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Abstract

Digital media post-production is an industry standard step in media creation. Now
that issues of speed and physical storage have largely been rendered less problematic, the
emphasis has shifted toward increasing levels of automation. This thesis makes several
contributions in the domain of visual post-production in an attempt to bring advanced
statistical digital signal processing techniques to bear on several key problem.

The problem of transfer of statistics is �rst addressed. It transpires that this funda-
mental process underlies several key problems in �lm grading. This can be understood
by considering an image as of features samples. Then texture or colour aspects can be
described by the statistics of texture or colour samples. The �rst and major problem is
that of colour grading. In that process the colour of each �lm frame has to be adjusted
in order to match lighting and atmosphere throughout the shot. Consider a scene shot
at midday and the same scene shot later in the afternoon, a typical procedure in movie
production. The �lm shot during the midday shoot will have a totally di�erent look and
feel than the afternoon shoot. In addition, brightness can change from frame to frame
due to �lm degradation, editing of di�erent physical �lm material and even �uctuating
lighting (e.g. �uorescent). In all the cases the solution is to design an automated process
that alters the distribution of colour and brightness of each frame in such a way that it
balances across all shots. The thesis proposes a new mechanism for doing this based on
the iterative matching of projections of the colour distribution on di�erent set of colour
axes. In addition, algorithms for robustness to grain artefacts artefacts caused by stretched
histogram matching, and occlusion problems are also proposed.

The second part of the thesis deals with tracking of objects and contours. Both meth-
ods proposed are founded on Bayesian grounds but adopt di�erent optimisation strategies.
Contour tracking is achieved by Bayesian Filtering exploiting a new prior that extracts
local direction information from the image. Object tracking is achieved by a Viterbi al-
gorithm that incorporates candidates for object position available in each frame. Both
these tracking tools have implications for post-production. Contour tracking for rotoscop-
ing is well established, but up till now incorporating edge information has been di�cult.
MCMC Bayesian �lters have had great success for object tracking in recent times, but this
thesis shows that given low level content knowledge it is possible to exploit deterministic
strategies instead of MCMC and yield the same or better performance.

The thesis ends with work that proposes a new method for simplifying images implicitly.
The idea is to create representations that are transmitted or compressed easily without
exploiting heavy content information. A bit like in cartoonisation, images are re-expressed
in a way which is not realistic but which conveys the same content while throwing away
confusing details. Thus a textured object could be replaced by a simpli�ed object in which
the texture is removed for instance. The tools discussed previously could all be used in



tandem to create such an e�ect. This section of the work considers instead a purely implicit
way to �nd similar patches in images and replace them by a unique patch representation.
The work draws from the success of recent texture synthesis results that exploit non-
parametric image models. The result is an image which has a better viewability and can
be better compressed.
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Chapter 1

Introduction

D igital media technology is currently in an evolutionary stage. What is observed is
that technology domains like Computer Graphics, Computer Vision and Computer

Vision are now converging. The convergence is patent in the research area where scienti�c
papers can often be equivalently published in any of the conferences of these �elds. The
convergence is also re�ected in the industry where media applications are reciprocally bor-
rowing core technologies. One emblematic example of this would be the recent integration
of Industrial Light and Magic r©, the special visual e�ects branch of Lucas�lm Ltd., and
the gaming division LucasArts r©.

There is thus a need to push this convergence further and bring recent advances in
image processing to bear on key problems for media applications and especially for post-
production. Digital media post-production is an industry standard step in media creation,
which includes all stages of production between the actual recording and the complete �lm
or video. Now that issues of speed and physical storage have largely been rendered less
problematic, the emphasis has shifted toward increasing levels of automation. Companies
are already using image processing tools for simple automations. Only a few companies
are however routinely using the most recent image processing advances. Examples of such
companies are 2d3 r©with their feature-tracking engine Boujou, or The Foundry r©with their
set of plug-ins Furnace.

A number of key applications still need to be improved. Post-production tools like
grading, de�icker, deshake, dirt removal or noise reducer are commodity tools that every-
body needs but recognises that they have a broken one. This thesis proposes thus to make
several contributions in the domain of visual post-production where the use of statistical
digital signal processing techniques could help with some of these key problems.
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CHAPTER 1. INTRODUCTION

1.1 Transfer of Statistics in Image Processing
The �rst application considered in this work concerns a major problem in the post-
production industry, which is to change the `look and feel' of the multitude of shots in
such a way that they match the global atmosphere of the movie. Every aspect of the im-
ages has to be carefully controlled: colour palettes, textures, form of the grain and so on.
This activity of �lm grading is currently �xed by experienced artists who manipulate the
frames by tuning parameters and painting what is possible to paint. Sometimes the aspect
of the �lm varies from frame to frame, like for instance in old footages where exposure
time and �lm stock ageing can be inconsistent. Then the brightness and colour aspect
varies across frames and produces some annoying �icker artefact. Similar �uctuations also
arise in modern footages if the sequence is a composition of di�erent camera sources. In
these cases, a similar restoration process needs to be performed to adjust the aspect of the
frames throughout the shot.

One novel aspect of this thesis is to demonstrate that a statistical approach can help
automating this painstaking process. Consider the colour aspect of an image: each picture
can be represented by the set of its colour samples. The colour property or `feel' of a
picture corresponds to the statistics of the colour samples. Then the grading the colour
aspect of a frame can be done by transferring to the current frame the colour statistics of
an example image that possesses the desired colour aspect.

The �rst contribution of this thesis is to propose a method that transfers the complete
statistics of the samples and not simply the mean and the variance as it is usually done.
The method, described in chapter 2, is to �nd a one-to-one mapping that transforms
the original colour samples in a new set that exhibits the exact same propability density
function (pdf) that the sample set of an example picture. With this method, it is easy
to give the correct feel to an image sequence by simply providing a picture that has the
wanted feel and then apply the corresponding mapping on each of the images. The �rst
application of the method is presented in chapter 3 and is a direct use of the method to
the problem of recolouring of images by example. The second application, presented in
chapter 4, is part of the larger process of the digital movie restoration and concerns the
stabilisation of colour level �uctuations across frames of a single shot or �icker removal.
The last chapter of this part studies ways of estimating the transfer of statistics in the
presence of occlusions or missing data like blotches and dirt.

1.2 Probabilistic Tracking
What transpires when working with images is that accessing higher content information
can help performances of image and video processing algorithms. In the general sense, it
would be advantageous to handle objects rather than pixels in the image. Unfortunately,
object based segmentation is a decidedly non-trivial task and there is no reliable automated
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CHAPTER 1. INTRODUCTION

mechanism. In the post-production industry however, objects are routinely manipulated.
The objects are extracted using a combination of �lming in a contrived environment (e.g.
green-screen matting) or using manual delination of objects in each image frame. What is
emerging is that for reliable segmentation, good enough to fool audiences, a combination
of manual and automated tools are best. Two key operations are contour following to
delineate an object in an image, and object tracking. Object tracking obviously has many
applications outside of post-production.

The second main contribution of this thesis is to propose two probabilistic tracking
algorithms that ease the burden of manual manipulation. Both methods proposed are
founded on Bayesian grounds but adopt di�erent optimisation strategies. The �rst method
is used for semi-automated contour delineation�or rotoscoping. One recent technique
called JetStream [Pér01] is a considerable advance on manual or semi-automatic tracing.
The method, based on the use of Bayesian Filtering su�ers however from a lack of direction
information in the image. The method proposed in chapter 6 exploits a new prior that
extracts local direction information and so reworks the principle of density propagation for
contour following.

The second method is a deterministic method used to track multiple objects in videos.
A major di�culty in tracking object is the dimension of the space of possible solutions.
Popular stochastic methods like Particle Filters o�er an attractive generic solution to this
problem. These methods are simple to implement and can be easily scaled to any model
complexity. It transpires however from a user point of view that deterministic methods are
more suitable because reproduceable and predictable. The objective of this chapter is to
show that it is often possible to simplify the object tracking problem in such way that it
becomes tractable to provide a small set of deterministic position candidates and then use
deterministic methods like Viterbi to track object among the reduced set of candidates.

1.3 Image Simpli�cation
With both high-level information and low-level manipulations, it is now possible to develop
media applications that would be content aware. This part explores the idea that objects
of an images could be re-expressed in a di�erent visual form that is not necessarily realistic
but which conveys the same content. The aim is to develop representations that would
have better viewability and that would be then transmitted or compressed easily.

Rendering non-photographic pictures has raised some interest in the computer graphic
community, especially to design �lters [Mig03] that simulate an artistic style. This concept
is here pushed further by designing a non-photographic manipulation that focuses on the
content of the images, whilst simplifying their representation.

The tools discussed previously could all be used in tandem to create a such an e�ect.
The work presented in chapter 8 considers instead a purely implicit method to simplify
signals. The work draws from the success of recent texture synthesis results that exploit
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CHAPTER 1. INTRODUCTION

non-parametric image models. The method consists in �nding similar patches in the image
and then replacing them by only one image patch that represents them all. This can be
illustrated by considering an image sequence. An object can appear on several frames
and presents slightly di�erent appearances on these frames. Then replacing these object
instances by a unique representation would still preserve the content while simplifying the
video.

1.4 Thesis Outline
This thesis is thus divided into tree distinct parts. Part one covers chapters 2-5, part two
covers chapters 6 & 7 and part tree the chapter 8. The part one treats the problem of
transferring statistics from one image to another. Chapter 2 proposes a new method for
doing so by transferring the actual pdf of image feature samples from one image to another.
The method is applied to example-based image recolouring in chapter 3, and then extended
to videos in chapter 4 for the restoration application of �icker removal. Impatient (and
reasonable) readers can �rst focus on the description of the method in chapter 2 up to
section 2.3, and then read the less mathematical application chapters 3 & 4. Chapter 5
considers ways of robustly estimating the transfer in the presence of outliers (e.g. content
di�erence). The second part, which covers chapter 6 & 7, presents two applications for
probabilistic tracking. Finally chapter 8 concludes this thesis by presenting an implicit
method for image simpli�cation.
Chapter 2 proposes a novel method to estimate a continuous mapping that transfers one
distribution to another. The distributions are possibly N -dimensional. The method pro-
posed is iterative, and its convergence is studied in the second part of the chapter.
Chapter 3 applies the method proposed in chapter 2 to the di�cult problem of example-
based image recolouring. The distribution transfer technique is used in conjunction with
a post-processing algorithm that re-grains and protects the picture content. The results
demonstrates the e�ectiveness of the method.
Chapter 4 applies the method proposed in chapter 2 to the problem of restoring image
sequences degraded by brightness and colour �uctuations. To treat this problem, referred to
as �icker removal, this chapter considers the possible variations of the mapping, temporally
and spatially.
Chapter 5 considers the estimation of the mapping in situations where occlusions and
missing data (outliers) pollute the original data samples (inliers). The chapter proposes
two methods to separate outliers from inliers and then estimate the mapping.
Part II
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CHAPTER 1. INTRODUCTION

Chapter 6 considers the problem of probabilistic tracking applied to the semi-automated
delineation of object contours. This chapter considers the incorporation of a better di-
rectional information in the JetStream algorithm [Pér01] and so reworks the principle of
density propagation for contour following.
Chapter 7 considers shortcomings of MCMC approaches like Particle Filter methods as
proposed in chapter 6 and points out that in many situations, it is possible to use a similar
Bayesian framework but without having to resort to stochastic optimisation methods. The
chapter illustrates this idea by presenting o�-line multi-tracking applications.
Part III
Chapter 8 proposes an new implicit way of simplifying images by exploiting redundancy
within images. The method aims at establishing statistics of pixel values according to
their neighbourhood pixel values. Then by using Mean-Shift algorithm on the statistics
pdfs results in an �ltering that implicitly replaces similar objects by one instance of this
object.
Contributions of this Thesis. This thesis o�ers new contributions which can be sum-
marised by the following list.
• Transferring pdfs in N dimensions (chapter 2)
• Finding an optimised sequence of rotation matrices for the N -dimensional pdf trans-
fer (chapter 2)

• Transferring pdf in 1D in the presence of outliers (chapter 5)
• Generating randomly pdfs (chapter 2 and appendix A)
• Removing grain structures that appear after over-stretched mapping (chapter 3)
• Stabilising brightness �uctuations in videos or Flicker Removal (chapter 4)
• Using GPU to speed up �icker removal (chapter 4)
• Using edge direction information to track contours in pictures using particle �lter
(chapter 6)

• Computing edge direction information (chapter 6)
• Using simple colour segmentation and deterministic algorithms (Viterbi) to track
players in videos (chapter 7)

• Establishing neighbourhood statistics to integrate an implicit prior in Mean-Shift
(chapter 8)

12
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Chapter 2

Distribution Transfer

The principle of example-based rendering is probably the simplest and most e�ective
approach to rendering realistic images. The idea is to transform an original image in

such a way that the resulting picture has the same `look and feel' as an example picture.
One e�cient method of realising this e�ect is to extract the image statistics of the example,
and transfer them on the original image.

The notion of image statistics covers a wide range of properties. For instance, in the
case of texture, the relevant image statistics are those pertaining to texture samples, and it
is these statistics that are transferred to the original image. In the case of colour transfer,
the image is expressed in terms of colour samples.

The recent breakthrough in texture synthesis and texture transfer [Efr99, Efr01, Her01]
is one of the most signi�cant example of this idea. The texture transfer technique is
based on a non-parametric approach, which consists simply in replacing the blocks in
the original picture by the most similar blocks in a seed example texture. The resulting
image consequently displays the same texture statistics as the target texture. As shown
in �gure 2.1, this technique gives impressive results, and suggests that achieving realistic
rendering results relies on the transfer of real data statistics.

The original and example images can be represented as the two sets of feature samples
{ui}i≤M and {vi}i≤M ′ respectively. The feature samples are possibly N -dimensional and
depend on the application. The problem is to �nd a mapping t that transforms the original
set {ui}i≤M into a new set {t(ui)}i≤M such that the statistics of the new data samples are
equal to the statistics of the target set.

Parts of this chapter are based on the work published in [Pit05c]
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CHAPTER 2. DISTRIBUTION TRANSFER

Figure 2.1: Example of Texture Transfer (from [Her01]).

Figure 2.2: Example of Colour Transfer. (see chapter 3)
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CHAPTER 2. DISTRIBUTION TRANSFER

There is a wide range of possible approaches to the transfer of statistics. For example
a linear mapping su�ces to match the means and the variances of the distributions. But
if it is sought to transfer the actual probability density function (pdf) of the samples, the
mapping becomes more complex. This latter problem will be referred to as the Distribution
Transfer problem and is the subject of this chapter.
Distribution Transfer Problem. Consider a set of M data samples ui. Denote by f the
continuous pdf of these samples. The problem is to �nd an in�nitely di�erentiable bijective
mapping t : u→ t(u) that transforms the original set {ui}i≤M into a new set {t(ui)}i≤M

such that the pdf f ′ of the transformed data samples is equal to a target continuous pdf g.
There are a few constraints on the transformation. Firstly, the di�erentiable constraint

is simply the mathematical expression that the transformation has to be smooth, in the
sense that two feature samples that are similar in the original picture should still be loosely
similar after transformation. Combined with the bijective constraint this means that the
mapping has to be monotonic. This intuitive constraint has however some consequences
of importance. For instance, under the monotonic constraint, it is impossible to allow
swapping clusters of samples. Hence the operation in �gure 2.3 is not di�erentiable, but
simply at best piecewise di�erentiable. Also the folding-like transformation described on
the left of �gure 2.4 is not allowable. This is because where the mapping folds (red
arrows), multiple points have the same target, and this violates the bijective constraint.
The allowable space of monotonic mappings encompasses transformations equivalent to
deforming a rubber sheet.

Bearing these issues in mind, after a brief study of the linear case, this section proposes
a solution to the distribution transfer. Although the concept of distribution transfer can
provide a framework for thinking about texture manipulation, it will not necessarily yield
in an e�cient algorithm. However, in the case of colour transfer, it is clearly an attractive
solution, as shown in the next chapter.

2.1 The Linear Case.
Consider at �rst the case of a linear transformation as follows:

t(u) = Au + b (2.1)

The parameters of the transformations A and b, can be derived by matching the �rst and
second moments of both the original pdf f and the target pdf g. Denote as µf and µg the
means of f and g, and Σf and Σg as the covariance matrices:

Σf = (u− µf ) (u− µf )T (2.2)
Σg = (v − µg) (v − µg)

T (2.3)
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CHAPTER 2. DISTRIBUTION TRANSFER

1

2

3

1

3

2

Figure 2.3: Monotonous limitations: clusters cannot be swapped.

Figure 2.4: The Monotonous constraint does not allow folding mappings like the
one on the left, because two points would have then the same mapping, which
makes the inversion impossible. Monotonic mappings are equivalent to deforming
a rubber sheet, where every point maps has a unique mapping.
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CHAPTER 2. DISTRIBUTION TRANSFER

Figure 2.5: Matching 2 Normal distribu-
tions. The assignment of axis numbers
and directions should be consistent for
both distributions.

The linear transformation is thus as follows:

t(u) = (Σg)
1
2 (Σf )−

1
2 (u− µf ) + µg (2.4)

where Σ
1
2
g is given by the Cholesky decomposition of Σg. Experience has shown however

that the Cholesky decomposition o�ers insu�cient control over the transformation. The
preferred approach for this application is instead the singular value decomposition (SVD):

(Σf ) =
(
ET

fDfEf

)
=
(
D

1
2
f Ef

)2

(2.5)

(Σg) =
(
ET

gDgEg

)
=
(
D

1
2
g Eg

)2

(2.6)

where Ef = [e1
f , . . . , e

N
f ] and Eg = [e1

g, . . . , e
N
g ] are the NxN orthogonal matrices contain-

ing the eigenvectors of the covariance matrices. The diagonal matrices Df and Dg contain
the eigenvalues corresponding to the eigenvectors in Ef and Eg. The �nal transformation
is thus as follows:

t(u) = ET
gD

− 1
2

g D
1
2
f Ef (u− µf ) + µg (2.7)

The additional control o�ered by the SVD method derives from the possibilities in or-
dering the eigenvectors and choosing their direction (see �gure 2.5). For example, changing
the sign of an eigenvector results in swapping the data samples from one side of the eigen-
vector axis to the other side, which is not wanted. The idea is to preserve the content
information by ordering the eigenvectors with respect to the magnitude of the correspond-
ing eigenvalues and making sure that they do not point in opposite directions, i.e.

∀ i ≤ N , ei
f
Tei

g > 0 (2.8)
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2.2 The General Non-Linear Case
2.2.1 The 1D case

Consider now the general distribution transfer problem where it is sought to transfer the
actual target pdf g. If the data samples are of dimension 1, the distribution transfer prob-
lem has a very simple solution. The di�erentiable mapping yields the following constraint
which simply corresponds to a change of variables:

f(u)du = g(v)dv with t(u) = v (2.9)

Integrating both sides of the equality yields∫ u

f(u)du =
∫ t(u)

g(v)dv (2.10)

Using cumulative pdf notations F and G for f and g then yields the expression for the
mapping t,

∀u ∈ R , t(u) = G−1 (F (u)) (2.11)
where G−1(α) = inf {u|G(u) ≥ α}. The mapping can then easily be solved by using
discrete look-up tables.

2.2.2 Extending the 1D Case to Higher Dimensions

Extending the 1-dimensional case to higher dimensions is not trivial. The idea proposed
here is to break down the problem into a succession of 1-Dimensional distribution transfer
problems. Consider the use of the N -dimensional Radon Transform. It is widely ac-
knowledged that via the Radon Transform, any N -dimensional function can be uniquely
described as a series of projections onto 1-dimensional axes [Weia]. In this case, the func-
tion considered is a N -dimensional pdf, hence the Radon Transform projections result in
a series of 1-dimensional marginal pdfs. Intuitively then, operations on the N -dimensional
pdf should be possible through manipulations of the 1-dimensional marginals.

Consider that after some sequence of such manipulations, all 1-dimensional marginals
match the corresponding marginals of the target distribution. It then follows that, by
nature of the Radon Transform, the transformed f , corresponding to the transformed
1-dimensional marginals, now matches g.

There are now several questions to answer. How to manipulate the 1-dimensional pdfs?
What guarantee is there of eventual convergence? How many axes are needed? Is there an
optimal sequence of axes? The following paragraphs provide the answers to these questions.
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2.2.3 Description of the Manipulation

The operation applied to the individual projection axes on the marginal distributions is
naturally similar to that used in 1-dimension. Consider a particular axis denoted by its
vector direction e ∈ RN . The projection of both pdfs f and g onto the axis e results in
two 1-dimensional marginal pdfs fe and ge. Using the 1-dimensional pdf transfer mapping
of the equation (2.11) yields a 1-dimensional mapping te along this axis:

∀u ∈ R , te(u) = G−1
e (Fe (u)) (2.12)

For a N -dimensional sample u = [u1, · · · , uN ]T, the projection of the sample on the axis is
given by the scalar product eTu =

∑
i eiui, and the corresponding displacement along the

axis is
u→ u + (te(eTu)− eTu) e (2.13)

After transformation, the projection f ′e of the new distribution f ′ is now identical to ge.
The manipulation is explained in �gure 2.6.

Considering that the operation can be done independently on orthogonal axes, the
proposed manipulation consists in: choosing an orthogonal basis R = (e1, · · · , eN ) and
then applying the following mapping τ :

τ(u) = u + R


t1(eT

1u)− eT
1u...

tN (eT
Nu)− eT

Nu

 (2.14)

where ti is the 1-dimensional pdf transfer mapping for the axis ei.
The idea is that iterating this manipulation over di�erent axes will result in a sequence

of distributions f (k) that hopefully converges to the target distribution g. The overall algo-
rithm is described on a separate page and will be referred to as the Iterative Distribution
Transfer (IDT) algorithm.

Although the theoretical study presented in section 2.3 does not provide yet a proof of
convergence in all cases, the experimental results presented on �gures 2.7 and 2.12 clearly
show that the method can be practically used as it is. Impatient readers can thus skip the
rest of the chapter and resume their reading at chapter 3 which presents a direct application
of the method to colour grading. Note however that the method can be substantially
speeded up by using an optimised rotation sequence as proposed in section 2.4.3.

2.3 Theoretical Convergence Study
It is now important to investigate the convergence properties of this algorithm. The fol-
lowing theorem establishes the convergence of the algorithm when the target pdf is the
standard normal distribution (denoted by N (0, idN )). Thus by combining the mappings
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The 1-D pdf’s give 
the Mapping

After Mapping, the new 
1-D marginal matches the 
target marginal pdf

initial 2-D pdf f
initial 1-D marginal
target 1-D marginal

Figure 2.6: Illustration of the data manipulation, based on the 1-dimensional pdf
transfer on one axis.

Algorithm 1 IDT method
1: Initialisation of the data set source u
k ← 0 , u(0) ← u

2: repeat
3: for every rotated axis i, get the projections fi and gi

4: �nd the 1D transformation ti that matches the marginals fi into gi

5: remap the samples u according to the 1D transformations:

u(k+1) = u(k) + R

 t1(eT
1u

(k))− eT
1u

(k)

...
tN (eT

Nu(k))− eT
Nu(k)


6: k ← k + 1
7: until convergence on all marginals for every possible rotation
8: The �nal one-to-one mapping T is given by: ∀ j ,uj 7→ t(uj) = u(∞)

j
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Figure 2.7: Example of a two dimensional pdf transfer using IDT. The decrease
of the Kullback-Leibler divergence illustrates the convergence of the method.
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at each iteration, it is possible to �nd for any distribution f a di�erentiable bijective map-
ping tf = τk ◦· · ·◦τ1 that transforms f into the standard distribution N (0, idN ). Consider
then the two di�erentiable mappings tf and tg that transform f and g into N (0, idN ).
Using the standard distribution N (0, idN ) as a pivot results in the transformation t−1

g ◦ tf ,
which is a di�erentiable bijective mapping that transforms f into g, and is therefore a
solution of the distribution transfer problem:

tf : f → N (0, idN )

tg : g → N (0, idN )

∀u ∈ RN , t(u) = t−1
g (tf (u))

(2.15)

The results of the convergence study in the next several paragraphs strongly suggest
that the algorithm converges to the solution even if the target distribution is not the normal
distribution. Figure 2.7 shows an example illustrating the convergence of the process for
2-dimensional pdfs. Thus the method can also be used directly to �nd a mapping between
f and g, without having to resort to the standard distribution as a pivot. The results of
the following chapters are based on this assumption and use the algorithm directly.
Theorem 1 (Isotropic Case). Let f be an N -dimensional pdf and denote by g the pdf of
the standard normal distribution N (0, idN ). Consider the di�erentiable transformation τk
that matches as in equation (2.14) the marginals of f to the projections of g for a random
set of axes. Then the sequence de�ned by f (0) = f and f (k+1) = τk(f (k)) converges to the
target distribution: f (∞) = g.
Proof. Denote the original pdf f and the target standard normal pdf g. For a particular
set of axes, denote f1, · · · , fN the marginals of f and g1, · · · , gN the marginals of g. The
standard distribution is isotropic and for all axes, it can be written as the product of
its marginals: g = g1 · · · gN . The key of the proof is to show that the Kullback-Leibler
divergence decreases for any set of axes.

The Kullback-Leibler divergence, or relative entropy, is a quantity which measures the
di�erence between two probability distributions. It is computed as follows:

DKL(f‖g) =
∫
u
f(u) ln

(
f(u)
g(u)

)
du (2.16)

As with many measures over distributions, the KL divergence is not a proper distance. The
KL divergence does not satisfy the triangular inequality and is not symmetric. However
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the KL divergence is always non-negative and DKL(p, q) is zero i� p = q.

DKL(f‖g) =
∫
u
f(u) ln

(
f(u)
g(u)

)
du

=
∫
u
f(u) ln

(
f(u)

f1(u1) · · · fN (uN )

)
du +

∫
u
f(u) ln

(
f1(u1) · · · fN (uN )

g(u)

)
du

= DKL(f‖f1 · · · fN ) +
∫
u
f(u) ln

(
f1(u1) · · · fN (uN )
g1(u1) · · · gN (uN )

)
du

(2.17)
Then by marginalising,∫

u
f(u) ln

(
f1(ui)
gi(ui)

)
du =

∫
u1

· · ·
∫

uN

f(u1, · · · , uN ) ln
(
f1(ui)
gi(ui)

)
du1 · · · duN

=
∫

ui

f(ui) ln
(
f1(ui)
gi(ui)

)
dui

= DKL(fi‖gi)

(2.18)

Eventually it follows that

DKL(f‖g) = DKL(f‖f1 · · · fN ) +
N∑

i=1

DKL(fi‖gi) (2.19)

Consider now that the mapping transforms f into f ′ and f1 · · · fN into f ′1 · · · f ′N . It holds
for f ′ that:

DKL(f ′‖g) = DKL(f ′‖f ′1 · · · f ′N ) +
N∑

i=1

DKL(f ′i‖gi) (2.20)

The transformation is such as for each axis i, f ′i = gi, thus ∑N
i=1DKL(f ′i‖gi) = 0.

Also the KL divergence is left invariant by bijective transformation. This implies that
DKL(f ′‖f ′1 · · · f ′N ) = DKL(f‖f1 · · · fN ). Thus the KL di�erence decreases at each itera-
tion by:

DKL(f‖g)−DKL(f ′‖g) =
N∑

i=1

DKL(fi‖gi) ≥ 0 (2.21)

Since DKL(f‖g) is non-negative, it must have a limit. This implies that the KL divergence
on the marginals DKL(fi‖gi) convergences to 0. Then, if a su�cient number of di�erent
axes is considered, all marginals of f converge to the marginals of g, and the Radon
transform of f (k) converges to the Radon transform of g. The Radon transform admits a
unique inverse, and this shows also that the pdf f (k) converges to g.
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2.4 Experimental Convergence Study
This section studies the convergence of the algorithm when the standard distribution is
not used as a pivot. The study also considers the problem of �nding sequence of axes that
maximises the convergence speed of the algorithm.

To explore the convergence of the algorithm, a measure is needed to quantify how well
the transformed distribution f (k) matches the target pdf g. Following the remarks of the
previous theorem, the Kullback Leibler divergence is used as such a measure. One simple
experiment that could be used to assess the impact of axis sequences on convergence is
simply to choose two particular datasets, use one as a target pdf and the other as a source
pdf. Then for various axis sequences, the KL measure could be used to assess convergence
as each iteration of the algorithm proceeds.

In order to provide more evidence for convergence though, it is sensible to use instead
an ensemble of datasets which would cover the space of valid pdfs: in a sense then, a Monte
Carlo method for assessment would be more useful. Therefore the problem is to generate
at random, valid pdfs which then could be used to generate datasets for the application of
the Distribution Transfer algorithm. Having done this, an ensemble average convergence
or expected convergence measure could be obtained for a particular axis sequence using the
mean KL divergence. This is as follows:

Ef,g (D(f‖g)) ≈ 1
Ns

∑
i≤Ns

fi,gi∈P

D(fi‖gi) (2.22)

where P denotes the space of the pdfs, thus each element p ∈ P is a pdf. Note that the
estimation of the KL divergence expectation is dependent on the way the pdfs are chosen:
i.e. they should be well distributed over the space for the expectation not to be biased.
Assuming no prior on the pdfs, they should be generated uniformly over the ensemble of
all possible pdfs. This turns out to be an interesting problem, and is discussed in the
following sections after some attention to the numerical estimation of the KL divergence.

With this measure of improvement, it is now possible to study the behaviour of di�erent
axis sequences. The last paragraph of this section presents an heuristic way of �nding a
sequence, which shows near optimal improvements.

2.4.1 Kullback-Leibler Divergence

The experiments presented here, employ the datasets generated from the pdfs. The Dis-
tribution Transfer technique is then applied to those datasets, and not to the underlying
pdfs. Hence the KL divergence must employ the kernel density approximation [Sil86] for
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Figure 2.8: Epanechnikov Kernel. This is the function K(u) = (3/4)(1− ‖u‖2) for
−1 < ‖u‖ < 1 and zero for ‖u‖ outside that range.

the underlying pdfs as follows:

D(f ‖ g) =
1
M

M∑
i=1

ln

∑j K
(

ui−uj

hi

)
∑

j K
(

ui−vj

hi

)
 (2.23)

where K is the Epanechnikov kernel (see �gure 2.8). To account for the sparseness of
samples, it is crucial to use a variable bandwidth approach. Typically, for a sample ui, the
bandwidth hi increases if with the sparseness of the samples around ui. A clear outline of
the bandwidth selection is available in [Com01], and that is used here. A major aspect of
the experiment is that the KL divergence has to be non-negative. This is indeed observed
in numerical results (see �gure 2.7), but not for any choice of bandwidth values. To
counterbalance this sensitivity, the pdf is over-smoothed by taking larger values of kernel
bandwidths. The resulting KL divergence measure is under-evaluated since both estimated
pdfs are more uniform. Another consequence is that the convergence speed measured on
the �gure 2.12 is actually slower than the true one.

2.4.2 Experimental Datasets: Sampling PDFs

As discussed above, measuring the KL divergence on a single example is of course insu�-
cient to infer any useful information. The estimation of the average KL measure requires
to evaluate the KL divergence for a large number of datasets (say at least 100), and it is
thus necessary to �nd a way of generating these pdfs. In this study, there is no prior made
on the distributions. This means that the pdfs of the datasets have to be generated in
a uniform `random' way. Once a pdf has been generated, the set of N -dimensional data
samples is obtained by sampling directly from the newly generated pdf.

Generating pdfs becomes quickly intractable for high dimensions because of the large
number of bins involved. For instance in dimension 3, a pdf with a resolution of 256 bins
for each coordinate, contains 2563 > 16 million bins. A solution is to approximate the pdf
by a sum of kernel functions. This imposes some spatial smoothness and risks to under-

26



CHAPTER 2. DISTRIBUTION TRANSFER

estimate the KL divergence. But since the KL estimation already over-smooths the pdf
estimation, this does not present a major issue. The kernel approximation is as follows:

q(u) =
1
k

k∑
i=1

qi

hN
i

K

(
u− µi

hi

)
(2.24)

whereN is the dimension of the pdf space, µi are the centres of the kernels, hi the associated
bandwidth, and (qi)i≤k a set weights such that ∑k

i=1 qi = 1 and qi ≥ 0. Since no prior
information is available on the pdf, it is standard to consider a �at prior for the centres
and the standard deviations:

p(µi) ∝ 1 (2.25)
p(hi) ∝

1
hi

(2.26)

The centres µi are thus generated by sampling from a from a simple uniform spatial
distribution on the region of interest, or data range, Ω: µi ∼ U(Ω). Since the prior
p(hi) on the bandwidths is not a proper prior (it does not integrate to 1), the range of
values for the bandwidth is restricted from 1% to 100% of the data range. For instance,
with a data range of [0; 255], the diametre is 256, and the bandwidth can go from 2.56 to
256. As seen in �gure 1, the lower bound of the bandwith values controls the smoothness
of the generated pdf.

It still remains to generate the weights (qi)i≤k. Since (qi)i≤k is non-negative and sums
up to 1, this is the pdf of a random variable having k possible states, and will be referred
to as a k-state pdf. It is shown in the appendix A.1 a method for generating a k-state pdf
presents. The method is to generate k exponential random variables (z1, z2, · · · , zk). Then
the distribution of the vectors

1
z1 + . . .+ zk


z1...
zk

 (2.27)

is uniform over the k-state pdf space (see appendix A.1 for a proof). Now that all the
parameters µi, hi, qi are known, it is possible to generate valid pdfs uniformly over the pdf
space. The overall method is summarised by Algorithm 2, and examples of 1-dimensional
and 2-dimensional pdfs generated by the method are displayed on �gure 2.10.

2.4.3 Results and Choice of Axis Sequence

With the help of the pdf generator, it is now possible to study the convergence of the
distribution transfer method by measuring the mean KL divergence over the iterations.
In the following experiments, the plots are obtained by averaging the KL measure for
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Figure 2.9: Generating a pdf. The pdf here is modelled by a sum of 4 kernel
functions. On the left, the positions of the vertical bars correspond to the po-
sitions of centroids, the heights of the bars to the weight and the width of the
overhead horizontal line to the size of the bandwidth (these values are generated
by algorithm 2). The resulting pdf using gaussian kernels is presented on the right.
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Figure 2.10: Examples of two dimensional and one dimensional pdfs generated by
algorithm 2 .
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Algorithm 2 Sampling pdfs randomly
The pdf is modelled by a sum of kernel functions

q(u) =
1
k

k∑
i=1

qi

hN
i

K

(
u− µi

hi

)
(2.28)

The parameters are sampled as follows:
p(µi) ∝ 1 µi ∈ Ω (2.29)
p(hi) ∝ 1/hi (2.30)

qi =
ei

e1 + . . .+ ek
with p(ei) ∝ exp(−ei) (2.31)

min bandwidth = 1% min bandwidth = 3% min bandwidth = 5%

Figure 2.11: The pdf smoothness can be controlled by the minimum bandwidth
size allowed. For example on the left, the minimum bandwidth is set to 1% of
the data range.
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100 di�erent pdfs. Figure 2.12 shows the evolution of the KL divergence for a random
selection of axis set sequences, with both random initial and target distributions. This
result strongly suggest that the convergence occurs when the target distribution is not
the standard distribution but any distribution. This in an important result since it gives
ground to use the IDT algorithm, without having to use the standard distribution as a
pivot.

Taking a random selection of orthogonal bases seems to be su�cient to obtain con-
vergence, however it is shown hereafter, that a better choice of axis sequence can still
substantially improve the convergence speed. This can be understood by considering that
random axes are probably correlated. Figure 2.13 shows that for small dimensions, two
random vectors are more likely to be aligned than orthogonal. This result can be extended
to the distance between orthogonal bases: two random orthogonal basis are more likely to
be similar in dimension 2 than in dimension 10. Figure 2.14 con�rms this intuition. The
�gure displays the average KL divergence after two iterations of the algorithm for 2D pdfs.
At iteration 1, a �xed set of axes is chosen, thus the plot shows the evolution of the KL
divergence depending on the choice of axes at iteration 2. The graph clearly shows that
the KL improvement depends on the correlation between axes.

Intuitively then, an interesting heuristic would be to consider a sequence of rotations
that maximises the distances between the current axis set at iteration k and the previous
axis sets. De�ne the distance between two axes by

d(e1, e2) = min(‖e1 − e2‖2, ‖e1 + e2‖2) (2.32)

with e1 and e2 the supporting axis vectors. To �nd axes that are far apart, one solution is
to maximise the distances d(e1, e2). This turns out to a numerically unstable solution. A
better formulation is to consider instead the minimisation of the potential 1/(1+d(e1, e2))
and then to express that distances should be far appart with the following recursion:

[
e1

k+1, · · · , eN
k+1

]
= arg min

[e1,··· ,eN ]


k∑

l=1

N∑
i=1

N∑
j=1

1

1 + d(ej
l , e

i)

 (2.33)

with the constraint that the bases are orthogonal. This minimisation problem can be
numerically simulated under MATLAB using standard minimisation algorithms. The con-
straint of normalisation ‖e‖ = 1 can be avoided by taking hyperspherical coordinates [Wik].
The orthogonality of the base can be obtained using Gram-Schmidt orthogonalisation. The
resulting �rst bases for dimension 2 and 3 are given in appendix tables A.1 and A.2. Note
that since the algorithm is iterative, it is not crucial to require high accuracy in the esti-
mation of the bases. The code used to �nd the bases is available on [Pit06].

The improvements on the convergence speed are shown on �gures 2.15 and 2.16. One
can expect in average a speed improvement of 1.5 in 3D to 2.15 in 2D. The sequence which
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is sought, is optimal on average over the couple of pdfs. Note that other strategies could be
explored, like �nding the optimal sequence of axis for a particular couple of distributions.

2.5 Conclusion
Transferring statistics from one image to another is a non-trivial task if the samples are
multidimensional. The method which is proposed is attractive since it fast and the results
strongly suggests that the it converges for any continuous distribution. Note as well that
the implementation of the method is straightforward. The following chapters explores two
applications of this technique that work on the colour aspect of images.

It has been discovered towards the end of this PhD. that the problem exposed in this
chapter shares similitude with the problem of Mass Transfer. More details about this
problem can be found in [Eva99]. The original problem, �rst proposed by Monge in the
1780's, is to minimise the amount of work needed to move a pile of soil to an excavation.
Using modern notations, the pile and excavation correspond to two pdfs f and g, and the
problem is equivalent to �nd a bijective mapping, that transforms f into g. The problem
turns out to be extremely di�cult and is still a subject of research two hundred years
after. One reason is the complexity of the non-linear terms in the cost function and the
constraint. The problem presented in this chapter di�ers from the Monge problem since it
is not sought to minimise the transportation displacement. Note however that the problem
resolved in this thesis o�ers satisfying results for low computational cost. Future research
will examine the method developed in this thesis in light of the Monge problem.
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Figure 2.12: Averaged evolution of the Kullback Leibler divergence for 100 sim-
ulations with both random initial distribution and target distribution. Rotations
are taken randomly. It transpires from the results that convergence occurs for any
distribution.
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Figure 2.13: In (a): experimental measure of the average distance between
two unit vectors in function of the space dimension. The distance between two
vectors u and v is given by d(u, v) = min(‖u− v‖2, ‖u+ v‖2). The average distance
clearly increases with the dimensionality, which in other words shows that random
vectors are likely to be nearly orthogonal in high dimensions. The �gure (b)
extends the results to the distance between matrices of space transformation.
The distance between two matrices A = [a1, · · · , an] and B = [b1, · · · , bn] is given
by d(A,B) = mini,j d(ai, bj). As in (a), the average distance clearly increases
with the dimensionality. These two results imply that taking random directions
in high dimension spaces does not compromise e�ciency since the corresponding
directions between 2 iterations of the algorithm are naturally far apart. On the
contrary, a random selection strategy is surely non-optimal for low dimension.
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Figure 2.15: Optimised Rotation Sequence Speed Up for N = 2. On the left, the
averaged evolution of the log Kullback Leibler divergence for 100 simulation for
both a random sequence of rotations and an optimised sequence of rotations. On
the right, the correspondence between iteration numbers for both strategies. It
requires in average 53% less iterations for N = 2 when using an optimized rotation
sequence.
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Figure 2.16: Optimised Rotation Sequence Speed Up for N = 3. On the left, the
averaged evolution of the log Kullback Leibler divergence for 100 simulation for
both a random sequence of rotations and an optimised sequence of rotations. On
the right, the correspondence between iteration numbers for both strategies. It
requires in average 33% less iterations for N = 3 when using an optimized rotation
sequence.
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Chapter 3

Image re-Colouring

There are a wide range of applications for the notion of exact transfer of distribution for
multidimensional datasets. This chapter considers the di�cult problem of example-

based re-colouring [Rei01]. The idea of example-based re-colouring is illustrated by the
picture below. The `mountain' picture is required to be transformed so that its colours
match the palette of the `plain' image, regardless of the content of the pictures.

Original Colour Palette re-Coloured Image

Consider the two pictures as two sets of three dimensional colour pixels. A way of
treating the re-colouring problem would be to �nd a one-to-one colour mapping that is
applied for every pixel in the original image. For example in the diagram above, every
white pixel is re-coloured in blue. Then the new picture is identical in every aspects to the
original picture, except that the picture now exhibits the same colour pdf, or palette, as
the target picture.

Estimating the mapping can be di�cult, but if it is supposed to be continuous, a so-
lution is had through the distribution transfer techniques for three dimensional datasets

parts of this chapter are based on the work published in [Pit05c, Pit05d]
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as discussed in previous chapter. Thus this chapter examines the application of the distri-
bution transfer techniques in the context of image re-colouring. Note that the continuous
assumption only transcribes the intuitive idea that two colours that are perceptually sim-
ilar should be also mapped to similar colours. This also implies that colours cannot be
swapped. For instance, it is impossible to map a white to black and a black to white in
the same picture. Figure 3.1 illustrates this contrast limitation. To realise a successful
transfer, the sky of the picture should be segmented and treated separately.

Re-colouring picture with another has many applications in Computer Vision and in
the Post-Production �eld. In digital restoration [Pap00] the idea is to recolour paintings
that have been faded by smoke, dust etc. The process can also be used for colour im-
age equalisation for scienti�c data visualisation [Pic03] or simply useful for non-realistic
rendering.

A major problem in the post production industry is matching the colour between
di�erent shots possibly taken at di�erent times in the day. This process is part of the
large activity of �lm grading in which the �lm material is digitally manipulated to have
consistent grain and colour. The term colour grading will be used speci�cally to refer to
the matching of colour. Colour grading is important because shots taken at di�erent times
under natural light can have a substantially di�erent `feel' due to even slight changes in
lighting. Currently these are �xed by experienced artists who manually match the colour
between frames by tuning parameters. This is delicate task since the change in lighting
conditions induces a very complex change of illumination. The method presented in this
chapter however succeeds in automating this painstaking process even when the lighting
conditions have dramatically changed as shown in �gure 3.6.

The one-to-one colour mapping to the original picture makes the transformed picture
have the same `feel' of the picture example but it might also produce some grain artefacts on
parts of the picture. This can be understood by considering a mapping from a low dynamic
range to a high dynamic range. The resulting mapping is stretched and thus enhances the
noise level of the picture, which makes the transformed picture appear grainy. The second
step in colour grading is therefore to reduce this artefact. The method proposed is to use a
variational approach to preserve the gradient of the original while preserving also the colour
transfer characteristic. Preserving the gradient of the original picture especially protects
the �at areas and more generally results in preserving the nature of the �lm grain/noise
as in the original image.

There has been no prior art targeted speci�cally to the colour transfer problem in the
�lm and digital video industry. However, there are a few articles which disclose ideas that
could be used. These are discussed next.
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3.1 Related Works
Transfer of Colour Statistics. One popular method proposed by Reinhard [Rei01] matches
the mean and variance of the target image to the source image. The transfer of statistics
is performed separately on each channel. Since the RGB colour space is highly correlated,
the transfer is done in another colourspace lαβ. This colourspace has been proposed in an
e�ort to account for for human-perception of colour [Rud98]. But the method is limited to
linear transformations. In fact, the motion picture industry employs routinely non-linear
colour grading techniques. Hence, in a practical situation, some example-based recolouring
scenarios actually require non-linear colour mapping. Figure 3.2 shows exactly this problem
and the method fails to transfer any useful statistics.

The problem of �nding a non-linear colour mapping is addressed in particular in [Pic03]
for colour equalisation (c.f. grayscale histogram equalisation). That work proposes to
deform tessellation meshes in the colour space to �t to the 3D histogram of a uniform
distribution. This method can be seen as being related to warping theory which is explicitly
used in [Luc01] where the transfer of the 2D chromatic space is performed directly by using
a 2D-bi-quadratic warping. Without having to invoke image warping, a natural extension
of the 1D case is to treat the mapping via linear programming and the popular Earth-
Mover distance [Mor03]. The major disadvantage of the method is that 1) the mapping is
not continuous and 2) pixels of same colours may be mapped to pixels of di�erent colours,
which require random selection. Furthermore the computational cost becomes intractable
if a very �ne clustering of the colour space is desired.
Dealing with Content Variations. One important aspect of the colour transfer problem
is the change of content between the two pictures. Consider a pair of images which are of
landscapes but in one picture the sky covers a larger area than the other. When transferring
the colour from one picture to the other therefore, the sky colour may be applied also
to parts of the scenery on the ground in the other. This is because all colour transfer
algorithms are sensitive to variations in the areas of the image occupied by the same colour,
they risk overstretching the colour mappings and thus producing unbelievable renderings.
To deal with this issue a simple solution (presented in [Rei01] ) is to manually select
swatches in both pictures and thus associate colour clusters corresponding to the same
content. This is tantamount to performing manual image segmentation, and is simply
impractical for a large variety of images, and certainly for sequences of images.

One automated solution is to invoke the spatial information of the images to con-
strain the colour mapping [Wel02, Ji04, Jia04]. In an extreme situation, colour from a
coloured image may be required to be transferred to a grayscale image. Hence similar-
ities between spatial neighbourhoods of the two pictures is then the only way to create
a colour transfer operation automatically. This is a computationally demanding solution.
Another automated solution is to restrict the variability on the colour mapping. For ex-
ample in [Cha04], the pixels of both images are classi�ed in a restricted set of basic colour
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Original Colour Palette Resulting Transfer

Figure 3.1: Issues of the Continuous Assumption for Colour Transfer. The Cam-
panile appears clearer than the sky in the original picture, and darker than the
sky in the target picture. This contrast inversion can not be handled correctly by
continuous transfer. Even if the result image has the same colour statistics than
the target image, the transfer is clearly not the one wanted. Note that the white
of the Campanile comes from the white of the target sky.

Original Colour Palette Reinhard Results

Figure 3.2: Example of Colour transfer using Reinhard [Rei01] Colour Transfer.
The transfer fails to re-synthesise the colour scheme of the target image. To be
successful the method would require human interaction.
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categories, derived from psycho-physiological studies (red, blue, pink . . . ). The colour
transfer ensures for instance that blue-ish pixels remain blue-ish pixels. This gives a more
natural transformation. The disadvantage is that it limits the range of possible colour
transfers.
Novelty. Using the distribution transfer method for the example-based recolouring problem
can �x many of the shortcomings of previous e�orts in this area. Firstly, it is computa-
tionally attractive as it uses just 1D pdf matching in an iterative scheme. Secondly, the
method is completely non-parametric and is very e�ective at matching arbitrary colour
distributions. Thirdly, the proposed method for reducing grain artefact results in high
quality picture.

3.2 Reducing Grain Noise Artefacts
The colour mapping to the original picture transfers correctly the target colour palette to
the original picture but it might also produce some grain artefacts as shown in �gure 3.2
and 3.5. When the content di�ers, or when the dynamic range of both pictures are too
di�erent, the resulting mapping function can be stretched on some parts (see �gure 3.2-e),
and thus enhances the noise level (see �gure 3.2-c). This can be understood by taking the
simple example of a linear transformation t of the original picture I: t(I) = a I + b. The
overall variance of the resulting picture is changed to var{t(I)} = a2 var{I}. This means
that a greater stretching (a > 1) produces a greater noise.

The solution proposed here to reduce the grain is to run a post-processing algorithm
that forces the level of noise to remain the same. The idea is to adjust the gradient �eld of
the picture result so that it matches the gradient �eld of the original picture. If the gradient
�elds of both pictures are similar, the level of noise will be the same. Matching the gradient
of a picture has been addressed in di�erent computer vision applications like high dynamic
range compression [Fat02]; the value of this idea has been thoroughly demonstrated by
Pérez et al. in [Pér03]. The manipulation of gradient can be e�ciently solved using a
variational approach. The problem here is slightly di�erent, since re-colouring also implies
changing the contrast levels. Thus the new gradient �eld should only loosely match the
original gradient �eld.

Denote I(x, y) the 3-dimensional original colour picture. To simplify the coordinates
are omitted in the expressions and I, J , ψ,φ, etc. actually refer to I(x, y), J(x, y), ψ(x, y)
and φ(x, y). Let t : I → t(I) be the colour transformation. The problem is to �nd a
modi�ed image J of the mapped picture t(I) that minimises on the whole picture range Ω

min
J

∫∫
Ω
φ · ||∇J −∇I||2 + ψ · ||J − t(I)||2dxdy (3.1)

with Neumann boundaries condition ∇J |∂Ω = ∇I|∂Ω so that the gradient of J matches
with the gradient of I at the picture border ∂Ω. The term ||∇J −∇I||2 forces the image
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(a)-Original (b)-Target
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(c)-Recoloured (d)-denoised (e) mapping

Figure 3.3: Result of grain reducing. The two consecutive archive frames
(a) and (b) su�er from extreme brightness variation (this artefact is known as
�icker [Pit04a]). The corresponding mapping transformation (e) is overstretched,
which results in an increased level of noise on the mapped original frame (c). The
proposed grain artefact reducer is able to reproduce the noise level of the original
picture. The top of the original picture is saturated and cannot be retrieved but
the algorithm succeeds in preserving the soft gradient.
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gradient to be preserved. The term ||J − t(I)||2 ensures that the colours remain close to
the target picture and thus protects the contrast changes. Without ||J − t(I)||2, a solution
of equation (3.1) will be actually the original picture I.

The weight �elds φ(x, y) and ψ(x, y) a�ect the importance of both terms. Many choices
are possible for φ and ψ, and the following study could be easily be changed, depending
on the speci�cations of the problem.

The weight �eld φ has been here chosen to emphasise that only �at areas have to remain
�at but that gradient can change at object borders:

φ(x, y) =
30

1 + 10 ||∇I||
(3.2)

The weight �eld ψ accounts for the possible stretching of the transformation t. Where ∇t
is big, the grain becomes more visible:

ψ(x, y) =

2/ (1 + ||(∇t)(I)||) if ||∇I|| > 5

||∇I||/5 if ||∇I|| ≤ 5
(3.3)

where (∇t)(I) is the gradient of t for the colour I and thus refers to the colour stretching.
The case ||∇I|| ≤ 5 is necessary to re-enforce that �at areas remains �at. While the
gradient of t is easy to estimate for grayscale pictures, it might be more di�cult to obtain
for colour mappings. The �eld can then be changed into:

ψ(x, y) =

1 if ||∇I|| > 5

||∇I||/5 if ||∇I|| ≤ 5
(3.4)

Numerical Solution. The minimisation problem in equation (3.1) can be solved using
the variational principle which states that the integral must satisfy the Euler-Lagrange
equation:

∂F

∂J
− d

dx

∂F

∂Jx
− d

dy

∂F

∂Jy
= 0 (3.5)

where
F (J,∇J) = φ · ||∇J −∇I||2 + ψ · ||J − t(I)||2 (3.6)

from which the following can be derived:

φ · J − div (ψ · ∇J) = φ · t(I)− div (ψ · ∇I) (3.7)

This is an elliptic partial di�erential equation. The expression div (ψ · ∇I) at pixel x =
(x, y) can be approximated using standard �nite di�erences [Wei98] by:

div (ψ · ∇I) (x) ≈
∑

xn∈Nx

ψxn + ψx

2
(Ixn − Ix) (3.8)
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where Nx corresponds to the four neighbouring pixels of x. Using this in equation (3.7)
yields a linear system as follows:
a1(x, y)J(x, y − 1) + a2(x, y)J(x, y + 1) + a3(x, y)J(x− 1, y) + a4(x, y)J(x+ 1, y)

+a5(x, y)J(x, y) = a6(x, y)
(3.9)

with

a1(x, y) = −ψ(x, y − 1) + ψ(x, y)
2

a2(x, y) = −ψ(x, y + 1) + ψ(x, y)
2

a3(x, y) = −ψ(x− 1, y) + ψ(x, y)
2

a4(x, y) = −ψ(x+ 1, y) + ψ(x, y)
2

a5(x, y) =
1
2

(
4ψ(x, y) + ψ(x, y − 1) + ψ(x, y + 1) + ψ(x− 1, y) + ψ(x+ 1, y)

)
+ φ(x, y)

a6(x, y) =
1
2

(
ψ(x, y) + ψ(x, y − 1))(I(x, y − 1)− I(x, y))

+ (ψ(x, y) + ψ(x, y + 1)(I(x, y + 1)− I(x, y))

+ (ψ(x, y) + ψ(x− 1, y)(I(x− 1, y)− I(x, y))

+ (ψ(x, y) + ψ(x+ 1, y)(I(x+ 1, y)− I(x, y))
)

+ φ(x, y)I(x, y)

The system can be solved by standard iterative methods like SOR, Gauss-Seidel with
multigrid approach. Implementations of these numerical solvers are widely available and
one can refer for instance to the Numerical Recipes [Pre92]. The main step of these methods
is to solve iteratively for J(x, y). Note that J(x, y) and ai(x, y) are of dimension 3, but
that each colour component can be treated independently. For instance, the iteration for
the red component �eld is of the form

J
(k+1)
R (x, y) =

1
aR

5 (x, y)

(
aR

5 (x, y)− aR
1 (x, y)J (k)

R (x, y − 1)− aR
2 (x, y)J (k)

R (x, y + 1)

− aR
3 (x, y)J (k)

R (x− 1, y)− aR
4 (x, y)J (k)

R (x+ 1, y)
) (3.10)

where J (k)
R (x, y) is the result in the red component at the kth iteration.

3.3 Results
The remaining pages show some results from the proposed Colour Grading technique. In
Figure 3.4 for instance, the original mountain picture in (a) is recoloured using the target
colour scheme for the sea-side image in (b). The result of the transfer appears in the third
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column.
Examples of Colour Grading for matching lighting conditions are presented in 3.6. On

the �rst row, the colour properties of the sunset are used to synthesise the `evening' scene
depicted at sunset. On the second row, the colour grading allows correction of the change
of lighting conditions induced by clouds. Even when using the grain artefact reducer, an
unavoidable limitation of colour grading is the clipping of the colour data: saturated areas
cannot be retrieved (for instance the sky on the golf image cannot be recovered). A general
rule is to match pictures from higher to lower range dynamics.

The �gure 3.7 displays examples of colour restoration of faded movies. The idea is
similar to colour grading as the idea is to recreate di�erent atmospheres. The target
pictures used for recreating the atmosphere are on the second row.

3.4 Conclusion
This chapter has proposed an original technique for colour grading. The technique is based
on an exact transfer of colour pdf of the target picture. The possible grain artefacts are
removed in a second step. The overall technique is simple, easily to implement and works
for a large variety of scenarios, even when the example picture is very di�erent from the
processed images.
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(a) - original image (b) - target palette (c) - (a) recoloured with (b)

Figure 3.4: Examples of Image re-Colouring: the original image (a) is re-coloured
using the palette of the example image (b). The result is displayed on (c).
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Original Colour Palette

No Grain Reducer with Artefact Grain Reducer

Figure 3.5: Artefact grain reducing for colour picture. See how the details of the
picture are preserved, while the spurious graininess in the sky is washed out.
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(a) - at evening (b) - at sunset (c) - grading (a) using (b)

(a) - with clouds (b) - without clouds (c) - grading (a) using (b)

Figure 3.6: Examples of Colour Grading for matching lighting conditions. On the
�rst row, the colour properties of the sunset are used to synthesise the `evening'
scene depicted at sunset. On the second row, the colour grading allows to correct
the change of lighting conditions induced by clouds.

Original Frame 70's atmosphere pub atmosphere

Original Frame Original 70's atmosphere Original pub atmosphere

Figure 3.7: Example of Colour Grading for Image and Video Restoration. It is
possible to recreate di�erent atmospheres. Here an old faded �lm is transformed
to match the colour scheme of a movie from the 70's and a pub ambiance.
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Chapter 4

Stabilisation of Brightness Fluctuations in Image Sequences

While in re-Colouring images the target colour palette is known, there exists a number
of scenarios where the target palette is a priori unknown. Consider an image

sequence, where colour and brightness levels �uctuate for each frame of the sequence. The
problem is to align these levels in order to remove the �uctuations. The underlying ground-
truth target palette is unknown and the problem comes down in �rst place to estimate
the target palette. Most frequently �uctuations also present some spatial correlation,
which need also to be accounted for. This chapter proposes a solution to this problem
by extending the ideas developed in the previous chapters to include both temporal and
spatial considerations.
Instances of Brightness Fluctuations. Random �uctuation in the observed brightness
of recorded image sequences, also called �icker, occur in a variety of situations. The
most commonly consumer observed instance of �icker is in archived �lm and video (see
�gure 4.1 and 4.2, see also examples of videos in [Pit02]). It is caused by the degradation
of the medium (ageing of the �lm stock), varying exposure times, or curious e�ects of poor
standards conversion. Varying exposure time is common to hand-cranked footages, but
happens too with mechanised cameras in early �lms or most recently with personal 8mm.
Remarkably �icker often a�ects modern �lm and video media if the lighting conditions are
poor, as in submarines surveillance, or when the transfer from �lm to video (telecine) is
not properly done.

The �icker artefact is still an actual issue, even with the use of digital cameras. Consider
parts of this chapter have been published in [Kok03, Pit03, Pit04a]
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for instance the popular Inbetweening special e�ect used in �The Matrix� (1999). This
special e�ect is based on the interpolation of images coming from multiple cameras shouting
with di�erent angle the same scene. Unfortunately, the brightness levels of the pictures
are sometimes misaligned. This is due to di�erent camera behaviour or lighting conditions
due to camera orientation, even if video cameras have been previously calibrated using
radiometric calibration routines. Figure 4.3 shows this radiometric calibration issue for an
outdoor footage.
Consequences. The presence of �icker is often praised by �lm enthusiasts as an essential
aesthetic element of the �lm experience. Unfortunately people with medical conditions or
simply high sensitivity to �ickering can su�er eye strain and even headaches while watching
such movies. This results of course in much discomfort and pain.

From an image processing point of view, the presence of �icker has also a detrimental
e�ect on many applications since it breaks the common assumption that object brightness
is constant over the frames (this is the so-called �brightness constancy�). For instance,
motion estimation [Lai99, Jin01] or any other image matching algorithms fail in presence
of �icker as they try to match brightness levels of two pictures.

Brightness �uctuations have also dramatic consequences on the video compressibility.
The �icker reduces the redundancy between frames and hence increases the bandwidth of
transmitted sequences. This is particularly a problem for Digital Television or broadcasting
of video content over the Internet.
Organisation of the Chapter. This chapter proposes therefore to stabilise these �uctua-
tions in image sequences. Dealing with the problem of �icker requires some attempt to
model or measure the �uctuation between frames (the estimation process), and then to
remove this �uctuation in some way (the correction process). The core of the model and
its estimation process rely on the re-colouring technique exposed in the previous chapter.
After an exposition of related works in the area, the following sections examine how to
integrate spatial and temporal considerations to distribution transfer techniques, in order
to establish a generic �icker removal framework. In addition, this chapter proposes a novel
implementation based on general purpose PC graphics hardware. The results show that it
is possible to cope with a wide range of �icker e�ect. The section 4.5 presents results show-
ing the e�ect of �icker on MPEG4 compression of di�erent kinds of sequences including
multi-view camera sequences, and the improvement in bandwidth usage with the proposed
�icker reduction method.

4.1 Related works
The following paragraphs present several approaches that have been proposed in the
literature�most of them independently�for the removal of �icker in videos. The ap-
proaches can be categorised by two criteria, the linearity of the intensity mapping (linear
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Figure 4.1: Example of �icker manifestation on two consecutive frames of Rory
O'More, 1911. Note in particular the black diagonal on the right frame.

Figure 4.2: Example of �icker manifestation on image sequence of Rory O'More.
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or non-linear), and the spatial considerations (with modelling of spatial variations or with-
out). The restoration scheme of the methods is based on the recovery of the unknown
original intensity image (ground truth) Ion given the observed intensity images In at time
n. The estimation Îon of the non-degraded image gives the restored frame IRn .
Linear model. The linear model proposed by Decencière [Dec97] link the intensities of the
observed image In to the original �icker free image Ion. It involves a gain an and an o�set
bn to create a degradation model as follows:

In(x, y) = an Ion(x, y) + bn (4.1)

where In(x, y) is the intensity of picture n at pixel (x, y). While processing the video,
the image Ion(x, y) is not yet available at time n and is replaced in equation (4.1) by the
previous estimated one Îon−1. The maximum and minimum of the intensity histograms
of the In and Îon−1 are matched to estimate the gain and the o�set, assuming that those
extrema are constant in the �icker free sequence.

One major weakness of this formulation is that the estimation of the current �icker free
image relies on the availability of a �icker free instance of the previous image. A reference
frame has therefore to be chosen by an operator to start the restoring process. Furthermore,
the success of the restoration is then sensitive to any possible estimation-restoration error
occurring any time from the start.
Linear model with spatial dependencies. As illustrated in �gure 4.1, the �icker is not
the same across an entire frame. Roosmalen [Roo99a, Roo99b] introduced thus spatial
dependency (x, y) as follows:

Ion(x, y) = an(x, y) In(x, y) + bn(x, y) (4.2)

The original image Ion(x, y) is replaced in the equation by the previous restored frame.
The spatial variation is introduced on a block basis, thus an, bn are piecewise constant.
Parameters can be estimated by least squares estimation [Yan00], and each estimate is
associated with a con�dence measure [Roo99a].

The problem with direct parameter estimation for �icker is that not all of each image
pair can be matched. The parts that cannot be matched are due to occlusions/uncovering
because of motion or simply due to missing data (blotches/dirt/dropout) in the case of
degraded �lm and video material. To cope with this problem, Roosmalen [Roo99a] and
Yang [Yan00] suggest to detect occluding areas based on spotting large intensity di�erences
that cannot be explained by �icker alone. Parameter estimation is then performed only on
the blocks in which there are no outliers detected. Estimates for the �missing blocks� are
then generated by some suitable interpolation algorithm. Unfortunately, this method for
detecting outliers fails in the presence of heavy �icker degradation.
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Because the restored images are generated by locking the brightness to previous frames,
errors can accumulate. To avoid this problem, Roosmalen [Roo99b] proposes to construct
the restored intensity image as a mixture of Îon and the observed image:

IRn (x, y) = k Îon(x, y) + (1− k) In(x, y) (4.3)

where k is the forgetting factor set experimentally at 0.85.
Linear Model with Robust Regression. Ohuchi [Ohu00] and also Lai [Lai99] consider the
same linear model as in equation (4.2) but the spatial variation of the gain and the o�set is
expressed directly using second order polynomials [Lai99, Ohu00]. The parameters of those
polynomials are then estimated using robust M-estimation [Lai99, Ohu00, Hub81, Pre92]
involving a Reweighted Least Squares algorithm. Robustness of the estimator is needed to
deal with outliers that frequently occur in old videos.

However, as noticed by Kokaram et al.[Kok03], due to the correlation between the
frames, the regression (robust and non-robust) introduces a bias in the estimates that can
damage seriously the restoration process in case of heavily degraded sequences. Therefore,
the authors [Kok03] have introduced a slightly modi�ed linear model that allows reduction
of this bias. Another important improvement proposed in [Kok03] is to change the polyno-
mial basis to a cosine basis to express the gain and the o�set. Since the success of global
motion estimation is linked to �icker correction (and vice versa), some have proposed to
couple both estimations [Lai99, Roo99b, Kok03]. Thus in the technique proposed in this
chapter, images will be registered prior to any �icker estimation.
Non-linear model. The brightness distortion can be sometimes non-linear. To account
for this non-linearity, Ridcharson and Suter [Ric95] propose to individually stretch each
frame by applying a grayscale equalisation, and then linearly remap the intensities levels
onto a constant smaller dynamic range. Instead of linearly remap the intensities on a �xed
dynamic range, Naranjo et al. [Nar00] propose to use directly the simple 1-dimensional pdf
transfer scheme as in equation (2.11). The target intensity pdf is obtained by averaging
the intensity pdfs of neighbouring frames [Nar00]. The same idea of using intensity pdf
transfer has been actually previously developed by Shallauer et al. in [Sch99, sec. 6], with
also, a spatial modelling by performing grayscale pdf transfer on a block basis. In their
case however, the target intensity pdf is obtained from a selected reference frame.

Some attends have been done to use parametric model. For example Skoneczny [Sko01]
proposes to model the brightness distortion as a linear combination over six basis function:
t(I) =

∑6
i=1 ci gi(I). The parameters ci are estimated by standard least squares regression

over the two considered frames.
Only recently, Vlachos [Vla04] gave a �rst attempt to derive from �rst principles a

model for the non-linearity of the �icker distortion. In the paper, the Hurter-Dri�eld
Density versus log-Exposure characteristic is used to formulate, a quadratic model for the
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non-linear correction of the intensities.
The use of the Hurter-Dri�eld curve is not without reminding the Radiometric Align-

ment techniques.
Relation to Radiometric Self-Alignment. Flicker has indeed tight links with the problem
of radiometric alignment, and in some scenarios, the radiometric alignment problem can
even be seen as a special case of �icker.

Consider for example, the problem of aligning the levels of an image sequence where
every frame is taken with the same camera but with di�erent exposure time. Ideally
the camera would be a linear imaging system, and the image intensity I on the picture
would be related to the exposure time ∆t and the irradiance E of the scene by the simple
relation I = E∆t. Unfortunately a camera is rarely a linear system. For photographic
�lm for instance, the response of the �lm stock to variations in exposure is summarised by
a characteristic curve (this is the so-called Hurter-Dri�eld curve). More generally, with
digital or standard cameras, or after any imaging system involving development, scanning
and digitisation process,etc. , it is possible to establish a relationship between the image
irradiance of the scene, the exposure time, and the image intensity given by the camera.
The relationship can be stated by introducing the radiometric response function as follows:

I = f(E∆t) (4.4)
As shown on �gure 4.4, the response functions of commercial �lms found in the market
stocks are usually not linear. Thus the problem comes down to the estimation of the radio-
metric response function f and/or the exposure time, if this parameter is not accessible.

Devebek and Malik [Deb97] establish clearly this problem and solve the estimation
the radiometric response f and the irradiance map by least square minimisation. It is
then claimed in [Mit99] that the estimation can be made more robust to noisy pictures by
modelling the response curve as a sum of polynomials. Both approaches suppose that the
pictures correspond to the same scene view, which eases greatly the estimation since there
is no need to register the pictures beforehand.

The problem of radiometric auto-calibration can be extended to videos [Man02, Kan03,
Kim04]. As seen previously, working with videos inevitably makes the estimation di�cult
because of the the presence of outliers due to occlusions and other common image regis-
tration issues. Note that the response function only infers the transfer between the scene
irradiance and the resulting image brightness on the �lm. Hence it does not refer directly
to the possible brightness transfer between frames. Interestingly Mann [Man02] proposes
to consider the joint distribution of two consecutive image intensities p(In, In+1). The esti-
mation of the radiometric response then involves a marginalisation of the joint probability
into p(In) and p(In+1). This is tantamount to the kind of idea developed for �icker removal
by Shallauer et al. in [Sch99, sec. 6].

It is thus clear that the problem of radiometric alignment relates to �icker. In particular,
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it properly solves the special case where the source of �ickering is only due to globally
varying exposure. This is however a special case of �icker, and it is well understood in
the general case, that �icker may presents spatial correlations. Moreover, it is assumed in
radiometric alignment that the response function is constant for the whole sequence. This
makes sense for modern footages, but becomes unclear for old sequences, where chemical
reactions damaged the physical �lm.

4.2 Spatial and Temporal Integrations
Experience with this problem shows that, spatial dependence and non-linearity are key to
modelling a wide range of �icker defects. Since the causes of �icker are usually unknown
and various, it is preferable to adopt a very weak prior on the distortion function.
Spatial Integration . It is thus proposed as in [Sch99] to extend the non-linear model
proposed by Naranjo [Nar00] to integrate spatial variations

Ion(x) = tn (In(x),x) (4.5)

where x = (x, y) is the pixel location, Io the �icker free frame, and I the the observed frame.
Ideally, an estimate of a transformation should be performed for each pixel x. However,
this is computationally expensive and it would require an additive spatial smoothness
constraint. Alternatively, the transformations tin is estimated at regularly spaced control
points xi in the image using interpolating splines of order 3. The splines yield an implicit
smoothness constraint and the corrected pixel at x can be written

Ion(x) =
N∑

i=1

w(x− xi) tin (In(x)) (4.6)

where tin is the transformation at control point xi and w(x) the interpolating 2D mask. In
dimension 1, the interpolating kernels of splines of order 3 are de�ned as follows:

w(x− xi) = s

(
x− xi

σw

)
s

(
y − yi

σh

)
(4.7)

s(a) =


−a2 + 3

4 if a ≤ 1
2

a2 − 3
2a+ 9

8 if 1
2 ≤ a ≤

3
2

0 if 3
2 ≤ a

(4.8)

where σw and σh correspond to the distances between two horizontal and vertical neigh-
bouring control points. The number of control points on one axis will be referred to as the
�icker order.
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Figure 4.3: Example of Radiometric Calibration issue on a outdoor multi-camera
footage. The image on the right is darker which results in a shift to the left in
the intensity histogram (dashed green plot).
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Figure 4.5: Compensation of a frame: {In}n original pictures, IRn : restoration of
In, tn,m brightness variation parameters between frames In and Im.

Temporal Integration. A key deviation from previous e�orts in �icker removal is that no
selected key frame is supposed to be available. Thus, the model considers only the change
in brightness between observed images and not the brightness change between the observed
and the hidden clean images:

Im(x) =
N∑

i=1

w(x− xi) tin,m (In(x)) (4.9)

where tn,m is the mapping from frame n to n. As illustrated in �gure 4.5, the task is
therefore to smooth brightness changes between frames and not necessarily reveal the
true original image. Brightness variations between images Im and In can be caused by:
1) intentional e�ects like shadows or gradual brightness changes, due to special editing
e�ects for instance, and 2) the �icker degradation which is unintentional. The �rst e�ect
is generally low frequency and exhibits slow temporal variation. The second e�ect is
temporally impulsive and it is this signal that has to be removed.

Consider now that the mapping tn,m have been estimated. The estimated parameters
for tn,m correspond to the impulsive �icker mixed with the gradual informative variations.
To separate the impulsive �icker and keep the informative variation, the parameters are
�ltered using a temporal robust expectation:

t̂n(k) = Em [tn,m(k)] = arg min
tn(k)

n+M∑
m=n−M

e−
(m−n)2

σw ρ(tn,m(k)− tn(k)) (4.10)

where tn,m(k) is the kth component of the look-up table tn,m, ρ a robust function [Pre92]
and σw a temporal scale factor. The temporal window has been �xed experimentally to 15
frames (M = 7). The expectation t̂n is estimated using Iterative Reweighted Least Squares
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(IRLS) and �nally applied to In to generate the restored image IRn . The IRLS involves the
following update step:

t̂n(k)←
∑

m tn,m(k)e−
(m−n)2

σw ψ(tn,m(k)− t̂n(k))∑
m e−

(m−n)2

σw ψ(tn,m(k)− t̂n(k))
(4.11)

The weight function chosen is the Geman one, which gives for ψ:

ψ(u) =
1

(1 + u2)2
(4.12)

Speeding Up the Correction Scheme. It is possible to dramatically reduce the complexity
by estimating tn,m through the simple combination of successive estimations tn,n+1. How-
ever, when the �icker is too severe that only a portion of the intensity range is occupied
by an image (skewed pdf) the parameter estimates are poor. To conclude, two strategies
are available: one involving exhaustive estimations but able to cope with extreme �uctu-
ations in intensity without propagation of errors and one involving a minimal number of
estimations but more liable to errors.

4.3 Estimation of the Mapping
In the case of a spatially constant brightness distortion (Im = tn,m(In)), it has been shown
in previous chapters that the distortion function can be estimated by

tn,m(In) = F−1
m ◦ Fn (In) (4.13)

where Fn and Fm are the cumulative pdf of In and Im. In this case the mapping is assumed
to be locally constant. At each control point xi, the local pdf is given by1

pi
n(u) =

∑
x|In(x)=uw(x− xi)∑

xw(x− xi)
=

∑
x|In(x)=u

w(x− xi) (4.14)

where x→ w(x) is the spatial weighting function and xi a control point. t̂in,m is estimated
using equation (4.13).

An interesting point about considering pdfs separately on each frames is that pdfs are
not a�ected by local motion within the area of consideration, whereas regression methods
assume that there is no local motion between both frames. Moreover, gradual changes in
the scene, like appearance of new objects, are naturally handled by the �ltering process.
Nevertheless, for impulsive events, like large blotches, this estimator becomes very sensitive,
and more robust methods need to be used. The next chapter proposes new estimation
techniques to cope with severe levels of occlusion.

1where
P

x w(x) = 1 for splines.
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4.3.1 Flicker Compensation

Once the parameters of t̂n have been estimated, the only remaining step is to apply the
corresponding mapping to the current frame. This is a straightforward operation, but as
mentioned in the re-colouring chapter, the stretching in mapping can produces very grainy
pictures. Thus applying the grain reducer, proposed in the previous chapter, can then
again be necessary. Moreover, this grain reducer post-process can also limit the impact of
errors in the estimation.
Flicker Compensation using Graphics Hardware. Computational load can be a key issue
in a restoration process involving thousands of frames. Flicker compensation is the most
time consuming stage of the �icker restoration process. It has been found that in its
simplest form (i.e. without grain reducer) the �icker compensation accounted on average
for 80% of the total restoration time.

Modern computer graphics card are becoming much more programmable and contain
powerful graphic processing units (GPUs). In fact they can now be considered as useful
co-processors to the CPU. Flicker compensation on the GPU is only possible because of
the latest advances in graphics hardware architecture especially full support for �oating
point accuracy. Using fragment programs it is possible to perform the necessary operations
to map tin on an image block and multiply it by w(x − xi). The vertex programs can be
used to correctly position the interpolating kernels on the image. Render-to-texture and
�oating point data are required for the summation of tin(I(x)) w(x− xi).

The postprocessing grain reducer has not been yet implemented on a GPU, but it
is well known that all the fundamental operations required for Gauss-Seidel Multigrid
optimisation can be performed on the GPU [Kru03, Bol03]. A process description has
been previously presented in [Goo03]. That module could be used with minimal change
for this application.
Performance. Figure 4.6 shows the results of using the GPU compared to the CPU. These
results were obtained on a 2.6GHz Pentium 4 machine running Windows XP, with an
Nvidia GeForce FX5600 graphics card. The GPU implementation reduced the time taken
for �icker compensation from 80% of the total restoration time to 55%. On average the
GPU implementation is 3.5 times faster than the CPU implementation.

Altogether the full non-robust scheme processes on average 18 frames per second at
�icker order 3. The full robust scheme takes 1.5 frames per second whereas Roosmalen's
process takes around 2 to 3 seconds a frame on similar hardware. For heavily degraded
sequences the full process can take up to 20 seconds per frame.

4.4 Practical Issues
Figure 4.7 shows the overall structure of the �icker correction system. The �icker order (i.e.
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Figure 4.6: Flicker Compensation Speed CPU vs GPU. On the left with a �xed
�icker order of 3 and varying frame size. On the right, with a �xed frame size of
720x576, but with varying �icker order.
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Figure 4.7: Flicker Correction Scheme.

the number of control points per dimension) typically vary from 3�for the vast majority
of image sequences�to 6 or even 14 for old movies whose �lm has chemically changed. For
�icker orders greater than 6, occlusions (blotches and local motions) requires to use the
robust scheme presented in the next chapter.

Working on orders higher than 8 is not necessarily interesting since the �icker removal
is then similar to a noise reducer processing. In particular, it is then di�cult to estimate
proper pdfs since the number of samples is too small. It is also important while working
on very small areas to have a very �ne estimation of the motion �eld. The noise remover
techniques are specially designed to take these considerations into account. Thus it should
be kept in mind that �icker removal should only be used for global �uctuations.

Most of the time working on colour sequences can be done by simply stabilising the
luminance component of the frames. In some rare cases however, the colour channels also
su�er from �icker �uctuations. In these cases, the colour mapping of the re-colouring
chapter can be used. This has in practice no consequences on the framework.
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4.5 Results
Sequences. The �rst sequence, Snake (see �gure 4.3), composed of images from di�erent
uncalibrated cameras. This is a modern sequence actually used for post production.The
second one, Paula, is a 8mm movie from a private repository, captured by pointing a DV
camera at the projection screen; the asynchrony of the frame rates is the principle source
of �icker. The third sequence is the Tunnel sequence [Roo99b], which was obtained by
telecine. The last sequences comes from Rory O'More, a severely degraded movie from
1911.
Results. The results of the proposed �icker removal are presented on a separate page on
�gure 4.9. To have a better understanding of the temporal �lter, the idea proposed here
is to represent the image sequences using video slices. The frames are averaged along
the horizontal axis, and thus only represented as one vertical line. This representation,
displayed on �gure 4.9, is particularly suited for assessing �icker, since it is then possible
to detect
Evaluation by comparing the mean and the variance. Numerically assessing the perfor-
mance of the systems on real degraded sequences is di�cult because of the lack of objective
criteria for assessing the quality of the restoration. However, as shown in [Roo99b, Ohu00,
Nar00, Kok03] it is feasible to expect that a good de-�icker process would reduce the �uctu-
ations in the mean and the variance of image intensities from frame to frame. Figure 4.8-b
shows some results on the Paula and Snake sequences for the original sequence (ob), after
a Naranjo de-�icker (na), after a spatially varying linear model (af), and after the de-�icker
method proposed in this chapter (pm). It is visible that the �lter smoothed the brightness
�uctuations. Figure 4.8-a shows the importance of the non-linear treatment. Whereas (af)
cannot remove completely the �uctuations, (pm) stabilises the brightness. However (na)
hardly corrects the �icker.
Evaluation by comparing the MPEG4 compression performances. However the mean
and the variance cannot characterise subtle di�erences between restorations, especially if
the dirts and blotches make the mean and variance �uctuate. Hence the idea is to propose
a novel criteria for assessing the quality of �icker reduced, by comparing the compression
ratio given by a MPEG4 encoder (in this case the Microsoft MPEG4 encoder). Results on
the Tunnel sequence corroborate the previous remarks : (pm) improves the compression
performances by 48.6%, (af) by 45.8% and (na) by 38.4%.

As for the mean and the variance measure, this evaluation is still biased because it
favours restoration processes that reduce details level, and the human based visual assess-
ment still remains the best judge. It is however interesting to know that reducing �icker
improves signi�cantly compression performances. In particular for broadcasting over In-
ternet, where bandwidth issues are critical.
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Figure 4.8: Comparison for di�erent scenarios of the mean and variance (a) (Tun-
nel). Variations of the mean (b)(top: Snake, bottom: Paula).

Table 4.1: Compressions ratios between the original compressed sequences and
the restored ones. Better restorations are obtained for higher compressions ratios.

Sequence compression
Rory (shot 11) 17%
Rory (shot 13) 12.4%
Rory (shot 16) 15.2%
Rory (shot 19) 4.3%
Tunnel 48.6%
Paula 2%
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Figure 4.9: Flicker Removal Results. Each frame is represented by its horizontal
projection on the vertical axis. The results on the right clearly show the brightness
stabilisation of the sequences.
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4.6 Conclusion
Images sequences can be a�ected by brightness �uctuation for many reasons. This chapter
presents a new restoration process able to deal with various kinds of �icker. The algorithm
is fast and coupled with the use of cheap graphics hardware, it is possible can reach near
real-time performance on standard computers for most real image sequences.
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Chapter 5

Robust One-Dimensional PDF Transfer

I n many real situations, outliers can substantially a�ect the performance of the pdf
transfer technique. The notion of outliers refers here to the data samples that do not

follow the mapping, by opposition to inliers that do follow the mapping. In archive footage
for example, outliers can be missing data randomly in each frame. If the size of the missing
patches are large (which is frequently the case) this would bias the measurement of the
image pdf away from the true underlying signal. In the colour transfer case, it is clear that
large di�erences in content can a�ect the suitability of the mapping generated. Content
mismatches can be considered as outlier contamination in general and that applied also
when there is motion between frames in the case of �icker: the motion can cause content
changes where it is not expected. An example of this problem is shown in �gure 5.4. Of
course it is key to establish exactly what are the outliers and inliers in the case of pdf
transfer. This chapter therefore considers techniques for handling outliers in the transfer
problem. Results are shown for both the �icker and colour transfer applications.

The treatment of outliers in Computer Vision and Image Processing applications is
in fact a well-acknowledged key issue. It is both mandatory and also very di�cult since
outliers can be very numerous, with commonly more than 50% outliers in the data. The
outliers can be detected and discarded by 1) modelling the inliers and considering the
outliers as being non-inliers, and 2) by modelling directly the outliers. Combining both
models allows to decides whether a sample is an outlier or not.

Modelling the inlier class is typically done by expressing the mapping as a linear com-
some ideas in this chapter are based on the work published in [Pit04a]
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bination of basic functions:
t(u) =

d∑
i

aiφi(u) (5.1)

The parameters of the model can be estimated by robust regression techniques [Hub81,
Pre92]. The simplest model is to consider an a�ne mapping [Lai99, Ohu00, Kok03], but
more complex model can be introduced [Sko01, Vla04]. There is a trade-o� between the
robustness of the estimation and the complexity of the model. Complex models can better
�t to the actual data but can also �t to the outliers and thus make the estimation more
di�cult since the model does not discriminate between outliers and inliers. The approach
adopted in this thesis is to explore these di�cult cases where no strong prior on the mapping
can help detecting the outliers.

Usually, robust regression techniques are based on the spatial registration of the pixels
between frames (e.g. the pixel In(x) in frame n corresponds to the pixel Im(x+d) in frame
m). Robust estimation methods discard pixels where the di�erence between the model and
the data ‖In(u) −

∑
i aiφ (Im(u + d)) ‖ is larger than some threshold. Automated meth-

ods for determining the threshold have been proposed recently [Che03, Wan04a, Dah04,
Dah05]. In the present context, the di�erence in intensities can be large and the bias
induced by the outliers important, thus such techniques are not well suited to the problem.

There is then a need for new techniques to estimate robustly a non-parametric mapping.
The following paragraphs of this chapter study two attempts to robustify the estimation
process. Both methods consider the transfer of pdfs in one dimension. As seen in chapter 1,
one dimensional mapping can be used for any dimensional pdf transfer and is thus su�cient.
The �rst method extends the standard solution of equation 2.11 and is thus based on the
use of the original pdf f(u) and the target pdf g(v). The second method assumes that the
correspondences between pixels are known. This means that it is possible to estimate the
joint distribution π(u, v), and to take advantage of this measure to establish the mapping.

5.1 PDF Transfer Using the Distributions Separately
The idea proposed in this section is to extend the original estimation method. The method
considers both original and target pdfs f and g separately, and the joint statistic π(u, v)
is not a priori known. One important interest of the method is that the method is robust
against any local motion within the region of interest of the picture. This means also that
the pictures do not need to be accurately registered beforehand: an approximated global
registration is most of the time su�cient.

The robust estimation is based on the minimisation of some functional, or energy, that
depends both on the amount of outliers (data constraint) and the prior on the mapping
(mapping smoothness). The proposed energy for a mapping is given by this linear combi-
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nation:
E(t) = Ed(t) + λ1Es(t) (5.2)

where the constant parameter λ1 tunes the smoothness of the mapping.
Data Constraint Ed. Consider that the optimal mapping t has been found. Without any
presence of outlier, the two pdfs should match after mapping, and it would stand to reason
that where the distributions di�er indicates the presence of outliers. As previously stated,
a distribution can be either represented by their pdf f and g or their cumulative pdf (cdf)
F and G.

Working with pdfs is common, but requires an extra care in the estimation of the pdfs
to avoid quantisation issues. The quantisation artefact is a common artefact in image and
signal processing. The quantisation acts as a mapping that slightly moves the data into
prede�ned bins. Even if not visible on the picture itself, the quantisation has a dramatic
impact on the shape of the pdfs (see �gure 5.1-a). It has however only little e�ect on
the cdf representations (see �gure 5.1-b). The quantisation artefacts on the pdf could be
reduced by smoothing the pdf, but this would also degrade the estimation of the mapping
t. Thus manipulating the cumulative pdfs is clearly preferable. The use of the cumulative
pdf for comparing pdfs is in fact related to the Wasserstein distance Wp which can be
expressed as:

Wp =
(∫ 1

0
|F−1(α)−G−1(α)|pdα

)1/p

, p ≥ 1 (5.3)
and for p = 1 the notation is equivalent to

W1 =
∫ ∞

−∞
|F (u)−G(u)|du (5.4)

The chosen data energy is based on this 1-Wasserstein distance and is as follows:

Ed(t) =
∫

u
|G(t(u))− F (u)|du (5.5)

Mapping Smoothness Es. The prior on the mapping is highly dependent on the applica-
tion considered. In �icker for example, the nature of the mapping can greatly vary from
one sequence to another. This legitimates the use of a very weak prior, and in this case,
the prior is designed to minimise the amount of stretching, which can be de�ned by the
deviation of the mapping gradient to 1. A possible measure for the amount of stretching
is given by ln(t′(u)), and results in the following smoothness energy:

Es(t) =
∫

u

∣∣ln(t′(u))
∣∣2 f(u)du (5.6)

Note that both the data energy Ed and the smoothness energy Es have to be symmetric
for the random variables U and V , i.e. the problem of mapping U to V and mapping V to U
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Figure 5.1: E�ect of quantisation on a pdf (a) and on the cdf (b). The pdf
corresponding to the quantised image is in solid blue, and the original pdf is in
dotted green). It is clear that the cdf gives here a more robust representation.

should be equivalent. This is the case for the data energy Ed since the Wasserstein distance
de�nes a proper metric and is thus symmetric (W1(f, g) = W1(g, f)). It is possible to show
the same result in the case of the mapping smoothness, by noting that f(u)du = g(v)d(v)
and that t−1′(v) = 1/t′(u). Then the smoothness energy of the inverse problem is as
follows:

Es(t−1) =
∫

v

∣∣ln(t−1′(v))
∣∣2 g(v)dv

=
∫

u

∣∣ln(t−1′(v))
∣∣2 f(u)du

=
∫

u

∣∣ln(1/t′(u))
∣∣2 f(u)du

=
∫

u

∣∣ln(t′(u))
∣∣2 f(u)du = Es(t)

(5.7)

which proves the symmetry of the chosen smoothness energy.
Solving for the Best Mapping. Combining both the data and smoothness energy terms
results in the following overall expression for the energy:

E(t) =
∫

u
|F (u)−G(t(u))| du+ λ1

∫
u

∣∣ln t′(u)∣∣2 f(u)du (5.8)

The robust estimation of the mapping is the mapping that minimises this energy:

t̂ = arg inf
t
E(t) (5.9)

A discrete solution of the minimisation of equation (5.8) can be obtained by Dynamic
Programming. To do so, the random variables U and V are �rst discretised, say to Nd
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Figure 5.2: Structure of the Graph. Only upwards links between consecutive nodes
are possible. A possible mapping is highlighted in blue.

values each. From all combinations of couple values (U, V ), it is possible to build a graph
as shown in �gure 5.2. Consider that the nodes (u, v) of the graphs correspond to the
case where t(u) = v, the minimisation problem is then equivalent to �nding the cheapest
path through this graph. Note that it is impossible to map t(u) into two di�erent values,
thus there is no link between the node (u, v) and (u,w) for w 6= v. Furthermore, since the
mapping should be increasing, there is no link between (u− 1, w) and (u, v) for w < v.

The energy E(t), is evaluated by summing up the costs associated with the nodes of
the path {(0, t(0)), · · · , (Nd, t(Nd))} and the costs of the links between consecutive nodes.
The costs are de�ned to be consistent with equation (5.8):
|F (u)−G(v)| cost for node (u, v)

f(u) |ln (v − w)|2 cost for link between node(u, v) and node (u− 1, w) with w < v

+∞ cost for all other links
(5.10)

The path of minimal energy is found using the Viterbi algorithm [Rab86], and this minimum
path gives a discrete solution to the equation (5.8).
Higher Accuracy Estimation. However, the numerical minimisation as proposed gives
poor results and needs further improvements. The reason is that the range of values
for the stretching is t′(u) ∈ {0, 1, 2, 3, · · · }, and favours high values of derivative whilst
ignoring values of the derivative lower than 1. Ideally the range of possible stretching
should be symmetric with 1, with for example t′(u) ∈ {· · · , 1/2, 1, 2, · · · }, which yields to
equi-repartition of low and high derivative values.
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The solution proposed here is to transform the random variables (U, V ) into two new
random variables (Q,R) 

Q =
U + V√

2
; R =

U − V√
2

U =
Q+R√

2
; V =

Q−R√
2

(5.11)

This approach corresponds to a rotation of the joint space by π/4, and it has already been
used by Pitié and Kokaram [Pit03, Kok03] to reduce the bias in the regression of the �icker
a�ne parameters. The idea is that the identity mapping, de�ned now byQ = 0, is a natural
axis of symmetry. In particular, a result shown hereafter is that the strictly monotonous
constraint of the mapping 0 < t′UV (u) < +∞ is changed by this new coordinates system
into −1 < t′QR(q) < 1.

In the UV space, the derivative vector [1, t′UV ] is transformed into 1√
2
[t′UV +1, t′UV − 1]

in the QR space. Thus the derivative in the QR space t′UV is related to the derivative in
the QR space by:

t′UV =
t′QR − 1
t′QR + 1

and t′QR =
t′UV − 1
t′UV + 1

(5.12)

and the monotonous constraint 0 < t′UV < +∞ is thus equivalent to −1 < t′QR < +1. With
this representation however, the range of values for the discrete gradient t′QR is limited to
3 values: t′QR ∈ {−1, 0, 1}. Thus the accuracy needs to be improved by augmenting the
number of states for each value q of Q by a factor M .

Using both the transformation in the QR space and the increase of states, the costs of
the nodes and links of the new graph can now be de�ned by:

|F
(

q+r/M√
2

)
−G

(
q−r/M√

2

)
|2 cost for node (q, r)

f
(

q+r/M√
2

) ∣∣∣ln( r−s−M
r−s+M

)∣∣∣2 cost for link between node (q, r) and
node (q − 1, s) with − 1 < r−s

M < 1

+∞ cost for all other links

(5.13)

Complexity. The graph is composed of Nd columns, each column is composed of M ×Nd

states and each state has 2 M + 1 transitions to preceding states. The overall complexity
of the estimation using Viterbi is thus given by O(Nd× (M Nd)× (2 M + 1) +Nd), which
is roughly O(2 N2

dM
2). This is to be compared with the non robust simple pdf transfer

technique which is of O(Nd). Note however that the value of M is typically small (4 is
su�cient).
Results can be seen on �gures 5.3, 5.4 and 5.5. The original image is displayed on the
top left, the target image on the bottom left and the resulting mapping using the robust
estimation on the bottom middle and using the simple pdf transfer on the bottom right.
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The estimated mappings are plotted on the top right (simple estimation in dashed blue,
robust estimation in solid green and ground truth in solid red).

On �gure 5.3, the estimation is tested against a synthetic case containing 33% of
outliers. Although not perfect, the robust estimation does sensibly improve the quality of
the results. In particular it attenuates e�ectively the amount of stretching. On �gure 5.4,
the method is tested on real images without outliers. The point to be made here is that
the robust estimation can still estimate near-exact results if there is no outlier, even if
the real stretching is extreme. On �gure 5.5, the method is tested on real images with a
strong presence of outliers. The robust estimation convincingly attenuates the stretching
and thus reduces the grainy aspect of the recoloured picture.

5.2 PDF Transfer Using the Joint Distribution.
In this section, it is assumed that the correspondence between the pixels is known. The
dense map of the correspondences can be established using Motion Estimation algorithms
as in [Hor81, Bie87, Bla93, Bro04] and for a more thorough review [Tek95, Sti99]. This
is an extremely di�cult problem, which requires an heavy computational load. A weaker
correspondence map can be obtained by simply using a rigid global motion estimation, like
translational motion [Kug75, Cra04], a�ne [Odo95, Duf00] or homographic models. Note
that it is well acknowledge that no algorithm so far can estimate a perfect correspondence
map and that most of the time, the presence of outliers still remains an issue.
Estimation of the Mapping Unlike in the previous paragraph, the idea is not to minimise
the amount of outliers but rather to maximises the amount of inliers, i.e. the number of
couples (u, v = t(u)) that follow the mapping model. With the same smoothness constraint
as previously de�ned, the energy to maximise is then de�ned by:

E(t) =
∫

u,v=t(u)
π(u, v)dudv − λ2

∫
u
| log(t(u))|f(u)du (5.14)

The maximisation of the energy can be obtained by discretisation and then by using
the Viterbi algorithm. The costs associated with the nodes and the links between nodes
are de�ned by:π(u, v) cost for node (u, v)

f(u) |ln (v − w)|2 cost for link between node (u, v) and node (u− 1, w)
(5.15)

The cost associated with the node (u, v) is not strictly correct since it should be π(u, v)dudv.
Unfortunately dv = dt(u) is dependent on the mapping t, and this cannot be integrated in
this graph framework. The term is approximated by assuming a low stretching and thus
dv ≈ du.
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Figure 5.3: Estimation Results for an arti�cial example. On the top right, in red
the ground truth mapping, in solid green the robust mapping t̂ and in dashed blue
the non-robust mapping t.
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Figure 5.4: Estimation Results for a real example without outliers.
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Figure 5.5: Estimation Results for a real example with outliers.

71



CHAPTER 5. ROBUST ONE-DIMENSIONAL PDF TRANSFER

Once again, a big improvement can be gained by rotating the space by π/4 and using
more states. The resulting graph has the following costs:

π
(

q+r/M√
2
, q−r/M√

2

)
cost for node (q, r)

f
(

q+r/M√
2

) ∣∣∣ln( r−s−M
r−s+M

)∣∣∣2 cost for link between node (w, z) and
node (q − 1, r) with − 1 < r−s

M < 1

+∞ cost for all other links

(5.16)

Inliers Enhancement. The estimation still remains di�cult in cases where the amount
of outliers is extreme. Consider the case study of the two images I0 and I1 presented
on �gure 5.6. The image I0 is occluded by a large object of constant colour u0. The
corresponding joint pdf, displayed on (c), is thus composed into two parts: the inlier part
which manifests as the u → v = t(u) curve, and the occlusion part which manifests as a
spurious vertical ridge x = u0. Sadly, as seen on �gure 5.6-(e), some of the probabilities on
this outlier line are greater than the corresponding inliers one (i.e. π(u0, t(u)) > π(u, t(u))),
and the estimation presented before tends to follow this outlier ridge (see �gure 5.8).

The di�culty thus arises from the nature of the spurious structure in the joint pdf.
The idea is then to use a pre-processing �lter to simplify the ridge structure of the outliers.
Simply weighting out parts that are too far away from the identity line v = u is a classical
robust regression approach but it becomes ine�cient when the mapping t makes inlier pairs
deviate a lot. It is then necessary to examine closer at the nature of the joint distribution.
Consider that the joint pdf can be expressed as a combination of an inlier part πi(u, v)
and an occlusion/outlier part πO(u, v):

π(u, v) = (1− α) πi(u, v) + α πO(u, v) (α ∈ [0, 1]) (5.17)

Ideally the inlier joint distribution πi(u, v) is null everywhere except for the curve (u, t(u))
where it is maximum column and row wise. Since the occluding object usually presents an
independent distribution from the original picture, the joint probability of outliers πO(u, v)
could be ideally considered has separable:

πO(u, v) = πO(u)πO(v) (5.18)

To help the mapping estimation, it would be intuitively bene�cial to explore a weight
γ(u, v) on the joint distribution which would 1) enhance the parts of the joint pdf that are
maximum row and column wise to enhance the inliers, and 2) to reduce the separable part
of the pdf to reduce the amount of outliers. In an attempt to achieve this, the following
weight function is proposed:

γ(u, v) = π(u|v) π(v|u) =
π(u, v)2

π(u) π(v)
(5.19)
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Initialising π(0)(u, v) at π(u, v), the weight could then be used iteratively:

π(n+1)(u, v) = K(n+1) π(u, v) γ(n)(u, v) (5.20)

where K(n+1) is a normalising constant.
To better understand the e�ect of using iteratively this weight on the joint pdf, consider

again the simple case study presented in �gure 5.6 where an object of colour u0 = 128 is
occluding an object in the original picture. It is shown hereafter that the method can
actually remove the outlier ridge if and only if the following condition is satis�ed:

(C) : ∀v, p(v0|u0) > p(v|u0) with v0 = t(u0) (5.21)

Note that this condition still allows the outlier colour to be more important than the inlier
colour. For example, it is possible to have p(u, v = t(u)) < p(u0, v) (see �gure 5.6-e).
Under condition (C), the following inequalities arise:

γ(u0, v0) = π(u0|v0) π(v0|u0) (5.22)
γ(u0, v0) = 1 · π(v0|u0) (5.23)

∀v, ∃ε > 0 / γ(u0, v0) > (1 + ε) π(v 6= v0|u0) (5.24)
γ(u0, v0) > (1 + ε) π(v 6= v0|u0) π(u0|v 6= v0) (5.25)
γ(u0, v0) > (1 + ε) γ(u0, y 6= v0) (5.26)

This means that under (C), at iteration 0, the attenuation factor is always more important
in the inlier part (u0, v0) than in the outlier vertical line (u0, v 6= v0). Thus (C) is still
satis�ed after the �rst iteration, and after each following iteration:

∀v, ∃ε > 0 / 0 ≤ (1 + ε)k π(u0, y 6= v0)(k) < π(u0, v0) ≤ 1 (5.27)

This implies that the outlier ridge is completely removed since limk→∞π
(k)(u0, v 6= v0) = 0

(see the results on �gure 5.7).
Although this case-study examines a simple scenario of monochromatic occlusion, it

illustrates the ability of the method to handle cases where the level of occlusion is severe.
The condition (C) is indeed satis�ed in most situations. Consider that the area `under'
the occlusion in I1 has the same colour statistics πO(v) than the rest of the picture p1(v)
(πO(v) = p1(v). It follows then that

π(u0, v0) = (1− α)p1(v0) + αp1(v0) = p1(v0) (5.28)
π(u0, v 6= v0) = αp1(v) (5.29)
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Thus the condition (C) is ful�lled if

α <
p1(v0)

maxv p1(v)
(5.30)

In other words, the proportion of the occlusion α can be important if the colour of the
occluding object is already frequent in the picture. The method even works regardless of
the level of occlusion if the occlusion colour (α = 1) is the most frequent in the rest of the
picture (p1(v0) = maxv p1(v)).

In practice of course, the assumption made here do not necessarily apply exactly. This
means that sometimes, inlier parts could be attenuated whereas outlier parts could be
enhanced. The process however results in a joint pdf without any ridge structure. This is
especially interesting when used in association with the robust estimation discussed earlier
in this section, since the mapping will not be biased by the presence of a ridge.

Figure 5.8 shows the behaviour of the method in some real cases. The left column
shows the original joint pdf π(u, v) and its corresponding robust mapping estimation. The
middle column diplays the joint pdf after outlier attenuation and its corresponding robust
estimation . The right column shows the original joint pdf overlaid with both estimations.
As seen on the �rst row, both estimations are able to handle correctly situations without
outliers. The last two rows show the positive e�ect of the proposed outlier attenuation in
the presence of signi�cant outliers.

5.3 Conclusion
Accurately detecting outliers in a dataset is a very di�cult problem. This problem is
compounded by the fact the that in the general case, neither the inlier class, nor the
outlier class, can be clearly modelled. The two estimation methods proposed here are
a �rst attempt towards robust estimation of a non-parametric mapping. This problem
has not yet been speci�cally addressed in the Computer Vision community; the proposed
method provides valid results when there are no outliers, and signi�cantly improves the
quality of the mapping in the presence of outliers by comparison to the standard pdf
transfer technique mentioned in the previous chapters.

This chapter also demonstrates the bene�t of using cumulative pdf representations
instead of pdf representations, to alleviate quantisation artefacts. It also analyses the
impact of picture occlusions on the joint pdf to assist separation of the outlier and inlier
classes by an iterative method.
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Figure 5.6: Case Study of a monochromatic occlusion. On the �rst row the
original and the example pictures. The outlier block covers 33% of the original
picture. On the middle row, the joint pdf of intensity pixels which is composed of
an inlier part and an outlier vertical ridge located at the colour of the occlusion
(u0 = 128). On the last row, the conditional probability π(v|u = u0) corresponding
to the outlier ridge, and p(u|v = 192) corresponding to the horizontal slice marked
on joint pdf �gure. Note that for p(u|v = 192), the outlier peak is higher than the
inlier peak.
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Figure 5.7: Results on the Case Study. The results of the joint pdf at iteration k
are overlaid with the standard estimation of the pdf transfer mapping in solid blue,
and the corresponding true mapping in dashed green. The outlier ridge disappears
in less than 3 iterations.
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Figure 5.8: Estimation Results for real examples. On the left column the original
joint pdf π(u, v) and its corresponding robust mapping estimation. On the middle
column, after outlier attenuation with corresponding robust estimation . On the
right, original joint pdf overlaid with both estimations.
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Chapter 6

Contour Following using Particle Filter Algorithms

The next two chapters present two di�erent applications for video editing that involve
probabilistic tracking techniques. The concept of probabilistic tracking and distribu-

tion transfer are closely related, in the sense that tracking an object is �nding a mapping
for the position of the object. The framework involved in both cases are however very dif-
ferent. In distribution transfer, the focus is given on �nding a wrapping of the cumulative
pdf of the distribution, whereas in tracking, the actual pdfs are directly manipulated. For
instance, most probabilistic tracking methods are based on Maximum A Posteriori (MAP).
The core of these methods is to estimate the position of the object by �nding the position
that maximises the pdf of the object presence probability.

The applications presented in this chapter and the following one employ two probabilis-
tic methods derived from the Bayesian framework. The �rst chapter considers the problem
of semi-automated tracing application for delineating objects. This is an on-line applica-
tion and is well suited to the stochastic technique called particle �lters. The next chapter
is dedicated to o�-line applications and is based on the deterministic method Viterbi.

6.1 Contour Tracing
Manual or semi-automatic contour following is an important task in image editing. The
tracing of object contours in general is also seen as an important task in early vision [Mar82].
Cut-out tools that assist the user in following a contour, can be seen in Adobe Photoshop
for instance. Automated or semi-automated contour following is complicated by the ambi-

parts of this chapter are based on the work published in [Pit04b]
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guity of any contour in an image. Not only is it di�cult to track exactly the position of a
contour because of poor image contrast and noise, but also it is impossible to foresee the
contour chosen by the user on the basis of semantics.

Pérez et al [Pér01] have proposed a robust technique�called JetStream�for contour
following that handles this ambiguity by sampling from the posterior distribution for the
contour location. It is based on the use of a Particle Filter and its operation can be
understood as explained in the following section.

Probabilistic Tracing Approach using Particle Filters

The approach proposed in JetStream [Pér01] to extract a contour can be understood by
using an analogy with manual tracing. Starting from a point x0, the pencil draws a contour
by following the edge of the picture. The current position of the pencil at time t is denoted
xt. Tracing the contour can then be understood as tracking the pencil. The growing
contour is represented by an ordered sequence x0:t ≡ (x0 . . .xt).

Let θt+1 be the angle formed by the segment [xi;xi+1] with the
horizontal axis and assume that the points are equally spaced
by a step d. To simplify the problem, the pencil speed is sup-
posed to be constant and therefore d is set to d = 1.

xt+1 = xt + d

[
cos(θt+1)
sin(θt+1)

]
(6.1)

The idea of using Particle Filters for tracing is understood more
easily with the help of the adjacent �gure. While following a

contour in the mountain picture, the pencil encounters bifurcations and edge junctions.
To select the most likely path, the idea is to try all possible paths and to decide afterward
which one is the best. In the mountain picture example, growing contours x(0)

0:t (in pink),
x(1)

0:t (in yellow) and x(2)
0:t (in green) correspond to 3 di�erent possible tracings all originating

from the same starting point x0. The Particle Filter framework�described properly in the
next section�proposes to grow simultaneously a number of possible contours�also called
particles. The particles can take separate decisions when they reach an edge junction.
The framework decides whether a particle should grow further, duplicate itself, or stop,
depending on its performance.

JetStream, though an elegant solution to a combinatorially di�cult problem, su�ers
from an inability to handle sudden changes in direction without the use of a switching pro-
cess. In e�ect, upon encountering a corner, the idea is to propose unconstrained direction
possibilities in the expectation that one of the proposed direction will regain a contour
`lock'. This chapter resolves the problem by designing a directional probability density
function (pdf) that is better able to control the evolution of the contour. Because of the
reliability of this pdf it is then possible to relieve the need for heavy control on contour
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smoothness. The particle �lter framework is presented next and the new design explained
as problems are highlighted.

6.2 Probabilistic Contour Tracking Framework
6.2.1 Standard Approach using Particle Filters

Recall that the ordered sequence x0:t ≡ (x0 . . .xt) represents the 2D points of the curve
being tracked. This chain is assumed to be a Markov Chain of order 2, ie. p(x|x0:t) =
p(x|xt,xt−1). Given the observed image represented by a vector y, a probabilistic approach
to tracking proceeds by manipulating the posterior p(x0:t+1|y) to estimate the most prob-
able next position xt+1. This distribution can be written in a recursive form:

p(x0:t+1|y) = p(xt+1|y,x0:t) p(x0:t|y) (6.2)

This form admits a solution which manifests as the propagation of densities from point to
point on each contour. Bayes rule combined with the Markovian hypothesis on the contour
leads to the following expression for the posterior:

p(x0:t+1|y) ∝
t+1∏
i=2

p(xi|xi−1,xi−2) p(y|xi,xi−1) (6.3)

It is then possible to show that the following recursion arises:

p(x0:t+1|y) = p(xt+1|xt,xt−1) p(y|xt+1,xt) p(x0:t|y) (6.4)

The term p(xt+1|xt,xt−1) corresponds to the prior on the contour and p(y|xt+1,xt) to the
data model.

Although the prior and the data model might have an analytical expression, this ex-
pression presents usually no simple closed form. Sequential Monte Carlo methods (also
called particle �lters) provide however a �exible and easy way of propagating an approx-
imation of this posterior distribution. In this framework the posteriors are approximated
in a grid-based fashion by a �nite set (x(m)

0:t )m=1...M of M samples or particles:

p(x0:t|y) ≈
M∑

m=1

w
(m)
t δ(x0:t − x(m)

0:t ) (6.5)

where δ(.) denotes the Dirac delta measure which is 1 at 0 and zero otherwise; w(m)
t the

importance weight attached to particle x(m)
0:t . Note that the particles correspond to con-

tours (x(m)
0:t ) and not to single 2D points. The posterior approximation can be propagated

in time by the generic boostrap �lter (or Sequential Importance Resampling (SIR) Parti-
cle Filter) [Aru02, Dou00] as proposed for instance in JetStream. At each time iteration,
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the weights are chosen using the principle of importance sampling [Aru02, Dou00]. As it
is known, it can be di�cult to draw directly samples from the posterior p(x0:t|y). How-
ever, it is usually possible to �nd as a �rst step a proposal pdf, that is called importance
density, from which samples can be easily drawn. In the bootstrap �lter the proposal
is simply the prior density p(xt+1|x(m)

t ,x(m)
t−1) and the weights are therefore given by the

likelihood [Aru02, Dou00]:

w
(m)
t+1 ∝

p(x(m)
t+1,x

(m)
t |y)

p(x(m)
t+1|x

(m)
t ,x(m)

t−1)
= p(y|x(m)

t+1,x
(m)
t ) (6.6)

To avoid that the weight distribution becomes more and more skewed and leads to the
degeneracy of the particles, the bootstrap �lter adds a selection step. In this crucial step
the M growing contours are drawn from the normalised weight distribution. The idea is
that `good' contours will be statistically replicated whereas `bad' one will be deleted.

From these approximations of the posterior distribution p(x0:t|y), an approximation of
the Maximum A Posteriori can be derived by taking the `best' contour.

6.2.2 Exact Importance Sampling

A good choice for the proposal is key to the success of the particle �lter algorithm. In
JetStream�as in many tracking algorithms�the importance distribution is however con-
strained by the smoothness of the particle's trajectory. For instance, the trajectory of the
contour cannot deviate by more than a few degrees. A special case is made when particles
reach a corner: particles are then allowed to take any direction. With such hypotheses the
position of the next particle is strongly restricted and at the price of sometimes missing
sharp turns in the contour as shown in �gure 6.5. This problem arises due to the di�culty
in designing a prior that both plays the role of a good proposal, able to restrict the search
area, and that also gives enough �exibility to model the dynamics of the contour.

A deviation from the boostrap �lter approach, is to reconsider equation (6.4) and choose
directly as the proposal

q(xt+1|y,x(m)
0:t ) =

p(xt+1|x(m)
t ,x(m)

t−1) p(y|x
(m)
t ,xt+1)∫

xt+1
p(xt+1|x(m)

t ,x(m)
t−1) p(y|x

(m)
t ,xt+1) dxt+1

(6.7)

The proposal is thus optimal and results in a perfect sampling of the posterior, without
any additional constraint on the prior function. With this proposal, the weights can now
be written as follows

w
(m)
t+1 ∝ p(xt+1|y,x(m)

0:t )

q(xt+1|y,x(m)
0:t )

(6.8)

=
∫
xt+1

p(xt+1|x(m)
t ,x(m)

t−1) p(y|x
(m)
t ,xt+1) dxt+1 (6.9)
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Algorithm 3 Outlines of the Oriented Particle Spray
1: Initialisation. t = 0, manually set x(m)

0 = x0

2: Importance Sampling Step.
For each particle m, do:
• Prediction:

x(m)
t+1 ∼ p(xt+1|x(m)

t ,x(m)
t−1)p(y|x

(m)
t ,xt+1) (6.10)

• Weighting:

w
(m)
t =

∫
xt+1

p(xt+1|x(m)
t ,x(m)

t−1)p(y|x
(m)
t ,xt+1)dxt+1 (6.11)

3: Selection Step.
Resample with replacementM contours from the set

(
x(m)

0:t+1;m = 1, . . . ,M
)
according

to the normalised importance weights w(m)
t /

∑
mw

(m)
t .

The di�culty lies now in drawing samples x(m)
t+1 directly from the proposal. By continu-

ity of the tracing, only neighbouring pixels are considered, and the pdfs involved are thus
of dimension 1 (i.e. the dimension of the neighbourhood). Working in dimension 1 makes
possible to consider a simple discretisation of the 1D pdf. Thus it only remains to �nd an
expression for the prior p(xt+1|x(m)

t ,x(m)
t−1) and the likelihood p(y|x(m)

t ,xt+1). These are
studied hereafter in section 6.3 and 6.4.

The �nal outline of the contour tracker is summarised by the algorithm 3.

6.3 The Prior on the Contours
Since the prior does not serve as a proposal, the constraint on the dynamic of the contour
can be relaxed. Thus the only constraint which is chosen is that a tracing cannot reverse
over its own path. This problem�trivial in appearance�has to be handled carefully
to avoid that the particles try to rediscover their exact reverse trajectory. To better
understand the constraint, the prior can then be rewritten using trajectory angle θ,

p(xt+1|x(m)
t ,x(m)

t−1) = p(θt+1|θ(m)
t ) (6.12)

The solution adopted is to disallow angles diametrically opposed to the previous direction
angle taken by the particle.

p(xt+1|x(m)
t ,x(m)

t−1) = φb(dist(θt+1, θ
(m)
t )) (6.13)

where φb is a kernel function based on the distance between unwrapped angles as repre-
sented in �gure 6.3.
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Figure 6.1: Values of the kernel for θ → φb(dist(θ, 0)).

6.4 Likelihood
Introducing the angle notation as previously, the likelihood can be re-expressed as

p(y|xt+1,x
(m)
t ) = p(y|θt+1,x

(m)
t ) (6.14)

which stands for the probability that at pixel x(m)
t an edge goes along the direction θt+1.

The likelihood presented in JetStream relies mainly on the simple de�nition of the edge:
the angle of the edge is de�ned1 by θ = atan2(Iy, Ix) and its norm by N =

√
I2
x + I2

y , where
Ix and Iy are the derivatives of the picture I. This de�nition presents a strong drawback:
it assumes that only one edge passes by the pixel of consideration. In consequence, this
approach cannot cope with corners, or junctions. Even if JetStream attempts to handle
this problem by using a Harris corner detector beforehand, �gure 6.5 shows that it still
might fail in its tracking, especially if there is no clear corner. Instead of using a two
stage strategy, it is proposed here to fully integrate the orientation of the contours in the
likelihood function. To do so, the quantity p(y|θt+1,x

(m)
t ) still relies on the angular edge

direction, but here the edge direction is estimated by an approach similar to the Steerable
Filters [Sim95, Per95] and more speci�cally in [Yu99]. The method presented here di�ers
in the expression of the �lter bank which is derived. In particular, this method integrates
directly the interpolation between pixels, which avoids aliasing in the �lters.

Assume that the probability that at pixel x(m)
t , the direction θt+1 corresponds to an

edge is proportional to the absolute variation of the angular intensity, i.e.:

p(y|θt+1,x
(m)
t ) ∝

∣∣∣∣dIθdθ
∣∣∣∣ (6.15)

where the intensity in direction θ ∈ [0; 2π] Iθ is equal to:

Iθ =
∫

ρ>0
I(ρ, θ)g(ρ) dρ (6.16)

1atan2 is tan−1 with unwrapped angles.

84



CHAPTER 6. CONTOUR FOLLOWING USING PARTICLE FILTERS

(ρ, θ) is a pixel coordinate location in polar coordinates, with origin at the current contour
point. The integral is just the sum of pixels along the direction θ. g(ρ) is a smoothing
kernel (a gaussian for instance), which ensures that pixels closer to the origin are more
important than those further away. Note that ρ > 0 is required to have a meaningful
direction metric.

To interpolate Iθ to all values of θ it is taken advantage of the periodicity of Iθ (since
the function would repeat every 360deg) and thus of the Fourier series of Iθ:

Iθ =
n=N∑
n=0

Hne
jnθ (6.17)

and respectively for its derivative:

p(y|θt+1,x
(m)
t ) ∝

∣∣∣∣dIθdθ
∣∣∣∣ =

∣∣∣∣∣
n=N∑
n=0

n j Hne
jnθ

∣∣∣∣∣ (6.18)

The Fourier coe�cients can be computed with:

Hn =
∫ 2π

φ=0

∫ +∞

ρ=0
I(ρ, φ)wn(ρ, φ) ρdφdρ (6.19)

where
wn(ρ, φ) =

1
ρ
g(ρ)ejnφ (6.20)

The continuous values of I(ρ, θ) can be obtained by interpolation from the image grid.
The interpolation corresponds to a convolving of the sampled picture I(x, y) with an in-
terpolation kernel k. To simplify notations, consider the Cartesian coordinates as follows{

(u, v) ≡ (ρ, φ) = (
√
u2 + v2, atan2(v, u))

(x, y) ≡ (r, ψ) = (
√
x2 + y2, atan2(y, x))

(6.21)

Then yields the following expression for Hn:

Hn =
∫

u,v
(I ∗ k) (u, v)wn(u, v) dudv (6.22)

=
∫

u,v

(∑
x,y

I(x, y)k(u− x, v − y)

)
wn(u, v) dudv (6.23)

=
∑
x,y

I(x, y)
∫

u,v
k(u− x, v − y)wn(u, v) dudv (6.24)

By expressing the interpolation kernel in this way, it becomes possible to derive a complete
framework for calculation of the direction information. In summary, Hn can be computed
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Algorithm 4 Summary of the algorithm for computing the likelihood p(y|θt+1,x
(m)
t )

1: O�ine computations:

hn(x, y) ∝
∫ 2π

φ=0

∫ +∞

ρ=0
exp

(
−ρ

2 + r2 − 2rρ cos(ψ − φ)
2σ2

k

− ρ2

2σ2
g

+ jnφ

)
dφdρ (6.29)

with the normalising constant:

C =
1

2πσ2
k

√
2πσ2

g

(6.30)

2: Online computations:
Hn =

∑
x,y

I(x, y)hn(x, y) (6.31)

p(y|θt+1,x
(m)
t ) ∝

∣∣∣∣dIθdθ
∣∣∣∣ =

∣∣∣∣∣
n=N∑
n=0

jnHne
jnθ

∣∣∣∣∣ (6.32)

by the use of a �lter bank, whose masks hn(x, y) can be computed o�ine, as follows:

Hn =
∑
x,y

I(x, y)hn(x, y) (6.25)

hn(x, y) =
∫

u,v
k(u− x, v − y)wn(u, v) dudv (6.26)

The integrals can be approximated using numerical techniques (in this study using MAT-
LAB). Here is a possible implementation for the kernels k and g:

g(ρ) =
1√
2πσ2

g

exp
(
− ρ2

2σ2
g

)
(6.27)

k(u− x, v − y) =
1

2πσ2
k

exp
(
−ρ

2 + r2 − 2rρ cos(ψ − φ)
2σ2

k

)
(6.28)

Figure 6.2 shows examples of 11-tap �lters hn.
Examples of Likelihood. Figure 6.3 shows an example of angular variations of the intensity.
On the right the values of

∣∣∣dIθ
dθ

∣∣∣ correspond to the pdf of the contour directions at the centre
of the picture on the left. This was obtained for σg = 2.25, σk = 0.7 at order N = 10. On
the left side, the red lines correspond to the lobes of

∣∣∣dIθ
dθ

∣∣∣.
6.5 Results and Remarks
Figure 6.5 shows some simulations of JetStream (on the left) and the Oriented Particle
Spray (on the right). JetStream tends to overshoot sharp angles of the contours whereas
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Figure 6.2: Examples of 11-tap �lters hn(x, y) for n = 1, n = 3 and n = 7.
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Figure 6.3: Example of an image (on the left) and the corresponding values of∣∣∣dIθ
dθ

∣∣∣ for θ in [0◦; 360◦]. On the left the red lines correspond to the directions of
maximum variations (lobes of

∣∣∣dIθ
dθ

∣∣∣).

87



CHAPTER 6. CONTOUR FOLLOWING USING PARTICLE FILTERS

the proposed method can follow them correctly, for a computational time equivalent to
JetStream (the simulations were performed under Matlab). This comparison has been
carried out without user interaction that is an essential tool in a contour tracing application.
For real application, user interaction is actually inevitable. A further development of this
algorithm could be also to automatically extract all relevant contours of a picture by letting
branches to grow separately after edge junctions.

As a concluding remark, it is important to point out that �rst-time users of probabilis-
tic contour tracers face an immediate di�culty: the impossibility of reproducing the same
results. This inability is inherent to the use of particle �lters and other MCMC meth-
ods, which are by essence stochastic. Not only results can not be reproduced, but also
there is always a non-null probability that the tracking simply fails. In fact, it transpires
from practical experience with contour delineation, that users prefer using deterministic
approaches.

The problem is that �nding an equivalent deterministic solution is very often di�cult,
if not impossible. In contrast with particle �ltering, deterministic methods are indeed less
�exible and thus less prone to complex modelling. This is actually one the greatest strength
of MCMC methods. With MCMC methods it is very easy to implement complex models
for the distribution, without having to think too much about how to infer the statistics.
This is because the MCMC methods ensure that the space is sampled (or explored) in the
best statistical way.

In this chapter however, the problem has already been simpli�ed, and an optimal impor-
tance density could be established for the 1-dimensional posterior p(x0:t|y). The posterior
can then be inferred at a low computational cost. It stands to reason that instead of us-
ing particle �lters to propagate the posterior, it would be preferable to use deterministic
variants of the Kalman Filter. This would probably simplify the user interaction, but this
is left for further research.

Following this idea, the object of the next chapter is to point out that in many situa-
tions, it is actually possible to simplify the problem in such a way that the use of particle
�lters can be e�ciently replaced by the Viterbi algorithm.
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Figure 6.4: Example of the Oriented Particle Spray in action, with on the right a
zoom on the multiple hypotheses tracking.

Figure 6.5: Contour tracings for JetStream on the left column and the Oriented
Particle Spray on the right.
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Chapter 7

O�-line Multiple Object Tracking using Candidate Selection
and the Viterbi Algorithm

This chapter presents a probabilistic framework for o�-line multiple object tracking. At
each timestep, a small set of deterministic candidates is generated which is guaranteed

to contain the correct solution. Tracking an object within video then becomes possible
using the Viterbi algorithm. In contrast with particle �lter methods where candidates
are numerous and random, the proposed algorithm involves a few candidates and results
in a deterministic solution. Moreover, only o�-line applications where past and future
information is exploited. This chapter shows that, although basic and very simple, this
candidate selection allows the solution of many tracking problems in di�erent real-world
applications and o�ers a good alternative to particle �lter methods for o�-line applications.

7.1 Introduction
Tracking visual objects in image sequences is a key task for a wide range of applications in
di�erent domains (tra�c surveillance, video summarisation, etc.). It has been extensively
studied and many methods have been proposed. Particle �lter based methods have be-
come very popular indeed. They are powerful, simple and can handle complex situations
in particular multiple objects tracking [Hue02, Oku04]. They are specially suitable for ap-
plications where on-line processing is required. In many such applications past information
is used to determine the current position of the tracked object(s).

parts of this chapter are based on the work published in [Pit05b]
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The First Key Idea in this chapter is to acknowledge that in many applications, tracking
could be performed o�-line. Information retrieval in sport footage [ici03] and video indexing
are typical examples of such applications. In this context, a global analysis of the video
can be performed to extract object paths, that is, visual features are �rst extracted from
all the frames and then analysed in a second step. In such a scenario exploiting both the
past and future information could lead to useful gains.
The Second Key Idea in this chapter is to consider the possibility of generating at each
timestep, a candidate set of solutions that is guaranteed to contain at least one solution that
is correct. In that case a deterministic process can yield the MAP estimate for tracking.
This may seem wishful, yet it is worthwhile to consider this alternative route to tracking
because such simple scenarios do indeed exist and can arise from realistic problems. Given
the di�culties posed by the correct application of particle �lters, in particular the prob-
lem of degeneracy of particles, it is useful to consider alternative strategies where those
are viable. The success of this approach depends entirely on the process for generating
candidates, it must be simple, and reliable enough that the candidates always contain the
correct state. It is interesting to note that Kernel Particle Filter in [Cha03] have introduced
the notion of pre-processing as a means of improving particle diversity in the particle �lter
for a tracking problem. The reader can consider that this chapter takes that idea one step
further and proposes that if the candidate selection stage is reliable enough (which it can
be) sampling can be avoided.
Organisation of the chapter. An overview of the methodology for o�-line object tracking
is presented in section 2. It is explained how, by de�ning a suitable candidate selection
and a set transition probabilities, tracking an object within the video becomes equivalent
to �nding the most likely path in the candidate trellis using the Viterbi algorithm [The89].

Although basic and very simple the candidate selection process allows the solution
of many tracking problems in di�erent real-world applications. It also allows the easy
integration of speci�c rules related to the object motion. The chapter presents in sections
3 and 4 two applications that represent domains in which tracking is amenable to this kind
of idea.

The �rst application considered aims at detecting the arms of a child in a psychological
assessment exercise. Tracking is used only to take temporal information into account and
avoid false detections due to occlusions. It is a simple application that allows to introduce
the framework. The second application is more challenging and concerns player detection
and tracking in soccer video footages. Problems of introduction of a new players in the
scene, disappearance of a tracked player and occlusions have to be dealt with.
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7.2 Overview of the Methodology
Consider that xn is the random variable corresponding to the object position x (which
may be 1 or 2D depending on the application), where n ∈ [1;N ], and N is the number of
frames of the sequence. Bayes theorem states that the posterior distribution of the object
position throughout the sequence x1:N can be written as

p(x1:N |y1:N ) ∝ p(x1:N ) p(y1:N |x1:N ) (7.1)

where p(x1:N ) corresponds to the prior on the object positions and p(y1:N |x1:N ) corre-
sponds to the likelihood for the object positions given the data model y1:N�which corre-
sponds here to the frames of the sequence.

Assume that the likelihood can be computed independently on each frame p(y1:N |x1:N ) =∏
n p(yn|xn). In general there are a large number of possible states (each pixel location

in each image, and in each frame). Reducing the number of states will reduce the com-
putational load. The idea is to propose a limited number of states as candidates from
some pre-process. One option is to generate these candidates as the peaks of the likeli-
hood p(yn|xn). The likelihood presenting r peaks is then approximated by the following
grid-based distribution:

p(yn|xn) ∝
r∑

i=1

p(yn|x(i)
n ) δ(x(i)

n − xn) (7.2)

The candidates solutions of the tracking follow some rules depending on the applica-
tion (feasible moves, scenarios of occlusions, . . . ). These rules are encapsulated in the prior
function which gives the transition probabilities between candidates. Then from the rules
and the candidates Viterbi [The89] can be applied to extract the most likely path, which
is actually a Maximum a Posteriori estimation. For more than one object, it is possible
to apply iteratively Viterbi and remove the corresponding candidates from the set of can-
didates. The posterior of the successive tracks is decreasing and the number of objects to
track can be automatically determined by thresholding the posterior.

The success of the method depends on the simplicity of the object detector which is
performed on the whole picture. A few particle �lter trackers [Ter04, Oku04] propose
a similar approach by sampling part of the particles directly from the likelihood. For
instance [Oku04] uses Adaboost to detect the entrance of new players.

A similar candidate re�nement scheme has been used in Kernel Particle Filter [Cha03].
But here candidates are fully deterministic as the resulting tracking. This implies also that
the proposed method requires much less candidates.
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7.3 Application to a Simple Case Study
This section shows how the framework can be applied in a real application. The appli-
cation aims at detecting the position of the hands of a child performing a psychological
exercise [Joy04] as presented in �gure 7.3.
Candidates are found by projecting the colour skin segmentation [Joy04] of the frames on
the horizontal axis and taking the main peaks of the projection as candidates for the hands
positions (see �gure 7.3). The likelihood of these candidates is proportional to the value
of the projection. The presence of the instructor can generate spurious peaks in the skin
colour projection and up to the 5 most important peaks are selected.
Transition probabilities are set to prevent large displacements of the hands:

p(xn|xn−1) ∼ N (0, 3) (7.3)

Once the hand candidate positions have been collected, the Viterbi algorithm is applied
to extract one hand trajectory. To track the other hand, it su�ces to remove the candidates
corresponding to the �rst track and then to apply again Viterbi on the reduced set of
candidates. The �gure 7.3 shows some example of results (see also [Pit05a]).

7.4 Application to Multiple Objects Tracking
This section proposes a more di�cult tracking application: the tracking of soccer players.
Many works have been published on the subject and one can refer for instance to [OK02]
for an example of tracking based on particle �lter method.

The following paragraphs describe a possible adaptation of the framework. In partic-
ular, it is necessary to explain how to extract candidate positions of the players and how
to set the rules explaining the dynamic of the players.

7.4.1 Player Candidate Positions

Playground Extraction. The playground can be e�ciently extracted using a colour
segmentation of the pitch followed by simple morphological operations to �ll in holes and
remove spurious detections.
Player Detection. To detect the position of the players on the playground, it is relevant
to use the colour as a feature to characterise players. As shown in �gure 7.4 a colour
segmentation will result in a map of blobs corresponding to the players. It is possible then
using a Mean Shift procedure to extract the centre of mass of these blobs and locate the
player. This method has to be related to the colour histogram based mean-shift techniques
used in [Jaf03, Com03] which are known to be robust. The method is also fast, because
the mean shift can be done on downsized pictures, and generates a small set of candidates
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for each frame (typically less than 20 candidates).

7.4.2 Set of Rules

Once a set of position candidates has been obtained, it remains to encode allowable player
motion,i.e. how it can appear or disappear from the �eld of view and how it can be
occluded by other players.
Player Motion. The player motion can be realistically limited to 50km/h. Even though
the frames are not registered, such a speed can be bounded by a player displacement of 50
pixels for a PAL resolution (720x576).p(xn|xn−1) = 0 if ‖xn − xn−1‖ > 50

p(xn|xn−1) = 1 if ‖xn − xn−1‖ ≤ 50
(7.4)

Player Apparition/Disappearance. To allow apparition and disappearance of players at
any time of the video, two abstract states positions x0 and x∞ are added. x0 indicates that
the player is not yet visible and x∞ indicates that the player is not any more visible. It
is assumed that a player cannot appear more than once, which means that a typical state
sequence is of the form (x0, . . . ,x0,xn, · · · ,x∞, . . . ,x∞). In particular it is not possible
to have the state x∞ followed by x0 and vice versa; this leads to the following transition
probability: p(xn = x0|xn−1 = x∞) = 0

p(xn = x∞|xn−1 = x0) = 0
(7.5)

In this framework, a player that has disappeared cannot appear again. However it is
possible to image a post-process that would assign di�erent tracks to a single player.

The probability that a candidate corresponds to a player that has just appeared or
is about to disappear is dependent on the distance of the candidate to the border of the
frame. For instance, a candidate cannot appear more than 50 pixels away of the borders:

p(xn /∈ {x0,x∞}|xn−1 = x0) = 0 if disttoboders(xn) > 50 (7.6)

Occlusions by another Team-Mate. In this case the colour detection only spots one player,
and this single candidate position corresponds to two di�erent tracks. To overcome this
problem, instead of removing candidates from the pool each time Viterbi has been run
for a player, the candidate positions are kept but penalised by reducing their likelihood
(division by 3). Penalising the previously selected candidates avoids to generate multiple
instance of the same track but still allows for temporary overlap of the tracks.
Occlusions by an Opponent. If a player is occluded by an opponent, its colour is also
occluded and the player cannot be detected. In this situation the candidate positions of
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Figure 7.1: Proposed Bayesian Graph for tracking objects. The circles correspond
to the states of the graph. At each instant (t) there can be a variable number of
states. The white state on the bottom line is x0, and corresponds to an object
that has not yet appeared. The black state on the top line is x∞, and corresponds
to an object that has not disappeared. The red and blue states correspond to the
blue and red candidate positions. Finally the dashed blue states correspond to the
blue candidates that have already been used for a previous tracking.

(a) (b) (c)

Figure 7.2: Example of player occlusion: the blue player on (b) is fully occluded.
The tracking method assigns temporary the position of the red player to the blue
one.
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the opponent team is used instead. Practically the candidate positions of the other team
is added to the current set of candidates, but with a much lower likelihood (division by 3).
Figure 7.2 shows the results obtained for such a scenario. The blue player is not found on
the middle frame and is temporary assigned to the position of the red player.
Post-Processing Rules. Since the model is based on a Markov Chain of order 1, post
processing rules allow for integrating richer features to �lter the results. One can decide if
a player visible only on a few frames is worth being tracked. One can also set, as mentioned
earlier in the chapter, a threshold for the posterior. If the posterior of the tracking is too
small, the object is insigni�cant and the multitracking process stops.
Figure 7.1 shows a tracking example combining the situations that have just been de-
scribed. The circles correspond to the states of the graph. Note that there can be a
variable number of states for each frame (n). The white state on the bottom line is x0,
and corresponds to an object that has not yet appeared. The black state on the top line
is x∞, and corresponds to an object that has not disappeared. The red and blue states
correspond to the blue and red candidate positions. Finally the dashed blue states cor-
respond to the blue candidates that have already been used for a previous tracking. The
apparition happens on frame 105, and the player is close to the border (x = 20 < 50). The
player is occluded by another team-mate on frame 107 and by an opponent on frame 109.
The player leaves the �eld of view at frame 111.
Figure 7.6 shows some results for the tracking of the blue team and video material is
available online at [Pit05a]. It is noteworthy that the results are obtained deterministically
and can be reproduced identically, whereas with particle �lter methods, the results are
partly random and will di�er slightly in applications to the same footage with the same
initial conditions, with a non-zero possibility of outright failure in any given instance.

7.5 Conclusion
This chapter showed that in some applications, when the image data is such that the object
detection task is quick and robust, 1) random candidate generation in particle �lters can
be e�ciently replaced by a deterministic candidate selection that results in deterministic
solutions and 2) for o�-line applications the Viterbi algorithm can be applied to exploit all
available temporal information.
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Figure 7.3: Detection of the hands positions (green diamonds) of a child perform-
ing a psychological exercise [Joy04]. The peaks of the skin colour projection give
the candidate positions (red circles).

Figure 7.4: Example of Player Detection using colour segmentation and MeanShift
to �nd the blobs centres.

Figure 7.5: Tracking in action on the soccer sequence. Only the blue team
is tracked, other areas are in lower contrast. Videos are available at [Pit05a].
(Image courtesy of Rádio e televisão Portugal)
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Occlusion by another
Team-Mate. The 2 tracks 
use the same candidate.

Disappearance of a
blue player.

Occlusion by an Opponent.
The blue track uses the red 
candidate

Original Frame                   Likelihood  Map           Candidate Pool                  Candidate Tracking
                   using Viterbi

Figure 7.6: Tracking in action on the soccer sequence. Only the blue team
is tracked, other areas are in lower contrast. Videos are available at [Pit05a].
(Images courtesy of Rádio e televisão Portugal)
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Chapter 8

Towards Image Simpli�cation

M ost tools in video post-production consist of altering the raw videos in a seamless
way, such that the resulting video looks natural. This chapter explores the idea

that videos could also be re-expressed in a di�erent visual form that is not necessary close
to reality, but which convey the same content. Rendering non-photographic pictures has
raised some interest in the computer graphic community, especially to design �lters [Mig03]
that simulate an artistic style. The statistics transfer technique shown in the �rst chapters
can be used for instance to render non-photographic images (see �gures 2.1 and 2.2). How-
ever these approaches are still limited to low-level pixel processing. The idea proposed in
this chapter is to push further this concept by designing a non-photographic manipulation
that focuses on the content of the video, whilst simplifying its representation.
Cartoonisation for Video Broadcasting. With the rise of digital visual media, there is a
demand for broadcasting videos on a wide variety of devices. But sadly this has not yet
materialised. One aspect of the problem is the bandwidth issue: embedded devices usually
have bandwidth limitations but video streaming requires at least 64KB/s, which is often
impossible or just too expensive. Another aspect is the size of the display. If too small,
the user does not discern objects in cluttered environment. For example in golf events
broadcasting, the ball simply disappears in the resized movie. And if the display is too
large, compression artefacts become apparent.

The original idea proposed in this chapter is to simplify the video by extracting the
important information and re-expressing that in a di�erent visual form. An attractive form
is the cartoon representation as shown in �gure 8.1. Several cartoon-like formats exist al-
ready and are widely used (for instance SVG and �ash). They code the scene in terms of
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layers, contours and animations of the layers. By converting the natural video into one of
these content-aware video formats, it is then possible to enhance the viewability of the pic-
tures by throwing away details while enhancing important features. These representations
have also the bene�t of being vector-based and thus scalable, which means that pictures
can be displayed without any loss of quality on any screen. Simpli�cation therefore, has
two implications depending on the application. For streaming, media simpli�cation admits
a more e�cient use of limited bandwidth while for display adaptation the concept allows
for comfortable viewing on a wide range of terminal types.

Several works have been achieved to cartoonise videos. One recent attempt in the do-
main has been presented by [Wan04b, Wan04c]. The method is a semi-automated process,
which includes in a �rst step an implicit video segmentation followed by a manual inter-
action to track contours across the video. Another recent e�ort [DeC02] in re-expressing
images in a cartoon-like aspect makes use of hardware eye tracking system to �nd areas
of interest and then enhance these areas whilst �attening details of the background. Note
that these methods rely heavily on human interaction.

A fully automated approach has been explored in [Kok05]. The strategy adopted is to
restrict the media content to deal with one application, like tennis or snooker for instance.
It is then possible to develop robust mechanisms for extracting the useful information, like
the position of the player, and expressing it in a di�erent visual form that occupies an
extremely low bandwidth. This kind of content aware media processing requires access to
high level features, which can be extracted for instance by tracking objects as described in
chapter 7.
What Is Simpli�cation Anyway? The notion of simpli�cation in this chapter refers to the
process of replacing similar instances of an object by a unique representation of this object.

The idea of simpli�cation is based on the observation that images and videos, like
most data content, present highly redundant structures. For example, an object moving
across multiple frames is likely to be almost identical on every frame. The idea is that
the object on each of these frames actually correspond to the same unique object. A
simpli�cation of the video could be expressed in replacing all instances of this object by a
unique representation of this object.

How is simplifying any di�erent from compressing? These two concepts both reduce
redundancy within the data stream. The key di�erence lies in the objective of these
processes. In compression, removing redundant structures aims at reducing the description
length of the data stream, but the main point is that the resulting video/image should still
remain as close as possible to the original raw stream. In simpli�cation, the output of the
image or video is not required to be unchanged, but instead, it is only required to leave
the interpretation of the content unchanged.
Approach. It is clear that with manual intervention, simpli�cation can be achieved with
impressive results [Wan04c, DeC02]. However, this work explores the notion that the

101



CHAPTER 8. TOWARDS IMAGE SIMPLIFICATION

Figure 8.1: Example of the video cartoonisation concept for tra�c condition
surveillance footages.

intrinsic statistical properties of image patches can be exploited for this purpose. The
reason for doing this to avoid the heavy contextual knowledge required for pre-processing
tasks like segmentation. This idea is called `implicit Statistical Simpli�cation'.

8.1 Implicit Statistical Simpli�cation
The idea of Implicit Statistical Simpli�cation is to avoid explicit statement of the `object
�nding' problem and instead exploit intrinsic, clusterable features of images. This leads to
perceptually simpli�ed images of the type required.

Denote S = {ui}i≤M as the set of the observed samples and denote ci as the cluster
grouping the samples similar to the sample of position i. By de�nition each sample of the
cluster ci points to di�erent instances of the same generic object. That object is represented
here by ui. Note that the representation object ui is not unique and could be de�ned for
instance as the average value of the cluster. The set of these representative elements that
constitutes the whole image is denoted as S = {ui}i≤M .

Finding the clusters corresponds to the non trivial problem of segmentation. One so-
lution is to reduce the sample pdf to a sum of well chosen Dirac's that correspond to the
clusters and then assign samples to these classes. The reduction step can be understood by
the 1D case proposed in �gure 8.3. The pdf p(u) of the observed signal (on the left, in blue)
presents two peaks, which are reduced into a sum of two Dirac's p(u). A attractive implicit
solution for �nding these Dirac's is to use the MeanShift �ltering segmentation technique.
MeanShift �ltering is a clustering method originally developed by Fukunaga [Fuk90] and
recently successfully applied to computer vision by Cheng [Che95] and then by Comaniciu
and Meer [Com02]. It consists of labelling each sample by the nearest peak in the pdf.
The peaks are found by gradient ascent on the density estimation function and the result-
ing clusters are then delimited by valleys of point densities. This results in an implicit
framework where the number of classes is not prede�ned.
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8.2 MeanShift Filtering
For a set of N -dimensional samples S = {uj}j=1...M , the corresponding �xed bandwidth
kernel density estimate is de�ned by:

p̂(u) =
1
M

M∑
j=1

1
hN

K

(
u− uj

h

)
(8.1)

whereK(u) = k(‖u‖2) represents the kernel and h is the bandwidth controlling the smooth-
ness of the approximation. A typical choice for the kernel is the Epanechnikov kernel (see
chapter 2, �gure 2.8). The segmentation aims at �nding for each sample the nearest local
maxima in the pdf. The direction of the nearest maxima can be given by the sample mean
shift, referred to as MeanShift and denoted as Mh(u):

Mh(u) =

∑M
j=1 uj g

(∥∥∥u−uj

h

∥∥∥2
)

∑M
j=1 g

(∥∥∥u−uj

h

∥∥∥2
) − u (8.2)

where g(u) = −k′(u). Then by observing that g is also a kernel function, the MeanShift
can be shown to be collinear to the gradient of the pdf:

Mh(u) =
h2

N + 2
∇p̂(u)
p̂(u)

(8.3)

The nearest peak is then found by moving iteratively the sample by the MeanShift vector
Mh(u). For a sample at position i, the procedure is initialised at u(0) = ui and the
iterations for the Epanechnikov kernel can be simpli�ed as follows:

u(n+1)
i =

1

|Ch(u(n)
i )|

∑
j∈Ch(u

(n)
i )

uj (8.4)

where Ch(u(n)
i ) is the hypersphere of radius h and centred on u(n)

i , and containing |Ch(u(n)
i )|

data samples. In other words, the iteration consists in iteratively moving to the centre of
mass of the neighbouring samples. Figure 8.2 illustrates the MeanShift procedure. At
convergence, u(n)

i reaches the nearest peak of the pdf [Com02]:

lim
n→∞

u(n)
i = ui (8.5)

Figure 8.3 shows how this could lead to signal simpli�cation. Each observed 'noisy'
value is replaced with the corresponding cluster centre. The signal is then e�ectively
simpli�ed into two values 0 and 1. A limitation of the method is that it is impossible
to recover signal granularities that are smaller than twice the noise standard deviation
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Figure 8.2: MeanShift iterations. The circle delineates Ch(u), the hypersphere of
radius h and centred on u. The red arrow represents the MeanShift vector that
moves the sample to the centre of mass of the neighbouring samples. The orange
arrows represent the MeanShift moves for the following iterations.
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Figure 8.3: Example of Simpli�cation using MeanShift Filtering. The pdf of the
signal values is reduced to two Dirac's centred in 0 and 1.
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σ. This is illustrated on �gure 8.4 for σ = .5. In this case the pdf (on the right) only
presents one peak centred in u = .5 and the resulting �ltered signal (in red on the left)
is constant. This is a serious drawback which is partly �xed in [Com02] by introducing
the spacial information in the segmentation. The idea proposed in [Com02] is to take the
sample position as a feature of the sample. In their case, a pixel sample contains then 5
components: 3 colour components and 2 spatial coordinates. This means that both the
colour feature and the spatial coordinates are moving in the MeanShift update.

The sample position is an important information that ought to be taken into account.
It is indeed widely accepted in image processing that pictures are piecewise smooth and
that using spatial smoothness priors for the segmentation is key to obtain natural looking
results. However the results of taking the position as a feature as in [Com02] are unclear.
Consider for example the signal on �gure 8.5. It transpires from this example that similar
samples are not necessary spatially close to each other, and that the centre of mass of the
coordinates is not signi�cant in this case. It is thus necessary to �nd a way to integrate
the spatial smoothness in the MeanShift segmentation, by considering the sample position
as a parameter and not as a feature.

8.3 Smoothness Prior
Generic Prior. Smoothness priors are usually used as generic priors that would be appli-
cable for any image. One example of such a prior is the Ising model that simply penalises
discontinuous labelling. For neighbouring samples i and j, the Ising prior is as follows:

− ln p (ui|uj , i, j) = λ δ(ui 6= uj) (8.6)

This gives a local smoothness to the labelling whose strength can be tuned with λ. Note
that for a continuous framework, as in Gaussian Markov Random Fields, the Ising model
is equivalent to

− ln p (ui|uj , i, j) = λ ‖ui − uj‖2 (8.7)
It has been proved however [Des95, Mor96] that the Ising model alone performs poorly
for segmentation purposes. In fact, establishing a smoothness prior that would be e�cient
for any kind of images turns out to be a very di�cult task. This is due to the high
dimensionality, complexity and variety of images. A recent advance in this domain is the
Fields of Experts framework (FoE) [Rot05a] which proposes generic prior model for natural
images. The prior is trained on a database of generic images but can also be tuned by
using more pertinent databases [Rot05b].
Image Speci�c Prior. To relax the di�culty of modelling a generic prior, another solution
is to link the label interactions with the features observed for this particular picture, i.e. to
consider p (ui|uj , i, j,ui,uj) instead of p (ui|uj , i, j). Label discontinuities happen usually
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Figure 8.4: The granularity of the MeanShift Filtering output is limited by the
noise level. For σ = .5, the pdf displays only one peak.
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Figure 8.5: Example of using coordinates as features. The signal is in blue. The
cluster of sample 4 contains the samples {4, 8, 12, 16} (highlighted with red boxes).
The centre of mass for these sample coordinates is 10, but 10 does not belong to
the cluster.
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at feature discontinuities (e.g. at object edges), and reciprocally, label discontinuities
are less likely on homogeneous areas. This is well known and previously Geman and
Geman [Gem84] proposed in their seminal paper to use two Markov Random Fields (MRF):
one for the image itself (called image process) and an additional MRF that noti�es the
presence of edges (line-process) and turns o� or on the smoothness constraint accordingly.

In practical cases, this issue can be simpli�ed by extracting the edge map from the
original noisy/non-segmented image and thus avoiding the joint estimation. The smoothing
term then purely depends on the observed data. For instance [Kok98, chapter 2] and [Bla04,
Rot04, Boy04] propose to use a prior of the form:

− ln p (ui|uj , i, j,ui,uj) = λ δ(ui 6= uj)‖ui − uj‖2 (8.8)

Implicit Prior. Using this image speci�c prior instead of the generic Ising model can im-
prove dramatically the segmentation. The method proposed in this chapter pushes further
this idea by considering a purely implicit prior. The smoothness is uniquely inferred by
analysing the patch statistics of the image itself, in a similar way as the work of Efros
et al. [Efr99]. Consider the signal on �gure 8.6. The signal (in blue) is composed of a
periodic pattern. This gives a prior information that could be used in the segmentation.
On this �gure for example, the representation of the segmented signal is a repetition of the
averaged pattern. This leads to clearly simpli�ed representation. The proposed method is
thus based on grouping samples that present similar neighbourhood.

8.4 MeanShift with Implicit Prior
The core of the method relies on the MeanShift algorithm. The key deviation from the
standard MeanShift is that instead of �nding the peaks of p(u), it is desired to restrict the
pdf to the pdf of samples that have similar neighbourhood N . The method is thus to �nd
the peaks of p(ui = u|Ni) as illustrated on �gure 8.7.

∀ i , u(0)
i := ui

u(n+1)
i :=

∑
j uj p (Ni|Nj) K

(
uj−u

(n)
i

h

)
∑

j p (Ni|Nj) K
(

uj−u
(n)
i

h

) (8.9)

where p (Ni|Nj) gives a similarity probability between neighbourhoods. The neighbour-
hoods Nj collect the neighbouring samples of position j in S, excluding uj itself, and Ni

collects the neighbourhood of sample position i, excluding ui itself. Since the notion of
neighbourhood is only de�ned for a particular size, it should be developed according to the
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neighbourhood diameter ρ:

p (Ni|Nj) =
∫

ρ>1
p (Ni,ρ|Nj,ρ, ρ) p (ρ) dρ (8.10)

1) The �rst term p (Ni,ρ|Nj,ρ, ρ) corresponds to the probability that for a diameter ρ,
both neighbourhood Nj,ρ of sample j and neighbourhood Ni,ρ of sample i are similar.
Consider that both Ni,ρ and Nj,ρ are blocks of diameter ρ, encapsulating the neighbouring
samples minus the sample itself. If the samples lie on a lattice of dimension L (e.g. L = 2
for images), then these blocks contain roughly mρ = ρL − 1 samples. The similarity
between neighbourhoods can be measured by estimating the standard deviation of the
neighbourhood di�erence:

SD (Ni,ρ,Nj,ρ) =

√√√√ 1
N mρ

∑
(k,l)∈Ni,ρ×Nj,ρ

‖uk − ul‖2 (8.11)

Consider that the observed signal is corrupted by a white noise of standard deviation σ.
The neighbourhood di�erences results then in adding up the noise. Thus if i 6= j, the
standard deviation of the noise on the neighbourhood di�erence should be √2σ. Ideally
then, neighbourhoods could be considered as similar if SD ≤ √2σ. The SD estimate
depends however on the number of values involved mρ. In particular, for a standard
deviation of √2σ, the SD estimate should be compared to σρ [Weib]:

σρ =
√

2σ

√
mρ − 1
mρ

(8.12)

and the standard deviation of the SD estimate is given [Weib] by:

λρ = Std [SD] ≈

√
(
√

2σ)
2

2mρ
(8.13)

The similarity between blocks should then be measured by testing that SD ≤ σρ. This
binary test can be relaxed by using a sigmoid function:

p (Ni,ρ|Nj,ρ, ρ) ≈
1
L0
L
(
SD (Ni,ρ,Nj,ρ)− σρ

λρ/2

)
(8.14)

where L(u) = exp(−u)/(1 + exp(−u)) = 1− sig(u). The normalising factor L0 is:

L0 =
λρ

2
ln
(

1 + exp
(

σρ

λρ/2

))
(8.15)
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Figure 8.6: Example of Simpli�cation by averaging repeated blocks.
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Figure 8.7: Implicit Statistical Simpli�cation Outline. On the left: compare the
neighbourhood of sample i to the neighbourhoods of other samples j, for di�erent
neighbourhood diameters ρ. On the right: p(ui = u|Ni), the pdf of samples j that
have similar neighbourhoods to i. The representative element ui is then found by
MeanShift iterations on p(ui = u|Ni).
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2) The second element p(ρ) weights the similarity between neighbourhoods with respect
to the size of the neighbourhood. There is no prior knowledge on the size to expect, but
it is still possible to assume that the problem is scale invariant, which yields in

p (ρ) ∝ 1 (8.16)

To avoid exploring all values of ρ, a signi�cant speed up can be gained by considering powers
of the scale, i.e. instead of summing for ρ = 1, 2, 3, 4, 5 . . . , it is explored ρ′ = exp2(ρ),
i.e. ρ′ = 1, 2, 4, 8, 16, 32, . . . . Bearing in mind that dρ′ = d exp(ρ) = ρ′dρ, the probability
becomes:

p′(ρ′) ∝ ρ′ (8.17)
Implementation. The overall algorithm is detailed on page 112. The �rst consists in �nding
the neighbourhood similarities. The step is the MeanShift itself. The implementation
is straightforward and can be found in the appendix A.3. Some special care is however
required when manipulating neighbourhoods. The solution adopted here is to loop over the
possible displacements d, where the range of displacements can be limited to max() = D.
The SD estimate for a neighbourhood diameter of ρ is then obtained by convolution with
a spatial �lter which de�nes the neighbourhood:

SD(x, ρ)2 = G−0
ρ ∗ (S ∗ δd − S)2 (8.18)

The Dirac distribution δd shifts the signal S by d. In the following results (in 1D), the
spatial shape of the neighbourhood is as follows:

G−0
ρ (x) ∝

0 if x = 0

exp
(
−x2/(2ρ2)

) else (8.19)

Because the �lter is not separable, it is computationally expensive to apply it for images.
A solution is to decompose the estimation as follows:

SD(x, ρ)2 =
(
Gρ ∗ (S ∗ δd − S)2 −Gρ(0) (S ∗ δd − S)2

)
/(1−Gρ(0)) (8.20)

with Gρ(x) ∝ exp
(
−x2/(2ρ2)

) being separable.
The overall algorithm leads of course to ridiculously slow computations since it has to

compare the signal with itself for each sample (O(M3), forM samples). A 720x576 picture
requires for instance around 8 minutes of processing on a PIII 800MHz for displacements
up to 10 pixels. It is however hopeful that a GPU implementations could be very e�ective
for such a parallelisable process.
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8.5 Results
Figures 8.8 and 8.9 show results for 1D signals. The comparison of the method to standard
MeanShift in �gure 8.8) shows that the method in contrary to MeanShift can retrieve signal
granularities that are smaller than 2σ. The strength of using an implicit prior is apparent in
�gure 8.9. The clean signal de�ned as s(n) = (−1)n sin(n/20) is extremely non continuous.
The method is however successful in making the most of the signal intrinsic redundancy.

Figure 8.10 shows the results of the method on images. Several values for σ and h are
tested. It transpires that the bandwidth h used in the MeanShift step is not as in�uential
as in standard MeanShift. This means that the prior distribution p(ui = u|Ni) is mainly
mono-modal, and that the neighbourhood information alone is very pertinent.

Figure 8.11 shows some results in colour. Note that the geometrical structure is par-
ticularly well restored. Figure 8.12 and 8.13 show results for tra�c images. An important
point to be made here is that this method is not a noise reducer but only aims at simpli-
fying the picture. Hence evaluating the PSNR would not make any sense here. However
it is interesting to measure the compression improvements, i.e. in this case the ratio be-
tween the original JPEG compression (with a quality set to 75) of the result image and
the original image.

8.6 Conclusion
This chapter proposes a way of simplifying signals. The simpli�cation aims at replacing
similar objects by only one representation of this object. The algorithm that is proposed
is a modi�cation of the MeanShift algorithm, where a similarity measure between sample
neighbourhoods weights the importance of samples in the MeanShift update. This way
the use of neighbourhood statistics leads to a purely implicit formulation of the signal
prior. Results for 1D signal and images show that the method is indeed very e�ective at
simplifying a wide variety of signals.

The approach of this chapter is to see to what extend a purely implicit prior can help
the segmentation. It would be however useful to integrate some generic parametric prior
in the model. This would help in cases where the number of samples is too small and when
a good model for the signal can be established beforehand. One improvement could be
for instance to consider a Wavelet decomposition of the Signal and force the smoothness
constraint. As shown for texture synthesis [Gal05], this would also speed up the search for
similar neighbourhoods as the Wavelet decomposition is scale independent.
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Algorithm 5 MeanShift with Implicit Prior
Inputs: σ, h and S
// Initialisation

1: for all samples i do
2: for all samples j do
3: pji ← 0
4: for neighbourhood diameter ρ = 1, 2, 4, 8, . . . do
5: mρ ← ρL − 1
6: σρ ←

√
2σ
√

(mρ − 1)/mρ

7: λρ ←
√

2σ/
√

2mρ

8: L0 ← λρ/2 ln
(
1 + exp

(
σρ

λρ/2

))
9: pji ← pji + ρ · 1

L0
L
(

SD(Ni,ρ−Nj,ρ)−σρ

λρ

)
10: end for
11: end for
12: end for

// MeanShift
13: repeat
14: n← 0 , S(0) = S
15: for all samples i do
16: for all samples j do
17: kji ← K

(
uj−u

(n)
i

h

)
18: end for
19: u(n+1)

i ←
(∑

j uj pji kji

)
/
(∑

j pji kji

)
20: end for
21: until convergence
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(a) MeanShift results (in red)
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(b) MeanShift with Implicit Prior results (in red)

Figure 8.8: MeanShift with Implicit Prior. Results are in red, the observed noisy
signal in blue and the clean original signal in green.
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Figure 8.9: MeanShift with Implicit Prior. Results are in red, the observed noisy
signal in blue and the clean original signal is in green. The original signal, highly
non continuous, is de�ned as s(n) = (−1)n sin(n/20).
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Clean 256x256 Picture Observed Picture, σ = 10

σ = 7, h = 5, D = 10 σ = 7, h = 24, D = 10 σ = 7, h = 70, D = 10

σ = 10, h = 5, D = 10 σ = 10, h = 24, D = 10 σ = 10, h = 70, D = 10

σ = 42, h = 5, D = 10 σ = 42, h = 24, D = 10 σ = 42, h = 70, D = 10

Figure 8.10: In�uence of parameters on the Image Simpli�cation. The bandwidth
used in the MeanShift step appears to be not as in�uential that in standard
MeanShift.
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Figure 8.11: Image Simpli�cation. σ = 45, h = 80, D = 30. (original image credits:

Berkeley Segmentation Database, http://www.eecs.berkeley.edu/Research/Projects/CS/

vision/bsds/)
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Figure 8.12: Image Simpli�cation. σ = 30, h = 10, D = 10. The compression
ratios are 0.8084, 0.8112 and 0.8154. (original image credits: Durlacher-Tor sequence,

http://i21www.ira.uka.de/image_sequences/)
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Figure 8.13: Image Simpli�cation. σ = 40, h = 80, D = 10. The compressions
ratios are 0.5598, 0.6073, 0.5576. (original image credits: Laboratoire Central des Ponts et

Chaussées)
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Chapter 9

Closing Remarks

This thesis presents several contributions in three post-production areas where signal pro-
cessing statistical methods can be applied. In the �rst part, a new N -dimensional pdf
transfer technique is used to transfer aspects of an image to another. In the second part,
the image content is extracted by using two statistical trackers. Eventually the last part
shows that statistics of image patches can be used to simplify the content the picture itself.
In conclusion of this work, two remarks emerge from dealing with image processing tools
in post-production.
Non-Parametric Approaches. The idea of re-using the statistics of real images to grade
images is a simple but powerful method for rendering images. The method is part of the
larger domain of non-parametric image processing. In a sense then, the �rst part of the
thesis is closely related to the last chapter, since in both cases the statistics manipulated are
extracted from the picture itself and not from a hand tuned prior. The main di�culty in
image processing is that there is no available valid model for images. Non-parametric meth-
ods get around this problem by restricting the range of manipulations to manipulations
based on real image statistics. The results are thus guaranteed to be visually acceptable,
though not necessarily exact. These kind of approaches gained much success in texture
synthesis and it transpires from the results of this work that they could be e�ciently used
for other applications.
Human In Control. The last remark of this conclusion is that users should be ultimately
in control of algorithms. Whilst fully automated tools are eventually what the end-user is
dreaming of, the reality of the post-production industry is that fully automated tools rarely
give the exact desired results. To be useful, a tool has thus to provide the end-user a full
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control on every step of its realisation. Although drawing object mattes is a painstaking
task, artists simply prefer doing this on every frame of a movie if this results for sure
in what they are looking for. This motivates too the approach adopted in chapter 7 to
focus on deterministic algorithms. Since stochastic methods cannot provide a full control
on the results and are therefore not well adapted to interactive tools. It would be thus
bene�cial to explore new ways of integrating the user in the algorithms, like for instance
using techniques from relevance feed-back to minimise the interaction. But this is left for
further research.

The End.
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Chapter A

Appendix

A.1 Sampling PDFs
Consider pdfs of random variables that can take k di�erent values. The pdfs are charac-
terised by

q ∈ Pk ⇐⇒

{
∀ i ∈ [1; k] , q(i) ≥ 0∑k

i=1 q(i) = 1
(A.1)

The problem here presents similarities with picking points uniformly on a sphere [Mul59,
Mar72]. The set of k-state pdfs Pk can indeed be seen as a unit hypersphere in a L1

space: Pk =
{
q ∈ (R+)k : ‖q‖1 = 1

}, where ‖q‖1 =
∑
|qi| refers to the L1 norm (see

�gure A.1). Thus the idea is to follow the same outlines of the point picking methods. The
method proposed by Muller [Mul59] is particularly attractive and easy. The method to pick
a random point on a hypersphere is to generate k Gaussian random variables z1, . . . , zk.
Then the distribution of the vectors

1√
z2
1 + . . .+ z2

k


z1...
zk

 (A.2)

is uniform over the surface of the hypersphere.
Using the same arguments as proposed in the point picking method yields a method

for picking k-state pdfs uniformly over the pdf space Pk. The method is to generate k
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Pk=2

L
2

L
1

Figure A.1: The k-state pdf space Pk corresponds to
the positive quadrant of the L1-hypersphere.

exponential random variables (z1, z2, · · · , zk). Then the distribution of the vectors

1
z1 + . . .+ zk


z1...
zk

 (A.3)

is uniform over the pdf space Pk. It is probable that the proof of this method exists
somewhere else in the mathematical literature, but it could not be found. The proof
follows the same steps as the point picking method. The di�erence is the choice of a
exponential distribution instead of a normal distribution.
Theorem 2 (Uniform pdf Sampling). Let Pk =

{
q ∈ (R+)k : ‖q‖1 = 1

} be the space
all pdfs for random variables taking n values and let the elements of z ∈ (R+)k have
independent exponential distributions (with same scale parameter λ). Then q = z/‖z‖1 is
uniformly distributed over Pk.
proof. By independence, the joint density for z is:

p(z1, z2, · · · , zk) = p(z1)p(z2) · · · p(zk) (A.4)
= λke−λ(z1+z2+···+zk) (A.5)
= λke−λ(‖z‖1) (A.6)

for any region A in Pk,

Pr(z ∈ A ⊂ Pk) =
∫

A
λk exp (−λ‖z‖1) (A.7)

This integral is clearly isotropic since it depends only on the length of z and not on its
direction. For z ∈ A ⊂ Pk, z is restricted such that ‖z‖1 = 1, then Pr(z ∈ A ⊂ Pk) is
constant. Hence q is uniformly distributed over Pk.
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A.2 Directions

Table A.1: Optimised Rotations for N = 2

No. 1 2 3 4
x 1.000000 0.000000 0.707107 -0.707107 0.382683 0.923880 0.382683 -0.923880
y 0.000000 1.000000 0.707107 0.707107 0.923880 -0.382683 0.923880 0.382683
No. 5 6 7 8
x 0.195079 0.980788 0.555580 -0.831463 0.831476 -0.555560 0.195102 -0.980783
y 0.980788 -0.195079 0.831463 0.555580 0.555560 0.831476 0.980783 0.195102
No. 9 10 11 12
x 0.728428 -0.685123 0.999531 0.030622 0.410795 -0.911728 -0.354213 -0.935165
y -0.685123 -0.728428 0.030622 -0.999531 0.911728 0.410795 0.935165 -0.354213
No. 13 14 15 16
x 0.165027 0.986289 0.814104 0.580720 0.974365 0.224971 0.848059 -0.529902
y 0.986289 -0.165027 -0.580720 0.814104 -0.224971 0.974365 0.529902 0.848059

Table A.2: Optimised Rotations for N = 3

No. 1 2
x 1.000000 0.000000 0.000000 0.333333 0.666667 0.666667
y 0.000000 1.000000 0.000000 0.666667 0.333333 -0.666667
z 0.000000 0.000000 1.000000 -0.666667 0.666667 -0.333333
No. 3 4
x 0.577350 0.211297 0.788682 0.577350 0.408273 0.707092
y -0.577350 0.788668 0.211352 -0.577350 -0.408224 0.707121
z 0.577350 0.577370 -0.577330 0.577350 -0.816497 0.000029
No. 5 6
x 0.332572 0.910758 0.244778 0.243799 0.910726 0.333376
y -0.910887 0.242977 0.333536 0.910699 -0.333174 0.244177
z -0.244295 0.333890 -0.910405 -0.333450 -0.244075 0.910625
No. 7 8
x -0.109199 0.810241 0.575834 0.759262 0.649435 -0.041906
y 0.645399 0.498377 -0.578862 0.143443 -0.104197 0.984158
z 0.756000 -0.308432 0.577351 0.634780 -0.753245 -0.172269
No. 9 10
x 0.862298 0.503331 -0.055679 0.982488 0.149181 0.111631
y -0.490221 0.802113 -0.341026 0.186103 -0.756525 -0.626926
z -0.126988 0.321361 0.938404 -0.009074 0.636722 -0.771040
No. 11 12
x 0.687077 -0.577557 -0.440855 0.463791 0.822404 0.329470
y 0.592440 0.796586 -0.120272 0.030607 -0.386537 0.921766
z -0.420643 0.178544 -0.889484 -0.885416 0.417422 0.204444
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A.3 Simple Matlab Code for 1D Signal

f u n c t i o n R = Simpl i f ier_1D (S , D, sigma , h)

M = l e n g t h (S ) ;
R = S ;

rho_ l i s t = [ 1 2 4 8 16 3 2 ] ; % c o l l e c t the ne i ghbou rh i ng s i z e s

f o r i t =1:10

t = z e r o s ( s i z e (S ) ) ;
tw = z e r o s ( s i z e (S ) ) ;

f o r j = −D:D

% to take ca r e o f range i s s u e s
j_ f i r s t_0 = max ( j , 0) + 1 ;
j_f i r s t_d = max(− j , 0) + 1 ;
j_M = M − abs ( j ) ;

s0 = S( j_f i r s t_0 : j_f i r s t_0+j_M−1);
sd = S( j_f i r s t_d : j_f i r s t_d+j_M−1);
r0 = R( j_f i r s t_0 : j_f i r s t_0+j_M−1);
rd = R( j_f i r s t_d : j_f i r s t_d+j_M−1);

% image d i f f e r e n c e
d i f f = abs ( s0−sd ) . ^ 2 ;

% loop ove r s p a t i a l s c a l e h
p_h = z e r o s (1 , j_M) ;

f o r rho_i = 1 : l e n g t h ( h_l i s t )
rho = rho_l i s t ( rho_i ) ;
m_rho = rho − 1 ;
sd_rho = s q r t ( smoothgauss ( d i f f , rho ) ) ; % SD e s t ima t e
lambda_rho = s q r t (2)∗ sigma/ s q r t (2∗m_rho ) ;
sigma_rho = s q r t (2)∗ sigma∗ s q r t ( (m_rho−1)/m_rho ) ;

p_h = p_h + rho ∗ block_kerne l ( sd_rho , sigma_rho , lambda_rho ) ;
end

% mean s h i f t f a c t o r
d i f f_0 = abs ( r0 − sd ) ;
k d i f f = ke rne l ( di f f_0 , h ) ;
p_h = p_h .∗ k d i f f ;

t ( j_f i r s t_0 : j_f i r s t_0+j_M−1) = t ( j_f i r s t_0 : j_f i r s t_0+j_M−1) + p_h .∗ sd ;
tw( j_f i r s t_0 : j_f i r s t_0+j_M−1) = tw( j_f i r s t_0 : j_f i r s t_0+j_M−1) + p_h ;

end

% no rma l i s i n g and update
R = t . / tw ;

end

f u n c t i o n pv = ke rne l (v , hv )
v = v . / hv ;
pv = exp(− v .∗ v/2)/ s q r t (2∗ p i )/hv ; % gau s s i a n

f u n c t i o n pv = block_kerne l ( s , sh , lh )
f = 2 ;
pv = (1 − 1./(1+ exp(− f ∗( s − sh )/ lh ) ) ) / ( l o g (1 + exp ( f ∗ sh/ lh ) )∗ lh / f ) ;

f u n c t i o n s r = smoothgauss ( s , s c a l e )
u = −3∗ s c a l e : 3∗ s c a l e ;
h = exp (−(u/ s c a l e ) . ^ 2 / 2 ) ;
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h ( ( l e n g t h (u) + 1)/2)=0; % the sample i s NOT i n i t s ne ighbourhood
h = h/sum (h ) ;
s r = f i l t e r 2 (h , s , ' same ' ) ;
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