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Abstract

Rank data arise when a set of judges rank some or all of a set of objects. Rank

data emerges in many areas of society; the list of the world’s most cited scientists

or the final ordering of horses in a race provide examples of such data. Irish society

generates a wealth of rank data in two specific contexts: applicants to Irish third

level educational institutions rank degree courses in order of preference and under

the Irish electoral system voters rank candidates in order of preference.

The relationships that may exist between the set of objects ranked and between

the judges who rank them are explored in this thesis. The set of applicants to

Irish third level institutions in the year 2000 are investigated to determine if groups

of similar applicants exist and if so, what characteristics they share. Voters and

candidates from the 1997 Irish presidential election and from the 2002 Irish general

election are examined. The (dis)similarities that the Irish electorate deem to exist

between candidates are revealed.

Complex rank data models are developed which take account of the ranked nature

of the data. Mixture models, and extensions thereof, are used to model heteroge-

neous populations which generate rank data; a latent space model is also proposed

which locates the ranked objects in an unobservable space. Model fitting is per-

formed in both classical and Bayesian frameworks. Unique model fitting techniques

are necessary due to the complex nature of the models.

Examining fitted model parameters provides insight to the underlying mecha-

nisms which drive Irish social opinions. Applicants to Irish third level institutions

are influenced by course discipline, an institutions’ geographical location and by

course prestige. Evidence of both candidate orientated and politically driven voters

is also presented.
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Chapter 1

Introduction

Rank data arises when a set of judges rank some or all of a set of objects. Rank

data emerges naturally in many areas of society; the list of the world’s most cited

scientists, the ranking of internet search results by relevance or the final ordering of

horses in a race all provide examples of such data.

Two aspects of Irish society produce a wealth of rank data. Applicants to insti-

tutions of third level education in Ireland apply directly to the Central Applications

Office (CAO). On an application form, an applicant may rank up to ten degree

programs in order of preference. Thus each year thousands of applicants with dif-

ferent characteristics and vocations generate a rich source of rank data. Another

source of rank data in Ireland are presidential and general elections. Irish presi-

dential elections employ an electoral system known as the Single Transferable Vote

system (STV); a similar system known as Proportional Representation by means

of a Single Transferable Vote (PR-STV) is used in general elections. Under these

electoral systems a voter’s ballot form consists of a ranking of some or all of the

electoral candidates in order of preference. Opinion polls, typically conducted prior

to elections, generate similar preference data. The aim of this thesis is to explore

the relationships that may or may not exist between the set of objects ranked and

between the judges who rank them within the contexts of Irish third level college

applications and Irish elections.

1



1.1 The Central Applications Office System

The Irish college applications system involves prospective college students ranking

up to ten degree courses in order of preference prior to sitting their final second

level examinations (Leaving Certificate). Applications are processed by the Central

Applications Office (CAO) who deal with applications for all third level degree

programs in Ireland.

The method of gaining entry to third level education, as managed by the CAO,

is a much debated subject among the Irish media, students, parents and education

circles. Many aspects of the CAO system appear annually as headlines in the Irish

media (see Figure 1.1) – national front pages carry stories of fluctuating entry points

requirements and volatile applicant numbers, particularly for the weeks surrounding

the announcement of who is admitted to each course.

(a) (b)

Fig. 1.1: Sample headlines from the national ‘Irish Independent’ newspaper from

the days surrounding the announcement of the Leaving Certificate results. Figure

1.1(a) is the front page headline from Monday August 23rd 2004; Figure 1.1(b) is

the front page headline from Wednesday August 16th 2006.

Detractors suggest that applicants are influenced by the annual media hype and

rank courses according to entry requirements, ensuring they study a current ‘high

profile’ course and therefore they may ignore their vocational callings. They claim

artificial demand is created for courses deemed to be of high social standing. Sup-

2



porters insist it is a fair system where each applicant is dealt with in a consistent

and transparent manner. The supporters claim that the so called ‘points race’ for

entry to courses is media generated and has no significant affect on applications.

If students are actually selecting courses according to their prestige rather than

by vocational callings, then there should exist groups of applicants where the dis-

cipline of their ranked courses are quite different, but the common feature of their

selected courses is that they have high points requirements. Therefore, if the points

race drives applicants’ choices, then groups of applicants ranking high points require-

ment courses together (such as Law, Medicine, Pharmacy, Dentistry and Actuarial

Science) should be present, but where the courses are from different disciplines. On

the other hand, if the system does work in its intended manner, then applicants

should belong to groups where the discipline of their ranked courses is consistent.

This thesis focuses on analyzing the set of degree course applications made

through the CAO in the year 2000; there is a separate applications system for

diploma and nursing courses. Details of the CAO data are provided in Chapter

2. The resulting groupings of applicants reveal that applicants generally appear to

be driven by their vocational interests as discipline emerges as the defining charac-

teristic of applicant groups. The geographical location of the institution to which

an applicant applies also transpires to have a significant influence on course choice.

Crucially however, some weight is added to the CAO system detractors’ arguments.

A deeper analysis of the revealed groups highlights a subtle influence of the required

points on the applicants’ choices. A separate analysis of the male and female data

suggests applicants of different gender have different course choice behaviours.

1.2 Irish Elections

In elections, the electorate exhibit different voting behaviours by choosing to vote

for different candidates. The difference in voting behaviour may be due to allegiance

to a political party, choosing familiar candidates, choosing geographically local can-

didates or one of many other reasons. The different voting behaviours lead to a

collection of votes from a heterogenous population.

This thesis focuses on studying Irish elections because the votes recorded under

3



the Single Transferable Vote electoral system contain information on the preferences

that the voters have for the candidates. The aim is to provide an exploratory analysis

of the Irish electorate and their opinions. This greatly adds to the understanding of

how the Irish electoral system works in practice.

Two elections are analyzed — the 1997 Irish presidential election and the 2002

Irish general election. These elections are quite different in character; the general

election elects the government and party politics are believed to play an important

role, whereas party politics are believed to only play a minor role in the presidential

election. Full details of both elections and of the electoral system are provided in

Chapter 2.

It is observed that there is strong political party support in the general election,

because voters tend to give their high preferences to candidates from the same

political party or to parties of a particular persuasion. There is also evidence however

of candidate orientated voters within the Irish electorate in both the presidential and

general elections.

1.3 Overview of Chapters

A brief outline of the research conducted follows.

Chapter 2: Rank Data

The models and methods described in this thesis are applied to rank data which

naturally arise within the context of Irish society. The circumstances which give

rise to these rank data sets and their specific features are detailed in this chapter.

Full details of the intricate counting process employed in Irish elections is also given.

Chapter 3: Statistical Methodology

Statistical models for rank data are necessary for the appropriate modelling of the

Irish CAO and election data sets. Details of the Plackett-Luce model and of Benter’s

model for rank data are provided. Model fitting is achieved in both the classical and

Bayesian frameworks throughout this thesis — the theory and methods employed

in both paradigms are discussed in this chapter. Finally, model selection is an
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fundamental element of statistical modelling; many different criteria and techniques

are available. A discussion of those examined and implemented in this work is given.

Chapter 4: Mixtures of Plackett-Luce Models

In Chapter 4 mixture models are used to investigate the presence of groupings in

the set of Irish third level college applications. A finite mixture model assumes that

the population consists of a finite collection of components. It is assumed that the

probability of belonging to component k is πk. In addition, an observation within

component k has a probability density f(·|p
k
), where p

k
are unknown parameters.

By estimating the values of πk and f(·|p
k
) this model-based approach allows a com-

plete clustering of the applicants to be made. The mixture models that are employed

use the Plackett-Luce model for ranked data as the probability densities within each

component.

Models are fitted within the classical framework with extensive use made of the

EM algorithm. Mathematical intractability causes problems when implementing the

EM algorithm for rank data and thus a compound EM/MM algorithm is used.

Chapter 5: Mixtures of Benter Models

A similar mixture modelling approach is proposed for modelling the heterogeneous

Irish electorate. Voting patterns are modelled using Benter’s model for rank data;

mixtures of Benter models are fitted by maximum likelihood using the EM algorithm.

Issues with fitting mixture models using the EM algorithm are discussed and variants

of the EM algorithm are also considered. Mixtures of Benter models are fitted to

data from the 1997 presidential election and to data from the 2002 general election.

Chapter 6: A Grade of Membership Model for Rank Data

A grade of membership model is similar to a mixture model in that it models a

heterogeneous population as a collection of ‘extreme profiles’. However, the grade

of membership model allows each member of the population have a probability of

belonging to each extreme profile rather than only forming a hard partition of the

population as mixture models do. The grade of membership model is incorporated

with the Plackett-Luce model for rank data which is used to model the voters’
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preference data. This is fitted within the Bayesian paradigm to data from the 1997

Irish presidential election.

Chapter 7: A Mixture-of-Experts Model for Rank Data

Mixture-of-experts models build further on the structure implemented by mixture

models by taking account of both the observations and associated covariates when

modelling a heterogeneous population. The aim in this chapter is to perform an

exploratory analysis of the Irish electorate to determine which social factors influence

voting patterns and what the induced voting patterns are. Both the votes cast and

the covariates associated with the voters are modelled. The preferences expressed

are modelled via Benter’s model for rank data. Data from the 1997 Irish presidential

opinion polls are analyzed. Model fitting is conducted in the classical framework

again making use of a compound EM/MM algorithm.

Chapter 8: A Latent Space Model for Rank Data

Early chapters focus on modelling and exploring the heterogeneous nature of a set of

judges who generate rank data. The latent space model introduced in this chapter

provides another tool for exploring such a population. The focus however is no longer

on examining the heterogeneous nature of the judges but on estimating the relative

locations of the judges and the objects they rank in a latent space. This model is

fitted to a range of data sets from both the 1997 Irish presidential election and from

the 2002 Irish general election. The relative spatial locations of the candidates in

the latent space are suggestive of the type of relationships that may exist between

the candidates as viewed by the electorate.

The Plackett-Luce model for rank data is again employed to model the ranked

nature of the electorate’s votes. The latent space model is fitted within the Bayesian

paradigm; typical latent space model issues such as identifiability and dimensionality

arise.

6



1.4 Research Contributions

The following are the main contributions made by the research contained in this

thesis:

1. The development of statistical models for heterogeneous populations, the mem-

bers of which have expressed preferences on a number of objects. Models which

have the scope to incorporate covariates associated with members of the pop-

ulation have also been presented.

2. A latent space model for objects which have been ranked has been completed.

The ranked objects have a location in an unobservable space where their rel-

ative positions are suggestive of the relationships between the objects.

3. Maximization issues associated with complex rank data models have been

overcome via the MM algorithm.

4. The provision of suitable proposal distributions for sampling within a Bayesian

framework via ideas from the MM algorithm has been developed.
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Chapter 2

Rank data

The models and methods described in future chapters are applied to rank data which

naturally arise within the context of Irish society. The circumstances which give rise

to these rank data sets and their specific features are detailed here.

2.1 Central Applications Office Data

A college application which is made through the CAO allows an applicant rank up

to ten degree courses in order of their preference. Course places are subsequently

offered using both these ordered choices and the applicants’ grades. The Central

Applications Office (CAO) data set was collected in the year 2000 and consists of the

course choices of 53757 applicants to degree courses offered in Irish third level insti-

tutions. A total of 533 degree courses were selected by the applicants. The gender

of each applicant is known — there were 29338 female and 24419 male applicants

in the year 2000. Characteristic features of these data include the large number of

applicants giving preferences for a large number of courses and the constraint that

applicants are restricted in the number of courses they may rank.

Typically, seven or eight subjects are taken for the Leaving Certificate examina-

tion. Once graded the best six examination results are used to produce a ‘points’

score; each grade A1, A2, B1, ..., NG (No Grade) has an associated number of points.

Subsequent to examination grading, the CAO fixes a universal points requirement

for each degree program. Applicants are subsequently offered a place in their highest

preference course for which they have achieved the points requirement; in the case of
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applicants being tied for the last available positions in a course, random allocation

is used to choose which applicant is offered a place.

It is worth emphasizing that applicants do not know the required course points

requirement prior to completing their application or to taking their examinations.

The points requirement is influenced by the examination results of applicants who

applied for the course and by the number of available positions in the course. Some

courses have minimum entry standards, for example, a sufficient standard of math-

ematics may be required for an engineering degree. However, the actual subjects

taken at Leaving Certificate level do not have an effect on the applicants points score

nor does previous examination performance; a few courses have interviews but these

are not common. The subjects Irish, English and Mathematics taken at Leaving

Certificate level are entry requirements for Irish applicants for many courses but the

remaining subjects are the student’s choice. In addition, the Leaving Certificate can

be taken several times without having any effect on an application.

International applicants are dealt with in the same manner. For example, the UK

final secondary level A-Level results are converted into points — these are totalled

and subsequently such applicants are allocated a course by the same method as Irish

Leaving Certificate students. The college applications system used in Australia is

also similar; applicants rank up to nine courses which are processed by a Universi-

ties Admission Centre (UAC) (see http://www.uac.edu.ac). Both the Irish CAO

and Australian UAC systems can be likened to the ‘Tote’ in horse-racing betting

(http://www.tote.ie). In the Tote, no punter knows the odds on any horse prior

to all bets being placed. Similarly under the CAO system no applicant knows the

points requirements for any course prior to the publication of all examination re-

sults. Extensive details of the college applications system are available on the CAO

web page (http://www.cao.ie).

In 1997, the Minister for Education and Science set up the “Commission on

the Points System” to review the current college applications system. This led to

the publication of a report (Hyland, 1999) which reviews the system and makes a

series of recommendations concerning its future. A series of four research reports

were also published in conjunction with the commission’s final report. Of particular

interest is the report of Tuohy (1998) who studies the college application data using
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exploratory techniques; this work is the closest to the analysis presented in this

thesis. Of some interest is the report of Lynch et al. (1999) who investigates the

predictive performance of the points awarded to applicants in determining overall

performance in higher education. These reports received an enormous amount of

coverage in the Irish media and were discussed at length by the public. The general

conclusion of the exercise was although the current system is not perfect, it works

very well in practice. Clancy (1995) studies the admissions (rather than applications)

data for students in Irish third level institutions, but his work is closely related to

this analysis.

2.2 Irish Voting Data

Irish general (governmental) elections employ an electoral system known as Pro-

portional Representation by means of a Single Transferable Vote (PR-STV). Since

proportional representation is not possible in single seat elections, Irish presidential

elections employ the Single Transferable Vote (STV) system. Under both systems

voters rank some (or all) of the electoral candidates in order of preference. The votes

are totalled through a series of counts, where candidates are eliminated, their votes

are distributed, and surplus votes are transferred between candidates. An in depth

description of the electoral system, including the method of counting votes is given

in Sinnott (1999) and good introductions to the Irish political system are given in

Coakley and Gallagher (1999) and Sinnott (1995). Further, an illustrative example

of the manner in which votes are counted and transferred follows in Chapter 2.2.3.

2.2.1 The 1997 Presidential Election

The eighth (and current) President of Ireland, Mary McAleese, was originally elected

in 1997. The number of candidates in the 1997 presidential election was larger than

usual. There were five candidates that year: Mary Banotti, Mary McAleese, Derek

Nally, Adi Roche, and Rosemary Scallon. Some candidates were endorsed by polit-

ical parties and others were independent candidates (see Table 2.1). Mary Banotti,

Derek Nally and Adi Roche were considered to be liberal candidates where Mary

McAleese and Rosemary Scallon were deemed the more conservative candidates;
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Derek Nally entered the election race at a later stage than the other four candi-

dates.

Table 2.1: The five candidates who ran for Irish presidency in 1997 and their

endorsing political parties. Mary McAleese was subsequently elected.

Candidate Endorsing Party

Mary Banotti Fine Gael (FG)

Mary McAleese Fianna Fáil, Progressive Democrats

and Sinn Féin (FF, PD and SF)

Derek Nally Independent (Ind)

Adi Roche Labour (Lab)

Rosemary Scallon Independent (Ind)

Seven opinion polls and an exit poll, taken on polling day, were completed during

the election campaign.

Four of the opinion polls were conducted by Irish Marketing Surveys (IMS)

during the two months prior to the election. Approximately 1100 respondents,

drawn from 100 sampling areas, were interviewed for each poll. Interviews took place

at randomly located homes with individuals selected according to a socioeconomic

quota. A range of sociological questions were asked of each respondent as was the

respondent’s voting preference, if any, for each of the candidates. These preferences

were in effect utilized as each respondent’s vote. Everyone included in the poll data

expressed at least one preference — in fact each poll has slightly more than the

required 1100 respondents.

The other three opinion polls were conducted by the Market Research Bureau of

Ireland (MRBI), again during the two month electoral campaign. A similar sampling

methodology as used in the IMS polls was employed — 100 Primary Sampling Units

(PSU’s) were selected from census data, and from each PSU 10 interviews were

conducted using a random route procedure. The sample was quota controlled by

age, gender, and socioeconomic class. Each of the three MRBI polls contained

‘missing’ data — an average of 150 respondents in each poll either replied don’t

know, won’t vote or refused to give their preferences. Examining such voters and
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their covariates is an area of further research; only those respondents who expressed

at least one preference are modelled here.

On the day of the presidential election, October 30th 1997, Lansdowne Market

Research conducted an exit poll where 2498 voters were interviewed at 150 polling

stations in all 41 Irish constituencies.

As all of these polls were conducted using similar methodology the comparison

of respondents of different polls is deemed to be justified.

A detailed description of the entire presidential election campaign, including the

nomination and selection of candidates, is given by Marsh (1999). The sources of

the poll data are given in Appendix A.

2.2.2 The 2002 General Election

Ireland had its most recent general election on May 17th, 2002. In 2002 the Irish elec-

torate was composed of forty two constituencies; the 1997 Dublin West constituency

had been subdivided into the Dublin West and Dublin Mid-West constituencies. One

hundred and sixty six politicians were elected to be members of Dáil Éireann (the

Irish parliament). This election saw the introduction of electronic voting, for the

first time, in three constituencies (Dublin North, Dublin West, and Meath). The

remaining thirty nine constituencies had paper ballots. The electronic votes cast

are analyzed in this work.

Dublin North.

In the Dublin North constituency twelve candidates campaigned for four par-

liamentary seats. The total electorate was 72908 and only 43942 valid votes

were cast. The two major Irish political parties of Fianna Fáil and Fine Gael

had multiple representatives — Fianna Fáil had three and Fine Gael two. The

candidates who ran in the Dublin North constituency and their political affil-

iations are detailed in Table 2.2.

Dublin West.

In the Dublin West constituency three seats were to be filled with nine can-

didates running for election. The nine candidates represented eight political
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parties, with Fianna Fáil having two candidates. The electorate was 53780 and

there was a total of 29988 valid votes cast. Table 2.3 details the candidates

and their associated political parties.

Meath.

Five seats in Dáil Éireann were to be filled from the constituency of Meath and

fourteen candidates ran for these seats within the constituency. The fourteen

candidates represented seven political parties, with the major Irish parties of

Fianna Fáil and Fine Gael each having three candidates (see Table 2.4). The

electorate was 108717 and there was a total of 64081 valid votes cast.

The voting data from the Dublin North, Dublin West and Meath constituencies

are publicly available and the sources are given in Appendix A. These data were

previously analyzed using exploratory data analysis techniques by Laver (2004).

Table 2.2: The twelve candidates who ran for election in the Dublin North con-

stituency. An asterisk * before the name of a candidate indicates that the candidate

was subsequently elected in the 2002 election.

Candidate Abbreviation Party

BOLAND, Cathal Bol Fine Gael (FG)

DALY, Clare Dal Socialist Party (SP)

DAVIS, Mick Dav Sinn Féin (SF)

∗GLENNON, Jim Gle Fianna Fáil (FF)

GOULDING, Ciaran Gou Independent (Ind)

KENNEDY, Michael Ken Fianna Fáil (FF)

OWEN, Nora Owe Fine Gael (FG)

QUINN, Eamon Qui Independent (Ind)

∗RYAN, Seán Rya Labour (Lab)

∗SARGENT, Trevor Sar Green Party (GP)

WALSHE, David Wal Christian Solidarity Party (CSP)

∗WRIGHT, G.V. Wri Fianna Fáil (FF)
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Table 2.3: The nine candidates who ran for election in the Dublin West con-

stituency. An asterisk * before the name of a candidate indicates that the candidate

was subsequently elected in the 2002 election.

Candidate Abbreviation Party

BONNIE, Robert Bon Green Party (GP)

∗BURTON, Joan Bur Labour (Lab)

DOHERTY-RYAN, Deirdre Do-Ry Fianna Fáil (FF)

∗HIGGINS, Joe Hig Socialist Party (SP)

∗LENIHAN, Brian Len Fianna Fáil (FF)

McDONALD, Mary Lou McD Sinn Féin (SF)

MORRISSEY, Tom Mor Progressive Democrats (PD)

SMYTH, John Thomas Smy Christian Solidarity Party (CSP)

TERRY, Sheila Ter Fine Gael (FG)

2.2.3 The Vote Counting Process

A brief overview of the vote counting process is given here. For illustrative purposes,

the transfer of votes in the Dublin West constituency, where there were three seats

available for election, is shown in Table 2.5. Under the PR-STV electoral system a

constituency specific ‘quota’ of votes is calculated which depends on the number of

seats available and the number of valid votes cast. Specifically the quota is

quota =
total valid votes in the constituency

number of seats to be filled + 1
+ 1.

Thus for the Dublin West constituency the quota was calculated to be 7498. Once

any candidate at any counting stage obtained or exceeded 7498 votes this candidate

was elected.

As detailed in Table 2.5, in the first stage of the counting process the number of

first preference votes obtained by each candidate is totalled. As candidate Lenihan

got 8086 first preference votes, which is more than the quota, he was the first

candidate to be elected. Candidates Bonnie and Smyth got the lowest number of

first preferences and, as neither would ever be able to exceed the quota of votes

required, were eliminated from the race. Thus at the second stage of counting
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Table 2.4: The fourteen candidates who ran for election in the Meath constituency.

An asterisk * before the name of a candidate indicates that the candidate was

subsequently elected in the 2002 election.

Candidate Abbreviation Party

∗BRADY, Johnny By Fianna Fáil (FF)

∗BRUTON, John Bt Fine Gael (FG)

COLWELL, Jane Cl Independent (Ind)

∗DEMPSEY, Noel Dp Fianna Fáil (FF)

∗ENGLISH, Damien Eg Fine Gael (FG)

FARRELLY, John Fr Fine Gael (FG)

FITZGERALD, Brian Ft Independent (Ind)

KELLY, Tom Kl Independent (Ind)

OBRIEN, Pat Obr Independent (Ind)

OBYRNE, Fergal Oby Green Party (GP)

REDMOND, Michael Rd Christian Solidarity Party (CSP)

REILLY, Joe Rl Sinn Féin (SF)

∗WALLACE, Mary Wl Fianna Fáil (FF)

WARD, Peter Wd Labour (Lab)
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their 748 and 134 votes respectively were transferred to the candidates given the

second place preference on those ballot forms. Seventy five of these votes were non-

transferrable i.e. no second place preferences were expressed. Lenihan’s 588 votes in

excess of the quota were transferred at the third stage of counting to those candidates

given second place preferences on those ballot forms. The 588 of Lenihan’s votes

that were transferred were randomly selected from his 8086 first preference votes.

At the fourth stage of the counting process, after the previous transfers, candidate

McDonald was not be able to reach the quota and was thus eliminated from the

race. Her 2524 votes were then transferred to the next most preferred remaining

candidates detailed on each of the ballots. 487 of these were non-transferrable votes.

Subsequent to the transfer of McDonald’s votes, Higgins’ 7853 votes exceeded the

quota and thus he was elected. At the fifth stage of the counting process Morrissey

was eliminated and his 2662 votes were transferred to those remaining candidates

ranked next on the ballot forms — 359 of Morrissey’s votes were non-transferrable.

At the sixth and final stage of counting Doherty-Ryan had the least number of

votes and as her elimination left only one candidate, Burton was elected. Thus

Lenihan was elected outright on first preference votes, but Higgins and Burton were

subsequently elected during the counting process.

While the PR-STV system has many proponents, it also has many opponents.

Sinnott (1995) describes some of the potential problems with the PR-STV system

in an Irish context. Other potential flaws are explained in Katz (1984) and Brams

and Fishburn (1984).

It has been argued that the PR-STV voting system puts too little emphasis on the

political parties and too much emphasis on the candidates (Katz, 1984; Blais, 1991)

and thus can lead to fracticious governments; this potential problem is examined in

Sinnott (1995) where it is concluded that this problem does not manifest itself to a

great degree in Irish elections.
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Table 2.5: The transfer of votes in the Dublin West constituency. The numbers

marked in boldface indicate that the candidate was elected. Three seats were avail-

able. The - symbol indicates that a candidate has been eliminated from the election.

The quota required for guaranteed election for this constituency is 7498.

Candidate Party Count

1 2 3 4 5 6

Bonnie, R. GP 748 — — — — —

-748

Burton, J. Lab 3810 4020 4079 4375 5125 6300

+210 +59 +296 +750 +1175

Doherty-Ryan, D. FF 2300 2386 2698 3056 3728 —

+86 +312 +358 +672 -3728

Higgins, J. SP 6442 6660 6731 7853 7853 7853

+218 +71 +1122

Lenihan, B. FF 8086 8086 7498 7498 7498 7498

-588

McDonald, M. SF 2404 2498 2524 — — —

+94 +26 -2524

Morrissey, T. PD 2370 2480 2554 2662 — —

+110 +74 +108 -2662

Smyth, J. CSP 134 — — — — —

-134

Terry, S. FG 3694 3783 3829 3982 4863 5669

+89 +46 +153 +881 +806

Non-transferable 75 75 562 921 2668

+75 +0 +487 +359 +1747
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Chapter 3

Statistical Methodology

In future chapters the data outlined in Chapter 2 is modelled and analyzed to gain a

better understanding of the mechanisms which give rise to it. Statistical models are

constructed and inferences are drawn on the parameters of these models. Several

different models are fitted using a range of methods from both the classical and

Bayesian paradigms.

In this chapter the rank data models employed throughout are detailed as are

the statistical frameworks in which they are fitted. Model choice is an intrinsic part

of the analysis and the various model selection techniques employed are also detailed

here.

3.1 The Plackett-Luce Model for Rank Data

When modelling rank data an appropriate rank data model is required. Several

models have been proposed in the literature to model rank data. The Bradley-Terry

model (Bradley and Terry, 1952) examines competition between a set of individuals

as a set of pairwise comparisons from which an ‘ability parameter’ can be inferred

and thus a ranking of the competitors can be formed. Future chapters have a slightly

different context in that all competitors are simultaneously compared with each

other, rather than in a pairwise manner. Fienberg and Larntz (1976) examine a log

linear representation of the Bradley-Terry model whose advantage is that it can be

easily generalized to deal with multivariate extensions of the Bradley-Terry model.

Other possible models for rank data are described in Critchlow (1985), Diaconis
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(1988) and Marden (1995). Fligner and Verducci (1993) provide details of a variety

of applications of models for ranking data. More recently, Bradlow and Fader (2001)

model the simultaneous movement of multiple items up and down a ranking over

time within a Bayesian framework with an exploding multinomial-logit likelihood.

Johnson et al. (2002) take a Bayesian latent variable approach to modelling rank

data from multiple evaluators who may use different ranking criteria. They include

parameters in their hierarchical model to accommodate ties within the rankings.

Graves et al. (2003) model car racing results by using a combination of the Bradley-

Terry model with the Luce model and Stern’s model to form their ‘attrition model’

which estimates driver ability. A step-wise approach is taken where the probability

of a driver finishing in last place is examined and from this the final permutation of

drivers is built. Hunter (2004) discusses unique fitting techniques for the Bradley-

Terry model.

Multi-stage ranking models (Marden, 1995, Section 5.6) have a nice interpreta-

tion in terms of sequentially choosing items in order of preference. One parsimonious

multi-stage ranking model which is easily interpretable is the Plackett-Luce model

(Plackett, 1975).

Plackett (1975) motivated the Plackett-Luce model in terms of modelling horse

races where a vector of probabilities for each horse winning is used to construct a

probability model for the finishing order. Similar characteristics can be identified

between horse races and the process of ranking third level courses or electoral can-

didates; for example, once an object has been chosen it cannot be selected again,

and following a choice being made the probability of any remaining object being

selected at the next stage is altered.

The Plackett-Luce model is parameterized by a support parameter

p = (p1, p2, . . . , pN)

where N denotes the total number of objects from which the judges choose and
∑N

j=1 pj = 1. The probability of object 1 being ranked in first position is p1. The

probability of object 2 being ranked second, given that object 1 is ranked first, is

p2/
∑

j 6=1 pj. That is, it is equal to the probability that object 2 is ranked first when

all objects except object 1 are available for selection. The probability of object

3 being ranked third, given that objects 1 and 2 are selected first and second, is
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p3/
∑

j 6∈{1,2} pj. The process continues to give the other placing probabilities. That

is, each ranking is modelled as the product of the probabilities of each chosen object

being ranked first where, at each preference level, the probabilities are appropriately

normalized.

Let ni be the number of objects ranked by judge i and let c(i, t) denote the

course/candidate ranked at the tth level by judge i. The Plackett-Luce model then

suggests the probability of judge i’s ranking xi = (c(i, 1), . . . , c(i, ni)) is

P{xi|p} =

ni∏
t=1

P{Object c(i, t) being ranked in position t|Available objects}

=
pc(i,1)∑N
s=1 pc(i,s)

· pc(i,2)∑N
s=2 pc(i,s)

· · · pc(i,ni)∑N
s=ni

pc(i,s)
(3.1)

=

ni∏
t=1

pc(i,t)∑N
s=t pc(i,s)

where, for s > t, the sequence of objects c(i, s) is any arbitrary ordering of the

unselected objects.

The Plackett-Luce model assumes a weak dependence between the objects ranked

at different levels. In particular, P{c(i, t) = j} depends on {c(i, 1), . . . , c(i, t − 1)}
but is independent of their order. This appears to be a reasonable assumption as the

ranking process involves deciding if an object should be placed higher or lower than

other alternatives and not on the specific level at which the other alternatives are

ranked. Thus at each choice level in the Plackett-Luce model the support parameter

probabilities are adjusted such that they account for the objects already ranked.

Rosén (1972) proposed an approximation for the Plackett-Luce model when

studying sampling with unequal probabilities. Rosén proved that for sufficiently

large N the difference between the probability of ranking object j in first position

and the probability of ranking object j in any lower position tends to zero i.e. for

large N the choices are approximately independent for t = 1, . . . , ni. Thus the

probability of voter i’s ranking could be modelled as

P{xi|p} ≈ pc(i,1)pc(i,2) . . . pc(i,ni).

Implementation of this approximation is discussed in Chapter 6.

The Plackett-Luce model is said to exhibit independence from irrelevant alter-

natives (see Train, 2003) as the ratio of the probabilities of choosing one alternative
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over another is independent of all other available alternatives and independent of

the choice level. While it can be argued that such models are unrealistic in some

situations, in the applications detailed in Chapter 2 the model appears to provide

a realistic representation of the choice process. A detailed description of the rela-

tionship between independence from irrelevant alternatives and rank data models is

given in Marden (1995, Section 5.13.1).

3.2 Benter’s Model for Rank Data

The Plackett-Luce model suffers from the property that the probability of an object

with a low support parameter being ranked highly is too small. Similarly, under the

Plackett-Luce model

P{choosing object j at level t} > P{choosing object j at level s}

for any t > s; this is not always a good model for many ranking contexts. Ben-

ter (1994), within the context of modelling horse races, proposed a variant of the

Plackett-Luce model to overcome these issues. The Benter model has two parame-

ters: a support parameter p = (p1, p2, . . . , pN) where
∑N

j=1 pj = 1 and a dampening

parameter

α = (α1, α2, . . . , αN)

where N denotes the total number of objects available for selection. The support

parameter pj represents the probability of object j being given a first preference;

the dampening parameters model the way in which some preferences may be chosen

less carefully than other preferences. Under the Benter model, the probability of

judge i’s ranking xi is:

P{xi|p, α} =

ni∏
t=1

pαtc(i,t)∑N
s=t p

αt
c(i,s)

where ni denotes the total number of preferences expressed by judge i. It is rea-

sonable to assume that 0 ≤ αt ≤ 1, which makes lower preference choices at least

as random as higher preference ones (see Proposition 1, Appendix B). In any case,

α1 ≡ 1 and αN ≡ 0 for all models; this avoids over parameterization of the model.

Under the Benter model the log odds of selecting object j over object l at choice

level t is αt log (pj/pl). Thus the tth level dampening parameter αt can be interpreted
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as how the log odds of selecting object j over object l is affected by the selection

being made at choice level t. Since α1 is constrained to be 1 for identifiability

reasons, at the first choice level the log odds is unaffected. An α2 value of 0.8, for

example, indicates that the log odds is ‘dampened’ by a fifth to model the manner

in which the second selection was made with less certainty than the first. Thus

the probabilities in the Benter model have greater entropy than the Plackett-Luce

model (see Proposition 1, Appendix B). The Plackett-Luce model is in fact a special

case of the Benter model with α = 1 ≡ (1, 1, . . . , 1). The estimation of dampening

parameters is of interest as the care with which judges express their preferences is

an attribute of the ranking process which is of interest.

As with the Plackett-Luce model, one concern associated with choice models

is the issue of independence from irrelevant alternatives (IIA). The Benter model

exhibits IIA within choice levels as the ratio of the probability of choosing one alter-

native over another is independent of the other available alternatives. In the Benter

model the ratio of the probabilities varies with choice level due to the dampening pa-

rameter in the model. While it can be argued that IIA is an unsatisfactory property

in some situations, again in the applications under study here the models appear to

give a realistic representation of the choice process.

3.3 Classical Inference

Both the manner in which the rank statistical models are constructed and the way

in which inferences are subsequently drawn can be conducted within a classical or

Bayesian framework.

Classical inference is based on a frequency interpretation of probability i.e. the

probability of an event x is the proportion of times that x has been observed to

occur in an infinite sequence of trials. Bayesian inference takes a subjective view

of probability which measures the degree of belief an individual has in a proposi-

tion. Both the data observed and any prior knowledge the individual has about the

proposition are involved in the degree of belief.

More specifically, the fundamental difference between classical and Bayesian in-

ference is that model parameters are treated as random variables when conducting
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Bayesian inference whereas parameters take (unknown) unique values in the classical

paradigm (O’Hagan and Forster, 2004).

In 1922, Fisher introduced the method of maximum likelihood to make inferences

about the parameters of an underlying model given a data set. Maximum likelihood

methods lie within the classical framework as parameters are treated as unknown

unique values and no prior information is taken into account when drawing inferences

from the parameter estimates.

Definition 1 Assume x = (x1, . . . , xM) is a sample of size M drawn from a proba-

bility density f(x|θ). The joint density of the observed data is then f(x1, . . . , xM |θ).

As a function of the parameter θ and treating x as fixed the likelihood function

is

L(θ) = f(x1, . . . , xM |θ)

Under the maximum likelihood method the value of θ which maximizes L(θ) is

reported as the the maximum likelihood estimator θ̂. Often it is straight forward

to maximize the likelihood L(θ) with respect to the model parameters. In future

chapters however this is not the case and numerical techniques are employed to

maximize the likelihood. In Chapters 4, 5 and 7 the expectation-maximization (EM)

algorithm is employed as a method of producing maximum likelihood estimators

(MLEs).

3.3.1 The EM Algorithm

Dempster et al. (1977) introduced the EM algorithm as a technique to produce

MLEs for problems where the data is incomplete. Latent variables or missing data

points can be an intrinsic feature of the problem under investigation or they can

be artificially imputed. Such missing data both makes implementation of the EM

algorithm feasible and can often have useful interpretations.

In principle, the EM process is straight forward to implement and has broad

applicability. It is a two step iterative algorithm consisting of an expectation (E)

step followed by a maximization (M) step. Generally, during the E step the expected

value of the log likelihood of the complete data (i.e. the observed and unobserved

data) is computed. In the M step the expected log likelihood is maximized producing
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MLEs of the model parameters. In practice, the imputation of latent variables often

makes maximization of the expected likelihood feasible. The parameter estimates

produced during the M step are then used in a new E step and the cycle continues

until convergence.

While the EM algorithm will not decrease the observed data likelihood function

(see Dempster et al. (1977)) there is no guarantee that the resulting sequence of

parameter estimates will converge to the MLE. Multiple runs of the algorithm from

different parameter starting values should help avoid local maxima. Dempster et al.

(1977) defined the generalized EM (GEM) algorithm which increases the value of

the likelihood at the M step without actually maximizing it. Many other variants

of the EM algorithm have also emerged; for example the expectation and condi-

tional maximization (ECM) algorithm (Meng and Rubin, 1993) and the stochastic

EM (SEM) algorithm (Celeux and Diebolt, 1985) among others. McLachlan and

Krishnan (1997) provides an excellent review.

An important feature of iterative algorithms is the determination of convergence.

Aitken’s accleration criterion (Böhning et al., 1994; Lindsay, 1995; McLachlan and

Peel, 2000) was employed throughout the following chapters as a convergence crite-

rion. Denote by {l(t)} the sequence of log likelihood values which emerge from the M

steps of the EM algorithm. Assuming l∗ is the limiting value of these log likelihoods

it follows that

l(t+1) − l∗ ≈ a(l(t) − l∗) for 0 ≤ a ≤ 1

⇒ l(t+1) − l(t) ≈ (1− a)(l∗ − l(t)).

Thus if a ≈ 1 a small increase in the log likelihood value does not necessarily imply

that the EM algorithm is close to convergence. It can be shown that estimating a

by the ratio of successive increments leads to the Aitken acceleration estimate of the

limiting log likelihood value

l∗ ≈ l(t) − {l
(t+1) − l(t−1)}
{l(t) − l(t−1)} {l

(t+1) − l(t)}.

The EM algorithm should be stopped if |l(t+1) − l∗| < ε where ε is a pre-specified

tolerance level. Since this criterion is not an exact indicator of convergence multiple

runs of the algorithm with random starts must be employed.
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Within Chapters 4, 5 and 7 the specific calculations performed by the EM algo-

rithm are fully detailed.

3.4 Bayesian Inference

Under the Bayesian philosophy prior beliefs about various hypotheses are updated

in light of relevant observed data to produce posterior beliefs. Bayesian analysis is

subjective in nature in that one’s personal prior beliefs need not agree with another’s

prior beliefs.

Assume interest lies in the value of the k ≥ 1 dimensional parameter θ which

describes the underlying mechanism of the process of interest. The Bayesian method

generally comprises of the following steps:

1. Summarizing prior knowledge

Prior knowledge or information about the parameter values can be based on

personal experience or on an expert’s opinion. Such beliefs are characterized by

a probability density P{θ} known as the prior density. The manner in which

prior distributions are selected and specified (i.e. prior elicitation) requires

careful attention (see Chapter 3.4.1).

2. Formation of the likelihood function

Assume M relevant data values x = (x1, . . . , xM) are observed which depend

on the unknown parameter θ. The likelihood function (see Definition 1) of

the data L(θ) = P{x|θ} is formed by calculating the joint probability density

of the observed data given the parameters. When P{x|θ} is considered as a

function of the data given θ it is a probability density and thus properties such

as integration to unity hold. Alternatively, when P{x|θ} is considered as a

function of the parameter θ given the data such properties do not necessarily

hold and P{x|θ} is known as the likelihood function.

3. Formation of the posterior

Bayes theorem provides the tool for combining the two sources of information

i.e. the prior knowledge P{θ} about the parameters and the likelihood function
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which expresses the relationship between the data and θ. Bayes theorem states

P{θ|x} =
P{θ}P{x|θ}

P{x}
∝ P{θ}P{x|θ}
∝ prior × likelihood

where

P{x} =





∫
P{θ}P{x|θ}dθ in the continuous case

∑
θ P{θ}P{x|θ} in the discrete case.

Bayes theorem constructs the posterior density P{θ|x} which is a summary of

all knowledge about the parameter θ subsequent to observing x.

4. Inference

The posterior distribution is a comprehensive inference statement about the

model parameter θ. Any summary of the posterior distribution is useful eg.

moments, quantiles, highest posterior regions and credible intervals (see Lee

(2004)).

3.4.1 Prior Elicitation

Prior elicitation is the process of constructing a prior distribution which reflects

your background information. Two aspects require consideration when construct-

ing a prior distribution; firstly the choice of prior distribution and secondly the

specification of the hyperparameters of the prior distribution.

The type of distribution chosen is generally governed by mathematical tractabil-

ity constraints. Such requirements often necessitate the use of conjugate priors.

Definition 2 A class
∏

of prior densities is said to form a conjugate family if

the posterior density P{θ|x} is in the class
∏

for all x whenever P{θ} ∈∏.

Thus when using conjugate priors the only change when updating the prior distri-

bution to the posterior distribution is a change of parameter values. In cases where

a conjugate prior is not justifiable or where it is infeasible, selection of the type of

distribution should not be governed by mathematical tractability; sampling from a

non-standard posterior distribution is possible using numerical methods.

26



Selection of the prior hyperparameters also requires care. Crude methods such

as eliciting opinions on various properties (eg. moments) of the parameter θ and

equating these opinions to their theoretical value (as a function of θ) can be used.

Sensitivity analysis is important in prior elicitation i.e. the effect of changes in values

of the prior’s hyperparameters on any subsequently calculated posterior distribution

should be investigated.

When eliciting priors it may also be the case that the expert/researcher cannot

provide much background information about the parameter θ. Thus a suitable ‘non-

informative’ prior is necessary. Specifying large variance hyperparameters induces

a prior distribution which is flat over realistic values of θ. If the range of possible

values of θ is finite, a uniform distribution on this range would be a suitable non-

informative prior. If the parameter takes values over an infinite range the ‘improper’

prior

P{θ} =
1

c
where −∞ < θ <∞ and c = constant

is often used. This is an improper prior in that it’s integral is infinite. Although

the prior is not a valid probability density function it is possible that the posterior

density may be.

3.4.2 Markov Chains

In order to make inferences about the posterior distribution of interest, directly sam-

pling from the posterior itself allows the calculation of approximations of integration-

based summaries (such as posterior moments and marginal densities). For non-

standard posterior distributions sampling is not always a straight forward procedure.

Markov chain Monte Carlo (MCMC) methods are a collection of techniques which

allow (in an asymptotic sense) the sampling of dependent observations from a den-

sity of interest. They cope easily with high dimensional problems and non-standard

posterior distributions.

A key notion embedded in MCMC theory is that of a stochastic process and a

Markov chain.

Definition 3 A stochastic process is a set of random variables {xt; t ∈ T} where

T is called the index set. Each xt takes a value (i.e. a state) in a set S known as

the state space.

27



A discrete time stochastic process occurs when T is a countable set. In what follows

a discrete state space is assumed but the theory is easily extended to the case where

the state space S is continuous.

Definition 4 A stochastic process {xt; t ∈ T} is called a Markov chain with

countable state space S if:

1. P{xt ∈ S} = 1 ∀ t ≥ 0

2. the distribution of xt+1 is independent of all previous random variables but xt

i.e.

P{xt+1|x0, x1, . . . , xt} = P{xt+1|xt}

i.e. the Markov property holds.

A Markov chain where the distribution of xt+1 given xt is independent of t is said

to be a homogeneous chain. In such a case

Pxy = P{xt+1 = y|xt = x}

is known as the transition probability. As Pxy is a probability it follows that Pxy ≥
0 ∀x, y ∈ S and

∑
y∈S Pxy = 1 ∀x ∈ S. The transition matrix

P =




P11 P12 . . . P1s

P21 P22 . . . P2s

...
...

. . .
...

Ps1 Ps2 . . . Pss




is known as the transition or Markov matrix. The t-step transition probability P t
xy

denotes the probability of moving from state x to state y in t steps.

Under certain conditions P t
xy converges asymptotically to a unique distribution

π(·). π(·) is known as the stationary (or invariant) distribution of the Markov chain

and is independent of both t and the starting state x0. To explain the conditions

necessary for the convergence of a Markov chain to a stationary distribution some

definitions are required.

Definition 5
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1. A Markov chain is irreducible if for any starting state x ∈ S there exists t

such that P t
xy ≥ 0∀y ∈ S. In other words for any starting state x the chain can

eventually reach every region of the state space S with positive probability.

2. A Markov chain is said to be periodic if it cycles between disjoint subsets of

the state space S. Any Markov chain which is not periodic is called aperiodic.

3. A state x is said to be recurrent if the Markov chain starting in state x

returns to state x with probability 1. If the expected time to return to state

x is finite x is said to be positive recurrent. A state which is not recurrent is

said to be transient. It follows that a Markov chain is said to be (positive)

recurrent if all states are (positive) recurrent.

4. A Markov chain with stationary distribution π(·) is defined to be ergodic if

it is irreducible, aperiodic and positive recurrent.

For an ergodic Markov chain |P t
xy − π(·)| → 0 as t → ∞ for any initial state x0.

Thus the limiting distribution of the chain is the stationary distribution. An ergodic

Markov chain tends to sample from π(·) as the number of transitions in the chain

tends to infinity.

3.4.3 Markov Chain Monte Carlo Methods

Integration based summaries of posterior densities can be formed using Monte Carlo

integration. Monte Carlo integration asserts that the expectation E[f(x)] can be

approximated by

E[f(x)] ≈ 1

M

M∑
i=1

f(xi)

where the points x = (x1, . . . , xM) are independent samples drawn from the density

of interest. Basic sampling techniques such as the acceptance-rejection technique

and the inverse transform method are available but for non-standard distributions

these become complicated. Press et al. (1996) provide details of sampling from a

range of commonly used densities.

To sample from high dimensional or complex distributions Markov chain Monte

Carlo (MCMC) techniques are used. Suppose it was possible to simulate from a ho-

mogeneous, ergodic Markov chain whose unique stationary distribution π(·) was in
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fact the posterior (or target) distribution of interest. Subsequent to a burn-in period

of the Markov chain (i.e. a period of transitions of the chain after which the station-

ary distribution π(·) is reached) any random variables sampled from the chain will

be dependent samples drawn from an approximation of the target distribution π(·).
Such samples could be used in Monte Carlo integration to estimate expectations;

since the sampled random variables are in fact dependent, Monte Carlo integration

can only be employed if the samples are representative of the full support of the

target distribution.

Construction of a Markov Chain

To construct a Markov chain whose stationary distribution is the required posterior

distribution of interest the relevant transition probabilities are required. It turns out

(see Tierney (1994)) that probabilities which satisfy a condition known as detailed

balance or time reversibility i.e.

π(xt)P{xt+1|xt} = π(xt+1)P{xt|xt+1}

are suitable transition probabilities. Detailed balance means that the probability of

being in state xt at time t and moving to state xt+1 at time t + 1 (when the initial

probabilities are given by the stationary distribution π(xt)) is the same as starting

at xt+1 and ending in state xt.

To illustrate why the appropriate stationary distribution is reached when detailed

balance holds, denote by rxx the probability that the chain remains in state x. Then

P{xt+1 = y|xt = x} = Pxy = P ∗xy + rxxδxy

where P ∗xx = 0 and

δxy =





1 if y = x

0 otherwise.

Since the chain must either remain in the same state or move to a new state it

follows that

1 =
∑
y

Pxy =
∑
y

P ∗xy + rxx (3.2)
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Hence

∑
y

π(xt)Pxy =
∑
y

π(xt)P
∗
xy +

∑
y

π(xt)rxxδxy

=
∑
y

π(xt+1)P ∗yx + π(xt+1)ryy (by detailed balance)

= π(xt+1)(1− ryy) + π(xt+1)ryy (by (3.2))

= π(xt+1).

Thus given transition probabilities Pxy which satisfy detailed balance the marginal

distribution of xt+1 can be obtained where xt comes from the stationary distribution

π(·). Once xt is sampled from the stationary distribution any subsequent samples

will also be from the stationary distribution. This proves that given detailed balance

holds the stationary distribution is π(·) but is not a proof that P t
xy will converge to

the stationary distribution; see Gilks et al. (1996) for details.

The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov chain method to simulate multi-

variate distributions. It was first proposed by Metropolis et al. (1953), generalized

by Hastings (1970) and is now commonly referred to as the Metropolis-Hastings

algorithm. Chib and Greenberg (1995) provide an introductory article; Gilks et al.

(1996) provides further detail. Suppose the posterior distribution π(·) is the sta-

tionary distribution to be sampled from. Given that the Markov chain is in state xt,

the algorithm begins by drawing a proposal state, y, for state xt+1 from a candidate

density q(·|xt). If the density q(·|xt) satisfies detailed balance, then the algorithm

detailed below proceeds safe in the knowledge that (asymptotically) sampled values

will be drawn from the desired posterior distribution. More commonly it is the case

that

π(xt)q(xt+1|xt) > π(xt+1)q(xt|xt+1) (3.3)

which means detailed balance does not hold and that the chain moves from state xt

to state xt+1 more often than it moves from xt+1 to xt. An ‘acceptance probability’

α(xt, xt+1) is introduced which is the probability of a move from xt to xt+1. Since

too many moves are made from xt to xt+1, and as α(·, ·) is a probability, α(xt+1, xt)
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is made as large as possible i.e. α(xt+1, xt) = 1. To satisfy detailed balance it must

follow that

π(xt)q(xt+1|xt)α(xt, xt+1) = π(xt+1)q(xt|xt+1)α(xt+1, xt)

⇒ α(xt, xt+1) =
π(xt+1)q(xt|xt+1)

π(xt)q(xt+1|xt) .

If inequality (3.3) is reversed α(xt, xt+1) = 1 and the derivation of α(xt+1, xt) follows.

Thus to ensure detailed balance holds the acceptance probability is set to be

α(xt, xt+1) = min

[
1,
π(xt+1)q(xt|xt+1)

π(xt)q(xt+1|xt)
]
. (3.4)

The probability of moving from state xt = x to state xt+1 = y is Pxy = q(y|x)α(x, y);

it follows that the probability of remaining in state x is rxx = 1−∑y q(y|x)α(x, y).

These transition probabilities make up the transition matrix.

In summary the Metropolis-Hastings algorithm proceeds as follows:

1. Given the chain is in state xt, for state xt+1 generate a proposal state y from

a candidate density q(·|xt).

2. Compute the acceptance probability α(xt, xt+1).

3. Generate a value u ∼ Uniform(0, 1).

4. If u ≤ α(xt, xt+1) then define xt+1 = y , otherwise define xt+1 = x.

5. Return the sequence x1, . . . , xM where M is the number of iterations performed

subsequent to burn in.

If the candidate density employed is symmetric i.e. q(xt+1|xt) = q(xt|xt+1) the

acceptance probability reduces to

α(xt, xt+1) = min

[
1,
π(xt+1)

π(xt)

]

which is the form originally proposed by Metropolis et al. (1953). If such a symmet-

ric density is employed all uphill moves are accepted (i.e. when π(xt+1) > π(xt));

some downhill moves are also accepted (i.e. when π(xt+1) < π(xt)). A ‘random walk’

Metropolis algorithm has candidate density of the form q(xt+1|xt) = q(|xt+1 − xt|).
This is a symmetric density and thus the algorithm also reduces to the Metropolis
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algorithm. Many other families of candidate-generating densities are available (see

Chib and Greenberg (1995) and Lee (2004)). The rate of convergence of the chain to

the stationary distribution depends on the relationship between the candidate den-

sity and the target density; Gilks et al. (1996) provides more detail on strategically

choosing q(·|·).
The choice of parameters within the candidate density is of critical importance.

Assume the chain is currently located near the mode of the target density. If the

spread of the candidate distribution is small then generated candidates will be close

to the current state. It will therefore take the chain a long time to explore the full

support of the target density (i.e. poor ‘mixing’ will occur) and low probability

areas will be undersampled. This is often indicated by a high acceptance rate (i.e.

the percentage of moves accepted). Conversely, if the spread of the distribution is

too large, proposed states will have low probability of being accepted giving low

acceptance rates. Roberts et al. (1994) and Chib and Greenberg (1995) provide

further discussion of this issue.

The Gibbs Sampler

A single component Metropolis-Hastings algorithm divides a K dimensional random

variable x into blocks and updates x block by block. A special case of the single

component Metropolis-Hastings algorithm is the Gibbs sampler. The term ‘Gibbs

sampling’ arose in Geman and Geman (1984) who analyzed the Gibbs distribution

in an image-processing context. Gelfand and Smith (1990) later revealed its general

applicability within mainstream statistics.

Let x = (x1, . . . , xK) denote a random variable with joint density π(x1, . . . , xK).

Interest lies in sampling from the marginal density

π(x1) =

∫
. . .

∫
π(x1, . . . , xK)dx2 . . . dxK .

Denote by x−i = (x1, . . . , xi−1, xi+1, . . . , xK). In Gibbs sampling the proposal distri-

bution for updating the ith component of x with target density π(·) is

q(yi|xi,x−i) = π(yi|x−i)

i.e. the full conditional distribution of the ith component of x conditional on the

remaining components of x. Substituting this proposal density into (3.4) gives an
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acceptance probability of 1. Thus in the Gibbs sampler all moves proposed are

accepted.

Explicitly the Gibbs sampler takes the following steps:

1. Choose arbitrary starting values x(0) for x. Let t = 1.

2. Repeat over a burn in period and until convergence:

• Generate x
(t)
1 from π(y1|x(t−1)

2 , . . . , x
(t−1)
K ).

• Generate x
(t)
2 from π(y2|x(t)

1 , x
(t−1)
3 , . . . , x

(t−1)
K ).

...

• Generate x
(t)
K from π(yK |x(t)

1 , . . . , x
(t)
K−1).

• Let t = t+1.

x
(t)
i is effectively a sample point from the marginal π(xi) for large t. Thus the Gibbs

sampler consists only of sampling from full conditional distributions. Casella and

George (1992) provides a clear explanation of how and why the Gibbs sampler works.

3.5 Model Selection Techniques

In future chapters many different model types are fitted to rank data — a criterion

is required for comparing the fitted models. Information criteria are often used to

compare models; they are motivated by the aim of minimizing the Kullback-Leibler

information (Kullback and Leibler, 1951) of the true model from the fitted model

(see McLachlan and Peel (2000), Section 6.8). Many types of information criteria

have been developed but their general structure is one which rewards model fit while

penalizing model complexity.

The Bayesian Information Criterion (BIC) (Schwartz, 1978) is a widely used

criterion which compares models. The usual justification for the use of BIC is

that, for regular problems, it provides an approximation to the Bayes factor for

comparing models under certain prior assumptions (Kass and Raftery, 1995). The

BIC is defined to be

BIC = 2(maximized likelihood)− (number of parameters) log(M) (3.5)
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where M is number of data points. The first term on the right-hand side of (3.5)

measures model fit; the second term is the penalty term which measures model

complexity. Discussion of the use of BIC within the specific framework of mixture

models is given in Chapter 4.6.

Many alternative model selection information criteria exist — McLachlan and

Peel (2000) provide a good review. Akaike’s Information Criterion (AIC) (Akaike,

1973, 1974)

AIC = 2(maximized likelihood)− 2(number of parameters)

is similar to the BIC but AIC has a smaller penalty when M > e2. AIC is often

inconsistent and tends to overfit models. The Integrated Complete Likelihood (ICL)

(Biernacki et al., 2000) is also similar to the BIC but the integrated complete like-

lihood is used rather than the integrated observed likelihood and the penalty term

is heavier in ICL than in BIC.

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) uses a

Bayesian measure of model fit. It penalizes the posterior mean deviance (D(·))
of a model by the ‘effective number of parameters’ (pD). The effective number of

parameters is derived to be the difference between the posterior mean of the deviance

and the deviance at the posterior means of the parameters of interest. Explicitly for

data x and parameter θ the DIC is

DIC = (D(θ)) + 2pD

where D(θ) = −2 log(P{x|θ}) and pD = D(θ)−D(θ). The criterion has an

approximate decision theoretic justification.

Model selection tools which are not information criteria are also examined.

Pritchard et al. (2000) suggested a Bayesian based criterion which emerged to be a

variant of the DIC — they penalized the mean of the Bayesian deviance by a quarter

of its variance rather than by the effective number of parameters.

Pritchard et. al’s criterion = D(θ) + var(D(θ))/4.

Cross-validated likelihood was also proposed as a model selection tool (Smyth,

2000). Models are judged on their performance in out-of-sample prediction, as

estimated in a cross validation manner. It is proposed as a practical alternative to
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the Bayesian BIC approach; it is more computationally expensive however and also

tends to overfit.

Different model selection tools were utilized in different contexts throughout

future chapters.
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Chapter 4

Mixtures of Plackett-Luce Models

Mixture models have recently come to the fore as a tool for providing theoretically

solid model-based clustering techniques (see Banfield and Raftery (1993), Bensmail

et al. (1997), Fraley and Raftery (1998) and Fraley and Raftery (1999) for example).

The finite mixture model provides a model-based framework in which rigorous state-

ments may be made about the presence of groups within a population and about the

structure of these groups. Statements are based on statistical theory rather than be-

ing descriptive in nature. Motivation for the use of mixture models when clustering

data is given by Aitkin et al. (1981) where they state “when clustering samples from

a population, no cluster method is a priori believable without a statistical model”.

To describe and illustrate the use of mixtures of Plackett-Luce models for rank

data the CAO data as detailed in Chapter 2.1 is used. The population which gener-

ated this data contains students with many different characteristics and vocational

callings. The course choices of these students are modelled using a mixture model,

so that groups of students with different choice behaviour can be discovered. Much

of the work in this chapter is reported in Gormley and Murphy (2006c).

4.1 Mixture Models

It is assumed that the course choices made by the CAO applicants form a sample

from a heterogeneous population. This assumption is justified because of the dif-

fering backgrounds and interests of the applicants. Mixture models appropriately

model situations where data are collected from heterogeneous populations. There-
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fore, it appears natural to use a mixture model to model college applications data.

A finite mixture model assumes that the population consists of a finite collection

of K components (or groups). It is assumed that the (unknown) probability of

belonging to component k is πk — these values are termed the mixing proportions.

By definition πk ≥ 0 for k = 1, . . . , K and
∑K

k=1 πk = 1. In addition, observation

xi within component k has a probability density f(xi|pk), where p
k

are unknown

parameters. Hence, the resulting model for a single observation xi is

f(xi) =
K∑

k=1

πkf(xi|pk).

Given the data x = (x1, x2, . . . , xM) for M (assumed independent) applicants and a

mixture modelling framework the likelihood of the data is

L(π1, π2, . . . , πK ; p
1
, p

2
, . . . , p

K
|x) =

M∏
i=1

K∑

k=1

πkf(xi|pk). (4.1)

Extensive reviews of mixture modelling are given by McLachlan and Peel (2000)

and Titterington et al. (1985); in addition, an excellent overview of using mixture

models to produce model-based methods for clustering is given by Fraley and Raftery

(2002). Previous applications of mixture models for analyzing rank data are given

in Marden (1995, Section 10.2) and Murphy and Martin (2003) amongst others.

4.2 The Plackett-Luce Model

An appropriate density for each component of the mixture model must be specified.

Each applicant’s data consists of a ranking of up to ten courses. Hence, a model

that is appropriate for modelling rank data is required. One such model is the

Plackett-Luce model for rank data (see Chapter 3.1).

The Plackett-Luce model is parameterized by the support parameter p = (p1, . . . ,

pN) where N denotes the total number of courses from which the applicants chose.

pj denotes the probability of course j being ranked in first position. Within the

context of the CAO data, the maximum number of courses that may be ranked on

an application form is denoted by n = 10.

Within the mixture modelling context, let pkc(i,t) denote the probability of the

course chosen in tth position by applicant i being selected first, given that the
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applicant belongs to the kth component. The rank t of a selected course must be

less than or equal to ni, where ni is the number of choices expressed by applicant

i. The Plackett-Luce model then suggests the probability of applicant i’s ranking

conditional on belonging to component k is

P{xi|pk} =

ni∏
t=1

pkc(i,t)∑N
s=t pkc(i,s)

.

By fitting a mixture of Plackett-Luce models to the CAO application data homo-

geneous groups of applicants which follow characteristic Plackett-Luce densities will

be highlighted. The estimation of both the number of groups in the population and

the associated parameters of the characteristic Plackett-Luce densities is required.

4.3 Model Fitting

The EM algorithm (Dempster et al., 1977) is a widely used tool for obtaining max-

imum likelihood estimates in missing data problems; mixture models can be for-

mulated as having the component membership of each observation as missing data.

Maximization of the likelihood function is simplified by augmenting the data to in-

clude the missing membership variables. Furthermore, the EM algorithm provides

estimates not only of the model parameters but also of the unknown component

memberships of the observations.

The term ‘complete’ data refers to the combination of both the observed prefer-

ences and the missing membership variables. It is denoted by (x, z) = {(x1, z1), . . . ,

(xM , zM)}, where xi is applicant i’s application and

zi = (zi1, zi2, . . . , ziK) ∀ i = 1, . . . ,M

with

zik =





1 if applicant i belongs to component k

0 otherwise.

The missing data z can be interpreted as an indicator of component membership.

On convergence of the EM algorithm, the estimated values of zik are the conditional

probabilities of applicant i belonging to component k.

The EM algorithm involves two steps, an expectation step (E step) followed by a

maximization step (M step). In the context of finite mixture models, the expectation
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step estimates the unknown values of each zik. The maximization step then proceeds

to maximize the complete data log likelihood to estimate the model parameters.

The complete data log likelihood is formulated as follows. Under the Plackett-

Luce model, given that applicant i belongs to group k, the probability of applicant

i’s ranking is

P{xi|pk} =

ni∏
t=1

pkc(i,t)∑N
s=t pkc(i,s)

.

Accounting for the missing component membership indicator zi, it follows that the

complete data log likelihood for applicant i is

P{xi, zi|p} = P{xi|zi}P{zi}

=

[
K∏

k=1

{
ni∏
t=1

pkc(i,t)∑N
s=t pkc(i,s)

}zik
]{

K∏

k=1

(πk)
zik

}
.

Hence, the complete data log likelihood for all applicants is

l = log

[
M∏
i=1

K∏

k=1

{
πk

ni∏
t=1

pkc(i,t)∑N
s=t pkc(i,s)

}zik
]

=
M∑
i=1

K∑

k=1

zik

{
log πk +

ni∑
t=1

log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pkc(i,s)

}
.

The EM algorithm is an iterative technique and continually repeats the E and

M steps until convergence to stable estimates and/or a predetermined criterion is

achieved. Aitken’s acceleration criterion (see Chapter 3.3.1) was employed in this

application as a convergence criterion.

Specifically, the EM algorithm proceeds as follows:

0. Initialize: Choose starting values for π(0) and p(0). Let l = 0.

1. E step: Compute the values

ẑik =
π

(l)
k P{xi|p(l)

k
}

∑K
k′=1 π

(l)
k′ P{xi|p(l)

k′ }
(4.2)

for i = 1, . . . ,M and k = 1, . . . , K where the value ẑik is the estimated posterior

probability of observation i belonging to group k. The likelihood values (4.1)

necessary to calculate Aitken’s acceleration criterion are easily obtained within

this step from the numerator of (4.2).
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2. M step: Maximize the function

M∑
i=1

K∑

k=1

ẑik

{
log πk +

ni∑
t=1

log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pkc(i,s)

}

to yield new parameter estimates π(l+1) and p(l+1). Increment l by 1.

3. Convergence: Repeat the E step and M step until convergence (as deemed by

Aitken’s acceleration criterion). The final parameter values are the maximum

likelihood estimates π̂ and p̂.

The E step is relatively straightforward when fitting a mixture of Plackett-Luce

models. Optimization with respect to the membership proportions π = (π1, . . . , πK)

in the M step is also straightforward. To obtain π
(l+1)
k the expected complete data

log-likelihood function

Q(π) =
M∑
i=1

K∑

k=1

ẑik

{
log πk +

ni∑
t=1

log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pkc(i,s)

}

is maximized with respect to πk, subject to the constraint
K∑

k=1

πk = 1. Thus, denoting

a Lagrange multiplier by λ

∂

∂πk

{
Q(π) − λ

(
K∑

k′=1

πk′ − 1

)}
= 0

⇒
∑M

i=1 ẑik
πk

− λ = 0

Since
K∑

k=1

πk =

∑K
k=1

∑M
i=1 ẑik

λ
= 1 then M

λ
= 1 and hence

π
(l+1)
k =

M∑
i=1

ẑik

M

for k = 1, . . . , K.

Optimization in the M step with respect to p
1
, p

2
, . . . , p

K
is more problematic;

this optimization is discussed in Chapter 4.3.1.
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4.3.1 The MM Algorithm

The M step of the EM algorithm aims to maximize

Q(p) =
M∑
i=1

K∑

k=1

ẑik

{
log πk +

ni∑
t=1

log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pkc(i,s)

}
(4.3)

with respect to the support parameters pkj (for k = 1, . . . , K and j = 1, . . . , N),

where p = (p
1
, p

2
, . . . , p

K
). The term −∑ni

t=1 log
{∑N

s=t pkc(i,s)

}
makes maximiza-

tion of (4.3) in the usual manner difficult. However, Lange et al. (2000) provide a

summary of a method called optimization transfer using surrogate objective func-

tions which they later term the MM algorithm. The MM algorithm is a prescription

for constructing optimization algorithms more so than a directly implementable al-

gorithm.

In order to maximize an objective function the MM algorithm forms a surrogate

function that minorizes the objective function.

Definition 6 (See Figure 4.1.) A function g(θ|θn) is said to minorize the function

f(θ) at θn if:

(i) f(θn) = g(θn|θn) and (ii) f(θ) ≥ g(θ|θn) for all θ.

A function g(θ|θn) is said to majorize the function f(θ) at θn if −g(θ|θn) minorizes

−f(θ).

The idea behind the MM algorithm is that by iteratively optimizing a suitable

surrogate function the objective function is driven uphill or downhill as is required.

Maximizing a minorizing surrogate function produces a new parameter estimate

θn+1, the sequence of which converges to a local maximum of the objective function.

Thus in a maximization problem the initials MM stand for minorize/maximize and

in a minimization problem MM stands for majorize/minimize. It emerges that the

EM algorithm is in fact a special case of the MM algorithm: during the E step a

surrogate function is formed by imputing the expected value of the missing data

and then at the M step this surrogate function (or complete data log likelihood) is

maximized. The relationship between the EM and MM algorithms is discussed in

Lange et al. (2000) and Hunter and Lange (2004).
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Fig. 4.1: An example of a linear minorizing surrogate function g(θ|θn) which mi-

norizes the objective function f(θ) at the parameter value θn.

The stability of the maximization MM algorithm relies on the ascent property

f(θn+1) = g(θn+1|θn) + f(θn+1)− g(θn+1|θn)

≥ g(θn|θn) + f(θn)− g(θn|θn)

= f(θn).

The MM algorithm is linearly convergent, the rate of which depends on how well

the surrogate function approximates the objective function. If an objective function

is strictly convex or concave, then the MM algorithm will converge to the unique

optimal point, assuming it exists. If strict convexity or concavity does not hold then

the MM algorithm will converge to a stationary point. Multiple random starting

values for the algorithm are implemented to help avoid convergence to such a local

optimum.

To construct surrogate functions mathematical properties of the function itself

or of terms within the function are exploited. One such property is the supporting

hyperplane property of a convex function.

Definition 7 Suppose f(θ) is convex with differential f ′(θ). Then the supporting

hyperplane property of f(θ) states:

f(θ) ≥ f(θn) + f ′(θn)(θ − θn). (4.4)
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The right hand side of inequality (4.4) provides a linear minorizing function which

can be utilized as a surrogate function in an optimization transfer algorithm. Some-

times it is preferable to form a quadratic or higher order surrogate function. Ex-

panding f(θ) using higher order expansions can yield such higher order functions.

This expansion is demonstrated in Chapter 5.

4.3.2 Estimation of Support Parameters

A surrogate function which minorizes the expected complete data log likelihood

(4.3) is required — maximization in the M step of the EM algorithm can then be

transferred to maximization of the minorizing surrogate function. Iterative maxi-

mization provides a sequence of parameter estimates with increasing values of (4.3).

This derivation is closely related to calculations given in Hunter (2004). The general

reviews of the MM algorithm given by Lange et al. (2000) and Hunter and Lange

(2004) are also of interest.

By (4.4), the strict convexity of the − log(θ) function implies that

− log(θ) ≥ − log(θn) + 1− θ

θn
.

Let θ =
∑N

s=t pkc(i,s). Thus,

− log
N∑
s=t

pkc(i,s) ≥ − log
N∑
s=t

p
(l)
kc(i,s) + 1−

∑N
s=t pkc(i,s)∑N
s=t p

(l)
kc(i,s)

where p
(l)
kc(i,s) denotes the constant estimate of pkc(i,s) from the lth iteration of the

algorithm. It follows that, up to a constant,

Q(p) ≥ q(p) =
K∑

k=1

M∑
i=1

ẑik

{
log πk +

ni∑
t=1

(
log pkc(i,t) −

∑N
s=t pkc(i,s)∑N
s=t p

(l)
kc(i,s)

)}
.

Optimizing the surrogate function q(p) yields new parameter values p(l+1) which

give a higher value for Q(p); that is Q(p(l+1)) ≥ Q(p(l)). The values converge to a

maximum of Q with respect to pkj.

Differentiation of q with respect to pkj gives

∂q

∂pkj
=

M∑
i=1

ni∑
t=1

ẑik

(
1{j=c(i,t)}
pkj

− 1[j∈{c(i,t),...,c(i,N)}]∑N
s=t p

(l)
kc(i,s)

)
(4.5)
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where 1{j=c(i,t)} is an indicator function such that

1{j=c(i,t)} =





1 if j = c(i, t)

0 otherwise.

Denoting

δijs =





1 if j = c(i, s) and 1 ≤ s ≤ ni

1 if j 6= c(i, l) for 1 ≤ l ≤ ni and s = n+ 1

0 otherwise

(4.6)

for i = 1, . . . ,M , j = 1, . . . , N and s = 1, . . . , (n+ 1) and denoting

ωkj =
M∑
i=1

ni∑
t=1

ẑik1{j=c(i,t)}

for k = 1, . . . , K and j = 1, . . . , N and by equating (4.5) to zero it follows that

ωkj
pkj

=
M∑
i=1

ni∑
t=1

ẑik

[
N∑
s=t

p
(l)
kc(i,s)

]−1



(n+1)∑
s=t

δijs




which implies that

p
(l+1)
kj =

ωkj
M∑
i=1

ni∑
t=1

ẑik

[
N∑
s=t

p
(l)
kc(i,s)

]−1



(n+1)∑
s=t

δijs




for k = 1, . . . , K and j = 1, . . . , N .

By inserting this step in place of the M step of the EM algorithm maximum

likelihood estimates of the Plackett-Luce support parameters can be obtained.

Many other techniques exist which optimize complex functions. The Newton-

Rhapson method (Press et al., 1996) for example is often used. Each stage of the

Newton-Rhapson technique involves a matrix inversion calculation which is generally

computationally expensive. Since such an inversion step is avoided here and due to

the manner in which the MM algorithm neatly fits into the structure of the EM

algorithm, the use of the MM algorithm as an optimization technique was deemed

to be justified.

4.3.3 The EM/MM Algorithm

In summary, to estimate the parameters of a mixture of Plackett-Luce models the

steps of the EM algorithm with the MM algorithm embedded at the M step stage

proceed as follows:
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0. Initialize: Choose random starting values for π(0) and p(0). Let l = 0.

1. E step: Compute the values

ẑik =

π
(l)
k

ni∏
t=1

p
(l)
kc(i,t)∑N

s=t p
(l)
kc(i,s)

K∑

k′=1

π
(l)
k′

ni∏
t=1

p
(l)
k′c(i,t)∑N

s=t p
(l)
k′c(i,s)

.

2. M step: Calculate

π
(l+1)
k =

M∑
i=1

ẑik

M

for k = 1, . . . , K and

p
(l+1)
kj =

ωkj
M∑
i=1

ni∑
t=1

ẑik

[
N∑
s=t

p
(l)
kc(i,s)

]−1



(n+1)∑
s=t

δijs




for k = 1, . . . , K and j = 1, . . . , N . Increment l by 1.

3. Convergence: Repeat the E step and M step until convergence (as deemed by

Aitken’s acceleration criterion). The final parameter values are the maximum

likelihood estimates π̂ and p̂.

Repeating this algorithm with multiple random starting values helps ensure the

estimates obtained are global estimates.

4.4 Provision of Parameter Standard Errors

Early criticisms of the EM algorithm focussed on the algorithm’s non-automatic pro-

duction of standard errors (or of an approximate covariance matrix of the maximum

likelihood estimates). However McLachlan and Krishnan (1997) and McLachlan

and Peel (2000) detail methodology which provides approximate standard errors of

parameter estimates derived during an EM algorithm. Moreover, in the case of inde-

pendent data (which has been assumed in the case of the CAO applicants) standard

errors can be produced without additional work beyond the necessary EM algorithm

calculations.
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In general, it is common practice to estimate the covariance matrix of the pa-

rameter estimates θ by the inverse of the expected information matrix I(θ) =

−E
[
∂2 logL(θ)
∂θ∂θT

]
. For independent data

logL(θ) =
M∑
i=1

logLi(θ)

where in this context Li(θ) = f(xi|θ) is the Plackett-Luce density for applicant i.

Denoting the score function of all applicants by S(x|θ) = ∂ logL(θ)
∂θ

it follows that

S(x|θ) =
M∑
i=1

s(xi|θ)

where s(xi|θ) = ∂ logLi(θ)
∂θ

. The expected information matrix is then

I(θ) = −E

[
∂2

∂θ2
logL(θ)

]

= ME

[(
∂

∂θ
logLi(θ)

)2
]

(see Casella and Berger (1990,Section 7.3))

= Mi(θ)

where i(θ) = Eθ[s(xi|θ)sT (xi|θ)] = covθ[s(xi|θ)] is the information contained in a

single observation. Evaluating i(θ) empirically gives

ī(θ) =
1

M

M∑
i=1

s(xi|θ)sT (xi|θ)− s̄s̄T

=
1

M

M∑
i=1

s(xi|θ)sT (xi|θ)−
1

M2
S(x|θ)ST (x|θ)

where s̄ = 1
M

∑M
i=1 s(xi|θ). This leads to the empirical observed information matrix

(Meilijson, 1989) Ie(θ) where

Ie(θ) = Mī(θ)

=
M∑
i=1

s(xi|θ)sT (xi|θ)−
1

M
S(x|θ)ST (x|θ)

which can be used to approximate the observed information matrix. When θ = θ̂

then S(x|θ) = 0 and

Ie =
M∑
i=1

s(xi|θ)sT (xi|θ).
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Thus the covariance matrix of θ̂ can be approximated by the inverse of the

empirical observed information matrix which in turn can be expressed in terms of

the score functions of the complete data log likelihood. Computation of second order

partial derivatives is therefore avoided.

4.4.1 Computation of the Empirical Information Matrix for

a Mixture of Plackett-Luce Models

From the expected complete data log likelihood:

Q =
M∑
i=1

K∑

k=1

ẑik{log πk +

ni∑
t=1

log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pkc(i,s)}

the score functions with respect to each model parameter can be derived. The

score function necessary to estimate the variance of the mixing proportions πk for

k = 1, . . . , K is

s(xi|πk) =
∂Q

∂πk

=
ẑik
πk
.

Similarly, to estimate the variance of the support parameters pkj for k = 1, . . . , K

and j = 1, . . . , N the score function is

s(xi|pkj) =
∂Q

∂pkj

= ẑik

[
ni∑
t=1

{
1{j=c(i,t)}
pkj

− 1[j={c(i,t),...,c(i,N)}]∑N
s=t pkc(i,s)

}]

= ẑik

[
ni∑
t=1

{
1{j=c(i,t)}
pkj

−
∑(n+1)

s=t δijs∑N
s=t pkc(i,s)

}]

where δijs is defined by (4.6).

Thus by formulating a matrix S which contains the score function for each

parameter evaluated for each applicant, setting the empirical observation matrix

Ie(θ̂) = STS and taking the square root of the diagonal of Ie(θ̂)
−1 the approximate

standard errors of the membership proportions and the support parameters emerge.
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4.4.2 Multiparameter Standard Errors

The posterior component membership probabilities πkpkj for k = 1, . . . , K and j =

1, . . . , N (see Chapter 4.7.4) are of interest. The multiparameter delta method (see

Wasserman, 2004,Chapter 5.5) may be used to infer the approximate distribution

of such a new multiparameter.

Theorem 1 The multiparameter delta method. Let θ = (θ1, . . . , θn) and let

θ̂ = (θ̂1, . . . , θ̂n) be the maximum likelihood estimate. Let φ = g(θ1, . . . , θn) be a

function and denote by ∇g the gradient of g where ∇g(θ̂) 6= 0. Let φ̂ = g(θ̂). Then

(φ̂− φ)

ŝe(φ̂)
 N(0, 1)

where

ŝe(φ̂) =

√
(∇̂g)T Ĵ(∇̂g)

where Ĵ = I−1(θ̂) is the inverse of the Fisher information matrix.

Thus via the multiparameter delta method standard errors of multiparameter esti-

mates may be inferred.

4.5 Model Extension: Inclusion of a Noise Com-

ponent

The inclusion in the mixture of a ‘noise’ component with support parameter

p
k

= (pk1, pk2, . . . , pkN) = (1/N, 1/N, . . . , 1/N)

was examined. Such a component ‘soaks up’ observations which have low proba-

bility of belonging to the other components and those observations who have equal

preference for each course. The net result is that outlying observations have less

of an effect on the overall results. This component is analogous to the Poisson

noise component introduced in model-based clustering (Fraley and Raftery, 2002).

Thus when choosing the appropriate number of components in the mixture model,

whether or not a noise component should be included in the model was examined.
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4.6 Model Comparison

Mixture models with differing numbers of components and the presence/absence of

a noise component are fitted to the CAO data. A criterion for comparing the fitted

models is required. Chapter 3 provides details on commonly used model selection

techniques.

The Bayesian Information Criterion (BIC) is widely used to compare models (see

Chapter 3.5). The BIC is defined to be

BIC = 2(maximized likelihood)− (number of parameters) log(M).

The BIC can be viewed as a criterion which rewards model fit, but penalizes model

complexity. The usual justification for the use of BIC is that, for regular problems,

it provides an approximation to the Bayes factor for comparing models under certain

prior assumptions (Kass and Raftery, 1995). Finite mixture models do not satisfy

the regularity conditions for this approximation to be valid, but there is much in the

literature to support its use in a mixture modelling context. Leroux (1992) showed

that the number of components in the mixture, as estimated by the BIC, is at least

as large as the true number of components, for large sample sizes. Keribin (1998,

2000) proved that the BIC is a consistent indicator, almost surely, of the number

of components due to its appropriate penalizing term. In addition, the literature

details many successful applications of the use of BIC as a model selection tool

within the context of mixture models (see for example Fraley and Raftery (1998)

and Dasgupta and Raftery (1998)).

The BIC consistently returned the most parsimonious and interpretable models

and was used here as the main model selection tool.

4.7 Mixtures of Plackett-Luce Models for CAO

Applicants

Mixtures of Plackett-Luce models were fitted to the CAO data with the number

of components ranging from K = 1 to K = 30, within a maximum likelihood

framework. Several random starting values for both the p and π parameters were

employed in the EM algorithm with similar results. In addition, the option for
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allowing one of the components to be a noise component was also investigated. The

mixture model with the highest BIC value was chosen and the resulting model was

carefully examined.

The maximum likelihood estimates of the support parameters

p̂
k

= (p̂k1, p̂k2, . . . , p̂kN)

for each component were examined and sorted into decreasing order. From these

probabilities it is possible to determine which types of courses have highest proba-

bility of being selected by applicants from the kth component. By examining these

probabilities, the component was given a summarizing label. Clearly, it would be ex-

pected that the most probable ranking is that in which the highest probable courses

are selected.

In addition the estimated proportion of applicants belonging to each component

π̂k was recorded and examined.

When the full set of all CAO applicants is examined, the BIC values suggest that

a twenty-two component mixture model should be used. The selected model had

a noise component as one of the components. The mixing proportions πk describe

the percentage of the population assigned to each component. Table 4.1 gives the

resulting twenty-two components in decreasing order of their mixing proportions.

Also reported in Table 4.1 are the approximate standard errors associated with

the mixing proportions. The formation of the necessary {K + (N × K)} × {K +

(N ×K)} = 11748× 11748 covariance matrix posed computational problems due to

computing constraints. Thus, under the (rather large) assumption that the covari-

ance of the Plackett-Luce parameters is zero, the empirical information matrix was

formed (see Chapter 4.4.1) and the square root of the inverse of the diagonal terms

used to provide approximate estimates of the standard errors.

An evaluation of Table 4.1 verifies the argument of supporters of the CAO system

— the defining characteristic of the mixture components is the common discipline

of the courses with high probabilities, as opposed to courses’ common entry require-

ments. For example, the mixture model contains a component reflecting applicants

who chose engineering courses, a component describing applicants who chose edu-

cation courses and one for applicants who chose health science courses. There is

no evidence, from the examination of the support parameter estimates, of a com-
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Table 4.1: The names and proportions of the twenty-two components detected

when the set of all applicants were analyzed. Approximate standard errors of the

mixing proportion estimates are given in parentheses.

Component Name Proportion

Business & Marketing 0.08 (0.004)

Hospitality Management 0.08 (0.003)

Arts & Humanities 0.07 (0.003)

Biological Sciences 0.06 (0.003)

Business & Commerce 0.06 (0.003)

Communications & Media 0.06 (0.003)

Construction Studies 0.06 (0.003)

Computer Science (Ex-Dublin) 0.05 (0.002)

Social Science 0.05 (0.002)

Munster Based Courses 0.05 (0.002)

Computer Science (Dublin) 0.05 (0.002)

Engineering 0.04 (0.002)

Cork Based Courses 0.04 (0.002)

Galway & Limerick Based Courses 0.04 (0.001)

Education 0.03 (0.001)

Health Sciences 0.03 (0.001)

Art & Design 0.03 (0.001)

Law 0.03 (0.001)

Mathematical & Physical Sciences 0.03 (0.001)

Business & Languages 0.03 (0.001)

Music 0.02 (0.001)

Noise Component 0.002 (<0.001)
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ponent representing applicants who appear to apply for high status (usually high

points standard) courses. The resulting components suggest that CAO applicants

do follow their vocational interests when applying to Irish institutions of third level

education.

Interestingly, science based applicants are very distinctly partitioned. Applicants

to biological sciences, engineering, mathematical sciences and health sciences are well

segregated rather than constituting a single science component.

Also of note are the mixing proportion values. Ranking the components in

order of mixing proportions indicates more applicants have a tendency to apply for

humanities and business degrees than for more science based programs.

However, the results do require further examination and discussion; this is done

in Chapters 4.7.1–4.7.5.

4.7.1 The Geographical Effect

The components reported in Table 4.1 reveal important traits within the popula-

tion of applicants. Most obvious are the presence of components which highlight a

geographical effect on applications.

Interestingly, five of the twenty-two components identified have a geographical

basis. The Munster based courses and Cork based course components are epitomized

by applicants who predominantly apply to institutions situated within the province

of Munster or to institutions located in County Cork, respectively. The Galway

and Limerick based component emerges from similarly motivated applicants. While

possibly surprising that a geographical effect would be so well defined in such a

relatively small island, readers acquainted with Irish society will be familiar with

such a phenomenon. Firstly, many Irish students opt to live at home during their

college studies; this differs from the situation in many other countries. Also, Irish

people are very parochial and show strong affinity to their home region. People from

Munster, and Cork in particular, have a very strong affinity to their region and tend

to avoid travelling for their studies unless the course that they wish to study is not

available in the region. Galway and Limerick are the main cities on the west coast

of Ireland and a similar impetus is revealed by this component.

Also of note with regard to the geographical effect is the frequent distinction
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between sets of applicants who apply for degrees of similar discipline but are deemed

separate based on whether or not the institutions to which they apply are located

in Dublin (the capital of Ireland). Of Ireland’s 3.92 million population, 1.12 million

reside in County Dublin, and 2.11 million in the province of Leinster (the area

around Dublin). Dublin is the center of Irish governmental, financial and business

dealings. Therefore some applicants are drawn to living there, while others prefer

to stay away to avoid living in a large city. This goes some way in explaining why

applicants view courses of a similar type as different, based on whether the location

of the institution is in Dublin or not. This effect is clear on the groups of applicants

applying for computer science courses, and to a lesser extent on the applicants for

business, marketing and commerce degrees.

4.7.2 The ‘Points Race’

On the surface the components determined by the model-based clustering verify

the arguments of the supporters of the CAO system. Detractors insist that appli-

cants are influenced by media hype and by the perceived social standing of some

courses (revealed through their high points requirements). Examination of the re-

ported components and their associated parameters provides deeper insight into the

behaviour of the CAO applicants.

Two approaches are taken to examine this phenomenon. Courses are examined

according to the probability of the course being chosen within a component, that

is using the P{Course j|Component k} = pkj values (estimated by p̂kj). Also ex-

amined are the posterior probabilities of belonging to a component given that a

particular course is chosen, that is using the P{Component k|Course j} ∝ πkpkj

values (estimated by π̂kp̂kj).

To demonstrate that there may actually be a points race, the results for the

health sciences component are examined using the two approaches described above.

The results of this deeper analysis is given in Chapters 4.7.3-4.7.4.

4.7.3 Examination of Component Parameters

Table 4.2 identifies 30 courses with the highest probability of selection (listed in

decreasing order) given that an applicant belongs to the health sciences component
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(see Table 4.1). The support parameters for these courses and their approximate

standard errors are also given. As with the standard errors reported in Table 4.1, the

diagonal empirical information matrix was inverted due to computing constraints.

Table 4.2 provides an illustration of how components were assigned a summarizing

label – from a glance it is clear that applicants belonging to this component have

high probability of choosing courses leading to a degree in the health sciences sector.

Many health science degree programs have high entry requirements, due to demand,

a limited supply of places and the fact that these courses attract highly achieving

second level students. Medicine, pharmacy, dentistry and veterinary medicine are

annually reported as degree programs with higher points requirements than other

courses and the resulting careers are highly esteemed within Irish society. They also

are vocationally driven careers, and thus it would be expected that applicants would

have a tendency to apply for many courses within a discipline for which they feel

that they have a vocation.

Within the top 30 courses in Table 4.2 four have been highlighted. Arts as

offered by University College Dublin, law as offered by University College Dublin

and Trinity College Dublin and engineering as offered by University College Dublin.

While the probabilities of ranking these courses given that an applicant belongs to

the health sciences component are small, in relative terms applicants are almost

equally likely to rank medicinal chemistry, law or therapeutic radiography. While

some would, perhaps correctly, argue that a career in law is also a vocation, it

could also be argued that equally so are careers such as those in the education

sector. The difference between law and education degrees, in Ireland at least, is

their points requirements. Law would be considered a consistently high requirement

degree, whereas an education degree would have lower points requirements. There

is little evidence of health science applicants choosing education programs with

high probability. Therefore, some weight has been added to the assertions of CAO

detractors that the CAO system influences applicants to apply for courses that are

prestigious (in terms of points). Another explanation is that the applicants are

attracted to courses that tend to lead to high salaried professions. In any case, this

implies that courses are being chosen by their status in society rather than by the

discipline. How otherwise would health science applicants be as likely to choose law
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Table 4.2: The thirty most probable courses to be ranked on an application form,

given that an applicant belongs to the health sciences component. Clearly health

science degrees dominate, but the presence of high status law degrees adds some

weight to the argument that applicants are influenced by the ‘prestige’ of some

courses’ points requirements. Approximate standard errors of the estimated support

parameters are given in parentheses.

INSTITUTION COURSE PROBABILITY

UCD Medicine 0.4723 (0.003)

TCD Medicine 0.2413 (0.001)

UCG Medicine 0.2004 (0.001)

UCC Medicine 0.1219 (0.001)

RCSI Medicine 0.0610 (<0.001)

UCD Science 0.0351 (<0.001)

TCD Science 0.0297 (<0.001)

TCD Pharmacy 0.0280 (<0.001)

TCD Dentistry 0.0280 (<0.001)

UCD Physiotherapy 0.0260 (<0.001)

TCD Physiotherapy 0.0241 (<0.001)

UCC Dentistry 0.0233 (<0.001)

UCD Veterinary Medicine 0.0163 (<0.001)

RCSI Medicine with Leaving Certificate Scholarship 0.0153 (<0.001)

UCG Science 0.0140 (<0.001)

UCC Biological & Chemical Sciences 0.0125 (<0.001)

TCD Human Genetics 0.0121 (<0.001)

UCG Biomedical Science 0.0116 (<0.001)

DIT Optometry 0.0104 (<0.001)

UCD Radiography 0.0101 (<0.001)

TCD Medicinal Chemistry 0.0099 (<0.001)

UCD Arts 0.0092 (<0.001)

UCD Law 0.0091 (<0.001)

TCD Law 0.0085 (<0.001)

UCD Engineering 0.0083 (<0.001)

TCD Therapeutic Radiography 0.0081 (<0.001)

TCD Psychology 0.0074 (<0.001)

RCSI Physiotherapy 0.0069 (<0.001)

RCSI Medicine with RCSI Scholarships 0.0065 (<0.001)

UCD Psychology 0.0059 (<0.001)
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as therapeutic radiography?

The four courses highlighted in Table 4.2 also have the common characteristic

of being based in institutions in Dublin. It is clear from other components that the

geographical location of a course influences applicants. Within the health sciences

component it appears both geography and course status affect the way in which

applicants rank courses. However, it is difficult to fully distinguish between these

influences.

Also of note is the high probability of choosing the arts degree (in University

College Dublin) and engineering (in University College Dublin). As the name par-

tially suggests, in an arts degree students study one or two subjects from a range

of arts and humanities subjects. Thus the arts degree is a very general degree that

provides a broad basis from which many different career paths may emerge. In fact,

it is the most frequently ranked degree program amongst all CAO applicants and

has relatively achievable points requirements. Its popularity, or perhaps its repu-

tation as a ‘fail safe’ third level choice, are possible explanations of its high choice

probability within the health science component.

The inclusion of engineering as a high probability course could also be due to

applicants including a ‘fail safe’ alternative. The required points for engineering

in University College Dublin were much lower than the health science degrees in

Table 4.2, so the points status would not appear to be a contributing factor. It

is clear that health science applicants select a general science degree with high

probability and perhaps are then also attracted to the general scientific aspects of

an engineering degree. More of note perhaps is that in 2000 engineering as offered

by University College Dublin was a general entry degree where students did not

choose a specific vein of engineering until later in their degree. While both Trinity

College Dublin and University College Galway ran a similar style program, the

required points that year were considerably higher than those required for entry to

University College Dublin’s degree. Thus, similarly to the arts degree, engineering

may have been viewed as the ‘fail safe’ science-based option.
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4.7.4 Examination of Posterior Component Membership Prob-

abilities

An alternative approach can be taken in the analysis of the parameter estimates by

examining the posterior probability of belonging to component k given that course

j was selected, that is, P{Component k|Course j}. Table 4.3 illustrates the twenty-

five courses whose selection gives highest posterior probability of belonging to the

health sciences component. The reported standard errors of the posterior probability

estimates are estimated in the manner described in Chapter 4.4.2. Due to computing

constraints however only the diagonal empirical information matrix was formed and

inverted; it follows that the reported standard errors are approximate.

Examination of the mixture model in this way further highlights the subtle effect

the points race may have on some applicants’ choices. Within the top twenty-five

courses that suggest high probability of belonging to the health sciences component

are Mathematics and Latin and Mathematics and Psychology, both offered by Trin-

ity College Dublin. It appears strange to have high probability of belonging to a

component dominated by health sciences courses due to the selection of either of

these courses. Both are part of Trinity College’s version of the general arts degree

– the Two Subject Moderatorship (TSM) program. In the TSM program, students

choose two modules from a range of arts and humanities subjects and study them

simultaneously. However, each combination is viewed as a separate course by the

CAO and due to the wide range of subjects, and therefore combinations, their choice

is usually quite rare leading to sparse data. Strange results emerged when initially

analyzing the CAO data due to the rarity of some course selections within the TSM

program. However the inclusion here of only two of the wide range of TSM courses

suggests a contributing factor other than data sparsity. These two TSM courses both

include mathematics; in that particular year points requirements for TSM courses

involving mathematics were at a similar level to many of the listed health science

programs in Table 4.3. Therefore, deeper investigation of the posterior probabilities

highlights again the possibility of a subtle effect that a course’s points requirement

may have on CAO applicants.

Why the focus on law programs and mathematics programs as examples of the

points race? Other high points courses such as Actuarial and Financial Studies (in
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Table 4.3: Twenty-five courses whose selection on a CAO application form gives

highest probability of belonging to the health sciences component. Associated stan-

dard errors are all less than 2.4× 10−3.

INSTITUTION COURSE PROBABILITY

UCD Medicine 0.9440

TCD Medicine 0.9392

RCSI Medicine 0.8886

RCSI Medicine with Leaving Certificate Scholarship 0.8813

UCG Medicine 0.8724

RCSI Medicine with RCSI Scholarships 0.8010

UCC Medicine 0.7633

TCD Dentistry 0.5391

UCC Dentistry 0.3674

TCD Pharmacy 0.3110

TCD Medicinal Chemistry 0.2725

TCD Therapeutic Radiography 0.2662

TCD Human Genetics 0.2579

UCD Radiography 0.2230

TCD Physiotherapy 0.2141

RCSI Physiotherapy 0.2035

TCD Mathematics/Latin 0.2013

DIT Optometry 0.1989

UCD Physiotherapy 0.1986

UCD Veterinary Medicine 0.1796

TCD Mathematics/Psychology 0.1642

UCG Biomedical Science 0.1517

UCG Biomedical Engineering 0.1093

TCD Science 0.1053

TCD Occupational therapy 0.0992
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University College Dublin) also appear within the top 50 programs in both views of

the model; again, this course appears to be a strange course to appear amongst a

component dominated by the “vocational” health science sector.

Why the focus on the health sciences component only? It seems natural to also

consider the law component that is also deemed as high points and high status.

The points race effect is also apparent here – psychology in both University College

Dublin and Trinity College Dublin, which had high entry requirements that year,

have high probability of being selected given that an applicant belongs to the law

component. While law and psychology have some similarities, they would not be

deemed as members of the same discipline suggesting some element of the points

race is present. However, examination of the posterior probabilities for the law

component gives less of an indication of the presence of a points race. It seems the

points status of courses has more of an effect in the health science component than

in the other components in the mixture model.

4.7.5 The Gender Effect

The only covariate available was the gender of the CAO applicants in 2000; of the

53757 applicants, 24419 were male. The data was partitioned according to applicant

gender and mixtures of Plackett-Luce models were fitted to the two resulting data

sets. Examination of the support parameter estimates, p̂kj, led to the summarizing

component labels as outlined in Table 4.4. Approximate standard errors of the

mixing proportions are also reported. Due to computing constraints which arise

when attempting to compute the full covariance matrix, the square root of the

inverse of the diagonal elements of the empirical information matrix (Chapter 4.4)

are used to provide an approximation of the standard errors.

The resulting mixtures fitted to the partitioned data provide good insight into

the different choice behaviour of the male and female applicants. The predominant

aspect of the component labels is subject discipline, thus enhancing the supporting

view of the CAO that applicants are inclined to follow their vocational interests.

The geographical effect discussed in Chapter 4.7.1 is again apparent, but it is more

apparent in the male results. In particular, some male components reveal a common

discipline but at different geographical locations; this occurs more so than in the
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Table 4.4: The resulting 16 components from analysis of the female applicants,

and the resulting 17 components from analysis of the male applicants. Approximate

standard errors of the mixing proportions are given in parentheses.

FEMALE RESULTS MALE RESULTS

Component Label Proportion Component Label Proportion

Hospitality Management 0.11 (0.001) Construction Studies 0.09 (0.002)

Social Science 0.11 (0.002) Communications & Journalism 0.09 (0.002)

Business & Marketing (Dublin) 0.09 (0.002) Business & Marketing (Dublin) 0.09 (0.002)

Biological Sciences 0.08 (0.001) Computer Science (Ex-Dublin) 0.08 (0.002)

Cork Based Courses 0.08 (0.002) Hospitality Management 0.07 (0.002)

Applied Computing (Ex-Dublin) 0.07 (0.003) Computer Science (Dublin) 0.07 (0.002)

Communications & Journalism 0.07 (0.002) Arts/Humanities 0.06 (0.002)

Business & Commerce (Ex-Dublin) 0.07 (0.001) Engineering (Ex-Dublin) 0.06 (0.002)

Law & Psychology 0.06 (0.002) Business & Commerce 0.06 (0.002)

Galway & Limerick Based Courses 0.06 (0.002) Cork Based Courses 0.06 (0.002)

Education 0.05 (0.002) Law & Business 0.06 (0.002)

Engineering & Computer Science 0.04 (0.001) Engineering (Dublin) 0.05 (0.002)

Art/Design & Music 0.04 (0.002) Sports Science & Education 0.05 (0.002)

Business & Languages 0.04 (0.002) Science 0.04 (0.001)

Health Sciences 0.04 (0.003) Limerick Based Courses 0.04 (0.001)

Noise Component 0.003 (0.002) Health Sciences 0.03 (0.001)

Noise Component 0.004 (0.001)
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female components. For example, the male engineering applicants are partitioned

by the location of the institution in Dublin, as are the computer science applicants.

Stereotypical differences between the two genders are very apparent in the re-

sulting components – there appears to be distinct components for females in social

science, art and design, music and education whereas female applicants with an

interest in engineering and computer science are grouped together. Not only are

the male engineering and computer science components separate, they are further

divided within these disciplines by geography. Further, the largest component (with

mixing proportion 0.09) in the male results involves construction studies courses

whereas this does not appear as a distinct component in the female results.

Other results of interest are the popularity of biological sciences amongst females

whereas males have a general science component in their results, both genders have

education components but the male education component also has a sports aspect.

In addition, in close similarity to the results for all applicants (see Chapter 5.3.3),

the male health sciences component contains three law degrees in the top thirty most

probable courses. Similar results are revealed for the females, but the probability of

selection of the law courses is lower within the health sciences component.

4.7.6 Clustering of Applicants

A major advantage of fitting mixture models via the EM algorithm, as detailed by

Fraley and Raftery (1998), is that the value ẑik at convergence is an estimate of the

conditional probability that observation i belongs to component k; these values can

be used to cluster observations into groups. A clustering of the set of applicants is

simply achieved by examining

max
k

P{Component k|Application i}

∀ i and assigning applicants to the group for which the maximum is achieved.

The clustering of applicants can be scrutinized in different ways. As suggested

by Bensmail et al. (1997), the uncertainty associated with an applicant’s component

membership can be measured by Ui = mink=1,...,K(1−P{Component k|Application i}).
When i is very strongly associated with group k then P{Component k|Application i}
will be large and so Ui will be small. Figure 4.2 illustrates the uncertainty associated
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with the clustering of the male and female applicants.
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Fig. 4.2: Uncertainty in the clustering of female and male applicants.

Clearly, the clustering uncertainty values tend to be very small, with 61% of

females and 59% of males classified with an uncertainty of less than 0.05. Summary

statistics for the uncertainty values further demonstrate how well the model allocates

applicants to components; these are given in Table 4.5.

Table 4.5: Summary statistics associated with the clustering uncertainty of male

and female applicants.

1st Quartile Mean 3rd Quartile

FEMALE 0.0002 0.1228 0.1866

MALE 0.0002 0.1301 0.2043

4.8 Conclusions

This chapter presents a model-based statistical analysis of degree level applicants to

Irish institutions of third level education. The methods seek to find groups of similar

applicants, and to draw conclusions about the merits and failures of the centralized

applications system from the defining characteristics of these groups.

63



A top level view of the groups of applicants suggested by the analysis verifies a

supporting view of the CAO system — applicants appear to follow their vocational

interests and rank their third level course choices in a manner which reflects this.

The analysis suggests that the majority of CAO applicants use the system as it is

intended and rank courses in view of their genuine preferences and/or career choice.

However, it is apparent that more subtle influences also contribute to course choice

and a detailed examination of the mixture components indicates the faint presence

of the reported ‘points race’. It appears there are those who choose courses on the

points levels of previous years and therefore on the prestige attached to some of

these courses.

While most discussions of the CAO system in Irish education circles focus on

the influence of the ‘points race’ this work highlights other factors which have an

influence on an applicant’s course choice. The geographical location of the institution

to which an applicant applies has a clear affect on the choice process. Whether this

is due to a vocational desire to study a particular course in a specific institution, the

desire to live in a certain area or because of financial viability, it is a striking feature

of the groups of applicants. A course’s geographical location appears to be almost

as important as vocational interest in an applicant’s choice process. Whether this

feature is a benefit of the CAO system or not remains to be researched.

Further to the effects of vocation, geography and the points race, the gender of

the applicant also affects course choice. Geography and the points race may have

a larger effect on male applicants than on females. Stereotypical gender differences

are also apparent — only 4% of female applicants are ‘classified’ as engineering and

computer science students compared to 26% of the population of male applicants.

Further differences (see Chapter 4.7.5) indicate that males and females need to be

targeted in different manners, with regard to third level education, and this should

be of interest to third level institutions and to governmental education departments.

In terms of the model employed within components, the Plackett-Luce model

performs well when modelling the rankings of the preferred third level choices of

the CAO applicants. While the model does suffer from independence from irrele-

vant alternatives (IIA) (see Chapter 3.1) in this application it appears to provide a

realistic representation of the course choice process.
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The only covariate available for this analysis is the gender of the applicant –

relationships between course choice and other covariates are very likely to be present.

Expanding the analysis to include other covariates would also be desirable, but

further covariates were not available for this study.
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Chapter 5

Mixtures of Benter Models

Mixtures of Benter models are proposed as a tool for modelling heterogeneous pop-

ulations who generate rank data. Two Irish elections are used to demonstrate the

applicability of such models: voters in the 1997 presidential election and voters in

the Dublin West constituency in the 2002 general election are modelled. The work

presented in this chapter follows work reported in Gormley and Murphy (2005).

While the mixture of Plackett-Luce models fitted in Chapter 4 is a special case of

a mixture of Benter models (see Chapter 3.2) the methodology developed in the

previous chapter is more amenable to cases which involve large choice sets.

5.1 The Benter Model

The Plackett-Luce model for rank data suffers from the property that the probability

of a candidate with a low support parameter being ranked highly is too small. Thus

the Benter model (Chapter 3.2) is used to model election data. The Benter model

has two parameters: the support parameter p = (p1, p2, . . . , pN) where
∑N

j=1 pj = 1

and the dampening parameter

α = (α1, α2, . . . , αN).

The support parameter pj represents the probability of candidate j being given a first

preference and the dampening parameters model the way in which lower preferences

may be chosen less carefully than higher preferences by a voter. Under the Benter
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model, the probability of voter i’s ballot xi is:

P{xi|p, α} =

ni∏
t=1

pαtc(i,t)∑N
s=t p

αt
c(i,s)

.

Within the context of voting it follows that ni ≤ N where N is the number of

candidates running in the election.

5.2 Homogeneous Benter Models

As an initial analysis of the Irish electorate a single component Benter model was fit-

ted, within a maximum likelihood framework, to each of the eight opinion polls from

the 1997 presidential election campaign and to the 2002 general election data from

the Dublin West constituency (see Chapter 2). A single component Benter model

where the dampening parameters were constrained such that α = (1, . . . , 1) (i.e. a

Plackett-Luce model) was also fitted. The estimated model parameters and their

associated standard errors are reported in Figure 5.1, Table 5.1 and Table 5.2. The

approximate standard errors reported throughout this chapter are derived within

the EM algorithm as proposed by McLachlan and Krishnan (1997) and McLachlan

and Peel (2000). The derivation of these standard errors is outlined in Chapter 5.4.

Figure 5.1 demonstrates the support parameter associated with each presiden-

tial candidate under both the Plackett-Luce and Benter models inferred from each

opinion poll. A general popularity ordering of McAleese, Banotti, Scallon, Roche

and then Nally emerges under both models. The most striking feature of the plots

is perhaps the rapid decline in support for Adi Roche. Roche began as favourite

for the presidential seat but, after criticism from co-workers about her style of work

and claims that she was an unsuitable person to be president, her campaign never

recovered. McAleese and Banotti maintained first and second place across the polls

while Rosemary Scallon’s position improved. Early criticisms of the conservative

candidate fizzled out as the campaign developed and as her professional presenta-

tion skills became more evident she finished in a respectable third place.

The model parameter estimates differ in the final polls where the Plackett-Luce

estimates seem to shrink together but the Benter estimates become more dispersed.

This can, in part, be explained by the fact that in the 30/10 poll people were
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Fig. 5.1: A graphical representation of the maximum likelihood estimates of the

Plackett-Luce support parameter and the Benter support parameter for each of the

eight polls from the 1997 presidential election campaign. Each of the five candidates

are denoted by their surname initial. Note that Nally was not a candidate when the

first two polls were taken. Two standard errors either side of each estimate are also

illustrated.
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Table 5.1: The values of the Benter dampening parameter for each of the polls

from the 1997 presidential election campaign. The fourth value of the dampening

parameter is not computed for the first two polls as there were only four candidates

when the poll was taken. Standard errors of the estimates are given in parentheses.

Dampening Parameter

Date Poll α1 α2 α3 α4

18/9 IMS 1.00 0.80 (0.07) 1.00 (0.08)

27/9 MRBI 1.00 0.94 (0.00) 1.00 (0.09)

2/10 IMS 1.00 1.00 (0.08) 1.00 (0.08) 1.00 (0.09)

11/10 MRBI 1.00 1.00 (0.08) 1.00 (0.08) 1.00 (0.10)

22/10 MRBI 1.00 1.00 (0.05) 0.95 (0.07) 1.00 (0.10)

23/10 IMS 1.00 0.98 (0.04) 0.80 (0.05) 0.99 (0.07)

25/10 IMS 1.00 0.92 (0.04) 0.73 (0.05) 0.63 (0.07)

30/10 Lansdowne 1.00 0.73 (0.03) 0.18 (0.03) 0.00 (0.04)

Table 5.2: Maximum likelihood estimates of the Plackett-Luce and Benter support

parameters for the 2002 Dublin West constituency election data; the proportion

of the total first preference votes for each candidate is included for comparison

purposes.

Candidate Party First Plackett-Luce Benter

Preference Estimate Estimate

Bonnie, R. GP 0.03 0.07 0.06

Burton, J. Lab 0.13 0.16 0.16

Doherty-Ryan, D. FF 0.08 0.11 0.11

Higgins, J. SP 0.22 0.16 0.17

Lenihan, B. FF 0.27 0.18 0.20

McDonald, M. SF 0.08 0.06 0.06

Morrissey, T. PD 0.08 0.12 0.11

Smyth, J. CSP 0.00 0.02 0.01

Terry, S. FG 0.12 0.12 0.12
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encouraged to express all preferences. Interestingly, the support parameter estimates

under the Benter model in the 30/10 poll (the exit poll) are very similar to the first

preference proportions for each candidate. The dampening parameters for this poll

(Table 5.1) complement these estimates as it is clear that lower place preferences are

strongly dampened in this poll, thus giving a lot of priority to higher preferences.

The dampening parameters associated with the exit poll data give a good demon-

stration of the value of estimating such parameters — here they provide an illus-

tration of how many preference levels have an effect on estimating the support

parameters of the model. The third level dampening parameter of 0.18 suggests

that the third place preferences are only made with around one fifth of the certainty

that the first place preferences are. Also α4 = 0 suggests that voters select the

remaining candidates with equal probability.

Similar types of effects are apparent when examining the estimated support pa-

rameters for the voting data in the Dublin West constituency (Table 5.2). Again the

Plackett-Luce parameters seem to shrink towards the mean — lower support param-

eters are pulled up (e.g. Bonnie from 0.03 to 0.07) and larger support parameters are

pulled down (e.g. Higgins from 0.22 to 0.16). The shrinkage of the Benter estimates

towards the first preference proportions is less extreme but again the dampening

parameter values go some way in explaining this. The largest standard error of the

support parameters under either model was 2× 10−6.

The Benter dampening parameter estimate for the Dublin West data was

α̂ = (1.00, 0.92, 0.66, 0.44, 0.89, 0.94, 0.94, 0.00, 0.00)

with the associated standard errors less than 1×10−4. These dampening parameters

suggest that lower preferences should be taken into account when modelling such

data: α6 = α7 = 0.94 shows that the sixth and seventh level preferences are almost

as influential as first place preferences.

One exception to the pattern of shrinkage of the support parameters is McDonald

— she got 8% of the first preference votes and estimated support parameters of

0.06 under both the Plackett-Luce and Benter models. McDonald was a Sinn Féin

candidate in the Dublin West election. Sinn Féin have a well defined body of support

in Ireland in that they are “the only party committed to achieving a democratic

socialist republic and the end of British rule in Ireland”. Voters would tend to rank
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Sinn Féin candidates first or else not at all thus explaining why McDonald’s support

parameters are close to the first preference proportions. This in turn suggests there

is a group of such voters present in the Irish electorate among potentially many

others.

While the above analyses provide evidence to suggest the types of ranking mod-

els introduced are both applicable and necessary, the grouping structure within the

electorate is not exposed. The next section details the exploration of the Irish

electorate using mixtures of Benter models. This approach provides an easily inter-

pretable model for the heterogeneity in the electorate.

5.3 Mixtures of Benter Models

Similar to the mixtures of Plackett-Luce models framework, suppose that the popu-

lation of voters consists of K sub-populations where voters belong to sub-population

k with probability πk. Given that a voter is in sub-population k their vote follows

an f(xi|θk) density. Then the probability of each vote is

P{xi} =
K∑

k=1

πkf(xi|θk)

which is a finite mixture model. It is assumed that {f(xi|θk) : θk ∈ Θ} is a paramet-

ric family of Benter model densities where θk = (p
k
, α). Thus pkc(i,t) now denotes

the probability of the candidate chosen in tth position by voter i being ranked first,

given that voter i is a member of sub-population k.

5.3.1 Mixture Constraints

The proposed mixture models allow the parameters in the different components to

be constrained in different ways; this offers modelling flexibility.

The Plackett-Luce model is a special case of the Benter model with dampening

parameter α = 1 = (1, 1, . . . , 1). Therefore, as in the homogeneous Benter model in

Chapter 5.2, the option of constraining the α value to be identically 1 or leaving it

unconstrained is investigated.

The option of forcing one component in the mixture to be a uniform component

is also examined; that is a component with p
k

= (1/N, 1/N, . . . , 1/N). This uniform
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component can “soak up” any outlying data values and allows for better modelling

of the remaining data. This use of a noise component is analogous to that used in

Chapter 4.

Four different types of model were fitted to the data:

1. a mixture of Plackett-Luce models,

2. a mixture of Plackett-Luce models constrained such that one component is

fixed to be a noise component,

3. a mixture of Benter models and

4. a mixture of Benter models constrained such that one component is fixed to

be noise component.

In both of the Plackett-Luce mixture models α is, by definition, constrained to be 1

whereas in both the Benter mixture models α is to be estimated. Hence f(x|p, α)

is used as notation for the Benter model and f(x|p, 1) for the Plackett-Luce model.

5.3.2 Fitting Mixtures of Benter Models

The mixture models were fitted using maximum likelihood methods; that is, the

likelihood

L(π,p, α|x) = f(x|π,p, α) =
M∏
i=1

[
K∑

k=1

πkf(xi|pk, α)

]
,

is maximized with respect to π = (π1, π2, · · · , πK), p = (p
1
, p

2
, · · · , p

K
) and α =

(α1, α2, · · · , αN), in the case where α is not constrained to be 1.

The fitting of mixtures of Benter models using maximum likelihood (similar to

mixtures of Plackett-Luce models in Chapter 4) can be implemented using the EM

algorithm (Dempster et al., 1977). To use the EM algorithm, a membership label is

introduced for each voter such that zik = 1 if voter i belongs to component k and

zik = 0 otherwise. The likelihood of the observed data and the unobserved labels is

called the complete data likelihood,

LC(π,p, α|x, z) =
M∏
i=1

K∏

k=1

[
πk

(
ni∏
t=1

pαtkc(i,t)∑N
s=t p

αt
kc(i,s)

)]zik
.
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The EM algorithm involves an E step that replaces the missing data z with its

expected value given the current parameter estimates and an M step that maximizes

the complete data log likelihood computed with the estimates of z. Specifically, the

EM algorithm proceeds as follows:

0. Initialize: Let l = 0 and choose initial parameter estimates π(0), p(0) and

α(0).

1. E Step: Compute the quantities

z
(l+1)
ik =

π
(l)
k f(xi|p(l)

k
, α(l))

∑K
k′=1 π

(l)
k′ f(xi|p(l)

k′ , α
(l))

.

for i = 1, . . . ,M and k = 1, . . . , K.

2. M step: Maximize the expected complete data log likelihood:

Q =
M∑
i=1

K∑

k=1

ẑik

{
log πk +

ni∑
t=1

αt log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pαtkc(i,s)

}
(5.1)

with respect to π = (π1, . . . , πK), p = (p
1
, . . . , p

K
) and α = (α1, . . . , αN) (if

required). Call the maximizing values π(l+1), p(l+1) and α(l+1).

3. If converged, then stop. Otherwise, increment l and return to Step 1.

Convergence of the EM algorithm was assessed using the Aitken acceleration

estimate of the final maximized likelihood (see Chapter 4.3). The algorithm is

considered to be converged when the current likelihood value is within a tolerance

of the Aitken estimate (Böhning et al., 1994; Lindsay, 1995; McLachlan and Peel,

2000).

The ECM algorithm (Meng and Rubin, 1993) proved to be useful when fitting

mixtures of Benter models. This algorithm replaces maximization in the M step

with a series of easier conditional maximization steps. In this case, the conditional

maximizations are with respect to π1, . . . , πk, p1
, . . . , p

K
and α2, . . . , αN−1. Max-

imizing (5.1) with respect to πk as detailed in Chapter 4.3 provides the iterative

estimate

π
(l+1)
k =

∑M
i=1 ẑ

(l+1)
ik

M

for k = 1, . . . , K.
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Estimating p
(l+1)
kj and α

(l+1)
t is difficult in practice. Thus the conditional maxi-

mizations with respect to the support and dampening parameters in the M step are

implemented using the MM algorithm (Lange et al., 2000; Hunter and Lange, 2004).

This algorithm works by first constructing a function that minorizes the objective

function and then maximizing the minorizing function. This process is iterated lead-

ing to a sequence of parameter estimates giving increasing objective function values

(see Chapter 4.3.1).

5.3.3 Maximization with Respect to Support Parameters.

Consider the complete data log likelihood which is to be maximized:

Q =
M∑
i=1

K∑

k=1

ẑik{log πk +

ni∑
t=1

αt log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pαtkc(i,s)}. (5.2)

The term − log
N∑
s=t

pαtkc(i,s) is problematic when trying to optimize this expression.

In this case αt is treated as a fixed constant ᾱt. Let ᾱt be the value of αt at the

previous iteration of the MM algorithm.

By the supporting hyperplane property of a convex function (see (4.4)), the strict

convexity of the − log(θ) function implies that

− log(θ) ≥ − log(θn) + 1− θ

θn

for some value θn. Thus,

− log
N∑
s=t

pᾱtkc(i,s) ≥ − log
N∑
s=t

p̄ᾱtkc(i,s) + 1 −
∑N

s=t p
ᾱt
kc(i,s)∑N

s=t p̄
ᾱt
kc(i,s)

.

where p̄kj is a constant and in practice is the estimate of pkj from the previous

iteration of the MM algorithm. It follows from (5.2) that, up to a constant,

Q(pkj) ≥ q1(pkj) =
M∑
i=1

K∑

k=1

ni∑
t=1

ẑik

{
ᾱt log pkc(i,t) −

(∑N
s=t p

ᾱt
kc(i,s)∑N

s=t p̄
ᾱt
kc(i,s)

)}
.

Again maximizing the function q1 with respect to pkj poses maximization problems.

By the supporting hyperplane property of convex functions (4.4) the convex function

f(p) = −pᾱ becomes

−pᾱ ≥ −p̄ᾱ − ᾱ p̄ᾱ−1 (p− p̄)
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which provides the surrogate function

q1(pkj) ≥ q2(pkj) =
M∑
i=1

K∑

k=1

ni∑
t=1

ẑik


ᾱt log pkc(i,t) −

{
N∑
s=t

p̄ᾱtkc(i,s)

}−1{ N∑
s=t

ᾱtp̄
ᾱt−1
kc(i,s)pkc(i,s)

}


up to a constant. By iterative maximization of the surrogate function q2 we produce

a sequence of pkj values which converge to the maximum of Q with respect to pkj.

Thus differentiation of q2(pkj) with respect to pkj gives

∂q2

∂pkj
=

M∑

i=1

ni∑

t=1

ẑik





ᾱt
pkc(i,t)

1{j=c(i,t)} −
(

N∑
s=t

p̄ᾱtkc(i,s)

)−1( N∑
s=t

ᾱtp̄
ᾱt−1
kc(i,s)1{j=c(i,s)}

)
 (5.3)

where 1{j=c(i,s)} is an indicator function such that

1{j=c(i,s)} =





1 if j = c(i, s)

0 otherwise.

Denoting

ωkj =
M∑
i=1

ni∑
t=1

ẑikᾱt1{j=c(i,t)}

and

δijs =





1 if j = c(i, s) and 1 ≤ s ≤ ni

1 if j 6= c(i, l) for 1 ≤ l ≤ ni and s = N + 1

0 otherwise

(5.4)

and equating (5.3) to zero gives

ωkj
pkj

=
M∑
i=1

ni∑
t=1

ẑik

{
N∑
s=t

p̄ᾱtkc(i,s)

}−1




(N+1)∑
s=t

ᾱtp̄
ᾱt−1
kj δijs





which implies that

p̂kj =
ωkj

M∑
i=1

ni∑
t=1

ẑik

{
N∑
s=t

p̄ᾱtkc(i,s)

}−1




(N+1)∑
s=t

ᾱtp̄
ᾱt−1
kj δijs





.
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5.3.4 Maximization with Respect to Dampening Parame-

ters.

In this case the original complete data log likelihood function (5.2) is treated as a

function of αt. pkj is treated as a constant with p̄kj denoting the estimate of pkj

from the previous iteration of the MM algorithm. Applying (4.4) to the problematic

term − log
N∑
s=t

p̄αtkc(i,s) gives

− log
N∑
s=t

p̄αtkc(i,s) ≥ − log
N∑
s=t

p̄ᾱtkc(i,s) + 1 −
∑N

s=t p̄
αt
kc(i,s)∑N

s=t p̄
ᾱt
kc(i,s)

.

It therefore follows, up to a constant,

Q(α) ≥ q1(α) =
M∑
i=1

K∑

k=1

ni∑
t=1

ẑik

{
αt log p̄kc(i,t) +

(−∑N
s=t p̄

αt
kc(i,s)∑N

s=t p̄
ᾱt
kc(i,s)

)}
.

Similar to the maximization with respect to pkj, this surrogate function is still

difficult to optimize. Also, the function f(α) = −p̄α is a concave function and

minorization by a linear surrogate function is not possible. Bounding a concave

function f(θ) around θn using a quadratic gives

f(θ) ≥ f(θn) + [f ′(θn)]
T

(θ − θn) +
1

2
(θ − θn)TB(θ − θn)

where B is a negative definite matrix, H(θn) − B > 0 and H(θn) is the Hessian

d2f/d(θn)2. Thus for f(α) = −p̄α

−p̄α ≥ −p̄ᾱ − (log p̄)p̄ᾱ(α− ᾱ)− 1/2(α− ᾱ)2(log p̄)2

because H(ᾱ) > B = −(log p̄)2. Hence the surrogate function becomes

q1(α) ≥ q2(α)

=
M∑

i=1

K∑

k=1

ni∑

t=1

ẑik


αt log p̄kc(i,t) +

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1{ N∑
s=t

(
− log p̄kc(i,s)p̄

ᾱt
kc(i,s)(αt − ᾱt)

−1/2(αt − ᾱt)2(log p̄kc(i,s))
2
)}]

up to a constant. Iterative maximization of this surrogate function with respect to

αt leads to a sequence of α̂t values that converge to a local maximum of Q. Thus

76



∂q2(α)

∂αt
=

M∑
i=1





K∑

k=1

ẑik


log p̄kc(i,t) +

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1{ N∑
s=t

(
− log p̄kc(i,s)p̄

ᾱt
kc(i,s)

−(αt − ᾱt)(log p̄kc(i,s))
2
)}]}

.1{t≤ni}

which implies that

α̂t =

M∑

i=1





K∑

k=1

ẑik


log p̄kc(i,t)−

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1{ N∑
s=t

log p̄kc(i,s)p̄
ᾱt
kc(i,s)−ᾱt(log p̄kc(i,s))

2

}



 .1{t≤ni}

M∑

i=1





K∑

k=1

ẑik

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1 N∑
s=t

(log p̄kc(i,s))
2



 .1{t≤ni}

.

5.3.5 The EM/MM Algorithm.

In summary, when fitting mixtures of Benter models the EM algorithm (incorporat-

ing the MM algorithm) reduces to the following steps:

0. Let l = 0 and choose initial parameter estimates π(0), p(0) and α(0).

1. E step: Compute the quantities

z
(l+1)
ik =

π
(l)
k f(xi|p(l)

k
, α(l))

∑K
k′=1 π

(l)
k′ f(xi|p(l)

k′ , α
(l))

2. M step: Compute

π
(l+1)
k =

∑M
i=1 z

(l+1)
ik

M

p
(l+1)
kj =

ωkj
M∑
i=1

ni∑
t=1

z
(l+1)
ik

{
N∑
s=t

p̄ᾱtkc(i,s)

}−1




(N+1)∑
s=t

ᾱtp̄
ᾱt−1
kj δijs





(where p̄kj and ᾱt denote plkj and αlt respectively. ωkj and δijs are as defined

in Chapter 5.3.3.)
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α
(l+1)
t =

M∑

i=1




K∑

k=1

z
(l+1)
ik


log p̄kc(i,t)+

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1{ N∑
s=t

− log p̄kc(i,s)p̄
ᾱt
kc(i,s)+ᾱt(log p̄kc(i,s)

2

}



 .1{t≤ni}

M∑

i=1





K∑

k=1

z
(l+1)
ik

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1 N∑
s=t

(log p̄kc(i,s))
2



 .1{t≤ni}

.

(where p̄kj and ᾱt denote plkj and αlt respectively.)

3. If converged, then stop. Otherwise, increment h and return to Step 1.

5.4 Estimation of Standard Errors

As detailed in Chapter 4.4, the covariance matrix of the estimated model parameters

can be approximated by the empirical observed information matrix Ie which can

be expressed in terms of the score function of the complete data log likelihood.

Specifically for parameter estimates θ

Ie =
M∑
i=1

s(xi|θ)sT (xi|θ).

where s(xi|θ) = ∂ logLi(θ)
∂θ

.

From the complete data log likelihood:

Q(θ) =
M∑
i=1

K∑

k=1

ẑik{log πk +

ni∑
t=1

αt log pkc(i,t) −
ni∑
t=1

log
N∑
s=t

pαtkc(i,s)}.

the score function with respect to πk for k = 1, . . . , K is

s(xi|πk) =
∂Q

∂πk

=
ẑik
πk
.
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Similarly the score function with respect to pkj for k = 1, . . . , K and j = 1, . . . , N is

s(xi|pkj) =
∂Q

∂pkj

= ẑik

[
ni∑
t=1

{
αt1{j=c(i,t)}

pkj
−
αtp

αt−1
kj 1{j=c(i,s)for s=t,...,N.}∑N

s=t p
αt
kc(i,s)

}]

= ẑik

[
ni∑
t=1

{
αt1{j=c(i,t)}

pkj
−
∑N+1

s=t αtp
αt−1
kj δijs∑N

s=t p
αt
kc(i,s)

}]
.

where δijs is defined by (5.4).

Finally the score function with respect to αt for t = 2, . . . , N − 1 is calculated as

s(xi|αt) =
∂Q

∂αt

=
K∑

k=1

ẑik

[
1t≤ni

{
log pkc(i,t) −

∑N
s=t p

αt
kc(i,s) log pkc(i,s)∑N
s=t p

αt
kc(i,s)

}]
.

Formulating a matrix S which contains the score function for each voter evalu-

ated for each parameter on convergence of the EM algorithm, setting the empirical

observation matrix Ie = STS and taking the square root of the diagonal of I−1
e ,

the approximate standard errors of the parameters of a mixture of Benter models

emerges. In Chapter 4 due to computing constraints the inverse of the expected

information matrix was approximated by the inverse of the diagonal terms — this

is not the case here as inverting the full expected information matrix is computa-

tionally feasible.

In the maximization step of the EM algorithm the Newton-Rhapson optimiza-

tion technique could be employed using the approximated information matrix de-

tailed in this section. The Newton-Rhapson technique involves inverting the in-

formation matrix at each iteration; the implementation of the MM algorithm at

the M step of the EM algorithm as detailed neatly avoids the inversion of such a

[(K − 1) +K(N − 1) + (N − 2)]2 information matrix.

5.5 Model Comparison

Many different mixture models were fitted to the election data sets by varying the

component models (i.e. the Benter model or the Plackett-Luce model) and the

number of components. A criterion is required for comparing the fitted models.
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A range of model selection techniques are detailed in Chapter 3. The BIC was

used as the main model fitting tool in this analysis. The cross-validated likelihood

method suggested the maximum number of groups fitted as the best model which

was deemed to be a case of overfitting. The BIC consistently returned the most

parsimonious and interpretable models and was used throughout as the main model

selection tool. The BIC is defined to be

BIC = 2(maximized likelihood)− (number of parameters) log(M)

which can be viewed as a criterion which rewards model fit, but penalizes model

complexity. Table 5.3 details the parameters to be estimated within each type of

model considered.

Table 5.3: The number of parameters in the various types of mixture models

proposed for modelling Irish election data.

Model Proportions Support Dampening

Plackett-Luce K − 1 K(N − 1) 0

Plackett-Luce (with Noise) K − 1 (K − 1)(N − 1) 0

Benter K − 1 K(N − 1) N − 2

Benter (with Noise) K − 1 (K − 1)(N − 1) N − 2

5.6 Analysis of the Irish Electorate

The proposed mixture model approach for exploring heterogeneity within the Irish

electorate is demonstrated on Irish presidential and general election data. The

analysis of the electorates of these elections using this approach establishes that

there are homogeneous sub-populations of voters in the electorate and the form of

these sub-populations is revealed.

5.6.1 The 1997 Presidential Election

Mixtures of Plackett-Luce models and mixtures of Benter models, with up to 10

components, were fitted to the 1997 presidential election data sets. The BIC was

used as the model selection criterion. For all polls (with the exception of two) the
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Plackett-Luce model with varying numbers of components was selected. In some of

these polls a mixture of Plackett-Luce models which included a noise component was

deemed the best model. For the two polls on 23/10 and 30/10 mixtures of Benter

models were selected but the difference in BIC between the Benter and Plackett-

Luce mixtures was small. Thus mixtures of Plackett-Luce models are reported for

all polls (Table 5.4) for ease of comparison.

Examination of Table 5.4 shows that the Irish electorate began the 1997 pres-

idential campaign as a single group which then partitioned over the course of the

campaign.

At the beginning of the campaign, as demonstrated by the first two polls, the

electorate appeared to be composed of a single component which had larger levels

of support for the three most high profile candidates — Banotti, McAleese and

Roche. However Roche’s support dropped by almost 10% between the polls taken on

18/9 and 27/9. As mentioned in Chapter 5.2, shortly after the initial nominations

of candidates Adi Roche, who up until then had been the bookies favourite, was

publicly criticized by fellow workers and her popularity dropped off significantly.

This drop in support for Roche continued throughout all the polls detailed.

A month before polling day, demonstrated by the 2/10 poll, 40% of the electorate

were best modelled as noise. The electorate appears to have become partitioned into

a noise group and the original group who supported the high profile candidates of

Banotti, McAleese and Roche. Perhaps Roche’s drop off in popularity left some

undecided voters.

By 11/10, the future pattern of the presidential race became clear. The Banotti

and McAleese camps emerged strongly with the group weighted towards McAleese

making up the larger 73% of the electorate. Notably, the group who favored

McAleese also appear to have a good level of support for Banotti.

Between the polls conducted on 11/10 and the 22/10 a great deal of controversy

arose in the presidential campaign. It was reported that Mary McAleese had sym-

pathies with the republican party Sinn Féin which would have had a detrimental

effect on her support. Further fuel was added to these allegations when the president

of the Sinn Féin party gave McAleese the party’s backing. Throughout this period

McAleese consistently denied the claims and after defending her position well in a
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Table 5.4: Parameter estimates when mixtures of Plackett-Luce models were fitted

to each of the eight presidential election poll data sets are reported. Standard errors

associated with these estimates are given in parentheses.

Date Banotti McAleese Nally Roche Scallon π̂k

18/9 0.23 (0.005) 0.34 (0.014) - 0.35 (0.014) 0.08 (0.002) 1.00

27/9 0.28 (0.007) 0.39 (0.014) - 0.26 (0.009) 0.07 (0.002) 1.00

2/10 0.32 (0.010) 0.42 (0.029) 0.07 (0.004) 0.16 (0.011) 0.02 (0.002) 0.60 (0.090)

0.20 0.20 0.20 0.20 0.20 0.40 (0.036)

11/10 0.56 (0.059) 0.09 (0.010) 0.11 (0.011) 0.20 (0.027) 0.05 (0.005) 0.27 (0.062)

0.20 (0.004) 0.50 (0.010) 0.10 (0.004) 0.14 (0.006) 0.07 (0.003) 0.73 (0.073)

22/10 0.57 (0.123) 0.03 (0.007) 0.10 (0.011) 0.09 (0.019) 0.03 (0.005) 0.14 (0.059)

0.28 (0.003) 0.53 (0.034) 0.05 (0.034) 0.10 (0.006) 0.04 (0.004) 0.55 (0.102)

0.18 (0.007) 0.32 (0.015) 0.10 (0.009) 0.16 (0.016) 0.24 (0.037) 0.31 (0.137)

23/10 0.92 (0.001) 0.02 (0.012) 0.03 (< 0.001) 0.02 (0.002) 0.02 (0.005) 0.16 (0.047)

0.02 (0.025) 0.92 (0.002) 0.01 (0.003) 0.02 (0.002) 0.04 (0.002) 0.20 (0.047)

0.33 (0.002) 0.47 (0.008) 0.05 (0.004) 0.12 (0.005) 0.03 (0.003) 0.44 (0.089)

0.20 0.20 0.20 0.20 0.20 0.20 (0.030)

25/10 0.96 (0.164) 0.01 (< 0.001) 0.01 (< 0.001) 0.02 (0.002) 0.01 (0.001) 0.16 (0.042)

0.00 (< 0.001) 1.00 (0.010) 0.00 (< 0.001) 0.00 (< 0.001) 0.00 (< 0.001) 0.14 (0.037)

0.25 (< 0.001) 0.61 (< 0.001) 0.04 (< 0.001) 0.07 (< 0.001) 0.03 (0.002) 0.49 (0.057)

0.20 0.20 0.20 0.20 0.20 0.21 (0.026)

30/10 0.81 (0.054) 0.01 (0.001) 0.06 (0.001) 0.07 (0.004) 0.05 (0.003) 0.23 (0.028)

0.01 (0.001) 0.83 (0.004) 0.02 (< 0.001) 0.03 (0.001) 0.11 (0.003) 0.27 (0.028)

0.25 (0.011) 0.58 (0.011) 0.04 (0.017) 0.08 (0.025) 0.04 (0.042) 0.36 (0.036)

0.12 (0.017) 0.09 (0.041) 0.15 (0.002) 0.17 (0.004) 0.47 (0.003) 0.14 (0.078)
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nationally broadcast current affairs program on October 20th she re-established her-

self. In fact, the false allegations had a larger detrimental effect on her presidential

competitors, some of whom had publicly castigated her about the allegations.

These events are mirrored by the results of the polls taken on 22/10 and 23/10.

On 22/10 the electorate is composed of three components. Again the strongly Ban-

otti group was present, the strongly McAleese group (with some Banotti support)

was the largest group making up 55% of the electorate and 31% of the electorate

seemed to be nearly a noise component with a conservative flavour. The larger

support in this third group was for the two conservative candidates McAleese and

Scallon. Scallon’s performance in the campaign was beginning to win her votes.

The results of the 23/10 poll indicate how well McAleese recovered and gained

from the Sinn Féin controversy. The electorate really partitions at this stage into a

group of Banotti supporters, a group of McAleese supporters and a group of voters

who support the high profile candidates McAleese, Banotti and Roche; one fifth of

the electorate are still modelled as noise. The results of the poll taken on 25/10 are

very similar — the main theme of the four components remains the same, with the

probability of belonging to each group altering slightly. The group with support for

the candidates with the higher profiles (and supported by the larger parties) makes

up almost half of the electorate.

The changes in the composition of the electorate between 25/10 and polling day

pay tribute to Scallon’s performance throughout her campaign — again the theme

of each of the four sections of the electorate are similar but the estimated support

parameters for each candidate drop in nearly every group, with the exception of

Scallon. Her support parameters in each of the four groups are significantly higher

than they were in the 25/10 poll. Figure 5.2 provides a graphical representation of

the estimated model parameters of the 30/10 exit poll.

In summary, the mixture model finds groups of voters which appear logical in the

context of this presidential election. One possible explanation for the predominant

choice of the Plackett-Luce model over the Benter model is that there were only

five candidates in the election. Thus the electorate was very familiar with all of the

candidates explaining why lower preferences were made with as much certainty as

higher preferences.
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Fig. 5.2: A mosaic plot representation of the mixture of Plackett-Luce models fit-

ted to the Lansdowne exit poll data (conducted on 30/10) for the 1997 presidential

election. The column widths represent the mixture proportions and the columns are

divided into sections representing the support parameter estimates for each candi-

date within the component.
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5.6.2 The 2002 General Election

Mixtures of Plackett-Luce and Benter models were fitted to the data from the Dublin

West constituency (see Chapter 2). The mixture with the highest BIC value was a

fifteen component Benter mixture and is reported in Table 5.5 and Figures 5.3 and

5.4.

The support parameter estimates reported in Table 5.5 all have standard errors

less than 5 × 10−3 with the exception of two — Lenihan’s support parameter in

component 6 has a standard error of 8 × 10−3 and McDonald’s support parameter

in component 10 has an associated standard error of 1× 10−2. The final row of the

table gives the mixture component probabilities whose standard errors were all less

than 8 × 10−3. Benter dampening parameter estimates for the Dublin West data

were

α̂ = (1.00, 1.00, 0.95, 0.74, 0.57, 0.41, 0.28, 0.15, 0.00) (5.5)

with the associated standard errors all less than 1× 10−2.

Table 5.5: Fifteen component mixture of Benter models fitted to the Dublin West

constituency data.

Candidate Components

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bon 0.01 0.02 0.00 0.03 0.01 0.01 0.13 0.04 0.13 0.06 0.03 0.01 0.00 0.04 0.01

Bur 0.01 0.24 0.00 0.17 0.13 0.09 0.17 0.25 0.22 0.39 0.01 0.03 0.05 0.04 0.01

Do-Ry 0.23 0.03 0.19 0.01 0.11 0.08 0.09 0.00 0.00 0.00 0.00 0.08 0.11 0.07 0.07

Hig 0.02 0.03 0.00 0.62 0.05 0.37 0.11 0.05 0.40 0.36 0.52 0.54 0.00 0.03 0.00

Len 0.70 0.11 0.80 0.03 0.45 0.36 0.13 0.00 0.00 0.02 0.00 0.20 0.55 0.07 0.22

McD 0.02 0.00 0.00 0.07 0.05 0.00 0.06 0.01 0.09 0.00 0.42 0.13 0.00 0.72 0.00

Mor 0.02 0.21 0.01 0.02 0.08 0.05 0.15 0.06 0.04 0.05 0.00 0.01 0.20 0.02 0.68

Smy 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00

Ter 0.00 0.37 0.00 0.05 0.11 0.04 0.14 0.59 0.09 0.11 0.00 0.00 0.09 0.01 0.01

π 0.10 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.03 0.02

The mixture model reveals some interesting features in the electorate. The com-

ponents can be summarized as follows:

1. This component gives almost all of its support to Fianna Fáil. Lenihan gets

more support than his running mate, Doherty-Ryan. This component is similar
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Fig. 5.3: A mosaic plot representation of the 15 group Benter mixture model fitted

to the Dublin West data. The width of each column illustrates the mixing proportion

for each group and the sections within each column represent the support parameter

for each candidate within that group.
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Fig. 5.4: A mosaic plot representing the parameter estimates for groups 1 and 3

of the Benter mixture model fitted to the Dublin West data. The two Fianna Fáil

candidates (Doherty-Ryan and Lenihan) have been removed to determine the subtle

differences between the groups.
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to Component 3, but there are subtle differences (see Figure 5.4 and Compo-

nent 3).

2. The support is divided between Fine Gael, Labour and the Progressive Democrats.

These are the three parties that are next largest after Fianna Fáil in terms of

the number of seats held in government.

3. Almost all of the support is for Fianna Fáil. Again, Lenihan gets more support

than his running mate, Doherty Ryan. This component differs from Compo-

nent 1, in that the candidate support conditional on having ranked the Fianna

Fáil candidates Lenihan and Doherty-Ryan in first and second place (in either

order) is strongly for the Progressive Democrats candidate Morrissey (Fig-

ure 5.4). Interestingly, the Progressive Democrats were in coalition government

with Fianna Fáil prior to the election. Thus this component would appear to

be the voters in the electorate who were in favor of a Fianna Fáil/Progressive

Democrats coalition government.

4. The support is mainly for Joe Higgins of the Socialist party, but most of the

remaining support is divided between the Labour and Sinn Féin candidates;

historically, these would have been seen as left wing parties.

5. This component gives a lot of support to Lenihan, but divides its support quite

evenly between Burton, Doherty-Ryan, Terry and Morrissey after that. This

component appears to be predominantly candidate centered on Lenihan.

6. The support here is primarily for Higgins and Lenihan. These candidates

are from very different parties, but both candidates have a very high profile

within the constituency. There is reason to believe that this component may

be geographically based.

7. This component shows almost uniform support for most of the major can-

didates in this constituency. Smyth and McDonald receive considerably less

support than the other candidates.

8. The support is divided between the Fine Gael and Labour candidates. These

two parties encourage voters to transfer their lower preferences between these

parties. These parties are former coalition government parties (1994–1997).

87



9. Higgins and Burton get most of the support. Higgins and Burton are high

profile candidates in the constituency. They are both from left-wing parties.

The support for Bonnie, McDonald and Terry could be explained on similar

party or idealistic grounds. This component has extremely low support for

Fianna Fáil.

10. Burton and Higgins get most of the support with Terry receiving a moderate

amount of support. Terry’s party is closely linked to Burton’s party (see

Component 8).

11. This component shows support for the Socialist and Sinn Féin candidates.

These are the two most left-wing candidates in the constituency.

12. Higgins, Lenihan and McDonald have the majority of the support. The can-

didates are from parties that are quite different. These candidates are all high

profile. The relationship between these candidates is difficult to explain.

13. This component has strong support for the candidates from the two govern-

ment coalition parties (Fianna Fáil and Progressive Democrats).

14. McDonald of Sinn Féin receives the majority of the support in this component.

15. The support mainly goes to the Progressive Democrats candidate. The re-

maining support is for the two Fianna Fáil candidates. All most all of the

support is for the previous government coalition parties.

The fifteen component mixture of Benter models that was selected using BIC

gives clear and meaningful groups. The groups confirm the idea that Irish elections

are influenced by both candidate and party politics (Bowler and Farrell, 1991; Marsh,

2000). The mixture model found in this analysis provides strong support for this

description of how Irish elections work in practice.

The estimated dampening parameter α̂ (5.5) in the Benter mixture is also of

interest. The parameter estimate shows that the first two preferences are very

carefully chosen (α1 = α2 = 1) and that later preferences become more random

(higher entropy) as αt decreases with t. The parameter estimates also suggest that

the choice of candidate at the last two choice levels is essentially uniform (maximum
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entropy). This is interesting, because one could postulate that the high and low

preferences are made very carefully and that the middle preferences are very random.

However, the fitted estimate indicates that choices get more random as a ballot is

completed. Laver (2004) noted that the median (and modal) number of preferences

expressed by voters was three in this constituency. His findings may also support

the idea that voters give a few top preferences carefully and after that they either

don’t select candidates or they select them in a more random manner.

5.7 Conclusions

The proposed mixtures of Plackett-Luce and Benter models provide an interpretable

model for PR-STV election data. The models can be used to discover and model

any heterogeneity present in voting behaviour of the electorate.

The use of a noise component in the mixture models was found to be advan-

tageous. The component accounted for small groups of voters who didn’t fit into

the main groups in the mixture. This is in agreement with previous uses of noise

components in mixtures.

The model fitting by maximum likelihood using the EM and MM algorithms

provides an efficient method for fitting these models.

In the general election context, no covariate information was available for the

voters. However, in the case of opinion polls, including covariate information could

provide insight into the form which groups in the electorate take. Mixtures-of-

experts models which avail of such covariates are detailed in Chapter 7.
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Chapter 6

A Grade of Membership Model for

Rank Data

A major advantage of fitting mixture models via the EM algorithm, as detailed by

Fraley and Raftery (1998), is that the value of the imputed missing membership

labels at convergence is an estimate of the conditional probability that an object

belongs to each component of the mixture. These values can be used to cluster

observations into groups. The grade of membership or mixed membership model

(Erosheva, 2003) provides similar group membership probabilities but in this case

the probabilities are direct parameters of the model. The grade of membership

model allows objects to have partial membership of each of the homogeneous sub-

groups which constitute the population. In this chapter the parameters of the grade

of membership model when fitted to data from the 1997 Irish presidential election

are estimated within a Bayesian framework; the uncertainty associated with the

model parameters can therefore be quantified.

6.1 Model Specification

Irish voting data (see Chapter 2) possess some unique properties which require

careful statistical modelling. The grade of membership (GoM) model is used to

model the heterogeneity within the electorate alongside the Plackett-Luce model

which models the ranked nature of the preferences expressed by the voters.
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6.1.1 The Plackett-Luce Model

It is assumed that the electorate is a heterogeneous population composed of K

homogeneous ‘extreme profiles’ of which each voter may have partial membership.

Each of the K extreme profiles is characterized by a specific parameterization of a

probability density. In the case of modelling Irish election data the characterizing

densities are Plackett-Luce densities with different parameterizations (see Chapter

3.1). Given that voter i expressed ni preferences and is a complete member of

extreme profile k, under the Plackett-Luce model the probability of voter i’s ballot

xi is

P{xi|pk} =

ni∏
t=1

pkc(i,t)
pkc(i,t) + pkc(i,t+1) + · · ·+ pkc(i,N)

=

ni∏
t=1

qkc(i,t) (6.1)

where c(i,t) denotes the candidate in position t in vote i.

6.1.2 The Grade of Membership Model

Mixture models provide a flexible suite of modelling tools which model a population

as a finite collection of homogeneous sub-groups, each of which is characterized

by a specific parameterization of a probability density. While based on a similar

concept, GoM models allow each member of the population have partial membership

of each of the homogeneous sub-groups (or ‘extreme profiles’) which constitute the

population. Thus a soft clustering of the population members is achievable.

The GoM model originally appeared in the 1970s where it was employed in

the context of medical diagnosis problems. Manton et al. (1994) provide a full

description. Early estimation methods for the GoM model were maximum likelihood

based. Erosheva (2002) reformulated the GoM model as a hierarchical Bayesian

mixed-membership model — Airoldi et al. (2006) discuss model choice within such

a framework. Erosheva (2003) estimated the GoM model for multivariate categorical

data within a Bayesian framework; a similar approach is taken here to estimate the

GoM model for rank data.

Under the GoM model each voter i = 1, . . . ,M has an associated GoM score or
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mixed membership vector

πi = (πi1, πi2, . . . , πiK)

where
∑K

k=1 πik = 1 and πik > 0 for k = 1, . . . , K. The GoM score πi describes

the probability of voter i’s membership of each of the K extreme profiles within

the electorate. Given that each extreme profile is characterized by a Plackett-Luce

density, the likelihood of the votes cast x is

P{x|π, θ} =
M∏
i=1

ni∏
t=1

[
K∑

k=1

πikqkc(i,t)

]

where qkc(i,t) is given by (6.1).

As in Erosheva (2003) a latent class representation of the GoM model is con-

sidered which can provide insight into any unobservable underlying phenomenon.

Latent class models involve augmenting the data with categorical latent variables

— these define the latent classes. For each voter i, ni binary vectors zit of length K

are imputed where

zit = (0, . . . , 1, . . . , 0)

and

zitk =





1 with probability πik

0 otherwise.

It follows that under the GoM model the ‘complete data likelihood’ of all the data

and the latent variables is therefore:

P{x, z|π, θ} =
M∏
i=1

K∏

k=1

ni∏
t=1

{
πikqkc(i,t)

}zitk .

A soft clustering of the electorate can be inferred by modelling the ranked preferences

using the GoM model and incorporating the Plackett-Luce model.

6.1.3 Prior and Posterior Distributions

A Bayesian approach (see Chapter 3) is used to estimate the GoM model and thus

the specification of prior distributions for the parameters of the model is required. It

is assumed that the mixed membership variables for each voter follow a Dirichlet(α)
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distribution and that the support parameters within each extreme profile follow a

Dirichlet(β) distribution i.e.

πi ∼ Dirichlet {α = (α1, α2, . . . , αK)}
p
k
∼ Dirichlet

{
β = (β1, β2, . . . , βN)

}
.

Definition 8 If πi = (πi1, πi2, . . . , πiK) has a Dirichlet distribution with K

categories and parameters α = (α1, α2, . . . , αK) then the density function of πi is

Dir(πi|α) =
Γ(α0)
K∏

k=1

Γ(αk)

K∏

k=1

παk−1
ik

where αk > 0, α0 =
∑K

k=1 αk and
∑K

k=1 πik = 1.

The Dirichlet distribution is easily obtained from the basis of independent,

equally scaled, gamma distributed components. Also, since

corr(πik, πil) = −(αkαl)
1/2 {(α0 − αk)(α0 − αl)}−1/2

for k, l,= 1, . . . , K the correlation between components is always negative. Thus

the strong structure imposed by using a Dirichlet prior may not be suitable in cases

where positive dependence is exhibited between components.

Erosheva (2003) employed Dirichlet priors for reasons of conjugacy with the

multinomial distribution. Dirichlet priors are also employed in this application.

Here the prior parameters are fixed as α = (0.5, . . . , 0.5) and β = (0.5, . . . , 0.5)

which is the neutral Jeffreys prior for the multinomial distribution (see O’Hagan and

Forster, 2004, Chapter 5.35). Further work on specifications of the prior parameters

is discussed in Chapter 6.5 and Chapter 9.

Given the prior distributions and the complete data likelihood for the GoM

model, where each extreme profile is deemed to be characterized by some param-

eterization of the Plackett-Luce density, the posterior distribution of all the votes

cast is

P{X, z, π,p} =

[
M∏
i=1

K∏

k=1

ni∏
t=1

{πikqkc(i,t)}zitk
][

M∏
i=1

K∏

k=1

παk−1
ik

][
K∏

k=1

N∏
j=1

p
βj−1
kj

]
.(6.2)
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6.2 Parameter Estimation

Markov chain Monte Carlo (MCMC) methods can be employed to produce realiza-

tions of the model parameters by sampling from the relevant posterior distribution.

In particular, the MCMC technique known as the Gibbs sampler can be employed

if the complete conditional distributions for all model parameters are available for

sampling. Chapter 3 provides full details of some MCMC simulation methods.

6.2.1 The Gibbs Sampler

To implement the Gibbs sampler the complete conditional distributions of the model

parameters are required. Often the complete conditional distribution is recognizable

as a standard distribution and ways of drawing random samples from such common

distributions have been extensively studied. One such standard distribution which

arises in this GoM context is the Multinomial distribution.

Definition 9 If a set of random variables x = (x1, . . . , xM) have a probability func-

tion

P{x1, . . . , xM} =
M !∏M
i=1 xi!

M∏
i=1

θxii

where xi are nonnegative integers such that
M∑
i=1

xi = M and θi are constants such

that θi > 0 and
M∑
i=1

θi = 1 then the joint distribution of x = (x1, . . . , xM) is a

Multinomial distribution.

When implementing the Gibbs sampler for the GoM model the complete con-

ditional distributions for the latent variables zit and the GoM scores πi are readily

available. From the posterior distribution (6.2) the complete conditional distribution

for the latent variables is

P{zit|xi, πi,p} ∝
K∏

k=1

{
πikqkc(i,t)

}zitk

⇒ zit ∼ Multinomial

(
1,

πikqkc(i,t)∑K
k′=1 πik′qk′c(i,t)

)
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where the probabilities of the Multinomial distribution have been normalized. Also,

for the GoM scores

P{πi|zi, xi,p} ∝
K∏

k=1

ni∏
t=1

πzitk+αk−1
ik

=
K∏

k=1

π

ni∑
t=1

zitk + αk − 1

ik

⇒ πi ∼ Dirichlet(α1 +

ni∑
t=1

zit1, . . . , αK +

ni∑
t=1

zitK)

by Definition 8. In the case of the Plackett-Luce support parameters the complete

conditional distribution is

P{p
k
|π, z,x} ∝

[
M∏
i=1

ni∏
t=1

{
πikpkc(i,t)∑N
s=t pkc(i,s)

}zitk
][

N∏
j=1

p
βj−1
kj

]
. (6.3)

Due to the intricate form of the Plackett-Luce density, the full conditional distribu-

tion of the support parameters is not easily recognizable as a standard distribution

and a straight forward Gibbs sampler algorithm cannot be fully implemented. Thus

a hybrid algorithm is employed as detailed in the following section.

6.2.2 The Metropolis Within Gibbs Sampler

Different MCMC algorithms may be combined to draw on and accumulate their indi-

vidual strengths. The Metropolis within Gibbs (or the ‘variable-at-a-time Metropo-

lis algorithm’ (O’Hagan and Forster, 2004)) algorithm imbeds T Metropolis steps

within an outer Gibbs sampling algorithm. Generally T = 1 is used which in ef-

fect simply substitutes a Metropolis step for a Gibbs step. Carlin and Louis (2000)

discuss convergence issues associated with such a hybrid algorithm.

When the conditional distributions required for the Gibbs sampler are not in

standard form (and techniques such as rejection sampling (O’Hagan and Forster,

2004) are inefficient) it is often better to resort to sampling from an alternative pro-

posal distribution in a Metropolis-Hastings style step. To implement a Metropolis-

Hastings step to sample Plackett-Luce support parameter values a proposal distri-

bution which approximates the full conditional (6.3) is required.
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One possibility examined was to approximate the complete conditional distri-

bution using Rosén’s approximation (Rosén, 1972) of the Plackett-Luce model (see

Chapter 3.1)

P{xi|pk} ≈ pkc(i,1)pkc(i,2) . . . pkc(i,ni).

Under this approximation the conditional posterior distribution of p
k

is recogniz-

able as a Dirichlet distribution which would provide a proposal distribution which is

straight forward to sample from. However, in electoral data sets N and ni are typi-

cally small thus the conditions required for Rosén’s approximation are generally not

satisfied. An alternative method, motivated by the MM algorithm, for constructing

suitable proposal distributions is detailed in the following section.

6.2.3 Surrogate Proposal Distributions

The MM algorithm (Lange et al., 2000; Hunter and Lange, 2004) is an optimization

tool which operates by iteratively optimizing a surrogate function for a problematic

objective function. Implementation of the MM algorithm is discussed in Chapter

4.3.1. Here the technique of constructing a surrogate function, and iteratively up-

dating it, is borrowed to form a workable proposal distribution.

Taking logs of (6.3), the complete conditional of p
k
, gives

log P{p
k
|z,x, π} − C =

M∑

i=1

ni∑

t=1

zitk

{
log pkc(i,t) − log

N∑
s=t

pkc(i,s)

}
+

N∑

j=1

(βj − 1) log pkj (6.4)

where C is a constant. The function − log(θ) is a convex function and thus the

supporting hyperplane property of convex functions (see (4.4)) can be applied to

the problematic term − log
∑N

s=t pkc(i,s) in (6.4). This provides a linear minorizing

surrogate function for the log of the complete conditional of p
k
. Thus by (4.4)

− log
N∑
s=t

pkc(i,s) ≥ − log
N∑
s=t

p̄kc(i,s) −
∑N

s=t pkc(i,s)∑N
s=t p̄kc(i,s)

+ 1

where p̄kc(i,s) is a constant value of the respective support parameter. Denoting

δkj =
M∑
i=1

ni∑
t=1

zitk1{c(i,t)=j} where

1{c(i,t)=j} =





1 if c(i, t) = j

0 otherwise
and
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ψijt =





1 if t = 1

1 if t > 1 and c(i, 1), . . . , c(i, t− 1) 6= j

0 otherwise

then (6.4) becomes

log P{p
k
|z,x, π} − C

≥
N∑
j=1

δkj log pkj −
M∑
i=1

ni∑
t=1



zitk

(
N∑
s=t

p̄kc(i,s)

)−1( N∑
s=t

pkc(i,s)

)
+

N∑
j=1

(βj − 1) log pkj

=
N∑
j=1

(βj + δkj − 1) log pkj −
M∑
i=1

ni∑
t=1

(
N∑
s=t

p̄kc(i,s)

)−1( N∑
j=1

zitkpkjψijt

)
. (6.5)

A definition of the standard Gamma distribution is necessary to recognize this sur-

rogate proposal distribution.

Definition 10 A Gamma distributed random variable x has density

P{x} =
1

βαΓ(α)
xα−1 exp(−x/β)

where α is known as a shape parameter and β as a scale parameter.

Thus by examining (6.5) and the log of the Gamma distribution it is clear that the

Plackett-Luce support parameters are approximately Gamma distributed i.e.

pkj ∼ Gamma


βj + δkj ,




M∑
i=1

ni∑
t=1

{
N∑
s=t

p̄kc(i,s)

}−1

zitkψijt



−1
 .

This Gamma function becomes computationally unstable and difficult to sample

from as the shape parameter βj + δkj is generally large — usually the number of

voters M in an electoral data set is large which by definition increases the value of

δkj. However, since

Gamma(r, λ) → Normal(rλ, rλ2) as r →∞

(see Casella and Berger (1990)) a Normal(µkj, σ
2
kj) distribution is used as a workable

proposal distribution when sampling the support parameters pkj where

µkj =
βj + δkj

M∑
i=1

ni∑
t=1

{
N∑
s=t

p̄kc(i,s)

}−1

zitkψijt

σ2
kj =

βj + δkj


M∑
i=1

ni∑
t=1

{
N∑
s=t

p̄kc(i,s)

}−1

zitkψijt




2
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for j = 1, . . . , N and k = 1, . . . , K.

Since the support parameters to be sampled are constrained such that 0 ≤
pkj ≤ 1 and

∑N
j=1 pkj = 1 normalization must be performed during the Metropolis-

Hastings step within the Gibbs sampler. Let pu
k

denote the vector of un-normalized

support parameters for extreme profile k; similarly let pn
k

denote the vector of

normalized support parameters within extreme profile k. Subsequent to choosing

suitable starting values for the support parameters, the Metropolis-Hastings step of

the Metropolis within Gibbs algorithm proceeds as follows for each k = 1, . . . , K:

1. Generate N pukj values, where pu
k

= (puk1, . . . , pukN) ∼ N(µ
k
, σ2

k).

2. Set pn
k

= pu
k
/S = (puk1/S, . . . , pukN/S) where S =

N∑
j=1

pukj.

3. Let p̄
k

denote the value of p
k

from the previous iteration. Calculate the log of

the acceptance ratio α for support parameters p
k

where

log(α) = min

[
log

{
P(pn

k
|...)q(p̄

k
|...)

P(p̄
k
|...)q(pn

k
|...) , 1

}]

= min

[
M∑
i=1

ni∑
t=1

[
zitk

[
log pnkc(i,t) − log

{
N∑
s=t

pnkc(i,s)

}
− log p̄kc(i,t)

+ log

{
N∑
s=t

p̄kc(i,s)

}]]
+

N∑
j=1

[(βj − 1) {log(pnkj)− log(p̄kj)}

+
(pnkj − µkj/S)2 − (p̄kj − µkj/S)2

2σ2
kj/S

2

]
, 0

]

where ... represents all other parameters and q(.) the Normal proposal distri-

bution.

4. Generate a uniform random variable u ∼ U(0, 1).

5. If log(u) ≤ log(α) define p
k

= pn
k

otherwise p
k

= p
k
.

Thus each time the Metropolis-Hastings step occurs the proposal distribution is up-

dated to depend on the previous estimate of the support parameter which therefore

provides a good approximation of the full conditional distribution.
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6.3 Model Features

When sampling the parameters via MCMC algorithms some special features of the

GoM model require attention. A fundamental issue in the fitting of any mixture

based model within a Bayesian framework is that of label switching. Another obvious

issue is inferring the correct number of extreme profiles present.

6.3.1 Label Switching

The GoM model likelihood is invariant under relabelling of the extreme profiles of

the population. This phenomenon leads to posterior distributions which are multi-

modal or symmetric and thus estimating parameters by their posterior mean is inap-

propriate. Several approaches to alleviate this problem are detailed in the literature

— Richardson and Green (1997) suggest minimizing label switching by imposing

artificial identifiability constraints such as ordering the mixing proportions or other

model parameters. The selection of the parameters on which to base the ordering

and indeed selecting the ordering itself is somewhat ad hoc however. Relabelling

strategies using a decision theoretic approach as proposed by Celeux et al. (2000)

and Stephens (2000) are implemented here.

A decision theoretic approach involves defining a loss function L( p̂; p) which

quantifies the loss incurred by choosing p̂ when the true parameter value is p. The

aim is thus to minimize the posterior expected loss E{L( p̂; p)|x}. Due to the

nature of the label switching problem it is intuitive to employ a loss function that

is invariant under permutations of the parameters.

The support parameters p of the Plackett-Luce model are used to rectify the

label switching issue since the data provides more information about the support

parameters than about the GoM scores. Each mixed-membership vector is estimated

only by a single vote whereas all the votes contribute to estimating the Plackett-Luce

support parameters. The ‘true’ or reference value of the support parameters is set to

be the maximum a posteriori estimate pR obtained after a number of initial uphill

only moves in the Metropolis-Hastings step of the algorithm. This MAP value is

used as the reference to which each new estimate p̂t will be ‘matched’ to correct for

any label switching that may occur during estimation. A sum of squares function is
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employed as the loss function to be minimized i.e.

L( p̂t; pR) =
K∑

k=1

N∑
j=1

(p̂tkj − pRkj)2.

Once the MAP estimate has been obtained and subsequent to a typical burn-in

period of the Markov chain, the rows of the estimated matrix p̂t are permuted

after each Metropolis-Hastings step until the loss function is minimized. An online

algorithm (Stephens, 2000) which corrects for any label switching and calculates

valid parameter posterior means then proceeds as follows:

1. Generate all K! permutations νl for l = 1, . . . , K!. Set t = 0.

2. After discarding the burn-in Metropolis-Hastings steps, denote the next es-

timated parameter set by p̂t. Choose permutation νl for l = 1, . . . , K! that

minimizes the loss function

L(p̂tνl ; p
R) =

K∑

k=1

N∑
j=1

(p̂tνl(k)j − pRkj)2. (6.6)

3. Calculate the posterior mean support parameter as pkj = t
t+1
pkj+ 1

t+1
p̂tνl(k)j for

k = 1, . . . , K, j = 1, . . . , N where νl is the permutation which when applied

to the rows of the matrix p̂t minimizes the loss function (6.6).

4. Similarly calculate the posterior mean GoM scores as πik = t
t+1
πik + 1

t+1
π̂tiνl(k)

for i = 1, . . . ,M and k = 1, . . . , K. Set t = t + 1 and repeat steps 2 − 4

subsequent to each Metropolis-Hastings step within the sampler.

It follows that label switching will be minimized ensuring the validity of posterior

mean estimates.

6.3.2 Model Selection

Another feature of the GoM model is the selection of the value K, the number of

extreme profiles present in the Irish electorate. Airoldi et al. (2006) discuss methods

of model selection for GoM models. Erosheva (2002) fixed the value of K to be equal

to two when fitting GoM models.

In this application of the GoM model two model selection criteria are examined.

The Deviance Information Criterion (DIC) introduced by Spiegelhalter et al. (2002)
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is used to provide a measure of model fit (see Chapter 3.5). It is defined as the

Bayesian deviance evaluated at the parameter means plus twice the effective number

of parameters

DIC = D(p̄, π̄) + 2pD.

The DIC is a typical model selection criterion which rewards model fit but penalizes

over parameterization. Models with smaller DIC values are preferable.

Pritchard et al. (2000) suggest a similar model selection criterion based on an

approximation of the posterior distribution P{D|x}. It is computationally similar

to the DIC but penalizes the mean of the Bayesian deviance by a quarter of it’s

variance as opposed to the effective number of parameters. Detailed discussion of

these criteria is given in Chapter 3.5.

6.4 Application of the GoM Model to the Irish

Electorate

The GoM model incorporating the Plackett-Luce model was applied to the prefer-

ences expressed in an exit poll conducted on the day of the 1997 presidential election

(see Chapter 2). The Metropolis within Gibbs sampler was run over 50000 itera-

tions, with a burn-in period of 10000 iterations, over the range K = 1, . . . , 5 extreme

profiles. Dirichlet priors with α = (0.5, . . . , 0.5) and β = (0.5, . . . , 0.5) were imposed

on the mixed membership variables and the support parameters respectively. A pre-

vious mixture modelling analysis of this electoral data set was reported in Chapter

5.

Figure 6.1 illustrates the model selection criterion values obtained when fitting

the GoM models to the 1997 presidential exit poll data. Similar to results reported

in Chapter 8 the DIC and Pritchard’s criterion give different results for the num-

ber of extreme profiles present in the polled Irish electorate (the DIC suggests an

electorate composed of four extreme profiles whereas Pritchard’s criterion suggests

three). Since a previous analysis of this data (see Chapter 5) suggested a four

component mixture of Plackett-Luce models was appropriate for this data the four

component GoM model is discussed. Also, as demonstrated in Figure 6.1 the values

of Pritchard’s criterion are relatively close for K = 2, 3 and 4.
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Fig. 6.1: Values of the DIC and Pritchard’s criterion for the GoM model fitted over

different values of the number of extreme profiles K to the 1997 exit poll data.

6.4.1 Support for the Presidential Candidates

The DIC suggests a four component model best fits the electorate polled (see Figure

6.1). Figure 6.2 illustrates the posterior mean support parameters and their associ-

ated uncertainty for each electoral candidate within the four extreme profiles. The

five candidates were Banotti, McAleese, Nally, Roche and Scallon with McAleese

winning the presidential seat. The four extreme profiles have distinct and intuitive

interpretations within the context of the 1997 Irish presidential election. The un-

certainty associated with the posterior means is relatively small throughout. Also,

Figure 6.3 illustrates the trace plots for the support parameters estimated by the

Markov chain.

Extreme profile one: pro-McAleese voters.

(See Figure 6.2(a).) The posterior mean support parameter estimate for can-

didate McAleese within this group is 0.99 with small associated uncertainty.

It follows therefore that within group one there is little or no support for

the other candidates. This group models voters who strongly favor McAleese;

Mary McAleese was elected as President of Ireland in the 1997 election. Ban-

otti and Roche have the largest associated uncertainty of the other candidates

and thus may have support parameters slightly larger than zero. Banotti was

McAleese’s closest challenger and although Roche was not a major challenger
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(a) Extreme profile 1.
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(d) Extreme profile 4.

Fig. 6.2: Box and whisker plots of the posterior mean support parameter estimates,

with their associated uncertainty, for each of the five electoral candidates within the

four extreme profiles highlighted. Each candidate is denoted by their initial.
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(a) Extreme profile 1.
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(b) Extreme profile 2.
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(c) Extreme profile 3.
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(d) Extreme profile 4.

Fig. 6.3: Trace plots of samples of support parameters for the presidential candi-

dates within each extreme profile obtained after convergence of the Markov chain.

Each figure illustrates 40000 samples thinned every 100th iteration. The initial at

the end of each trace indicates which candidate’s support parameter is traced.
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on polling day, she had maintained a large public profile throughout the cam-

paign.

Extreme profile two: pro-Banotti voters.

(See Figure 6.2(b).) Banotti has high support in this group. While there is

essentially zero support for McAleese the other candidates have some uncer-

tainty around zero. Banotti supporters appear to dislike McAleese strongly,

where McAleese supporters (extreme profile one) tend to be less extreme in

their views of the other candidates.

Extreme profile three: anti-McAleese voters.

(See Figure 6.2(c).) With the exception of McAleese, each candidate has some

level of support in this group. The candidates with the larger support param-

eters had smaller public profiles and were backed by smaller, if any, political

parties. Chapter 2.2.1 details the political affiliations of the candidates. This

extreme profile models voters who are generally in favor of any candidate ex-

cept McAleese.

Extreme profile four: conservative voters.

(See Figure 6.2(d).) The final group models a conservative group of voters —

McAleese and Scallon emerged as the more conservative candidates during the

campaign and have the larger support parameters.

6.4.2 Mixed Membership Parameters for the Electorate

The unique feature of the GoM model is that the partial memberships of the extreme

profiles for each voter are inferred directly when estimating the model. Figure

6.4 illustrates the kernel density estimates of the mixed membership realizations

sampled during the Metropolis within Gibbs algorithm (subsequent to burn-in) for

three randomly sampled voters. All have GoM scores which are interpretable within

the context of the 1997 Irish presidential election.
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(b) Voter 2: McAleese Banotti Nally Roche Scallon
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(c) Voter 3: Scallon Nally Roche - -

Fig. 6.4: Density estimates of realizations (subsequent to burn-in) of the mixed

membership parameter πi = (πi1, πi2, . . . , πi4) for three randomly sampled voters.

The preferences expressed by each voter are detailed under each figure. The symbol

- denotes the case where a voter chose not to express any further preferences. The

four extreme profiles referred to are as reported in Figure 6.2.
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Voter one.

(See Figure 6.4(a).) This voter, who only ranked McAleese, has larger proba-

bility of belonging to extreme profiles one (the pro-McAleese extreme profile)

and four (the conservative extreme profile). The probability of this voter’s

membership of extreme profile three (the anti-McAleese extreme profile) is

tightly distributed around zero. The posterior mean GoM score for voter one

was π1 = (0.36, 0.16, 0.16, 0.32). Thus 36% of this voter’s voting behaviour

can be characterized by extreme profile one and 32% of it by extreme profile

four.

Voter two.

(See Figure 6.4(b).) This voter chose to express all five preferences and has

larger probability of belonging to extreme profiles one (the pro-McAleese ex-

treme profile) and extreme profile two (the pro-Banotti extreme profile). This

is a natural assignment as the first two preferences expressed were McAleese

and then Banotti. The probability of being assigned to either extreme profile

three or four is small. This again makes intuitive sense as extreme profile

three encapsulates the anti-McAleese voters, which clearly voter two is not.

Also extreme profile four models the conservative voters who favor McAleese

and Scallon. Since Scallon was ranked last by this voter it follows that their

probability of belonging to the conservative extreme profile of voters should

be small.

In the case of voter two the posterior mean GoM score was π2 = (0.44, 0.31, 0.13,

0.12); 44% of voter two’s behaviour can be characterized by the pro-McAleese

extreme profile with 31% characterized by the pro-Banotti extreme profile.

Also the uncertainty associated with voter two’s membership of extreme pro-

files one and two is quite large which coincides with their ranking of McAleese

first and Banotti second. Such high rankings of both candidates contradict

membership of both extreme profiles hence introducing more uncertainty.

Voter three.

(See Figure 6.4(c).) Voter three chose not to rank either of the high profile

candidates of McAleese or Banotti. Voter three has very high probability
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of belonging to the extreme profile of anti-McAleese voters and very small

probability of membership of any of the alternative extreme profiles, all of

which have support for McAleese and/or Banotti. The posterior mean GoM

score of π3 = (0.10, 0.10, 0.68, 0.12) further highlights how voter three is mainly

characterized by the anti-McAleese extreme profile.

6.5 Conclusions

The GoM model incorporating the Plackett-Luce model for rank data is a suitable

and necessary framework in which the structure of the Irish electorate may be ex-

amined. The GoM mixed membership parameters provide deeper insight to the

mechanisms and opinions that drive each voter individually. Thus the loss of infor-

mation which results from a hard clustering is reduced by the provision of a soft or

fuzzy clustering of the heterogeneous electorate.

Run times for the implemented methodology were small. The use of a surro-

gate proposal distribution and the subsequent generalization of Gamma(r, λ) ⇒
Normal(rλ, rλ2) appears to have worked well. Good mixing of the Markov chain

has also been illustrated.

Further model accuracy could be attained by imposing a hierarchical framework

— a hyperprior could be introduced for the Dirichlet parameters α and β of the

mixed membership and support parameter priors respectively. Erosheva (2003)

employed such hierarchical priors.
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Chapter 7

A Mixtures-of-Experts Model for

Rank Data

Mixtures-of-expert (ME) models (Jacobs et al., 1991) combine the ideas of both

mixture models (see Chapter 4.1) and generalized linear models (see Chapter 7.2).

Complex problems can be formulated as a mixture model where generalized linear

model theory provides the statistical structure within the mixture.

ME models build further on the structure implemented by mixture models by

taking account of both the observations and associated covariates when modelling a

heterogeneous population. Specifically in this chapter the heterogeneous population

is a subset of the Irish electorate; both the votes cast and the covariates associated

with the voters are modelled. In similar vein to Chapter 5 the aim is to perform

an exploratory analysis of the Irish electorate to determine which social factors

influence voting patterns and what the induced voting patterns are. In particular

the IMS presidential opinion poll conducted on October 2nd 1997 (see Chapter 2)

is analyzed.

7.1 Mixtures-of-Experts Models

Mixtures-of-experts models model the relationship between a set of response and

covariate variables where they assume that the conditional distribution of the re-

sponses given the covariates is a finite mixture distribution. The components of the

finite mixture distribution are known as the ‘expert networks’.
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Fig. 7.1: Tree like structure of a single layer mixtures-of-experts model with two

expert networks.

ME models have a tree like structure where the expert networks are the leaves

and ‘gating networks’ form the non-terminal nodes of the tree (see Figure 7.1). A hi-

erarchical mixtures-of-experts model (HME) has the same structure but has multiple

layers of expert and gating networks. The gating network parameter πik represents

the probability of voter i being a complete member of expert network k given voter

i’s associated covariates wi. The gating network parameters are weighting proba-

bilities constrained such that they are nonnegative and sum to one for each voter.

The probability of voter i’s ballot P{xi|θk} according to the expert networks in the

mixture model are then blended by the gating network parameters to produce an

overall probability of voter i’s ballot. Thus P{xi} is a convex combination of the

outputs from the expert networks.

Jordan and Jacobs (1994) assume each component of the mixture model (i.e.

each expert network) produces its output as a generalized linear function of input

predictor variables. Within in the context of rank Irish voting data it is assumed

each of K expert networks follows a Benter model distribution (see Chapter 3.2)

with different parameterizations; here the parameterization is constant with respect

to the covariates. It is possible to allow covariates contribute to the expert networks

(see Jordan and Jacobs (1994) and Peng et al. (1996)) but this case is not examined

here.
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Benter’s model for expert network k is parameterized by θk = (p
k
, α) where

p
k

= (pk1, . . . , pkN) is the set of support parameters for each candidate j = 1, . . . , N

and α = (α1, . . . , αN) is the vector of dampening parameters associated with the N

choice levels. As usual
∑N

j=1 pkj = 1 for k = 1, . . . , K. The dampening parameters

are constrained such that 0 ≤ αt ≤ 1 for t = 1, . . . , N and α1 = 1 for identifiability

reasons. Under Benter’s model the probability of vote xi given that voter i is

completely characterized by expert network k is

P{xi|pk, α} =

ni∏
t=1

pαtkc(i,t)∑N
s=t p

αt
kc(i,s)

where ni is the number of preferences expressed by voter i and c(i, t) denotes the

candidate ranked at the tth choice level by voter i. Under the ME model then

P{xi|p, α, wi} =
K∑

k=1

πik(wi)P{xi|pk, α} (7.1)

6 6

kth gating network. kth expert network.

where p = (p
1
, . . . , p

K
).

In case (7.1) as in Figure 7.1 the covariates of voter i, wi, are involved only in

the gating networks through the use of generalized linear models; this methodology

is discussed in Chapter 7.2.

7.2 Generalized Linear Models

Generalized linear models (GLMs) model the relationship between the mean of a

response variable x and an independent or predictor variable w. Dobson (2002) and

McCullagh and Nelder (1983) deal comprehensively with GLMs. An integral element

of generalized linear models is the idea of the family of exponential distributions.

Definition 11 A probability density function f(x|θ) given a parameter θ is said to

belong to the exponential family of distributions if it can be written in the

form

exp{a(x) + b(θ) + c(x)d(θT )}
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where a, b, c, d are known functions. If c(x) = x, then the distribution is said to be

in canonical form. When the distribution is in canonical form, the function d(θT )

is called a natural parameter.

The Gaussian and Poisson distributions are typical continuous distributions which

are members of the exponential family — the binomial and geometric distributions

are examples of discrete members.

A GLM has three constituent parts:

1. the random component. The response variable x forms the ‘random’ com-

ponent of a GLM. It is assumed that the response variables are independent

and that their distributions come from the exponential family. The response

variables need not be identically distributed but they do have a distribution

from the same family.

2. the systematic component. The function f of the predictor variable w

which is linear in the parameters and is related to the mean of the response

variable.

3. the link function. This links the random and systematic components by

defining g(µ) = f(w) where µ = E[x]. The identity function, the logit function

and the complementary log log function are all typical link functions (see

McCullagh and Nelder (1983)).

The well known logistic regression model is a GLM — the responses x are in-

dependently distributed and x ∼ Bernoulli(π). Under a logistic regression model

π = P{x = 1} is related to the predictor variable w by a logit link function i.e.

log

(
π

1− π
)

= α + βw.

The model assumes the log-odds of a ‘success’ for x is a linear function of the

predictors w. Thus α is the log-odds of success at w = 0 and β is the change in the

log-odds corresponding to a one unit increase in w.

Essentially the gating network probabilities in the mixtures-of-experts model are

the success probabilities from a multinomial logistic regression where the probability

of belonging to each of K−1 expert networks compared to a ‘baseline category’ is a

112



function of the covariates. Voter i’s gating network probabilities πi = (πi1, . . . , πiK)

are modelled by a logistic function of their L covariates wi = (wi1, . . . , wiL) i.e.

log

(
πik
πi1

)
= βk0 + βk1wi1 + βk2wi2 + · · ·+ βkLwiL (7.2)

where expert network 1 is used as the baseline category and βk0 is an intercept term.

7.3 Fitting a ME Model.

Under the ME model (7.1) the likelihood of the covariates w = (w1, . . . , wM) and

the votes x = (x1, . . . , xM) is

L(β,p, α|w,x) =
M∏
i=1

K∑

k=1

πik(wi)P{xi|pk, α} (7.3)

where β = (β
1
, . . . , β

K
).

Similar to Jordan and Jacobs (1994) a maximum likelihood approach (see Chap-

ter 3) via the EM algorithm is taken when estimating this model. Peng et al. (1996)

introduce a method of estimating the ME model within a Bayesian framework where

Gibbs sampling and the EM algorithm are used as training methods.

The EM algorithm is often used to produce parameter estimates when missing

data is a feature of the problem or when optimization of the likelihood would be

simplified if an additional set of variables were known. As it is difficult to directly

maximize the likelihood (7.3) in this case the data is augmented by imputing latent

variables which record the membership of the expert networks for each voter i.e. for

each voter i = 1, . . . ,M

zik =





1 if i is characterized by expert network k

0 otherwise

for k = 1, . . . , K expert networks. Thus the complete data likelihood is

Lc(β,p, α|w,x) =
M∏
i=1

K∏

k=1

[
πik(wi)P{xi|pk, α}

]zik

⇒ lc(β,p, α|w,x) =
M∑
i=1

K∑

k=1

zik log πik(wi) +
M∑
i=1

K∑

k=1

zik log P{xi|pk, α} (7.4)

where lc denotes the log of the complete likelihood.
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Maximum likelihood estimates of β̂, p̂ and α̂ are achieved via the EM algorithm.

This is a two step algorithm consisting of an E (estimation) step and a M (max-

imization) step. The E step involves the estimation of the expected value of the

latent variables and the M step involves the maximization of the likelihood which

is updated subsequent to each E step. These steps are continuously iterated until

convergence to stable parameter estimates or to a pre-specified criterion has been

reached.

7.3.1 The E Step

The E step of the EM algorithm takes the expectation of the complete data log

likelihood (7.4). Practically this translates to estimating the expected value of the

missing variables. Since

P{zi|wi, xi} =
P{zi, xi|wi}
P{xi|wi}

=

K∏

k=1

{(
ni∏
t=1

pαtkc(i,t)∑N
s=t p

αt
kc(i,s)

)
πik

}zik

K∑

k′=1

(
ni∏
t=1

pαtk′c(i,t)∑N
s=t p

αt
k′c(i,s)

)
πik′

=
K∏

k=1





(
ni∏
t=1

pαtkc(i,t)∑N
s=t p

αt
kc(i,s)

)
πik

K∑

k′=1

(
ni∏
t=1

pαtk′c(i,t)∑N
s=t p

αt
k′c(i,s)

)
πik′





zik

=
K∏

k=1

φzikik

where
∑K

k=1 φik = 1 then zi ∼ Multinomial(1, φ
i
) and E[zik] = ẑik = φik. Substitut-

ing these updated expected values into the complete data log likelihood forms the

‘Q function’

Q =
M∑
i=1

K∑

k=1

ẑik log πik(wi) +
M∑
i=1

K∑

k=1

ẑik log P{xi|pk, α} (7.5)

which is maximized with respect to the model parameters during the M step of the

algorithm.
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7.3.2 The M Step

From (7.2) it follows that the gating network probabilities are defined by

πik(wi) =
exp

{
βT
k
wi

}

∑K
k′=1 exp

{
βT
k′
wi

}

where β
k

= (βk0, . . . , βkL). Explicitly the Q function becomes

Q =
M∑

i=1

K∑

k=1

ẑik

[
βT
k
wi − log

{
K∑

k′=1

exp
(
βT
k′wi

)}]

+
M∑

i=1

K∑

k=1

ni∑

t=1

ẑik

[
αt log pkc(i,t) − log

N∑
s=t

pαtkc(i,s)

]
. (7.6)

Iterative maximization of Q provides MLE’s of the model parameters. Since the

gating network parameters (β) and the expert network model parameters (p, α)

influence the Q function through distinct terms the M step reduces to separate

maximization problems for each parameter set. Moreover the EM algorithm per-

formed is in fact an ECM (expectation and conditional maximization) algorithm

where the M step is replaced by a conditional maximization step (Meng and Ru-

bin, 1993). Thus maximizing (7.6) with respect to the Benter model parameters

p
k

and α for each expert network makes use of the same theory introduced when

fitting straight forward mixtures of Benter’s models (Chapter 5.3.2) where the MM

algorithm was employed to overcome some maximization issues. Thus

p̂kj =
ωkj

M∑
i=1

ni∑
t=1

ẑik

{
N∑
s=t

p̄ᾱtkc(i,s)

}−1




(N+1)∑
s=t

ᾱtp̄
ᾱt−1
kj δijs





(7.7)

where ωkj, p̄kj, ᾱt and δijs are are as defined in Chapter 5.3.3. Further, Chapter

5.3.4 details the steps involved in producing the the dampening parameter estimate

α̂t =

M∑

i=1





K∑

k=1

ẑik


log p̄kc(i,t)+

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1{ N∑
s=t

− log p̄kc(i,s)p̄
ᾱt
kc(i,s)+ᾱt(log p̄kc(i,s))

2

}



 .1{t≤ni}

M∑

i=1





K∑

k=1

ẑik

(
N∑
s=t

p̄ᾱtkc(i,s)

)−1 N∑
s=t

(log p̄kc(i,s))
2



 .1{t≤ni}

.(7.8)
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7.3.3 Estimation of Gating Network Parameters

Maximization of the Q function (7.6) with respect to the gating network parameters

βkl for k = 0, . . . , K and l = 0, . . . , L is not straight forward. Theory from the MM

algorithm again provides a tenable technique to maximize Q. Hunter and Lange

(2004) outlined common inequalities used to construct majorizing or minorizing

surrogate functions. As previously employed in Chapter 5.3.4, if f(θ) is a concave

function which is twice differentiable and has bounded curvature then f(θ) can be

minorized by a quadratic function with sufficiently high curvature and tangent to

f(θ) at the point θn. For a negative definite matrix B such that f ′′(θn) − B > 0

then the inequality

f(θ) ≥ f(θn) + f ′(θn)T (θ − θn) + 1/2(θ − θn)TB(θ − θn)

provides a quadratic lower bound for f(θ). Hunter and Lange (2004) made use of

this property within in a similar logistic regression framework.

For some constant C

q(β) = Q(β) + C =
M∑
i=1

K∑

k=1

ẑik

[
βT
k
wi − log

{
K∑

k′=1

exp
(
βT
k′
wi

)}]

=
M∑
i=1

K∑

k=1

ẑik(β
T

k
wi)−

M∑
i=1

log

{
K∑

k′=1

exp
(
βT
k′
wi

)}
(7.9)

since, by definition,
∑K

k=1 zik = 1. Straight forward differentiation gives

Ssr =
∂q(β)

∂βsr
=

M∑
i=1

wir(ẑis − πis).

Further

∂2q(β)

∂β2
sr

= −
M∑
i=1

wirwirπis [1− πis]

and

∂2q(β)

∂βsrβst
= −

M∑
i=1

wirwitπis [1− πis] .

Thus (7.9) is concave and since πis [1− πis] is bounded above by 1/4 a negative

definite matrix B can be defined as B = −1/4
∑M

i=1wiw
T
i . It follows that q′′(βn)−B

is nonnegative definite and the quadratic function

g(β|βn) = q(βn) + S(βn)T (β − βn) + 1/2(β − βn)TB(β − βn)
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minorizes q(β) at the point βn where S = (S1, . . . , SK) and Sk = (Sk0, . . . , SkL).

Maximizing this with respect to the gating network parameters gives the iterative

update formula

βn+1 = βn −B−1S(βn) (7.10)

which (as B is constant) therefore only requires the inversion of B once during the

iterative algorithm.

This updating formula for the gating network parameters coincides with the

widely known Newton-Raphson update

βn+1 = βn − (H−1)nSn.

where the traditional score functions Sn and Hessian H of the log-likelihood are

replaced by the gradient vectors (evaluated at the current parameter estimates) and

the Hessian matrix of the surrogate function. However the Newton-Raphson update

requires matrix inversion at every iteration which is computationally expensive and

is neatly avoided by using the MM update.

In the context of EM algorithms, Dempster et al. (1977) term an algorithm which

increases the value of the complete data log likelihood without actually maximizing

it a generalized EM (GEM) algorithm. Similarly, the technique detailed here to

obtain maximum likelihood estimates of the gating network parameters is known as

a gradient MM algorithm.

7.3.4 The EM/MM Algorithm

In summary, to obtain maximum likelihood estimates of the mixtures-of-experts

model parameters the steps of the EM algorithm with the MM algorithm embedded

at the M step stage proceed as follows:

0. Initialize: Choose starting values for p(0) = (p(0)
1
, . . . , p(0)

K
), α(0) = (α

(0)
1 , . . . ,

α
(0)
N ) and β(0) = (β(0)

1
, . . . , β(0)

K
). Suggestions for good starting values are dis-

cussed in Chapter 7.5. Let l = 0.
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1. E step: Compute the values

ẑik =

π
(l)
ik

ni∏
t=1

p
(l)
kc(i,t)∑N

s=t p
(l)
kc(i,s)

K∑

k′=1

π
(l)
ik′

ni∏
t=1

p
(l)
k′c(i,t)∑N

s=t p
(l)
k′c(i,s)

.

2. M step:

From (7.7) calculate p
(l+1)
kj for k = 1, . . . , K and j = 1, . . . , N .

From (7.8) calculate α
(l+1)
t for t = 1, . . . , N .

From (7.10) calculate β
(l+1)
kl for k = 2, . . . , K and l = 0, . . . , L.

Increment l by 1.

3. Convergence: Repeat the E step and M step until convergence (as deemed

by Aitken’s acceleration criterion (see Chapter 3.3.1). The final parameter

values are the maximum likelihood estimates p̂, α̂ and β̂.

7.4 Standard Errors for ME Parameters

Standard errors of the parameter estimates are not a natural by-product of the EM

algorithm but they can be readily produced subsequent to convergence. Hunter

and Lange (2004) discuss some approaches to obtaining standard errors within the

context of the MM algorithm. The approach suggested by McLachlan and Krishnan

(1997) and McLachlan and Peel (2000) as taken in Chapters 4.4 and 5.4 is taken

here.

Following the theory outlined in Chapter 4.4 the covariance matrix of the es-

timated model parameters can be approximated by the inverse of the empirical

information matrix Ie(θ). Given the complete data log likelihood for voter i under

the ME model

lci(θ) =
K∑

k=1

ẑik

[
βT
k
wi − log

{
K∑

k′=1

exp
(
βT
k′
wi

)}]

+
K∑

k=1

ni∑
t=1

ẑik

[
αt log pkc(i,t) − log

N∑
s=t

pαtkc(i,s)

]

the inverse empirical information matrix is

I−1
e (θ) = STS =

M∑
i=1

s(xi|θ)sT (xi|θ)
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where

θ = the model parameters p̂, α̂, β̂

s(xi|θ) =
∂lci(θ)

∂θ
.

Thus on convergence of the EM/MM algorithm approximate standard errors of the

parameter estimates can be produced.

7.4.1 Score Function for Benter Support Parameters

Due to the distinct terms of parameters in the complete data log likelihood the

standard errors for Benter’s model parameters are as detailed in Chapter 5.3.3. The

score function for the Benter support parameters for voter i is

s(xi|p) =
∂lci(p)

∂pkj

= ẑik

[
ni∑
t=1

{
αt1{j=c(i,t)}

pkj
−
∑N+1

s=t αtp
αt−1
kj δijs∑N

s=t p
αt
kc(i,s)

}]
.

where 1{j=c(i,t)} and δijs are as defined in Chapter 5.3.3.

7.4.2 Score Function for Dampening Parameters

Likewise for the Benter dampening parameters the relevant score function for voter

i is

s(xi|α) =
∂lci(α)

∂αt

=
K∑

k=1

ẑik

[
1{t≤ni}

{
log pkc(i,t) −

∑N
s=t p

αt
kc(i,s) log pkc(i,s)∑N
s=t p

αt
kc(i,s)

}]
.

7.4.3 Score Function for Gating Network Parameters

To estimate the standard errors associated with the gating network parameters the

score function is

s(xi|β) =
∂lci(β)

∂βkl
= wil(ẑik − πik).

Thus by calculating the square root of the diagonal elements of I−1
e (θ̂) formed from

the relevant score functions the approximate standard errors for the ME model

parameters can be provided.
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7.5 Application of ME Models to Irish Presiden-

tial Opinion Poll Data

During the Irish presidential campaign of 1997 several opinion polls were con-

ducted in which both the current preferences of the voters and some covariates

were recorded. Chapter 2.2.1 provides details of these polls. The second opinion

poll conducted by Irish Marketing Surveys (IMS) on October 2nd 1997 is analyzed

here — the set of covariates recorded is the largest among the opinion polls con-

ducted, the covariates recorded were deemed to be potentially the most informative

and there was little missing data among the polled voters. Table 7.1 provides details

of the covariates recorded by the IMS pollers. When fitting the ME model all covari-

ates were standardized such that 0 ≤ wil ≤ 1 where wil denotes the value of the lth

covariate for voter i. Such standardization was employed to simplify interpretation

of fitted parameters and to achieve numerical stability.

A single layer ME model rather than a hierarchical model was assumed to be

applicable in this context. The nesting of choice levels and the partitioning of

the available choices is an area of future research. Within a single layer ME model

however the number of expert networks necessary to adequately summarize the data

needs to be estimated. Jordan and Jacobs (1994) used a test set approach to model

selection — training was stopped when the error on the test set reached a minimum.

Peng et al. (1996) fixed the number of layers in their HME models as well as the

number of expert networks. The Bayesian Information Criterion (BIC) (Chapter 3)

is utilized here to select the optimal number of experts K. The BIC rewards well

fitting models but penalizes over parameterization within them.

To estimate the ME model parameters for the IMS poll data a straight forward

mixture of Benter models (see Chapter 5) was initially fitted to the preferences ex-

pressed by the polled voters. The EM/MM algorithm detailed in Chapter 5.3.5 was

run for 500 iterations to provide good starting values for the Benter support param-

eters, dampening parameters and missing membership labels zik for i = 1, . . . ,M

and k = 1, . . . , K. Good starting values for the gating network parameters β were

obtained by then performing 1000 of the logistic regression style M steps (7.10)

from the mixtures-of-experts EM/MM algorithm. The full EM/MM algorithm to
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Table 7.1: The six covariates and their respective levels (if categorical variables)

recorded in the October 2nd 1997 opinion poll conducted by Irish Marketing Surveys

prior to the Irish presidential election.

Covariate Levels

Age —

Area City

Town

Rural

Gender Housewife

Non-housewife

Male

Government satisfaction level Satisfied

Dissatisfied

Do not know/no opinion

Marital status Married/living as married

Single

Widowed/divorced/separated

Social class AB (Upper middle class & middle class)

C1 (Lower middle class)

C2 (Skilled working class)

DE (Other working class & lowest level of subsistence)

F50+ (Large farmers)

F50– (Small farmers)
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provide the maximum likelihood estimates of the ME model parameters was then

iterated until convergence was achieved as deemed by Aitken’s acceleration criterion

(see Chapter 3.3.1). Subsequent to convergence approximate standard errors of the

maximum likelihood estimates were calculated.

The ME model was fitted over the range K = 2, . . . , 5 expert networks using a

backward elimination style method to choose the informative covariates. Interaction

terms were avoided. A model with all six covariates was initially fitted, then models

with only five of the covariates. From this set of models the ‘best’ model as deemed

by the BIC was selected and models with only four of the selected covariates were

then fitted. This selection of the best subset of covariates and then backward elimi-

nation was continued until only one covariate was left in the model. The BIC values

for all the models fitted were then compared. Table 7.2 details the five best fitting

models as deemed by their BIC values. The covariates selected with each model are

also detailed.

Table 7.2: The five best fitting ME models as deemed by the BIC. Larger BIC

values indicate better fitting models. The number of expert networks K and the

associated covariates of the best models are also reported.

BIC K Covariates

-8490.43 4 Age

Government satisfaction

-8498.59 3 Age

-8507.33 3 Age

Government satisfaction

-8511.37 3 Government satisfaction

-8512.62 5 Age

Government satisfaction

The optimal model with K = 4 expert networks where age and government

satisfaction are the influential covariates is discussed. Each of the five best fitting

models considered age and/or government satisfaction as important covariates.

The IMS October 2nd presidential opinion poll was previously analyzed in Chap-
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ter 5.6.1 where a two component mixture of Plackett-Luce models was deemed the

best model. Under the optimal ME model the Benter dampening parameter esti-

mates are α̂ = (1.00, 0.99, 0.97, 0.99, 1.00). Due to the constraint α1 = 1 and the

non-identifiability of αN only α2, α3 and α4 are actually estimated. Their associated

standard errors are 0.10, 0.12 and 0.15 respectively. Since the Plackett-Luce model

(Chapter 4) is a special case of Benter’s model with α = (1, . . . , 1), the proximity of

the dampening parameter estimates to 1 along with their relatively large standard

errors suggest a Plackett-Luce model would be adequate for modelling this poll data.

Figure 7.2 illustrates the Benter support parameter estimates within each of the

four expert networks in the optimal model. The relatively small approximate stan-

dard errors of the estimates are also given. Expert network 1 appears to favour the

conservative candidates of McAleese and Scallon — at the early stage of the electoral

campaign when this poll was conducted Scallon had not yet established herself as

a true presidential contender. Thus the 31% support for Scallon in this network is

the largest she obtains in this poll. Expert network 2 also reveals characteristics of

the early stages of the presidential campaign. Adi Roche has large support in this

expert network — at the start of the campaign Roche was a very popular candidate

but her support quickly dropped when she became embroiled in difficulties and her

campaign went into decline. The third and fourth expert networks have large sup-

port parameters for Mary McAleese and Mary Banotti respectively. McAleese (who

was elected) and Banotti were two of the main candidates throughout the campaign.

Of note is the low levels of support for Nally in any of the expert networks — Nally

joined the electoral campaign later than the other candidates on September 29th

and so had little time to win votes prior to this October 2nd poll.

According to the BIC, the ME model with four expert networks where age and

‘government satisfaction’ were influential covariates best models the IMS presiden-

tial opinion poll. Table 7.3 details the gating network parameter estimates, the

associated odds ratios and the relevant 95% confidence intervals for the odds ratios.

The gating network parameters associated with expert network 1 were used as the

reference parameters i.e. β
1

= (β10, . . . , β1L) = (0, . . . , 0). Also, within the gov-

ernment satisfaction covariate the ‘do not know/no opinion’ level was used as the

baseline category.
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Expert network 1 Expert network 2 Expert network 3 Expert network 4

Ban
ot

ti

M
cA

lee
se

Nall
y

Roc
he

Sca
llo

n
0.31 (0.01)

0.15 (0.03)

0.15 (0.02)

0.28 (0.04)

0.11 (0.06)

0.01 (0.01)

0.70 (0.01)

0.03 (<0.01)

0.13 (0.01)

0.13 (<0.01)

0.01 (<0.01)
0.06 (0.03)

0.04 (<0.01)

0.72 (<0.01)

0.17 (<0.01)

0.05 (<0.01)

0.15 (0.01)

0.13 (0.01)

0.14 (0.01)

0.52 (<0.01)

Fig. 7.2: A graphical representation of the maximum likelihood estimates of the

Benter support parameters for the October 2nd 1997 presidential opinion poll.

Each column of the mosaic represents an expert network — the segments within

the columns represent the magnitude of the support parameters for the candidates

within each expert network. The maximum likelihood estimate of each support pa-

rameter is detailed within each segment. Standard errors for all support parameter

estimates are given in parentheses.
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Table 7.3: Gating network parameter estimates β̂
k
, the associated odds ratios and

the 95% odds ratio confidence intervals under the ME model fitted to the October

2nd 1997 presidential opinion poll data. The covariates selected as informative were

age and government satisfaction. ‘Do not know/no opinion’ was used as the reference

level within the categorical government satisfaction covariate.

Intercept Age Satisfied Not satisfied

Expert Log odds (β̂
2
) 0.92 -5.16 0.13 1.03

network Odds ratio [exp(β̂
2
)] 2.52 0.01 1.14 2.80

2 95% CI (Odds ratio) [0.78, 8.16] [0.00, 0.05] [0.42, 3.11] [0.77, 10.15]

Expert Log odds (β̂
3
) -0.46 -0.05 1.14 1.33

network Odds ratio [exp(β̂
3
)] 0.63 0.95 3.12 3.81

3 95% CI (Odds ratio) [0.16, 2.49] [0.32, 2.81] [0.94, 10.31] [0.90, 16.13]

Expert Log odds (β̂
4
) 0.54 0.44 -1.05 1.25

network Odds ratio [exp(β̂
4
)] 1.71 1.56 0.35 3.50

4 95% CI (Odds ratio) [0.52, 5.58] [0.35, 6.91] [0.12, 0.98] [1.07, 11.43]
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In terms of the gating network parameters which refer to expert network 2 (i.e.

the pro Roche expert network), for every one unit increase in age the odds for

being described best by expert network 2 are 0.01 times greater (or 100 times less)

than the odds for being described by expert network 1 (i.e. the conservative expert

network.) This would appear to be an intuitive characteristic of the Irish electorate

— the more elderly generations in Ireland would generally be considered to be

more conservatively minded. Note also the relatively small associated odds ratio

confidence interval.

Also, if a voter was satisfied with the current government rather than having

no opinion the odds for being described by expert network 2 are 1.14 times greater

than the odds for being described by expert network 1. Similarly if a voter was not

satisfied with the current government rather than having no opinion the odds for

being described by expert network 2 are 2.80 times greater. However, both 95%

confidence intervals for the government satisfaction covariate enclose 1 implying it

is likely that the voters are no more likely to be described better by expert network

2 than 1. Thus younger voters (perhaps with political opinions) appear to be best

described by expert network 2 and were more in favour of Adi Roche.

For every one unit increase in age the odds for being best described by expert

network 3 is 0.95 times greater than being best described by expert network 1.

Again, the confidence interval for this odds ratio includes 1 suggesting age is not

a driving covariate within this expert network. The confidence intervals for the

government satisfaction covariates also include 1 but only just. The odds of a voter

being best described by expert network 3 are around 3 times greater than the odds

for expert network 1 given that the voter has some political opinion. Thus voters

with an interest in politics appear to favour Mary McAleese.

The gating parameters for expert network 4 indicate that voters with a dislike

for the current government favored Mary Banotti. The confidence interval for the

age covariate includes 1 suggesting it has little effect on the odds ratio for being

described by expert network 4 over expert network 1. The odds of a voter who

indicated a dislike for the 1997 government (a coalition government of Fianna Fáil

and the Progressive Democrats) being best described by expert network 4 were 3.50

times greater than being described by expert network 1. In contrast, the odds of
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a voter in favor of the current government being best described by expert network

4 are 0.35 times greater than the odds for expert network 1. These results make

intuitive sense within the context of the 1997 presidential election. Mary Banotti

was endorsed by Fine Gael, the main opposition party to Fianna Fáil. Thus voters

best described by expert network 4 appear to be Fine Gael supporters. Those voters

in favour of the 1997 coalition government were less likely to be described by expert

network 4.

7.6 Conclusions

In this chapter a single layer mixtures-of-experts model has been presented. A

mixture of Benter’s models for rank data has been fitted to the votes cast in an Irish

presidential opinion poll, with the observations’ covariates also utilized to determine

the gating network parameters i.e. each voter’s membership of the expert networks.

The model was fitted via the EM algorithm with the MM algorithm successfully

incorporated at the M step to estimate the model parameters.

An opinion poll conducted early in the 1997 Irish presidential electoral cam-

paign was analyzed. Characteristics of the early stages of the competition were

highlighted — one expert network had large support for Adi Roche whose campaign

later wilted. Both political persuasion and age emerged as the influential covariates

when estimating the gating network parameters.
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Chapter 8

A Latent Space Model for Rank

Data

Previous chapters have focussed on modelling and exploring the heterogeneous na-

ture of a set of judges who generate rank data. The latent space model introduced

in this chapter provides another tool for exploring such a population. The focus

however is no longer on examining the heterogeneous nature of the judges but on

estimating the relative locations of the judges (and the objects they rank) in a latent

space.

A latent space model similar to that of Hoff et al. (2002) is proposed where both

voters and candidates are located simultaneously in a D-dimensional latent space.

The location of each candidate is inferred from the votes cast by the electorate

— the Plackett-Luce model for rank data (Chapter 4) is employed to exploit the

information incorporated in the ranked preferences contained in the votes. In turn,

a voter’s location is determined by their vote which demonstrates their support for

each of the candidates. This model is fitted within the Bayesian paradigm (see

Chapter 3); the Metropolis-Hastings algorithm is the primary model fitting tool.

When fitting latent space models issues such as invariant configurations and choice

of dimensionality arise; these are dealt with in Chapters 8.2.2 and 8.2.3 respectively.

The relative spatial locations of the candidates are suggestive of the type of re-

lationships that may exist between the candidates, as viewed by the electorate. As

coalition governments often occur in countries that use proportional representation

election systems, interest lies in examining if candidates from different political par-
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ties are deemed alike. Which political parties are viewed as similar by the electorate?

What characteristics do closely located candidates share? What mechanisms drive

Irish general elections? Such questions will be answered by examining the relative

locations of the candidates.

The latent space model presented in this chapter focuses on two Irish elections

— the general election of 2002 and the Irish presidential election in 1997. The actual

votes from the 2002 general election in the constituencies of Dublin North, Dublin

West and Meath are analyzed. Eight opinion polls taken during the canvassing

period prior to the 1997 presidential election are also examined. Details of these

elections are outlined in Chapter 2.

Configurations of the candidates and electorate from the 2002 general election

and from the 1997 Irish presidential election indicate that voter preferences are both

politically and candidate driven. Mapping the spatial movement of the presidential

candidates during canvassing provides an insight to how electoral opinions developed

prior to the election.

The work presented in this chapter is reported in Gormley and Murphy (2006b).

8.1 Model Specification

A latent space model is combined with a model for rank data to provide a suitable

tool for the modelling of PR-STV data.

8.1.1 The Latent Space Model

Hoff et al. (2002) proposed a model for social networks where the network actors are

located in a latent space and the probability of a connection between two actors is

determined by their proximity. In a similar vein to this work, a model is proposed

for rank data where voters and candidates are located in the same D dimensional

latent space Z ⊆ <D. It is assumed that each of M voters has latent location

zi ∈ Z and each candidate j (j = 1, . . . , N) has latent location ζ
j
∈ Z. Hence, the

N preferences of the M voters are described using (N + M) × D parameters. Let

d(zi, ζj) be the squared Euclidean distance between voter i and candidate j in the
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latent space Z, that is

d(zi, ζj) =
1

D

D∑

d=1

(zid − ζjd)2

for 1 = 1, . . . ,M and j = 1, . . . , N . The squared Euclidean distance is invariant to

rotations and translations. Many other distance measures are available as detailed

by Mardia et al. (1979) and possible alternatives are discussed in Chapter 9.

The distance d(zi, ζj) (for j = 1 . . . , N) between voter i and the candidates

describes the voter’s electoral opinions. In a similar way the proximity of two can-

didates in the latent space quantitatively describes their relationship as deemed by

the electorate.

By exploiting the information contained in the ranked preferences the latent

locations of each voter and candidate can be inferred. Thus a latent space model is

incorporated with a standard rank data model to spatially model Irish voting data.

8.1.2 The Plackett-Luce Model

In the Plackett-Luce model (see Chapter 3.1), a ranking is modelled as a sequential

process in which each voter selects the next most preferred candidate. In the context

of a latent space model, the Plackett-Luce model is parameterized by a ‘support’

parameter vector

p
i

= (pi1, pi2, . . . , piN)

for each of i = 1, . . . ,M voters where
∑N

j=1 pij = 1. The parameter pij can be

interpreted as the probability of voter i selecting candidate j in first place on their

ballot. The probability pij is a decreasing function of the distance between the voter

and the candidate in the latent space. It is assumed that these probabilities take

the form

pij =
exp{−d(zi, ζj)}∑N
j′=1 exp{−d(zi, ζj′)}

for i = 1, . . . ,M and j = 1, . . . , N . Thus the position taken by each voter and

candidate in the latent space is determined by the preferences expressed on the

ballot forms.
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Under a Plackett-Luce model with support parameters p = (p
1
, . . . , p

M
) the

probability of all votes x is

P{x|p} =
M∏
i=1

ni∏
t=1

pic(i,t)∑N
s=t pic(i,s)

.

8.2 Model Fitting

The Plackett-Luce model combined with a latent space model allows modelling of

the ranked nature of the PR-STV data and the spatial modelling of the electoral can-

didates. The parameters of this model and their related uncertainty are estimated

within a Bayesian framework.

Prior densities for voter locations, pv(zi), and for candidate locations, pc(ζj) are

assumed to be Normal and independent where zid ∼ N(µPv, σ
2
Pv) ∼ N(0, 32) and

ζjd ∼ N(µPc, σ
2
Pc) ∼ N(0, 32) for d = 1, . . . , D. The prior parameters were selected

so that the prior was concentrated on a region around the origin without being

overly informative. Thus the joint density P{X, z, ζ} of the votes cast, the voter

locations and the candidate locations is

P{X, z, ζ} =




M∏
i=1

ni∏
t=1

exp{−d(zi, ζc(i,t))}∑N
s=t exp{−d(zi, ζc(i,s))}



[
M∏
i=1

pv(zi)

][
N∏
j=1

pc(ζj)

]
.

The location of each voter and each candidate in the latent space are to be esti-

mated — samples from the posterior distribution P{z, ζ|X} are generated using a

Metropolis-Hastings algorithm. A random walk proposal density where each location

was perturbed using normally distributed noise was employed — good acceptance

rates (detailed in Chapter 8.3) were achieved in the estimation of both voter and

candidate locations using this proposal.

8.2.1 Estimation of Voter and Candidate Latent Locations

The location of each voter zi and each candidate ζ
j

within a D dimensional latent

space is to be estimated. A random walk Metropolis-Hastings algorithm is used to

sample from the joint density P{z, ζ|X}.
Estimates of zi are generated from the posterior distribution via the following

algorithm:
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1. Generate a value ε from the symmetric proposal density N(0, σ2
v) and form the

proposal point z∗id = zid + ε for d = 1, . . . , D.

2. Compute the acceptance probability α(z∗i , zi) as follows

α(z∗i , zi) = min

{
P (z∗, ζ|X)

P (z, ζ|X)
, 1

}

= min




{
ni∏
t=1

exp{−d(z∗i , ζc(i,t))}∑N
s=t exp{−d(z∗i , ζc(i,s))}

}
exp

{
− (z∗i −µPv)2

2σ2
Pv

}

{
ni∏
t=1

exp{−d(zi, ζc(i,t))}∑N
s=t exp{−d(zi, ζc(i,s))}

}
exp

{
− (zi−µPv)2

2σ2
Pv

} , 1




where independence of voter locations and a symmetric random walk proposal

distribution are assumed.

3. Generate a value u ∼ Uniform(0, 1).

4. If u ≤ α(z∗i , zi) then define zi = z∗i , otherwise define zi = zi.

Similar methodology applies in the case of estimating candidate locations:

1. Generate a value ε ∼ N(0, σ2
c ) and let ζ∗jd = ζjd + ε for d = 1, . . . , D.

2. Compute the acceptance probability α(ζ∗
j
, ζ

j
) as follows

α(ζ∗
j
, ζ

j
) = min

{
P{z, ζ∗|X}
P{z, ζ|X} , 1

}
.

= min




{
ni∏
t=1

exp{−d(zi, ζ
∗
c(i,t))}∑N

s=t exp{−d(zi, ζ∗c(i,s))}

}
exp

{
− (ζ∗j−µPc)2

2σ2
Pc

}

{
ni∏
t=1

exp{−d(zi, ζc(i,t))}∑N
s=t exp{−d(zi, ζc(i,s))}

}
exp

{
− (ζj−µPc)2

2σ2
Pc

} , 1




where independence of candidates locations and a symmetric random walk

proposal are assumed.

3. Generate a value u ∼ Uniform(0, 1).

4. If u ≤ α(ζ∗
j
, ζ

j
) then define ζ

j
= ζ∗

j
, otherwise define ζ

j
= ζ

j
.

The algorithm sequentially estimates the voter locations and then the candidate

locations until sufficient mixing of the Markov chain is achieved. Locations estimated

subsequent to the burn-in period are considered when calculating final estimates.
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8.2.2 Invariant Configurations

The measure of distance between voter and candidate locations in the latent space is

quantified by the squared Euclidean distance. This distance is invariant to rotations

and translations. As a result the model is not fully identifiable because the locations

are only identified up to rotation and translation. Procrustean methods are used to

eradicate this problem.

Procrustean methods (Krzanowski, 1988) match one configuration of points to

another as well as possible in a least squares sense. Transformations such as dila-

tion, rotation and translation are used to create the match. In this context only

translations and rotations are applicable without altering the likelihood of the data

due to the definition of the probabilities pij.

Assume CR = ζR is a reference configuration of the candidate locations which is

centered around the origin. As covariates associated with the voters are generally

not publicly available the focus here is on the relative locations of the electoral

candidates. Thus within this context when performing Procrustes techniques the

reference configuration CR refers to the configuration of candidates only. To match

the estimated configuration Ĉ to the reference configuration CR, Ĉ is first translated

so that it is also centered around the origin. Ĉ is then rotated to provide the best

match with CR in a least squares sense.

To obtain Q, the optimal orthogonal rotation matrix, the sum

S =
N∑
j=1

D∑

d=1

(cRid − ĉid)2

=
N∑
j=1

D∑

d=1

(ζRjd − ζ̂jd)2

= trace
{
CRCR′ + ĈĈ ′ − 2CRĈ ′

}
(8.1)

is minimized. The newly rotated configuration is denoted ĈQ. Thus (8.1) becomes

S = trace
{
CRCR′ + ĈĈ ′ − 2CRQ′Ĉ ′

}

and the minimization problem becomes the constrained maximization of 2CRQ′Ĉ ′.

It follows that Q = V U ′ where UΣV ′ is the singular value decomposition of CR′Ĉ.

Thus by centering each estimated configuration around the origin and rotating the

133



configuration using the rotation matrix Q the estimated configuration Ĉ is best

matched with the reference configuration CR.

Samples of the configuration (z, ζ) are generated using the Metropolis-Hastings

algorithm (Chapter 8.2.1). Initial iterations of the algorithm are constrained to

only accept uphill moves (ie. moves when α(z∗i , zi) ≥ 1 and α(ζ∗
i
, ζ

i
) ≥ 1) to

achieve an estimate of the maximum a posteriori (MAP) configuration of candidate

locations. This MAP configuration is henceforth employed as CR, the reference

configuration, to which each subsequently estimated configuration Ĉ is matched.

CR is not assumed to be the correct configuration but is merely used as a standard

to which others are matched. Locations estimated during the uphill only runs of the

Metropolis-Hastings algorithm are not considered when calculating final estimates.

8.2.3 Dimensionality

The dimensionality D of the latent space is a further variable which requires esti-

mation. Several techniques have been discussed in the literature (eg. Airoldi et al.

(2006)) as potential methods for selecting the optimal dimensionality of a space.

Selecting the optimal D can been viewed as a model selection process between mod-

els with different dimensions. Methods such as the deviance information criterion

(DIC) and Pritchard et al.’s criterion (detailed in Chapter 3) are examined here.

A practical alternative to these two criteria is to apply principal components

analysis Mardia et al. (1979) to the resulting configurations for each choice of di-

mension D. The principal components analysis (PCA) rotates the configuration of

candidate locations so that the variance of the locations is concentrated in a subset

of the dimensions: the first principal component dimension has maximal variance,

the second has maximal variance subject to being orthogonal to the first dimension,

etc.

PCA is applied to the configuration of candidates only as the predominant inter-

est lies in the interpretation of the relative locations of the candidates. The variances

of the resulting principal components are examined and the optimal number of di-

mensions D is selected to be the number of dimensions after which the addition of

another dimension was not deemed to be beneficial; a threshold of 20% was used to

determine if the addition of an extra dimension was worthwhile.
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8.3 A Latent Space Model for Irish Voting Data

A latent space model for rank data was applied to votes from the 2002 Irish general

election and to opinion polls conducted prior to the 1997 Irish presidential election.

8.3.1 The 2002 General Election: Dublin North Constituency

Twelve candidates campaigned for four parliamentary seats in the Dublin North

constituency. Glennon (Fianna Fáil), Ryan (Labour), Sargent (Green Party) and

Wright (Fianna Fáil) were elected to the Dáil (see Table 2.2). The latent space

model incorporating the Plackett-Luce model was fitted to the 43942 Dublin North

votes over the range of dimensions D = 1, . . . , 4. A random walk proposal density

was employed; for dimensions D = 1 and 2 the proposal parameters were fixed to

be

N(0, σ2
v) = N(0, 32)

N(0, σ2
c ) = N(0, 0.022).

For dimensions D = 3 and 4 the proposal parameters were

N(0, σ2
v) = N(0, 102)

N(0, σ2
c ) = N(0, 0.022).

A range of model selection criteria were computed for each different dimension

model fitted — the values obtained for the DIC and Pritchard et al.’s criterion are

reported in Table 8.1. The dimensions of the best fitting models as deemed by these

criterion appear to contradict each other somewhat and thus principal components

analysis was employed as the method of selecting the optimal D.

Table 8.2 shows the variation captured by each principal component when dif-

ferent dimensions of latent space model were fitted to the data. Both dimensions

D = 1 and D = 2 appear to summarize the data well in that each component ex-

plains more than one fifth of the variance of the candidate locations. The addition

of further dimensions to the model only accounted for 12-15% of the variance of

the data. Hence both the one dimensional and two dimensional configurations are

analyzed to examine relationships between the Dublin North electoral candidates.
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Table 8.1: Model selection criteria for latent space models of dimension D =

1, 2, 3 and 4 fitted to votes cast in the Dublin North constituency. The entries in

bold font indicate the best fitting model according to each criterion.

Dimension DIC Pritchard et al.

1 873604 838510

2 837328 829525

3 829522 1057733

4 843512 2759114

Table 8.2: Proportion of the variance explained by each principal component when

PCA is applied to the Dublin North candidate locations over the range of dimensions

D = 1, . . . , 4. Principal components analysis was applied to the average candidate

configuration only as the main interest lies in the relative locations of the candidates.

Entries in bold indicate the models deemed as good models using a 20% minimum

variance criterion.

Variances

Dimension σ2
1 σ2

2 σ2
3 σ2

4

1 1 - - -

2 0.66 0.34 - -

3 0.59 0.29 0.12 -

4 0.59 0.26 0.12 0.03
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Figure 8.1 illustrates the one dimensional configuration of the twelve Dublin

North candidates. Each candidate is represented by an abbreviation of their surname

and political affiliation as detailed in Table 2.2. Candidates with the same political

affiliations are illustrated in the same colour. Figure 8.2 shows the two dimensional

configuration of the twelve candidates.

Dimension 1

0 0.2 0.4 0.5 0.6 0.8 1

Rya (Lab)

Sar (GP)

Owe (FG)

Dal (SP)

Bo (FG)

Gou (Ind)

Qui (Ind)

Dav (SF)

Wal (CSP)

Gle (FF)

Wri (FF)

Ken (FF)

Fig. 8.1: The one dimensional configuration of the candidate means, averaged over

a Metropolis-Hastings algorithm, and their associated uncertainty (indicated by ±2

standard deviation intervals). Each Dublin North candidate is denoted by an ab-

breviation of their surname and political affiliation (see Table 2.2). Candidates from

different parties are plotted in different colours. The mean locations were estimated

by 25000 Metropolis-Hastings iterations (post burn-in), thinned after every 100th

iteration. The mean acceptance rate for the candidate locations was 12%.

Both configurations of the Dublin North candidates suggest party politics play

an important role in the electorate’s view of the candidates. Also of note in both

configurations are the relatively small uncertainties associated with the estimated

locations. The Fianna Fáil candidates are located on the far right of the first dimen-

sion in both configurations with all other candidates located on the opposite side

of the dimension. Fianna Fáil are currently in power in Ireland and are the largest

Irish political party.
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Wri (FF)

Fig. 8.2: The two dimensional configuration of the Dublin North candidate means

with their associated uncertainty. The center of each ellipse indicates the posterior

mean location of each candidate — the ellipses are approximate 95% posterior sets

which indicate the uncertainty in the candidate positions. The position of each

candidate and the ellipses are estimated by 25000 Metropolis-Hastings iterations

(post burn-in), thinned after every 100th iteration. The mean acceptance rate for

the candidate locations was 16%.
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Interestingly the two candidates located farthest left in Figure 8.1 (Seán Ryan

(Labour) and Trevor Sargent (Green Party)) were both elected as were the Fianna

Fáil candidates Jim Glennon and G.V. Wright. There appears to be a wide range

of political preferences within the Dublin North constituency.

In Figure 8.2 the first dimension demonstrates the ‘Fianna Fáil versus the rest’

characteristic of Irish elections. The second dimension however appears to be more

candidate driven. The popular candidates of Ryan and Sargent are located towards

the bottom of the second dimension. Candidates affiliated with Sinn Féin and the

Christian Solidarity party would have a smaller more localized following and are

positioned near the top of the second dimension. Also of interest is the location

of Clare Daly of the Socialist Party amongst the two Fine Gael candidates of Nora

Owen and Cathal Boland. While Owen and Boland were running mates, Owen and

Daly were the only two female candidates in the constituency, perhaps giving further

evidence of a candidate driven dimension.

8.3.2 The 2002 General Election: Dublin West Constituency

In 2002 three Dáil Éireann seats were to be filled in the constituency of Dublin

West with nine candidates running for election. Burton (Labour), Higgins (Socialist

Party) and Lenihan (Fianna Fáil) were the candidates elected. There was a total

of 29988 valid votes cast to which a latent space model incorporating the Plackett-

Luce model was fitted. Random walk proposal distributions were used within the

Metropolis-Hastings algorithm. The proposal parameters used were as utilized in

the Dublin North analysis (see Chapter 8.3.1).

As illustrated in Table 8.3 the optimal dimensional latent space required to repre-

sent the Dublin West electorate and candidates is unclear. Different model selection

techniques provide different values for the optimal D. The multivariate analysis

technique of principal component analysis was therefore applied to the configura-

tion of candidates only as interest lies in the relative locations of the candidates.

Table 8.4 details the proportion of the variance of the candidate locations accounted

for by the principal components fitted to different dimensional latent configurations.

Dimensions D = 1, D = 2 and D = 3 appear to summarize the data well in

that each component explains more than one fifth of the variance of the candidate
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locations. The addition of a fourth principal component only accounts for an extra

3% of the variance of candidate locations.

Table 8.3: Model selection criteria for latent space models of dimension D =

1, . . . , 4 fitted to votes cast in the Dublin West constituency. The entries in bold

font indicate the best fitting model according to each criterion.

Dimension DIC Pritchard et al.

1 465158 457374

2 457380 442813

3 449307 552498

4 456474 1536278

Table 8.4: Proportion of the variance explained by each principal component when

PCA is applied to the Dublin West candidate locations over the range of dimensions

D = 1, . . . , 4. Principal components analysis was applied to the average candidate

configuration only as the main interest lies in the relative locations of the candidates.

Entries in bold indicate well fitting models determined by a 20% minimum variance

criterion.

Variances

Dimension σ2
1 σ2

2 σ2
3 σ2

4

1 1 - - -

2 0.67 0.33 - -

3 0.52 0.28 0.20 -

4 0.50 0.27 0.20 0.03

Configurations of dimension D = 1, 2 and 3 are reported to examine the rela-

tionships which exist between the Dublin West candidates as deemed by the Irish

electorate. Of note within each dimension is the relatively small uncertainty associ-

ated with each candidate’s posterior mean location estimate.

The one dimensional plot of the Dublin West candidate configuration is similar to

that produced when analyzing the Dublin North votes in Chapter 8.3.1. The Fianna
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Dimension 1

0 0.2 0.4 0.5 0.6 0.8 1

Hig (SP)

McD (SF)

Bon (GP)

Smy (CSP)

Bur (Lab)

Ter (FG)

Mor (PD)

Do−Ry (FF)

Len (FF)

Fig. 8.3: The one dimensional configuration of the candidate means, averaged

over a Metropolis-Hastings algorithm, and their associated uncertainty (indicated

by ±2 standard deviation intervals). Each Dublin West candidate is denoted by

abbreviations of their surname and political affiliation (see Table 2.3). Candidates

from different parties are plotted in different colours. Candidate locations were

estimated by 25000 iterations of the Metropolis-Hastings algorithm (post burn-in),

thinned every 100th iteration. The mean acceptance rate for candidate locations

was 14%.

Table 8.5: Numbering of the Dublin West candidates associated with Figure 8.5

and Figure 8.6.

1 = Bonnie (GP) 2 = Burton (Lab) 3 = Doherty-Ryan (FF)

4 = Higgins (SP) 5 = Lenihan (FF) 6 = McDonald (SF)

7 = Morrissey (PD) 8 = Smyth (CSP) 9 = Terry (FG)
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Fig. 8.4: The two dimensional configuration of the Dublin West candidate means

with their associated uncertainty. The center of each ellipse indicates the posterior

mean location of each candidate — the ellipses are approximate 95% posterior sets

which indicate the uncertainty in the candidate positions. The position of each

candidate and the ellipses are estimated by 25000 Metropolis-Hastings iterations

(post burn-in), thinned after every 100th iteration. Of the proposed candidate

locations 15% were accepted.
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Fig. 8.5: The three dimensional configuration of the Dublin West candidate means.

The candidates are numbered in alphabetical order as detailed in Table 8.5. Candi-

dates with different political affiliations are coloured differently. Each ‘+’ symbol de-

notes a realization of a candidate location sampled during 65000 Metropolis-Hastings

iterations (post burn-in), thinned after every 100th iteration. 20% of proposed can-

didate locations were accepted.
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Fig. 8.6: A matrix of scatter plots of the three dimensional configuration of the

Dublin West candidate means. The candidates are numbered in alphabetical order

as detailed in Table 8.5 and the ellipses are approximate 95% posterior sets which

indicate the uncertainty in each of the candidate positions. Candidates with different

political affiliations are coloured differently.
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Fáil candidates are located on the far right with the more socialist candidates on the

left. Interestingly in the one dimensional configuration, the Progressive Democrat

candidate Morrissey is situated closest to the Fianna Fáil candidates — Fianna Fáil

and the Progressive Democrats formed a coalition government as a result of this

general election and Fianna Fáil voters had been encouraged to give high preference

to the Progressive Democrat candidate. Some indication of candidate driven voter

preferences is apparent from the one dimensional configuration — the ordering of

the candidates on the left side of the dimension are different to the order observed

in the Dublin North constituency. In Dublin North, the Labour candidate Ryan was

located farthest from the Fianna Fáil candidates whereas the Dublin West Labour

candidate Burton is more centrally located.

Figure 8.4 illustrates the two dimensional configuration of the Dublin West can-

didates. Again similarities to the Dublin North configuration are apparent. The first

dimension which accounts for the larger proportion of the variance of the candidate

locations divides the candidates by political ideals — Fianna Fáil lie on the right

with the more socialist parties situated on the left. The second dimension appears to

be candidate driven. Candidates such as Burton, Terry and Higgins received large

numbers of first preferences (see Table 2.5) and are located towards the bottom of

the dimension. Less popular candidates such as McDonald and Smyth lie near the

top. In terms of number of first preference votes however, Lenihan was the clear

leader but is located centrally in the second dimension.

The three dimensional configuration of the Dublin West candidates is illustrated

in Figures 8.5 and 8.6. The striking feature of the three dimensional plot in Figure

8.5 is the isolation of the Fianna Fáil candidates (numbers 3 and 5) and the social-

ist candidates (numbers 4 and 6) representing the Socialist Party and Sinn Féin.

Examining the configuration dimension by dimension as demonstrated in Figure 8.6

suggests that the first dimension separates candidates by political affiliation i.e. by

a ‘Fianna Fáil versus the rest’ criterion. The second dimension appears to be can-

didate driven with the third dimension separating candidates on the level of their

socialist views.

Evidence of the ‘candidate centered but party wrapped’ theory of Irish electoral

campaigns detailed by Marsh (2000) is clear from the configurations of the Dublin
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West configurations.

8.3.3 The 2002 General Election: Meath Constituency

Five seats in Dáil Éireann were available for election in the Meath constituency

in the 2002 general election. Brady (Fianna Fáil), Bruton (Fine Gael), Dempsey

(Fianna Fáil), English (Fine Gael) and Wallace (Fianna Fáil) were elected. A latent

space model, incorporating the Plackett-Luce model for rank data, was fitted to the

64081 electronic votes over the range of dimensions D = 1, . . . , 4. Proposal densities

were fixed to be

N(0, σ2
v) = N(0, 32)

N(0, σ2
c ) = N(0, 0.022).

The DIC and Pritchard et al’s criterion were computed (Table 8.6) to deter-

mine the appropriate dimension for the latent space. DIC suggested D = 3 whereas

Pritchard et al’s criterion suggested D = 2. Due to these contrasting results princi-

pal components analysis was applied to the different dimensional configurations of

Meath candidates.

Table 8.6: Model selection criteria values to indicate the optimal latent space

model for the Meath constituency. Latent space models were fitted over the range

of dimensions D = 1, . . . , 4. Entries in bold indicate the best fitting model according

to each criterion.

Dimension DIC Pritchard et al.

1 1263878 1229179

2 1209849 1224901

3 1193842 1559845

4 1224017 5538406

Table 8.7 shows the variation captured by each principal component when differ-

ent dimensions of latent space model were fitted to the data. Both dimensions D = 1

and D = 2 appear to summarize the data well in that each dimension accounts for

more than one fifth of the total variance. When a three dimensional model was
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fitted the additional principal component only accounted for 9% of the variance of

the data.

Table 8.7: The proportion of the variance explained by each principal component

computed for configurations of the candidates in the Meath constituency, for a range

of dimensions. Principal components analysis was applied to the average candidate

configuration only, as the main interest of this study lies in the relative locations of

the candidates. Entries in bold indicate the models deemed as good models using a

20% minimum variance criterion.

Variances

Dimension σ2
1 σ2

2 σ2
3 σ2

4

1 1 - - -

2 0.67 0.33 - -

3 0.65 0.26 0.09 -

4 0.57 0.28 0.10 0.05

Both the one dimensional and two dimensional configurations are analyzed to

examine relationships between the electoral candidates.

One Dimensional Results

Figure 8.7 illustrates the one dimensional configuration of the fourteen Meath can-

didates. Each candidate is represented by an abbreviation of their surname and

political party as detailed in Table 2.4. It is immediately clear that party politics

plays a large role in the electorates’ view of the candidates. The Fianna Fáil can-

didates (Brady, Dempsey and Wallace) are located on the far right of the single

dimension with the Fine Gael candidates (Bruton, English and Farrelly) located on

the far left. Fianna Fáil and Fine Gael are the two largest (and rival) Irish politi-

cal parties. The other candidates lie between the two poles created by the Fianna

Fáil and Fine Gael candidates but closer to Fine Gael. Interestingly Ward, who is

a Labour Party candidate, is located closest to the Fine Gael candidates — Fine

Gael and Labour have a history of forming coalition governments (most recently

from 1994–1997). Also of note are the narrow interval estimates for the estimated
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candidate positions (mean ±2 standard deviations are shown). This suggests low

uncertainty in the candidate locations in one dimension.

The one dimensional configuration of candidates within the Meath constituency

is similar to that of Dublin North and Dublin West in that there appears to be a

Fianna Fáil versus non-Fianna Fáil division. However again evidence of candidate

driven preferences is apparent from the different order of the candidates located

on the left of the dimension. In Dublin North and Dublin West the Fine Gael

candidates were quite centrally located whereas in Meath the Fine Gael candidates

are situated farthest from the Fianna Fáil candidates. Thus within each constituency

the candidates themselves are driving voter preferences to some degree; if this was

not the case the same party order would occur across the single dimension in each

constituency.

Two Dimensional Results

Good acceptance rates of 32% and 15% were achieved for the voter and candidate

positions respectively when a two dimensional model was fitted.

Figure 8.8 illustrates the final average position of each of the fourteen candidates

in the Meath constituency. Each candidate is denoted by the abbreviations detailed

in Table 2.4. Party politics are again demonstrated as the mechanism which drives

this election. The first principal component separates candidates by their political

ideals — the estimated positions shows a clear divide between Fianna Fáil and the

other parties in the x-axis direction. The second principal component illustrates

the presence of an ideological cleavage (left to right wing) of the candidates. For

example, the Christian Solidarity Party espouse right wing conservative values and

their candidate Redmond (Rd) is located highest in the second principal component.

The plot also includes ellipses which show approximate 95% posterior set es-

timates of each candidate location to represent the uncertainty in the estimated

locations. The uncertainty associated with all candidate locations is low. Further-

more, there is considerable overlap between candidates from the same party.
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Dimension 1

0.0 0.2 0.4 0.6 0.8 1.0

Bt (FG)

Eg (FG)

Fr (FG)

Wd (Lab)

Oby (GP)

Ob (Ind)

Fz (Ind)

Kl (Ind)

Cl (Ind)

Rd (CSP)

Rl (SF)

By (FF)

Wl (FF)

Dp (FF)

Fig. 8.7: The one dimensional configuration of the Meath candidate means, av-

eraged over a Metropolis-Hastings algorithm, and their associated uncertainty (in-

dicated by ±2 standard deviation intervals). Each of the fourteen candidates as

detailed in Table 2.4 are denoted by an abbreviation of their surname and political

party. Candidates from different parties are plotted in different colours. The mean

acceptance rate for candidate locations was 35%.

149



0.6 0.8 1.0 1.2 1.4

4.
6

4.
7

4.
8

4.
9

5.
0

5.
1

PC 1

P
C

 2 By

Bt

Cl

Dp

Eg
Fr

Fz

KlOb

Oby

Rd

Rl

WlWd (FF)

(FG)

(Ind)

(FF)

(FG)

(FG)

(Ind)

(Ind)(Ind)

(GP)

(CSP)

(SF)

(FF)(Lab)

Fig. 8.8: The two dimensional configuration of the Meath candidate means with

their associated uncertainty. The candidate initials indicate their posterior mean

positions and the ellipses are approximate 95% posterior sets which indicate the

uncertainty in the candidate positions. Candidates from different parties are plotted

in different colours. The position of each candidate and the ellipses are estimated

by 65000 Metropolis-Hastings iterations (post burn-in), thinned after every 100th

iteration.
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8.3.4 The 1997 Irish Presidential Opinion Polls

The latent space model incorporating the Plackett-Luce model was fitted to the

Lansdowne exit poll over the range of dimensions D = 1, . . . , 4. A zero centred

Normal proposal density for the voters N(0, σ2
v) and candidates N(0, µ2

c) was used

throughout. Variance parameters were fixed to be σv = 3 and σc = 0.005 for

D = 1 and 2, σv = 10 and σc = 0.02 for D = 3 and σv = 12 and σc = 0.05 for

D = 4.

Table 8.8 details the Deviance Information Criterion and Pritchard et al.’s cri-

terion (see Chapter 3) for models fitted to the exit poll data over the range of

dimensions D = 1, . . . , 4. These criteria are proposed as dimensionality selection

techniques. While these criteria agree on a single dimensional optimal model in

this case as has been previously illustrated they often appear to contradict each

other. Thus Table 8.9 shows the variance of the data accounted for by each prin-

cipal component when PCA was applied to configurations of different dimensions.

Dimensions D = 1 and D = 2 appear to summarize the data well. The addition of

further dimensions adds little value in terms of the variance of the data explained.

Table 8.8: DIC values and Pritchard et al.’s criterion values for latent space models

of dimension D = 1, . . . , 4 fitted to the exit poll data. Entries in bold font indicate

the best fitting model according to each criterion. The criteria indicate a single

dimensional model fits best.

Dimension DIC Pritchard et al.

1 18447 17575

2 18770 19726

3 18999 33938

4 18946 98719

One Dimensional Results

Figure 8.9 illustrates the relative one dimensional spatial locations of each of the

five presidential candidates and their associated uncertainty. Acceptance rates of
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Table 8.9: The variance, σ2
d, captured by each principal component fitted to config-

urations resulting from the exit opinion poll data, for different dimensions. Principal

components analysis was applied to the average candidate configuration only as the

main interest of this study lies in the relative locations of the candidates.

VARIANCES

DIMENSION σ2
1 σ2

2 σ2
3 σ2

4

1 1 - - -

2 0.78 0.22 - -

3 0.75 0.24 0.01 -

4 0.75 0.24 0.01 0.00

Dimension 1

0 0.2 0.4 0.5 0.6 0.8 1

M

S

R

N

B

Fig. 8.9: The one dimensional configuration of the 1997 Irish presidential candi-

date means, averaged over a Metropolis-Hastings algorithm, and their associated

uncertainty (indicated by ±2 standard deviation intervals). Each of the presidential

candidates as detailed in Table 2.1 are denoted by an abbreviation of their surname.
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63% and 84% for voters and candidates respectively were achieved during 27000

iterations (post burn-in) of the Metropolis-Hastings algorithm.

Mary McAleese was elected as President of Ireland and is clearly separated from

the other four candidates. McAleese was supported by the current coalition gov-

ernment of Fianna Fáil and the Progressive Democrats. McAleese and Scallon were

deemed to be the more conservative candidates and Scallon is situated closest to

McAleese among the non-successful candidates. The one dimensional configura-

tion reveals that the electorate partitioned the candidates according to their views

on McAleese, with conservative and liberal candidate characteristics also playing a

small role.

Candidate

P
ol

l d
at

e

B MN RS
2/10

11/10

22/10
23/10

25/10

30/10

Fig. 8.10: A chronological trace of the spatial movement of each of the presidential

candidates in one dimension over the course of six opinion polls conducted during the

1997 presidential campaign. Each shape represents a new poll and each candidate

is denoted by their initial.

The one dimensional latent space model was also fitted to six opinion polls con-

ducted during the campaign prior to the 1997 presidential election. Each new shape

in Figure 8.10 represents one of the six polls; the arrows between polls indicate the
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spatial movement of the candidates during the electoral campaign. It is immediately

clear that McAleese is viewed very differently to the rest of the candidates and that

Scallon moved in the same direction as McAleese as the campaign progressed. It is

also apparent that McAleese and Banotti became rival candidates in the later stages

of the campaign.

Two Dimensional Results

Figure 8.11 demonstrates the two dimensional relative locations of each of the five

presidential candidates estimated by the model. Mean acceptance rates for the two

dimensional model were 44% and 87% for voter and candidate locations respectively.

The center of each ellipse indicates the posterior mean location of each candidate

— the ellipses are approximate 95% posterior sets which indicate the uncertainty in

the candidate positions.

The candidate locations are plotted according to their two principal components

— the first principal component suggests the electorate are mainly divided on their

views on Mary McAleese. McAleese was supported by the large political party,

Fianna Fáil who (in coalition with the Progressive Democrats) were in government

at that time.

The second principal component suggests party politics are also at play. In the

second component McAleese and Banotti (who are supported by the larger political

parties) are located at higher position than the other three candidates who were

either independent or supported by a smaller political party. Location uncertainty

for all candidates is small.

The two dimensional latent space model, incorporating the Plackett-Luce model,

was finally fitted to all six opinion polls conducted during the campaign prior to the

1997 presidential election. Each new shape in Figure 8.12 represents one of the

six polls; the arrows between polls indicate the spatial movement of the candidates

during the electoral campaign. As the campaign progresses McAleese and Banotti

move in opposite directions, while Scallon becomes more centrally located. Scallon’s

popularity increased significantly during the electoral campaign. Roche and Nally

follow a similar outward direction but Roche appears to change direction towards the

end of the campaign. On the day of the election the final locations of the candidates
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suggest the largest divide is between the McAleese and Banotti camps, with the

profile of the candidate (and in some way their associated political party) appearing

as the second influential factor.

8.4 Conclusions

A latent space model, incorporating a Plackett-Luce model, provides good method-

ology for statistically modelling PR-STV rank data. The latent space aspect of

the model gives an interpretable framework for the results of model fitting and the

Plackett-Luce model works well in modelling PR-STV data.

The latent configurations suggest that party politics drive general elections in

Ireland. Other factors such as the level of a candidate’s public profile may also be

influential but some of these factors would be confounded with party membership,

when it comes to an interpretation of the model’s estimates.

When defining the latent space, squared Euclidean distance was implemented as

a measure of ‘distance’ between two members of the space. This distance worked

well in the sense that the latent positions found using this distance measure are

easily interpreted. Hoff (2005) made use of the inner product as a latent space

distance measure and such a method could be implemented in this context.

Principal components analysis selected the optimal dimension of the latent space

— the method worked well but is somewhat ad-hoc. Reversible jump Metropolis-

Hastings with delayed rejection is an alternative but complicated method of selecting

D.

In terms of the Bayesian tools used to fit the model, the random walk proposal

worked well in practice but a more sophisticated proposal could be implemented.

Also, a basic prior structure was used for the candidate and voter locations, yet a

more structured prior on the voters could be employed — for example, a mixture

of normals as was used in a social networks context by Handcock et al. (2005) may

provide a more suitable prior.
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Fig. 8.11: The two dimensional configuration of the 1997 presidential candidate

means with their associated uncertainty. The center of each ellipse indicates the

posterior mean location of each candidate — the ellipses are approximate 95% pos-

terior sets which indicate the uncertainty in the candidate positions. The position

of each candidate and the ellipses are estimated by 27000 Metropolis-Hastings itera-

tions (post burn-in), thinned after every 100th iteration. 87% of proposed candidate

locations were accepted.
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Fig. 8.12: A chronological trace of the spatial movement of each of the presiden-

tial candidates in two dimensions over the course of six opinion polls conducted

during the 1997 presidential campaign. Each shape represents a new poll and each

candidate is denoted by their initial.
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Chapter 9

Conclusions and Further Work

9.1 Conclusions

From the analysis conducted it is apparent that many relationships exist between

the set of the judges and between the objects they rank within the contexts of Irish

third level college applications and Irish elections.

9.1.1 Central Applications Office Data

Analyzing the set of applicants to Irish third level institutions provides evidence of

the presence of distinct homogeneous groups within the population. The resulting

groupings reveal that applicants generally appear to be driven by their vocational

interests as discipline emerges as the defining characteristic of applicant groups. For

example, a group of applicants who give high preference to courses from the field of

business and marketing emerges as does a group who applied for engineering courses.

The geographical position of the institution to which an applicant applies also

transpires to have a significant influence on course choice. Groups of applicants

who give high preference to courses within a specific geographical region of Ireland

are frequent. Some applicants apply to Cork based institutions, some to Galway-

Limerick based institutions and some are divided by their opinions on the same type

of course but offered by institutions within and outside of Dublin based colleges.

Crucially however, some weight is added to the CAO system detractor’s argu-

ments who claim applicants are influenced by the prestige of some degree programs.

A deeper analysis of the revealed groups highlights a subtle influence of the points
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on the applicants choices. It seems the points status of courses has an effect on

health science applicants more so than on applicants in other components within

the population.

Finally, a separate analysis of the male and female data suggests applicants of

different gender have different course choice behaviours. Stereotypical differences

between the two genders are apparent – female applicants who apply for courses

within the fields of social science, art and design, music and education are distinctly

separated whereas female applicants with an interest in engineering and computer

science are grouped together. The largest group of male applicants involves those

who applied for construction studies courses; such a group does not appear as a

distinct component in the female results.

9.1.2 Irish Voting Data

Analysis of Irish voting data also provides evidence of relationships between both

the members of the Irish electorate and between the electoral candidates.

It is observed that there is strong political party support in Irish general elections,

because voters tend to give their high preferences to candidates from the same

political party or to parties of a particular persuasion. Traditional coalition political

parties are often grouped together or voters appear to have large probability of giving

such coalition candidates high preferences.

There is also evidence however of candidate orientated voters within the Irish

electorate in both the presidential and general elections. Within the 1997 Irish

presidential election it is apparent that the candidates with good public profiles

have high levels of support. Similarly in general elections, candidates with relatively

unpopular party political affiliations can have large levels of support due to the

public’s perception of their personality. Evidence of the ‘candidate centered but

party wrapped’ theory of Irish elections presented by Marsh (2000) is supported by

the analysis presented here.
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9.2 Further Work

As the research presented progressed many more questions and potential applications

for alternative techniques arose.

1. In Chapters 4 and 5, when estimating standard errors within the context of

the EM algorithm an approximation of the covariance matrix was computed

with little extra overhead. The technique used however is only applicable in

the case where the data is independently and identically distributed. In the

general case, Meng and Rubin (1998, 1991) provide a method of estimating

the asymptotic covariance matrix using only code from the EM algorithm

itself, standard matrix calculations code and code to compute the complete

data covariance matrix. Their method is based on the idea that the rate

of convergence of the EM algorithm is governed by the amount of missing

data. Using this, they find the increased variability due to the missing data

and add it to the complete data variance-covariance matrix. They term this

the supplemented EM algorithm. The implementation of this EM algorithm

for rank data would broaden the range of cases the current framework could

deal with. Also with reference to the approximation of standard errors, the

use of a block technique in problems involving large data sets would improve

computation time of the EM algorithm.

2. When fitting mixed membership models (Chapter 6) only the Deviance Infor-

mation Criterion (DIC) was examined as a method of model selection. Other

methods need to be examined. Airoldi et al. (2006) recently discussed methods

of model selection for mixed membership models. Also Raftery et al. (2006) in-

troduced the AICM (Akaike Information Criterion Monte (Carlo)) and BICM

(Bayesian Information Criterion Monte (Carlo)) which are derived through

the estimation of the harmonic mean estimator. Difficulties may arise when

specifying the number of parameters within the BICM and AICM criteria but

such techniques should be examined. The BICM and AICM should also be

examined as a method of selecting the dimensionality of the latent space in

latent space models. Gormley and Murphy (2006a) details some preliminary

work in this area.
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3. In both the application of mixed membership models and the application of

the latent space model rather basic priors were specified. By fitting mixtures of

rank data models to the data set and then basing the mixed membership prior

distribution and hyperparameters on these a more informed prior distribution

would be provided. Moreover, further model accuracy could be attained by

imposing a hierarchical framework — a hyperprior could be introduced for

the prior parameters of the mixed membership and support parameter priors

respectively. Erosheva (2003) employed such hierarchical priors.

4. In Chapter 7 when fitting mixtures-of-experts models improved variable selec-

tion should be performed. While the use of the Bayesian Information Criterion

appears to have highlighted consistent and informative covariates techniques

with a more theoretically sound comparison of the models should be con-

ducted. Raftery and Dean (2006) introduced a model based variable selection

technique which could be adapted to suit the mixtures-of-experts model. Also,

similar to Peng et al. (1996) who fitted the mixtures-of-experts and hierar-

chical mixtures-of-experts models within a Bayesian framework, it would be

interesting to fit the rank data model version within the Bayesian paradigm.

5. When defining the latent space, squared Euclidean distance was implemented

as a measure of ‘distance’ between two members of the space. Hoff (2005)

made use of the inner product as a latent space distance measure and such a

method could be implemented in this context. Also within the context of latent

space models choosing the dimensionality of the unobserved space provided

problems. Reversible jump MCMC methods could provide a complicated but

alternative dimensionality selection technique.

6. An alternative application of such rank data models was suggested by Mur-

phy and Gormley (2006) in the context of modelling pollen counts. Due to

relatively sparse data the modelling of pollen abundance in terms of a par-

tial ranking was suggested. This approach could offer an alternative to the

presence/absence approach taken by Haslett et al. (2006).

7. Nested choice models (McFadden, 1978; Train, 2003) could be used to model

the choice process which results in a ranking of college degree programs or
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in a list of candidates on an election ballot form. Such models assume that

choices are made in a hierarchical manner; the judges begin with coarse cate-

gories which are refined during the ranking process. For example, third level

applicants may choose a field of study and then select courses within that

field; voters may select political parties and then candidates within parties.

Nested choice models could be extended into nested ranking models using a

multi-stage ranking model approach. Also, the nesting structure in the set of

objects is not often known. Product partition models (Hartigan, 1990; Barry

and Hartigan, 1992; Crowley, 1997) could be employed to provide a probability

distribution on possible nesting structures.
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Appendix A

Data Sources

• The various 1997 Irish presidential election opinion poll data sets were collected

by the three companies: Lansdowne Market Research, Irish Marketing Surveys

(IMS), and Market Research Bureau of Ireland (MRBI). These data sets are

available through the Irish Elections Data Archive

http://www.tcd.ie/Political Science/elections/elections.html

and the Irish Opinion Poll Archive

http://www.tcd.ie/Political Science/cgi/

which are maintained by Professor Michael Marsh in the Department of Po-

litical Science, Trinity College Dublin, Ireland.

• The voting data from the Dublin North and Dublin West constituencies are

available from the constituency returning officer’s web page

http://www.dublincountyreturningofficer.com.

• The voting data from the Meath constituency are available from the Meath

county council web page

http://www.meath.ie/election.html.
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Appendix B

Propositions

Proposition 1 (Dampening Entropy) Let p = (p1, p2, . . . , pN) be such that pj >

0 for all j and
∑N

j=1 pj = 1 and let 0 ≤ α ≤ 1. Let

q(α) = (q1, q2, . . . , qN) =

(
pα1∑N
j=1 p

α
j

,
pα2∑N
j=1 p

α
j

, . . . ,
pαN∑N
j=1 p

α
j

)
.

Then, the Entropy[q(α)] = E[q(α)] = −∑N
j=1 qj(α) log qj(α) is a decreasing func-

tion of α.

Proof: We have:

∂E

∂α
= −

N∑
j=1

q′j[1 + log qj]

= −
N∑
j=1

[
pαj∑N
l=1 p

α
l

{
log pj −

∑N
l=1 p

α
l log pl∑N

l=1 p
α
l

}][
1 + α log pj − log

N∑

l=1

pαl

]

= −
N∑
j=1

[
qj log pj + αqj {log pj}2 − qj log pj log

N∑

l=1

pαl

−qj
N∑

l=1

ql log pl − αqj log pj

N∑

l=1

ql log pl + qj log
N∑

l=1

pαl

N∑

l=1

ql log pl

]

= −α



N∑
j=1

qj {log pj}2 −
{

N∑
j=1

qj log pj

}2



≤ 0

by the Cauchy-Schwarz inequality.
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