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Summary

Symbiotic systems are interacting binary stars consisting of both hot

and cool components. This results in a complex environment that

is ideal for studying the latter stages of stellar evolution along with

interactions within binary systems. As a star approaches the end

of its life, in particular the red giant phase, it exhausts its supply

of core hydrogen and begins burning its way through successively

heavier elements. Red giants lose mass in the form of a dense wind

that will replenish the interstellar medium with chemical elements

that are formed through nuclear processes deep in the stellar interior.

When these elements reach the interstellar medium they play a central

role in both stellar and planetary evolution, as well as providing the

essential constituents needed for life. The undoubted significance of

these cool giants means the study of their atmospheres is necessary

to help understand our place in the Universe.

This thesis presents Hubble Space Telescope (HST) observations of

the symbiotic system EG Andromedae as an insight into red giant

stars. EG And is one of the brightest and closest symbiotic systems

and consists of a red giant primary along with a white dwarf. The

presence of the white dwarf in the system allows spatially resolved

examination of the red giant primary. The benefits of using such a

system to better understand the base of red giant chromospheres is

shown. Although EG And can help further our comprehension of red

giant stars, some of the physical properties governing the system are

not known to a high degree of accuracy. New measurements of in-

terstellar extinction (0.05), distance (568 pc), and wind velocity (70

km s−1) are provided. The onset of TiO lines in spectral subclasses



is identified. Along with the observations of EG And, new HST ob-

servations of an isolated red giant spectral standard HD148349 are

described. The similarity between the isolated spectral standard and

the red giant primary of EG And is demonstrated, showing that much

of the information gleaned from a symbiotic system can be applied to

the general red giant population. Using both ultraviolet and optical

spectroscopy, the atmosphere of EG And and HD148349 are investi-

gated and contrasted. EG And is found to have an electron density

of 7× 108 cm−3, while for HD148349 it is found to be 4 × 108 cm−3.

The evidence of spectral line asymmetries in the photosphere aris-

ing from stellar granulation is discussed as a possible energy source

for a wind-driving mechanism. Finally, a complete energy budget for

the atmosphere of EG And is presented which shows the total energy

needed to heat the chromosphere and drive the wind is 1.3×106 erg

cm−2 s−1.
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1
Introduction

As sentient beings we have long considered our place in the Universe. Who we

are and why we are here are musings that are natural extensions of our capacity

for introspection. Science, as a way of thinking more than as a body of knowl-

edge (Sagan, 1997), has helped us unravel some of the mysteries of our existence.

It accomplishes this by being, at its core, a self-correcting process. It does not

pretend to show the final truth, but rather to test and refine hypotheses until

they approach what we think is true of the natural world around us (Prothero &

Buell, 2007). Science has led us to understand that everything on the Earth is

composed of a handful of essential elements. The Earth is predominantly iron,

oxygen, silicon and magnesium. Nitrogen, oxygen and hydrogen largely account

for the elements of the atmosphere and the oceans, while the human body is

mostly carbon, nitrogen, oxygen and hydrogen. These elements are created deep

in the interior of stars and eventually reach the stellar atmosphere where they

are dispelled into the interstellar medium to become new stars and planets. It is

during the red giant phase of a star’s life that most of this material is lost. Un-

fortunately, atmospheres of red giants remain poorly understood. Observations

of red giant stars are disk-averaged over the stellar surface. Eclipsing symbiotic

systems provide a means to probe red giant atmospheres. Symbiotic systems

1



1. INTRODUCTION

consist of a compact white dwarf orbiting a red giant star. Observing the white

dwarf through periodic eclipses allows spatial investigation of the atmosphere and

unveils more about its structure and the physical processes taking place within

it. The more that is known about red giant atmospheres, the better our compre-

hension of stellar/planetary evolution and the likely emergence of life.

1.1 Stellar Evolution

To comprehend stellar evolution it is first instructive to discuss the most well-

studied star. The Sun is a G2V main sequence star with a mass of M� = 1.99×
1033 g. It has a radius of R� = 6.96×1010 cm and a luminosity of L� = 3.85×1033

erg s−1 (Prialnik, 2000). The luminosity is given by:

L� = 4πR2
�σT

4
e (1.1)

where σ is the Stefan-Boltzmann constant and Te is the effective temperature.

The Sun is about halfway through its lifecycle and is expected to enter the red

giant phase in five billion years (Schröder & Connon Smith, 2008).

Phillips (1999) describes how gravity is the driving force behind stellar evolu-

tion. A star could arise from the interstellar gas between the spiral arms of the

galaxy. This gas, predominantly hydrogen, is confined to the plane of the galaxy

due to its own pressure. The gas is extremely tenuous and hot due to a balance

between heating by X-ray emitting objects in the galaxy, and radiative cooling.

If a small pressure increase were to occur, it could result in a sudden increase in

cooling due to ionic recombination. At this point, the gas could break up into

clouds of relatively dense, cool gas. Increasing pressure will cool the clouds to

extremely low temperatures due to infrared radiation emitted by the hydrogen

molecules. If the internal pressure of a cloud is not strong enough to resist its own

gravitational force, it will collapse into itself, forming a protostar. The criteria

for such a cloud to collapse was outlined by Jeans (1902) who showed that for

a cloud of given temperature T and radius r, the cloud will collapse if its mass

exceeds ‘Jeans Mass’:

MJ =
3kT

Gm̄
r (1.2)

2



1.2 Stellar Structure

where G is the gravitational constant, k is the Boltzmann constant and m̄ is the

mean mass of the particles in the cloud. Equivalent limits on radius and density

follow from Jeans’ criterion. As the protostar contracts it is heated up by the

release of gravitational energy. Energy from the centre of the star is transported to

the surface via convection. The onset of hydrogen burning is delayed by deuterium

burning. While the protostar is still accreting material, deuterium burning keeps

the temperature constant until the dominant mode of energy transport changes

from convective to radiative. The cessation in convection reduces the supply of

deuterium and the subsequent rise in temperature results in hydrogen burning

(Bally & Reipurth, 2006). The specific processes that a protostar undergoes are

governed by its mass and are described in Section 1.3. If the protostar’s mass

is extremely low (< 0.08 M�) then it will remain purely convective and thus a

sub-stellar object, such as a brown dwarf. The protostar is deemed a star proper

when the interior is hot enough for hydrogen fusion to occur and become the

driving energy-generating mechanism.

1.2 Stellar Structure

Stellar evolution allows us to understand the physical and chemical properties

of stars and their development with time. Several assumptions are necessary to

interpret the standard idea of stellar evolution. These assumptions, as outlined

in Salaris & Cassisi (2005), include considering stars as spherically symmetric

systems made up of matter plus radiation, while ignoring the effects of magnetic

fields and rotation.

With these assumptions in place, stars are simply governed by the equations

of stellar structure which allow the pressure, temperature, luminosity, radius and

chemical element abundance to be described in terms of mass and evolution with

time. The force of gravity is balanced by an inwardly increasing pressure gradient.

This prevents the star from collapsing in on itself or breaking apart, effectively

rendering a state of hydrostatic equilibrium:

dP (r)

dr
= −GM(r)ρ(r)

r2
(1.3)

3



1. INTRODUCTION

where P is pressure and ρ is density. The density can also be given by the ideal

gas law:

ρ =
PµmH

kT
(1.4)

where µ is the average particle mass, mH is the mass of hydrogen, k is the Boltz-

mann constant and T is temperature. Mass conservation provides the equation

of mass-continuity:
dM(r)

dr
= 4πr2ρ(r) (1.5)

The temperature, T (r), is governed by energy flows through the star, i.e. the

luminosity as a function of radius L(r). The path of photons through the star

needs to be taken into account by including the opacity κ, where:

κ =
1

ρl
(1.6)

and l is the mean free path of a photon in the star. T (r) is subsequently defined

by the equation of radiative energy transport:

dT (r)

dr
= −3L(r)κ(r)ρ(r)

4πr2acT 3(r)
(1.7)

where a is a constant:

a =
8π5k4

15c3h3
(1.8)

which is 7.6× 10−15 erg cm-3K -4 (Maoz, 2007). As well as heat flow being trans-

ported by electromagnetic radiation, convection is also a transport mechanism for

cool stars. This is because the outer envelopes of cool stars have temperatures

that are low enough for hydrogen to not be ionized. This increases opacity and

makes convection a more efficient energy transport than radiation. The convective

envelope obeys the Schwarzschild criterion for convection instability (Schrijver &

Zwaan, 2008). The Schwarzschild Criterion determines whether a rising or sink-

ing globule of gas will continue to rise/sink or if it will return to its original depth.

The derivation of this criterion follows that described by Schwarzschild in 1906.

If a globule of gas were lifted to a height δr by a disturbance, the thermody-

namic conditions in the globule would be initially the same as those outside the
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1.3 Hertzsprung-Russell Diagram

globule:

ρin(r) = ρ(r) (1.9)

However the rise would be sufficiently fast that no heat exchange would occur

between the globule and its surroundings. Although being transported adiabat-

ically, the internal pressure, pin, would be balanced by the ambient pressure, p.

These circumstances are feasible in a cool star due to the high opacity and short

travel time for sound waves across the globule. If the internal density of the

globule were to remain smaller than the external density, it would continue to

rise and the condition for instability would be:

ρin(r + δr)− ρ(r + δr) = δr

[(
dρ

dr

)
ad

− dρ

dr

]
< 0 (1.10)

where (dρ/dr)ad is the density gradient under adiabatic conditions. Using Equa-

tion 1.4 and Equation 1.9, the instability condition can be rewritten as:(
dT

dr

)
ad

− T

µ

(
dµ

dr

)
ad

>
dT

dr
− T

µ

dµ

dr
(1.11)

The mean molecular weight, µ, is a function of p and T , but because of the

pressure equilibrium, (dp/dr)ad = dp/dr, the gradients (dµ/dr)ad and dµ/dr differ

only in terms of the gradient dT/dr, and:∣∣∣∣dTdr
∣∣∣∣ > ∣∣∣∣(dTdr

)
ad

∣∣∣∣ (1.12)

which is the Schwarzschild criterion for convection instability.

The luminosity of the star can be described by the equation of energy conser-

vation:
dL(r)

dr
= 4πr2ρ(r)ε(r) (1.13)

where ε is the power produced per unit mass of stellar material.

1.3 Hertzsprung-Russell Diagram

Having defined the equations that govern stellar structure, the number of stars of

a particular mass can be described by the initial mass function (Salpeter, 1955).

5
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This is a power law that predicts the number of stars of mass M per unit mass

interval, and is be given by:
dN

dM
∝M−α (1.14)

where α = 2.35 over most of the mass range (Maoz, 2007).

The equations of stellar structure depend on the star remaining in equilibrium.

Given the star’s mass and composition it is possible to determine its structure. In

reality, the assumption of equilibrium cannot hold indefinitely. Nuclear reactions

in the stellar core synthesize hydrogen into helium which will alter the elemental

composition over time. Mixing due to convection will also change the composi-

tion. Eventually the star will exhaust its fuel supply and lose the energy supply

necessary to resist gravitational collapse. Consequently, it is inevitable that stars

will evolve with time. To help understand how mass and stellar evolution are

intertwined, the use of a Hertzsprung-Russell diagram (hereafter HR diagram)

is practical. Between 1911 and 1913, Ejnar Hertzsprung and Henry Norris Rus-

sell independently devised a plot to show how the absolute magnitude of stellar

populations changed with spectral type (Zeilik et al., 1992).

Figure 1.1 shows how the initial stages of stellar birth (outlined above) result

in a star debuting on the main sequence of a HR diagram. The HR diagram itself

is a plot of logarithmic luminosity (relative to solar luminosity; 3.8×1033 erg s−1)

against surface temperature (and/or colour, spectral type). Sometimes stellar

magnitudes are plotted instead of luminosity. Traditionally, the temperature

increases from right to left along the plot. On a HR diagram, certain regions are

more densely populated than others. Hydrogen burning stars should give rise to

the most densely populated region of the plot as stars spend most of their lives

in this phase. This is known as the main sequence, and as pointed out above,

is the region on the plot that a star makes its debut. It encompasses a diagonal

swathe across the plot from blue supergiants to red dwarves. It is estimated that

80 - 90% of observed stars are main sequence stars (Phillips, 1999).

The point that the star debuts on the main sequence is given by its initial

mass. The left panel of Figure 1.1 shows the pre-main sequence tracks taken by

protostars of different masses. For protostars with masses < 0.5 M�, Hayashi

(1961) showed that when hydrostatic equilibrium is reached the protostar is fully
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1.3 Hertzsprung-Russell Diagram

Figure 1.1: Pre- and Post-Main-Sequence Stellar Evolution. The left panel shows
a HR diagram with Henyey and Hayashi Tracks for protostars of different masses
highlighted. Four pre-main-sequence stages are labelled. (1) The initial cloud
collapse to form a protostar. (2) The temperature increases due to gravity but
the decrease in surface area causes a reduction in luminosity and a vertical drop
on the HR Diagram. (3) The onset of nuclear fusion causes an increase in sur-
face temperature. (4) The outward gas and radiation pressures match the inward
gravitational force and the star attains hydrostatic equilibrium and settles onto
the main sequence. The right panel is a HR diagram showing post-main-sequence
evolutionary paths. Image Credit: Australian Telescope National Facility.

convective. The star will continue to contract but its temperature will remain

constant as it moves vertically along a track which became known as the Hayashi

track. Henyey et al. (1955) showed that protostars with masses > 0.5 M� will

reach the end of the Hayashi track when radiative energy transport becomes

more efficient than convective transport. The protostar will then take a near

horizontal path across the HR diagram maintaining radiative equilibrium and

almost constant luminosity. This path became known as the Henyey track.

The length of time a star spends on the main sequence will be determined by

its mass. The star’s luminosity at this stage is proportional to its mass, while the

total energy radiated away is also mass-dependent. This leads to the time spent

7
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on the main sequence being given by:

tms ∼M1−α (1.15)

For intermediate mass stars α ∼ 3 (Maoz, 2007) and:

tms ∼
1

M2
(1.16)

While higher mass stars will exhaust their hydrogen more quickly, solar mass

stars could expect to spend around ∼ 1010 years on the main sequence. Once

the star exhausts its supply of hydrogen, having spent most of its life on the

main sequence, it then takes one of several paths off of the main sequence. These

post-main-sequence tracks are again governed by the mass of the star. Several

examples are shown in Figure 1.1.

1.4 Evolution to the Red Giant Stage

Less massive stars (i.e. < 8 M�) can spend billions of years on the main sequence.

Eventually, the supply of hydrogen in the core will be spent and it will contract,

causing the temperature of the stellar interior to rise. This results in shells of

burning hydrogen in the less-processed regions around the core. At this point, the

outer layers of the star undergo huge expansion leading to increased luminosity,

but diminished effective surface temperature. The star is now giant-size (∼ 10

- 100 R�) and cooler, changes that move the star upwards and to the right on

the HR diagram onto the ‘red giant branch’ (See the right panel of Figure 1.1).

The basic structure of a red giant is shown in the left panel of Figure 1.2. A

dredge-up will occur, which causes the products of fusion to be mixed into the

stellar atmosphere. The next stage in stellar evolution occurs when the helium

in the core has been exhausted and contractions cause helium burning in a shell

beneath the hydrogen burning shell. This double-burning shell around a core of

inert carbon/oxygen (right-hand side of Figure 1.2) results in the star ascending

the asymptotic giant branch. A second dredge-up causes some of the elements

newly synthesised in the core to be dispersed into the outer layers of the star.

These stages of stellar evolution are pivotal as evolved stars undergo large mass
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1.4 Evolution to the Red Giant Stage

Figure 1.2: Red Giant and Asymptotic Giant Branch Stars. The left side of the
figure shows the basic structure of a star on the giant branch of the HR diagram,
while the right side shows a similar star after it has evolved to ascend the asymptotic
giant branch. Image Credit: Australian Telescope National Facility.

loss, especially on the giant and asymptotic giant branches1. Red giants make

up as much as 10% of the stars in The Bright Star Catalogue (Percy & Harrett,

2004).

The dense matter in the core will remain as a degenerate electron gas sup-

ported against further contractions. The outer layers will continue to expand

and be blown off, creating firstly a preplanetary nebula and then a planetary

nebula. The exposed core is now considered a white dwarf. More massive stars

(> 8 M�) deplete their supply of hydrogen in a few million years as they try to

resist gravitational contraction. The mass of the core might be such that gravity

causes further contractions, leading to the formation of a neutron star or black

hole (Salaris & Cassisi, 2005). This study is most interested in the red giant phase

of stellar evolution for stars with lower initial masses, although the presence of a

white dwarf in the target system is also important.

1Very little mass is lost ascending the red giant branch, but ∼ 0.1 - 0.2 M� can be shed at
the top of the branch.
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1.5 Symbiotic Stars

Symbiotic binaries consist of a cool giant star experiencing large scale mass-loss

and a hot, compact component, usually a white dwarf (Figure 1.3). As well as

the two stars there is also an extended nebula that owes its presence to the red

giant wind (Leedjärv, 2006). Stellar symbiosis in stars was first tackled early

in the twentieth century. The first examples were noted by their combination

spectra and are thought to have been CI Cyg, RW Hya and Ax Per (Percy,

2007). Berman (1932) and Hogg (1936) first suggested the binarity of the stars,

while Merrill (1944) attempted to group the stars into a different class based on

the visibility of emission lines. Merrill’s class was made up of 12 stars show-

ing combination spectra and would become the first group of symbiotic stars.

This group originally consisted of Z And, R Aqr, UV Aur, T CrB, BF Cyg,

CI Cyg, AG Dra, RW Hya, SY Mus, AG Peg, AX Per and RX Pup. EG And

was not suggested as a possible symbiotic star until the 1950s, and was later

confirmed as one in the 1980s (this is discussed further in Chapter 2). While

initially it was difficult to know if these stars were long period variables or binary

stars, Merrill was convinced of their “symbiotic” nature (Merrill, 1950, 1958). It

was not until the launch of The International Ultraviolet Explorer (IUE) in the

1970s that the presence of the ultraviolet component (the white dwarf) was truly

confirmed. Both the Space Telescope Imaging Spectrograph (STIS) aboard the

Hubble Space Telescope (HST), and the Far Ultraviolet Spectroscopic Explorer

(FUSE) bolstered UV and FUV observations of symbiotic stars. There are cur-

rently more than 180 observed symbiotic stars and a further 30 that are suspected

symbiotics (Belczyński et al., 2000).

While the three components required for symbiosis (the cool star, hot star and

ionised nebula) appear straightforward at first, there are several different combi-

nations of hot and cool stars that can produce the required symbiotic spectrum.

It is estimated that up to 80% of all symbiotic stars are made up of a red giant

star under-filling its Roche lobe1 by a factor of two or three, a hot compact star

similar to the central star of a planetary nebula and a large ionised nebula that is

1Orbiting material within the Roche lobe of a star in a binary system is gravitationally
bound to that star (Eggleton, 1983).
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1.5 Symbiotic Stars

Figure 1.3: Author’s impression of a symbiotic star, depicting the compact white
dwarf orbiting behind the giant and illuminating its atmosphere.

responsible for many of the emission lines in the spectrum (Kenyon & Webbink,

1984). A schematic of this type of system is shown in Figure 1.4. A second

group of symbiotics is characterised by wider binaries with separations of up to

100AU and a Mira variable instead of a red giant as the primary star (White-

lock, 1987). IR observations allow these two groups to be distinguished and help

define them as either short orbital period S-type (stellar) or longer orbital period

D-type (dusty) systems. The S-type symbiotics have IR colour temperatures of

∼ 2500 − 3500 K while the D-type symbiotics have temperatures of ∼ 1000 K.

The S-type systems also have higher density nebulae (ne ∼ 1010 cm−3) compared

to the D-type systems (ne ∼ 106 cm−3).

The following description of symbiotic formation largely follows the discussion

in Kenyon (1994). The red giant primary constrains the possible evolutionary

paths of a symbiotic system. It sets the size of the system. It must be large

enough to allow a main sequence star to evolve to radii greater than 50 R�, but

small enough to allow the red giant to transfer sufficient mass to its companion.

11
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Figure 1.4: A schematic illustration of a symbiotic star, in this case AG Peg
(Kenyon et al., 1993) viewed in the orbital plane of the binary. The cross marks
the centre of mass and the line of sight to the Earth is inclined at an angle of 50◦.
The dotted line surrounding the hot component shows the He II recombination
zone. This heats the hemisphere of the red giant facing the hot component and
produces He I and O III]. The dashed-dot line around the giant shows the H II
region.

This results in symbiotic stars being interacting binaries with the longest orbital

period and the largest component separation (Miko lajewska, 2007). For S-type

symbiotics their orbital period is limited to between 1 and 10 years, while for

the longer period D-type systems it can be up to 100 years. In the case of S-type

symbiotics, the two stars start out as main sequence stars in a binary system.

One of the stars will follow an evolutionary path similar to a single star, evolving

to a red giant phase, ejecting a planetary nebula and becoming a white dwarf.

The system then approaches the symbiotic phase as the original secondary star

evolves to ascend the red giant or asymptotic giant branch to become the red

giant primary of the system. In the process, it will lose mass and rejuvenate its

companion star. The lifetime of the system is also limited by the red giant. Sym-
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biotic red giants have masses of 1 - 3 M� and as the two stars evolve at different

rates the system can only remain in the symbiotic stage for approximately a few

million years. Most S-type systems have circular orbits and seem to interact by

wind-driven mass-loss (although some of them may show Roche lobe overflow).

The primary is usually an M2 - 6 giant and are often quite similar to single M gi-

ants. The main difference is that symbiotic red giants have higher mass-loss rates

than single giants which may be a trigger for symbiotic activity (Mikolajewska,

2002).

This thesis is chiefly concerned with a specific type of S-type symbiotic known

as an eclipsing symbiotic. While isolated giants provide only disk-averaged infor-

mation on the structure of their atmospheres, eclipsing symbiotics allow ultravi-

olet observations of the compact white dwarf through periodic eclipsing, defined

in terms of our sightline. By comparing the UV spectrum of the white dwarf

when it is outside of eclipse (and therefore less affected by the extended atmo-

sphere or the wind) to observations as it passes behind the giant’s atmosphere, we

can obtain spatially resolved information. The vast differences in spectral energy

distribution means the giant and dwarf star can be readily deblended from one

another. The white dwarf contributes mostly to the UV continuum, while the

optical region is dominated by the giant. As the white dwarf goes into eclipse,

its UV continuum will gradually have more absorption features imposed upon it

by the red giant atmosphere, giving detailed spatial information about the at-

mosphere close to the giant. Observing at different stages of eclipse is discussed

further in Chapter 2.

1.6 Stellar Atmospheres

Mass-loss during the red giant phase is a crucial event in the star’s life. Post-

main-sequence stars are responsible for almost all of the elements in the Universe

that are heavier than helium. Low gravity giants are specially important for

the CNO abundances in the solar neighbourhood (Schröder & Sedlmayr, 2001).

Understanding red giants in terms of their atmospheres and mass-loss is essential

to interpreting both stellar and galactic chemical evolution.
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Gray (1976) defines a stellar atmosphere as ‘a transition region from the

stellar interior to the interstellar medium’. Figure 1.5 shows a simplified one-

dimensional representation of the solar atmosphere from Vernazza et al. (1973)

which helps to identify the different regions of the atmosphere. The sub-photosphere

is below the solar surface (less than 0km on the plot) and marks the end of the

convective envelope. The region from 0 to ∼ 500km is the photosphere. This

is the visible surface of a star; the part of the star at which the plasma of the

star becomes transparent to photons of visible light (i.e. the optical depth reaches

unity). At this point, any energy generated in the stellar interior becomes free

to propagate out into space. Typically, the temperature drops by more than a

factor of 2 from the top to the bottom of the photosphere. Solar-like stars have

reasonably well-defined photospheric layers. For cool giants, their lower surface-

gravities and higher mass-loss rates make defining the photosphere much more

difficult. As their photospheres are cooler they are heavily influenced by absorp-

tion bands of molecular species. Figures showing optical spectra of cool giants

being dominated by TiO bands are shown in Chapter 4, while the photosphere

of cool giants is discussed further in Chapter 6.

The simplified temperature distribution in Figure 1.5 also shows a temperature

rise around 500 − 2000 km, where Te ∼ 4000 − 20, 000 K. This is the solar

chromosphere. It demonstrates a rise in temperature despite decreasing density.

A further sharp rise shows the transition region and finally the corona which

is an extremely hot, tenuous and extended layer. In reality, the atmosphere is

far more complex than the simplified picture shown in Figure 1.5. Wedemeyer-

Böhm et al. (2009) show that the solar atmosphere is characterized by a complex

interplay of competing physical processes which include convection, radiation,

conduction, and magnetic fields (Figure 1.6). Cool giants could be expected

to have similar intricacy in their atmospheric structure as well as having an

inhomogeneous extended atmosphere that becomes a strong outflow of gas and

sometimes dust.

Cool stars can be grouped into two broad categories separated by those that

have corona and those that have not. Carpenter (1998) describes how coronal

stars include cool dwarfs, giants earlier than K2, and supergiants earlier than G8.

These stars are thought to have atmospheres similar to the Sun in that above the
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1.6 Stellar Atmospheres

Figure 1.5: A simplified representation of the temperature distribution of the
solar atmosphere from Vernazza et al. (1973). The figure shows where different
ultraviolet spectral features are formed in the solar atmosphere.

photosphere they display a chromosphere of 5000 - 10,000 K, a hotter transition

region at around 105 K and an even hotter corona at approximately 106 K. These

stars have fast winds upwards of 50−100 km s−1 and relatively low mass-loss rates

of around 10−13 − 10−14 M� yr−1 (Dupree & Reimers, 1987). The non-coronal

stars encompass giants later than K2 and supergiants later than G8. They show a

similar temperature distribution in the atmosphere out to the chromosphere but

do not exhibit transition regions or coronal material. They show slower winds

of about 10 − 50 km s−1 but higher mass-loss rates, 10−10 − 10−8 for giants,

10−7 − 10−5 M� yr−1 for supergiants1.

1This is a broad categorisation, as “hybrid stars” exist near the Linsky-Haisch dividing-line
(Linsky & Haisch, 1979) that can display properties from both groups i.e. evidence for coronae
along with high mass-loss rates (Hartmann et al., 1980).
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Figure 1.6: A more realistic illustration of the complexity of the solar atmosphere
(Wedemeyer-Böhm et al., 2009).

1.7 Stellar Winds

Mass-loss, in the form of stellar wind, is different for both the coronal and non-

coronal stars. Historically, observations of massive hot stars and novae proved

that mass outflows existed as far back as the 19th Century. Campbell (1892)

found that the width of spectroscopic lines, ∆λ, was proportional to its velocity,

confirming that the Doppler effect was responsible for broadening:

∆λ =
λv

c
(1.17)

Although broadening could arise from expansion or some other form of turbulent

motion, photographs of novae showed shells around outbursts. The shell diam-

eters increased with time, proving that the they were expanding away from the

central star. Deutsch (1956), using observations of the α Her system (M5Iab

giant primary), was the first to show that material could escape the gravitational

pull of a red giant surface, indicating the presence of a wind. Deutsch noted how

the earlier-type secondary star1 could be used to probe the outer regions of the

giant’s wind.

1The secondary star is now thought to be a multiple star system.
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Stellar winds are now described as outflows of material (of both radiation and

particles) from almost all stars. The mass-loss rate, Ṁ , describes the amount

of material shed by a star per unit time, and is usually given in terms of solar

masses per year (M� yr−1). The other crucial parameter when characterizing

stellar winds is the terminal velocity of the wind, v∞. The mass-loss rate will

affect the evolutionary path of the star. By multiplying both sides of the equation

of mass-continuity (Equation 1.5) by velocity, a mass-loss rate for a stationary

spherically symmetric wind can be obtained:

Ṁ = 4πr2ρ(r)v(r) (1.18)

This simplified equation merely states that no material is created or lost in the

wind and that the same amount of gas flows per second through a sphere at any

radial distance from the centre of the star.

Lamers & Cassinelli (1999) also show how gas that escapes from the photo-

sphere will asymptotically approach the terminal wind velocity at large distances

from the star:

v(r) ' v0 + (v∞ − v0)

(
1− R?

r

)β
(1.19)

This is a β-law, as the parameter β describes the steepness of the run of velocity.

At the photosphere (r = R?) the velocity v0 is very small, while at large distances

(r →∞) the velocity approaches v∞. Mass-loss rates were derived for red giants

and supergiants by Reimers (1975). In particular, the mass-loss rate for a subset

of red supergiants in binary systems was measured by observing the cool stars

wind absorption lines against its hot companion. This led to “Reimers Relation”:

Ṁ = 4× 10−13ηR
(L∗/L�)(R∗/R�)

M∗/M�
(1.20)

This equation gives the mass-loss rate in M� yr−1, where 1
3
< ηR < 3 is a

correction factor for different types of star. Using this relation, it is possible to

estimate the mass-loss rate of a star from measurements of its luminosity, radius

and mass (L∗, R∗,M∗) scaled to those parameters for the solar case (L�, R�,M�).

Parker (1958) assumed a spherically symmetric, isothermal outflow from the

Sun. He deduced that the gas pressure at the surface of the Sun must be much
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greater than that of the interstellar medium, P� >> PISM. If the system were

in hydrostatic equilibrium, then the pressure gradient would be balanced by the

attraction due to gravity and there would be no wind:

∇P + ρg =
dP

dr
+
GMρ

r2
= 0 (1.21)

Or:

∇P = −ρg (1.22)

Assuming an isothermal atmosphere/wind, substituting the ideal gas law (Equa-

tion 1.29) into Equation 1.21, and integrating from the surface of the star out-

wards gives: ∫ ρ

ρ?

dρ

ρ
= −GMµmH

kT

∫ r

r?

1

r2
dr (1.23)

which becomes:

ρ = ρ? exp

[
−GMµmH

kT

(
1

R?

− 1

r

)]
(1.24)

It can be seen that at the stellar surface, where r = r?, the exponent in Equation

1.24 goes to zero and ρ = ρ?. At large radii, ρ(∞)→ Constant. Substituting the

pressure scale height:

HP =
kT

µmHg
(1.25)

which is the radial distance over which the pressure drops by a factor of e (Schri-

jver & Zwaan, 2008), and rearranging using the isothermal scale height relation-

ship Hρ = HP , gives:

ρ = ρ? exp

[
−R

2
?

Hρ

(
1

R?

− 1

r

)]
(1.26)

Expressing this in terms of pressure, and for the solar case, gives:

P = Pcorexp

[
−R�
HP

]
(1.27)

Taking the ISM pressure as PISM = 3 × 10−12 dyn cm−2 and adding in solar

coronal values of HP = 7 × 109 cm and Pcor = 0.04 dyn cm−2 (Mihalas, 1978),

yields Pcor(∞) = 1.9 × 10−6 dyn cm−2. This shows that at large distances, the

coronal pressure is greater than the ISM pressure, Pcor(∞) >> PISM , and a

18



1.7 Stellar Winds

wind must be present. For giant stars this argument cannot be used to prove

the presence of a wind and empirical evidence must be found, such as the α Her

method discussed above.

If the only forces acting on a wind are the gas pressure and gravity, then:

v
dv

dr
+

1

ρ

dp

dr
+
GM∗
r2

= 0 (1.28)

which is the equation of motion for an isothermal wind. The ideal gas law (Equa-

tion 1.4) can be re-written as:

P =
ρkT

µmH

(1.29)

The pressure gradient can be given by:

1

ρ

dp

dr
=

kµ

mH

dT

dr
+

kT

µmHρ

dρ

dr
=

(
kT

µmH

)
1

ρ

dρ

dr
(1.30)

for an isothermal wind, while the density gradient can be given by:

1

ρ

dρ

dr
= −1

v

dv

dr
− 2

r
(1.31)

Substituting Equations 1.30 and 1.31 into Equation 1.28:

1

v

dv

dr
=

{
2a2

r
− GM∗

r2

}
/{v2 − v2

c} (1.32)

where:

vc =

(
kT

µmH

) 1
2

(1.33)

is the constant isothermal speed of sound. Integrating gives:(
v

vc

)2

− log

(
v

vc

)2

= 4 log

(
r

rc

)
+ 4

(
r

rc

)
+ C (1.34)

Equation 1.32 has several implications for the structure of the wind. In particular,

the singularity that occurs where v(r) = vc implies that the mass loss rate is fixed.

This occurs at a critical distance, rc. In order for there to be a positive velocity

gradient at all distances, there can be only one solution to the equation that goes

through the critical point, the critical solution. Figure 1.7 displays the various
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solutions to Equation 1.32. Curve 1 is the critical solution. It is transonic as it

is subsonic initially, passes through the critical point, and is supersonic at larger

distances. Curve 2 passes through the critical point but is supersonic initially,

while Curve 3 remains subsonic and never reaches the critical point (the “Solar

Breeze Solution”). While Curves 5 and 6 exist mathematically, their multi-valued

nature renders them physically meaningless.

In Parker’s steadily expanding wind theory, the forces of Equation 1.21 are

not balanced and an outflow is the outcome. From Newton’s second law, the

resulting force is:

ρ
dv

dt
= −dP

dr
− GMρ

r2
(1.35)

To expand this simplified theory of mass-loss, for example to add in a magnetic

pressure term, PB, it can be added to the sum of the forces on the right-hand

side of the equation.

ρ
dv

dt
=
∑

(F ) (1.36)

ρ
dv

dt
= −dP

dr
− GMρ

r2
+
dPB
dr

(1.37)

One of the outstanding questions of stellar astrophysics remains the mecha-

nism by which cool giants lose mass (Harper, 1996). While Lamers & Cassinelli

(1999) outline the following main wind-driving mechanisms, none can convinc-

ingly match the results shown in cool giant observations. Hot, luminous stars such

as OB stars can have line driven winds (Kudritzki, 2002). These stars emit radia-

tion in the ultraviolet, where strong resonance transitions of several elements are

located. The opacity in these absorption lines is much stronger than in the con-

tinuum and the radiation force on the ions effectively drives a stellar wind. This

mechanism would not work for cool giants as they do not have strong continuum

in the ultraviolet or enough free electrons due to their cooler temperature.

Cooler stars that do have coronae, have lower mass-loss rates and faster wind

speeds. This wind is probably governed by the same wind mechanisms as the

Sun. Dissipation of mechanical energy and/or the reconnection of magnetic fields

from the convective zone (below the photosphere) result in a temperature rise

above the photosphere. This hotter material can produce a gas pressure gradient
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Figure 1.7: Solutions of the momentum equation (Equation 1.32) for an isother-
mal wind from Lamers & Cassinelli (1999). The thick curve (labelled Curve 1)
shows the critical, transonic, solution with increasing velocity through the critical
point rc, where v = a.

that can accelerate the wind. This mechanism does not apply to cool giants as

it is reliant on the presence of a corona.

In the absence of a magnetic field, a star with a spherically symmetric and hot

corona produces a steady, structureless wind. Additional wind structure is added

as a result of open magnetic field structures. Oscillations induced in the field at

the base of the wind by convective motions can generate Alfvén waves (Cranmer

& van Ballegooijen, 2005; Holzer et al., 1983). These are non-compressive, trans-

verse waves consist of travelling oscillations of ions and magnetic field. Alfvén

wave driven winds have very high terminal velocities as wave damping occurs at

large distances from the photosphere.
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Finally, cool stars can generate acoustic waves in their photosphere which

can propagate outwards carrying wave energy. The resulting wave pressure in

the stellar atmosphere can drive a wind from the star. Sound waves (Koninx &

Pijpers, 1992) can only affect the mass-loss rates of low gravity stars and this

process is not fully understood.

Dust driven winds (Sedlmayr & Dominik, 1995) can occur when temperatures

drop low enough for dust to form. The dust can absorb photospheric radiation

which heats the dust and results in the energy being radiated isotropically in the

infrared. The photons carry momentum which is transferred to the dust particle

when the radiation from the star is absorbed by the dust. The radiation field is

directional and so an accelerating flow of material moves outwards from the star

at low speeds (Mihalas, 1978):

Ṁ =
Lτ∞
v∞c

(1.38)

where τ∞ is the flux weighted mean dust optical depth at the wind acceleration

zone. This mechanism only affects stars that are cool enough to allow dust to

form close to the photosphere, such as heavily evolved RGB/AGB stars. Pulsating

Mira stars can possibly levitate material out to dust forming distances for this

mechanism to work. In the atmospheric regions of interest in non-mira cool giants

there is no dust present, e.g. EG And and γ Cru.

It is clear that the structure of cool giant atmospheres and the mechanism

of their mass-loss is yet to be resolved. Table 1.1 summarises the possible non-

radiative heating and wind-driving mechanisms for cool stars.

1.8 UV Spectroscopy

Most of what we know about stars comes from electromagnetic radiation Percy

(2007). Much of the analysis in this thesis examines the amount of energy as a

function of wavelength, where wavelength is given in terms of Angstroms1. These

spectra are observed in the optical and ultraviolet regimes. In terms of the main

target star, EG And, the ultraviolet region corresponds to the radiation emitted

by the white dwarf while the optical is dominated by the red giant. Observations

11Å is equal to 0.1nm.
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Source Dissipation

Alfvén Waves Resonance/Viscous, Landau Damping
Fast-mode MHD Waves Landau Damping
Slow-mode MHD Waves Shock Dissipation
Magnetoacoustic Surface Waves Mode coupling, Resonant Absorption
Acoustic Waves Shock Dissipation
Pulsation Waves Shock Dissipation
Electric Sheets Reconnection

Table 1.1: Atmospheric heating and wind-driving mechanisms from Schrijver &
Zwaan (2008), originally from Ulmschneider (1996).

made at different stages of eclipse allows probing of the atmospheres close to the

star and gives temperature, density and velocity measurements . Fitting spectral

features with computationally constructed models often allows us to infer that

certain atomic species are present in the wind. The combination of both Doppler

and collisional processes leads to a complex change in the equivalent width of

a spectral absorption line as the optical depth increases. Optical depth is a

measure of transparency, and is characterised by the mean amount of scattering

or absorption between a point and an observer. If I0 is the intensity of the

radiation at the source and I is the observed intensity after it has travelled a

given path, then the optical depth, τ , is defined by the equation:

I/I0 = e−τ or τ = −ln(I/I0) (1.39)

Aller (1991) describes how when light from a star passes through a stellar

wind, the resulting spectrum will have absorption lines which serve to provide us

with information about the wind. Each different type of atom can absorb light

radiation of distinct wavelengths. Every light quantum will be re-radiated by the

atoms but, crucially, the re-radiated light will be emitted in all directions. The

beam of energy from the star will be in one direction only and so after passing

through the wind, its continuum will be depleted at wavelengths corresponding

to the atoms it has encountered. The absorption lines appear as dark lines on

the continuous stellar spectrum. To gain information about the wind, both the

shapes and the intensities of these dark lines are examined. The intensity is
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generally given by equivalent width in units of Angstroms. The equivalent width

of an absorption feature is given by:

EW =

∫
Line

Iν(0)− Io(z)dν (1.40)

where Iν(0) is the intensity on entering the cloud, Io(z)dν is the intensity on

exiting, and z is the distance from the observer, o, to the source. The area as

defined above is equal to the rate at which energy is absorbed from the incident

beam. The fractional energy lost is the equivalent width of the line:

EW =

∫
line

Iν(0)− Io(z)

Iν(0)
dν =

∫
line

(1− e−τνz)dν (1.41)

The line intensities are affected most by three bulk properties of absorbing

gases: the chemical composition; the temperature; and the density. However,

the two most important processes that determine the width and shape of astro-

physical lines are the natural broadening and the Doppler broadening. Natural

line broadening is a property of the energy levels forming that line and, as such,

are intrinsic to every spectral line. This results in a Voigt line profile that is a

convolution of Doppler and Lorentzian profiles. The Voigt profile is given by:

V (ν, σ, γ)−
∫ ∞
−∞

G(ν ′, σ)L(ν − ν ′, γ)dν ′ (1.42)

where ν is frequency from line center, γ is the damping constant, G(ν, σ) is the

centered Gaussian profile:

G(ν, σ) =
1

σ
√

2π
e

−ν2
2σ2 (1.43)

and L(ν, γ) is the centered Lorentzian profile:

L(ν, γ) =
γ

π(ν2 + γ2)
(1.44)

The Voigt profile is shown in Figure 1.8.
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Figure 1.8: A spectral line will resemble a Voigt profile. The line core will be
dominated by the Doppler part of the profile, but the Lorentzian will govern the
damped wings, from Schreier (2009).

1.9 Atomic Physics

The diagnostics used in this research require an understanding of UV emission-

line formation. A photon is produced by the following process:

Xm
j → Xm

i + hν (1.45)

where X is the atomic species, m is the ionisation state and i and j are the lower

and upper energy levels respectively. The volume emissivity (in erg cm−3 s−1) of

a plasma is given by:

εji = hνjiAjinj (1.46)

where ni is the lower level population density, nj is the upper level population

density and Aji is the Einstein coefficient for spontaneous radiative emission
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Process Rate
(cm−3 s−1)

Collisional Excitation nineCij
Collisional De-excitation njneCji
Spontaneous Radiative Decay njAji

Table 1.2: Important atomic processes for UV emission line diagnostics (Mariska,
1992).

giving the probability per unit time that the electron in the excited state will

spontaneously decay to the lower state. The flux (in erg cm−2 s−1) at Earth,

observed at a distance R from the star is:

Fji =
1

4πR2

∫
∇V

hνjiAjinjdV (1.47)

The number density of ions in the excited level, j, can be expressed as:

nj =
nj
nion

nion
nel

nel
nH

nH
ne
ne (1.48)

where nj/nion is the relative population of the excited level, nion/nel is the relative

abundance of the ionic species, nel/nH is the abundance of the element relative to

hydrogen, and nH/ne is the number density of hydrogen relative to the number

density of electrons. Using this expression with Equation 1.47 yields:

Fji =
hνjiAji
4πR2

∫
∇V

nj
nion

nion
nel

nel
nH

nH
ne
nedV (1.49)

The main atomic processes for UV emission line spectroscopic diagnostics are

summarized in Table 1.2. Collisional transitions from level i to level j are governed

by the collisional rate coefficient Cij. Collisional de-excitation is less important

as its characteristic time is much longer than that of spontaneous radiative decay.

For each level in the ion, the rate equation is described by:

dni
dt

=
∑
j 6=i

njneCji − ni
∑
j 6=i

neCij +
∑
j>i

njAji − ni
∑
j<i

Aij (1.50)
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The first two terms on the right-hand side of Equation 1.50 show how level i

is populated and depopulated by collisions while the second two terms show

how level i is populated and depopulated by radiative decays. The processes

involved have short timescales meaning that the left-hand side of Equation 1.50

is zero. The electron collision rate coefficient Cij can be calculated by integrating

the cross-section for excitation by collisions with electrons of velocity v over the

electron velocity distribution f(v). The collision rate between the lower and

upper levels is then:

neniCij = neni

∫ ∞
v0

σij(v)f(v) v dv (1.51)

where σij is the electron excitation cross-section and v0 is the threshold energy

velocity for the transition. The Maxwellian distribution is:

f(v) = 4π
( m

2πkT

)3/2

v2 exp

(
−mv2

2kT

)
(1.52)

where m is the mass of the electron and k is once again Boltzmann’s constant.

The collision cross-section is often expressed in terms of the collision strength

Ωij(E):

σij =
πa2

0Ωij(E)

ωiE
(1.53)

where a0 is the Bohr radius and ωi is the statistical weight of level i. If the

collision strength is independent of the incident energy then:

Cij =
8.63× 10−6Ωij

ωiT 1/2
exp

(
−∆Eij
kT

)
(1.54)

where ∆Eij is the threshold energy of the transition.

The two-level atom approximation uses only the ground level and excited

level responsible for the line to calculate the line flux. In this case the collisional

excitations from the ground level balance spontaneous radiative decay from the

excited level:

nen1C12 = n2A21 (1.55)

This is known as the coronal approximation. The populations of other excited

levels are small enough to assume all ions are in the ground level. The expression
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for the line flux becomes:

F21 =
hν21

4πR2

∫
∆V

nenionC12dV (1.56)

Substituting Equation 1.54 gives:

F21 =
hν21

4πR2

8.63× 10−6Ω120.8Ael
ω1

×
∫

∆V

n2
e

nion
nel

T−1/2 exp

(
−hν
kT

)
dV (1.57)

where the hydrogen-to-electron number density ratio (nH/Ne) is taken to be 0.8.

The temperature-dependent terms are often grouped together into the contribu-

tion function:

G(T ) =
nion
nel

T−1/2 exp

(
−hν
kT

)
(1.58)

Incorporating this gives:

F21 =
2.2× 10−15

4πR2
fAel

∫
∆V

gG(T )n2
edV (1.59)

The temperature of the emitting plasma enters the emission line flux equation

due to the temperature dependence of the relative ion abundance, nion/nel, along

with the temperature dependence of the collisional excitation rates. Determining

the temperature of the plasma from the emission line fluxes observed is possible

due to this latter dependence. An ion with emission lines originating from energy

levels 3 and 2 that are exited from and decay to the lowest energy level 1, will

have a ratio of fluxes (in an isothermal plasma):

F31

F21

=
∆E13

∆E12

C13

C12

(1.60)

Using Equation 1.54 for the collision rates:

F31

F21

=
∆E13

∆E12

Ω13

Ω12

exp

(
∆E12 −∆E13

kT

)
(1.61)

If (∆E13 −∆E12)/kT ≥ 1, the flux ratio is a temperature sensitive diagnostic.

The electron density affects the emission-line flux equation through the num-

ber density of ions in the excited level as well as the density dependence of the

collision rates. In order to understand density diagnostics it is necessary to look
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beyond the two-level atom approximation. The two-level atom is usually re-

stricted by the ions having lines produced by electric dipole transitions that does

not warrant a change in spin. This leads to these allowed transitions having large

transition probabilities and any collisional excitation is instantly followed by a

spontaneous radiative decay. There are some occasions when the spontaneous

transition probabilities are much smaller. This is the case for transitions from

metastable levels that require a spin change, known as intercombination transi-

tions, or magnetic dipole transitions called forbidden transitions. In order for an

electron sensitive diagnostic to exist an ion needs at least three levels. One of

the excited levels is always populated by collisions and depopulated by radiative

decays. The second excited level is populated by collisions but at high enough

densities because of a small A-value is depopulated by both collisions and and

spontaneous radiative decays. The ratio of the two emission lines produced by

spontaneous decays will therefore be sensitive to density (Mariska, 1992).

The statistical equilibrium equations for levels 2 and 3 in a three-level atom

case (shown in Figure 1.9) can be simplified to:

n3(A32 + A31 + neC32 + neC31) = n1neC13 (1.62)

and:

n2A21 = n1neC12 + n3(A32 + neC32) (1.63)

Combining these equations gives:

n3

n2

=
C13A21

C12(A31 + neC31)
(1.64)

and the line ratio is:

R =
n3A31

n2A21

(1.65)

which implies:

R =
C13A31

C12(A31 + neC31)
(1.66)

Very low values of electron density will result in collisional de-excitation from
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Figure 1.9: A model three-level atom with a metastable state leading to density
sensitivity (Mariska, 1992).

level 3 to level 1 becoming small relative to spontaneous radiative transitions:

R =
C13

C12

(1.67)

but when the electron density is large enough, collisional de-excitation from level
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3 to 1 becomes more dominant than spontaneous radiative transitions and:

R =
A31C13

C12neC31

(1.68)

This leads to inverse proportionality to the electron density with only a very

weak temperature dependence. Figure 1.10 shows a four-level atom containing a

metastable state which leads to density sensitivity.

This can be shown by the statistical equilibrium equations for levels 4, 3 and

1:

n4(A42 + A41) = n1neC14 + n2neC24 (1.69)

n3(A32 + A31) = n1neC13 + n2neC23 (1.70)

n1ne(C12 + C13 + C14) = n4A41 + n3A31 + n2(n4A21 + neC21) (1.71)

The density sensitive ratio is defined as:

R =
n4A42

n3A31

(1.72)

Using the statistical equilibrium equations this becomes:

R =
α42[C14 + (n2/n1)C24]

α31[C13 + (n2/n1)C23]
(1.73)

where:

α =
Aji

Aj1 + Aj2
(1.74)

The only density dependence in Equation 1.73 is the ratio n2/n1, which is:

n2

n1

=
C12 + C13α32 + C14α42

A21/ne + C21 + C23α31 + C24α41

(1.75)

This ratio is small for low densities and leads to:

R =
α42C14

α31C13

(1.76)

At large densities the density-dependent term in n2/n1 becomes small and the

ratio is once again constant. Between the very low and very large density extremes

the ratio is density sensitive as show in Figure 1.10.
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Figure 1.10: A model four-level atom with a metastable state leading to density
sensitivity (Mariska, 1992). It can be seen that between the very low and very
large density extremes, the ratio is sensitive to changing electron density.

1.10 Motivation for Research

The complexity of cool evolved stellar atmospheres, coupled with the lack of a

convincing wind-driving mechanism, has meant that these stars are not well un-
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derstood. The expanse of the chromosphere, and the physical conditions within

it, are poorly established. It is the aim of this work to address this uncertainty, by

looking at the conditions at the base of the outflow from two targets, and exam-

ining their implications for energy transport. Isolated giants provide only disk-

averaged information, whereas symbiotic stars allow spatially resolved probing of

the regions of interest - particularly the base of the chromosphere. Observations

of EG And, an eclipsing symbiotic binary, provide a means to advance this field of

red giant study. The white dwarf in the system, coupled with a knowledge of its

orbital parameters, can be utilised as an orbiting ultraviolet backlight (Crowley,

2006). Ultraviolet observations at different stages of eclipse will give an insight

into how the atmosphere of the giant evolves both spatially and temporally.

Previous analysis of other binary systems, ζ Aur (consisting of a K4Iab pri-

mary and a B5V secondary) and VV Cep (consisting of a M2Iab primary and a

B-type main sequence secondary), allowed information to be obtained on temper-

ature structure, radiative processes and the physical distribution of circumstellar

material (Reimers, 1987; Thiering et al., 1990). Unfortunately, the spectra of

these binary stars were often difficult to disentangle and the presence of the sec-

ondary seemed to alter the wind acceleration profile (Figure 1.11). Symbiotic

binary systems have the advantage that the spectra of the two components dis-

play vastly differing spectral characteristics and are quite easy to disentangle.

The giant, dominant in the optical, offers low-velocity and low-ionisation fea-

tures while the the dwarf contributes high-velocity and high-ionisation features.

Comparing the bright UV continuum from the dwarf when it is in front of (and

unattenuated by) the red giant, to observations as it passes behind the wind,

will highlight any absorption features superimposed on it due to the red giant

atmosphere.

To make these UV observations, it is necessary to use a space-based obser-

vatory, as ground-based observations would be hindered by the Earth’s atmo-

sphere. The Space Telescope Imaging Spectrograph (STIS) aboard the Hubble

Space Telescope (HST) is the only spaced-based instrument that currently covers

the UV with the resolution and sensitivity needed for this work (Karakla, 2007;

Proffitt, 2010).

33



1. INTRODUCTION

Figure 1.11: Normalised wind velocity laws for single stars and eclipsing systems
EG And and ζ Aur (Harper, 1996).

Symbiotic stars themselves warrant study in their own right as complex sys-

tems with companion stars at different stages of evolution. EG And is a well-

studied object but uncertainty still remains. This study aims to improve some of

the parameters of the system. The reasons for choosing EG And ahead of other

symbiotic systems is dealt with more in Chapter 2.

A further goal of this work is to improve understanding of the similarities and

differences between the red giant of EG And and isolated giants. This is addressed

by using observations of an M3 giant spectral standard, HD148349. As well as

looking at the base of the chromosphere of both stars, synthetic photometry

and extinction analysis on their optical spectra will allow their variability to be

examined. By comparing HD148349 to EG And in this manner, it is hoped that

the effect of the white dwarf on EG And can be understood and the results can

be extended to isolated giants.
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Lastly, efforts will be made to interpret the photospheric motions of giants,

specifically line asymmetries in the optical regime. By measuring the changing

asymmetry across the photosphere, a greater insight into the possible role of

stellar granulation in mass-loss can be obtained.

1.11 Outline of Thesis

Chapter 2 summarises the main target of this study, the symbiotic eclipsing bi-

nary EG Andromedae. The earliest observations are recounted, along with all of

the significant new results and parameters that have been discovered. Its impor-

tance as a tool for studying base outflows of red giant atmospheres is outlined,

along with the reasons why it is utilised ahead of other symbiotic systems. An ob-

servational history and a list of known parameters is also included for the spectral

standard, HD148349. Instrumental details for the STIS and HST are recorded,

with particular attention paid to the echelle gratings that were used for the ob-

servations in this thesis. The observations themselves are then listed, along with

all of the observational information.

Chapter 3 illustrates the route taken by the data after observation, through the

processing pipeline and into the archive. Manual calibration and data reduction

steps that were taken outside of the pipeline are explored along with some of the

main pitfalls of STIS echelle data reduction.

Chapter 4 compares EG And to the spectral standard HD148349. A new

method of obtaining low-resolution optical spectra from perviously unusable ac-

quisition images is discussed at length. A method of preforming synthetic pho-

tometry on those optical spectra is also shown. An extensive study in interstellar

extinction is coupled with the photometry results and an analysis of Mg ii lines

in both targets to provide new astrometry values, variabilities and insight into

the similarities and differences of the two targets.

Chapter 5 examines the important chromosphere diagnostic multiplet, C ii]

2325Å. A technique for simultaneously fitting all of the emission lines in this

multiplet is shown and the resultant integrated fluxes are used to draw conclu-

sions on the electron density of both EG And and the spectral standard. Radial

velocities, line asymmetries and Al ii] features are also measured. The influence
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of the white dwarf on EG And is analysed and some modelling is preformed to

interpret the structure of EG And’s atmosphere.

Chapter 6 investigates photospheric motions and line asymmetries with a

view to better understand their possible role in cool giant mass-loss. A process

for obtaining photospheric composite line profiles and subsequent asymmetries is

presented.

Chapter 7 summarises the conclusions from the previous chapters as well as

discussing the accomplishments of the work. Future directions for the study are

suggested in light of these new developments.

36



2
Targets, Instrumentation and

Observations

In this chapter, the target stars, instruments and the observations central to this

research are described. In order to compare a symbiotic system to an isolated

spectral standard we chose to observe two targets - EG Andromedae (a symbiotic

binary consisting of an M2.4 giant and a white dwarf) and HD148349 (an isolated

M3III spectral standard). As described in Chapter 1, symbiotic stars can be used

to uncover spatially resolved information from the red giant’s atmosphere through

ultraviolet observations of its orbiting dwarf companion. By observing EG And

at several orbital phases and comparing it to observations of HD148349, we can

catalogue the similarities and differences caused by the presence of the white dwarf

in the symbiotic system. The Earth’s atmosphere blocks most UV radiation,

resulting in the need to use space-based observatories to probe the key atomic

transitions that lie in the UV. The International Ultraviolet Explorer (IUE),

launched in 1978 (Boggess et al., 1978), was a precursor for this type of study.

Its lifespan was originally supposed to be three years, but it survived until 1996.

Its sensitivity in the UV region of the spectrum was invaluable in determining the

nature of the hot component in symbiotic systems. IUE observed in the spectral
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range 1150 - 3350Å and following its demise, the UV spectroscopy mantle passed

(albeit in the FUV) to the Far Ultraviolet Spectroscopic Explorer (FUSE). FUSE

was launched in 1999 (Moos et al., 2000). It had a resolution of 24,000 - 30,000

and a spectral range of 905 - 1195Å. The satellite was decommissioned on October

18th 2007. In order to obtain new high-resolution ultraviolet observations of the

target stars, it was necessary to utilise HST, the only space-based observatory in

operation with the required UV capabilities (Kimble et al., 1998). Some ground-

based observations were also utilized in order to provide photometric observations

of the two target stars. Archival data were used to explore stellar photospheric

motions, with a view to understanding granulation and the physics involved in

cool giant mass-loss.

2.1 EG Andromedae

EG Andromdae (also known as HD4174 and SAO36618) was chosen as the focus

of this work as it is one of the brightest and closest symbiotic systems. Attention

was drawn to the star as far back as 1950 when Babcock (1950) and Wilson

(1950) noted how interesting the spectrum appeared and suggested that it was a

combination (or composite) spectrum. The optical spectrum was indicative of an

early M giant but the presence of strong emission lines was not easily explained.

Stencel & Sahade (1980) suggested that the high-temperature emission lines such

as He ii and C iv were caused by coronal heating due to the presence of a strong

magnetic field of the order of a kilogauss. Although mentioning that the emission

lines could also be due to the presence of a hot companion star, they deemed

this was unlikely as there was not enough UV continuum present in the spectrum

(this was likely due to the dwarf being eclipsed by the giant during their bluest

observations). Smith (1980) compared the two alternate theories of explaining

the peculiarities of the EG And UV spectrum - the large magnetic field, and

binarity. The expected emission line variations of equivalent width and radial

velocity over the time scale of a rising magnetic flux tube were not observed and

failed to support the large magnetic field theory. Conversely, the presence of the

hot companion was supported by periodic photometric variation and yielded a

period of ∼470 days. Stencel (1984), after evidence of a UV continuum was found,
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supported the binarity model and EG And was widely accepted as an eclipsing

symbiotic binary consisting of a red giant and a hot companion. Wallerstein

(1981) classified EG And as being an old disk population object. Oliversen et al.

(1985) estimated a wind velocity of 75 km s−1. Kenyon & Fernandez-Castro

(1987) derived a spectral type for the EG And primary star of an M2.4 giant.

Using ground-based photometric observations of EG And, Skopal et al. (1988) and

Munari et al. (1988) measured an orbital period of 481 days. IUE observations

of EG And by Munari (1989) showed the effect of the hot component on the

atmosphere of the giant primary, causing UV line and continuum emission. Using

Equation 1.18 and Equation 1.19, Vogel (1991) derived a way to describe EG

And’s wind from IUE observations. While the β-law in Equation 1.19 shows an

early acceleration, Vogel’s law showed the velocity remained low farther than two

red giant radii, before rising sharply. Muerset et al. (1991) and Vogel et al. (1992)

employed line diagnostics and eclipse analysis of the IUE data to determine values

of temperature, luminosity, giant radius and separation of the system. These

parameters are listed in Table 2.1. Van Buren et al. (1994) showed how EG

And could not possess a dust-driven wind by calculating the optical depth of

the required dust to drive a wind using Equation 1.38. Wilson & Vaccaro (1997)

modelled the ellipsoidal photometric variation of EG And’s light curves to present

a case for a circular orbit with tidal distortion (Figure 2.1). With the arrival of

FUSE and HST, higher resolution observations by Crowley et al. (2008b) resulted

in a clearer understanding of which atomic species are present in the red giant

wind and provided clues as to its structure. In particular, Crowley & Espey

(2010) confirmed that EG And’s wind is better described using a Vogel-Law than

a β-Law (Figure 2.2).

EG And was chosen as the target of this study as it has a number of advantages

over other binary and symbiotic systems. It is an S-type symbiotic so it has not

lost enough mass to form a dusty circumstellar shell. This ensures that its UV

photons are not obscured by dust. D-type systems contain a mira variable with

different atmospheric structure to standard giants, so an S-type system is more

useful to this study. EG And is also out of the plane of the galaxy which reduces

the amount of interstellar dust along the line of sight. It has an orbital period

that is makes it suitable to study (BX Mon, for example, has a period of ∼1401
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Figure 2.1: B and V magnitude light curves for EG And from Wilson & Vaccaro
(1997). A sinusoidal model fits the light curves when a circular orbit and tidal
distortion are taken into account. The fit works less well in the U band (This is
discussed further in Chapter 4).

Days while for D-type stars it can be decades). A low ratio of hot to cool star

UV luminosity is also desirable so that the hot component’s effect on the giant

atmosphere is minimised. Existing archival IUE observations of EG And are

insufficient due to low resolution and low S/N. While Carpenter (1991) observed

EG And with the Goddard High Resolution Spectrograph, this permitted only

small wavelength regions to be observed (three separate 40Å regions between

1380 - 1670Å).

2.2 HD148349

HD148349 (V2105 Oph, SAO141186) was observed as early as 1918 by Lunt

(1918) who measured its radial velocity using the 36-inch Lick Telescope at the

Mount Wilson Observatory. It is listed as an M3III spectral standard by Keenan

& McNeil (1989) and Garcia (1989) in their catalogues, based on the MK clas-

sification system. It also features in the Wilson-Bappu sample (Wilson & Vainu
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Parameter Value Reference

Orbital Period 482.6 Days Fekel et al. (2000)
Separation ∼ 4.2 RRG Vogel et al. (1992)
RG Radius ∼ 75 R� Vogel et al. (1992)
WD Radius ∼ 0.018 R� Vogel (1991)
Orbit Circular Wilson & Vaccaro (1997)
RG Temperature ∼ 3,700 K Keyes & Preblich (2004)
WD Temperature ∼ 75,000 K Muerset et al. (1991)
RG Mass 1.5± 0.6 M� Mikolajewska (2002)
WD Mass 0.4± 0.1 M� Mikolajewska (2002)
RG Luminosity ∼ 950 L� Vogel et al. (1992)
WD Luminosity ∼ 16 L� Vogel et al. (1992)
Spectral Type M2.4III Kenyon & Fernandez-Castro (1987)
Distance 513± 169 pc Van Leeuwen (2007)
Right Ascension 00 44 37.19 (h:m:s) Van Leeuwen (2007)
Declination +40 40 45.70 (d:m:s) Van Leeuwen (2007)
Radial Velocity −101± 3 km s−1 Wilson (1953)
Log(g) ∼ 1.0 Crowley (2006)
Metallicity ∼ -0.4 Crowley (2006)
E(B-V) 0.05 Muerset et al. (1991)
Angular Diameter ∼ 1.27 mas Pasinetti Fracassini et al. (2001)

Table 2.1: EG And Observational Properties. The Right Ascension is given in
units of time; hours, degrees and minutes. The Declination is given in terms of
angle; degrees, arcminutes and arcseconds. The parameters have been compiled
from several sources and may not be internally consistent.
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Figure 2.2: Recent work on EG And’s wind structure from Crowley & Espey
(2010). The left panel shows column density structure of the red giant wind in
EG And derived from STIS and FUSE data. Overlayed is a model of the H I
column-density. The right panels shows the run of the velocity profile of the giant
derived from the H I model on the left using an inversion technique described by
Knill et al. (1993). The right panel shows the wind profile derived for another
eclipsing symbiotic, SY Mus, using IUE data. Profile sections that are dashed are
extrapolated since the wind is ionized at these distances.

Bappu, 1957) which is discussed in Chapter 4. Dumm & Schild (1998) used Hip-

parcos data (Perryman et al., 1997) to determine a relationship between the visual

surface brightness and the Cousins (V- I) colour index for stars of known angular

diameter. They use this relationship to derive stellar parameters for a number

of M giants, including HD148349. Stellar masses were then determined by using

evolutionary tracks. They list HD148349 as having a temperature of 3720 K, a

radius of 83 R� and a mass of 2 M�. A list of parameters is provided in Table

2.2. The similarity of the giant primary of EG And to HD148349 was noted by

Crowley (2006) after comparing optical spectra of the two targets. This makes

HD148349 an ideal candidate when comparing EG And to isolated giants. De-

spite (or perhaps because of) the fact that HD148349 is a long-accepted spectral
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Parameter Value Reference

Radius ∼ 83 R� Dumm & Schild (1998)
Temperature ∼ 3720 K Dumm & Schild (1998)
Mass ∼ 2 M� Dumm & Schild (1998)
Luminosity ∼ 1000 L�
Spectral Type M3III Keenan & McNeil (1989)
Distance 177± 12 pc Van Leeuwen (2007)
Right Ascension 16 27 43.46 (h:m:s) Van Leeuwen (2007)
Declination −07 35 52.56 (d:m:s) Van Leeuwen (2007)
Radial Velocity 99.3± 0.9 km s−1 Evans (1967)
Log(g) ∼ 1.0 Crowley (2006)
Metallicity ∼ -0.4 Crowley (2006)
E(B-V) 0.33
Angular Diameter ∼ 4.85 mas Pasinetti Fracassini et al. (2001)

Table 2.2: HD148349 Parameters. As in Table 2.1, the Right Ascension is given
in units of hours, degrees and minutes, while the Declination is given in degrees,
arcminutes and arcseconds. Angular diameter is also given in arcseconds.

standard, there have been very few observations to determine just how reliable it

is as a standard star. This issue will be revisited in Chapter 4.

2.3 Hubble Space Telescope

The Hubble Space Telescope (HST) is a concerted program of the National Aero-

nautics and Space Administration (NASA) and the European Space Agency

(ESA) to operate a long-term, space-based observatory. It was first envisioned

in the 1940s when Lyman Spitzer consulted for the RAND Corporation on the

scientific merits of having an Earth-circling satellite (Spitzer & Ostriker, 1997).

Interestingly, the original report in 1946, later reprinted in Spitzer (1990), high-

lighted “Structure of Stellar Atmospheres” through spectroscopic UV analysis of

resonance lines as an important area of research for the hypothetical telescope.

It also mentions “Analysis of Eclipsing Binaries” as another possible area of in-

terest. A history of the early development of HST (then referred to as the “Large

Space Telescope”) is detailed in Spitzer (1974). It was designed and built in the
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1970s and 1980s as a 2.4-meter reflecting telescope1. It was deployed in low-

Earth orbit (600 kilometers) by the crew of the space shuttle Discovery (STS-31)

on 25 April 1990. HST science operations are conducted by the Space Telescope

Science Institute (STScI) on the Johns Hopkins University Homewood Campus

in Baltimore, Maryland. STScI itself is operated for NASA by the Association

of Universities for Research in Astronomy, Inc. (AURA). The STScI maintain

a website at http://www.stsci.edu/hst that provides the most complete and

up-to-date information on HST and its instruments.

The current suite of HST science instruments includes three cameras, two

spectrographs, and fine guidance sensors (primarily used for accurate pointing,

but also for astrometric observations). The cameras are the Advanced Camera

for Surveys (ACS), the Near Infrared Camera and Multi-Object Spectrometer

(NICMOS), and Wide Field Camera 3 (WGC3). The spectrographs are the Space

Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph

(COS). Former instruments include the first two Wide Field Planetary cameras

(WF/PC-1 and WFPC2), the Faint Object Camera and Spectrograph (FOC and

FOS) and the Goddard High Resolution Spectrograph (GHRS). Orbiting above

the Earth’s atmosphere allows the science instruments to produce high-resolution

images of astronomical objects. As discussed in the introduction to this chapter,

HST can observe ultraviolet radiation, which is blocked by the atmosphere and

therefore unavailable to ground-based telescopes. Figure 2.3 shows HST during

Servicing Mission 4. A close-up of the telescope design is show in Figure 2.4.

HST is powered primarily by two solar arrays which are turned, and the

spacecraft rolled, about its optical access to ensue the panels face the incident

sunlight. Its secondary power source consists of nickel-hydrogen batteries which

operate during orbital night. A tracking and data relay system is operated with

the ground via two high-gain antennae. Although the low-Earth orbit means

HST is a serviceable spacecraft, there are a number of constraints imposed on

its observations as a result. Targets can be occulted by the Earth during the

96-minute orbit. The time available for observing is further reduced by guide

star acquisitions and instrument overheads.

1The secondary mirror is 30cm in diameter.
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Figure 2.3: HST as seen from the departing Space Shuttle Atlantis, flying Ser-
vicing Mission 4 (STS-125), the fifth and final human spaceflight to visit the ob-
servatory in May 2009. Image Credits: NASA.

2.4 Space Telescope Imaging Spectrograph

The Space Telescope Imaging Spectrograph is one of two spectrographs aboard

HST. It was installed during servicing mission SM2 in February 1997 and was

the natural replacement for the GHRS. In 2004 a failure in the power supply

electronics rendered the instrument inoperable. After nearly 5 years of dormancy

STIS was repaired during SM4 in May 2009 and has resumed science operations

with all channels. For a full description of the instrument see Kimble et al. (1998)

and Proffitt (2010). While the other spectrograph (COS) is more sensitive than

STIS (by a factor of 10 to 30 in the far-ultraviolet and by a factor of 2 to 3

in the near-ultraviolet) the targets of this study were too bright in the UV to

utilise COS. The higher spectral resolution offered by STIS was considered more

important to the study of spectral features. A further consideration was that

although COS has the capability to observe wavelengths between 900 and 1150Å,

STIS offers additional optical coverage which was deemed more useful. Figure

2.5 shows the spectroscopic abilities of STIS compared to those of COS.

STIS can perform spatially resolved long-slit spectroscopy from the UV to the
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Figure 2.4: HST Instrument Design Close-up. STIS is located in the axial bays
behind the mirror at the end of the telescope. Image Credit: NASA.

NIR (1150 - 10,300Å) at low to medium spectral resolution (R ∼ 500 - 17,000) in

the first order as well as echelle spectroscopy at medium to high spectral resolu-

tion (R ∼ 30,000 - 114,000) in the UV (1150 - 3100Å). It utilizes a CCD detector

for visible observations and two Multi-Anode Microchannel Array (MAMA) de-

tectors for the UV. Figure 2.6 shows the instrument design. Like all current HST

instruments, STIS’ optical design includes corrective optics to compensate for

HSTs spherical aberration. It also can be seen in the Figure that a telescope fo-

cal plane slit-wheel assembly, collimating optics, a grating selection mechanism,

fixed optics, and camera focal plane detectors are all part of STIS. A calibration

lamp assembly can illuminate the focal plane with a range of continuum and

emission line lamps. The so-called Hole in the Mirror (HITM) system is used to
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Figure 2.5: Spectroscopy at Ultraviolet Wavelengths using STIS and COS. Table
from Karakla (2007).

obtain wavelength comparison exposures and to illuminate the slit during target

acquisitions. These target acquisitions will be revisited in Chapter 4. The slit

wheel allows positioning of the spectroscopic slits, while the grating wheel can

be used to position the first-order gratings, the cross-disperser gratings used with

the echelles, the prism, and the mirrors used for imaging.

2.5 Echelle Gratings

The observations in this study are mostly obtained using the STIS echelle grat-

ings. Echelle gratings were first suggested by Harrison (1949) who envisaged that

“Echelles should lend themselves to production of very powerful compact spec-

trographs giving single-exposure coverage of broad spectral ranges”. They were

designed for spectroscopic devices to give higher resolution and dispersion than

ordinary gratings, but with a greater free spectral range than previous types of

gratings. Echelles are a special class of gratings, with high groove spacings (i.e. a

coarse groove pattern), used in high angles in high diffraction orders (Palmer &

Loewen, 2000). The echelle gratings allow simultaneous observations of several

wavelength orders. This maximises the spectral coverage achieved in a single

exposure. An important limitation of echelles is that the orders overlap unless
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Figure 2.6: The exploded view of STIS shows the optical design of the instrument.
It utilises a CCD and two MAMA detectors in conjunction with a prism and first
order and echelle gratings to cover the ultraviolet to infrared spectral range. The
filter wheel near the lamps was not included in the final design. Figure from
Woodgate et al. (1998).

separated optically, for instance by a cross-dispersing element. A prism is of-

ten used for this purpose and the combination leads to an output format well

matched to CCD arrays, allowing a large quantity of spectroscopic data to be

recorded simultaneously. Figure 2.7 shows an example of an echelle grating and

how it produces an image. Both the E140M and E230M gratings were used for

the observations during HST Cycle 17 (See Table 2.3). The E230M grating is

used with the NUV-MAMA and provides echelle spectra at a resolving power of

30,000 from 1570 to 3100Å. The E140M grating is used with the FUV-MAMA

and provides echelle spectra at a resolving power of 45,800 from 1144 to 1710Å.

Spectroscopic details for the two echelle gratings used in this study are shown in

Figure 2.8.
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Figure 2.7: The echelle grating design (left) is optimized for multiple overlapping
higher orders. The first grating is designed for a single lower spectral order while
the echelle, mounted orthogonal to the first grating, transversally separates the
higher orders. This results in stripes of different but slightly overlapping wavelength
ranges. This effect can be seen in the flat-fielded image of EG And (right) which
utilised the E140M echelle grating. A full image can be seen in Figure 3.2. Echelle
Image Credit: Boris Povaz̃ay (Cardiff University).

Figure 2.8: STIS E140M and E230M Echelle Gratings. Table from Proffitt (2010).

2.6 Observations of Target Stars

Observations of EG And were made during HST Observing Cycle 17. In all, 4

separate UV observations were made of EG And (See Table 2.3 and Figure 2.9).
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An observation of HD148349 was also made on 2nd September 2009. For both

target stars an acquisition image was obtained using the F25ND3 mode with the

CCD as detector and the mirror as the spectral element. The F25ND3 mode

provides imaging with a 25× 25 arcsecond field of view. These acquisitions took

∼ 0.1s and were followed by a peak-up exposure (taking ∼ 4s) using the 0.2×0.06

arcsecond aperture slit. Acquisition exposures are discussed further in Chapter

4. The echelle exposures followed and for each observation used the prime tilt

settings. Exposure times ranged from 1200 - 3200s, and used central wavelengths

of 1425Å and 2707Å. These observations compliment previous observations of EG

And during Observing Cycle 11 in 2002 and 2003 (See Table 2.3 and Figure 2.9).

The original proposal for both observing cycles are Espey (2002) and Crowley

et al. (2008a).

Target Observation Date STIS Gratings φ UV

EG And 2002 August 28 E140M, E230M 0.798
EG And 2002 October 16 E140M, E230M 0.899
EG And 2002 December 22 E140M, E230M 0.038
EG And 2003 January 18 E140M, E230M 0.095
EG And 2003 February 6 E140M, E230M 0.133
EG And 2003 February 16 E140M, E230M 0.153
EG And 2003 July 31 E140M, E230M 0.497
EG And 2009 August 15 E140M, E230M 0.070
EG And 2009 August 19 E140M, E230M 0.078
EG And 2009 October 2 E140M 0.169
EG And 2009 October 4 E140M, E230M 0.173

HD148349 2009 September 2 E230M -

Table 2.3: UV phases of observation correspond to the eclipse epoch of the system.
φ = 0 corresponds to UV total eclipse when the white dwarf is behind the giant,
while φ = 1 is UV maximum. The ephemeris used to calculate the phases was
taken from Fekel et al. (2000).

2.7 Additional Instrumentation

Other instruments used in this project included the High Precision Parallax Col-

lecting Satellite, Hipparcos (Turon & Arenou, 2008). This was an ESA mission
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Figure 2.9: STIS observations of EG And from HST Cycle 11 and 17. The view
is perpendicular to the orbital plane. The white dwarf size has been exaggerated
for clarity, but all other sizes and positions are scaled in terms of red giant radii.

operated between 1989 and 1993. It was dedicated to high-precision astrometry

but as a by-product of this principle objective it also recorded photometric data

in the visible light passband.

ELODIE - a computer-operated fibre-fed echelle spectrograph permanently

situated in a temperature-controlled environment in L’Observatoire de Haute

Provence was also utilised. It covered a spectral range 3906 - 6811Å with a
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spectral resolution of 42,000 using a 1.93 m telescope and 1024×1024 CCD. The

full instrument design can be seen in Baranne et al. (1996). The purpose of

ELODIE was to provide a fixed optical system, designed to obtain accurate radial

velocity measurements. It operated from 1993 to 2006 and resulted in a spectral

library of 709 stars covering the space of atmospheric parameters: Teff from 370K

to 13600K and log(g) from 0.03 to 5.8. The ELODIE data are used in Chapter

6.

Photometric data were also gathered from KAIT, the Katzman Automatic

Imaging Telescope (Treffers et al., 1995). These data were obtained with the

assistance of Weidong Li (private communication). The KAIT photometric data

are used in Chapter 4.
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In this chapter, the data reduction techniques for HST Cycle 11 and 17 observa-

tions of EG Andromedae and the spectral standard HD148349 are presented. In

the interest of completeness, all of the processes that are carried out on the data

from the initial observation on HST, to the pipeline calibration, and any further

data reduction techniques are described. In particular, the processes involved

with splicing overlapping spectral orders together are described and a statistical

analysis of their effect on the data is included.

3.1 Data Transmission

As mentioned in Chapter 2, HST is in contact with the ground through two high-

gain antennae using the Tracking and Data Relay Satellite System (TDRSS). This

system consists of a set of satellites in geosynchronous orbit which supports many

other spacecraft in addition to HST. While HST has the resources to allow real-

time control of the spacecraft, most observations are scheduled and performed

automatically. Likewise, the use of the TDRSS to send instrument commands or

to retrieve data must also be scheduled. The command sequences for HST are

uplinked approximately every 8 hours while data are downloaded between ten to
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twenty times each day depending on the observing schedule. The TDRSS ground

station at White Sands, New Mexico receives the data from the satellites before

sending it to the Sensor Data Processing Facility at Goddard Space Flight Center

in Greenbelt, Maryland, and then finally to STScI.

3.2 Production Pipeline

Once the data arrives at STScI, the production pipeline provides several functions

as standard for calibration and product generation. The calibrations include flat

fields, wavelength calibrations and background subtraction using the most up-

to-date calibration files. The product generation involves converting the data

from spacecraft packet format to spectra and images in the form of Flexible

Image Transport System (FITS) files (Wells et al., 1981). FITS files are the

resulting data product for almost all STIS reductions. These files generally have

two-dimensional image arrays made up of science, error and data quality arrays.

STScI maintains a set of tools and support software using the Image Reduction

and Analysis Facility (IRAF)1. This facility is developed by the National Optical

Astronomy Observatories (NOAO) and contains many applications, called tasks,

that are used to calibrate and analyze HST data. Complimentary tasks are

contained in packages.

One such package called the Space Telescope Science Data Analysis System

(STSDAS) contains the software needed to calibrate data from STIS. TABLES

is a companion package that provides the tools needed for analysing tabular

data. Both packages are layered on IRAF and are accessible through the user

interface command language. STSDAS contains the same pipeline tools used by

the Space Telescope Science Institute (STScI) to calibrate the data. It is possible

to recalibrate raw data by re-running the pipeline and using different reference

files and/or calibration switch settings. This approach had to be adopted with a

non-standard reduction technique applied to observations using the STIS G430L

grating. This process is fully discussed in Chapter 4.

1IRAF is freely available to download at the IRAF homepage: http://iraf.noao.edu/
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3.3 Pipeline Calibration Steps

The pipeline calibration steps are carried out by reading all the input calibration

parameters from calibration switches and from reference files whose values and

names are indicated in the primary header of the input files. The combination of

these steps for STIS is referred to as CALSTIS. All the possible steps that can be

carried out are covered in Hodge et al. (1998b), Hodge et al. (1998c), McGrath

et al. (1999), and Dressel (2007). The data processing steps relevant to this work

are discussed here and are shown in flow chart form in Figure 3.1.

CALSTIS first performs a basic, two-dimensional image reduction to produce

a flat-fielded image. The location of the spectrum is found using X1DCORR.

This step involves locating the spectrum by performing a cross-correlation be-

tween a spectral trace and the science image. The relevant trace is read in from

a reference table (SPTRCTAB). The size of the pixel boxes needed to extract

the spectrum is also read from a reference table (XTRACTAB). A background

subtraction is applied by setting extraction box sizes and offset distances above

and below the spectrum on the detector using columns specified in XTRACTAB.

A bias subtraction is performed by using a bias reference image. A mean dark

current is calculated and subtracted from the image. A dispersion solution (DIS-

PCORR) is applied to the data so that wavelengths are assigned to pixels using

dispersion coefficients from the reference table DISPTAB. STIS carries a set of

wavelength calibration lamps in order to calibrate the echelle wavelengths. This

provides an accuracy of roughly 0.2 pixels for the echelle modes (Hodge et al.,

1998a). However by taking a distortion map of the calibration lamp into con-

sideration and carrying out a bootstrapping technique it may be possible to im-

prove the calibration even further (Ayres, 2010). A further step is applied to

transfer the wavelengths to a heliocentric reference frame (HELCORR). Finally,

the counts are converted to fluxes (in erg cm−2 s−1Å−1) using reference files

APERTAB, PHOTTAB and PCTAB. This conversion is carried out using a sen-

sitivity scale determined from observations of spectrophotometric standard stars.

For the echelle gratings used in this study the standard stars were G191B2B and

BD+28 4211 as discussed in Bohlin (1996). This absolute flux calibration prop-
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Figure 3.1: CALSTIS flow chart showing how the extraction of a one-dimensional
spectra ( x1d.fits) from an input flat-fielded ( flt.fits) or cosmic-ray-rejected
( crj.fits) takes place through the application of processing steps determined by
calibration switches in the file headers. Image Credit: McGrath et al. (1999).

agates uncertainty from both the standard star and STIS photometric stability,

and leads to an estimated echelle flux uncertainty of ∼ 4% (Bohlin, 1998).

3.4 Splicing and Weighting Spectral Orders

In this research it is necessary to splice the echelle orders together so that full

spectra can be analysed, rather than considering solely the individual orders.

Weighting these spliced orders will improve the S/N of the data. The steps

outlined in the previous section are automatically applied to the HST observations

in the pipeline. However the raw, uncalibrated data files are available to download
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from the archive along with all of the necessary reference files and the individual

calibration steps can be applied to the data to try and improve the standard data

reduction. STSDAS contains all of the tasks needed to apply the processing steps

to the raw data. In order to fully analyse the echelle data, the individual spectral

orders (shown in Figure 3.2) must first be spliced together.

The spectral orders can be spliced together using the splice task in STSDAS.

Both the error and data quality arrays are taken into account when performing

the splicing. This is important as it means that the noisy data at the edge of

the detector can be prevented from propagating into the 1-D spectrum when the

spectral orders are spliced together. This noise is most evident in the regions of

spectral order overlap, as shown in Figure 3.3, which shows the difference between

the unspliced and spliced data at a region of overlapping spectral orders.
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Figure 3.2: Raw data file for an E230M observation of HD148349 on 2nd Septem-
ber 2009. The file is displayed using SAOImage DS9, an astronomical data vi-
sualization application (Joye & Mandel, 2003). The number of counts increases
from dark to white and has been exaggerated for clarity. The horizontal axis cor-
responds to the wavelength direction but in this image the raw data is in units of
uncalibrated pixels. The spectral orders are seen to be dispersed in the vertical
direction and need to be spliced together to form a full spectrum. It can be seen
that there are fewer counts visible at lower spectral orders (orders towards the top
of the plot) compared to the higher spectral orders nearer the bottom of the plot.
This corresponds to the lack of UV flux in HD148349 towards the blue end of the
spectrum.
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Figure 3.3: A region of overlap between spectral orders for an E230M observation
of HD148349. The unspliced data shown in black has regions of overlap and noisy
data at the edge of each spectral order. The spliced data in red is much cleaner.

The edges need to be masked by including a border in the data quality array

of the observation. This is done by setting a border around the flat-fielded image

(a 1024× 1024 image outputted by the pipeline as an intermediary between the

raw data and the extracted spectrum). By using the sdqflags parameter, a “bad

detector pixels” value can be assigned to a border region around the edge of

the image where large changes in throughput result in noise. After including

this border it is possible to re-extract the spectrum using the x1d task. This

extraction will ignore the pixels flagged in the data quality array. When the splice

task is utilised manually (outside the pipeline calibration) its default setting is to

ignore this flagging step. The reason for this is that the bad pixels change over

time for the MAMA detectors. This default setting is one of the main reasons

behind data reduction problems with STIS echelle observations. If the data are

reduced manually, the splice task may appear to have handled the ends of the

echelle orders correctly, but it may have passed some bad data points into the

spliced spectrum. Figure 3.4 shows the effect of the data quality border and

the problems that occur with incorrect border flagging over the whole spectrum.

Figure 3.5 shows an even more subtle danger of incorrectly flagging noisy border

pixels. The figure shows a manually spliced STIS E230M observation of the C ii]
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2325Å multiplet for HD148349 during HST Cycle 17. This feature is important for

studying base chromosphere conditions (see Chapter 5). While in most parts of

the spectrum the splice task appears to have handled the echelle orders correctly,

there is a feature in the central (strongest) emission line that appears to be

absorption superimposed on top of the emission line. This ‘feature’ is a remnant

of using the default splice settings that fail to take into account enough pixels

when applying a border mask.
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Figure 3.4: The top plot shows a spliced spectrum of HD148349 that has not
had its border pixels properly flagged. The “emission features” that increase in
number towards the blue-end of the spectrum line-up with the regions of overlap
and are in fact noisy pixels included in the spectrum. This is made obvious by
marking the end of each spectral order with a blue dotted line. The bottom plot
shows a close-up of one of these overlap regions. The data with no data quality
border is shown in black and clearly displays that the noisy pixels at the edge of
the detector have been propagated into the spectrum. Inclusion of the data quality
border results in a superior clean spectrum, shown in red.
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Figure 3.5: The dangers of using the default splice settings when manually
reducing data are shown in a C ii] 2325Å multiplet for HD148349 during HST
Cycle 17. The central (strongest) emission line is afflicted by noisy pixels from
an echelle order edge being propagated into the spliced spectrum. In this case it
appears as an erroneous absorption feature that hampers the line fits shown in red.

Along with manually flagging the borders before splicing the spectral orders,

another advantage of reducing the data outside of the pipeline is the option to

weight the data. This step will give slightly more weight in the overlapping ar-

eas to data points that are close to continuum values. This will protect against

spurious emission or absorption lines. The fweight task can be used to compute

weights and add them as an additional column to the spectral data. These cal-

culated weights take signal-to-noise and dispersion into account and will improve

the splicing process. To use the fweight task, an input table of wavelengths and

smoothed fluxes should be obtained. This table can be generated by using the

continuum task. This task fits a one dimensional function to the continuum

to produce a continuum normalised spectrum. Using the smoothed flux values

reduces the possibility of the weight calculations being affected by emission or ab-

sorption lines. The fitted function used for the echelle observations is a 5th-order

legendre polynomial.

The effect of the data reduction can be appreciated most in the regions of

data overlap between the spectral orders. For the E230M observations there are

23 regions of overlap. To demonstrate the effects of splicing and weighting the

data, each overlap region of the observations was analysed using three datasets:
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(1) Unspliced, (2) Spliced but unweighted, (3) Spliced and weighted. At each

region of overlap the mean error and the mean signal-to-noise were calculated. A

representative sample can be seen in Figure 3.6. It can be seen that the mean

error drops drastically due to splicing as the noisy border pixels are ignored. The

ratio of signal-to-noise is substantially improved by splicing and boosted further

by weighting.
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3. DATA PROCESSING

Figure 3.6: The top plot shows how the mean error changes due to splicing and
weighting for the 23 regions of overlap between the spectral orders. The spectrum
used is an observation of EG And from the 15th August 2009. The black line
corresponds to unspliced data, the red corresponds to spliced but unweighted data,
while the blue is both spliced and weighted. The benefits of splicing and weighting
the data can be seen in that it reduces the mean error and increases the S/N.
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3.5 HST Data Archive

3.5 HST Data Archive

The science and calibration data from HST eventually comes to be stored in the

HST data archive. The path of data from HST to eventual storage and retrieval

from the archive is fully described in Swade et al. (2001). The archive is available

to the public and can be accessed through the Multimission Archive at STScI

(MAST)1. The data used in this project were from HST’s Observing Cycle 17

and Cycle 11. The observations from Cycle 17 can be accessed by entering the

proposal ID: 11690 on the MAST web page while the proposal ID: 9487 gives

access to the Cycle 11 observations. HST archival data were used to supplement

this work in Chapter 4.

1http://archive.stsci.edu/
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4
Comparing EG Andromedae and

HD148349

In this chapter, HST/STIS observations of the symbiotic binary system EG An-

dromedae and an isolated spectral standard HD148349 are presented to com-

pare and contrast a symbiotic system with an isolated red giant. A technique

for obtaining contemporaneous low-resolution optical spectra from STIS acquisi-

tion images is demonstrated. These optical spectra become fundamental to the

comparison of isolated and symbiotic systems. In particular, both targets are

investigated from a photometric point of view. Photometric data from several

sources are compiled to show the variability of EG And across several passbands,

while synthetic photometry is performed on the optical spectra extracted from

the STIS acquisition images. The giant’s spectrum completely dominates the

optical wavelength region and the analysis will establish if the giant behaves like

a single star or if the white dwarf component has a significant effect on the sys-

tem. The periodic variability is discussed and compared to that of the variability

seen in the isolated spectral standard. An intensive examination of the effects of

interstellar extinction results in reliable extinction values for both targets, along

with a confirmation of their spectral type. These extinction values, coupled with
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4. COMPARING EG ANDROMEDAE AND HD148349

an estimate of the brightness ratio between the two target stars, are utilised to

produce new astrometry values including a revised estimate of the EG And dis-

tance. A thorough analysis of the Mg ii h and k lines yields information on the

wind from both stars including their terminal wind velocities, while the associ-

ated Wilson-Bappu effect provides a different estimate of the distances to the

stars. Combining the main results from this chapter allows both of the target

stars to be better understood in terms of where they fit into the the larger giant

population and shows how the analysis of symbiotic stars can be integral to the

understanding of isolated red giant stars. Some of the results in this chapter are

presented in Roche et al. (2011).

4.1 G430L 1D Spectral Extraction

Small aperture spectroscopy with STIS requires an onboard target acquisition

exposure. These exposures are controlled by the HST flight software and are

necessary to centre the target in the scientific aperture (Proffitt, 2010). This

results in each of the echelle observations having a corresponding and contem-

poraneous acquisition image. Acquisition exposures traditionally locate a target

in the instrument field of view for subsequent science exposures. If a slit of less

than or equal to 0.1′′ wide is required for an observation then a second ‘peakup’

acquisition is performed. These exposures are necessary for STIS to centre the

target in the spectroscopic apertures more accurately. Following the guide star

procurement, STIS images the target in the acquisition aperture. It then locates

the target in the field of view. Next, it determines the spacecraft move needed

to correctly position the target in the science aperture. Finally, HST is moved to

position the target at the calculated aperture centre. The steps of this sequence

are outlined in Figure 4.1 and are explained in detail in Clampin et al. (1996).

The acquisition exposures in this study were carried out using the G430L

grating, the 0.2′′ × 0.06′′ aperture, with the CCD as the detector. The G430L

grating has a range of 2900 − 5700Å, with a resolving power of 530 − 1040. In

most cases these exposures are used only for acquisition purposes and are in the

form of a 1022 × 32 pixel strip. Consequently, there is no standard reduction

procedure in place to extract 1D spectra from these acquisition images. The
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4.1 G430L 1D Spectral Extraction

Figure 4.1: Performing acquisition exposures using STIS as outlined in Clampin
et al. (1996). In this figure, HITM refers to the “Hole-in-the-Mirror” lamp - one of
the onboard calibration lamps on STIS. The threshold centroid algorithm is a flux-
weighted algorithm designed to eliminate errors due to non-uniform illumination
(Kraemer et al., 1997).

extraction technique comprises overlaying the 1022× 32 pixel acquisition strip in

the middle of a blank wrapper file. For this study the wrapper file consists of a

blank 1060×128 G430L image from an observation using the 52′′×0.2′′ aperture.

In Figure 4.2 it can be seen that the dimensions of the smaller aperture result in

an acquisition strip that is too compact to be processed by the standard pipeline

tools. The positioning of the strip on the blank wrapper file is an important

manual step, as the extraction requires the location of the likely data pixels to

be input by hand.
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.2: G430L 0.2′′×0.06′′ acquisition strip on a blank G430L wrapper image.
The 1022 × 32 acquisition strip is placed in the center of the blank 1060 × 128
G430L image so that the IRAF tools can extract the 1D spectrum. In this figure
the acquisition strip is for EG And taken on the 15th August 2009.

To extract a spectrum, the file header keywords are first edited so that the

exposure parameters matches those of the acquisition strip but the image format

parameters remain those of a standard G430L 52′′ × 0.2′′ image. Next, the pa-

rameter inputs for the CalSTIS (McGrath et al., 1999) extraction tools need to

be chosen. These parameters are shown in Figure 4.3. The narrowness of the

acquisition strip means there is a compromise between the number of pixels used

to extract the spectrum and the number used to define the background. The

manually determined extraction parameters for the small aperture spectra (cou-

pled with the use of throughput tables for small apertures that are perhaps not

maintained as well as tables for the more important apertures) results in the need

for a single value multiplicative correction factor being applied to the extracted

spectrum. There is a small region of spectral overlap (2900 − 3110Å) between

the G430L extracted spectra and the E230M echelle data. This overlap is used

to help refine the value of the correction factor and is discussed further in Section

4.4.

By carrying out these steps it becomes possible to use the pipeline software

developed for a standard 52′′ × 0.2′′ exposure and extract a 1D spectrum from

the 0.2′′× 0.06′′ acquisition strip using the reduction steps outlined in Chapter 3.

This extraction technique means low-resolution optical spectra can be obtained

at the same epoch as corresponding UV observations. These spectra can be used

to monitor the activity of the EG And giant primary in the optical and compare

it to the isolated red giant, HD148349. The extracted spectra are shown in Figure

4.4 and Figure 4.5.

Figure 4.4 shows the extracted spectra of HD148349 in the top panel. The

next four panels show the extracted spectra of EG And from Observing Cycle
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4.1 G430L 1D Spectral Extraction

Figure 4.3: The parameters of the extraction tools need to be set manually before
applying them to a spectrum such as that shown in the acquisition strip in Figure
4.2. The size of the spectrum extraction box, the size of the background extraction
box and the offsets between them (shown in this Figure from McGrath et al. (1999))
have to be optimised to get the best available spectrum within the confines of the
narrow acquisition strip. The horizontal direction corresponds to the uncalibrated
wavelength direction.

17. The bottom plot shows an observation of EG And from Observing Cycle 11

when the dwarf was out of eclipse. The increased intensity of nebular emission

lines in this observation was possibly caused by an increase in mass accreted onto

the dwarf (Crowley, 2006). As discussed in Chapter 1, the optical spectra of cool

giants are heavily influenced by the absorption bands of molecular species. These

figures are dominated by TiO and VO, the location of which are marked on the

plots.
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.4: The G430L 1D extracted spectra for HD148349 is shown in the top
panel. The flux range on the y-axis is 0 - 3 × 10−11 erg cm−2 s−1 Å−1. The
next 4 panels show the extracted spectra of EG And from Observing Cycle 17.
The bottom plot shows an observation from Observing Cycle 11. The y-axis is
0 - 8 × 10−12 erg cm−2 s−1 Å−1 for all of the EG And panels, while the x-axis
is 3000 − 5700Å in all panels. The location of the TiO bands are shown as blue
dashes at the bottom of the plots (Plez, 1998).
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4.1 G430L 1D Spectral Extraction

Figure 4.5: G430L 1D extracted spectra for observations of EG And during
Observing Cycle 11. As in Figure 4.4, the y-axis is 0 - 8×10−12 erg cm−2 s−1 Å−1,
while the x-axis is 3000− 5700Å in all panels. The location of the TiO bands are
shown as blue dashes at the bottom of the plots (Plez, 1998).
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4.2 Synthetic Photometry

Photometry represents a method of measuring the flux of a star over large wave-

length bands (passbands). The most common system is the UBV photometric

system known as the Johnson-Cousins system. It is a wide band photometric

system for classifying stars according to their colors. It was the first and perhaps

remains the best known standardized photoelectric photometric system. In this

system, UBV stands for ultraviolet, blue and visual respectively. For details of

the Johnson-Cousins system see Johnson & Morgan (1953), Johnson & Harris

(1954) and Cousins (1971).

Using the 1D spectral data extracted from the STIS G430L observations (See

Section 4.1) it is possible to perform synthetic photometry and obtain magnitudes

in the Johnson-Cousins UBV passbands. To carry out the synthetic photometry

it was necessary to follow several steps. The Johnson-Cousins UBV passbands,

as described in Bessell (1990), were interpolated onto the G430L wavelength

region. The normalised transmission curves are shown in Figure 4.6. Each G430L

spectrum was multiplied by the individual passbands, Rλ, to calculate the flux,

fx, that would be detected by a photometric observation with a filter for that

passband:

fx =

∫
fλRλdλ (4.1)

A sample of the fluxes obtained for G430L spectra are shown in Figure 4.7.

Integrated fluxes can be converted to magnitudes using the following equation:

Mx = −2.5 log10(fx) +M
x offset (4.2)

where Mx is the magnitude of the passband in question, fx is the integrated flux

from the observed spectrum and M
x offset is the calibration correction for the

system being used.

It can be seen in Figure 4.7 that the redward side of the V passband exceeds

the end of the G430L spectrum. The G430L data ends at 5700Å, while the

V band extends to 7000Å. To estimate the flux that is being disregarded by

the V band exceeding the G430L wavelength range a number of flux-calibrated

averaged spectral standards were analysed. All M giant sub-spectral types were
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4.2 Synthetic Photometry

Figure 4.6: Left: Normalised transmission curves of Johnson-Cousins UBV Pass-
bands. The passbands span the wavelength region from 3000Å to 7000Å. This range
encompasses most of the G430L wavelength range (2900 − 5700Å) as well as the
end of the E230M range (1570−3110Å). The U passband, centered around 3700Å,
is shown by the dashed black curve. The B passband, centered around 4200Å, is
shown by the dashed-dot blue curve. The V passband, centered around 5300Å,
is shown by the solid green line. Right: An EG And G430L spectrum with the
location of the UBV passbands overplotted. The EG And spectrum corresponds to
a Cycle 17 Observation from 15th August 2009 (φ = 0.070). The maximum values
of UBV transmission curves have been set to match the peak value of the G430L
spectrum for clarity.

investigated using Pickles (1998) and Fluks et al. (1994) spectra (Section 4.3

discusses these spectral libraries). Across the M0 to M6 sub-spectral types it was

found that the G430L region of the V band encompassed between 64% and 68%

of the total V band flux. Both targets stars are considered M3 giants. On this

basis each of the G430L V band fluxes were taken to be 65% of the total V band

flux and increased to the full expected amount accordingly to account for the V

band flux falling between 5700Å and 7000Å. Figure 4.8 shows both Pickles and

Fluks spectra and the V band flux with the G430L limit marked.

A reference spectrum was needed to calculate the U, B, and V magnitudes of

both EG And and HD148349. The reference star was chosen as Vega (HD172167,
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.7: Synthetic Photometry for EG And and HD148349. Left: The UBV
transmission curves from Figure 4.6 have been mulitplied by an EG And G430L
spectrum corresponding to a Cycle 17 Observation from 15th August 2009 (φ =
0.070). The resulting fluxes are shown in black, blue and green, corresponding to
the U, B and V passbands respectively. Right: A G430L spectrum of HD148349
from 2nd September 2009 after it has undergone the same process.

α Lyrae) as it is the primary standard for photometry (Gillett et al., 1971).

Bessell (1990) advises using the model spectrum from Dreiling & Bell (1980).

The Dreiling & Bell spectrum is shown converted to absolute fluxes in Figure 4.9.

Also shown in the figure are the fluxes for each of the U, B and V filters. As well

as the Dreiling & Bell reference spectrum, a composite spectrum from the STScI

calibration database system was also utilised to make sure the technique was

tested against two reference spectra. The STScI Vega spectrum combines IUE

and STIS data along with Kurucz models and is one of the accepted fundamental

flux standards for HST calibrations. Figure 4.10 shows the spectrum and the

fluxes after passing through the U, B and V transmission curves. Comparing the

STScI spectrum to the Dreiling & Bell spectra it was found that the fluxes in the

B and V bands both differed by less than 1%. The U band was found to differ

by less than 3%.
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4.2 Synthetic Photometry

Figure 4.8: M3III spectra averaged from spectral standards from Pickles (1998)
(left) and Fluks et al. (1994) (right). In both cases the amount of V band flux that
is seen in the G430L region is 65% of the total V band flux. In both plots the G430L
V band flux is shown in blue while the red flux is the 35% that is disregarded. The
dashed line shows the G430L cut-off point.

The zero-point magnitudes for the U, B and V filters were taken to be 0.790,

-0.104 and 0.008 respectively as these were used in Bessell (1990). To calibrate

the synthetic photometry with the accepted Vega model, the offsets needed for

each passband were calculated using:

M
x offset = Mx vega + 2.5 log10(f0) (4.3)

where x is the passband, Mx vega is the accepted magnitude of Vega in that band

and f0 is the integrated flux from the Vega Model spectrum in the x passband.

The accepted magnitudes for Vega are 0.02, 0.03 and 0.03 for U, B and V re-

spectively (Monet et al., 2003). The calibration parameters used can be found in

Table 4.1.
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Figure 4.9: Left: Vega model from Dreiling & Bell (1980) shown over the 3000−
7000 Å wavelength region. The flux values have been converted to erg s−1 cm−2

Å−1 and from emergent fluxes to absolute fluxes by dividing by the geometric
dilution factor, (d/R)2 = 1.62 × 1016. Right: The resulting fluxes after the Vega
model has been multiplied by the U, B and V transmission curves from Figure 4.6.

Table 4.1: To calculate U, B and V magnitudes for STIS G430L observations,
the following calibration parameters were used. The offset was calculated for the
model from Dreiling & Bell (1980) (DB) and also for the STScI Calibration (SC).

Passband Mvega Moffset (DB) Moffset (SC)
U 0.02 -13.91 -13.96
B 0.03 -13.01 -13.02
V 0.03 -13.70 -13.69

4.3 Extinction

Interstellar extinction is the absorption and scattering of light by interstellar dust

grains (Fitzpatrick, 1999). The relationship between interstellar extinction and

wavelength is best described by Cardelli et al. (1989). To continue the comparison

of EG And to isolated giants, it was necessary to consider the interstellar red-

dening suffered by the two target stars of this study. To obtain values of E(B-V),
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4.3 Extinction

Figure 4.10: Left: STScI calibration spectrum of Vega. The spectrum is a
composite of IUE data in the FUV, STIS data in the UV to optical with Kurucz
models making up the fluxes longward of 5337Å. Right: The resulting fluxes after
the STScI spectrum has been multiplied by the U, B and V transmission curves
from Figure 4.6.

STIS G430L spectra were compared to a range of intrinsic M giant spectra from

Fluks et al. (1994) and Pickles (1998). Two-parameter grid-searches were carried

out to determine which spectral type best matched EG And and HD148349 and

the corresponding E(B-V) value for both stars.

Fluks et al. (1994) presents intrinsic1 spectra obtained from a study of 97

bright M-giants in the Solar neighbourhood in the spectral range 3800− 9000Å.

The intrinsic spectra span all of the M-spectral subclasses of the MK classifica-

tion systems and were obtained by averaging the extinction-corrected spectra for

each subclass. Pickles (1998) presents a stellar spectral flux library consisting of

131 flux-calibrated spectra, encompassing spectral coverage from 1150− 10620Å.

Each spectrum was produced by combining data from several sources overlapping

in wavelength coverage. To compare the both the Fluks and Pickles spectra to

1The Fluks et al. (1994) Library distinguishes between the spectra averaged from real data
as “intrinsic”, while the modelled spectra are “synthetic”.
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the G430L observations the data had to be smoothed and rebinned1. The data

was smoothed using the IDL gaussfold2 procedure to smooth the data by con-

volving with a Gaussian profile. rebin spectrum3 was then used to resample

the smoothed data onto the same wavelength grid as the G430L observations.

To find the optimum matching spectral type and extinction value, a 2-parameter

grid-search method based on the technique outlined in Bevington & Robinson

(2003)4 was employed. For each sub-spectral type in the Fluks and Pickles series,

the EG And (or HD148349) spectrum was scaled and extinction-corrected by a

range of brightness and E(B-V) values and for each combination of these two

parameters the reduced χ2 statistic was calculated. The procedure calculates the

reduced χ2 values using the chisq IDL routine and:

χ2
red =

1

Nfree

∑ (y − ylib)2

σ2
(4.4)

where y is either the EG And spectrum or the HD148349 spectrum, ylib is the li-

brary spectrum after being scaled and unreddened, Nfree is the number of degrees

of freedom given by [(no. of wavelengths)-2] and σ is the flux error array. A grid

of all the χ2 values was constructed and the minimum value and the best-fit was

located in parameter space. This grid-search method was tested by extincting

a spectrum by a known value and then challenging the code to return the same

value. It was found that it returns values less than 1% away from the expected

value. Figure 4.11 shows the best-fits for each spectral sub-type obtained by

scaling and extinction-correcting EG And to match the Fluks M giant spectra.

Figure 4.12 compares EG And to the Pickles M giant spectra, while Figure 4.13

and Figure 4.14 compare HD148349 to the Fluks and Pickles spectra respectively.

The best-fitting comparisons yielded E(B-V) values of 0.05±0.02 for EG And

and 0.32±0.02 for HD148349. Both the Fluks and Pickles comparisons gave best

fits for M3-type spectral types for HD148349 and all observations of EG And.

1The Fluks and Pickles spectral libraries are both available electronically from the Stras-
bourg Astronomical Data Centre (CDS).

2From Jörn Wilms’ (Institut für Astronomie und Astrophysik, Tübingen) AITLIB library
at http://astro.uni-tuebingen.de/software/idl/aitlib.

3From David Schlegel’s (Princeton) IDLUTILS library at: http://spectro.princeton.

edu/idlutils_doc.html.
4The method from Bevington & Robinson (2003) is originally from Press et al. (1992).
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4.3 Extinction

Figure 4.11: A comparison between EG And and intrinsic M giant spectral sub-
classes in the Fluks et al. (1994) Library. Fluks M giant spectra are plotted in
black while EG And is overplotted in red. In each case the x-axis is the wavelength
range 3854 − 5700Å and the y-axis is normalised flux. The EG And spectra have
been scaled and extinction-corrected to produce the best-fits for each comparison.
The overall best-fitting spectral-type was the M3 spectrum.

The reduced χ2 value for the best-fitting spectrum was calculated for each target

compared to the library spectral types from M0 up to M6. A sample trend,

representative of all the comparisons, is shown in Figure 4.15. It can be seen
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Figure 4.12: A comparison between EG And and intrinsic M giant spectral sub-
classes in the Pickles (1998) Library. Pickles M giant spectra are plotted in black
while EG And is overplotted in red. In each case the x-axis is the wavelength range
3854 − 5700Å and the y-axis is normalised flux. The EG And spectra have been
scaled and extinction-corrected to produce the best-fits for each comparison. The
overall best-fitting spectral-type was the M3 spectrum.

that while the spectra produce similar goodness-of-fit values for hotter spectral

subclasses, in the cooler subclasses the disparity between the spectra becomes

more noticeable even after scaling and extinction-correcting. From M3 to M4 the
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Figure 4.13: A comparison between HD148349 and intrinsic M giant spectral
subclasses in the Fluks et al. (1994) Library. Fluks M giant spectra are plotted
in black while HD148349 is overplotted in red. In each case the x-axis is the
wavelength range 3854− 5700Å and the y-axis is normalised flux. The HD148349
spectra have been scaled and extinction-corrected to produce the best-fits for each
comparison. The overall best-fitting spectral-type was the M3 spectrum.

change in Teff seems to triggers the onset of stronger TiO absorption bands.

Comparing the G430L optical spectra of EG And and HD148349 directly

against each other shows how similar the EG And giant primary is to an isolated
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Figure 4.14: A comparison between HD148349 and intrinsic M giant spectral
subclasses in the Pickles (1998) Library. Pickles M giant spectra are plotted in black
while HD148349 is overplotted in red. In each case the x-axis is the wavelength
range 3854−5700Å and the y-axis is normalised flux. The HD148349 spectra have
been scaled and extinction-corrected to produce the best-fits for each comparison.
The overall best-fitting spectral-type was the M3 spectrum.

giant (Figure 4.16). The similarity in Teff , composition and size means that

the only significant differences between the spectra result from differing levels

of extinction and flux. The Hipparcos values for the distance to EG And and
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Figure 4.15: Best-fit trends across Fluks spectral type for EG And (left) and
HD148349 (right). The reduced χ2 was calculated for the best fit to each of the
Fluks intrinsic M giant spectral types from M0 up to M6. For both target stars
the trend in reduced χ2 values confirms that they are M3 giants.

HD148349 are 513 ± 169 and 177 ± 12 pc respectively, based on Van Leeuwen

(2007). HD148349 has the higher flux levels but also suffers more light extinction

than EG And due to their positions relative to the galactic plane. By using a grid-

search method to find the χ2 minimum in parameter space, the best fitting values

of differential extinction and the flux ratio between the two stars are obtained

(See Figure 4.17). The flux ratio can be used to calculate a more precise distance

to EG And using the Hipparcos value for the distance to HD148349 and the

inverse-square law of distance and apparent brightness:

DEG = DHD ×
√
BHD/EG (4.5)

whereDEG is the distance to EG And, DHD is the Hipparcos distance to HD148349

and BHD/EG is the brightness ratio of HD148349 to EG And. The best fit values

yielded E(B-V) of 0.05 ± 0.02 for EG And and 0.32 ± 0.02 for HD148349 and a

new distance to EG And of 568 ± 41pc. EG And was found to be about ∼10%

as bright as HD148349 in the optical.
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Figure 4.16: HST/STIS G430L observations of EG And and HD148349. Using
the 1D spectral extraction technique outlined in Section 4.1, observations in the
optical can be obtained to show the similarity between the two giants. HD148349
(dashed red line) has been scaled by a brightness factor of 0.1 and dereddened using
the extinction curve from Cardelli et al. (1989) and an E(B-V) value of 0.27. The
bottom panel shows the flux ratio. The EG And emission lines account for a very
small portion of the overall flux (around 1%).

4.4 G430L 1D Extracted Spectrum Calibration

The method of extracting optical spectra from previously unused acquisition im-

ages has proven to be integral to the comparison of EG And to HD148349. Due

to the non-standard method of extracting a spectrum from the G430L images, it

was necessary to apply a calibration scale factor to the extracted spectrum. The

value of this scale factor was determined by using a number of methods. Firstly,

the corresponding E230M spectrum was compared to the G430L extracted spec-

trum at the region of overlap (2900− 3100Å). From this it was determined that

a correction scale factor of approximately 1.35 was needed. This was a crude

method as the region of overlap between E230M and G430L are at the ends of

their wavelength coverage regions, where the uncertainty is highest.

Next, all previous G430L small aperture observations (from all observing cy-

cles and of all targets) were investigated in the MAST archive. It was hoped

that by applying the same technique described in Section 4.1 to stars with corre-
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Figure 4.17: Contour plot of χ2 in parameter space. In this case the lowest χ2

value reached is for an E(B-V) value of 0.27 and a brightness scale factor of 0.1.
The plot on the right is a close-up of the minimum.

sponding E230M observations and with measured photometry values it would be

possible to refine the calibration scale factor. Targets that had no corresponding

E230M observations or photometry measurements or were considered too vari-

able, for example Mira variables, were discounted. This left 5 stars (HD132475,

LTT 7244, LTT 3774, NLTT 26576, and HD31293). When the G430L acquisition

images for these objects were utilised to extract a 1D spectrum in the manner

described in Section 4.1, it was again found that a calibration correction factor

was required. By comparing the extracted spectra to the overlap region in the

corresponding E230M observations and by performing synthetic photometry on

the extracted spectra, UBV magnitudes were found to compare to the accepted

values for those targets. While these methods were not precise it resulted in a

range of calibration correction factors of 1.4, 1.2, 1.2, 1.3 and 1.45 for the stars

in the order listed above. This supported the adopted value of 1.35.

Finally, the Hipparcos transmission curve was applied to the extracted spectra

to calculate synthetic Hp magnitudes for the G430L observations and compare

them to the V magnitudes. The curves were taken from Bessell (2000). Although
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4. COMPARING EG ANDROMEDAE AND HD148349

the Hp band covers 3400− 8800Å the amount of G430L flux was estimated using

the same method described in Section 4.2 to estimate the amount of total flux

that would fall in the Hp band. The range of resulting V-Hp values for both

targets stars matched those suggested by Bessell (2000) for a red giant star.

When the data is extracted and calibrated by 1.35 it can be seen in Figure 4.18

that the spectra show agreement with those of similar orbital phases from Munari

& Zwitter (2002), which were based on observations collected with the telescopes

of the European Southern Observatory (ESO, Chile) and of the Padova & Asiago

Astronomical Observatories (Italy).
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4.4 G430L 1D Extracted Spectrum Calibration

Figure 4.18: G430L 1D extracted spectra (calibration corrected using a value
of 1.35) are compared to observations from Munari & Zwitter (2002) at similar
orbital phases. The flux ratios are shown on the right to ensure that the extraction
is being performed accurately across the entire wavelength region. The agreement
between the extracted spectra and the Munari observations is quite good. Any
discrepancies can be attributed to the variations discussed in Section 4.6.
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4.5 UBV Synthetic Photometry

For each of the HST Cycle 11 and 17 observations there were two G430L spectra

extracted (acquisition and peakup as discussed in Section 4.1). The two spectra

were combined for each observation to improve the signal-to-noise ratio. Synthetic

photometry was performed on the combined spectra and the resulting magnitudes

were then plotted against orbital phase as shown in Figure 4.19. These values

are also shown in Table 4.2.

Table 4.2: UBV Magnitudes for G430L EG And and HD148349.

HJD Target Cycle Orbital Phase U B V B-V U-B
2452515 EG And 11 0.798 10.11 8.59 7.03 1.56 1.52
2452564 EG And 11 0.899 10.07 8.55 7.00 1.55 1.52
2452631 EG And 11 0.038 10.41 8.82 7.28 1.54 1.59
2452658 EG And 11 0.095 10.46 8.89 7.33 1.56 1.57
2452677 EG And 11 0.133 9.99 8.53 7.02 1.52 1.46
2452687 EG And 11 0.153 10.01 8.57 7.07 1.50 1.44
2452852 EG And 11 0.497 9.64 8.51 7.03 1.49 1.13
2455059 EG And 17 0.070 10.21 8.62 7.09 1.53 1.59
2455063 EG And 17 0.078 10.03 8.58 7.05 1.53 1.44
2455107 EG And 17 0.169 10.61 8.98 7.36 1.62 1.63
2455109 EG And 17 0.173 10.27 8.75 7.19 1.56 1.53
2455077 HD148349 17 - 9.20 7.16 5.44 1.72 2.04

Once again it can be seen that the calibration scale factor is justified when

compared to the synthetic magnitudes with those of other observations. Fig-

ure 4.20 shows that the magnitudes compare well with those of Skopal et al.

(2002). Also shown are observations from KAIT1. The B-V and U-B colours

for HD143849 match the expected values. Previous photometric observations of

HD148349 by Smak (1964), Cousins (1964), Przybylski & Kennedy (1965) and

Mermilliod (1986), yielded U-B values of 2.13, 2.05, 2.00 and 2.05 respectively.

Their B-V values were 1.74, 1.72, 1.73 and 1.75. These compare well with the

U-B value of 2.04 and the B-V value of 1.72. The similarity in the values support

this method of G430L synthetic photometry for accurately measuring magnitudes

contemporaneous to UV observations.

1Discussed in Chapter 2.
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4.5 UBV Synthetic Photometry

Figure 4.19: U, B, and V magnitudes of EG And against orbital phase. The
empty blue circles correspond to Cycle 11 observations while the filled red circles
correspond to Cycle 17 observations. The uncertainty in the U magnitudes is
considerably higher as the amount of flux in this passband region is lower and the
error increases towards the blue end of the G430L region. The significant orbit-to-
orbit variability can seen in the phase region φ = 0.03 to φ = 0.2.
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.20: EG And Photometry from Skopal et al. (2002) covering an ob-
serving period from July 1998 to December 2003 (shown as black circles). KAIT
observations are shown as red filled-circles, the derived synthetic values from the
G430L spectra are shown as blue squares and the AAVSO2 observations are shown
as green triangles.
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4.6 Comparison of Variabilities

4.6 Comparison of Variabilities

The main orbital photometric variation is the ellipsoidal distortion of the giant

as found by Wilson & Vaccaro (1997) and subsequently by Crowley (2006) with

a period of half the orbital period due to the circular orbit, as noted in Chapter

2. The effect is difficult to see over the Cycle 11 and Cycle 17 observations but it

becomes much clearer when viewed over several cycles (see Figure 4.20). The EG

And colours show that for B-V, the values expected for for an M3III star match

quite well with the values predicted by Bessell (1990). The U-B colours are lower

but this can be attributed to the higher flux in the U band for EG And due to

the presence of the white dwarf in comparison with isolated giants. Comparing

the variability of the B and V band photometry of EG And to that of an isolated

spectral standard, the variability is similar if the ellipsoidal distortion is taken

out. Crowley (2006) suggests a variability of 0.1 magnitudes in B and V bands

after the effects of ellipsoidal distortion have been removed.

HD148349 is more variable than previously thought. The synthetic photom-

etry magnitudes (see Table 4.2) indicate the star is less bright than preceding

observations. These previous observations gave U, B and V magnitudes of 9.03,

6.99 and 5.27 show that HD148349 was brigher in the past. When compared

to the extracted G430L spectrum of HD148349 (combining both the ACQ and

ACQ Peakup to improve the signal-to-noise, and applying the calibration scale

factor of 1.35) to a Ruban et al. (2006) spectrum, it can be seen how the flux

of the recent observation of HD148349 has fallen significantly since the Ruban

observation (See Figure 4.21). In particular there is a considerable excess of flux

(≥ 1× 10−12erg s−1 cm−2Å−1).

In the recent observation of HD148349 very little flux is seen at wavelengths

short of 4000Å. This is supported in the STIS E230M spectrum where little or

no flux is seen at 3000Å. Finally, several AAVSO observations of HD148349 show

V magnitudes of 5.5 and brighter. This reinforces the point that HD148349

undergoes larger variations in magnitude than previously thought and that the

recent STIS observations were taken during an epoch when the star was relatively

dimmer than previous observation used to determine its magnitudes.
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.21: The left panel shows the spectrum from Ruban et al. (2006) in black,
while the G430L extracted HD148349 spectrum multiplied by 1.35 is shown in red.
The right panel shows the ratio of the two spectra.

4.7 Mg ii h and k Lines

The strength of the Mg ii resonance lines at 2796.352Å k line and 2803.531Å h line

(Kaufman & Martin, 1991a) can be used as chromospheric activity diagnostics,

while their asymmetries and blue-shifted absorption features indicate the presence

of a wind (Stencel & Mullan, 1980). Figure 4.22 shows the Mg ii h and k lines

for both HD148349 and EG And. Measurements of width, asymmetry and offset

can quantify the behavior of the line profiles. Using the parameters set out in

Robinson & Carpenter (1995), the widths are taken as the width of the h and k

lines at 10% of the maximum intensity. The asymmetry is taken as the ratio of

the maximum fluxes of the blue to red emission peaks. The offset is the difference

in velocity space between the wings of the h and k lines when they the lines are

overlaid so that there central absorption features coincide and normalized to the

peak intensity (shown as the small blue arrows at 50% of the peak intensity in

the left panel of Figure 4.22 but not visible in EG And due to absorption).

The width at 10% of the maximum flux is difficult to measure due to the

profiles being mutilated by the ISM at the regions marked by thick grey lines. By

comparing the profiles about their centre points and scaling the mutilated side to
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Table 4.3: Mg ii line profile parameters. (B/R)h is the ratio of the maximum
intensity of the blue emission peak to the red emission peak for the h line. (B/R)k
is the same ratio but for the k line. ∆Vr is the offset between the two lines on
the red wing, while ∆Vb is the offset on the blue wing. V∞ is the terminal wind
velocity given by the P Cygni profile.

Targets Line Width (B/R)h (B/R)k ∆Vr ∆Vb V∞
(km s−1) (km s−1) (km s−1) (km s−1)

EG And 250 0.4 0.5 0 0 ∼ 70
HD148349 200 0.85 0.7 5 15 ∼ 15

estimate the flux lost to the ISM (or in the case of EG And, extrapolating from

the mutilated wings) an estimate of the line width can be made. The measured

line profile parameters are listed in Table 4.3. The asymmetries match those

expected of giants later than K2. γ Cru (M3III) and ρ Per (M4II) have B/Rh

values of 0.55 and 0.50 with B/Rk values of 0.62 and 0.90, while EG And and

HD148349 were measured to have B/Rh values of 0.4 and 0.85 with B/Rk values

of 0.5 and 0.7, respectively. There are also a couple of discrepancies. The blue

wing of the HD148349 lines show very little offset between the h and k lines where

usually there is a shift between the lines of around 2 - 5km s−1. In the EG And

profile a shift on the red wing would be expected of 10 - 20km s−1, but this cannot

be seen. For both of these cases absorption due to the ISM can be attributed to

causing this discrepancy. A red asymmetry (B/R < 1), which both of the targets

display, indicates the presence of a massive, slow-moving wind. From the profiles

these winds can be estimated to be ∼70km s−1 and ∼15km s−1 for EG And and

HD148349, respectively.

The Mg ii lines can also be used to estimate absolute magnitude and hence

the distance to a star through an empirical relationship between luminosity and

the width of the line. A similar relationship between luminosity and the width

of Ca ii h and k lines was first quantified by Wilson & Vainu Bappu (1957).

They showed how the logarithm of the Ca ii line width increased linearly with

decreasing absolute magnitude. This became known as the Wilson-Bappu Effect
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4. COMPARING EG ANDROMEDAE AND HD148349

Figure 4.22: Comparison of the Mg ii resonance lines for the E230M observations
of HD148349 (left) and EG And (right). The two lines have been overlaid so that
their central absoption features conincide, and the weaker h line was scaled up to
to match the k line. The 2803Å h line is shown in red, while the 2796Å k line is
shown in black. The effects of ISM absorption are indicated by thick grey lines and
the dotted lines show the wind terminal velocities at ∼70km s−1 and ∼15km s−1

for EG And and HD148349 respectively.

and in equation form is:

M = A+B logW(k) (4.6)

where M is the absolute magnitude, A and B are coefficients of the fit and W(k)

is the base width of the k line. The relationship applies to late-type dwarf, giant,

and supergiant stars (Stencel, 2009).

Weiler & Oegerle (1979) investigated the same effect using Mg ii instead of

Ca ii. Their study used the Copernicus satellite and the Catalogue of Bright Stars

(Hoffleit, 1964) to come up with an analogous Wilson-Bappu type effect for Mg ii

k emission lines. Scoville & Mena-Werth (1998) recalibrated the Wilson-Bappu

effect using IUE archival data to measure the Mg ii line widths. It was expected
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Table 4.4: Distance Measurements for EG And and HD148349. All distances
are in parsecs. The second column lists the values of distance for EG And and
HD148349 using Hipparcos parallax measurements from Van Leeuwen (2007). The
second column shows a more precise EG And distance calculated by comparing
the G430L spectra to HD148349 and the last column shows the distance estimtaes
using the Wilson-Bappu relationship.

Targets Van Leeuwen (2007) G430L Comparison Wilson-Bappu

EG And 513± 169 568± 41 ∼ 537
HD148349 177± 12 - ∼ 110

that the linear regression fit would be improved upon with the addition of more

accurate absolute magnitudes provided by Hipparcos. This proved not to be the

case and the scatter found by Weiler & Oegerle (1979) appears to be intrinsic

to the Mg ii line. This empirical relationship can be used to estimate values

of absolute magnitude from the observations. When applied to HD148349 and

EG And using Equation 4.6 with values of 34.93 and 15.15 for A and B from

Weiler & Oegerle (1979), absolute magnitudes of 0.07 and -1.40 were calculated

for HD148349 and EG And respectively. Using the relationship between absolute

magnitude M , apparent magnitude m and distance D:

m = M − 5(1− log10D) (4.7)

distances to both stars were estimated as ∼537pc for EG And and ∼110pc for

HD148349. For EG And the distance is in good agreement with the value of 568±

41pc calculated in Section 4.3. The different distances values are summarised in

Table 4.4.

Hipparcos distance to HD148349 andBHD/EG is the brightness ratio of HD148349

to EG And. The best fit values yielded E(B-V) of 0.05 ± 0.02 for EG And and

0.32± 0.02 for HD148349 and a new distance to EG And of 568± 41pc. EG And

was found to be about ∼10% as bright as HD148349 in the optical.
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4.8 Discussion and Conclusions

A new method of obtaining low-resolution contemporaneous optical data from

acquisition images taken during STIS observations was presented. This method

allows coverage of the optical part of the spectrum while simultaneously observing

in the ultraviolet. This is particularly useful in the case of EG And, as the

effects of the dwarf (dominant in the UV) on the red giant (dominant in the

optical) can be disentangled by having contemporaneous coverage in both spectral

regions. Several separate approaches to determine the best extraction calibration

values converged on a multiplicative correction factor of 1.35 to bring the pipeline

produced spectrum to the absolute scale. This method has implications for all

future small aperture observations with STIS, as a proven technique for obtaining

useful contemporaneous optical data will benefit the study of symbiotic systems.

The presence of the white dwarf affects the photometry of the system, espe-

cially in the U band. The variability can be accounted for using the period of

orbit and a model of ellipsoidal distortion. When this has been accounted for,

the remaining variability is on the scale of that expected for a red giant and so

provides a good platform for extending this study to more isolated giants.

The variability of the spectral ‘standard’ proved to be more of an issue than

the symbiotic system. While HD148349 has been classed as a variable star in some

catalogues, it remains a spectral standard in others. The range of magnitudes

in the literature suggest that HD148349 does not vary by a large amount. The

analysis shown here suggests that the observations of HD148349 took place when

it was much fainter than preceding observations. Although there is no indication

in the literature that it would be so faint, there are amateur ground-based AAVSO

observations match values obtained here. Based on all of this evidence it would

seem that HD148349 should be reclassified as a more variable star and should

perhaps be demoted from the list of spectral standards.

The synthetic photometry values not only show the reliability of the red giant

of EG And for further studies, it also provides a way of directly comparing UV

to optical activity. In previous work on EG And (Crowley, 2006), the presence of

“higher-state” UV observations has been an issue. If such phenomena (which are

dealt with in Chapter 5) were tied to the red giant activity it would undermine
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its suitability for this work. However it can convincingly be shown that there is

no definite correlation with brighter magnitudes in the optical regime.

Comparing the extracted G430L spectra of the two target stars shows how

similar they are, at least in the optical. An extensive comparison to libraries of

spectral types confirms both stars are M3 giants. This comparison also suggested

that the M3/4 giant boundary is associated with the strong onset of TiO bands.

The study also yielded E(B-V) values of 0.05± 0.02 for EG And and 0.32± 0.02

for HD148349 and a new distance to EG And of 568± 41pc. EG And was found

to be ∼10% as bright as HD148349 in the optical.

The Mg ii h and k lines were used to show the behavior of the wind. Although

mutilated by the ISM, terminal wind velocities of ∼70 km s−1 and ∼15 km s−1

were found for EG And and HD148349. The terminal wind velocity for HD148349

is similar to other M3 giants; α Aur, σ Lib and µ Gem (18, 11 and 14 km s−1

respectively). The higher velocity for EG And is indicative of binary stars (this

will be discussed in Chapter 5).

To compare the chromospheres of the two stars the radiative losses can be

investigated. Following the estimates of Judge & Stencel (1991) that Mg ii h and

k losses account for ∼25% of the total losses from cool giant chromospheres (other

energy losses will occure from sources such as H Lyα). The flux of the lines in

Figure 4.22 can be used to calculate the total chromospheric radiative losses:

F?(tot) ' 4× F?(Mg ii) (4.8)

where the surface flux of the Mg II lines are related to the measured flux in Figure

4.22 by:

F?(Mg ii) = F⊕(Mg ii)

(
2

θ

)2

(4.9)

where θ is the angular diameter of the star in radians. Angular diameters of 2.3×
10−8 and 6.2×10−9 radians (4.85 and 1.27 milliarcseconds) for HD148349 and EG

And were used (From Tables 2.1 and 2.2). Both targets were extinction-corrected

and the measured flux of the Mg ii h and k lines for HD148349 was 1.6×10−11 erg

cm2 s−1. The EG And Mg ii lines were more difficult to measure. Using the same

scaling and folding process that was used to determine the widths of the line, a flux

of 1.9×10−12 erg cm−2 s−1 was estimated for the fullest eclipse observation of EG
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And. When these angular diameters and fluxes were substituted into Equations

4.8 and 4.9, the total radiative losses of the chromosphere were estimated to be

∼ 4.7×105 erg cm−2 s−1 for HD148349 and ∼ 7.9×105 erg cm−2 s−1 for Eg And.

These values compare well to measurements by Judge & Stencel (1991) for similar

M3III stars who show that π Aur and µ Gem have total chromospheric radiative

losses of 2.0×105 and 1.3×105 erg cm−2 s−1, respectively. The mutilation of EG

And’s Mg ii line profile and the subsequent correction value may have resulted in

a slight overestimate of F?(tot) value.

New values of extinction, confirmation of spectral subclass, and refined as-

trometric values have provided a greater understanding of both EG And and

HD148349 and their place among the general red giant population. Although

this work has shown EG And’s suitability for red giant study, the presence of the

white dwarf cannot be ignored and will be considered in Chapter 5.
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EG Andromedae Wind Structure

In this chapter, a detailed analysis of the atmosphere of EG And, specifically the

base conditions of the chromosphere is presented. This analysis is carried out

using HST/STIS observations of the system at various stages of eclipse spanning

two HST Observing Cycles. The importance of the C ii] 2325Å multiplet is dis-

cussed and the technique used to fit the lines is described in detail. Additionally,

Al ii features are also fitted to build up an ionisation picture of the symbiotic

atmosphere. The results of those fits - emission line fluxes, line ratios, radial

velocities, electron densities and opacity diagnostics are provided and discussed

in the context of the physics of the emitting medium. Efforts to model the sys-

tem are discussed and conclusions on the nature of the system are offered. The

aim of this work is to try and identify whether the red giant chromosphere of

EG And behaves similarly to an isolated giant star at any stage of its orbit, or

whether the white dwarf distorts the giant’s atmosphere to a significant extent.

As described in Chapter 1, the advantages of using a symbiotic binary system

holds potential for understanding giant star atmospheres and mass-loss. Extra

significance is added to this work due to the finite lifetime of HST and the lack

of a natural replacement instrument meaning that this UV-based spectroscopic

approach faces an uncertain future.
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5.1 C ii] 2325Å Multiplet

The boron-like C ii] intercombination (2s22p2P 0 − 2s2p2 4P ) UV 0.01 emission

line multiplet at 2325Å is the most important electron density (ne) diagnostic

in stellar chromospheres. The emission lines of the multiplet are generated by

electronic collisional excitation followed by radiative de-excitation. The multiplet

is contained within a 5Å range which lessens the effect of differential absorption

due to dust. The narrow wavelength region also reduces the influence of detector

and spectrographic variations that become important over larger wavelengths.

The line ratios are sensitive to changes in electron density (ne) in the range

107 − 109 cm−3 but are not sensitive to changing electron temperature because

the collisional de-excitation rate is proportional to T
− 1

2
e (Harper & Brown, 2006).

The diagnostics line ratios are shown in Table 5.1. Section 1.9 describes in detail

the atomic physics that gives rise to density-sensitive emission line diagnostics.

Stencel et al. (1980) and Brown et al. (1981) offer some of the first attempts to

diagnose the chromospheric electron density of a red giants. Stencel et al. utilised

IUE observations of four cool giant and supergiant stars to determine chromo-

spheric conditions of electron density and temperature. The importance of the

C ii] 2325Å multiplet as a diagnostic in late-type stars was highlighted in Stencel

et al. (1981) where a need for higher resolution observations and improved atomic

data for the C ii transitions was also stressed. Collision strengths were improved

upon (Hayes & Nussbaumer, 1984a,b) and a dichotomy emerged when comparing

coronal stars to noncoronal stars (Brown & Carpenter, 1984), as the emitting C ii

material appeared to come from a hotter region in coronal stars. Carpenter et al.

(1985) extended the method of using C ii emitting lines to estimate the geometric

extent of the chromospheric emission region, again making a distinction between

coronal and noncoronal giants. Further improvements to the atomic data were

made by Lennon et al. (1985) and were implemented by Byrne et al. (1988) to

show that previous values of electron density might have been too low on average

by 0.75dex and the calculated geometric extent of the emitting region may have

been too large. The new calibration showed better agreement with observed so-

lar values. Schröder et al. (1988) discussed the C ii 2325Å diagnostic (incorrectly

labelled “2355Å” in that paper title) in terms of eclipsing binary ζ Aur systems,
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finding ne ∼ 108 cm−3. They found that while C ii emission ratios are reliable

for providing electron densities and geometrical extensions of chromospheres, they

cannot be used to determine electron temperatures and ionization degrees. Judge

(1990) investigated the formation of emission lines in the UV region and urged

caution when using the C ii 2325/1335 ratio as a temperature diagnostic as the

lines may arise in different parts of the chromosphere. Finally, with the launch of

HST the use of the C ii] 2325Å diagnostic was aided by higher resolution and high

S/N data with good noise characteristics. GHRS provided high resolution obser-

vations of the C ii] multiplet for α Tau (K5III) (Carpenter et al., 1991; Judge,

1994). Judge & Carpenter (1998) used GHRS observations of the C ii] multiplet

in stars with outer sub-photospheric convection zones to show that the ‘basal’

heating of chromospheres could not be caused by acoustic wave propagation as

had previously been claimed by Buchholz & Ulmschneider (1994). The full width

at half maximum (FWHM) of the C ii] lines in their study was typically 20 - 25

km s−1 for cool giants with, for example, ne ∼ 109 cm −3 for γ Cru (M3III). The

succession of GHRS with STIS allowed even more detailed studies using the C ii]

multiplet, such as spatial scans of α Ori by analysed Harper & Brown (2006) to

reveal the radial gradients of the electron density and turbulence.

Figure 5.1 shows the multiplet in both EG And and HD148349. While the

multiplet is less affected by blends than other diagnostics (i.e. Si ii]) some of the

emission lines are occasionally mutilated by Fe ii and Co ii line-blending. This

will be taken into consideration in the analysis.

Table 5.1: C ii] line ratios and diagnostics. The line vacuum wavelengths are
from Reader et al. (1980). Unless otherwise stated, particle densities are always
lowercase (e.g. nH) and column densities are uppercase (e.g. NH).

Ratio Wavelength (Å) Diagnostic
R1 2326.112 / 2328.837 ne
R2 2326.112 / 2327.644 ne
R3 2325.403 / 2327.644 ne
R4 2327.644 / 2324.214 NC ii
R5 2328.837 / 2325.403 NC ii

103



5. EG ANDROMEDAE WIND STRUCTURE

Figure 5.1: HST/STIS E230M observations of the C ii] 2325Å multiplet for EG
And (black) and HD148349 (red). The HD148349 observation was taken on the
2nd September 2009. The locations of the five multiplet lines are marked by blue
dashed lines. The EG And observation was taken during the eclipse of the white
dwarf (φ = 0.038) on the 22nd December 2002, and should be dominated by the
red giant’s chromospheric emission. It has been scaled up by 5 for comparison
with HD148349. The general similarity of the lines suggests that the emitting
regions are broadly similar in nature, though there are differences in terms of the
additional emission features between the multiplet components. Both stars have
been corrected for interstellar extinction. HD148349 was corrected using E(B-
V)=0.33, while EG And was corrected using E(B-V)=0.05.

5.2 MELF

A method of fitting the C ii] 2325Å multiplet in the E230M observations of

HD148349 and EG And (Figure 5.1) was developed. This method, referred to

hereafter as MELF (Multiplet Emission Line Fitting), utilised MPCURVEFIT,

a subroutine of the MPFIT IDL package (Markwardt, 2009), to model and fit the

emission line components. Unless otherwise noted, a gaussian profile was used

to fit the emission lines. The modelled line fluxes were then used to estimate

chromospheric characteristics. MELF required a purpose-built fitting procedure

constructed to test the behaviour of the fitting routines and the whole fitting

process in the presence of blending and different amounts of noise. The following

items are supplied to MELF to fit a model to the STIS observations:
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• An array of independent variable values (“X”), in this case the wavelength

array associated with the emission feature.

• An array of dependent variable values (“Y”), the STIS measured flux values.

• An array of weighting values (“WEIGHTS”), the STIS flux error values.

• An IDL procedure which generates a function to calculate the Y values

given X (“FUNC”), here the model can be defined as any function but

usually based on some gaussian shape.

• Initial guesses for all the parameters (“P”) called in the user-supplied FUNC.

Initial guesses of all the parameters were fed into MELF and for each set of

parameters a model function was constructed using the following inputs:

1. X, the wavelength array.

2. P, the parameters of the model being adopted (See Equation 5.1 below).

3. FMOD, the variable array that will be the returned holding the computed

model values at X.

To fit all five emission lines of the multiplet simultaneously the function was

given the form:

FMOD(x) =
15∑
i=1

(P [i]e
(x−P [i+1])2

2P [i+2]2 ) + P [16]x+ P [17] (5.1)

In Equation 5.1 there are 17 parameters that can be varied in MELF. The

first 15 of theses correspond to the values defining the gaussian shapes of the five

emission lines (P[1]:P[15]). P[16] and P[17] define the continuum shape. If any

of the parameters need to be constrained this can be done using the PARINFO

keyword. At the end of the process the parameters that result in the best fit are

returned, along with a measure of the best fit, χ2.

Several tests were carried out initially to measure the fitting strengths of the

procedure. The idea was to generate a model of similar resolution and noise as

would be expected in STIS data. Knowing the value of the parameters used to

105



5. EG ANDROMEDAE WIND STRUCTURE

create the models it would be possible to measure the robustness of the MELF

fitting technique by comparing the best fit values returned. A multiplet with 5

emission lines was constructed with simulated wavelength and flux values close

to those seen in the STIS data. The resolution was simulated to be around 0.04Å

per pixel. The top panel of Figure 5.2 shows the simulated data with the MELF

best fit overplotted in red. Noise was then added to correspond to a signal-to-

noise ratio of 4 (similar to the STIS SNR) and the procedure was again tested,

as shown in the bottom panel of Figure 5.2.

Noise was added to the spectrum using:

I(λ) = I(λ) + randomn(seed, n elements(λ))× I(λ)

S/N ×
√

I(λ)
σ

(5.2)

where I(λ) was flux, S/N was the desired signal-to-noise ratio of the noisy spec-

trum and σ was the mean background continuum value. The IDL randomn

function returns gaussian-distributed numbers with a mean of zero and a stan-

dard deviation of one, using the Box-Muller method (Press et al., 1992). These

values were then scaled by a value defined by the S/N keyword to represent the

signal-to-noise typically observed in the STIS E230M continuum. Where the sig-

nal increases to N times the continuum level, the signal-to-noise ratio will improve

by
√
N .

MELF proved capable of obtaining fit parameters which matched closely the

original parameters, even in the presence of a relatively large amount of noise.

Reliable ‘by-eye’ estimates were required for the procedure. If these initial guesses

were replaced with random values, MELF struggled to find a good fit. In the

above described test, MELF was given 17 input parameters which were allowed

to vary to find the best fit. While some parameter constraints could be imposed

on the fits to real data, for the purpose of testing no constraints were imposed.

For each of the 5 emission lines there were parameters defining the location,

width and strength of the line. This accounted for 15 of the 17 parameters. The

remaining 2 parameters defined the slope and the offset of the continuum. In

the test in the top panel of Figure 5.2 the percentage differences between the

parameters of the simulated model and the MELF best fit parameters were less

than 1% for all 17 parameters. When noise was added in the bottom panel, the
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5.2 MELF

Figure 5.2: In the top panel a simulation of an emission line multiplet is shown in
solid black. Overplotted in dashed red is the MELF best fit. In the bottom panel,
simulated data with a background signal-to-noise ratio of 4 is shown in black. The
MELF best fit is again shown in dashed red. While the quality of the fit was
reduced slightly by the addition of the noise to the model, it can be seen that
MELF will still reliably produce a good quality fit.

percentage difference between model and fit parameters increased but remained

below 1% apart from the 5 line strength parameters which differed by a maximum

of 1.3%.
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5.3 Error Masking and Fitting

The best-fit model of the multiplet emission was generated by simultaneously

fitting all five of the C ii] lines. To ensure that the absorption features and noise

between the lines did not reduce the quality of the fit, these regions were masked

from the fitting process. This was done by setting the entire error array to a

sufficiently high value except for the regions encompassing the narrow emission

lines. These narrow regions kept their original error values. By setting the error

array to a high value elsewhere these regions are effectively given no weighting in

the fit. Figure 5.3 shows the error array overplotted on a masked region. It can

be seen that outside the emission lines the error values rise drastically. To ensure

the error value was set to a high enough value, the χ2 statistic was calculated for

the whole region and compared to the value calculated from solely looking at the

narrow emission line regions. Both calculations produced the same result proving

that manually setting the error of the surrounding regions to a high value renders

them negligible in the fitting process.

MELF calculates the goodness-of-fit from the χ2 statistic - the summed total

of the square of the weighted residuals. In the line-fitting code the value was

calculated from:

χ2 =
∑
λ

(
I(λ)− IFIT(λ)

σ(λ)

)2

(5.3)

In this case I(λ) was the flux array for the region of the spectrum that is being

fitted, IFIT(λ) was the fitted flux array and σ(λ) was the flux uncertainty for the

observation. The best fit was then taken as the set of parameters which produced

the lowest value using Equation 5.3. To see the quality of the fit the “reduced” χ2

statistic can be calculated by dividing the best-fit χ2 statistic by the number of

degrees of freedom. The degrees of freedom was given by subtracting the number

of fitting parameters from the number of data points in the fit. The error-masked

data points were not counted as they are ignored in the fitting process, leaving

∼ 30 data points. These calculations follow the guidelines suggested in Press

et al. (1992) and Bevington & Robinson (2003).

After testing the fitting procedure for cases similar to the data, the procedure

was extended to the E230M HST/STIS observation of HD148349 on the 2nd of
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Figure 5.3: An observation of EG And with the masked error array over-plotted
in blue. All regions other than the narrow core of the emission lines have an error
value sufficiently high to be given negligible weighting in the fit. The unmasked
region is necessarily narrow as some of the broadened wings of the lines were
asymmetric due to noisy data (and/or extra emission discussed in Section 5.7)
and could hamper the fitting. The point spread function of the telescope also
contributed to a broadening at the base of the lines. The gaussian shape of the
fitting function produced a good fit to most of the symmetric wings even though
that part of the data was masked (see Figure 5.4).

September 2009. The model defined as the user-supplied input function for MELF

was built around Equation 5.1 with 5 emission lines. The slope and offset values of

the continuum (parameters P[3] and P[4] in Equation 5.1) were chosen by fitting

a straight line between featureless regions of the spectrum either side of the C ii]

2325Å multiplet. This constraint was added as it speeded up the computational

times and eliminated the codes tendency to occasionally choose wildly inaccurate

continuum values. One of the advantages of MELF calling the MPCURVEFIT

routine is the selection of fitting options available to the user through parameter

constraints. The fitting parameters can be fixed to a certain value, bound between

certain limits, or parameters can be tied to one another. The desired constraints

are fed into a structure called PARFINO which is passed as a keyword into the

code. Extensive testing with the available constraints led to the best fit shown

in Figure 5.4. The wavelengths of the multiplet emission lines are reasonably
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Figure 5.4: E230M HST/STIS observation of HD148349 on the 2nd of September
2009. The C ii] 2325Å multiplet is shown by the solid black line, with the best fit
overplotted in red. The data has been dereddened using E(B-V) = 0.33.

well known, however it was found that fixing these values over-constrained the

fit. Instead, the location of the line centres was determined by permitting narrow

limits on the parameters to take account of the radial velocity variations with

orbit, and also to take account of any small offsets due to additional motion of

the emitting material. The wavelength limits imposed gave a range of ±0.02Å.

In the case of the line widths, the parameters were tied such that the same line

width was used for all lines of the multiplet. This resulted in effectively one line

width value that was allowed to vary to find the best-fitting width for all five

emission lines, which is a fair assumption for optically thing lines like C ii]. The

fluxes of the individual lines were unconstrained. The continuum slope and offset

were fixed to the values from the straight-line fit mentioned above.

5.4 Issues with the 2324 and 2327Å Lines

These two lines proved the most problematic throughout the MELF process. The

2327.64Å line is particularly difficult to fit. Due to the presence of underlying

absorption (Fe ii) 2328.11Å (see Section 5.9) the C ii] line suffers mutilation by

absorption, especially close to eclipse. There is also a marked increase in the
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amount of absorption in the recent observations with the 2009 φ = 0.070 and

φ = 0.078 observations demonstrating particularly high absorption (See plots in

Appendix A). These epochs also show higher-than-expected continuum levels,

so the observed changes may be related, and these data need to be considered

separately. One possibility is that the higher continuum is a reflection of the

increased luminosity of the white dwarf which, consequently, has affected the

physical conditions in the outer atmosphere and wind. Another possibility is

distortion of the red giant wind, and support for this comes from the slightly

different radial velocities found from the more recent data (See Section 5.7).

To get an estimate of the flux in these mutilated lines, the range of wavelengths

that the MELF process fits is manually restricted by use of the error-masking

technique described in Section 5.3. Although this helps to estimate the line flux

(sometimes using only a portion of the blueward, unabsorbed wing of the line and

the line-width parameter constrained by the other lines) the errors are necessarily

high after this process. As a result it is difficult to place faith in diagnostic ratios

that are dependent on this value i.e. R2 and R3 (See Table 5.1). The R4 opacity

diagnostic is also ignored as it relies on the 2324.21Å C ii] line. While this line

does not suffer from obvious absorption mutilation, the weakness of the line makes

it less reliable. Typically this line comprises only 2-5% of the flux that is seen

in the strongest 2326.11Å line. In the φ = 0.497 observation the high level of

continuum flux swamps the 2324.21Å line, so the MELF process struggles to

obtain a fit. Although a minimum in χ2-space was obtained, this value is not

trustworthy as there seems to be extra emission during the observation (Crowley,

2006). An upper-limit was also calculated to see how much flux from the 2324.21Å

line could be realistically hidden in the spectrum. To calculate this amount of

flux, a series of model lines were produced and the χ2 statistic was calculated for

each one.

Figure 5.5 shows how gaussians were produced from the known mean (line

location) and sigma with only the area of the line varying. The line location is

known in wavelength space and the width of the line is known from the other lines

in the spectrum. The models were calculated from a zero-flux reference point up

to a gaussian of 2 × 10−14 erg cm−2 s−1. To select the location of the zero-flux

reference, the median of the two regions of ∼ 1Å either side of the proposed
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Figure 5.5: Upper-limit for the weak C ii] 2324.21Å line. The top panel shows
the weak 2324.41Å line in the observation of EG And on the 31st July 2003. As
the location and width of the gaussian are already known from the other C ii] lines,
all that is left to find is the area. For each successive gaussian the χ2 statistic is
calculated to find the best fit to the data. Overplotted in blue is the gaussian which
produces a χ2 value of +2.71 greater than the zero flux model (the case of no line
existing). This value is shown as the solid vertical line on the bottom plot which
corresponds to the upper limit on the line flux (1.2× 10−14erg cm−2 s−1).

feature location was calculated and this constant was used as the zero-flux level.

The median was chosen instead of the mean to negate the effect of single bad

pixels, as outlined in Stoehr et al. (2008). An upper-limit was found by selecting

the flux that was closest to χ2
ref +2.71 value, where χ2

ref was the value for the zero

flux model (the case where no lines exists). 2.71 is the value in a χ2 distribution

that gives 90% confidence for one degree of freedom (Lindgren & McElrath, 1959).

In this case the upper-limit was calculated to be 1.2× 10−14erg cm−2 s−1.

5.5 Emission Line Fluxes

The fits for all 11 HST/STIS E230M observations of EG And from Cycle 11 and

Cycle 17 can be seen in Appendix A. For each observation the data have been

fit with the MELF technique described in Section 5.2. Each plot provides the

best-fit value, together with the relevant error for the main line parameters, as
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Table 5.2: Integrated line fluxes and errors for C ii] 2325Å multiplet emission
lines. These fluxes were measured using the MELF technique described in Section
5.2. All fluxes are quoted in units of 10−15erg cm−2 s−1. The first seven rows of
the table correspond to Cycle 11 observations while the remaining four are Cycle
17 observations. The φ column indicates the orbital phase of the observation. The
EG And observations have been de-reddened using an E(B-V) value of 0.05, while
the HD148349 observation has been de-reddened using a value of 0.33. The asterisk
marks an upper-limit where a flux could not be accurately measured. In this case
the upper-limit was found by selecting the flux equal to χ2

ref + 2.71, where χ2
ref

was the value for the case where no lines exists. The date of observation (HJD)
is given by JD - 2,450,000. Target names are shortened to E (EG And) and H
(HD148349).

HJD Target φ 2324.21 2325.40 2326.11 2327.64 2328.83
2515 E 0.798 5 ± 2 94 ± 5 249 ± 6 51 ± 4 108 ± 5
2564 E 0.899 8 ± 2 67 ± 4 174 ± 4 35 ± 3 62 ± 3
2631 E 0.038 6 ± 1 44 ± 2 137 ± 3 24 ± 2 39 ± 2
2658 E 0.095 4 ± 1 45 ± 2 133 ± 2 28 ± 2 43 ± 2
2677 E 0.133 9 ± 1 75 ± 3 196 ± 3 39 ± 3 65 ± 2
2687 E 0.153 5 ± 1 69 ± 2 175 ± 2 35 ± 2 56 ± 2
2852 E 0.497 12* 138 ± 6 427 ± 8 72 ± 5 173 ± 7
5059 E 0.070 8 ± 3 79 ± 6 190 ± 6 40 ± 12 82 ± 5
5063 E 0.078 9 ± 5 65 ± 8 180 ± 9 41 ± 20 78 ± 8
5109 E 0.173 5 ± 4 112 ± 7 272 ± 9 64 ± 6 134 ± 7
5077 H - 105 ± 15 227 ± 24 683 ± 26 192 ± 21 225 ± 23

well as the values of the five diagnostic line ratios, together with their errors.

Table 5.2 shows the integrated line fluxes for all of the observations.

Figure 5.6 shows how the flux from each of the four strongest lines from

the C ii] 2325Å multiplet varies with mean continuum. The mean continuum

in this case has been calculated from emission-free regions either side of the

multiplet. In each case, the flux and mean continuum from the most-eclipsed

observation (φ = 0.038) have been subtracted. This effectively removes the levels

of chromospheric flux that would be expected from the red giant. By analysing

the excess flux in the other observations (outside eclipse), the effect of the white

dwarf on the system can be assessed. Straight-line fits, which take the error values

into account, illustrate how the emission for each line varies with continuum level.

While in general the fluxes appear to increase linearly with mean continuum, the
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higher-state observations (Cycle 17 and φ = 0.497) do not appear to obey the

trend as much as the other observations. Figure 5.7 shows how the flux from

the four strongest lines of the multiplet varies with orbital phase. It can be seen

again that both the Cycle 17 observations display higher flux levels than their

corresponding orbital phase observation from the earlier cycle. This proves that

not only is the white dwarf responsible for excess emission outside of eclipse, but

that amount of emission it contributes varies for different observing cycles.

5.6 Line Ratio Diagnostics

As noted by Harper & Brown (2006) the C ii] lines have an advantage over the

more commonly used Si ii] lines because they have lower overall opacity, and hence

are useful electron density probes for cool star atmospheres. Table 5.1 shows that

the five line ratios used are R1, R2 and R3 (Electron Density Diagnostics) and R4

and R5 (Opacity Diagnostics). The three electron density diagnostics are shown

in Figure 5.8 for EG And and HD148349. The EG And observations give an

average electron density of ∼ 7× 108 cm−3. As there is only a single HD148349

observation the average value from the three ratios of ∼ 4 × 108 cm−3 is less

dependable. While the electron density values seem to converge for the three

EG And line ratios, there is an obvious spread in values for HD148349. This

discrepancy is discussed in Stencel et al. (1981). More accurate collision strength

values and improved A-values are suggested by Stencel as ways to help constrain

the calculations. In this case the uncertainty in the flux values contributing to

the line ratios is the most likely factor in the disparity. Multiple observations of

HD148349 would improve the accuracy. The R4 diagnostic ratios the 2327.64Å

line (the line of the multiplet that is most affected by absorption) to the weakest

2324.21Å line, the ratio itself is the least reliable of all five of the line ratios,

so the R5 ratio is chosen instead, which ratios the less absorbed 2328.83Å and

2325.40Å features.

Figure 5.9 shows the line ratios that have the least uncertainty associated

with them, R1 and R5. These ratios do not make use of a common transition.

Excluding the high-state observations in the right panel of Figure 5.9, there is

evidence for a decrease in R1 which implies an overall increase in density outside
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Figure 5.6: Fluxes of each emission line of the C ii] 2325Å multiplet against
the mean continuum at that region. Each line and continuum value have had
the eclipsed component (φ = 0.038 phase) values subtracted. In the plot “EC”
stands for “Eclipsed Component”. The filled red circles correspond to the Cycle 17
observations while the empty blue circles correspond to the Cycle 11 observations.
The red asterisks indicate fluxes that were gathered from poor fits. A fit to the
points has been included showing the linear relationship of the two parameters.
The slope of the lines can be seen to be different for each fit as would be expected
if the electron density is changing.

eclipse. The R5 plot can be interpreted in different ways. Again, ignoring the
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Figure 5.7: Fluxes of each emission line of the C ii] 2325Å multiplet against
orbital phase. The filled red circles correspond to the Cycle 17 observations while
the empty blue circles correspond to the Cycle 11 observations. The red asterisks
indicate fluxes that were gathered from poor fits.

high-state observations (the φ = 0.497 data from Cycle 11, together with the

Cycle 17 observations), the measurements for phases around mid-eclipse ±0.2 do

not differ within errors, indicating a uniform medium is observed when the white

dwarf is eclipsed. Compared with the out-of-eclipse (high-state) observations,

there is evidence for a decrease in opacity. This indicates a change in the emitting
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Figure 5.8: The line ratio (R1, R2 and R3) C ii] electron density diagnostics for
EG And and HD148349. The plot on the left shows the three line ratios for EG
And, while HD148349 is shown on the right. In both plots, the line ratios R1, R2

and R3 are shown in black, red and blue respectively.

gas, or a dilution with lower-density material.

5.7 Radial Velocities and Asymmetry

To measure the radial velocity of EG And (and HD148349) at each observational

phase, the C ii] 2325Å multiplet in each HST/STIS E230M observation was fit

using MELF to obtain the best-fit radial velocity shift for each observation. Com-

paring the resulting shifts between the C ii] peak locations of the best fit and the

wavelengths from Reader et al. (1980) resulted in a velocity measurement at each

phase. The velocities are shown in Table 5.3. These values were compared to

those compiled from several sources in Fekel et al. (2000) in Figure 5.10.

While the shape of the C ii] lines can be described generally by a gaussian

function (see fits in Appendix A), it can be seen that there is a blue asymmetry

evident in the base of the strongest lines, which could be either due to electron

scattering (if present in all lines), or a wind component (if strongest in only some).
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Figure 5.9: R1 and R5 line ratios plotted against phase. The R1 ratio on the left
shows how the electron density decreases (corresponding to an increasing R1 value)
outside of eclipse. The electron density also appears to have increased between
observing cycles 11 and 17. The right plot shows how, within error, there is little
change in the R5 ratio.

For details of electron scattering by a hot gas see Shields & McKee (1981). In this

case it can be seen that the scattering is asymmetrical in nature. If the model

fit is compared to the data, it can be seen that on the red-wing the line profile

is fit quite well by the model gaussian. The blue-wing, however, has additional

flux when compared to the model. The additional flux reaches out to -50 km

s−1 from the line centre around eclipse, while the red-wing of the line profile is

consistently 30 km s−1 from the centre. By subtracting the model from the data,

the percentage of the additional flux relative to the flux of the entire line can

be measured. Figure 5.11 shows how the asymmetry is strongest around eclipse

and not apparent at all in the uneclipsed observations or in the comparison star,

HD148349.

5.8 Fitting Al ii Features

Using the fitting technique applied to the C ii] 2325Å multiplet, some Al ii fea-

tures were identified in the data and fit in a similar manner. As outlined in
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Table 5.3: Radial Velocities for EG And and HD148349 based on C ii] 2325Å line
locations. The date of observation is given by JD - 2,450,000. Target names are
shortened to E (EG And) and H (HD148349).

HJD Target Cycle Orbital Phase Radial Velocity Phase Velocity
(φ) (φ− 0.25) (km s−1)

2515 E 11 0.798 0.548 -99.6 ± 0.3
2564 E 11 0.899 0.649 -95.3 ± 0.4
2631 E 11 0.038 0.788 -92.7 ± 0.4
2658 E 11 0.095 0.845 -90.1± 0.3
2677 E 11 0.133 0.883 -88.4 ± 0.4
2687 E 11 0.153 0.903 -84.3 ± 0.3
2852 E 11 0.497 0.247 -97.1 ± 0.3
5059 E 17 0.070 0.820 -94.6 ± 0.5
5063 E 17 0.078 0.828 -93.8 ± 0.6
5109 E 17 0.173 0.923 -90.8 ± 0.5
5077 H 17 - - +102.3 ± 0.4

Johnson et al. (1986) and Keenan et al. (1999) several Al ii lines can be utilised

as diagnostics of electron density and temperature. In particular, [Al ii] 2661Å

and Al ii] 2669Å are especially useful. Reference wavelengths for the Al ii line

locations in vacuum were taken from Kaufman & Martin (1991b) as 2669.951Å

and 2661.147Å.

The 3s2 1S - 3s3p 3P1 Al ii] 2669Å intercombination line is a strong emission

line of the Al ii features to fit. It can be seen in Figure 5.12 that the line is

in a relatively featureless part of the spectrum and can be fit with a gaussian.

While the forbidden 3s2 1S - 3s3p 3P2 [Al ii] 2661.147Å line has been identified

in some symbiotic nebulae, such as RR Tel (Keenan et al., 1999), little evidence

was found for its presence in either EG And or HD148349. Instead, upper-limits

were obtained to see how much flux could be hidden at this wavelength. A similar

method of calculation as that shown in Section 5.4 was utilised. Figure 5.13 shows

a sample upper-limit for the [Al ii] line.

Figure 5.14 shows that the variation of integrated flux from the Al ii] 2669Å

line varies with orbital phase in a similar manner to the C ii] lines in Figure 5.7.

Once again it appears that the higher-state Cycle 17 and φ = 0.497 observations

do not follow the same trend as the other observations. The [Al ii] 2661Å upper-
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Figure 5.10: Radial velocities of EG And C ii] lines. The black solid-line curve is
based on the best-fit red giant velocity curve calculated by Fekel et al. (2000) based
on infrared photospheric radial velocity measurements of EG And. Note that the
best-fit curve is circular. The filled blue circles represent Cycle 11 observations,
while the filled red squares represent Cycle 17 observations.

limits can be used to obtain lower-limits of the electron density by calculating the

ratio to the Al ii] 2669Å line. The resulting lower-limits of electron density are

show in Figure 5.15. These limits reinforce the electron density values calculated

from the C ii] 2325Å density diagnostic as they provide lower-limits to the values

obtained from that analysis.

5.9 Constructing C ii] Models

By combining the emission line fits from MELF (section 5.2) with a model of the

absorption due to the giants chromosphere and lower wind using Atomicspec, a

software package developed by Crowley (2006), a model of the C ii] 2325Å mul-

tiplet was developed to show how the dual effects of emission and absorption
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Figure 5.11: Asymmetrical scattering flux as a percentage of the total line profile.
The filled red circles represent the Cycle 17 observations, while the empty blue
circles show Cycle 11. Just as the Cycle 17 appears to have stronger flux levels
than corresponding phases from Cycle 11, so too the asymmetrical flux in the C ii]
line profiles is stronger in Cycle 17.

shape the spectrum at this region. For all modelling, vacuum wavelengths were

adopted. The models were constructed by combining 3 separate components cor-

responding to different regions of the system: a continuum component, emission

component and an absorption component.

Continuum Component

The continuum due to the white dwarf dominates the UV. At redder wavelengths,

nebular recombination continuum and continuum from the giant are seen. As a

comparison the isolated red giant (Figure 5.4) shows very little UV continuum.

To estimate the continuum component of the 3-component model, the mean con-

tinuum for the 2320 - 2330Å region of the spectrum is used. This was calculated

as part of the MELF process by finding a mean continuum value in a featureless
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Figure 5.12: Al ii] 2669Å lines in both HD148349 (top panel) and EG And (bot-
tom panel). In both cases the data is in black with the model fit in red. The
integrated line fluxes are annotated on both plots.

region either side of the C ii 2325Å multiplet and fitting a straight-line between

them. For each observation that was modelled a corresponding constant mean

continuum value was adopted (the mid-point of the continuum line described

above) instead of a line-fit that varied with wavelength. This meant that any

slope in the data continuum will not be fit accurately but this was considered an

appropriate simplification, at least initially.
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Figure 5.13: Upper-limit for the [Al ii] 2661Å line. In the top panel, successive
models were compared to the data by calculating the χ2 statistic. The bottom
panel shows the χ2 values for the models. Overplotted in blue (in the top panel) is
the gaussian which produces a χ2 value of +2.71 greater than the zero flux model
(the case of no line existing). In this case the value was found to be 2.42×10−15erg
cm −2 s−1.

Figure 5.14: Integrated line fluxes for Al ii] 2669Å lines against orbital phase.
The filled red circles represent the Cycle 17 observations while the empty blue
circles show the Cycle 11 observations. The error in the line fluxes is of the order
of the symbol size.
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Figure 5.15: Electron density limits, based on the ratio of the Al ii lines
2669/2661. As the integrated fluxes for the 2661Å line are all upper-limits, the
resulting electron densities are all lower-limits. The electron density values are
measured using the values in Keenan et al. (1999).

Emission Component

The emission component of the model is taken from the profile fits using the

described MELF technique. As the base model, the emission line model that was

the best fit to the most-eclipsed observation of EG And (φ = 0.038) was cho-

sen. This model should correspond to the emission line flux caused by collisional

excitation of the C ii in the chromosphere with no additional influence from the

white dwarf. As it happens, some continuum in the φ = 0.038 observation can

be seen and this is taken into account by the MELF fitting - resulting in a model

with a small amount of continuum. This low-level continuum could be caused by

scattered light from the dwarf through the red giant atmosphere, due to partial

covering of the nebular continuum region around the white dwarf, or an addi-

tional, more extended continuum component. This additional continuum in the

emission component is taken into account in constructing model below.
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Absorption Component

The white dwarf continuum undergoes absorption as its light passes through the

red giant upper atmosphere and wind. This absorption component was mod-

elled using Atomicspec, a spectral modelling code developed by Crowley (2006).

This code populates the atoms thermally using Boltzmann’s distributions and

and input values of temperature and column density. Although this model as-

sumes local-thermodynamic equilibrium, in the absence of detailed observations

to form a more complicated model the is a good approximation to the observa-

tions. When generating absorption models it is necessary to consider the Co ii,

Ni ii and Fe ii species, which have lines around the location of the C ii] multiplet.

To disentangle this absorption from the C ii] multiplet components in the 2320

- 2330Å region, the column densities of the individual species are estimated by

using lines from similar multiplet terms, but in the 2350 - 2370Å region, which

is emission-line free (see Figure 5.16). In the case of Co ii, the lines at 2354.14Å

and 2364.55Å correspond to multiplet(s) in the C ii] region, while for Fe ii, lines

at 2359.83Å and 2365.55Å match. Finally, for Ni ii, the line at 2368.107Å can be

used. Temperature was varied to see the effect on the absorption component of

the models. Having discerned no appreciable sensitivity to temperature within

±5000 K, a temperature of 8000 K was used, which was the approximate value

for the wind component at all phases, as discussed in Crowley et al. (2007).

5.10 Underlying Absorption

To test the effect of underlying absorption on the C ii] region, the MELF emission

line models can be combined with the constructed absorption models and the

impact of absorption on the integrated line fluxes can be calculated. For four

of the five lines the effect of the underlying absorption on the integrated flux is

found to be negligible. In the case of the 2327.64Å line the integrated flux is

significantly changed. Figure 5.17 shows a close-up of the C ii] 2327.64Å line.

In the bottom panel, overplotted in red is the estimated best fit. While the

other lines in the multiplet are fitted by finding the best fit to the core of the full

line (excluding broad base features), in this case only the blue wing of the line
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Figure 5.16: The region of the spectrum that was used to help construct the
absorption models by fitting Fe ii, Co ii and Ni ii in a largely emission free region.
The top panel is an observation from Cycle 17, while the bottom panel is an
observation from Cycle 11. The data is in black with the best Atomicspec generated
absorption model overplotted in red. The absorption species are labelled where
known. The green arrows indicate the lines used to determine the column densities
of the absorption species in the C ii] 2325Å multiplet region.

profile was used for the fitting and hence is considered a best guess. The rest

of the line is clearly mutilated by absorption. When the emission line model is

subjected to the suspected absorption taking place, it results in the blue gaussian
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Figure 5.17: Flux estimates of the mutilated 2327.64Å line. The top panel shows
the entire multiplet for EG And on the 15th August 2009, while the bottom panel
zooms in on the 2327.64Å line. While absorption either side of the line is self-
evident, it is difficult to gauge how much absorption underlies the C ii] emission
feature. In the bottom panel, the red line shows the estimate of the flux that could
well be present if there was no absorption component. This estimate is based on
fitting the unaffected blue-wing of the line and constraining the width of the line
to match that of the other C ii] lines. The blue shows how that estimate is reduced
when subject to the absorption model. Up to 60% of the emission flux appears
hidden due to underlying absorption.
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line on the plot. This shows that the absorption is significantly reducing the flux

that is seen from the emission line. Assuming that the original estimated flux

(in red) is a good approximation of the actual emission line flux, and comparing

that amount of flux to what is actually observed in the data, up to 60% of the

line flux has been lost due to underlying absorption. While this observation is an

extreme example, it can be seen from the line profiles that all of the observations

close to minimum phase suffer absorption that affects the 2327.64Å line. For this

reason, the line ratio diagnostics that are dependent on the 2327.64Å line are not

used.

5.11 Testing C ii] Models

Putting together the components outlined in Section 5.9 in different ways allows

the structure of the system to be tested. Intuitively, the white dwarf continuum

might be expected to be absorbed by the cool giant gas along the line of sight.

The C ii emission that is observed could be from different parts of the system. It is

known that such emission is visible in isolated giants, and also in the phases when

the white dwarf is eclipsed, so there is an underlying chromospheric component.

An increase in the flux of the C ii] lines outside of eclipse is also observed, together

with changes in the diagnostic parameters derived, which indicates that there is

additional material outside the normal chromospheric regions.

Based on this, the fitting of the C ii] region needs to be approached in two

complementary ways: one in which only the white dwarf continuum is absorbed,

and the other in which some (or all) of the C ii] emission is absorbed too. By

multiplying the white dwarf continuum component by the absorption component

it is possible to simulate the white dwarf light passing through the red giant wind.

A scaled version of the low-level eclipsed component continuum can be added on

top of the absorption lines to represent the (unabsorbed) chromospheric emission,

perhaps enhanced through the effects of the illuminating white dwarf. The other

basic set of models assumes that any additional emission is absorbed by the

same absorbing material as affects the white dwarf continuum. Figure 5.18 shows

the models generated from the three components of continuum, emission and

absorption. The blue line corresponds to adding the emission component to the
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Figure 5.18: C ii] 2325Å 3-Component Model Fits. The components of contin-
uum, emission and absorption were combined in different orders to try and match
the observations. At 2327.1Å there are overlapping Ni ii and Co ii absorption fea-
tures.

continuum component and then multiplying by the absorption component. The

red is the continuum multiplied by the absorption component with the emission

component added in at the end.

The two versions of the 3-component models are:

• Red: (continuum×absorption)+emission

• Blue: (continuum+emission)×absorption

It has been shown (in Section 5.10) that the multiplet emission lines of interest

as diagnostics are largely unaffected by the presence of the underlying absorption

lines.

5.12 Modelling the White Dwarf Effect

The C ii] 2325Å multiplet comprises chromospheric emission lines produced by

collisional excitation followed by radiative de-excitation. At eclipse, the white
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Figure 5.19: EG And Schematic Diagram. The UV continuum observed in EG
And comes from the white dwarf (blue arrow). Depending on the orbital phase this
continuum might then be attenuated as it passes through the giant atmosphere.
The chromospheric emission lines could arise from a separate part of the system
and be unaffected by the dwarf (orange arrow). Alternatively, the dwarf could
cause excess chromospheric emission which might then be subject to atmospheric
absorption too.

dwarf’s effect on the amount of C ii] emission is minimal and this flux component

is referred to as the ‘eclipsed component’ (see Figure 5.20).

As the white dwarf travels out of eclipse it causes more emission in these

lines due to photoexcitation. To characterise this additional flux component with

phase, a model of the white dwarf irradiating a growing area of the giant might be

assumed. A geometrical Sobolev law (Sobolev, 1975) with Lambertian scattering

could thus be employed to model how the additional flux due to the white dwarf

varies with orbital phase using an expression of the form:
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Figure 5.20: C ii] 2325Å multiplet for an orbital phase of φ = 0.038. This
spectrum was produced by combining three separate observations of EG And on
the 22nd December 2003.

f(θ) = a[(Sin(θ) + (π − θ)Cos(θ))/π] (5.4)

where θ is the phase angle and a defines the strength of the curve.

Figure 5.21 shows the additional flux due to the white dwarf as a function of

orbital phase. It is apparent that the effect of the white dwarf must be treated

separately for different observing cycles (comparing the star symbols to the cir-

cles) and possibly even between ingress and egress (comparing the empty to the

filled circles). When a curve of the form described in Equation 5.4 was fit to the

egress observations from Cycle 11, the best fit occurred when a = 1.5 × 10−13.

While the Cycle 17 data appears to have high additional flux components, this

could be explained by the fact that the eclipsed component that was subtracted

corresponded to the Cycle 11 eclipse. If the system changed with time (as ap-

pears to be the case) then the eclipsed component could possibly be higher during

Cycle 17.
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Figure 5.21: Additional flux (i.e. flux after subtraction of eclipsed component ∼
3.9×10−14erg cm−2 s−1). The filled blue circles show egress Cycle 11 observations,
while the empty blue circles are the same observing cycle but at ingress. The red
stars are Cycle 17 observations. The blue dashed-line shows the best fit form of
Equation 5.4 fit to the Cycle 11 egress values.

5.13 Discussion and Conclusions

The C ii] 2325Å multiplet was discussed in terms of its significance in characteriz-

ing giant chromospheres. MELF, a method of fitting all five lines of the multiplet

was described and values of integrated flux, line width and line ratios were listed.

This analysis represents the most in-depth exploration of the C ii] 2325Å multi-

plet in any symbiotic system to date. The analysis spans two observing cycles

and portrays the changing parameters of the chromosphere and wind. The av-

erage best-fit wavelengths of the five lines were 2324.213, 2325.413, 2326.106,

2327.634 and 2328.856Å. While these vary by a maximum of 0.02Å (2.6 km s−1)

compared to the accepted NIST values from Reader et al. (1980), they are closer

to Young et al. (2011) values which were derived using HST/STIS observations

of the symbiotic nova RR Telescopii. This shows that the C ii plasma was at rest

with respect to the M giant.

Estimates of the flux of each line of the C ii] 2325Å multiplet were used to

calculate diagnostic line ratios and also to chart the changing flux levels for each
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line as the system goes through eclipse. Values of ne ∼ 7 × 108 cm−3 and ne ∼
4× 108 cm−3 were measured for EG And and HD148349 respectively. These are

similar to the expected values of ne ∼ 108− 109 cm−3 found for γ Dra (K5III), γ

Cru (M3III), α Ori (M2Iab) and RR Tel by Judge & Carpenter (1998).

The flux from each line of the multiplet is seen to increase linearly with the

mean continuum of that observation. However the slope of each linear fit is dif-

ferent, suggesting that the line fluxes do not increase at the same rate, indicative

of a change in electron density with phase. The change in the system between

the two observing cycles is investigated. When characterising the EG And wind

structure, the Cycle 17 and φ = 0.497 higher-state fluxes need to be handled

separately. The additional C ii] flux due to the white dwarf was modelled as a

geometrical Sobolev law. The photometric variations shown in Chapter 4 indicate

that EG And undergoes semi-regular pulsations. This is supported by the fact

that the different observing cycle observations have to be handled separately as

the system changes considerably over timescales of the order of observing cycles.

Higher density and different radial velocities suggest slightly different emitting

regions between observing cycles.

The C ii] models show that the underlying absorption lines do not affect the

important flux lines significantly and the density diagnostics can be used. They

also illustrate where the hot and cool components of gas arise geometrically in the

system. Absorption line profiles were modelled by varying the column density,

width and number of line components. Initial, single-component fits, did not

fully describe the line profiles at all epochs, and it was found that that a second,

weaker component sometimes had to be added in at an offset between -10 and

-50 km s−1. This is evidence for flocculent wind structures similar to those found

previously by Crowley et al. (2007). Since it was not necessary to include this

additional component for all of the observations, this hints at the dynamic nature

of the wind structure.

Following the discussion of radiative heat loss in the chromosphere (see Chap-

ter 4), the energy budget for the outer atmosphere can be revisited. The flux

energy of the wind itself can now be included in the discussion. In the higher

gravity cool stars, like the Sun, comparable parts of the wind energy go into ex-

panding the atmosphere out of the stellar gravitational field and accelerating it
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to the terminal wind velocity (v∞ ∼ vesc). For lower gravity cool stars almost all

of the driving energy of the wind goes into lifting the expanding atmosphere out

of the gravitational field and v∞ << vesc (Holzer & MacGregor, 1985):

vesc =

√
2GM

R
(5.5)

Using the parameters outlined in Chapter 2 for EG And (R = 75R�, M = 1.5M�)

and HD148359 (R = 83R�, M = 2M�), escape velocities of 87 and 96 km s−1

respectively, are estimated. The total energy flux through the outer atmosphere

must equal the wind flux FW plus the total energy flux radiated by the outer

atmosphere above the photosphere, F?(tot) (Judge & Stencel, 1991). The latter

term was calculated in Chapter 4. FW is the energy flux at the atmospheric base

required to drive the wind alone. Assuming a gravitationally bound expanding

stellar atmosphere, this term is given by Holzer & MacGregor (1985) as:

FW =
1

2
Ṁ
(
v2
∞ + v2

esc

) 1

4πR2
?

(5.6)

Assuming that there are initially no radiative losses and that the flow is subsonic

at r = R? and supersonic at r =∞, Holzer & MacGregor show:

FW ' 3.3× 103

(
Ṁ?

10−7

)(
M?

M�

)(
400R�
R?

)3(
1 +

v2
∞
v2
esc

)
(5.7)

Using an upper-limit of Ṁ? = 7.5×10−8M� yr−1 (Crowley, 2006) in Equation 5.7

gives a value of FW = 4.7× 105 erg cm−2 s−1 for EG And which is less than the

F?(tot) value of 7.9× 105 erg cm−2 s−1 from Chapter 4. Compared to other stars

in Judge & Stencel (1991), the trend of slightly larger F?(tot) compared to FW is

maintained. FW is most-likely larger compared to other stars as an upper-limit

was used for Ṁ?.

By calculating the response of the outer atmosphere to the passage of mechan-

ical energy fluxes, Hartmann & MacGregor (1980) suggest a way of explaining

the different atmospheric phenomena seen across the cool star population. A me-

chanical flux density, Fm, can be represented as the product of the characteristic
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energy density εm and a characteristic speed of propagation vprop:

Fm ' εmvprop (5.8)

The energy density can be expressed as:

εm =
1

2
Cρv2

rms (5.9)

where ρ is the density of the outer atmosphere, vrms is the characteristic wave

amplitude velocity, and C is a constant of order unity that depends on the wave

geometry. The uncertainty in this value is negligible compared to the size of the

uncertainty in the density. For the purpose of these calculations 1
2
Cv2

rms ∼ v2
mp,

where vmp is the most probable velocity. If the density is taken to be:

ρ = nHmp (5.10)

where nH is the hydrogen particle density and mp is the proton mass, Equation

5.8 becomes:

Fm ' vpropnHmpv
2
mp (5.11)

There are two alternatives for vprop. The speed of propagation may be described

by the sound wave speed vS or the Alfvén wave speed vA:

vS = 12.85

√
T

104
(5.12)

vA =
B√
4πρ

(5.13)

The characteristic temperature of the lower chromosphere is taken to be 8000 K

(Crowley, 2006), yielding vS = 1.15 × 106 cm s−1. Subbing this into Equation

5.11 as the value of vprop, the mechanical flux energy provided by sound waves,

FMS
, can be calculated. vmp can be found from the FWHM value of 29 km s−1

found from the C ii] 2325Å multiplet lines. The lines have a gaussian profile1 and

because of this, vmp can be found from the line widths:

FWHM = 2
√
ln2vmp = 1.66vmp (5.14)

1As shown in Equation 1.43.
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as shown by Judge & Carpenter (1998). nH can be estimated using the ne val-

ues calculated from the density diagnostic study. To do this, a measure of the

ionisation balance ne/nH is needed. This can be taken to be 0.011 and leads

to nH ∼ 1011 cm−3, similar to values shown by Crowley (2006). This results in

FMS
= 7.5× 105 erg cm−2 s−1.

To estimate the mechanical flux energy if the speed of propagation is the

Alfvén wave speed, it is necessary to estimate the strength of the magnetic field.

For Alfvénic waves vmp = δvA, where δvA is the tangential Alfvén wave speed.

To avoid non-linear damping, δvA ≤ 1
2
vA. Using vmp = 1.75 × 106 cm s−1, vA =

3.5× 106 cm s−1. Substituting this value into Equation 5.13 gives B ∼ 6 Gauss,

similar to values estimated by Hartmann & MacGregor (1980). Solving Equation

5.11 using the Alfvén speed gives a mechanical flux energy of FMA
= 2.3 × 106

erg cm−2 s−1.

The energy budget for the outer atmosphere of EG And can be found by

adding the calculated values of the total chromospheric radiative losses and the

energy required to drive a wind:

F?(tot) + FW ' 1.3× 106 erg cm−2 s−1 (5.15)

This value can be directly compared to the two values of mechanical flux energy

produced by sound and Alfvén waves, FMS
= 7.5× 105 erg cm−2 s−1 and FMA

=

2.3 × 106 erg cm−2 s−1. While sound waves cannot be completely ruled out as

an energy mechanism, they do not seem to produce enough energy to heat the

chromosphere and drive the wind. Conversely, Alfvén waves appear to provide

more than the required energy. This fits in with the theory of Hartmann &

MacGregor (1980) that while acoustic waves dissipating through shock formation

in the low chromosphere can account for the temperature and density structure,

their damping lengths are far too short to effectively drive mass-loss. On the other

hand, damped Alfvén waves are efficient drivers of mass-loss and can account for

the observed terminal wind velocities. Frictional dissipation of Alfvén waves in

higher gravity stars could lead to the coronal heating and fast winds while in

lower gravity stars it could result in slower, more massive mass-loss. The role

1This is based on ionisation balances from studies of α Tau (K4III), α Ori (M2Iab) and G
Her (M6III) Hartmann & Avrett (1984); Luttermoser et al. (1994); McMurry (1999).
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of photospheric convection in producing these energetic waves is discussed in the

next chapter.
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6
Photospheric Convection in Red Giants

Along with the complexity of EG And’s atmosphere outlined in the previous

chapter, the mechanism that initiates and drives its wind is not yet clear. This

ambiguity is endemic of red giant stars. In a bid to comprehend what the un-

derlying mass-loss driving mechanism might be, a theory tentatively mentioned

in Schwarzschild (1975) was investigated. Schwarzschild hypothesized that “it

appears plausible - though far from certain - that this mass ejection is triggered

by photospheric convection”. This idea was also suggested by Sun Kwok (Lim,

1998) and Schröder & Cuntz (2005). In this chapter the photospheric motion of

giants is discussed along with previous efforts to understand the asymmetry of

optical spectral lines. LAST, a tomographic technique for cross-correlating low-

resolution spectra to measure the asymmetry of optical features, was developed

and applied to archival ELODIE data. Initial testing of these techniques are dis-

cussed in Roche et al. (2009). While the results do not prove that photospheric

convection could provide the initial impetus to instigate mass-loss in red giant

stars, they do impart several consequences on the nature of line asymmetries in

photospheric spectral features. The convective-granulation motions of the deep

photosphere will be transmitted to any magnetic field lines extending outwards

into the chromosphere and wind. This leads to magnetic Alfvén waves being
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induced and could possibly be the mechanism behind the heating of the outer

atmosphere of cool stars (Gray, 1976).

6.1 Photospheric Motions and Line Asymmetry

The photosphere, the visible surface of a star, is the region at which the plasma

of the star becomes transparent to photons of light. At this point, any energy

generated in the stellar interior becomes free to propagate out into space. Most

stars having Te less than about 10,000 K undergo convection in their visible pho-

tospheric layers (Landstreet, 2007). The convective bubbling on the surface of

the Sun provided the first case of convection being observable in stellar atmo-

spheres. These solar granules are well described by Bénard Cells - convection

cells that appear spontaneously in a liquid/gas layer when heat is applied from

below. Visually they have the appearance of hot rising bubbles, as shown in the

left panel of Figure 6.1. This figure shows a comparison of granule size for the Sun

and that expected for an M3 giant. The solar disk is covered by approximately

a million cells. They have a lifetime of about 10 minutes and an average size of

about 1.3 × 108 cm (larger cells can stretch to 2×108 cm). It is estimated that

the temperature difference between the hotter rising material in the middle of the

cell and cooler/darker infalling material in the surrounding lanes is about 100 K,

corresponding to a 25% brightness difference (Gray, 1976).

Stellar convection dominates the shaping of spectral lines in cool stars (Gray,

1992) as a convecting atmosphere will not have equal regions of upward, hori-

zontal and downward flows. Figure 6.2 shows that the upward flow has a higher

temperature and will be blue-shifted, while the sinking region will be red-shifted,

as seen in the solar case. The weaker contribution will tend to form a depressed

wing on the stronger contributor (Gray, 2005). A way of differentiating between

the different velocity fields and the asymmetry present became known as the

line-bisector method. It involves joining the midpoints of several horizontal lines

across a spectral line profile. The construction of such a bisector is shown in Fig-

ure 6.3. This line bisector method was first applied to solar spectral lines by Voigt

(1956) before being applied to other stars by Gray (1980, 1981, 1982). Unlike the

case of the Sun, convective structure in the atmospheres of other stars cannot be

140



6.1 Photospheric Motions and Line Asymmetry

Figure 6.1: The image on the left shows the scale of solar granulation. The image
on the right shows a 3D hydrodynamical model of convection in an M3 giant from
Kucinskas et al. (2006) using the stellar atmosphere modelling code, PHOENIX
(Hauschildt et al., 1997). While the granular surface cannot yet be directly imaged
on giants, the models now being produced show granular patterns to those observed
on the Sun.

directly imaged. Landstreet (2007) provides a review of some of the observational

clues concerning photospheric velocity fields and, along with Gray (2009, 2010),

cites the main sources of velocity fields in the photosphere as macroturbulence

(broadening due to the velocity of the distribution of granulation) and asymmetry

arising from the rising and falling motion of the granules and their subsequent

Doppler shifts. Schwarzschild (1975) suggests that by comparing the physical

parameters of granules on the Sun to observations of giant and supergiant stars

that the dominant convective elements might be so large as to only a number a

few.

As well as the coronal/non-coronal divide between stars, there are other em-

pirical boundaries across the HR Diagram. The granulation boundary runs from

F0V to G1Ib stars (De Jager, 1990). This boundary is defined by bisector shapes

such as those in Figure 6.3. The bisector inclination changes direction from one

side of the boundary to the other. The right (cool) side of the boundary shows

bisectors typically expected from granulation while the left (hot) side display a

bisector indicative of some other type of velocity field. The granulation boundary
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Figure 6.2: The origin of spectral line asymmetry from Dravins et al. (1981). The
left panel shows an idealised depiction of a stellar surface where ∼ 75% is covered
with bright granules while the rest is darker intergranular lanes. The center panel
shows a high-resolution spectral line profile for both regions of the surface. Hot
material rising from the granule will give a blueward Doppler shift to its spectrum
while the material falling away in the cool lane will give a redward Doppler shift.
The right panel displays the resulting profile with low spatial resolution to average
over many granules. The line bisector is show as a slight “c-shape” and is blue-
shifted. The dashed overplotted profile shows what a symmetric profile would look
like if there were no velocity fields on the surface.

was discovered by Gray & Nagel (1989) and is shown in Figure 6.4. Granulation

is considered to be the top of the convective envelope in stars and the region

defining the onset of convection on the HR Digram will be associated with the

boundary. The right panel of Figure 6.4 shows how they are close enough to be

deemed connected, except at higher luminosities where the mixing length is not

as clearly defined. Another empirical boundary is the rotation boundary (not

shown). It parallels the granulation boundary and separates the slow rotating

cool stars on the right of the HR Diagram with fast rotating hot stars on the left

of the HR Diagram. Doppler shifts caused by stellar rotation can affect spectral

line profiles, especially for fast rotating hot stars. Since this thesis is mainly con-

cerned with cool slow rotating giants, the minor effects of rotational broadening

will be ignored for the rest of the analysis.
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Figure 6.3: Line bisector construction from Gray (2005). The left panel shows
how the midpoints of the widths of several horizontal line segments (dashed lines)
are used to make up a bisector. The right panel is an expansion of the bisector
which is necessary to appreciate its shape and the asymmetry of the line profile.

6.2 Tomographic Technique and Data Masks

Dravins (1987) points out that when observing solar granulation in optical line

profiles, the resulting asymmetries are on the order of 1% of the line width. To

search for line asymmetries in stellar photospheres, very high spectral resolution

is required. Even in cases where such high resolution is attainable, analysing in-

dividual line profiles may not be an efficient method of identifying velocity fields

in the photosphere. If many spectral lines could be inspected simultaneously, effi-

ciency would be improved and the need for high resolution data could be lessened.

Alvarez et al. (2000) describes the need for such a method and this leads to the

tomographic1 technique employed in Alvarez et al. (2001a). Although originally

implemented to follow the propagation of shock waves across the photosphere

1The technique is described as “Tomographic” in the classical sense - due to the process of
taking cuts or slices of a spectrum. It should not to be confused with the broader astronomical
use of the word meaning a reconstruction of a configuration using projections taken under
different angles.
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Figure 6.4: The left panel shows luminosity class plotted against temperature to
show the position of the granulation boundary. The filled squares denote normal
granulation while the inverse bisectors are indicated by open circles (Gray & Nagel,
1989). This boundary is compared to the convection boundary in the right panel,
which Gray & Nagel label “mixing-length”.

of long-period variable (LPV) stars, there is scope for applying this method to

non-LPV giants.

While the bisector technique (Figure 6.3) is sufficient for observing asymmetry

in a single feature, more persuasive methods are needed for detecting asymmetry

across a series of lines. Red giant spectra are extremely crowded in the optical

domain. The tomographic technique relies on the correlation of the observed

spectrum with numerical masks probing layers of different optical depths. The

masks are numerical arrays of one’s and zero’s that allow spectral values through

the “holes” (the one’s) while blocking out the rest of the spectrum (the zero’s).

The mask is stepped across the spectrum and at each step an average value

of the unmasked parts of the spectrum is calculated. It is therefore possible to

extract relevant information from crowded optical spectra by forming a composite

profile of the lines formed at the same depth. The value of the composite at each

wavelength step is given in Jorissen et al. (2003) as a convolution:

Comp(∆λ) =

∫ λ2

λ1

s(λ−∆λ)m(λ)dλ (6.1)

where s(λ) is the observed spectrum, m(λ) is the mask template and λ1 and λ2
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are the boundaries of the spectral range covered by the observed spectrum.

The masks themselves are constructed using reliable synthetic spectra of late-

type giant stars to identify the depth of formation of any given spectral line.

The computed synthetic spectra originate from static models of red giant stars

in spherical symmetry by Plez (1992) and Plez et al. (1992). These synthetic

spectra were computed for the spectral range 3850 - 6900Å with a resolution of

∆λ = 0.03Å. The spectral synthesis used linelists from Plez (1998), Bessell et al.

(1998) and Alvarez & Plez (1998) which address the TiO and VO bands that can

be prevalent in the optical spectra of giants (as seen in Chapter 4).

For simplicity, the geometrical depth corresponding to monochromatic optical

depth τλ = 2/3 was found at each considered wavelength, λ. This function should

not differ much from the average depth of formation for sufficiently strong lines

(Magain, 1986). For the masks used in this study the depth function is:

x = logτ0 (6.2)

where τ0 is the optical depth at the reference wavelength of 1.2µm. Different

masks are then constructed from the collection of N wavelengths λi,j(1 ≤ j ≤ N)

such that xi ≤ x(τλi,j = 2/3) < xi+1 = xi + ∆x where ∆x is some constant opti-

mized to keep enough lines in any given mask without losing too much resolution

in terms of geometrical depth. Figure 6.5 shows how the masks are formed. The

triangles mark the minima of the depth function. The range, or depth, that is

being considered is marked by dashed lines. When a minima falls in this range,

a corresponding “hole” is created in the mask as shown by the thick dashes at

the bottom of the plot. The details of the masks used in this study are shown in

Figure 6.6. The masks were constructed from synthetic templates with log(g) of

0.9 and a temperature of 3500 K.

6.3 Line Asymmetries with Spectral Tomogra-

phy

While there have been several attempts to apply the tomographic technique to

LPV and supergiant stars (Alvarez et al., 2000, 2001a,b; Jorissen et al., 2003;
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Figure 6.5: Tomographic mask construction showing how the “holes” (thick
dashed lines at the bottom of the blot) correspond to lines formed in the range
selected (triangles falling within the thin dashed lines). The range chosen was for
lines forming at depths x such that −1.3 ≤ x < −3.3 and a large ∆x value was
used for clarity.

Josselin & Plez, 2007) it has not been rigorously tested on a sample of low and

intermediate mass non-LPV giants. To investigate the photospheric motions of

the cool giants like EG And and HD148349, a method was developed to analyze

existing optical spectra of giant stars. This method will hereafter be referred to

as LAST (Line Asymmetries with Spectral Tomography). LAST is an original

IDL procedure written for this study in order to incorporate several processes.

These processes included reading both archival spectra and numerical masks and

formatting them in a manner that allowed them to be compared. LAST then

applies the masks to the data and forms composite spectral features. Finally, a

measurement of the skewness of the resultant feature is carried out for each mask

to determine how the asymmetry changes throughout the photosphere.
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Figure 6.6: Numerical masks from Alvarez et al. (2001a) and Jorissen et al.
(2003). The masks were constructed from synthetic templates with log(g) of 0.9
and a temperature of 3500 K.

To test LAST, a simplified version of the data and masks were modelled. The

data was simulated as three gaussian lines and a continuum at a resolution similar

to that of the ELODIE data. A numerical mask was also simulated with holes

that correspond to the size of those from Alvarez et al. (2001a). The holes lined

up with the three simulated absorption lines. The top row of Figure 6.7 shows

close-ups of the three simulated absorption lines. The mask holes are shown as

the narrow gaps between the blue and red vertical lines. The two subsequent

rows of Figure 6.7 correspond to the mask being stepped along the spectrum.

The composite spectral feature formed from this process is shown in Figure 6.8.

It can be seen that lowest point of the feature is at the zero displacement point

as expected due to to the mask holes lining up with the deepest, central region

of the spectral lines.

After confirming the composite formation was successful for simulated data,

LAST was applied to an ELODIE observation of the mira V Tau and compared to

the results obtained in Alvarez et al. (2001a) for the same target. The composite

spectral features matched up almost perfectly for all 8 numerical masks as shown

in Figure 6.9.

147



6. PHOTOSPHERIC CONVECTION IN RED GIANTS

Figure 6.7: Simulated data to test LAST. The resolution is comparable to that of
ELODIE with three absorption features of similar dimensions to those appearing
in ELODIE spectra. A numerical mask has also been simulated with holes that
correspond to the size of those from Alvarez et al. (2001a). The blue and red
vertical lines show the start and end points respectively of the mask hole. The
columns display the three simulated absorption lines, while the rows show the a
mask hole as it is stepped along the spectrum. The resulting composite spectral
feature is show in Figure 6.8.

Next it was necessary to identify which targets could be examined with LAST.

The tomographic technique was originally developed for stars that were observed

with ELODIE. ELODIE, as discussed in Chapter 2, covered a spectral range 3850

- 6800Å with a spectral resolution of 42,000 (Baranne et al., 1996). Archival data

were obtained in FITS format through the CDS database. All the spectra were

reduced to the rest-frame and normalized to their pseudo-continuum (Prugniel &

Soubiran, 2001). This made the library ideal for applying a code to analyse all
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Figure 6.8: As the numerical mask is stepped across a spectrum it will form a
composite spectral feature. Using the simulated mask and data shown in Figure
6.7 the above composite spectral feature was formed. The red circle, green triangle
and purple square correspond to the three steps shown in Figure 6.7.

its contents in a consistent manner. There are 709 unique targets in the ELODIE

archive that have high enough spectral resolution for the masks to be applied.

These targets are shown in Figure 6.10. As the masks were constructed with

models using a Log(g) of 0.9 and a temperature of 3500 K, LAST was applied to

the 51 targets that have Log(g) less than 2 and a temperature of less than 4000

K. These targets are highlighted in the top right-hand corner of Figure 6.10.

When LAST is applied to a spectrum, it initially reads in a flux array directly

from the ELODIE FITS file for that star. The corresponding wavelength array

is then generated from parameters contained in the header file. Before applying

the numerical masks to the spectrum, bad pixel points must be removed. These

points are labelled as NaN values (i.e. “Not a Number”) in IDL and are the cause

of the gaps in the spectrum shown in Figure 6.11. While the removal of these

points may result in some of the spectral lines having an unrealistic shape, the

number of lines affected are very small and can be considered negligible. The

region shown in Figure 6.11 has a higher than normal number of NaN ’s and was

chosen to highlight their presence, but overall NaN ’s make up less than 3% of

the flux points in each spectrum.
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Figure 6.9: LAST composite comparison for V Tau. The top panel shows the
results obtained in Alvarez et al. (2001a), while the bottom panel shows the LAST
output for the same target. The numerical masks from Figure 6.6 are labelled C1
to C8. The features have been flux normalised and the the x-axis is -20 to 150 km
s−1 for the Alvarez et al. plots, and 0 to 100 km s−1 for each LAST plot.

Once the NaN ’s have been removed, the numerical masks are applied to the

spectrum and the mean of the unmasked fluxes is calculated. The mask is then
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Figure 6.10: All the archival ELODIE targets. The cool giants analysed for this
study have a Log(g) less than 2 and Te less than 4000 K. These limits are shown
as blue lines and confine the study to the targets in the top right-hand corner of
the plot.

Figure 6.11: A typical ELODIE Spectrum for an M2 giant. As with all ELODIE
library stars, the spectrum has been corrected to the rest frame and normalised
to the pseudo-continuum. The black line shows the original data with the gaps
indicating NaN s are still present. The underplotted red spectrum is the NaN -free
spectrum.
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stepped along the spectrum and at each step a new mean is calculated. As the

mask was generated by finding the optical lines formed at certain depths in a

synthetic spectrum, a composite spectral line should emerge from the steps, with

the lowest point coinciding with the point at which the mask holes line up with

the middle of the spectral lines. The code repeats this process for all eight of

the numerical masks shown in in Figure 6.6. The result is a series of composite

spectral features formed from lines at different depths in the photosphere. A

sample plot is shown in Figure 6.12. The skewness of each composite spectral

Figure 6.12: LAST Composite Feature for an ELODIE M2 Giant. All 8 numerical
masks are shown. In each case the x-axis show velocity from −100 km s−1 to +100
km s−1, while the y-axis shows the continuum-normalised flux.

feature is measured. Finally, the above steps are carried out for all 51 cool giants

in the ELODIE archive. When the skewness for at each layer (i.e. for each mask)

was averaged over all 51 targets a trend in the asymmetry of the optical spectral

lines was uncovered. This trend is shown in Figure 6.13. A positive skewness

suggests a blueshifted velocity field (upward motion) while a negative skewness

would imply a redshifted velocity field. While it is not possible to determine

absolute geometrical depths from the mask layers, the value of skewness of each
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layer relative to each other indicates an upwelling motion similar to what we

see in solar granulation. When these composite features were folded back across

their centre points and subtracted from each other, the peaks in their difference

gave an indication of the velocity fields involved. In the central layers (C3 - C5)

velocity fields of around ∼ 5 km s−1 were measured, while the innermost and

outermost layers showed little evidence of velocity differences.

Figure 6.13: The mean skewness for all of the ELODIE targets at each numerical
mask. While the absolute values will remain difficult to tie down (both for the layers
of the photosphere and the asymmetry values themselves) the values of skewness
through the photospheric layers relative to each other implies that the peak occurs
when the most material can be considered uprising.

6.4 Discussion and Conclusions

A method of measuring the asymmetry of spectral lines formed in the photosphere

was developed using the numerical masks of Alvarez et al. (2001a); Jorissen et al.

(2003) and a tomographic technique to obtain composite spectral features from

the optical lines forming at different layers in the photosphere. An original IDL
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code, LAST, was written to process more than 50 ELODIE giants that had log(g)

less than 2 and Te less than 4000 K.

This analysis represented the first attempt to determine the variation of spec-

tral line asymmetry across the photosphere of red giant stars. While it is dif-

ficult to determine quantitatively the actual value of the asymmetry, just as it

is difficult to assign the masks with real geometrical depths in the photosphere

(Jorissen et al., 2003), the change in the asymmetry of the layers relative to each

other would suggest an upward moving velocity field that increases in strength

and then subsides towards the outer layers of the photosphere. This image seems

to fit in with the expected picture of a stellar convecting atmosphere (Section

6.1) not having equal regions of upward, horizontal and downward photospheric

motions.

The lack of progress in this field is highlighted by the fact that Schwarzschild

(1975) is the most frequently cited work for analysis in this field despite the “ten-

tative” nature of the conclusions in that study. To estimate an energy flux from

the photospheric motions requires the use of an even older study. Schwarzschild

(1948) argued that the energy responsible for heating the outer atmosphere is

a stream of mechanical noise produced by granulation and transported into the

chromosphere. This convective energy flux is given by:

Fcon = ρ?ω
2vS (6.3)

where ρ? is the photospheric density, ω is the material velocity and vs is the

isothermal sound speed. To calculate ρ?, the ideal gas law was used:

ρ? =
P?µmH

kT?
(6.4)

where P? is the photospheric pressure, µ is the average particle mass, mH is the

mass of hydrogen, k is the Boltzmann constant and T? is the effective temperature

(given a value of 3500 K for the cool giants in this study). To estimate P?, a

pressure-gravity relationship from Gray (1976) was used:

P? = P�

(
g?
g�

)0.6

(6.5)
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Adopting a g? value of 10 cm s−2 (appropriate for the evolved cool giants in this

study), and solar values of P� = 3.8 × 104 g cm−1 s−2 and g� = 2.74 × 104 cm

s−1 results in P? = 3.3× 102 g cm−1 s−2. vS is given by:

vS =

√
kT

µmH

(6.6)

where k is the Boltzmann constant, µ is the mean particle mass and mH is the

mass of hydrogen. This works out at vS ∼ 5.5 km s−1. ω can be estimated as the

velocity of the rising granules taken from the LAST code ∼ 5 km s−1, which is

similar to the radialtangential macrotrubulence velocities found by Gray & Nagar

(1985). Substituting all three values into Equation 6.3 gives Fcon = 1.7× 108 erg

cm−2 s−1. Following Schwarzschild (1948), this value is divided by 10 (as at any

moment only one tenth of the surface will be occupied by rising granules) to give

an upper-limit for the energy transport of the steam of noise, Lnoise < 1.7×107 erg

cm−2 s−1. When compared with the energy budget discussions from the previous

chapters, this value appears high enough to satisfy the energy requirements of

heating the chromosphere and driving the wind.
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7
Conclusions and Future Work

In this thesis, the advantages of using EG Andromedae as a resource for studying

red giant chromospheres has been demonstrated. Unlike other binary systems

(i.e. ζ Aur and VV Cep), the relative size of the white dwarf compared to the red

giant means it can act as a pencil-beam UV backlight to spatially probe the giant

atmosphere. Recent HST/STIS ultraviolet observations of both EG And and the

M3III spectral standard HD148349 from Observing Cycle 17 are presented here

for the first time. This dataset is from the HST proposal No.11690, PI: Crowley

(Crowley et al., 2008a). These observations are part of an ongoing program that

also encompasses EG And observations from Observing Cycle 13, HST proposal

No.9487, PI: Espey (Espey, 2002).

As well as the UV data, new optical spectra of both EG And and HD148349

were recovered from acquisition images taken during both observing cycles. These

spectra were uncovered by developing a new technique for extracting contempo-

raneous low-resolution optical spectra from previously unused acquisition images.

These spectra were then incorporated into a synthetic photometry study to mea-

sure the variability of both targets. While EG And was found to be quite well-

behaved when the binarity of the system was accounted for, HD148349 was found

to be less bright than previous observations. Although there had been no pub-

157



7. CONCLUSIONS AND FUTURE WORK

lished values as low as the magnitudes found in this thesis, there is a wealth of

amateur observations that cluster around the values presented here. It seems

necessary that HD148349 should be further studied and perhaps demoted from

the catalogues of spectral standards. Through the photometric measurements

and comparisons to all relevant archival small aperture STIS observations, a cali-

bration correction factor was derived that makes the optical extraction technique

applicable to all past and future small aperture observations with HST/STIS.

The optical spectra from both targets were also compared to libraries of M

giant spectra. This comparison confirmed that both are currently M3 giants, but

also unearthed an onset point for the strong TiO bands in M class giants between

the M3 and M4 subclasses. New values of extinction were calculated and the flux

ratio of the two stars was used to calculate an improved distance to EG And.

This distance was supported by using the Wilson-Bappu relationship between

luminosity and the width of the Mg ii h and k lines. This relationship was ex-

amined, despite the line profiles being mutilated by the interstellar medium, by

exploiting the symmetry of the emission lines. Both EG And HD148349 showed

terminal wind velocities expected of intermediate size cool giants with EG And’s

higher speed possibly a symptom of the binarity the system. A similar effect is

seen in ζ Aurigae binaries.

Another aspect of the analysis was the C ii] 2325Å multiplet. This thesis

represents the most detailed study of these important electron density diagnostic

lines in any symbiotic system. MELF, a fitting procedure to simultaneously fit all

the lines of the multiplet and return values of integrated line flux, line width and

radial velocity was developed. The fitting routine also led to new values of the

wavelength of the emission lines that differ slightly from the accepted wavelengths

from Reader et al. (1980) and are closer to the new values presented by Young

et al. (2011). Underlying absorption from line blends was tested to determine

which line ratio diagnostics were most trust-worthy. These ratios were used as

electron density diagnostics and both targets were found to show similar values

to well-studied isolated cool giants. The effect of the white dwarf on the emission

lines in the chromosphere was modelled using a geometric Sobolev light-scattering

planetary atmosphere law. The additional flux seen at uneclipsed phases suggests

that additional material is being irradiated by the dwarf. This could be due to
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Energy Flux Calculated Value
(erg cm−2 s−1)

Lnoise 1.7× 107

F?(tot) 7.9× 105

FW 4.7× 105

FMS
7.5× 105

FMA
2.3× 106

Table 7.1: Red giant atmospheric energy budget values calculated in this study.

ancillary structure in the atmosphere caused by pulsations lifting material out of

the Roche potential.

The idea of the giant losing mass through energetic mechanisms in the pho-

tosphere was investigated. LAST, a tomographic technique to form composite

spectral profiles from low-resolution optical lines using numerical masks devel-

oped by Alvarez et al. (2001a) and Jorissen et al. (2003) was created and used

to form composites and measure the asymmetry across the photospheric layers of

archival cool giant stars. The resulting trend in asymmetry confirmed the gran-

ular motion expected of red giant stars. The energy mechanism imparting the

heat in the outer atmosphere could well originate from the convective envelope

and a combination of acoustic and Alfvén waves.

The energy budget further into the atmosphere was easier to determine. Using

the Mg ii lines as a proxy for the radiative losses in the chromosphere, along with

the stellar parameters determined for the system, the energy flux densities for

the atmosphere and wind were calculated. Evidence was found to support the

theory of Alfvén waves driving the wind and perhaps heating the chromosphere.

Table 7.1 summarises the energy fluxes calculated in this study and Figure 7.1

shows where they arise in the red giant atmosphere. It has been shown that EG

And is a well-behaved system and once the effects of the white dwarf are taken

into account it can be used as an insight into red giant chromospheres.
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Figure 7.1: Author’s energy schematic of a red giant showing the different parts
of the atmosphere where the energy mechanisms can be found. Lnoise originates
in the photosphere while F?(tot) and FW arise in the outer atmosphere. Alfvén
waves are shown in red while acoustic waves are yellow.

7.1 Future Work

In this thesis, the importance of UV observations of symbiotic stars for addressing

the unknown structure of red giant chromospheres has been demonstrated. An

obvious concern for this type of work is the lack of a natural successor to HST.

Having outlived its expected lifetime and no longer being considered for any future

servicing missions, the future of ultraviolet spectroscopy looks bleak. Hypothet-

ically a new ultraviolet instrument could conduct long-scale observing programs

of symbiotic stars to accurately determine their stellar parameters. Their use as

probes of red giant chromospheres would then become even more wide-ranging
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as the effects of different types of binary companions could be explored. To con-

tinue this work without UV capabilities, the resolution and sensitivity offered

by the radio observatories EVLA and ALMA could be used to probe even more

distant systems. Previous radio observations by Seaquist & Taylor (1990); Taylor

& Seaquist (1984) of the emission from photoionised regions of symbiotic systems

helped to estimate binary separation, wind density, and ionising photon luminos-

ity. Exploring the radio thermal free-free continuum would help probe the same

chromospheric plasma as the C ii] 2325Å and Mg ii h and k lines.

The new method of extracting optical data from STIS G430L acquisition

images is based on IRAF scripts. This procedure could be automated so that

optical spectra could be easily gleaned from all similar STIS observations in the

future. A potential stumbling block in this area is the necessary calibration scale

factor. In this study the value of this correction factor was estimated by several

methods. A way of estimating the value in an automated manner could prove

to be non-trivial. Automating software is a logical and necessary next step with

several aspects of this work. Along with the optical spectra extraction technique

from Chapter 4, the splicing and weighting of the data outlined in Chapter 3

has several manual steps. MELF, the multiplet fitting tool described in Chapter

5 needs sensible initial estimates of all the fitting parameters. Replacing these

manual steps with automated ones would make the reduction and analysis tools

developed here more applicable to future (and archival) datasets. At that point

the tools could easily be made available to the community online.

The tomographic technique could be extended and applied to other targets.

The numerical masks themselves could be extended to make use of 2D and 3D

convective models of the photosphere, such as those from Asplund et al. (2000),

to help interpret the asymmetries caused by convective velocity fields. The wealth

of archival data could be processed with these improved numerical masks and a

broad view of photospheric motions across the HR Diagram could be established.
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A
C ii] 2325Å Multiplet Fits

This appendix shows the C ii] 2325Å linefits for all 11 HST/STIS E230M Cycle

11 and Cycle 17 observations. In each case the data is in black with the fit

overplotted in red. Annotated on each plot are the line centre (mean) the FWHM

in terms of km s−1 and the area of each gaussian fit. Also annotated are the 5

line ratios.
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C., Arenou, F., Froeschlé, M. & Petersen, C.S. (1997). The HIPPARCOS Catalogue.
Astronomy & Astrophysics, 323, L49–L52. (Cited on page 42.)

Phillips, A. (1999). The physics of stars. Manchester physics series, John Wiley. (Cited on
pages 2 and 6.)

Pickles, A.J. (1998). A Stellar Spectral Flux Library: 1150-25000 Å. Publications of the
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