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Summary

Service networks and the assignment of tasks on such networks are prevalent abstractions in a
spectrum of domains spanning manufacturing systems, where a strict dependency on the execution
of the tasks exist, load-balancing or routing, where packets are forwarded along links to balance
the load and reach an ultimate destination respectively, and e-Commerce applications, where
(autonomous) services interact to fulfill a task request. As those networks increase in scale and
cross organisational boundaries, centralised control mechanisms pose limitations to scalability.
Additionally, these systems exhibit real-time constraints in their queueing behaviour that limit
the scope of offline planning and optimisation solutions. Instead, decentralised online control
mechanisms are employed that find feasible solutions that may be globally suboptimal, but represent
good near-optimal solutions. Decentralised control approaches, however, introduce non-stationary
behaviours driven by the dynamic interaction of the autonomous decision-making agents. This
requires carefully crafting control mechanisms to avoid selfish behaviour of the agents with a
detrimental impact on the other agents such that the whole system suffers and experiences the
“Tragedy of the Commons”. This thesis is fundamentally an empirical study, and as such the
modelling of task networks relies on the mathematical framework of Queueing theory. Queueing
theory provides a rich semantics to analyse the performance of interconnected queues based on basic
principles of task requests arriving and being serviced according to specific probability distributions.
Simulation studies play an ever increasing role in analysing and understanding communication or
traffic systems. This is especially the case for complex adaptive systems governed by decentralised
control mechanisms, where closed-form solutions do not exist, to address techniques such as
online learning for optimising routing behaviour. Importantly, the underlying network structure or

topology is treated as a primary evaluation aspect, which is often neglected.

The main goals of the research underlying this thesis are 1) to model large service networks
exhibiting specific topological features, 2) to translate the resulting graph-theoretic structure thus
derived into a cooperative decentralised optimisation framework, based on multi-agent reinforcement
learning, and 3) to find the best multi-agent reinforcement learning settings for a given scenario
and analyse the temporal variation of the adaptive forces driven by the individual optimisation
tasks over time. To this end, this thesis can be stated as follows: By simulating the decentralised
optimisation algorithm with a large variety of network structures, more refined results on the
behaviour and performance of the individual agents and the system as a whole can be obtained. In
achieving the goals of the thesis thus defined, complex network modelling and analysis is combined
with machine learning. The perspective of the behavioural analysis of the adaptive interactions on

queueing networks over time enrich the equilibrium analysis usually conducted, and consequently

Vil



provides a more comprehensive view on multi-agent systems.

This thesis demonstrates that sophisticated statistical techniques based around response surface
methodology can be used to guide efficient simulations of network queuing models to explore
the relationships between several explanatory variables of the respective learning method and
queueing performance measures. The analytical tools of response surface methodology aid in finding
globally optimal learning parameters and elucidate the sensitivities of the learning parameters to the
respective queueing performance measure. One challenge in reinforcement learning is balancing
exploratory and exploitative actions in an uncertain environment, which is exacerbated in multi-
agent reinforcement learning. Decentralised control is implemented using SARSA (0) reinforcement
learning with neural network function approximators and policies that suitably allow adaptations in
a continuously changing environment to study the impact of the underlying task topologies on the
learning behaviour. Additionally, the effect of collaborative function approximation is examined.

The simulation platform is implemented to utilise high-performance computing infrastructures.
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— Suppose that you want to teach the “cat” concept to a
very young child. Do you explain that a cat is a relatively
small, primarily carnivorous mammal with retractible
claws, a distinctive sonic output, erc.? Ill bet not. You
probably show the kid a lot of different cats, saying “kitty”:
each time, until it gets the idea. To put it more generally,
generalizations are best made by abstraction from experi-

ence.

Ralph Philip Boas, (Can we make mathematics
intelligible?, American Mathematical Monthly)

Introduction

The inspiration for this work originates from my early research into modelling business interactions
in peer-to-peer environments [43, [44} 129, [130]. In the “software as a service” paradigm, business
services are advertised via Web Services in an open business ecosystem facilitating the combination
of a set of Web Services into a more complex business logic. As businesses join in and grow within
such networks, some remain niche services, while others become central to the business network.
Modelling and analysing those service networks raises three major challenges. First, the topological
features of service networks exhibit specific characteristics that play an important role in the way
interactions between entities on this network unfold. Second, composed services depend on the
availability and correct behaviour of the individual Web Services they use, and they may lack the
flexibility to replace a failed Web service with a redundant alternative. Third, as services are generally
autonomous in nature, their independent adaptation in the network needs to be analysed in the
context of the performance of the whole service network.

The main goals of the research underlying this thesis are 1) to model large service networks
exhibiting specific topological features, 2) to translate the resulting graph-theoretic structure thus
derived into a cooperative decentralised optimisation framework, based on multi-agent reinforcement
learning, and 3) to find the best multi-agent reinforcement learning settings for a given scenario
and analyse the temporal variation of the adaptive forces driven by the individual optimisation
tasks over time. To this end, this thesis can be stated as follows: By simulating the decentralised
optimisation algorithm with a large variety of network structures, more refined results on
the behaviour and performance of the individual agents and the system as a whole can be
obtained. In achieving the goals of the thesis thus defined, complex network modelling and analysis
is combined with machine learning. This thesis also demonstrates how sophisticated statistical
techniques can be used to guide efficient simulations of network queuing models to measure

and illuminate the effects of structure on and the best parametrisation for learning behaviour in
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multi-agent networks.

1.1 Task Networks

Business ecosystems mentioned in the first paragraph of this chapter motivate the research efforts
in this thesis. However, for the purpose of analysis, task networks are generalised as queueing
systems which provide a rich mathematical framework to conduct the empirical investigation. To
emphasise on the broader applicability of the abstract framework, the application domain is framed
as a sequential distributed task assignment problem. Sequential, because tasks arrive sequentially at
nodes in the network. Distributed, because each node in the network is considered autonomous,
meaning that task requests arrive from the outside of the network to all of the nodes. So each node is
concerned with providing the best possible service to its clients. To achieve this, each node employs
a learning module to optimise queueing metrics, such as utilisation, delay, number of events in the
queues or response time.

A server is responsible to complete a specific local task given an assigned stochastic service time.
A task is composed of many sub-tasks each contributing in some way to the overall task. Two
different kinds of service requests are distinguished. When an external service request to the task
network arrives at a given server, then this server is the starting point of the overall task. Otherwise,
an internal request implies that the server is part of an overall task.

For example, assuming a workflow system, S3 in receives an external service request
from a client. A portion of the task is completed on S3 before the request is forwarded to either S4
or S5. $4 and S5 provide the same service and therefore are competing with each other, but may
have different service times to complete the request. They also show different structural embeddings
in the task hierarchy, which means that the internal modularity of the respective task is different.
While S4 can provide a service independent of others, S5 requires S6 to deliver parts of the service.

Simply put, this structural difference is a contributing factor to the overall performance of a task.

Request

oG

©<§

Figure 1.1: Distributed Task Assignment

In the context of this thesis, a few simplifying assumptions are made. These include single class
task requests. That means that no differentiation of the actual task request is being made. For
example, certain tasks are not prioritised over other ones. Also, tasks arrive stochastically with
homogeneous Poisson arrival rates. Real-world queueing networks would account for high-peak and

low-peak arrivals that depend on the time of day for example.
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1.1.1 A Perspective on Coupling Artificial Intelligence and Complex Networks

Although not the only one, an interesting avenue being used in tackling the decentralised and
autonomous control challenges is multi-agent reinforcement learning, which belongs to the broader
domain of distributed artificial intelligence techniques. Artificial intelligence draws its inspiration
from biological systems that evolved over many millions of years to solve problems through
interactions with a dynamic environment. The actors of this environment are systematically
transformed as a result of the experiences that unfold within this complex, dynamic, and seemingly
chaotic context. Many diverse disciplines such as mathematics, physics, biology, psychology, and
computer science try to understand these biological processes that drive the transformations, because
of their promise to solve problems relevant in their respective field. The field of psychology in
particular has had a great influence on computer science, encouraging to devise algorithms that
can enable computers to process data in a way that resembles learning. There are two questions
raised in this thesis with respect to modelling and analysing service networks. The first question is
how learning modules can be employed such that computers can autonomously reason about their
environment to achieve robust service selection as given in the business ecosystem example above?
The second is whether learning behaviour is affected by the topological structure of the networks
and, further, how it is affected? These two questions focus on and put forth an agenda to coalesce

machine learning and complex network modelling and analysis.

Complex network modelling and analysis has its origins in sociology, where the study of
relationships among human beings is called social network analysis. Modern social network analysis
studies structural features of social phenomena and is generally based on four approaches. Most
prominently is the intuition that social actors are linked via ties. The identification of the social
actors and their ties is grounded in systematic empirical data. Additionally, it draws heavily on
graphical representations of elements of the network and relies on mathematical and computational
models. For an historic account on the development of social network analysis from the perspective
of sociology see Freeman [56]. However, investigating the interaction among entities is not only
confined to human social relationships, but has also been extended to other fields of research.
Understanding the structure of social interaction leads to generalising patterns that govern these
interactions. Related to those patterns are relatively simple computational models that imply specific
structural features. A basis for answering the questions posed above is the establishment of an
organisational model of such task or business networks. The formal investigation of networks is a
fairly young discipline that was originally shaped by Pal Erdds and Alfréd Rényi who hypothesised
that complex networks exhibit random interconnections. However, random graphs could not
explain some of the phenomena that were observed by sociologists, such as “six degrees of separation”
in the famous Milgram experiment [99]. This lead to more sophisticated network evolution models

that incorporate some kind of social structure.

The study of networks is applicable to any domain that is governed one way or another by
them. Recent articles in the magazine “Science” put a great emphasis not only on structural features
of networks, but also on the interaction patterns of the entities involved [[18} 116} [135} [166]. In the
following articles, it is argued that the evolution of interaction patterns is as important (if not more

s0) as the topological features of the networks. Ecological systems are sustained by the interaction
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among different species and their diverse identities [18]]. Some important questions of why certain
social-ecological systems collapse and others do not, e.g., through the influence of over-fishing,
require the identification and analysis of relationships among the subsystems, including resources,
users, and governance [[116]]. The current economic crisis illustrates the difficulty of predicting or
controlling credit and investment networks, trade relationships, and supply chains [135]. Finally,
the intersection of technological and human networks whose dynamics and evolution are defined by
the interaction with human behaviour [166]. These aspects highlight the importance of a network
view on both structure and dynamics and motivate the approach of modelling and analysing large
decentralised adaptive queueing systems. In fact, the adaptive behaviour in queueing networks
combines both a topological structure and dynamic interaction patterns to provide a compelling
basis for applying analysis tools derived from the field of complex networks research.

In pursuit of this research, the theme of cooperative decentralised artificial intelligence techniques
coupled with the static and dynamic analysis of complex adaptive networks recurs throughout this
thesis. The complex interactions that arise through multiple learning entities and that are organised
in some kind of network allow for some fascinating insights. To facilitate a thorough empirical
analysis, the application domain of service selection introduced above is generalised using queueing
theory. With queueing theory, performance metrics are well defined, both as equilibrium solutions
and as part of discrete event simulation. In that sense, the dynamic interaction through learning
processes in a service network does not lend itself to analytical solutions, but instead must be
simulated.

The task hierarchy of a service network prescribes discrete structures representing pairs of nodes
and links connecting them. The dichotomous nature of the static structure in which links between
nodes are either present or absent, provides a very basic framework to analyse some of the features
of task hierarchies specifically, and graphs more generally. Extensions of this basic framework can be
integrated to accommodate more complex scenarios [27]]. For example, the links may carry weights,
or the nodes may be associated with a real value to give them a richer semantics. In fact queueing
theory achieves exactly that. The weights on the links represent routing probabilities and the nodes
represent services that exhibit certain performance characteristics. The adaptive forces introduced
with artificial intelligence techniques transform the network in a systematic way which expresses
itself directly in a change of the weights of the links and indirectly impacts the performance of the

nodes in the network.

1.1.2 Empirical Evaluation

One evaluation goal of this thesis is to provide a method for finding the optimal learning parameters
of given reinforcement learning methods to be able to compare their utility to modelling cooperative
task networks. In a queueing network this may be minimising total delay or mean utilisation, or
maximising total throughput. This in itself is a challenging task, because the task of simulating
queueing systems is constrained by time and computer resources. Blindly simulating every possible
parameter setting may be possible for very small problem domains with few integer or boolean
parameters. But real valued parameters or larger simulation studies require more intelligent design

of experiments.
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A second evaluation goal is the dynamic analysis of learning behaviours with a networks
perspective. For that purpose complex network analysis tools can be applied to uncover the learning
behaviour that unfolds on complex adaptive networks. This perspective augments the goal of finding
optimal results which is mainly concerned with average performance criteria in the limit or once the
system has converged. The dynamic analysis of evolving behaviour on complex networks requires an
investigation of time slices of the network. This investigation reveals possible fluctuations in learning
behaviour that is impossible to attain using equilibrium analysis. While one learning algorithm may
produce the optimal long-term queueing characteristics its downside may be huge fluctuations in its

impact on the network.

1.2 'Why Multi-Agent Reinforcement Learning?

Before delving into the intricacies of the multi-agent part of the question, some introduction of
reinforcement learning in general is necessary. Reinforcement learning is a term used to describe
learning that takes place by observing cause and effect of actions without an explicit teacher.
Moreover, the actions are aligned with single or multiple goals. The central idea is that reappraisal of
learning and memory are incorporated into a trial-and-error interaction within a certain context. The
acquisition of knowledge is guided by a scalar reinforcement signal that determines the magnitude
of the “goodness” of an action. Positive reinforcement signals select and strengthen new behaviour,
while aversive stimuli weaken poor behaviour. This is a remarkably simple framework that is able
to learn skills from recurrent choice in similar contexts [57]]. Therefore, it is attractive to apply
reinforcement learning to domains where prior knowledge of the environment is difficult to obtain.
However, one might wonder whether reinforcement learning (or more generally any learning
method) is the best one in any given environment. Wolpert and Macready [178]] proved that there
is no learning algorithm that outperforms all others averaged over all possible learning problems,
which is famously known as the “no free lunch theorem”.

More specifically, this thesis addresses the problem of engineering and evaluating complex adap-
tive systems using reinforcement learning techniques in order to adapt to a dynamic environment
for sequential distributed task assignment problems. Reinforcement learning is used to optimise the
selection of alternate paths based on past interactions and future prospects without explicit global
knowledge about the system. Each learning module co-located with a node in the task network
monitors queueing performance parameters of the interactions and adapts its transition probabilities
accordingly to reflect the relative difference in the performance of the available nodes. The inherent
stochastic nature of dynamic environments coupled with a learning process allows for autonomous
adaptations in order to support optimal decisions during the runtime of the system. The application
domain this thesis deals with suggests that multiple reinforcement learners are employed to achieve
a common goal, where autonomous control units are generally called agents.

Broadly speaking, this line of research falls into the field of distributed artificial intelligence. But
as distributed artificial intelligence maintains its more traditional roots to artificial intelligence as
reasoning, understanding, and learning, multi-agent systems emerged as a new concept to emphasise
interactions among agents and the learning algorithms they are equipped with [[156]].

Allowing multiple learners to co-exist in an environment introduces highly dynamic adaptive



CHAPTER 1. INTRODUCTION

forces, where system structures can appear without explicit external pressure (exterior control
processes), but instead take shape during internal interactions of the components involved within
the system. These systems are called self-organising systems. Often those systems show transient
phenomena or emergent behaviours that were not designed explicitly. Revealing the underlying
processes that lead to the emergence of certain characteristics or predicting behaviours is therefore
of particular interest for system engineers.

Now, turning the title of this section around: “if multi-agent learning is the answer, what is the
question?”(posed by Shoham et al. [137]). Mannor and Shamma [93]] address this question from
the engineering perspective. The engineering agenda should include robustness guarantees of the
multi-agent system and it should include domain knowledge efficiently. This mirrors Wolpert and
Macready [[178] “no free lunch theorem” where any engineered system equipped with learning
methods should be customised to fit the respective context of the application domain.

Bonabeau et al. [22] also have something to say about engineering large-scale intelligent systems.
Their perspective is inspired by social insects and their tremendous success of optimising one of
the key organisational elements of complex societies: division of labour. The premise of swarm
intelligence is that rich behaviour of social insect colonies arise solely through their interactions
mostly governed by simple rules. Retrofitting these ideas to distributed systems has been extremely
successful in areas such as routing and load-balancing because the inherent bottom-up approach is
amenable to system engineers designing solutions to their specific problems.

To conclude this section, multi-agent reinforcement learning holds a promise to efficiently solve
decentralised problem settings. This has to be understood with a caveat though. Applying any
learning techniques to decentralised problems is by no means easy nor is there a single best solution.
Later chapters will go into detail of how exactly sequential distributed task assignment problems
can be modelled. Repeating the question “if multi-agent learning is the answer, what is the question?”
leads to the next section, where the networks perspective of multi-agent learning is imposed in order

to gain insights into the dynamic adaptation processes occurring in complex networks.

1.3 Why Complex Network Modelling?

The answer to why complex network modelling and analysis is so important can be given in two
parts. On a general note, Mitchell [100] points out the importance of “network thinking” to the
general field of artificial intelligence. Not only, because it may be an integral part for developing
effective decentralised algorithms, but also to assist humans in their network-related tasks. Good
examples of synergies between Al and network science are ant-colony optimisation [47]] or more
generally swarm intelligence [22]]. Yet there are two main directions that are relatively unexplored at
the intersection of “network thinking” and distributed artificial intelligence.

Firstly, many applications of machine learning approaches in the multi-agent setting, especially
with a leaning towards game-theoretic analysis, cover very restrictive classes of problems: either
the payoff matrix is given, or stationary stochastic games are assumed, or the number of players
is small. To scale multi-agent scenarios up beyond illustrative academic problems one either has
to have access to real-world data, which is mostly difficult to obtain, or one needs to develop

some form of evolution models that iteratively grow a network. There are a multitude of network
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growth models, ranging from purely random ones introduced by Erdds and Rényi [51]] to regular
networks with random rewiring to achieve small-world properties by Watts and Strogatz [171]]
to preferential attachment models that explain the emergence of scaling by Barabasi and Albert
[15]. These are seminal articles that attempt to elucidate topological features of real-world systems
through simplified network evolution models. However, establishing synergies between network
evolution models and queueing networks in particular are still elusive.

Secondly, the analytical tools for investigating certain characteristics of networks, in particular
the ones that account for weighted (directed or undirected) networks have received a lot of attention
in recent years [5, 6, 98, 109, [114} [133] [168]. Additionally, time-evolving networks have been
investigated to uncover, for example, the influential stakeholders in companies [19} [63]]. Not only is
it fascinating to obtain results from real-world networks that surround our every day lives, but also
those techniques are quite useful in artificial intelligence to uncover the dynamics of learning for
example. Applying those techniques in multi-agent learning settings is the second goal of this thesis
which provides a novel perspective on measuring the quality of concurrent learning processes.

Essentially, these two directions are extensions of “network thinking” for intelligent autonomous
multi-agent systems which both provide a different angle on approaching the general problem area.
Network evolution models align with the engineering discipline in a sense that large-scale systems
need to be set up prior to investigating specially designed learning methods. Analysing weighted
networks including evolving networks cover the analytical part of the investigation and may provide

a deeper picture of the runtime behaviour of single agents or groups of agents.

1.4 Challenges

Engineering distributed systems in general one encounters numerous challenges that have been
present since the first day of their deployment, such as fault-tolerance, performance and scalability,
inter-component communication, synchronisation, handling non-deterministic behaviour, etc. An
ever more intertwined technological world only emphasises their importance. As Leslie Lamport

once famously said:

A distributed system is one in which the failure of a computer you didn’t even know

existed can render your own computer unusable.

Cascading failures are very serious, as the case of the power blackout of northeast America in
2003 clearly exemplifies. While a human error as mundane as a failure to cut trees to avoid power-
lines to short-circuit, a computer error in an energy management system deprived system operators
of audible and visual alerts of crucial changes in the state of the power-grid, which ultimately lead to
over 200 power plants being dropped off the grid.

As distributed systems scale up, central management units become harder to maintain, because
communication on the one hand and correlating state signals and emanating control instructions
on the other hand introduce single-points of failure and bottlenecks. Instead, decentralised control
becomes increasingly prevalent, often employing autonomous agents to achieve system goals. In the

following paragraphs, a focus is placed on the challenges of these decentralised multi-agent systems.
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From an engineering perspective, it is desirable to decompose a global task into sub-tasks, each
possibly managed by an agent that can tractably solve the sub-task. The division of labour among a
number of agents requires the establishment of communication channels to communicate partial or
complete results or to provide sufficient information to each agent in order for it to achieve the task.
If agents communicate with each other to contribute to an overall task, coordination mechanisms
need to be employed. Ensuring that agents cooperate on the global task turns out to be very difficult,
because agents may act selfishly to complete their own task as best as they can. In pursuit of their
own goal, agents may loose sight of the agents they (should) cooperate with, which could lead to
deteriorating system performances. Within the framework of reinforcement learning, the reward
structure needs to reflect the attitude of the agents in the environment. It is by all means possible to
design agents with only local reward structures, which is a characteristic of selfish agents, to act in a
cooperative manner. Otherwise, global reward structure that apportion credit fairly to the respective
agents in solving a task provides an inherent cooperative design. However, if the application domain
is not conducive to global reward structures, communication is required to determine who did what
and how much an agent contributed. The same is true for selfish agents to encourage cooperative
behaviour. Otherwise, selfish agents may fall prey to “the Tragedy of the Commons”, which states
that selfish behaviour may ultimately lead to the destruction of the common shared resources even
though this is in nobody’s interest [69]. Game theory, a branch of applied mathematics, and most
notably used in economic settings is a formal framework to analyse strategic situations where more
than one player (in the terminology of game theory) is involved and their outcome depends on each
of their actions. Most of the research in multi-agent learning utilise the game-theoretical setting to
analyse the interactions between agents.

From the perspective of learning theory, multi-agent reinforcement learning violates the conver-
gence guarantees of single-agent methods. For example, that single agents convergence to optimal
learning policies has been proved for temporal difference methods under certain conditions. As the
state space for single-agent scenarios increases, compact representations of the state-action mapping
need to be implemented. However, with the introduction of function approximators, convergence
proofs become brittle. This is especially the case for non-linear function approximators like feedfor-
ward neural networks. There are mixed results with using function approximators in reinforcement
learning tasks and consequently, the statistical learning community strives to invent methods that
overcome some of the short-comings of neural networks, while providing similar generalisation
power and provable convergence guarantees at the same time. However, neural networks did show
some remarkable success in some applications, such as the TD-gammon game by Tesauro [[149].

Lifting reinforcement learning methods into the multi-agent settings complicates the theory
even further, because agents co-adapt alongside each other. So, the learning behaviour of any
agent follows a moving target, because other agents in the environment are learning at the same
time. Consequently, the environment is not stationary. This means that actions cannot be taken
deterministically in any given context. Taking actions greedily embodies the agent’s knowledge that
this is no doubt the best way to proceed, even though other agents are still learning and thereby
introducing changes into the environment. Greedy actions neglect that adaptive forces are still
underway in the environment. So, it would be better for the agent to be open-minded to the activity

in the environment, which means that actions need to maintain a certain probability of being
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selected. To illustrate this point, consider a routing network. If an agent believes that one path is the
best and consequently forwards all the packets along this way, it might introduce congestion that
could lead to cascading failures as in the power-grid example given above. This can be avoided by
constantly monitoring the environment and acting accordingly.

Since multi-agent systems do not conform to the formal single-agent convergence guarantees,
simulation studies are necessary to investigate their behaviour, both at runtime and the steady-state
average performance. However, the specification of simulation studies often reflect the analyst’s
own bias by choosing amenable input parameters or restricting the set of input parameters to a
representative few to illustrate the respective research hypothesis. To overcome this bias standard
statistical techniques should be employed to obtain results within a given confidence interval and
response surface methodology should be used to allow comparative studies. For instance, if two
learning methods are compared and both show completely different characteristics, introducing a
bias to simulate a representative set of the learning parameters may potentially miss a region in the
design space that optimises the respective behaviour of the simulation. The consequence is that both
methods cannot be empirically compared. Moreover, simulation studies may become prohibitively
expensive to run unless only small scenarios are tried. This makes it even more important to apply
variance reduction techniques and an intelligent design of experiments to achieve a parsimonious
and congruent model.

The next section provides an outline of the thesis and points to chapters that address these

challenges.

1.5 OQutline and Contributions

is a self-contained chapter describing the details of the evaluation methodology, which is
drawn from published literature. Simulation studies play an ever increasing role in analysing and
understanding communication or traffic systems. This chapter details how to specify sequential
designs of experiments to construct a model of the simulation response given the input data. This
allows iterative improvements of an interpolation function to describe the surface and also facilitates
a thorough analysis to find the input variables that contribute most to the dynamic behaviour of the
output. Essentially, this is the enabling technology to achieve the first goal of this thesis, i.e., finding
the optimum settings for a given learning algorithm to solve large-scale sequential distributed task
assignment problems.

describes network growth models adapted for queueing systems. Often, the under-
lying network structure or topology of simulation studies is treated as a secondary evaluation
aspect and often neglected. This chapter stresses the importance of evolving networks with certain
topological characteristics. To that end, it introduces two entirely different network growth models,
one that leads to a random structure and one that exhibits a more heterogeneous structure akin
to social networks. The utilisation of the queues and the waiting times of events in the queues are
investigated and their respective sensitivities with respect to the network topologies are studied. It
is analytically shown that the two parameters that determine how capacity is boosted on vertices
and along the arcs respectively impact the queueing performance of the two different network

topologies.



CHAPTER 1. INTRODUCTION

provides fundamental details of reinforcement learning. It reviews the main learning
algorithms relevant for this thesis and explains the limitations of applying those to multi-agent
reinforcement learning. This chapter then continues to describe recent research efforts in multi-agent
learning, especially covering the basics of game-theory and its influences to this domain.

[Chapter 5|models sequential distributed task assignment problems with cooperative multi-agent
reinforcement and complex network techniques. It provides the relevant definitions for decentralised
Markov decision processes and explains how cooperative behaviour in this setting comes about.
The focus is on autonomous multi-agent systems that discover solutions to complex and dynamic
tasks online, using learning techniques with roots in dynamic programming and temporal difference
reinforcement learning.

evaluates the sequential distributed task assignment problems with cooperative
multi-agent reinforcement using two different policies over two different network structures with
different queueing stress levels. The learning methods are calibrated to find their globally optimal
learning parameters and their influence on the total event processing time is investigated, thereby
achieving the first goal of this thesis.

investigates the second goal of this thesis of uncovering the non-linear dynamics
of learning behaviour on social and random distributed task assignment topologies with different
learning policies employed.

concludes this thesis and gives some areas of future work. It addresses some of the
assumptions made and proposes future research directions to expand on the methods used and

results obtained.

depicts the machine learning techniques used in this thesis.

Table 1.1: Machine Learning Techniques used in this Thesis

Supervised Learning Active Learning Reinforcement Learning
Function Approximation Response Surface SARSA(0)
Improvement temporal-difference method

To anticipate some of the results obtained in this thesis, the employed machine learning tech-
niques have proved very successful. It is captivating to witness how a few algorithms actually do
learn in uncertain environments and bring about robustness characteristics. Supervised learning
techniques map inputs to desired outputs. In this thesis feedforward neural networks are used
to establish a mapping between the state space and the value that encodes the “goodness” of an
action. Function approximators equip SARSA(0) reinforcement learning agents with the ability
to compactly represent learned knowledge. Lastly, active learning plays a role in the statistical
framework of improving a response surface of the simulation output by selecting sample points that
are likely to improve the response surface.

The contributions of this thesis can be summarised as follows:

* An agent-based simulation platform implementing parallel algorithms for high-performance

computing clusters.
® The adaptation of the Erdés-Rényi (ER) random graph and the Barrat, Barthelemy, and
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1.5. OUTLINE AND CONTRIBUTIONS

Vespignani model (BBV) social graph to model specifically queueing networks is a novel

application to queueing networks (Chapter 3).

® The reverse effect of the weighted versus the unweighted assortativity metric for both network
evolution models is a new insightful result, which emphasises the importance of characterising
the underlying graph structure (Chapter 3).

* Incorporating network evolution models into agent-based simulation for queueing networks

to analyse learning algorithms is new (Chapter 5).

® Modelling large-scale sequential distributed task assignment problems with SARSA(0) re-

inforcement learning and a neural network function approximator to generalise over the

state-action space is new (Chapter 5).

* To improve scalability of cooperative multi-agent systems, a contribution is the outsourcing

of the function approximators which also facilitates faster learning (Chapter 5.

* Employing response surface methodology to find the best parametrisation for reinforce-

ment learning methods and analysing the sensitivities of the learning parameters has to my

knowledge not been done before (Chapter 6).
® The metric to measure the distance of learning in [Section 7.1]is new.

® The application and results of dynamic network analysis using both queueing metrics and

metrics inspired from shareholder networks is new (Chapter 7).

To conclude, the premise of this thesis is to gain a deeper understanding of cooperative decen-
tralised optimisation problems for sequential distributed task assignment. The main building blocks
to achieve this goal are the statistical and mathematical framework of response surface methodology,
the modelling of large queueing networks with certain topological features, and the behavioural
analysis of the individual entities within the context of their relative structural embedding within

their network.
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— But when a rule is extremely complex, that which con-

forms to it passes for random.

Gottfried Wilhelm Leibniz, (Discours de
métaphysique)

Response Surface Methodology for Stochastic

Computer Simulations

Computer simulation studies play an ever increasing role, especially when closed-form analytical
solutions do not exist. To this end, this chapter presents background material to thoroughly analyse
the outputs with respect to the inputs of stochastic computer simulation. This means, that some
interpolation approach is needed to estimate the output of computer simulations not yet run. Based
on this interpolation function, the analyst is often interested in finding the best settings for a number
of design parameters that influence the output of the computer simulation. The metamodelling
process depicted in shows the four major steps from modelling a real physical system
as a computer simulation to attaining an optimal design and finally deploying a real-world system
based on the results obtained. Along this process several sources of errors may occur and need to be

integrated into an optimal design [142]].

Implementation ¢ —
Error

Reality

Simulation
Model ¢ _
Error

Simulation
Metamodel ¢
Error

Response
Metamodel Surface
¢ Methodology

D Optimal Design

Deployment

Figure 2.1: The Metamodelling Process
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CHAPTER 2. RESPONSE SURFACE METHODOLOGY

This thesis is concerned with modelling distributed task assignment problems using a simulation-
based approach. As such, the focus is not on an accurate representation of a specific real-world system
and therefore deployment is not considered. However, great emphasis is placed on an integrated
statistical and mathematical methodology, which covers the construction of a metamodel using
Kriging coupled with a design of experiments called Latin Hypercube Sampling, and a mathematical
analysis of the resulting metamodel.

The analysis of a metamodel may indicate that further improvements of the metamodel are
desirable, which can then be incorporated into a sequential design process. Sequential designs are
iterative algorithms that use the input/output data acquired from previous iterations to guide the
decision for future sample selection. This way a global metamodel can be created that mimics the
underlying simulation function, but allows for a much faster computation. A local metamodel on
the other hand aims at finding optima, without obtaining a complete picture of the underlying
simulation function.

An attempt is made to present the relevant material in a self-contained way. As a consequence

most of the mathematical derivations are taken from the respective literature.

2.1 Introduction to Response Surface Methodology

Models need to be established in order to understand and develop appropriate relationships between
variables and to predict variables at unknown locations where data have not been collected [[163]).
The investigation of distributed task assignment problems and their dynamic behaviour driven
by different learning algorithms requires a careful analysis of the respective design variables with
respect to the simulation output. The ultimate goal is to provide a statistical methodology that is
capable of attaining a high-fidelity model in a timely manner and draw meaningful conclusions on
the performance of the underlying computer simulation.

A model is a computationally efficient approximation of the input/output function of the
underlying computer simulation. Computer simulations show varying degrees of complexity from
relatively simple linear regression models to more complicated models that incorporate non-linear
relationships between variables. In deterministic scientific phenomena a mechanistic view may
introduce an appropriate error term to capture the idea that something is not known exactly.
However, computer simulations are often employed when closed-form mathematical expressions
do not exist and therefore statistical approaches are necessary to establish a high-fidelity empirical
model. Typically, empirical models consist of a first-order or second-order polynomial and an error
term. The empirical model is called a response surface model or metamodel, terms which are used
throughout this thesis [107].

gives an overview of spatial data modelling and of establishing a Kriging model
in particular. Kriging is a technique for fitting a response surface model that accounts for spatial
correlation among the locations. It is a parametric modelling framework that infers model parameters
based on the collected data. The inference is computed using Monte Carlo Markov Chain sampling
[121]. Kriging modelling consolidates the scientific process of furthering knowledge about a system
under investigation. This is facilitated through a sequential process of designing the experiment,

constructing and subsequently inspecting and interpreting the response surface. Initial conditions
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2.2. OVERVIEW OF SPATIAL DATA MODELLING

can then be put into context by conducting an analysis of the model and determine for example
regions of high uncertainty or regions where solutions do not converge. This can then be taken into
account to devise new conjectures and design of experiments leading eventually to a model that can
be properly interpreted [24].

Fitting a response surface model to experimental data requires design of experiments to collect
the data. A brute-force way of doing this is to create a multi-dimensional mesh to cover the input
domain. This is a costly undertaking, because single simulations can take hours or days to complete.
In contrast, creating a sparse design may result in insufficient information in certain regions of the
design space. presents a well-known optimal Latin Hypercube Sampling (LHS) technique
that reduces the computational cost of collecting data while catering for minimum variance and no
bias in estimating the statistical response surface model [97, [185]].

The design of experiments and the sequential nature of Kriging can be exploited using high-
performance computing approaches to execute the experiments in a parallel fashion. A methodology
based on high-performance computing clusters is introduced in The parallel computing
model starts with a pilot design such as Latin Hypercube Sampling [97, [185] to efficiently sample
the input domain and then sequentially improves the Kriging model of a response until a desired
quality criterion, such as the coefficient of multiple determination, is reached.

Having a model that satisfies some quality criteria assists in further analyses to evaluate the
sensitivity of design parameters to the respective response or to find minima, maxima, and stationary
points. In other words, if one variable has a steeper slope towards the optimum than other variables,
then it is of great interest to identify that variable, because small adjustments to its value will lead to
more significant changes in the output of the computer simulation. Canonical or ridge analysis is an
approach to find response functions near those points of interest and allows a deeper study of how

the independent variables behave in terms of the response [24]. The methodology of canonical and

ridge analyses are briefly presented in

2.2 Overview of Spatial Data Modelling

Increasingly researchers in as diverse fields as climatology, ecology, economics, and computer science
are faced with the analysis of data that exhibit multivariate responses with many explanatory
variables. For example the application domain presented in this thesis deals with learning algorithms
that can be tuned in many ways and their impact on performance characteristics of the queues in
the system. As such a research hypothesis might be that one learning method performs better than
another. However, it is not obvious how to find the optimal setting, because those parameters could
influence each other in some non-linear way. Common explanatory variables include the learning
rate which determines how fast a learning entity picks up information; the factor that discounts
newly arriving information; a probability of making greedy decisions, etc. Therefore, commonly the
task of a researcher is to establish a parametric empirical model of the simulation experiment under
study. Statistical inference is the process that estimates the model parameters given the data, i.e.,
input/output pairs. The advantages of having a model is that predictions of unobserved locations
can be done in favour of a computationally expensive simulation.

In spatial data modelling, and in fact in many computer experiments, point-referenced models
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CHAPTER 2. RESPONSE SURFACE METHODOLOGY

can be used to classify spatial data sets. These models are characterised as a random vector, y(x),
at a d-dimensional location, x € R9, where x varies continuously over a design domain Q C R4.
One key aspect of point-level models is the prescription of a covariance structure over the random
variables at all locations. More specifically, it is assumed that the covariance between the random
variables at two locations depends on the euclidean distance (or some other measure of distance)
between the locations. Intuitively, this makes sense in computer experiments, where the random
variables in the vicinity of two or more locations show a higher correlation than those that are
far apart. This is in contrast to linear regression models that posit a linear relationship among the
independent variables and assume, conditional on these variables, that the outcome (responses) are
independent. One frequently employed parametric model is the Gaussian autocovariance function,
Cov(y(xi),y(x;)) = C(dy) = o2e 0% for 1 # j, where djj is the distance between the locations
xi and x; [14]. Both, 02 and 8 denote positive parameters known as the partial sill and the decay
parameter. presents a variogram which measures the average squared difference between
each observation and presents this as a function of the distance. The variogram generally assists in
Kriging model estimation. It represents the spatial structure of the data under consideration. The
structural aspect represents the spatial correlation as a function of the distance between any pair of
data points. As the distance increases the variogram values increase until it reaches a maximum at o2
(partial sill). The effective range is the distance where the variogram reaches 95% of its maximum
which is attained at /3’ é for the Gaussian autocovariance function. If at a distance d — 0 a positive
variogram value is attained, then this parameter is known as the nugget effect. Given o2 the nugget
effect, T > 0, explains additional variability of the data C(di;) = Var(y(xi)) = 72 + o2 [14]. Thus,
the nugget parameter and the partial sill represent the stochastic aspect of the variogram. Instead
of using graphical means to estimate the model parameters of Kriging, statistical methods, such as
maximum likelihood estimation or Monte Carlo estimation are frequently employed. Throughout

this thesis, Monte Carlo estimation is used to infer the Kriging parameters.
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Figure 2.2: Semi-variogram for the Gaussian covariance function
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2.2. OVERVIEW OF SPATIAL DATA MODELLING

2.2.1 Kriging Modelling

Kriging modelling, first developed by the mining engineer D.G. Krige is an interpolation technique
akin to least-squares estimation that relies on the spatial dependence of a response variable [38].
Assuming some prior knowledge of a response variable (i.e., at sampled locations) the Kriging
estimator encapsulates its distribution as a function of space. The basic premise is that the Kriging
estimator is a linear weighted combination of the known locations. Locations in the vicinity of the
predicted value thereby have a higher influence on the estimation than locations that are further
remote. Linear models in statistics are important because they are tractable and allow both inference

and prediction to be performed.

In contrast to establishing a regular mesh over the input domain, Kriging modelling is a spatial
interpolation technique that works best for known locations that are not evenly scattered across the
input domain [[113]].

Traditionally, Kriging is used for rainfall measurements [60, [70, [79] or topsoil concentrations
of minerals [106]. More recently, Kriging has also been applied to deterministic [95] and stochastic
computer experiments in various fields, such as mechanical engineering [59]], aerospace engineering
[83]], discrete event simulation [[159} [160], etc. In the earth and environmental sciences data sets
are typically very large in the order of thousands or hundreds of thousands and hence solving the
Kriging equations directly involves inverting an 1 X n covariance matrix. Matrix inversions are in
the order of n®> which are prohibitively expensive for large data sets and so Kriging becomes the
bottleneck of a scientific study. Therefore, parallel implementations of Kriging have been introduced
[70,[79]). Because a spatial datum is usually expensive to obtain in computer experiments, sample sizes
are generally small and so Kriging is straightforward. Instead of parallelising the Kriging equations,
the execution of the stochastic computer experiments is parallelised. The approach presented in
Section 2.4]divides Kriging into two phases. Phase one conducts the initial number of experiments
over a specified input domain and phase two takes advantage of the iterative nature of Kriging to

improve the model.

2.2.1.1 Stochastic Kriging

Kriging modelling is a discipline that originates from the geostatistical discipline and is increasingly
used in simulation studies in order to reduce the computer time necessary to achieve enough
information about the system under study so that meaningful predictions can be made. The notion
of predictions in that sense means the assessment of a random quantity within the design domain
that presently is not known exactly. More specifically, simulated input/output data, a finite set,
X = {X1,...,Xn}, of n scattered d-dimensional points in the domain, Q C R, are interpolated,
respecting the actually observed output values, y = {y1,...,Yn}", in order to be able to predict

outputs for unobserved input locations [94]].

The mathematical form of a Kriging model is given in equation (2.1) as a multivariate spatial
regression model for each location x comprising an 1. x 1 response vector, Y, along with a fixed

M X p matrix of regressors, F.
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CHAPTER 2. RESPONSE SURFACE METHODOLOGY

k
0(x) =) Bifi+Z(x)+elx)=FB+Z+e 2.1)
i=1

The first part represents a first-order polynomial linear regression model of the data with k
regressors, which models the trend of the hypersurface over the domain. Assuming a constant mean
for all independent variables, FB = Tu, where 1 is a vector of ones, is called ordinary Kriging.
A more versatile model is achieved by adding additional covariates in F@ to the model. These
models are called universal Kriging that were developed for spatial interpolation where a drift in
the experimental data seems to be justified. The second part defines a n x 1 zero-centered Gaussian
random process, denoted Z ~ GP,, (0, R(+, - | ®)). This Gaussian process is responsible for the exact
interpolation, which means that the mean trend given by Ff is pulled through the observed data by
accounting for the spatial correlation with mean zero and a Gaussian spatial autocovariance function.
The € denotes an additional error term that traditionally incorporates a positive nugget effect which
provides a way of introducing noise into the stochastic process. This way measurement errors can be
accounted for, if the mean surface is not exactly smooth and the numerical stability of decomposing
the potentially singular covariance matrix can be improved [[108]]. In this case, the nugget effect is
usually a constant added to the diagonals of the matrix R(-, - | @) and is independent of the Gaussian
process Z. In contrast, stochastic computer simulation outputs have random errors with different
variances at the respective design locations. An intuitive extension to traditional Kriging methods
is to account for the intrinsic uncertainty of the stochastic simulations as well as the extrinsic
one based on the Gaussian process Z. In particular, the intrinsic uncertainty emanating from the
stochastic computer simulations can be modelled as a Gaussian process, i.e., € ~ GP (0, ¥(-,)),
as well, which is beneficial, if common random numbers are used. In that case, the variances at
individual design locations are correlated among themselves and enable more accurate predictions.
n

If independent sampling is assumed, then the matrix is denoted as W = Diag [S*(xi) /ni]._

\» Where
S2(x;) is the sample variance and n; is the number of replications of y(x;) [I7, 140].
A product form of the Gaussian autocovariance function with hyperparameters ® = (02, 0) is

given by

Cov(Z(xi), Z(x;)) = r(xi,%; | O) 2.2)
T(Xi,Xj ‘ @) = O'ZC(Xi,Xj ‘ @) (2.3)
d
c(xi,x; | ©) = [T e @™l where 0y > 0. 2.4)
k=1
R = [r(xi,x]-)];zl 2.5)

Note, that in equation 0 is indexed by k which means that each independent variable
correlates with itself in the spatial domain, i.e., this is the reason for the “auto” term. 0y is associated
with each input dimension and represents the length-scale parameter. The length-scale parameter
determines by how much y decays given a distance between two locations in the direction of

dimension k. Equation can be reformulated to emphasise that it only depends on the distance

18



2.2. OVERVIEW OF SPATIAL DATA MODELLING

and not on the actual data, i.e., T(xi,Xx; | @) = v(jxi — x5/ | @) = r(d | ®). Autocovariance
functions that solely depend on the distance between locations are called isotropic. In contrast,
the hyperparameter o? defines the vertical scale of variation and is assumed stationary for any
location x;. Extensions for deterministic computer experiments do exist that relax the assumption
of stationary covariance structures [[184]. However, this work is not considered in this thesis.

One important factor to consider is the source of the trend in the data. There are two ways to
capture the trend and both are fundamentally different and therefore need careful analysis. One way
of absorbing the trend is to include it into the deterministic mean structure of the hypersurface, i.e.,
by defining regressors for the respective independent variable (first part of equation (2.1)), which is
vital to good predictions in ordinary regression. Otherwise, the trend can be incorporated into the
spatial autocovariance in the random error variation. A caveat of model building consequently is to
include only important independent variables and omit unimportant ones. The goal is to achieve a
parsimonious model that explains the relationship of the variables and provides good predictive
ability. Assuming autocorrelated errors in the Kriging model random effects of unknown variables
are absorbed to give valid, more precise estimation and prediction [163]. It seems counter intuitive
to abandon trend modelling in the regressors, but Kriging is able to build good models with very
few regressors in the model. In other words, regression aims at filtering out the deviation {j(x) — F
by minimising the sum of squared errors to fit a trend, while Kriging treats these deviations as
informative to build a response surface that exactly equals the simulation output. Often a constant
trend model is assumed for building computer simulation models. However, it has been shown
that higher-dimensional input spaces covered by sparse designs leaves some regions with little
information for the Kriging estimation procedure. Incorporating obvious trends in the Kriging
model can be beneficial [62] to assume a trend in sparsely covered regions.

Different models can be assessed using the root mean-squared error (RMSE) statistic to investigate
the inclusion of regressors into models, which gives an indication of how close the estimates of the
model parameters are to the true values and so smaller RMSE indicate a better model.

The best linear unbiased predictor, which minimises the mean-squared error of the prediction is

given by

9(x) =T (x)B +rT(x)(R+¥)"(y — FB), (2.6)

where 1(x) is a column vector of the covariances of the predicted location x to the existing ones

N . . . . . . . . . .
and B is estimated by its maximum likelihood estimation (MLE) assuming © is known

B=F (R+¥)'F) ' FR+¥)ly. 2.7)

2, cancels out in T (x)R 1. Rearranging equation (2.6) into

Note, that the extrinsic variance, o
(%) —fT(x)B = rT(x)R~!(y — FB) clarifies that the predicted residuals at x are a weighted sum of
the residuals observed at the design locations. Additionally, if the Gaussian process is independent at
different locations x, i.e., (xi,X;) = 0 for x; # x;, then Kriging prediction reduces to the ordinary
least square prediction {j(x) = Fﬁ.

In traditional Kriging, the best linear unbiased estimator is a frequentist interpretation [141]],
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CHAPTER 2. RESPONSE SURFACE METHODOLOGY

while Bayesian ones posit a prior belief on the parameters before seeing the data [14,[39]]. In that
sense, the Kriging prediction, {j(x), is a posterior to y(x).

In solving equation the hyperparameters are assumed to be known a priori. However, this
is not the case and therefore needs to be estimated from the set of observations, most commonly
done through maximum likelihood estimation. The profile log-likelihood of the model parameters

© = (02, 0) for stochastic Kriging given is

[(O|y) = —% (nlog(ZT[) +logdet(R+¥) + (y —FB)T(R+ W) '(y — Fﬁ)) . (29

where B is given by equation (2.7). Using Cholesky decomposition to factor matrix R + ¥ =
LL" the profile log-likelihood can be written as

(RN A

maximise p(y | ﬁ, 0%,0) = —%nlog(ZTE) - %log det(L)? — % (2.9)

subject to 0, 0 > 0,

where {j = y — Fp are the residuals [140].

2.2.1.2 Estimating Kriging Model Parameters

Commonly MLE is used to estimate the Kriging model parameters. For this work Bayesian analysis
is used instead, because it allows to visualise the marginal probability distributions and estimate
associated uncertainties [94]]. The integrals for the Bayesian analysis are computed using an MCMC
method. Given a specification of priors on the parameters an adaptive Metropolis-Hastings within

Gibbs algorithm [54} 122} [124] shown in is employed.

In the marginalised model, the response vector and the parameters are distributed as

U ~Nn(FB,R+V¥) (2.10)
0 ~ Na(ue, Zo) 2.11)
0% ~ G(Ty2, Ug2/To2), 2.12)

where equations - are centred around their previously accepted respective posterior
samples. The draws for logit(0) are from a multi-variate normal distribution with the variance
being adapted to achieve ~ 23% acceptance rate. o is log-transformed and the samples are similarly
drawn from the Gamma distribution with T2 controlling both the dispersion and the shape of the
distribution. Large values for T2 produce priors concentrated around 12, whereas small values
produce vague priors [[108]. Following the proposals, the inverse transformations are applied to
logit(0) and log(0?) in order to calculate the Metropolis target density equation (2.9). The logit

prior takes into account lower and upper boundary values
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2.2. OVERVIEW OF SPATIAL DATA MODELLING

logit(0:) = log(0i — 01 min) — 10g(01,max — 61) (2.13)
logit(ei)il = ei,max - [(ei,max - ei,min)/(l + eei) (214)

The posterior distribution of the model parameters given the known observations, y, is denoted

as

n(B,0% 0 | y) < ply | B, 0%, 0)m(c?)m(0) (2.15)

These parameters are estimated using Metropolis-Hastings method of Markov Chain Monte

Carlo MCMC) sampling [121]]. MCMC approximates the multi-dimensional posterior distribution
in equation (2.15) using the adaptive Metropolis-within-Gibbs[Algorithm 2.1

2.2.1.3 Posterior Predictive Inference

Once an MCMC chain is obtained from 71(Q | y),{QV) = (ﬁ, 02,0)}E_, that is sufficiently burnt
in and thinned to avoid autocorrelations, predictions, y* = [y(si)]{™, at locations X*, can be
calculated from either the unmarginalised model by sampling the conditional expectations
E[y* | Data](V) = F(V) [/3\)(1) +2ZW eforl=1,...,L, or the marginalised likelihood. !

Drawing posterior samples from

P(y* | Data) « J m(y* | Q,Data)n(Q | Data) dQ (2.16)

is straightforward and can be obtained using composition sampling. For each QY ~ (Q |
Data), draw y*(Y) ~ r(y* | QY, Data) to obtain posterior predictive samples {y*’(”}{;l.

So the posterior samples integrate the sources of uncertainties emanating from estimating
the model parameters (parametric uncertainty) and using a model to predict unknown locations
(structural uncertainty). These uncertainties are intrinsic to the model itself, while the extrinsic
uncertainty from the stochastic nature of the computer simulation output can be integrated as well,
if the matrix ¥ is specified. Otherwise, the model reduces to the traditional Kriging approach.

The prediction mean-squared error can be calculated similarly for each element in the MCMC

chain.

MSE(x)V) = o2 — o*rTZlr(x) + 876 (FTZ_lF)f1 , foreacht,...,L, 2.17)

where £ = 0?R+W¥ and & = f(x) —F' Z~'r(x)o?. Equation (2.17) quantifies the structural and
parametric uncertainties of the model by applying this function to each value of € in the burnt-in
and sampled Markov chain and taking the mean as the result. It also accounts for the stochastic

uncertainty that stems from the computer simulation expressed in the covariance matrix . This

AN . . . . .
!B is considered part of the chain, because it is calculated given 02, @ and the data
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Algorithm 2.1: Metropolis-within-Gibbs

Input:

Input:
Input:
Input:
Input:
Input:
Input:

X,y,F, ¥, from simulation output
00, 03 = nw, initial values for the hyperparameters
Omin> Omax, lower and upper bounds for ©

b, the number of batches

1, the batch length

t, the tuning vector

acce, target acceptance rate

baccept =0

q = equation

P = Z?:l(log(e —Omin) + (Omax —0)) + log(Gz)
for j = 1 to b batches do

end

for i = 1 to 1 batch lengths do

for V ©; do
0O = {Iogit(e),log(dz)}
e =0
propose ©/ according to equations (2.11)or with Zg. and T2 set to t;
respectively

q’ = equation (2.9) with inverse transformations of @ accordingly

p =Y, (log(6' — Omin) + (Omax — 0')) + 0
if rand() < ((q’ +p’) — (q+p)) then
‘ bi,accept ++
0 =0
end

end
Store ® in MCMC chain

end
for V by qccept do

if bi gccept/l > acc then

increase t; for 0

decrease t; for o2 decrease for Gamma prior, otherwise increase t;
end

else

decrease t; for ©

i i for 02 i G ) herwise d t;
increase t; for 0 increase for Gamma prior, otherwise decrease t;
end

end

Output: MCMC chain for 0, o?
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approach differs from Kleijnen [81]], van Beers and Kleijnen [[160], who use a bootstrap sampling of

the actual replications to estimate the mean-squared error of Kriging.

2.2.1.4 Kriging Model Assessment

The Kriging model is assessed using two metrics, the root mean-squared error (RMSE) of prediction
and the coefficient of multiple determination. The predictive error sum of squares statistic is based

on the leave-one-out technique and is given as

m

PRESS = > (§-i(xi) —u(x1))% (2.18)

i=1

where {_i(x;) is the estimate of the Kriging model with the observation {j; (xi) removed
while holding the model parameters constant [102]. Using Currin et al. [40] and Mitchell and
Morris [101] re-fitting the Kriging surfaces for each cross validation error is avoided by introducing
a computational efficient method.

The estimate of the RMSE using the predictive error sum of squares is then defined as

RMSEcy = ,/%PRESS . (2.19)

Alternatively, the RMSE can be simulated using a number of validation locations and the
sampled MCMC chain using equation (2.17). The coefficient of multiple determination, R?

prediction’
estimates the amount of variability that the model should explain at a validation set of m > n

scattered unobserved location
PRESS

2
Rprediction =1- yTy — [Pk (2.20)
m

The denominator is the total sum of squared errors for the m unobserved locations which
determines the goodness of fit. As the total sum of squared errors approaches zero, the R? statistic

approaches 1 indicating a perfect fit.

2.3 Design of Experiments for Kriging Models

In general the design problem is to find or select the locations (inputs) to predict unknown locations
efficiently, whereby efficiency is measured in terms of minimum variance. Thus, it is often desirable
to construct an optimal design for an experiment in order to avoid unnecessary time-consuming
computer experiments. An optimal design of experiments depends on the statistical model (here
Kriging) and is assessed using some statistical criterion. [Sacks et al.| proposed an integrated mean-
squared error (IMSE) to assess a design [131]]. Given 1 locations (design points) in d dimensions
requires the optimisation of a large system of equations based on the IMSE criterion. One aspect
that makes the solution of this optimisation method more challenging is that the parameters of the

Kriging model equation have to be assumed, because no data has been collected yet. So, the
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goal of finding the optimal design is a design that performs well over a wide range of unknown
model parameters. |Currin et al.|extended this approach to the Bayesian setting and introduced an
entropy criterion to assess the quality of a design [40].

Alternatively, designs can be algebraically constructed independent of the statistical model. In
the following sections orthogonal column Latin Hypercubes (OLH) are presented [[185]], which is
used for all design of experiments in this thesis.

In contrast to the approaches in [40, [131]], Latin Hypercube Sampling is a systematic sampling
technique, where the design space is subdivided into a homogeneous mesh. Each cell in this mesh
represents a hypercube and a sample is generated for each segment such that each sample is unique in
its row and column (in the two dimensional case). These designs can be extended to be space-filling
as well and they are often employed because they improve the interpolation of Kriging. Criteria of
space-filling designs are minimising the maximum distance (minimax) and maximising the minimum
distance (maximin) between design points. So, an n x d Latin Hypercube consists of d permutations
of the column vector sequence S, ={1,2,...,n}. Orthogonal Latin Hypercubes add the constraint
that every pair of the columns of the Latin hypercube has zero correlation, where the correlation

between two vectors u and v is defined as

Y vi —V)(ug — 1)

T Vi v =92 Y T (u —w)?

: 2.21)

where 1t and v are the arithmetic means of the respective vectors.

The construction of the Latin Hypercube for n = 2™ + 1 rows and 2m — 2 orthogonal columns
is as follows. Let the top half of the Latin Hypercube be T (with dimensions 2™~! x (2m — 2)).
The bottom half is a mirror image of T with a centre point added to complete the orthogonal Latin

Hypercube.

Definition 2.1. Let the matrix M denote the matrix with the absolute values of the corresponding entry
inT. And let S be the matrix consisting of entries 1 or —1 to reflect the sign of the corresponding entry in
T. Therefore, matrix T is the element-wise product (Hadamard product) M x S.

The columns of M are constructed using permutations of [1, 2,..., 2m’1] and consist of

{e,Aie,A_1Aje; fori=1,....m—1j=1,...,m—2}, (2.22)

where e = [1,2, ey 2m*1]T and Ay is defined as

Ar=1% - 2IoR® - ®R, (2.23)
m—k—1 k

where I is the 2 x 2 identity matrix,

0 1
R:L o]’ (2.24)

and ® is the Kronecker product.

24



2.3. DESIGN OF EXPERIMENTS FOR KRIGING MODELS

To achieve mutually orthogonal column vectors of the matrix T, matrix S is constructed in the

following way. The columns of S are defined as

{1,a, myaj 3 fori=1,.... m—1;j=1,...,m—2}. (2.25)

The vector ay is defined as

a =B ®B,® - @Bm_1, (2.26)

Bk:[_lll’ 312[1] (2.27)

for i # k. Finally, the columns of matrix T is given according to as

where

{1 xe,a; x Aje, (a1a;) x (AjAn_1€);

fori=1,....m—1;j=1,...,m—2}. (2.28)

Ye proved a few properties of pair-wise orthogonality of the columns of the T matrix [185]]. The
orthogonal properties of the independent variables are of particular interest for regression analysis in
which one wishes the regression coefficients to be uncorrelated. However, the T matrix constructed
above does not have good space-filling properties. Ye introduced an algorithm that permutes the M
matrix to search for optimal designs based on integrated or maximum mean-squared error, entropy,
and minimax or maximin distances [[185]. In this thesis the criteria of maximising the minimum
distance is used to find an optimal orthogonal Latin Hypercube design. presents the
complete algorithm to establish an optimal orthogonal Latin Hypercube design of experiments and
optimises the minimax criterion. The final steps of the algorithm scale the matrix M, such that the

columns are within the design region of the simulation experiment.
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Algorithm 2.2: Optimal Orthogonal Latin Hypercube algorithm

Input: m, the constant to construct a (2™ + 1) x (2m — 2) Latin Hypercube

Input: r, the constant to define the r different starting Latin Hypercubes

Input: 1b and ub, the vector for the lower and upper bounds of the design variables
respectively

e = randperm(2™ 1)

M = construct according to equation given e
Mt - M

cr = minimax(M)

for n = 1 to v starting Latin Hypercubes do

for i =1t02™ 1« (2™ 4 1) permutations do
el=e

[r1,12] = unique integers (T1,12) < 2™~!

ey = e

er, = e

M = construct according to equation given el
cri = minimax(M)

if cry > cr then remember the best OLH design

Cr =CTry
M;=M
end
end
e = randperm(2™ 1)
end
S = construct according to equation (2.25)
T= Mt x S
T
L=| 0
~T

L — L+ 2™~ move the design matrix into having positive integers
L — L % 1/2™ normalise the matrix to be unit length
Output: L — scale(L, b, ub) scale the matrix columns to be within [1b, ub]
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2.4. PARALLEL KRIGING

2.4 Parallel Kriging

Depending on the problem structure, the computational complexity of Kriging is either dominated
by O(n?) (vector algebra) or O(n?®) (matrix multiplication, matrix inversion, and determinant)
operations. Solving equation requires the calculation of the least-square estimate in equation
where the covariance matrix needs to be inverted.

The spatial datum in computer experiments can be very expensive to obtain. Also, non-linear
behaviour within the input domain is usually localised in a small area. Therefore the sample size tends
to be relatively small compared to modelling of geographic features, such as rain distribution over
an entire continent [70]. Consequently, Kriging is relatively straightforward and the mean-squared
error and Kriging estimator can be obtained in a timely fashion.

In the following sub-sections a Kriging process for stochastic computer experiments is presented

as a fully integrated approach. First a pilot design is conducted (Section 2.4.1) which is then
successively improved (Section 2.4.2).

2.4.1 Pilot Design
The activity diagram in details the parallel nature of the pilot design. The master and

slave processes are on separate computer nodes, where the number of slave nodes can be adjusted to
maximise the speedup of the simulation study, e.g., allocating n. x r nodes, where n is the sample

size and 1 is the initial number of replications.

Master Slave

R
{ <<iterative>>
H
H

4 . . N,
{ <<iterative>> Y
H

: i Initial H Simulate
' nitial H
: _>E_> . . Send Job H
i . CSlmulatlons ) >,: Receive Evolve
H S . Job Network
E [is not confident] Send Job >

Send Result Solve

Receive

Result

@ |£| [is confident]
2

Figure 2.3: Initial Simulation Runs (Phase 1)

Given a specification of the boundaries of the input domain and the sample size, a pilot design
using Latin-Hypercube Sampling (LHS) is conducted (Section 2.3). LHS is a stratified sampling
techniques with space-filling properties. At each of the sampling points, a number of replications
with different random seeds are performed. The master node sends a batch of the simulation
parameters to slave nodes using the Message Passing Interface (MPI), which then run the simulation
given the input parameters. The result of the simulation is sent back to the dedicated master node.
Because a fixed sample size procedure on n replications does not give any control over the confidence
interval half-lengths and to avoid running unnecessary expensive computer experiments, a sequential
procedure is employed. To obtain an estimate of the mean with specified relative error of y where

v =+v/(1+ ) and a confidence level of 100(1 — ), 6(n, &) /[y| < ¥’ is evaluated, where &(n, «)
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1s denoted as

d(n, o) =t _11-/21/S? M)/, (2.29)

where S?(n) is the sample variance and t,, 11« is the inverted cumulative t-distribution
function with n — 1 degrees of freedom [86]. If and only if §(n, «)/|y| < ¥’ then take y and
the respective confidence interval and stop the simulation. If the objective of the experiment is
to measure multiple responses, yi, then 8(n, «)/|yil is evaluated for each one of them and the
simulation is replicated until all responses are within the specified relative error and confidence

levels.

2.4.2 Iterative Model Improvement

The iterative nature of learning a predictive model can be exploited to adaptively select samples to
improve the prediction (also known as adaptive sampling or active learning) [25} 35} 67, (68}, [160].
Once the pilot design is completed, the Kriging model is assessed, which determines whether

more simulation runs are necessary to improve the coetficient of multiple determination, R;re diction

(equation (2.20)). The activity diagram in illustrates the iterative nature of Kriging model

improvement.

Master Slave

(¥ Kriging N L *.“
Select location ( Initial Send Job > H

MCMC ( largest error ) 3 E > Simulations ) i
Inference !

H -
................... |, <<iterative>> Simulate

<<1terat1ve>> i Receive Evolve
Job Network
Autocorrelation
.—)E Analysis
"""""""""" [is not confident]
Send Job Send Result Solve
(A Model ) ( LHS ) [is confident]
ssessment
Receive
[high uncertainty] Result

- J

Figure 2.4: Iterative Model Improvement (Phase 2)

An initial interpolation may be done to get an idea on the length of the Markov chain, its
mixing and the burn-in characteristics. The parameter of the adaptive Metropolis-within-Gibbs
MCMC algorithm that controls the dispersion and consequently the acceptance
criterion is adjusted to achieve an acceptance rate of ~ 23% [61]. With this initial Kriging study
conservative Markov chain lengths, burn-in threshold, and tuning parameters are used. The Kriging
process is then performed on the master node, where the adaptive Metropolis-within-Gibbs MCMC
simulation infers the length-scale parameters 0 and o2 of the autocovariance function (equation
(2.3)). The details of the Bayesian estimation approach are given in Successive

MCMC simulations are seeded with the previous mean values for the @ hyper-parameters. o2 is

always estimated from the data directly (see[Algorithm 2.1).

Given a Markov chain the autocorrelation functions are analysed using the approach from the
ALPHA Collaboration and Ulli Wolff [176]. The integrated autocorrelation time is used to sample
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the Markov chain. The chain is further down-sampled to a maximum of 150 elements, if it is too

long. The autocorrelation analysis is helpful to visualise the convergence properties of the Markov

2
prediction

chains for each inferred parameter offline. The R and the RMSE statistics are then calculated

to determine whether more sample points are necessary to improve the prediction quality of the

2
prediction

model. A space-filling LHS design with m > n validation locations is chosen, if the R
statistic is below the defined 0.95 threshold. For each of those sample points the mean-squared error
is calculated using equation (2.17) and the location with the largest error specifies the next sample
point to be simulated. Similar to the pilot design, an initial number of replications are sent to the
slave nodes incrementally evaluating the confidence half-lengths using equation (2.29).

Once the model achieves a good fit, global optima on the surface are determined using simulated
annealing [64]]. Simulated annealing uses a randomised neighbourhood search strategy to escape
local minima, which makes it less likely to fail to converge on difficult functions [80]. Finding these
global optima is embedded into the sequential improvement of the Kriging model as well, until the

difference between the sampled optima and the interpolated ones are satisfactory.

2.4.3 Parallel Master-Slave Design

Designing a master-slave architecture for parallel computation of computer simulation is relatively
straight-forward, but requires some attention on how idle nodes are allocated. Because there is
an upfront division of labour, such that each simulation is allocated an initial number of nodes
to conduct the replications in parallel, some computer simulations may need a higher number of
replications to achieve statistically confident results than others (see equation (2.29)). The pilot
design can achieve high speed-ups and efficiency rates, if no single simulation requires significantly
more replications than the other ones. However, this can rarely be guaranteed upfront. Hence,
an iterative scheme is required that utilises available resources efficiently. Experience has shown
that an iterative scheme that schedules a replication one at a time, shows relatively poor parallel
performance in terms of efficiency and speed-up. An improvement is achieved, if the replications
are scheduled as r replications at a time, where 1 represents the initial number of replications. This
way, the master node waits until all r replications return their result and only then computes the
new confidence bands and evaluates whether further replications are required. Since, the master
node “knows” that r slave nodes are idle these can immediately be utilised, if further replications
are necessary. The disadvantage of this approach is that there is no book-keeping on which slave
nodes are idle, because some simulation runs may have reached their desired statistical confidence
levels while others may still be computing. If there is no book-keeping then those nodes can be
considered inactive, because no jobs will be allocated to them. This degenerative case is depicted in
Figure 2.5(a)

The inactive nodes can be recovered by keeping a list in the master node of all inactive nodes.
As soon as a set of new replications are scheduled for a particular simulation run, all inactive
nodes are included as well. This increases the currently active replication number from previously
1 (the initial replication number) to v « 1 + 1, where 1 is the current size of the inactive list.

This progressive design is presented in [Figure 2.5(b)l As the overall parallel simulation progresses,

an increasing number of individual simulation runs finish and put their respective nodes into
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Figure 2.5: Slave-node States

the inactive state. This implies that an increasing number of replications are scheduled for the
remaining simulations that have not achieved their required confidence levels yet. Other schemes
are easily employed, such as dividing the list of inactive nodes up equally among the remaining
active simulations or to evaluate the confidence bands and assign the inactive nodes relative to the
respective confidence levels, i.e., simulation runs with a higher current confidence level get a smaller
number of available resources than those with a lower current confidence level. Graham and Keller
[66] propose dynamic communicators for MPI that would be an interesting way of incorporating
the progressive assignment of slave nodes to simulation runs, such that the world communicator
is split into subworlds for each simulation run. The master node then communicates with the
respective subworlds directly, without maintaining separate lists of idle and inactive nodes.

The iterative improvement of the Kriging model does not have the problem of possibly inactive
nodes, because a single simulation is carried out, rather than many in parallel. However, this phase
can lead to relatively poor speed-ups and efficiency rates, because inferring the Kriging parameters

using Markov Chain Monte Carlo can dominate this phase for large data sets.

2.5 Canonical Analysis of Kriging Models

In computer simulations with two inputs and multiple outputs, a geometrical representation
enhances the understanding of the simulation outputs, especially by representing each output
variable as a contour plot given the inputs. Plotting the contours provides visual feedback on the
sensitivity of each design variable with respect to the output. In higher dimensions geometrical
representations of the contours becomes more difficult and therefore a more mathematical analysis
is necessary. Canonical analysis is a mathematical framework to achieve greater insights into the
sensitivities of each design variable in the vicinity of stationary points. In most computer simulation
experiments in this thesis a canonical analysis is conducted to provide a more comprehensive view
on the simulation results. This section is based on the books by Box and Draper [24], Montgomery
[102], Myers et al. [107].

Recall that the purpose of building a model of (stochastic) computer experiments is to find
suitable approximations for the true functional relationship between the independent variables

and the simulation output. Kriging provides a first-order polynomial term coupled with a spatial
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correlation of the residuals to express curvature in the response. Least-squares regression without

quadratic regressors is not able to capture curvature in the response.

Following the methodology of building and improving a model discussed in the previous sections
leads to a response surface with a desired level of certainty within its domain. A canonical analysis
can be conducted to characterise the nature of the surface in the vicinity of the stationary point,
where the stationary point represents either a point of maximum response, a point of minimum

response, or a saddle point. This assumes that the stationary point is within the design domain.

Kriging modelling gives a first-order polynomial function that is then used to determine the

region of interest on the hyper-surface spanning the input domain. A second-order response surface

k k
y=Po+ Z Bixi + Z BﬁX% + Z Z Binin + € (2.30)
i=1 i=1 i<
is fitted in the vicinity of the stationary point, which, if it exists has partial derivatives 9§,/0x; =
04/0xy = --- = 0 /0xx. A general mathematical solution of the stationary point may be obtained

from the fitted second-order model in matrix notation

0=B0o+xb+x"Bx, (2.31)
where
X1 B B Bi2/2 ... Bn/2
X2 B2 B ... PBok/2
X = b = B =
Xk Ak Sym. ékk

b is the column-vector of first-order regressors and B is a (k x k) symmetric matrix whose
diagonal consist of the pure quadratic regressors and whose off-diagonal elements consist of the

regressors of the interaction terms in equation (2.30).

Taking the derivative of {j with respect to x and setting the derivative to zero

oy
= =b+2Bx=0 2.32
o — 0 T2Bx (2.32)

and solving for x defines the stationary point

Xs = —%B*lb (2.33)

and the respective response by substituting equation (2.33) back into equation (2.31)

PO
Us =PBo+ EXI : (2.34)

Canonical analysis is now concerned with examining the eigenvalues of the coefficient matrix,

B, of the second-order model. The canonical form of the model is then given as
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3
§=10s+) Awi, (2.35)
i=1

where the {js is the estimated point of the stationary point and A; are the eigenvalues of the
second-order coefficient matrix. The variables w; are called the canonical variables. The canonical
variables refer to a transformed coordinate system with the stationary point at its origin and rotated
until the w-axes are parallel to the principal axes of the contour system. For more details on the
derivation of equation see [124, (102, [107]). The signs of the eigenvalues determine the nature of
the stationary point xs. Mixed signs indicate a saddle point, while all positive or all negative signs
indicate a point of maximum or minimum response respectively. Furthermore, the magnitude, |Ai],
of the eigenvalues determines the gradient of the w; direction on the surface, e.g., the w; direction
is steepest for which |Ai] is the greatest. Transforming the coordinate system to make the stationary
point its origin is particularly useful if the stationary point is far away from the centre of the design
space. Otherwise, a simpler canonical form can be used which is not stated here, but can be found

in [24, 102, [107].

2.5.1 Ridge Analysis

Often, in computer simulations with more than one independent variable it is not unusual to
encounter more complex response surfaces that cannot be characterised as having a pure maximum,
minimum or saddle point. Ridge systems may arise due to some interaction or underlying depen-
dence among the independent variables (or even not considered ones). For example, yield contours
for an attenuated maximum in two variables have a banana shape; stationary ridge systems can be
understood as having an optimum on a line; a rising ridge system displays a stationary point outside
the design region. In three dimensions these systems can easily be investigated by looking at the
contour plots. However, as before with pure optima, with more than two independent variables a

formal study can be of great assistance.

In the most general case, a ridge analysis can be conducted over a specified region of interest to
follow the locus (or path) of a maximum response. The origin of the path can be situated anywhere
within the design region and following on the path of maximum response gives a trace of each
independent variable. Consequently, variables of high sensitivity can easily be identified independent
of the size of the design space. Usually, only the paths of steepest ascent or steepest descent are of
interest. However, more paths are easily constructed. In fact, if there are k independent variables,
there will be k eigenvalues and 2k paths. This can easily be understood geometrically, where each
dimension can be followed towards a minimum response or a maximum response. This has the
advantage that graphical output can be produced without holding any variables fixed. Additionally,
local optima can be investigated as well. However, this procedure has its drawbacks as well, because
the respective plots following a defined path are not as easily understood as contour plots, and the

analysis depends on the use of a quadratic model.

More formally, the stationary point of equation (2.30) subject to being on a sphere with radius

R and centered at a focal point f with equation
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(x—H)T(x=1F) = (x1 —F1)2+ (x2— £2)> + -+ + (x — f)*> = R? (2.36)

is obtained by considering the Lagrangian function

F=Bo+x"b+x"Bx —p((x —f)T(x — ) —R?), 2.37)

where p is a Lagrangian multiplier. Differentiating equation (2.37) with respect to x gives

oF
— =b+2Bx —2u(x —f). (2.38)
0x
Setting this to zero leads to
2(B — ul)x = —b — 2uf. (2.39)

So, fixing equation (2.36) and maximising equation (2.31) subject to this constraint, a maximum,
{(R), is defined for any given R. Selecting a value for p # A; , (B — pl) ! exists and a solution for

x for a stationary point on a sphere of radius R can be obtained by solving

x = —%(B —uI)"Y(b + 2uf). (2.40)

In order to visualise the derivation of the mathematical formulae, consider the Branin function,

which is defined as

5 1
yx) = (x2 — £x7+ = xx; —6)7 +10% (1 — ) % cos(x1) + 10 (2.41)
T 8§

5.1
(4 % 72)
X1 € [*5, 10],7(2 S [O, 10].

The function is plotted in
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Figure 2.6: Branin Function

The Branin function within the domain specified above has a global maximum at x = (—5,0).

Because this maximum is attained at the edge of the domain, the stationary point is located outside
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of the prescribed domain. A suitable tool to analyse the sensitivities of the two variables, x; and x;,
is ridge analysis in the vicinity of the global maximum. For this purpose the design domain for
the ridge analysis is constrained to be within x; = [—5,0] and x, = [0,5]. The focal point is
defined to be the centre of experimentation and is set to f = (—2.5,2.5). Ridge analysis proceeds
by constructing a mental sphere with radius R around the focal point and recording the respective

independent variables, x, where the sphere intersects with the function. provides a visual

representation of this process.

maximum path
-

Figure 2.7: Illustration of tracing the maximum path

Further, a path (or direction) is identified by moving away or towards the eigenvalues of the
coefficient matrix, B. Both R and x depend on the numerical value of . The eigen-spectrum reveals
the role of the eigenvalues, A, to the ridge analysis. From a practical perspective, it reveals the range of
the eigenvalues to be substituted into equation for p. Moving p from —oo towards the smallest
eigenvalue, Ay, of the coefficient matrix B and solving for x (equation (2.40)) and R (equation (2.36))
along the way always gives the “minimum {” path [24] (left-hand side of [Figure 2.8(a)). Vice versa,
moving p from the largest eigenvalue, Ay, to +o00, provides the “maximum {” path (right-hand side
of [Figure 2.8(a)).

The values of the independent variables X1 and x; along the “maximum {j” path are displayed in
(with the original scale of the independent variables in the inset). The respective change
in the response variable is given in [Figure 2.8(c)| defined as path number 3. For completeness, the
minimum ridge path for { is also presented. The vertical asymptotes are the respective eigenvalues
of the coefficient matrix, B, of this ridge analysis. In order to visualise the effect of the rate of change
with respect to all independent variables involved, the range of all variables is scaled to unity. The
focal point is placed such that the radius of the sphere expanding towards the global maximum
covers half the unit distance for all independent variables within the domain considered for the ridge
analysis. One can see that moving from the focal point towards the global maximum, the value of x;
decreases faster than that of x,. Moreover, both variables do not enter a stable regime, which in this
case implies that both are exactly on the maximum ridge that extends outside the design domain.

This is an example of a simple ridge system in three dimensions. The advantages of conducting
this ridge analysis becomes apparent in higher-dimensional spaces where visualising contour plots is
more difficult, but an analysis of the sensitivities of the independent variables is necessary.

If the ridge analysis is conducted for a model of a real-world system, then it is often desirable to
identify stable regimes for the independent variables. In an industrial setting, it is often not possible

to operate under exact levels and consequently stable points are preferred over optimal points that
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Figure 2.8: A sample ridge analysis

may show erratic behaviour when departing from optimal settings [72]].
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2.6 Summary

As simulation studies are becoming more prevalent in computer science, systematically controlling
the experiment or a thorough analysis is often neglected. This chapter presented response surface
methodology (RSM) comprising a collection of well-known mathematical and statistical techniques
to design, analyse, and optimise simulation experiments based on the books by Box and Draper
[24], Montgomery [[102]], Myers et al. [107]]. Within this context, the focus was placed on stochastic
computer experiments and as such the tools presented can treat any simulation as a black box.
While often graphical investigations are useful for low dimensions a more formal study of computer
simulations is of particular interest in higher dimensional design domains. The interpolation of
the stochastic simulation outputs or responses is rooted in the realm of geostatistics.
presented an introduction into spatial data modelling and concentrated on a technique called
stochastic Kriging. This approach can be understood as an extension to regression models that
is capable of integrating a trend surface (as in regression) and spatial correlation of the residuals.
That way, non-linear relationship between the independent variables and the response can be
captured with a first-order polynomial function. In fact, often this polynomial can be reduced to
a constant and therefore force the spatial function to learn the spatial pattern. A fully Bayesian
analysis was presented that accounts for all sources of uncertainty, i.e., the stochastic uncertainty
of the simulation output, the parametric uncertainty about predicting responses at unobserved
locations in the design domain, and model uncertainty that covers the uncertainty resulting from
the Markov Chain Monte Carlo inference of the model parameters.

In most computer simulations the independent variables are subject to the control of the scientist.
However, in the absence of a frame of reference on the simulation behaviour, a design of experiment
can be a great challenge. presented an optimal and orthogonal Latin Hypercube design
of experiments to place locations to be sampled in the design domain. An initial pilot design can
reveal a great deal of the underlying response(s) of the simulation experiment. The sequential nature
of model building under the Kriging framework is exploited in a high-performance implementation
for clustered computing environments introduced in A technique of active learning is
used to find optima on a model surface and select potentially new locations to improve the model.

Once a satisfactory model is constructed, it is often desirable to understand the dependence of
the independent variables on the response in the vicinity of the optima. Canonical analysis and ridge
analysis presented in offer a mathematically sound framework to reveal how sensitive
the simulation response is to changes in the respective independent variables.

These tools together are frequently used throughout this thesis to gain detailed insights into the

simulations under investigation.
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Modelling Distributed Task Assignment Problems

Simulation studies play an ever increasing role in analysing and understanding communication or
traffic systems. This is especially the case for complex adaptive systems, where closed-form solutions
do not exist, to address techniques such as online learning for optimising routing behaviour 46, 49]].
However, the underlying network structure or topology is treated as a secondary evaluation aspect
and often neglected. Recent work in this area focused on applying social network analysis to optimise
routing behaviour [45]], yet the reliance on particular network instances remains.

Starting with the seminal papers on small-world and scale-free networks [[15} 53 [171]], complex
network research has shaped a variety of research agendas across many domains, progressing rapidly
to provide new insights, bringing tools well-known to physicists into a domain that was previously
dominated by sociologists. Based on those studies the investigation of dynamic evolution and growth
of networks attracted increasing interest to explain the emergence of complex structural features
[15, [16} [168]]. While contributions to the field of complex network analysis have been substantial,
similar theoretical results with respect to traffic patterns remain elusive and are in the early stages.
Tadi¢ et al. [146], Yin et al. [186] investigated aspects of the functional performance of networks
by coupling network topologies and transport processes. Tadic et al. [146] compared a scale-free
network topology to a more homogeneous network with respect to traffic dynamics. They showed
that flow paths are better for the scale-free network and as a result travel times are significantly
reduced. However, network growth models and traffic pattern analysis are still divorced from
the analytical framework of queueing systems [21} 76]. A combined approach would contribute
significantly to distributed systems studies. On the one hand, network growth models with different
structural features can be integrated into large-scale simulation studies and on the other hand the
formalisms of queueing theory provides a rich framework for evaluating the system performance.

Queueing theory deals with the mathematical study of queues, which occur whenever demand

exceeds the operational capacity to provide a service. Their general applicability and the growing
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interest in uncovering traffic patterns in complex networks indicate a compelling combination
of queueing theory and complex networks research. introduces some basic analytical
results of open and stable queueing systems, i.e., with external traffic sources and destinations and
a utilisation rate of smaller than one respectively. The stability criterion is important, because it
ensures that analytical steady-state solutions exist. Then presents two complementary
network evolution models which are applied to establish a stable and open queueing network
with directed edges in between the nodes. This is a novel approach providing a framework which
is exploited in large-scale simulation studies of complex adaptive communication systems in this
thesis. details a model that exhibits a co-evolution of node properties and interaction
patterns and scale-free behaviour of the node properties based on the Barrat, Barthelemy, and
Vespignani model (BBV) [16]. BBV identified the need to extend existing evolution models, which
generally only take into account the topological structure and not the dynamic interaction with the
introduction of new nodes. Real networks, however, rely on crucial time-varying quantities. For
example, the number of passengers passing through an airport in the well-studied airline network
plays an important role in modelling and analysing epidemic outbreaks [36]. The interplay of the
structure of the airport network and the infection dynamics being modelled affect dramatically
the outbreak scenarios. BBV recognised that coupling the topological structure and the dynamic
interaction yields a more realistic network.

It is of paramount importance to understand the network’s functional properties with respect
to its structural features. Therefore, as a complementary model, the Erdds and Rényi (ER) random
graph model with homogeneous structures is presented in

At the heart of both adapted models are two tuning parameters allowing the adjustment of
the stability criterion at the periphery and towards the center of the networks, where stability is
preserved if both parameters are > 1. If either of the two parameters is smaller than 1, then the
utilisation will exceed 100% at certain nodes which will result in diverging performance metrics.

It seems intuitive to imagine that mean total waiting time will increase linearly with respect
to network utilisation. However, it turns out that the linear behaviour can only be observed for
utilisation rates below approximately 80%. If utilisation increases above this value, the mean total
waiting time increases disproportionately. It is this sensitive regime that is being investigated in
this chapter, focusing on how a scale-free network (BBV model) compares against a homogeneous
network (ER model). The benefits of this study are the provision of a deeper understanding of
queueing systems with respect to functional features of networks. Additionally, complex adaptive
systems simulation will be greatly enhanced, if the adaptation is analysed (where possible) with

respect to those functional features instead of particular network instances.

3.1 Queueing Systems

Queueing Theory is the mathematical study of a queue’s behaviour under certain load dynamics [21]).
Generally, it is considered a branch of operations research [118]], however it is applicable to a variety
of application domains, such as transport [162] and communication networks [182]], permitting the
derivation of several performance metrics. In the following paragraphs emphasis is placed on the

mean total waiting time (delay), W, and the utilisation, U, of a network.
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A Queueing Network consists of elementary inter-linked service stations or nodes. Each node
in the queueing networks considered for this thesis can only serve a single customer at a time,
where customers arrive with Poisson arrival rates, A, and are being served at an exponential rate, p.
In Kendall’s notation this is defined as an M/M/1 queue with a First-Come-First-Served (FCFS)
queueing discipline, where the M stands for Markovian arrival and service processes respectively.
An obvious example is the Internet, where routers represent nodes and a packet leaving one router
either proceeds to the next one or leaves the system. Because the operating conditions of each service
station dictates the rate at which customer requests are processed, queues are embedded to hold
requests that cannot be processed at the time of arrival. Usually, queues present finite memory so
that once the queue is full, customer requests are dropped. Packets may also be associated with
priorities, allowing service stations to place an incoming request in front of lower priority requests
into the queue. Such queueing systems where customers belong to a particular priority class are
called multi-class networks. In this thesis, only single-class networks are considered and each queue
presents theoretical infinite memory. So, no request is dropped from the queues.

For a steady-state solution to exist, the stability condition p = A/ < 1 has to hold. Otherwise
the performance measurements diverge and no meaningful result can be obtained. Since a Queueing
System consists of many inter-dependent nodes, a network of queues needs to be reasoned about. In
particular open queueing networks (OQN) are considered, where traffic may enter or leave at one
or more nodes of the system from an external source. The definition of an open queueing network

with Poisson arrival rates and exponential service rates that is used throughout this thesis is given by
Definition 3.1 (Open Queueing Network). An Open Queneing Network is defined by

* 1= (W,...,UN), the exponential service rates.

Ao = (Aots - - -, AoN ), the vector of external Poisson arrival rates;

Ai, the aggregate arrival rate at the ith node;

A, the overall arrival rate of external jobs to the network, i.e., Z]i\]:1 Aois

Q, the matrix of routing probabilities, Qij, from node i to node j.

3.1.1 Analytical Equations

Usually, the vector of aggregate arrival rates, A, of an open queueing network is not given and has to
be calculated given the external arrival rate, Ag, and the routing probabilities, Q. Thus, the aggregate
arrival rate not only accounts for the external arrival rates, but also integrates the arrival rates from
all other nodes. In statistical equilibrium the rate of departure is equal to the rate of arrival, so the

aggregate arrival rate, A, at node 1 is calculated as:

N
A =X+ ) NQji, fori=1,...,N, (3.1)
j=1

for each node in the network. Equations (3.1) are known as traffic equations. These can easily

be solved in matrix notation as
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A=A(I-Q) L (3.2)

Assuming that the stability criterion holds

pi:lf<1we1,...,N, (3.3)

Hi

then Jackson Theorem is stated as follows.

Theorem 3.1 (Jackson Theorem). If in an open network ergodicity (Ay < i) holds for all nodes
i=1,..., N, then the steady-state probability of the network can be expressed as the product of the state
probabilities of the individual nodes, that is, [76]

N
(ki ko, ... kn) = [ (1= pi)pft, (3:4)

i=1
where 7t(ky, Ka, ..., kn) is the state probability of the network given that node 1 has exactly k;
jobs waiting in its queue. This result, also known as the product-form solution, implies that the
number of jobs at any node is independent of the number of jobs at any other node. Because of this

independence, equation (3.5) gives the number of jobs in queue 1 as

_ Pi
1—pi

(3.5)

i

/N

Also, Little’s Law defined as L = AW, can be applied to derive the mean total waiting time, W,
given in equation [21]]. The mean utilisation, U, of the network is given in equation (3.7).

N N
S 1 1
W=— E ot , where v/ = E Yi (3.6)
Yigl-e i=1
N
N 1 Ai
u=— —. 3.7
N Z Hi G-7)

i=1

Based on Little’s law the mean number of events in an M/M/1 queue (equation (3.5)), and the
/p

mean response time, W = L/A = ;= with p = 1, for varying utilisations is shown in [Figure 3.1(a)

and [Figure 3.1(b)| respectively. Both curves show the non-linear behaviour of queueing performance

with respect to the utilisation. As p — 1, both the mean number of events and the mean response

time grow to infinity and thus the queue tends to get unstable. This trend can be observed for

utilisation rates of 80% or higher.

3.1.2 Discrete Event Simulation

Distributed task assignment modelled as decentralised multi-agent adaptive systems using queueing

networks imply dynamically changing routing probabilities, because those routing probabilities are

subject to the learning algorithm. So, analytical solutions described in Section 3.1.1|do not apply.

40



3.1. QUEUEING SYSTEMS

154

15

104
10

- =
5+ 5
I I I I I I I I
02 0.4 0.6 0.8 0.2 0.4 0.6 08
P P
(a) Mean number of events vs. utilisation (b) Mean response time vs. utilisation (for p = 1)

Figure 3.1: M/M/1 queueing performance

Instead discrete event systems are used to measure the queueing performance metrics, where at
every step in the simulation the performance measurements are updated accordingly.

A delay in a queue occurs when an event arrives and cannot immediately be serviced because
the status of the server is busy. Since the event being serviced has a departure time associated with
it, the delay can be calculated as the difference of the departure time of the event being serviced
and the event that just arrived at the server. If the queue has already other events waiting, then the
departure time of the last event in the queue has to be taken as the basis for the delay calculation
enforcing the first come first serve queueing discipline. The expected average waiting time, W, is the

running average of all delays that occurred in a queue, i.e.,

TEPE LYY (3.8)

n
Using Welford’s algorithm, the mean can be calculated incrementally, without keeping a full
history of all observed delays [[173]].

The estimate of the average number of events in a queue during the simulation can be expressed as
T
_ Jo Qt)dt
T }

where Q(t) is the current number of events at time t, and T is the stopping time of the simulation

a (3.9)

[86]]. Equation (3.9) calculates the continuous average of Q(t) as the simulation progresses through
time and needs to be evaluated instantaneously after events arrive to and depart from a server.
To measure the utilisation, u, of a server, which is the proportion of time the server is busy, a

“busy-function” is defined as

0 if the server is busy at time t
B(t) = (3.10)
1 if the server is idle at time t.

41



CHAPTER 3. DISTRIBUTED TASK ASSIGNMENT

The estimated utilisation as a continuous-time average is then calculated as [86]]

[ B(t)dt
T

For all events leaving the system at node 1, the estimate of the average event processing time can

= (.11)

be computed as

n
4T
EPREL -, (3.12)
n
where 1 is the response time of the event leaving the system at node i. The event processing
time is the duration of an event in the system, measured as the difference of the time the event leaves

the system and the arrival time.

3.2 Network Evolution Models

Based on the results of the Queueing Theory presented in this section’s focus turns
towards two complementary network evolution models, “social” and “random”, that meet the
criteria of openness and stability, i.e., traffic events can enter and leave the queueing network and
the utilisation is below 100% respectively. First, however, some background on algebraic graph
theory is given in[Section 3.2.1} Some node properties, such as degree, strength, assortativity, and
the cluster coefficient for weighted directed networks are given in order to characterise the network

evolution models in terms of their structural features.

3.2.1 Algebraic Graph Theory

In this section, some of the necessary algebraic graph theoretical concepts are introduced.

Definition 3.2 (Directed graph). A directed graph (digraph) is a tuple G = (V, A), where V is a
finite set of vertices and A is a finite set of arcs A CV x V. Foran arc a = (w,v) € A, wis called the

head vertex and v is called the tail vertex of a.

If (u,v) € AV (v,u) € A, then the graph is undirected. Further, if the graph does not have any
self-loops, i.e., arcs of the form (u,u) for u € V, or multiple arcs with the same head and tail vertex,
then the graph is simple. Throughout this thesis the simple graph G represents the communication
links between the server nodes in the distributed task assignment network. The connectivity of

such a graph is captured by the adjacency matrix A defined by:

Definition 3.3 (Adjacency Matrix). The adjacency matrix of a directed graph G without self-loops,

denoted as A, is an asymmetric square matrix with dimension |V| x |V| defined as follows:

(3.13)

1 if(ui,uj) S Aandui,uj eV
Yo otherwise,

where Ay denotes the matrix element at row i and column ;.
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Definition 3.4 (Degree of a Vertex). The in-degree of a vertex \u is the number of arcs that have \ as

their head vertex. The in-degree is then given as:

N
deg (ui) = ZAU’ whereu; € V. (3.14)
=1

Analogously, the ont-degree of a vertex w; is defined as

N
deg™ (ui) = ZAU’ whereu; € V. (3.15)
i=1
In the context of distributed task assignment networks and their connectivity definition above,
a number of servers participate in the completion of a task. The servers that are involved in the
completion of a task form a directed path from the external arrival of a request to the completion.

More formally:

Definition 3.5 (Directed path). Given a directed graph G without self-loops, P = (uq, U, ..., ux) isa
directed path in G, if for every 1 <i< k3 (uq,ui41) € A

Additionally, most networks are intrinsically weighted, which means that an arc (in the directed
case) connecting node i to node j can provide a richer qualitative measure than just a binary value as
in the adjacency matrix. For example some social relationships may be stronger than others. Or in
the case of distributed task assignment networks more transactions per time unit may be routed
down one path compared to another. Not only is this additional information necessary to analyse
queueing systems where the interpretation of an arc carries a probability of routing tratfic along
this path, but also from a topological perspective where different semantics for the degree, cluster
coefficient, etc. of a node exist.

Likewise to representing a graph as an adjacency matrix (see a weight matrix has
the weights as entries instead of simply a binary value. Since, the weights of queueing networks are

probabilistic in nature, their respective weight values are calculated as

1
w((;‘;ma) = A+ Qqy (3.16) W((fft) =i * Q) (3.17)

V1 €V where Q are the routing probabilities of the queueing network and A is the vector of
aggregated arrival rate as given in equation (3.2). The actual weights W((:jtual] for arcs leaving node
i represents the amount of traffic that travels along the respective paths in steady-state, while the
potential weights W((f )Ot) represent the maximum possible amount of traffic flow that node i can
handle without becoming unstable.

The strength or weighted degree generalises the degree definition for unweighted networks

(equations (3.14) and (3.15)) as
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(3.19)

I
s
E

S)-_ = ZWU (3.18)

,4
I

—-
-
I

LR

In queueing networks the in-strength represents the traffic inflow from within the network,
while out-strength represents the traffic leaving the respective node.

Another important aspect is the idea of how entities in a network couple with one another.
Networks can be characterised by the way choices are made about who to connect to. In that sense,
some connections are more probable than others. In social networks, assortative mixing is often
observed. This occurs when nodes with a high degree have a tendency to connect to neighbours
with high degrees [110]. In contrast, economic or technical networks exhibit disassortative mixing.
This is when the nearest neighbours of nodes with a high degree have a low degree. For directed

networks the degree-degree correlation can be defined as

Knn(i) =

Z degt( (3.20)

deg V)EU (1)

where v(1) denotes the set of first-order neighbours of node i [98]]. Taking weights and the

directional attribute of edges into account this can be extended to

kY (i) = Z Wisdeg"(5)+ Y Wiideg"(j). (3.21)
V j3A(1,5) v33(5,1)

Equation ( correlates the in- degree of node 1 with the out-degree of its first-order neighbours.
The extension given in equation (3.21) puts a connection weight on the respective neighbours’ out-
degree value. The weight matrix W is not symmetric, because the networks considered in this thesis
are directed as well as weighted.

It is often of interest to take the average over nodes with the same in-degree to compare the

degree-degree correlation

- 1 )
knn(k) = W(k) deg%)_k knn (i), (3.22)

where NP(k) is the number of nodes with in-degree deg™ (i) = k. For kﬁn(k) > knn (k) the
edges with the larger weight are directed to the neighbours with larger degrees, and for k)Y, (k) <
knn (k) the edges with the larger weight are directed towards neighbours with lower degrees [98].

A metric of great interest to networks researchers is the clustering coefficient that expresses the
tendency to cluster into small groups [171]]. More specifically, picking three nodes 1,j,and k in a
network and letting 1 be connected to j and k, one may ask what the probability is that j and k will
also be connected. Evidence in social and technical networks suggests that this probability is greater
than random [[109} [I71]]. In the unweighted and undirected case the global clustering coefficient is a

ratio between the number of closed triangles and the number of total triangles which include open
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and closed ones, where triangles are three nodes either connected with two (open) or three edges

(closed).

C— ZZTTA (3.23)

where ) T represents the total number of triangles and Y~ ta denotes the subset of these

triangles that are closed. Equation (3.23) cannot be applied to directed networks. A related measure

is called transitivity defined as

Definition 3.6 (Transitivity). The triangle involving nodes ,j and X is transitive, whenever arcs (1, j)
and (3, k) imply (1, ). If either of the two arcs, (1,3) and (3, k), is not present, then the triangle is termed

vacuously transitive. Vacuously transitive triangles are neither transitive nor intransitive [139].

Opsahl and Panzarasa extended the cluster coefficient according to [Definition 3.6|to include
weights as well [114]. In their calculations a triangle carries a value, w, as either the arithmetic mean,

geometric mean, maximum, or minimum of the weights covered by the triangle.

:ZTAw
2w’

where the numerator does not include the vacuously transitive triangles.

O O
Lo do do de

(2) Out-Star Triangle (b) In-Star Triangle (c) First Transitive Tri- (d) Second Transitive
angle Triangle

Caw (3.24)

Figure 3.2: Triangles for transitivity in digraphs with no loops

presents the four possible triangles for transitivity. [Figure 3.2(a) and [Figure 3.2(b)] are

vacuously transitive and are therefore not considered in the cluster-coefficient calculation.

3.2.2 Social Model

Understanding and characterising network structures in communities as diverse as Ecology, Biology,
and Computer Science brought about activities in network research to interpret complex topological
properties, such as small-world and scale-free behaviours. The dynamic evolution and growth of
networks plays an important role in understanding the complex topological features. While some
network models focused only on the topological structure, such as the Barabasi-Albert model [[15],
Barrat et al. [16] (BBV) also characterised how networks grow using two quantities: node strength
and edge intensity or weight. In an airline network, the node strength corresponds to the number
of passengers passing through an airport and the edge intensity corresponds to passengers travelling
from one airport to a destination airport. The co-evolution of node properties and interaction
patterns of the BBV model are particular interesting and is in the following treatment adapted for

the evolution of queueing networks.
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In its original setting to model airline networks, at each evolutionary step of the BBV model a
new node is added, preferentially attaching to existing nodes with a high strength. Since the addition
of a new node presents passengers to the network, variations to the nodes’ strength attribute are
introduced. In BBVs model the strength attribute of a node 1 is a derived quantity which is calculated
as the sum of the edge weights of all adjacent nodes j connecting to node i. In contrast to their
model, our adaptation introduces the time-varying changes to the nodes’ strength directly, without
changing the interaction dynamics. It is, however, necessary to cast network evolution models into
a queueing-theoretic context. This way, the weight attribute remains a probabilistic feature given as
the probability, Qjj, of routing traffic from node i to node j. For example, adding a new node i to a
traffic network not only triggers a change in the traffic intensity due to the contributions of the
new node at node j it is connected to, but it also has the incidental effect of percolating through the
network causing updates to the respective edge’s weight along the way.

More formally, the BBV model employs a strength-driven preferential attachment model, where

a new node 1 is connected to an already existing node j with probability

| e — (3.25)
i) 2:716\7571

where V is the set of all existing nodes. The strength of a node is an attribute of its capability of
servicing the incoming traffic, i.e., the exponential service rate ;. So, as new nodes are added to the
network, the service rate of all nodes reachable from the new node are updated.

The adaptation of the model dynamics to suit queueing networks start with a single node. At
each time step a new node with Poisson arrival rate Ag; is created. This arrival rate could be fixed
to a particular value or it could be stochastic. Here, a uniform random rate assignment with an
upper bound of Ay 1s used. The node is connected with dpax edges to already existing nodes in
the network according to equation (3.25) not allowing parallel edges, where dyayx is drawn from
a uniform distribution (though other schemes are easily employed). Once the connections are
established, then the new edges are assigned an equal weight of 1/deg™ (1), where deg™ (1) denotes
the out-degree of the new node i. Then the traffic contributions, A, of the new node 1 are “induced”

using two rules

Hio = Aoidv (3.26)

W = Hjo + Z AiQij0e. (3.27)
i3(1,j)

Equation assigns a service rate to the new node using a constant factor dv. If 6y > 1,
then the new node is stable, i.e., A; < p; (equation (3.3)). Equation determines to what
degree the tratfic stimulates the occurrence of variations through the network emanating from the
newly created node. A; * Qj; determines the amount of traffic being routed from node i to node
j. If 8 > 1, then the stability condition is maintained. The second rule is applied iteratively in a
breadth-first-search manner. The role of both &y and 6¢ is to adjust the utilisation rate at the new

node being connected and the already existing nodes in the network respectively. Consequently,
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by generating networks with different values for &y and ¢ it is possible to examine and analyse
the performance metrics of the queueing network with respect to the utilisation rate at each node.
A radial plot of the graph is presented in It shows that the graph is defined in its
periphery with many nodes having only a small in-degree, while very few nodes have a high in-
degree. presents the actual graph structure layout using Kamada-Kawai algorithm [77].
This representation clearly shows that certain vertices in the periphery of the network with no or
small in-degree, while the ones in the centre of the network show a large in-degree. The vertices in
the centre are the ones that are added early in the evolutionary process, so the network exhibits a

rich-get-richer semantics, which is expected from preferential attachment growth models.

32
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In-Degree

(2) Radial Plot of the Node In-Degree (b) Kamada-Kawai Layout
Figure 3.3: BBV model

shows the corresponding in-degree distribution, which follows a power-law as P(k) ~
k= with A = 2.16. Power-laws have become a focus of attention when analysing probability
distributions. The principle reason for this is that power-laws characterise a staggering number
of natural phenomena exhibiting quantities that vary over many orders of magnitudes, such as
city population [[111] or frequency of word usage in many languages [[188]]. In many such natural
phenomena the exponent of the distribution is close to —2. That is the quantity of interest with
popularity P approximately scales as P~2, which is the case for the in-degree distribution shown
in as well. Power-laws are also called Zipf’s law according to his pioneering work of
unravelling the semi-universal quadratic scaling law for word frequencies and city populations [188].

Such networks are called scale-free and exhibit the important characteristic of a few nodes with
an in-degree that exceeds the average in-degree significantly. Those nodes are often referred to as
hubs and obtain a special role in real-world network, such as the Internet. In other words, these
networks exhibit a long tail, which is the part of the distribution representing large but rare events.

Fitting power-laws in this thesis is based on the statistical framework of Clauset et al. [34].

3.2.3 Random Model

The most commonly studied random graph model is the one developed by Erdds and Rényi (ER),
denoted G(N,p), where a graph consists of N nodes and every possible edge is established with
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Figure 3.4: Power-Law of the Node In-Degree - BBV model

probability p. Within the context of this thesis, this model’s purpose serves as a useful comparison
to the BBV model, since it does not exhibit scale-free behaviours of node and edge properties.
Since the inception of the random graph model by Erd6s and Rényi, this model and related mod-
els have mainly been used in theoretical analysis of asymptotic behaviours, such as the probability
of connectedness as the size of the network grows very large. Our goal, however, is to compare the
sensitivity of mean total waiting time versus the utilisation in social graphs. Hence the ER model
needs to be adapted in a similar fashion as the BBV one to frame it into a stable Open Queueing
Network. To achieve this task, the closely related model G(N, M) is used, where M represents the
number of edges to be established. As a result, graphs can be generated with comparable high-level

features as in the social model, i.e., number of edges and number of nodes.

In-Degree

(2) Radial Plot of the Node In-Degree (b) Kamada-Kawai Layout

Figure 3.5: ER model

Once the ER graph is created all cycles need to be removed and the Poisson arrival and
Exponential service rates need to be fixed. This is achieved by sorting G topological and applying
equations (3.26) and (3.27) in reverse topological order at each step. The result of this model can be

examined in [Figure 3.5(a) and [Figure 3.5(b)l In contrast to the previous model, the ER evolution
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model has a much smaller range of in-degree values in the graph and the distribution of those is
much more homogeneous. Additionally, the Kamada-Kawai layout algorithm is not able to discern

structural differences between groups of vertices.

3.3 Evaluation

3.3.1 Methodology

The network evolution models are controlled systematically within a response surface modelling
framework called kriging presented in The input domain for the parameters that control
the stability criterion within the evolution models are Q = (8, 8¢) C R%. The graph size is fixed
to 1000 nodes, with a maximum out-degree dmax = 3 for the social model, which will create
approximately 2000 edges. Using the ER model G(N, M), M is fixed to 2000 to provide comparable
measurements. A Latin Hypercube Sampling design of experiments is employed to sample the
input domain, Q, with an initial sample size of 15 including the boundary values. At each sampled
location, x; = (8y4, 0k i), a number of networks are evolved with different random number seeds
and their mean total waiting time, W, and mean utilisation, U, are evaluated. A metamodel is then
fitted with the expected values of those performance metrics. The model quality is assessed with
the R?

prediction
available in kriging models. R

statistic, because the sum of squared errors of the standard R? statistic is typically not

2
prediction

1 indicating a perfect fit. If R?

prediction
domain is sampled and their mean-squared error, MSE, evaluated. The location with the highest

is a normalised quantity that ranges usually from 0 to 1 with

< 0.95 then a validation set of scattered locations over the

mean-squared error is chosen as the new location where the BBV or ER networks are evolved and

2

prediction shows

added to the data set. Fitting another response surface, this procedure repeats until R
the desired level of accuracy.
As a result, a response surface for the mean total waiting time, W, and mean utilisation, U, for

both BBV and ER models will be generated, which allows a qualitative analysis.

3.3.2 Structural Properties

This section evaluates the structural properties of both network models using ten replicas for each

evolution model generated with different random number seeds. First the unweighted topological

properties are presented in|Table 3.1} !

Table 3.1: Summary of the unweighted Structural Properties

BBV Model ER Model
Mean Std. Dev. Mean Std. Dev.
Diameter 6.4 1.07 58.9 7.06
Average Path Length 1.7 0.12 14.55 1.0

Cluster Coefficient 0.0078  0.0008  0.0026 0.00081

'Calculated with: Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. Version 0.52. Retrieved on 22.09.2009 from http://igraph.sf.net
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As expected the BBV model exhibits some small-world properties of a low diameter and a low
average path length. Also, the clustering coefficient is higher compared to the ER model.

Importantly, the weighted structural properties presented in integrate the weights of
both evolved networks. 2 The overall results obtained this way for the BBV model mirror the ones

presented in while the ones for the ER model show a smaller diameter and average path
length.

Table 3.2: Summary of the weighted Structural Properties

BBV Model ER Model
Mean Std. Dev. Mean Std. Dev.
Diameter 6.59 0.34 11.68 0.433
Average Path Length  1.86 0.1 331 0.12

Cluster Coefficient 0.34 0.04 0.0012  0.0006

In the remainder of this section power-law relationships between the different topological
quantities presented in are shown. Evidently, power-law relationships have been
discovered in many social and technical networks. Typically, the quantity under study ranges on
a large spectrum of values, having a heavy-tailed distribution. gives the distribution of
inbound strength for each node in the network. In the Power-law was found to be
P(sin) ~ 7™ with yin = 2.59 and a Kolmogorov-Smirnov goodness of fit of 0.095. For the random
model the Power-law exponent is yin, = 3.86 (0.044) and the strength is an order of a magnitude

lower compared to the BBV model.
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Figure 3.6: In-strength Distribution

The distribution of the out-strengths presented in show a similar quality as before. In

queueing networks modelled in this thesis no in-coming transactions are dropped, meaning that all

2Calculated with: Opsahl, T. (2007). tnet: Software for Analysis of Weighted and Longitudinal networks, version
0.1.1. Retrieved on 10.09.2009 from http://opsahl.co.uk/tnet/
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transactions are processed. Only the leaf nodes in the network finalise a transaction and therefore
do not have any out-strength. The Power-law exponents for the BBV model and the ER model
respectively, are yin = 2.72 (0.07) and yin = 2.81 (0.051).
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Figure 3.7: Out-strength Distribution

Interestingly, analysing the intensity of the in-bound and out-bound transactions in
presents some distinguished features. For both, the BBV model and the ER model there is a reverse
relationship between the in-strength to in-degree versus the out-strength to out-degree. This can be
explained by the absence of re-wiring and loops in the network. The network models employ a rich
get richer semantics. So, nodes that entered the network early have only a low out-degree, but gain
in in-degree over time. Nodes that are added late in the evolution process are likely to have a higher
out-degree, but only a very small strength.

Finally, the in-degree versus out-degree correlations is investigated and presented in
Interestingly, for both network evolution models there is a marked assortativity mixing for the
weighted metric (equation (3.21)) and a disassortative mixing in the unweighted case (equation
(3-20)). This means that edges with stronger weights are directed towards neighbours with larger

degrees while nodes with large in-degrees have mainly neighbours with lower degrees.

3.3.3 Sensitivity Analysis

Analysing the sensitivities of mean total waiting time with respect to the system utilisation provides
valuable insights in how a system operates under load. The experiments for the sensitivity analysis
were conducted with two degrees of freedom, 6, and &g, where the generated networks were
replicated with different random number seeds to produce ten instances of each design point in the
domain Q = (8,,8g) € (1, 1.1]%. The mean value of the respective queueing performance metric
was then used to perform the sensitivity analysis.

For the ER model this domain shows that the waiting time spikes in a small region of the input

space and then levels off very quickly in both directions. The response surface of the utilisation

represents a perfect plane as shown in [Figure 3.10(a)
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(2) In-degree versus in-strength for the BBV model
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(b) Out-degree versus out-strength for the BBV model
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Figure 3.8: Structural Relationships

In contrast to the ER model, shows that the mean total waiting time for the BBV
model levels off in the 8y input dimension, while the ¢ parameter does not present a significant
contribution to the waiting time behaviour. Interpreting this result in light of the underlying
structure provides an explanation of this behaviour. The density of the BBV model is concentrated
in the periphery of the network (see and the average path length is very low. 68%
of the nodes in the graph have an in-degree of 0 (83% with in-degree of 1 or less). Therefore, the
parameter Og has little impact on a change in utilisation, because boosting the edge intensity only
accounts for few paths towards the centre of the network. This is unlike the ER model, where 14%

of the nodes have an in-degree of 0 (49% with an in-degree of 1 or less).

Conducting a canonical analysis of the response surface in the small domain [1.01, 1.09] further
elucidates the magnitude of the parameters relative contribution to the response (for a detailed
treatment of canonical analysis see [107] and [Section 2.5). Further, the analysis gives eigenvalues
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Figure 3.9: In-degree - out-degree correlations

Utilisation (ER Model)
Utilisation (BBV Model)

Waiting Time (ER Model)
Waiting Time (BBV Model)

(a) System Utilisation for Both Models (b) Total Mean Waiting Times for Both Mod-

els

Figure 3.10: Queueing Performance for Both Models

(summarised in[Table 3.3) of the second-order response surface with which the nature of the surface
can be characterised.

The eigenvalues of the second-order response surface Ay and A, correspond to the &y and the
d¢ parameters respectively. Since the stationary point is outside of the design domain and both
eigenvalues are positive, it suggests a rising ridge system with a maximum stationary point, which
is easily confirmed visually by consulting[Figure 3.10(b)] Comparing the nature of the response
surfaces, one can see that the relative importance of the parameters to the mean total waiting time
in both models expose different scales. While &y is the most dominant parameter in the ER model
with a factor of two higher than dg, the 8, parameter in the BBV model dominates 8¢ by almost an
order of a magnitude. d¢ in the BBV model shows little influence on the waiting time (see [Table 3.3]

for the respective eigenvalues).

Table 3.3: Summary of the Canonical Analysis

BBV Model ER Model
A1 4602 13241
N> 35917 24232
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The interaction of waiting time and utility is important to understand, because the behaviour
of this function is only linear up to a certain point. For U Z 80% both models exhibit a different
non-linear quality of the curve, which is investigated taking the first and second derivative of W

w.r.t. U, 1e.,

A= % (3.28)
a’w
— W. (3.29)

Equation (3.28) gives the rate of change, while equation represents the curvature. Both, A
and I" can easily be derived within the input domain using the best linear unbiased predictor of the
kriging model [94].
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Figure 3.11: Sensitivity Surfaces of the Network Models

The BBV model in both [Figure 3.11(a)| and [Figure 3.11(b)|is less sensitive to changes in the

system utilisation. T', the curvature of the waiting time with respect to the utilisation is almost flat,

and A exhibits a significant lower rate of change compared to the ER model.

Understanding the different performance characteristics for both models would be a benefit to
communication or traffic studies that rely on network structures. The two proposed models can
easily be plugged into such studies to provide a more comprehensive analysis with respect to the
underlying topological features. This is particularly useful where real-world network instances are

unavailable.

3.4 Conclusion and Future Work

This chapter has shown how network evolution models can be cast into queueing-theoretic systems
known from operations research. Focusing on stable Jackson networks, it was demonstrated that
two parameters that boost the capacity at vertices and along arcs respectively, give rise to different
queueing behaviours for the different network evolution models. In particular, the evaluation
concentrated on the mean total waiting time with respect to the mean utilisation of the network.
Interestingly, the rate of change and the curvature, i.e., the first and second derivative of this function
respectively, indicate that the presented adaptation of the scale-free BBV model is less sensitive

to changes in utilisation than the ER model. Additionally, the curvature, T, of the BBV model
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within the critical regime of U Z 80% is less pronounced. This result can be put into perspective
of the adapted model and its two tuning parameters, which have a direct impact on the utilisation.
The dg parameter does not contribute much to a difference in queueing characteristics in the BBV
model, because the density of the network is concentrated in its periphery. This means that upon
preferential attaching new nodes to already existing ones, a relatively short path to the leaf nodes
exists. This property is one of the features of small-world networks. In contrast the homogeneous
nature of the ER model implies that both parameters have an approximately equal contribution to
queueing performance characteristics.

Both models are basic in that the node strength evolution is only triggered when new nodes
enter the network. In order to further improve analysis, future work requires the dynamic evolution
of existing nodes through a re-wiring mechanism. Coupled with a continuous evolution of the
network structure, the external arrival rate could be a time-varying quantity as well, which would
yield more realistic networks. For example, the process that generates the external arrival rates can

take into account a time-varying non-homogeneous Poisson processes [125]).

55






— Experience is simply the name we give our mistakes.

Oscar Wilde

Fundamentals of Reinforcement Learning

The exposition of the fundamentals of reinforcement learning (RL) in this chapter starts with the
formulation of Sutton and Barto’s book [[145]]. It details the theoretical foundations of reinforcement
learning and shows under which assumptions they hold. Lifting the reinforcement learning algo-
rithms into a multi-agent learning setting introduces challenges, in particular because multi-agent
reinforcement learning does not abide to the theoretical guarantees given in the single-agent case.
So presents some recent developments in this setting that synthesise game-theory and
reinforcement learning, which places an emphasis on the interaction patterns of multiple agents
learning concurrently. This thesis uses some of the methods introduced in this chapter to model
sequential distributed task assignment problems.

One of the central issues of learning concerns how choices are made in the face of alternatives.
Through repeated exposure to the same or similar situation, knowledge is acquired and the process
of selecting an action with this information can results in learning complex skills or behaviours.
Without an explicit teacher, learning agents repeatedly select actions and observe information
about the cause and effect of their actions. For this thesis the definition of an agent by Russell and
Norvig is adopted, in that agents are entities that operate under autonomous control, perceive the
environment, and adapt to change [128]. Agents are called rational, if they act to achieve the best
expected output in an uncertain environment. The ability to reason about an uncertain environment
provides important steps towards achieving a goal. It is a remarkable result that combining basic
principles of learning into a computational approach arrives at achieving complex tasks.

One such learning approach is called reinforcement learning, which focuses on goal-directed
learning from interactions with an environment without the need of an explicit teacher. As the name
suggests, this method is based on the idea that well-performing actions are positively reinforced,
while badly performing actions are negatively reinforced [[144]. The consequence of reinforcement

is that the tendency to selecting actions again is affected such that an improvement in the learning
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state
Agent
reward
action
: Environment <
i<

Figure 4.1: Agent-Environment Interface

objective can be attained. The formulation of reinforcement includes three aspects: sensation, action,
and goal. At each time step the agent receives a state signal (sensation) from the environment
and chooses an action to perform. The quality of the action is encoded in a reward signal (goal).
[Figure 4.1]illustrates the agent-environment interface, where the boundary between the agent and
the environment reflects the limits of control rather than physical features (such as in a robot’s
physical body). This implies that everything out of the agent’s control belongs to the environment
including the computation of the reward signal. For example in a soccer playing robot, the agent
senses the location of the ball and the goal as part of the environment. The motors and mechanical
limbs also belong to the environment. However, the agent operates the mechanical limbs to defend
a ball, run towards a goal, and kick the ball. All these complex actions generate reward signals. If
the robot fails to deliver a ball to one of the players in his team a negative reward is received and the
agent learns how to avoid those negative rewards by operating the limbs such that the reward signal

1s maximised.

So, the reinforcement learning agents learns what to do in order to maximise a numerical
reward signal. By interleaving acting in an (uncertain) environment and reinforcement computation,
i.e., updating the belief about the goodness of the actions, agents perform an online search in the
state space. Since the agent might be unaware of how the environment reacts to actions taken, the
principle issue to online search is that of exploration or trial-and-error [[128]]. The agent must try as
many actions in as many states as possible in order to learn how to behave. The reward provides a
qualitative statement (positive or negative feedback) about an action taken in the past. Action can
have far-reaching impacts, not only affecting the immediate reward, but also future rewards. These
two characteristics of trial-and-error and delayed reward are the two most important distinguishing
features of reinforcement learning. Compared to other machine learning approaches, the reward
signal is less informative than supervised learning, which provides the correct signal (see [28] for an
empirical comparison of supervised learning techniques), and unsupervised learning, which does

not provide an output signal at all.

To be more precise about the objective of learning, the agent seeks to maximise the expected
return, R, where the return is defined as some specific function of the reward sequence. For episodic
tasks or tasks with a final state, the sum of the rewards, Ry = r¢ 1 +T¢y2+ -+ 71T, where T is the
final time step, can be used. However, most tasks are continuous in nature, such as the distributed
task assignment problem considered in this thesis. Using the sum of the rewards in such cases
implies that T = oo and consequently the return could itself be infinite. To address this issue in a
mathematically convenient way the concept of discounting is used. The agent then chooses actions

to maximise the expected discounted return denoted as
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o0

R =Tert + Y2+ ¥ T+ = Z Yorene #.1)
k=0

where 0 < v < 1 is called the discount rate. If v = 0, then the agent is myopic, i.e., only
concerned with immediate rewards. In contrast, as y approaches 1 the agent becomes more farsighted
taking future rewards more strongly into account. Additionally, the discount rate is a mathematical
trick to bound the sum of the future rewards that otherwise would grow infinitely, which would

complicate the mathematical derivation of the solutions.

4.1 Markov Decision Processes

Within the framework of reinforcement learning introduced in this chapter agents make their
decision as a function of the state received from the environment. Importantly, the effects of the
actions are Markovian, i.e., a state signal retains all relevant information without a history of the
past states, and current actions can have a delayed impact. These two facts together have significant
practical value, because RL solutions can be implemented in a memory efficient way.

The state signal can be an arbitrary vector, where each vector element has a certain meaning for
the agent. For example, the immediate queue length or the average delay in queue of a server in a
queueing network could be candidates for state signals to the agent, whereby past signals should not
be included in this vector.

Let s¢ € 8 be the state of the system at time t. At every time step the agent picks an action

a¢ € A(s). Consider the dynamics of the environment

/ /
P {St+1 =S,Tt41 =T | St,Q¢, Tt St—1, At—1,Tt—15 .-+, T1, S0, aO} =

P{str1=s,rep1=""]sp,ai}. (4.2)

If equation is true then the right-hand side represents a one-step dynamics, which enables
the prediction of the next state and next expected reward given the current state and action equally
as well as with the dynamics that take the complete history into account. It follows that the best
policy of choosing an action as a function of a Markov state is as good as the best policy for choosing
an action as a function of complete histories. Note, that a policy, denoted as 7i(s, a), is a mapping
from states to probabilities of selecting each possible action.

Based on the Markov property, Markov decision processes (MDPs) provide a mathematical

framework for modelling the decision-making in reinforcement learning problems.
Definition 4.1 MDP). An MDP [73] can be defined as a tuple M = (S, A, P, R,v), where
® 3§ isa finite set of states;

* A is a finite set of actions;

a
ss’/

taking action a to state s';

= P{st+1 =5"| st = s, ay = a} is the transition probability given a current state s and
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* R, = Elrep1 | s =s,a¢ = a,s¢41 = s} is the expected value of the next reward taking

action a in state s and transitioning to the current state s’.

4.2 Value Functions

Given the return functions (total sum or discounted sum) to be maximised an algorithm needs to
be specified to find the policy with the maximum return. A naive approach would be to sample
returns for each possible policy and then choosing the policy with the largest expected return. This
becomes prohibitively expensive, because the policy space can be extremely large. Instead, most
reinforcement learning algorithms employ value functions to estimate the goodness to be in given
states or given actions. The notion of how good the estimate is is expressed in terms of expected
returns which depends on the actions an agent is going to take. Consequently, value functions are
defined with respect to particular policies, i.e., the value of a state s (and taking action a) under a
policy 7t, denoted as V™(s) (or Q™ (s, a)), is the expected return when starting in s (, taking action

a,) and following the policy 7 thereafter. Formally, the value functions for MDPs can be defined as

o0
V™(s) =E{R¢ | sy = s} =Ex ZYth+k+1 St =S, (4.3)
k=0

Q™(s,a) =En{R¢ | sy =s,a¢ = a}

o0
=Ex ZYthJrkH st =s,ap=a,. (4.4)
k=0

The value functions given in equations and can be estimated incrementally while
the agent is interacting with the environment. For example, the agent can maintain averages while
following policy 7t for each encountered state of the actual returns that followed those states. As the
states are visited infinity often, the average will converge to the state’s value, V7(s). Conversely,
keeping averages for each action taken in a state, then these averages will converge to the action
values, Q™ (s, a). The technique of keeping averages over all states (and actions) is called Monte
Carlo estimation. However, these techniques become prohibitively expensive for large state (and
action) spaces and therefore a more compact representation of the value functions is sought. This
can be achieved by discretising the state space (assuming finite actions) and representing the function
in tabular form. Or otherwise parameterised function approximators, such as neural networks, can

be employed.

A tundamental property of value functions is a recursive relationship between the value of a

state and the values of its successor states. This relationship is captured in the Bellman equation for
V’7T
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V™ (s) =Ex{R¢|s¢ =s}

e.¢]
=En {ZYthJrkH | s¢ = S}

k=0

o0
=Ex {Ttﬂ +v ZYth+k+2 | s¢ = S}

k=0

o
= Z (s, a) Z Pes |Resr +YER {Z Yth+k+2 St+1 = S/}]
a s’ k=0
=) m(s,a) ) P& [RE +YVT(s)], 4.5)
a s/

where actions are taken from the set A(s) and the next states s’ are taken from the set S.
The Bellman equation can be understood as looking ahead at all possible successor states given
the available actions and averages over all those possibilities, weighting each by its probability of
occurring. It captures the fact that an agent’s reward depends not only on its immediate reward but

also on its future (discounted) rewards.

So the aim of reinforcement learning is to find the optimal policy that maximises the reward
over the long run. For finite MDPs, a policy 7t can be defined to be better than or equal to a policy
70 if its expected return is greater than or equal to the one of 7' for all states, or more formally
V7(s) > V7 (s) for all s € 8. The optimal policy that is better or equal to all other policies is

considered to be the optimal policy 7v*. Thus, the optimal state-value function, denoted V*, is

defined as

V*(s) = max V™ (s) Vs € 8. (4.6)

7T

Similarly, the optimal action-value function can be defined as follows

Q*(s,a) :mT%xQ”(s,a)Vs € 8and a € A(s). (4.7)

Because V* is a value function, the Bellman equation (4.5) must hold and therefore the optimal
state-value function can be rewritten without a reference to the optimal policy. This follows
intuitively, because the value of a state under an optimal policy must equal the expected return for

the best action from that state. This expression is called the Bellman optimality equation, which is

defined as
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V*(s) = max QT (s,a)
acA(s)

=maxE,+«{R¢ | st =s,ar = a}
a

(0.0}
k
= mleEn* { E YTt | st =s,a¢ = Cl}

k=0

o0

k

= mc?XET[* {Tt+1 +YZY Tirki2 | Se =s,a¢ = a}
k=0

= m(ilXEn* {reg1 + YV (seq1) | sy =s,a¢ = a}

= m&le P [RE +yV*(s)]. (4.8)
S/

The Bellman optimality equation for Q* is

Q*(s,a)=E {ft+1 —I—Yrrila/tx Q*(sty1,a) | sy =s,ar = a}

= Z Poy {R?S/ + Y max Q*(s/, a')] . 4.9)
s’ “

A unique solution of the Bellman equation independent of the policy employed can be

obtained for finite MDPs. The Bellman equation can be turned into a system of N linear equations

a
ssh

a

and the reward function, RY,,,

with N unknowns given N states. If the transition probabilities, P
are given, then the equations of the system can be solved using any standard dynamic programming
method. Once the V* is obtained, at least one action in any state exists for which a maximum
of the Bellman equation is attained. With this insight any greedy policy that assigns non-zero
probabilities only to these actions with respect to the optimal value function is an optimal policy.
Interestingly, with optimal one-step actions the expected long-term return is maximised, because
V* encodes for each current state all possible future rewards. In contrast to this, the agent does
not need to perform a one-step ahead search for Q*, because the state-action pairs are locally and
immediately available. Consequently, the agent can choose optimal actions without knowing the
possible successor states. This implies that no knowledge about the dynamics of the environment,
i.e., the transition probabilities, PS,, and the reward function, RS/, is required.

Solving the Bellman optimality equations and explicitly is akin to performing an
exhaustive search starting from the current state, enumerating all possible paths (choosing an action
a and ending up in state s’), computing their probability of occurrence, and computing their
desirability in terms of expected reward. This approach relies on three assumptions which are rarely

true in practice:

1. the dynamics of the MDP are known exactly, i.e., the transition probabilities, P¢,, and the

reward function, RE,;

2. enough resources to compute the solution;
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3. and the Markov property.

As a consequence, reinforcement learning uses approximations to estimate the dynamics of the
environment from actual experience. This implies that a reinforcement learner builds a predictive
model of the environment through taking random actions. The agent is able to perceive the state
of the environment and receives stimuli that indicate how well (or badly) this action performed.
Without such feedback on its actions, reinforcement learning agents will have no grounds for
which actions to take in the future. Over time, trial-and-error actions coupled with their respective
feedback will lead to an optimal, or near optimal policy for the environment. The elementary
solution methods that are the foundations of reinforcement learning are presented in the next

section.

4.3 Elementary Solution Methods

4.3.1 Dynamic Programming

Dynamic Programming (DP) combines a set of methods to solve for optimal policies given a perfect
model of the environment as a finite Markov Decision Process. While their use in reinforcement
learning have limited value, they are important theoretically.

The first method considered here is called policy evaluation, which computes the state-value
tunction V™ for an arbitrary policy 7. Given the exact specification of the environment equation
can be solved using a system of [8| linear equations in 8] unknowns. The iterative policy

evaluation method uses the Bellman update rule

Vit1(s) = Ex{re41 +vVi(st41) | st = s}
=) m(s,a) ) PL[RE +YVil(s))] VseS (4.10)
a s/

to obtain successive approximations for V™ starting from an initial guess Vp and is guaran-
teed to converge to V™ as k — oco. The successive approximations of Vi from V. are produced by
iterating through all states and replacing the old value of state s with a new estimate. This estimate
is calculated from the old values of the successor states of s, and the expected immediate return,
along with all the one-step transitions possible under the policy being evaluated. This operation is
referred to as performing a full backup, which means that every state is backed up once to produce a
new estimate V) per iteration. details the iterative policy evaluation method, which
updates the values “in-place”, that is values are used in subsequent calculations as soon as new values
become available. It has been shown that this algorithm converges faster than waiting for the sweep
through the state space to be finished and then updating the new values. However, the order in
which states are visited has a significant impact on the rate of convergence.

An important aspect of this algorithm is the stopping criterion after each sweep through the
state space, usually chosen to be maxscg |[Vi11(s) — Vi (s)] < €, where ¢ is set to a sufficiently small

value.
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Algorithm 4.1: Iterative Policy Evaluation

Input: 7, the policy to be evaluated

V(s)=0,Vses

repeat

A0

foreach s € § do
v «— V(s)
V(s) «— X omls,a) ) o P, [RE, +yV(s')]
A «— max(A, v — V(s)])

end

until A < ¢ (a small positive number)

Output: V~ V™

The policy iteration algorithm considered the policy fixed and finds the respective value function.
Once the value function V™ is known the underlying policy can be improved by selecting an action

a # 7(s) for some state s and following the policy thereafter. The value of this behaviour is given as

Q™(s,a) =Ex{rep1 + YV (st+1) | st =s,ay = a}

=) PL[RE +YVT(S)]. 4.11)

Theorem 4.1 (Policy Improvement Theorem). Let 7w and 7' be any pair of deterministic policies such
that, forall s € 8,

Q™ (s, 7 (s)) = V™ (s). (4.12)

Then the policy ' must be as good as, or better than, T, i.e.,

V™ (s) > V™ (s)VseSs. (4.13)

The following proof expands the Q™ side of the equation (4.12) recursively using equation (4.11)
and applying equation (#.12) until V7™(s) < V™ (s).
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Proof.

V7T(s) < Q" (s, 7(s))
=Ep {rer1 + ¥V (st41) | st = s}
S En {re1 +vQ ™ (st41,7 (st41)) | st = s}
=B {rer1 + YEx (o2 + YV (st42)}H s¢ = s}
=B {Tes1 +YTea2 ¥V (s142) | s¢ = s}
<Ep {Tt+1 F T2 Y T YV (se43) [ s = S}

SEp {rep1 + T2 + YT Y e+ s = s}

/

_ym (4.14)
O

Extending this to change all states and all possible actions is called policy improvement. Policy
improvement is achieved by setting up a new policy that improves on an original one, and letting it
be greedy (or nearly greedy) with respect to the value function of the original policy. Consider the
new greedy policy 77, given by

7' (s) = argmax Q™ (s, a)

=argmax E{r¢ 1 + YV (s¢41) [ st =s,a¢ = a}
a

= argmaxZ P[RS +YVT(s)] . (4.15)
a

S/

By construction, the policy improvement theorem (Theorem 4.1) holds for equation (4.15).

Suppose the new greedy policy, 70/, is not better, but as good as the original one, then V™ (s) = V™ (s)
(from equation (#.13)) and the value function for V™ is equal to the Bellman optimality condition
in equation (4.8). This implies that 7t and 7" must be optimal policies. While this line of argument
followed the derivation of the formulas for the deterministic policy, it is generally applicable to

stochastic policies as well.

Algorithm 4.2: Policy Improvement

Input: V™, value function for an arbitrary deterministic policy

foreach s € § do

‘ 7(s) < argmax, ) o P, [3228/ —I—VV(S')]
end
Output: @' > 7

Policy iteration combines the two approaches mentioned above, i.e., policy evaluation (Algo]

rithm 4.1) and policy improvement (Algorithm 4.2), into an iterative scheme to obtain a sequence
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of monotonically improving policies and value functions.

Policy iteration, however, is prohibitively expensive, because the policy evaluation only con-
verges in the limit to V™ and has to be performed at each iteration. Truncating the policy evaluation
after just one sweep of the state space is a special case and the algorithm is called value iteration. A
simple backup operation combining the policy improvement and truncating the policy evaluation

is given as

Vieri(s) = m;lXE{TtH +vYVi(siy1) | st =s,a¢ = a}

— a a !/
— mgle PL [RE +yVi(s)] Vs eS. (4.16)
S

Equation (4.16) is a backup rule for the Bellman optimality equation and therefore is
guaranteed to converge to V* for arbitrary starting values V,. Equation (4.16) is identical to the
policy evaluation backup equation (4.11) except that it requires the max operator taken over all

actions.
Algorithm 4.3| presents the algorithm of value iteration with the same stopping criterion as
Algorithm 4.2|to avoid an infinite number to converge exactly to V*.

Algorithm 4.3: Value Iteration
V(s)=0,Vses§

repeat
A+—0
foreach s € 8§ do
v «— V(s)
V(s) < maxq ) o P, [ngS/ —I-YV(S’)}
A +— max(A, v —V(s)])
end

until A < 0 (a small positive number)
Output: 7(s) = argmax_ ) o Py [iRa

ss’/

+yV(s')]

Both algorithms, policy iteration and value iteration converge to the optimal policy for dis-
counted finite MDPs. Also, they exhibit a pattern that describes almost all reinforcement learning
methods. This pattern consists of two simultaneous, interacting processes, one to evaluate the
value function with the current policy, and the other to turn the policy into a greedy one with
respect to the current value function. This pattern is called generalised policy iteration and is
abstract enough to cover different schemes of granularity. For example in policy iteration these
two processes alternate, each completing before the other one begins. In contrast, value iteration,
only a single iteration of the policy evaluation is performed before performing policy improvement.
This iteration process eventually stabilises, meaning that no further improvement of the current
policy and the current value function are attained and also that optimal policies and optimal value
functions share the same optimal solution.

Compared to direct search methods in the policy space dynamic programming is exponentially

faster providing provable polynomial worst-case guarantees as a function of the states and actions.
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For finite MDPs solutions can be found in polynomial time even though the number of deterministic
olicies is |A|'S!. However, dynamic programming suffers from the curse of dimensionality, the fact

p y prog ) y

that the number of states grows exponentially with the number of state variables, in the same way

as other solution methods.

4.3.2 Monte Carlo Methods

Dynamic programming requires complete knowledge of the dynamics of the environment and
the reward function which makes those techniques impractical in many real scenarios. Monte
Carlo techniques, on the other hand, only learn from online experience and do not require prior
knowledge of either the model of the environment or the reward function. The online estimation is
based on sampling the environment and observing the consequences of choosing certain actions in
certain states. Strikingly, learning from online experience can lead to optimal behaviours. Monte
Carlo methods take averages of sample returns in episodic tasks. That means that the estimates
are done on a well-defined horizon and consequently involves incremental episode-by-episode
averages of returns. Here first-visit Monte Carlo are considered, which take the average of all returns
following the first occurrence of s within an episode. So for all first visits to a state s the return is
calculated for that state and appended to a list. By the end of the episode the list of visited states
contains a list of returns for all states that occurred first in the episode. This estimation converges
to V™ (s) as the number of first visits to state s approaches co. By the law of large number as the
number of averages of these estimates increases, the sample mean will tend to approach (and stay
close to) the expected value. Each average is itself unbiased and the standard deviation of its error
falls as 1/4/n’, where n is the number of returns averaged.

One of the fundamental differences to dynamic programming is that Monte Carlo methods
are n-step transitions, where n is the number of transitions within an episode, while dynamic
programming includes only one-step transitions. Another difference is that Monte Carlo methods
do not bootstrap due to the independence of the estimates for each state. An advantage over dynamic
programming is the fact that Monte Carlo estimates can be performed on a subset of all states.

If a model of the environment, i.e., the transition probabilities and the reward function, are
not available, then it is useful to estimate action values rather than state values, because all action
values must be estimated in order for the values to be useful in suggesting a policy. The policy
evaluation problem for action values is to estimate Q" (s, a), the expected return when starting in
state s, taking action a, and thereafter following policy 7. So, the first-visit Monte Carlo scheme
estimates the returns following the first time in each episode that the state was visited and the action
was selected. One of the biggest problem with Monte Carlo, in fact most estimation methods, is
that deterministic policies do not admit to covering the full action space, because only one of the
actions in each state will be observed. In order to learn to control an unknown environment, two
opposing objectives have to be combined. On the one hand, the environment must be sufficiently
explored in order to make qualitative decisions. Exploration is necessary to gain knowledge. On
the other hand, the acquired knowledge must be exploited, for example to avoid bad exploratory
actions in the past. The fundamental concepts of exploration and exploitation are generally opposing

in that exploration seeks to minimise learning time, while exploitation seeks to minimise cost.
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Generally, the smaller the learning time, the larger the costs, and vice versa [153]]. However, purely
exploring the environment while maximising knowledge gain does not necessarily minimise the
cost, because irrelevant parts of the environment are explored. To overcome this complication
continuous exploration and simultaneous exploitation of the action space has to be assured. One
way to achieve this is to set non-zero probabilities for selecting actions in a given starting state of
each episode.

Monte Carlo control is concerned with approximating optimal policies and fits into the pattern
of generalised policy iteration, where approximate policies and approximate value functions are
maintained and iteratively improved. Under the assumption of exploring starts and infinite episodes,
Monte Carlo methods will compute Q™* exactly for arbitrary 7y using policy evaluation. Policy
improvement is achieved by turning the policy greedy with respect to the action-value function.
The corresponding greedy policy that chooses deterministically an action with maximal Q-value is

denoted

mi(s) = argmax Q(s,a), Vs € 8. (4.17)

a

Constructing each 7ty 1 this way as the greedy policy with respect to Q™ implies that the

policy improvement theorem (Theorem 4.1) holds for all s € 8,

Q™ (s, r41(s)) = Q™*(s, argmax Q™ (s, a))

= max Q™ (s, a)
a

2 Q7 (s, my(s))

— VT (s). (4.18)

Since the policy improvement theorem holds, convergence to the optimal policy and optimal
value function is guaranteed. For Monte Carlo control, this means that no prior knowledge about
the environment is necessary given only observations from sample episodes. The assumption of
infinite episodes can be removed analogue to value iteration in dynamic programming. Since, Monte
Carlo methods are based on episodes, it is natural to alternate between policy evaluation and
improvement on an episode-by-episode basis. Concretely, after each episode, the observed returns
are used for policy evaluation to move the value function towards Q™*, and then the policy is

improved at all states visited in this episode.

4.3.2.1 On-Policy Monte Carlo Control

On-policy Monte Carlo methods are used to overcome the assumption of exploring starts in order to
ensure that all actions are selected infinitely often. On-policy thereby refers to methods that evaluate
or improve the policy that is used for decision making. Additionally, on-policy methods are generally
soft, that is all action probabilities for all states are non-zero, i.e., (s, a) >0, V's € S and a € A(s).
e-soft policies assign a probability to selecting each action in each state of at least € /|A(s)|.

One such policy is called e-greedy. With probability 1 — € the action with highest Q-value is
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chosen and the other ones are randomly selected (with uniform probability) for a proportion € > 0.

B 1_€+|A?s)|’ ifa:arg(rlnaXQ(s,a)
n(s) = e (4.19)
AG) 1 a#arg(rlnaXQ(s,a)

e-greedy policies are the closest to greedy policy. Their disadvantage is that among the remaining
non-greedy actions, each is selected with equal probabilities.
Another e-soft policy, called the Boltzmann policy, overcomes this limitation by varying the

probabilities according to a gradient function of the estimated value

eQls,a)/

SQ(sb)/ (4.20)

7i(s)

ZbGA\a

The Boltzmann policy accounts for a T parameter (temperature) which allows action selections
to be equal (T = o0) or greedy (t = 0). This, however, makes the Boltzmann policy sometimes
difficult to tune, because one has to have an idea on the range of the Q-values.

Constructing a generalised policy iteration scheme for Monte Carlo control without exploring
starts but with an e-greedy policy requires the policy to be moved towards a greedy policy. The
policy improvement theorem assures that any e-greedy policy, 7', with respect to

Q™ is an improvement over any €-soft policy 7t.

Q™(s,7'(s)) = )_7(s,a)Q(s, )

€ P T
~ gy & Qe e mp Qe e
e - mils, &) = gy
>m;Q (s,a)—i—(l—e);TQ (s,a)
€ - B € 7t ’ e
= (e &= Q59— g 2 Qs @)+ 25, a1Q%(s 0
= V7(s). (4.21)

The corresponding algorithm realising the e-soft on-policy Monte Carlo control is given in
Algorithm 4.4

4.3.2.2 Off-Policy Monte Carlo Control

In contrast to on-policy methods, off-policy Monte Carlo control does not estimate the value of
a policy while using it. Instead, off-policy methods employ two policies, the behaviour policy to
select the actions, and the estimation policy that is evaluated and improved. Both policies may be
unrelated, a fact which can be used to exploit a greedy policy for evaluation and improvement,

while using a stochastic (non-zero probabilities) policy to sample all possible actions.

presents an off-policy Monte Carlo control algorithm based on the generalised policy iteration
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Algorithm 4.4: e-soft on-policy Monte Carlo control algorithm

Q(s,a) « arbitrary
Returns(s, a) < empty list Vses8, aecA(s)

70 < an arbitrary e-soft policy

repeat

Generate an episode using 7t

foreach pair s, a appearing in the episode do

R « return following the first occurrence of s, a
Append R to Returns(s, a)

Q(s,a) <« average(Returns(s, a))

end

oreach s appearing in the episode do

a* « argmax_ Q(s, a)

forall a € A(s) do

=

€ . .
1—e+ A fa=a
7i(s) « c y .
Ay tere
end
end
until forever

principle for computing Q*. The behaviour policy 7’ is maintained as an arbitrary soft policy,

while the estimation policy 7t is the greedy policy with respect to an estimate of Q™.

4.3.3 Temporal Difference Methods

Temporal difference (TD) methods are a significant extension to the previous approaches presented

in[Section 4.3.1and [Section 4.3.2|in that TD methods combine the best of both approaches. Like

Monte Carlo methods TD methods do not require prior knowledge of the environment. They are
able to learn from experience alone. Also, they employ concepts of dynamic programming in that
TD methods do not rely on the final outcome to improve estimates, i.e., they bootstrap. More
concretely, TD methods form a target at time t + 1 and make an update using the observed reward

Ti+1 and the estimate V(s¢1). The most simple form of a TD update rule is

V(st) < V(st) + a[repr +vViser1) — V(se)l. (4.22)

Because the update rule (4.22)) uses the differences in state-values between successive states, these
methods are commonly called temporal difference (TD) equation. In order to illustrate the subtle
difference between Monte Carlo methods and TD methods, consider the Bellman update rule to

estimate the value function V7 (s):
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Algorithm 4.5: An off-policy Monte Carlo control algorithm

Q(s,a) < arbitrary
N(s,a) <« 0 (Numerator of Q(s, a))
D(s,a) <« 0 (Denominator of Q(s, a))

7t < an arbitrary deterministic policy

Vses§, ae As)

repeat

Select a policy 7t and use it to generate an episode

T « latest time at which a; # 7t(s<)

foreach pair s, a appearing in the episode at time T or later do
T « the time of first occurrence of s, a such that t > 7

T—1 1
W Hk:t+1 ﬁ’[sk,ak
N(s,a) < N(s,a) + wRy
D(s,a) < D(s,a) + w

N(s,
Qls,a) — B2y

end
foreach s € S do

| 7(s) « argmax_ Q(s,a)
end

until forever

V7™ (s¢) =Ex{R¢ | st =s} (4.23)
(o/e]
=E, {ZYth+k+1 | st = S}
k=0
[oe]
=En {Tt+1 +v ZkatJrkJrz | st = S}
k=0
=Ex{rer1 vV (st41) | st = s} (4.24)

Monte Carlo methods use a sample return to estimate the real expected return in equation
(#.23). Dynamic programming, on the other hand, use the current estimate Vi (s¢1) in place of
V7™ (s¢41), while the expected value (the whole expression of (4.24)) is assumed to be provided by
the model of the environment. TD methods combines the sampling of Monte Carlo methods with

the bootstrapping of dynamic programming by sampling the expected value in equation (4.24) and
using the current estimate of V4 in place of V™. realises the procedure of TD(0).

TD methods have a number of advantages over the Monte Carlo methods and dynamic pro-
gramming. One of the most obvious and already discussed is the ability to learn without having
a model of the environment, of its rewards, and next-state probability distributions. Further, TD
methods are online, fully incremental algorithms, where learning is not delayed until the end of an
episode (like Monte Carlo methods), but instead only observed state transitions are used to improve
the estimate of V™. This is unlike policy evaluation in dynamic programming (equation (4.10)),

which involves all possible successor states to update the value function. This difference can be
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Algorithm 4.6: Tabular TD(0) for estimating V™
Initialise V(s) arbitrarily, 7t to the policy to be evaluated

repeat
Initialise s
repeat
a «— action given by 7 for s
Take action a, observe reward, r, and next state, s’
V(s) — V(s)+ a[r+vyV(s) — V(s)]
s—s'
until for each step of episode until s is terminal
until for each episode

understood as sampling the current environment to make the adjustments to the value function.
At the expense of computation time, TD methods could include such simulated state transitions.
The online, fully incremental features of TD methods are of particular interest, where episodes are
very long or the learning application faces continuous tasks. Finally, for any fixed policy 7, the
TD method given in has been proved to converge to V™ given a constant learning
rate o under the conditions that it is sufficiently small. A stronger convergence guarantee can be
obtained (with probability 1), if the learning rate decreases according to the stochastic approximation

(Robbins-Monro) conditions

Z ar(a) =oco and Z o (a) < oo, (4.25)
k=1 k=1

where oy (a) is the k-th learning rate for action a. The first condition ensures that initial
conditions are overcome, while the second one guarantees that the steps become small enough to

assure convergence.

4.3.3.1 SARSA-Learning

Instead of learning state-value function as with the TD(0) algorithm discussed previously, SARSA
learns an action-value function. In particular, SARSA estimates Q" (s, a) for the current behaviour
policy 7t and for all states s and all actions a. As such it is an on-policy method and conceptually
similar to the TD(0) update rule given in equation and formally the same convergence
theorems apply:

Q(st,ar) «— Qsg,ae) +olreptr +vQ(set1, apy1) — Qlse, ad)l. (4.26)

The name SARSA refers to the use of a quintuple of events, (st, at, Tt41, St+1, At+1), that

qualify a transition of the Markov chain from one state-action pair to the next state-action pair.
presents the SARSA control algorithm. The update rule (4.26) is done after every

transition from a non-terminal state s;.
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Algorithm 4.7: SARSA: An on-policy TD control algorithm
Initialise Q(s, a) arbitrarily

repeat
Initialise s
Choose a from s using policy derived from Q (e.g., e-greedy)
repeat
Take action a, observe reward, T, and next state, s’
Choose a’ from s’ using policy derived from Q (e.g., e-greedy)
Qls,a) < Q(s,a) + & [r +vQ(s',a") — Q(s, al]
s—s
a«—a
until for each step of episode until s is terminal
until for each episode

4.3.3.2 Q-Learning

Q-learning is an off-policy algorithm that learns the optimal state-action function, Q*, independent

of the policy being followed [[170]. The one-step Q-learning update rule is defined as

Qlst,at) « Q(st, at) + o |Teqq +Ym3X Q(str1,a) — Q(st, at)} . (4.27)

Q-learning is model-free, meaning that it does not require knowledge of the transition or
reward functions. The learning rate, «, specifies the contribution of the update target riy; +
Y maxq Q(st+1,a) — Q(st, at) to the current estimate of Q(s¢, at). If the learning rate o« = 1, then
the update target overwrites the current estimate and if &« = O then the update target is cancelled

out.

Theorem 4.2 (Q-learning convergence). The Q-learning algorithm given by the update equation (4.27)
conwverges to the optimal Q* values with probability 1 1f [75, (155 [170]

1. the state and action spaces are finite;
2. Y % awls,a) =ooand Y 2, o2(s,a) < oo uniformly over s and a with probability 1;

3. Var{rs(a)} s finite.
presents the algorithm for Q-learning.

4.3.3.3 Generalisation over State Spaces

So far previous sections discussed finite MDPs and their practical implementations of solution
methods. Once large or continuous state (or action) spaces enter the application domain, tabular
representations of the state-value (or action-value) functions become prohibitively expensive in
terms of memory due to the curse of dimensionality. Therefore, generalisations are sought that
provide a parameterised functional form to approximate the respective value functions. In this
sense function approximators are often employed to achieve generalisation, which include neural

networks among others. These kind of techniques are generally instances of supervised learning,

73



CHAPTER 4. FUNDAMENTALS OF REINFORCEMENT LEARNING

Algorithm 4.8: Q-Learning: An off-policy TD control algorithm

Initialise Q(s, a) arbitrarily
repeat
Initialise s
repeat
Choose a from s using policy derived from Q (e.g., e-greedy)
Take action a, observe reward, r, and next state, s’
Q(s,a) < Q(s,a) + o [r +ymaxa Q(s',a’) — Q(s, a)]
s s
until for each step of episode until s is terminal
until for each episode

where the training data consists of pairs of input vectors and desired outputs. In the case of neural
network function approximators, the state is represented as input neurons and the output represents
the value function to be approximated. The generalisation capabilities of function approximators
eliminate the need to visit every state in the state space infinitely often, because the functional
representation is able to capture states that are “close” to each other. That means that something can
be said about states not being visited, if previously nearby states have been explored.

A neural network comprises a network of primitive functions, where each primitive function
is represented as a neuron that integrates the signals from each input channel. Usually, the input
channels have an associated weight. This simply means that the scalar input x; is multiplied by the

weight wj. The primitive function can be chosen arbitrarily, but it is common to choose a sigmoidal

squashing function. An abstract neuron is depicted in

X1
~
W1

X2 — W2 XD—» f(wixy +waxa + wsxs)

W3
-
X3

Figure 4.2: An abstract neuron

A network of interconnected primitive functions is shown in which exhibits two
input signals, one hidden layer with four neurons, and one output unit.

The neural network function approximator is a compact mapping, Q : R™ — R, from an
n-dimensional real input (sy,$2,...,sn) (here the state representation) to a real output Q(s) (here
the state-action value). For a systematic introduction into the biological paradigm that underlies
neural networks, their theoretical foundations, and uses see Rojas [123]].

The essential character of such networks is that similar input vectors are mapped to a similar
output (many inputs are mapped to one output in the case of approximating value functions). This
allows networks to make reasonable generalisations over input vectors that have not exactly been
seen before [127]. Additionally, the generalisation capabilities scale very well with the size of the
state space, because the parameters of neural networks represented as a weight vector, w, are usually
much smaller than the number of state variables. The prediction methods described in previous

sections back up an estimated value function in a particular state, s, towards this backed-up value.
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| ’e Q(s)
. ‘@

Figure 4.3: An artificial Neural Network

The notation s — v represents the state s being backed-up by a target v and expresses that an
estimate for state s should be moved towards v.

Neural network (in fact as employed for this thesis multi-layer perceptrons) seek to minimise
the mean-squared error of the estimated output (state-value of state s) and the actual output (target
V). One way of achieving this, is to perform a steepest descent on the surface in weight space, where
the height corresponds to the error. The standard back-propagation training algorithm is one of the
training algorithms that minimises the mean-squared error and adjusts the weights accordingly to
move closer to the target value. For detailed derivation of the formulas see [127]).

To facilitate a compact representation of the state space standard backpropagation feedforward
neural networks with one hidden layer are generally expressive enough to learn non-linear function
estimates of the Q-values for each action given a state vector [[127]. So the training samples have
the form s¢, ay — v¢. Alternatively, each agent could employ a neural network with one output
neuron for each action. The disadvantage of this approach is that the utility of one action affects
the other ones as well and hence results in poorer performance compared to using neural networks
for each action separately [3]]. Equation can then be expressed as the general gradient-descent

update rule for neural network training as

Awi g = iy — Q(st, a)lVw,Qlst, at), (4.28)
vy =Tt + AQ(s¢, at), (4.29)

where V, Q(st, at) is the vector of partial derivatives of the value function Q(s¢, at) with
respect to the weight vector wy.

So far, non-linear function approximation, such as neural networks, poses challenges to conver-
gence proofs. While convergence for on-policy TD methods have been brought forward, off-policy
methods, such as Q-learning, have shown unstable behaviours, if the behaviour policy is not suffi-
ciently close to the estimation policy. Only recently have convergence proofs for non-linear function
approximators been established [92]], but there have been excellent examples of their use in practical
applications, such as TD-gammon [[149]], hybrid RL for resource allocation tasks [152]], or motor
control [37]].
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Neural networks suffer from ill-conditioning, where weights show different sensitivities towards
the error function (mean-square error of input/output pairs). When a global learning rate is
applied to each weight in the weight vector, w, then the different scales of sensitivities are not
addressed. Several solutions have been proposed, but it is unclear whether these algorithms are
generally applicable [[13]]. This implies that more empirical analysis of neural network function

approximations are necessary to investigate their practical value in different scenarios.

4.4 Multi-agent Systems

In the previous sections it is generally assumed that the environment is stationary and that a
single agent learns a policy that optimises the learning objective. The single agent semantics,
however, become a bottleneck in environments that are inherently decentralised. Not only do
central authorities introduce single points of failure in large environments, but also the correlation
of dispersed information and the dissemination of control instructions become prohibitively
expensive. While it is conceivable to devise single-agent strategies in for example load-balancing
tasks, where a system designer is responsible for the maintenance and control of the entire system,
many decentralised system are heterogeneous in nature that require multiple agents to accomplish
desired goals. Such systems that consist of multiple autonomous agents that can potentially interact
with each other are called multi-agent systems (MAS). It is an area of distributed artificial intelligence

(Al) studying the joint behaviour and the complexities that arise through their interactions.

Multi-agent systems can broadly be classified as being either cooperative or competitive [71]].
The cooperative nature arises when the agents pursue a common goal which expresses itself in
benign behaviour towards each other to achieve this goal, i.e., there is no inherent conflict in the
system design of the interactions. In contrast competitive agents act selfishly to maximise the reward
of their actions. They do so without consideration of their counterparts in the environment. Mostly,
the selfish behaviour arises through heterogeneous goal structures, meaning that agents in the
environment follow different goals or even maintain conflicting goals in their own decision process.
The heterogeneity comes about in scenarios where the control over agents is dispersed among
competing companies or entities involved in trading and allocation of resources. Naturally, the
competitive environments can be encompassed by game-theoretic terms which is a longer established

field than autonomous agent technology.

However, the distinction between those classifications is not always as clear-cut. The emergence
of different behaviours may tend towards temporary cooperation in competitive settings, if it suits
the respective agents. Or, an agent may monopolise a resource with adverse effects to its cooperative
environment [71]. Additionally, a game-theoretic framework can be specified in such a way that

cooperative behaviour emerges. [Section 4.4.1| reviews some of the basic principles of game theory

and their instantiation as normal-form games. The state of the art in multi-agent reinforcement

learning is then presented in|Section 4.4.2|to cover cooperative and competitive approaches.
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4.4.1 Introduction to Game Theory
Relying on the mathematical framework of Markov Decision Processes (see [Definition 4.1) and

blindly extending those to the multi-agent setting poses some serious challenges. Recall that unique
solutions for the Bellman optimality equations and exist for finite MDPs. This means that,
for any MDD, there is an optimal policy assuming that the policy is stationary and deterministic.
A stationary policy does not change over time and deterministic action selection implies that
an agent in state s V s € 8 always chooses the same action. These assumptions are violated in
multi-agent systems and need to be taken care of. Consider two interacting agents whose individual
decisions affect the total payoff. This setting involves interdependence and allows for cooperative
or competitive interpretations. These kind of interactions constitute a game with strategies and
payoffs/utilities as their fundamental representation. Strategies and payoffs/utilities correspond to
the terms policies and rewards in reinforcement learning respectively. So game theory mathematically
captures the behaviour of strategic situations where the decisions of two or more parties impact all.

Assuming deterministic policies as in the single-agent case to solve the MDP can quickly lead to
problems in finding optimal policies. For example the classic game of “rock, paper, scissors” allows
agents with a deterministic policy to be consistently defeated. Consequently, multi-agent systems
often require a probabilistic policy. This requirement stems from the interdependence of the agents
decisions and the resulting uncertainty of an opponent’s action selection.

In order to understand how selfish or utilitarian agents handle different strategic situations the
most simple form of games with two agents and two actions are considered [71]]. These games can be
represented using a payoff matrix which defines the utility each agent will receive given their actions.

The example game matrices given in [Table 4.1]to [Table 4.4 are also known as normal form matrices.

It is assumed that the actions are taken simultaneously by each player. Both players will then receive
a payoff, or utility value, based on their joint action. In these simple games it is also assumed that all
players have a common knowledge about the payoff matrix. Based on the utility values prescribed
in the payoff matrix, different situations arise. As such, games can broadly be classified as either
trivial, games of no conflict, games of complete opposition, or as games of partial conflict.

Trivial games arise in situations where agents can act independently of the other agents. This

implies that the expected reward of an agent is also independent.

Table 4.1: A trivial game

A2 B2
Al 22 272
Bl 22 272

gives the payoff (or reward) matrix for a trivial game. Each cell in this matrix details
the payoff structure for a joint action, i.e., the row player selects an action followed by the column
player. The total payoff is the sum of the individual numeric values within a cell. Since the individual
utilities are equal no matter which actions are selected, both utilitarian and selfish players cannot be
distinguished. In game theory a strategy 7t is defined to be the set of actions all players take. For
example, a strategy of m = (A1, A2) assigns player 1 and player 2 a utility of 2 each.

No-conflict games also offer little distinction between the selfish and the utilitarian player shown
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in Note that for both individual reward and group payoff the unambiguous strategy
7 = (A1, A2) is preferred. If either player was to deviate from this strategy, both would be worse
off. Unless the row player aims to maximise the relative utility, which is the case for choosing
action B1, there is no incentive to change the strategy. If the joint action was ambiguous, i.e.,
7t = (B1, B2) would have payoff 4,4, then utilitarian agents face the problem of choosing the action
that maximises the group payoff, because the decisions have to be made individually. So, in the

absence of consensus among the agents over which actions to perform, cooperation is problematic.

Table 4.2: A no-conflict game

A2 B2
Al 44 23
Bl 32 272

Games of complete opposition, or zerosum games, are challenging for both selfish and utilitarian
players. These games fall into the category of adversarial contests, such as “rock, paper, scissors”, in
which one player wins and the other one loses as a consequence. One player’s gain in terms of the
payoff must come at the other player’s loss. An example is given in[Table 4.3 For a selfish player the
best strategy is a random one with equal probabilities for each action. In the face of zero payoff for
joint actions, utilitarian players also tend to the random strategy. Strategies that assign probabilities

to their action choices are mixed strategies. This is in contrast to pure strategies, which always select

the same action, i.e., probability 1, and corresponds to the greedy policy introduced in

Table 4.3: A game of complete opposition

A2 B2
Al 0,0 2,2
Bt 1,1 -33

As the name suggests, partial conflict games allow for profitable actions, but the selfish agents
prefer different solutions. In the example given in a selfish row player prefers joint action
7t = (B1, B2), while the selfish column player prefers m1 = (A1, A2). However, if the row agent
selects action B1 and the column agent selects A2, a joint action is chosen that neither prefers. In

contrast, the utilitarian players unanimously prefer strategy © = (B1, B2).

Table 4.4: A partial conflict game

A2 B2
Al 2,7 -1,-10
B1 1,5 10,1

Given a game specification, one is still interested which strategy to use. Are there best strategies
that can be followed in any given game? It turns out the answer is not that simple. Morgenstern
and Von Neumann [[104]] proposed a conceptual solution in which an agent always takes the action
which maximises the worst possible utility it could get. This is known to be the maxmin strategy.

In a two-player game, player i’s maxmin strategy is given by
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7} = max min ui (7, 7 ), (4.30)
T4 s

where u; is the utility given both players’ strategy. So player 1 assumes that player j always
selects the action that is worst for player 1. Thus, given this assumption player 1 takes the best
possible action. Von Neumann proved that a strategy that minimises the maximum loss can always
be found for all two player zerosum games. However, it has been shown that this strategy is not
stable in the general case, which means that if player 1 knows that the opponent follows the maxmin
strategy, then player i prefers to deviate.

Another approach that offers unequivocal benefits are dominant strategies which says that agent
i1s best off following the dominant strategy regardless of the opponent’s strategies. Formally, a pure

strategy is dominant for player i if

Vi Vagzm wilmoi, m) = wi(m—y, ai), 4.31)

where 7t_; represents the strategies of all agents except 1.
From the cooperative perspective, a social welfare strategy can be formed that maximises the

sum of everyone’s payoff denoted as

" = arg max Z uq (7). (4.32)
§ i

Following the discussion of no-conflict games as in[Table 4.2} utilitarian and selfish agents settle
for a strategy that benefits both similarly. However, if joint actions are ambiguous, then the selfish
agent tends to maximise its own benefit, even though the benefit of the group could be much worse
off. So, social welfare strategies might not be stable. Additionally, the payoff structure might only
benefit one agent, while others get almost nothing.

The Pareto optimal strategy, however, solves the unfairness problem. It states that any unilateral
deviations of agent i from a strategy 7t to improve its payoff is impossible without making the

opponents worse off. So the set of Pareto optimal strategies can be defined to be the set

{m ] =T (Fiui () > ui(m) A=Fje_iuj(n) > u;(n’) }. (4.33)

While Pareto optimal strategies are highly desirable from a utilitarian perspective, solutions
can be unstable, if multiple Pareto optimal strategies exist. In the face of choice selfish agents will
maximise their own payoff to the disadvantage of others.

John F. Nash solved the stability problem with a strategy called Nash equilibrium. A Nash
equilibrium constitutes strategies where no agent is better off by changing its strategy unilaterally

while the opponents keep theirs fixed. Formally, the set of all Nash equilibrium strategies is defined
by
{7 ViVa s wilmoi,m) = wilmoi, i)} (4.34)

Nash proved that all game matrices have at least one Nash equilibrium. Nash equilibria become

problematic when many of them exist which is often the case. In this case, some Nash equilibria
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might be better for some agents than others. Resolving ambiguity requires communication between
agents to find an agreed upon strategy that benefits all agents involved.

Repeated games can change the game dynamics significantly. Especially for selfish agents, repeated
games opens opportunities that are unavailable in playing a game once. One way to take advantage
of repeated games is to model the behaviour of the opponents and based on their bias to choose
certain actions. The learning problem is then two-fold: first learn the strategy of the opponent and
then learn the best counter-strategy to achieve the highest possible reward.

A famous game to study cooperative behaviour in repeated games is the Prisoner’s Dilemma
whose payoff matrix is given in This game is governed by three intricate rules. Each
player has a choice of cooperating or defecting. A reward R = 3 is payed for mutual cooperation.
However, the player is tempted to defect which gives a reward of T = 5. It is assumed that T > R, so
that it pays off to defect, if the other player cooperates. However, if the other player defects and
the player in question cooperates, a sucker’s payoff S = 0 is rewarded to the other player. If both
defect, then both are punished with P = 1. The other assumption is that P > S in order to entice
the other player to defect. So, it pays off to defect. The dilemma is established through the fact that
mutual defection pays less than mutual cooperation [11]]. In a tournament conducted by |Axelrod
and Hamilton, the tit-for-tat strategy turned out to be the most successful one. The gist of this
strategy is very simple: on the first move cooperate, and then respond in kind to the opponent’s
move.

In a single-shot game, the dominant strategy is to always defect, despite the higher reward
for both cooperating. In the iterated version of the game, the risky joint action is the dominant
strategy, while it guards against exploitation. If the opponent defects, then the next round starts
off with defection and the opponent responds with defect. This indicates to the tit-for-tat player a

cooperatively minded opponent and so he reverts to cooperate again [[11].

Table 4.5: A Prisoner’s Dilemma game

C2 D2
Cl 33 05
D1 50 1,1

This fact has been formalised into the folk theorem. Informally, it states that a feasible equi-
librium strategy is one that is not Pareto dominated by another strategy and where each player’s

payoff is at least as high as the amount he would receive when his opponents adopted the maxmin

strategy (4.30).
More formally,

Definition 4.2 (Enforceable). A payoff profile v = {vi}}\., is enforceable if ¥ 1 € N,y > ¥ [138].

Definition 4.3 (Feasible). A payoff profile v = {vi}}\., is feasible if there exist rational, non-negative

values &, such that for all i, we can express vi as ) c 4 Xaui(a), with ) c 4 xq = 1/138].

Then formally, the folk theorem is given as
Theorem 4.3 (Folk Theorem). Consider any n-player normal form game G and any payoff profile
r={ril, [138].
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1. If v is the payoff profile for any Nash equilibrium 7t of the infinitely repeated game G with average

rewards, then for each player i, 1y is enforceable.

2. If v is both feasible and enforceable, then v is the payoff profile for some Nash equilibrium of the

infinitely repeated game G with average rewards.

So, the maximum attainable payoff player i can guarantee itself when assuming that the opponent
always selects the action that is worst for player 1 is given through the maxmin strategy (4.30). So,
the folk theorem says that any joint payoff r = (r1,1,), such that vy > 7} and r, > 7§ can be
sustained, meaning it is enforceable, if one player deviates with adverse effects on the agents, and it
is feasible, meaning a strategy exists that holds for the inequalities given above.

For multi-agent learning, this theorem has profound implications in that agents should thrive
for long-term rather than short-sighted (myopic) benefits. This, however, is a formidable task since
agents generally do not know their counterparts and their preferences. The folk theorem provides
a minimum utility an agent should receive through the maxmin strategy and also indicates that
frequently agents will be able to do better than that, if agents would coordinate.

Before framing the multi-agent systems domain into the context of reinforcement learning,
cooperative and competitive approaches and some of their application domain are explored from
existing survey literature [26} [71, [117]. The next chapter’s analysis demonstrates the utility of the
integrated modelling approach, only online techniques based on reinforcement learning to learn
value functions are investigated. So other techniques, such as evolutionary game theory, auctions,

mechanism design, etc. are not covered.

4.4.2 Multi-agent Reinforcement Learning

The game-theoretic concepts introduced in the previous section all have a specification of the payoff
matrix. However, many multi-agent applications do not know the payoffs a priori, but instead the
payoffs need to be acquired through repeated and exploratory interactions with the environment.

Thus, the formalisms of the MDP (see [Definition 4.1) can be generalised to account for multiple

agents as

Definition 4.4 (DEC-MDP). An n-agent continuous state DEC-MDP of a queneing network is defined
by a tuple M = (N, A, 8,P, R, Q, O), where

® N is the number of agents in the environment.

A=Ay x Ay x -+ X AN are finite action sets for each agent i.

8 is finite set of states.

Tgs, =P{sty1 =8| st =s,ar ={ay, ..., ai}} is the transition probability of state s’ when the

actions{ay, ..., ai} have been taken in state s.

ZR;‘S, =E{ri41 | s¢ =s,de ={a1,...,ai},St41 = 8’} is the expected value of the next reward

taking actions{ai, ..., ai} in state s and transitioning to the current state s'.

Q is the set of all observations for each of the agents.
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* O is the observation function. O (s,{ay, ..., ai},s’,{01,...,0i}) is the probability of agents 1 to

i seeing observations {01, . . ., 01} after selecting actions{ay, ..., ai} in state s.

While the DEC-MDP definition is quite general, it expresses the decentralised setting of multi-
agent reinforcement learning in the following way. First, it is assumed that the global state space
is not attainable by each individual agent. If the state representations for the individual agents are

non-overlapping, then the state space can be factored.

Definition 4.5 (Factored state). A factored n-agent DEC-MDP is a DEC-MDP such that the states can

be factored into n components, § = 81 X ... 8n.
Additionally, an agent’s local decisions may only be based on its locally fully observable state.

Definition 4.6 (Locally fully observable). A factored, n-agent Dec-MDP is said to be locally fully
observable if P(siloi) =1V 1,...,N.

renders Q and O in redundant which simplifies the definition

further and reduces the problem space.

Generally, the transition of a state s to a state s’ for an agent i depends on the actions of the
other agents in the environment. This is expressed in the transition probability of Definition 4.4]
The reward function, however, embodies the stance of the agents towards each other. If the action
vector d in Rfs, =E{r¢s1 | st =s,dr ={ai,...,ai},st+1 = s’} contains all actions of the agents
forming a team, then the MARL is said to be cooperative. Otherwise, if the reward function only

depends on the action of the individual agents then agents tend to be competitive.

4.4.2.1 Cooperative Multi-agent Reinforcement Learning

Engineering large-scale decentralised systems, whether it be load-balancing in server farms or swarm
intelligence in robots, etc, is a huge challenge. Manually designing each entity and hard-wiring
interaction patterns is difficult and often does not account for complex environments that are large,
open, dynamic and unpredictable. Machine learning techniques have proven popular in solving
multi-agent systems, because agents can be equipped with learning abilities in order to be able to
learn complex behaviours through repeated trials with the environment.

The approaches of cooperative multi-agent systems can be broadly classified as team learning
and concurrent learning [71} [117]. The former nominates a single agent to learn a set of behaviours
for the whole team. The advantage of team learning approaches is that standard convergence proofs
from the single-agent literature hold. However, such agent architectures suffer from an explosion
of the state space on the one hand and scalability issues on the other. In complex domains with a
large number of agents and a set of states $ in the environment, the state space of the whole team of
N agents might scale as [$|™. This explosion of the state space is both problematic for model-free
and model-based reinforcement learning algorithms in terms of the memory required to store and
explore the state space efficiently. Other techniques, such as evolutionary computation exist that can
cope with the size of the state space. Additionally, single agents that accrue and correlate dispersed,

possibly out of reach state information exhibit challenges to the communication infrastructure.
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Depending on the problem domain, cooperative multi-agent systems can be divided into
homogeneous and heterogeneous approaches. Homogeneous approaches drastically reduce the
search space of the learning problem by assigning identical behaviours to all agents. In contrast,
heterogeneous team learning a single learning authority learns different behaviours of the agents to
the benefit of the team. The heterogeneous setting allows for task specialisation to emerge at the
cost of an increased search space compared to homogeneous team learning.

Alternatively to the team learning approach concurrent learning is the most natural cooperative
learning technique equipping each agent with learning capabilities. As agents learn behaviours given
their own partial information of the state space the most fundamental assumptions of machine
learning techniques are violated. In single-agent learning scenarios a learner explores its environment
through repeated interaction to improve its behaviour. Since concurrent learning implies that
multiple learners are co-evolving in a dynamic environment, learnt behaviour may become obsolete
as a consequence of the other agents changing their behaviour. In reinforcement learning tasks the
formalisms of the MDP needs to be extended to capture the dependence of an agent’s decisions. The
reward function is no longer solely defined over an agent’s state and actions, but instead must also
include all the agents’ actions. Intuitively speaking, a cooperative task is rewarded upon completion
and based on all the agents involved in achieving it. Any decisions by agents along the way of
completing the task impact the reward.

The completion of a task through team effort raises the question of how to apportion the
reward to the respective agents. The confounding signals a dynamic environment produces can be
attributed to each agent’s past actions. However, the actual source of a reward could have been either
through the exploitative action to reach a goal or an exploratory action to reduce the uncertainty
associated with the knowledge about an environment. The uncertainty about an environment
is further compounded by the co-adaptation of other agents. Thus, the assignment of credit is a
complicated issue. If the problem definition bestows a global utility function that specifies the
overall performance criteria to the participating agents, then the multi-agent reinforcement learning
approach to modelling a decentralised domain offers a scalable cooperative solution. For instance
total throughput or total response time are natural performance criteria in queueing networks for
global utility functions. If the problem specification does not accommodate a global utility function,
the designer needs to construct one that aggregates all preferences efficiently and encourages robust
cooperative behaviour [[156, Chapter 1]. The most simple solution is to split the team reward evenly
among the agents within the team. Such global and monolithic reward functions are often difficult
to compute in a decentralised environment, because individual and dispersed reward signals cannot
easily be aggregated. Also, an even split of the reward signal does not account for heterogeneous
agent behaviours. Some agents might have been more involved than others to complete the task. If
the intensity of involvement varies significantly, then evenly splitting the reward invites to laziness.
In contrast to the global reward function, an agent could be assigned credit based on its actual
contribution to the task. This is called local reward. Unfortunately, local reward functions encourage
competitive rather than cooperative behaviours, because the agent is solely interested in maximising
its local reward. Consequently, reward functions need to address the heterogeneous nature of credit
assignment. Mataric [96] proposed a shaped reinforcement which calculates continuous rewards

based on sensory input of the environment to estimate the progress of the current goal and local
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states in the foraging robot domain. Yet another approach is the “wonderful life utility” proposed
by Wolpert and Tumer [[179]] that introduces a metric of how a task would have fared without the
respective agent.

Section 4.3.3.2] presented the Q-learning algorithm which governs an agent’s learning behaviour
to simultaneously act and learn in uncertain environments. The learner successively improves its
knowledge about the environment, however, to guarantee that the agent has found the optimal
policy, the agent will need to visit every state and every action. Q-learning has also been applied
in the multi-agent setting. Claus and Boutilier [33] applied the Q-learning algorithm to n-player

cooperative repeated games, such as the following simple example

Table 4.6: A two-agent stage game

A2 B2
Al x 0
Bt 0 vy

If x =y > 0, then the two agents are facing ambiguous actions, because neither agent prefers
any action over the other one. Lacking any means of coordinating the agents may choose suboptimal
actions. |Claus and Boutilierl modelled the multi-agent problem using independent learners (IL)
that are unaware of the other agent’s action selection and joint action learner (JAL) that keep a
Q-function for each joint action. Careful tuning of the exploration strategy and decreasing the
exploration to zero over time ensures that an equilibrium is reached and that the agents do not
escape the equilibrium. However, optimal equilibria can only be achieved by the JAL learners
because joint Q-values are maintained.

Kapetanakis and Kudenko [78] concentrated on independent learners and introduced a Frequency

Maximum Q-value heuristic (FMQ) that estimates the value for a given action a as

[sR(t,a)

a

EV(a,t) = Q(a) +c* * max R(a), (4.35)

1 if maxR(a) obtained at time t
R(ts (1) =

0 otherwise,

where max R(a) is the maximum reward encountered so far and the fraction calculates the
number of times the maximum reward for action a has been attained over the number of executing
action a in total. ¢ denotes a weight that controls the importance of the FMQ heuristic. For ¢ =0
the expected value reduces to the standard Q-learning problem. As a result, the FMQ heuristic
integrates how often a given action produces its maximum attainable reward. For deterministic
games, this heuristic has shown to be quite successful converging almost surely. However, in fully
stochastic games the application of this heuristic is problematic.

To accommodate stochastic games with noisy payoffs and model-free multi-agent reinforcement
learning, Wang and Sandholm [[169]] proposed optimal adaptive learning (OAL), an algorithm that
converges to a Pareto optimal Nash equilibrium with probability 1. For optimal adaptive learning,

virtual games (VG) are constructed for each state of the game in order to eliminate suboptimal Nash
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equilibria. Given a state s and a joint action @ the virtual game value is calculated as

VG(s, d) — 1 if d@ = argmaxg 4 Q*(s,d’) (436)
0 otherwise.

Additionally, Wang and Sandholm| introduced an algorithm that biases agents towards recently
selected actions. They showed that this guarantees convergence to a coordinated optimal joint action
for the virtual game and as a consequence also to a coordinated action for the underlying stochastic
game.

To conclude this section, synthesising game-theoretic concepts with multi-agent reinforcement
learning does not eschew the emergence of cooperative behaviour. Cooperative game theory allows
for agents to enter joint agreements on which actions to perform. In many multi-agent scenarios
multiple Nash equilibria exist, but one may only be Pareto optimal. This has profound implications
for multi-agent systems, because any team strategy that is stuck in one Nash equilibrium could

benefit all if only they could all agree in adopting different strategies.

4.4.2.2 Competitive Multi-agent Reinforcement Learning

Unlike cooperative multi-agent reinforcement learning, competitive settings are governed by rational
or selfish agents. These are identified as pure local utility maximisers, which means that they only act
in their own self-interest. As such, the employed reward function discerns their own contribution
on the overall team effort. The selfish agent tries to maximise solely its contributions to the task.
That does not preclude the fact that cooperative behaviour may emerge. Even non-aligned goals or
employing competing goal structures within a decision making agents may bring about cooperative
behaviour, if it suits the respective agents in achieving their goals. Therefore, some of the algorithms
below, in particular [1, 2, [74]], can be designed to work in cooperative settings as well.

Hu and Wellman [74] extended the familiar Q-learning algorithm to suit multi-agent general-sum
stochastic games. The goal of their algorithm is to find the best strategy relative to
how other agents play in the game. In particular, a Nash equilibrium point is sought. The Nash

equilibrium point is defined as:
Definition 4.7 (Nash Equilibrium Point). A tuple of n policies (0, 705, . .., 70 ) such that forall s € 8
andi=1,...,n,

Vo et VilS, T, ooy Ty ) 2= VS, 7T, vy TO 1, T, Ty g5 -+ T ), (4.37)

where vi(s, T}, ..., 7} ) is the total reward that agent i can expect to receive starting from state s and

assuming that agents use policies (tf, ..., %) Vidal [167].

Thus, the Nash equilibrium point covers a set of policies (one for each agent) and expresses that
no one agent i will gain anything through unilaterally changing its policy. Hu and Wellman [74]
showed that such an equilibrium point exists. Their NashQ-learning algorithm converges to the

Nash equilibrium point under the assumptions that:
1. All agents use the NashQ-learning algorithm;
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2. No agent has anything to lose, if the other agents change their policies;

3. A social welfare solution exists, where all agents receive highest possible reward.

Each agent maintains a Q-value function for each other agent in the population. So, the Q-
value function for a multi-agent environment becomes Qi (s, @) indexed by the target agent. The
traditional Q-value to determine future rewards is replaced by a NashQ-value that encodes the future
Nash equilibrium payoffs. This requires knowledge about the opponents’ actions and rewards.

This algorithm provably converges, albeit under certain restrictions mentioned above and which
are only satisfied in a small class of problems. In single-player games (i.e., Markov decision processes),
the NashQ function is a simple maximisation function which reduces to the Q-learning algorithm,
which is known to converge to optimal values [170]. In zero-sum games, the NashQ function is a
minimax function and the update rule reduces to minimax-Q, which is also known to converge to

optimal values [90]]. In this case this is the Nash equilibrium.

Algorithm 4.9: NashQ-Learning algorithm

Qi(s,&) =0Vse8andaj € Aj, j =1,...,narbitrarily

Initialise s
repeat
foreach agenti=1,...,ndo
Choose a; from s; using policy derived from Q; (e.g., e-greedy)
Take action a, observe reward, 11,..., Ty, joint action, aj,. .., Gn, and next state, s
foreach Q; Vj=1,...,ndo
NashQj(s") = mti(s’) - - - 7t (s')Qj(s’)
Qj(s,d) «— (1 —x)Qj(s,d) + o [r]- —|—vNashQ]~(s’)}
s« s
end

!/

end
until for each step of the game

Littman [89]] introduced the friend-or-foe Q-learning (FFQ) algorithm that relaxes the assump-
tions made by the NashQ-learning algorithm. If an agent is able to distinguish between a benevolent
agent and an adversarial agent, respective Q-functions can be employed. More specifically, each
agent maintains a set of k friends with action sets Xy, ..., Xy and a set of 1 foes with action sets
represented by Yi,..., Y. The update rule for friends is ordinary Q-learning, because the agent
attempts to maximise the long-run discounted reward. Otherwise, the update rule is minimax-Q.

FFQ learning converges to a Nash equilibrium.

Theorem 4.4 (FFQ Convergence). Foe-Q learns values for a Nash equilibrium policy if the game has
an adversarial equilibrium and a Friend-Q learns values for a Nash equilibrium policy of the game has a

coordination equilibrium. This is true regardless of opponent behaviour [89].
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Algorithm 4.10: Friend-or-Foe Q-Learning algorithm

Qi(s, d)=0Vse8andaj € Aj, j =1,...,n arbitrarily

Initialise s

repeat

foreach agenti=1,...,ndo

Choose a; from s; using policy derived from Q; (e.g., e-greedy)

Take action a, observe reward, 11, ..., Ty, joint action, Xy, ..., Xy, Y,..., Y1, and
next state, s’

"o .
NashQ;i(s") = MAaXeTT( Xy x---x Xy ) My y1€Yy X x Yy

ZX1,...,X1<€X1><---><X1< 7'[1(8/) T ﬂk(S/)Qi(S/)Xb <o Xk Yl - - e ,Ul)
Qils, @) « (1 —a)Qils, @) + & [ry + YNashQi(s")]
s —s

end
until for each step of the game

4.5 Summary

This chapter presented fundamental derivations of reinforcement learning algorithms. Understand-
ing the theoretical underpinnings of the methods used is crucial, because convergence guarantees
only apply in certain cases. Much of the literature on Markov Decision Processes (Section 4.1},
value functions (Section 4.2), and elementary solution methods stem from the excellent
book by Sutton and Barto [145]. Some of the fundamental concepts in reinforcement learning rely
on maximising rewards based on current knowledge of the system (exploitation) and acting in an
uncertain environment to gain additional knowledge about the system (exploration). The interplay
of these decisions over time has a significant impact on the optimality of learning in the single-agent
case. The convergence guarantees require that agents greedily exploit the current knowledge in the
limit. As such, undirected exploration techniques, such as e-greedy and Boltzmann policies, were
presented that provide strong convergence guarantees.

Since this thesis models decentralised optimisation problems within the framework of multi-
agent reinforcement learning, recent work in this area has been covered in[Section 4.4 The goals of
multi-agent systems is to achieve stability of the learning dynamics and adaptation to the dynamic
behaviour of the opponents in the environment. As such, applying the familiar approaches from
single-agent learning often fails, because the fundamental theorems are violated. Recently, research
synthesised the game-theoretic framework with multi-agent systems to address some of the issues
related to finding optimal joint actions. Interestingly, both cooperative and competitive scenarios can
be designed to achieve optimal or near optimal behaviour in certain scenarios. Some of the intriguing
approaches, such as biologically-inspired, swarm intelligence [48} [179], auctions [138, [167, [172], etc.,

were considered beyond the scope of this thesis.
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— On the mountains of truth you can never climb in vain:
either you will reach a point higher up today, or you will
be training your powers so that you will be able to climb

higher tomorrow.

Friedrich Nietzsche

Reinforcement Learning for Distributed Task

Assignment Problems

Reinforcement Learning (RL) techniques have been at the forefront of intelligent agent research in a
number of application domains, such as routing [119, 126, [132]], robot control [26, 58}, [147]], and task
allocation [[148] [151} (152, [187]]. Frequently, those domains are governed by decentralised processes
which require learning agents to act independently in order to achieve a specific objective. As such,
decentralised optimisation algorithms are frequently used to explicitly or implicitly decompose a
large problem into manageable smaller parts which in orchestration contribute to the solution of the
problem. Modelling these problems as decentralised Markov decision processes (Dec-MDPs) gives
rise to complex continuous interaction dynamics. This is due to two forces which govern the nature
of the learning dynamics. First, the interaction pattern represents a topology determining which
agents can interact with each other. The non-linear effects can be attributed to the mutual influence
on the learning behaviour itself, and these effects are further intensified, if the topology evolves
over time. Second, the influx of events into the system (possibly from human sources or business
interactions) render such a system thermodynamically open, constantly introducing changes to the
operating conditions.

This decentralised setting and nonlinear behaviour often renders optimal planning solutions
intractable. In fact Bernstein et al. showed that for the general Dec-MDP the complexity is NEXP-
hard [20]. With some restrictive assumptions, such as only considering closed systems, static
interaction sub-graphs, and independent learning algorithms, planning algorithms can be brought
to bear to solve the optimisation task. However, real-world scenarios are both generally too large
and cannot easily be forced into an idealised and controlled environment.

Additionally, Dec-MDPs imply a non-stationary environment which does not lend itself to

asymptotically greedy policies. Therefore, large-scale simulation studies are necessary to study the
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learning behaviour of individual agents and the overall system dynamics online admitting constant
adaptive learning cycles. This implies that the trade-off between exploration and exploitation needs
to be carefully balanced.

The application domain in this thesis deals with distributed task assignment problems (DTAP),
which arise in load-balancing applications, workflow systems or supply-chain management. More
abstractly, this model resembles nested multi-armed bandits (network of bandits) with associative
memory where the reward is distributed once all relevant arms have been pulled, i.e., rewards have
a stochastic delay. Intelligent agents are employed at each server to gauge the performance of their
neighbours by evaluating the response time of the sub-task completion. At each time unit, the agent
makes a decision to minimise the response time, that is the time between issuance of a task request
and its fulfillment, in the long run. In other words, the optimisation objective is placed on quality
of service as perceived by the entity that issued the request, i.e., a client for external task requests or
agents for internal sub-task requests.

The agent needs to take into account that one execution path might get saturated. Unless agents
continuously adapt, delays will ensue and eventually cascade through the task network with the
inevitable consequence of deteriorating system performance. The focus is placed on autonomous
agents to solve the complex problem of sequentially assigning tasks in an environment.

As realistic scenarios are often modelled as complex adaptive systems, this thesis adopts an inte-
grated approach to combine complex networks and queueing theory for the reinforcement learning
environment with Markov decision processes for the reinforcement learning agent. Queueing theory
deals with the mathematical study of queues, which occur whenever instantaneous demand exceeds
the operational capacity to provide a service. Their general applicability and the growing interest in
uncovering traffic patterns in complex networks suggest the combination of both research branches.
The network evolution models introduced in are used to establish a typical queueing
network for use in simulations. This is a novel approach providing a framework which is exploited
here in the simulation study of distributed task assignment. Once the network is established for
a simulation run, it is considered fixed and does not change over time. This is unlike Abdallah
and Lesser [1]] who let their agents self-organise into an overlay network structure. However, they
make an assumption about queueing stability (rate of service is larger than the rate of arriving
tasks per agent) that is relaxed in the distributed task assignment problem discussed here, where
queues may become temporarily unstable. The agent’s learning objective of minimising the response
times implies that instability will not go unnoticed and the agent will adapt to it accordingly, if a
continuous learning policy is employed. This can be seen from the load-to-delay function of server
queues in equation (3.8). An unstable queue exhibits a utilisation (or load) of larger than 100%
which increases the delay and ultimately affects the response time of a task.

The reinforcement learning agent interface is formalised into a decentralised Markov decision
process in The MDP formalism takes into account the reinforcement learning environ-
ment as a directed acyclic graph representation of the hierarchical task structure. Additionally, the
MDP formalism supports cooperative behaviour by means of a global reward structure that fairly
assigns credit to the individual agents involved in completing a task. This avoids selfish behaviour
among the agents. Instead the reward structure motivates agents to act in concert to accomplish

the common goal of minimising the response times. However, given the asynchronous interactions
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among the agents with stochastic delayed feedback, it is no longer trivial to assume a decentralised
control algorithm will accomplish its goal. In abstract terms an agent’s actions are based on its
knowledge about the state. In fact, in most realistic problem settings the knowledge is based on local
state information, which implies only partial knowledge of the system. This can be problematic,
because an agent relies on delayed feedback to reinforce existing knowledge. If one agent downstream
fails to complete a task, it may go unnoticed when acknowledgements and/or timeouts are absent
trom the system design and consequently the feedback never arrives. Assuming this is an agent’s
preferred action selection, then missing reinforcement signals will not alter knowledge about a
degradation of performance and the agent will continue to select this action. Essentially, the cause
and effect are removed from action selection, which is the fundamental assumption that guarantees
learning. This general problem is well-known in distributed systems as the “Byzantine generals
problem” [85] and is very hard to solve accurately and efficiently. Fagin et al. [52} Chapter 10] discuss
Byzantine failures with respect to multi-agent systems. This thesis does not deal with this problem,
because the queueing network is not modelled to include faulty service stations.

presents related works. The related works cover recent machine learning techniques
that avoid reliance on these difficult-to-tune parameters, such as the learning rate or balancing explo-
ration and exploitation. This section also comprises specific modelling approaches for distributed
task assignment and distributed resource allocation problems. In this thesis, task assignment and
resource allocation are considered separately although mathematical solution methods provide
appropriate abstractions to deal with both type of problems. Distributed task assignment generally
deals with allocating a number of tasks to given resources to maximise some measure of utility.
In contrast, resource allocation deals with the reverse problem of allocating resources to a given
(expected) number of tasks. One assumption is made on the nature of how tasks are handled in this
thesis, in that tasks arrive sequentially in the task network, rather than in bulk.

formalises the distributed task assignment problem using the DEC-MDP framework
introduced in with extensions to account for the specifics of the queueing-theoretic
abstractions for the task hierarchy. Further, two solution concepts are investigated in this chapter:
one that has its roots in game theory and one that applies single-agent learning into a multi-agent
setting. More specifically, the SARSA (0) reinforcement learning agents are endowed with a weighted
policy learner (WPL) or an e-greedy policy representing the two solution concepts respectively
(2}, [145]. Further, the state space is generalised with a standard back-propagation neural network
function approximator to estimate the Q-function that maps state signals to action-values.

The results are presented in [Chapter 6} which evaluates the DEC-MDP model with respect to the
underlying network topology to investigate the impact of all learning parameters on the objective
of the optimisation algorithm. An empbhasis is placed on the empirical comparison of two policies:
the weighted policy learner and the e-greedy policies. The need for understanding and analysing the
behaviour of these multi-agent systems is compelling. However, appropriate tools need to be adopted
that provide statistically meaningful results. In particular, in order to analyse the influence of the
reinforcement learning parameters (learning rate and momentum of the back-propagation neural
network, and the discount factor of SARSA(0)) to the total average time of events in the system, a
response surface methodology (RSM) is employed (see[Chapter 2|for a thorough introduction). RSM

facilitates a computationally efficient way of performing simulation studies in regions with highest
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uncertainty. The simulation output is assumed to vary continuously in the input space (which is
mostly the case for computer experiments), so that a smooth interpolation function can be fitted to
the data. This methodology treats the simulation code as a black box, whereby the uncertainty in
the response surface is evaluated using a mean-squared error criterion of a set of validation locations.
That way the behaviour of complex systems modelled by numerical simulation can be efficiently

understood, which is similar to the approach of active learning for directed exploration [25].

5.1 Related Works

The related works of this chapter covers machine learning methods that reduce the reliance on
difficult-to-tune learning parameters to avoid the dilemma of balancing exploitation and exploration
in[Section 5.1.1] Then some approaches covering resource-allocation are presented in
Though similar to task assignment problems, resource allocation deals with the allocation of
resources to facilitate the computation of tasks. In that sense, it is a reverse problem to task
assignment, which is covered in Task assignment, on the other hand, deals with
assigning tasks to available (static) resources.

Chevaleyre et al. [31] presented a survey on issues in multi-agent resource allocation with a
focus on the interface of computer science and economics. They provide a tentative definition for

multi-agent resource allocation as

Definition 5.1 (Multi-agent Resource Allocation). Multi-agent Resource Allocation is the process of

distributing a number of items amongst a number of agents [31).

This definition is quite general and neither indicate what the items to be distributed are, nor why
the items are distributed. For the purpose of this thesis, this definition is too broad, because it does
not allow a distinction between assigning a task to available resources versus allocating resources
to accomplish given tasks. However, both kinds of problems can be formalised into a common
optimisation framework.

For example, grid or cloud computing provides ample scope for multi-agent resource allocation
(for a short comparison between grid and cloud computing see Foster et al. [55]]). Their use alludes
to the deployment of services, or more generally computing tasks, with on-demand capabilities.
As such, a large pool of resources can be allotted dynamically to the computing needs at any
given time. Multi-agent systems provide a great promise to unify resource allocation, payment, and
job processing. In particular, as grid/cloud computing systems grow in size, central management
becomes prohibitively expensive.

Manufacturing systems on the other hand resemble more the general problem of task assignment
(or task scheduling), where one task is part of a production plan with certain dependencies between
the tasks. Because manufacturing systems exist with real-time constraints optimal solutions are

often elusive. Rather, feasible solutions that are stable are sought to avoid interruptions.

5.1.1 Learning Theory

To find globally optimal learning parameters a Kriging response surface modelling technique was

used [42]. Kriging is a prediction method of continuous-valued outputs, which is generally used
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to interpolate data. Traditionally being used in the geostatistics domain since the 1960s, it has
increasingly gained in importance in the machine learning community designated as Gaussian
Processes (GP) [[120]. The iterative nature of learning a predictive model has been exploited to
adaptively select samples to improve the prediction (also known as adaptive sampling or active
learning) [125, 35} [68]].

While active learning can be used off-line to establish and improve a metamodel about the
system behaviour, recent advances in the reinforcement learning literature introduced methods to
avoid difficult-to-tune parameters, such as the learning rate or exploitation-exploration schemes.

In a game-theoretic framework Tuyls et al. mathematically derived a connection between the
exploitation-exploration scheme from Q-learning with Boltzmann exploration and the selection-
mutation mechanisms from evolutionary game theory [158] based on 2-player games. Related to
their work, |Gomes and Kowalczyk| analysed Q-learning in typical 2-player games with the e-greedy
exploration mechanism [65]]. They derived a system of difference equations to calculate the expected
evolution of the Q-values and the expected behaviour of the agents.

Zhang et al|present a direct policy Fair Action Learning (FAL) search technique [187]. Similarly
to Generalised Infinitesimal Gradient Ascent WoLF (GIGA-WoLF) [23], FAL approximates the
policy gradient of each state-action pair with the difference of the expected Q-value on that state and
its Q-value. As such it learns a stochastic policy that increases the probability of actions receiving a
higher reward then the current average. Consequently, FAL will converge to a fair policy reflecting
the expected reward for all actions and states. However, if one action is always more favourable
than the other ones, FAL will converge to a deterministic policy, which is not always desirable. The
weighted policy learner (WPL) from [[1, 2] algorithm addresses this issue to ensure that all actions
have a minimum probability of being selected.

illustrates the direct stochastic WPL policy. This policy ensures that no action
probabilities converge to a deterministic policy using: TTx (x) = argmin, . jq(x) (X — X'), which
returns a policy that is closest to x and satisfying the constraints that it sums to 1 and action
probabilities are greater than a given parameter €. This operation performs a projection of the
policy update, 7w + A, onto the probabilistic simplex X. ¢ denotes the update rate and is a free
parameter of WPL.

The weighted policy learning (WPL) algorithm by |Abdallah and Lesser| has been applied in
distributed task allocation and showed interesting results [[1]], because it converges to a stable
stochastic policy. The WPL algorithm was designed with the need of quickly converging to a stable
stochastic policy. This is achieved by performing a gradient ascent towards a stable policy and slow
down learning gradually for as long as the gradient does not change direction and learn fastest when
the gradient changes direction. This is in contrast to “Win or Learn Fast” (WoLF) algorithms, such
as GIGA-WoLF [23]], which use approximations to determine when an agent is moving towards or

away from a Nash Equilibrium.

illustrates the weighted policy learner (WPL) [[1, 2. The last step of the
performs an Euclidean projection,

Mx(x) = argmin{|[x —yl[[2 |y € X},
Y
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Algorithm 5.1: WPL: Weighted Policy Learner

Input: Let Q(s, a) be the expected reward for executing action a in state s

Q = X e ma)Q(s, a)

foreach action a € A do
Ala) < Q(s,a) = Q
if A(a) > 0then A(a) «— A(a)(1 —7(a))
else A(a) «— A(a)(mt(a))

end

7+ TIx(mm+ CA)

Output: A new policy 7

of the policy update, 7t + A, onto the simplex X subject to }_ g 7(a) = 1 and 7t(a) > 0,
which can be implemented using a linear time algorithm from Duchi et al. [50]. Thereafter, the
vector is scaled, such that no action probabilities converge to a deterministic policy. More specifically,

all action probabilities are determined to be greater than €, denoted by 7t - €.

Learning algorithms in continuous state spaces are often faced with the challenge of how
to partition the state space to achieve an accurate mapping from state to actions and compact
representation in memory at the same time. A priori discretisation of a state space can be either
coarse which requires less experience to learn well or fine which requires a higher level of experience.
The effect of the scheme employed has a huge impact on the general learning performance. To
overcome the difficulties associated with a priori discretisation of continuous state spaces Nouri
and Littman [[112] developed a regression-based approach to use a multi-resolution exploration
technique in continuous spaces based on regression trees as function approximators with variable
degrees of discretisation over time and the state space. This way, regions of high uncertainty are
deemed candidates for more exploration, where the regions are identified within the framework of
regression trees. Their approach is a variation of the kd-tree structure that organises points of the
k-dimensional state space. A new state vector is entered in the appropriate leaf-node that represents
the encompassing region of this vector. As such a leaf node represents a number of state vectors.
If a certain threshold is reached then the node is split into two half-regions along one dimension
chosen by round-robin. The purpose of the regression tree is to provide a measure of uncertainty
for certain regions of a state space. That way, exploration can be guided towards those regions that
require more experience. Also, as more states are visited the regression tree evolves a variable degree
of generalisation.

More specifically, the uncertainty about a function approximation at a given state S € 8 is
quantified using a real-valued measure of the form 0 < knownness(s) < 1, where the two extreme
values (0 and 1) represent the degenerate cases of no knowledge and complete knowledge. The
splitting rule is determined by a parameter v. The size, l.size, of the region at node 1 in the
regression tree is determined by its {o-Norm and the number of points residing inside this node
is given as l.count. Given n points in total represented within the regression tree, 1 denotes a
normalising size of the tree that allocates v/k points inside each cell k over a hypothetical uniform

discretisation of the space. p is then given as p = Lnkil/ﬂ’ where the state space is normalised
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as ||S]|oo < 1. Then, upon finding the leaf node that contains a state s, the knownness value can

computed according to

1(s).count § w ) 65.1)

knownness(s) = min <1’ v l(s).size

Equation balances the coverage ratio in terms of the number of points within a region
with the ratio of region of interest with respect to the hypothetical uniform discretisation. As more
knowledge about a region is exploited more points are added to that region which encourages finer
discretisation. Conversely, regions of high uncertainty can be determined that would benefit from
turther sampling.

Another way of addressing exploration in reinforcement learning algorithms in MDPs with
discrete state and action spaces is to apply a Bayesian approach to quantifying the uncertainty
over MDPs. In Asmuth et al. [10], Bayesian sampling is used which maintains the uncertainty in
the form of a posterior probability over models. The K models are sampled from the posterior
whenever the number of transitions from a state-action pair reaches a specified threshold B. This is
similar to RMAX, where a state-action pair is considered known, if it has been observed B times.
After sampling, a complete MDP is constructed with the same state space and an augmented action
space of K|A| actions, where action a;; from model i corresponds to the jth action of the MDP.
The transition and reward functions are taken directly from the models. They showed that their
algorithm takes near-optimal actions and that it explores better than e-greedy and Boltzmann
exploration.

The least-squares policy iteration (LSPI) [84] is a state of the art model-free and off-policy
reinforcement algorithm, that has been extended by [Li et al. to combine LSPI with the RMAX
exploration technique [87]]. LSPI does not rely on an explicit learning rate tuning parameter and is
guaranteed to converge. Originally being an off-policy learning approach, LSPI is combined with
the sample-efficient RMAX exploration technique to be used for on-policy learning agents. The

efficiency of the algorithm is demonstrated on well-known standard benchmark problems.

5.1.2 Resource Allocation

Chow and Kwok [32] introduced a software-engineering approach to balancing load for distributed
multi-agent computing, where agents represent brokers between a client request and services
provided through the service network. The service network spans multiple agents distributed over
multiple computing nodes. The aim of their research is to minimise the variance of the load among
all computing nodes in the cluster taking into account the communication pattern among the
agents and the computation demands of the individual agents, which in effect minimises the average
response time of accomplishing the task requests.

The hierarchical structure is depicted in [Figure 5.1 The “work agents” are responsible for the
computation of a particular task. In order to accomplish a task, “work agents” communicate with
other agents in the cluster. Similarly to the topological structure of the task network presented in
this thesis, the interaction graph among the agents is fixed. It essentially presents an overlay network
structure, which self-organises into agent-assignments to particular hosts, in order to minimise the

variance of the load in the cluster. For that purpose, each “work agent” has a credit value assigned to
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Figure 5.1: Load-balancing Agent Interaction

it, which is defined as

Ci = —x1wi +x2hi — %394, (6.2)

where x1, X2, X3 are positive application-specific coefficients that weight the computational load,
wy, the intra-host communication load, hi, and the inter-host communication load, gi, by agent
i. This credit value expresses the affinity of a “work agent” to stay at the current host. The higher
this value the higher the affinity to stay at the same host. While the computational load and the
inter-host communication contribute negatively to the credit value, inter-host communication has a
positive effect. This way, the agent strives to organise itself around agents it communicates with most.
However, if the load the agent contributes to a host becomes large or the communication pattern
changes, then the agent increases the pressure to move to a different host. The load information is
gathered and the clocks of the hosts are synchronised periodically. Each “work agent” aggregates the
load, u; = hy + gi, and communicates that to the communication agent which is co-located with
each host. The communication agent reports the load values to a central authority that decides on a
migration plan for the agents. A suitable candidate for migration is a “work agent” that exhibits an
aggregate load above a specified load threshold and the one with the lowest credit value on a given
host and the respective target host is determined based on the dominant inter-host communication
of the candidate agent. Once selected for migration, a copy semantics is employed, meaning that a

new agent is initialised at the target host and all state information is copied to the new agent before

the old one is killed.

By migrating incrementally, the load within a cluster is balanced, taking into account the
continuous dynamics of the interactions in specific time intervals. This migration strategy takes
advantage of the community structure of the interaction topology and attempts to co-locate each
community near each other to reduce the inter-communication overhead. Chow and Kwok [32]
demonstrated that better load characteristics are attained compared to a workload-based load-

balancing strategy [[136].
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Unlike agents in this thesis, the agents employed in Chow and Kwok [32]] are not based on
learning algorithms. Rather, their autonomy comes about in their ability to migrate based on load
characteristics which is measured periodically in given time intervals. Additionally, the central agent
that determines the migration plan is rule-based. The simplicity of this approach and its low runtime
overhead are among the advantages, while a central authority presents a bottleneck for large systems
and additionally a single point of failure.

In a series of articles, Tesauro et al. presented hybrid reinforcement learning using the SARSA(0)

method with an e-policy for resource allocation of servers in a prototype data centre [[148} [151} [152]

depicted in

HTTP Request O /[ Resource Arbiter ]\ “%ﬁb HTTP Request
\ éé\) / “ /
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Figure 5.2: Prototype Data Centre

In the prototype data centre example the resource arbiter is responsible for allocating identical
servers to the application managers. The application managers represent particular web applications
being deployed in the data centre and each application manager learns a business utility curve
governed by service level agreements and current queueing state variables. Tesauro et al. employed
neural networks to generalise the state space including queueing-theoretic performance metrics
to compute the business utility curve. This utility curve is reported to the resource arbiter which
decides upon an optimal server allocation scheme for the available application managers. To avoid
poor initial performance, the neural network is trained in batch mode for an initial time period
alongside a good external policy derived from theoretical queueing models. In their scenario learning
may continue online in batch mode by collecting data while the previously improved policy, 7, is
employed, and then train a further improved policy, ”.

Modelling decentralised control as discussed in this thesis and the approach presented by
Tesauro et al.|are very similar, in that the motivation for using reinforcement learning to deal with
dynamically changing environments and the learning methods employed overlap. Additionally, the
approach presented in this thesis and the approach for autonomous computing in data centres rely
on the framework of queueing theory to provide the state variables for the reinforcement learning
method.

The main difference lies in the constraints given by the scenario. While a data centre is controlled
by a single cooperation, optimising the business utility may encompass centralised solutions. For
scalability reasons|Tesauro|decomposed the reinforcement learning module and co-located those with

the application manager [[150]. A central authority correlates the business utility curves presented
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by each application manager and allocates servers for each appropriately. As a result, the topology
of this scenario is star-shaped, which may still pose scalability constraints for a large number of
application managers. This option is not given in naturally heterogeneous environments, where
the participating entities are inherently autonomous such as in the application domain covered in
this thesis. Consequently, heterogeneous environments require careful design of the decentralised
control algorithms to avoid selfish behaviour by the agents. This implies that no central authority
can be put in place to control the decentralised optimisation algorithm.

As such a simulation-based approach is employed to scale up the number of interacting agents
using a social network evolution model presented in [41] to analyse globally optimal learning
parameters [42]]. Additionally, there is a need to investigate stable stochastic policies that avoid

greedy behaviours, such as the weighted policy learner introduced by Abdallah and Lesser [2]].

5.1.3 Distributed Task Assignment

From a practical perspective, distributed task assignment covers e-Commerce applications that
are composed of autonomous and potentially heterogeneous services across the boundaries of
independent provider organisations. With such cross-organisational integration of business processes,
synergies can be fostered and competitiveness of the organisations involved can potentially improve.
In an abstract way, the structure of the task network in this thesis identifies autonomous entities
that may represent organisations and their public service interface. Internally, however, each public
service can be composed of additional private services, such as accounting and customer relationship
management. As such, an autonomous entity represents an intra-organisational business process.
The public view of it is identified with basic queueing properties, like a service rate and an arrival
rate of external requests. Given a technical or semantic description of a service and a suitable
language to describe the interaction between services, problems such as optimising a workflow
with respect to the capabilities of the services arise. Artificial intelligence planning techniques, such
as the hierarchical task network planner SHOP2, can be used to produce a sequence of actions
defining a workflow that accomplishes a complex task [183]. However, in the face of choice, i.e.,
several services fulfill the same functionality, an optimisation algorithm can take into account the
qualitative difference between those alternative services. Kritikos and Plexousakis use mixed-integer
programming to solve this optimisation problem given a set of constraints on Quality of Service
(QoS) metrics [82]. These techniques require strong consensus between the interacting services
and therefore do not take into account the dynamic evolution of services over time. For example
the QoS characteristics of a service might improve or deteriorate over time. Unless, an online
optimisation algorithm is employed, changes in operating conditions will be neglected.

Schaerf et al. [134]] investigated the effects of multi-agent reinforcement learning in the context
of load-balancing problems relying purely on local information. Their system model encompasses
a number of agents that receive tasks from the environment and assign those tasks to available
resources. Their setup exhibits a separation between agent and resources, such that the agents
are autonomous in their decision-making and the resources are passive only executing the tasks
assigned to them. The learning task of the agents is then to perform trial-and-error actions with the

environment and observe the cause and effect of the task assignment.
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Definition 5.2 (Multi-agent Multi-resource Stochastic System). A multi-agent multi-resource stochastic
system is a 6-tuple (A, R, P, D, €, SR), where A ={ay,...,an} is a set of agents, R = {r1,...,Tm}is
a set of resources, P : A x N — [0, 1] is a task submission function, D : A x N — R is a probabilistic
job size function, € : R x N — R is a probabilistic capacity function, and SR is a resource selection rule
[134.

Each resource is assigned a non-homogeneous capacity, which changes over time determined by
the function €. An agent can either be idle or busy, where tasks can only be submitted according to
a probability P, if the agent is idle. Moreover, tasks are assigned a size determined by function D. As
new tasks are generated an agent selects one of the available resources according to a selection rule
SR. The learning objective is to distribute the load evenly among the available resources. When an
agent assigns a task to a resource its state changes to busy and waits until it is notified that the tasks
is finished. Resources can operate infinitely many tasks, i.e., there is no queue. However, as more
tasks are assigned to one resource, its service deteriorates. Resources compute all tasks in parallel,
where the capacity 1s equally distributed to the tasks and the size of the task determines how long it
takes to be finished.

Their learning model essentially is stateless, which means it does not correlate some state
information with the feedback received. The experience of past task assignments is maintained in an
efficiency vector which represents all available resources denoted by ee; of agent i. The only other
information an agent maintains is the total number of tasks completed by each resource, jd;. As in
typical reinforcement learning tasks, the efficiency estimation is updated after receiving a feedback
tuple (7, tsare, tsiops S)s Where tyar and tyop are the start time of the task assignment and the end

time of task completion respectively, and S is the size of the job. The update rule follows as

eei(r) — WT+ (1—W)ee;(r) (5.3)
T = (tsop — tend)/S (5.4)
W=w+ (1—-w)jdy(r), (5.5)

where w is a real-valued weight factor. The adaptive selection policy SR is given as probabilistic

function

, eei(r) ™, ifjdi(r) >0
pdj(r) — o (5.6)
Eleei(r)]™™, ifjdi(r) =0,

where n is a positive real-valued parameter and E[ee;] represents the average of the values in

the efficiency vector ee; over all resources satisfying jd; > 0. Normalising pd (r) according to
pd;(r) = pdi(r)/ ) pdi(v),
T'eER

the function pd; introduces a bias whose strength is determined by the factor n. The larger

the value of n, the stronger the bias. Consequently, very large values for n will render the policy
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deterministic, which is often not desirable in multi-agent systems, because multi-agent systems are
not stationary.

They showed that it is feasible to achieve adaptive load-balancing solely based on local feedback
information. Similar results, albeit with additional local states, are presented in[Section 6.2.2]and
Schaerf et al. [134] show that adaptive SR is able to learn changing conditions, such
as load and capacity changes. In particular they observed parallels to the exploration-exploitation
dilemma with the interplay of the parameters n and w. High exploratory activities (low 1) requires
a greater weight to more recent experience (high w). Also, they showed that selfish behaviour
of a single agent with all others using an adaptive SR gain from their exploitative actions, while
selfish behaviour by all agents leads to the “Tragedy of the Commons” where nobody gains
[69]. Interestingly, employing communication to share the efficiency vectors among neighbouring
agents does not achieve good results, because communicating agents settle to best response actions.
Consequently, the agents become selfish in exploiting good resources and avoiding bad resources.
This way, the load is not evenly distributed and therefore this simple communication scheme has a
detrimental affect on the group of agents.

These observations are investigated in this thesis as well. It is expected that the “Tragedy of
the Commons” does not play such a vital role, because the resource spaces agents have access to
do not necessarily overlap. This is due to the explicit interaction structure imposed in this thesis.
Moreover, it is crucial that agents incessantly adapt to the changes in the environment and therefore
best response actions are not considered in this thesis.

Verbeeck et al. [164] investigated multi-agent reinforcement learning in settings where multiple
pure Nash equilibria exist. One agent’s Nash equilibrium strategy may provide the agent with a
maximum payoff, while the other agent receives a suboptimal payoff, and vice versa for the other
pure Nash equilibria. In these scenarios, agents often employ a mixed strategy which may leave
both agents with a smaller payoff than with the pure Nash equilibrium strategies. This is the case
when there is a chance that both agents do not coordinate on a task with the consequence of
reduced payoffs. One proposed solution is to cycle between the pure Nash equilibria requiring some
communication among the agents. This can be achieved with periodic policies, where the agents
not only care about their own payoff, but also pay attention to the other agents’ payoffs. These
kind of agents belong to a homo egualis society, where agents are willing to give up their maximum
payoff to the benefit of the other agents in the system fostering a sense of equality. To achieve this,
agents periodically exchange their performance characteristics. The agent with the maximum payoff
evaluates giving up its best action to give the other agents an opportunity to retrieve higher payoffs.
Verbeeck et al. [164] investigated a simple load-balancing scenario depicted in[Figure 5.3] Both agents,
A1 and A2, have access to a common public resource, R2, and each have access to a private one, R1
and R3, respectively. The public resource is free, while the private resources have a cost associated
with them. The agents stochastically assign a task to the respective resources they have access to
which is then serviced according to an exponential distribution. Consequently, the reward of each
task assignment is delayed. Their selection strategy have to be based on the judgement of the other
agents behaviour and the load and capacity characteristics of the resources. If both agents incessantly

assign tasks to the public resources, both their performance will deteriorate.

The scenario shown in exhibits two pure Nash equilibria: agent A1 always chooses
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Figure 5.3: A simple scheduling game

the public resource R2, while agent A2 chooses its private resource, and vice versa. So, both agents
have to gauge the queueing characteristics of the available resources and adapt their behaviour
accordingly. Allowing the agents to communicate with each other a periodic policy can be agreed
upon that gives a fair share of the public resource to all agents. Their results show that in two players
scheduling games a mixed strategy without communication is in fact optimal. In this case the mixed
Nash equilibrium is easily calculated, which is not the case anymore for games with more than two
players. Considering more than two players, a good probability distribution over their action was

found by agents playing periodic policies offline and following the learnt probabilities online.

Periodic policies are further investigated in [[165] to reach Pareto optimal strategies in multi-
agent common interest games without communication and in conflicting interest games with
communication. Similar to Verbeeck et al. [164]], learning is organised in two phases. The first
phase is dominated by selfish exploration, where agents act as utility maximisers, and the second
phase allows each agent to remove one action from their action spaces. The reduced joint action
space of the multi-agent system is then explored selfishly by all agents before the next phase of
synchronisation occurs. In the synchronisation phase, each agent normalises the Q-values for the
respective actions into probability space. Then the average reward for the whole learning process
is broadcast to the other agents as well as the average payoff of the private action that the agent
converged to in the previous exploration phase. The agent with the highest cumulative payoff and
the highest average payoff excludes the action it converged to in the exploration phase to allow the
other agents to find more rewarding policies. This cycle repeats to allow the other agents to catch
up with the best performing agent yielding periodic policies that alternate between the pure Nash
equlibria. The objective of the load-balancing scenario presented in [163] is to evenly distribute tasks
to slave nodes in parallel applications to maximise the efficiency. In particular the slave nodes request
a task of a certain size from a master node. The master-slave architecture of parallel applications
presents a communication bottleneck, because the master is the node that distributes the tasks
according to the slave’s request. If the requests for tasks arrive at a higher rate than the master can
cope with, the slaves will become idle and the efficiency of the system decreases. With exploring
selfish reinforcement learning, agents in the exploration phase converge to a particular task size. The
immediate feedback signifies the inverse blocking time which is the waiting time of a request from

a slave being serviced by the master node. At the end of each exploration phase the master node
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sends an average reward, calculated as the total computation time for the tasks that were processed
in parallel, to all slaves. This average reward is used to update the Q-value of the converged action,
which is subsequently removed from the action space. The cycle of exploration/synchronisation
repeats. Verbeeck et al. [165] showed that the slave nodes specialise in certain task sizes with an even
computation pattern that maximises the efficiency of the parallel application.

Montresor et al. [103] are inspired by ant colonies to address the limitations of master-slave
architectures, such as those of volunteer computing [115] with the Seti@Home project being a
prominent example. Volunteer computing are characterised by massive data sets which are divided
into a large number of chunks that are distributed by a master node to interested peers (slave
nodes). The slave nodes conduct a computationally expensive analysis of the data chunks and report
the results. Messor provides a computing infrastructure that is inherently decentralised with the
intention of balancing the load in P2P systems allowing arbitrary peers to initiate computational
tasks. The biological metaphor that provides a basis for the P2P load-balancing application are
Messor ants [22] that group objects in their environment into piles to clean up their nests. As
such, agents are modelled after the behaviour of the ants, which are mostly governed by simple
rules without a central authority dictating how agents should behave. Through their interaction
seemingly intelligent global behaviour can be observed, for instance in the case of Messor evenly
distributed tasks in a P2P environment. Swarm intelligence systems are additionally accompanied by
characteristics such as robustness, which makes them particularly suitable for dynamic P2P systems
where the load characteristics can suddenly change by peers joining or leaving. From an engineering
perspective the bottom-up approach to designing a decentralised solution is very attractive, because
a focus is placed on simple rules that govern the interaction of the agents in the system and exhibit
an emergent character that solves the overall global objective. Messor is based on a middleware
called Anthill [12]] that abstracts the ant colony metaphor to provide interfaces for distributed
computing applications. An Anthill model consists of nests that are associated with a peer to manage
discovery of neighbouring nests and are associated with local applications interfacing with the user.
An application issues a request to the nest, which in turn is confederated with a service carried
out by one or many ants. The basic idea behind Messor ants is to follow simple rules: (1) when an
ant is not carrying an object, it wanders about randomly until it encounters an object and picks
it up; (2) when an ant is carrying an object, the ant drops it only after having wandered about
randomly “for a while” without encountering any other objects [103]]. The object in the context
of Messor is a computational task to be distributed. Ants explore the environment to find nests
that are overloaded. The nest identifier is recorded and when an underloaded nest is found in the
environment, the nest identifier of the overloaded nest is transmitted, upon which the target nest
downloads tasks from the overloaded nest. The mechanisms by which ants determine the load of
a nest is entirely based on local information gathered by the ant in the environment. Under- or
overloaded nests are determined based on an average load that the ant calculates based on its past
encounters with the nests in the environment, where load is identified as the number of tasks in the
queue of a nest. To introduce a more targeted search mechanism, ants store load information of past
visited nests in a local storage facility of the nests it visits. Consequently, the search for over- and
underloaded nests can be directed to those regions in the domain that are of most interest. To avoid

suboptimal exploitative actions, a probability of exploration is introduced that avoids a bias towards
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a subset of nests. Montresor et al. [103] demonstrated that an initial ring overlay network of nests,
self-organises into a different topology facilitating an even distribution of the load by the ants.

Another approach to modelling decentralised systems is collective intelligence (COIN) [[156),
157, [179, [181]). This approach concentrates on the behavioural viewpoint of individual agents and
their effect on the system, i.e., the collective. Agents in a multi-agent setting are regarded as utility
maximises that are primarily concerned with their own performance, the private utility. However,
carefully crafting utility functions brings about a win-win situation for the agent and the system
as a whole. Each agent can be viewed as though it is striving to maximise its own private utility
function while at the same time also maximising the world utility of the collective. The engineering
discipline is based on division of labour, where the system is sub-divided into smaller parts that
each can be solved efficiently. Moreover, no domain knowledge, i.e., no knowledge concerning the
dynamics of the environment is assumed. The solution of the decentralised optimisation problem
is brought about in a bottom-up fashion and therefore encompasses swarm intelligence solutions.
Wolpert et al. [181] modelled Internet routing using COIN concentrating on the core concepts:
subworlds, factored systems, constraint-alignment, and the wonderful-life utility function.

An agent, 1, at a discrete time t is characterised as having a vector representing internal state and
externally visible actions as {_ . The state of the collective capturing the time dynamics as well is
denoted as ¢. The world utility is a function of this state as G(¢), which is potentially not expressible
as a discounted sum of the rewards. The division of the collective into subworlds, w, constitutes a
number of agents that together solve a partial problem and share a subworld utility g (). A system
of collectives is constrained-aligned, if the agents in separate subworlds do not affect each other
directly. Further, a subworld-factored system is one whose subworld utilities g, () increase only if
it also increases the world utility G(&). However, negative side-effects of utility maximisation in
one subworld may be experienced in another subworld. This allows for mathematically convenient
division of labour, where their utilities are aligned to foster collaborative behaviour. It can be proven
that optimal behaviour in a subworld with respect to the other agents within it, yield a global
behaviour that corresponds to the agents reaching a Nash equilibrium [177]. Additionally, there can
be no “Tragedy of the Commons” in a subworld-factored system [[156]].

Let CLy (&) be a function that adjusts the states of all agents in subworld w across all time to an
arbitrary fixed value. In [[181]], the fixed value is 0. The wonderful life subworld utility (WLU) is

then given as

9w (€)= G(E) — G(CLw(Q)). ©.7)

Essentially, the wonderful life subworld utility provides a measure of the change of the world
utility with the subworld w removed from the system. Additionally, it provides a mathematical
trick that exhibits a dynamics-independent view of the system. Informally, this means that the WLU
can be evaluated without inferring how the system would have evolved if an agent n’s state were set
to O at time t and the system evolved from there.

More specifically, the application of the COIN framework to network routing has been explored
in [[157, [180, [181]]. presents the network architectures investigated in [181]], where the

nodes in black are dedicated destinations and all other nodes are routers that make routing decisions
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at each time step on how to forward packets to the destination and also generate traffic consisting of

a pair of a real-valued traffic rate and a destination.

(a) Network A (b) Network B

Figure 5.4: Network Architectures

To account for an heterogeneous infrastructure, each router may have a different load-to-delay
function, W(x). This function takes an estimate of the load over a given time window at a given
router and produces a measure of delay based on the load. The objective of the collective of routers
and destination pairs is minimising the total delay encountered by all traffic in the network. Recall
that the expected average delay is calculated as the running average of all delays encountered in
a queue (3.8). The agent, n, is modelled as a unique pair of router and destination, where the
vector ¢ . holds the traffic sent along all edges emanating from n’s router tagged for the respective
destination at time t. Each subworld, w, is constructed as the set of all agents that share a common
destination node. While shortest path algorithms for routing packets in a network set _ to
minimise the total delay emanating from 1’s router to the ultimate destination, the COIN modelled
scenario tries to set {_, in order to minimise the total delays of the subworld containing 1. In other
words the objective is to optimise the subworld utility g.,. Wolpert et al. [181] modelled three
scenarios, first a shortest path algorithm and second a COIN model both based on full knowledge
of the window-averaged load at time t — 1 of all routers in the network. These window-averaged
load values are taken as estimations for the load at the given routers at time t. Third, a COIN model
with limited knowledge only based on the reward received upon packets reaching their respective
destination.

More formally, the load at router r at time t is determined by ¢, which gives a load-to-delay
function W, (). The world utility is then the sum of all encountered delays at all routers over time,
G(&) = 2, Wrt(£). Subsequently, the wonderful life subworld utility is g (8) = 3 ¢ Aw,r,t(8),
where A+t (Q) = Wi £ (§) — Wit (CLw (G))]. A represents the delays of a packet accrued along the
path towards the destination. Once a packet reaches the destination, all delays of all packets received
are summed and acknowledged to all the router within the subworld. These acknowledgements
are used by the COIN model with limited knowledge to evaluate the WLU-based reward of its
subworld. Their results show that the COIN-based models outperform the shortest path algorithm.
The COIN model based on limited knowledge shows a reduced performance to the one with
full knowledge about the collective, but still surpasses the shortest path-based algorithm. These
results confirm that despite the absence of centralised communication and control authorities, the
individual utility maximising behaviour yields good global performance without disadvantaging
any agents.

In an extended study, Wolpert and Tumer [[180] show that COIN-based models for network
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routing almost always avoid the Braess’ paradox. Braess’ paradox states that selfish routing behaviour
on a network can result in a lower throughput when additional capacity through a new edge in the
network is introduced. In particular the ideal shortest path algorithm introduced side-effects that
lead to the observation of the Braess’ paradox. With a COIN-based approach, Braess’ paradox can
almost always be avoided while at the same time exhibiting significantly improved global throughput

performance.

5.2 Decentralised MDP Framework

This section formalises the distributed task assignment problem using the the DEC-MDP framework
introduced in with extensions to account for the specifics of the queueing-theoretic
abstractions for the task hierarchy.

The formalism of Markov decision processes (MDPs) is the fundamental part of many stochastic
planning problems. In particular, extensions to the basic MDPs for multi-agent systems received
much attention. Often, the aim of these extensions is to formulate a particular problem, such that
the complexity of planning is reduced and can be tackled with specific techniques. However, it has
been shown that decentralised knowledge and control in a multi-agent setting is NEXP-hard [20]. So
solving even simple problems is extremely hard and it is unclear how large-scale realistic problems
can be solved efficiently. In this section, a decentralised MDP for queueing networks modelling
distributed task assignment is defined, where the interaction network spans a finite number of
agents defined as a directed acyclic graph evolved using the adapted BBV or ER models.

The distributed task assignment problem borrows its representational form from graph-theory.
The hierarchical structure of such a queueing network is then defined as the set of nodes together

with the set of pairwise relationships between them.

Definition 5.3. A queueing nerwork for distributed task assignment is defined by a directed acyclic
graph DAG = (V, A), where

* V isa finite set of vertices (or in the context of qgueneing network, servers). Each vertex i is associated

with the poisson arrival rate Noi and the exponential service rate ;.

* A is a finite set of arcs, which are ordered pairs of vertices without self-loops and with no path that
starts and ends at the same vertex, A C {(u,v)lu,v € VAu # v}

Definition 5.4. Let DAS be a directed acyclic graph with vertices, V, and arcs, A. A sub-task s; is
defined as the work item to be completed at vertex i in a queneing nerwork. If the vertex has deg™ (i) = 0,
then the sub-task is called atomic. The completion of a sub-task is stochastic given as the exponential

service rate ;.

Definition 5.5. Let DAS be a directed acyclic graph with vertices, V, and arcs, A. A local task t; is
defined as a sequence of sub-tasks given as t; = [s1, ..., s| for vertex i for k > 1 such that (vj,vj11) is
an arcin A for 1 <j < k. A local task reduces to the atomic sub-task, if the vertex has deg™* (i) = 0.
The length of a local task is defined to be k. A local task is called a task, if it is requested through an

external arrival event to the task network.

105



CHAPTER 5. MULTI-AGENT TASK ASSIGNMENT

Since the graph is directed and acyclic no sub-task can appear more than once in the local task

sequence.
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Figure 5.5: Multi-agent Task Structure

[Figure 5.5illustrates a typical task structure for distributed task assignment within the framework
of queueing networks. Each server is managed by an agent to fulfill a sub-task. Once the sub-task is
completed, the agent has a choice of forwarding the request to one of the servers to complete the
next part of the overall task. The goal of the agent is to optimise this choice. One way to achieve this,
is to minimise the response time which is calculated as the accumulated time it takes to complete all
sub-tasks in the local task hierarchy or equivalently and more generally maximise the long-running
reward. So once an atomic sub-task is completed (i.e., a leaf-node is reached), a response to all
participating agents in reverse order of execution is sent to notify the successful completion of a
task. Each agent observes the local state as the queueing metrics defined in equations - (3.11).

Definition 5.6. An n-agent continuouns state DEC-MDP of a gueneing network is defined by a tuple
M = (N,DAG, A, 8, P, R, Q,0), where

* N is the number of agents in the environment.

® DASG is the directed acyclic graph describing the hierarchical structure of the task assignment

problem. Each agent is represented as a vertex on the graph and the finite action set A = Ay X

Az X - x AN is implicitly provided by|Definition 5.3} where the action set is equivalent to the
set of arcs defined by the DAG, A = A.

® 3§ is finite set of queneing network states.

. ﬂ’fs, =P{sty1 =5"| st =s,a ={ay, ..., ai}} is the transition probability of state s’ when the

actions {ay, ..., ai} have been taken in state s.

. ins, =E{ri41 | st =s,de ={a1,...,ai}, st41 = s’} is the expected value of the next reward

taking actions{ayi, ..., ai} in state s and transitioning to the current state s'.
* Q is the set of all observations for each of the agents.

* O is the observation function. O (s,{ay, ..., ai},s’,{01,...,0i}) is the probability of agents 1 to

1 seeing observations {01, . .., 01} after selecting actions{ay, . . ., a;} in state s.

Satisfying the Markov property, the goal of reinforcement learning is to learn a policy 7t that

maps a state vector to an action to maximise the total amount of reward received over the long
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run. Since the transition function P is not known the agent learns an action-value function known
as SARSA(0) (equation (4.26)). The optimal value function Q*(s, a) is guaranteed to converge,
provided that the learning rate decays to zero asymptotically and the policy for action selection
chooses the action with highest Q-value in a given state, i.e., is asymptotically greedy.

However, since each agent makes local decisions to minimise the response time of local task
completion, agent interaction implies a non-stationary environment. Therefore, an asymptotically
greedy action selection would likely result in saturated paths without being able to recover from it.
As a result, all learning agents in the system would need to employ a policy that allows a certain
level of exploration at all times. From the perspective of queueing theory, the routing probabilities
in become deterministic under a greedy policy. If the stability criterion holds,
after solving the traffic equations in matrix notation (3.2), then the Jackson Theorem [76] holds as
well and a global optimal solution can be reached with an asymptotic greedy action selection (see
Definition 3.1). However, in practice the Jackson Theorem cannot be guaranteed. Deterministically
selecting among the available actions will likely congest this path. So an agent needs to adapt to
changing conditions and provide a means of continuous optimisation while also converging to a
stable stochastic policy [2]]. From a topological perspective, a greedy policy that always selects the
best action reduces the graph to a tree. A tree is less robust, because any failure will have detrimental
effects on the system performance, if no measures are employed to cope with broken or badly
performing actions.

The fact that a certain level of exploration will always be required by the agent implies that
strong guarantees of the Jackson Theorem cannot be made. The transition function will always
select among all available actions that settle to best solutions temporarily, but fluctuate over the
long-run. In effect, this is one of the main features of learning. Agents linger with their currently
best action and exploit their knowledge accordingly only to drop it in favour of a better one once
it stops performing well. As a consequence, multi-agent reinforcement learning systems exhibit
hysteresis. A subjective belief model of the performance of the available actions is maintained. In
the case of reinforcement learning, the belief model is represented by a mapping from state signals
to action-values. The belief model is temporarily fulfilled and shifts towards a better model when
they cease to be fulfilled. This, however, does not rule out that this shift is irreversible. Exploration
ensures that the whole action space is considered. This informal insight has a resemblance to biology.
Agents differ in their role within a task network and they have distinct interaction patterns based
on their belief models. Thus the system is co-evolutionary. Chapters[6|and[7] analyse whether a task
network in a particular context converges to an equilibrium solution or whether the system remains
in an open-ended state of co-evolution. This line of argument follows that of |Arthur|and applies to
situations where agents are not able to build a perfect model of the world and act optimally. Arthur
[9] showed that a multi-agent system where perfect global knowledge is not attainable, inductive
reasoning provides a model that facilitates self-organising behaviours with robust solutions.

To facilitate a compact representation of the state space standard backpropagation feedforward
neural networks with one hidden layer are employed on each arc of the task network to estimate
the Q-values for each action given a state vector [127]]. Alternatively, each agent could employ a
neural network with one output neuron for each action. The disadvantage of this approach is that

the utility of one action affects the other ones as well and hence results in poorer performance
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compared to using neural networks for each action (i.e., arcs in the task network) separately [3].
Equation (4.26) can then be expressed as the general gradient-descent update rule for neural network

training as

Awqiyg = aveyg — Q(st, at)]thQ(st, a¢) +nAwy, (6.8
Vg =Tt +)\Q(St, at)a (59)

where 1 is a constant representing the momentum, which determines the effect of past changes
to the weight vector, w, and V ,, Q(st, at) is the vector of partial derivatives of the value function
Q(st, at) with respect to the weight vector wy. So, the action-value estimation is updated every
time a task in the DTAP network is completed. That means, that all value functions of all arcs in
the DTAP network that were involved in forwarding a request to the next sub-task will be updated
according to W41 = Wi + Awyy1. So, the optimal action-value function Q* is approximated with
a parametric function approximator, Q«, where w is the vector of weights as given above.

The neural network is continuously trained over a sliding window of the most recent N, input
data with the objective to minimise the mean squared error. As new input/output pairs are added,
the oldest ones are dropped in a first-in-first-out fashion. If the mean-squared error of the data
contained in the window are below a given error threshold, training the network does not proceed
to avoid over-fitting. The hidden neurons employ a sigmoidal activation function and the output
neuron is equipped with a hyperbolic tangent activation function.

The formulation in can be simplified by factoring the state space and the obser-
vation function (see Definition 4.5). Factoring the state space of a Dec-MDP queueing network is
straight-forward in the case considered here. Equations - are calculated locally for each
server (i.e., agent). The system state is calculated as the total expected average waiting time, equation
(5.10), total expected average number of events in the queue, equation (5.11)), the mean utilisation,
equation (5.12), and the total average time a task request spends in the system, equation (5.13).

W=> (5.10)
i=1

Q=) @& (5.11)
i=1

u= Lii (5.12)

S=) s (5.13)

,_.
Il
—

5.2.1 Modelling Cooperation in DTAPs

Modelling cooperation in multi-agent systems is mostly a question of social welfare, because the
agents participating in such a system are often referred to as a “society of agents”. If communication

among the agents is absent from the design of the system, then the cooperative behaviour relies on
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the structure of the reward function that allocates rewards (or utilities in game-theoretic terminology)
to each agent that participated in accomplishing a task. Utilitarian social welfare is defined as the
sum of the individual rewards to measure the quality of accomplishing a task to the system as a
whole. While this welfare function may be appropriate for many decentralised problem settings, it
is problematic in scenarios where a fair share of the overall reward is required by each individual
agent. Other social welfare functions exist [8, [105]], but are not further elaborated upon, because
the reward function presented in this thesis provides a natural interpretation (see[Section 5.2.1.2).
Consequently, this leaves out a range of topics that deal with negotiating to achieve Pareto optimal
outcomes to everyone’s mutual benefit. Designing incentives for a negotiation process is known as

mechanism design.

5.2.1.1 Centralised Communication and Control

There are different ways to achieve cooperative behaviour in decentralised multi-agent learning
domains. One is an architectural design that represents a team of agents with a single learning
authority. In a most extreme case, a single agent learns behaviours for all its team members covering
the entire task hierarchy. Otherwise, some logical partitioning of the task hierarchy can be devised
with a single learning authority for each team. From a networks perspective this is equivalent of
finding disjoint communities. If the task hierarchy is dynamic, i.e., services can join, leave, and
rewire existing connections, then this requires agents to self-organise into team structures. As a
consequence, a potential benefit of partitioning the task hierarchy is offset by the complexity of a
higher level organisation structure that must be learnt itself. Additionally, the space complexity of
team learning cannot be neglected either. Assuming an environment with 8 states, a team with N
agents can take any of |§|N states [[71, [117]. So, team learning suffers from the curse of dimensionality.

Another constraining factor are the communication channels between agents. A single authority
requires consensus of the states of its team members and therefore posits strong guarantees onto the
communication medium. In practice, however, strong guarantees on the communication medium
can rarely be assured. In particular spatially dispersed agents may not be reachable. If unrestricted
communication is assumed, then the question is whether this setting is really multi-agent. Stone and
Veloso [[143] argue that unrestricted communication is isomorphic to single-agent systems, where
complete state information can be exchanged to derive optimal behaviours.

Cooperation can also be achieved by modelling the other team members and either forming
coalitions [29} 30]], or estimating state-action values for the joint actions [33]]. The latter requires
complete knowledge of the actions taken. In a deep task hierarchy, this is problematic, because
actions that cannot be observed need to be communicated. Additionally, it also poses scalability

issues, because each agent requires a model of all relevant joint actions.

5.2.1.2 Decentralised Communication and Control

Primarily, cooperative behaviour for distributed task assignment problems in this thesis is achieved
in a decentralised fashion to accommodate the natural setting without imposing central authorities.
The rewards received by each agent are not independent, that is the global reward is not equal to

the sum of the local rewards. Noting that the reward is the response time of the completion of a
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local task one can informally see that a reward can only be given, when the local task is completed.
When an external request for a task enters the system an execution path is given as [s1, S2, . . ., Sil.
So the local tasks can be similarly expressed as [ti, ta, ..., ti], where each t; is a subsequence of the
execution path, i.e., t; = [s1,82,...,8il, t2 = [s2,..., si] until finally t; = [si] is an atomic sub-task.
Consequently, since the rewards are computed based on completion times of local tasks t; a reward
relationship of 1} < 1, < -+ < 1y is established, so each v; is the negative value of the response
time of the local task t;. While the rewards account for all completion times of the local tasks, the
time of events in the system is only taken for completed tasks, i.e., the server receiving external
arrival events measure the response time of the completion of the task this external event triggers
(eq- G.13))-

This reward structure is said to be global, because it incorporates the rewards of all agents
involved in completing a task. Additionally, it is implicit, because the mathematical framework of
queueing networks provides the definition in terms of completion times. A global reward structure is
a feature of cooperative multi-agent systems, as distinct from local reward functions that encourages
competitive behaviour among selfish agents. As a consequence no communication is required to
correlate rewards and apportion the reward fairly to the agents involved. This makes the credit
assignment problem straight-forward to solve.

In addition to implicit coordination given by the global reward structure, agents may share
their states with interested parties. In distributed task assignment an agent may be interested in the
current state of the agents downstream, e.g., to evaluate the current utilisation or delay in queues.
This way, faster learning times can be achieved, because the agent does not rely on its experience
to find out about the performance, but instead can communicate directly with the relevant agents.
This postulates cooperative agents that are willing to share information and be truthful about their
state. It is not assumed that agents cheat to receive more task transactions.

In this thesis, it is assumed that the communication is immediate without a communication
delay, so that an agent can include a neighbour’s state directly into their state representation. This
may lead to more complicated overlapping state spaces, so it may not be possible to factor the state

space anymore.

5.2.1.3 Collaborative Function Approximators

Function approximators in reinforcement learning are used to reproduce the Q-value function
that maps state signals to action values. Their use is very generic and powerful, because each state
variable that the agent senses in its environment can be accounted for as an input neuron to the
neural network. The structure of the distributed task assignment problem modelled as queueing
networks provides rich information about the state, such as delay in queues and utilisation
(3.11).

Intuitively, optimal decisions in a given scenario can be made, if an agent knows the state of
the queues of its neighbours. Allowing communication between an agent and its neighbours, this
state information can be queried and incorporated as well. this means that the neighbouring states
are more expressive and allow better predictions on how an action is going to perform. However,

optimal decisions in queueing networks in general are difficult. Forwarding task requests to the
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shortest queue (shortest-line rule) minimises the expected delay of each task request and the long-run
average delay per task request when the service-time distribution is exponential [175]]. For general
service-time distributions this result does not hold anymore [[174]. Assuming that the agent knows
the time currently serviced tasks have been in service additional to the queue length, then the
expected delay of each task request can be calculated conditioned on the remaining service times.
Given this information, a rule to forward task requests to queues with the shortest expected delay
seems a natural choice. However, Winston [[175] give counterexamples of when this rule does
not minimise the long-run average delay per task request. Whitt [174], Winston [[175] considered
queueing systems that resemble a toll plaza scenario, which are more simple than the queueing
networks considered in this thesis. Therefore, the use of function approximators provides richer
information to guide an agent’s decision process, because a mapping of the long-run average response
time with respect to the queueing state variable(s) is established.

Each agent maintains its own function approximators. In order to avoid interferences in super-
vised learning, one neural network function approximator is employed for each action [3]. This
implies that the number of function approximators scale with the number of arcs in the task
hierarchy.

This also means that there is more than one function approximator for certain actions, e.g.,
choosing a particular service in the task hierarchy. This is depicted in The agent for
service s2 and the agent for service s3 both maintain a function approximator for the their target

service s4.

Figure 5.6: Function Approximation in Distributed Task Assignment

Given a cooperative multi-agent reinforcement learning setting function approximators can
be collaboratively trained agents sharing the same destination node downstream under certain
conditions. Thus, the state-action value mapping can collaboratively learnt. First, communication
channels to all direct target services need to be established with benevolent agents at the other end.
Second, the state representation can only include states from the neighbours, because agents cannot
observe the state of the services using them.

Not only does this design scale with the number of agents in the environment, instead of the
number of actions, it also accounts for concurrent learners. A local function approximator implies
that a mapping from states to action values based on an agent’s experience alone misses out on the
adaptation underway in parallel. This is particularly true for queueing networks in general, because
the most expressive local state is that of an agent’s neighbours.

As a result, the learning rates of the agents will be faster, because each agent trains the neural
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Figure 5.7: Collaborative Function Approximation in Distributed Task Assignment

networks at the target node instead of locally. This way the information about a target service is

shared among all agents connecting to it.

5.3 Summary

Multi-agent reinforcement learning in the context of distributed task assignment problems was
investigated. An integrated approach is adopted to combine a complex network evolution model,
queueing theory and Markov decision processes into an agent-based simulation environment for-
malised by a decentralised Markov decision process. By evolving social networks that adhere to the
semantics of queueing systems, large-scale computer experiments are possible, which are empirically
investigated in the next chapter. An emphasis was placed on the global, implicit reward structure to
facilitate a cooperative multi-agent learning environment. This included the specification of how
agents learn, in particular using SARSA(O) reinforcement learning coupled with a neural network
function approximator to estimate the state-action value function. An extension to the learning
architecture was introduced to train the Q-value function collaboratively involving agents with the
same target agent. That way, the learning rate can potentially be reduced, while also incorporating
more informative state signals from the target agents.

This chapter also covered some related works including more advanced machine learning
methods that avoid difficult to tune parameters. More importantly, however, are the related works
in task allocation and distributed task assignment to provide an overview of how other researchers

addressed problems similar to the one laid out in this thesis.
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— Ever tried. Ever failed. No matter. Try Again. Fail again.
Fail better.

Samuel Beckett

Calibrating Multi-agent Reinforcement Learning

Methods

Modelling distributed task assignment as presented in the previous chapter is challenging, because the
learning algorithms employed need to be adjusted such that optimal long-term responses and optimal
short-term behaviours are attained simultaneously. For example the uptake of available information
or experience has to be quick enough to efficiently incorporate knowledge for future decisions
and slow enough to avoid vastly fluctuating between those decisions. The scope for calibrating
the learning methods for multi-agent task assignment problems in this chapter therefore includes
finding appropriate parameters for all free parameters that yield minimum total event processing
times in all scenarios. Moreover, it is beneficial to understand to what degree the free parameters
influence the total event processing time in the vicinity of the optimal settings. Complementary to
this chapter, the next one investigates the dynamic time-evolving learning behaviour in more detail.

In pursuit of these two goals different scenarios are investigated with a focus on two different
learning policies (e-greedy and weighted policy learner), two different underlying task topologies
(BBV and ER models introduced in Section 3.2), and two different queueing stress levels. Note that
the queueing stress level is induced by the network evolution model based on two constants, &y and
de. Higher stress levels imply an increased utilisation rate, more events are processed within the task
network, and there is less latitude for decision making processes. Higher stress is exercised for lower
values of these constants. As values for these constants approach 1, the utilisation tends to 100%.
Importantly, the queueing performance measures become unstable for utilisation rates of u > 80%.
The two different stress levels correspond to &y = 6g = 1.2 and &y = &g = 1.8 respectively.

The size of the task network in all evaluation scenarios is fixed to 1000 nodes, with a maximum
out-degree dmqx = 3 for the BBV network evolution model which will create approximately 2000

arcs (or actions). To facilitate a similarly sized random network based on the ER model the generator
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G(N, M) = G(1000, 2000) is used.

The calibration of the multi-agent reinforcement learning methods is conducted within the
intervals o« € [0.001,0.1] for the learning rate, A € [0.5,0.9] for the discount factor of the SARSA(0)
reinforcement learning method, ) € [0.01, 0.5] for the momentum of the function approximator,
and ( € [0.001,0.1] for the update factor of the gradient vector in the weighted policy learner
algorithm. The generic architecture of neural networks as function approximators for the state-
action mappings provides some flexibility of representing the state of each agent. To represent the
state for the state-action mapping any of the online queueing metrics presented in can be
taken into account, but for simplicity the purely local average waiting time (equation (3.8)) is used.
In all multi-agent reinforcement learning scenarios, the neural network is instantiated with 8 hidden
neurons. This neural network architecture was determined using small-scale pilot experiments. If
the state representation included more variables then a larger hidden layer may be necessary.

gives a brief overview of the methodology used to control the experiment and
conduct the analysis. For more details on response surface methodology see [Chapter 2

[Section 6.2)provides the results for distributed task assignment over network structures according
to the BBV model (Section 3.2.2). For the experiments in this section, the network structure itself
exhibits a degree of freedom. The calibration of the learning method relies on the network structure
instead of the network instance. The multi-agent reinforcement learning scenarios are compared
against baseline tests that do not incorporate any intelligent decision-theoretic solution.
presents the solution with a simple uniformly random action selection. This solution assumes

that the actions are all taken with equal probabilities, i.e., 1/deg™ (i) at server i.|Section 6.2.2

evaluates reinforcement learning techniques and compares the results with the baseline test of
uniformly random decision policies. introduces two new scenarios where the
function approximators are collaboratively trained by nodes that share the same destination node in
the task network. This has the advantage that agents can benefit from each other’s experience with a
particular service node downstream.

Similarly, presents the results for distributed task assignment over random network
structures. This time, the structure of the graph is fixed, because the random graph generation rules
based on the Erdds and Rényi model introduce too much variation in the queueing
performances with different random networks. Similarly to above, the multi-agent reinforcement

learning scenarios are compared against uniformly random decision policy.

6.1 Response Surface Methodology

In the approach presented in this thesis the simulation experiments are controlled systematically
within a response surface modelling framework called Kriging [94, [107] presented in
The input domain, Q C R<, covers the free parameters of the respective method employed. An
optimal Latin Hypercube Sampling design of experiments is used to sample the input domain, Q
[185]). At each sampled location, xi, a number of simulations are performed with different random
number seeds and the system state is calculated as the total event processing time, equation (5.10),
total expected average number of events in the queue, equation (5.11), the mean utilisation, equation
(5.12), and the total event processing time, equation (5.13). The replications are controlled online to
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achieve the confidence level of 90% with an error of 10% (see equation (2.29)).
A metamodel is fitted for the total event processing time S (equation (5.13)) using Monte Carlo

Markov Chain sampling (Algorithm 2.1). The model quality is assessed with the R;re diction a0d

the RMSE statistics on a set of validation locations. R2 . . s a normalised quantity that ranges
prediction

usually from 0 to 1 with 1 indicating a perfect fit. If R2

prediction
scattered locations over the domain is sampled and their mean-squared error, MSE, evaluated. The

< 0.95 then a validation set of

location with the highest mean-squared error is chosen as the new location where the simulation

is performed and added to the data set. Fitting another response surface, this procedure repeats

2
prediction

optima on the surface are determined using simulated annealing [64]. Simulated annealing uses a

until R shows the desired level of accuracy. Once the model achieves a good fit, global
randomised neighbourhood search strategy to escape local minima, which makes it less likely to fail
to converge on difficult functions [80]. Finding these global optima is embedded into the sequential
improvement of the Kriging metamodel as well, until the difference between the sampled optima
and the interpolated ones are satisfactory.

Then, in a smaller sub-domain that includes the minimum response, a ridge analysis is conducted.
Ridge analysis graphically portrays the behaviour of quadratic response surfaces (a polynomial with
linear, interaction, and quadratic effects) and is able to elucidate factor dependence between the
independent variables in an elementary fashion (see for the mathematical derivation of
the formulas). This way the nature of performance contours can be examined, which is beneficial in
higher-dimensional spaces. For lower dimensional surfaces, contour plots can be visually examined
to find optimal responses. From a practical standpoint, this is not feasible for dimensions higher
than 5, because the number of pair-wise contour required scales as d!/2 in the number of dimensions,
d. Since, the dimensionality of the scenarios is 3 for the e-greedy learning policy and 4 for the
weighted policy learner, both, the contours and the ridge analysis is presented.

In order to illustrate the sensitivities independent of the scale of the variables, all three indepen-
dent variables are scaled to the unit interval, &, A,n, ¢ € [0, 1].

All the results with respect to MCMC Kriging are included in

6.2 DTAPs with the BBV Model

6.2.1 Uniformly Random Transition Probabilities

introduced a model to generate queueing networks with n servers. Given the two designs,
dv € [1.2,1.3] with &g € [1.2,1.3] and 6y € [1.7,1.8] with é¢ € [1.7, 1.8], the resulting networks
are stable with respect to equation (3.3). The resulting average response time surfaces based on 22
and 21 samples for the first and second designs respectively are presented in

As expected from the analytical results obtained in[Figure 6.1(b)} these surfaces show that the
slope in the direction of 8y is more pronounced in [Figure 6.1(a) than in showing the
different queueing stress levels on the performance of the total event processing time. Although,
because of the stochastic nature of the simulations, this can only be considered an approximation
to the analytical behaviour, but it is enough to illustrate the performance of the queues without

any intelligent decision policies employed. The stochastic irregularities are most pronounced in
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(@) With 8y € [1.2,1.3] and 8¢ € [1.2, 1.3] (b) With 8y € [1.7,1.8] and 8¢ € [1.7,1.8]
Figure 6.1: Event Processing Time for the BBV Model

with a slightly tilted surface, which results in a minimum response with (8v, 6¢) =

(1.8,1.7) and a maximum response with (8v, 6¢) = (1.7, 1.8) respectively. The minima and maxima

are presented in

The mean-squared errors are encoded in a colour gradient on the surfaces. The boundaries of
Figure 6.1(b) show higher errors compared to the centre of the design domain. Additional samples
along the boundaries may have corrected the tilted surface to provide a better fit to the analytical

results.

Table 6.1: Results of BBV DTAPs with a uniformly random decision Policy

dv, 0 € [1.2,1.3] dv, 0 € [1.7,1.8]
Variable Minimum Maximum Minimum Maximum
dv 1.3 1.2 1.8 1.7
O 1.3 1.24 1.7 1.8

The discrete-event simulation of the uniformly random decision policies are considered baseline
test scenarios for the reinforcement learning-based scenarios. All scenarios will be examined with
high and low queueing stress levels with respect to the total average event processing time. The
mean total event processing time which is simulated based on the Kriging surfaces for the uniformly
random decision policies are 24380.94 for the high load character (at (dv, 8¢) = (1.2,1.2)) of the
queue and 8002.26 for the low load character (at (dv, d¢) = (1.8, 1.8)) respectively.

6.2.2 Adaptive Transition Probabilities

This section evaluates intelligent agents that are endowed with the SARSA (0) temporal-difference
reinforcement learning method. Two different policies are considered that map action values to
action selection probabilities. e-greedy is an undirected policy that exploits the acquired knowledge

about the environment most of the time and occasionally explores randomly. This policy, however,
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does not reflect the uncertainties about actions. In contrast, the weighted policy learner is a directed
policy, because the policy space is directly updated based on a policy gradient. Consequently, it

assigns probabilities to actions that reflect the perceived performance.

6.2.2.1 SARSA(0) with e-greedy Policy

First the SARSA(0) reinforcement learning method with the e-greedy policy is evaluated. The
Kriging metamodel is fitted for the total average event processing time covering the domain Q =
(¢, A\, 1), where o« € [0.001,0.1], A € [0.5,0.9],n1 € [0.01,0.5] with a total of 36 simulations. To admit
continuous adaptive cycles as discussed in [Section 5.2)the e-greedy policy is fixed to € = 0.05. The
global minimum and maximum of the Kriging function was found to be 23641.03(257306.01) and
24366.33(257307.76) time units respectively (estimated MSE in brackets)!. presents
the probability densities of both, the minimum and maximum responses on the Kriging surface
and the density for a uniformly random decision policy at (8v, 8¢) = (1.2, 1.2). The densities for
the minimum and maximum responses given all samples in the MCMC chain were generated from
N(E(y(x)), Var({(x))), where the expected value is defined in equation and the variance is
given in equation (2.17). This approach integrates the stochastic uncertainty (from the computer
simulation) given in dispersion matrix ¥ and the structural (from predicting unknown locations) and
parametric (from the MCMC inference) uncertainties. The densities with the solid lines represent the
simulated best and worst possible calibration of («, A,n) for the multi-agent reinforcement learning
method in this scenario. Looking at the mean of these distributions indicate that both best and worst
cases perform better than uniformly random decision policies. The probability densities presented
in provide more detailed information integrating all sources of uncertainties. The density
that represents the optimal response (solid curve in light blue) has very little overlap with the density
of the baseline test (dashed curve in light blue) and consequently can be considered a significant
improvement. However, the worst possible calibration (solid curve in dark blue) within the design
domain does overlap significantly with the simulation that does not employ intelligent agents. This
illustrates the importance of investigating the learning behaviour with different parameters.

The contour plots of the pair-wise independent variables with respect to the total event pro-
cessing time is presented in The learning rate, «, versus the discount factor, A, shows
two regimes where the response is minimised. For A ~ 0.5, the learning rate has little impact on
the queueing performance metric considered here. Also, for A ~ 0.9 the response is minimised for
o — 0.001. The second contour plot relates the learning rate with the momentum parameter, 1,
of the neural network function approximator. It shows that n ~ 0.27 and & — 0.001 minimise the
response. Similarly, in the last contour plot the minimum response is attained for n ~ 0.27 and two
regimes for the discount factor A — 0.5 and A — 0.9.

A summary of the minimum, maximum, and the normalised eigenvalues of the response surface
are presented in[Table 6.2l Once the minimum response is determined using simulated annealing over
the Kriging function a subset of the design domain is used to analyse the sensitivities of the learning
parameters. Given the optimal calibration of the learning method, the sub-domain for the canonical
analysis is defined as Qca = («, A, ), where & € [0.001,0.01],A € [0.7,0.9],1 € [0.2,0.4].

"The concept of time is purposefully left abstract as discrete time steps
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Figure 6.2: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,8¢) = (1.2,1.2)
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Figure 6.3: Contour Plots of the BBV model with (8v,8¢) = (1.2,1.2)

The ridge analysis plotted in [Figure 6.4] of the response surface reveals the sensitivities of the
respective independent variables on a path from a focal point in the design sub-domain, Q¢ a, to the
minimum response. Recall that ridge analysis proceeds by constructing a mental sphere of radius R
and records the coordinates (here (o, A, 1)) of the minimum attainable response. Essentially, the
minimum ridge is the path of steepest descent for any distance from the focal point. Tracing the
“minimum” path from the focal point, (0.0055,0.8,0.37), towards the global minimum shows that
the momentum of the neural network function approximator, 1, has the highest impact on the total
event processing time, followed by the discount factor, A. The learning rate, «, does not exhibit
a significant impact on the optimisation (see [Figure 6.4(a)). The path of the discount factor along

the minimum ridge indicates that the stationary ridge is exactly along the A axis. This can also be

verified by inspecting the first and last contour plot in [Figure 6.3]

While the reinforcement learning algorithm succeeds in finding more optimal policies for the
agents in the distributed task assignment network, the total event processing time is only marginally

reduced.

One cause of this minor improvement can be attributed to the settings of the evolution model.
The values for 8y and 8¢ are fixed to 1.2, which implies that each node induces the same factor of

traffic into the network. This results in all nodes having similar performance characteristics. Further,
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Table 6.2: Results of BBV DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,6¢ = 1.2

Variable Minimum Maximum Eigenvalues
o 0.001 0.1 50.73
A 0.9 0.737151 1.52
il 0.272 0.5 —1005.23
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Figure 6.4: Canonical Analysis for BBV DTAPs with SARSA(Q) and e-greedy Policy with &y =
12,6p = 1.2

(@) “Minimum {” path for the independent variables

the queueing metrics would all be quite sensitive to degrading performances at 80% utilisation
across almost all nodes. The reinforcement learning agents operating under higher queueing stress
levels have less latitude to adjust the action selection probabilities. Time-varying arrival and service
rates for each node in the queueing network would present agents with a more heterogeneous
queueing performance profile. These more dynamic situations would increasingly favour intelligent
agents compared to uniformly random decision policies, because intelligent agents can recall learnt

behaviour of situations and map those to optimal (or near optimal) action selections.

Another attribute of this minor improvement could be the employed policy. The e-greedy
policy is an undirected policy that favours the currently best action with (1 — €)% probability. A
stable stochastic policy, such as the weighted policy learner offers a more directed action decision
policy with potentially improved queueing performances. Finally, the state-action mapping was
purely based on local information, i.e., the local delay in the queue. A more meaningful state-action

mapping would be to take into account the queueing metrics of the respective task nodes downstream.

This setup requires a cooperative environment and is explored further in[Section 6.2.2.3

In order to illustrate the effect of reduced stress on queueing behaviour the same reinforcement
learning method was used in a second scenario with network evolution parameters set to (v, 6¢) =
(1.8, 1.8). The domain of the learning parameters is the same as above. The global minimum and
maximum of the Kriging function was found to be 7003.39(2900.63) and 7119.898(4405.0) time

units, which is an improvement of 12.5% and 11% respectively compared to the uniform agent.
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presents the probability densities of both the minimum and maximum responses on the

Kriging surface and the density for a uniformly random decision policy at (v, 6¢) = (1.8,1.8)
The density plot reveals that calibration within the design domain has very little impact on the
learning performance. Both best and worst case parameterisations result in a significant better
performance than with a uniformly random decision policy. So, within the given design domain of
the reinforcement learning parameters adaptive agents have a significant advantage over agents with

uniformly random decision policies. There is no overlap between the responses of the adaptive and

the uniform agents (see [Figure 6.5).
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Figure 6.5: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,8¢) = (1.8,1.8)

The contour plots of the pair-wise independent variables with respect to the total event pro-
cessing time is presented in Notice that the range in the elevation levels on the contour
plot is relatively low, which is reflected in the closeness of the best and worst-case parameterisa-
tions in The minimum response is best reflected in the last two contour plots with
o« — 0.001, A ~ 0.75,1 ~ 0.2. The first contour plot relates the learning rate with the discount factor
and shows that A has a higher influence on the response than the learning rate. This can also be seen

in the results of the ridge analysis in
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Figure 6.6: Contour Plots of the BBV model with (5v, 8¢) = (1.8, 1.8)

A summary of the minimum, maximum, and the eigenvalues of the response surface are

presented in The sub-domain for the canonical analysis is defined as Qca = (o, A, 1),
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where « € [0.001,0.01],A € [0.6,0.8],n € [0.2,0.4].

Table 6.3: Results of BBV DTAPs with SARSA(0) and e-greedy Policy with &y = 1.8,5¢ = 1.8

Variable Minimum Maximum Eigenvalues
(04 0.001 0.1 —7.69
A 0.74 0.5 —57.46
Ul 0.20 0.5 —27.36

The ridge analysis is conducted from the focal point (0.0055,0.64,0.3) and the results are
plotted in Compared to the previous scenario with higher queueing stress levels, the
optimal learning rate is the same. The optimal discount and momentum are both reduced from
A =0.9,1=0.27to A =0.74,1 = 0.2. On the minimum ridge defined from the focal point to the
minimum response, the learning rate is stable, i.e., it has very little influence on the total event

processing time. In contrast, both, the discount factor and the momentum are most sensitive to

changes.
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Figure 6.7: Canonical Analysis for BBV DTAPs with SARSA(0) and e-greedy Policy with &y =
18,6 = 1.8

6.2.2.2 SARSA(0) with WPL

This section presents the results for the SARSA(0) reinforcement learning method coupled with
the weighted policy learner. The results of the calibration with respect to the event processing
time are given as probability densities of both, the minimum and maximum responses on the
Kriging surface and the density for a uniformly random decision policy at high stress levels, i.e.,
(6v,0g) = (1.2,1.2), in The best calibration given the parameters for the learning
methods presented in improves the uniformly random decision policy by 13.78%. The
worst case, however, significantly deteriorates the system performance by 21% compared to the

uniform agent.
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Figure 6.8: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,8¢) = (1.2,1.2)

The contour plots shown in confirm this result. WPL introduces another parameter,
(, to the learning parameters, which according to the contour plot has very little impact on the
response with respect to all other variables. Additionally, there are two regimes that illustrate the
region of optimum response. These are identified as the learning rate &« — 0.1, the momentum
1 ~ 0.1, and the discount factor A — 0.5 or A — 0.9.
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Figure 6.9: Contour Plots of the BBV model with (dv,d¢) = (1.2,1.2)

The summary of the minimum and maximum responses, and the normalised eigenvalues of the
coefficient matrix of the second-order response surface are shown in The ridge analysis
was conducted within the domain Qca = (x, A, 1, ¢), where & € [0.07,0.1],A € [0.5,0.65],1 €
[0.01,0.2], ¢ € [0.05,0.1].
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Table 6.4: Results of BBV DTAPs with SARSA(0) and WPL Policy with 6y = 1.2,6¢ = 1.2

Variable Minimum Maximum Eigenvalues

[od 0.1 0.001 —272.05
A 0.5 0.9 11.32
n 0.096 0.01 —49.96
¢ 0.1 0.001 —2353.08

The ridge analysis is conducted with the focal point defined to be (0.0055,0.67,0.2,0.075) and
the results are presented in [Figure 6.10] Two ridges are identified originating from the focal point (see
[Figure 6.10(b)). The solid line determines the path towards the global minimum with the respective
change in the learning parameters presented in [Figure 6.10(a)} The most sensitive learning parameter
is the discount factor, A. The monotone increase of the discount factor indicates that the path aligns
with the A-axis towards the global minimum. The other learning parameters are stable over the

extent of the design domain, QcAa.
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Figure 6.10: Canonical Analysis for BBV DTAPs with SARSA(0) and WPL Policy with 6y =

12,6 = 1.2

The second scenario with the weighted policy learner illustrates the learning performance
under low queueing stress levels. shows the probability densities of both, the minimum
and maximum responses on the Kriging surface and the density for a uniformly random decision
policy at (v, dg) = (1.8,1.8). As with the e-greedy method and the same queueing stress levels
presented in both best and worst case parameterisations over the specified design
domain exhibit a significant improvement over the uniformly random decision policy. Comparing
the best calibration with the uniformly random decision policy shows an improvement of 22.5%.
Additionally, the weighted policy learner improves over the e-greedy method by 11.5%.

The contour plots of the pair-wise independent variables with respect to the total event process-
ing time is presented in [Figure 6.12] As before the policy gradient update factor, ¢, has very little

impact on the response with respect to all other variables according to the contour plot.
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Figure 6.11: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,8¢) = (1.8,1.8)

The summary of the minimum and maximum responses, and the normalised eigenvalues of the
coefficient matrix of the second-order response surface are shown in Given the values for
the learning parameters that minimise the event processing time, the sub-domain for the canonical
analysis is defined as Qca = (&, A, 1, ¢), where o € [0.001,0.01],A € [0.5,0.8],1 € [0.2,0.5],C €
[0.01,0.1].

Table 6.5: Results of BBV DTAPs with SARSA(0) and WPL Policy with &y = 1.8,5¢ = 1.8

Variable Minimum Maximum Eigenvalues

x 0.001 0.1 3.12
A 0.572 0.9 —12.87
n 0.35 0.5 66.38
C 0.1 0.055 68.96

The ridge analysis is conducted with the focal point defined to be (0.0055,0.72,0.2,0.055)
and the results are presented in Two ridges are identified originating from the focal
point (see [Figure 6.13(b)). The solid line determines the path towards the global minimum with
the respective change in the learning parameters presented in In the original scale
(subplot embedded in the most sensitive learning parameter is the momentum, 1, for

the neural network function approximator. The increasing sensitivity of ¢ with increasing radii of
the sphere around the focal point can be attributed to the minimum ridge path being aligned with

the C-axis. The other variables show a stable regime for R > 0.4.

6.2.2.3 Collaborative Function Approximators

This section investigates the effects of collaborative function approximators to neighbouring agents
for the SARSA(0) reinforcement learning method with the e-greedy policy and the weighted policy
learner over task network structures modelled using the BBV model. As argued in[Section 5.2.1.3|

this allows the function approximator (here a feedforward backpropagation neural network) to be
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Figure 6.12: Contour Plots of the BBV model with (dv, 8¢) = (1.8, 1.8)

trained continuously for a given target node, rather than only when transactions are recorded for a
given source and target node. This learning architecture is expected to adapt faster to changes in the
environment, because all agents using a given target node can immediately take advantage of the
most recent information. Additionally, the decisions by agents are based on the current delay in the
queue of the nodes downstream.

The state representation takes into account the delay in the queue, because the delay is a
measurable state variable that directly contributes to the response time of a given task. Other
queueing performance measures can be taken into account as well, but to be able to compare to
previous scenarios, the state representation is the same.

First the SARSA (0) reinforcement learning method with the e-greedy policy is investigated. The
task network is generated using the BBV model with (8v/, d¢) = (1.2, 1.2). The global minimum and
maximum of the Kriging function was found to be 23902.1682(26419.46) and 24182.99(56825.53)
time units respectively (estimated MSE in brackets). A summary of the minimum, maximum,
and the eigenvalues of the response surface is presented in

The characteristics of the density curves presented in [Figure 6.14are similar to that presented in
[Figure 6.2 with almost exactly the same mean responses. Thus, collaborative function approximators
do not exhibit a discernible impact near the vicinity of the minimum response in this case.

The contour plots of the pair-wise independent variables with respect to the total event pro-
cessing time is presented in The contours resemble the characteristics of the ones
presented in [Figure 6.3] So, overall the equilibrium performances of the scenarios with and without
collaborative function approximation does not differ significantly.

While the event processing time of this scenario is almost the same as the one with individual
function approximators, the values of the learning parameters are significantly different. The

learning rate is by an order of a magnitude higher, the discount factor is reduced from 0.9 to 0.69,
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Figure 6.13: Canonical Analysis for BBV DTAPs with SARSA(0) and WPL Policy with &y =
1.8,0g = 1.8

Table 6.6: Results of BBV DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,8¢ = 1.2
and Collaborative Function Approximators

Variable Minimum Maximum Eigenvalues

o 0.03 0.1 —16.81
A 0.69 0.58 —32.39
1 0.13 0.5 —178.52

and the momentum for the function approximator is reduced from 0.27 to 0.13. This means, that for
collaborative function approximators to operate optimally, the uptake of information is increased,
the rewards are more heavily discounted, and the trajectory of weight changes of the neural network
training algorithm is lower.

The extent of the sensitivities, however, mirrors the results presented in for the same
scenario with independent function approximators for each action. The graphical presentation of
the sensitivities is plotted in

The sub-domain for the canonical analysis is defined as Qca = («, A, n), where & € [0.01,0.1],A €
[0.6,0.8],1 € [0.01,0.3] and includes the parameter settings that yield the minimum response. The
focal point of the ridge analysis was set to be (0.075,0.79,0.28). In the scenario with independent
function approximators the optimal discount factor is obtained at 0.9, which resulted in a station-
ary ridge along the A axis. This is not the case with collaborative function approximators. Visual
inspection of the first and second contour plots in verifies this result.

The second scenario investigating the collaborative function approximation uses the WPL policy
instead of the e-greedy one. The global minimum and maximum of the Kriging function was found
to be 24014.75(101780.80) and 28018.6(161636.72) time units respectively (estimated MSE in
brackets). A summary of the minimum, maximum, and the eigenvalues of the response surface is

presented in
The density curves presented in[Figure 6.17|show that collaborative function approximation
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Figure 6.14: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,8e) = (1.2, 1.2) and Collaborative Function Approximators
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Figure 6.15: Contour Plots of the BBV model with (8v, 8¢) = (1.2,1.2) and Collaborative Func-
tion Approximators

does not improve the system performance over independently learning the action-value function.

This is quite surprising, since the weighted policy learner in covered in[Section 6.2.2.2| outperforms

the uniformly random decision policy.

The contour plots of the pair-wise independent variables with respect to the total event pro-

cessing time is presented in [Figure 6.18] The dependence of the variables to each other shows that

the optimal total average event processing time is attained with « — 0.001, A — 0.9, ~ 0.3, and

(~

0.1. The overall results are summarised in[Table 6.7}

Table 6.7: Results of BBV DTAPs with SARSA(0) and WPL Policy with 6y = 1.2,6¢ = 1.2 and
Collaborative Function Approximators

Variable Minimum Maximum Eigenvalues

[od 0.001 0.1 —664.92
A 0.9 0.9 —526.96
n 0.33 0.5 354.96

¢ 0.1 0.001 —1919.37

While the event processing time of this scenario is almost the same as the one with individual

function approximators, the values of the learning parameters are significantly different, which
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Figure 6.16: Canonical Analysis for BBV DTAPs with SARSA(0) and e-greedy Policy with &y =
1.2, 8¢ = 1.2 and Collaborative Function Approximators

illustrates that collaboratively learning the action-value function results in an entirely different
interpretation of the learning parameters. The learning rate is by two orders of a magnitude higher,
the discount factor is reduced from 0.9 to 0.5, and the momentum for the function approximator is
increased from 0.096 to 0.33. This means, that for collaborative function approximators to operate
optimally, the uptake of information is increased, the rewards are more heavily discounted, and the
trajectory of weight changes of the neural network training algorithm is higher.

The ridge analysis in shows a stable regime for the learning rate, the momentum,
and the gradient update factor of WPL. The discount factor monotonously increases as the radius of
the sphere around the focal point of (0.0055,0.825,0.23,0.08), which indicates that the minimum
ridge aligns with the A axis.

The sub-domain for the canonical analysis is defined as Qca = (&, A, 1, ), where o €
[0.001,0.01],A € [0.75,0.9],n € [0.2,0.4], { € [0.06,0.1]. Overall the results obtained from this
section are not favourable of collaborative function approximation, which intuitively should have
improved the learning behaviour. One explanation of this result is that the task network is static
and the queueing characteristics are homogeneous. More dynamic settings may show an entirely
different result and therefore would be interesting to explore in future works. It also indicates
that the scenario with independent function approximation learns optimal policies quite fast and
settles to good solutions. Exterior pressure onto a system by introducing heterogeneous Poisson
arrival rates that challenge the agents individually may favour a setup where function approximators
are trained collaboratively. Also, the design domain may be the limiting factor of finding better

solutions for the weighted policy learner with collaborative function approximators.
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Figure 6.17: Probability Distributions of the minimum and maximum responses of the BBV model
with (8v,de) = (1.2, 1.2) and Collaborative Function Approximators
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6.3 DTAPs with the ER Model

6.3.1 Uniformly Random Transition Probabilities

Analogously to the analysis in [Section 6.2.1] this section details the results of distributed task

assignments with uniform agents over random ER networks (details of the evolution model can be

found in [Section 3.2.3). Again, two designs are evaluated with (8v,8¢) € [1.2,1.3] and (8v, 6¢) €

[1.7,1.8]. The response surfaces of the event processing time with 19 and 28 samples for the first and
second designs respectively are presented in The stochastic nature of the simulations
yield slightly tilted surfaces, that do not reflect the analytical solution perfectly, but similarly to
the BBV model illustrate the uniform agent behaviour well enough to act as a baseline test against

intelligent decision making processes.
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Figure 6.20: Event Processing Time for the BBV Model

As with the analytical model of the respective queueing behaviour over the random network
topology presented in [Section 3.3.3|the event processing time decreases with both increasing values
for the constants 8y and 8. The respective minima and maxima are presented in [Table 6.8]

Table 6.8: Results of ER DTAPs with a uniformly random decision Policy

Sv, ¢ € [1.2,1.3] Sv, 8¢ € [1.7,1.8]
Variable Minimum Maximum Minimum Maximum
ov 1.3 1.2 1.8 1.7
O 1.3 1.2 1.75 1.8

6.3.2 Adaptive Transition Probabilities

Similarly to[Section 6.2.2} this section examines the effect of the choice of learning policies employed

for SARSA(Q) reinforcement learning agents. These encompass the e-greedy policy (evaluated in

Section 6.3.2.1) and the weighted policy learner (evaluated in(Section 6.3.2.2).
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6.3.2.1 SARSA(0) with e-greedy Policy

Analogously to the simulation setup in[Section 6.2.2|the SARSA(0) reinforcement learning method
with the e-greedy policy is evaluated in this section using a homogeneous network topology. The
Kriging metamodel is fitted for the total event processing time covering the domain Q = (&, A, 1),
where o € [0.001,0.1],A € [0.5,0.9],n1 € [0.01,0.5] with a total of 37 simulations. As in the
previous scenarios, the e-greedy policy is set to € = 0.05. The global minimum and maximum
of the Kriging function was found to be 5469.92(5315.96) and 6807.4288(13967.17) time units
respectively (estimated MSE in brackets). A summary of the minimum, maximum, and the
eigenvalues of the response surface are presented in[Table 6.9} Given the best parameterisation of the
learning method, the sub-domain for the canonical analysis is defined as Qca = («, A, 1), where
« € [0.001,0.01],A € [0.6,0.8],1 € [0.1,0.4].
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Figure 6.21: Probability Distributions of the minimum and maximum responses of the ER model
with (8v,8¢) = (1.2,1.2)

[Figure 6.21]shows the densities of the simulated best and worst case parameterisations of the
multi-agent reinforcement learning methods with an underlying random network structure. The
best setting for the SARSA(0) reinforcement learning method with an e-greedy policy shows a 24%
improvement over the worst setting and 16% improvement over the uniformly random decision
policy. Interestingly, the worst possible parameterisation within the boundaries of the learning

parameters yields a result that does no longer outperform uniformly random decision policies.
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Figure 6.22: Contour Plots of the ER model with (8v,8g) = (1.2,1.2)
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The contour plots of the pair-wise independent variables with respect to the total event pro-
cessing time is presented in The first two contour plots indicate that the minimum
response is achieved in the lower left domain of each plot, i.e., for « — 0.001,A < 0.7,n < 0.3.
The surface behaviour of A versus 1 in the last plot suggests a region with minimum response as a

linearly decreasing relationship between both independent variables.

Table 6.9: Results of ER DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,6¢ = 1.2

Variable Minimum Maximum Eigenvalues

[od 0.001 0.1 7.8
A 0.6612 0.9 —549.18
n 0.3215 0.5 —1161.86

The ridge analysis plotted in Tracing the minimum ridge starting from the focal
point (0.0055,0.76,0.17) of the design domain towards the global minimum shows two different
regimes, where the first 4/5 of the trace shows a steeper slope for the momentum, low sensitivities
for the discount factor, and almost no measurable impact for the learning rate. This behaviour is
reversed in the last fifth of the trace, with the discount factor and the momentum levelling off
and the learning rate being responsible for most of the change in the response measurement. The
behaviour of the learning rate is particularly interesting. It remains virtually constant for R < 0.4,
and then decreases sharply. When one compares the minimum ridge in with this
sharp decrease, one notices that the response value levels off simultaneously. So, the decrease in the
learning rate for R > 0.4 has no noticeable effect on the response. Therefore, the learning rate is not
critical to the optimisation. This curious behaviour, however, can be explained by the fact that the

stationary ridge must be almost exactly along the o axis, which can be verified by looking at the

first two contour plots of [Figure 6.22
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Figure 6.23: Canonical Analysis for ER DTAPs with SARSA(0) and e-greedy Policy with &y =

12,6 = 1.2
Comparing the ER and BBV models and their effect on the SARSA(0) temporal-difference
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reinforcement learning method with an e-greedy policy shows that the value for the learning rate is
at the lower end of the design domain with a value of 0.001. Additionally, the learning rate exhibits a
lower impact on the response measurement within the domain of the ridge analysis than anticipated.
The character of the discount factor, A, is significantly different between both network structures.
In the BBV model, the discount factor is the most sensitive to changes and attains an optimal value
of 0.9 with an optimal value of 0.66 in the ER model.
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Figure 6.24: Probability Distributions of the minimum and maximum responses of the ER model
with (5\/, 6E) = (1.8, 18)

As in previous scenarios the effect of stress on queueing behaviour is investigated with the same
learning domain as above. The global minimum and maximum of the Kriging function was found
to be 865.536(1.573) and 910.662(2.959) time units. presents the probability densities of
both, the minimum and maximum responses on the Kriging surface and the density for a uniformly
random decision policy at (dv,dg) = (1.8, 1.8). The density plot reveals that calibration within
the design domain has a significant impact on the learning performance. Both, best and worst case
parameterisations result in significant better performance compared to a uniformly random decision

policy. A summary of the minimum, maximum, and the eigenvalues of the response surface is

presented in

Table 6.10: Results of ER DTAPs with SARSA(0) and e-greedy Policy with &y = 1.8,6¢ = 1.8

Variable Minimum Maximum Eigenvalues

04 0.001 0.1 0.358
A 0.745 0.9 10.49
n 0.373 0.5 —18.9

The contour plots are presented in [Figure 6.25| indicate that an optimal response is attained
for « — 0.001,A ~ 0.7 and n ~ 0.35. In contrast the worst response can easily be identified at
(0.1,0.9,0.5).

The ridge analysis plotted in [Figure 6.26| given the sub-domain Qca = (x, A, 1), where x €
[0.001,0.01], A € [0.6,0.8],m € [0.2,0.4] and the focal point (0.0055,0.65,0.27). Tracing along the

134



6.3. DTAPS WITH THE ER MODEL

0.9
0.8
0.7
< =y
0.6
0.5

T T T T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 05 06 07 08 09
a a A

S

. 870
880
890

900

B o

Figure 6.25: Contour Plots of the ER model with (6v,d¢) = (1.8,1.8)

minimum ridge illustrates that the momentum has the most impact on the response followed by the
discount factor and the learning rate. Within the domain of the canonical analysis, the learning rate

has the least impact on the response.
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Figure 6.26: Canonical Analysis for ER DTAPs with SARSA(0) and e-greedy Policy with &y =

1.8,6F = 1.8

6.3.2.2 SARSA(0) with WPL

This section only covers the weighted policy learner under low queueing stress levels.

As in all scenarios before, [Figure 6.27| presents the probability densities of both, the minimum
and maximum responses on the Kriging surface and the density for a uniformly random decision
policy at (8v,dg) = (1.8,1.8). This scenario is the first in this chapter where the intelligent agents
are not able to learn a better policy than the uniformly random decision policy. Both the best- and
worst-case calibrations over the design domain show a decrease in the total event processing time by
0.8% and 4.7% respectively.

The summary of the minimum, maximum, and the eigenvalues of the response surface is given
in [Table 6.11

The contour plots in show that the update factor of the gradient vector of the
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Figure 6.27: Probability Distributions of the minimum and maximum responses of the ER model
with (8v,8¢) = (1.8,1.8)

Table 6.11: Results of ER DTAPs with SARSA(0) and WPL Policy with &y = 1.8,0¢ = 1.8

Variable

Minimum Maximum Eigenvalues

[0

A
n
¢

0.1 0.001
0.52 0.88
0.01 0.01
0.1 0.074

—28.88
—14.73
8.36
16.77

weighted policy learner, ¢, has little impact on the response, while 1 and A have the highest impact.

This result is also reflected in the ridge analysis below.

The ridge analysis plotted in [Figure 6.29| given the sub-domain Qca = (x,A,n, (), where
o € [0.01,0.1],A € [0.5,0.9],n € [0.01,0.5],¢ € [0.01,0.1]. Tracing along the minimum ridge

(path 1 in[Figure 6.29(b)) illustrates that the discount factor and the momentum of the function

approximator are most sensitive to changes.
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6.4 Summary

This chapter presented a thorough study on how to find optimal parameters for reinforcement
learning methods. Although the apparatus of response surface methodology can be applied to any
computer experiment, it has not been fully exploited in the realm of machine learning and its
application to distributed computing. In this sense, the results obtained in this chapter provide
novel insights in the behaviour of multi-agent reinforcement learning as applied to distributed task
assignment problems. An extensive comparative investigation was conducted to analyse the effect of
different network topologies, queueing stress levels, and learning policies on the learning behaviour.
To aid the analysis visual representations of the impact of the independent learning parameters was
provided in form of contour plots. Supporting this, a ridge analysis was conducted throughout to
examine the sensitivities of the independent variables in the vicinity of the optimal response.

Based on this extensive empirical study the following observations can be derived:

Observation 1. SARSA(0) reinforcement learning with neural network function approximators to

estimate the state-action value function outperforms uniformly random decision policies in most cases.
This observation holds under the following assumptions.

Assumption 1.1. The neural network function approximator employs a standard backpropagation
training method that minimises the mean-squared error of the estimated output and the observed output.
To facilitate continuous and potentially infinite learning horizons a moving window of the last 100

errors is used as a mean-squared error estimation.

[Assumption 1.1| provides a trade-off between keeping the full history of all errors, which is

impractical for infinite learning horizons, and 1-step errors, which would introduce fluctuations in
the error surface in weight space. Also, throughout the experiments the architecture of the neural

network was fixed.

Assumption 1.2. The neural network (more specifically, the multi-layer perceptron) has one input newron
for the state signal, one hidden layer with 8 neuwrons, and one output unit for the Q-value estimation. It
follows, that neural networks are co-located with each action (here equivalent to an arc in the digraph of
the task network).

Maintaining individual function approximators for each action in the task network avoids
interferences in training the neural network from exercising unrelated actions and consequently

reduces potential instability [3]).

Observation 2. The structural difference of the task topology gives rise to different best parameterisations
of the learning method.

implies that any deployment of learning algorithms into real-world scenarios

requires a careful study of the task topology and tuning the learning method respectively.
The induced queueing stress level also has a major impact on the learning performance and

exhibits a different nature of the global behaviour of a prescribed learning method.
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Observation 3. A task nerwork with relatively low stress levels provides more latitude for reinforcement
learning agents to adapt, with the consequence that worst-case calibrations outperform uniformly random

decision policies.

is a stronger statement than the more general This observation

is encouraging, because it alludes to a general indication that adaptive agents outperform fixed
policies given careful calibration under high load. In light of the results obtained by Schaerf et al.
[134], where fixed load scenarios favour fixed decision strategies, the fixed decision strategy chosen
for the experiments in this thesis is based on uniformly random action selections. Such a strategy
does not embed any domain knowledge of arrival rates and capabilities of each node to service the
incoming requests. However, as queueing networks become large centralised optimisation to find

fixed strategies becomes prohibitively expensive.

Assumption 3.1. The load characteristics for the task networks are defined by prior probabilities upon
establishing the task network and are fixed throughout the simulation.

Assumption 3.2. The topology of the task nerwork is considered fixed once established.

Assumption 3.3. The stress levels are induced using two factors defined by the network evolution models

for queneing networks.

While assumptions [Assumption 3.1| - [Assumption 3.3| do not deter intelligent agents from

finding better policies than a static non-adaptive one, adaptive systems are more suitable to dynamic

environments. As such, future work will investigate non-homogeneous load configurations.

Observation 4. The weighted policy learner by Abdallah and Lesser [2] is superior to the e-greedy policy

111 MOst Scenarios.

is not surprising, because the weighted policy learner takes the relative perfor-

mance of actions into account and adapts the selection probabilities accordingly. Additionally, it is
in a sense risk-averse. The learning behaviour of WPL has two distinct qualities. As updates in the
policy space are following the same trajectory, learning gradually slows until a stable stochastic pol-
icy has been reached. Otherwise, the learning behaviour is accelerated. The nature of this behaviour
needs to be further examined to find out whether WPL agents are constantly in the fast learning
phase or not. Empirically, this can be achieved with the related fair action policy by Zhang et al.
(1871,

Observation 5. Collaborative Function Approximators do not show an improvement over individually

training the action-value function.

Assumption 5.1. Collaborative action-value function approximators reside with destination nodes,

rather than with each action.

In distributed task networks a directed arc from node u to node v implies that a task being pro-
cessed by u requires v to contribute to the completion of the task (see[Definition 5.6). Independent
action-value function approximators are instantiated with each arc, (u,v), in the task network and

are maintained by the head node of this arc. By co-locating action-value function approximators
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with the tail node instead, all nodes that have an arc to this tail node collaboratively train the

function approximator. As a consequence all nodes V u 3 (u, V) share their action-value mapping.

Assumption 5.2. Since collaborative function approximators are co-located with the tail nodes of each

arc, it implies that the state signals are local ro the approximator.

|Assumption 5.2 implies that state signals local to the head node cannot be included in the state

representation of the function approximator anymore. In queueing networks it is often beneficial to
incorporate the state signals of the tail node’s queueing performance metrics, because those metrics

are more informative for action selection than local queueing metrics.

Observation 6. The learning rate of the reinforcement learning agents, «, and the gradient update

factor of WPL, C, are the least sensitive to changes near the vicinity of the optimum response.

Assumption 6.1. Both, the learning rate and the gradient update factor of WPL cover two orders of
magnitude in their respective range («, ¢ € [0.001,0.1]). The vicinity of the stationary point only covered

a subset of the initial vange for the experimental design.

In most of the scenarios covered in this chapter, the learning rate and the gradient update factor
attained values near or at the edge of the specified design domain. However, since both values
showed a relative low sensitivity near the optimal value, an increased range of the design domain
was not considered.

The next chapter extends to some of the observations by conducting an analysis of the non-linear

dynamics of the learning methods employed.
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— It makes no sense to read a newspaper with a microscope.

Valentino Braitenberg

Non-linear Dynamics of Multi-agent Learning

Moving from single-agent to multi-agent environments entails a host of issues that are very chal-
lenging to deal with. First, the fundamental convergence properties of single-agent reinforcement
learning algorithms are violated, because agents co-adapt. Therefore, a distinction between learning
and teaching cannot be made. Any action decision by an agent is a result of the other agents’ past
behaviour and has implications for their future behaviours. That means that the environment
is non-stationary. To tackle the non-stationary environment, agents are ill-advised to settle on
deterministic policies, because it cancels out adaptive forces still underway in the environment.
Additionally, in the context of queueing systems asymptotically greedy policies are constrained by
the stability criterion which requires global knowledge to compute. Assuming an agent had
access to the stability characteristics of the queueing network and could foresee that greedy actions
have no detrimental effects on the network, it is in practice not desirable to have, for example,
deterministic load-balancing or routing policies. Consequently, stochastic policies are often required
to maintain a certain level of exploration to be able to discover congestion along one path and being
able to unlearn previously considered good policies.

Analysing complex networks mostly comprises three levels. The lowest level is concerned
with the topological analysis of the network only taking into account the dichotomous nature
in which edges are either present or absent from the network [53} [110, [171]]. The second level
adds a distinction of the edges in terms of weight assigned to them and also the direction of the
edges [15 16} [16, 17, 91,98}, 1109, [114} (133}, (154} [168]]. The third level accounts for a fitness or strength
measure for each vertex in the network. To investigate how adaptation of individual vertices evolve
and impact the network as a whole, the time-dependent edge and vertex dynamics are studied using
snapshots of the networks.

This chapter presents three approaches on analysing the non-linear behaviour giving snapshots

of the global state of the distributed task hierarchy. analyses the queueing dynamics
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within the framework of queueing theory. uses expert metrics derived from the reward
received over a given time period to investigate immediate experiences of the agents.
takes a network view on the non-linear dynamics, in that the time-dependent dynamics of the arcs
in the task network are investigated using techniques from social network analysis. In doing so, the
rate of processing requests is integrated into the arcs instead of maintaining a probabilistic view on

the arcs as in queueing theory. In particular, the influences of the agents to each other is studied.

7.1 Queueing Dynamics

The dynamics of queueing performance measures can be captured in several ways. The first metric
defines a quantity that captures learning as distinct from random behaviour. This expresses itself in

the matrix of routing probabilities Q (see [Definition 3.1).

The distance measure from random behaviour is denoted as

dn = Q) — Q[yll1, YN € V& deg™(n) >0, 7.1)

where Q] ; = m is the probability of taking a uniformly random action for all actions j
available to agent (or node in queueing terminology) n. The probability of taking actions Q4 is
derived from the employed policy. This measure is bounded by d,, = 0, if the action selection proba-
bilities are uniformly random, and sup{dn } = 2 for deterministic action selection as deg™(n) — oo.
Also,d, =0, n € V& deg™(n) = 1.

This metric does not make any qualitative statement about learning behaviour, because it
cannot be ruled out that uniformly random behaviour is actually the best policy. Instead it gives
an indication of how much the action selection probabilities are fluctuating due to adaptations to
congestion for example. Moreover, it provides an indication of how distinctive the learnt policies
are.

Besides this simple metric, the general queueing metrics introduced in can be
investigated as well. Given snapshots of the queueing network in a running discrete event simulation,
steady-state queueing metrics can be calculated assuming a fixed routing probabilities matrix, Q.

The previous chapter utilises response surface methodology to calibrate the reinforcement
learning methods such that the total average event processing time is minimised. It was shown
that significant improvements over a given design domain can be attained and that the respective
learning method may not be universally better at minimising this objective than uniformly random
decision policies. In the following paragraphs and sections the dynamic behaviour of the scenarios
introduced in the previous chapter are studied in more detail. To do this, the optimal settings for
the learning methods are used. Note, that the simulations based on the best calibration exhibit a
stochastic character that is not influenced by sampling neighbouring locations. In other words, if the
dispersion matrix, W), is defined then stochastic Kriging relaxes the assumption that the simulation
output exactly equals the response surface as in traditional Kriging. As a consequence the stochastic
computer simulation with the optimal parameters may deliver results that do not exactly resemble

the equivalent prediction on the surface.
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presents the convergence diagnostics of the queueing metrics utilisation, response
time, and delay for the BBV model under high queueing stress (i.e., with &y = 1.2,6¢ = 1.2)
including the 95% confidence intervals. One can see that the system utilisation rate for the task
network is roughly the same for both learning policies with and without collaborative function
approximations. The mean delay and mean response, however, are significantly reduced for the

e-greedy policy with collaborative function approximation and the WPL learner.
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Figure 7.1: Convergence Diagnostics for the BBV model with 6y = 1.2,8¢ = 1.2

Similarly, shows the diagnostic plots for the BBV model with a reduced queueing
stress level (i.e., 8y = 1.8, 8¢ = 1.8). As before, the e-greedy policy coupled with the collaborative

function approximation exhibits slightly improved queueing performance.
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Figure 7.2: Convergence Diagnostics for the BBV model with 8y = 1.8,5¢ = 1.8

The following diagnostic plots, [Figure 7.3|and [Figure 7.4, show the diagnostic plots for the ER

model with both low and high queueing stress levels.

illustrates how much in the metric space of the probability simplex the learned
behaviour deviates from a uniformly random policy. While e-greedy learning methods exhibit
a fixed distance from uniformly random policies (i.e., Qi) = [1/deg(i)*]yj3(i3)), the weighted
policy learner naturally is lower, because WPL updates the policy space directly and ensures that an
action is selected with at least €.

For the BBV model with 6y = 1.2,5¢ = 1.2 the weighted policy learner with collaborative
function approximation displays a more erratic behaviour compared to WPL alone. While WPL

CFA covers a greater distance from uniformly random decision policies, it does not yield an
improvement of the queueing performance compared to WPL (see [Figure 7.1).
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Figure 7.4: Convergence Diagnostics for the ER model with &y = 1.8,6¢ = 1.8

also shows that high queueing load results in learning policies that are more distinctive.
A reason for this behaviour originates from non-linear queueing performance for utilisation rates
above ~ 80% (see [Figure 3.1). In this regime, a difference in performance between available servers
downstream results in a quick adaptation towards the better performing server, which can be

measured using the metric given in equation (7.1]
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7.2 Reward-based Dynamics

A second way of evaluating the non-linear dynamics of multi-agent reinforcement learning is to
study the evolution of the Q-values. In the limit, the Q-values give the expected discounted reward
for a given action and policy. Because Q-values give expectations, their values are more stable than
for example their integral part, the rewards.

Ahmadabadi and Asadpour [4] proposed expert metrics based on the rewards received which
they incorporated directly into their Q-value function estimation. That way, an agent can take
advantage of the expertness of its neighbouring agents. They use a weighted strategy sharing
algorithm that distinguishes two modes of operation. First the cooperative agents learn individually
to build up some expertness. After a given time step, the mode switches into a cooperative mode
upon which the calculation of the expert metrics stops. In this mode the Q-table of an agent is
calculated as the weighted average of its neighbours Q-table based on the respective expertness levels.

The expertness metrics used in this thesis are defined with respect to the expected discounted

reward.

1. An algebraic sum of the reinforcement signals

T

e = Z Te(1). (7.2)

2. A sum of the absolute value of the reinforcement signals
T
eft =) Ire(d)l 7.3)
t=0
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3. A sum of the positive reinforcement signals

N
e] = Z T (). (7.4)

Py
o

o

if (1) < Qi(s')

T¢(1) — Qi(s’) otherwise.

4. A sum of the negative reinforcement signals

.
eg = I (- 7.5)
t=0
)0 ifre(i) > Quls")
T¢ (1) =

Qi(s’) —r¢(i) otherwise.

Not only can these expert metrics be incorporated into the state signal perceived by each agent
(see explicit coordination in [Section 5.2.1.2), the evolution of these calculated independently within
given time intervals can give indications about the learning behaviour of the agents.

[Figure 7.6|and [Figure 7.7|show the positive and negative expert metrics over the course

of a single simulation run of the BBV models. In all except one cases, the positive value is significantly

higher than the negative one. This implies that as learning proceeds through time negative rewards
are minimised while positive rewards are maximised. Interestingly, the spread between positive
and negative expert measures of the e-greedy policy is the largest and the same scenario with
collaborative function approximation employed yields a reverse relationship. Consequently, the
e-greedy policy appears to be the best policy to exploit acquired information. A similar result can
be obtained for reduced queueing stress levels in

For WPL the spread is widest with collaborative function approximation. One reason why WPL
does not achieve similar results to the e-greedy policy can be attributed to the two distinct phases
of the weighted policy learner. For as long as the gradient of the policy does not change direction
learning slows down. If a change in direction takes place the weighted policy learner accelerates
learning. If the rewards received over time cause constant changes in the policy gradient, then WPL
will not be able to escape the accelerated learning phase and consequently it will be difficult to gear
the policy into a more exploitative role.

While these reward measures give an indication on the learning performance, they do not
provide a statement about optimality [88]]. Instead, the concept of regret considers how well an agent
would have done had it selected the optimal action, assuming the other agents in the environment
choose the same actions again. Bowling [23]] considered total regret as an evaluation criterion for
the GIGA-WoLF learning algorithm for multi-agent systems. Equation gives the formula for
calculating total regret, which is defined as the difference between the maximum total reward of

a pure strategy given the past history of interactions with the environment and the agent’s total
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Figure 7.6: Expert Metric of BBV with (5,,8¢) = (1.2,1.2)

actual reward.

-
R = max Z(Tiﬂ(

mp,ai) — i (g, ). (7.6)
ai€A; =1

ai represents the action for agent i that maximises total reward assuming the opponents
strategy 7_; would not have been affected and Tgt] (7t_i, a;) is the received reward from follow-
ing the pure strategy. The average regret is taken as the asymptotic average of the total regret,
limt_, 00 R/T. Following this definition, an algorithm has no-regret if and only if the average regret
is lim1_,00 R/T < 0. Conversely, a positive regret means the agent would have been better off
following the pure strategy. This notion of regret is relatively weak, because it only takes into
account a pure strategy. In contrast, incentive to deviate is defined as the difference between the

actual reward and the best response at any given time step

br(my) :argmaxE[rgt)(ﬁ_i,m)] 7.7)
s
ID_ =max{(0, (" (@], bri(m))
i (7.8)

—r (@, ai

—1

where 71; and agt) represents the policy of and the action played by agent 1 respectively that led

)

to the reward rgt) (+,-). Conversely, 7_; and d’i are the policies of and actions played by the other

agents involved in this task. The higher ID () for an agent 1 at time t, the higher the incentive to
i

147



CHAPTER 7. DYNAMICS OF MULTI-AGENT LEARNING

8000
7000 —
6000 .

5000

© e]
= . S 4000
@ 5000 Expert ] Expert
% 40001 %
K o +ve & 3000+ +ve
T b + -ve = © -ve
g 2000 — g 2000 -2
= 3 = it
1000 oo et 1000 wwied
T T T T T T
0e+00 1e+05 2e+05 0e+00 1e+05 2e+05
Time Time
(a) e-greedy (b) WPL

Figure 7.7: Expert Metric of BBV with (8., 6¢) = (1.8, 1.8)

deviate from the current strategy.

provides an overview of the regret measures of all scenarios. These reflect the results
obtained from the reward metrics in that the e-greedy policy achieves the lowest regret value. The
two scenarios with collaborative function approximation are the worst cases in terms of regret.

The plots of the incentive to deviate metric are presented in For the high load BBV
scenario, the e-greedy and the WPL method have the lowest incentive to deviate. Analogously to
the regret measure, the two scenarios with collaborative function approximation show the largest
incentives to deviate from their current action selection policies. The WPL method over a random
task topology (ER) shows significant fluctuations, while the e-greedy strategy is more stable.

The next section presents a network view on the queueing performance and shows how only

few nodes absorb the delay emanating from the whole network.
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7.3. INFLUENCE DYNAMICS

7.3 Influence Dynamics

Glattfelder and Battiston [63] introduced a framework to expose control structures within complex
networks of corporations that are identified over their shareholding relationship. The interesting
aspect of their framework is their generality, which is exploited in this section to adapt their model
to the analysis of queueing networks. The strength of the model is that non-topological features
can readily be integrated into graph-theoretical structures to provide a richer analytical framework
that goes beyond purely topological analyses with or without weights. The non-topological state
variables are sometimes referred to as fitness and are usually assigned to nodes in the network.
Further, the fitness level of nodes contribute to shaping the topology of the network as a whole.
For example, in the context of multi-agent queueing networks, a regret measure can be calculated
for each node in the network. The objective of the individual agents in the network is to minimise
regret (or equivalently maximise the reward in the long run), which is achieved by learning a policy
that assigns a probability to all available actions. The dynamics of learning and their impact on the
probability of selecting an action have implications to all agents downstream. The framework by
Glattfelder and Battiston [63]] provides a compelling way of quantifying the influence or control

that agents exercise on each other.

7.3.1 Algebraic Graph Structures for Control Analysis

presented standard network analysis techniques that focus on weighted or unweighted
and directed or undirected measures of assortativity (degree-degree correlation) and clustering
coefficient. These measures only account for the immediate neighbourhood of a particular vertex
in the graph and thus does not take all paths of all lengths into consideration. However, control
structures have far reaching impacts that go beyond the immediate neighbourhood. In fact, all nodes
reachable from any particular node in a queueing network exhibit indirect control relationships. In
this section the algebraic graph structures are derived to suit the analytical framework of the analysis
of control in queueing networks. Since establishing the control analytical framework is generic for
all queueing networks the terminology follows that of queueing theory accordingly. Without loss of
generality, this framework readily applies to the analysis of decentralised control of the distributed
task assignment problem.

According to the definition of queueing networks ([Definition 3.1) the graph-theoretical context
is embedded in the matrix specifying the routing probabilities, Q. This matrix recovers the direction-
ality of the links between nodes (i.e., the matrix is asymmetric) and a probabilistic interpretation
of the weights (i.e., }_; Qi) = 1). The first step is to define a weight matrix, W, that integrate
the number of events routed over the arcs in the network. Equations and define the
actual and potential weight matrices respectively. The actual weight matrix is based on actual traffic
passing through nodes in the steady state, because it relies on the aggregate arrival rates for each
node, which is calculated by solving the traffic equation (3.2). The potential weight matrix, on the
other hand, is based on the maximum number of events that can pass through a node. This is given
by the service rate of the respective node. A node cannot process more events than is specified by

this service rate. The matrix is then normalised according to
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Wi = Wi/ ) Wi, (7.9)
k

Normalising the weight matrix such that the columns sum up to 1 corresponds to the notion
of first-order ownership in [63]], where all nodes linking to a target node essentially own the target
node.

A quantity called the concentration index that captures the relative importance of incoming
arcs can be defined as follows:

(s;7)?
T (7.10)
i=l1 ij

where the numerator is the square of the in-strength of vertex j (equation (3.18)). When all
weights of the arcs with a target vertex j carry equal values, the concentration index is z; = deg™ (j).
The other extreme is when one weight is significantly larger than all others. In this case, the
concentration index approaches the value one. With respect to queueing networks, z; measures the
effective number of transactions routing to node j. Conversely, a quantity measuring the prominence
of the outgoing arcs is the control index. First, let Hij measure the importance of 1 to j with respect

to all other vertices connecting to j be

A/2
W,

U 7.11
W2 71y

ij
where Hi; € [0,1). A value of Hi; =~ 1 indicates that the vertex 1 is the most important vertex

for target vertex j. Then the control index is given as

N
hi =) Hy. (7.12)

j=1
depicts a small network, where vertices {i, ..., 13} exercise control over vertices
{j1,...,73) according to the arcs emanating from {iy, ..., 13}. Since 1; is the only vertex connecting
to vertices j1 and j, the values for Hi j, and Hy,j, are both one and consequently 1i; is the most
important source vertex. Intuitively, this means that the only way j; and j, can participate in
processing events is through vertex i;. If i; were to send all events to j3 this could have economic

implications.

Equations and solely account for topological features of the queueing network.

Non-topological state variables can be integrated in this model yielding portfolio value

N
pi=) Wiy (7.13)
j=1
and a control value
N
Ci = Z Hij‘l)j. (7.14)
j=1
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Hi151 Hizis

Hij, Hij,
Figure 7.11: Control Index

Equation (7.14) only accounts for the immediate neighbourhood of a given node i and does not
integrate the control of all paths of all lengths. Therefore, an integrated model can be defined for
both ownership W and control H. Let M be the ownership or control matrix. It holds that

N
> My <Lj=1,...,N. (7.15)
i=1
Then the integrated ownership or control model can be calculated through a recursive computa-

tion written in matrix notation as

M =M+ MM, (7.16)

and solving for M, the solution is given by

M=(I1-M)"'M. (7.17)

Then the integrated control value for each node is calculated in two steps. First, the integrated
fraction of control H matrix is calculated using equation (7.17) and then analogue to equation (7.14)

the integrated control value that integrates all paths of all lengths for node 1 is calculated as

N
éi = Z]:lijl)j. (718)
i=1

7.3.2 Identifying the Backbone of Control

Following the method of generalising the backbone extraction for any weighted and directed
network described in Glattfelder and Battiston [63]], two conditions have to be met: (1) the non-
topological value v > 0 for all nodes in general and v > 0 for the leaf nodes in particular; (2) an arc
from node 1 to j in a queueing network is defined as scalar real value in the weight matrix \/_Vij >0,
which implies in the context of control that some value is transferred in the opposite direction of
the arc. In a physical sense, this value can be interpreted and formalised as the flow ®@; entering

node i from each successor node j at time t.
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O;(t+1)= ZV_\/ﬁvj + ZV_\/ijd)i(t), (7.19)
j j

where ) V_Vi]- = 1 for nodes j that have a predecessor and }_; \/_Vij = 0 for the root nodes,
which is guaranteed by equation (7.9). This flow value is a recursive function that adds the fraction
W;; of the non-topological value, vj, produced at node j plus the same fraction of the inflow of j.

In matrix notation, this yields

® =W(v+ D), (7.20)

with the corresponding solution

® = (I-W) 'Wo. (7.21)

Similar to Glattfelder and Battiston [63]], where the flow of control, @, in ownership networks
(i.e., shareholder relationships) is transferred against the direction of equity stakes, queueing net-
works exhibit a flow of control in terms of delay accrued at each node which is transferred against
the direction of the events passed from a node 1 to downstream nodes j. Intuitively this makes sense
as the delay that is accrued downstream has a additive effect upstream.

The integrated control given in equation corresponds to the definition of flow in equation
in the steady state.

Plotting (11,9), where n(k) = k/|V| and 8(k) = (Zlle d)i)/Z}\le ®; represent the first k
ranked nodes by their ®@; value in descending order, yields a Lorentz-like curve. This curve is
well-known in economic settings to provide a graphical representation of for example income
distribution, where the x-axis ranks the poorest X% households relative to a percentage value of
income on the y-axis. Here, this curve represents the nodes in the queueing network with respect to
their importance as measured by the integrated control value ¢&;.

The backbone of the network can be extracted by identifying the top ranked nodes, fj, that are
responsible for a specified fraction, 9 (e.g. § = 80%), of the total flow in the network. Given the
nodes, Vg, that cumulatively control 9 of the network, a sub-network can be defined that comprises

these nodes and their original respective arcs between them.

Definition 7.1 (Backbone graph). A backbone of control is a tuple S5 = (Vp,An), where Vg isa
finite set of vertices Vg C V and A is a finite set of ares Ag C A. Vo cumulatively control § of the

network.

Since there is no bipartite structure given by queueing networks as opposed to the shareholder
network of Glattfelder and Battiston [63]], the proxy to characterise the local patterns of control is

given as

Vgl
2520 %

s==1 T
Vgl

(7.22)

Recall, the value j reflects the percentage of nodes that control the network corresponding to

the threshold defined in 9. In order to facilitate comparisons of different networks, fj is normalised
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as

ey

r= 1 (7.23)

- b
100

where nyo is the minimum number of nodes controlling 100% of the queueing network. n’
captures the concentration of control with small values being indicative of few nodes controlling
the global queuing network.

For queueing networks this has some profound impact. The top ranked nodes identified by i
accrue most of the delay (if delay is the non-topological scalar to be considered). Therefore, any
decisions by agents downstream with detrimental affects will be noticed by the agents upstream.
If there are payments associated with routing transactions downstream, deteriorating queueing
performances can be incorporated are reflected in negative rewards and consequently will lead to
avoiding this path. The control manifests itself in decisions that affect potentially a number of nodes

downstream.

7.3.3 Instantaneous Control Structures for Adaptive Queueing Systems

Putting this framework to work on adaptive queueing system is novel in that a network perspective
can reveal structural properties that can explain the queueing performance in new ways. The local
pattern of control, s, is the average effective number of transactions in the backbone network. The
higher this value, the more dispersed control is in the backbone. In the context of queueing network
this implies that lower values for s indicate fewer nodes accrue the non-topological scalar, e.g., the
delay in queues. Recall, that this metric integrates delay from all direct and indirect paths of all

lengths downstream.
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Figure 7.12: Local Control

The local pattern of control presented in [Figure 7.12 shows that the WPL policy is able to
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disperse control better than the e-greedy method. Intuitively, this makes sense, because the e-greedy
policy mostly selects greedy actions, which results in a concentration index approaching 1 per
node and consequently the local control index attains a low value. In the high queueing stress
scenario the e-greedy outperformed WPL with respect to mean delay. Considering that the e-greedy
policy concentrates the overall control of the network in fewer nodes, the network structure is
less robust. Therefore, the performance of the learning system needs to be put into context of the
network structure to obtain a more detailed picture of the learning behaviour and its impact in
networked applications.

In the context of queueing networks, fj identifies the top ranked nodes that are responsible for
accruing a defined fraction 9 (here 80%) of the total delays in the network. Consequently, a small
value of 11’ signifies that the delay concentrates in a few nodes, while a large value for 1’ indicates
that the delay is more spread between the nodes in the network. displays the evolution
of " over time covering the different scenarios examined in this thesis. It shows that with the WPL
policy employed the delays in the queues are concentrated in fewer nodes compared to the e-greedy
method under high load in the BBV network. In contrast, low queueing load scenarios do not show
any difference in the global concentration levels. Correlating the local control (s) and the global
concentration (') indices, the WPL policy is able to disperse the control within the backbone
more than the e-greedy method. However, the backbone of the network with the WPL policy
is concentrated in fewer nodes. Interestingly, a lower load profile for the BBV network yields a
narrower backbone, while the level of dispersion within this backbone is similar. This shows that as
the load increases the delay affects an increasing number of nodes in the network, while the level of

dispersion between those affected nodes is nearly the same.
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These results are a first attempt of accounting for network effects in analysing multi-agent

reinforcement learning algorithms.
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7.4 Summary

This chapter set out an agenda to analyse the non-linear dynamics of intelligent agent learning
behaviour. This agenda was delivered in three main parts that all illuminate different aspects of
the learning dynamics. First, metrics based on queueing performance were covered. These include
simple diagnostic plots that illustrate the equilibration of utilisation rate, response time, and delay
in queue. Additionally, a metric was introduced that measures the distance from uniformly random
decision policies. While it does not provide a qualitative statement about the “goodness” of the
learnt behaviour, it indicates, however, the stochastic difference between different scenarios. The
distance metric is also capable of identifying fluctuating learning performance. The second approach
provides a perspective on received rewards over time. These measures are a first step of providing
some qualitative feedback on the learning performance. However, the expert metrics do not give a
notion of optimality. This is achieved with regret and incentive to deviate. Regret considers how
an agent would have done had it selected the optimal action while all the other agents choose
the same action again. A positive regret value indicates that an agent would have been better
off following the pure strategy. Complementary to regret is the incentive to deviate, which can
attain positive and negative values. If positive, then the agent would be better off selecting the best
response action. Finally, a networks perspective was introduced that evaluates control structures.
This methodology assists in identifying and extracting the backbone of complex networks that
comprise weighted directed links. The nodes are associated with a non-topological scalar quantity,
which has a physical connotation of producing mass and transferring it to the nodes upstream. In
the context of queueing systems, the mass can be the delay encountered in the queues. That way,
the delay accrued by the nodes upstream can be calculated. Applying this methodology to queueing
systems, the procedure identifies the backbone as the sub-network where most delay is experienced
in the network. Analysing this backbone over time in the context of adaptive queueing networks
provides a deeper understanding of the impact of dynamically changing learning policies, which is

reflected in the routing probabilities.

Observation 7. In conjunction with the metric that measures the distance from uniformly random
policies, 1t can be observed that WPL under low load dynamics is much closer to uniformly random

policies. This implies that some agents have action spaces with almost equal selection probabilities.

can be attributed to the mechanism by which the policies are updated. Due to the
fact that changes in the gradient direction results in accelerated learning an increase in fluctuating

learning dynamics may be the cause of why WPL does not seem to exploit better than the e-greedy
policy.
Observation 8. High load queneing behaviour results in more distinctive learning policies compared to

low load scenarios.

can be attributed to the non-linear queueing performance for utilisation rates
above ~ 80% (see [Figure 3.1). In this regime, a relatively small difference in utilisation of the servers
downstream results in vast differences in queueing behaviours. As a result, agents adapt to this

change to reflect the relative performance, which can be measured using the metric given in equation

(7.1).
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Observation 9. The positive expert measure attains values much higher than the negative expert

measure.

Assumption 9.1. Throughout the simulation, the expert metrics were collected according to equations
(7.4) and (7.5), which accumulate the positive and negative expert values over time. In order to calculate

to calculate averages the values were calculated for 100 intervals.

Observation 10. The e-greedy policy attains a much wider spread between the average positive and

negative expert metrics, than the WPL policy.

Observation 11. In all but one scenario are the positive expert values higher than the negative expert

values.

Observation 12. All scenarios illustrate that positive expert values are maximised and negative expert

values minimised,

These observations are expected, because the learning objective is to minimise the response
time. This implies that, as intelligent agents adapt to an environment they gain knowledge about
which actions are favourable over others. Selecting favourable actions will ultimately lead to positive

reinforcement signals.

Observation 13. The SARSA(0) reinforcement learning method with an €-greedy policy exhibits the
lowest regret for the BBV and the ER models.

Observation 14. The SARSA(Q) reinforcement learning method with an €-greedy policy exhibits the
lowest incentive to deviate from current action selection policy for the BBV and the ER models in most

SCenarios.

Observation 15. The SARSA(0) reinforcement learning method with the weighted policy learner is
able to disperse the control within the backbone and shows a lower concentration of high delay values

compared to the €-greedy policy.

Observation 16. Given the BBV network model, the global concentration level of high delay values in

the quenes of the network reduces as the queneing load decreases.

Adaptive methods that are able to disperse control may also be more likely to perform well,
because delay in the queues have a smaller impact upstream. Interestingly, if the queueing system is
under stress, i.e., experiences a high load, more distinct policies are learnt which may impact the
robustness properties of certain networks. Evidently, a failure of a node in a system under stress
which lacks strong robustness guarantees potentially leads to cascading failures. Future work will
investigate, how learning agents are able to cope with failures and to what degree those failures affect
the system as a whole.

These observations indicate that WPL outperforms the e-policy in most scenarios. However, a
more thorough analysis is required to evaluate the uncertainty associated with those results. Since,
the focus of this chapter was to illustrate learning behaviour without smoothing the results over

many replications this is left for future work.
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Douglas Adams (The hitchhiker’s guide to the galaxy)

Conclusions

The research conducted for this thesis set out to investigate the modelling and analysis of cooperative
adaptive queueing networks and their learning behaviour. It emphasises on the importance of
including topological features of the underlying interaction pattern of agents among each other.
In the context of distributed task assignment in particular, and queueing networks in general,
this required the construction of different network topologies. The decentralised control mecha-
nism was based on SARSA(0) temporal-difference reinforcement learning using neural network
function approximation to estimate the state-action value function. This way, a generic layer for
state representation was adopted to facilitate an efficient study on which state variables provide
the best information to learn the state-action mapping. The cooperative behaviour was designed
through a reward function that measures the negative response value for a given task completion.
This encourages the multi-agent system to act in concert to achieve a global goal, which is the
minimisation of the total time of the task in the system. The learning methods were evaluated to
find the best parametrisation to achieve globally optimal behaviours. Additionally, behavioural
analyses were conducted to demonstrate the qualitative differences in the learning behaviours. The
efficient analysis of stochastic computer simulation formed one important objective of this thesis.
Kriging metamodelling and the canonical analysis of response surfaces was chosen as an appropriate
means to synthesise and generalise statistical findings so that they can inform a system designer for

distributed task assignment problems.

In this chapter, the contents of this thesis are summarised and an overview of the contributions
with respect to the state of the art are presented. To conclude, future work and research ideas are

discussed based on the work carried out up to date.
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8.1 Summary

As simulation studies are becoming more prevalent in computer science, systematically controlling
the experiment or a thorough analysis of the relationship of the explanatory variables and the
response variable is often neglected. In particular, the nature of this thesis has a strong empirical
character which necessitates a statistical framework to support a qualitative comparison of the decen-
tralised control algorithms. [Chapter 2] presented response surface methodology (RSM) comprising of
a collection of well-known mathematical and statistical techniques to design, analyse, and optimise
simulation experiments which are drawn from published literature. This thesis evaluates stochastic
computer experiments and accordingly the focus was placed on statistical tools that treat simulations
as a black box and that allow the construction of response surfaces that integrate the stochastic
nature of the simulation output. The construction of a response surface is achieved using stochastic
Kriging, which is an extension to regression that accounts for spatial correlation among the data
points. A fully Bayesian interpretation of stochastic Kriging was given to capture the various sources
of uncertainty including the variance of the computer simulation output, the uncertainty about
predicting unobserved data locations, and the uncertainty resulting from the Markov Chain Monte
Carlo inference of the Kriging model parameters. Canonical analysis was presented to aid in the
mathematical study of the resulting response surface and to provide a means of analysing computer
simulations in higher dimensional design domains.

introduced network evolution models that adhere to queueing-theoretic semantics
known from operations research. The purpose of network evolution models in the context of this
thesis is their integration into larger simulation studies that investigate adaptive algorithms to cope
with defined traffic patterns. With the inclusion of network evolution models different network
sizes and different topological features can be represented. Two network evolution models known
from the complex networks domain were adapted to comply with stable Jackson networks. Their
respective topologies resemble that of random networks and scale-free networks. Random networks
exhibit a lower clustering coefficient, a higher average path length between reachable nodes, and a
higher diameter compared to scale-free networks. The ability to cope with task requests entering the
system, two parameters govern the assignment of the capacity to nodes. This is a simple model that
allows the investigation of traffic patterns solely depending on those two parameters while keeping

the external arrival rate fixed.
Chapter 4| presented Markov decision processes and their elementary solution concepts based on

solving value functions. In particular the value-iteration and policy-iteration algorithms known from
dynamic programming were presented to solve MDPs. The disadvantage of dynamic programming
is that those methods require a full specification of the reward and transition functions, which
makes them prohibitively expensive in most practical scenarios. Monte Carlo methods were then
introduced which do not rely on prior knowledge of the environment, but instead operate in a
trial-and-error fashion to sample the environment in order to provide estimates. The main difference
between these methods were pointed out and how temporal difference reinforcement learning
methods combine the best of both dynamic programming and Monte Carlo methods. The first part
of this chapter focused on the theoretical underpinnings of the respective methods. In the second

part, which focused on multi-agent reinforcement learning, the implications of the convergence
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guarantees for single-agent stationary MDPs on multi-agent systems were set forth. Recently,
research synthesised the game-theoretic framework with multi-agent systems to address some of the
issues related to finding optimal joint actions. The game-theoretic framework provides a natural
extension to multi-agent reinforcement learning, because it models the behaviour of one agent in the
face of others in the environment. Recent literature on cooperative and competitive reinforcement
learning was reviewed.

Sequential distributed task assignment problems in this thesis were modelled with a utilitarian
stance to avoid the “Tragedy of the Commons”, which can often be observed when selfish agents
operate in an environment. Decentralised task assignment was formalised using the general frame-
work of decentralised MDPs. The cooperative nature of the multi-agent system is designed around
the reward structure. More specifically, the reward is made up of the negative value of the response
time of (sub-) task completion.

Given a specification of the cooperative distributed task assignment problem SARSA(O) rein-
forcement learning agents endowed with the undirected e-greedy policy and a directed weighted
policy learner were investigated. In order to simulate different environmental settings the task
network was instantiated over two different task topologies, which were introduced in
Additionally, since the performance modelling was based on the mathematical framework of queue-
ing theory two different queueing load levels were investigated to find out how agents adapt in the
face of stress. The main contribution of this[Chapter is the empirical analysis using the response
surface methodology presented in The main findings are that carefully calibrating all
free parameters of a learning method outperforms uniformly random decision policies and the
weighted policy learner is superior in most instances to the e-greedy policy. This in itself is not a
very strong statement about the quality of the learning method. However, the method of calibra-
tion and consequently understanding which learning parameters work best are interesting results.
Another aspect explored in this chapter is the utility of collaboratively training the Q-value function
approximator. This way, agents can efficiently utilise knowledge about a neighbour’s queueing state.
In the scenarios considered, the collaborative function approximators did not exhibit a discernible
impact on the overall system performance.

set forth an agenda for examining the dynamic learning behaviour of multi-agent
systems. A new simple metric was introduced to measure the distance in probability space from
uniformly random decision policies. While it does not provide a qualitative statement about the per-
formance, it complements the reward-based expert metrics. The expert metrics accumulate positive
and negative rewards respectively and it was shown that learning agents minimise negative rewards
while maximising positive ones. Further, to elucidate optimality criteria of learning behaviour, the
concept of regret and incentive to deviate was measured. In the single simulation runs covered in this
chapter, SARSA(0) reinforcement learning equipped with the e-greedy policy shows significantly
less regret and an incentive to deviate from the current action selection policy than the weighted
policy learner. Following this analysis, a network perspective on adaptive queueing performance
was introduced. This approach identifies the backbone of a sub-network where most of the control
resides. Extracting the backbone facilitates the identification of local control pattern and global
concentration of control. It was shown that the e-greedy policy is more able to disperse local control

patterns, which has an impact on the overall system performance, because a reduced influence of
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control implies a more even distribution of the network flow.

8.2 Contributions and Related Works

Lipson, van den Herik et al.|also conducted empirical analyses of reinforcement-learning methods
to compare different learning methods [88, [161]].

The contributions of this thesis can roughly be classified in four disciplines. First, the simulation
environment which includes the response surface methodology. Second, the network evolution
models for queueing networks. Third, the modelling of sequential distributed task assignment
problems using decentralised control mechanisms. And finally, the behavioural analysis of adaptive
forces on queueing networks using analytical tools derived from complex networks research.

An agent-based simulation platform implementing parallel algorithms for high-performance
computing clusters was developed, where the assignment of computing nodes to certain simulation
runs requires the maintenance of a list of idle and inactive computing nodes. Computing nodes may
become inactive, if a particular simulation run is completed and therefore frees up its resources.
Since the number of replications for a simulation run is adjusted at runtime, the inactive nodes
can be reassigned to other simulation runs that have not achieved the desired confidence levels yet.
That way the computing cluster remains at high efficiency rates. While this implementation is a
master-slave architecture, which is quite simple to implement, the integration of response surface
methodology into agent-based simulators has not received much attention.

Casting network evolution models into a queueing-theoretic framework is a novel approach that
enables large-scale queueing network simulations. Two network evolution models were adapted, the
Erdds-Rényi (ER) random graph and the Barrat, Barthélemy, and Vespignani model (BBV) social
graph models. Their purpose is to present entirely different topological features to the modelling of
task hierarchies and to study the effects of topological structure on the learning behaviour of agent-
based simulation. Also, the reverse effect of the weighted versus the unweighted assortativity metric
for both network evolution models is a new insightful result, which emphasises the importance of
characterising the underlying graph structure. It is shown that the dichotomous interpretation of
the arcs in a large network may lead to entirely different interpretations than a more comprehensive
perspective including the weights of the arcs as well.

Sequential distributed task assignment problems as presented in this thesis rely on two building
blocks to go beyond illustrative academic scenarios. First, the network topology needs to be specified
and secondly the autonomous agents need to be modelled such that the global goal of minimising the
total time of task completion times is achieved in concert. Otherwise, selfish agents may succeed in
achieving their own local goals at the expense of the whole task network. In queueing networks the
response time of task completion is a natural choice for the reward function, because this function
discerns an agent’s own contribution on the overall effort of all agents involved in accomplishing
a task. The agents are endowed with SARSA(Q) reinforcement learning and a neural network
function approximator to generalise over the state-action value space. To improve scalability of
cooperative multi-agent systems, the state-action value function approximators were outsourced to
the neighbouring agents in order to facilitate faster learning. One direct and one indirect policy were

employed and the effect of network structure was studied on the learning methods. Additionally,
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globally optimal learning parameters were found and their sensitivities to the learning objective

investigated.

The behavioural analysis was conducted using queueing, expert, and influence metrics. These
metrics concentrate on certain concepts based on graph-theoretical principles and analysis their
evolution through time. For the queueing metrics a snapshot of the queueing network is taken
and its analytical equilibrium performance measures calculated. Additionally, a measure of total
distance from random behaviour visualises the system’s runtime behaviour. Fluctuations may arise
which can be attributed to adapting to dynamically changing queueing conditions. The learning
processes take effect in the assignment of probabilities to activating links in the queueing network.
If this assignment fluctuates it may lead to cascading effects in the network and challenges the agents
upstream to learn near optimal policies, because the variance of the performance of the agents
downstream may be too high to discern a clear trend. The expert metrics take into account the
rewards received over time and demonstrates that fluctuating behaviours are observed as well. The
positive and negative expert metrics also show that positive experience is maximised while negative
experience is minimised over time. The influence metrics provide a perspective on the network
effects integrating measures of control that go beyond first-order neighbours. Instantaneous control
structures can be derived and examined how they evolve through time. It was shown that learning
behaviour can lead to an increased concentration of high delay values in the network which means
that very few nodes experience high delays in their queues. This may have negative consequences if

failures arise causing a few nodes to transition into an instable regime.

8.3 Future Work

The scope of the different domains covered by this thesis has led to many interesting research
questions that could not be fully investigated in this thesis due to their lack of immediate relevance,
or their potential to open up larger research problems. A number of areas of potential future

research have been identified in the four major domains covered by this thesis.

8.3.1 Response Surface Methodology

The statistical and mathematical tools used for response surface methodology originate from
published research literature. However, there are a few directions which would advance the general
methodology. First, the Kriging surfaces are improved based on a mean-squared error criterion. This
criterion discards knowledge about rapid changes in certain regions of the surface. Consequently, a
better and more efficient means of exploring the surface could be investigated in the future, such as
regression trees with criteria for bounded sub-regions of the space that capture the uncertainty about
the encompassing data points. From a software engineering perspective, it would be interesting to
investigate graphics processing units as a platform to conduct the Bayesian inference and validation

of the Kriging model parameters.
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8.3.2 Queueing Network Modelling

The queueing network evolution model presented in this thesis is relatively simple and can be
taken forward in several ways. First, the arrival and service rates come from stationary probability
distributions, which implies that there are no time-varying characteristics of the arrival and service
processes. This, however, is rarely the case in reality. Consequently, the arrival rate could be
employed as a non-homogeneous Poisson distribution to imitate the time-varying evolution of
task requests. Secondly, services generally are associated with a failure rate with a stochastic repair
time. Extending the current model to include service failures would introduce a more realistic
interaction pattern which would further demonstrate the viability of reinforcement learning in
those scenarios. Thirdly, the networks evolved for this thesis are static once established. That
means that existing service nodes are not joining or leaving the network, or re-wiring their current
interconnections with neighbouring services. Introducing dynamically evolving task structures
would be highly beneficial and one of the most pressing research directions. The current model of
the task hierarchy does not allow loops within the network to avoid infinitely cycling task requests.
If the structural embedding of services are more dynamic then precautions have to be taken to
account for loops. This can possibly be achieved by accounting for multiple classes of task requests.
Multi-class queueing networks can also be exploited to introduce priority of requests. A higher
prioritised task request would be assigned a higher-ranked position in the waiting queue compared
to lower prioritised task requests. Finally, only two network evolution models were covered in this
thesis. There are many more existing network evolution models that can be adapted with relative

ease and would provide more comprehensive simulation settings.

8.3.3 Decentralised Control Mechanisms

One focus of this thesis was to model distributed task assignment problems using cooperative
multi-agent reinforcement learning methods. SARSA(Q) reinforcement learning coupled with
neural network function approximation was chosen, because of its crucial ability to generalise
observed data to unseen states. It is well-known that off-policy sampling and non-linear function
approximators can introduce some instabilities in the learning behaviour with diverging worst-case
behaviour. Neural networks appear to work better in on-policy learning algorithms, which is why
Q-learning was not investigated. It would be interesting to explore other state of the art learning
algorithms that provide stronger convergence guarantees in single agent as well as multi-agent
systems. In particular the machine learning community concentrated on developing algorithms that
avoid difficult to tune parameters altogether, such as the learning rate and the dilemma of exploration
and exploitation. Mostly, these algorithms have not been explored in multi-agent settings yet and it

would be interesting to proceed with this agenda.

8.3.4 Behavioural Analysis

The behavioural analysis of data captured on graphs is a fascinating research domain, because it
can be applied to many fields that admit abstractions over graphs. The metrics used in this thesis

are investigated over evolving graphs in order to capture the (non-linear) dynamics and their study
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was limited to graphical interpretations. It would be interesting to advance this analyse to include

numeric fitting of time series models to be able to compare the non-linear dynamics more rigorously.
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MCMC Inference of the Kriging Parameters

This appendix contains the results of the MCMC inference of the Kriging model parameters
corresponding to the theoretical treatment of the subject presented in In particular this

appendix presents the trace plots, equilibration plots, and the autocorrelation plots.

A.1 BBV DTAPs

A.1.1 Uniformly Random Decision Policy

The summary of the Kriging estimation is given in[Table A.1jwith a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.1: Kriging Summary of BBV DTAPs with a uniform random decision Policy

dv, 0 € [1.2, 1.3]

dv, b0 € [1.7,1.8]

Variable Value 95% CI half-width Value 95% CI half-width
Bo 14548.52 101.86 7837.30 26.5

05y 18.02 0.27 11.37 0.88

Os¢ 10.18 0.94 9.97 0.91

o? 17057226.14 308883.55 265423.15 28501.07

R? 0.878 0.999

RMSE 217.98 80.369
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A1.1.1 Sy €[1.2,1.3],6¢ € [1.2,1.3]
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Figure A.1: MCMC Trace for BBV DTAPs with a uniformly random decision Policy with &y €
[1.2,1.3],6¢ € [1.2,1.3]
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Figure A.3: MCMC Autocorrelation for BBV DTAPs with a uniformly random decision Policy
with 6v € [1.2,1.3], 6¢ € [1.2,1.3]
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A1.1.2 by €[1.7,1.8],6¢ € [1.7,1.8]
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A.1.2 SARSA(0) and e-greedy Policy

A121 &y =126 =12

The summary of the Kriging estimation is given in [Table A.2)with a MCMC chain size of 91. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.2: Kriging Summary of BBV DTAPs with SARSA(0) and e-greedy Policy with &y =

12,6 = 1.2
Parameter  Value  95% CI half-width
Bo 23885.56 18.5
0o 9.9 1.26
O 8.78 1.24
o 11.44 1.17
o2 257315.7 61752.0
R? 0.999
RMSE 195.32

24200

24000

B

23800

23600

T T T T T T T T T
1 7500 15000 1 7500 15000 1 7500 15000

(@) Trace for By (b) Trace for 04 (c) Trace for 0,

1200000
1000000
800000
600000
400000

200000

T T T T T T
1 7500 15000 1 7500 15000

(d) Trace for 65, (e) Trace for o?

Figure A.9: MCMC Trace for DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,8¢ =
1.2
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Figure A.12: MCMC Tin¢ vs. W for DTAPs with SARSA(O) and e-greedy Policy with &y =

12,6 = 1.2

A122 Sy =180=138

The summary of the Kriging estimation is given in with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.3: Kriging Summary of BBV DTAPs with SARSA(0) and e-greedy Policy with &y =

1.8,0p — 1.8
Parameter  Value  95% CI half-width
Bo 7062.11 2.93
O« 9.61 0.94
O 9.12 0.88
o, 9.1 0.93
o2 18471.18 4084.35
R? 0.999
RMSE 58.58
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Figure A.15: MCMC Autocorrelation for DTAPs with SARSA(0) and e-greedy Policy with

Sy = 1.8,6¢ = 1.8
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A.1.2.3 &y = 1.2,5¢ = 1.2 and outsourced Function Approximators

The summary of the Kriging estimation is given in [Table A.4 with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.4: Kriging Summary of BBV DTAPs with SARSA(0) and e-greedy Policy with &y =

1.2,0g = 1.2
Parameter Value 95% CI half-width
Bo 24048.4 9.1
0o 9.37 0.91
O 9.26 0.90
On 10.97 0.95
o? 188532.33 35739.2
R? 0.999
RMSE 185.83
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Figure A.17: MCMC Trace for DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,6¢ =
1.2 and outsourced Function Approximators
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Figure A.18: MCMC Mean for DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,8¢ =
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1.0 1.0+ 10
05 05 05
N N N
0.0 0.0+ 0.0
0 1 2 3 4 50 6 0 10 2 a0 P o 0 20 %0 40 50
w w w
(@) Autocorrelation for By (b) Autocorrelation for 0, (c) Autocorrelation for 0,
1.0 1.0
05 05
a a
0.04 0.0
0 0 2 3 4 50 0 1 2 3 4 50 6
w w
(d) Autocorrelation for 6y, (e) Autocorrelation for ¢?

Figure A.19: MCMC Autocorrelation for DTAPs with SARSA(0) and e-greedy Policy with
dy = 1.2,5¢ = 1.2 and outsourced Function Approximators
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1.2, 8¢ = 1.2 and outsourced Function Approximators

A.1.3 SARSA(0) and WPL Policy

A13.1 Sy =128 =12

The summary of the Kriging estimation is given in[Table A.5|with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.5: Kriging Summary of BBV DTAPs with SARSA(0) and WPL Policy with &y =

1.2,0g = 1.2
Parameter Value 95% CI half-width
Bo 25261.39 8.95
0o 19.11 0.12
O 19.41 0.085
Oy 18.62 0.22
0c 17.65 0.37
o? 7191733.2 40746.63
R? 0.999
RMSE 57.28
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Figure A.23: MCMC Autocorrelation for DTAPs with SARSA(0) and WPL Policy with &y =
1.2,0g =1.2
0 35 7
35
3.0
30+ 3
254
- 281 - -
z E 20 £
204 2
154 154
10 10 1
054 05
0 20 s 40 50 0 10 2 a0 P 3 10 2 a0 a0 50
w w w
@) Tine vs. W for Bo (b) Tine vs. W for 04 (©) Tint vs. W for 0,
N w‘%
o
3.0

T
S
o

T

0 10 2‘3\/ 3 p 0 2 Wa‘o 60
(d) Tint vs. Wior 6, (€) Tint vs. W for o2
Figure A.24: MCMC Tin¢ vs. W for DTAPs with SARSA(0) and WPL Policy with 6y = 1.2,6¢ =

1.2

183



APPENDIX A. MCMC KRIGING

A132 dv=1806g=138

The summary of the Kriging estimation is given in [Table A.6|with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.6: Kriging Summary of BBV DTAPs with SARSA(0) and WPL Policy with &y =

1.8,5F — 1.8
Parameter ~ Value  95% CI half-width
Ro 6253.96 2.59
0o 9.72 0.92
O 10.5 0.89
0, 9.04 0.91
0, 10.44 0.94
o? 13573.12 2262.88
R? 0.999
RMSE 57.28
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Figure A.25: MCMC Trace for DTAPs with SARSA(0) and WPL Policy with &y = 1.8,6¢ = 1.8
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Figure A.26: MCMC Mean for DTAPs with SARSA(0) and WPL Policy with 6y = 1.8, 8¢ = 1.8
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Figure A.27: MCMC Autocorrelation for DTAPs with SARSA(0) and WPL Policy with &y =
1.8,0g = 1.8
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Figure A.28: MCMC Tin vs. W for DTAPs with SARSA(0) and WPL Policy with &y = 1.8,6¢ =
1.8

A.1.3.3 by =1.2,6¢ = 1.2 and outsourced Function Approximators

The summary of the Kriging estimation is given in with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.7: Kriging Summary of BBV DTAPs with SARSA(0) and e-greedy Policy with &y =

1.2,0g = 1.2
Parameter ~ Value  95% CI half-width
Bo 25604.71 17.57
0o 12.88 0.87
O 10.57 0.78
On 18.02 0.29
0, 15.75 0.55
o2 2021790 38364.47
R? 0.999
RMSE 318.69
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Figure A.29: MCMC Trace for DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,6¢ =
1.2 and outsourced Function Approximators
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Figure A.30: MCMC Mean for DTAPs with SARSA(0) and e-greedy Policy with &y = 1.2,6¢ =
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Figure A.31: MCMC Autocorrelation for DTAPs with SARSA(0) and e-greedy Policy with
dy = 1.2,5¢ = 1.2 and outsourced Function Approximators
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Figure A.32: MCMC Tin¢ vs. W for DTAPs with SARSA(0O) and e-greedy Policy with &y =
1.2, 6¢ = 1.2 and outsourced Function Approximators
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A.2 ER DTAPs

A.2.1 Uniformly Random Decision Policy

The summary of the Kriging estimation is given in[Table A.8|with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.8: Kriging Summary of ER DTAPs with a uniform random decision Policy

dv, b € [1.2,1.3] dv, 0 € [1.7,1.8]
Variable Value 95% CI half-width ~ Value = 95% CI half-width
Bo 6454.67 28.04 1692.75 1.9
Osy 13.65 0.182 19.71 0.057
Os¢ 9.496 0.536 19.86 0.029
o? 2472331.63 39279.84 53527.07 173.378
R? 0.80 0.815
RMSE 60.88 4.676

A.2.1.1 oy €[1.2,1.3],6¢ € [1.2,1.3]
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Figure A.33: MCMC Trace for ER DTAPs with a uniformly random decision Policy with &y €
[1.2,1.3], 0 € [1.2,1.3]
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Figure A.34: MCMC Mean for ER DTAPs with a uniformly random decision Policy with dv €
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Figure A.35: MCMC Autocorrelation for ER DTAPs with a uniformly random decision Policy
with &y € [1.2,1.3], 8¢ € [1.2, 1.3]
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Figure A.36: MCMC Tin¢ vs. W for ER DTAPs with a uniformly random decision Policy with
v € [1.2,1.3], 6 € [1.2,1.3]

A.2.1.2 oy €[1.7,1.8],6¢ € [1.7,1.8]

Lt i )
1950
195
1900+ 15
1850 19.01
= o~ o 104
& & &
1800
185
1750 4 59
18.04
1700+
‘1 75‘00 15600 2‘1 75‘00 15(‘]00 i 75‘00 15600
(@) Trace for B, (b) Trace for 65, (c) Trace for 05,
50000 | |
45000
No 40000

35000

30000

T T T
1 7500 15000

(d) Trace for o?

Figure A.37: MCMC Trace for ER DTAPs with a uniformly random decision Policy with &y €
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Figure A.38: MCMC Mean for ER DTAPs with a uniformly random decision Policy with &y €
[1.7,1.8],6¢ € [1.7,1.8]
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Figure A.39: MCMC Autocorrelation for ER DTAPs with a uniformly random decision Policy
with &y € [1.7,1.8], 8¢ € [1.7, 1.8]
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Figure A.40: MCMC Tin¢ vs. W for ER DTAPs with a uniformly random decision Policy with
v €[1.7,1.8],6¢ € [1.7,1.8]

A.2.2 SARSA(0) and e-greedy Policy

A221 Sy =1208p =1

2

The summary of the Kriging estimation is given in[Table A.9with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.9: Kriging Summary of ER DTAPs with SARSA(Q) and e-greedy Policy with &y =

1.2,6p = 1.2
Parameter Value 95% CI half-width
Bo 5994.95 8.9
O 12.45 0.79
O 9.96 0.68
oy 12.08 0.67
o2 183858.46 6630.16
R? 0.999
RMSE 84.85
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Figure A.42: MCMC Mean for ER DTAPs with SARSA(0) and e-greedy Policy with &y =
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Figure A.43: MCMC Autocorrelation for DTAPs with SARSA(0) and e-greedy Policy with
Sy = 1.2,8F = 1.2
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Figure A.44: MCMC Tint vs. W for ER DTAPs with SARSA(Q) and e-greedy Policy with &y =
1.2,0g = 1.2
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A222 Sy =180g=138

The summary of the Kriging estimation is given in with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.10: Kriging Summary of ER DTAPs with SARSA(0) and e-greedy Policy with &y =

1.8,0g = 1.8

Parameter Value 95% CI half-width
Bo 885.54 0.161

0o 17.88 0.334

0 8.12 0.841

O 15.05 0.65

o’ 166.74 2.554

R? 0.999

RMSE 1.79
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Figure A.45: MCMC Trace for ER DTAPs with SARSA(Q) and e-greedy Policy with &y =
1.8,0g = 1.8
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Figure A.46: MCMC Mean for ER DTAPs with SARSA(0) and e-greedy Policy with &y =
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Figure A.47: MCMC Autocorrelation for DTAPs with SARSA(0) and e-greedy Policy with
o0y =1.8,0g = 1.8
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Figure A.48: MCMC Tint vs. W for ER DTAPs with SARSA(Q) and e-greedy Policy with &y =
18,6 = 1.8

A.2.3 SARSA(0) and WPL Policy
A231 Sy =1208g=12

The summary of the Kriging estimation is given in with a MCMC chain size of 161. The

Kriging model is assessed using 100 validation locations selected using a space-filling LHS design.

Table A.11: Kriging Summary of ER DTAPs with SARSA(0) and WPL Policy with &, =

1.8,5¢ = 1.8
Parameter Value 95% CI half-width
Bo 949.91 0.38
0o 11.62 0.83
0 13.83 0.7
O 14.67 0.6
0c 9.08 0.85
o’ 287.41 15.26
R? 0.999
RMSE 5.23
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Figure A.49: MCMC Trace for DTAPs with SARSA(0) and WPL Policy with &y = 1.8,6¢ = 1.8
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Figure A.50: MCMC Mean for DTAPs with SARSA(0) and WPL Policy with 6y = 1.8,6¢ = 1.8
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Figure A.51: MCMC Autocorrelation for DTAPs with SARSA(0) and WPL Policy with &y =
1.8,0p = 1.8
3.0+ 404
35 “1
254
3.0
154
1.0+
10+ N
05 05
0 10 VVZU 30 40 0 10 ZUW 30 40 50 0 10 20 w 30 40 50
(@) Tine vs. W for By (b) Tine vs. W for 04 (¢) Tint vs. W for 0,
o
4 5
N
2
1 14
o 0 2 30 4 50 0 1 2 30 4 s e 70
w w
(d) Tint vs. W for 0, (e) Tint vs. W for o?
Figure A.52: MCMC Tin+ vs. W for DTAPs with SARSA(0) and WPL Policy with 8y = 1.8,0¢ =
1.8

200



Bibliography

[1] Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-organization
in a network of agents. In AAMAS °07: Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, pages 1-8, New York, NY, USA, 2007. ACM.
ISBN 978-81-904262-7-5.

[2] Sherief Abdallah and Victor Lesser. Learning the task allocation game. In AAMAS 06:
Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 850-857, New York, NY, USA, 2006. ACM. ISBN 1-59593-303-4.

[3] O. Abul, F. Polat, and R. Alhajj. Multiagent reinforcement learning using function approxi-
mation. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
30(4):485-497, 2000.

[4] M. N. Ahmadabadi and M. Asadpour. Expertness based cooperative g-learning. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 32(1):66-76, 2002.

(5] S. E. Ahnert, D. Garlaschelli, T. M. A. Fink, and G. Caldarelli. Ensemble approach to
the analysis of weighted networks. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics), 76(1), 2007.

[6] S. E. Ahnert, D. Garlaschelli, T. M. A. Fink, and G. Caldarelli. Applying weighted network
measures to microarray distance matrices. Journal of Physics A: Mathematical and Theoretical,
41(22):224011 +, 2008.

[7] Bruce Ankenman, Barry L. Nelson, and Jeremy Staum. Stochastic kriging for simulation
metamodeling. In 2008 Winter Simulation Conference (WSC), pages 362-370. IEEE, December
2008. ISBN 978-1-4244-2707-9.

[8] Kenneth ]J. Arrow, A. K. Sen, and Kotaro Suzumura, editors. Handbook of Social Choice and
Welfare, Volume 1 (Handbooks in Economics). North Holland, 1 edition, August 2002. ISBN
0444829148.

[9] W. Brian Arthur. Inductive reasoning and bounded rationality. The American Economic
Review, 84(2):406-411, 1994. ISSN 00028282.

[10] John Asmuth, Lihong Li, Michael L. Littman, Ali Nouri, and David Wingate. A bayesian
sampling approach to exploration in reinforcement learning. In Proceedings of The 25th
Conference on Uncertainty in Artificial Intelligence (UAI-09), June 2009.

201



BIBLIOGRAPHY

[11] Robert Axelrod and William D. Hamilton. The evolution of cooperation. Science, 211(4489):
1390-1396, 1981. ISSN 00368075.

[12] Babaoglu, H. Meling, and A. Montresor. Anthill: a framework for the development of
agent-based peer-to-peer systems. In 22nd International Conference on Distributed Computing
Systems, pages 15-22. IEEE Comput. Soc, July 2002. ISBN 0-7695-1585-1.

[13] B. Baddeley. Reinforcement learning in continuous time and space: Interference and not ill

conditioning is the main problem when using distributed function approximators. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(4):950-956, 2008.

[14] Sudipto Banerjee, Bradley, and Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial
Data (Monographs on Statistics and Applied Probability). Chapman & Hall/CRC, 1 edition,
December 2003. ISBN 158488410X.

[15] Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, October 1999.

[16] Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Weighted evolving networks:
Coupling topology and weight dynamics. Physical Review Letters, 92(22), 2004.

[17] Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Modeling the evolution of
weighted networks. Physical Review E, 70(6):066149 +, December 2004.

[18] Jordi Bascompte. Disentangling the web of life. Science, 325(5939):416-419, July 2009.

[19] S. Battiston. Inner structure of capital control networks. Physica A: Statistical Mechanics and
its Applications, 338(1-2):107-112, July 2004. ISSN 03784371.

[20] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of markov decision processes. Mathematics of Operations Research, 27
(4):819-840, 2002. ISSN 0364765X.

[21] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. Queneing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications.
WileyBlackwell, 2nd edition edition, May 2006. ISBN 0471565253.

[22] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity Proceedings). Oxford
University Press, USA, 1 edition, September 1999. ISBN 0195131592.

[23] Michael Bowling. Convergence and no-regret in multiagent learning. In Lawrence K. Saul,
Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17,
pages 209-216. MIT Press, Cambridge, MA, 2005.

[24] George E. P. Box and Norman R. Draper. Response Surfaces, Mixtures, and Ridge Analyses
(Wiley Series in Probability and Statistics). Wiley-Interscience, 2 edition, March 2007. ISBN
0470053577.

202



BIBLIOGRAPHY

[25] Michael Burl and Esther Wang. Active learning for directed exploration of complex systems.
In Léon Bottou and Michael Littman, editors, Proceedings of the 26th International Conference
on Machine Learning, pages 89-96, Montreal, June 2009. Omnipress.

[26] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent rein-
forcement learning. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 38(2):156-172, 2008.

[27] Carter T. Butts. Revisiting the foundations of network analysis. Science, 325(5939):414-416,
July 2009. ISSN 1095-9203.

[28] Rich Caruana and Alexandru N. Mizil. An empirical comparison of supervised learning
algorithms. In ICML °06: Proceedings of the 23rd international conference on Machine learning,
pages 161-168, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.

[29] Georgios Chalkiadakis and Craig Boutilier. Coordination in multiagent reinforcement
learning: a bayesian approach. In AAMAS °03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 709-716, New York, NY, USA,
2003. ACM Press. ISBN 1581136838.

[30] Georgios Chalkiadakis and Craig Boutilier. Bayesian reinforcement learning for coalition
formation under uncertainty. In AAMAS °04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1090-1097, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 1581138644.

[31] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérome Lang, Michel Lemaitre, Nicolas
Maudet, Julian Padget, Steve Phelps, Juan A. Rodriguez-aguilar, and Paulo Sousa. Issues in

multiagent resource allocation. Informatica, 30, 2006.

[32] Ka-Po Chow and Yu-Kwong Kwok. On load balancing for distributed multiagent computing.
Parallel and Distributed Systems, IEEE Transactions on, 13(8):787-801, November 2002.

[33] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In AAAT *98/IAAI’98: Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelligence, pages 746-752, Menlo
Park, CA, USA, 1998. American Association for Artificial Intelligence. ISBN 0-262-51098-7.

[34] Aaron Clauset, Cosma R. Shalizi, and M. E. ]. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661+, Feb 2009. ISSN 0036-1445.

[35] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical
models. Journal of Artificial Intelligence Research, 4:129-145, 1995.

[36] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani. The role of the airline transportation
network in the prediction and predictability of global epidemics. Proceedings of the National
Academy of Sciences of the United States of America, 103(7):2015-2020, February 2006. ISSN
0027-8424.

203



BIBLIOGRAPHY

[37] Rémi Coulom. Feedforward neural networks in reinforcement learning applied to high-
dimensional motor control. In Algorithmic Learning Theory - 13th International Conference,
ALT 2002 Liibeck, Germany, November 24-26, 2002 Proceedings, pages 403-414. Springer Berlin
/ Heidelberg, November 2009.

[38] Noel Cressie. The origins of kriging. Mathematical Geology, 22(3):239-252, April 1990.

[39] Noel A. C. Cressie. Statistics for Spatial Data (Wiley Series in Probability and Statistics).
Wiley-Interscience, rev sub edition, January 1993. ISBN 0471002550.

[40] Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. Bayesian prediction of
deterministic functions, with applications to the design and analysis of computer experiments.
Journal of the American Statistical Association, 86(416):953-963, 1991. ISSN 01621459.

[41] Dominik Dahlem and William Harrison. Waiting time sensitivities of social and random
graph models. Social Network Analysis and Mining, International Conference on Advances in, O:
176-181, July 2009.

[42] Dominik Dahlem and William Harrison. Globally optimal multi-agent reinforcement learning
parameters in distributed task assignment. Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, 2:28-35, 2009.

[43] Dominik Dahlem, David McKitterick, Lotte Nickel, Jim Dowling, Bartek Biskupski, and
René Meier. Binding- and port-agnostic service composition using a p2p soa. In Kunal Verma,
Amit Sheth, Michal Zaremba, and Christoph Bussler, editors, International Workshop on
Dynamic Web Processes DWP 2005, at ICSOC 2005, pages 61-72, P.O. Box 218, Yorktown
Heights, NY 10598 USA, December 2005. IBM T.]J. Watson Research Center.

[44] Dominik Dahlem, Lotte Nickel, Jan Sacha, Bartosz Biskupski, Jim Dowling, and René
Meier. Towards improving the availability of service compositions. In Digital EcoSystems and
Technologies Conference, 2007. DEST *07. Inaugural IEEE-IES, pages 67-70, June 2007.

[45] Elizabeth M. Daly and Mads Haahr. Social network analysis for information flow in discon-
nected delay-tolerant manets. IEEE Transactions on Mobile Computing, 8(5):606-621, May
2009. ISSN 1536-1233.

[46] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for communica-
tions networks. Journal of Artificial Intelligence Research, 9:317-365, December 1998.

[47] M. Dorigo, G. D. Di Caro, and L. Gambardella. Ant colony optimization: A new meta-
heuristic. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali
Zalzala, editors, Proceedings of the Congress on Evolutionary Computation, volume 2, pages
1470-1477, Mayflower Hotel, Washington D.C., USA, June-September 1999. IEEE Press.

[48] Marco Dorigo and Luca M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1):53-66, April 1997.

204



BIBLIOGRAPHY

[49] J. Dowling, E. Curran, R. Cunningham, and V. Cahill. Using feedback in collaborative
reinforcement learning to adaptively optimize manet routing. Systems, Man and Cybernetics,
Part A, IEEE Transactions on, 35(3):360-372, 2005.

[50] John Duchi, Shai S. Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the {;-ball for learning in high dimensions. In ICML 08: Proceedings of the 25th international
conference on Machine learning, pages 272-279, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-205-4.

[51] Pal Erd6s and Alfréd Rényi. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61, 1960.

[52] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. The MIT Press, 1st mit press paperback ed edition, December 2003. ISBN
0262562006.

[53] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships
of the internet topology. In SIGCOMM *99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, pages 251-262, New
York, New York, USA, 1999. ACM Press. ISBN 1581131356.

[54] Andrew O. Finley, Sudipto Banerjee, and Bradley P. Carlin. spbayes: An r package for

univariate and multivariate hierarchical point-referenced spatial models, April 2007.

[55] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing
360-degree compared. In 2008 Grid Computing Environments Workshop, pages 1-10. IEEE,
November 2008. ISBN 978-1-4244-2860-1.

[56] Linton C. Freeman. The Development of Social Network Analysis: A Study in the Sociology of
Science. Empirical Press, July 2004. ISBN 1594577145.

[57] Wai-Tat Fu and John R. Anderson. From recurrent choice to skill learning: A reinforcement-
learning model. Journal of Experimental Psychology: General, 135(2):184-206, May 2006.

[58] Aram Galstyan and Kristina Lerman. Analysis of a Stochastic Model of Adaptive Task Allocation
in Robots, volume 3464 of Lecture Notes in Computer Science, pages 167-179. Springer Berlin /
Heidelberg, Berlin / Heidelberg, May 2005.

[59] Shawn Gano, John Renaud, Jay Martin, and Timothy Simpson. Update strategies for kriging
models used in variable fidelity optimization. Structural and Multidisciplinary Optimization,
32(4):287-298, October 2006.

[60] Marie Gaudard, Marvin Karson, Ernst Linder, and Debajyoti Sinha. Bayesian spatial predic-
tion. Environmental and Ecological Statistics, 6(2):147-171, June 1999.

[61] Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, and A. Gelman. Bayesian
Data Analysis. Chapman & Hall/CRC, 1st edition, June 1995. ISBN 0412039915.

205



BIBLIOGRAPHY

[62] David Ginsbourger, Delphine Dupuy, Anca Badea, Laurent Carraro, and Olivier Roustant.
A note on the choice and the estimation of kriging models for the analysis of deterministic
computer experiments. Applied Stochastic Models in Business and Industry, 25(2):115-131, 2009.
ISSN 1526-4025.

[63] J. B. Glattfelder and S. Battiston. Backbone of complex networks of corporations: The flow
of control. Physical Review E, 80(3), September 2009. ISSN 1550-2376.

[64] William L. Goffe, Gary D. Ferrier, and John Rogers. Global optimization of statistical

functions with simulated annealing. Journal of Econometrics, 60:65-99, 1994.

[65] Eduardo R. Gomes and Ryszard Kowalczyk. Dynamic analysis of multiagent Q-learning with
e-greedy exploration. In Léon Bottou and Michael Littman, editors, Proceedings of the 26th
International Conference on Machine Learning, pages 369-376, Montreal, 2009. Omnipress.

[66] Richard L. Graham and Rainer Keller. Dynamic Communicators in MPI, volume 5759,
chapter 18, pages 116-123. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN
978-3-642-03769-6.

[67] Robert B. Gramacy and Herbert K. H. Lee. Adaptive design and analysis of supercomputer

experiments, 2009.

[68] Robert B. Gramacy, Herbert K. H. Lee, and William G. Macready. Parameter space explo-
ration with gaussian process trees. In ICML *04: Proceedings of the twenty-first international
conference on Machine learning, New York, NY, USA, 2004. ACM. ISBN 1581138285.

[69] Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243-1248, December 1968.

[70] Kenneth A. Hawick, P. D. Coddington, and H. A. James. Distributed frameworks and parallel
algorithms for processing large-scale geographic data. Parallel Computing, 29(10):1297-1333,
October 2003. ISSN 01678191.

[71] Pieter J. Hoen, Karl Tuyls, Liviu Panait, Sean Luke, and J. A. La Poutré. An Overview
of Cooperative and Competitive Multiagent Learning. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, March 2006.

[72] Roger W. Hoerl. Ridge analysis 25 years later. The American Statistician, 39(3):186-192, 1985.
ISSN 00031305.

[73] Ronald A. Howard. Dynamic Programming and Markov Process (Technology Press Research
Monographs). The MIT Press, first edition edition, June 1960. ISBN 0262080095.

[74] Junling Hu and Michael P. Wellman. Nash g-learning for general-sum stochastic games. J.
Mach. Learn. Res., 4:1039-1069, 2003. ISSN 1533-7928.

[75] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Newral Comput., 6(6):1185-1201, 1994. ISSN
0899-7667.

206



BIBLIOGRAPHY

[76] James R. Jackson. Jobshop-like queueing systems. Manage. Sci., 50(12 Supplement):1796-1802,
2004. ISSN 0025-1909.

[77] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Inf. Process.
Lett., 31(1):7-15, April 1989. ISSN 0020-0190.

[78] Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordination in coop-
erative multi-agent systems. In Eighteenth national conference on Artificial intelligence, pages
326-331, Menlo Park, CA, USA, 2002. American Association for Artificial Intelligence. ISBN
0-262-51129-C.

[79] K. Kerry and K. Hawick. Kriging interpolation on high-performance computers. In Pro-
ceedings of the International Conference and Exhibition on High-Performance Computing and
Nerworking, pages 429-438. Springer Berlin / Heidelberg, April 1998.

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671-680, May 1983. ISSN 1095-9203.

[81] J. Kleijnen. Kriging metamodeling in simulation: A review. European Journal of Operational
Research, 192(3):707-716, February 2009. ISSN 03772217.

[82] Kyriakos Kritikos and Dimitris Plexousakis. Mixed-integer programming for qos-based web
service matchmaking. Services Computing, IEEE Transactions on, 2(2):122-139, 2009. ISSN
1939-1374.

[83] Takayasu Kumano, Shinkyu Jeong, Shigeru Obayashi, Yasushi Ito, Keita Hatanaka, and
Hiroyuki Morino. Multidisciplinary design optimization of wing shape for a small jet aircraft
using kriging model. In 44th AIAA Aerospace Sciences Meeting and Exhibit. The American
Institute of Aeronautics and Astronautics (AIAA), January 2006.

[84] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. J. Mach. Learn. Res., 4:
1107-1149, 2003. ISSN 1533-7928.

[85] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, July 1982. ISSN 0164-0925.

[86] Averill M. Law and David W. Kelton. Simulation Modelling and Analysis. McGraw-Hill
Education - Europe, April 2000. ISBN 0071165371.

[87] Lihong Li, Michael L. Littman, and Christopher R. Mansley. Online exploration in least-
squares policy iteration. In Proc. of 8th Int. Conf. on Autonomouns Agents and Multiagent Systems
(AAMAS 2009), May 2009,

[88] Asher Lipson. Empirically evaluating multiagent reinforcement learning algorithms in

repeated games. Master’s thesis, University of British Columbia, November 2005.

[89] Michael L. Littman. Friend-or-foe g-learning in general-sum games. In Proceedings of the
Eighteenth International Conference on Machine Learning, pages 322-328. Morgan Kaufmann,
2001.

207



BIBLIOGRAPHY

[90] Michael L. Littman and Csaba Szepesvari. A generalized reinforcement-learning model:
Convergence and applications. Technical report, Brown University, Providence, RI, USA,
1996.

[91] P. J. Macdonald, E. Almaas, and A. L. Barabasi. Minimum spanning trees on weighted
scale-free networks, May 2004.

[92] Hamid Maei, Csaba Szepesvari, Shalabh Bhatnagar, Doina Precup, David Silver, and Rich Sut-
ton. Convergent temporal-difference learning with arbitrary smooth function approximation.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Newral Information Processing Systems 22, pages 1204-1212. 2009.

[93] S. Mannor and J. Shamma. Multi-agent learning for engineers. Artificial Intelligence, 171(7):
417-422, May 2007. ISSN 00043702.

[94] Jay D. Martin. A methodology for evaluating system-level uncertainty in the conceptual design
of complex multidisciplinary systems. PhD thesis, Dept. of Mechanical Engineering, The
Pennsylvania State University, May 2005.

[95] Jay D. Martin and Timothy W. Simpson. Use of kriging models to approximate deterministic
computer models. AIAA Journal, 43(4):853-863, 2005.

[96] Maja J. Matari¢. Reinforcement learning in the multi-robot domain. Autonomons Robots, 4(1):
73-83, March 1997. ISSN 09295593.

[97] Michael D. Mckay. Latin hypercube sampling as a tool in uncertainty analysis of computer
models. In WSC *92: Proceedings of the 24th conference on Winter simulation, pages 557-564,
New York, NY, USA, 1992. ACM Press. ISBN 0780307984.

[98] J. I. L. Miguéns and J. F. F. Mendes. Weighted and Directed Network on Traveling Patterns,
volume 5151 of Lecture Notes in Computer Science, chapter 13, pages 145-154. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-92190-5.

[99] Stanley Milgram. The small-world problem. Psychology Today, 1(1):60-67, 1967.

[100] Melanie Mitchell. Complex systems: Network thinking. Avrtificial Intelligence, 170(18):
1194-1212, December 2006.

[101] Toby J. Mitchell and Max D. Morris. Bayesian design and analysis of computer experiments:
Two examples. Statistica Sinica, 2(2):359-379, July 1992. ISSN 1017-0405.

[102] Douglas C. Montgomery. Design and Analysis of Experiments. Wiley, December 2004. ISBN
047148735X.

[103] Alberto Montresor, Hein Meling, and Ozalp Babaoglu. Messor: Load-balancing through a
swarm of autonomous agents. In In Proceedings of 1st Workshop on Agent and Peer-to-Peer
Systems, pages 125-137, 2002.

208



BIBLIOGRAPHY

[104] Oskar Morgenstern and John Von Neumann. Theory of Games and Economic Behavior.
Princeton University Press, May 1944. ISBN 0691003629.

[105] Herve Moulin. Axioms of Cooperative Decision Making (Econometric Society Monographs).
Cambridge University Press, July 1991. ISBN 0521424585.

[106] Rana Moyeed and Andreas Papritz. An empirical comparison of kriging methods for nonlinear
spatial point prediction. Mathematical Geology, 34(4):365-386, May 2002.

[107] Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook. Response
Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley
Series in Probability and Statistics). Wiley, 3 edition, January 2009. ISBN 0470174463.

[108] Radford M. Neal. Monte carlo implementation of gaussian process models for bayesian

regression and classification, Jan 1997.

[109] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks,
and centrality. Physical Review E, 64(1):016132+, Jun 2001.

[110] M. E. ]J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126+, Feb 2003.

[111] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46
(5):323-351, May 2006. ISSN 0010-7514.

[112] Ali Nouri and Michael L. Littman. Multi-resolution exploration in continuous spaces. In
Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Advances in
Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference
on Newral Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008, pages 1209-1216. MIT Press, December 2008.

[113] M. A. Oliver and R. Webster. Kriging: a method of interpolation for geographical information
systems. International Journal of Geographical Information Science, 4(3):313-332, 1990.

[114] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social Nerworks, 31(2):
155-163, May 2009. ISSN 03788733.

[115] Andy Oram. Peer-to-Peer : Harnessing the Power of Disruptive Technologies. O’Reilly, March
2001. ISBN 059600110X.

[116] Elinor Ostrom. A general framework for analyzing sustainability of social-ecological systems.
Science, 325(5939):419-422, July 2009.

[117] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387-434, November 2005. ISSN 1387-2532.

[118] H. T. Papadopoulos and C. Heavey. Queueing theory in manufacturing systems analysis
and design: A classification of models for production and transfer lines. European Journal of
Operational Research, 92(1):1-27, July 1996. ISSN 03772217.

209



BIBLIOGRAPHY

[119] L. Peshkin and V. Savova. Reinforcement learning for adaptive routing. In 2002 International
Joint Conference on Neural Networks ([[CNN), volume 2, pages 1825-1830. IEEE, 2002. ISBN
0-7803-7278-6.

[120] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, December 2005. ISBN
026218253X.

[121] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer Texts in
Statistics). Springer, July 2005. ISBN 0387212396.

[122] Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of adaptive meme. Journal of
Computational and Graphical Statistics, 18(2):349-367, June 2009.

[123] Raul Rojas. Neural Networks: A Systematic Introduction. Springer, 1 edition, July 1996. ISBN
3540605053.

[124] Jeffrey S. Rosenthal. Amcme: An r interface for adaptive meme. Computational Statistics &
Data Analysis, 51(12):5467-5470, 2007.

[125] Sheldon M. Ross. Simulation. Academic Press, 4 edition, August 2006. ISBN 0125980639.

[126] R. Rudek, L. Koszalka, and I. P. Koszalka. Introduction to multi-agent modified q-learning
routing for computer networks. In AICT-SAPIR-ELETE °05: Proceedings of the Advanced
Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent
Resources Conference/E-Learning on Telecommunications Workshop, pages 408-413, Washing-
ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2388-9.

[127] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation, chapter 8, pages 318-362. MIT Press, Cambridge, MA, USA, 1986. ISBN
0-262-68053-X.

[128] Stuart J. Russell and Peter Norvig. Artificial Intelligence: Modern Approach. Prentice Hall, 1st
edition, January 1995. ISBN 0131038052.

[129] Jan Sacha, Bartosz Biskupski, Dominik Dahlem, Raymond Cunningham, Jim Dowling, and
René Meier. A service-oriented peer-to-peer architecture for a digital ecosystem. In Digital
EcoSystems and Technologies Conference, 2007. DEST °07. Inangural IEEE-IES, pages 205-210,
June 2007.

[130] Jan Sacha, Bartosz Biskupski, Dominik Dahlem, Raymond Cunningham, René Meier, Jim
Dowling, and Mads Haahr. Decentralising a service-oriented architecture. Peer-to-Peer
Networking and Applications, October 2009. ISSN 1936-6450.

[131] Jerome Sacks, Susannah B. Schiller, and William J. Welch. Designs for computer experiments.
Technometrics, 31(1):41-47, 1989. ISSN 00401706.

210



BIBLIOGRAPHY

[132] A. Sadek and N. Basha. Self-learning intelligent agents for dynamic traffic routing on
transportation networks. In Proceedings of the 6th International Conference on Complex Systems
(ICCS), June 25-30, 2006; Boston, MA, June 2006.

[133] Jari Saramiki, Mikko Kiveld, Jukka P. Onnela, Kimmo Kaski, and Janos Kertész. Generaliza-
tions of the clustering coefficient to weighted complex networks. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 75(2):027105+, 2007.

[134] Andrea Schaerf, Yoav Shoham, and Moshe Tennenholtz. Adaptive load balancing: a study in
multi-agent learning. J. Artif. Int. Res., 2(1):475-500, 1994. ISSN 1076-9757.

[135] Frank Schweitzer, Giorgio Fagiolo, Didier Sornette, Fernando Vega-Redondo, Alessandro
Vespignani, and Douglas R. White. Economic networks: the new challenges. Science (New
York, N.Y.), 325(5939):422-425, July 2009. ISSN 1095-9203.

[136] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for locally
distributed systems. Computer, 25(12):33-44, 1992. ISSN 0018-9162.

[137] Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365-377, May 2007. ISSN 00043702.

[138] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, December 2008. ISBN 0521899435.

[139] Wasserman Stanley and Faust Katherine. Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences). Cambridge University Press, 1 edition, November
1994. ISBN 0521387078.

[140] Jeremy Staum. Better simulation metamodeling: The why, what, and how of stochastic
kriging. In Simulation Conference, 2009. WSC 2009. Winter, December 2009.

[141] Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging (Springer Series in
Statistics). Springer, 1 edition, June 1999. ISBN 0387986294.

[142] E. Stinstra and D. Denhertog. Robust optimization using computer experiments. Exropean
Journal of Operational Research, 191(3):816-837, December 2008. ISSN 03772217.

[143] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345-383, June 2000. ISSN 09295593.

[144] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning is direct adaptive
optimal control. Control Systems Magazine, IEEE, 12(2):19-22, 1992.

[145] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press, March 1998. ISBN 0262193981.

[146] Bosiljka Tadi¢, G. J. Rodgers, and Stefan Thurner. Transport on complex networks: Flow,

jamming and optimization, Jul 2006.

211



BIBLIOGRAPHY

[147] Milind Tambe, Jafar Adibi, Yaser Al-Onaizan, Ali Erdem, Gal A. Kaminka, Stacy C. Marsella,
and Ion Muslea. Building agent teams using an explicit teamwork model and learning.
Artificial Intelligence, 110(2):215-239, June 1999. ISSN 0004-3702.

[148] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement learning
approach to autonomic resource allocation. In Proceedings of the IEEE International Conference
on Autonomic Computing, 2006. ICAC *06, pages 65-73, 2006.

[149] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215-219, March 1994. ISSN 0899-7667.

[150] Gerald Tesauro. Online resource allocation using decompositional reinforcement learning. In
AAAT05: Proceedings of the 20th national conference on Artificial intelligence, pages 886-891.
AAAI Press, 2005. ISBN 1-57735-236-x.

[151] Gerald Tesauro, Nicholas Jong, Rajarshi Das, and Mohamed Bennani. Improvement of
systems management policies using hybrid reinforcement learning. In Machine Learning:
ECML 2006 - 17th European Conference on Machine Learning, Berlin, Germany, September 18-22,
2006, Proceedings, pages 783-791, 2006.

[152] Gerald Tesauro, Nicholas Jong, Rajarshi Das, and Mohamed Bennani. On the use of hybrid
reinforcement learning for autonomic resource allocation. Cluster Computing, 10(3):287-299,
2007.

[153] Sebastian Thrun. The role of exploration in learning control. In Handbook for Intelligent
Control: Neural, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold, Florence, Kentucky,
1992.

[154] V. A. Traag and Jeroen Bruggeman. Community detection in networks with positive and
negative links. Physical Review E, 80(3), September 2009. ISSN 1550-2376.

[155] John N. Tsitsiklis. Asynchronous stochastic approximation and g-learning. Machine Learning,
16(3):185-202, September 1994.

[156] Kagan Tumer and David Wolpert, editors. Collectives and the Design of Complex Systems.
Springer, 1 edition, May 2004. ISBN 0387401652.

[157] Kagan Tumer and David Wolpert. Collective intelligence and braess’ paradox. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence, pages 104-109. AAAI Press / The MIT Press,
2000. ISBN 0-262-51112-6.

[158] Karl Tuyls, Katja Verbeeck, and Tom Lenaerts. A selection-mutation model for g-learning in
multi-agent systems. In AAMAS *03: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pages 693-700, New York, NY, USA, 2003. ACM.
ISBN 1-58113-683-8.

212



BIBLIOGRAPHY

[159] Wim C. M. van Beers. Kriging metamodeling in discrete-event simulation: an overview.
In WSC °05: Proceedings of the 37th conference on Winter simulation, pages 202-208. Winter
Simulation Conference, 2005. ISBN 0780395190.

[160] Wim C. M. van Beers and Jack P. C. Kleijnen. Customized sequential designs for random
simulation experiments: Kriging metamodeling and bootstrapping. European Journal of
Operational Research, 186(3):1099-1113, May 2008. ISSN 03772217.

[161] H. van den Herik, D. Hennes, M. Kaisers, K. Tuyls, and K. Verbeeck. Multi-agent learning
dynamics: A survey. In Cooperative Information Agents XI, Lecture Notes in Computer

Science, pages 36-56. Springer Berlin / Heidelberg, September 2007.

[162] N. Vandaele, T. V. Woensel, and A. Verbruggen. A queueing based traffic flow model.
Transportation Research Part D: Transport and Environment, pages 121-135, March 2000. ISSN
1361-9209.

[163] Jay M. Ver Hoef, Noel Cressie, Robert N. Fisher, and Ted J. Case. Uncertainty and Spatial
Linear Models for Ecological Data, chapter 10, pages 214-237. Springer, 1 edition, June 2001.
ISBN 0387951296.

[164] Katja Verbeeck, Johan Parent, and Ann Nowé. Homo egualis reinforcement learning agents
for load balancing. In Innovative Concepts for Agent-Based Systems, pages 81-91. Springer
Berlin / Heidelberg, 2003.

[165] Katja Verbeeck, Ann Nowé¢, Johan Parent, and Karl Tuyls. Exploring selfish reinforcement
learning in repeated games with stochastic rewards. Autonomouns Agents and Multi-Agent
Systems, 14(3):239-269, November 2006. ISSN 1573-7454.

[166] Alessandro Vespignani. Predicting the behavior of techno-social systems. Science, 325(5939):
425-428, July 2009.

[167] José M. Vidal. Fundamentals of Multiagent Systems: Using NetLogo Models. Unpublished, 2006.

[168] Wen X. Wang, Bing H. Wang, Bo Hu, Gang Yan, and Qing Ou. General dynamics of topology
and traffic on weighted technological networks. Physical Review Letters, 94(18), 2005.

[169] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an optimal nash
equilibrium in team markov games. In in Advances in Neural Information Processing Systems,
volume 15, pages 1571-1578, 2002.

[170] Christopher ]J. C. H. Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning,
8(3):279-292, May 1992.

[171] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440-442, June 1998. ISSN 0028-0836.

[172] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence. The MIT Press, March 1999. ISBN 0262232030.

213



BIBLIOGRAPHY

[173] B. P. Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419-420, 1962. ISSN 00401706.

[174] Ward Whitt. Deciding which queue to join: Some counterexamples. Operations Research, 34
(1):55-62, 1986. ISSN 0030364 X.

[175] Wayne Winston. Optimality of the shortest line discipline. Journal of Applied Probability, 14
(1):181-189, 1977. ISSN 00219002.

[176] U. Wolff. Monte carlo errors with less errors. Computer Physics Communications, 156(2):
143-153, January 2004. ISSN 00104655.

[177] D. H. Wolpert, K. R. Wheeler, and K. Tumer. Collective intelligence for control of distributed
dynamical systems. EPL (Europhysics Letters), 49(6):708-714, 2000.

[178] David H. Wolpert and William G. Macready. No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM, February 1995.

[179] David H. Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives.
Advances in Complex Systems (ACS), 4(02):265-279, 2001.

[180] David H. Wolpert and Kagan Tumer. Collective intelligence, data routing and braess’ paradox.
J. Artif. Int. Res., 16(1):359-387, 2002. ISSN 1076-9757.

[181] David H. Wolpert, Kagan Tumer, and Jeremy Frank. Using collective intelligence to route
internet traffic. In Proceedings of the 1998 conference on Advances in newral information
processing systems II, pages 952-958, Cambridge, MA, USA, 1999. MIT Press. ISBN 0-262-
11245-0.

[182] J. W. Wong. Queueing network modeling of computer communication networks. ACM
Comput. Surv., 10(3):343-351, 1978. ISSN 0360-0300.

[183] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Automating daml-s web
services composition using shop2. In The Semantic Web - ISWC 2003, pages 195-210. Springer
Berlin / Heidelberg, 2003.

[184] Ying Xiong, Wei Chen, Daniel Apley, and Xuru Ding. A non-stationary covariance-based
kriging method for metamodelling in engineering design. International Journal for Numerical
Methods in Engineering, 71(6):733-756, 2007.

[185] Kenny Q. Ye. Orthogonal column latin hypercubes and their application in computer
experiments. Journal of the American Statistical Association, 93(444):1430-1439, 1998. ISSN
01621459.

[186] C.Y. Yin, B. H. Wang, W. X. Wang, G. Yan, and H. ]. Yang. Traffic dynamics based on an
efficient routing strategy on scale free networks. The European Physical Journal B - Condensed
Matter and Complex Systems, 49(2):205-211, January 2006.

214



BIBLIOGRAPHY

[187] Chongjie Zhang, Victor Lesser, and Prashant Shenoy. A multi-agent learning approach
to online distributed resource allocation. In IJCAI 2009, Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence, pages 361-366, July 2009.

[188] George K. Zipf. Human Behaviour and the Principle of Least Effort. Hafner Publishing Co
Ltd, new issue of 1949 ed edition, 1949. ISBN 0028558308.

215



	Titlepage
	Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Introduction
	Task Networks
	A Perspective on Coupling Artificial Intelligence and Complex Networks
	Empirical Evaluation

	Why Multi-Agent Reinforcement Learning?
	Why Complex Network Modelling?
	Challenges
	Outline and Contributions

	Response Surface Methodology for Stochastic Computer Simulations
	Introduction to Response Surface Methodology
	Overview of Spatial Data Modelling
	Kriging Modelling
	Stochastic Kriging
	Estimating Kriging Model Parameters
	Posterior Predictive Inference
	Kriging Model Assessment


	Design of Experiments for Kriging Models
	Parallel Kriging
	Pilot Design
	Iterative Model Improvement
	Parallel Master-Slave Design

	Canonical Analysis of Kriging Models
	Ridge Analysis

	Summary

	Modelling Distributed Task Assignment Problems
	Queueing Systems
	Analytical Equations
	Discrete Event Simulation

	Network Evolution Models
	Algebraic Graph Theory
	Social Model
	Random Model

	Evaluation
	Methodology
	Structural Properties
	Sensitivity Analysis

	Conclusion and Future Work

	Fundamentals of Reinforcement Learning
	Markov Decision Processes
	Value Functions
	Elementary Solution Methods
	Dynamic Programming
	Monte Carlo Methods
	On-Policy Monte Carlo Control
	Off-Policy Monte Carlo Control

	Temporal Difference Methods
	SARSA-Learning
	Q-Learning
	Generalisation over State Spaces


	Multi-agent Systems
	Introduction to Game Theory
	Multi-agent Reinforcement Learning
	Cooperative Multi-agent Reinforcement Learning
	Competitive Multi-agent Reinforcement Learning


	Summary

	Reinforcement Learning for Distributed Task Assignment Problems
	Related Works
	Learning Theory
	Resource Allocation
	Distributed Task Assignment

	Decentralised MDP Framework
	Modelling Cooperation in DTAPs
	Centralised Communication and Control
	Decentralised Communication and Control
	Collaborative Function Approximators


	Summary

	Calibrating Multi-agent Reinforcement Learning Methods
	Response Surface Methodology
	DTAPs with the BBV Model
	Uniformly Random Transition Probabilities
	Adaptive Transition Probabilities
	SARSA(0) with epsilon-greedy Policy
	SARSA(0) with WPL
	Collaborative Function Approximators


	DTAPs with the ER Model
	Uniformly Random Transition Probabilities
	Adaptive Transition Probabilities
	SARSA(0) with epsilon-greedy Policy
	SARSA(0) with WPL


	Summary

	Non-linear Dynamics of Multi-agent Learning
	Queueing Dynamics
	Reward-based Dynamics
	Influence Dynamics
	Algebraic Graph Structures for Control Analysis
	Identifying the Backbone of Control
	Instantaneous Control Structures for Adaptive Queueing Systems

	Summary

	Conclusions
	Summary
	Contributions and Related Works
	Future Work
	Response Surface Methodology
	Queueing Network Modelling
	Decentralised Control Mechanisms
	Behavioural Analysis


	Appendices
	MCMC Inference of the Kriging Parameters
	BBV DTAPs
	Uniformly Random Decision Policy
	deltaV=[1.2, 1.3], deltaE=[1.2, 1.3]
	deltaV=[1.7, 1.8], deltaE=[1.7, 1.8]

	SARSA(0) and epsilon-greedy Policy
	deltaV=1.2, deltaE=1.2
	deltaV=1.8, deltaE=1.8
	deltaV=1.2, deltaE=1.2 and outsourced Function Approximators

	SARSA(0) and WPL Policy
	deltaV=1.2, deltaE=1.2
	deltaV=1.8, deltaE=1.8
	deltaV=1.2, deltaE=1.2 and outsourced Function Approximators


	ER DTAPs
	Uniformly Random Decision Policy
	deltaV=[1.2, 1.3], deltaE=[1.2, 1.3]
	deltaV=[1.7, 1.8], deltaE=[1.7, 1.8]

	SARSA(0) and epsilon-greedy Policy
	deltaV=1.2, deltaE=1.2
	deltaV=1.8, deltaE=1.8

	SARSA(0) and WPL Policy
	deltaV=1.2, deltaE=1.2



	Bibliography

