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Abstract—Process Modelling Language (PML) is a notation
for describing software development and business processes. It
takes the form of a shared-state concurrent imperative language
describing tasks as activities that require resources to start
and provide resources when they complete. Its syntax covers
sequential composition, parallelism, iteration and choice, but
without explicit iteration and choice conditions. It is intended
to support a range of context-sensitive interpretations, from a
rough guide for intended behaviour, to being very prescriptive
about the order in which tasks must occur. We are using Unifying
Theories of Programming (UTP) to model this range of semantic
interpretations, with formal links between them, typically of the
nature of a refinement. We address a number of challenges
that arise when trying to develop a compositional semantics
for PML and its shared-state concurrent underpinnings, most
notably in how UTP observations need to distinguish between
dynamic state-changes and static context parameters. The formal
semantics are intended as the basis for tool support for process
analysis, with applications in the healthcare domain, covering
such areas as healthcare pathways and software development
and certification processes for medical device software. (© IEEE
2016 http://doi.ieeecomputersociety.org/10.1109/TASE.2016.22

I. INTRODUCTION

Programming-like notations have been used to describe
business processes and workflows for many years [1]-[3].
There is considerable interest at present in healthcare systems
in so-called clinical pathways, that describe processes for
managing patient care. These too can be described using
general business process notations [4]-[6]. Deploying process
models in the medical domain in practise requires flexible
interpretations of those models [2], [4], [6]-[9] .

PML is such a language [10], developed originally for
modelling software development processes, but applicable to
a much wider range of activities, including clinical pathways
[11]. It is designed to encourage a flexible approach to its
interpretation and deployment. This is most obvious when
one considers that the condition and iterative constructs of
the language have no condition predicates, relying on the
judgement of those enacting the process to determine which
conditional branch should be taken, or when a loop should
terminate.

In this paper we present results obtained while developing
a range of formal semantics for PML using the Unifying
Theorems of Programming (UTP) framework [12] to sup-
port reasoning about flexible deployment. We define a UTP
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semantics for shared global state concurrency, as a way to
get a suitable semantics for strict and flexible PML, inspired
by the work of Woodcock and Hughes on unifying parallel
programming (UTPP, [13]). We present both a formal seman-
tics for a “weak” interpretation of PML, as well as a unified
theory of concurrent programs (UTCP) that will provide a
baseline theory for modelling more “flexible” and “‘strong”
interpretations of PML. Part of our contribution is extending
the UTP methodology to use non-homogenous relations that
mix dynamic state-change (observations with before- and
after-values) along with static context parameters (observations
whose value is unchanged during program execution). We also
develop a notion of label generators to allow us to describe
flow of control in a compositional manner.

The structure of this paper is as follows: In §II we give
a quick introduction to an abstract form of PML, while in
I we provide a quick overview of UTP. We then move on
to present the weak semantics for PML in §IV, the baseline
UTCP semantics in §V, and then to relate the two in §V-H,
where we also discuss future work. We then describe related
work (§VI) and conclude (§VII).

II. PROCESS MODELLING LANGUAGE

Process Modelling Language (PML) [10] is a shared-state
concurrent imperative language describing named basic ac-
tions (NN ?rr!pr) as activities that require resources to start (r7)
and provide resources when they complete (pr). Actions are
non-destructive in that the required resources are not consumed
but remain in place. Its concrete syntax is C-like, but we
present a simpler abstract syntax here:

N € Name
A € Action = N7?rrlpr
P,QePML == A|P;Q|P<Q|P|Q|P”

We use P ;; Q and P || Q to denote respectively sequential
and parallel composition. Both the conditional (P <> @) and
the loop construct P* are unusual in that they have no explicit
conditions. Instead the decision of which branch to take or
whether or not to end the loop is left unspecified—this is one
aspect of the flexible nature of the language. In its original
intended use, it was left to the people enacting the business



process described by PML to use their judgement to determine
which branch to take or when a process has been repeated
enough.

We are developing a formal PML semantics framework
which can investigate and relate at least three interpretations
of a PML description:

o Strict: the behaviour follows strictly according to the
control-flow structure, becoming deadlocked if control
requires execution of actions whose required resources
are not available.

« Flexible: the behaviour is guided by the control flow, but
actions can run out of sequence if their required resources
become available before the control flow has determined
that they should start.

e Weak: control flow is completely ignored, and exe-
cution simply iterates the non-deterministic choice of
actions whose resources are available (also known as the
“dataflow interpretation”).

In our framework, the three interpretations form a refinement
hierarchy:
Weak C Flexible T Strict

As an example, consider the following PML description:
A?lry 5 (B?rllrg || C?ralrs) 55 D?rlry

In the strict interpretation, only one sequence is possible,
namely A, B,C, D because (i) A is required by control-flow
to precede both B and C, and (ii) D is forced to be last.
In the weak interpretation, we ignore the flow control, and
are left with resource constraints only (B must follow A,
C must follow B and D must followA) This admits three
possible enactment sequences: A, B,C, D, or A, D, B,C, or
A,B,D,C.

In this paper we focus on the weak semantics, and on
developments we have done within the Unifying Theories
of Programming (UTP) framework [12] to create a semantic
baseline on top of which both the flexible and strict semantics
can be constructed.

III. UNIFYING THEORIES OF PROGRAMMING

The Unifying Theories of Programming framework [12]
uses predicate calculus to define before-after relationships
over appropriate collections of free observation variables.
The before-variables are undashed, while after-variables have
dashes'. Some observations correspond to the values of pro-
gram variables (v, v"), while others deal with important obser-
vations one might make of a running program, such as start
(ok) and termination (ok’) or event traces (tr,tr’). The set
of observation variables associated with a theory or predicate
is known as its alphabet. For example, the meaning of an

assignment statement might be given as follows:
Ti=e = ok = ok' Nd' =env =v

The definition says that once started, the assignment termi-
nates, with the final value of variable x set equal to the

'We follow [12, §1,p25] in using ‘dashed’, rather than ‘primed’

value of expression e in the before-state, while the other
variables, denoted collectively by v, remain unchanged. In
UTP, a predicate of the form ok A P = ok’ A @ is called
a Design, denoting a total-correctness assertion, is typically
shortened to P F Q. UTP supports specification languages as
well as programming ones, and a general notion of refinement
as universally-closed reverse implication:

SCP2[P = S

A key part of the UTP framework is the use of healthiness
conditions to ensure that the predicates actually correspond to
feasible program outcomes. These are typically defined using
idempotent and monotonic predicate-transformers (H) that
make an un-healthy predicate healthy (H(Bad) = Better),
while leaving healthy ones untouched (H(Good) = Good).
For example, the unhealthy predicate —ok A ok’ (I've finished
even though I didn’t start!) is ruled out by the following
predicate-transformer:

Hl(P) = -0k V P

In contrast, applying H1 to the definition of assignment leaves
it unchanged. Most of the healthiness conditions define sets
of healthy predicates that form complete lattices, where the
bottom element is the most liberal specification (“chaos”), and
the top element is the infeasible program that satisfies any
specification (“miracle”). The healthiness conditions that do
not produce lattices are typically optional ones that can be
invoked to rule out miracles, and which effectively chop off the
upper infeasible predicates, and leaving fully refined programs
as maximal elements.

IV. WEAK PML

We give the semantics of the weakest interpretation of PML,
where we only consider the dataflow-like behaviour induced
by the “requires”(?) and “provides” (!) annotations on basic
actions. We shall assume a simple model of resources, as
uninterpreted entities that are distinguishable, and where the
only property of interest is whether or not any given resource
is present in the system. What we want to observe is how the
resources in the system evolve over time, as well as keeping
track (by name) of which basic actions were executed. We
introduce three observations, all of which can be made both
before and after a PML run: starting, termination (ok, ok’ : B);
resources in the system (r,7’ : P Res); and basic actions
executed (h, h' : Name*).

Due to space limitations, we do not give a detailed account
of the healthiness conditions here, but note that we have the
usual Design conditions (H1, H2, H3) as well as modified
versions of some of the Reactive systems conditions [12, Chp
8] which we present here without comment:

P1(P) =
P2(P) =

PAh<H
Jhg e Plho, ho —~ (W — h) /1, 1]

In particular, we have a complete lattice with bottom true
and top —ok.



Our semantics has two parts, an action collection phase
(Coll) and a dynamic execution model (doStep, RunW).
The collection function works through a PML description and
collects all the basic actions, recording them in a finite map.
This works because of the PML requirement that every textual
occurrence of a basic action has a unique name or identifier.

Coll
Coll(N?rrlpr) =
ColllP®Q) =
Coll(P¥) =

PML — (Name - Action)
{N — (N?rrlpr)}
Coll(P) ¥ Coll(Q),
Coll(P)

@€ {5 <}

Here & denotes map disjoint union. The meaning of a basic
action is a design that runs when its required resources are
available, here defined with the notion of a guarded action
(g&A):

truet-rr Cr& ' =rUprAh =h~(N)
A< g > ok

N?rrlpr =
g& A =
Given a basic-actions map o, we can determine, w.r.t to the

current resource set r, if there is an enabled action whose
execution will extend that resource set (canGo):

isEna(N?rrlpr) =
isDone(N?rrlpr) =

rrCr
prCr
dN e N € domw
NisEna(wN) A misDone(wN)

canGo(w) =

We describe a single step of the system as one that makes
a non-deterministic choice out of all of the currently enabled
actions and executes it:

doStep(w) = dAN e N € domw AisEna(wN)AwN

Here we exploit a standard part of the UTP methodology
(“programs are predicates”) that a action (N ?rr!pr or wN) is
considered the same thing as its defining predicate.

We run a PML description (RunW) by repeatedly doing a
step so long as it is possible to make progress (provide more
resources):

RunW(w) = canGo(w) * doStep(w)

Here ¢ x P is UTP notation for while ¢ do P.
The dynamic semantics of a PML description P is therefore
given as

P = RunW(Coll(P))

The following distributive law is an easy result, for & ranging
over ;, <t>, ||:

RunW(Coll(P & Q)) = RunW(Coll(P))

V RunW (Coll(Q))
We get one step law for Weak PML: picking one of the

available ready actions, running it and continuing execution
constitutes a refinement of that program. This refinement is

all of the behaviours that are possible after that first (possibly
non-deterministic) choice is made.

canGo(w) AN € domw A isEna(wN)
= RunW(w) C (wN);RunW (w)

V. UNIFYING CONCURRENCY

The Flexible and Strict PML semantics have in common
that they consider PML descriptions as denoting concurrent
behaviour in the presence of global shared state (resources).
They differ in the precise criterion used to determine when a
particular task may actually run. Our semantics is inspired
closely by that of UTPP [13], which translates a parallel
program into an action system [14], whose semantics is given
using UTP. An action is viewed as a behaviour coupled with
a guard that establishes the conditions on observable state
when that action may begin to execute. An action system is
a collection of such guarded actions, that continually runs,
with a non-deterministic choice being made whenever multiple
guards are enabled at the same time [15]. In terms of UTP’s
lattice-theoretic approach, the system is a distributed join (non-
deterministic choice) of all its basic actions, where a disabled
(false) guard behaves the like the join unit value (top/miracle).
Or, in simpler predicate language, a disjunction of tasks as
Designs, with —ok as the unit.

Our semantics steps back a slight bit from the action-
system formulation, in that guards are de-emphasised, at
least syntactically, but we still have the distributed join, with
disabled actions as unit. We did this to reduce some of the
mechanism associated with Designs, so as to make the nature
of the parallel semantics easier to see. However, we expect
our semantics can easily be “poured” back into a full action
system framework without any difficulty.

Our key motivation in stepping away from action systems,
and the UTPP formulation was to explore if we could eliminate
one of the sources of non-compositionality in that semantics,
namely that, while each basic statement had a starting label, its
semantics was defined in terms of that label, and the labels of
whatever statements came after it. These labels are analogous
to the notion of an abstract program counter that is found
in many approaches to reasoning about concurrent programs
[16], so that it is possible to talk about the particular program
statement that any particular thread is trying to execute. They
allow the semantics to track the progress of each thread while
also allowing the non-deterministic interleaving of atomic
actions.

We wanted to get better compositionality, so that the se-
mantics of any construct was independent of its context, and
the semantics of any composite could be constructed from
the semantics of its components. In the case of UTPP, it is not
clear how much we have gained in terms of calculational ease,
but the UTP paradigm we have developed in order to achieve
this looks like it might be a framework for addressing a wider
range of semantics where compositionality is difficult.



A. UTCP Observables

The key idea is that we use some observations to, in effect,
act as abstractions of the surrounding (local) context. As actual
context is built up by the use of language composites, those
observations are then instantiated in such a way that either
hides them as internal, or lets them play an appropriate role
at the higher level.

The theory we built uses predicate variables to record
observations of program behaviour in two distinct ways:

1) Making observations of dynamic state change, using un-
decorated variables to record before-values, and dashed
variables to denote the corresponding after-value, as is
the norm in most UTP theories. We shall refer to these
as dynamic observables. In our theory we shall use s to
denote (shared) state and /s to denote the current set of
active labels.

s,s' . State
Is, s’ ‘P Label

2) Some observations record context information that is
propagated throughout a program. This information does
not change during the lifetime of a program execution,
and so only needs to be recorded using un-dashed
variables. We shall call these static parameters. In this
theory we associate three static parameters with every
construct: input and output labels (in,out) and a label
generator (g).

Label
g : Gen

in, out

The alphabet we use for a UTCP program P is
aP = {s,s,1s,ls',g,in,out}

However we will also talk about basic atomic actions A that
only affect the global state:

aA = {s,s'}

B. Basic UTP Building Blocks

The definition of the semantics of the UTCP language
constructs, and of run, make use of the (almost) standard
notions of skip, sequential composition and iteration in UTP.
The versions used here are slightly non-standard because we
have non-homogeneous relations, where the static parameters
have no dashed counterparts. In essence we ignore the static
parameters as far as flow-of-control is concerned:

I = d=snls=ls

P:Q = 3sy,,lsme
Plsm,lsm /s, 18] AN Q[sm,1sm/s,1s]
cxP = uLe(P;L)<cr II
Pdcr>Q = c¢cAPV-cAQ

Here, the definition of </ _ > and _ * _ are entirely standard,
of course. We get the following very straightforward laws:

P =P= P:.II
§=5A =A= A;s=s
cx P = (P;exP)<cr 1T

C. UTCP Semantics Overview

We view the semantics of a concurrent program as being
a collection of all its atomic actions, each with an associated
guard that enables it, those guards being based on the presence
or absence of labels from the global label set (Is). An enabled
atomic action will run when its input label (¢n) is in s, at
which point in time it will make changes to the global shared
variable state (s), remove its ¢n label from [s, and add its
output label (out) to that set. A key point here to note is that
every construct has both a input (start) label, and a output
(finish) label, and its semantics is defined solely in terms of
those. The output label in particular, belongs to the construct
itself and is not the label (or labels) of “whatever comes after”.

D. Atomic Action Semantics

We use sets in two key ways: checking for member-
ship/subset inclusion; and updating by simultaneously adding
and removing elements:

Ae(B(C) = (A\B)ucC
Let us consider an atomic state change operation, viewed as
a before-after relation on State:
A(s, s') State ++ State
We can lift this into an atomic concurrent action by adding in
the appropriate behaviour w.r.t to in, out, ls and ls’:
A(A) = inelsNANIS =1so ({in} (| {out})

To keep expression size manageable and clutter-free we use
a number of shorthands, viz., Is(in) for in € Is, ls(a,b) for
{a,b} C s, £ for {¢} (when it is clear a set is expected), and

(a,b{c,d) for ({a,b} { {c,d}). Given this shorthand we now
write the atomic action semantics as:

Is(in) N A NS =1s© (in ( out)
A special case of this is the Idle construct:

Idle = A(s' =5)
= Is(in)ANs' =sNls' =1sO (in ( out)
An atomic action has no need of the label generator g so

simply ignores it. The situation with language composites is
more complex, as we shall see.



E. Composite Action Semantics

For composite language constructs to work, we require
that the context of each component is somehow “informed”
of how it is being situated. We consider this the semantic
responsibility of the composite itself, and not something the
components need to consider.

Let us consider sequential composition (P ;; Q). In effect,
this operator has to glue its components so that the out label of
the first corresponds to the in label of the second. In effect it
needs to generate a fresh label using ¢ and use this to replace
the out of P and the in of Q). Then we need to split the
generator in two and pass those bits into P and @ for their own
label generation needs. The need for such generators arises
because we can’t use existential quantification to hide a label,
because they need their presence in, or absence from, s to
be globally visible. We need these generators to have certain
properties that ensure all generated labels are unique, and it
is to this that we now turn.

1) Label Generation: We consider two operations that can
be applied to a generator. The first (new) returns a label, and a
modified generator, for further use. The second (split) breaks
a generator into two new generators that will produce disjoint
sets of labels. To avoid long nested calls of new, split and
projections 71,7y, we define the following terse label and
generator expression syntax:

g € GVar Generator variables
GeGExp == g|G. |G |Gy
LeLExp == (g

Here G. denotes the generator left once new has been run on
G, with {5 denoting the label so generated. Expressions G
and G5 denote the two outcomes of applying split to G. We
use labs(@G) to denote all the labels that G can generate and
we require the following laws to hold:

labs(G) = {lg}Ulabs(G.) Ulabs(G1) Ulabs(G2)
lg ¢ labs(G.)
0 = labs(G1) Nlabs(G2)

The simplest model for a generator that satisfies the above
constraints is one that represents the label £ by the expression
G itself. The reason for this shorthand is that without it we
would have to write something like the following

1 (new(my (new (ma(split (ma (new(m (split(9))))))))))-

instead of £41.9..

2) Sequential Composition: For sequential composition
(P ;; @) we use the generator g first to create the label (¢,)
that connects out of P to in of @), and then we split the
leftover generator (g.) and give one (g.1) to P, and the other
(g.2) to Q. We simply use substitution to replace the static
parameters of both P and () by the appropriate generator and
label expressions.

P;;Q = Plga,ly/g,0ut]V Qlg.2,ly/g,in]

We group the appropriately transformed components using
disjunction, as per the UTPP and action systems approach.

3) Parallel Composition: Initially, parallel composition ap-
pears easy: simply split the generator and pass to each part,
but leave in and out alone:

Plg1/g] v Q[g2/4]

However this does not work—consider if P is atomic and runs
first: the in is removed from, and out added to [s, effectively
disabling (). Instead we need to seperate out the in and out
labels of P and (), and introduce two new atomic “actions”:
one to split ¢n into two new start labels; and another to
merge finish labels into out. These split and merge actions
do not alter state s. We need to split the generator g into two
parts (g1,92) and generate two labels (start: {41, {42, finish:
£41:,L42.) from each before passing them (gi..,g2..) into P
and Q.

Split(€y, ly) =
Merge(La, ty)

Is(in) Ns' =sAls" =1sO (in ( La, lp)
Is(ly, ly) NS =s
ANls" =1s© (Lo, by ( out)

IR

So, the parallel composition is a disjunction between
Split(Lg1,¢42), the two components with appropriate re-
labelling, and Merge({g1.,£g2.).

PlQ = Split(€g1, Lg2)
\/P[g1::,591755;1:/972'”70“15}

\ Q[92z:7 €g2ﬂ 592:/9, ina OUt]
V Merge(£gi:,£g2:)

4) Conditionals: For the conditional, as only one arm will
run, we can share out, but we need a split on in that uses the
condition c.

Cond(ly,c,ly) = ls(in)As' =s

ANl =156 (in Ly < c > by)

So we split the generator g, yielding ¢g; and g2, and produce
one start label from each ({41,¢,2), and then pass the two
remaining generators (gi., g2.) into P and () as appropriate.
We then have a conditional-split “action” that converts ¢n into
£41 or {45 as determined by the condition.

Pacr @ = Cond(ly,, c,ly)

\ P[glivegl/gﬂ;n} \ Q[9227692/g7in]

5) Iteration: lteration is quite straightforward, as we view
it as a conditional loop unrolling. We generate a label (¢,) for
the entry-point to P, pass the remaining generator (g.) into P
and identify P’s exit with the loop entry.
c®P = ls(in)ANs' =sAls' =1so (in (L, < c > out)
V Plg., 4y, in/g,in, out]



FE. Running a concurrent program

So far the semantics we have written simply views a
concurrent program as a big disjunction of atomic actions that
use labels in a particular way. This is a very static view of
the program meaning. To get a dynamic semantics we need
to embed the above static view, with appropriate initialisation,
into a loop that repeatedly runs the static disjunction until
a suitable (label-based) termination condition is reached. We
shall denote by run(P) the result of adding dynamism to a
static view P in this way. We produce run(P) by using the
generator g to create two labels ¢, and /., and then pass the
remaining generator g.. into the (static) program body P. We
use {4 to replace in, and £, to replace out in P. We put this
into a loop which keeps running so long as /. is not in [s.

run(P) = (=ls(ly.) * Plg..,lg,Lg./g, in, out])[ly/1s]

At the very top level, we initialise s to be {{,}. Note that
we cannot push this into the substitutions on P, otherwise all
that happens is that the first enabled action keeps running.

Space precludes us here from showing detailed calculations,
but we have obtained the following results which have con-
tributed to the validation of this semantics. Here the lefthand
side shows P, while the righthand side shows a calculation of
the expansion run(P)

<
IS
3

Idle = s =snls' =4,
A(A) AN =1,
A(A) ;s AB) ™ (A;B) Al =4,
()II A(B) ™' ((A;B)V(B;A) Al =1,
A(A) 4cw» A(B) ™ ((cANA)YV (=cAB) Al =1,

Note that in each case we get a final result in terms of the
atomic actions on s only, plus an assertion that we have
terminated. For iteration we show a partial calculation of
run(c ® A(B)) with result:

—eNs' =sNls =1,
V. ¢cABA=C NS =1,
V. (eABAdANIs' =1,.
s A(B)|g.i:y Ly, Uy, Uyi: / g, im, out, Is]
;s (L) *
(c® A(B))
(9. Lgeis g, Ly /g, in, out, Us]

Here we see the result of performing zero or one iteration,
which also mentions only state, plus a third case that captures
the second and subsequent iterations. In particular there is no
mention in the final result of in or out.

The semantics of run(c ® A(A)) we expect to have a
terminating part and a non-terminating part:

(\/ AN =eNls' = {lg} VA NeNly ¢ 1s

€N
where AV =4 =35
n+l __ AN
AT A A

A“ = infinite sequence of As

From the above we can see that a possible interpretation of
our semantics as a Design is

ok = (;€ls
okl = U, els

This works because every use of run initialises s to £, and
so establishes ok, and the termination condition for run is
that /. is has appeared in [s. In fact the use of the generators
ensures that, for all constructs, that the labels in, out and
labs(g) never occur together in the label-set.

G. Healthiness Conditions

Our semantics has been designed to ensure that, for any
program P with alphabet s,s’,ls,ls’,in, out, g, during any
program run, the following four predicates are mutually ex-
clusive, and exhaustive:

({in,out} Ulab(g)) Nis 0 (1)
in € s 2)

lab(g)Nls # 0 3)

out € s 4)

This observations comprise a key healthiness condition that
ensures that all components get executed in a coherent manner,
moving from a “sleeping state” (1), to being just started
(2), running (3), just finished (4), and then possibly back to
being asleep. We can accordingly define some program status
predicates as follows:

started(P) = in€ls
running(P) = {in,out}Nis=0A3I €lsel clabs(g)
stopped(P) = out €ls

Note that running(A(A)) is always false, as an atomic action
effectively occurs instantly.

H. Bringing It All Together

We link the weak semantics to the UTCP version by simply
recognising that Weak PML simply views a PML description
as being the parallel composition of all its basic tasks. We
instantiate the generic state observation s in the UTCP theory
with the r and h observations of the Weak theory, and define
the semantics of a basic action A as:

Ntrrelpr = rr CrA-prCr

Ar'=rUrr AW =h~(N)

Here we drop ok and ok’, as its role is subsumed by Is
and [s’ in the UTCP theory, and instead have a basic action



return false when its required resources are not available, or
all its provided resources have been so provided. We note that
when a PML description consists solely of basic tasks and
parallel composition, then the Weak, Flexible and Strict PML
semantics coincide since the control flow allows any task to
run anytime, so it is all just down to resource constraints.

1. Future Work

One key issue we face in developing a strict or flexible
semantics is that the iteration construct has no explicit halting
condition associated with it syntactically. The expectation is
that an iteration is repeated until it brings about a state of
affairs that enables what comes after it. We believe that the
UTP approach described in this paper will allow us to produce
a semantics that is compositional: the iteration simply repeats
until it gets a stop signal sent by the enclosing sequential
composition.

The instantiation of the flexible and strict semantics on top
of UTCP still has to be done, as do the proofs regarding
the laws of concurrent programs. The proof sketches done so
far show indicate that the proofs will require demonstrating
the existence of label bijections that respect control-flow,
and that a benefit of constructing such bijections will be a
corresponding operational semantics for UTCP.

We are also working on ideas for a variant of UTCP that
shows promise for being fully compositional: i.e., without
having a static disjunction of actions, that then needs some-
thing like run to make it all dynamic. We also point out,
in the spirit of unification, that this work has potential to go
beyond just PML but also assist in the development of other
theories of concurrency in UTP, such as pioneering work in
[17] addressing the semantics of System-C.

We prefer the UTP denotational/algebraic approach to that
of using operational semantics. The former typically requires
redoing induction proofs when any change is made, whereas
adding new features and merging models is much simpler with
the latter [12, p277].

VI. RELATED WORK
A. Process Semantics

Our motivation for wanting to formalise PML comes from
its applicability in modelling clinical healthcare pathways [1]
in particular, as well as its use to model certified medical soft-
ware development processes. Clinical pathways are evidence-
based care plans which describe in a structured way the
essential steps needed to care for patients with a specific set
of clinical problems.

Formalisms that model CPs, need to be able to ’reason’
with process behaviour such as non-determinism, concurrency,
parallelism and synchronisation. The affinity of the Petri nets
formalism to represent such behaviour has contributed to its
popularity to be used in the more ’formal spectrum’ of CPs
research. Petri nets have been used to model such work-flows
[5], [7], [18]. Stochastic treatments are popular for looking at
resource and time estimation, e.g. ICPA [3].

A key issue with any attempt to model such pathways is the
need to allow flexibility in how they are actually implemented.
Work by van der Aalst et al [6] proposes an approach (based
on Petri nets) to allow the ability to distinguish between
marginally different and completely different processes. Work
looking for temporal similarity using ad hoc temporal con-
straint networks, has been reported in [2]. Other approaches
include the use of fuzzy logic [19] or linear temporal logic
expressions [9]. Of interest is the work of Grigori et al [8] that
use the concept of anticipation which allows the execution of
sequential tasks to overlap at the discretion of work-flow users
where there are not specific data dependencies between them.

Some interesting recent work using BPMN [20] addresses
the same issue that we do, namely being able to be flexible
regarding how models get enacted. This paper looks at the
boundary between strict imperative BPMN and declarative
notations such as Declare [21]. These correspond to our Strict
and Weak semantics. They introduce BPMN-D and give its
semantics by translation to plain BPMN, whose semanitcs is
based on Petri-Nets [22].

B. Concurrency Semantics

Key work was done on concurrent semantics in the 80s
and 90s, with a strong focus on fully abstract denotational
semantics. Notable work form this period includes that by
Stephen Brookes [23] and Frank de Boer and colleagues [24].
Both looked at denotations based on the notion of sets of
transition traces, these being sequences of pairs of before-
after states. In order to get compositionality the traces of
any program fragment had to have arbitrary “stuttering” and
“mumbling” state-pairs added to capture the notion of outside
interference. Full abstraction meant that the semantics had
to identify programs like skip ;; skip with skip, while
distinguishing between z := 2 and z := 1 ;;  := x + 1.
This latter aspect required the language to be augmented
with an atomic wrapper construct. A common feature of
both was the very close linkage of the denotational semantics
to the operational one. The work of Brookes [23] focussed
on imperative languages with fair schedulers, while that of
de Boer et.al [24] looked at a general framework (“failures
of failures™) that covered not just imperative programs but
also constraint solving systems and asynchronous versions of
process algebras.

As already stated earlier, the key inspiration and starting
point for the work presented here was the UTPP paper [13].
This combined guarded commands [15] with the idea of
action systems [14], interpreted in UTP as non-deterministic
choice over guarded atomic actions, where disabled actions
behave like the unit for that choice. This basic lattice-theoretic
architecture for the UTPP semantics forms the foundation for
the UTCP semantics presented here.

VII. CONCLUSIONS & FUTURE WORK

We have briefly described Process Modelling Language
(PML) that is used to model business processes, with clinical
pathways being an interesting specific case, with a view to



defining formal semantics for the notation that allows rigorous
reasoning in a flexible manner. This need arises because clini-
cal pathways in real medical practise are often interpreted in a
loose manner, although also intended to be quite prescriptive.

We have presented a UTP theory of a “weak” interpretation
of PML, as well as a UTCP theory of concurrency that acts as
a baseline theory on top of which the “flexible” and “strict”
interpretations may be constructed. A key contribution here
is the use of label generators and the distinction between
dynamic state-change observables, and static context-sensitive
parameters.

One other benefit of using the UTP framework here is that
it will ease the integration of application-specific resource
semantic models, so that we can envisage complete formal
analyses that address application area concerns, e.g. drug
interactions in clinical pathways.
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