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Abstract

This thesis is concerned with Content-Based Media Processing (CBMP). CBMP in-

volves the detection or exploitation of the salient content in digital media for applications

in digital media processing. Salient content is defined as any attribute, object or “event”

that is meaningful, recognizable or important to the user and/or application. The useful-

ness of CBMP is explored in three different projects in audio, image and video processing

respectively.

The first audio-based project proposes a new algorithm for example-based Sound Tex-

ture Synthesis (STS). STS is the synthesis of a long body of sound texture from a short

training example clip. The goal is that the resulting sound texture is perceptually similar to

the training example, but does not sound like the training example repetitively tiled. Ap-

plications include damaged audio repair, and the generation of ambient sound for computer

games, installations and movies. Example-based STS is content-based in that it involves

estimating the statistics of the sound texture by measuring directly from the training data.

A multi-resolution approach is taken here, and employment of the Dual-Tree Complex

Wavelet Transform (DT-CWT) is found to be useful for complexity reduction. Content-

based analysis is used for estimating the values of parameters inherent to the algorithm.

This example-based STS algorithm performs well compared to another prominent algo-

rithm in the field, and the resulting sound textures are of good quality and long duration,

temporally varied and perceptually similar to the training example clips tested.

The second image-based project is concerned with Implicit Spatial Inference (ISI) with

sparse local features for Face Detection. Face Detection is an extremely important tool

in the field of CBMP, since the faces of people constitute much of semantic content in

home movies and digital images, cinema and camera mobile phone clips. General Object

Detection is also useful, and the use of sparse local features such as SIFT (Scale Invariant

Feature Transform) is a popular approach in the field. Linking these sparse features together

to properly localize objects, however, is a difficult problem. ISI is a novel technique for

leveraging the implicit geometric context of these sparse features in a Bayesian framework.

A likelihood is determined from the classification output of a machine learning algorithm

trained on these features, and a Markov Random Field (MRF) prior is used to inject

contextual geometrical information. The MRF is imposed on a graph obtained by Delaunay

triangulation of the sparse features. Promising detection, segmentation and invariance

results are obtained in a Face Detection task.

The third project video-based project is concerned with content-based video stylization,

and this concept is explored in a novel framework for the Skin-Aware Stylization of Video

Portraits. Video portraits are the animated head shots of people captured in the image

sequences extracted from home movies, cinema, TV and mobile phone clips. A novel
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spatio-temporal Skin Detection algorithm is used to identify the skin-colored image regions

in these sequences, allowing them to be highlighted while abstracting the less important

background regions. The framework merges ideas in Non-Photorealistic Rendering (NPR)

- such as edge-based cartoonization and motion expression - with the technique of Stroke-

Based Rendering (SBR) for painterly stylization. Several novel techniques in SBR are

proposed, including a probabilistic algorithm for brush stroke anchor point distribution,

the manipulation of brush strokes in emphasizing motion, spatio-temporal color-sampling,

and occlusion detection for mitigating the well-known problems of gaps and redundancy in

motion-compensated brush stroke animation. The framework is used to stylize a number

of video portraits of people with interesting and artistic results.
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1
Introduction

With the rise of new digital media formats and ever-evolving digital capture devices, increas-

ingly vast quantities of digital media are being produced by everybody from the ordinary

digital camera owner to professionals in the broadcasting, cinema, and music industries.

This digital revolution has created some very interesting challenges for the contributors

and guardians of our technological world.

The problems of finding bandwidth for transmission, and space for storage of both new

digital media, and digitized archive material, has fueled the continuous development of

increasingly content-based compression techniques and summarization schemes. A specific

example of such work is the recently popular Seam Carving for Content-Aware Image

Resizing algorithm of (Avidan & Shamir, 2007), which is a clever scheme for reducing the

size of a digital image by continuously removing “seams” of pixels that snake through the

image avoiding the salient or important image regions. Saliency here is defined by regions

of high local contrast or some other measure of importance. A more general example is the

huge body of research concerned with the event-based summarization of sporting events

for digital TV broadcast, including the research of (Kokaram et al., 2006; Kokaram et al.,

2005) and (Denman et al., 2003). It is likely that the producers, broadcasters and owners

of digital media will rely increasingly on content-based compression and summarization

techniques such as these in the future.

Meanwhile, tools for the manipulation of digital media are extremely popular with

both ordinary consumers, and industry professionals. Once based on simple sample-wise,

pixel-wise, or frame-wise audio, image, or video processing filters, there is an increasing

1
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demand for smarter media processing tools. Tools that are capable of recognizing, and

exploiting knowledge of the meaningful content in digital media, therefore bridging the so-

called semantic gap between user and machine. The detection and localization of human

faces in visual media for example, has become a hot topic in the field, most probably due

to the fact that some of the most important content in home movies, TV broadcasts, and

cinema material are captures of people, especially head shots and facial close-ups. Face

Detection capability has even found its way into the software bundled with digital cameras

and camera mobile phones where it is used to influence functions of the camera such as

Auto-Focus (AF).

With the rise of media upload forums such as YouTube1, MySpace2, and Flickr3, any-

body can be an audio and/or visual artist. Tools for creative tasks such as image or

video stylization and sound editing are becoming as omni-present in ordinary desktop soft-

ware as they are in professional media processing software packages such as Adobe Creative

Suite4. Time and effort, however, remain precious human commodities and any automation

of media processing tasks is invaluable to ordinary consumers, professional media artists,

computer game designers, and cinema post-production houses alike.

1.1 Content-Based Media Processing

Content-Based Media Processing (CBMP) involves the detection, analysis or modeling of

the salient content in digital media in order to make decisions based on, or exploit the

content in processing the media. In digital media, salient content can be thought of as any

attribute, object or “event” that is semantic, important, recognizable or stand-alone to the

user and/or application. There are many different levels of salient or semantic content,

some examples of which are listed below:

Low-Level: Local extrema, various local or global statistics (e.g. correlations, entropy),

pixelwise color values, motion vectors

Mid-Level: Periodicities (e.g. beats in music), features (e.g. spatial “patches” of image

intensity or gradients), relative spatial geometry, properties of a motion field (e.g.

occlusion, trajectories)

High-Level: Characteristic color classes (e.g. skin color), semantic events (e.g. goals

scored in soccer broadcasts) and objects (e.g. faces)

1YouTube: http//www.youtube.com
2MySpace: http//www.myspace.com
3Flickr: http//www.flickr.com
4Adobe CS: http://www.adobe.com/products/creativesuite/



1.2. Thesis Outline 3

1.2 Thesis Outline

This thesis explores the concept of CBMP in three distinct projects involving audio, im-

age and video processing respectively. Each of these projects hinges on the detection or

exploitation of some aspect of salient content in a particular topic in media processing. In

digital media, salient content can be thought of as any attribute, object or “event” that

is semantic, important, recognizable or stand-alone to the user and/or application. Chap-

ter 2 describes the audio-based project of example-based Sound Texture Synthesis (STS),

Chapter 3 focuses on the image-based project of Implicit Spatial Inference (ISI) with sparse

local features for Face Detection, Chapter 4 presents a review of the state-of-the-art in the

stylization of visual media, Chapter 5 describes a novel algorithm for Skin Detection in

images, and Chapter 6 presents the video-based project entitled Skin-Aware Stylization of

Video Portraits. The following is a brief summary of each Chapter.

Chapter 2: Example-Based Sound Texture Synthesis

This Chapter presents a novel example-based Sound Texture Synthesis (STS) algorithm.

It begins with an explanation of how the algorithm was inspired by a well known example-

based Image Texture Synthesis (ITS) algorithm and its multi-resolution extension. This is

followed by a description of the algorithm, including a wavelet-based technique for complex-

ity reduction. Next follows a subjective comparison of its sound texture results to those of

another prominent wavelet-based STS algorithm. There is a discussion of the meaning and

influence of some of the user-defined parameters inherent to the algorithm, along with some

suggestions for content-based parameter estimation. Some more interesting sound texture

results are then generated using these content-based parameter estimation techniques.

Chapter 3: Implicit Spatial Inference with Sparse Local Features for Face

Detection

This Chapter presents a novel algorithm for leveraging the implicit geometry of sparse

local feature points for invariant feature-based Face Detection. A brief discussion of the

state-of-art in the fields of Object and Face Detection is followed by a description of the

algorithm, which has been named Implicit Spatial Inference (ISI). The Bayesian framework

underlying this algorithm is discussed, including a technique for obtaining a likelihood from

the confidence output of a typical point-wise feature-based machine learning classifier, and a

method of imposing a Markov Random Field (MRF) on a sparse set of feature points using

Delaunay triangulation. A Face Detection task is used to test the algorithm for detection,

localization and segmentation accuracy and scale and rotation invariance.
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Chapter 4: On the Stylization of Visual Media

This Chapter presents a review of state-of-the-art algorithms for the artistic stylization of

visual media (i.e. images and videos). This includes a description of sub-topics in the field

of Non-Photorealistic Rendering (NPR) such as cartoonization, Stroke-Based Rendering

(SBR), semantic stylization, motion summarization and expression.

Chapter 5: Graph Cut-Based Skin Detection

This Chapter presents a brief review of techniques in the field of Skin Detection, followed by

the description of a novel algorithm for Skin Detection in images. The underlying Bayesian

framework of this novel skin detector encompasses probabilistic skin color modeling in the

RGB color space and Graph Cut-based spatial smoothing.

Chapter 6: Skin-Aware Stylization of Video Portraits

This Chapter presents a novel Non-Photorealistic/Stroke-based Rendering (NPR/SBR)

framework for the skin-aware stylization of video portraits of people. The framework com-

bines elements of cartoonization, motion depiction, spatio-temporal Skin and Edge De-

tection and content-based stylization. A description of the framework encompasses novel

techniques in SBR for brush stroke anchor point distribution and motion expression, spatio-

temporal color-sampling, and for the exploitation of occlusion detection in dealing with the

well-known issues of gaps and redundancy in motion-compensated brush stroke animation.

The framework is used to stylize a number of sequences containing head shots of people,

and the visual results are discussed.

Chapter 7: Conclusion

The final Chapter assesses the contributions of this thesis, discusses some issues in CBMP

and directions for future work.

1.3 Contributions of this Thesis

The novel aspects of this thesis are summarized as follows

• A new example-based STS algorithm.

• The idea of estimating the parameters inherent to this - and possibly other example-

based STS algorithms - through audio content analysis.

• A new invariant Face Detection algorithm. The proposed face detector is fully invari-

ant to in-plane rotation, relative feature geometry and partial occlusion, and partially

invariant to scale, illumination and pose (i.e. out-of-plane rotation).
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• A probabilistic technique for inferring implicit geometric context in sparse local feature-

based classification for the purpose of Object/Face Detection.

• A technique for obtaining a probabilistic likelihood from the real-valued confidence

output of a typical feature-based machine learning classifier.

• The implementation of ISI on a sparse set of feature points by imposing a MRF via

Delaunay triangulation.

• Ideas for producing a rough object segmentation from the final result of sparse local

feature-based classification.

• A new probabilistic Skin Detection algorithm with Graph Cut-based spatial smooth-

ing.

• A new skin-aware framework for the semantic stylization of video portraits.

• The merging of content-based stylization, cartoonization, SBR, motion summarization

and other NPR effects in one video stylization framework.

• Several novel techniques in SBR including a new probabilistic algorithm for brush

stroke anchor point distribution, spatio-temporal color sampling, and the detection of

video occlusion for the mitigation of some well-known problems in motion-compensated

brush stroke animation.

1.4 Publications

Portions of the work described in this thesis have appeared in the following publications

• “Wavelet-Based High Resolution Sound Texture Synthesis”, by Deirdre O’Regan and

Anil Kokaram, in Proceedings of the 31st International Conference of the Audio Engi-

neering Society (AES: Hi-Res Audio ’07): New Directions in High Resolution Audio,

paper number 17, Queen Mary University, London, UK, June 2007.

• “Multi-Resolution Sound Texture Synthesis using the Dual-Tree Complex Wavelet

Transform”, by Deirdre O’Regan and Anil Kokaram, in Proceedings of the 15th Euro-

pean Signal Processing Conference (EUSIPCO ’07), pages 350-354, Poznan, Poland,

September 2007.

• “Implicit Spatial Inference with Sparse Local Features”, by Deirdre O’Regan and

Anil Kokaram, in Proceedings of the 15th IEEE International Conference on Image

Processing (ICIP ’08), pages 2388-2391, San Diego, CA, USA, October 2008.
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• “Skin-Aware Stylization of Video Portraits”, by Deirdre O’Regan and Anil Kokaram,

in Proceedings of the 6th European IEEE Conference on Visual Media Production

(CVMP ’09), London, UK, November 2009.



2
Example-Based Sound Texture Synthesis

Sound Texture Synthesis (STS) is useful for synthesizing ambient sounds for installations,

computer games and home movies, damaged audio repair, compression and storage. This

Chapter presents a novel example-based STS algorithm. A brief examination of some of the

concepts in STS and the closely related field of Image Texture Synthesis (ITS) is followed

by a description of the new algorithm. Inspired by a well known 2D example-based ITS

algorithm and its and multi-resolution adaptation, this 1D audio interpretation is used to

synthesize long, perceptually and statistically similar sound textures from much shorter

real-world training examples including audio clips of crowd noise, a baby crying, speech

and music. The process employs the Dual-Tree Complex Wavelet Transform (DT-CWT)

to reduce computational burden without sacrificing spectral coherency in the synthesized

audio. This example-based approach to STS produces plausible and interesting sound

textures that are comparable to the results of another well-known wavelet-based STS in

the field. Content-based analysis of the short training example is used to estimate some

of the parameters inherent to the algorithm. Specifically, Beat Detection, and Shannon

entropy analysis are used for this purpose.

2.1 Sound Texture Synthesis

Sound Texture Synthesis (STS) is the automatic synthesis of a long, dynamic sound texture

that is perceptually similar to a shorter audio training example, as can be seen in Figure

2.1. The biggest challenge of STS is the achievement of an acoustically plausible sound

7
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STS

Algorithm
sound texture

TILEDtraining
example

Figure 2.1: The process of STS; the ideal algorithm takes a short audio training example

input and produces a non-tiled sound texture output

texture with an unpredictable temporal evolution. The latter property will be referred to

hereafter as variation. Simple end-to-end repetition of the training example, or tiling, is

easily detectable acoustically and should be avoided.

A variety of sound samples can be transformed into sound textures; natural (e.g. bab-

bling water, crickets chirping), human (e.g. baby crying, speech snippets), musical (e.g. pi-

ano), and mechanical (e.g. road traffic). Some natural sounds could be considered stochastic

in nature (e.g. heavy rainfall), whereas human speech and polyphonic music have specific,

complex structures, and can be thought of as quasi-periodic. The process of STS is not as

easily generalizable as Figure 2.1, since the spectral characteristics of each training example

present a unique challenge.

Applications of STS include audio compression, ambient sound or music synthesis for

computer games, installations and movies, re-synthesis of rare sounds (e.g. a rare bird call),

and error correction or “hole-filling” in existing, damaged audio tracks.

Research in STS is growing in popularity alongside the related fields of Image Texture

Synthesis (ITS) and Video Texture. Following the pixel-wise synthesis techniques reported

often the field of ITS (e.g. (Efros & Leung, 1999) and (Wei & Levoy, 2000)), STS is taken

to mean the sample-wise synthesis of a novel sound track that is much longer than the

training example clip. This is subtly different to the idea of Audio Texture (AT) as defined

in (Lu et al., 2004), which is concerned with analysis of the training example for location of

transition points that divide the signal into a number of perceptually correlated segments.

Audio Texture is then created by means of a continuous randomized playback of these

segments. AT is like a patch-based alternative to the unit-based STS. The AT approach is

common to the algorithms of (Lu et al., 2004; Hoskinson & Pai, 2007) and (Jehan, 2004).
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STS is also distinct from pure computer music synthesis (Moorer, 1995), which involves

the computer-generated composition of virtual, (usually) musical soundwaves without train-

ing from any real world audio example clip. Synthesis of complex real-world sounds like

human speech is difficult using this technique, but it is useful for creating other-worldly

and machine-like sounds such as the THX logo theme, ‘Deep Note’, composed by Dr. J.

A. Moorer. For the interested reader, (Strobl et al., 2006) present a short review of a few

different methods of sound and music synthesis, including STS, AT and pure computer

music synthesis techniques.

With regard to this body of research, the chosen approach of sample-wise STS has been

inspired by the interesting results and challenges emerging from the field of ITS in recent

years (Efros & Leung, 1999; Wei & Levoy, 2000), with particular regard to multi-resolution

or wavelet-optimized ITS algorithms (Wei & Levoy, 2000; Gallagher & Kokaram, 2005).

The STS algorithm of (Dubnov et al., 2002) has also been inspired by a multi-resolution

ITS algorithm, and it is therefore considered most similar to the STS work presented in

this Chapter. This algorithm of (Dubnov et al., 2002), and some ITS algorithms will be

discussed later in Sections 2.3 and 2.4 respectively. To fully appreciate this discussion,

however, it is necessary to understand the fundamentals of wavelet analysis, and a brief

explanation of this topic will now be presented.

2.2 Wavelet Analysis

Wavelet analysis involves the decomposition of a signal into a number of different sub-signals

representing the different levels of spectral resolution or scales present in the input signal

over time, where scale is inversely proportional to frequency. It is distinct from the Fourier

Transform and Short Term Fourier Transform (STFT) in that it results in a non-uniform

decomposition of the time-frequency spectrum, as can be seen in Figure 2.2.

Wavelet analysis usually involves filtering the input signal with with a finite energy basis

or mother wavelet function under various translations and dilations. The output wavelet

decomposition is a useful time-scale breakdown of the signal into spectral octaves. For

this reason, wavelet filtering is thought to bear similarity to that of the Human Auditory

System (see (Kudumakis & Sander, 1993)), and it is conducive to the spectral analysis of

non-stationary, real-world signals.

The concept of scale is similar to that of granularity. Small scale wavelet analysis reveals

finer spectral granules in the signal, and vice versa. Notice that the high frequency (i.e.

low scale) parts of the signal in Figure 2.2 (c) are represented with a finer time resolution

and vice versa. This makes sense from an auditory perspective, since spectral activity

in the high frequency bands of a signal is greater, by definition. Therefore, a finer time

resolution is useful to capture this high frequency activity (i.e. smaller granules). A coarser

time resolution is sufficient to represent the more more long term characteristics (i.e larger
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(a) Fourier analysis (b) STFT analysis

(c) Wavelet analysis

Figure 2.2: Comparing the spectral decomposition of (a) the Fourier Transform, (b) the

Short-term Fourier Transform (STFT), and (c) a typical wavelet transform.

granules) of the low frequency bands, which evolve more slowly.

Wavelet transforms are increasingly popular in the field of Texture Synthesis. The DWT

is used in (Hoskinson & Pai, 2007) for the location of transition points in AT (see Section

2.1 for explanation). (Hoskinson & Pai, 2007) describe an online demo applet1 that can be

used to experiment with different wavelets basis functions in the creation of a few ambient

audio textures such as crickets chirping. The STS and ITS algorithms of (Dubnov et al.,

2002) and (Gallagher & Kokaram, 2005) also make use of wavelet transforms for signal

analysis, and these will now be discussed in the following two Sections.

2.3 The Wavelet-Based STS of Dubnov et al.

(Dubnov et al., 2002) assume that the short-term time-frequency characteristics of a typical

stochastic sound texture can be learned statistically. In similarity to the well-known multi-

resolution tree-structured ITS algorithm of (Wei & Levoy, 2000), (Dubnov et al., 2002)

perform multi-resolution analysis of the example training clip with the Discrete Wavelet

Transform (DWT), and the wavelet decomposition is used to build a tree-like statistical

1(Hoskinson & Pai, 2007): http://www.cs.ubc.ca/labs/lci/naturalgrains/
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Figure 2.3: The structure of the nodal wavelet tree used in the STS algorithm of (Dubnov

et al., 2002).

model of the training example clip, from which new samples of texture can be continuously

drawn.

After wavelet analysis, the training example signal has been broken down into dyadic set

of multi-resolution pieces or granules. These granules are arranged in an inverted tree-like

structure with the largest scale (i.e. lowest frequency) granule at the root of the inverted

tree, and granules of decreasing scale (i.e. increasing frequency) at descending levels all

the way down to the node leaves, which are at the bottom of the tree. As can be seen in

Figure 2.3, the structure is arranged such that neighboring nodes at the same tree level

are temporally adjacent at the scale represented by that level, whereas parent and child

nodes are related in scale-space. The wavelet tree, therefore, models the joint time-scale

(i.e. time-frequency) dependencies of the training signal. In (Dubnov et al., 2002), a node’s

parents are referred to as its ancestors, whereas its same-level causal neighbors from the

past are referred to as predecessors.

A novel sound texture is created by the synthesis of a new tree of depth, K, in a

breath-first manner. The tree is first initialized with a root, and the same level k = 1

children as that of the training tree. In the synthesis of level k = 2, candidates for a new

node are chosen by finding nodes in the training tree whose ancestors are similar to the

ancestors of the node to be synthesized. This candidate set is then reduced to nodes whose

five predecessors are similar to those of the node to be synthesized, and a new node is

chosen randomly from it. For optimization purposes, the set of ancestors obtained for each

candidate node can be inherited from parent to child to reduce complexity in the synthesis

of the next level.
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A variety of real-world audio training examples - including traffic noise, babbling water

and a baby crying - are re-synthesized, and the resulting sound textures are quite interesting.

These results are discussed in further detail in Section 2.8, but a general observation is that

the algorithm seems limited to producing sound textures that are of the same, or of even

shorter duration than the short example clips used for training. This could be attributed

to the fact that the synthesized wavelet trees have only one root node, and are always

synthesized to the same depth, K, as that of the training tree. (Dubnov et al., 2002) state

that it is a trivial matter to extend the sound texture by means of producing a deeper

wavelet tree in synthesis, but this has not been implemented. Both the training examples,

and resulting sound texture files are obtainable at the URL associated with (Dubnov et al.,

2002)2.

2.4 On the Synthesis of Image Texture

Most ITS algorithms attempt to generate samples of synthesized image texture by modeling

p(I(X)|IΘ), or the likelihood of image intensity, I(X), given some model parameters, IΘ.

The well-known algorithm of (Efros & Leung, 1999) was the first in ITS to measure this

likelihood directly from the image content, assuming a Markov Random Field (MRF) with

a discrete sampling window.

This concept is known as example-based synthesis, and the idea is derived from a statis-

tical technique first used by Shannon to generate English-like text letter by letter. Using a

large example of training text, Shannon modeled language as a generalized Markov Chain,

enabling an estimation of the Probability Distribution Function (PDF) for synthesizing new

letters by measuring from the existing data. As discussed in (Efros & Leung, 1999), image

texture can be pixel-wise synthesized using this technique adapted to image space. The

concept of MRF is explained in (Efros & Leung, 1999) as the assumption that

The probability distribution of brightness values for a pixel given the brightness

[i.e. intensity] values of its spatial neighborhood is [assumed to be] independent

of the rest of the image.

Unfortunately the window-matching form of this algorithm requires exhaustive searching

that is prohibitively slow and computationally inefficient. (Gallagher & Kokaram, 2005)

uses wavelet analysis to optimize the ITS algorithm of (Efros & Leung, 1999), reducing

the computation burden involved. The Dual-Tree Complex Wavelet Transform (DT-CWT)

(Kingsbury, 2001) is used for this task, and the texture synthesis occurs in wavelet space,

as a multi-resolution process. The resulting multi-resolution example-based ITS algorithm

produces image textures that are as plausible as those associated with (Efros & Leung,

1999), but with a fraction of the computational burden. Some of the image texture results

2(Dubnov et al., 2002): http://www.cs.huji.ac.il/labs/cglab/papers/texsyn/sound/
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Figure 2.4: Examples of image textures generated by the multi-resolution example-based

ITS algorithm of (Gallagher & Kokaram, 2005). Images courtesy of (Gallagher, 2006).

of ITS algorithm of (Gallagher & Kokaram, 2005) can be seen in Figure 2.4. Here, the

training example has been placed in the box middle, and the texture is grown outwards

from it. The explicit details of this algorithm will not be discussed here, since it is the

inspiration behind the example-based STS work that will be described later in this Chapter.

2.4.1 Thoughts on a Multi-Resolution Example-Based STS

Although image and audio are presented and perceived quite differently, it is proposed that

example-based STS can be thought of as the 1D version of 2D example-based ITS, and that

multi-resolution optimization can be implemented in both. A wavelet-optimized scheme in

STS is certainly useful considering the high sampling rate of sound files (e.g. 44kHz or

44, 100 samples per second). Sample-wise synthesis in the sound domain, therefore, is even

more impractical than in image space.

Hence the example-based STS algorithm that has been developed here is like a version of



2.5. Single Resolution Example-Based Sound Texture Synthesis 14

(Gallagher & Kokaram, 2005) example-based ITS, adapted specifically for the paradigm of

audio. The multi-resolution form of this STS algorithm will be discussed later in Section 2.7,

in terms of wavelet analysis with the DT-CWT. It is first necessary, however, to understand

the 1D case of (Efros & Leung, 1999) example-based texture synthesis algorithm in single

resolution.

2.5 Single Resolution Example-Based Sound Texture Syn-

thesis

Suppose that our unit of synthesis, ys, is a single sample of a body of sound texture. Let

Ys be the entire sound texture with N samples to be synthesized from Ye, where Ye is

a shorter audio training example of n samples. It is assumed that Ye is long enough to

approximate the statistical distribution of the underlying, infinite sound texture from which

both Ye and Ys are derived. The empty container for Ys is initialized by copying a short

series of samples, or seed, from Ye to a region in Ys. To interpret the 2D ITS algorithm

of (Efros & Leung, 1999) in terms of 1D STS literately, this region would be placed at the

mid-point of Ys. This interpretation seems counter-intuitive for audio, however, and so the

seed could easily be placed at the beginning of Ys, and therefore the audio will be grown

from this seed along the temporal axis in the same direction as time.

Figure 2.5 demonstrates the sample-wise synthesis process. Proceeding from the bound-

ary of the seed onwards in time, let ys ∈ Ys be the next sample to be synthesized, and let

w(ys) denote the neighborhood of samples, encapsulated by a sampling window of temporal

extent, Ws, centered on ys. In Figure 2.5, w(ys) is shown as a rectangular window with

heavy black outline.

To be able to synthesize ys, it is necessary to create an approximation to the conditional

probability distribution, p(ys|w(ys)), determining the likelihood of the amplitude of ys given

the state of its neighboring samples. In Figure 2.5, the distribution that must be estimated

is labeled as PDF for Probability Distribution Function. To create this PDF, a search is

conducted to identify all of the neighborhoods in the training example clip, Ye, that are

similar in appearance to that defined by w(ys).

Let d(w(ys), w(ye)) represent the perceptual distance between w(ys) and some w(ye),

where w(ye) is a neighborhood of extent Ws centered on some sample site ye in Ye.

Suppose that the particular w(ye) that is most similar to w(ys) corresponds to wm =

MINye∈Ye(d(w(ys), w(ye)). The candidate set, Ω(ys), is constructed such that

Ω(ys) =

{

ye ∈ Ye, d(ys) = d(w(ys), w(ye))

: d(ys) ≤ (1 + ǫ)d(w(ys), wm)

}

(2.1)

where the value of ǫ is some error metric that determines the number of candidates chosen to
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Figure 2.5: The process of 1D sample-based STS, adapted from the 2D pixel-based ITS

algorithm of (Efros & Leung, 1999). Estimating the PDF for p(ys|w(ys)).

create the histogram estimation of the PDF of p(ys|w(ys)). According to (Efros & Leung,

1999), increasing the value of ǫ is likely to increase the element of variation in the final

sound texture, Ys. A value of ǫ > 0 should be chosen to prevent the tiling and repetition

of large chunks of Ye in Ys. Choosing a value of ǫ = 0 will mostly result in the process of

sample-wise copying of Ys from Ye, except when the value of ys has been sampled from

the boundary of Ye, in which case variation might be introduced.

In Figure 2.5 depicting this process, Ω(ys) is made up of just three candidates for ys,

denoted ye1..3 from Ye, and their perceptual distances from w(ys) are d1..3. In keeping

with (Efros & Leung, 1999), the distance d(w(ys), w(ye)) is defined as the Sum of Square

Differences (SSD) as follows

d(w(ys), w(ye)) =

Ws∑

i=0

GiVi

√

[wi(ys) − wi(ye)]2

Ws∑

i=0

GiVi

(2.2)

where G is a 1D Gaussian kernel of length Ws and variance σ = Ws/6.4 and V is a binary

vector that is non-zero where ys ∈ Ys has already been filled. The purposes of G is to
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emphasize local temporal coherency, and that of V is to enable “hole-filling” synthesis (i.e.

to allow texture to be synthesized where there might be a small hole in the signal). When

expressed as a histogram, Ω(ys) is an approximation to the PDF representing p(ys|w(ys)).

This histogram can be sampled randomly, yielding ys. This probabilistic sample-wise syn-

thesis process can be continued along the axis of time until all of the samples in Ys have

been synthesized.

The extent of the sampling window, Ws, is a user-chosen parameter that defines the

neighborhood of the implicit MRF, and it is assumed that the PDF is only valid if the extent

of Ws is sufficient to capture the underlying statistics of Ye. For best results, therefore, the

user must choose a value of Ws to capture the duration of the longest repetitive temporal

feature in Ye. There is a corresponding, spatial case of this assumption in ITS (Efros &

Leung, 1999). The unit of an audio sample is analogous to that of a pixel for image in the

2D case. Note that the length of the initializing seed must be at least ceil(Ws/2) to ensure

a valid synthesis of the first case of ys.

Essentially an exhaustive window-matching algorithm, the computational burden of this

process - whether it is used for STS or ITS - is very high. Furthermore, since digital audio is

usually sampled at a much higher rate than digital images, the process of STS is extremely

computationally inefficient. Drawing inspiration from the multi-resolution example-based

ITS of (Gallagher & Kokaram, 2005), a multi-resolution version of this example-based STS

has also been developed with the aim of reducing complexity. A brief discussion of Dual-

Tree Complex Wavelet Transform (DT-CWT) is now needed, since it is used for wavelet

analysis in the multi-resolution extension of example-based STS.

2.6 The Dual-Tree Complex Wavelet Transform

The Dual-Tree Complex Wavelet Transform (DT-CWT) uses a dual tree of wavelet filters

to decompose the signal into multi-level wavelet coefficients. The structure of the wavelet

decomposition is a coarse-to-fine representation of the spectrum granularity that is most

useful for signal analysis and synthesis. At each level, k, the DT-CWT produces a band-

pass complex signal of detail coefficients and a low-pass real signal that is passed on to the

next level, k + 1, for further decomposition. This process continues until as many wavelet

levels as desired, K, are obtained.

The term complex refers to the fact that the DT-CWT produces complex wavelet co-

efficients. That is to say that the coefficients have two parts; a real and imaginary part,

in the form of a complex number. It is both the dual-tree nature of the transform, and

the Q-Shift structure of the wavelet filter banks that produce its complex coefficients. The

internal filtering mechanisms of the DT-CWT is beyond the scope of this thesis, but the

interested reader will find a more detailed explanation in (Kingsbury, 2001), and related

publications. It is worth knowing, however, that the DT-CWT has the useful property
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of perfect reconstruction, meaning that no part of the original signal is lost in the inverse

wavelet transform.

In contrast to the nodal wavelet tree described in Section 2.3, and the schematic of

a wavelet transform seen in Figure 2.2 (c) of Section 2.2, the multi-resolution wavelet

decomposition of the DT-CWT is conceptualized as an inverse pyramidal structure in this

work, with large-scale coefficients at the bottom, the scales decreasing moving up the levels

of the pyramid. Similarly to other wavelet transforms such as the DWT, however, the

DT-CWT splits the signal into octaves. It is also decimated, and dyadic in structure such

that each complex parent coefficient is associated with two complex children at the next

wavelet level.

Unlike the DWT, the DT-CWT is shift invariant. Shift invariance means that if the

sound samples are shifted within the audio signal undergoing wavelet decomposition, the

complex wavelet coefficients undergo the equivalent translation in wavelet space. This

property is due to the complex form of the coefficients.

Both the magnitude and phase of the complex coefficients are important metrics in

the DT-CWT. Figure 2.6 (a), shows a short drum loop audio sample. After DT-CWT

decomposition to level K = 9, Figure 2.6 (b) shows the K = 9 low-pass signal that is

representative of the low-frequency information in the signal at that wavelet level. Figure

2.6 (c) is the magnitude (i.e. absolute) of the complex detail signal at level K = 9. In

contrast, this captures useful high-frequency information, roughly localizing the onset of the

beats in the drum loop. Figure 2.6 (d) shows the phase of the K = 9 complex signal, which

is calculated as the inverse tangent of the imaginary divided by real parts of the coefficients

of the complex detail signal, resulting in a range of [−π, π] radians. It is important to

note that pairs of complex wavelet coefficients can have similar magnitudes, but differing

phases, and vice versa. This property is key to the shift invariance, which can be leveraged

to promote temporal variation in the wavelet-based STS.

A reduced-complexity multi-resolution version of the example-based STS algorithm de-

scribed in Section 2.5 can be formulated by means of a wavelet-optimized synthesis with

the DT-CWT. Essentially, sound texture is first synthesized at the largest scale, which

represents the coarsest level of detail in the signal. Other levels are textured by means of

multi-resolution wavelet coefficient transfer. This technique will be discussed in the next

Section.

2.7 Multi-Resolution Example-Based Sound Texture Syn-

thesis

The process of a reduced-complexity, example-based STS is depicted in Figure 2.7, and

proceeds as follows:
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Figure 2.6: The DT-CWT of a drum loop to level K = 9; (a) original training example,

(b) the final K = 9 low-pass signal, (c) magnitude of the final K = 9 complex detail signal,

and (d) phase of the K = 9 complex detail signal. The horizontal axis represents sample

number [n]. The DT-CWT is decimated so there are fewer samples at wavelet level K = 9

in the case of (b-d).
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• A K-level DT-CWT is performed on the short training example clip, Ye, resulting

in an inverted pyramid of complex wavelet coefficients, ck
e ∈ Ck

e with levels k = 1..K,

where CK
e is the final, coarsest detail signal. A final low-pass residue signal is also

produced.

• A multi-level vector space, Ck
s , is initialized to hold the DT-CWT space of the sound

texture to be synthesized, Ys. If the target number of texture samples, N , is known

in advance, then the extent of these containing vectors can be initialized prior to

the synthesis stage. Note that the synthesis, however, is a continuous sample-wise

process, such that samples of sound texture can be synthesized ad infinitum if desired.

In an application where that would be required, the multi-level containment vectors

could simply grow to hold each newly synthesized coefficient at run-time.

• A seed of samples from the DT-CWT decomposition of Ye is placed in the containing

vectors, Ck
s , at each level. This operation is true to the dyadic parent-child structure

described earlier in Section 2.6, such that the seed placed in Ck−1
s is twice the temporal

extent of that placed in Ck
s , and symmetrically above it. To adhere to (Efros & Leung,

1999) strictly, the multi-level seed can be placed in the center of any containing

vectors, or it may be placed at the beginning of the containers at each level, as can be

seen in Figure 2.7. The final level-K low-pass signal array is also seeded appropriately.

• The sound texture coefficients, ck
s ∈ Ck

s , must now be synthesized. At the coarsest

scale (i.e. level k = K) the single-resolution STS algorithm described in Section 2.5

is used to synthesize the detail coefficients, cK
s ∈ CK

s . Again, the PDF of each cK
s is

estimated, and a sample drawn from the candidate set of Ω(cK
s ). Since building this

candidate set now involves dealing with complex numbers, Equation 2.2 is modified

to the form

d(w(cK
s ), w(cK

e )) =

Ws∑

i=0

GiVi

√

[Re{wi(cK
s ) − wi(cK

e )}]2 + [Im{wi(cK
s ) − wi(cK

e )}]2

Ws∑

i=0

GiVi

(2.3)

where are cK
e and cK

s are the complex wavelet coefficients from the final levels, CK
e

and CK
s , of the wavelet decompositions of Ye and Ys respectively, and Ws, G and V

are as previously described. In this case, however, Ws is chosen to reflect the longest

repetitive temporal feature of the level-K complex detail signal, CK
e , on which the

complex SSD matching process occurs. Here, the real and imaginary parts of the

complex signal are separated as Re and Im respectively.
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• When a cK
s match is placed in CK

s , the levels k = K − 1..1 are updated in keeping

with the parent-child relationship. In other words, the two child coefficients of cK
s are

obtained from those of cK
e , and so on up the levels of the inverse pyramid. Therefore,

when CK
s is fully synthesized, so are all levels k = K − 1..1 above.

• Finally, the synthesized structure is inverse-transformed yielding the longer sound

texture, Ys.

Equation 2.3 is similar to the SSD Equation 2.2 used for the case of single-resolution

example-based STS (see Section 2.5), except that it has been modified so as to ensure that

it is not simply the magnitude of the complex wavelet coefficients that are matched in the

SSD, but the real and imaginary parts of the these complex coefficients. This is necessary

to preserve the shift invariance property of the DT-CWT in synthesis, and it can have an

effect on the statistical variation of the resulting sound texture.

It is also interesting to note that wavelet coefficient matching is not performed at levels

above k = K. Instead, the multi-level k = K − 1..1 children of the cK
e match for each

cK
s are transferred across to the wavelet space of Ys where they are placed above cK

s in

the same dyadic pattern as they appear in the wavelet space of Ye. To draw a parallel

with the multi-resolution example-based ITS described in (Gallagher & Kokaram, 2005) and

(Gallagher, 2006), this technique is known as the Copy variant of the algorithm, because the

multi-resolution wavelet coefficients are “copied” to multiple, higher wavelet levels following

complex SSD matching at the coarsest level of detail. Other variants of multi-resolution ITS

described in (Gallagher, 2006) involve coarse-to-fine complex SSD matching at decreasing

scale levels in wavelet space, and an optimization technique to reduce the complexity of

a fully exhaustive search at each level. It was concluded by (Gallagher, 2006), however,

that the Copy variant produces results that are comparable to the other multi-resolution

synthesis techniques, but with far less computational complexity. A 1D version of the Copy

variant is adopted for multi-resolution example-based STS here.

Again, Ws is a user-defined parameter that is chosen to reflect the duration of the

longest repetitive temporal feature, but this time with regard to the level-K complex detail

signal, CK
e , in the wavelet space of training example Ye. Therefore, the level of DT-

CWT decomposition, K, and MRF window size Ws are related. They are complementary

variables in that smaller Ws is needed to capture the longest repetitive temporal feature in

CK
e for larger K.

This multi-resolution example-based STS has a huge computational advantage over the

single resolution version of the algorithm described in Section 2.5. The complexity reduc-

tion depends on the depth of DT-CWT decomposition, K, and corresponding reduction of

the sampling neighborhood, Ws. Disregarding the complexity-reducing effect of a shorter

Ws, the number of template-matching operations needed to create a sound texture is al-

ready reduced by 2K (i.e. two to the power of K). Note that one template-matching (i.e.
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Figure 2.7: Multi-resolution example-based STS; sound texture is grown temporally on-

wards from a seed placed in signal containers, Ck
s , initialized to form the wavelet space

of the resulting sound texture, Ys. When a complex wavelet coefficient from the coarsest

level, CK
e , of the training example clip, Ye, is chosen by a probabilistic sampling process

it is transfered to CK
s , along with its complex children from levels k = K − 1..1

Euclidean distance) computation for each existing sample of the sound texture (including

the seed) is needed to produce each new sequentially synthesized sample. With 44k samples

per second, and the fact that the existing body of sound texture is always increasing by

one sample for each sequential computation, this complexity reduction is quite significant

especially in the production of a very long sound texture.
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Training Example fs[Hz] t1[s] Description t2d
[s]

1 drum loop 22k 3 Near-periodic; percussion with occasional cymbal. 5

2 baby crying 11k 13 Quasi-periodic; baby crying, annoying. 11

3 traffic jam 11k 22 Event-on-background; traffic noise with “yelling” 35

and “honking” events.

4 shore splashing 11k 18 Event-on-background; seawater ebbing with 11

“splashing” event.

5 formula 1 11k 16 Event-on-background; F1 cars accelerating with 23

“gear-shifting” event.

Figure 2.8: Description of training examples used, and resulting sound texture durations,

t2d
, achieved by the wavelet-based STS of (Dubnov et al., 2002). Here t1 are the time

durations of the original training example clips. The training set and results are obtain-

able at the URL associated with (Dubnov et al., 2002), and also included on the DVD

accompanying this thesis.

This wavelet-based STS algorithm is distinct from that of (Dubnov et al., 2002) in that

only temporal predecessors are involved in wavelet coefficient matching, and not hierarchical

ancestors (see Section 2.3 for explanation). It is therefore interesting to compare the sound

texture results of this multi-resolution STS algorithm with those of (Dubnov et al., 2002)

for benchmarking purposes. This comparison will be described in the next Section.

2.8 Dubnov et al. Training Examples and Sound Textures

As discussed in Section 2.3, a number of sound textures were synthesized by the wavelet-

based STS of (Dubnov et al., 2002) from a selection of real-world training example clips.

These training example clips, their sampling rates, fs, original time durations, t1, and the

durations of the sound textures created by (Dubnov et al., 2002), t2d
, are listed in Table

2.8. It is clear that some of the sound textures are actually shorter in duration than their

corresponding training example clips, which is strange considering the goal of creating a

sound texture of extended duration. Other goals in STS are the avoidance or undesirable

tiling of the training clip, looping, and uncomfortable glitch-like artifacts known as clicks.

The (Dubnov et al., 2002) textures of training examples 1, drum loop, and 2, baby

crying, are interesting, but they contain a clicks, glitches and somewhat erratic variation.

The texture of 3, traffic jam, has short, repetitive loops, separated with abrupt silences.

The latter effect could occur because a period of recorded silence at the start of the training

example clip. Although generally plausible, the domineering presence of long-term car-horn

“honking” is not reflected well in the synthesized texture.

(Dubnov et al., 2002) note that their algorithm cannot achieve a plausible re-synthesis
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of sound signals with both long-term patterns, and sporadic short-term events. These

sound phenomena will be referred to as event-on-background signals hereafter. Example

4, shore splashing, is in this category. It sounds like the relaxed tempo of water ebbing

on a shore, punctuated with stochastic-sounding “splashing” events. (Dubnov et al., 2002)

acknowledge an unrealistic “nervous splashing activity” in their resulting sound texture.

Example 5, formula 1, presents a similar problem. (Dubnov et al., 2002) state that their

sound texture does not reflect a good balance between the so-called “long sound phenom-

ena” of gradual engine acceleration and short-term “gear-shifting activity” in this training

example. Perhaps this effect is due to the limiting technique of matching a fixed number

of multi-level predecessors (i.e. five) when sampling wavelet coefficients from the training

example for synthesis (see Section 2.3 for explanation).

Both the training example set and sound texture results produced by this algorithm are

obtainable at the URL associated with (Dubnov et al., 2002)3, and also included on the

DVD accompanying this thesis.

2.8.1 Comparative Results

Table 2.9 summarizes an experiment in which the example-based STS algorithm presented

in Section 2.7 of this Chapter has been used to produce sound textures from the training

example clips used by (Dubnov et al., 2002). These training examples are labeled as Ye

hereafter in keeping with the notation of Section 2.7. The values for parameters K, Ws,

and ǫ that produced the best sound texture results are listed, along with the durations, t2o ,

of the best sound textures produced. Both the training example files, and sound texture

results are included on the accompanying DVD. Again, it is worth noting that there is

no theoretical limit to the number of sound texture samples that can be produced by this

algorithm, and the duration of the resultant sound texture is therefore arbitrarily chosen.

In this case, the values of t2o have been chosen to be many times longer than the durations,

t2d
of the sound textures produced (Dubnov et al., 2002) (see Table 2.8).

Extensive trial-and-error experimentation was carried out until the best parameter com-

binations were found, which is a fairly time-consuming and arduous task. The third column

in Table 2.9 states whether the multi-level seed was placed at the start or in the center of

the signal containers initialized for the resulting sound texture, as well as the exact samples

of the training clip, and time duration constituting the seed. Note that the number of

samples, [nK ], is actually the number of wavelet coefficients that were placed in the level-K

complex detail signal, CK
s , in the wavelet space of the sound texture, Ys. The number

of wavelet samples placed in CK−1..k
s above are true to the dyadic relationship of the DT-

CWT, as previously discussed in Section 2.6. The duration in seconds, [s], however, reflects

the approximate time duration of the multi-level seed in the final sound texture, Ys.

3(Dubnov et al., 2002): http://www.cs.huji.ac.il/labs/cglab/papers/texsyn/sound/
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Ye Training Example Seed (samples[nK ], duration[s]) K Ws ǫ t2o [s]

1 drum loop placed at start (1..125, 1.5) 8 41 0.3 63

2 baby crying placed at start (100..170, 0.4) 6 23 0.1 73

3 traffic jam placed in center (300..311, 0.3) 8 5 0.01 70

4 shore splashing placed at start (400..550, 3.5) 8 51 0.1 74

5 formula 1 placed start (200..300, 2.3) 8 21 0.1 75

Figure 2.9: Parameter values and time durations, t2o , of the best sound textures achieved

by testing the new example-based STS algorithm on the training example clips used in

the similar work of (Dubnov et al., 2002). The Seed column records the placement of the

seed, number of samples, [nK ], placed at level K in wavelet space, and the equivalent time

duration in ordinary sample space, [s]. Recall that there is no theoretical constraint on the

duration of sound texture that can be produced by this algorithm, and therefore the values

for t2o have been arbitrarily chosen here. The resulting sound texture files are included on

the DVD accompanying this thesis.

It is interesting to note that the depth of DT-CWT wavelet decomposition is fairly

high when compared with a value of K = 3 that is always used in the example-based

ITS algorithm of (Gallagher, 2006). This is intuitive, however, since the sampling rate of

digital audio is relatively much higher than that of digital images. The sound textures that

were produced in this experiment are generally plausible, longer in duration than those of

(Dubnov et al., 2002), and sound smooth, varied, and not tiled.

The best sound texture of Ye 1, drum loop, is varied and interesting, with cymbals

appearing pseudo-randomly in time. The waveforms of the original training example and

11s of the best sound texture are compared in Figures 2.10 (top right) and (bottom) re-

spectively. Visually, the temporal envelope of the sound texture is reminiscent of that of

the training example, but it is of much longer duration and well varied. Interestingly, the

best performing value for Ws appears to roughly correspond to the tempo of the piece at

K = 8 of the DT-CWT, as can be seen in Figure 2.10 (top left).

A spectrogram (i.e. STFT) of the 13s training example, Ye 2, baby crying, is shown in

Figure 2.11 (top left), and the 11s sound texture of (Dubnov et al., 2002) is shown in Figure

2.11 (top right). The first 30s of the best sound texture generated by the new example-

based STS algorithm presented here is shown in Figure 2.11 (bottom). The spectral energy

of the latter looks natural with regard to the training example clip, and demonstrates good

variation. The texture sounds plausible and varied, with very few audible clicks. It is clearly

longer, and its spectral envelope looks somewhat more similar to the training example than

the sound texture of (Dubnov et al., 2002). All of the spectrograms in Figure 2.11 were

created with identical parameters.

A slight modification was necessary in creating plausible sound textures from Ye 3, Ye
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Figure 2.10: Synthesized drum loop texture; (top left) the 3s training example, Ye 1,

(top right) the real, imaginary, and absolute (t-b) values of the detail coefficients at K = 8

of the DT-CWT of Ye 1, and (bottom) 11s of the sound texture generated with a 1.5s seed,

K = 8, Ws = 41 and ǫ = 0.1.

4 and Ye 5. Specifically, the beginnings and/or ends of these training example clips needed

to be cropped to remove small boundaries of recorded silence in the files. It was found that

if the silence boundaries are left in Ye, their presence seems to trigger end-to-end tiling

of the training example clip in the process of example-based STS if the value of the error

metric, ǫ, is not large enough. However, by increasing the value of ǫ, quality is sacrificed

in the rest of the sound texture. Some example sound textures resulting from leaving the

clips unmodified (i.e. not cropping the silence at the beginning and end) are included on

the DVD accompanying this thesis, their parameters listed in Appendix A.

The sound texture results from the modified training examples are satisfactory, however,

in that they are both representative of the general ambiance of their training example

clips, and also seem to reflect the quasi-periodic nature of event-on-background signals.

Figure 2.12 (top) shows training example Ye 4, shore splashing. Figure 2.12 (center) is the

sound texture result of (Dubnov et al., 2002), which was described in their paper as overly
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Figure 2.11: Synthesized baby crying texture; (top left) spectrogram of the 13s training

example, Ye 2, (top right) the 11s sound texture of (Dubnov et al., 2002), and (bottom)

30s of the sound texture generated by the new example-based STS algorithm with a 0.4s

seed, K = 6, Ws = 23 and ǫ = 0.1.

“nervous”. Figure 2.12 (bottom) shows 25s of the best sound texture produced by the new

example-based STS algorithm, which seems more reflective of the ambiance of the training

example clip than the sound texture of (Dubnov et al., 2002).

2.8.2 Subjective Listening Test

A simple set of perceptual experiments were undertaken in order to compare the new

example-based STS algorithm presented here with that of (Dubnov et al., 2002). Five

participants were firstly briefed on the concept of a sound texture. It was explained that
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Figure 2.12: Synthesized shore texture; (a) training example Ye 4, (b) the sound texture

generated by the algorithm of (Dubnov et al., 2002), and (c) the sound texture generated

by the new example-based STS algorithm with a 3.5s seed, K = 8, Ws = 51 and ǫ = 0.1.

Time is measured on the x-axis in seconds [s].

Sound Texture Synthesis (STS) involves the synthesis of a sound texture from

a short audio training example clip, such that it sounds natural and varied with

regard to, and may be of longer duration than the training example.

Audio clips were played over Genelec 1029A stereo speakers arranged to face the par-

ticipants. It was explained to participants that they would hear a short training example

clip, followed by two distinct sound textures A and B. These textures were the results of

the two STS algorithms under test. Participants were asked to choose one of the two sound

textures with regard to each of the following questions

• Q1 Which is more natural with regard to the training example? A or B?

• Q2 Which is more varied? A or B?
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Training example A/B Q1: X/Z Q2: X/Z Q3: X/Z

shore splashing X/Z 0/5 0/5 0/5

baby crying Z/X 0/5 1/4 1/4

drum loop Z/X 0/5 1/4 0/5

traffic jam Z/X 0/5 1/4 0/5

formula 1 X/Z 0/4 2/4 0/5

Figure 2.13: The results of a subjective listening test comparing the STS algorithm of

(Dubnov et al., 2002), X, to the new example-based STS algorithm presented here, Z, by

asking five participants three questions Q1, Q2 and Q3 gaging which of the two sound

textures is preferable. Here, the second column, A/B, lists the order in which the tracks

from each algorithm were presented to the listeners (i.e. first played, slash, second played),

but the other columns always list the votes for algorithm X versus (i.e. slash) algorithm Z

in that order. The sum of the votes in some columns of the final row do not add up to five.

This anomaly is explained in Section 2.8.2.

• Q3 Which has better sound quality? A or B?

In these kinds of listening tests the challenge is to guide the listeners to pay attention

to the particular sound qualities being examined. Therefore, the meaning of the colloquial

terms in the questions were expanded as follows:

• Natural: Sounds like, or has the same “ambiance” and fullness of the spectrum

with regard to the training example, contains both long-term and short-term sound

“events”.

• Varied: Does not sound like the training example clip on a loop or tiled.

• Sound quality: There are few “clicks” or “glitches”.

An example of a miscellaneous drum loop training example was played on a loop to

demonstrate the concept of tiled. Both the order of the five training example clips, and the

assignment of A or B to the sound textures of the two STS algorithms were randomized.

The participants were allowed to request to hear the training example, sound textures A

and/or B as often as required to make a decision, but were not allowed to discuss their

deliberations or choices with other participants.

The results of this test are listed in Table 2.13. Each row is representative of a different

training example clip and its resultant sound textures (e.g. the sound texture results of

shore splashing are evaluated in the first row). The sound texture result of (Dubnov et al.,

2002) is labeled as X, and that of the new example-based STS algorithm presented here is

labeled as Z.
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The play order of the two sound textures being compared are separated by a slash (i.e.

A/B). In the first row, for example, the column with heading A/B lists the play order as

X/Z indicating that sound texture X was played before sound texture Z in this case. The

numbers in each column count the number of participants who chose the respective sound

texture in response to a particular question, where Q(1-3) are the three questions previously

defined. For the results of shore splashing in the first row, in response to Q1, “Which is

more natural with regard to the training example?”, 0 listeners preferred sound texture X

while 5 preferred sound texture Z.

Overall, participants chose the new example-based STS algorithm presented here over

the previous work of (Dubnov et al., 2002). One of the responses to Q1 in row five is not

registered because one participant circled both A and B, presumably because it was felt

that neither sound texture was preferable with regard to Q1. One particular participant

often answered differently in Q2, but in discussions after the test it transpired that this

listener was unsure about the explanation of variation as given at the start of the test,

deciding that variation meant randomness literally at the sample-level; in other words a

very chaotic signal. This outlier serves to highlight how difficult it is to quantitatively

assess audio results in terms of subjective phenomena. This is because it is ultimately not

possible to equate listening properties in detail between different listeners.

In post-test discussions, participants also revealed that they had been somewhat con-

fused by the obvious differences in duration between the two sound textures of each training

example. As previously mentioned, some of the sound textures produced by the algorithm

of (Dubnov et al., 2002) are so short that they are actually shorter than their corresponding

training example clips, whereas those produced by this algorithm are of much longer dura-

tion. In their paper, (Dubnov et al., 2002) do not define a sound texture as something that

is of longer duration than a training example clip, but given the well known applications

of sound texture discussed at the beginning of this Chapter, it is intuitive that extended

duration should be a goal in STS. This is another example, however, of the difficulty of

quantitatively assessing results and concepts in audio processing.

However, the test performed here does give good evidence that the sound textures

produced by this algorithm are plausible and varied with regard to the training example

clips, of good quality, and ultimately usable in a media applications. Furthermore, it seems

that this STS algorithm is capable of generating natural sound textures from all kinds of

training examples with a variety of different spectral profiles. It is capable of dealing with

both quasi-periodic and event-on-background training examples which have both long-term,

noise-like and short-term, high frequency characteristics in their spectral profiles.

The best sound textures produced by the wavelet-based STS algorithm of (Dubnov

et al., 2002), and also those produced by the new STS algorithm presented in this Chapter,

are included on the accompanying DVD. Some alternative sound textures of Ye (1 − 5)

produced by the latter - not the best results, but still interesting - are also included on the
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accompanying DVD, their parameters listed in Appendix A.

2.8.3 Observations Concerning Parameters

As previously mentioned, the best parameters for each sound texture were found by virtue

of trial-and-error. It soon becomes obvious that choosing too small a value for the extent

of the sampling window, Ws, results in the looping of particular small sections of the

training example within the sound texture, whereas choosing too large a value causes the

phenomenon of tiling. This is because Ws must be chosen carefully to ensure a valid PDF

for each sample with regard to the multi-resolution characteristics of the training example.

Choosing too large a value of DT-CWT decomposition level, K, can also result in looping

or tiling because the final complex wavelet band CK
e becomes too coarse for a valid PDF.

Furthermore, the values of Ws and K are correlated in that the deeper the level of wavelet

decomposition, K, the smaller a value of Ws needed to produce an adequate sound texture.

Finally, after choosing values of Ws and K, increasing the value of the error metric, ǫ, past

a particular “sweet point” merely results in a clicking and garbled sound texture, again

because the PDF becomes invalid.

It was suggested earlier that the sampling window size, Ws, could be related to the

tempo of the training example at DT-CWT decomposition level, K. The best sound texture

of training example Ye 1, drum loop, for example, was produced with Ws = 41 at level

K = 8. This window size seems to roughly correspond with the spacing of the peaks

seen in the level K = 8 wavelet decomposition of the signal in Figure 2.10 (b). These

peaks are representative of the beat characteristics of the signal at that wavelet level. This

observation motivates a scheme for estimating the values of certain parameters within the

multi-resolution STS framework through content-based analysis of the training example

signal, Ye.

2.9 Content-Based Parameter Estimation

Since the extent of sampling window, Ws, is completely dependent on the value of DT-

CWT wavelet decomposition level, K, the latter must be established before the former

can be estimated. Recall from Section 2.7 that it is only the complex coefficients from

the coarsest scale (i.e. level K) of the wavelet space of the training example, Ck..K
e , that

are involved in the window-matching process of complex SSD matching with the wavelet

space of the sound texture, Ck..K
s . Hence the depth of DT-CWT decomposition should be

chosen to be great enough that the computational burden of this exhaustive window-based

sampling is significantly reduced, while still insuring that the complex wavelet coefficients

at the coarsest level of the decomposition, K, encodes enough useful information - such as

the beat characteristics of the signal - for a valid statistical synthesis. Hence, the choice of
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K should result in a fairly coarse complex detail signal at level K, that still retains some

characteristic periodicity and salient detail features.

2.9.1 Choosing the DT-CWT Level

Shannon entropy is a measure of the information content of a signal. The entropy, H, of a

signal X is defined as

H(X) = −
m∑

i=1

p(xi) log2 p(xi) (2.4)

for random variable X with m outcomes {xi : i = 1, .., m}, and p(xi) is the Probability

Distribution Function (PDF) of these xi. In its simplest incarnation, the PDF can be

expressed as a normalized m-bin histogram of the xi. A low value of Hk implies a near-

random signal with little periodicity and few informative or salient detail features. It is

this observation that leads to a method of choosing a good value for the depth of DT-CWT

decomposition, K, with regard to the training example Ye.

Figure 2.15 (a), is 4s of a typical event-on-background training example clip of crowd

chatter. This signal contains both noise-like characteristics from the general chat of the

crowd watching a game at a baseball stadium, overlaid with event-like bursts of speech

from one particular male speaker who can be heard over the background noise. Figure

2.14 (b) plots the Shannon entropy values, Hk = H(Ck
e), of the band-pass complex detail

signals, Ck
e , from levels k = 1..10 of the DT-CWT decomposition of this sound sample. The

PDF in this measurement (see Equation 2.9.1) is estimated by a normalized histogram of

the absolute values of the complex wavelet coefficients in Ck
e from each level k.

The value at zero in this graph is the Shannon entropy of the 4s audio signal in ordinary

sample space. Note that the entropy, Hk=1, of the k = 1 detail signal is lower than that

of the original training example marked at Hk=0. This is to be expected, since Ck=1
e is

merely one level of granularity within the original signal. The entropy values, Hk=1..10, of

the complex detail wavelet levels Ck=1..10
e seem to increase steadily to a high point at level

k = 7 before suddenly dipping at level k = 8. This seems intuitive since each further level

of the wavelet decomposition should reveal salient granules at increasingly coarse wavelet

levels. However, the resolution should become too coarse at a certain depth of DT-CWT

decomposition to retain the sharp, event-like detail features - such as those constituting the

man talking event in the crowd chatter training example seen in Figure 2.14 (a) - and this

explains the dip in entropy seen Figure 2.14 (b).

One possible scheme to determine the level of DT-CWT decomposition, K, therefore,

is an entropy check at each level, k, of the first few seconds of the training example, Ye,

such as
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Figure 2.14: Choosing the DT-CWT level, K; (a) example training clip of event-on-

background crowd chatter, and (b) the process of choosing K by analyzing the Shannon

entropy of the absolute of the k-level complex detail signals. A K = 7 DT-CWT decompo-

sition is deemed acceptable with regard to the criterion presented in Equation 2.5.

Hk+1 > Hk ⇒ k = k + 1 , Hk+1 ≤ Hk ⇒ k = K (2.5)

The entropy in Figure 2.14 (b) dips in wavelet space for the first time at k = 8. There-

fore, using this scheme, level K = 7 would be chosen as the depth of DT-CWT for multi-

resolution STS with the crowd chatter training example analyzed in Figure 2.14.

Since the goal is to reduce the computational burden of the algorithm, while still ensure

a valid multi-resolution STS, this criterion can be useful for choosing the depth of DT-

CWT decomposition, K. Usually only the first few seconds of the training example need

to be analyzed, provided they are representative of the general characteristics of Ye. This

test is only treated as a guideline, however. Often a value of K one more or less than the
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prediction from Equation 2.5 is found to perform well.

Furthermore, note that the entropy in Figure 2.14 (b) rises again after k = 8. There are

also points in this plot at which Shannon entropy is ill-defined, such as at k = 10. Equation

2.5 may not be the optimal criterion for entropy analysis, but it is certainly useful for an

initial guess that can be refined if an adequate sound texture is not produced. Other options

for entropy analysis include choosing K as the deepest k > kd with Hk > t, where kd is

the DT-CWT level at which Hk dips for the first time (e.g. k = 8 in the case of Figure

2.14 (b)), and t is a threshold on the minimum entropy allowed. A visual inspection of the

behavior of Hk for multiple levels of DT-CWT decomposition can also be useful in choosing

the value of K.

2.9.2 Choosing the Temporal Extent of the Sampling Window

Recall from Section 2.7 that the temporal extent of the sampling window, Ws, should be

chosen to reflect the longest repetitive temporal feature in CK
e . Figure 2.15 (b) shows CK

e

from the 10-level DT-CWT of a training example of polyphonic music seen in Figure 2.15

(a). It is clear to see that the salient quasi-periods of the music appear to be encoded in

the peaks of CK
e . In the case of a musical signal, these peaks usually represent beats, such

as the ones played by the drummer in a band. The tempo of the piece is defined by the

spacing of the beats, or the beat period. If it can be assumed that many quasi-periodic

sound examples have some sort of tempo - albeit erratic in the case of natural sounds such

as human laughter, water splashing, or event-on-background signals - then perhaps the most

suitable value of Ws could be estimated as a multiple of the dominant beat period. This

is certainly plausible in the case of musical signals such as the polyphonic music example

seen in Figure 2.15 (a), or the drum loop training example, Ye 1, shown in Figure 2.10 of

Section 2.8.

Beat Detection is a means of determining the tempo of percussive signals automatically.

The most notorious Beat Detection algorithm is probably that of (Scheirer, 1998), which

estimates the tempo of a piece of an audio signal by correlating it with a series of comb

filters. Each comb filter consists of a train of impulses at a fixed period, with a different

period for each filter. The tempo of the piece is determined as that of the most correlated

comb filter. Since only a rough estimation of tempo is needed for choosing Ws, however, a

much simpler beat finding technique is used here.

Beat Detection is carried out on the coarsest detail signal, CK
e , produced by DT-CWT

decomposition of the training example, Ye, to level K. The steps involved in this process

are as follows:

• Taking the absolute of CK
e , the signal is optionally smoothed to reduce the effects

of noise. Smoothing is usually only necessary for very noisy signals, and may be

performed with a 5-tap averaging filter if needed.
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Figure 2.15: Beat detection to estimate Ws; (a) 7s of polyphonic music, (b) the coarsest

wavelet detail signal, CK
e , from the DT-CWT to level K = 10, (c) the salient peaks in the

Autocorrelation, Rk, of CK
e - three are labeled as zj..j+2, and (d) the beat histogram with

dominant beat period of T = 17 marked. The x-axis of (a), and (b-d) are measured in

samples, [n], or [nK ] in the case of the latter three which are wavelet signals.
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• The Autocorrelation (i.e. self-correlation), RK , of CK
e is calculated. RK for Figure

2.15 (b) is shown in Figure 2.15 (c)4.

• The next step is to locate the salient peaks in RK . A peak, zj , is detected as a local

maximum in the signal if the following condition is met:

(ri − ri−1) > δp , (ri − ri+1) > δp (2.6)

where ri ∈ RK and δp is a user-defined threshold. The peaks have been marked in

Figure 2.15 (c) with δp = 0.001, and three of them are labeled as zj..j+2.

• The intervals (i.e. in samples, not time in seconds) between all peaks detected in

RK to all other peaks is measured. For example, the sampling interval from zj to

zj+1 is measured, as is that from zj to zj+2, and so on. The intervals are used to

construct a beat histogram of possible dominant beat periods. Figure 2.15 (d) shows

the histogram resulting from calculating all possible peak intervals in Figure 2.15 (c).

• The dominant beat period, T , is estimated as the maximum of this histogram. It is

clearly T = 17 in the case of Figure 2.15 (d). The value of T is assumed to be related

to the tempo of the training example clip, and it can be used as a rough estimate for

the sampling window size, Ws, in multi-resolution STS.

The final estimate of tempo, T , is obviously highly dependent on the extent of any

smoothing on CK
e , and also the value of δp chosen. In the case of the CK

e shown in Figure

2.15 (b), no smoothing was performed, and T = 17 was found to be a (if not the) dominant

beat period for a wide range of δp. Only the left channel of the stereo file was used to form

the beat histogram seen in Figure 2.15, but the T = 17 was also estimated for the right

channel independently. This is interesting, since a beat period of T = 17 at level K = 10

of the DT-CWT corresponds to roughly {44100/(17× 210)} × 60 = 152bpm (i.e. beats per

minute) in ordinary sample space, which is close to the human-measured bpm of 156bpm

for this polyphonic music training example seen in Figure 2.15 (a). The 7s of content used

for Beat Detection was taken from (0 : 09) to (0 : 16) in this song, a segment that is fairly

representative of the tempo of the entire tune.

Due to the complexity of both the Human Auditory System, and of the way that sound

and music is processed in the brain, the computer-measured dominant tempo of a piece of

music could be very different from that which is audible to the human. This is especially

true in the case of quasi-periodic signals like music or natural rhythms, which might contain

many beat layers of varying tempo. Recall that the extent of Ws should capture a long

4Autocorrelation can be performed in either Fourier transform, or ordinary sample space. Both methods

are used interchangeably in this work, and produce similar results. The latter technique was used in the

formation of this Figure.
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Ye Training Example fs[Hz] nQ t1[s] Description

6 crowd chatter 22k 1 13 Event-on-background; baseball game chatter

with vendor shouting event.

7 crowd chatter 2 44k 2 6 Event-on-background; restaurant chatter with

lady shouting event.

8 drum loop 2 96k 2 2 Near-periodic; 120bpm funk fusion drum loop.

9 baby laughing 44k 2 10 Quasi-periodic; baby laughing, four phrases

of laughter.

10 polyphonic music 44k 2 20 Quasi-periodic; the song “Classical Gas” by

M. Williams ((1 : 09) to (1 : 29) in song).

11 german speech 22k 1 12 Quasi-periodic; male speaking the poem

“Das gemeinsame Schicksal” by F. Schiller.

12 english speech bg music 22k 1 10 Quasi periodic; male quoting the Bible over

background music.

13 piano phrases 22k 1 26 Quasi-periodic; Two phrases of piano music.

Figure 2.16: Training examples used in further experiments, their sampling rates, fs, num-

ber of channels, time durations, t1[s], and a description of content. The training example

files are included on the DVD accompanying this thesis.

repetitive feature in CK
e , but Ws = T is merely an initial rough estimate for the best value of

Ws. If the initial estimate of Ws = T does not produce an adequate sound texture in multi-

resolution STS, other strong maxima in the beat histogram are also tested. Sometimes the

best value for Ws is actually a fraction or multiple of T .

2.10 Further Experiments

The content-based parameter estimation techniques discussed in the previous Section make

it easier, less time-consuming, and less frustrating to carry out multi-resolution example-

based STS experimentation with a much wider variety of audio training examples. There-

fore, a further selection of training example clips are chosen to test the algorithm. Table

2.16 lists these samples, Ye, their sampling rates, fs, the number of channels in the audio

files, nQ, their durations, t1, and a description of their content.

Notably, some of these training examples are stereo in that they have two channels

(i.e. nQ = 2) as opposed to mono (i.e. nQ = 1). Multi-resolution STS of stereo training

examples is carried out one of the three options listed here:

A Only the left channel is involved in the complex SSD matching of wavelet coefficients

at the coarsest level, K, of the DT-CWT (see Section 2.7 for background), but the

sampling pattern is used for the synthesis of both channels simultaneously.
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Ye Training Example Stereo Seed (samples[nK], duration[s]) K Ws ǫ t2[s]

6 crowd chatter N/A placed at start (100..130, 0.2) 7 11 0.1 71

7 crowd chatter 2 B placed at start (1..58, 0.7) 9 55 0.7 66

8 drum loop 2 B placed at start (1..50, 0.3) 9 47 0.5 62

9 baby laughing B placed at start (1..80, 0.5) 8 77 0.1 70

10 polyphonic music B placed at start (1..20, 0.5) 10 17 0.3 90

11 german speech N/A placed in center (200..400, 0.6) 6 51 0.001 28

12 english speech bg music N/A placed in center (400..550, 1.7) 8 201 0.1 26

13 piano phrases N/A placed start (100..200, 1.2) 8 51 0.3 116

Figure 2.17: Parameter values and time durations, t2, of the best sound textures achieved

by testing the new example-based STS algorithm on a wide variety of training example

clips. The Seed column records the placement of the seed, number of samples, [nK ], placed

at level K in wavelet space, and the approximate time duration in seconds, [s], in ordinary

sample space. These sound texture files are included on the DVD accompanying this thesis.

B Only the right channel is involved in the matching process, but the sampling pattern is

used to drive the synthesis of both channels simultaneously

C Both channels are involved in the matching process. This is achieved by a straightforward

expansion of Equation 2.3 to include both channels.

D The channels are synthesized independently in separate multi-resolution STS processes.

This method is not an effective one for stereo synthesis, but is included here for

comparative purposes.

The values for parameters K, Ws, and ǫ, and durations, t2, of the best sound textures

produced by multi-resolution STS are listed in Table 2.17. The sound texture files are

included on the DVD accompanying this thesis. Also listed in the Stereo column of Table

2.17 is the synthesis option used if the training example file is stereo. Although it appears

that B is the only option used for stereo synthesis, options A and C have also produced

some interesting sound texture results, and these are included on the accompanying DVD,

their parameters listed in Appendix A.

2.10.1 Discussion

Sound textures of the diverse training examples Ye (6 − 13) were created with the aid of

the content-based parameter estimation techniques described in Section 2.9.

Shannon entropy analysis was used to choose the depth of DT-CWT, K, in most cases.

Quite often (i.e. for approx one out of every two signals analyzed), the criterion presented

in Equation 2.5 indicated the value of K which produced the best sound texture (e.g.
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K = 7 for Ye 6, crowd chatter, as seen in Figure 2.14). As previously described in Section

2.9.1, however, the value of K producing the best sound texture was occasionally found

to be one more or less that indicated by Equation 2.5, or a visual analysis of Hk was

needed to manually choose an intuitive value. In stereo training examples, interestingly,

Shannon entropy analysis of both channels independently was always indicative of the same

value for K. Overall, Shannon entropy analysis was found to be a very useful tool in the

content-based estimation of the parameter K in multi-resolution STS.

Beat Detection was also found to be very useful for estimating the extent of the sampling

window, Ws, in the coarsest complex detail signal, CK
e , of the training example. Much of

the time the extent of Ws was estimated correctly by the most dominant beat period, T , in

the training example (e.g. Ws = 17 for Ye 10, polyphonic music, as seen in Figure 2.15). In

the majority of cases the best sound texture was produced with a value of Ws set equal to

one of the dominant beat periods determined by Beat Detection of the training example.

Surprisingly, this technique was found to work even in the case of the event-on-background

training signals such as Ye 6, crowd chatter 2 in which Ws = 55 was estimated from a

dominant beat period detected in both of the stereo channels individually, with smoothing

and δp = 0.01. As previously discussed in Section 2.9.1, smoothing was often used in the

case of noisy signals, but not for those with definite periodicity such as Ye 8, drum loop 2,

and Ye 10, polyphonic music. Values of δp = 0.01, δp = 0.05, δp = 0.001 were interchanged

for peak detection depending on the granularity of the signal, but the most dominant beat

periods were often detected for a wide range of δp, and often in both channels of stereo

training examples individually.

Example-based STS of the stereo training examples (i.e Ye 8 − 10) was often most

effective with stereo option B, although options A and C also produced good results which

are listed in Appendix A. Stereo option D, however, was found to be an ineffective method

of stereo synthesis. Figure 2.18 demonstrates that example-based STS cannot be carried

out on stereo channels independently. Figure 2.18 (top) shows the stereo channels of Ye 8,

and Figure 2.18 (bottom) shows the best sound texture result with stereo option B. Figure

2.18 (center) shows the sound texture that would result from performing example-based

STS on both channels independently (i.e. stereo option D). It is clear to see in the latter

that the two channels fall out of sync during synthesis, and therefore stereophonic coherency

is lost in the sound file. The reason for this is, obviously, that the two channels in a stereo

audio file are usually correlated, and therefore cannot be synthesized independently of one

another. Examples of some bad sound textures created created with stereo option D are

included on the accompanying DVD, their parameters listed in Appendix A.

The sound textures of Ye 6 crowd chatter, and Ye 7 crowd chatter 2 - both event-on-

background type signals - are reproduced fairly well in multi-resolution STS. These sound

textures do not evoke tiling due to the fairly random emergence of the vendor, and lady

shouting events respectively, over the continuous background noise. A slight glitch can
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Figure 2.18: Issues with stereo multi-resolution STS; (top left and right) stereo training

example Ye 8, with the left and right channels shown in black and red respectively, (center)

10s of the sound texture that would result if both channels were synthesized independently

(i.e. stereo option D), and (bottom) stereo multi-resolution STS using stereo option A.

Other parameters are K = 9, Ws = 47, ǫ = 0.5, and a seed of 0.3s

sometimes be heard in the latter after the vendor shouts “nuts”, but this does not happen

in every instance of the event.

The ambiance of Ye 8, drum loop 2, is well represented in the resulting sound texture

which is varied and interesting. The best sound texture of Ye 9, baby laughing, also has

adequate variation and does not sound looped or tiled, as can be seen in Figure 2.19.

Variation is not as common in the sound texture of Ye 10, polyphonic music, which sounds

exactly like the training example for about 20s, until the sound texture finally takes a novel

direction. It is hypothesized that this spectrally rich, big-band musical arrangement does

not lend itself easily to example-based STS because of its complex, multi-layered harmony

of dozens of musical instruments in unison, and the fact that the piece is very lively with few

cadences (i.e. resting points). Variation in the sound textures created by example-based

STS often occurs at points of low amplitude or at a cadence, and so large portions of the



2.10. Further Experiments 40

Time [s]

F
re

q
u
en

cy
 [

H
z
]

0 2 4 6 8
0

0.5

1

1.5

2

x 10
4

Time [s]

F
re

q
u
en

cy
 [

H
z
]

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

x 10
4

Figure 2.19: Synthesized baby laughing texture; (top) spectrogram of the 10s training

example, Ye 9, and (bottom) 20s of the sound texture, generated with K = 8, Ws = 77,

ǫ = 0.1, a 0.5s seed, and stereo option B.

training example of Ye 10 are tiled up to rare points of cadence in the sound texture, and

then a cycle of looping often occurs between these points.

The training examples of Ye 11, german speech, and Ye 12, english speech bg music,

produced interesting sound textures. The best sound texture of the former is plausible

and varied, with some small pulsing artifacts, while the best sound texture of the latter

has some looping, but good variation overall. During experimentation with these training

examples, it was found that by setting the value of DT-CWT depth K very high (e.g.

K > 12), and that of the sampling window size Ws very low (e.g. Ws = 3), a breakdown

of the structured language phrases to a phoneme-like level seemed to occur in the sound

textures of Ye 11 and Ye 12. Some of these interesting examples are also included on the

accompanying DVD, their parameters listed in Appendix A. Figure 2.20 (top) shows the
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Figure 2.20: Synthesized speech on background music texture; (top) 2.5s of training

example Ye 11, (bottom left) 2.5s of the best sound texture with K = 8, Ws = 201,

and ǫ = 0.1 with a 1.7s seed, and (bottom right) 2.5s of an alternative sound texture

with K = 12, Ws = 3, ǫ = 0 and a 0.9s seed. Here, the seeds are of different durations

for the purpose of experimentation, and for ensuring a statistically valid seed according

to a particular level of DT-CWT decomposition, K. Note that the 2.5s texture samples,

(bottom left and right), are taken from somewhere in the middle of the bodies of sound

texture and not from the beginning where the seeds are placed.

waveform and spectrogram of approximately 2.5s of training example Ye 11, english speech

bg music, and Figure 2.20 (bottom left) demonstrates plausible sounding texture with good

variation. The high frequency inconsistencies seen in the spectrogram are the small pulsing

artifacts, but these are only slightly audible. It is thought that the presence of background

music contributes to this effect. Figure 2.20 (bottom right) shows 2.5s of an alternative

sound texture with K = 13, Ws = 3 and ǫ = 0. This particular sound texture contains

short periods of distortion, but it is still interesting because words that are not present in

the training example are almost decipherable in the phoneme-like re-synthesis of the speech
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Figure 2.21: Synthesized piano texture; (a) visible tiling of the training example Ye 13 in

a bad sound texture, (b) random ordering of piano phrases in the best sound texture with

K = 8, Ws = 51, ǫ = 0.3 and a 1.2s seed, and (c) decomposition of the phrases to almost

note-level with K = 15, w = 3, ǫ = 0.001 and a 5.9s seed.

in the sound texture.

Similarly interesting phenomena are observable in example-based STS with Ye 7, piano

phrases. By choosing too large a value for Ws, the two phrases heard in the training

example are simply tiled in the sound texture, as can be seen in Figure 2.21 (a). The best

sound texture produced for this training example results in a random ordering of the two

phrases, as can be seen in Figure 2.21 (b). This is because the best values of K and Ws

- chosen by Shannon entropy analysis and Beat Detection respectively - are conducive to

allowing randomization at the points of cadence between the two phrases. At DT-CWT

levels K > 10 and with smaller Ws, however, these phrases can be decomposed into much

smaller units. Figure 2.21 (c) demonstrates the breakdown of the original phrases to almost

single notes with K = 15, w = 3, and ǫ = 0.01. The resulting sound texture is like like
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short, unpredictable bursts of piano played erratically.

2.11 Future Work

As discussed in Section 2.9, some content-based parameter estimation techniques have been

established to save time and frustration in searching for the unique parameters for the

multi-resolution example-based STS of each training example. Shannon entropy analysis

and Beat Detection (see Section 2.9) were found to be useful in determining the values of

DT-CWT decomposition depth, K, and sampling window, Ws, parameters, much of the

time. Although these parameter estimation techniques are more reliable for some genres

of training example than others, they still constitute an overall vast improvement on the

trial-and-error method of parameter estimation required by the ITS algorithms of (Efros &

Leung, 1999) and (Gallagher & Kokaram, 2005) that inspired this STS algorithm. Perhaps

these techniques will also be useful for determining similar parameters in other example-

based, multi-resolution or wavelet-based STS algorithms. Future work, however, would

concentrate on honing these techniques to better reflect the class of sound texture being

synthesized.

The ideal STS system would attempt to resolve these parameters fully automatically

through complete analysis of the content of the training example clip, Ye. This idea is

based on the assumption that these parameters are always related to, or influenced by

certain salient features in the audio. An obvious example of this idea is that the tempo of

a musical signal could be used to determine the sampling window extent, Ws, as previously

discussed in Section 2.9. This however, is a music-specific technique that may not be

appropriate for the case of an event-on-background training clip, for example. It would be

useful, therefore, to have some kind of initial classification of the training example clip so

that the system could then select which techniques or features to be used to estimate the

parameters for each genre. (McKinney & Breebaart, 2003) classify audio files as classical

music, popular music, speech, noise or crowd noise using a combination of features based

on low-level signal properties, perceptual models of hearing and Mel-Frequency Cepstral

Coefficients (MFCCs). After genre classification, the next step would be to discover the

appropriate features that could be used to estimate the parameters of the multi-resolution

example-based STS algorithm for each genre. Beat Detection, harmonic analysis and music-

specific psychoacoustic features might be be useful for estimating the values of K or Ws

in the synthesis of musical signals, whereas phonetic analysis, MFCCs and speech-specific

perceptual models might be more appropriate in the case of speech signals. Perhaps this

proposed STS system will not be completely automatic, and some user interaction might be

involved in choosing these parameters for example clips of the event-on-background genre,

for example.

The significance of the parameter ǫ (see Section 2.7 for explanation) has not fully been
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explored in this work. According to (Efros & Leung, 1999), the likelihood of variation

emerging in the texture is related to the value of ǫ, but experiments with multi-resolution

STS indicate that each training example usually has one particular “sweet” value for ǫ.

Increasing it past this point seems to result in glitches, clicks and distortion in the resulting

sound textures, although this observation may be influenced by individuals’ perceptions of

sound cues and definitions of sound texture.

As previously mentioned in Section 2.10.1, the multi-resolution STS algorithm has a

tendency to favor points of cadence or low-amplitude troughs - including periods of silence -

as points for variation within the sound texture. This tendency echoes the explicit objectives

of locating low-energy transition points in many patch-based AT algorithms (Lu et al., 2004;

Hoskinson & Pai, 2007; Jehan, 2004). Perhaps ǫ could be tuned on the fly as amplitude

troughs emerge or dissipate in the sound texture, or vary with the tempo of a near-periodic

percussive signal. The value of ǫ could also decrease on early detection of glitches, clicks or

distortion in the sound texture to curb the propagation of errors.

It might also be interesting to consider the non-decimated levels of the DT-CWT de-

composition of the training example clips as an image training example, and attempting to

synthesize sound texture by performing example-based ITS - such as that of (Gallagher &

Kokaram, 2005) - on the wavelet space arranged as a 2D image. This is a possible direction

for future work.

2.12 Conclusion

A novel example-based Sound Texture Synthesis (STS) algorithm has been presented in

this Chapter. Taking inspiration from a well-known example-based Image Texture Syn-

thesis (ITS) algorithm and its multi-resolution extension, the Dual-Tree Complex Wavelet

Transform (DT-CWT) has been employed for a wavelet-based STS with the goal of reduc-

ing the computational burden of an otherwise heavy exhaustive window matching-based

sample-wise synthesis. To quantify this complexity reduction, the number of template-

matching operations needed to create a sound texture is at least reduced by 2K (i.e. two to

the power of K), where K is the level of DT-CWT decomposition used in creating the sound

texture. The complexity is then further reduced by a corresponding reduction in template-

matching widow extent, Ws. The resulting sound textures compare favorably with those

produced by the other well-known wavelet-based STS algorithm in the field. In further

experiments with a more diverse set of real-world training example audio clips, the sound

textures synthesized are long, spectrally coherent and randomly varied rather than tiled or

looped. They are mostly representative of the general ambiance of the training example

clips. Some techniques for content-based parameter estimation - Shannon entropy analysis

and Beat Detection specifically - have been discussed, and used to reduce the time and

frustration inherent to the original method of user-based trial-and-error parameter estima-
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tion. Although the algorithm is not yet fully automated, this exploration into content-based

analysis for parameter estimation is considered an interesting problem for future work.



3
Implicit Spatial Inference with Sparse Local

Features for Face Detection

Object, and particularly Face Detection and localization, are useful for content-based media

filtering, since head shots of people constitute much of the content in home movies, digital

TV and images, cinema and camera mobile phone clips. This Chapter introduces a novel

way to leverage the implicit geometry of sparse local features for the purposes of Face

and/or Object Detection. A brief discussion of the state-of-the-art in both of these topics

is presented, including the types of classification algorithms used, an explanation of sparse

local features, geometry models for invariant Object Detection and some of the motivations

for improvement in these fields. A novel algorithm for Implicit Spatial Inference (ISI) is

then presented. A two-class Bayesian scheme is used as a framework, and the likelihood is

derived from the real-valued feature-wise classification of the machine learning algorithm

Gentle AdaBoost, whose output is formulated as a probabilistic distribution with a Bi-

Gaussian (B-G) model. The main contribution, however, is a novel scheme for the injection

of prior contextual spatial information. This Markov Random Field (MRF) prior is imposed

on a graph formed by Delaunay triangulation of the sparse local feature points. A Face

Detection task is used to show that this framework may be useful for Face and Object

Detection with rotation, scale, pose, illumination and occlusion invariance capabilities.

The framework is also shown to be useful for localization and it is capable of producing a

rough segmentation mask that could be used to seed a finer one.

46
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Figure 3.1: Face Detection and Localization (left) is distinct from Face Recognition (right)

3.1 Face Detection Explained

Face Detection is the automatic task of localization (i.e. segmentation of the region(s) oc-

cupied by) the human face(s) in an image. Face Recognition is the automatic identification

of a particular face. The difference between these two concepts is demonstrated in Figure

3.1. This work discussed in this Chapter is concerned with Face Detection, and not Face

Recognition. Face Detection is useful because faces are arguably the most important pieces

of content in visual material containing people. Therefore content-based media applications

can usually benefit from a Face Detection algorithm. In media adaptation, for example,

special treatment - such as better compression or stylization - can be localized to the image

region in which the face was detected. Face Detection functionality can be found in some

modern digital cameras (e.g. Olympus E-450 D-SLR) and camera mobile phones (e.g. Sam-

sung G800) where it is used to influence the camera’s automatic focus or optimize exposure

and/or flash output.

3.2 Face Detection Algorithms

Face Detection is an extremely popular, broad and varied research topic, and a few algo-

rithms of relevance to this work will now be discussed. Face Detection algorithms are often

categorized and described with regard to the terms in Table 3.2. For the interested reader,

the survey of (Yang et al., 2002) is a more detailed review of much of the literature.

Face detectors that are scale, but not pose or rotation invariant are often called frontal,

and the non-rotation invariant are often called upright face detectors. A fully invariant

face detector is one that is scale, rotation, pose, illumination and occlusion invariant. The

success of a particular face detector is usually quantified by comparing true positive with
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color-based Faces detected involving the use of color features

(e.g. skin color heuristics).

grayscale Faces detected in grayscale images, or without the use

of color values.

scale invariant Faces detected at any scale within the image.

rotation invariant Faces detected at any arbitrary in-plane rotation.

pose invariant Faces detected at any arbitrary rotation, tilt or yaw

(a.k.a. out-of-plane rotation).

occlusion invariant Faces detected regardless of occlusion.

illumination invariant Faces detected in all illumination conditions.

Figure 3.2: Popular terminology for categorizing Face Detection algorithms. See (Yang

et al., 2002) for more information on the field.

false positive results in a series of tests. A true positive is defined as a correctly detected

face, whereas a false positive is a non-face region (e.g. background) incorrectly detected

as a face. These tests may be performed on a popular Face Detection test database (e.g.

MIT+CMU (Rowley et al., 1998b) or Caltech (Fergus et al., 2003)), and may involve

systematically scaling, rotating or warping the test images, depending on the goals and

invariance capabilities of the face detector.

3.2.1 The Viola-Jones Face Detector

The most notorious Face Detection algorithm of recent times is that of (Viola & Jones,

2004). In its well-known form, it is a fast frontal, upright, grayscale face detector. Tested

on a particular grayscale test set - MIT+CMU (put together by (Rowley et al., 1998b)) -

it is scale, but not rotation invariant. It is also somewhat pose invariant, but not explicitly

designed to be so. The Viola-Jones algorithm is a typical example of a feature-based detector.

Certain features are defined, and then the algorithm is trained by extracting these features

from thousands of small, cropped, frontal face examples - specifically 4916 tiny images of

24 × 24 pixel resolution. These are known as the positive training examples. The detector

is also trained with a negative training set, which is made up of thousands of background

images. In the testing stage, the face detector can then classify features extracted from the

test image as belonging to either the positive or negative class.

Three types of simple rectangular features are used in this algorithm for training and

testing. Two of these features are the 1D and 2D Haar basis functions, and the third is not

really a Haar basis function, but it is similar to one. Therefore together these features are

referred to as Haar-like. Haar-like features appear to be globally representative of faces,

in that a single positively classified feature is detected as a face. The detector learns to
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classify these features using a machine learning algorithm known as AdaBoost (Freund &

Schapire, 1995). AdaBoost is an interesting classification-boosting algorithm that combines

the moderate results of a number of weak classifiers by taking a weighted combination of

their voting contributions. The result, in the case of the Viola-Jones face detector, is a

stronger classifier that can identify unseen Haar-like features as belonging to a face or not

with some degree of certainty, called the margin. A threshold is taken to binarize the

classification.

The Haar-like features can be computed at multiple scales. Scale invariance for the

face detector is implemented, therefore, by computing and classifying Haar-like features

at twelve discrete scales. The detector is window-based, meaning that a spatial window is

scanned along the image at each scale and with a step sizes of a couple of pixels, and the

Haar-like features in each sub-window are evaluated and classified. The bounding boxes

of overlapping, multi-scale positive sub-windows are merged spatially to create a bounding

box for the face. In previous Face Detection algorithms, scale invariance is achieved by

applying the detector to a pyramid of successively sub-sampled versions of the original test

image (Osuna et al., 1997; Sung & Poggio, 1998; Rowley et al., 1998a; Rowley et al., 1998b;

Roth et al., 2000). In the algorithm of (Viola & Jones, 2004), however, the creation of a

test image pyramid is unnecessary due to the scalable optimization scheme for computing

the Haar-like features.

To reduce the computational burden of exhaustive searching, this algorithm classifies the

positive Haar-like features in a tree-like cascade of classification tests, using only a couple

of Haar-like features to reject the majority of features in the first tier, and so on until a

positive feature is detected or not. Each layer of the cascade is trained by AdaBoost, and

parameters can be adjusted to trade off efficiency with accuracy. A two-cascade network of

symbiotic detectors, and a boot-strapping training technique is employed to further improve

the detector’s efficacy. This classification scheme, together with an optimized technique for

computing the Haar-like features makes this a fast face detector with acceptable accuracy.

It was the world’s first real-time face detector, according to (Viola & Jones, 2004).

In comparison to the performance of a number of previously prominent Face Detection

algorithms (Sung & Poggio, 1998; Rowley et al., 1998b; Osuna et al., 1997; Schneiderman

& Kanade, 2000; Roth et al., 2000) on the same or comparable test dataset, the authors

cite that this detector outperforms in the tradition of comparing true positive with false

positive results. The test database used - the original MIT+CMU (Rowley et al., 1998b),

but excluding the new rotation invariance test set - consists of images of multi-scale faces

and some pose variety, but they are of very low resolution. Since the Viola-Jones faced

detector is trained on tiny, low-resolution training images, it is conducive to success with

these test images.

The Viola-Jones algorithm has been widely adopted and reimplemented (e.g. within

Microsoft Research and Intel) and it has spawned a renewed interest in the adoption of
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AdaBoost and other classification-boosting algorithms in the fields of Face and Object

Detection.

3.2.2 Rotation and Pose Invariance

The point is made in (Rowley et al., 1998b) that any frontal, upright face detector could

become rotation invariant by applying it normally to a selection of successively rotated

versions of the test image. This concept is similar to the use of a test image pyramid for

scale invariance, although it is more computationally expensive, and non-ideal for real-time

or point-and-click camera-based applications.

(Rowley et al., 1998a) presents a frontal, upright, and illumination invariant face de-

tector that classifies sub-windows of a test image as face or not using a Neural Network

trained on thousands of small pre-processed frontal face and non-face templates. Unlike the

previously discussed algorithm of (Viola & Jones, 2004), this face detector is not feature-

based, and scale invariance is achieved by applying it to a test image pyramid and merging

the results over scales. This is achieved by clustering the centroids of positively classified

sub-windows over multiple scales, eliminating those that do not have significant cluster

centers and overlap with a positive detection.

A rotation invariant extension to this algorithm is proposed in (Rowley et al., 1998b).

The orientation of each sub-window extracted from the test image pyramid is estimated by

evaluating the spatial distribution of blobs of low intensity constituting the eyes, nose and

mouth. The sub-window is then “de-rotated” to upright, and the normal upright network-

based detector is applied. Overlapping detections are merged using a statistical process in

which space, scale and orientation are parameters.

Like (Viola & Jones, 2004), both of these detectors are tested on the low resolution

MIT+CMU face database created by the authors, Rowley et al., and the latter reports

impressive rotation invariance when tested on a specially created new subset of the database

containing faces under rotation. The former is also tested on a subset of the FERET

database (Phillips et al., 1996). FERET consists of higher resolution images in a variety

of upright poses, but with only one face per image, in the center of a uniform clutter-free

background. (Rowley et al., 1998a) use FERET to explore the sensitivity of a slight pose

invariance in their system. An extension to full pose invariance is proposed in (Rowley

et al., 1998b), but not tested. According to the authors, this would involve the training of

separate detector networks for different views of the face.

Later rotation and/or pose invariant face detectors seem to extend or adapt the concept

of a boosted-classification algorithm with Haar-like features as made famous by (Viola &

Jones, 2004). The algorithm of (Xiao et al., 2004), for example, presents some extensions

to a Viola-Jones-style detector. The resulting system is also trained for in-plane and out-of-

plane facial rotation (i.e. pose variations) in the range [−45◦, 45◦] in both cases. First, the
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detector evaluates the in-plane rotation of each sub-window using a technique that appears

to be an optimization of the orientation estimator of (Rowley et al., 1998b), and then the

rotation-compensated sub-window is presented to a Viola-Jones-style upright face detector

that has been trained with a positive set of thousands of small, cropped faces with pose vari-

ations in the aforementioned range. The algorithm employs some new Haar basis functions

and cascade-network optimization techniques that are suited to the pose invariant nature

of the detector. Again, the detector is tested on the low-resolution MIT+CMU database

(Rowley et al., 1998b), but also on the CMU PIE (Pose Illumination and Expression) set.

The latter is a database of single faces in a variety of upright poses with a uniform unclut-

tered background. Then tested on these sets, this face detector appears to be fast and fairly

robust, with rotation and pose invariance for a limited degree of pose variation in PIE.

The face detector of (Huang et al., 2007) is trained with 30, 000 frontal, 25, 000 half-

profile, and 20, 000 full-profile cropped faces (all 24×24 pixels) with a limited range of pose

variations. Four different feature-based, AdaBoost-like detectors are networked to deal

with four different limited ranges of rotation and pose, and positive responses are clustered

according to space, scale, and pose. Interestingly, the feature space is based on a set of

sparse, scale invariant features which the authors claim to be more computationally efficient

than the rigid, Haar-like features introduced in (Viola & Jones, 2004). According to the

authors, the detector appears to outperform others in terms of speed and accuracy when

tested on the rotation, and also on a newly added profile faces test set of the ever-growing

MIT+CMU database. The system appears to cope well with faces in difficult poses such

as full-profile.

3.3 Observations on Face Detection

A few Face Detection algorithms have been discussed, and some general observations on

the state-of-the-art are as follows:

• Taking into account the normal pose of the majority of faces in images, a frontal,

upright, scale-invariant face detector is quite useful.

• Rotation and pose invariance are becoming increasingly important, but pose and

multi-invariant Face Detection in real-world, high-resolution images is still an open

problem.

• Face detectors are often trained with tens of thousands of tiny face and non-face

examples, and the training process can take weeks (see (Viola & Jones, 2004)).

• Feature-based algorithms seem to dominate the literature (Schneiderman & Kanade,

2000; Roth et al., 2000; Viola & Jones, 2004; Xiao et al., 2004; Huang et al., 2007).

Boosted machine learning algorithms are popular (Viola & Jones, 2004; Xiao et al.,
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2004; Huang et al., 2007). Multi-scale window-based scans are often carried out for

feature evaluation (Rowley et al., 1998a; Rowley et al., 1998b; Viola & Jones, 2004;

Xiao et al., 2004; Huang et al., 2007).

• Haar-like features are popular features, but the use of alternative invariant features is

interesting. Wavelet features are explored in (Schneiderman & Kanade, 2000), sparse

Winnow features in (Roth et al., 2000), and sparse granular features in (Huang et al.,

2007).

• Determining the facial boundary by grouping the detected features in scale-space

seems to be a necessary post-process in window/feature-based face detectors.

Although not discussed in depth here, it is worth noting that Skin Detection (see (Vezh-

nevets et al., 2003) for a review) as a pre-process, or operations based on skin color heuristics

can be introduced to the problem of Face Detection in color images. This makes sense since

faces are normally observed within skin-colored regions in color photographs. The Face

Detection algorithm of (Terrillon et al., 2000) is based entirely on modeling the spatial dis-

tribution of skin color values of faces in images, with Support Vector Machine (SVM)-based

classification. In (Xiao et al., 2004), a post-process evaluates a skin color likelihood for the

proposed positive face detections, and those which fall below a threshold as discarded as

false positives. The argument in support of purely grayscale Face Detection, however, is

that it will still work in the absence of color values when needed (e.g. detecting faces in

images scanned from newspapers or artistic black-and-white photography).

3.4 Object Detection

In recent years, the topic of Face Detection has been largely overshadowed by the more

general field of Object Detection. In Object Detection, the goal is to detect instances

of a particular class of objects - such as cars or bicycles - in images and videos. Object

Class Detection (OCD) seems a more suitable title for this field, but the literature attributes

OCD to the task of verifying the presence of an object class somewhere in an image, without

any localization of the object in the image. In contrast, Object Detection involves object

localization. Face Detection has now become a sub-topic of Object Detection, because

faces in general can be viewed as a class of objects. Similarly to face detectors, object

detectors are usually trained with a number of positive (i.e. object) and negative (i.e. non-

object/background) training examples, and machine learning algorithms are used to classify

unseen test images. State-of-the-art Object Detection is largely feature-based, but sparse

local features - also known as interest points or keypoints - dominate the literature. One of

the most popular of these local features is Lowe’s Scale Invariant Feature Transform (SIFT)

(Lowe, 2004).
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3.4.1 SIFT Features

SIFT features (Lowe, 2004) are sparse, local, and based on the appearance of the object at

particular interest points. They are invariant to image scale and rotation. They are also

robust to changing illumination conditions, noise, and minor changes in pose or viewpoint.

Because the features are local, some of the SIFT features associated with a particular object

may still be detected despite its partial occlusion.

SIFT feature points are extracted from an image by convolving it with a series of Gaus-

sian filters at different scales. Next, the difference of successive Gaussian-blurred images are

taken. This operation is known as Difference of Gaussian (DoG). SIFT feature points are

established at local scale-space extrema of the DoG pyramid. After some post-processing

to remove the non-robust or unstable extrema, the dominant orientation of the features

that remain are determined through analysis of the local image gradients. The next stage

of the SIFT transform is the formation of a descriptor that captures the appearance of

the local region surrounding the feature point. This takes the form of an array of sixteen

eight-bin histograms recording the magnitude and direction of local gradients at the same

scale as, and aligned according to, the scale and orientation of the feature point respectively.

The final 128-element SIFT features vectors contain information on both appearance (i.e.

descriptor of the local region) and geometry (i.e spatial location, scale and orientation).

An example of some SIFT feature points, their scales and orientations can be visualized

in Figure 3.3 (b) and (c). The form of the descriptors can be visualized in Figure 3.3 (d).

Over 700 SIFT features were attributed to this test image using default parameters for

SIFT (code by (Vedaldi, 2006)), but only about a tenth of those are shown here for clarity.

Since they are invariant and robust, most of SIFT features found in one image should

be detectable in another image capturing the same scene, at any scale or rotation, or even

from a slightly different viewpoint. This property is called repeatability. The repeatability

of SIFT features is high, but not 100%, especially in the case of major viewpoint changes.

A more detailed explanation of SIFT can be found in (Lowe, 2004).

In order to use sparse features such as SIFT for detecting a class of objects such as faces,

it is usual to employ a machine learning algorithm for classification. This is similar to many

of the Face Detection algorithms discussed in Section 3.2. Usually, the object detector is

presented with a selection of positive and negative training images; one set containing in-

stances of the object class and the other set consisting of background images. Feature points

and descriptors are normally extracted from these images, and the appearance descriptors

used to train the classifier. The classifier should then be able to classify previously unseen

SIFT descriptors as either positive or negative (i.e. belonging to an instance of the object

or not).

Although SIFT is the most popular for this task, other types of interest point-plus-

descriptor combinations exist, including Speeded-Up Robust Features (SURF) (Bay et al.,
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(a) Test image (b) Feature points

(c) Scales and Orientations (d) Descriptors

Figure 3.3: SIFT features; (a) grayscale test image, (b) SIFT feature points, (c) scale

and orientation denoted by a circle and a line receptively, and (d) descriptor orientation

histograms. Only one tenth of the SIFT features generated for this image are shown here.

The code used for SIFT is courtesy of (Vedaldi, 2006).

2008), Kadir-Brady Saliency Features(Kadir & Brady, 2001), and Harris-Affine (Mikolaj-

cyk & Schmid, 2002). The latter two examples are particularly interesting in that they are

designed to be affine invariant - that is to say that they are repeatable under any arbitrary

affine transformation of the image scenery (i.e. viewpoint change or object pose). The

common attributes of all of these feature types including SIFT, however, are that they are

locally descriptive, sparse, repeatable, and invariant to a number of geometric transforma-

tions with regard to image scenery. Another common attribute is that they are normally

established over multiple image scales, and therefore low-resolution images - such as those

found in the MIT+CMU Face Detection test set as described in Section 3.2 - will not

produce many useful invariant features.
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(a) Test image (b) SIFT features classified

Figure 3.4: Classification of facial SIFT features using Gentle AdaBoost (Vezhnevets &

Vezhnevets, 2005); (a) grayscale test image, (b) SIFT features classified as face (green) or

background (red). Here, Gentle AdaBoost has been trained with 23, 080 positive, 36, 903

negative SIFT features and 200 iterations of boosting (see (Vezhnevets & Vezhnevets, 2005)

for explanation). The SIFT code is from (Vedaldi, 2006).

3.4.2 Geometric Contexts

Many sparse local feature-based algorithms concentrate on Object Class Detection (OCD)

using a bag-of-features approach (Nowak et al., 2006), in which the presence of a bunch of

local features positively classified in an arbitrary test image constituted the presence of the

object somewhere, but OCD does not require object localization. Since SIFT features are lo-

cal and sparse, object localization can be difficult, because some spurious mis-classifications

are likely to occur using any point-wise feature classification algorithm. This problem can

be visualized in Figure 3.4, where the SIFT features have been classified by Gentle Ad-

aBoost (Vezhnevets & Vezhnevets, 2005) trained to classify these features as face (green)

or background (red).

In Figure 3.4, there are many mis-classified features, but there is a spatial correlation be-

tween the correctly classified face features. This is useful if the object is partially occluded,

but local features have still been detected on the part of the object that is in sight.

It is clear to see that the geometric relationships between sparse local features are impor-

tant, and that articulating these features in terms of both appearance (i.e. the descriptor

histogram of the surrounding local region in the case of SIFT) and relative geometry (i.e.

spatial location and perhaps scale and orientation) is a good idea. Recent work in the field

used sparse local feature points in the tasks of Object Detection and/or more sophisticated

OCD by leveraging the relative geometric contexts of features using a variety of geomet-

ric models. This work and these models will now be discussed following a brief note on

benchmarking in the field.
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Figure 3.5: Fully connected constellation for modeling the relative geometric contexts of

sparse local feature points.

Benchmarking Metrics

Benchmarking in Object Detection and OCD is often concerned with Recall and Precision.

Essentially, Recall is defined as the number of true positives over total positives in some

sense, and Precision is the number of true positives over the sum of false positives and true

positives. The words “positive” and “negative” however, are very ambiguous in this field.

They could be attached to a bounding box detecting an object or not, how well this bounding

box localizes the object in the image, verifying the presence of an object class somewhere

in the image in an OCD test, or the classification of individual sparse local features such as

SIFT with regard to OCD and/or Object Detection tasks. The Equal Error Rate (EER)

is often defined as the performance of the algorithm when parameters are adjusted such

that there is a Recall-Precision equal error in testing. EER is an interesting metric, but its

significance is situational, just like Precision and Recall. Many applications in the field of

Information Retrieval, for example, are concerned with maximizing information Recall at

the expense of Precision, and so EER is less important.

Constellation Model

A typical structure for relating the geometric contexts of sparse feature points on an object

is the Constellation Model. This technique models the object or object class in question

as a fully-connected constellation of features, where the interaction between all pairs of

features are taken into account in both training, and classification with, the model. This

idea can be visualized in Figure 3.5. It is usually quite a computationally expensive model

to train (see (Fergus et al., 2003) for an example training process).

(Fergus et al., 2003) presents a probabilistic part-based OCD algorithm where one or

more sparse local features are clustered to form parts. The local features are Kadir-Brady

Saliency Features (Kadir & Brady, 2001) which capture appearance as a scale-adjusted
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radial histogram of pixel intensities surrounding the feature’s center point. The interaction

between parts is modeled using using a joint Gaussian-density function with parameters

relating to both the appearance (i.e. histograms), and relative geometrical contexts (i.e.

scales and locations) of parts on a Constellation Model. Variance in these parameters is

modeled by Gaussian distributions, and occlusion is also modeled statistically. This fully-

connected part-based model is theoretically scale, occlusion, illumination and somewhat

pose invariant, but rotation invariance is not possible since the orientation of features

is not taken into account as a parameter in the model. The authors acknowledge the

computational complexity and resulting difficulties in training this complex model. It is

both trained and tested on the faces, motorbikes, airplanes and cars datasets from the newly

introduced Caltech database created by (Fergus et al., 2003). Only a few hundred images

per class are used to train the object class detector, and it is tested on the same amount

of images per class. The authors cite Precision/Recall rates of over 90% at EER in each

catagory, but these refer to classification and not object detection or localization results.

Interestingly, the authors note some limitations on the scale invariance due to the detector

performing badly on very small images. This is probably due to the fact that sparse local

features are not easily detectable in low-resolution images, and that the geometric model

involved in this object class detector dependends highly on picking up useful features in the

test images.

Star Graph Models

The Star Graph Model relates the relative geometric contexts of sparse local features to

the object centroid, or some other (usually central) landmark on the object, (usually) in

both training and testing. This concept is visualized in Figure 3.6. The central landmark

omits the need to model the pairwise geometric relations between all of sparse features,

as in Constellation Models. The star graph, therefore, is a more popular model in Object

Detection and OCD.

(Moreno et al., 2007) models the relative geometric contexts of SIFT (Lowe, 2004) and

other local features - clustered into parts - on a star graph in both training and testing. Both

the appearance (i.e. the SIFT descriptor) of the parts, and their spatial locations relative

to a central landmark location are modeled probabilistically with a degree of variance.

The feature descriptors are classified as positive or negative using either AdaBoost (Freund

& Schapire, 1995) or a SVM, and a Markov Random Field (MRF) is used as a prior

on the spatial distribution of parts. OCD experiments are performed on a few different

object categories in the Caltech database (Fergus et al., 2003). In a small Face Detection

experiment, only 10 positive images are used for training, and 90 positive and 100 negative

images for testing. The output of the detector appears to be a rectangular bounding

box that can be compared to the official Caltech-101 ground truth mask for each image.
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Figure 3.6: Star graph for modeling the relative geometric contexts of sparse local feature

points.

Precision/Recall rates upwards of 80% at EER are reported for this small test, but it is

rather unclear as to what these metrics of Precision and Recall are actually measuring with

regard to the output bounding box. Scale and rotation invariance are not explicitely tested

for, and perhaps not implemented.

A fairly invariant star graph-based object class detector is presented by (Mikolajczyk

et al., 2006), and it is used to detect four object classes, including pedestrians. The sparse

local features are Canny-detected edge points combined with Laplacian scale detection and

a SIFT descriptor (Lowe, 2004). A star graph is employed as the model, and features

from multiple object classes are clustered in both training and testing according to local

appearance and geometric context in terms of spatial location, scale and orientation relative

to the central landmark. Rotation invariance is embedded by using polar rather than

cartesian coordinates for orientation. In training, a single hierarchical codebook tree is

formed capturing the joint probabilities of appearance clusters and their geometric contexts

for multiple classes. A similar tree is formed in testing an unseen test image, and an

object class in the tree structure is detected when it is matched to a particular class in the

codebook using a fast matching strategy, which the authors use to reduce the computational

complexity of exhaustive searching with this model. The Pascal database (Everingham

et al., 2005), which includes the Caltech-101 database (Fei-Fei et al., 2004), is used in

training and testing most of the object classes. For each object class, only a few hundred

images are used for positive and negative training examples, and test images. Although

object detection and bounding box localization is inherent to this algorithm, it is only the

object classification results that are evaluated, and not localization accuracy. Objects from

different classes are classified in images simultaneously with a Precision/Recall performance

of between 72 − 89% at EER.

The Boundary-Fragment-Model (BFM) of (Opelt et al., 2006b), and the related multi-
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feature Combined-Model (CM) of (Opelt et al., 2006a) are other interesting algorithms

with star graph model-based training and testing, featuring AdaBoost classification with

experiments on the Caltech/Caltech-101 (Fergus et al., 2003; Fei-Fei et al., 2004) or subset

of the Pascal databases (Everingham et al., 2005). The performance of these object class

detectors is good, but training their models is computationally expensive, and so a process

of optimized learning is employed.

Other Models

The Pairwise Spatial Relations (PSR) approach of (Zhang et al., 2005) attempts to capture

the relative spatial geometry of sparse local feature points in a radial histogram centered

on the object in both training and testing. The scales and orientations of feature points

are not taken into account in the model, but the shape context histogram is still scale and

rotation invariant, and its log-polar distribution of bins is intended to imbue some degree

of pose invariance to the geometric model. The radial histogram is strongly dependent on

feature point repeatability and sensitive to occlusion. AdaBoost is utilized for classification

within the framework, and OCD testing is carried out on the Caltech (Fergus et al., 2003)

database. A Pascal database (Everingham et al., 2005) subset of multi-view bicycles is also

used to test the pose invariance of the model, and EER rates of over 80% are reported.

3.5 Observations on Object Detection

A few Object Detection algorithms have been discussed, and some general observations on

the state-of-the-art are as follows:

• Invariant Object Detection is an open, and interesting problem. Classification results

of Object Class Detection (OCD) tasks are more readily measured and reported, even

though many of the algorithms in the field effectively perform object bounding-box

localization within their frameworks.

• SIFT features (Lowe, 2004), or variants of SIFT seem to be the most popular sparse

local features (Zhang et al., 2005; Mikolajczyk et al., 2006; Opelt et al., 2006b; Opelt

et al., 2006a; Moreno et al., 2007). Boosted machine learning algorithms are popular

(Zhang et al., 2005; Opelt et al., 2006b; Opelt et al., 2006a).

• There are far fewer images in the training and test databases used for Object Detection

than those used for the previous generation of Face Detection algorithms (see Section

3.2), but the new databases consist of much higher resolution images.

• State-of-the art research is concerned with establishing the relative geometry of fea-

tures. Geometry is often posed as a graphical structure with underlying probabilistic

modeling in both training and testing.
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• Sometimes the rigidity of these models seems to constrain certain aspects of invari-

ance. Features must often be clustered into groups or parts for use with these models.

The training of these structures can be computationally expensive.

• The Caltech/Caltech-101 databases (Fergus et al., 2003; Fei-Fei et al., 2004) are

popular, but it is well known that the images in these databases contain little pose,

orientation, scale or illumination variation, almost no occlusion and little background

clutter. The objects are also frequently located in the center of the images. Therefore

object detectors based on rigid geometric models are more likely to perform favorably

when trained and tested on these limited databases. (Ponce et al., 2006) examines

some of these issues.

3.6 Motivations for Improvement in Face and Object Detec-

tion

The idea of using sparse local features such as SIFT (Lowe, 2004) for Face Detection is

interesting. The invariance inherent to these features might lend itself to invariance in the

resulting feature-based face detector. As discussed previously in Section 3.2, existing Face

Detection algorithms tend to use many thousands of example images in training, techniques

involving test image manipulation to enable scale and rotation invariance, or separate pose-

enabled detectors to allow for pose invariance. By using sparse SIFT features which are

themselves rotation and scale invariant, the volume of training material and necessity for

test image manipulation could be reduced.

As discussed in Section 3.4.2, the use of explicit graphs, clustered parts, and shapes to

model geometry is computationally intensive in training, and could be a potential barrier

to full invariance in many of the local feature-based Object Detection algorithms. This is a

motive to consider the idea of leveraging the implicit geometric distribution of sparse local

features, after they have been point-wise classified with a typical machine learning classifier

trained only on feature appearance, and not geometry. That is to say that geometry is

only considered at the detection and not in the training stage, avoiding the need to cluster

features into codebook parts or constrain their geometric parameters (i.e. location, scale

and orientation) to rigid graphical models when training. It would also be useful to produce

and evaluate a good object localization and/or segmentation from such an algorithm, since

localization, and especially segmentation accuracy is not often measured in the field of

Object Detection.

The following Section presents a technique for incorporating geometry to local feature-

based Object Detection in this way, using a traditional Bayesian framework in which a

Markov Random Field (MRF) is proposed on the sparse set of feature points. It is the

MRF that imposes a weak geometry constraint after an initial point-wise feature classifica-
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tion. Novel aspects of the algorithm include realizing the MRF on a graph created by the

Delaunay triangulation of the spatial locations of the features, defining a likelihood based

on the output of a typical machine learning classification algorithm, and producing a object

localization and rough object segmentation. Used in conjunction with SIFT features, this

technique - which has been named Implicit Spatial Inference (ISI) - has resulted in a face

detector with rotation, scale, partial occlusion and illumination invariance capabilities, and

rough segmentation ability, as expected.

3.7 Implicit Spatial Inference

Implicit Spatial Inference (ISI) is a probabilistic technique that is capable of “injecting”

geometric context after an initial point-wise classification of the appearance of sparse local

features (e.g. SIFT (Lowe, 2004)) in a test image. The motivation for ISI is that the features

of objects (e.g. faces), are spatially correlated in images, but not rigidly so. Therefore, the

machine learning classifier need only be trained on the appearance of features, and their

relative geometry can be introduced in the object detector as ISI afterwards.

As can be seen in Figure 3.7, ISI is capable of classifying a tight network of local features

on the object, and it is therefore conducive to a rough segmentation that could be useful

for content-based filtering of images and videos. In Figures 3.8 (b) and (c) for example,

the rough segmentation seen in Figures 3.8 (a) is used as a basis for stylization and face

scrambling respectively.

The probabilistic form of this technique is only possible if the initial feature appearance

classification is non-binary. This is true of any probabilistic classification where a likelihood

is obtained by proposing a parametric model in feature appearance space, such as a Gaussian

distribution for each class. It is also true however, of many modern machine learning

algorithms such as state-of-the-art versions of SVMs, Neural Networks, and many variants

of boosting algorithm such as Modest and Gentle AdaBoost (Vezhnevets & Vezhnevets,

2005), the latter being the classification algorithm used in this work.

3.7.1 The Bayesian Framework

Consider that an unseen test image produces K sparse local features (e.g. SIFT interest

points and descriptors), and the goal is to classify these features, fk(xk) = fk, centered at

image coordinates xk = [xk, yk] as positive (i.e. belonging to object such as a face), or

negative (i.e. belonging to background). Let lk = l(xk) represent this binary label field

lk =







1 if fk is a positive feature

0 if fk is a negative feature
(3.1)

According to Bayes’ rule, the probability that fk belongs to either class is
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(a) Test image

(b) Initial appearance-based feature classification

(c) ISI-improved feature classification

Figure 3.7: ISI in feature classification; (a) test image - a hybrid of two images taken from

the Caltech-101 (Fei-Fei et al., 2004) database (one flipped), (b) Gentle AdaBoost (Vezhn-

evets & Vezhnevets, 2005) appearance-based SIFT feature classification and (c) geometrical

context injected with ISI. The SIFT code is from (Vedaldi, 2006).

p(lk|fk)
︸ ︷︷ ︸

posterior

∝ p(fk|lk)
︸ ︷︷ ︸

likelihood

p(lk|Lk)
︸ ︷︷ ︸

prior

(3.2)

where Lk=L(xk) is the spatial neighborhood of labels around xk. The likelihood represents

a connection between the observed feature appearance and the label that is assigned, while

the prior quantifies knowledge about the label field before observation. It by means of the

prior that contextual spatial information is introduced to the solution. A MRF is used as
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(a) ISI-generated rough segmentation mask

(b) Stylization with the segmentation mask

(c) Identity hiding with the segmentation mask

Figure 3.8: Content-based media filtering; (a) rough segmentation mask generated by ISI

in a Face Detection task, (b) background stylization with Adobe Photoshop’s “ripple” filter

using the rough segmentation as a mask, and (c) face scrambling with the mask.

the prior in the usual way, although it is defined on a uniquely designed Delaunay graph

which will be discussed later in Section 3.7.3.

3.7.2 Obtaining the Likelihood

As previously discussed, a likelihood might be obtained by modeling the Probability Dis-

tribution Function (PDF) of the appearance of positive and negative features in Gaussian

distributions. However, given the success of the recent Face and Object Detection schemes

based on point-wise classification algorithms (Schneiderman & Kanade, 2000; Roth et al.,
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2000; Viola & Jones, 2004; Rowley et al., 1998a; Rowley et al., 1998b; Xiao et al., 2004;

Zhang et al., 2005; Opelt et al., 2006b; Opelt et al., 2006a; Huang et al., 2007; Moreno et al.,

2007), it is proposed to utilize the output of such a classifier to determine this likelihood.

This might seem strange, but consider the output of a real-valued AdaBoost classifier,

such as Gentle AdaBoost (also known as, and hereafter GentleBoost (Vezhnevets & Vezh-

nevets, 2005)) which is used in this work. It is a point-wise boosted classifier which yields

a real-valued measure of confidence, ck ∈ ℜ, that is assumed to be related to the likelihood

of lk = 0 or lk = 1 at each site. Specifically, GentleBoost can be trained to label the

appearance of a feature fk according to the rule

lk =







1 for ck > h

0 for ck ≤ h
(3.3)

where h is a user-defined threshold integral to the GentleBoost algorithm, enabling a rough

binary classification of the feature. The confidence values given by GentleBoost to the

appearance of the SIFT features, fk, detected in Figure 3.9 (a) can be visualized in Figure

3.9 (b), and the binary labeling of fk as positive or negative in Figures 3.9 (c) and (d)

respectively.

As can be seen in Figures 3.9 (c) and (d), the binary classification by h is not very

accurate, but the actual values of ck are interesting. The margin, |zk| = |ck − h|, is related

to the confidence of the binary labeling, lk, with regard to h, and therefore the metric

zk = (ck − h) is useful for visualization purposes. In Figure 3.9, the feature points, fk,

are dilated for clarity and colored with the normalized values of zk. Increasingly confident

positive features are seen as brighter, whereas increasingly confident negative features are

darker. The actual values of ck, therefore, can be used as likelihood in the proposed Bayesian

framework.

For use as a likelihood, the PDF of ck..K must be determined, and a Bi-Gaussian (B-

G hereafter) model is used to determine the two-class likelihood distribution. Using this

model, a Gaussian distribution is attributed to each class as follows

pg(fk|lk) =







1
(σp)

√
2π

e−(ck−cµp ) for lk = 1

1
(σn)

√
2π

e−(ck−cµn ) for lk = 0
(3.4)

where cµp and cµn , σp and σn are the means and standard deviations obtained by Gentle-

Boost classification of thousands of SIFT feature descriptor histograms from the positive

(i.e. face) and negative (i.e. background) feature training sets used to experiment with

this algorithm, as will be discussed in more detail in Section 3.8. Figure 3.10 demonstrates

this model. The top two graphs show histograms of the GentleBoost ck output values in

classification of the positive (top) and negative (center) SIFT descriptor (i.e. appearance
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(a) Test image (b) Normalized ck − h

(c) Positive labels (d) Negative labels

Figure 3.9: GentleBoost feature classification; (a) test image, (b) normalized confidence

attributed to the appearance of feature points, fk, (c) binary labeling of positive, and (d)

of negative features with the user-defined h = −1.5.

only, no contextual geometric information) training sets, and the bottom graph shows these

ck values modeled as Gaussian PDFs using the B-G model, where the positive and negative

training sets are colored green and red respectively.

3.7.3 The Prior

Modeling the spatial arrangement of local features with MRFs is interesting since they are

sparse and spatially non-uniform. A novel solution is to triangulate the spatial coordinates

of the features. Delaunay triangulation has been chosen for this task. In computational

geometry, the Delaunay triangulation of a give set of points is one that ensures that no

point in the set is within the circumcircle of any triangle in the triangulation (Delaunay,

1934). Delaunay triangulation is concerned with maximizing the global minimum of all the

angles in the triangulation, with the goal of avoiding slim triangles, or “slivers”.

The Delaunay triangulation of a set of SIFT feature points obtained from a test image

can be seen in Figure 3.11. Points in the graph that are connected with lines will be known



3.7. Implicit Spatial Inference 66

−12 −10 −8 −6 −4 −2 0 2 4
0

2000

4000

6000

−12 −10 −8 −6 −4 −2 0 2 4
0

2000

4000

6000

−12 −10 −8 −6 −4 −2 0 2 4
0

0.2

0.4

0.6

0.8

p
g
(f

k
|l

k
)

ck

Figure 3.10: The Bi-Gaussian (B-G) likelihood model; (top) histogram of GentleBoost

ck values for positive and (center) negative training SIFT feature appearance sets (i.e. no

contextual geometric information), and (bottom) the B-G likelihood PDFs computed using

Equation 3.4. Green is positive, and red is negative.

hereafter as Delaunay neighbors, and the lines will be known as Delaunay connections. A

feature points Delaunay neighbors of degree nd can be computed from this graph. Figures

3.12 (a) and (b) demonstrate the concept of an nd = 1 and nd = 2 Delaunay neighborhoods

respectively. Note that this idea of local spatial connectivity is distinct from the global

shape concept of the geometric models discussed in Section 3.4.2 respectively. It is a less

rigid, implicit model of connectivity between feature points. a MRF can be defined on a

Delaunay graph in terms of Delaunay neighborhoods of some nd. Given this, the prior

probability can be modeled as

pq(lk|Lk) ∝ exp−
{∑

s∈S

λsk|ls 6= lk|
}

(3.5)

where ls are the labels of all sparse feature points linked to xk of fk by Delaunay connections

in its Delaunay neighborhood of degree nd. Each term is weighted by λsk = (1 + 1/dsk),

where dsk is the Euclidean distance in pixel units from each feature point’s centroid coordi-

nate, xk, to each of the other feature point coordinates, xs, in its Delaunay neighborhood.

It is tempting to introduce a suppression term for the case of Delaunay neighbors whose
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Figure 3.11: Test image (left), and a Delaunay triangulation of all of the SIFT features

(right) obtained from the image.

(a) n = 1 (b) n = 2

Figure 3.12: Delaunay-triangulated MRF neighborhoods; (a) neighborhoods of degree

nd = 1, and (b) nd = 2, where the feature point being evaluated is a the center of the

graph.

connections cross edges in the test image, but this is avoided since objects can have some

internal edges (e.g. faces have nose, mouth and eyes).

3.7.4 Computing the Posterior Energy

At the detection stage, the goal is to maximize the posterior probability associated with each

feature point, fk. This is equivalent to minimizing the energy, Ek, since E(p) = − log(p(.)).

Equation 3.2 expressed in terms of a log energy minimization problem becomes

Ek(lk = 1) = Λp{Ek(pg) + αdEk(pq)} (3.6)

Ek(lk = 0) = Λn{Ek(pg) + αdEk(pq)} (3.7)
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where Ek(pg) us the likelihood energy modeled by the B-G model of the appearance of

features, and Ek(pq) is the prior energy used to inject geometric context to the framework.

Λp and Λn reflect the ratios of total energy associated with the positive and negative

classes respectively, and αd signifies the relative influence of prior to observed knowledge.

The posterior is computed using an iterative local energy minimization process known as

Iterated Conditional Modes (ICM) (Besag, 1986) in this work. ICM works by minimizing

the energy at each feature site, iteratively converging to a local minimum over all sites.

After this process, all of the sparse local features are labeled as positive (i.e. belonging to

the object) or negative (i.e. background).

The influence of the prior energy inferring implicit geometric context can be clearly

visualized when juxtaposed with the likelihood energies in Figures 3.13 (a-f) in which an

example image being evaluated at the detection stage. It is obvious that the final labeling,

seen in Figures 3.13 (e) and (f), has been positively influenced by inclusion of the prior. It is

also apparent in Figure 3.13 (e) and Figure 3.14 (b) that the Delaunay-based ISI activates

a tight network of final positive feature points, fp, on the object.

3.7.5 Final Rough Segmentation

Following the ISI process, a rough object segmentation can be generated by compositing a

normalized Gaussian mask, or “hump” at the center coordinate, xp, of each feature that

has been activated by ISI as positive (i.e. belonging to a face), fp. Each Gaussian has

variance, vp, proportional to the scale, ωp, of its fp. Assuming ISI has been successful, the

combined presence of these Gaussian humps will be strong around the facial region in the

image, as can be seen in Figure 3.14 (d). Applying a global threshold, tp, yields a rough

object segmentation, Mp, as can be seen in Figure 3.14 (e). A circle centered on, and with

area equivalent to Mp is useful for visualizing the localization, as can be seen in Figure

3.14 (c) and (f). Figure 3.14 (f) compares Mp to an elliptical ground truth mask, Mgt,

that might be used for evaluation in testing. Here the region of agreement between the two

masks is colored white, whereas the under and overlap is colored gray.

3.8 Testing the ISI Framework

The proposed ISI framework is put to the test with a SIFT feature-based (Lowe, 2004) Face

Detection task, and not an Object Class Detection (OCD) task. Therefore only images with

faces are used to test the algorithm, and the goal is to localize and segment the faces in

the images. It is worth noting that the goal here is not the achievement of world-beating

Face or Object Detection results, but rather to determine if any part of the framework has

a useful contribution to these fields.

In keeping with the literature with regard to Object Detection with sparse local features
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(a) Negative B-G energy (b) Positive B-G energy

(c) Negative prior energy (d) Positive prior energy

(e) Final positive labels (f) Final negative labels

Figure 3.13: Minimizing the posterior energy; (a) negative, and (b) positive B-G likelihood

energy, Ek(pg), (c) negative, and (d) positive prior energy, Ek(pq), (e) final positive, Ek(l =

1), and (f) negative, Ek(l = 0), binary feature labeling. Here h = −1.5, Λp = 1 and Λn = 2,

nd = 4, and αd = 20. The test image is seen at the top.
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(a) GentleBoost classification (b) Final ISI classification

(c) Circled detection (d) Gaussian segmentation

(e) Segmentation mask, Mp (f) Comparing Mp to Mgt

Figure 3.14: Detection and segmentation; (a) initial GentleBoost classification based on

feature appearance only, and (b) post-ISI classification (face features are green, background

is red), (c) circled detection, (d) Gaussian segmentation mask, and (e) thresholded to create

a binary rough segmentation mask, Mp, and (f) Mp being compared to a ground truth mask,

Mgt (the elliptical region). Here h = −1.5, Λp = 1 and Λn = 2, nd = 4, αd = 20, and

tp = 0.6.
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(a) MIT/CMU image (b) MIT/CMU rotated

Figure 3.15: Images from the low-resolution MIT/CMU Face Detection test sets created

by (Rowley et al., 1998b); (a) this 108×144 pixel, 96dpi image produced 63 SIFT features,

and (b) this 320×240, pixel 96dpi (i.e. dots per inch) example from the rotation invariance

test set (added by (Rowley et al., 1998b)) produced 246 SIFT features. Default parameters

for the SIFT code of (Vedaldi, 2006) were used to obtain the feature points, all of which

are marked here in purple (some overlap).

(see Section 3.4.2), the face set from the Caltech-101 database (Fei-Fei et al., 2004) is deemed

most suitable for both training and testing1. The test images in MIT/CMU (Rowley et al.,

1998b) cannot be used here since they are of too low resolution to generate enough useful

SIFT feature points for evaluation, as can be seen in Figure 3.15 (a) and (b). Besides these

two face database sets, there are not many other useful options.

Caltech-101 faces is comprised of slightly multi-scale images varying in size from 418×

276 to 628 × 415 pixels at 96dpi (i.e. dots per inch) capturing the head and shoulders of

subjects in varying lighting, including subjects with beards, glasses, some occlusion and

cartoons. Although this database is not thought to be very challenging, it is certainly

sufficient to highlight some of the strengths and weaknesses of the proposed algorithm. To

properly test for scale and rotation invariance, however, the Caltech-101 images must be

systematically scaled and rotated in testing.

3.8.1 Training

The set of 435 Caltech-101 face images is split into two separate training and test sets. The

face are manually cropped out of the 218 training images for use as the positive set for

training the GentleBoost (Vezhnevets & Vezhnevets, 2005) classifier, while 550 unmodified

images from the Caltech-101 background database are used as the negative training set. A

1Since both the content, and Internet location of this database has changed since this work was carried

out, the exact databases that were used for training and testing here are included on the DVD accompanying

to this thesis.
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(a) Positive set (b) Negative set

Figure 3.16: Example training images; (a) positive set of cropped faces, and (b) negative

set of background images.

few examples of images from the positive and negative training sets used can be seen in

Figure 3.16. Note - for the purpose of visualization - that Figure 3.16 does not truly convey

the relative size of positive to negative training images. The small cropped face images

range from to 132 × 212 to 252 × 171 pixels at 96dpi, and the various background images

range from 223 × 147 at 96dpi to 500 × 331 pixels at 192dpi.

The default parameters supplied with the SIFT code of (Vedaldi, 2006) are used to

obtain around 40, 000 positive and 142, 000 negative SIFT features from these training sets.

GentleBoost is then trained with these features using 400 iterations of boosting. It is worth

mentioning once more that only the appearance (i.e. descriptor histograms) of the SIFT

features, and not their geometry parameters (i.e. spatial location, scale and orientation) are

given to GentleBoost for learning. A detailed explanation of the particulars of GentleBoost

is beyond the scope of this thesis, but more information can be found in (Vezhnevets &

Vezhnevets, 2005).

3.8.2 Testing

At the detection stage, the appearance of the SIFT features, fk..K , obtained from each of

217 face test images are presented to GentleBoost, and the output confidence distribution,

ck..K , is passed onto the Bayesian framework - along with the geometry parameters of the

features - for classification with ISI. The final output of the algorithm is a face localization

and rough segmentation for each test image.

A series of ground truth masks have been manually created by the author for testing

the algorithm. Each binary mask, Mgt, encapsulates the outline of the face with a much

tighter elliptical mask that the official rectangular Caltech-101 ones, which are thought to
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(a) Caltech-101 mask (b) New bespoke mask

Figure 3.17: Comparing ground truth masks; (a) the official Caltech-101 (Fei-Fei et al.,

2004) ground truth, and (b) bespoke mask that was created for, and is more suited to this

work.

be large and forgiving (Ponce et al., 2006). The difference between the the official and new

bespoke ground truth masks can be seen in Figures 3.17 (a) and (b) respectively, where

the purple boundary is encapsulating the facial region. As can be seen in Figures 3.17 (b),

the new masks are more conducive to benchmarking a proper face segmentation, which the

ISI-based Face Detection algorithm has been designed to achieve. These bespoke ground

truth masks are included on the DVD accompanying to this thesis.

After ISI is complete, the rough segmentation mask, Mp and ground truth mask, Mgt

are compared for each image, and metrics are computed to determine if the face was de-

tected and/or and segmented accurately. As discussed previously, Figure 3.14 (b) shows

the comparison of Mgt with the Mp calculated for the test image shown in to Figure 3.14

(a). White pixels indicate true positive regions, and gray pixels reveal false positive or false

negative regions, outside or within Mgt respectively.

3.8.3 Test Metrics

Some metrics are needed for evaluating the detection and segmentation results, and these

will now be defined. Since the Caltech-101 database is used in experiments, the bench-

marking paradigms of the Object Detection research community are adopted over those of

the Face Detection community. However, most of Object Detection algorithms that were

discussed in Section 3.4.2 end up comparing the predicted bounding box of a detected object

to the bounding box of the official Caltech-101 ground truth mask (as can be seen in Figure

3.17 (b)). Since the ISI framework produces a much tighter segmentation output, Mp, and

a new strict ground truth mask, Mgt, has been designed especially, these metrics have to

be interpreted in terms of Mp and Mgt.

Interpreting, therefore, a metric that is used in testing algorithms of (Mikolajczyk et al.,
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2006; Opelt et al., 2006b) and (Opelt et al., 2006a), a True Detection, TD is defined as

follows

area(Mp ∩ Mgt)

area(Mp ∪ Mgt)
> 0.5 ⇒ TD (3.8)

and Percent True Detection, %TD, is defined as

%TD =
#TD

NT
(3.9)

as in the percentage of times this criterion is met in an experiment with the set of NT = 217

test images. Since it is not conducive here to measure a False Detection in terms of a false

positive bounding box as in other Object Detection algorithms, the metric of False Detection

Area, FDA, has been created especially for evaluating the ISI algorithm, and is defined as

FDA = area{Mp ∩ (Mgt ∪ TDM)c} (3.10)

where TDM is the True Detection Mask of any TD recorded for the image. The meaning of

TDM is that it is any connected region within the binary segmentation mask, Mp, that has

contributed to a TD as defined with the ground truth mask Mgt in Equation 3.8. Following

from this, Percent False Detection Area, %FDA, can be evalatued over the entire set of

NT = 217 test images as

%FDA =

∑NT
j FDAj

∑NT
j area{(Mgtj ∪ TDMj)c}

(3.11)

where the area of (i.e. number of pixels in) any other connected region in the Mp generated

for test image j that is not part of TDMj is added to FDAj . The idea can be seen in the

less-than-perfect segmentation mask of Figure 3.18 (b), where the TDM is the connected

binary region that has been counted as part of a TD with regard to the ground truth

mask, Mgt, seen in Figure 3.18 (a). The other binary connected region in Figure 3.18 (b)

is counted as an error, and its area added to the measure of FDA for this test image.

This last metric is a good way to quantify detection errors in the ISI algorithm. It is

quite a harsh metric in comparison with the error metrics used in the Object Detection

community, since Object Detection algorithms tend to record a FD - for classification, or

more rarely detection purposes - in terms of a false positive bounding boxes, but not in

terms of single false positive features or pixels (with the exception of bag-of-features OCD

algorithms (Nowak et al., 2006) that are not related to this work). In Object Detection,

Percent False Detection is then sometimes measured as the percentage of false positive
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(a) Ground truth mask (b) Segmentation mask

Figure 3.18: The concepts of TDM and FDA; (a) the bespoke ground truth mask, Mgt,

and (b) segmentation mask, Mp, with the binary connected TDM labeled. The other

binary connected region is counted as FDA.

bounding boxes out of the total number of bounding boxes predicted. The author finds

this error metric lacking, since an object detector could potentially encapsulate the entire

image with one false positive bounding box, and this error would only be given as much

weight as an error in which only one pixel in the image was marked as a false positive.

%FDA as defined here is therefore a more reresentative metric since it is formulated as the

percentage of false positive segmented pixels out of the total number of pixels in the image

that are not contained within any TDMj , produced by the algorithm in testing.

Segmentation results are evaluated by interpreting the metrics of Recall, R, and Preci-

sion, P , that were previously mentioned in Section 3.4.2. Since this work is concerned with

the actual localization of objects (and not just OCD), and since it is not a bounding box-

producing algorithm like those discussed in Section 3.4.2, these metrics must be completely

redefined as pixel-wise measurements of segmentation accuracy and error with regard to

the very strict ground truth masks, Mgt as follows

R =

∑NT
j area(Mpj ∩ Mgtj )
∑NT

j area(Mgtj )
(3.12)

P =

∑NT
j area(Mpj ∩ Mgtj )
∑NT

j area(Mpj )
(3.13)

These metrics are not quite comparable, therefore, to the measures of Precision and

Recall defined for many of the bounding box-producing object class detectors that were

discussed in Section 3.4.2, nor are they conducive to measuring Equal Error Rate (EER).

The author is not concerned with OCD, or with beating state-of-the-art Face or Object

Detection results here. These metrics of R and P have been specially defined for object
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localization, and to investigate whether the ISI framework can improve on rough segmen-

tation results that would achievable by a local feature-based point-wise machine learning

classifier alone.

3.8.4 Choosing Parameters

Since the ISI framework has many parameters, some initial trials are needed to choose

suitable values for tp, vp, h, Λp and Λn (see Section 3.7 for definitions) before defining

experiments for detection accuracy and invariance. In order to do this, the multi-parameter

space is explored. Figure 3.19 demonstrates one such trial in which values of tp are varied

with vp at the point where h = −1.5, Λp = 1 and Λn = 2, nd = 3, αd = 20. Figure 3.19

(top) shows %TD versus %FDA, and Figure 3.19 (bottom) plots R versus 1−P measured

over all test images. At the circled points in the graphs, tp = 0.6 with vp = 30ωp clearly

represents a good trade-off between %TD and %FDA, R and P overall. This particular

trial was preceeded by two others varying parameter h with λ = Λn/Λp and vice versa.

Similar graphs comparing %TD versus %FDA, and R versus 1−P for these two trails are

included in Appendix B.

3.8.5 Experiment 1

To test the ISI framework for detection and segmentation accuracy, the Face Detection

task is performed on the all of the Caltech-101 test images while varying the degree of the

Delaunay neighborhood, from nd = 1 to nd = 5 (see Section 3.7.3) in increments of one,

with the prior energy weight varying from αd = 0 to αd = 100 (see Equations 3.6 and 3.7)

in increments of 20. Varying nd and αd in this way is an investigation of influence of the

spatial prior (see Equation 3.2) in the Bayesian framework underlying the algorithm. Note

that when αd = 0, the prior energy (i.e. ISI) is absent from the solution, and results are

based purely only the likelihood obtained from the GentleBoost classifier. Therefore this

experiment can be used to determine if ISI constitutes an improvement on the detection

and segmentation results that could be gleaned from a point-wise appearance-based feature

classifier alone. The results of this test can be visualized in plots of %TD versus %FDA,

and R versus 1 − P , over all test images in the database. These are shown in Figure 3.20

(top) and (bottom) respectively, with nd varying with αd.

Discussion

The circled point in Figure 3.20 (top) represents the best result of Experiment 1 in terms

of detection and segmentation accuracy. Very good detection results of %TD = 87.6%

versus %FDA = 0.03% are observed at the point where nd = 3 and αd = 20. In Figure

3.20 (top) it is also clear to see that when the spatial prior energy has no influence (i.e.

αd = 0), reasonable rates of %TD and %FDA can be achieved. When αd > 0 however, the
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Figure 3.19: Choosing suitable values for the threshold, tp, and variance of the Gaussian

projections, vp, in creating the rough face segmentation masks; (top) %TD versus %FDA,

and (bottom), R versus 1 − P . Other parameters are set at h = −1.5, Λp = 1 and Λn = 2,

nd = 3, αd = 20.
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degree of nd can influence a degradation (nd < 2) or real improvement (nd > 2) in these

results, whereas the actual value of αd is less critical. ISI, therefore, is important in the

task of detection, and injection of contextual geometric information via the spatial prior can

improve on segmentation results that would be possible with a point-wise machine learning

classifier alone.

Interestingly, %TD plummets while %FDA soars for nd > 4 in Figure 3.20 (top). This

is probably due to the fact that the bespoke ground truth masks, Mgt, created especially

for this algorithm, encapsulate the faces more tightly and are much stricter than those

included with the Caltech-101 database (Fergus et al., 2003) (see Figure 3.17). What could

be happening with nd > 4 is that the area of the final region masked by the segmentation,

area(Mp), becomes too large to be counted as a TD with regard to Mgt (see Equation

3.8). These large, missed detections are then accumulated in %FDA. An explanation for

this could be that SIFT features are often detected at the boundary of facial regions in

training, and perhaps ISI over larger Delaunay neighborhoods with nd > 4 is activating

more of these boundary features and classifying them as positive features, fp, in testing.

Then the Gaussian humps composited on their center coordinates, xp, (see Section 3.7.4

for explanation) might contribute to the segmentation mask, Mp, overshooting the edges

of the strict ground truth mask, Mgt, especially if the scales of those features are large.

Two good results in terms of segmentation accuracy are shown circled in Figure 3.20

(bottom). While P = 0.67 versus R = 0.885 are best with nd = 4 and αd = 20, a smaller

Delaunay neighborhood of nd = 3 works almost as well, producing P = 0.67 versus a still

acceptable R = 0.866. Figure 3.20 (bottom), also shows that with prior energy and ISI are

involved (i.e. αd > 0), segmentation Recall, R, improves as Precision, P , takes an increasing

hit. This effect is probably down the same problem of positive features, fp, being classified

at the very boundaries of objects, coupled with the fact that the ground truth masks, Mgt,

are very strict, as discussed in the previous paragraph. Since the goal here is to achieve

only a rough segmentation, the R versus P trade-off with these masks is probably quite

acceptable for some applications, like face blurring or abstract content-based stylization, as

can be seen in Figure 3.8.

The output of this ISI algorithm is a detection and approximate localization of face

objects in images containing faces, and not a detection of object class over many object

categories. Therefore, unlike the other Object Detection and OCD algorithms that were

discussed in 3.4.2, this algorithm does not produce a large detection bounding box, but a

specific object segmentation. Hence it is difficult to compare the Recall, R, versus Precision,

P , with corresponding versions of R and P formulated for these other Object Detection

algorithms since the definition of these metrics is completely situational, and here they are

defined in with regard to a different - and stricter - ground truth mask. With regard to

Face Detection benchmarking, the algorithm of (Viola & Jones, 2004) quotes a Correct

Detection Rate versus Number of False Positives in experiments where parameters of the
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Figure 3.20: Experiment 1 varying Delaunay neighborhood degree, nd, with the relative

influence of spatial prior energy, αd; (top) %TD versus %FDA, and (bottom), R versus

1−P . Other parameters are set at h = −1.5, Λp = 1 and Λn = 2, tp = 0.6, vp = 30ωp. Here

αd = 0 represents a single trial in which no spatial prior energy - and hence no Delaunay

neighborhood computation - was included in the tasks of Face Detection and segmentation.
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system are varied, and these metrics are in terms of numbers of sub-windows evaluated.

Two slightly different variations of the algorithm described in (Viola & Jones, 2004) are

cited as detecting between 81.1% and 93.9% of true positive sub-windows, for between

10 and 422 false positive sub-windows, in experiments using the MIT/CMU face database

(Rowley et al., 1998b). It is hard to say if the face detector presented here can be compared

directly with the metrics of Percent True Detection, %TD, versus False Detection Area,

%FDA. If it can, the high point of %TD = 87.6% versus %FDA = 0.03% when nd = 3

and αd = 20 seems quite acceptable.

3.8.6 Experiment 2

The invariance of the algorithm is investigated by fixing the values of nd = 3 and αd = 20,

and applying the detector to systematically rotated and scaled versions of the Caltech-101

test image set - specifically six in-plane rotations from 0◦ to 300◦ in increments of 60◦,

and five scalings from 0.6 to 1.4 times the original spatial dimensions of the test images

in increments of 0.2. Note that these transforms are only for the purpose of testing the

invariance of the framework, and not a necessary stage in the ISI framework. This action is

necessary due to the nature of the Caltech-101 test images, which are all upright and nearly

uniform in scale. The results of carrying out this experiment are shown in Table 3.21. The

Table lists the values of %TD versus %FDA, and R versus 1 − P that were obtained by

performing tests on all of the NT = 217 test images over each of the six rotations for each

image scaling. Also listed are the mean value of these metrics over all rotations for each

image scaling.

Discussion

Some good results of %TD versus %FDA and R versus 1 − P for Experiment 2 are high-

lighted in bold in Table 3.21. Table 3.21 also demonstrates that the ISI framework is almost

perfectly rotation invariant since similar values of %TD, %FDA, R and P are observed

over all test image rotations at a fixed scale. It is also quite robust to test image scaling

within a certain range. Good results are observed for scalings in the range of almost 0.8 to

1.4 times original image dimensions, with better results recorded for image upscaling than

downscaling. The problem with downscaling could be due to the fact that the quantity of

SIFT features needed to support all aspects of the ISI framework are harder to obtain in

low-resolution images, as previously discussed in Section 3.4.1 and in this Section.

The results of %TD, %FDA, R and P do fluctuate over all scales, however, and this

problem can probably be attributed to fixing the extent of the Delaunay neighborhood

to nd = 3 with regard to the spatial prior (see Equation 3.7.3). It is this part of the ISI

framework that could be affecting the scale invariance. A potential solution to this problem
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Scale %TD Mean %FDA Mean

0◦, 60◦, 120◦, 180◦, 240◦, 300◦ %TD 0◦, 60◦, 120◦, 180◦, 240◦, 300◦ %FDA

0.6 51.15, 55.3, 55.3, 52.07, 54.84, 50.23 53.2 0.15, 0.07, 0.06, 0.14, 0.06, 0.07 0.09

0.8 73.73, 76.96, 74.65, 74.19, 79.26, 72.81 75.27 0.08, 0.03, 0.03, 0.07, 0.03, 0.03 0.05

1.0 87.56, 84.33, 81.11, 82.49, 83.41, 81.57 83.41 0.03, 0.02, 0.03, 0.05, 0.02, 0.03 0.03

1.2 87.56, 86.18, 87.1, 86.18, 87.56, 88.5 87.17 0.03, 0.02, 0.02, 0.03, 0.02, 0.01 0.02

1.4 84.79, 85.71, 86.18, 82.03, 85.71, 86.64 85.18 0.03, 0.01, 0.01, 0.04, 0.01, 0.01 0.02

Scale R Mean 1 − P Mean

0◦, 60◦, 120◦, 180◦, 240◦, 300◦ R 0◦, 60◦, 120◦, 180◦, 240◦, 300◦ 1 − P

0.6 0.85, 0.9, 0.86, 0.83, 0.88, 0.86 0.86 0.42, 0.4,0.4, 0.44, 0.39, 0.42 0.41

0.8 0.91, 0.93, 0.93, 0.89, 0.92, 0.92 0.92 0.34, 0.33, 0.35, 0.36, 0.35, 0.35 0.35

1.0 0.87, 0.9, 0.9, 0.87, 0.91, 0.9 0.89 0.33, 0.33, 0.36, 0.34, 0.33, 0.34 0.34

1.2 0.87, 0.91, 0.9, 0.87, 0.91, 0.9 0.89 0.3, 0.3, 0.3, 0.29, 0.3, 0.31 0.3

1.4 0.82, 0.85, 0.85, 0.82, 0.86, 0.86 0.84 0.27, 0.28, 0.27, 0.28, 0.28, 0.28 0.28

Figure 3.21: Experiment 2 for invariance; %TD versus %FDA, and R versus 1−P mea-

sured over various scales and in-plane rotations of the Caltech-101 test images. Parameters

are h = −1.5, Λp = 1, Λn = 2, tp = 0.6, vp = 30ωp, nd = 3, and αd = 20.

might involve an extension to the algorithm that could vary the extent of nd relative to

the scale of the feature being evaluated, ωp, or combine results over a range of nd instead.

This is an interesting problem for future work. Some of the faces that were detected in

Experiment 2 (including one mistake), are shown circled in Figure 3.22. A typical rough

segmenation result is also shown at the bottom of Figure 3.22.

The framework was used to experiment with some arbitrary test images that were

quickly grabbed from an image search on the Internet. With some tweaking of parameters

within the ISI framework, some interesting results were achieved, and these can be seen in

Figures 3.23, 3.24, 3.26 and 3.25. Interestingly, SIFT features from hands are misclassified as

features from faces in Figures 3.23 and 3.26, probably due to the fact that the SIFT feature

descriptors are successfully capturing the appearance of the skin texture that is present

on both hands and faces. Figures 3.24 and 3.26 demonstrate how the ISI can improve on

results that would be possible using a point-wise machine learning classifier alone. These

Figures also show that the algorithm is capable of detecting more than one distinct face

in an image, but that bounding the regions segmented as faces with an arbitrary shape

(e.g. a circle in this case) is unrepresentative of the underlying state of the feature-wise

classification or rough segmentation, as in Figure 3.26 especially. That is why a bounding

circle it is useful purely for visualizing the approximate location of face detections here, but

it is never compared with a similarly ambiguous ground truth mask in benchmarking test

metrics.
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Figure 3.22: Experiment 2 for invariance; various circled face detections over various

rotations and scalings, and one rough segmentation result.

3.9 Future Work

Further research could focus on trying to improve on the invariance, training or testing of

the proposed face detector. However, the concept of ISI alone is useful in many applications

of sparse local feature-based classification, and particularly in the field of Object Detection.

Since the use of sparse local features is popular in this field, future work should focus on

developing better models and techniques for spatial inference. Delaunay triangulation has

been found to be useful for meshing in this instance, but alternative meshing and graphing

schemes could be explored. The scheme for spatial inference could take account of the scale

attribute of features, such that ISI becomes a multi-scale process, or that the geometric
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Figure 3.23: Random Internet test image; (left) circled detections, and (right) rough

segmentation mask. Parameters are set at h = −1.5, Λp = 1 and Λn = 2, tp = 0.6,

vp = 30ωp, αd = 20 and n = 3

grouping of features occurs in some scale-space.

A simple technique for producing a rough object segmentation mask from sparse local

features was presented in Section 3.7.5, but this technique could definitely be improved.

A natural progression is the exploration of sparse-to-dense or user-assisted inference tech-

niques to obtain a better segmentation matte. The sparse-to-dense geodesic inference work

of (Ring & Pitié, 2009), and user-assisted feature correspondence matching technique of

(Ring & Kokaram, 2009) are good examples of these techniques at work in the tasks of Mo-

tion Estimation and invariant Object Detection respectively. Ideas from these algorithms

would also be useful here for geometric inference and segmentation in the task of Face

Detection.

3.10 Conclusion

A novel algorithm for leveraging the implicit geometry of sparse local features such as

SIFT for the purposes of Face and perhaps Object Detection has been presented in this

Chapter. The real-valued output of a typical point-wise machine learning classifier is used

as a likelihood in the Bayesian framework underlying this algorithm, which has been named

Implicit Spatial Inference (ISI) by the author. The main contribution, however, is a novel

scheme for the injection of prior contextual geometric information following an initial point-

wise sparse local feature-based classification. Working with the implicit geometry of sparse

local features is in complete contrast to the rigid geometric shape models underlying many of

the state-of-the-art object detectors. ISI is beneficial in that it requires no offline geometry

training and is conducive to invariance. A Face Detection task has been used to test
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Figure 3.24: Random Internet test image; (top left) circled detections, (top right) rough

segmentation mask, (bottom left) the point-wise positive likelihood energy derived from

GentleBoost alone (see Equations 3.3 and 3.4), and (bottom right) the ISI-generated pos-

itive posterior energy (see Equation 3.6). Parameters are set at h = −1.5, Λp = 1 and

Λn = 1.7, tp = 0.65, vp = 30ωp, αd = 100 and n = 3.

the algorithm with regard to detection and segmentation accuracy, and invariance. It

is apparent from the results of these experiments that ISI can greatly improve on the

detection and segmentation results that could be gleaned from the use of a point-wise

machine learning classifier alone. Unfortunately, it was found that existing Face and Object

Detection benchmarking test databases are lacking, especially with regard to high resolution

images that are suitable for sparse local feature-based algorithms, and for testing rotation,

scale and pose invariance. Furthermore, ground truth measurements and the metrics used

to evaluate results are vague and confusing, and it is therefore extremely difficult to put

the results gleaned from the new algorithm in context with the state-of-the-art. However,

in terms of the bespoke ground truth masks and benchmarking metrics that have been
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Figure 3.25: Random Internet test image; (top) circled detections, and (bottom left) blur

mask created from rough segmentation mask, and (bottom right) the mask used to hide

identity. Parameters are set at h = −1.5, Λp = 1 and Λn = 2, tp = 0.7, vp = 30ωp, αd = 20

and n = 3

created especially by the author for evaluating this work, the largely invariant detection

and segmentation results of this algorithm are very promising. Furthermore, its rough

segmentation output could be useful for seeding a finer segmentation, or for the content-

based filtering of images.



3.10. Conclusion 86

Figure 3.26: Random Internet test image; (top left) circled detection, (top center) positive

feature point Gaussian humps (see Section 3.7.4), (top left) rough segmentation mask,

(bottom left) initial SIFT feature classification with GentleBoost (see Equation 3.3), and

(bottom right) final ISI classification. Positive and negative features are green and red

respectively. Parameters are set at h = −1.45, Λp = 1 and Λn = 1.7, tp = 0.5, vp = 30ωp,

αd = 50 and n = 3



4
On the Stylization of Visual Media

This Chapter presents an introduction to the stylization of visual media. This will consist

of an examination of the field of Non-Photorealistic Rendering (NPR), with particular

emphasis on the sub-genre of Stroke-Based Rendering (SBR). The methodology and tools

constituting the state-of-the-art in this research area will be examined, together with some

observations and motivations for novelty in the field. One of the strongest motivations that

arises is the idea of a content-based stylization of videos containing head shots of people

(e.g. home videos), such that the semantic regions defined by the skin and/or faces of the

people in these videos can be stylized more carefully or differently than the less important

background regions.

4.1 NPR in Context

There has been much research in the area of computer-driven artistic rendering of visual

media since the early 1990s. Collected under the title of Non-Photorealistic Rendering

(NPR) - a term probably coined in (Winkenbach & Salesin, 1994), the goal is usually the

manipulation of digital visual media for aesthetic purposes.

The field seemed to emerge from the desire to simulate real-life painting or drawing

effects artificially. NPR has been used to recreate painterly styles such as impressionism

(Haeberli, 1990; Meier, 1996; Litwinowitz, 1997; Hertzmann, 1998; Shiraishi & Yamaguchi,

2000; Santella & DeCarlo, 2002; Hays & Essa, 2004; Yang & Yang, 2006; Park & Yoon,

2008), cubism (Haeberli, 1990; Klein et al., 2002) and surrealism (Collomosse & Hall,

87
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(a) Cartoon styling (b) Scientific visualization

Figure 4.1: Examples of NPR; (a) photo stylization with ToonIt! plug-in for Adobe

Photoshop CS3, and (b) visualizing a flow stream. Image in (b) is from (Kirby et al.,

1999).

2002; Klein et al., 2002), paint-like effects including oil (Gooch et al., 2002; Hertzmann,

2002) and watercolor (Curtis et al., 1997; Bousseau et al., 2007), drawing styles including

sketching (Curtis, 1998; Mignotte, 2003), pen-and-ink illustration (Winkenbach & Salesin,

1994; Salisbury et al., 1994) and half-toning (Haeberli, 1990; Praun et al., 2001; Hiller

et al., 2003; Secord, 2002; Hausner, 2005), cartoon-like effects (DeCarlo & Santella, 2002;

Wang et al., 2004; Winnemoller et al., 2006; Zhao et al., 2008) and facial caricature (Gooch

et al., 2004).

NPR algorithms may be fully automatic (Litwinowitz, 1997; Hertzmann, 2002; Mignotte,

2003; Hays & Essa, 2004; Bousseau et al., 2007), or user-interactive (Haeberli, 1990; Santella

& DeCarlo, 2002; DeCarlo & Santella, 2002; Klein et al., 2002). The latter form allows the

user some stylistic control, which may be useful for media artists. Animators, for example,

must create every frame of an animation from scratch. If some of this painstaking process

can be automated, labor is reduced. Semi-automatic NPR tools have been used in the pro-

duction of animated Hollywood films such as The Lion King (1994, Disney), What Dreams

May Come (1998, Polygram Filmed Entertainment), A Scanner Darkly (2006, Warner In-

dependent Pictures) and television series such as Avenue Amy (1999, Curious Pictures).

NPR is also useful for scientific visualization (Kirby et al., 1999) - see in Figure 4.1 - and

motion depiction (Collomosse et al., 2003; Collomosse et al., 2005) and enhancement (Wang

et al., 2006; Liu et al., 2005).

Early NPR algorithms restrict the stylizable input media to graphical geometry objects

(Winkenbach & Salesin, 1994; Salisbury et al., 1994; Meier, 1996; Curtis et al., 1997).

However, recent years have seen the introduction of image and video processing techniques

for the stylization of digitally captured images (Haeberli, 1990; Hertzmann, 1998; Shiraishi
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& Yamaguchi, 2000; Santella & DeCarlo, 2002) and videos (Litwinowitz, 1997; Hertzmann

& Perlin, 2000; Bousseau et al., 2007). As a result, the consumer demand for NPR effects

is growing. Tools for the painterly stylization of images can be found in desktop publishing

software as well as professional, creative software (e.g. Adobe Creative Suite). Numerous

plug-ins for rendering videos in the style of cartoons exist (e.g. ToonIt! plug-in for Adobe

Photoshop, Digital Anarchy1 - see Figure 4.1). Basic ’toon rendering software has even

found its way into applications of some camera mobile phones.

4.2 SBR Explained

Stroke-Based Rendering (SBR) is a particular subset of NPR. It is well defined as

An automatic approach to creating non-photorealistic imagery by placing dis-

crete elements such as paint strokes or stipples. (Hertzmann, 2003).

SBR is a simulation of the traditional painting process whereby and artist uses a series

of brush strokes to capture a scene on a canvas by simulated medium of paint, pencil or

ink. Computationally, this task is usually emulated in a number of steps, as summarized

in Figure 4.2. The pixels of a source image are obtained by the computer. Next, there

may be some analysis or manipulation of the source image such as gradient detection or

smoothing. The outputs obtained from this pre-process are used as reference data to guide

the painting process. The next stage is the creation of an ordered list of simulated paint

strokes, and finally, these strokes are composited onto the canvas in the order specified.

An important goal of computer-driven SBR is to limit the number of strokes so that the

final rendering looks like a painting or sketchy drawing. Therefore, the output is usually

an abstraction of the reference scene, because there is a simplification process inherent to

the task of replacing of groups of pixels with larger, stroke-like entities.

4.3 Brush Stroke Attributes

One of the earliest SBR algorithms is presented in (Haeberli, 1990). This system - part

of which is an online painting applet2 as can be seen in Figure 4.3 (a) - allows a user to

assist in creating an impressionistic representation of a source image, using a series of mouse

clicks and gestures. Each click results in the appearance of a paint-like mark the canvas,

which the author refers to as a brush stroke. The brush strokes and canvas framework

introduced in this early work has persisted to current state-of-the-art in SBR, acquiring

some enhancements along the way.

1ToonIt!: http://www.digitalanarchy.com/toonPS/main.html
2The Impressionist: http://www.laminadesign.com/explore/impression/
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Figure 4.2: The SBR process. Reference data is obtained from analysis of the source

image and used to formulate an ordered list of brush strokes. When composited on the

canvas, the result looks like a painting. Includes images from (Litwinowitz, 1997).

Brush strokes are typically implemented as structures having a series of attributes, the

majority of which can be visualized in a simple diagram such as Figure 4.3 (b). The stroke

has an anchor point on the canvas image, q, which usually corresponds to the same pixel

coordinates in the source image. A stroke may have attributes corresponding to its size,

such as length, lr, width, wr, or radius, rc. Strokes are painted with a dominant color,

c = [r, g, b], and have a dominant orientation, θ. The structure may also store a value of

opacity, α, for blending the stroke when compositing. The brush stroke might also have

other attributes relating to style (e.g. circle, Voronoi cell, b-spline), texture or shading

coefficients. Usually, all of the strokes needed to render a painting are stored in one or

more lists ordered for the compositing schedule.

The implementation of SBR, brush strokes and their attributes will now be discussed

with regard to SBR literature. The task of painting a single image is explored first, followed

by the issues involved in extending NPR/SBR effects to image sequences.
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(a) The Impressionist (b) Brush stroke attributes

Figure 4.3: Brush strokes and the canvas; (a) The Impressionist painting applet associated

with (Haeberli, 1990) and (b) typical attributes associated with a circular and rectangular

brush stroke.

4.3.1 Stroke Distribution Mechanisms

The method of distributing brush stroke anchor points on the canvas is an important stage

in SBR. These points should be distributed sparsely to avoid redundancy which is the

phenomenon of brush strokes piling up, but not to the point that there are undesirable

gaps in the painting, as can be seen in Figure 4.4. A few different approaches to this task

will now be examined in detail.

Single-Pass Approach

One of the simplest ways to distribute anchor points on the canvas is to use a single-pass

approach. (Haeberli, 1990), for example, generates anchor point locations pseudo-randomly

until the painting is complete. This technique can be visualized in Figure 4.5 (a). As

discussed in (Hertzmann, 2003), this process could be described as greedy in that there is

no energy function regulating redundancy in the canvas coverage. Redundancy can occur

due to strokes overlapping excessively or being placed directly on top of others. This is

undesirable because of the extra computing resources needed to store and render brush

strokes that may not be visible in the output painting. If brush strokes are semi-opaque
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Figure 4.4: Gaps and redundancy (i.e. unnecessary brush stroke overlap) in the output

painting.

(a) Pseudo-random (b) Grid-like

Figure 4.5: Single-pass stroke distribution methods; (a) pseudo-random anchor point

distribution, and (b) anchor points centered on nodes of a regular grid. Also in (b), noise

can be added for a hand-painted look.

(i.e. opacity, α < 1), however, a controlled depth of canvas coverage may be desired.

An alternative single-pass approach is to tile the canvas with brush strokes in a grid-

like fashion, as first implemented in (Litwinowitz, 1997). Brush strokes are anchored to the

nodes of a grid that is spaced to ensure just adequate coverage of the canvas, as can be seen

in Figure 4.5 (b). This tiling approach is economical in its distribution of strokes, but the

rendered painting can appear too uniform, and noise is often added to the anchor point

locations to simulate a hand-crafted look. A similar scheme is employed in (Meier, 1996),

but since the reference scene is composed of 3D geometry objects, the grid is defined on the

volumetric surfaces of these objects. In the rendering stage, the grid is simply projected

onto the 2D canvas plane to determine the position of strokes.



4.3. Brush Stroke Attributes 93

Figure 4.6: A multi-pass anchor point distribution method based on layers. Refinement

layers are defined around Canny edges detected at different scales. Includes images from

(Hays & Essa, 2004).

Multi-Pass Approach

Multi-pass stroke placement is slightly more sophisticated in that there is usually an initial,

greedy distribution of strokes, a stage of analysis, and then one or more refinement passes.

There is an implicit energy function inherent in many multi-pass approaches, although this

is rarely acknowledged in the literature.

(Hertzmann, 1998), for example, simulates the artistic process of creating a rough un-

derpainting of the source image and then “building up” increasingly detailed layers of paint

using correspondingly finer brush strokes. Therefore, layers are disjoint groups of brush

strokes representing successive refinement passes. To create the roughest layer, the source

image is blurred with a Gaussian kernel chosen to reflect the size of the largest brush stroke.

Brush strokes are then placed using the grid-based technique of (Litwinowitz, 1997). The

completeness of the painting is analyzed by computing the Euclidean color distance be-

tween the painted canvas and the source image. If the summed global distance is above a

threshold, a layer of refinement ensues, but only at sites of significant color distance. This

loop continues until the global color distance condition is satisfied. Each refinement pass

works with a decreased brush stroke size, and correspondingly less blurred reference image.

A related, layer-based approach by (Hays & Essa, 2004) uses a different threshold to

halt the refinement process; the completeness of the painting on each layer. Generally



4.3. Brush Stroke Attributes 94

this criterion is difficult to quantify, especially in the use of semi-opaque brush strokes.

In (Hays & Essa, 2004), brush strokes are added in pseudo-random locations until no

hole greater than a pre-defined size exists in the layer. A hole is defined as a connected

region of space in the layer completely untouched by strokes. Like (Hertzmann, 1998),

this algorithm references blurred versions of the source image and decreasing brush sizes

for each refinement pass. However, strokes are only placed at sites around Canny-detected

edges in the reference image for each layer, as can be seen in Figure 4.6. The reasoning

for this is that artists usually refine paintings in canvas regions near edges in the reference

scene. This algorithm, however, covers the canvas more greedily than that of (Hertzmann,

1998).

The multi-pass approach of (Santella & DeCarlo, 2002) has an interesting refinement

stage that involves a degree of user interaction. Initially, brush strokes are placed in a grid-

like fashion on layers representing a chosen set of image scales and corresponding brush

sizes. For refinement, the user is asked to gaze at the source image shown on a monitor

equipped with an eye-tracker, and the locations and durations of the user’s eye fixations

within the image are recorded. This data is presented to a perceptual model that defines

a limit on the spatial frequency - in terms of scale and corresponding brush size - visible

to the user at the main fixation points. Brush strokes are then pruned from the original

distribution according to this analysis.

Optimization Approach

Optimization-based stroke distribution is an attempt to converge upon the best placement

of brush strokes according to some optimization criteria. This is usually accomplished by

formulating a global energy function to reflect the criteria, and then minimizing the energy

over the space of all possible brush stroke attributes and orderings. In practice, the space is

usually reduced to a smaller set of candidate strokes and attributes within a sensible range

(i.e. prior knowledge).

The process of Stochastic Relaxation is a “trial-and-error” approach (Hertzmann, 2003)

that can be used to produce candidate brush strokes. Its first introduction in SBR was an

improvement to the greedy pseudo-random stroke-placement algorithm of (Haeberli, 1990),

as mentioned at the end of the paper. According to this algorithm, the image is initialized

with a pre-defined number of brush strokes, and then the attributes of the strokes are

perturbed stochastically while minimizing the root mean squared difference between the

source image and the canvas painting.

A more sophisticated relaxation algorithm is implemented in (Hertzmann, 2001). Build-

ing on an earlier, layer-based multi-pass approach (Hertzmann, 1998; Hertzmann & Perlin,

2000), the painting is initialized with a rough layer of large brush strokes. Following (Hae-

berli, 1990), various brush stroke attributes are perturbed to minimize a globally defined
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(a) Original photo (left) and weight mask of user-selected semantic regions (right)

(b) Detail biased to semantic regions (left) and only to the right of the image (right)

Figure 4.7: Stochastic Relaxation in the painting algorithm of (Hertzmann, 2001). Re-

finement passes are biased towards semantic regions in the source image. These images are

from (Hertzmann, 2003).

painting energy. This energy function is a weighted sum of four separate criteria. The first

is a measure of fidelity to the blurred reference image at each layer, and is defined as the

pixel-wise color distance between the reference and painting. This term can be formulated

to encourage a denser placement of strokes around edges or semantic regions. For the latter

operation, the user must create a mask highlighting the semantic regions explicitly, as can

be seen in Figure 4.7. The remaining three energy terms can be used to control redundancy

in the canvas coverage, the total number of brush strokes in each refinement layer, and the

completeness of canvas coverage respectively. Successive layers of refinement are added and

perturbed until the painting energy converges to a satisfactory minimum.

Bayesian techniques for unsupervised style-transfer and sketching are presented in (Mignotte,

2002) and (Mignotte, 2003) respectively. In these works, the concept of relaxation, and the

energy function is defined more formally within a Bayesian framework, and optimization

occurs via Bayesian inference using well-known local energy minimization techniques such

as Iterated Conditional Modes (ICM), as in (Mignotte, 2002). Sketchy pencil-drawn real-

izations of a source image are created in (Mignotte, 2003). The Bayesian prior is defined as
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(a) Voronoi dithering

(b) Stippling algorithms

Figure 4.8: The process of Stippling; (a) the first and last iterations of a Voronoi dithering

algorithm, and (b) two Stippling algorithms are compared; fast vs. high-quality. Images in

(a) and (b) are from are from (Hiller et al., 2003) and (Secord, 2002) respectively.

the space of reasonable deformations of a spline-like pencil stroke model, and the likelihood

is formed by the statistical distribution of the image gradients. Finding the most likely pen-

cil strokes is a process of minimizing the posterior energy globally, and this is achieved by

means of a modified Simulated Annealing algorithm in the case of (Mignotte, 2003). Here,

a bias towards stroke placement in textured regions is inherent due to the gradient-based

form of the likelihood function. Strokes are also specifically directed to edges by initializing

the set of potential anchor points to Canny-detected edge pixels.

The optimization goal of Stippling (Hiller et al., 2003; Secord, 2002; Vanderhaeghe

et al., 2007) (see Figure 4.8) and Hatching (Haeberli, 1990; Salisbury et al., 1994; Praun

et al., 2001) is to distribute points more densely on the canvas in regions corresponding to

high spatial frequencies in the source image. This gives the impression of tone and depth in

the rendered output. Stippling algorithms are interesting, in that they attempt to simulate

a so-called Poisson Disk Distribution (PDD) of stipples (i.e. anchor points). This means

that a disc of given radius could be anchored at any point such that it covers no other

point in the distribution. This is usually achieved by Llyod’s method; a process of iterative

Voronoi dithering on an initial pseudo-random distribution. The dithering can be biased

towards high frequencies by restricting the movement of points according to the gradient

of the source image, as in (Secord, 2002).
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Figure 4.9: Color segmentation-based approach; brush strokes are anchored at the cen-

troids of regions of constant color.

Segmentation-Based Approach

Segmentation-based approaches focus on placing brush strokes such that they are anchored

in regions of similar intensity (Gooch et al., 2002) or color (Shiraishi & Yamaguchi, 2000;

Nehab & Velho, 2002; Santella & DeCarlo, 2002). The latter concept is demonstrated

in Figure 4.9. (Gooch et al., 2002) for example, segments the source image using an

intensity-based Flood-Fill algorithm. The medial axes of segmented regions are found

using a modified thinning algorithm, and these are used to determine the locations of brush

strokes.

Much like a Stippling algorithm, a point distribution of brush stroke anchor locations

is formulated in (Shiraishi & Yamaguchi, 2000) and (Nehab & Velho, 2002) using a novel

dithering algorithm based on color segmentation. First, the image is segmented to local

regions of similar color. The extent of the local region is a user-defined parameter that

effects the segmentation granularity. A distribution of stroke dimensions over the canvas

is calculated by estimating the image moments of these color regions, and this distribution

is then inverted to a map of tentative stroke anchors using a Murray space-filling curve

algorithm. Finally, these tentative anchor positions are adjusted to the centroids of the

segmented color regions. The resulting distribution of strokes is increasingly dense in the

high frequency areas of the source image.

4.3.2 Stroke Dimensions

Early SBR algorithms model brush strokes with simple style primitives such as circles,

points, polygons, straight lines (Haeberli, 1990) or rectangles (Litwinowitz, 1997; Meier,

1996). In early works, the dimensions of the strokes (e.g. radius or width and length) are



4.3. Brush Stroke Attributes 98

Figure 4.10: In (Hertzmann, 2001) the dimensions of spline-like brush strokes decrease in

regions of texture and detail. Includes images from (Hertzmann, 2003).

uniform across the canvas. Noise is often added to the dimensions to emulate a hand-painted

look. (Haeberli, 1990), however, presents an interactive system allowing the user to change

both stroke style and size mid-painting. (Meier, 1996) notes that when the reference scene

consists of geometry objects, the size of brush strokes can be varied according to depth,

tone, or per object. Later SBR algorithms begin to reduce the size of brush strokes near

regions of texture or edges in the source image. Brush strokes implemented in (Salisbury

et al., 1994; Litwinowitz, 1997) and (Hays & Essa, 2004) are clipped at edge crossings to

preserve high frequency information in the painting.

Commonly in layer-based approaches, a particular brush stroke size is used to paint a

specific layer, and the size is reduced for each additional refinement pass. In (Hays & Essa,

2004), the area of the rectangular brush strokes decrease on each successive layer of refine-

ment, as can be seen in Figure 4.6. The curved, spline-like brush strokes of (Hertzmann,

1998; Hertzmann & Perlin, 2000) and (Park & Yoon, 2008) have two dimensions; length

and radius. These dimensions decrease when painting increasingly detailed areas of the
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source image, as can be seen in Figure 4.10. In the case of (Hertzmann & Perlin, 2000),

this effect is a result of the relaxation process, since it minimizes the painting energy.

Some SBR algorithms encourage a more varied spatial distribution of brush stroke size.

In the segmentation-based methods of (Shiraishi & Yamaguchi, 2000; Nehab & Velho, 2002)

and (Gooch et al., 2002), the brush size at each point in the painting reflects the size of

its anchoring segment. The curved, spline-like strokes in (Hertzmann, 1998; Hertzmann &

Perlin, 2000; Hertzmann, 2001) and (Park & Yoon, 2008) are non-uniform within layers be-

cause they are grown from their anchor points along the normal of Sobel-detected gradients

in the source image. The strokes are terminated when either a maximum stroke length is

defined, or the color sampled from beneath a tentative spline control point differs too much

from that of its neighboring control point.

4.3.3 Stroke Color

Brush strokes are usually colored uniformly over their area. In order to color each stroke,

many SBR algorithms sample the color vector at the location in the source image corre-

sponding to the stroke’s anchor point on the canvas (Haeberli, 1990; Meier, 1996; Litwinowitz,

1997; Shiraishi & Yamaguchi, 2000; Hays & Essa, 2004). Using this method, the boundaries

between neighboring paint strokes can be difficult to distinguish, so noise is often added to

the color values (Haeberli, 1990; Litwinowitz, 1997; Hertzmann, 1998). The output color

range may also be quantized for the same reason (Haeberli, 1990; Park & Yoon, 2008).

If the paint strokes are semi-opaque, the canvas can be colored to influence the hue of the

painting. (Gooch et al., 2002), for example, paints semi-opaque strokes on a hue-adjusted

version of the underpainting. The color of the spline-like brush strokes are determined by

the weighted average of pixels in a ridge obtained by thinning the segmented region on

which the spline is anchored. In (Hertzmann, 2001), the color of a spline-like brush stroke

is an average of the colors in the blurred reference image - due to the layer-based algorithm

- beneath its painted area.

4.3.4 Stroke Orientation

Rather than orientating brush strokes uniformly across the canvas, (Haeberli, 1990) notes

that interesting effects are achieved by aligning strokes to the Sobel-detected gradients in

the reference image. This technique aligns strokes locally perpendicular to edges, creating

a hatch-like effect.

It is argued in (Litwinowitz, 1997) that a more painterly look results from aligning

brush strokes normal to the local gradients. Using this basic technique, brush strokes in

flat regions remain randomly oriented. A more pleasing effect is achieved when vanishing

gradient magnitudes are interpolated from surrounding regions. A thin-plate spline is used

as the interpolant function in (Litwinowitz, 1997). Later algorithms build on this idea, and
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(Hays & Essa, 2004) uses a radial basis function to align brush strokes normal to Sobel

gradients, as can be seen in Figure 4.11 (a).

Only those gradients with magnitudes exceeding a threshold are considered, however.

Edge-aligned strokes are almost inherent to segmentation-based algorithms (Shiraishi &

Yamaguchi, 2000; Nehab & Velho, 2002; Gooch et al., 2002), and as previously discussed,

the curved spline-like brush strokes of (Hertzmann, 1998; Hertzmann & Perlin, 2000; Hertz-

mann, 2001; Hertzmann, 2002) and (Park & Yoon, 2008) are grown along Sobel gradient

normals, and so appear to curve along edge contours. In (Park & Yoon, 2008) the vanishing

gradients are globally interpolated in a similar manner to (Hays & Essa, 2004), but from

strong Canny-detected edges obtained using a modified thresholding algorithm.

Strokes can be orientated perpendicular to the surface normals of geometry objects, as

in (Haeberli, 1990; Meier, 1996) and (Salisbury et al., 1994) so that the painting appears

almost to wrap around objects. As usual, noise is often added to stroke orientations to

enhance the painterly feel. An interesting effect can be achieved by using the gradient

reference of one image to influence stroke orientation in another, as discovered by (Haeberli,

1990). The result can be visualized in Figure 4.11 (b).

4.3.5 Other Stroke Attributes

As mentioned previously, brush strokes may have attributes relating to style, compositing

effects and paint texture simulation. Style attributes are often stored within the structure

of brush strokes, and may be varied spatially or temporally. The canvas may also have

attributes relating to color, texture or underpainting.

An alpha (α) value for compositing, and texture masks are associated with the brush

strokes of (Strassmann, 1986; Haeberli, 1990; Meier, 1996; Gooch et al., 2002; Hertzmann,

2002) and (Hays & Essa, 2004). When used in conjunction, these attributes simulate

particular styles of painting, brushes and paint. (Strassmann, 1986), for example, simulates

the style and texture of strokes seen in the Chinese painting style of Sumi-e, while oil

painting with a Filbert brush is emulated in (Gooch et al., 2002). A more convincing

oil-like texture is simulated in (Hertzmann, 2002) by including a height map attribute for

simulating lighting on brush strokes.

The appearance of a watercolor painting can be simulated by alpha-compositing semi-

opaque brush strokes on a textured canvas. (Gooch et al., 2004) synthesizes paintings in

the style of Jackson Pollock using fluid jets, and the isoluminant color-picking algorithm of

(Luong et al., 2005) extends nicely to the creation of paintings in the mosaicking style of

Chuck Close. The particular look of sand-in-a-bottle art is reproduced in (Neto & Carvalho,

2007).
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(a) Radial basis function

(b) Changing the style by varying brush stroke orientations

Figure 4.11: Brush stroke orientation; (a) stroke orientation is determined in (Hays &

Essa, 2004) by applying a radial function to a few basis strokes orientated normal to local

gradients in the source image, and (b) two styles to paint the same image; strokes aligned

with local gradients (left) and using the local gradients from a different picture as reference

data (right). Images in (a) and (b) are from (Hays & Essa, 2004) and (Haeberli, 1990)

respectively.

4.3.6 Ordering

If the geometry of the source image is known, brush strokes can be composited according

to depth. This idea is exploited by (Haeberli, 1990; Meier, 1996) and (Gooch et al., 2002).

Depth information is not available in the case of most digital images, however. Yet the

compositing order of brush strokes is important. Fan-like artifacts occur when overlap-
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ping strokes are composited in scan-line order. This can be avoided by randomizing the

compositing order of strokes (Litwinowitz, 1997).

In layer-based, optimization and segmentation-based approaches, brush strokes are usu-

ally composited in order of decreasing size, and randomly distributed within layers of re-

finement. Since refinement is usually concentrated in the region of texture and edges, brush

strokes located in these regions are among the last to be composited. Easily visualized in

Figure 4.10, this technique is widely regarded as a fair simulation of the processes of human

painting and drawing.

4.4 Extending Stylization Effects to Video

Extending stylization effects such as painterly rendering to image sequences is a difficult

problem. The goal is to produce stylized sequences in which motion is coherent with the

motion of the source image sequence. Since the video may include local and global motion,

the occlusion and uncovering of objects (both demonstrated in Figure 4.13), transitions,

noise or flicker, great care must be taken to ensure that NPR/SBR effects are propagated

temporally in a pleasing manner.

4.4.1 Animating Anchor Points

In the case of SBR for image sequences, the frame-wise distribution of brush stroke anchor

points becomes an interesting problem. If a new, pseudo-random distribution is initialized

for each frame, brush strokes in the video will appear to hop around the canvas. On the

other hand, if the initial anchor positions are kept constant throughout the sequence, the

so-called shower door effect is observed; the video will appear to be moving from behind

the fixed strokes - as if the viewer is watching the motion through a patterned glass door.

(Meier, 1996) presents a video-based SBR algorithm with motion-animated brush strokes.

Since the algorithm is concerned with the stylization of synthetic geometry objects, brush

strokes can be anchored to the 3D surfaces of the objects at nodes obtained by a stan-

dard graphics triangulation. When these objects are animated, therefore, the brush strokes

move coherently as if they are stuck to the objects. When projected onto the 2D frames

of a video, the painterly effect is visually stunning. As mentioned before, however, most

digitally captured image sequences are devoid of geometry.

There are a few ways of animating brush strokes in image sequences where no geometry

information is present. This task involves trying to quantify the real-world motion in the

image sequence using one of the usual motion models for video.
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Rubber Sheet Model

The Rubber Sheet Model regards each frame of an image sequence as a continuously de-

forming rubber sheet. In other words, every pixel in the previous frame, n − 1, is also

present in the current frame n, but simply displaced by a small amount, therefore causing

the rubber sheet to deform with the motion. Assuming no error in the estimation, this idea

can be described by

In+1(X) = In(X + fn(X)) (4.1)

where fn(X) is a pixel-wise vector field mapping the image displacement between frames

n and n + 1 with regard to the coordinate system, X. fn(X) is also known as the forward

motion vector field, and the backward motion vector field, bn(X), is defined similarly

In−1(X) = In(X + bn(X)) (4.2)

These motion fields can be determined through a process of Motion Estimation (Kokaram,

1998), or Optical Flow (Horn & Schunck, 1981). Especially when determined by the latter,

the forward motion vector field is often referred to as the flow field. This concept can be

visualized in Figure 4.12 (a).

Brush strokes may be animated in video by continually displacing or motion-compensating

their anchor points according to the flow field defined for each frame. This technique is

used in the video-based SBR algorithms of (Litwinowitz, 1997; Hertzmann & Perlin, 2000)

and (Hays & Essa, 2004). The motion path of a particular stroke anchor point is known as

its trajectory, as can be seen in Figure 4.12 (b).

The Rubber Sheet Model does not account for the fact that moving objects in the

scene may occlude or uncover each other, conditions that can be visualized in Figure 4.13.

Uncovering reveals spatial regions in the source image sequence that were not there in

previous frames, and so it causes brush strokes to spread apart leaving increasingly large

gaps in the painting over time. Occlusion results in the disappearance of spatial regions of

the image sequence, so redundant brush strokes tend to pile up and bunch together in these

regions. Therefore, uncovering and occlusion are triggers of painting gaps and redundancy

respectively.

Gaps and redundancy are detected and mitigated in the grid-based brush stroke dis-

tribution of (Litwinowitz, 1997) by a process involving the Delaunay triangulation of the

anchor point nodes. The triangulation imposes a mesh of edges connecting the nodes, and

this mesh deforms as the anchor points are displaced by the motion field. To prevent the

bunching of strokes from occlusion, the edge lengths in the mesh are monitored. If the

length of any edge falls below a minimum threshold, one of the connected points is deleted.
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(a) Motion vector field

(b) Animating a brush stroke

Figure 4.12: The Rubber Sheet Model; (a) a forward motion vector field determined by

the process of Motion Estimation (Kokaram, 1998), and (b) animating a brush stroke using

the motion field (left) and the anchor point’s trajectory over a few frames (right). In (a),

the magnitude of motion and spacing of vectors has been enhanced for clarity.

Furthermore, uncovering is dealt with by sub-dividing the mesh if the area of any triangle

exceeds some maximum threshold.

In the layer-based painting of (Hays & Essa, 2004), redundancy is dealt with by mon-

itoring each layer for the bunching of strokes, and gradually reducing the opacity of the

strokes causing the redundancy until they have been deleted. Strokes whose anchor points

are displaced beyond layer boundaries are also phased out in this way. In the case of un-

covering, gaps that emerge in the painting are detected as holes and re-populated using the

initial, pseudo-random method of anchor point distribution. These new brush strokes are

phased in over time by increasing their opacity values over a few frames.
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(a) Occlusion

(b) Uncovering

Figure 4.13: Problems with video stylization; (a) occlusion - the apple moves in front of

the woman’s mouth and occludes part of her face, and (b) uncovering - the apple is moved

away from the woman’s mouth uncovering part of her face.

Layer Model

The Layer Model assumes that an image sequence consists of a number of moving layers.

Not to be confused with the layer-based technique of multi-pass anchor point distribution

discussed in Section 4.3.1, this motion model defines a layer as encapsulating the motion

of a particular object in the scene. Here, the term object does not necessary refer to a

well-defined semantic entity (e.g. beach ball), but rather groupings of pixels that have

some common characteristics (e.g. color, texture) and similar motion in the scene. In the

idealized Layer Model, issues with occlusion and uncovering are absent since the motion of

each object is encoded in a distinct layer. The motion of pixels within each layer can be

determined using the Rubber Sheet Model or using some other technique.

In order to apply the Layer Model, one must first segment the object layers in the video.

A popular method in SBR concerns the volumetric segmentation of a video as if it were a

3D cube with two spatial axes (i.e. the frame-wise spatial coordinates), and one temporal

axis (i.e. the time line of the image sequence). This concept can be visualized in Figure

4.14.

The video volume is segmented in (Klein et al., 2002) using a number of different
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Figure 4.14: The Layer Model; (left) the video is segmented as a 3D cube to determine

object layers which can then be stylized independently, and (right) the cartoon-like result

of (Wang et al., 2004) with edges highlighted. Includes images from (Wang et al., 2004).

techniques. First it is pre-processed to find local color gradients and measures of salience

(i.e. spatio-temporal variance in intensity). The spatio-temporal object layers are defined

in two steps. First, the user may select “cutting lines” on key-frames in the video. These

cutting lines are linearly interpolated between key-frames to segment the video volume

into a number of sub-cubes. Next, the volume is segmented more finely by constructing

a KD-Tree from the color and salience information while respecting the boundaries of the

user-defined sub-cubes. Finally, brush stroke anchor point trajectories are defined within

the layers by fitting smooth curves to “flow” trajectories extracted by a modified streamline

algorithm.

Although not strictly SBR, the algorithm of (Wang et al., 2004) is interesting in that it

uses the Layer Model. Color-based segmentation of objects is achieved through application

of a modified 3D Mean-Shift algorithm. A locally adaptive anisotropic kernel ensures that

the boundaries of segmented objects are well-defined with regard to the underlying motion.

Interactive techniques allow the user to group segmented regions to reflect semantic objects

in the video. The algorithm of (Collomosse et al., 2005) is comparable, although color

segmentation is performed in 2D (i.e. on each distinct frame), and then the spatio-temporal

layers are formed by grouping and smoothing the 2D segments temporally using an energy

function incorporating measures of object dimensions, shape and color. Brush stroke anchor

point trajectories are determined by matching the homography of texture within the object

layers from frame to frame. Both (Wang et al., 2004) and (Collomosse et al., 2005) fit

smooth surfaces to the boundaries of the segmented object layers to form smooth spatio-
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temporal object boundaries that have the appearance of stylized cartoon-like edges when

rendered.

The drawback of the Layer Model is the computational burden of storing and analyzing

video volumes, although this problem is somewhat mitigated in (Collomosse et al., 2005)

due to the two-step technique of temporally grouping spatially segmented regions.

Frame Differencing

Frame differencing is the detection of motion by comparing consecutive frames in an image

sequence for intensity or color differences, usually by means of pixel-wise subtraction. The

assumption for SBR is the painting should only be altered in places where the source video

changes between frames.

Frame differencing is also known as the “paint-over” or “paint-on-glass” technique in

SBR. The general technique is depicted in Figure 4.15. In (Hertzmann & Perlin, 2000)

the first frame of canvas is painted with spline-like strokes using the optimization approach

of (Hertzmann, 1998). In painting successive frames, a mask is obtained by thresholding

the intensity difference between the previous and current frames, and these masked areas

are re-painted to create the current canvas. This technique is fast and hence it is useful

for real-time applications, as in (Hertzmann & Perlin, 2000). The painted video, however,

demonstrates flicker in regions of rapid motion, whereas regions with less motion (e.g. the

center of large objects) can appear flat since the anchor points there are not animated. The

latter problem is addressed in (Hertzmann & Perlin, 2000) by using Optical Flow to motion

warp the previous frame to the current before re-painting the frame difference regions. This

effect can be observed in the supplementary videos at the URL associated with (Hertzmann

& Perlin, 2000)3.

A modified frame differencing technique is used in (Park & Yoon, 2008). The algorithm

formulates a strong mask or “motion map” capturing differences in the region of edges, and

a weak mask capturing differences everywhere else in the frame. These masks are obtained,

however, but by thresholding the motion field obtained by Motion Estimation; a process

similar to Motion Detection. In the re-painting process, larger brush strokes are painted

over regions in the strong motion map, whereas smaller strokes are re-applied in regions

in the weak motion map where it is argued that less significant changes occur between

frames. The video results of this algorithm are still prone to flicker, as can be seen in the

supplementary video associated with (Park & Yoon, 2008).

4.4.2 Temporal Coherency and Other Attributes

The method of regulating the painted color of animated brush strokes is an important

consideration. (Litwinowitz, 1997) point-samples the color at the anchor point of each

3(Hertzmann & Perlin, 2000): http://www.dgp.toronto.edu/~hertzman/videos/npar2000/
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Figure 4.15: Frame Differencing; The current frame, n = 73, is stylized by painting brush

strokes on top of the previously stylized frame, n = 72, in areas of intensity difference

between the two frames. Hence, the yellow area must be painted over to create a stylized

n = 73. Here, stylized frame n = 72 has been rendered using the Brush Strokes tool of

Adobe AfterEffects CS3 for the purpose of visualization.

stroke for each frame independently. Frame-wise color-sampling is also used to color brush

strokes in (Hertzmann & Perlin, 2000) and (Park & Yoon, 2008). The problem with this

technique is that flicker is observed as the painted color of the strokes fluctuate throughout

the sequence. Attempts at suppressing the effect of flicker are made by spatial smoothing

in (Hertzmann & Perlin, 2000) and global color quantization in (Park & Yoon, 2008).

Since the 3D video volume is smoothly segmented in (Wang et al., 2004), the resulting

segmented colors can be applied to their associated objects throughout the video. A similar
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Figure 4.16: Spatio-temporal color sampling. The color of the output painting is sampled

from the source image sequence over a non-uniform spatio-temporal window extending

forwards and backwards in time. Includes images from (Bousseau et al., 2007).

technique is used to color the segmented objects in (Collomosse et al., 2005). Coloring

semantic objects uniformly is a different problem to SBR, but flicker is also less apparent in

the latter when the colors of brush strokes are temporally smoothed, despite the fact that

they are being continually displaced with the motion field.

When brush strokes are applied in (Collomosse et al., 2005), they are painted by point-

sampling the color from the source image beneath their coordinate trajectories over a num-

ber of frames and smoothed temporally by averaging. In (Hays & Essa, 2004), the brush

stroke colors are sampled by averaging the color values beneath the painted area of the

stroke on the current and a small number of previous frames (see URL associated with

(Hays & Essa, 2004) for video demos). (Bousseau et al., 2007) implements an interesting

extension to this technique in the form of a non-uniform spatio-temporal filter that averages

the color beneath a spatial disk on a number of frames and centered on the current frame.

The sampling volume is non-uniform in that the disk’s sampling radius tapers outwards

from the current frame. The technique can be visualized in Figure 4.16, and its effect can

be seen in supplementary videos at the URL associated with (Bousseau et al., 2007)4.

Other brush stroke attributes may also be smoothed temporally. This idea is key to

4(Bousseau et al., 2007): http://artis.imag.fr/Publications/2007/BNTS07/
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the algorithm of (Hays & Essa, 2004) in which the brush stroke orientation and opacity

attributes are smoothed temporally by clipping them to a frame-wise maximum derivative

of change. The latter is applied to ensure the gradual, smooth introduction and removal

of hole-filling and redundant brush strokes respectively. This effect can be seen in the

supplementary videos at the URL associated with (Hays & Essa, 2004)5.

Finally, it has been noted in (Litwinowitz, 1997) and (Hays & Essa, 2004) that brush

strokes introduced to fill holes should be distributed randomly in the existing ordered list

of strokes to avoid fan-like artifacts appearing in the painting over time.

4.5 Semantically-Driven and NPR and SBR

The most recent stylization algorithms are concerned with the meaningful abstraction of

images and videos for the purpose of efficient information communication and aesthetics.

User interaction is often incorporated to focus the elements of stylization on the semantic

content in images (Haeberli, 1990; Hertzmann, 2001; Santella & DeCarlo, 2002; DeCarlo &

Santella, 2002; Gooch et al., 2002) and videos (Wang et al., 2004; Collomosse et al., 2005).

This idea is demonstrated in Figure 4.17 (a) and (b). An interactive application, the user’s

gaze fixations influence the SBR in Figure 4.17 (a) such that the people in the image -

particularly their faces - are painted with a finer brush and hence more detail. In Figure

4.17 (b), the image is also stylized such that the person is the focal point and cartoon-like

edges are used to highlight the important information.

Some content-based algorithms exist, but they are only trained to detect and enhance

low-level features such as salience (Collomosse & Hall, 2002; Klein et al., 2002), edges (Hae-

berli, 1990; Litwinowitz, 1997; Mignotte, 2003; Hays & Essa, 2004; Kim et al., 2008), color

heuristics (Hertzmann, 1998; Shiraishi & Yamaguchi, 2000; Hertzmann, 2001; Gooch et al.,

2002; Nehab & Velho, 2002; Collomosse et al., 2005; Winnemoller et al., 2006; DiPaola,

2007; Zhao et al., 2008; Park & Yoon, 2008), or interest points (Santella & DeCarlo, 2004),

and not high-level semantic content such as people, skin and faces.

Another aspect of content is the behavior of the motion field in a video, and this can also

be highlighted, enhanced or meaningfully abstracted. Figure 4.18, for example, shows the

results of the algorithm of (Collomosse et al., 2003) which analyzes the motion of the source

video. The video action is summarized for the viewer on one output frame as cartoon-like

motion trail.

4.6 Motivations for a New NRP/SBR Algorithm

Given the subtle relationships between the various techniques in NPR; cartoonization, SBR,

semantic stylization and motion summarization - it is interesting to explore the possibility

5(Hays & Essa, 2004): http://www.cc.gatech.edu/cpl/projects/artstyling/
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(a) Gaze-driven SBR

(b) Gaze-driven NPR

Figure 4.17: Meaningful abstraction; (a) the user’s eye-tracking data is used to drive finer

brush strokes towards semantically meaningful image regions, and (b) toon-like edges are

used to enhance the focal point of the image. Images in (a) and (b) are from (Santella &

DeCarlo, 2002) and (DeCarlo & Santella, 2002) respectively.

of merging these ideas into a single framework.

Footage from home movies and camera phone clips could benefit from an enhanced

SBR/NPR stylization application. Since much personal visual media includes images and

footage of family members, friends, groups, celebrities (i.e. head shots of people), the appli-

cation could be aware of this content, incorporating it stylistically. It would be interesting

to be able to stylize the facial regions of the people in these videos such that they evoke a

kind of animated artist’s portrait, with finer painting detail and perhaps cartoon-like edges

highlighting the facial features, these smooth lines encapsulating the outline of the face and

neck. This is novel in that it takes the idea of semantic stylization - as discussed in Section

4.5 - to a higher level of content-based manipulation not explored SBR/NPR algorithms

previously.

Another aspect of salient content could be highlighted in video-based SBR if an indi-
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Figure 4.18: Cartoon-like motion trails summarizing the video action in one frame. These

images are from (Collomosse et al., 2003).

cation of the motion trajectory of brush strokes - and hence the underlying video motion

- could be visualized on each frame of the painted sequence individually. This effect could

be achieved if some of the brush stroke attributes were made to change with regard to their

underlying motion trajectories. Brush strokes could stretch according to the magnitude of,

and rotate in the direction of the motion vector field from the source sequence. The con-

cept is in a similar vein to the algorithms of (Collomosse et al., 2003; Denman et al., 2003)

and (Kokaram et al., 2005) that attempt to summarize the action in a video on one frame

for summarization and visualization purposes. Some of the results of these algorithms can

be seen in Figure 4.18 and Figure 4.19. To incorporate this concept in an SBR rendering

is novel, and the results could be useful for video summarization, cartoon-like styling or

sequence story-boarding.

There is scope for general improvement in all aspects of the SBR process; the method

of anchor point distribution, animating the brush stroke anchor points, dealing with occlu-

sion and redundancy, uncovering and gaps, with regard to the Motion Estimation, spatio-

temporally coherent brush stroke color-sampling, and experimentation with brush stroke

attributes by defining style. The inclusion of cartoon-like edge painting - as discussed in

Section 4.4.1 and demonstrated in Figure 4.14 - could make for an interesting hybrid effect.

Chapter 3 presents an algorithm for Face Detection in images. It is intuitive to imagine a

non-uniform stylization framework incorporating Face Detection, in which a face segmenta-

tion mask defines, or helps to define the semantic region(s) for enhanced stylization. Recall

that the face detector presented in Chapter 3 is capable of producing only a rough segmen-

tation mask of faces in images (see Section 3.7.5 of Chapter 3 for explanation). To achieve
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Figure 4.19: Summarization of a game of snooker in a few key frames. All images are

from (Denman et al., 2003).

the desired “artist’s portrait” style, however, a more pixel-accurate face segmentation mask

would need to be produced. One solution would be to refine the face segmentation mask

by applying a color-based pixel-wise skin detector to the image regions encapsulated by

the face mask. Since color is definitely desired in the output stylized video sequences, and

hence will be present in the input head shot videos, the Face Detection step then begins

to seem redundant for this particular application. Furthermore, a skin-color augmented

Face Detection step would not segment other interesting skin-colored non-face regions that

might appear image sequences of head shots, such as glimpses of a person’s neck, shoulders

or hands.

Chapter 6 presents a novel framework merging many aspects of NPR; SBR, cartooniza-

tion, motion summarization and non-uniform semantic stylization. For reasons discussed

above, the semantic content is defined not by Face Detection, but rather by a novel pixel-

wise color-based Skin Detection algorithm which will be described in the next Chapter.



5
Graph Cut-Based Skin Detection

Chapter 4 presents a review of state-of-the-art techniques in the stylization of visual media

and concludes that one of the motivations for improvement in this field is concerned with

the semantic stylization of images or videos. Videos containing head shots of people, for

example, could be stylized in a non-uniform fashion such that the skin and lines of the

face and neck are enhanced. It is useful, therefore, to develop a reliable Skin Detection

algorithm for this task. This Chapter presents a brief discussion of techniques in the field

of Skin Detection, followed by a novel probabilistic Skin Detection algorithm with Graph

Cut-based spatial smoothing.

5.1 On Skin Detection

As concluded in Section 4.6 of the previous Chapter, one of the motivations in the field

of media stylization is concerned with the semantic stylization of videos, and a proposed

application is the non-uniform stylization of videos containing head shots of people. The

non-uniform stylization could enhance or emphasize the salient content encapsulated by the

skin regions (e.g. cartoonization of the lines on the face and neck), while abstracting the less

meaningful background content. What is required for this application, therefore, is a fairly

accurate, spatio-temporally coherent skin detector that is capable of smoothly segmenting

the skin-colored regions in the frames of a video containing head shots of people, producing

a binary skin mask for each video frame. This is a problem of estimating the binary label

field, lj = l(X), on image pixels, X = [x, y], such that

114



5.1. On Skin Detection 115

lj =







1 if skin pixel

0 if non-skin (i.e. background) pixel
(5.1)

Skin Detection seems to be a well-researched topic in image processing, and most of

the research revolves around probabilistic pixel-wise color segmentation methods. Surveys

of some of the techniques and issues in Skin Detection are presented in (Vezhnevets et al.,

2003) and (Phung et al., 2005) respectively, for the interested reader. It is notable that

many state-of-the-art Skin Detection algorithms are not concerned with the creation of

skin segmentation masks that are spatio-temporally - or even just spatially - coherent and

smooth. Instead it seems that most of the debate in the field is concerned with which color

space should be used for probabilistic pixel-wise skin segmentation.

There is much argument in favor using of the YCbCr color space for color-based Skin

Detection, as opposed to the well-known RGB color space. The YCbCr color space is

defined by a linear transformation of the pixel-wise RGB color data c = [r, g, b] (i.e. red,

green, blue) to c′ = [y, cb, cr] such that the luminance (i.e. illumination) information is

encoded in the Y field of YCbCr, whereas chrominance (i.e. color) information is encoded

in the Cb and Cr fields. In (Chai & Bourzerdoum, 2000), for example, it is claimed that

a more illumination and skin-tone invariant detector results from discarding the luminance

component, and modeling the conditional Probability Distribution Function (PDF) of skin

color in the 2D space of Cb versus Cr. The detector produced by (Chai & Bourzerdoum,

2000), however, is only trained and tested on a handful of images and this hypothesis is

refuted in many other studies.

(Jones & Rehg, 1999) estimate the pixel-wise skin and non-skin PDFs as 3D 323-bin

histograms of RGB data. These histograms are trained with the positive (i.e. skin) and

negative (i.e. non-skin/background) pixels from tens of thousands of Internet images consti-

tuting the now well-known Compaq skin database created by the authors, (Jones & Rehg,

1999). A binary decision is made by thresholding the pixel-wise likelihoods produced by

these histograms, and the final skin detector is reported by (Jones & Rehg, 1999) to per-

form better than one based on modeling the conditional PDFs as Gaussian Mixture Models

(GMMs) in RGB space. This performance is measured in terms of true positive versus false

positive skin pixels with regard to the hand-made ground truth masks associated with the

Compaq database.

Support for the RGB color space can also be found in the work of (Mason & Brand,

2000), and in the surveys of (Vezhnevets et al., 2003) and (Phung et al., 2005), which both

declare the 3D RGB histogram approach of (Jones & Rehg, 1999) to be one of the best

performing skin detectors in the field. It is suggested in (Phung et al., 2005), however,

that the algorithm is better with 2563 histogram bins - rather than the 323-bin histograms

suggested by the authors - provided that these histograms are estimated from a sufficiently
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large training data set like Compaq.

5.2 A New Graph Cut-Based Skin Detector

A fairly accurate, but not world-beating skin detector is required for the task of content-

based semantic stylization of videos. It is apparent from the literature that a probabilistic

technique with the RGB color space should be used, and that a large data set of positive

and negative samples is needed for training. Therefore, the RGB values of the skin and

non-skin pixels within the 4, 000 positive and 8, 000 negative images of the Compaq skin

database (Jones & Rehg, 1999) are collected. Initially following the approach of (Jones &

Rehg, 1999) as a first attempt, a probability map, Ψ(X), is generated from the likelihood

ratio

Ψ(X) =
Θps(skin|C(X))

pn(non-skin|C(X))
(5.2)

where ps = p(Cs|skin) and pn = p(Cn|non-skin) are the 2533-bin RGB histogram-estimated

likelihoods, Cs and Cp the colors extracted from the positive and negative training pixels

respectively, and C(X) is in RGB color space. Since relatively fewer positive than negative

training examples are used to form the histograms, Θ is a weight that can be used to boost

the relative influence of the positive likelihood, ps(.), in the ratio if necessary, and it is

therefore often set > 1 as in (Jones & Rehg, 1999). The entries in the probability map,

Ψj = Ψ(X), are useful for visualization, as can be seen in Figure 5.1 (b). Here Θ = 1 for

simplicity.

The binary labeling defined in Equation 5.1 is then established by

lj =







1 if Ψj > tΨ

0 otherwise
(5.3)

where tΨ is a threshold on the probability map, or a trade-off between true and false

positive skin pixels, as discussed in (Jones & Rehg, 1999). The skin mask produced by

binary thresholding the 3D histogram-based likelihood ratio of Figure 5.1 (b) can be seen

in Figure 5.1 (c). It is clear to see that the mask is not very spatially smooth.

5.2.1 The Bi-Gaussian Likelihood Model

Experimentation with different forms of the likelihood ratio has led this author to the

discovery that the conditional PDFs of skin and non-skin are well modeled as unimodal

multi-variate Gaussian distributions in RGB space (i.e. not 3D histograms, or a GMM).

This multi-variate Bi-Gaussian (B-G hereafter) likelihood model is defined as
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(a) Test image (b) Histogram likelihood estimate (c) Skin labels

(d) B-G likelihood estimate (e) Skin labels

Figure 5.1: Probability maps and skin masks; (a) test image, (b) probability map, Ψ(X),

formed by 3D histogram-based likelihood ratio and (c) the positive labeling, l(X) = 1,

with threshold tΨ = 0.99, (d) Ψ(X) formed by Bi-Gaussian (B-G) likelihood ratio, and (d)

comparative l(X) = 1 with tΨ = 0.99. Θ = 1 in both cases.

pmg =







1√
2π

ρ/2|Σp|1/2
e−1/2((cj−cµp

)T Σ−1
p (cj−cµp

)) for lj = 1

1√
2π

ρ/2|Σn|1/2
e−1/2(cj−cµn

)T Σ−1
n (cj−cµn

)) for lj = 0
(5.4)

where ρ = 3 since there are three variables in the pixel-wise RGB vectors, cj = [rj , gj , bj ],

of C(X), and Σp, Σn, cµp
and cµn

, are the covariance matrices and mean color vectors of

the positive and negative training pixels of the Compaq skin database respectively. Again,

Θ is a weight that can be used to boost the relative influence of the positive likelihood.

Figure 5.1 (d) is the result of computing the probability map, Ψ(X), from the B-G
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modeled likelihood ratio, and Figure 5.1 (e) is the resulting binary thresholded skin mask,

again with tΨ = 0.99 and Θ = 1. It is clear to see that the unimodal B-G likelihood ratio

results in a more spatially coherent probability map and skin mask than those produced by

the 3D histogram-based likelihood ratio, as can be seen in Figures 5.1 (b) and (c). The B-G

likelihood model is also less costly to compute than the 3D histogram-based likelihood.

There are still a few blob-like false positives and negatives within the B-G likelihood

generated skin mask of Figure 5.1 (e), however, but it is likely that this problem would be

largely rectified by injecting contextual spatial information into the binary labeling solution.

5.2.2 A Bayesian Approach

Similarly to the sparse local feature point labeling technique in Section 3.7 of Chapter 3,

it is a good idea to take a Bayesian approach to this problem of spatial smoothing. The

goal, as previously described, is to label image sites as skin (i.e. lj = 1) or background (i.e.

lj = 0) class according to the color of the pixel at each site, cj = [rj , gj , bj ]. Proceeding in

a Bayesian fashion, this amounts to maximizing the following

p(lj |cj)
︸ ︷︷ ︸

posterior

∝ p(cj |lj)
︸ ︷︷ ︸

likelihood

p(lj |Lj)
︸ ︷︷ ︸

prior

(5.5)

where the two-class likelihood is realized as a unimodal multi-variate B-G as previously

described in Equation 5.4, the prior assumes a Markov Random Field (MRF) (similarly to

that in Section 3.7.3 of Chapter 3), and Lj is the spatial neighborhood on which the MRF

is assumed.

5.2.3 The Prior

The spatial prior is modeled as

pq(lj |Lj) ∝ exp−
{∑

s∈S

Uj |ls 6= lj |
}

(5.6)

where Lj is the 4-pixel spatial neighborhood of labels surrounding lj , and the term Uj is a

contrast-dependent smoothness term that ensures maximum smoothness in image regions

of low contrast, and vice versa (see (Rother et al., 2004) or (Corrigan et al., 2008) for a

more complete explanation of the term Uj).

5.2.4 Graph Cut-Based Optimization

The Graph Cut algorithm (Boykov & Jolly, 2001) is a recently popular technique for solv-

ing 2D binary labeling problems such as the one just defined. Graph Cut is an energy
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minimization technique, but unlike Iterated Conditional Modes (ICM) (Besag, 1986), it

calculates the optimal binary segmentation (i.e true global minimum) with regard to the

Bayesian energy function, which in this case is

Ej(lj = 1) = {Ej(pmg) + αgcEj(pq) + Ej(Θ)} (5.7)

Ej(lj = 0) = {Ej(pmg) + αgcEj(pq)} (5.8)

where E(p) = − log(p(.)), Ej(pmg) is the B-G likelihood energy, Ej(pq) is the prior energy,

and αgc is a weight controlling the influence of the prior (similarly to αd in the related

Equations 3.6 and 3.7 in Section 3.7 of Chapter 3). Recall that Θ is a weight that can be

adjusted to boost the relative influence of the positive pmg in likelihood ratio of Equation

5.2. Equation 5.7, therefore, ends up with the term Ej(Θ), which is a result of computing

the log energy of the positive likelihood multiplied by the constant Θ. This term has the

effect of suppressing the likelihood energy if (Θ > 1), but it may also be used for the

opposite purpose if (Θ < 1).

The optimum binary skin mask labeling is found by means of the (Corrigan et al., 2008)

implementation of the max-cut/min-flow Graph Cut optimization algorithm of (Boykov &

Kolmogorov, 2004). As can be seen in Figures 5.2 (a-f), the result depends largely on the

values of Θ, and αgc. As the smoothing factor, αgc, is increased, smaller binary connected

regions seem to either merge together to form larger ones, or else disappear from the skin

mask entirely.

The former effect is interesting in that it can smooth the skin mask over internal facial

features such as the girl’s lips, and this may or may not be desirable depending on the

application. The latter effect can result in large false negative patches, as can be seen on

the girl’s shoulder in Figure 5.2 (c) which is critical due to illumination conditions at this

region. However, an increase in Θ can help, because it will boost the relative influence of

the skin likelihood such that the likelihood energy becomes less than the smoothing energy

at such critical image regions. The best result overall can be seen in Figure 5.2 (f), where

the girl’s shoulder is correctly included in the skin mask. There are still a few small false

positive blobs in the background but these are acceptable for the particular application

which will be presented in the next Chapter.

The content-based video stylization application of the following Chapter uses this novel

Skin Detection algorithm for obtaining a spatially coherent skin mask for each frame of

an input video. This spatially smoothed skin mask sequence is then temporally smoothed

by the video stylization framework in a process of spatio-temporal median filtering. The

reasons and technique for the temporal smoothing will be discussed later in Section 6.4 of

the following Chapter.

Some examples of spatially smooth skin masks resulting from the frame-wise application
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(a) Θ = 1, αgc = 0 (b) Θ = 1, αgc = 20 (c) Θ = 1, αgc = 100

(d) Θ = 4, αgc = 0 (e) Θ = 4, αgc = 20 (f) Θ = 4, αgc = 100

Figure 5.2: Graph Cut-based skin segmentation; (a) binary skin mask with weight Θ = 1

and smoothing factor αgc = 0, (b) Θ = 1 and αgc = 20, (c) Θ = 1 and αgc = 100, (d) Θ = 4

and αgc = 0, (e) Θ = 4 and αgc = 20, and (f) Θ = 4 and αgc = 100.

of Graph Cut-based Skin Detection algorithm to two video sequences - Female1 and Holly-

wood - can be seen in Figure 5.3. The two resulting spatially coherent skin mask sequences

- Female1 GCskin and Hollywood GCskin - are included on the DVD accompanying this

thesis. It is clear to see from Figure 5.3 (a) and (b), that the Skin Detector works well

on this particular example in which the background is far from skin-colored. Figure 5.3

(c) and (d), however, demonstrate that this, like many skin detectors, can sometimes fail

in difficult illumination conditions and in the presence of skin-colored backgrounds. The

Hollywood GCskin mask for the full Hollywood sequence also reveals some mis-classification

of light-colored hair as skin.

As will become clear in the next Chapter, however, only a rough skin detector is needed
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(a) Female1 video (b) Θ = 10, αgc = 500

(c) Hollywood video (d) Θ = 0.8, αgc = 10

Figure 5.3: Graph Cut-based skin segmentation; (a) a single frame of source video Fe-

male1, (b) binary skin segmentation with Θ = 10 and αgc = 500, (c) single frame of source

video Hollywood, and (d) binary skin segmentation with Θ = 0.8 and αgc = 10.

for the application of skin-aware non-uniform video stylization, and slight failures of the

skin detector are not critical within the video stylization framework.



6
Skin-Aware Stylization of Video Portraits

This Chapter presents a new Non-Photorealistic/Stroke-based Rendering (NPR/SBR) frame-

work for the skin-aware stylization of “video portraits” featuring head shots of people, such

as home videos, movies, and camera mobile phone clips. Spatio-temporal Skin and Edge

Detection are used to locate and emphasize the semantic content in the stylization pro-

cess. The SBR portion of the algorithm features novel techniques for motion expression

with elliptical brush strokes, brush stroke anchor point distribution, spatio-temporal color-

sampling, and interesting solutions to state-of-the-art issues in motion-compensated brush

stroke animation such as painting redundancy and object occlusion, gaps and object un-

covering. A wide user-accessible parameter space and finishing touches such as cartoon-like

edge decoration and other quirky effects empowers a variety of artistic outputs. The user

can vary the stylization parameters for three uniquely defined spatio-temporal semantic

layers in the image sequence, i.e. the background, foreground (i.e. skin regions), and detail

regions (i.e edges). The resulting stylized sequences are interesting with regard to compres-

sion, summarization, story-boarding, and art. Both the semantic content, and underlying

video motion is highlighted and summarized on every frame of the stylized output sequence.

6.1 The Stylization Framework

A novel framework for the skin-aware stylization has been created. The framework incorpo-

rates elements of Non-Photorealistic Rendering (NPR) and Stroke-Based Rendering (SBR)

that were discussed in Chapter 4, and plays with the idea of non-uniform semantic styl-
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Figure 6.1: Canvas underpainting; the source image blurred with a Gaussian kernel. The

source image is from the sequence Female1 included on the DVD accompanying this thesis.

ization of skin regions empowered by the novel Graph Cut-based Skin Detection algorithm

discussed in Chapter 5.

6.2 Elliptical Brush Strokes

The SBR (i.e. painting) portion of the framework is similar to that of (Haeberli, 1990)

in that brush strokes are placed on a canvas, and these brush strokes are implemented as

structures with attributes that are established and queried at various stages in the SBR

process. The attributes correspond to the brush stroke’s anchor point location, shape,

dimensions, orientation, color, opacity, and noise with regard to color and orientation. The

SBR portion of this framework plays with the dimensions and orientation attributes of

brush strokes for motion expression and exaggeration.

Before SBR takes place, the canvas is blank or optionally primed with an underpainting

as in (Gooch et al., 2002). This underpainting is simply a blurred version of the source

frame with a symmetric Gaussian blur kernel of size 50× 50 pixels and standard deviation,

σg = 10, as can be seen in Figure 6.1. Brush strokes are placed on the canvas using a novel

anchor point distribution discussed in Section 6.3. As will be discussed in Section 6.4.2,

these brush strokes are distributed in a non-uniform, content-based fashion featuring three

individual semantic (i.e. meaningful) layers defined created by means of spatio-temporal

Skin and Edge Detection. Strokes are then organized and stored in three ordered lists;

background, foreground (i.e. skin) and detail (i.e. edges), and finally, composited in that

order to paint each frame.

Inspired by animated SBR algorithms such as (Litwinowitz, 1997; Hertzmann, 2001) and
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(a) Ellipse parameters

(Hays & Essa, 2004), the brush strokes are animated in video using techniques incorporating

Motion Estimation (Kokaram, 1998). This part of the algorithm is discussed in Section

6.4.3, along with some novel solutions to the common problems encountered in motion-

compensated video-based SBR.

Other elements of NPR such as spatio-temporal cartoonization are also incorporated

in the framework to create interesting effects. These ideas are discussed in Section 6.7.

Since these effects are considered finishing touches, it is first necessary to discuss the SBR

portion of the framework, and all of the steps involved in motion-compensated brush stroke

animation.

The chosen brush stroke shape is elliptical. The look achieved by painting with this

shape is more like particle simulation than real-life paint modeling. Emulating the look of

real paint strokes is not important in this work and therefore brush stroke textures and

paint-like lighting models are not implemented. The goal is the distribution and painting

of smooth anti-aliased elliptical particles that can move, stretch and rotate to illustrate the

magnitude and direction of the underlying video motion. The painted area of an elliptical

brush stroke is determined by a binary mask s(X) defined as follows

s(X) =







1 where [(x−xc)Rθ]2

a2
e

+ [(y−yc)Rθ]2

b2e
≤ 1

0 otherwise
(6.1)

where X = [x, y] are points on the canvas coordinate system, and x and y are the horizontal

and vertical components of these coordinates respectively. The parameters ae, be, xc, yc

and θ can be visualized in Figure 6.2 (a), with Rθ related to θ.

The centroid of the ellipse corresponds to the anchor point location of the brush stroke,

therefore q = [xc, yc]. The following rotation matrix determines the orientation of the
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(b) req = 100, ke = 1 (c) req = 100, ke = 2, θ = 0.52

Figure 6.2: Elliptical brush strokes; (a) essential parameters, (b) and (c) two brush stroke

masks, s(X), with the same circle equivalent radii, req, but different orientation and eccen-

tricity parameters.

ellipse, θ,

Rθ =

[

cos θ sin θ

sin θ − cos θ

]

(6.2)

where θ is the angle between the horizontal (x) axis and the plane defined by the major

axis. The lengths of ae and be, the major and minor axes, determines the area, φe = πaebe

of the ellipse, while the relative lengths of these axes determine the eccentricity. To set

ae = be means that the ellipse becomes a circle of radius, req, as can be seen in Figure 6.2

(b). The ratio ke = ae
be

is related to the eccentricity. One can stretch the ellipse by varying

ke while holding the area, φe constant. The two masks seen in Figure 6.2 (b) and (c) have

equivalent φe, and so it can be said that each of these masks has an equivalent circle radius

of req = 100 in this case.

6.2.1 Calculating the Elliptical Stretch and Orientation

The elliptical brush stroke parameters can be manipulated to depict the behavior of the

motion field underlying the source image sequence. This idea can be visualized in Figure 6.3.

Here, it is useful to have a brief understanding of the process of animating a brush stroke,

although this will be described in Section 6.4.3 in more detail later. First, the motion of the

source image sequence is obtained by the process of Motion Estimation. There are many

Motion Estimation algorithms as this area remains an active research topic. It is the Motion

Estimation algorithm of (Kokaram, 1998) that is used in this work. To animate a brush

stroke, a stroke’s anchor point qn is translated according to the underlying video motion

such that qn+1 = qn + fn(qn), where fn(X) is the forward motion vector field describing

the motion of all pixels in frame n of the source image sequence to their displaced positions
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Figure 6.3: Portraying the video motion in the appearance of brush strokes. The motion

of the brush stroke’s anchor point trajectory is used to determine the stroke’s stretch and

orientation.

in frame n + 1.

In Figure 6.3, the motion of the brush stroke’s anchor point trajectory is used to influence

the brush stroke’s stretch and orientation attributes - and therefore painted area, sn(X), for

the current frame n. The parameters defining these attributes are temporally smoothed by

sampling the motion over a temporal window centered on n and extending over a number

of frames, nu. Figure 6.3 only depicts the forward motion field, fn(X), but a backward

motion field, bn(X), is also estimated. To implement the idea of Figure 6.3, each brush

stroke is associated with a vector encapsulating the following motion information

un =
1

Nu

(Nu−1)/2
∑

j=−(Nu−1)/2

[
fn+j(qn+j) − bn−j(qn+j)

]
(6.3)

where fn(X) and bn(X) are the forward and backward motion vector fields over a number

of frames, Nu, and centered on the current frame, n.

Unlike the simplified illustration in Figure 6.3, Equation 6.3 utilizes the bi-directional

motion field, i.e. fn(X) and bn(X), the forward and backward motion vectors respectively.

The inclusion of both helps to suppress some errors in the estimation due to the phenomena

of occlusion and uncovering inherent to the Rubber Sheet Model (see Section 4.4.1 for



6.3. Probabilistic Stroke Distribution 127

explanation). Therefore, un for a particular qn can be formed by sampling fn(X) and

bn(X) at coordinates corresponding to the motion translated position of qn in each frame

of the temporal window, j. The magnitude of motion at qn is expressed as

un =

Nu∑

j=1

√

(uj
y)2 + (uj

x)2 (6.4)

where the terms uj
y and uj

x refer to the vertical (y) and horizontal (x) components of motion

respectively. To make the brush strokes stretch and orientate smoothly in relation to the

underlying video motion, a stretch ratio, kn
e , and orientation, θn (in radians), is determined

from un as follows

ke
n = un k̂e

û
, θn = arctan

Nu∑

j=0

un
y

Nu∑

j=0

un
x

(6.5)

where û is a user-defined parameter reflecting the assumed maximum motion magnitude.

The maximum stretch of the elliptical stroke is limited to the user-defined maximum k̂e. The

motion field obtained by the Motion Estimation algorithm of (Kokaram, 1998) is spatially

very smooth and therefore noise in the range [−δθ, +δθ] may be added to θn to simulate a

more hand-painted look.

6.2.2 An Alternative Technique

A similar and interesting effect can be achieved by measuring un at the non-motion trans-

lated locations of qn. This changes the form of Equation 6.3 to

un =
1

Nu

(Nu−1)/2
∑

j=−(Nu−1)/2

[
fn+j(qn) − bn−j(qn)

]
(6.6)

and Equation 6.5 is still used to determine orientation. This idea can be visualized in Figure

6.4. In this case the motion information is no longer motion-compensated, but it is a faster

way to achieve motion-expressive brush strokes.

6.3 Probabilistic Stroke Distribution

As discussed in Section 4.3.1, there are certain goals when placing brush stroke anchor

points on the canvas. To recap, the aim is to cover the canvas with strokes such that they
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Figure 6.4: Portraying the video motion in the appearance of brush strokes; a faster

technique. The motion field at the position of stroke’s anchor point in the current frame is

used to determine the stroke’s stretch and orientation.

are sparsely distributed with minimal overlap, and to minimize gaps in the painting. Tiling

the canvas with a grid-like formation of brush strokes results in a synthetic appearance, and

noise must be added to the anchor point locations. A pseudo-random placement of strokes

looks more natural, but there is redundancy in the canvas coverage when strokes overlap

excessively.

A novel probabilistic point distribution process has been developed to deal with these

issues. This process is somewhat related to the idea of Poisson Disk Sampling (PDS),

as mentioned in Section 4.3.1. In PDS, point samples are distributed on a plane (i.e. the

canvas) in a series of trials. In each trial, a candidate sample is generated pseudo-randomly.

The candidate is rejected if it falls within a disk of radius rdisk surrounding a previously

generated sample. This is an interesting idea in that rdisk could be associated with the

dimensions of the brush strokes. However, brush strokes dimensions might not be uniform

over the canvas. Recall that the strokes associated with this video stylization algorithm

are elliptical in shape, and that ae, be and θ will be altered to reflect a motion trajectory

underlying the anchor point. The following novel point distribution algorithm attempts to

soften and adapt the PDS process by posing it in a probabilistic light.

Suppose that we wish to generate anchor points on the canvas to distribute brush stroke

anchor points in a series of trials, i. The canvas has the coordinate system X = [x,y] as
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Figure 6.5: Probabilistic anchor point distribution; there is an initial uniform distribution

of probability over the canvas coordinates, X.

before. The anchor point generated by each successful trial will be known as qi = [xci , yci ].

During these trials, each location on the canvas is associated with a probability. This

probability is the likelihood of sampling at that location in trial i. At the beginning of the

process, therefore, we have an initial uniform distribution of probability

p0(X) = k0 (6.7)

Figure 6.5 demonstrates this idea. Here, k0 is a constant. To generate the first anchor

point, q0, a sample is drawn from this distribution numerically

(x̃0, ỹ0) ∼ p0(x,y) 7→ q0 = [xc0 , yc0 ] (6.8)

The aforementioned PDS algorithm would maintain a uniform distribution through-

out the sampling process, but explicitly reject those points whose sampled coordinates fall

within radius rdisk of an existing point. Here however, the probability distribution is mod-

ified after the placement of a brush stroke so as to suppress the likelihood of anchoring

another stroke nearby

(x̃i, ỹi) ∼ pi(X) 7→ qi = [xci , yci ] , pi(X) = pi−1(X)pbi−1(X) (6.9)

where the pi−1(X) is the distribution from which the previous anchor point was generated,

and pbi−1(X) is the modification that resulted from the previous trial. The modification

models a suppression field with peak at the previous brush stroke’s anchor point, qi−1,

and smoothly decreasing radially outwards from the center. Generally, this Gauss-like

suppression function generated in trial i is defined as
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Figure 6.6: Gaussian suppression function for coordinates x when the brush stroke’s major

axis, aei , is in line with the horizontal axis. In this case C > 0 and vs = 1.

pbi(X) =
1

Z

[

C − e−(vsX
T SX)

]

(6.10)

where Z and C are a normalizing and scaling factor respectively, S is a 2D covariance matrix

whose diagonal entries correspond to aei and bei - the length of the major and minor axes

of - the elliptical stroke anchored at qi, and vs ∈ ℜ is a weight. C = 0 is the special case

preventing two anchor points from ever being placed in the same location on the canvas.

Figure 6.6 shows the effect of this suppression function on the probability distribution

projected onto the horizontal (x) axis, for the simplified case of a brush stroke with major

axis, aei , in line with the horizontal axis. Figure 6.7 (a) shows the result of a number of

brush stroke placement trials, and Figure 6.7 (b) is an overhead view of the effect of the

suppression function on the canvas probability distribution after these trials. Dark areas

represent low probability and bright areas represent high probability.

If C > 0 there can be an infinite number of trials to place brush stroke anchor points,

qi..∞, so there must be a point when it is decided that the painting is finished. The

algorithm should ensure that the canvas is sufficiently covered before halting the trials. In

order to do this, the extent of canvas coverage is monitored by maintaining a cumulative

count image, hi(X), with bin dimensions corresponding to the dimensions of the canvas.

After each brush stroke is placed, the count image is incremented over the painted area of

the stroke

hi(X) = hi−1(X) + si(X) (6.11)
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where si(X) is the mask encapsulating the stroke’s painted area. Maintaining hi(X) is

useful because is can be used to detect when a painting is still incomplete by searching for

gaps in the cumulative count. A gap mask, gi(X) is defined as

gi(X) =







1 where hi(X) < tg

0 otherwise
(6.12)

where tg is a threshold on the the count. Typically tg = 1, especially when painting with

fully opaque strokes (i.e. α = 1). The cumulative count image, and gap mask formed by

the process of painting the source image seen in Figure 6.1 can be seen in Figure 6.7 (d)

and (e) respectively. Gaps are indicated by the white areas in Figure 6.7 (e). The number

of trials that have been completed is denoted by Nt, and in this case Nt = 70.

Suppose that there are trials to place brush strokes until no gaps exist in canvas, i.e.
∑

X
gi(X) = 0. Figure 6.8 (a) has been painted by the probabilistic process with this

simple terminating condition. The number of trials to termination, NT - and hence number

of brush strokes placed - was NT = 1369. No gaps exist in the painted output, and Figure

6.8 (b) reveals that the brush stroke anchor points are fairly well distributed with regard to

the stretch and orientation of the painted area of the strokes. The final state of pi(X), and

the cumulative count image, hi(X), can be seen in Figure 6.8 (c) and (d) respectively. The

minimum, maximum and mean values of the cumulative count image after the final trial

are ȟi = 1, ĥi = 10, and h̄i = 4.2913. The extrema of canvas coverage are widely divergent

from the mean, and this means that there may be unnecessary redundancy in the coverage.

The count image, hi(X), can be used to influence the probability distribution pi(X)

during the anchor point distribution process. A sensible approach is to suppress the prob-

ability of a stroke placement increasingly with count. Hence, the following modification to

the suppression function can be performed at each trial

pbi(X) ∝
pbi(X)

kshi−1(X)
(6.13)

where ks ∈ ℜ is a weight. Figure 6.9 shows an overhead view of the pi(X) after a few

strokes placed using this modification with ks = 1. It is clear that the probability field

is being suppressed in places where the cumulative count is high (seen as a black area in

Figure 6.9 (b)), and hence it is less likely that an anchor point will be placed within these

regions. However, anchor points are not completely prevented from being placed near to

the edges of other strokes, so as to retain a hand-painted look.

What is required from a good anchor point distribution process is economy of brush

strokes, minimal redundancy and adequate coverage. To give some idea of how the different
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(a) Frames, Nu = 7, used to calculate kei
and θi.

(b) Painting (c) Probability distribution

(d) Cumulative count image (e) Gap mask (gaps=white)

Figure 6.7: The painting process for Nt = 70 trials; (a) the motion fields from surrounding

frames are used to calculate brush stroke stretch and orientation parameters (see Section

6.2.1), (b) the painted output, (c) probability distribution, pi(X), (d) cumulative count

image, hi(X), and (e) gap mask, gi(X) (gaps indicated by white areas). Here req = 40,

k̂e = 6, û = 35, vs = 3, C = 0 and α = 0.75. The source images are from the sequence

Female1 included on the DVD accompanying this thesis.
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(a) Final painting (b) Final anchor points

(c) Final probability distribution (d) Final cumulative count image

Figure 6.8: Painting while
∑

X gi(X) > 0; (a) the final painted output, (b) NT = 1369

brush stroke anchor points (dilated for clarity), (c) final probability distribution, pi(X)

(log sigmoid-normalized for clarity), and (d) final cumulative count image, hi(X). Here

req = 20, k̂e = 6, û = 35, vs = 3, C = 0 and α = 0.75. The source image is from the

sequence Female1 included on the DVD accompanying this thesis.

stages of the probabilistic process so far satisfy these requirements, some telling quantities

were measured in a trial on the distribution of brush strokes. In this trial, circular brush

strokes (i.e. k̂e = 1 and û is obsolete) of varying equivalent radii, req, are placed on a

frame of size 576× 720. Three different brush stroke distribution processes are tested: (1)

a pure pseudo-random anchor point distribution algorithm, (2) the proposed probabilistic

process, and (3) including modification suggested in Equation 6.3. The quantities measured

were: the number of brush strokes placed, NS , and the mean, h̄i=NT
, maximum ĥi=NT

, and

minimum, ȟi=NT
, of the cumulative count image with i = NT relating to the state of
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(a) Cumulative count image (b) Probability Distribution

Figure 6.9: Using (a) hi−1(X), to influence (b) pi(X), according to Equation 6.3 with

ks = 1. Here req = 80, k̂e = 6, û = 35, vs = 3, C = 0 and source frames are the same as in

Figure 6.7 (a).

hi=NT
(X) after the terminating trial. Economy of brush strokes is obviously related to NS ,

possible redundancy is revealed by a high value of ĥ and/or h̄, and ȟ ≥= 1 is a measure of

adequate coverage. Table 6.10 shows the results. The measurements are an average of 100

isolated tests for each process (1), (2) and (3). In (2) and (3) the following parameters are

fixed; ks = 1, vs = 3 and C = 0.

Table 6.10 clearly reveals the improvements made by the different stages (2) and (3) of

the proposed probabilistic process in anchor point distribution for circular brush strokes.

Due to the large parameter space of the process, however, the effects of orientation and

stretch are more difficult to quantify for all parameter combinations, source image se-

quences, their associated motion fields, and painting incarnations. It is worth noting that

the behavior of these processes is strongly dependent on the behavior of an underlying

random number generator1.

6.3.1 Two-Pass Anchor Point Distribution

While the probabilistic process of anchor point distribution discussed in Section 6.3 is

effective, the algorithm can be accelerated by taking a two-pass approach. During the first

pass, anchor points are placed by running trials until h̄i > ta, where ta is a threshold on h̄i.

The second pass is a hole-filling process. As mentioned previously, it is useful to formulate

a map of gaps in the painting, gi(X). The probability distribution for the second pass can

be re-initialized by modifying it with gi(X) as follows

1The Matlab function rand() is used in this work
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req Metric (1) (2) (3) req Metric (1) (2) (3)

10 NS 16734.2 5329 3957.5 20 NS 5001 1356.8 1072.5

10 h̄i=NT
12.2360 4.4889 3.3175 20 h̄i=NT

15.7743 4.2602 3.3018

10 ĥi=NT
30 10 7.6 20 ĥi=NT

34.6 9.4 7.4

10 ȟi=NT
1 1 1 20 ȟi=NT

1 1 1

40 NS 1034.2 351.8 272.5 80 NS 264.2 89 74.1

40 h̄i=NT
12.2451 4.0451 3.0941 80 h̄i=NT

11.6529 3.7455 3.0054

40 ĥi=NT
26.7 8.8 6.6 80 ĥi=NT

25 7.8 6.4

40 ȟi=NT
1 1 1 80 ȟi=NT

1 1 1

Figure 6.10: Comparing anchor point distribution processes; (1) pseudo-random, (2)

probabilistic, and (3) probabilistic and influenced by hi(X) with ks = 1 (see Equation 6.3).

The source image size is 576 × 720 and k̂e = 1. Other parameters in (2) and (3); vs = 3

and C = 0.

pi(X) ∝ pi−1(X)gi(X) (6.14)

This modification takes place before all trials in the second pass, and has the effect

of restricting the sampling space to those canvas locations corresponding to gaps in the

painting. In the second pass, sampling trials are carried out on pi(X) until all gaps are

sufficiently filled. Gaps that form larger connected regions are perceived as holes in the

painting, and the area of a particular connected hole is measured as Aj . This provides the

halting condition for the second pass. Sampling trials can continue in the second pass while

Âj > AH , halting when the condition Âj <= AH is met, where Âj is the largest hole, and

AH is the maximum tolerated area of a hole.

If desired, the placement of a stroke that would result in ĥi > tm can be explicitly

rejected, where tm is a threshold on the maximum of the count image. This stage of the

algorithm is inspired by the aforementioned “trial-and-error” style of PDS (see Section

4.3.1). With the addition of this condition, some of the trials to place strokes will not be

successful. This implies that more trials are needed before suitable anchor point locations

are found, however the number of overlapping strokes can be better controlled. By limiting

the total number of strokes, NS , a more memory efficient painting results.

Figure 6.11 shows the results of a two-pass painting with these conditions. The first

pass was halted with the condition ta = 2. The halting condition of the second pass was

AH = 200, and the resulting gaps can be seen in Figure 6.11 (d). They are not obvious in

the painting of Figure 6.11 (a) due to the presence of an underpainting. Due to the condition

that tm = 4 in both passes, NT = 733 trials were needed to place NS = 652 strokes with

ks = 1 (see Section 6.3). The final cumulative count image has extrema h̄i=NT
= 2.0323,
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(a) Final painting (b) Final anchor points

(a) Final cumulative count image (b) Final gap mask

Figure 6.11: Two-pass painting while Âj > AH ; (a) the final painted output, (b) NS = 652

brush stroke anchor points (dilated for clarity), (c) final cumulative count image, hi=NT
(X)

(normalized with regard to ĥi in Figure 6.8 (d)), and (d) final gap mask, gi=NT
(X) with

holes no larger than AH = 200. Here req = 20, k̂e = 6, û = 35, vs = 2, C = 0.1, ks = 1

and α = 0.75. The source image is from the sequence Female1 included on the DVD

accompanying this thesis.

ĥi=NT
= 4, and ȟi=NT

= 0. Interestingly, the value of h̄i did not change dramatically in the

second hole-filling pass (note that ta = 2, and therefore ȟi ≈ 2 after the first pass). For the

purpose of comparison the cumulative count image shown in Figure 6.11 (c) is normalized

with regard to the maximum count, ĥi, of Figure 6.8 (d). Compared to Figure 6.8, it is

clear that far fewer strokes have been placed, and that there is much less redundancy in

Figure 6.11. The painting coverage, however, is still visually acceptable.
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6.4 Layer-Based Painting

In order to achieve a non-uniform content-based painting, a layer-based approach is pro-

posed. These layers are similar to the layers in the Layer Model for Motion Estimation (see

Section 4.4.1), in that they encapsulate the spatio-temporal boundaries of semantic objects.

However, since this algorithm is based on the Rubber Sheet Model for Motion Estimation

(see Section 4.4.1), provisions will have to be made for the problems of occlusion and un-

covering. These issues will be discussed later. Let us first consider the case of layer-based

painting on an isolated frame from an image sequence. Three layers are defined for each

frame n; the background lnb (X), the foreground (i.e. a skin mask) lnf (X), and details (i.e.

edges within the foreground) lnd (X). The idea is that each layer can be stylized differently,

e.g. the background can be painted coarsely, while the skin and edge layers will be painted

more finely or with special highlighting effects. These layers are essential binary label fields

that mask the semantic areas within each frame.

6.4.1 Spatio-Temporal Skin and Edge Detection

In the case of video in which the main subjects are people, the foreground layer (i.e. skin

mask) can be generated using the Graph Cut-based Skin Detection algorithm described in

Chapter 5. This results in the binary mask of the form

lnf (X) =







1 if skin pixel

0 otherwise.
(6.15)

As previously described in Chapter 5, this Graph Cut-based Skin Detection algorithm

creates a skin mask for each frame independently. Although spatially smooth, the resulting

mask sequence is not temporally coherent.

This problem is addressed through spatio-temporal smoothing of the label fields. Figure

6.12 demonstrates this process. The masks are median filtered over a spatio-temporal

window of symmetrical temporal extent NLf
, and spatial extent WLf

centered on each

pixel in the label field associated with current frame n. To further enhance temporal

coherency, Motion Compensation is used to warp the pixels of the binary skin masks from

the past and future frames back to their locations with regard to that of the current frame

according to the accumulated forward and backwards motion vector fields. Figure 6.12 (a)

are NLf
= 7 skin masks resulting from application of the Graph Cut-based Skin Detection

algorithm to the source image sequence seen in Figure 6.7. Figure 6.12 (b) and (c) show

the non-smoothed and smoothed versions of frame n respectively.

The background layer is calculated as lnb (X) = lnf (X)c. To form the detail layer, lnd (X),

a Canny Edge Detection is performed on each frame. This results in the binary label field
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(a) Frames, NL = 7, used in smoothing n

(b) Graph-Cut Skin Detection, frame n (c) Spatio-temporal smoothing, frame n

Figure 6.12: f skin-masking; (a) skin masks from surrounding frames are used to smooth

lnf (X), (b) the non-smoothed version of lnf (X), and (c) the spatio-temporal median filtered

version of lnf (X) with WLf
= 11. The parameters used for the initial Graph Cut-based Skin

Detection of (b) are Θ = 10 and αgc = 500. Both the initial Graph Cut-based Skin De-

tection and spatio-temporally smoothed skin mask sequences for the source video Female1;

Female1 GCskin and Female1 smoothskin - are included on the DVD accompanying this

thesis.

lnd (X) =







1 if Canny edge pixel with td

0 otherwise
(6.16)

where td is a threshold on the Sobel gradient inherent to the Canny Edge Detection process2.

The Canny detector copes well with noise, and produces thin edge lines that are well aligned

to actual edges in the image. From a stylistic point of view, these edge lines are a little

too thin for the proposed stylization algorithm. Therefore the edges in lnd (X) are dilated

morphologically using a disk-shaped structuring element of radius rd1 . Next, edges that fall

within the background layer are eliminated with the operation lnd (X) = lnd (X) ∩ lnf (X).

The detail mask sequence is then smoothed using the same median filtering with Motion

Compensation process as for the foreground mask sequences. Figure 6.13 demonstrates this

2Canny Edge Detection was performed in Matlab with all remaining parameters set to default
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(a) Frames, NLd
= 7, used in smoothing n

(b) Canny Edge Detection, frame n (c) Spatio-temporal smoothing, frame n

Figure 6.13: Spatio-temporal edge masking; (a) edge masks from surrounding frames are

used to smooth lnd (X), (b) the non-smoothed version of lnd (X) with td = 0.5 and dilated

with rd1 = 1, and (c) the spatio-temporal median filtered version of lnd (X) with WLd
= 7.

The source sequence Female1 is included on the DVD accompanying this thesis.

process. Figure 6.13 (a) are NLd
= 7 skin masks resulting from application of the Canny

Edge Detection algorithm to the source image sequence seen in Figure 6.7. Figure 6.13 (b)

and (c) show the non-smoothed and smoothed versions of frame n respectively.

6.4.2 Separate Stylization of Semantic Layers

The aim of this particular video stylization algorithm is to allow the user to vary the

parameters of stylization between semantic layers, where the semantic layers are defined

by spatio-temporally coherent skin and edge masks in this case. The spatio-temporally

coherent semantic layers defined for a single frame of a typical input video can be seen

in Figure 6.14. Note that the foreground (i.e. skin) layer is finalized with the operation

lnf (X) = lnf (X) ∩ lnd (X)c.

Suppose, for example, that the user would like to stylize regions of semantic impor-

tance more finely. Recall the properties of elliptical brush strokes and their parameters, as

previously discussed in Section 6.2. The user could choose to place strokes with elliptical

equivalent radius reqb
= 40 in the background, reqf

= 15 in areas of skin, and reqd
= 5 in

detail regions. The probabilistic sampling process described in Section 6.3 can deal with
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this condition by adjusting the dimensions of the stroke’s painted area, si(X), and the pa-

rameters of the suppression function, pbi(X), according to the elliptical parameters chosen

for the particular semantic layer encapsulating qi.

The source frame seen in Figure 6.15 (a) is stylized in this way so as to fulfill the

conditions ta = 2 and tm = 10 in the first pass, and AH = 10 and tm = 10 in the second

pass of anchor point distribution. Here, NT = 626 trials resulted in the anchoring of

NSb
= 153 strokes in the region marked by lnb (X) (i.e. background), NSf

= 250 strokes in

lnf (X) (i.e. foreground/skin), and NSd
= 223 (i.e. detail/edge) strokes in lnd (X). The final

cumulative count image shown in Figure 6.15 (b) has extrema of ĥi=NT
= 6, ȟi=NT

= 0

and h̄i=NT
= 2.378.

A problem is clearly observed in the output painting of Figure 6.15 (c) in that too

few brush strokes are anchored in regions falling within the foreground, lnf (X), and detail,

lnd (X), semantic regions particularly. Recalling the probablisitic anchor point distribution

process described in Section 6.3, this may be due to the large suppression fields, pbi(X),

generated by the large strokes anchored in regions marked by lnb (X), and the fact that there

are typically fewer pixels marked by lnf (X) and lnd (X), meaning their sampling likelihood

is less. The latter problem would be true even in the case of a purely random sampling

process.

There are two ways to solve this problem. The first is a weighted approach in which

the probability distribution pi=0(X) - previously discussed in Section 6.3 - is initialized so

as to increase the likelihood of sampling from regions encapsulated by the foreground or

detail masks. Specifically,

pi=0(X) = vbl
n
b (X) + vf lnf (X) + vdl

n
d (X) (6.17)

where vb, vf , and vd are used to weight the initial sampling distribution, pi=0(X), for each

frame n with regard to the semantic regions in the source image. These weights should

be chosen to reflect the the relative area of their associated semantic mask regions. For

example

vd = kd

∑

X

lnd (X)

∑

X

lnb (X) +
∑

X

lnf (X) +
∑

X

lnd (X)
(6.18)

where kd ∈ ℜ is a weight designed to scale this effect, and similar for kf and kd with

regard to vf and vd respectively. Figure 6.16 demonstrates the use of this technique. Here,

pi=0(X) has been weighted with kb = 1, kf = 10 and kd = 100. It is clear to see in

Figure 6.16 that more strokes have been anchored lnf (X) and lnd (X) because the initial

sampling likelihood was increased in these regions. Here, NT = 1803 trials were needed to



6.4. Layer-Based Painting 141

(a) Frames, NL = 7, used in determining semantic layers for n

(b) Source frame (c) Skin mask

(d) Edge mask (e) Skin mask minus edges

Figure 6.14: Semantic video layers; (a) surrounding frames used to determine masks for

n, (b) the source frame n, (c) spatio-temporally smoothed skin mask, lnf (X), (d) spatio-

temporally smoothed edge mask, lnd (X), and (e) lnf (X) = lnf (X)∩ lnd (X)c. Other parameters

are td = 0.5, rd1 = 3, and WLd
= 7. The source images are from the sequence Swimming

included on the DVD accompanying this thesis.
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place NSb
= 131 background strokes, NSf

= 322 foreground strokes, and NSd
= 1350 edge

strokes, fulfilling the same conditions imposed on the previous painting seen in Figure 6.15

(a). Now, however, the extrema of the final cumulative count image shown in Figure 6.15

(b) are ĥi=NT
= 9, ȟi=NT

= 0 and h̄i=NT
= 2.5435.

The second solution to the problem is to paint each semantic layer separately, with

disregard for the painting activity in other layers. Therefore, the three layers of strokes -

background, foreground, and detail - are distributed in three rounds of canvas painting, each

with a separate set of trials, coverage and terminating conditions and a distinct probability

distribution for each canvas region masked by a particular semantic layer mask. This

technique is demonstrated in painting Figure 6.17 (a). Here, NT = 2010 trials were carried

out to termination. This resulted in the anchoring of NSb
= 147 background strokes so

as to fulfill the conditions as before, but only in the region masked by Ln
b (X). Similarly,

NSf
= 410 and NSd

= 1453. The extrema of the final cumulative count image shown in

Figure 6.17 (b) are ĥi=NT
= 10, ȟi=NT

= 0, and h̄i=NT
= 2.9482.

Regardless of the method of layer-based stroke generation, strokes are always stored in

three separate lists; background, foreground and detail, organized in the order which they

were generated and composited accordingly.

6.4.3 Moving the Strokes

The frame-wise motion field obtained by the Motion Estimation is used to move brush

strokes from one frame to the next to reflect the underlying motion of the scene. The first

video frame (i.e. n = 0) is painted exactly as described in Section 6.3. For each consecutive

video frame processed the brush stroke anchor points are motion-compensated according

to

qn+1
i = qn

i + fn(qn
i ) (6.19)

where fn(X) is the forward motion vector field estimated between frames n and n + 1 of

the video. This idea can be visualized in Figure 4.12.

As discussed in Section 4.4.1 of Chapter 4, brush strokes translated using the Rubber

Sheet Model will tend to bunch together and overlap excessively in regions of occlusion in

the video, and drift apart to reveal gaps in areas of uncovering. The phenomena of occlusion

and uncovering are explained in Figure 4.13 (a) and (b) respectively. The problems they

create in brush stroke animation can be seen in Figure 6.18, as the camera zooms in on

the face of the subject. For visualization, the canvas has not been underpainted and so the

uncovering gaps are apparent. The pile-up from occlusion is not easy to visualize because

the redundant strokes move on top of one another such that the local maximum, ĥn
i , of

the cumulative count, hn
i (X), in this region is much higher than the overall mean h̄n

i (see
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(a) Output painting

(b) Stroke anchor points (c) Cumulative count image

Figure 6.15: Varying brush stroke parameters on semantic layers; (a) the output painting

with reqb
= 40, reqf

= 15, and reqd
= 5, (b) the final cumulative count image hi=NT

(X),

and (c) the output painting. Very few small brush strokes with reqd
= 5 have been placed

in the region masked by the detail layer lnd (X), and similarly with lnf (X). Here, û = 35,

k̂e = 4, C = 0.1, vs = 2, ks = 1, α = 0.9, ta = 2, tm = 10, and AH = 10. The source image

is from the sequence Swimming included on the DVD accompanying this thesis.

Section 6.3 for an explanation of these metrics).

A novel solution to this problem of occlusion pile-up is to detect the frame-wise regions

of occlusion, and prevent brush strokes from being translated into these regions. A measure

of occlusion is obtained by generating a motion difference map as follows
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(a) Output painting

(b) Stroke anchor points (c) Cumulative count image

Figure 6.16: Weighting pi=0(X) in styling semantic layers; (a) the output painting with

reqb
= 40, reqf

= 15, and reqd
= 5, (b) the final cumulative count image hi=NT

(X), and

(c) the output painting. Now more small brush strokes with reqd
= 5 have been placed in

the region masked by the detail layer lnd (X), and similarly with reqd
= 10 in lnf (X). Here,

kb = 1, kf = 10, kd = 100, û = 35, k̂e = 4, C = 0.1, vs = 2, ks = 1, α = 0.9, ta = 2,

tm = 10, and AH = 10. The source image is from the sequence Swimming included on the

DVD accompanying this thesis.

on(X) = |Xn′

− Xn′′

| (6.20)

Xn′

= Xn−1 + fn−1(X) , Xn′′

= Xn′

+ bn(X) (6.21)
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(a) Background (b) Foreground (c) Detail

(d) Output painting

(e) Stroke anchor points (f) Cumulative count image

Figure 6.17: Distributing strokes in layers; (a) NSb
= 147 background strokes in lnb (X),

(b) NSf
= 410 foreground strokes in lnf (X), (c) NSd

= 1453 foreground strokes in lnd (X),

(d) the output painting, (e) final cumulative count image hi=NT
(X), and (f) the output

painting. Even more small brush strokes with reqd
= 5 have been placed in the region

masked by the detail layer lnd (X), and similarly with lnf (X). Here û = 35, k̂e = 4, C = 0.1,

vs = 2, ks = 1, α = 0.9, ta = 2, tm = 10, and AH = 10. The source image is from the

sequence Swimming included on the DVD accompanying this thesis.
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where Xn′

is the translation of the pixel coordinates in frame n − 1 to n according to the

motion estimator and fn−1(X) the forward motion field estimated for frame n − 1. Xn′′

is the translation of the estimated Xn′

back to the locations in frame n − 1 according to

bn(X), the backward motion field estimated for frame n. In regions with no occlusion it

would be expected that Xn′

= Xn′′

, and hence on(X) would be low. In regions of occlusion,

however, on(X) is higher.

Since the motion estimator will usually fail in areas of occlusion and uncovering, it

follows that on(X) will be non-zero in these regions, and close to zero otherwise. The

image is normalized according to a user-defined maximum estimated occlusion, ô. Then,

significant regions of occlusion and uncovering can be detected as on(X) > to, where to

is a threshold. This can be visualized in Figure 6.19. The subject, seen in Figure 6.19

(a) and (b), occludes her eyes by blinking and this is clearly highlighted by the occlusion

image, on(X), seen in Figure 6.19 (c) and thresholded detector seen in Figure 6.19 (d). In

animating the brush strokes, anchor points that are motion-compensated into these regions

when painting frame n are simply deleted.

Anchor points that are translated beyond the spatial boundaries of the video are also

discarded, as are points that are translated from the region of one semantic layer to another.

Furthermore, strokes whose motion-compensated translation would excite the condition

ĥi > tm are deleted. Brush strokes at the rear of the painting (i.e. that were initialized

early in the anchor point distribution process) are always deleted before others that were

composited on top of. This action prevents the flicker that would occur if brush strokes

could be seen popping in and out of the painting suddenly.

The second problem with the Rubber Sheet Model - as previously discussed in Section

4.4.1 - is that brush strokes tend to drift apart in areas of uncovering to reveal increasingly

large gaps in the painting which need to be filled. A gap mask, as discussed in Section 6.3,

is used to limit sampling activity to gap regions at this point. This amounts to

pn
i (X) ∝ pn

i−1(X)gi(X) (6.22)

The entire two-pass distribution process described in Section 6.3 is then carried out on

this reduced sampling space until painting completion. This stage will also fill gaps that

have been created by the deletion of brush strokes translated into regions marked by the

mask on(X) > to. All newly generated brush strokes are added to the head of the list

defining compositing order, such that they are painted early in the composition.
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Figure 6.18: Occlusion and uncovering; brush strokes pile up in regions of occlusion and

drift apart to reveal gaps in regions of uncovering. Here, a camera zoom demonstrates these

problems. Important parameters include reqb
= 20, reqf

= 10, reqd
= 5, k̂e = 4, û = 32,

C = 0, vs = 3 and α = 0.9. The source images are from the sequence Hollywood included

on the DVD accompanying this thesis.

6.5 Spatio-Temporal Color-Sampling

As discussed in Section 6.5, coloring a brush stroke by point-sampling the color of the image

under its anchor point qn
i as it moves from frame to frame will result in flicker in the painted

sequence. It is also desirable to paint each brush stroke with a color that is representative

of the region defined by the stroke’s painted area, sn
i (X), and not just that of its anchor

point.
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(a) Frame n − 1 (b) Frame n

(c) Occlusion image (d) Significant occlusion

Figure 6.19: Occlusion detection; (a) frame n − 1, and (b) the subject closes her eyes

in frame n, (c) the occlusion image, on(X), captures the occlusion, and (d) regions of

significant occlusion are detected with ô = 32 and to = 0.04. Brush stroke anchor points

will not be translated into these regions when painting frame n. The source images are

from the sequence Female1 included on the DVD accompanying this thesis.

In order to address these problems, two filters are used in cascade; one spatial and one

temporal. A spatial window is used to simultaneously sample and smooth spatial color for

each brush stroke, cn
i , and the temporal window removes variations of this sampled color

across the frames. The spatial process can be seen in Figure 6.20, and it yields a color

sample

cn
i =

∑

j

[vjC
n
i (X + dj)] (6.23)

where cn
i is the sampled (rgb) color vector, C(X)n

i are the pixel-wise color values for the

frame, dj indexes the samples in the spatial window, and vj are weights corresponding to

a spatial Hamming window, both centered on qn
i . The Hamming window is in place to
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Figure 6.20: The process of spatial color sampling to paint a circular brush stroke.

ensure that color closer to the center of a brush stroke is weighted with more importance

in the spatial averaging process. The width of this spatial window, Wc, can be adjusted

according to Wc = 2kcreq, where kc ∈ {0...1} is a user-defined constant. The smaller the

value of kc, the more distinct the color of individual strokes will appear. Noise in the range

[−δc, +δc], can be added cn
i to allow the individual strokes to appear even more distinct.

Temporal smoothing is achieved with an Infinite Impulse Response (IIR) Butterworth

filter of order Nb, and normalized cutoff frequency, ωb. A third order (i.e. Nb = 3) IIR

Butterworth filter is a good choice for the task of removing flicker because it has a frequency

response that is maximally flat in the pass-band and a reasonably steep rate of attenuation.

Furthermore, the flicker-removing performance of a third order Butterworth filter in this

task was found to be comparable to that of a temporal mean filter with over twice the

number of taps. The taps of a third order Butterworth filter with varying ωb can be seen in

the Table 6.21 below. Note that cn
i refers to the spatially smoothed color sample for frame

n, whereas cn−1
bi

refers to the temporally smoothed color output of the Butterworth filter

for frame n − 1 and so on.



6.6. Preserving Some High Frequency Information 150

ωb cn−3
bi

cn−2
bi

cn−1
bi

cn
i cn−1

i cn−2
i cn−3

i

0.1 -0.5321 1.9294 -2.3741 0.0029 0.0087 0.0087 0.0029

0.3 -0.1378 0.6959 -1.1619 0.0495 0.1486 0.1486 0.0495

0.5 0 0.3333 0 0.1667 0.5 0.5 0.1667

Figure 6.21: The taps of a third order (i.e. Nb = 3) IIR Butterworth filter with varying

cutoff frequency ωb.

6.6 Preserving Some High Frequency Information

Section 6.2.1 of this Chapter presents a novel technique for motion expression in SBR, where

the underlying motion of an image sequence is used to smoothly stretch and rotate elliptical

brush strokes in the direction of the local motion determined by Motion Estimation. An

aesthetic problem results from this technique, however, in that much of the high frequency

information is lost when the ellipses stretch across boundaries and edge regions in the

painted image sequences. This problem is demonstrated in 6.22 (b).

A (subjectively) better effect be achieved by trying to limit the stretch of the elliptical

brush strokes in the region of edges as defined by the spatio-temporal detail label field,

lnd (X). Figure 6.22 demonstrates this idea. Figure 6.22 (a) shows the original source image.

The motion of surrounding frames is clearly expressed by the stretch of the elliptical brush

strokes in the initial output painting of Figure 6.22 (b), but much of the high frequency

detail is lost where these ellipses are orientated and stretched across edges and boundaries.

The original spatio-temporally smoothed detail mask, lnd (X), can be seen in Figure 6.22 (c).

Recall that the underlying frame-wise Canny edge mask was dilated morphologically with

rd1 = 1 prior to spatio-temporal smoothing (see Section 6.4 for explanation). This step

had the effect of increasing the non-zero regions of the detail mask, lnd (X), over which the

smallest brush strokes were distributed. Figure 6.22 (d) shows a further dilation of Figure

6.22 (c) with rd2 = 3, and from this arises a special detail (i.e. edge) distance filter as can

be seen in Figure 6.22 (e). This filter is designed to curb the stretch of the brush strokes

at sites near to non-zero values of lnd (X) according to

kn
e (X) = kn′

e (X)dn(X) (6.24)

where kn′

e (X) describes the stretch profile of the ellipses at potential anchor points across

the canvas coordinates X, using the method of calculating the elliptical stretch described in

Section 6.2.1. The detail distance filter, dn(X), is a pixel-wise measurement of the Euclidean

distance from each site in X to the nearest non-zero value marked by lnd (X). These values

are normalized, scaled by a constant Ed, and clipped such that dn(X) > 1 = 1. The

desired effect here is to limit the stretch of the elliptical strokes increasingly close to edges,
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(a) Source frame n (b) Output painting

(c) Edge detail (d) Dilated edge detail

(e) Detail distance filter (f) Elliptical stretch control

Figure 6.22: Curbing the elliptical stretch at detail sites; (a) the source frame n, (b)

output painting with k̂e = 9, and û = 32, (c) spatio-temporal detail mask lnd (X), (d) Ln
d (X)

dilated with rd2 = 4, (e) detail distance filter dn(X) with Ed = 2, and (f) the output

painting also with k̂e = 9 and û = 32, but now dn(X) influencing kn
e (X) according to

Equation 6.6. Other important parameters include reqb
= 20, reqf

= 10, reqd
= 5, C = 0,

vs = 3, ks = 1, α = 0.9, ta = 2.5, AH = 0, tm = 5, to = 0.01, kc = 0.3, Nb = 3 and ωb = 0.5.

The source image is from the sequence Hollywood included on the DVD accompanying this

thesis.

reducing them to circles at edge sites. The value of Ed ≥ 1 determines the stretch-curbing

influence of dn(X) across X. The value of kn
e (X) at sites where lnd (X) = 1 will always be

unity, and this is the desired effect. Figure 6.22 (e) shows dn(X) with Ed = 2, and Figure
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6.22 (f) shows the painted result after utilizing this filter to influence the parameters of

elliptical stretch calculation (see Section 6.2.1) and anchor point distribution (see Section

6.3) according to Equation 6.6. It is clear to see that the elliptical stretch of brush strokes,

kn
ei

is increasingly limited near to and at the edges shown in Figure 6.22 (d), and this helps

to preserve some high frequency detail in the output painting.

6.7 Finishing Touches

There is huge potential for experimentation with the video stylization framework. A

cartoon-ish look, for example, can be achieved by alpha-compositing color onto the painted

canvas using the spatio-temporal edge layer discussed in Section 6.4 as the alpha mask.

This is achieved by the following operation

zn(X) = Ecz
n(X)αd(1 − ln

′

d (X)) (6.25)

where zn(X) is the post-SBR painted canvas, αd is the opacity of the edge decoration,

and Ec is a constant defining its color. The mask ln
′

d (X) refers to the smoothed version

of the detail layer, lnd (X) described in Section 6.4. The smoothing is performed with a

2D normalized Hamming window of spatial extent Wd. The edge may also be dilated just

prior to the final smoothing with a morphological disk of radius rd3 . Two examples of edge

decoration can be seen in Figure 6.23.

Another interesting effect can be created by sampling the source image beneath the

color-sampling window of width Wc defined by kc (see Figure 6.20), and resizing it to the

size of the painted area of its associated brush stroke (i.e. the area defined by sn
i (X)) using

bicubic interpolation. The result is a lens-like effect, and the lens-like brush strokes are

still animated with the underlying motion of the sequence. Figure 6.24 presents example

frames incorporating this effect.

6.8 Summary of the Framework

Before describing some video results, a brief summary of the framework for the Skin-Aware

Stylization of Video Portraits is needed. Once the user has defined certain initial parame-

ters, the overall stylization process is as follows:

1. First, the source video is analyzed to obtain some reference data. Graph Cut-based

Skin Detection (see Chapter 5), and Canny Edge Detection are performed on each

frame individually, with no temporal smoothing. Motion Estimation (see (Kokaram,

1998)) is carried out to estimate the frame-wise motion field.
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(a) Source frame 1 (b) Stylized output

(c) Source frame 2 (d) Stylized output 2

Figure 6.23: Edge decoration; (a) source frame from the sequence Female1, (b) example

frame from stylized output sequence Female1 1 with important parameters reqb
= 20, reqf

=

10, reqd
= 0, C = 0, vs = 2, ks = 1, ta = 2, tm = 4, AH = 5, to = 0.04, α = 0.75, k̂e = 9,

û = 35, Ed = 10, αd = 1, rd1 = 3, Wd = 5, Ed = 10, Nb = 3, ωb = 0.1, kc = 0.3, δc = 0.01,

δθ = 0.032, NLf
= 5, WLf

= 11, NLd
= 3, WLd

= 7 and td = 0.2, (c) source frame from

the sequence Swimming, and (c) example frame from stylized output sequence Swimming 1

with with important parameters reqb
= 5, reqf

= 7, reqd
= 15, C = 0.1, vs = 2, ks = 1,

ta = 1.5, tm = 1.5, AH = 20, to = 0.01, α = 0.5, k̂e = 1, αd = 0.75, rd1 = 2, rd2 = 4,

Wd = 5, Nb = 3, ωb = 0.5, kc = 0.5, Ec = [0, 0, 0.5] (navy), δc = 0.02, δθ = 0.064, NLf
= 5,

WLf
= 5, NLd

= 3, WLd
= 2 and td = 0.1. Both source sequences and the stylized outputs

are included on the accompanying DVD.
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(a) Lens-like effect (b) Blink success

(c) Lens effect on water (d) Lens effect on water

Figure 6.24: A lens-like effect; (a) lnd (X) has been created by tracking the pupils in the

eyes using the motion tracker in Adobe AfterEffects CS3, and (b) the track is not lost

when the subject blinks (see Figure 6.19), (c) the lens-like effect applied to lnb (X) only, and

(d) another frame. A spatial sampling window with kc = 0.5 produces the best results.

Examples (a) and (b) are frames from the stylized output sequences sequence Female1 3,

and (b) and (b) are from Swimming 2. All parameters are listed in Appendix C.

2. The frame-wise skin and edge masks are spatio-temporally smoothed by a process of

motion-compensated median filtering (see Section 6.4). The edge mask may or may

not be dilated slightly prior to this process, depending on the user’s preference.

3. The spatio-temporally smoothed skin and edge masks are used to calculate the se-

mantic background, foreground and detail layers (see Section 6.4).

4. A detail distance filter is created from the spatio-temporally smoothed detail (i.e edge)

layer (see Section 6.6).

5. Using the motion field, regions of significant occlusion are detected for each frame
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individually (see Section 6.4.3).

6. Next, each frame of the image sequence is stylized sequentially. First, the source

image is Gaussian blurred to form a canvas underpainting.

7. Brush strokes are distributed over the underpainting (i.e. SBR). Once initialized, the

attributes of brush strokes are stored as structures in three ordered lists - one for each

semantic layer; background, foreground and detail.

8. If frame undergoing SBR is not the first frame of the sequence, the anchor points

of brush strokes from the previous frame are animated to the current frame (see

Section 6.4.3). The structures of brush strokes whose anchor points fall into occlusion

regions after this process are deleted from the lists. Brush strokes which cross the

boundaries of semantic layers, or cause redundancy, are also deleted. The attributes

of all surviving strokes (i.e. anchor point location, color, orientation, shape) are then

re-calculated, and their structures are updated accordingly.

9. The probabilistic anchor point distribution technique is used to distribute further

brush strokes until the painting is finished (see Section 6.3 for the completion criteria).

The strokes may be distributed in regions masked by each semantic layer separately,

or over all semantic regions at once (see Section 6.4.2 for explanation). The user

may have chosen to vary certain attribute of brush strokes between semantic layers

(e.g elliptical equivalent radius (see Section 6.2). Each trial in the process of anchor

point distribution, therefore, is tuned to the equivalent radius (see Section 6.2), and

motion-expressive stretch and orientation (see Section 6.2.1), of each candidate brush

stroke with regard to the style parameters defined for each semantic layer. It is also

aware of the stretch-curbing influence of the detail distance filter (see Section 6.6) at

each image site. Once calculated, the attributes of anchor point location, elliptical

stretch and orientation are updated in the structure of each brush stroke.

10. The dominant color of each brush stroke is usually calculated using the spatio-

temporal color-sampling process (see Section 6.5). The user, however, may have

chosen to color the brush strokes of one or more semantic layers using the lens-like

effect (see Section 6.7). Once calculated, the color attributes are updated in the

structure of each brush stroke.

11. After painting completion, brush strokes are composited. Brush strokes of the back-

ground list are composited first, then those of the foreground, and finally detail. The

user may have specified an alpha value for each semantic layer, and other parameters

such as noise with regard to brush stroke color or orientation. During compositing,

the attributes of brush strokes are queried in their structures.
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Figure 6.25: Example frames from the source videos; (l-r) Swimming, Hollywood, Male1,

Hollywood, Female1, Hollywood.

12. Final touches are added to the frame. This mainly consists of overlaying the cartoon-

like edge decoration (see Section 6.7). Again, the user may have specified a color, and

alpha value for compositing the edge decoration.

6.9 Results

A number of source image sequences have been stylized using this novel skin-aware video

stylization framework. Example frames from these source sequences can be seen Figure 6.25.

Small versions (i.e. 50% original aspect ratio) of the source sequences, Female1, Male1,

Swimming and Hollywood are included on the accompanying DVD, along with a number

of stylized output sequences that have been transformed using a variety of parameters and

effects within the video stylization framework.

A full list of the parameters used for each stylized video is included in Appendix C. The

resulting video portraits are fun and interesting, expressive of semantic content and motion,

and temporally smooth with regard to color-sampling. Some interesting frames from the

stylized videos can be seen in Figures 6.26 and 6.27, as well as the previously mentioned

Figures 6.23 and 6.24.

The Hollywood sequence is notable in that it contain shot cuts, and the stylized videos

associated with it demonstrate the interesting behavior of the motion-expressive ellipses

and spatio-temporal color-sampling process over the shot cuts. Only the filters for spatio-

temporal smoothing of the semantic layer masks - as described in Section 6.4 - are tempo-

rally clipped at the shot cut boundaries during stylization. The original source video was

a slow motion demo reel, and so four of the stylized results are presented at the slow frame

rate of 10fps (i.e. frames per second); Hollywood 10fps (1-4). The others are not, however,

since they exist for the purpose of comparing the different spatio-temporal color-sampling

techniques.

Three of the stylized Hollywood videos have been created especially for the purpose of

comparing (a) the new spatio-temporal color-sampling process presented in this Chapter

(see Section 6.5), with two well-known color-sampling techniques of (b) simple frame-wise

point-sampling at anchor point coordinates, and (c) uniform volumetric motion-compensated

averaging. Hollywood b1, Hollywood point and Hollywood mean, are stylized using tech-

niques (a), (b), and (c) respectively. For (a), Nb = 3, ωb = 0.3, and a spatial color-sampling
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Figure 6.26: Example frames from stylized videos; (l-r,t-b) Hollywood 10fps 1, Swim-

ming 3, Male1 1, Male1 3, Hollywood 10fps 3, Hollywood 10fps 3, Hollywood 10fps 2,

Male1 2, Swimming 1. The parameters used to stylize these sequences are listed in Ap-

pendix C.
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Figure 6.27: A selection of frames from the stylized sequence Female1 3; (l-r,t-b) the

overall motion of the character from the center to the right of the shot is revealed in the

stretch and orientation of elliptical brush strokes. The specific frames shown here are

n=101,104,108,111,114,117 (zero indexed).
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window defined by kc = 0.5 is used with brush strokes of dimensions reqb
= 30, reqb

= 15,

reqb
= 5 (see Sections 6.5 and 6.4.2 for explanations of these parameters). In (c), for compar-

ative purposes, uniform symmetrical spatio-temporal volumes of equivalent spatial widths,

Wc = 30, 15, 5 (i.e. for each semantic layer), and a temporal extent of 7 frames centered

on the current frame are utilized for volumetric motion-compensated averaging. These

videos demonstrate that (a); the new spatio-temporal color-sampling technique, performs

well compared with (c); motion-compensated volumetric averaging, and that the technique

of (b); frame-wise point-sampling with no temporal smoothing, simply causes flicker in the

stylized output sequence.

The importance of choosing the correct value of ωb for the Butterworth filter described in

Section 6.5 is demonstrated by comparing the stylized results of Hollywood b1, Hollywood b2

and Hollywood b3, in which Nb = 3, kc = 0.5, and ωb = 0.3, ωb = 0.1, ωb = 0.5 respectively.

The former is the is the most stable value for Butterworth smoothing the colors, whereas

the use of ωb = 0.1 and ωb = 0.5 produce color distortions and flicker respectively.

The final stylized outputs Female1 3 and Swimming 2 demonstrate the lens-like effect

described in Section 6.7, and example frames from these stylized videos can be seen in

Figures 6.24 (a) and (b), and Figures 6.24 (c) and (d) respectively. For Female1 3, the

detail layer, lnd (X), was created by tracking the pupils in the eyes on the Female1 source

video using the motion tracker in Adobe AfterEffects CS3. In Swimming 2, the lens effect

is only implemented in the background layer, lnb (X). Another strange effect can be seen

in the stylized sequence Male1 3, in which a single, canvas-sized image of chain mail was

repeatedly sampled for coloring the brush strokes in each frame of the painted sequence.

The brush strokes are still expressive of motion, however, and the edge decoration still

reveals the semantic content of the video, since the male character’s portrait is overlaid in

neon green.

The sequences Swimming 3, Hollywood 4, Hollywood 10fps 4 and Male1 2 are also no-

table in that they are stylized without application of the detail distance filter, kn
e (X), as

described in Section 6.7. This somewhat undesirable effect of not curbing the stretch of

elliptical brush strokes at edges is intended to demonstrate the usefulness and necessity of

kn
e (X) in creating a more aesthetically pleasing edge-preserving stylization. These videos

clearly demonstrate that much of the high-frequency detail is lost in the SBR when the

elliptical strokes are allowed to stretch and rotate across edge boundaries. The aesthetic

problem can be partly remedied by explicitly superimposing cartoon-like edge decorations,

as can be seen in Swimming 3.

Also included on the accompanying DVD are two frame-wise spatially coherent skin

mask sequences - Female1 GCskin and Hollywood GCskin - generated by running the Graph

Cut-based Skin Detection algorithm discussed in Chapter 5 on each frame of the Female1

and Hollywood sequences respectively. These can be compared to the corresponding spatio-

temporally coherent skin mask sequences - Female1 smoothskin and Hollywood smoothskin
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- which have been temporally smoothed by the motion-compensated median filtering tech-

nique discussed in Section 6.4 of this Chapter.

6.10 Future Work

Future work is dependent on the stylistic goals of a user. A variety of brush stroke shapes

and styles could be implemented for SBR, with paint-like textures and lighting, as described

by Hertzmann (Hertzmann, 2003). The implementation of spline-like brush strokes might

be interesting. Perhaps the brush stroke anchor point motion trajectories described in

Section 6.2.1 could be used to influence the spline’s control points.

The framework could be extended to incorporate awareness of content other than skin

color and associated edge features. Aspects of sparse local feature-based Face Detection,

as discussed in Chapter 3, could be incorporated into the framework. Sparse local features

classified as belonging to a face, for example, might also be considered salient content in

the non-uniform stylization. Object Detection or color segmentation could be introduced so

that the framework would be capable of automatically recognizing and enhancing even more

semantic content, or the the user could make indications of semantic regions by drawing

“scribbles” in the first frame of the source video, enabling the sampling of foreground and

background features.

The existing skin-aware stylization framework could be refined and extended with im-

provements to the underlying Skin and Edge Detection algorithms, SBR and cartooniza-

tion, and spatio-temporal coherency. Rapid temporal changes in the orientation of elliptical

brush strokes, for example, are observable in some of the stylized sequences. The elliptical

orientation, θ, could be smoothed in a manner similar to the temporal filtering of color

described in Section 6.5. The cartoon-like edges are prone to flicker in periods of rapid

motion (see stylized outputs of Swimming) or changes in illumination (see stylized versions

of Male1). Skin-colored hair and background is sometimes falsely masked as skin (see styl-

ized versions of Hollywood for misclassified hair and skin-colored text overlay, and Male1

in which a red-colored background is mis-classified as skin). It is subjective, however, as

to whether these failures of the skin detector have a negative effect on the overall stylized

appearance of the video results.

6.11 Conclusion

A novel Non-Photorealistic/Stroke-based Rendering (NPR/SBR) framework for the skin-

aware stylization of videos featuring head shots of people has been presented. This frame-

work merges aspects of SBR, cartoonization, motion expression, and other quirky ideas in

NPR. Spatio-temporal Skin and Edge Detection has been used to enable a non-uniform

content-based stylization in which the skin and facial features of a human subject can be



6.11. Conclusion 161

stylized more carefully and highlighted, while the background region is abstracted. The use

of motion-expressive elliptical brush strokes for SBR empowers motion visualization and

summarization, such that a snapshot of the underlying source video motion is captured

in every frame of the output stylized sequence. Furthermore, novel ideas for probabilistic

brush stroke anchor point distribution, spatio-temporal color-sampling, and methods for

dealing with gaps and redundancy in brush stroke animation have been presented. The

resulting stylized sequences are visually interesting, artistic, expressive of motion and the

skin-based semantic content. This framework might be useful for the stylization of home

movies, films or camera mobile phone clips, and many directions for future work have been

discussed.



7
Conclusion

This Thesis has developed a range of tools that rely on the concept of Content-Based Media

Processing (CBMP). In each of the three media-based projects that were undertaken in the

course of this work, some aspect of audio, image or video content has been detected or

exploited. The context and contribution of each of these projects in the field of CBMP will

now be discussed.

Sound Texture Synthesis (STS) is extremely useful in audio repair and re-synthesis,

compression, and ambient sound production. The latter application is becoming increas-

ingly relevant in the world of computer games and virtual environments where natural

background noise or music is required for continuous play. Results in the project of example-

based STS suggest that it is a good solution for the production of believable sound textures.

This content-based STS technique of estimating the statistics of sound textures by directly

measuring from the data in real-world training example clips is distinct from the task of

producing sound from model-based synthesis techniques or virtual computer music gener-

ation. Example-based STS is conducive to the production of natural, varied, good quality

sound textures which can be extended to the long duration required for such applications.

Face and Object Detection are obvious examples of semantic content detection in visual

media. The project concerning Implicit Spatial Inference (ISI) with sparse local features

for Face Detection highlights many layers of CBMP. It involves the low-level detection of

sparse local features, the mid-level task of labeling these features, the higher-level concept

of grouping the isolated features according to implicit geometrical context, and the global

view of segmenting a face as a semantic image region. The idea that other image pro-

162
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cessing filters can be applied non-uniformly with regard to the masked semantic region is

yet another concept in CBMP, and one of the possible applications of this project. This

project, therefore, demonstrates how traditional feature-based techniques in machine learn-

ing, graph-based meshing, and Bayesian statistics can be fused in the pursuit of multi-level

content detection and media adaptation.

The work concerning the skin-aware stylization of video portraits is an example of a com-

plete framework in CBMP for the artistic semantic stylization of home-movie or cinema-like

sequences featuring head shots of people. The project features the analysis of low-level video

content such as motion vectors, color and edges, and this information is leveraged for higher

level concepts in video processing such as spatio-temporal Skin and Edge Detection, non-

uniform skin-aware stylization and cartoonization, motion depiction and expression. The

framework incorporates a novel Graph Cut-based Skin Detection algorithm. Video-based

content analysis has been used to formulate solutions for various challenges in the field of

Stroke-Based Rendering (SBR). These solutions include novel techniques for probabilistic

brush stroke anchor point distribution that is non-uniform over spatio-temporally defined

semantic image layers, and the use of motion vector-based occlusion detection for the miti-

gation of gaps and redundancy in motion-compensated brush stroke animation. Also novel

is the depiction and enhancement of motion through brush strokes whose attributes are con-

tinuously morphed according to the behavior of the underlying local motion field, but high

frequency stylized details are still preserved by curbing this behavior at spatio-temporally

defined edges.

7.1 Future Work

Each of these projects have a huge potential for further research. There is scope in example-

Based STS for further complexity reduction, better content-based parameter estimation,

and application to real-world problems like the repair of digitized archive audio and ambient

sound generation in computer games and installations.

The concept of ISI could be adapted to a multitude of applications of sparse local

feature-based classification, invariant Face or Object Detection. It is accepted that sparse

local features are highly informative, so it makes sense to use them in the pursuit of invariant

Face and Object Detection on a grander scale. Getting these sparse locations to communi-

cate implicitly is an intuitive concept, but difficult to model. The ISI technique proposed

here is a good first attempt at this task. A simple example of sparse local feature-based

segmentation has also been presented. Natural directions for further work in this project is

the incorporation of either sparse-to-dense or user-assisted inference techniques (see (Ring

& Pitié, 2009; Ring & Kokaram, 2009) for examples) for better geometric inference, and a

better segmentation matte.

The concept of the semantic stylization in visual media processing also has potential for
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further work. The existing skin-aware stylization framework could be refined and extended

with improvements to the underlying Skin Detection, SBR and cartoonization techniques,

more exaggerated motion depiction, and improved spatio-temporal coherency in all aspects

of the system. Perhaps aspects of sparse local feature-based Face Detection could be in-

corporated into the framework. Sparse local features classified as belonging to a face, for

example, might also be considered salient content in the non-uniform stylization. Face

Detection could also be used to re-classify some of the skin-colored background falsely seg-

mented in the Skin Detection, or sparse local feature-based Face Detection could be used

to seed a sparse-to-dense skin segmentation involving both sparse local and color features.

Object Detection could be introduced so that the framework would be capable of recog-

nizing and enhancing semantic content other than skin. On the aesthetic side, the brush

stroke model could be improved with aspects of paint texture and lighting, such that the

stylized results appear more painterly.

7.2 Issues with CBMP

Some noteworthy issues uncovered by this work in CBMP are as follows:

The Meaning of Meaningfulness There are many levels of media content. There are

the the low-level heuristics of pixel-wise color, local motion and image gradients, mid-

level features such as audio beats, edges and the appearance of local image regions.

There are more high-level concepts such as characteristic color classes (e.g. skin

color), semantic objects such as faces, and their motion trajectories in videos. It

is well accepted that the idea of semantic content in media is loosely defined as an

attribute, object or “event” that is meaningful, important, recognizable or stand-alone

to the user and/or application. The issue brought forth by the question “At what

level can content can be thought of as semantic?” is a well-debated one in the field of

CBMP, which much contention over how it is defined within bodies of audio, image

and video data. It is difficult to comprehend bridging the semantic gap when this

gap is not easily named. What has been concluded from this work, however, is that

there are many different goals and levels of automation in applications of CBMP,

and that the term semantic is best defined according to the desired application and

needs of the end-user. If a user wishes to sort her digital music collection in order of

increasing measures of bpm (i.e. beats per minute), then the beats in the music are

semantic, and all that is required is a localization of their onsets (i.e. to determine

the tempo). There is a wider range of semantic content, however, in the larger task

of automated sports summarization for Digital TV - from the faces of sports people,

to the trajectory of a soccer ball, to audio/visual events such as the sound of a tennis

ball hitting a racket or the sight of a snooker ball disappearing from the table as it is
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potted.

Training and Complexity It seems that many aspects of CBMP are still limited by is-

sues of complexity, bandwidth, and memory. Many algorithms in the fields of Face

and Object Detection - such as that of (Viola & Jones, 2004) - for example, in-

volve the extraction of hundreds of thousands of feature vectors and heavy offline

training with multiple iterations of computationally expensive machine learning cy-

cles. Because of this complexity, experiments are often scaled down to toy tests on

small, well-calibrated, low-quality databases such as the well-known MIT/CMU face

database (Rowley et al., 1998b). There is a huge hole in the field, therefore, for more

large-scale experiments on realistic data such as high resolution images or hours of

video footage captured in home movies or CCTV. As both the volume and quality

of data increases, however, so too do the volume of salient features and complexity

of the machine learning required. There is also a need, therefore, for more memory

efficient representations of feature vectors, as well as increased focus on the optimiza-

tion or simplification of machine learning algorithms, perhaps by involving some user

assistance.

The Automation Ally It is widely agreed that any aspect of automation in media pro-

cessing is invaluable when resulting in a saving of human time and effort. A good

foreground/background segmentation matting algorithm, for example, can save hun-

dreds of labor hours in a typical cinema post-production house. Similarly, a reliable

STS algorithm does away with the hassle of obtaining hours of ambient field record-

ings for use as ambient backing tracks in an art installations or computer game-based

virtual worlds. Projects in CBMP are dedicated to the goals of automation, labor

reduction, time saving and the avoidance of user frustration. However, since the re-

sults of these algorithms are seldom perfect, it is quite useful to keep the end-user

in the loop to mitigate problems as they arise. The part-automation of user-assisted

CBMP, therefore, will be a valuable ally in our increasingly media-saturated personal

and professional lives of the future.

7.3 Final Remarks

The field of CBMP is a large, and rapidly growing one. It is hoped, however, that the

work contained in the three projects of this Thesis has contributed some novel and useful

solutions or ideas to each of these topics individually, as well as to the general field of CBMP.

It is also hoped that future directions for some further research have been highlighted both

here and throughout this Thesis, and that these can, and will be pursued with mindfulness

of the issues involved.



A
Further Sound Texture Synthesis Results

The Tables on the following pages are a list of parameters associated with some alternative

sound textures resulting from the work on example-based Sound Texture Synthesis (STS)

discussed in Chapter 2, and included on the accompanying DVD. Unlike those listed in

Tables 2.9 and 2.16 of Chapter 2, these were not the best sound textures produced for

the listed training examples, Ye, but they are interesting results nevertheless. Note: The

underlying filenames match the parameters in these Tables, taking the form #-Ye-Training

Example K Ws ǫ.wav.
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B
Parameter Trials in ISI with Sparse Local Features

for Face Detection

The following two Figures show the results of trials that were necessary for choosing suitable

values for the parameters h, Λp and Λn inherent to the algorithm underlying Implicit Spatial

Inference (ISI) with sparse local features for Face Detection, as described in Chapter 3. The

definition of these two parameters can be found in Section 3.7 of Chapter 3. Some other

similar trials are also discussed in Section 3.8.4 of the Chapter.

Each Figure shows a graph of %TD versus %FDA on the top, and one of R versus 1−P

on the bottom. These metrics of %TD, %FDA, R and P are discussed in Section 3.8.3

of Chapter 3. The trials were carried out by varying the parameters of λ = Λn/Λp versus

h (see Figure B.1), and vice versa (see Figure B.2), in small increments, computing these

metrics over all of the subset of NT = 217 test images from the Caltech-101 face database

(Fei-Fei et al., 2004). The circled points in the graph reveal the most useful values for

λ = Λn/Λp and h in these trials. Definitions of the other parameters mentioned can also

be found in Section 3.7 of Chapter 3.
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Figure B.1: Choosing a suitable value for λ = Λn/Λp; (top) %TD versus %FDA, and

(bottom), R versus 1 − P . Other parameters are set at h = −1.5, tp = 0.6, vp = 30ωp,

nd = 3, αd = 20.
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C
Parameters in the Skin-Aware Stylization of Video

Portraits

The Table, split over the following three pages, is a list of parameters associated with the

stylized sequences resulting from the work on the Skin-Aware Stylization of Video Portraits

discussed in Chapter 6, and included on the accompanying DVD. The source sequences are

also included on the DVD; Female1, Swimming, Hollywood, and Male1.

*M.C./A = Motion-Compensated/Alternative Technique (Equation 6.3/Equation 6.6):

The chosen method of determining the elliptical stretch and orientation as described in

Section 6.2.1 of Chapter 6.

**W/L = Weighted/Layer-Based: The chosen method of distributing strokes on sepa-

rate semantic layers. Two separate approaches are described in Section 6.4.2 of Chapter 6.

An entry of 1/0 (i.e. the weighted option) has a set of weights beside it in the Table.

N/A = Not Applicable. For example, no detail distance filter, dn(X), is used in Holly-

wood 4 (see Equation 6.6, Section 6.7, Chapter 6), and therefore Ed is N/A.

173



174

V
id

/P
ar

am
α

û
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