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Abstract—Stochastic models of base station infrastructure deployment
by multiple mobile operators can be an invaluable tool for deriving fun-
damental results about wireless network sharing. In this paper, we study
stochastic geometry models for a shared cellular network consisting
of base stations deployed by multiple mobile operators, based on real
cellular network data coming from three European countries. Relying
on a statistical approach as well as the evaluation of wireless network
performance metrics, we find that, in the city center areas, operators
tend to deploy their antennas in close proximity, while in other areas this
is not the case and we find some level of repulsion between antennas of
different operators. As we show, the log-Gaussian Cox process provides
the most compelling fitness results with real multi-operator base station
deployment patterns and a potentially attractive model that offers some
degree of analytical tractability. Moreover, we observe that the behaviour
which can be modelled with the help of these processes occurs over
and over again for similar areas in different countries, which suggests
universality of the proposed models.
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1 INTRODUCTION
Modelling and simulating the performance of shared
wireless networks is of high importance to the research
community and even more so to the cellular networks
industry. From a technical perspective, sharing has been
ongoing for a while now, predominantly in the form of
sharing masts and antenna sites between mobile oper-
ators, which is often referred to as passive sharing [1].
More recently, we have been witnessing an increase in
active forms of sharing, which involve some level of
resource virtualization that allows individual operators
to jointly utilize base stations and/or the core network
[2]. We see examples of this approach appearing more
and more in response to the large costs associated with
the provisioning of wireless cellular infrastructure. Some
commercial examples of this type of sharing include the
merger of T-Mobile and Orange networks in Poland1, the
joint venture of two mobile operators in Denmark2 or
the recent deal between Eircom and Three in Ireland3.
The fundamental gains and limitations of such shared
networks are still an open question, and the research to
date has been rather conservative in treating the topic.
To quantify these gains and limitations, there is the need
for accurate models that are representative of the super-
position of radio access network deployments made by
multiple mobile operators. Herein, we make a contribu-
tion to the state-of-the-art in wireless network modelling
by providing a quantitative analysis of stochastic models
that may be used to represent shared cellular network
deployments.

In general, wireless network deployment can be mod-
elled as a collection of points distributed on a two-
dimensional plane. Each point, representing a base sta-
tion (BS) transceiver, is assigned some wireless network
related properties, such as downlink transmit power and
operational frequency. Then, the average performance
experienced by a user of such a network may be obtained
either using stochastic geometry or through computer
simulations. In stochastic geometry a typical working as-
sumption is to use a homogeneous Poisson point process

1. The process is comprehensively described in the following slides:
http://www.slideshare.net/zahidtg/deployment-of-ran-sharing-in-
poland (accessed 22.10.2014).

2. http://www.fiercewireless.com/europe/story/teliasonera-and-
telenor-given-ok-network-sharing-jv/2012-03-02

3. http://www.fiercewireless.com/europe/story/eircom-agrees-
long-term-network-sharing-deal-3-ireland/2014-08-29
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(PPP) to represent network deployment. While in com-
puter simulations the hexagonal lattice model is used.
These models may serve as a reasonable representation
of single-operator networks, see [3]. However, when as-
sessing a real BS infrastructure deployment coming from
multiple operators, we see significant degree of clustering
across operators, related, most likely, to the competition
for demand that is unevenly distributed across space,
see [4]. The above models are insufficient to capture this
type of behaviour, and thus our goal is to identify more
appropriate models that capture the key properties of
multi-networks (networks that combine deployments from
multiple operators), which requires application of tools
from spatial statistics.

An elementary step in any spatial statistics analysis
is the qualitative assessment, which builds rationale for
further modelling decisions. Fig. 1 depicts four patterns
representing two-operator BS deployments using: a su-
perposition of two realizations of the hexagonal lattice
model (Fig. 1a), a superposition of two realizations of
the Poisson point process (Fig. 1b), a realization of a
clustered point process (Fig. 1c), with operator marks
assigned uniformly at random, and a real BS deployment
in the Dublin city area (Fig. 1d). Clearly, we can observe a
high degree of regularity with the hexagonal deployment
and uniformity with the PPP deployment. The clustered
deployment results in a number of smaller clusters dis-
tributed throughout the area of interest and relatively
many empty spaces, in comparison to the previous two
realizations. Finally, the pattern representing real deploy-
ment is clustered around the central area with blank
areas forced by environmental obstacles, and somewhat
uniform or repulsive behaviour outside the central area,
possibly caused by frequency and coverage planning as
well as low availability of shared BS sites. Qualitatively,
one can conclude that the first two point patterns and
the real one come from distinct families of point distri-
butions. The relationship between the clustered pattern
and the empirical pattern is less intuitive, and, as we
will show later, the realizations of some of the clustered
point processes do indeed convey the features of multi-
operator real BS deployments.

In order to support our claims, we delve into statistical
data analysis and wireless network performance evalua-
tion, relying on real BS deployments in three countries.
In this paper, we report our model fitting results for
various point processes in various locations, indicating
the models that best describe our data, and discuss the
potential usability of the models for shared wireless
network analysis.
Main contribution In this paper, we identify point
processes that model a cellular network consisting of
base stations belonging to multiple operators (a multi-
network), operating in urban environments. We base
our work on BS deployment data coming from Ire-
land, Poland and the UK. What we observe is that
multi-networks cannot be simply modelled with a su-
perposition of independent realizations of a point pro-

cess describing a single-operator deployment (a single-
network). In fact, as we show later, there is a high degree
of dependence between the infrastructure deployment
made by multiple operators. This quantitative result
supports intuition which suggests that commercial net-
works are designed and deployed to satisfy the demand
unevenly spread across geographic areas by competing
operators offering similar services.

In order to find the model that best fits multi-networks,
we apply a spatial statistics approach [6]. Namely, we
calculate the empirical estimates of the pair-correlation
function, which is a second-order characteristic, and we
fit the point processes to those estimates using the meth-
ods of maximum pseudolikelihood, whenever possible,
and minimum contrast [7]. Subsequently, we evaluate
goodness-of-fit of our estimated models by comparing
empirical estimates of some other summary statistics
obtained from the real data against maximum and min-
imum values of the same statistics calculated for our
estimated models. In the course of our analysis we find
that the clustered point processes best represent base
station clustering occurring in multi-networks, with the
log-Gaussian Cox process (LGCP) providing the most
compelling fitness results and a potentially attractive op-
tion for some degree of analytical tractability. Moreover,
we observe that this clustering behaviour, which can
be modelled with the help of clustered point processes,
occurs over and over again for similar areas in different
countries, which indicates some degree of universality of
the proposed models.

2 RELATED WORK
A new wireless network roll-out involves three phases
[8]: dimensioning, planning, and optimization. In the
first phase, a rough estimate of the network layout
and elements is prepared based on technical demands
(such as an area to provide coverage and capacity for),
forecasted subscriber base and service usage character-
istics [9]. Next, network element configuration is per-
formed, whereby base station site equipment is selected
based on power budget calculations, followed by de-
tailed topology planning, which includes coverage and
capacity planning based on pathloss information and
prediction models (such as the modified Hata model),
and dynamic models provided by commercial network
planning and optimization tools [10]. In addition, for 3G
and 4G systems, mobile traffic information is taken into
account as it affects capacity requirements and acceptable
interference levels. At this stage the cellular network
is designed and ready to be deployed. During the de-
ployment the positions of base station sites, which have
been established according to the pre-specified models,
become distorted by a number of non-technical aspects,
such as [10]: site acquisition (availability of a given site),
site legalization (license for radio emission from a given
site), and site preparation (installation and availability
of mast, power supply, air conditioning system, etc.).
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(a) Hexagonal (b) Poisson (c) log-Gaussian Cox (d) Real

Fig. 1: Illustration of different types of two-operator BS deployment patterns for the city of Dublin (the Dublin city
area is represented here as a superposition of the smallest unit areas provided in [5], and located within a radius
of 5 km from the city’s center), generated from: a) a hexagonal lattice, b) a Poisson point process, c) a clustered
point process, and d) real data. The contours represent the Dublin city area, whereas the dots and triangles stand
for BS site locations of two different operators. The real BS pattern is clustered in the central area, with irregular
empty spaces forced by environmental obstacles and, most likely, coverage planning. Qualitatively, the clustered point
process realization exhibits the closest match to the real BS pattern, with a number of smaller clusters distributed
throughout the area of interest and relatively many empty spaces, while the Poisson point process pattern rather
uniformly fills the Dublin area and the hexagonal pattern exhibits high regularity with little resemblance to the
actual BS deployment.

Moreover, the incumbent mobile network operators, as
a natural cost minimization strategy, will tend to reuse
existing sites [8]. Effectively, even initial coverage pro-
visioning deployment may be allocated in a way that
is far from idealistic lattice-like scenarios. Furthermore,
as the service demand grows, and large capacities be-
come essential, a microcellular topology is deployed,
typically characterized by much lower transmit powers
and rooftop level antennas, with additional pico-/small-
cell systems to extend the capacity to indoor offices or
places like shopping malls.

Despite these practical insights on the cellular network
roll-out process, there seems to be no consensus on how
to model and analyse the resulting BS deployments. In
the studies to date the choice of a model is typically
dependent on the type of tool applied, either stochastic
geometry or computer simulation.

Stochastic geometry allows us to derive analytical
expressions for various performance parameters, such
as outage probability or data rate, under predefined
wireless channel conditions, averaged over many realiza-
tions of a pre-specified stochastic model. For analytical
tractability, much of the existing work modelling radio
access network deployments (e.g., [11], [12], [13], [14])
relies on the homogeneous PPP model, which assumes
no correlation in the analysed patterns. The usage of
the PPP model can be analytically justified under suf-
ficiently high log-normal shadowing, see [15]. However,
spatial statistical analysis of the available mobile network
deployment data to date suggests that single-operator
mobile networks can be better represented using reg-

ular processes. For example, in [3] the fitted Strauss
process turns out to provide the closest match to a
single-operator mobile network deployment. In [16] the
determinantal point process (DPP) is found to accu-
rately represent regularities present in single-operator
base station deployments. Analytical insights into these
point processes are limited to some specific cases, see
[17]. Yet, heuristic approaches, such as the one in [18],
may be applied. Clustering in real mobile networks,
as observed in large-scale single-operator deployments
[19], can be modelled using cluster processes. However,
analysis of these processes seems to be even harder and
some level of analytical tractability has been achieved
only for certain classes of cluster processes, see [20].

Computer simulation-based approach typically relies
on scenarios and models defined and published by stan-
dardization bodies, such as the third generation partner-
ship project (3GPP), as a part of technical reports, for
example, [21]. In those scenarios macro- and microcell
base station deployments are modelled using lattices,
most frequently adopting a hexagonal lattice, which
creates repetitive structures to simplify inter-cell inter-
ference management [8], and “ensure optimal coverage
over a given area” [10]. Even if initial deployments
were performed according to a lattice-based model, the
evidence to date shows that the existing networks are
far from these idealistic models. Hence, to account for
real-world irregularities a constant deviation may be
added to a lattice-based model [10]. However, these
perturbed lattices, as they are called, provide less sat-
isfactory results than some other stochastic models (see
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[3], [16]). It is worth mentioning that simulations based
on a hexagonal lattice model predominate in the research
to date which attempts to evaluate the performance of
wireless network sharing, see [22], [23], [24], [25].

In our work we seek point process models that are
representative of the base station infrastructure deploy-
ments by multiple operators. We evaluate these models
by fitting them to real infrastructure data coming from
three different countries and performing a series of fit-
ness tests, which give us statistical confirmation of the
correctness of the selected model(s).

3 BACKGROUND AND NOTATION
A wireless network deployment can be represented as a
point process which is a countable random collection of
points that lie in the Euclidean plane [26]. Herein, we
describe such a point process as a random countable
set Φ = {x1, x2, ...} ⊂ R2 with elements being random
variables xi ∈ R2. Using the random counting measure
formalism [26], we also denote ϕ as a realization of Φ,
and ϕ(W ) as the number of points in the realization ϕ
distributed over a finite observation window W ⊂ R2.
Moreover, we denote Λ(W ) as the intensity measure of
Φ, which, informally, is the mean number of points of a
point process Φ in a set W . In consequence, λ(x) will
denote the intensity function that describes the point
density around location x ∈ R2.

There are three general classes of point processes: uni-
form, clustered and regular. To say that a point process
is uniform is equivalent to assuming that no inter-point
interactions can be observed in a point pattern coming
from that process. Clustering means that some form of
positive interaction (attraction) exists between points,
leading to clustered patterns, while regularity stands
for some form of negative interaction (repulsion) be-
tween points in the process. Since multi-network patterns
exhibit, at least qualitatively, some form of clustering
we focus our attention on point processes that allow
us to model this phenomenon. Namely, in our work
we rely on three point processes: the log-Gaussian Cox
process (LGCP), the Matern cluster process (MCP), and
the Thomas process (TP). However, in order to get the
full picture of the kinds of interactions one may expect in
such BS deployments we also test whether the observed
point patterns follow either the homogeneous PPP or
possibly a superposition of a number of independent
realizations of the Strauss process (SP), which was shown
to provide a good fit to single-networks [3]. While Guo
and Haenggi in [3] have already introduced the PPP and
the SP, in the following we briefly introduce the Cox
processes and the cluster processes. More comprehensive
description of all these point processes can be found in
[6], [7], [26].

3.1 Cox processes
Cox processes describe spatial point patterns which ex-
hibit some forms of aggregation or clustering, typically

caused by some random environmental phenomenon [7].
The Cox process is obtained as a generalization of the
inhomogeneous PPP, where the intensity measure of the
point process becomes random. Conversely, conditioned
on the intensity measure the resulting point process is
Poisson, and thus the Cox process is also referred to as
the doubly stochastic Poisson process.
Log-Gaussian Cox process We focus on a subclass of
Cox processes, where the logarithm of the intensity
function is a Gaussian process [27]. This subclass is
called the log-Gaussian Cox process (LGCP), with the
intensity function denoted as λ(x) = exp (Y (x)), where
Y = {Y (x) : x ∈ R2} is a real-valued Gaussian process
with mean µ, and covariance function σ2f(r), where
σ2 is the variance and f(r) is some pre-defined spatial
correlation function. For the LGCP to be well-defined
the spatial correlation function has to be positive semi-
definite [28]. This condition is met by, for example, the
exponential function f(r) = exp(−r/β) and the stable
function f(r) = exp(−

√
r/β), where β > 0 is a scale

parameter (other examples of functions that meet this
condition can be found in [28]). The LGCP is fully
characterized by µ, σ2 and the parameter(s) of f(r),
which are easy to estimate due to the existence of closed-
form expressions for the summary statistics. The process
is also relatively easy to simulate based on the location
dependent rejection of points generated according to the
homogeneous PPP with λ∗ = max(λ(x)). Moreover, the
intensity of the process is expressed as λ = exp(µ+σ2/2).

3.2 Cluster processes

Generally, cluster processes can be viewed as realizations
of two hierarchical point processes: the parent point
process, which distributes clusters, and the daughter
point process, which distributes points around the parent
point location. Typically the parent process does not lead
to the generation of points, therefore the cluster process
consists of the union of all daughter points.
Matern cluster process The Matern cluster process is
a doubly Poisson cluster process, i.e., parent points are
generated according to a Poisson process with intensity
κ, and daughter points, with the mean number of them
µ, are uniformly distributed inside the circle of radius
R centered at each parent point. The intensity of the
daughter process takes the following form:

λd(r) =
µ

v(b(o,R))
1[b(o,R)](r), (1)

where 1[b(o,R)](r) is an indicator function, b(o,R) denotes
a circle centered at parent point o with radius R, and
v(·) is the Lebesgue measure, which in the Euclidean
space corresponds to the surface area. The intensity of
the process is λ = κµ.
Thomas process Similarly to the MCP, the Thomas pro-
cess is a doubly Poisson cluster process, where the parent
points are distributed according to a Poisson process
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with intensity κ, while the daughter points are normally
distributed, i.e., according to the intensity function:

λd(r) =
µ

2πσ
exp(− r2

2σ2
), (2)

where µ is the mean number of daughter points and σ2 is
the variance. The intensity of the process is again λ = κµ.

3.3 Summary characteristics
In spatial statistics there are numerous summary char-
acteristics that describe and quantify local groupings of
points, typically through their relative positions or inter-
point distances. In the following we briefly introduce the
metrics that we will subsequently use for model fitting
and goodness-of-fit tests.

Generally, a point process that drives multi-network
patterns is unknown. Therefore, to obtain each of the fol-
lowing metrics we are required to utilize non-parametric
estimators with appropriate methods to mitigate finite
observation window distortions that occur at the edges.
Moreover, since each of the analysed deployments has
some local inhomogeneities, we normalize each charac-
teristic obtained against inhomogeneities of the corre-
sponding deployment.
Empty space function Empty space function F (r) de-
scribes the distribution of distance r from a point o ∈W
(for stationary point processes this corresponds to the
origin) to the nearest point of the point process Φ:

F (r) = P (||o− Φ|| ≤ r) = P (ϕ(b(o, r)) > 0) , r ≥ 0.
(3)

We use the empty space function as the first-order
goodness-of-fit statistic.
J-function One way to investigate the interaction be-
tween two point patterns, each with a different type of
points, observed within the same window, is to utilize
the cross-type J-function [29]. The cross-type J-function is
the ratio between the distributions of the distances from
an arbitrary fixed point of type i to the nearest type j
point, therefore it can be used to quantify clustering or
repulsion between two sets of points. The cross-type J-
function is given as:

Jij(r) =
1−Gij(r)
1− Fj(r)

, (4)

where Gij(r) is the nearest neighbour distance function,
which describes the distribution of distances from the
points of type j to the points of type i, and Fj(r) is the
empty space function of the point pattern of type j. In
case the two analysed point patterns are independent
Jij = 1, as is the case with any homogeneous PPP realiza-
tions. Jij < 1 suggests that the points of different types
aggregate, while Jij > 1 suggests repulsion. However,
the cross-type J-function taking value 1 for all r is not a
sufficient characterization of independence between the
two patterns [29]. It is also worth noting that Jij is not
symmetric in i and j.

L-function The L-function is defined as L(r) =
√
K(r)/π

for r ≥ 0, where K(r) is a second-order summary
characteristic which describes the mean number of points
within radius r from points in point process Φ. The L-
function is particularly useful in the estimation of model
parameters, such as the interaction distance (maximum
inter-point distance at which interaction force is at work)
or interaction force (the force that describes mutual at-
traction or repulsion between points in a point process).
For the PPP the L-function takes a convenient linear
form L(r) = r. Hence, for some pattern ϕ, L(r) < r
will indicate regularity, while L(r) > r will indicate
clustering. We use the L-function to examine fitness
of the estimated models with respect to second-order
characteristics.
Pair-correlation function The pair-correlation function
g(r) for a stationary point process Φ with intensity func-
tion λ and second order product density ρ(2)(r), which
is the joint probability that there are two points of Φ
in infinitesimally small areas surrounding two locations
separated by distance r, is defined as follows [26]:

g(r) =
ρ(2)(r)

λ2
. (5)

Informally, the pair-correlation function characterizes the
frequency of inter-point distances in the process. Herein,
we use the pair-correlation function for fitting clustered
point processes to our data. The fitting method we use
requires an analytical expression for the summary statis-
tic in question. The expressions for the pair-correlation
function of the analysed clustered point processes are
summarized in Tab. 1.

4 DATASETS AND MODEL FITTING
4.1 Datasets
The aim of our study is to find a stochastic model that
characterizes multi-networks aggregated for the purpose
of infrastructure sharing. The input data we use consists
of either real BS information or radio license information
(for simplicity, we will assume that an assigned radio
license is equivalent to a BS deployed in the given
location), which includes spatial coordinates of the BS
sites and unique cell identifiers, for GSM and UMTS
technologies in three countries: Ireland, Poland, and the
United Kingdom. The data was extracted from publicly
available information collected by the national telecom-
munications regulators. Each of the regulators collects
data supplied by the local mobile network operators
(MNO), who also ensure accuracy and keep the infor-
mation updated.

The Irish database contains BS site information up-
dated by the Irish MNOs and maintained by the Irish
communications regulator ComReg4. Based on the quar-
terly report from ComReg (Q4 2013), Ireland had four

4. http://www.askcomreg.com/mobile/mobile_sites\%3b_base_
stations_and_masts.36.LE.asp
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TABLE 1: Analytical expressions for the pair-correlation function of the analysed clustered models, where h(z) =
16/π(z arccos(z)− z2

√
1− z2) for z ≤ 1 and h(z) = 0 otherwise.

Model LGCP MCP TP

g(r) exp
(
σ2f(r)

)
1 + (4πRrκ)−1h( r

2R ) 1 + (4πκσ2)−1 exp(− r2

4σ2
)

major MNOs (Vodafone, eircom Group Mobile, O2 and
Three) together sharing 93.9% of the Irish mobile mar-
ket. We deem the Irish dataset as the most reliable,
as ComReg requires mobile infrastructure providers to
report all the masts and structures that contain “mobile
base stations”. Therefore, we use the Irish dataset to
confirm the reliability of the other two datasets. The
database for Poland contains spatially allocated radio
license information from all MNOs operating in the
Polish mobile market, available through the national
regulator UKE5. By 2013 there were four major MNOs in
Poland, namely Orange, Play, Plus and T-Mobile, which
had a combined 98.7% of the subscriber share and 99.7%
of the market revenues. The database for the UK was
compiled by OfCom (UK’s Office for Communications)
based on BS site information voluntarily supplied by
the local MNOs6. As of 2012 there were five major local
MNOs: O2, Orange, T-Mobile, Three, and Vodafone, all
of them together having a higher than 90% market share.

From each of the databases we have selected a number
of city areas. For each city area we have focused on BS
site information for two radio technologies: GSM (900
MHz) and UMTS (2100 MHz), and macro- and microcells
only (if the transmit power or cell radius information
was available). For each city area we have extracted this
information for an observation window of size 10-by-10
km with arbitrarily selected central locations7. The choice
of the observation window was driven by our desire to
capture features of BS deployments at local scales, and
to correctly assess environmental forces that underlay
point distributions for multi-network deployments. In
our study, we have simplified each co-location to a single
BS site, which is a reasonable working assumption given
that inter-operator co-location accounts on average for
only 10% of all base stations. Tab. 2 summarizes basic
information on all the selected locations.

Since the analysis covers different geographical areas
as well as various statistical metrics, for clarity we have
decided to focus our presentation on the study of Dublin.
The results for other areas (listed in Tab. 2) are substan-
tially the same and they are included in the estimated
point process model, which we discuss at the end of this
section.

5. http://www.uke.gov.pl/pozwolenia-radiowe-dla-stacji-gsm-umts-lte
-oraz-cdma-4145

6. http://stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/
7. In order to test whether our results are affected by the choice of

the observation window we also looked at observation windows of size
2.5-by-2.5 km, and 5-by-5 km. In the main, the results are consistent
across those three observation windows.

4.2 Fitting method

A desirable model is one that is easy to interpret, esti-
mate and simulate, while still preserving features of the
observed BS patterns. Herein, we provide the results of
fitting PPP, SP, MCP, TP and LGCP, with exponential
and stable correlation functions, to the multi-network
patterns under study. To fit the first two we have used
the maximum pseudolikelihood method, described in
[3]. When the pseudolikelihood function is not easily
tractable, which is typically the case with clustered
point processes, we apply the minimum contrast method
(MCM) [7]. In general, the MCM seeks parameter values
for the analytical expression of a summary statistic C
which minimize the difference between C and its non-
parametric estimate obtained from the analysed patterns
Ĉ, i.e.:

Dθ =

∫ rmax

rmin

|Ĉ(r)q − Cθ(r)q|pdr (6)

where Cθ is the theoretical expression for the summary
characteristic parameterized with θ, while p and q are
simulation parameters. Applying the MCM to the anal-
ysed processes is natural, as for each of those processes
we can obtain closed-form expressions for the n-th order
summary characteristics. Specifically, we use the pair-
correlation function, for which closed-form expressions
are given in Tab. 1. Setting p = 2, and q = 1 (for the MCP
and TP), allows us to obtain closed-form expressions
for the parameters of the fitted processes, which we
summarize in Tab. 3. We derive these expressions in
Appendix A.

In our analysis we look at a range of r values, where
rmin = mini 6=j;xi,xj∈ϕ{||xi − xj ||} (as suggested in [28])
and rmax is set as the quarter of the side-length of the
square observation window, which, according to our sim-
ulations, provides a good balance between observation
of the local features and computational effectiveness.
We perform our analysis using open-source statistical
computing software R [30], and, in particular, we use
functions from the spatstat library [31]. For the goodness-
of-fit tests we use the envelope test, which can be in-
terpreted as the significance test [6], with a significance
level in a one-sided test equal to 1/(k+1), where k is the
number of trials. For the envelope test we utilize both
the L-function (second-order statistic) and the empty
space function (first-order statistic), as suggested in [6]
to minimize the bias caused by testing our model against
the data that was used to estimate model parameters.
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TABLE 2: Basic information on the extracted point patterns

Dataset Name Center (longitude;latitude)
Number of extracted BSs

(UMTS/GSM)
Inter-operator co-location

(UMTS/GSM) [%]

Ireland Dublin 53.3478◦N;6.2597◦W 447/409 5.0/4.0

Poland

Kraków 50.0614◦N;19.9383◦E 348/273 8.0/8.0

Poznań 52.4◦N;16.9167◦E 400/362 10.0/14.0

Warszawa 52.2333◦N;21.0167◦E 812/916 12.0/8.0

UK

Birmingham 52.4831◦N;1.8936◦W 281/144 5.0/0.0

Leeds 53.7997◦N;1.5492◦W 238/115 16.0/0.0

Liverpool 53.4◦N;3◦W 266/122 7.0/0.0

London 51.5072◦N;0.1275◦W 1442/1513 3.0/1.0

Manchester 53.4667◦N;2.2333◦W 303/155 7.0/0.0

TABLE 3: MCM expressions for model parameters

Model
Model parameters

I II III

LGCP µ̂ = log(λ̂)− σ̂2/2 σ̂2 =
(
BL(β)

AL(β)

)1/q
β̂ = argmax

(
BL(β)2

AL(β)

)
MCP µ̂ = λ̂

κ̂ R̂ = argmax

(
BM (R)2

AM (R)

)
κ̂ =

AM (R)

BM (R)

TP µ̂ = λ̂
κ̂ σ̂2 = argmax

(
BT (σ2)2

AT (σ2)

)
κ̂ =

AT (σ2)

BT (σ2)

4.3 Fitness results - Dublin case
Before we turn to the multi-network analysis, we in-
vestigate the L-function results for single-networks to
confirm observations made in [3]. In Fig. 2 we ob-
serve the L-function results for selected GSM and UMTS
deployments, along with 99 realizations of a Poisson
fit (corresponding to a significance level of 0.01), and
its well-known closed-form representation. The results
somewhat confirm the observations made in [3], as the
observed point patterns for various operators in different
areas exhibit either some mild forms of inhibition or
uniformity for the whole range of inter-point distances.

We now turn our attention to the relationship be-
tween multi-operator deployments. If single-networks
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Fig. 2: The L-function results for Meteor GSM and UMTS
deployments in Dublin (marked with triangles) with the
envelope of the fitted Poisson model at a significance
level of 0.01 (grey area), and the theoretical value for the
Poisson process (marked with circles).

were realizations of independent Poisson processes, we
would expect that the observed multi-network patterns
should not exhibit any forms of regularity. However,
as noted previously the resulting multi-network point
patterns clearly exhibit clustering. This fact and the
single-operator fit would suggest that the realizations
of networks of different operators are not independent
from each other, which also makes sense intuitively,
as one would expect that BS placements account for
local phenomena, such as high availability of potential
subscribers. In order to test this hypothesis, we look
into the cross-type J-function results for multiple opera-
tors in Dublin. Since the J-function involves comparison
between different patterns, we drop for a moment the
assumption of simplicity and allow for BSs of different
operators to co-locate. Both the results for GSM (Fig. 3a)
and UMTS (Fig. 3b) confirm that there is significant clus-
tering for the majority of inter-point distances, with some
repulsive behaviour for Three-Meteor/Meteor-Three and
Vodafone-Meteor pairs at larger distances, which may
reflect the structure of the Irish mobile market and its
existing infrastructure sharing among operators. Note
that these results, as any results in empirical statistics, are
merely an indication of clustering among the observed
BS patterns rather than a formal proof.

Let us now move on to describing the results of fitting
a model to multi-networks. As stressed previously, we
present in more details the results for Dublin, while not-
ing that the fitting results for the remaining cities follow
similar patterns, as can be seen in Fig. 4. In the figure
we can see that real multi-networks are characterized by
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Fig. 3: The cross-type J-function results for combinations
of pairs of major MNOs in Dublin: Meteor (Me), Three
(Th) and Vodafone (Vo). Recall that by definition Jij
is not symmetric and also Jij < 1 indicates clustering
(while Jij > 1 inhibition) between the BS locations of
any two MNOs.
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Fig. 4: The pair-correlation function for real deployments
in various cities; Dublin marked with triangles and the
envelope of the fitted Poisson model (at a significance
level of 0.01) marked with solid lines.

significant clustering that occurs at inter-point distances
below approximately 500 meters, beyond which point
the patterns become somewhat uniform, with spikes of
regularity or clustering occurring as a result of some
unobserved local heterogeneities, most likely related to
social and geographical features of the analysed areas.
This result indicates that multi-networks in urban areas
show similar behaviour, which gives us some confidence
in the reliability of our input datasets and suggests that
a single model could be potentially representative to a
class of real multi-networks.

From Fig. 4 it is quite clear that any point process capa-
ble of modelling multi-networks would need to exhibit
short-range clustering and be robust enough to account
for some deviations in local clustering and repulsion
of points at larger distances. The model that intuitively
is the most promising is the log-Gaussian Cox process,
which allows us to parameterize and estimate the un-
observed local covariates in the form of a random field
spanning the analysed area. Since our goal is to find a
point process that represents features of multi-networks,
we look also at other clustered point processes, namely
the Matern cluster process and the Thomas process. In
order to show that multi-network patterns have strong

clustering features, which cannot be captured by pro-
cesses describing single-networks, we also provide fitting
results for other point processes: the PPP (to disprove
the complete spatial randomness hypothesis [6]), and the
superposition of independent SP realizations. The figures
also include envelopes, which represent the maximum
and minimum of 99 realizations of the fitted model,
which are used to assess the goodness-of-fit of the model
in the envelope test [6].

As we can see from Fig. 5 and Fig. 6 both the PPP
and the superposition of independent realizations of the
SP can be rejected as candidate models, since they do
not produce sufficiently large empty spaces, both in the
GSM and UMTS case. Moreover, these point processes
are unable to model short-range clustering as can be seen
from the results obtained for the L-function in Fig. 7 and
Fig. 8. Doubly Poisson clustered models (MCP and TP),
seen in Fig. 5 and Fig. 6, do not pass the envelope test for
the F-function, as they under-represent the occurrence of
empty spaces in the patterns. Moreover, when second-
order characteristics are taken into account, these point
processes seem to insufficiently capture clustering, while
completely missing out on the long-range repulsion, see
Fig. 7 and Fig. 8.

By far the most satisfying results we have observed
come from the LGCP models, which in the UMTS case
passed the F-function envelope test for both models,
see Fig. 6, and for the GSM case passed the F-function
test for the model with the stable correlation function,
see Fig. 5. Apparently, the trade-off for achieving better
fitness is related to increased variance in the occurrence
of empty spaces prevalent in the modelled patterns.
When it comes to second order statistics, we can see in
Fig. 7 and Fig. 8 that both the LGCP models are able to
account for the short-range clustering, while also being
able to capture long-range repulsion in the patterns.
In our simulations we have also tried other than the
exponential and stable spatial correlation functions (for
example, Gauss or spherical); however, fitting against a
model based on either of the two functions gave us the
most satisfying results.

4.4 Fitness results - other areas
When fitting the models to other patterns from our
dataset, we have observed similar results, i.e., we could
model the short-range clustering with any of the clus-
tered point process, while the long-range repulsion was
best represented with the LGCP model. For some areas,
however, the LGCP was insufficient to capture all the
inter-point interactions; in those cases, in order to achieve
fits one could adjust the intensity function of the process
with some additional environmental covariates or inject
an inter-point interaction force into the density function
of the LGCP model. Both of these, however, destroy
any potential analytical tractability of the model, with
the risk of over-fitting, which goes against our goal of
model universality. In addition to a number of urban
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cases, we have looked also at some areas with lower
density of base stations, such as Athlone, Ireland. In
order to obtain meaningful results for rural areas we
had to increase the observation window size to 25-by-
25 km. However, even increasing the observation win-
dow left us with relatively small patterns that contained
significant amount of empty spaces. In those patterns
we could still observe some mild forms of clustering at
smaller distances, which in most cases was enough to
reject the PPP hypothesis. The considered clustered point
processes were able to capture this clustering as well
as the following uniformity in the pattern, although the
fitted models had significant variance. And since these
results were not entirely consistent across the other rural
areas we have analysed, we have decided to focus on
modelling urban locations.

Based on the fitness results we have concluded that the
most promising point process to model multi-networks
in urban areas is the LGCP. Furthermore, we have
observed that we can almost unambiguously classify
the parameters of the models according to the type of
deployment, i.e., urban, and dense urban. Tab. 4 sum-
marizes the two classes of models we have found. It
is interesting that for the urban scenario the standard
deviation is relatively low (around 10%) for both shape
parameters, i.e., σ2 and β, which suggests similar shape
of the intensity function λ(x) for each of the geographic
areas considered, with only scale parameter µ (precisely
exp(µ)) having higher deviation to account for the dif-
ferent number of BSs in each area. For the two dense
urban areas (London and Warsaw) the estimated model
parameters differ significantly, which is presumably the
result of much higher number of base stations and much
richer structure of the area (higher concentration of BSs,
larger number of neighbourhoods with concentration of
BSs).

5 PERFORMANCE ANALYSIS
Having evaluated the statistical match between our
proposed point process models and real multi-network
deployments, we now turn our attention to wireless
network-relevant evaluation based on the radio access
network sharing scenarios of: infrastructure, spectrum
and full network sharing, as studied in [14]. As a metric
for our evaluation we use the coverage probability [26],
i.e., the complementary cumulative distribution function
(CCDF) of SINR, which we obtain for each estimated
deployment model and each scenario via Monte Carlo
simulations.

In the following we assume that the power of the
signal received by a typical user located in the origin
(0, 0) is affected by two factors: pathloss l(x) and power
fading hx, where x denotes the location of the serving
BS. The pathloss function l : R2 → R+ is of the form
l(x) = ||x||−α, where α is the pathloss exponent, and
the power fading between the user and the serving
transmitter x is spatially independent and exponentially

distributed (e.g., Rayleigh fading) with mean µx which
corresponds to the transmit power of a BS located in
x, i.e., hx ∼ exp(1/µx). In the following we analyse
two approaches to assigning transmit powers to BS
transmitters: initially, we set µx = 1 for all x ∈ Φ, and,
subsequently, we extend our model and assign transmit
powers according to the scheme we proposed in [32].
In addition, we make the following assumptions: (i)
our results apply to the downlink only, (ii) worst-case
interference is considered, i.e., all transmitters transmit
simultaneously, (iii) we assign individual BSs to oper-
ators uniformly at random, (iv) noise is unitary for all
the receivers, and (v) α = 4. For each realization of
the estimated model we generate 2000 user locations,
over which we average our results. We also apply edge-
effect correction based on an enlarged window, i.e., we
assume that the user locations lie inside a square window
centered at the analysed area with the side equal to half
the side of the window containing the original area.
Coverage probability - unitary transmit power

Fig. 9 presents the coverage performance of our mod-
els for each of our sharing scenarios and technologies
when BS transmit power is unitary. In each case the
LGCP model with the stable correlation function gets
the closest to the coverage provided by a real multi-
operator network. In the case of full network sharing
our models significantly over-estimate the amount of
coverage in the network (approx. 2 dB vertical shift for
the “LGCP stable” model). However, in the case of
infrastructure sharing we observe that the “LGCP stable”
model provides a very tight match to a shared network
performance. The spectrum sharing scenario provides
significantly worse coverage, which should come as no
surprise as we assumed worst-case interference. Interest-
ingly, in the case of spectrum sharing we observe a cross-
over point, which we have reported also in [14], which
is related to the amount of clustering in the evaluated
patterns. Clearly, a real multi-network provides higher
clustering than any of our models can produce. It is
also worth noting that, while statistical tests have shown
that a superposition of independent realizations of the
Strauss process provide a reasonably good match to the
real data, according to our coverage analysis this way of
modelling multi-operator patterns fails to reproduce cov-
erage properties of multi-networks in wireless network
sharing scenarios.
Coverage probability - transmit power assigned as
proposed in [32]

In [32] we studied the distribution of maximum down-
link transmit power in macro- and microcell base stations
using spatial statistical analysis of 3G radio access net-
work deployment data for the UK. Our major finding
was that “downlink macro- and microcell transmit power
allocations in a real 3G network, both in single and
multi-operator cases, can be considered independent and
identically distributed”, which has led us to propose a
random assignment from a fixed probability distribution
as an assignment method for base station downlink
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TABLE 4: Fitted model parameters

Location type Model
Model parameters

σ2 β µ

Urban LGCP 3.9040± 0.3699 0.03± 0.0031 −0.5634± 0.2956

Dense Urban (London and Warszawa) LGCP 2.0561, 2.7228 0.054, 0.0288 1.2665, 1.9477

transmit powers.
The first thing we observe in Fig. 10 is that BS transmit

power assigned from a model based on real data has
a negligible impact on the coverage of the analysed
network model (the coverage probability is degraded by
roughly 1% for each SINR point), which is consistent
with our prior observations [32]. This is true also when
the noise level of -130 to -90 dBW is included at the
receiver. This result is good news as it allows us to use,
without loss of generality, a simplified model for multi-
network that includes unitary transmit power.

What we can conclude from the above results is that
the chosen point processes provide a reasonable repre-
sentation of real base station deployment when sharing
scenarios are considered, even when exact information
about operator-BS assignments is not available. Further-
more, similar results hold even when transmit powers
are assigned from a model based on real data [32], which
also suggests that this type of analysis may be robust to
certain operator settings.

6 DISCUSSION AND CONCLUSION

This paper is, to our knowledge, the first to study multi-
operator base station deployments using spatial statistics
and stochastic geometry. What we have shown here is
that networks deployed by independent operators tend
to cluster at shorter distances, which may correspond
to areas of high demand, and repulse at long-distances,
which would presumably correspond to coverage provi-
sioning and low availability of shared sites. This result
implies that if one wants to model (or simulate) the
performance of a generalized shared infrastructure be-
tween N mobile operators, one cannot simply model the
entire network as a superposition of N independent real-
izations representing single-operator networks. Instead,
the approach we propose is to model such a network
as a single clustered point process and indeed, as we
have shown in our results, clustered point processes that
represent well such networks can be found. What is
even more appealing is that similar models may be used
to represent networks of multiple operators in different
countries (herein, we examined Ireland, Poland and the
UK), which suggests that using such a model may come
useful when deriving fundamental results about wireless
network sharing, or evaluating the performance of pro-
tocols and management strategies designed for shared
wireless infrastructure.

As part of our future work, we are studying, using
stochastic geometric models, the impact of spatial dis-
tribution of base stations on the performance of infras-
tructure and spectrum sharing between multiple mobile
operators. Our initial study, see [14], analyses the trade-
off between infrastructure and spectrum sharing. How-
ever, one may extend our work also in other ways. One
such possible extension includes modelling base station
deployments as a multivariate LGCP, see [28], whereby
additional variates describe, for example, whether a base
station is private or shared, or some network relevant
parameter such as the antenna height. These parameters,
however, would have to be subject to thorough spatial
statistical analysis. Obviously our methodology may also
be applied to fit other point process models which may,
for some applications, provide additional benefits related
to, for example, more in-depth insights into the corre-
lations present in multi-operator radio access network
deployments.
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Fig. 5: GSM - Empty space function (F-function). The estimated F-function for the multi-network in Dublin (marked
with triangles) with the envelope of the fitted point process model at a significance level of 0.1 (grey area), and the
theoretical realization of the PPP (marked with circles). As we can see from the figure the “LGCP exponential” and
“LGCP stable” fitted models pass the envelope test for Dublin.
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Fig. 6: UMTS - Empty space function (F-function). The estimated F-function for the multi-network in Dublin (marked
with triangles) with the envelope of the fitted point process model at a significance level of 0.1 (grey area), and the
theoretical realization of the PPP (marked with circles). As we can see from the figure “LGCP stable” passes the
envelope test for Dublin.
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Fig. 7: GSM - the L-function. The estimated L-function for the multi-network in Dublin (marked with triangles) with
the envelope of the fitted point process model corresponding to a significance level of 0.01 (grey area), and the
theoretical realization of the PPP (marked with circles).
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Fig. 8: UMTS - the L-function. The estimated L-function for the multi-network in Dublin (marked with triangles) with
the envelope of the fitted point process model at a significance level of 0.01 (grey area), and the theoretical realization
of the PPP (marked with circles).



14

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(a) Full sharing GSM

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(b) Infrastructure sharing GSM

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(c) Spectrum sharing GSM

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(d) Full sharing UMTS

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(e) Infrastructure sharing UMTS

SINR [dB]

-20 -10 0 10 20

C
C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

PPP

Strauss

MCP

TP

LGCP exp

LGCP stable

(f) Spectrum sharing UMTS

Fig. 9: The coverage probability comparison for real deployment in Dublin (circle) and various fitted point process
models, for each radio access network sharing scenario and radio technology when transmit power is unitary for all
BS transmitters. Clearly, “LGCP stable” (hexagonal star) provides the closest fit to real network data.
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Fig. 10: The coverage probability comparison for real deployment in Dublin (circle) and various fitted point process
models, for each radio access network sharing scenario and radio technology when transmit power is assigned to BS
transmitters according to the scheme proposed in [32]. Again, “LGCP stable” (hexagonal star) provides the closest
fit to real network data.


