activity. In the case of

numerical simulations their complexity can make it hard to extract which effects are the

most important, possibly obscuring the important underlying physics.

Using STEREO observations, a number of papers have been published which extract

3D information and study CMEs at extended heliocentric distances, over-coming some of

the difficulties outlined above. Davis et al. (2009) identified a CME in HI1 and HI2, and

using a constant velocity assumption (Sheeley et al., 2008) they derived the speed and

trajectory of the CME. The predicated arrival time, based on the speed derived, agreed

with the in situ observations. Wood et al. (2009) used the “point-P” and “fixed-φ” methods

to derive the height, speed, and direction from elongation measurements out to distances

of ∼120R�. A recent paper by Liu et al. (2010) tracked a CME to ∼150R� in 3D using

J-maps from both spacecraft to triangulate the CMEs position in 3D. On the other hand,

Maloney et al. (2009) tracked the trajectory of CME apexes in 3D using triangulation,

some as far as 240 R�.

A general equation describing the motion of a CME may be written:

ρ
Dv

Dt
= ~j × ~B −∇P + ρ~g + ~FD (6.1)

where the first term on the right is the Lorentz force, the second term is the force due to

gas pressure, the third term is gravitational force, and the final term is the drag force. An
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equation describing the motion of a CME in the drag dominated regime may be written:

M
dv

dt
= −1/2CDρswAcme(v − vsw)|v − vsw| (6.2)

where CD is the drag coefficient, ρsw is the solar wind density, Acme is the CME area

and vsw is the solar wind velocity, and M is the CME mass. We use a parametric drag

model similar to that of Vršnak & Gopalswamy (2002) with the added parameter δ, which

determines if the drag is quadratic (aerodynamic) or linear (Stokes) (see Section 2.1.2).

This parametric form collapses the complex dependences of the CME area (Acme), mass

(M) and the solar wind density (ρsw) into a power-law which depends on heliospheric

distance R. Thus (6.2) can be written:

dv

dt
= −αR−β(v − vsw)δ (6.3)

where α, β, and δ are constants.

The CME trajectories were derived using the tie-point method (Section 4.2.1) and from

these the kinematics were calculated. These kinematics are then used to investigate the

effects of drag on the CME. We present the reconstructed CME kinematics for four events:

one acceleration (CME 1), one decelerating (CME 2), and one with constant velocity (CME

3). For the final event (CME 4), the entire CME front is reconstructed, and we consider

the midpoint kinematics of the reconstructed front this event showed a more complex

acceleration profile. The observations are described in Section 6.2.1, and their analysis is

described in Section 6.2.2. The results for each event are presented in Section 6.3. Finally,

a discussion of the results followed by the conclusion is presented in Section 6.4.

6.2 Observations and Data Analysis

6.2.1 Observations

The trajectories of four CMEs were reconstructed using observations from STEREO SEC-

CHI observed during: 2007 October 8 – 13 (CME 1), 2008 March 25 – 27 (CME 2), 2008

April 9 – 12 (CME 3), and 2008 December 12 – 15 (CME 4). The observations were re-

duced and processed as described in Section 3.5 and Section 4.1. Figure 6.2 shows reduced

observations from the 2008 March 28 event where the CME is simultaneously observed in

both COR1 and COR2 in both the Ahead and Behind spacecraft, but only in from the

Ahead spacecraft in HI. Figure 6.3 shows observation of the 2008 December 12 event.

CMEs 1 – 3 were observed in either the inner coronagraph (COR1) or outer coronagraph
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predicted at solar minimum because of the in! uence of solar wind 
pressure 40,41 . Other possible in! uences include changes to the inter-
nal current of the magnetic ! ux rope 11 , or the orientation of the 
magnetic ! ux rope with respect to the background " eld 10 , whereby 
magnetic pressure can function asymmetrically to de! ect the ! ux 
rope poleward or equatorward depending on the " eld con" gura-
tions.   

  CME angular width expansion   .   Over the height range of 2 – 46  R!  , 
the CME angular width ( ∆   θ      =      θ   max     −      θ   min ) increases from  ~ 30 °  to  ~ 60 °  
with a power law of the form  ∆ ∆q q( ) ( ).r r R r R= < <0

0 22 2 46! !    
( Fig. 3c ). $ is angular expansion is evidence of an initial overpres-
sure of the CME relative to the surrounding corona (coincident with 
its early acceleration inset in  Fig. 3a ). $ e expansion then tends to 
a constant during the later drag phase of CME propagation, as it 
expands to maintain pressure balance with heliocentric distance. 
It is theorized that the expansion may be attributed to two types 
of kinematic evolution, namely, spherical expansion due to simple 
convection with the ambient solar wind in a diverging geometry, 
and expansion due to a pressure gradient between the ! ux rope 
and solar wind 13 . It is also noted that the southern portions of the 
CME manifest the bulk of this expansion below the ecliptic (best 
observed by comparing the relatively constant  ‘ Midtop of Front ’  
measurements with the more consistently decreasing  ‘ Midbottom 
of Front ’  measurements in  Fig. 3b ). Inspection of a Wang-Sheeley-
Arge solar wind model run 42  reveals higher speed solar wind ! ows 

( ~ 650   km   s     −    1 ) emanating from open-" eld regions at high / low lati-
tudes (approximately 30 °  north / south of the solar equator). Once 
the initial prominence / CME eruption occurs and is de! ected into 
a non-radial trajectory, it undergoes asymmetric expansion in the 
solar wind. It is prevented from expanding upwards into the open-
" eld high-speed stream at higher latitudes, and the high internal 
pressure of the CME relative to the slower solar wind near the eclip-
tic accounts for its expansion predominantly to the south. In addi-
tion, the northern portions of the CME attain greater distances from 
the Sun than the southern portions as a result of this propagation in 
varying solar wind speeds, an e% ect predicted to occur in previous 
hydrodynamic models 14 .   

  CME drag in the inner heliosphere   .   Investigating the midpoint 
kinematics of the CME front, we " nd that the velocity pro" le 
increases from approximately 100 to 300   km   s     −    1  over the " rst 2 – 5  R!  , 
before rising more gradually to a scatter between 400 and 550   km   s     −    1  
as it propagates outwards ( Fig. 3a ). $ e acceleration peaks at 
approximately 100   m   s     −    2  at a height of  ~ 3  R!  , then decreases to scat-
ter about zero. $ is early phase is generally attributed to the Lorentz 
force whereby the dominant outward magnetic pressure overcomes 
the internal and / or external magnetic " eld tension. $ e subse-
quent increase in velocity, at heights above  ~ 7  R!   for this event, is 
predicted by theory to result from the e% ects of drag 17 , as the 
CME is in! uenced by solar wind ! ows of  ~ 550   km   s     −    1  emanat-
ing from latitudes  !   ±  5 °  of the ecliptic (again from inspection of 
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    Figure 1    |         Composite of STEREO-A and B images from the SECCHI instruments of the CME of 12 December 2008. ( a ) Indicates the STEREO 
spacecraft locations, separated by an angle of 86.7 °  at the time of the event. ( b ) Shows the prominence eruption observed in EUVI-B off the northwest 
limb from approximately 03:00 UT, which is considered to be the inner material of the CME. The multiscale edge detection and corresponding ellipse 
characterization are overplotted in COR1. ( c ) Shows that the CME is Earth-directed, being observed off the east limb in STEREO-A and off the west limb 
in STEREO-B.  

Figure 6.3: (a) Indicates the STEREO spacecraft locations, separated by an angle of 86.7 at
the time of the event. (b) Shows the prominence eruption observed in EUVI-B off the northwest
limb from approximately 03:00 UT, which is considered to be the inner material of the CME. A
multiscale edge detection and corresponding ellipse characterisation are over-plotted in COR1.
(c) Shows the CME propagation towards Earth from STEREO-A and STEREO-B (Byrne
et al., 2010).
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(COR2) simultaneously by both STEREO-A and STEREO-B. From these images the CME

apex was localised via tie-pointing (Section 4.2.1), and by tracking it through a series of

images the trajectory was built up. In these events the CME was only observed in HI

by one spacecraft, so an additional constraint is required to localise the CME apex: we

assumed that the CME will continue along the same path, with respect to solar longitude,

as it did in the COR1/2 field-of-view. CME 4 was observed by both A and B by all SECCHI

instruments. For this event the entire CME front was reconstructed using the elliptical

tie-pointing (Section 4.2.2). From the 3D data the CMEs kinematics were derived.

6.2.2 Kinematic Modelling

The kinematics were only fit during the time interval we believe that drag is at play and

the observations are accurate. There was evidence for early acceleration which was not

attributed to drag and as a result these data were not fit. Also, some observations of CMEs

tracked far into HI1 or HI2 field-of-view were excluded from fitting as identification of the

CME became ambiguous.

The kinematics of CMEs 1 and 2 were fitted, via a least-squares method, with a para-

metric model for the drag (6.3). In order to test which form of drag is most suitable (linear

or quadratic), we fitted (6.3) with δ set to 1, and then separately with δ equal to 2. A

number of the model parameters can be fixed from the observations, such as the CME

height and velocity. We assume that the CME tends to the SW speed, which was taken to

be where the velocity plateaus. The model parameters obtained from the fitting were then

compared with previous results from Vršnak & Gopalswamy (2002). From this comparison

we infer which model best reproduces the kinematics, and hence is the most appropriate.

Both the fast and slow CMEs (CME 1 and CME 2) were analysed using this method. The

intermediate CME (CME 3) was fit with a constant acceleration model as this seemed

most apt since there was no apparent acceleration.

In the case of CME 4 the kinematics were analysed using a bootstrapping method

(Section 4.4). An initial fit of (6.3) was carried out and used to calculate the residuals of

the fit. These were then used to create the bootstrap samples by randomly sampling them

and adding them back on to original fit, creating a bootstrap sample. All of the model

parameters were allowed to vary within physically appropriate limits for a bootstrap run of

10,000 iterations. The observationally known parameters such as CME initial height and

speed were compared to the resulting bootstrap values as a verification of the method.
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6.3 Results

CME 1 and CME 2 were fitted in three ways with α, β, and δ all allowed to vary (black

line), with fixed δ of two (magenta line), and one (orange line). In both cases the free fitting

returned values that were not comparable to previous studies (Vršnak, 2001) showing the

need to apply so form of physical constraint. The constrained fit parameters for the events

are given in Table 6.1. CME 3 was fit with a constant acceleration model (black line).

CME 4 was fit using the bootstrap method with h0, v0, vsw, α, β, and δ allowed to vary.

6.3.1 CME 1 (2007 October 8–13)

Figure 6.4(a)-(c) shows the kinematics for the accelerating CME. This CME was first ob-

served at 15:05 UT on 2007 October 8 off the west limb, and was found to be propagating

at an angle of 56◦ from the Sun-Earth line. Figure 6.4(a) shows the height of the CME.

Figure 6.4(b) shows the velocity profile which clearly shows the CME is undergoing accel-

eration, initial velocity of ∼150 km s−1, and final velocity of ∼450 km s−1. There may be

two acceleration regimes; an early increased acceleration phase (before 18:00 UT on the

October 8), followed by a drag acceleration. The early acceleration can be attributed to a

magnetic driving force, and so was not fitted with the drag model. Later, when the CME

reached the centre of the HI2 field-of-view, determining the front position became difficult,

so this region was not fitted. Figure 6.4(c) shows the acceleration profile of the event. The

δ = 2 (orange) fit gives the lowest chi-squared value.

6.3.2 CME 2 (2008 March 25–27)

The kinematics from the decelerating CME are shown in Figure 6.5(d)-(f). This CME

was first observed at 18:55 UT on 2008 March 25 off the east limb and was found to

be propagating at an angle of -82◦ from the Sun-Earth line. Figure 6.5(d) and (e) show

the height and velocity profiles, and the velocity profile clearly demonstrates the CME is

undergoing deceleration. The CME had an initial velocity (HI1) ∼ 800 km s−1 and final

velocity of ∼ 375 km s−1. Due to the high speed of this CME, it was only observed in a

small number of frames in COR1 and COR2. As a result, the kinematics were difficult to

quantify in these instruments. However, there appears to have been an early acceleration

feature. The deceleration in the HI1 and HI2 field-of-view continued until the CME reaches

a near-constant velocity, and travels at this velocity throughout the rest of the field-of-view.

Figure 6.5(d) shows the acceleration profile of the event. The δ = 1 (magenta) fit gives the

lowest chi-squared value.
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6. CME KINEMATICS IN THREE DIMENSIONS

Figure 6.4: Kinematics of the 2007 October 8 event, (a) height, (b) velocity, and (c) accel-
eration. Vertical dashed line indicates separation between early and late phase acceleration.
Horizontal dot-dash line indicates the assumed SW velocity. The black line corresponds to a
fit varying α, β and δ, the magenta fit has δ = 2 while the orange fit has δ = 1
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6.3 Results

Figure 6.5: Kinematics of the 2008 March 25 event, (a) height, (b) velocity, and (c) accel-
eration. Vertical dashed line indicates separation between early and late phase acceleration.
Horizontal dot-dash line indicates the assumed SW velocity. The black line corresponds to a
fit varying α, β and δ, the magenta fit has δ = 2 while the orange fit has δ = 1
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6. CME KINEMATICS IN THREE DIMENSIONS

Figure 6.6: Kinematics of the 2008 April 09 event (a) height (b) velocity (c) acceleration.
This event shows an early acceleration (to left if dashed line) which levels of to a scatter about
typical solar wind speeds. This event was fit with a constant acceleration the resulting fit
parameters are h0 = 22 RSun, v0 = 334 km s−1, and a =−0.18 m s−2. The assumed solar wind
value is indicated by the horizontal dot-dash line.
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6.3 Results

α β δ χ2

CME 1 (2007 October 8–13)
Linear (magenta) 1.61× 10−5 -0.5 1.0 8.27
Quadratic (orange) 1.28× 10−7 -0.5 2.0 6.74

CME 2 (2008 March 25–27)
Linear (magenta) 1.02× 10−4 -0.5 1.0 3.71
Quadratic (orange) 6.38× 10−7 -0.5 2.0 17.63

Table 6.1: Fit parameters for the accelerating events. CME 1, vsw = 450 km s−1, vcme =
233 km s−1 , h0 = 12R�. CME 2, vsw = 325 km s−1, vcme = 702 km s−1 , h0 = 44R�.

6.3.3 CME 3 (2008 April 9–12)

In Figure 6.6 we show the kinematics of the constant velocity CME. This CME was first

observed at 15:05 UT on 2008 April 09 off the east limb and was found to be propagating

at an angle of -73◦ from the Sun-Earth line. Figure 6.6(a) shows the height of the CME.

Figure 6.6(b) shows the velocity profile which has a scatter about ∼ 300 km s−1. Again,

there may be some evidence in the COR1/2 observations for an early acceleration phase,

but due the event’s poorly observable features at this early stage, it is hard to quantify

this. The departure from the fit after April 12 20:00 UT is thought to be due to error in the

reconstruction,n as the CME apex becomes too faint to identify. As this event shows no

obvious acceleration it was not fitted with the drag model but with a constant acceleration

model h(t) = h0 + v0t + 1/2at2 (thin black line). Figure 6.6(c) shows the acceleration

profile, the fit values (h0 = 22 RSun, v0 = 334 km s−1, and a =−0.18 m s−2) are consistent

with negligible acceleration throughout the field-of-view.

6.3.4 CME 4 (2008 December 12–15)

The prominence associated with this CME was observed at 50 – 55◦ north from 03:00 UT

in EUVI-B images, obtained in the 304 Å passband, in the northeast from the perspective

of STEREO-A, and off the northwest limb from STEREO-B. The prominence is considered

to be the inner material of the CME, which was first observed in COR1-B at 05:35 UT

(Figure 6.3). This CME was Earth-directed thus ∼0◦ from the Sun-Earth line. The CME

was initially propagating at 40◦ north from the ecliptic, but due non-radial propagation this

tended towards zero as the CME attained a height of ∼50R� as shown in Figure 6.7(b).

This non-radial motion was found to be well characterised by a power law. The CME was

also found to expand, its angular width increasing from approximately 33◦ to nearly 70◦

(Figure 6.7(c)). Its expansion was also well characterised by a power law. Figure 6.7(a)
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 ! e early acceleration phase results from the rapid release 
of energy when the CME dynamics are dominated by outward 
magnetic and gas pressure forces. Di" erent models can reproduce 
the early acceleration pro# les of CME observations, although it is 
di$  cult to distinguish between them with absolute certainty 45,46 . For 
this event, the acceleration phase coincides with a strong angular 
expansion of the CME in the low corona, which tends towards a con-
stant in the later observed propagation in the solar wind. Although, 
statistically, expansion of CMEs is a common occurrence 47 , it is 
di$  cult to accurately determine the magnitude and rate of expan-
sion across the two-dimensional plane-of-sky images for individual 
events. Some studies of these single-viewpoint images of CMEs 
use characterizations such as the cone model 20,21  but assume the 
angular width to be constant (rigid cone), which is not always true 
early in the events 12,38 . Our 3D front reconstruction overcomes 

the di$  culties in distinguishing expansion from image projection 
e" ects, and we show that early in this event there is a non-constant, 
power-law, angular expansion of the CME. ! eoretical models of 
CME expansion generally reproduce constant radial expansion, 
based on the suspected magnetic and gas pressure gradients between 
the erupting % ux rope and the ambient corona and solar wind 14,48,49 . 
To account for the angular expansion of the CME, a combination of 
internal overpressure relative to external gas and magnetic pressure 
dropo" s, along with convective evolution of the CME in the diverg-
ing solar wind geometry, must be considered 13 . 

 During this early-phase evolution, the CME is de% ected from a 
high-latitude source region into a non-radial trajectory, as indicated 
by the changing inclination angle ( Fig. 3b ). Although projection 
e" ects again hinder interpretations of CME position angles in single 
images, statistical studies show that, relative to their source region 
locations, CMEs have a tendency to de% ect towards lower latitudes 
during solar minimum 39,50 . It has been suggested that this results 
from the guiding of CMEs towards the equator by either the mag-
netic # elds emanating from polar coronal holes 8,9  or the % ow pattern 
of the background coronal magnetic # eld and solar wind / streamer 
in% uences 19,51 . Other models show that the internal con# guration 
of the erupting % ux rope can have an important e" ect on its propa-
gation through the corona. ! e orientation of the % ux rope, either 
normal or inverse polarity, will determine where magnetic recon-
nection is more likely to occur, and therefore change the magnetic 
con# guration of the system to guide the CME either equator- or 
poleward 10 . Alternatively, modelling the # lament as a toroidal % ux 
rope located above a midlatitude polarity inversion line results in 
non-radial motion and acceleration of the # lament, because of the 
guiding action of the coronal magnetic # eld on the current motion 11 . 
Both these models have a dependence on the chosen background 
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       Figure 3    |         Kinematics and morphology of the 3D reconstruction of the 
CME front of 12 December 2008. ( a ) Shows the velocity of the middle 
of the CME front with the corresponding drag model and, inset, the early 
acceleration peak. Measurement uncertainties are indicated by one 
standard deviation error bars. ( b ) Shows the declinations from the ecliptic 
(0 ° ) of an angular spread across the front between the CME fl anks, with 
a power-law fi t indicative of non-radial propagation. It should be noted 
that the positions of the fl anks are subject to large scatter: as the CME 
enters each fi eld of view, the location of a tangent to its fl anks is prone 
to moving back along the reconstruction in cases in which the epipolar 
slices completely constrain the fl anks. Hence the  ‘ Midtop / Midbottom of 
Front ’  measurements better convey the southward-dominated expansion. 
( c ) Shows the angular width of the CME with a power-law expansion. 
For each instrument, the fi rst three points of angular width measurement 
were removed as the CME was still predominantly obscured by each 
instrument ’ s occulter.  
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  Figure 4    |          In situ  solar wind plasma and magnetic fi eld measurements 
from the WIND spacecraft. From top to bottom, the panels show proton 
density, bulk fl ow speed, proton temperature and magnetic fi eld strength 
and components. The red dashed lines indicate the predicted window of 
CME arrival time from our ENLIL with Cone Model run (08:09 – 13:20 UT 
on 16 December 2008). We observed a magnetic cloud fl ux rope signature 
behind the front, highlighted by the blue dash-dotted lines.  

Figure 6.7: Kinematics of the 2008 December 12 event, (a) velocity, (b) declination, and
(c) angular width. The velocity in (a) is derived from the CME midpoint and the fit os an
aerodynamic drag model (Byrne et al., 2010).
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shows the velocity profile for the event, the CME was initially rapidly accelerated from ap-

proximately 100 – 300 km s−1 between 2 – 5R�, before gradually rising to a scatter around

a value of 550 km s−1. The acceleration peaks at approximately 100 m s−2 at a height of

∼3R� and then decreases. The early acceleration is attributed to a Lorentz force, while

the subsequent increase in velocity, at heights above 7R�, is predicted by theory to result

from the effects of drag. From inspection of the Wang-Sheeley-Arge model (Arge & Pizzo,

2000; Wang & Sheeley, 1990) it appears that the CME is in a high speed solar wind stream

of ∼550 km s−1.

The initial CME height, CME velocity, asymptotic solar wind speed, α, β and δ are

obtained from a bootstrap distributions for those parameters (Figure 6.8). These provide

the best fit to the observations, as well as confidence intervals of the parameters. Best-fit

values for α and β were found to be (4.55+2.30
−3.27) × 10−5 and −2.02+1.21

−0.95, which agree with

values found in previous modelling work Vršnak (2001). The best-fit value for the exponent

of the velocity difference between CME and the solar wind, δ, was found to be 2.27+0.23
−0.30,

which is clear evidence that aerodynamic drag (δ=2) functions during the propagation of

the CME in interplanetary space.

The drag model provides an asymptotic CME velocity of 555+114
−42 km s−1 when extrapo-

lated to 1 AU, which predicts the CME to arrive ∼ 1 day before the Advanced Composition

Explorer (ACE) or WIND spacecraft detected it at the L1 point. We investigate this dis-

crepancy by using our 3D reconstruction to simulate the continued propagation of the

CME from the Alfvén radius (∼ 21.5R�) to Earth, using the ENLIL with Cone Model

at NASA’s Community Coordinated Modeling Center1. The height, velocity, and width

from the 3D reconstruction were used as initial conditions for the simulation, it was found

that the CME was actually slowed to ∼ 342 km s−1 at 1 AU. This is a result of its inter-

action with an upstream, slow-speed, solar wind flow at distances beyond 50R�. This

CME velocity is consistent with in situ measurements of solar wind speed (∼ 330 km s−1)

from the ACE and WIND spacecraft at L1. Tracking the peak density of the CME front

from the ENLIL simulation gives an arrival time at L1 of 08:09 UT on 16 December 2008.

Accounting for the offset in CME front heights between our 3D reconstruction and ENLIL

simulation at distances of 21.5 – 46R� gives an arrival time in the range of 08:09 – 13:20 UT

on 16 December 2008. This prediction interval agrees well with the earliest derived arrival

times of the CME front (Davis et al., 2009; Liu et al., 2010). This was identified as plasma

pileup ahead of the magnetic cloud flux rope in the in-situ data of both ACE and WIND

(Figure 1.16). The CME subsequently impacted the Earth.

1http://ccmc.gsfc.nasa.gov/
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6. CME KINEMATICS IN THREE DIMENSIONS

Figure 6.8: Bootstrap distributions from a 10,000 iteration run for the parameters of (6.3)
namely: asymptotic solar wind speed, CME initial speed, CME initial height, α, β, and δ.
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6.4 Discussion & Conclusions

We have shown that it is possible to derive the 3D kinematics of features (the CME apex

in this case) in the inner Heliosphere (∼2 – 250R�) using STEREO observations. The 3D

kinematics are free from the projection effects of traditional 2D kinematics but may contain

artifacts from the 3D reconstruction method (e.g, Maloney et al. 2009) and other sources.

Both CME 1 and CME 2 showed two regimes in their velocity profiles, a low down (< 15R�)

early rapid acceleration (in comparison to later values), followed by a gradual acceleration

far from the Sun (> 30R�). The early acceleration is thought to be due to a magnetic

driving force, as the solar wind velocity low in the corona (vsw(≤ 10 R�) ≤ 268 km s−1,

Sheeley et al. 1997) is lower than the velocity already attained by the CMEs in both cases.

Here we assume that the later acceleration is due to the interaction between the SW and

the CME, as in each case the CME attains a final velocity close to typical values for the

solar wind.

Considering CME 2 in Figure 6.5(d)-(f), it can clearly be seen that the velocity levels

off to a constant value typical of the solar wind. We interpret this as the CME reaching

the local solar wind speed, and as a result, the force acting on the CME going to zero.

For CME 1 Figure 6.4(a)-(c), the velocity initially increases, however, there is a plateau

towards the end after April 11 6:00 UT which occurs at SW like speeds. The height

measurements towards the end are very scattered and show a rapid increase. This is

most likely due to losing the front to the background noise and triangulating a different

feature. CME 3 propagates at a roughly constant velocity, which is consistent with the

drag interpretation. The CME appears to have already attained the local SW speed and

therefore is not accelerated. The fitting results show that a linear dependence produces a

better fit for the fast event (CME 2), while a quadratic dependence better fits the slow event

(CME 1). The differing range of the interaction CME 1 ∼ 120R� and CME 2 ∼ 80R�
may be explained by the suggestion that wide, low mass, CMEs are more affected by drag

than narrow massive CMEs (Vršnak et al., 2010).

Reiner et al. (2003) suggest that for fast events, a linear model of drag better reproduces

the kinematics, which agrees with our findings. Vršnak (2001) also suggested that a linear

dependence might be appropriate. From a theoretical perspective, a quadratic dependence

corresponds to aerodynamic drag, while a linear dependence suggests Stokes’ or creeping

drag. It is not currently clear which model is more physically correct. The fit parameters

obtained do not agree with those found by Vršnak (2001) and while our values are not

unphysical, it is not clear why they differ so much from the previous studies.

The mechanism behind the apparent differing forms of drag, linear (δ = 1) and
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quadratic (δ = 2), for the slow and fast event are unclear. The application of any hy-

drodynamic theory such as drag, to a CME, may be missing vital physics. Could the

magnetic properties play a role modifying the form of the drag (reconnection, suppression

of turbulence, wave energy transport)? For example, Cargill et al. (1996) showed that,

depending on the orientation of the flux rope and background magnetic field (aligned or

non-aligned), the drag coefficient can vary between 0.0 – 10.0. They also found that the

magnetic field of the flux rope is important for its survival as it propagates. Further, which

form of drag is correct for a CME in the SW, the low Reynolds number viscous dominated

Stokes’ drag, or the high Reynolds number turbulence dominated aerodynamic drag? In

order to address these questions a larger sample study is needed in order to verify that

these effects are a recurring and observable phenomena and also to build up the statistics.

In one case, that of CME 4, a bootstrap analysis allowed us to conclude that the

CME acceleration was consistent with aerodynamic drag. However using this model, or a

ballistic, model to extrapolate an arrival time at Earth to compare to the in situ data, gave

an arrival time about a day too early. An ENLIL simulation of the CME indicated that the

CME was decelerated by a slow speed wind stream ahead of the CME, at distances greater

than 50R�. The importance of the dynamic interaction between CMEs and the solar wind

is highlighted by the initial acceleration and subsequent deceleration of the CME.

We have shown that it is possible to derive the true 3D kinematics for a number of

CMEs in the inner Heliosphere. Based on this, we have been able to conclusively show

that CMEs undergo acceleration in the inner Heliosphere, and more specifically, that due

to its range and strength, this acceleration is believed to be the result of some form of drag.

In one case we were able to show this acceleration was due to aerodynamic drag. Drag

acceleration has important implications for space weather predictions, and for the analysis

techniques which assume CMEs travel at constant velocity through the Heliosphere. The

HI observations of CMEs in the Heliosphere provide a unique and limited opportunity to

study the propagation of CMEs, and to understand the coupling between the solar wind

and CMEs.

170



Chapter 7

Direct Imaging of a CME Driven

Shock

Fast CMEs generate standing, or bow shocks, as they propagate through the corona and

solar wind. Although CME-driven shocks have previously been detected indirectly via their

emission at radio frequencies and measured directly in situ, direct imaging has remained

elusive due to their low contrast at optical wavelengths. Here we report the first images of

a CME-driven shock as it propagates through interplanetary space from 8 R� to 120 R�
(0.5 AU), using observations from the STEREO HI. The CME was measured to have a

velocity of ∼1000 km s−1 and a Mach number of 4.1±1.2, while the shock front stand-off

distance (∆) was found to increase linearly to ∼20 R� at 0.5 AU. The normalised standoff

distance (∆/DO) showed reasonable agreement with semi-empirical relations, where DO is

the CME radius. However, when normalised using the radius of curvature, ∆/RO did not

agree well with theory, implying that RO was under-estimated by a factor of ≈3 – 8. This is

most likely due to the difficulty in estimating the larger radius of curvature along the CME

axis from the observations, which provide only a cross-sectional view of the CME. This

chapter is based on work published in Maloney & Gallagher, The Astrophysical Journal

Letters, 2011.
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7. DIRECT IMAGING OF A CME DRIVEN SHOCK

Figure 7.1: Diagram of the various quantities used to describe the shock and CME.

7.1 Introduction

Bow shocks occur when a blunt object moves relative to a medium at supersonic speeds

(Rathakrishnan, 2010). These shocks are formed across many scales and in different con-

ditions: from astrophysical shocks such as planetary bow shocks (Slavin & Holzer, 1981),

or the shock at the edge of the Heliosphere (van Buren et al., 1995), to shocks generated

by the re-entry of the Apollo mission capsules (Glass, 1977). CMEs which travel faster

than the local fast magnetosonic velocity (with respect to the solar wind velocity) produce

such standing shocks in the frame of the CME (Stewart et al., 1974a,b). Interplanetary

(IP) CME-driven shocks have previously been detected in radio observations as Type II

bursts and using in-situ measurements. Direct imaging of shocks, on the other hand, has

remained elusive, primarily due their low contrast (Gopalswamy et al., 2008; Vourlidas &

Ontiveros, 2009).

In principle the jump conditions in combination with the MHD or fluid equations

allow any shock to be modelled and understood (Section 2.3). However, the simulations

are very complex, and it is often necessary and some times more insightful to work with

analytical solutions or semi-emprical relations. There may also be unknown properties and

assumptions have to be made about the underlying system such as it geometry. This is

more so in the case of MHD shocks as the addition to the shock and flow properties, the
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magnetic fields must be known.

The shape, size, and standoff distance of a shock are controlled by several factors: the

shape and size of the obstacle; the velocity difference between the obstacle and the medium

with respect to the sonic speed (i.e., the Mach number); and the properties of the medium,

such as the ratio of specific heats (γ) and the magnetic field. Imaging observations of a

shock give no information about the magnetic field strengths or directions, or the flows

speeds or directions. As a result the jump conditions are not useful in this case. However,

imaging observations allow the speed of the CME to be measured, and, using a model, its

relative speed to the background medium and Mach number can be derived. The standoff

distance, CME shock and shock shape can also be readily measured from the imaging

observations.

Relationships between the shock standoff distance and the compression ratio have been

derived by a number of different authors. The well known semi-empirical relationship of

Seiff (1962) has the form:
∆

DO
= 0.78

ρu
ρd
, (7.1)

which was derived for a spherical object, where ∆ is the shock standoff distance, DO is

distance from the centre to the nose of the obstacle (in this case the radius), and ρu, ρd

are the densities upstream and downstream of the shock respectively. Using gas-dynamic

theory, Spreiter et al. (1966) demonstrated that ρu/ρd could be written in terms of the

upstream sonic Mach number, Ms, and the ratio of specific heats γ:

∆

DO
= 1.1

(γ − 1)M2
s + 2

(γ + 1)M2
s

. (7.2)

The increase in the coefficient in the standoff relations from 0.78 to 1.1 is due to the

fact that the object under consideration (Earth’s magnetosphere) in (7.2) is more blunt

than a sphere; specifically, it is an elongated ellipse. Neither (7.1) or (7.2) behave as

expected at low Mach numbers, where the shock should move to a large standoff distance.

A modification which corrects for this enables (7.2) to be written in the form:

∆

DO
= 1.1

(γ − 1)M2
s + 2

(γ + 1)(M2
s − 1)

, (7.3)

where the additional term in the denominator ensures the shock moves to a large distance

as the Mach number approaches unity (Farris & Russell, 1994). They also suggested that

using the obstacle radius of curvature rather than radius would be more suitable as it
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accounts for the shape of the obstacle, resulting in:

∆

RO
= 0.81

(γ − 1)M2
s + 2

(γ + 1)(M2
s − 1)

, (7.4)

where RO is the obstacle radius of curvature.

In general, a conic section can be represented by y(x)2 = 2R(D−x) + b(D−x)2 where

b is the bluntness (b < −1: blunt elliptic; b = −1: spherical; −1 < b < 0: elongated

ecliptic; b = 0: parabolic; b > 0: hyperbolic). The shape of the shock fronts are known to

be represented by a modified conic section. One such parameterisation of the shock front,

from Verigin et al. (2003a), is:

y2(x) = 2RS(DS − x) +
(DS − x)2

M2
s − 1

·(1 +
bS(M2

s − 1)− 1

1 + dS(DS − x)/RS
), (7.5)

where bS is the bluntness of the shock, and dS is related to the asymptotic downstream

slope or Mach cone (see Figure 7.1).

The relationships between the standoff distance and the Mach number have been inves-

tigated from a number of perspectives, including numerical modelling, analytical relations,

laboratory experiments and in-situ measurements of planetary bow shocks (Spreiter & Sta-

hara, 1980, 1995). These have shown that, in general, the semi-empirical relations provide

an adequate description of shocks, with the low Mach regime being an exception (Verigin

et al., 2003b). Depending on the physical context the sonic Mach number (Ms) can be

replaced with the magnetosonic Mach number (Mms), when dealing with plasmas such as

the solar wind and CMEs. It has been shown that using gasdynamic relations works well

when dealing with magnetised plasmas when the MHD mach numbers are high. It also

provides a good approximation when the Alfvén (MA) or fast magnetosonic (Mms) Mach

numbers are low and these Mach numbers are substituted for the gasdynamic (Ms) Mach

numbers (Fairfield et al., 2001). The reason this makes a good approximation can be seen

by looking at the Rankine-Hugoniot equations or the jump conditions (Section 2.3): in the

case of both gas-dynamic and MHD shocks the mass continuity relation is the same:

[ρun] = 0. (7.6)

This is the most important quantity in determining the standoff distance. The standoff

decreases until the mass flux flowing around the body matches the mass flux crossing the
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7. DIRECT IMAGING OF A CME DRIVEN SHOCK

shock.

Standoff distances of CME-driven shocks have been investigated from an in-situ per-

spective by many authors (e.g., Lepping et al., 2008; Odstrcil et al., 2005; Russell & Mul-

ligan, 2002). Russell & Mulligan (2002) found the shock standoff distance (∆; thickness of

magnetosheath) was of the order of 21 R� at 1 AU. Lepping et al. (2008) derived an average

∆ of about 8 R� at 1 AU. However, when considering the CME radius (flux rope radius) as

DO, the typical ∆ expected from (7.3) is about 5 R� at 1 AU. Russell & Mulligan (2002)

proposed that (7.4) may be more suited as it accounts for the fact the CME front may not

be circular and that the radius of curvature at the nose is a dominant factor in determining

the standoff distance. However, they found that (7.4) did not fit the observations either,

and speculated this may be due to observational effect of only measuring one of the radii

of curvature of the CME. The underlying structure of a CME is believed to be a flux rope:

which has two characteristic curvatures; a smaller one due the curvature perpendicular to

its axis (the radius when viewed as a cross-section), and the larger curvature along the

axis.

We investigate if the shock relations hold for a CME-driven IP shock. Specifically, we

use direct observations of a CME-driven shock observed in COR2 and HI1 instruments

of SECCHI on STEREO. In Section 7.2, we present SECCHI observations of the CME

and resulting shock, and describe the analysis technique. The results of our analysis are

presented in Section 7.3. We discuss our results and state our conclusions in Section 7.4

7.2 Observations and Data Analysis

The CME analysed first appeared in the COR1 (Section 3.4.1.2) coronagraph images from

STEREO-B at 15:55 UT on 2008 April 5. It was most likely associated with a B-class

flare from NOAA active region 10987, which was just behind the west limb as viewed from

Earth. Figure 7.1 shows the CME as it propagates out from the Sun into the different

instruments’ fields-of-view from 8 R� to 120 R�. The CME was visible in both A and B

spacecraft in the inner and outer coronagraphs, but was only visible in HI1 (Section 3.4.1.3)

from STEREO B. The CME propagation direction was found to be ∼106◦ west of the Sun-

Earth line, the spacecraft were at a separation angle of 48◦ degrees (from each other). The

shock is visible as a curved brightness enhancement in both the COR2 observations in

Figure 7.1 and also the HI1 B observations. The assumption was made that the curved

front is a shock, but there were no radio or in situ data available to corroborate. However,

due to the CME’s velocity (∼1000 km s−1) and the smoothness and position of the feature

ahead of the CME, it can be argued that this is a legitimate assumption (Bemporad &
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7.2 Observations and Data Analysis

Figure 7.3: (a) 3D reconstruction of the CME and shock front viewed perpendicular to the
propagation direction with the initial ellipse fits overplotted. (b) Data transformed into a
coordinate system centred on the initial ellipse fit. Overplotted is the subsequent fit to the
shock front using (7.5). Units have been normalised with respect to DO on the right (Maloney
& Gallagher, 2011).

Mancuso, 2010; Ontiveros & Vourlidas, 2009).

For each observation in which the CME or shock was visible the front was identified.

A number of points along this front were then manually chosen. For the observations

where the CME or shock was observed from both spacecraft, the front was localised in

three dimensions using the tie-point method (Section 4.2). As the CME or shock was

only observed by one spacecraft in the HI field-of-view, we used the additional assumption

of pseudo-radial propagation, based on the direction derived from COR1 and COR2 to

localise the front (Section 4.2). The resulting data consisted of a series of points in 3D for

the CME and shock for each observation time. Figure 7.3(a) shows the 3D reconstruction of

both the shock front and CME front, viewed perpendicularly to the direction of propagation

(assumed to be a cross-section). The techniques for deriving the 3D coordinates of features

in the COR1/2, and especially the HI field-of-view are not without error. In the case of

the event studied here, the CME was close (<10◦) to the plane-of-sky of STEREO A. As

a result, errors in position should be small.

In order to compare with relationships in Section 7.1, the data were transformed into

a coordinate system centred on the CME. To accomplish this, each CME front was fitted

with an ellipse. The centre coordinates of these fits were then used to collapse all the data
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on to a common coordinate system centred on the CME. The shock front was fitted with

(7.5), which gave the shock properties such as the shock standoff distance ∆, the Mach

number M , and the radius of curvature at the nose of the obstacle RO. Figure 7.3(a) shows

data and the initial fit, Figure 7.3(b) shows the shifted data and the shock fit using (7.5).

The fast magnetosonic Mach number was calculated using Mms = (vcme − vsw)/vms, where

vcme is the CME velocity, vsw is the solar wind velocity and vms is the fast magnetosonic

speed. Since vsw and vms were not known at the position of the CME, a model corona

was used to evaluate them. This was based on the Parker solar wind solution with a

simple dipolar magnetic field of the form B(r) = B0(R�/r)3, where B0 was 2.2 G at the

solar surface (Mann et al., 2003). For each of the paired CME and shock observations the

standoff distances ∆ (=DS−DO) were obtained by three different means: (i) using the 3D

coordinates of the furthest point (max(h), where h =
√
x2 + y2 + z2) on the shock and the

CME as hshk and hcme respectively; (ii) the previous method applied to the data in the

common coordinate system giving DO and DS ; and (iii) the front fitting procedure also

applied to produce standoff distances. However the results of method (i) cannot be used

with the relations from Section 7.1 as they are not in a CME/obstacle centred coordinate

system, though the results from method (ii) and (iii) can be compared to (7.2), (7.3) and

(7.4).

7.3 Results

A summary of the shock properties derived from the observations as a function of time is

shown in Figure 7.5(a)-(f). With the exception of the CME (hcme) and shock heights (hshk),

all the properties have been derived from the data, collapsed on to a common coordinate

system with respect to the CME. The gap between the first three data points and the

others is a result of both the CME and shock leaving the COR2 field-of-view and entering

the HI1 field-of-view. The contrast between shock and background in the first three and

last three observations is extremely low, making identification of the shock difficult. As

a result, these points are not reliable, and should be neglected. Figure 7.5(a) shows the

derived heights of the CME and shock as they were tracked from 8 R� to 120 R� (0.5 AU).

Using a linear fit to hshk − hcme (=∆) versus hcme (Figure 7.4), the extrapolated standoff

distance at Earth was found to be ∼54 R�. Figure 7.5(b) shows the distance to nose of

the CME (DO) and shock (DS) front directly measured (filled symbols); also shown are

the values derived from fits to the shock and CME front (hollow symbols). The increasing

offset between the two is due to the differing centres of their coordinate systems, as one

is elliptic and the other is parabolic. Figure 7.5(c) shows the standoff distance ∆ derived
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Figure 7.4: Shock stand-off distance (∆) against CME Height and a linear fit to the data.

using DO and DS (filled symbols) and from the fits to the fronts (hollow symbols). Both

are in general agreement and show an increase with time. The standoff distance normalised

using DO is shown in Figure 7.5(d). The normalised standoff distance is roughly constant

with a mean value of 0.37± 0.09DO
−1. The standoff distance normalised to the radius of

curvature at the nose of the CME (RO) is shown in Figure 7.5(e). The curvature could

only be derived from the front fitting, and as such only hollow data points are shown.

Figure 7.5(f) then shows the magnetosonic Mach number (Mms) derived using: (i) the

CME speed in conjunction with the coronal model (filled symbols); and (ii) the shock

front fitted using (7.5) (hollow symbols). The mean Mach number from the coronal model

was 3.8±0.6, while a value of 4.4±1.6 was found using the front fitting method. The mean

Mach number from both methods was 4.1±1.2.

Figure 7.6(a) shows the relationship between the normalised standoff distance (∆/DO)

and Mach number (Mms) for a number of models. The Mach numbers were calculated using

the coronal model (filled symbols), and front fitting (hollow symbols). The normalised

standoff distances were calculated using measured values of DO and DS (filled symbols),
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Figure 7.5: Shock properties derived directly from the observations (filled symbols) and from
fits to the shock and CME (hollow symbols) as a function of time. (a) The maximum height
of the CME front (triangles) and shock front (circles). (b) The distance to front of CME (DO)
and shock (DS) in CME centred coordinate system. (c) The shock standoff distance ∆. (d)
The normalised standoff distance (∆/DO). (e) Standoff distance (∆) normalised by the radius
of curvature of the CME (RO). (f) The Mach number (M) derived the CME velocity and
model for the corona (filled circles) and from the fits to the shock front (hollow circles) from
Maloney & Gallagher (2011).
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and fits to the CME and shock fronts (hollow symbols). Both show good general agreement

between our observations and the models (<20%). The model of Seiff (1962) shows the

poorest agreement, although this is not unexpected as it was derived for a circular obstacle

and the CME is quite blunt compared to a circle. Figure 7.6(b) shows the relationship

between the standoff distance normalised by the radius of curvature of the CME (∆/RO)

and Mach number for a number of models. In this case, RO can only be derived from the

front fitting. These values are then plotted as a function of the Mach numbers derived

using both methods described above (hence, each value of ∆/DO appears twice). Our

results do not agree with the expected relationship (7.4) and indicate that the radius of

curvature RO is underestimated by a factor of ≈3 – 8. One possible reason for this is that

we have not considered the effect of the magnetic field of the CME, and solar wind effects

on the shock. However, one would expect if this had a significant effect it would also affect

the other relationship. It should be noted that the fast magnetosonic velocity and sonic

velocity calculated from our model differ by less than 7% after excluding the first three

data points, as mentioned earlier. This also suggests that the magnetic field should not

play a major role. A more likely reason is due to an observational effect similar to that

suggested by Russell & Mulligan (2002), where only one radius of curvature of the CME

is observed. The observations provide a cross-sectional view of the CME along one of its

axes. As a result, we have no information on the curvature along other CME axes.

7.4 Discussion and Conclusions

For the first time, we have imaged a CME-driven shock in white light at large distances from

the Sun. The shock was tracked from 8 R� to 120 R� (0.5 AU) before it became too faint to

be unambiguously identifed. The CME was measured to have a velocity of ∼1000 km s−1

and a Mach number of 4.1±1.2, while the shock front stand-off distance (∆) was found to

increase linearly to ∼20 R� at 0.5 AU. The normalised standoff distance (∆/DO) was found

to be roughly constant with a mean of 0.37±0.09DO
−1. The normalised standoff distance

derived using DO and DS , and its relation to the Mach number (Mms), were compared to

previous relationships and showed reasonable agreement. The normalised standoff distance

(∆/DO) and Mach number were also derived by fitting the CME and shock front, which

agreed well with theory and our other method of estimation. The fitting also allowed us to

find the CME radius of curvature (RO), enabling us to test the relationship between ∆/RO

and the Mach number. In this case the derived ratios did not agree with the theoretical

predictions and showed a significant deviation.

The faint nature of the shock front made its identification challenging, and thus the
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Figure 7.6: (a) Shock standoff distance normalised to DO as a function of Mach number. (b)
Shock standoff normalised by RO as a function of Mach number. Also shown are the results
of a number of semi-empirical models. Filled symbols indicate values derived using a coronal
model, while hollow symbols indicate values derived using front fitting (Maloney & Gallagher,
2011).

front location and characterisation showed some scatter (Figure 7.5). For example, the

Mach numbers in Figure 7.5(f), show a large amount of variability especially from the front

fitting. The standoff distances in Figure 7.5(c) show the same trend, and the two different

methods give similar results. It should be noted that the first three, and last three, data

points show large deviations from the rest of the data for a number of derived properties.

These correspond to very low contrast observations, and hence should be ignored. The

Mach number derived from our coronal model and the CME position and speed agrees

with that derived from the shock front fitting method. This is a good indication that our
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methods accurately describe the shock even in the presence of large uncertainties.

Both sets of data for the normalised shock standoff distance ∆/DO versus Mach num-

ber (MMS) derived directly, and from front fitting, show good general agreement (Figure

7.6(a)). The standoff distance normalised by the CME radius of curvature (∆/RO) versus

Mach number (MMS) from either the fits, or derived directly, do not agree with any of

the relationships (Figure 7.6(b)). Assuming that a CME can be modeled as a flux rope,

it should have two radii of curvature. Our observations are a measure of a combination of

these, which depends on the orientation of the flux rope. This observational affect implies

that we may only be measuring the smaller of the two, and this leads to the underesti-

mation of RO. Finally, the general agreement between the Mach number derived from

our model and the Mach number derived from the fits suggest that the fitting is not the

source of the problem. Using a mean Mach number of 4 to derive a value of 0.26 from the

semi-empical ratio ∆/RO, and the standoff distance at Earth calculated above (54 R�), we

can estimate the radius of curvature of this CME at Earth to be ∼ 207 R� (∼ 0.95 AU).

This value could be tested using multipoint in situ measurements.

Imaging observations of CME-driven shocks opens up a new avenue for studying their

fundamental properties. This type of observation will be highly complimentary to radio

and in situ measurements. A complete picture of the shock could then be constructed, and

the derived properties from the different observations could be compared and contrasted.

Furthermore, the analysis presented here will be applicable to future observations of shocks.
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Chapter 8

Discussion & Future Work

The goal of my thesis research was to increase our understanding of CME evolution in the

inner Heliosphere. To achieve this goal, a 3D reconstruction technique was developed and

applied to CMEs far from the Sun and shown to be effective. From these reconstructions,

the true CME kinematics could be extracted and studied. These kinematics were compared

to theoretical models and conclusions on their applicability drawn. A CME-driven shock

was imaged and its properties compared to semi-empirical models and shown to agree well.

This chapter presents the main results and conclusions of this thesis and outlines possible

future work.
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8. DISCUSSION & FUTURE WORK

8.1 Principal Results

The purpose of this thesis research was to exploit the unique observations of the STEREO

mission to further our understanding of CME evolution, focusing especially on their prop-

agation at large distances from the Sun. This was achieved by extending and applying

3D reconstruction techniques to CMEs imaged by the SECCHI suite of instruments from

both STEREO A and B. From these 3D reconstructions the true CME ki!d, free from the

limiting uncertainties of projection effects. Investigating these kinematics revealed CMEs

do undergo acceleration far from the Sun. The acceleration is consistent with some form

of drag, and in one case could be shown to be due to aerodynamic drag. The advanced

image processing methods used, allowed the detection and tracking of a CME-driven shock

at large distances from the Sun. Analysing this, it was found that the shock stand-off

distance agreed well with semi-empirical models.

The principal results from these studies may be summarised as follows:

8.1.1 3D CME trajectories

• The STEREO observations allowed CMEs to be tracked from the solar surface to

beyond 1 AU. The modified running difference technique allows the extremely faint

CME signature, in HI fields-of-view, to be identified and tracked. This, for the first

time, enabled CMEs to be tracked in white light from the Sun to the Earth.

• The dual vantage point observations of STEREO were used to reconstruct the 3D

trajectories of CMEs in the COR1 and COR2 field of view using a triangulation

technique, namely tie-pointing. These reconstructions supported a pseudo-radial

propagation model for CMEs at large distances from the Sun. This enabled the 3D

reconstruction to be extended into the HI field of view, as often CMEs are only ob-

served by either HI A or HI B due to their propagation direction. The assumption

of pseudo-radial propagation provided the additional constraint necessary to trian-

gulate the CME in the HI field-of-view. Thus, CME trajectories were reconstructed

in the range between 2 – 240R�.

• From examining the CME trajectories, initial estimates of the CME kinematics were

made. These demonstrated that CMEs were being accelerated, with fast CMEs

decelerated, slow CMEs accelerated, and both tending towards the solar wind speed.

Previously, this acceleration could only be inferred, however using STEREO and the

3D reconstruction methods it was directly shown.
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• The morphology of CMEs far from the Sun was revealed and showed their complex

structure – especially at the rear of some CMEs – and the possible multi-loop struc-

ture of others. As CMEs propagate, their morphology evolves and, in one case, there

was clear evidence for CME ‘pancaking’.

8.1.2 3D CME Kinematics and Drag Modelling

• Using the 3D trajectories, the true kinematics of CME apexes were derived in the

inner heliosphere, < 250R�, which were free from projection effects of traditional

observations.

• The detailed analysis of the CME kinematics revealed that CMEs often contain multi-

ple phases of acceleration: low down (<15R�) rapid acceleration, and a more gradual

acceleration far from the Sun (>15R�). The rapid acceleration was attributed to

magnetic forces, as the speed attained by the CMEs was already in excess of the solar

wind at the same positions. The later acceleration was posited to be due to drag as

the CMEs tended towards solar wind like speeds.

• In order to test if this acceleration was due to drag the CME kinematics were fitted

with drag models. In the case of a fast CME the kinematics were best reproduced

by a linear drag model, while in the case of a slow CME a quadratic drag model was

deemed best. The differing forms of drag for that the two CMEs indicated the forces

responsible for their acceleration might have been different.

• An entire CME front was reconstructed for the 2008 December 12 event using the

elliptical tie-pointing technique. The kinematics of the midpoint of the CME front

were extracted and studied. This CME was deflected into a non-radial trajectory

which was well described by a power law. The angular width of the CME was found

to increase super-radially and was also well described by a power law. The CME

kinematics showed an early acceleration phase below 5R�, with the CMEs speed in-

creasing from approximately 100 to 300 km s−1, the acceleration peaked at 100 m s−1

at ∼ 3R�. This was followed by a more gradual acceleration up to a scatter around

550 km s−1. The kinematics beyond 7R� were fitted with a parameterised drag equa-

tion. Using a bootstrapping technique it was shown that this CMEs acceleration was

due to aerodynamic drag. Using the final CME speed gave an estimated arrival time

at L1 a day too early. This was investigated by running the ENLIL with cone model

simulation, constrained by the CME properties derived from the 3D reconstruction.

The simulation showed the CME was decelerated by a slow speed stream ahead of
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it, slowing the CME to approximately 330 km s−1 – thus it predicted an arrival time

within hours of the actual arrival time.

• The dynamic interaction between CMEs and the solar wind was shown to contain

multiple phases as the CME propagated through different solar wind regions. This is

an important unknown factor in determining CME propagation. Accurate forecasting

of CME arrival times without knowledge of the solar wind conditions the CME would

encounter was shown to be difficult.

8.1.3 CME-driven Shock

• A CME-driven shock was identified and tracked from 8R� to 120R� (0.5 AU). Shocks

have been imaged close to the Sun previously, and routinely studied indirectly by the

radio emission they generate, however due to their low emission at optical wave-

lengths this was the first time a shock was directly imaged and analysed at such

large distances from the Sun.

• The Mach number for the shock was found to be 4.1 ± 1.2 and the shock stand-off

distance was found to increase linearly to 20R� at 0.5 AU.

• The normalised stand-off distance was found to be roughly constant with a mean

value of 0.37 ± 0.09D−1O . The shock stand-off distance normalised by the CME

radius agrees with the semi-emprical model (<%20). However the shock stand-off

distance normalised by the CME radius of curvature differed significantly from the

semi-emprical relations. This indicated that the CME radius of curvature was under

estimated by a factor of ∼ 3 – 8. This was found to be most likely due an observational

effect, as only a cross-section of the CME is observed, thus we cannot estimate the

most likely larger radius of curvature along the flux rope axis.

• The radius of curvature of the CME along the flux rope axis was estimated to be

∼ 205R� (0.95 AU) at 1 AU, while the stand-off distance was estimated to be approx-

imately 54R�. These values can be compared to multi point in situ measurements

to gauge their validity.

8.2 Future Work

The methods developed and implemented in this thesis are the first to produce true CME

kinematics at large distances from the Sun. Only a small number of events have been
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analysed, and in order to rigorously answer the open questions on CME propagation a

large number of events need to be analysed and statistical measures computed. In order

to achieve this an event catalog needs to be compiled and studied. This is a very time

consuming task which is subject to large user bias. Using advanced imaging processing

it may be possible to automate or semi-automate this process. This would firstly remove

the user bias, and also allow a much larger number of events to be analysed. Numerous

methods have been used to extract 3D information from the STEREO observation. An

inter-comparison of their accuracy, applicability (or lack thereof) in studying CMEs at large

distance from the Sun would be of great value. More realistic modelling of the ambient

solar wind would allow a better comparison or the drag models to the derived kinematics.

8.2.1 Event Catalogue

Analysing a small number of events has led to some interesting results. In order to rigor-

ously make statistically significantly conclusions about what forces govern CMEs during

their later propagation a larger number of events must be analysed in an identical man-

ner. To facilitate this large scale analysis, software was written which, using only on start

and end times for each instrument, could download, reduce and process the observations

producing standardised quicklook movies and data (base difference, running difference,

etc). Further software was written (xImager) which allows the A and B observations to be

analysed at the same time as shown in Figure 8.1. This software also allows the scaling of

the data, ellipse characterisation, and recording and editing of data points along the CME

front. Two implementations of the tie-pointing algorithm have been written – one which

uses the ellipse characterisations, and the other which interpolates between the data. The

two methods are necessary as the front of the CME is not always well characterised by an

ellipse, as shown in Figure 8.1. These methods take the output from the xImager code and

automatically extract the 3D trajectories and kinematics for the event, and store them for

later use.

Currently, a catalogue of 87 events between November 2007 and June 2011 has been

compiled. Of these events, 15 have had a preliminary analysis performed. The remaining

events have yet to be analysed. Once this is completed, analysis on the statistics of the

kinematics can begin. Interesting questions like how many CMEs are accelerated, and

by how much, could then be answered. Also, each event could be analysed using the

bootstrap method to see if all slow and fast events show a different dependance on the

difference between the CME and solar wind speed linear versus quadratic or if there is a

distribution of values. A number of improvements could be made to the software, including
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better handing of outliers in the kinematics, more robust 3D reconstruction, and better

displaying and scaling methods to ease identification.

8.2.2 Image Processing and Automation

The faint nature of most CMEs is one of the key obstacles to studying their kinematics.

The modified running difference technique was developed to enhance the CME signal.

Various other image processing methods such as curvelets (Candès & Donoho, 1999; Starck

et al., 2002) have also been investigated. The idea of using curvelets is to represent a

features as a superposition of functions of various lengths and widths obeying the width ≈
length2 scaling law. The first curvelets achieved by first decomposing the image into sub-

bands or scales, and on each scale a local ridgelet Candès & Donoho (1999) transform is

performed giving the curvelet decomposition. More recent curvelet implementations give

the decomposition coefficients in continous frequency as:

c(j, l, k) =

∫∫
Î(ν)φ̂(Rθlν)eix

j,l
k ·νdν, (8.1)

at a scale 2−j , orientation l and position xj,lk = R−1θl (2−jk1, 2−j/2k2). The curvelet is obtain

by rotation and translation of a mother curvelet ψj :

ψj,l,k(x) = ψj(Rθl(x− x
j,l
k )), (8.2)

where Rθl is a rotation by θl radians and θl = 2π2−|j/2|l. The waveform of ψj is defined in

terms of its Fourier transform in polar coordinates:

φ̂j(r, θ) = 2−3j/4ŵ(2−jr)ν̂(
2[j/2]θ

2π
). (8.3)

This type of multi-scale analysis has already been performed on coronagraph images (Byrne

et al., 2009; Gallagher et al., 2011) as shown in Figure 8.2. Figure 8.3 shows a curvelet

decomposition of an HI1 image, in which each image is a reconstruction using one scale.

The curvelet transform gives much more information than just scale, such as direction and

angle. By combining filtering across scales and properties it should be possible to enhance

the signal of CME compared to the background corona and stellar field.

Inspecting the HI images shows that there are clearly two size and intensity distributions

present: small circular bright features (stars), and large some what amorphous blobs of

very low intensity (CMEs) see Figure 8.4 (top row). Separating these two distributions

seemed to lend itself to a two step process: firstly thresholding to perform the intensity
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separation, and secondly, morphological operators to provide the size/shape separation. An

initial threshold in intensity space gives a binary mask where all points below the threshold

have been set to zero, and all points above set to unity. A morphological operator which

draws conclusions on how a predefined shape (structuring element or kernel) fits or misses

the shapes in the image is then applied to detect the desired property. Application of

the morphological erode operation with a small circular kernel removes all small isolated

features. The erode operation for binary data can be written:

C = A	B = ∩
b∈B

(A)−b (8.4)

where A 	 B is the erosion of image A by structure element B, and (A)−b represents a

translation of A by b. In the case of grayscale values the minimum difference of the set is

used. Following this, a morphological dilate operator with a slightly larger circular kernel

serves to form contiguous blocks and leaves only the CME and largest stars (Figure 8.4;

bottom left). The dilate operation for binary data can be written:

C = A⊕B = ∪
b∈B

(A)b (8.5)

where A ⊕ B is the dilation of image A by structure element B, and (A)b represents a

translation of A by b. In the case of grayscale values the maximum difference of the set

is used. A contour operation allows the pixels corresponding to the front to be extracted,

these can be over-plotted and the original image (Figure 8.4; bottom right). This technique

proved to work relatively well, but the same threshold can not be used on an entire image

sequence, and attempts to find a metric that gives a threshold automatically have thus

far failed. However a variable threshold interactively changed by the user, in addition to

selection of the appropriate contour, could provided an aid to the analysis. This type of

semi-automation could be included in future versions of the xImager software.

8.2.3 3D Reconstruction

Numerous methods have been developed to derive the CME positions from STEREO ob-

servations. A detailed inter-comparison between all the available methods has not been

done as yet. An especially interesting comparison would be between the two triangulation

methods, tie-pointing (TP) and elliptical tie-pointing (ETP). It is known that in the TP

method the reconstructed point will not lie on the CME, but either ahead of, or behind

it, while for the ETP method the point should lie on the CME front. The difference be-

tween the two methods has not yet been either quantitatively or qualitatively evaluated.
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Studying the difference between the two methods as function of CME propagation angle

and distance could be used to estimate these differences. Ideally, robust software to apply

all the different methods to the extracted CME front would be developed, allowing an

inter-comparison for any event studied. Understanding the effects of the various methods

on the CME position, and hence kinematics, would enable better constraints on the errors

used in the fitting process, thereby increasing confidence in the fit results.

In the future a combination of forward modelling combined, with the 3D reconstruc-

tions, will lead to a more complete picture of the CME observations in terms of the CMEs

structure and its kinematics. It was shown in Section 3.1.1 that using single viewpoint ob-

servations in combination with forward modelling was ambiguous. That is, the orientation

of the model axis could not be uniquely determined, and, in most cases, two perpendicular

orientations could both reproduce the data adequately. Using two viewpoints of STEREO

should remove this ambiguity. Some work has already been done in this area, Figure 8.5

shows synthetic coronagraph images of a graduated cylindrical shell (GSC) model as ob-

served by A and B (Mierla et al., 2009). Simultaneously constraining the fit from A and B

observations should provide a unique best fit. There are many benefits of using a forward

model like the GSC, for example better interpretation of the observed structures and more

detailed kinematics can be extracted. It is well known that the velocity of a CME front

is a combination of the CME velocity and its expansion velocity: using a model like the

GSC the centre of mass velocity and expansion velocity can be derived. When comparing

the CME kinematics to models the centre of mass velocity is the preferable measure.

8.2.4 Kinematic Modelling

The first obstacle in kinematic modelling is identifying and tracking the CME, the next

problem is the accurate determination of its kinematics. Given height-time data, the first

and second derivatives with respect to time need to be calculated, giving the velocity

and acceleration respectively. As the data is not continuous, numerical approximations

to the derivative operator must be used. Traditional methods for determining numerical

derivatives such as forward, reverse, and centred difference have serious limitations. One

serious limitation is the calculation of errors on the derivatives which depend inversely

on the step size – linearly for forward and reversed differences and quadratically for the

centred difference – double the candance and the error is quadrupled. This is extremely

counter intuitive: as the number of data points is increased the errors also increase, even

though more information is being added. More advanced methods like 3-Point Lagrangian

interpolation suffer from the same problem, an error that depends inversely on step size.
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The bootstrap technique provides an accurate and robust way to test if the kinematics fit a

profile or model, but requires that these be known beforehand. Some methods exist which

may allow better kinematics to be obtained using only the data itself, such as the Kalman

filter and inversion methods. These methods should be investigated in the future to see if

they perform better than the current methods.

Once accurate kinematics have been derived, the next step is to compare them to

theoretical models such as the drag model. In the drag model a number of the unknown

parameters were absorbed into a power law parameterisation. Any knowledge of these

parameters would allow a more accurate test of the drag model. Observation based models

such as ENLIL and HAFv2 give the ambient solar wind conditions in the inner Heliosphere.

Figure 8.6 is a snap shot in time from an ENLIL simulation showing solar wind density

and velocity at various cuts through the simulation domain. Once the CME trajectory is

known the solar wind properties such as density and speed can be extracted along the CME

path. These can then be input into the drag models, which would be a great improvement

to the current analytic solar wind models used. The ambient solar wind conditions have

been shown to play a vital role in determining CME kinematics. Better constrains on

these conditions would allow a better comparison between the observed kinematics and

drag model predictions.

Also ENLIL and HAFv2 allow CMEs to be simulated. The CME are simulated by time

dependent changes to boundary condition (density, temperature, velocity). Comparing the

1D drag models to these complex 3D simulations would allow a better understanding of

which forces play the most important role and where they do so. This could give insight

into which type of drag force is acting and the model best suited to study it.
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Figure 6: Filtered raw images using an isotropic wavelet (left) and curvelets (right) by
removing coefficients most probably due to noise.

Figure 7: Contrast enhanced raw images by amplifying the isotropic wavelets coefficients
(left) and the curvelet coefficients (right) at the finer scales.

15

Figure 8.2: Corongraph Images Filter using an Isotopic Wavelet (left) and a Curvelet right
(Gallagher et al., 2011).
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Figure 8.3: Curvelet decomposition of a HI1 image showing different decomposition scales.
The units are image pixels.
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Figure 8.4: Original HI1 image scale to 95% of the maximum intensity (top left) and the same
image scaled to 0.5% of the maximum intensity (top right). Resulting image after application of
a morphological open and close operators with different size kernels (bottom left) the detected
CME front over plotted (bottom right).
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3D Reconstruction on CMEs

Figure 3 Simulated total brightness images of the GCS model applied to 31 August 2007 CME. Left panel:
the GCS model seen from spacecraft B. Right panel: the GCS model seen from spacecraft A.

Figure 3 shows two synthetic coronagraph images of the GCS model applied to the COR1
data on 31 August, viewed from spacecraft A (Figure 3(b)) and spacecraft B (Figure 3(a)).
The LE of the CME as seen in the simulated images (Figure 3) corresponds well to the
observed LE (Figure 1).

5.2. Application of LCT-TP, CM-TP and PR to a Model CME

In order to obtain a more precise idea on the capabilities of the other three methods, we first
applied them to synthetic observations that were generated from the GCS model of the CME
from 31 August 2007.

After applying the LCT-TP, CM-TP and PR methods to the model data, we obtain the
images shown in Figures 4, 5 and 6. In all these representations of our results, we indicate
the Sun by the gray sphere. The radius of the outer gridded sphere is 1.5 R!. In a Cartesian
HEEQ coordinate system, the CME propagates roughly in the Y -direction. The colors repre-
sent the distance along the Y -axis (blue meaning closer to the Sun center). Two viewpoints
were chosen for representation: the left panels of these figures show the CME seen approxi-
mately head on (X and Z in the image plane, Z downwards and X towards right) while the
right panels display the CME seen edge on (Y and Z in the image plane, Z upwards and Y

towards right), respectively.
The results for the LCT method are given in Figure 4. For Figures 4(a) and 4(b) the LCT

was applied by fixing the window in the image taken by COR1 A and looking for corre-
sponding features in the image taken by COR1 B, while for Figures 4(c) and 4(d) the fixed
window was taken in the B image. The 3D crest is located in the place where the CME
front side edge is triangulated from each image. The similarity of the two reconstructions
demonstrates that the method is reliable. As sketched in Figure 2, a triangulation of the front
edge of the CME surface from two vantage points yields a crest that, depending on the sur-
face curvature radius Rcurv, always lies somewhat ahead of the true CME front surface. This
effect should increase with an increasing separation angle γ between the spacecraft. The dis-
tance between the true and reconstructed leading edges amounts to Rcurv(1 − 1/ cos(γ /2)).
For the largest separation angle in our data set (47°), this distance is around 0.1 Rcurv.

Figure 5 shows the reconstructed center of mass of the modeled CME in each epipolar
plane it intersects. It therefore gives us mainly information on the longitude of the propaga-
tion direction of the CME.

Figure 8.5: Synthetic Graduated Cylindrical Shell STEREO Observations from the perspec-
tive of A and B (Mierla et al., 2009).
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Figure 8.6: ENLIL simulation results showing the velocity and density from NASA’s Com-
munity Coordinated Modeling Center (CCMC).
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Y.A., Guo, W.P. & Wu, S.T. (2000). Simultaneous SOHO and Ground-Based Observations of a Large

Eruptive Prominence and Coronal Mass Ejection. Solar Physics, 194, 371–391. (Cited on page 30.)

214



REFERENCES
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Tátrallyay, M., Kabin, K. & Shugaev, F. (2003a). Planetary bow shocks: Gasdynamic analytic

approach. Journal of Geophysical Research (Space Physics), 108, 1323. (Cited on page 174.)

218



REFERENCES

Verigin, M., Slavin, J., Szabo, A., Gombosi, T., Kotova, G., Plochova, O., Szegö, K.,
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Propagation of Coronal Mass Ejections in
the Inner Heliosphere

Shane A. Maloney, B.Sc. (Hons.)

Solar Coronal mass ejections (CMEs) are large-scale ejections of plasma and magnetic
field from the corona, which propagate through interplanetary space. CMEs are the most
significant drivers of adverse space weather on Earth, but the physics governing their
propagation through the Heliosphere is not well understood. This is mainly due to the
limited fields-of-view and plane-of-sky projected nature of previous observations. The
Solar Terrestrial Relations Observatory (STEREO) mission launched in October 2006, was
designed to overcome these limitations.

In this thesis, a method for the full three dimensional (3D) reconstruction of the tra-
jectories of CMEs using STEREO was developed. Observations of CMEs close to the
Sun (< 15R�) were used to derive the CMEs trajectories in 3D. These reconstructions
supported a pseudo-radial propagation model. Assuming pseudo-radial propagation, the
CME trajectories were extrapolated to large distances from the Sun (15 – 240R�). It was
found that CMEs slower than the solar wind were accelerated, while CMEs faster than the
solar wind were decelerated, with both tending to the solar wind velocity.

Using the 3D trajectories, the true kinematics were derived, which were free from pro-
jection effects. Evidence for solar wind (SW) drag forces acting in interplanetary space
were found, with a fast CME decelerated and a slow CME accelerated toward typical SW
velocities. It was also found that the fast CME showed a linear dependence on the velocity
difference between the CME and the SW, while the slow CME showed a quadratic depen-
dence. The differing forms of drag for the two CMEs indicated the forces responsible for
their acceleration may have been different. Also, using a new elliptical tie-pointing tech-
nique the entire front of a CME was reconstructed in 3D. This enabled the quantification
of its deflected trajectory, increasing angular width, and propagation from 2 to 46R� (0.2
AU). Beyond 7R�, its motion was shown to be determined by aerodynamic drag. Using
the reconstruction as an input for a 3D magnetohydrodynamic simulation, an accurate
arrival time at the L1 Lagrangian point near Earth was determined.

CMEs are known to generate bow shocks as they propagate through the corona and SW.
Although CME-driven shocks have previously been detected indirectly via their emission at
radio frequencies, direct imaging has remained elusive due to their low contrast at optical
wavelengths. Using STEREO observations, the first images of a CME-driven shock as it
propagates through interplanetary space from 8R� to 120R� (0.5 AU) were captured. The
CME was measured to have a velocity of ∼ 1000 km s−1 and a Mach number of 4.1 ± 1.2,
while the shock front standoff distance (∆) was found to increase linearly to ∼ 20R� at 0.5
AU. The normalised standoff distance (∆/DO) showed reasonable agreement with semi-
empirical relations, where DO is the CME radius. However, when normalised using the
radius of curvature (∆/RO), the standoff distance did not agree well with theory, implying
that RO was underestimated by a factor of ∼ 3 – 8. This is most likely due to the difficulty
in estimating the larger radius of curvature along the CME axis from the observations,
which provide only a cross-sectional view of the CME. The radius of curvature of the CME
at 1 AU was estimated to be ∼ 0.95 AU
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