Behavioural Equivalences for Web Services

Thesis submitted to the University of Dublin
towards the degree of Doctor of Philosophy

July 2013

Giovanni Bernardi

Declaration

This thesis has not been submitted as an exercise for a
degree at this or any other university. It is entirely the
candidate’s own work. The candidate agrees that the Li-
brary may lend or copy the thesis upon request. This
permission covers only single copies made for study pur-

poses, subject to normal conditions of acknowledgement.

Giovanni Bernardi

To the memory of Anna Mondin and Anna Maria Artusato

Antonius Block: I want knowledge! Not faith, not assumptions, but knowledge.

— Ingmar Bergman, The Seventh Seal

To reduce a romantic ideal to a working plan is a very difficult thing.

— Erskine Childers, The Riddle of The Sands

Summary

This thesis is a foundational and systematic investigation of the principles which ensure that a piece
of communicating software can be replaced by another piece of communicating software, without
hindering the operations of the pre-existing system.

By “foundational” we mean that our approach is mathematical; we define in formal terms notions
such as “system correctness” and “safe software replacement”, thereby providing reasoning techniques
(i.e. proof methods) for the notions themselves.

By “systematic” we mean that our results lay bare the principles which allow the replacement of
software in all the roles it can take: servers,; clients and peers.

The investigation presented in this thesis stems from practical questions, such as the following:

Q1) if the client r is satisfied by the server p;, what relation between p; and a server ps guarantees

that po satisfies r?

Q2) if the server p satisfies the client r1, what relation between r; and a client ro guarantees that p

satisfies ro?

Q3) if the peer p; satisfies and is satisfied by the peer g, what relation between p; and a peer po
guarantees that po satisfies and is satisfied by ¢7

The questions above are motivated by the practice of software maintenance; as they stand, though,
they are rather vague, and a priori it is clear neither what they really mean, nor how to answer them.

Our foundational approach allows us to formulate the precise meaning of the questions above, and
to answer them.

The contributions of this thesis are the following:

e we enrich the standard testing theory of [De Nicola and Hennessyl, [1984] with new pre-orders, one
for clients and one for peers, and present their behavioural characterisations (Theorem [4.2.37

Theorem 4.3.17));

e we introduce a compliance relation inspired to [Castagna et all [2009; [Laneve and Padovanil
2007], the pre-orders that arise from it, respectively for servers, clients, and peers; and we
present the behavioural characterisations of these pre-orders (Theorem [5.1.15] Theorem [5.2.25

Theorem |5.3.20));

e we show a fully abstract model of the sub-typing & la |Gay and Hole, 2005] on first-order session
types (Theorem [6.3.4]). We define the model in two alternative ways, one uses to the testing
theory, and one uses to the compliance theory (Proposition [6.5.19). The model justifies and

explains in behavioural terms the sub-typing relation;

e we generalise the first-order model so as to exhibit a fully abstract model of the sub-typing on
higher-order (i.e. standard) session types (Theorem [8.4.9). We also explain which conditions

are necessary and sufficient to extend the first-order model to the higher-order setting.

Contents

|Acknowledgements|

[L_Introduction|

I1.1 Must theory|. e
[1.2 Compliance theory|

[1.3 Session types|o e e e e
L4 Contributiond e

T Firsi-order theorics

12

First-order languages|

2.1 The session type language] L L
2.1.1 Sub-typing| e e e

B

Client and peer satisfaction|

8.1 Must testing]
8.2 Compliance relation| L

3.2.1 Comparing satistactions| e

13.3 Syntactic characterisations|. L oo

3.3.1 Syntactic compliance]. oo
[3.3.2 Syntactic MUST testing]. L e

Must pre-orders|

4.1 Server pre-order|. e e e
4.2 Client pre-order|. L
4.3 Peer pre-order|.

4.3.1 Relations between notions and pre-orders|

]

Compliance pre-orders|

b.1 Server pre-order|. e e e
5.1.1 Server pre-orders on restricted LI'Ss[. 00000
P.2 Client pre-order|.
b.2.1 Comparison with other pre-orders|
P.3 Peer pre-order|.o
b.3.1 Relations between pre-orders| oo L.

ix

xi

co 3 O =

12

15

17
17
21
24
25
30

31
32
34
37
38
38
43
48

51
92
63
83
92
94

6 Modelling first-order session types| 133
6.1 Restricted server pre-order|. 135
6.2 Restricted must client pre-order|.o oo 140
6.3 A behavioural model of first-order sub-typing| oL 145

[6.3.1 Examples and applications| oL o 148
6.4 Revisiting the restricted server pre-order|{. 150
6.5 Restricted compliance client pre-order| oL 152
6.6 Related Workl e 159

(I Higher-order theories| 163

17 Higher-Order Languages| 165
[7.15ession types| o o e e e e 166
[[.2 Session Contractsl e 169

[7.2.1 Dependent compliance relations|. 172
[7.2.2 Dependent duality] 174
[(.3 Transitive closuresl e 175
(.4 Related Workl e 176

18 Modelling higher-order session-types| 179

8.1 Client pre-orders| e 180

[8.1.1 Syntactic client pre-orders and transitivityf. 183
[8.2 Server pre-orders| Lo e e e e 186
8.3 Client and server pre-orders| Lo 188
8.4 A behavioural model of sub-typing| o o 192
B5 Related Workl 194

19 Ongoing work: session contracts as types| 197

9.1 Pi-calculus with session contracts| 197
9.1.1 Runtime errorsl 199
9.2 Typesystem| e e 201
[9.2.1 Conjectures| L 207

10 Literature Reviewl 211

1 Conclusionl 219
... 219
I11.2 Open questions| o e e 220

IA° A complete lattice of pre-orders on higher-order session contracts| 223

IB Necessary and sufficient conditions| 227

IC_Monotone functionals| 235

[References| 237

[Resulf Tnded 243

[Notation Inde 245

Acknowledgements

My supervisor Matthew Hennessy is the person that during my PhD has influenced me most, both
from a technical standpoint and a human standpoint. Matthew has incessantly given to me all the
advices and explanations that I needed, and he has displayed an everlasting patience by listening to
my ideas. He has also been my most constructive critic. I thank Matthew for all these things; I am
grateful to have been one of his students.

One of the most remarkable people that I have met in Trinity is Vasileios Koutavas. I thank
him for the time that he has spent discussing technical matters with me, and for all the pictures of
the board that he has taken. His keen observations and his cheerful demeanour kept me motivated
throughout the second half of my PhD, and helped me rearrange some thoughts.

As to my fellow PhD students, I thank Andrea Cerone, Colm Bhandal, and Carlo Spaccasassi.
Andrea welcomed me in the fair city, and introduced me to its jolly social life. Colm and his thoughts
out of the box secured us from boredom, making the office a lively place, and letting us forget the
gloomy environment. Carlo supplied the office with an everlasting stock of fine coffee, and an even
better mood.

I wish to thank my examiners, Andrew Butterfield and Simon Gay. Their careful review of this
thesis helped in improving it, and lead to many engaging questions during my viva.

Many people filled my PhD years with good memories.

I thank the “Sunday brunch bunch”: Francesco Caiazza, Florence De Filippis, and Silvia Taddei.
They made me face many rainy, gray, and windy Mondays with a smile.

I thank Brendan Dunne, Paul Hynds, Anna Madden, Andres Mori, Heather Quinn, and Carlos
Rodriguez. They have been an endless source of wit, wisdom, and have provided subjects for discussion
aplenty. The climbing trip to Sardinia has been a turning point in my life, and I am glad that some of
these fine fellows were there, and began sharing their ideas with me; let alone mirth and mirto. Also,
it is a great pleasure to be still in the position of thanking all of them for having saved my life ever
so often.

The regular escapades to Fontainebleau have been a panacea for the mood. This is true also
because of Francoise and Bernard at the Gites des Jonquilles. Their dog Leo helped as well, for he
always cheered me up, even after the most unsuccessful climbing days.

As a matter of fact, I happened to stay often in France, and not just around Fontainebleau. For
this I have to thank Marion Lamé, Federico Ulliana, Hélene De Pooter, and Christophe Barnier. They
have been very kind, and have proven to be good companions of chats and thoughts. I can hardly
count the times they hosted me, but for sure I recall the fun we had in Paris, and, with Christophe,
around Hyeres. I thank Federico also for his providential rescue at the end of a most peculiar soirée.

Ringrazio Alessia, che oltre ad avermi definitivamente svegliato da un certo sonno dogmatico, ha
deciso di unire le forze con me. Speriamo di farcela.

Ringrazio Gina e Antonio, per quello che hanno fatto, e perche, nonostante tutto, mandano avanti
il campo base in modo egregio.

Menzione d’onore ad Antonio Bazzo; nella speranza che nella diaspora non lo abbia fatto sentire

distante.
Giovanni Bernardi, Dublin, July 4, 2013

xi

Chapter 1

Introduction

Software that relies on the Internet pervades our lives. To check e-mails, read the news on the web,
interact with people on social networks, buy items on-line, look for information on wikipedia, these are
almost daily routines for many of us. At present even the political life of countries can be influenced by
the discussions that take place via the World Wide Web [Grilloj 2013} [Hauslohner}, 2011; Woodward,
2011].

Much of the computations that let us carry out the above activities amount to a series of commu-

nications between two software systems:
e to browse the web we use clients that interact with http servers
e to read e-mails we use clients that interact with pop/imap servers
e to call a friend over the Internet, our friend and us use programs that implements VoIP

Two scenarios emerge from the examples above, the communication takes place between a client
and a server, or between two peers. In a client/server setting the overall aim of the communication is
to satisfy the client. In a peer to peer setting the aim is to satisfy both communicating parties.

The programs mentioned in the example list above follow communication protocols that are com-
pletely independent from each other; consider for instance the pop3 and the http protocols. A
consequence is that different programs have to be used to avail of different communication protocols.

The widespread adoption of the World Wide Web has lead to a general consensus on the technolo-
gies and the languages that underpin it, such as XML, CSS, javascript, and http. In turn, this has
lead to a shift of paradigm in the development of applications: today much of the activities listed in
our initial example can be carried out within a web browser, rather than requiring stand-alone ap-
plications. Via the World Wide Web, major IT companies offer to their users services such as e-mail
boxes, programs to chat, and even simple office programs. In this setting web technologies provide
the backbone for the deployment of the applications, and the protocols other than the http are used
only by the servers that provide the services.

These facts give an intuition of what web-services are. According to [w3c} |2004],

A Web-service is a software system identified by a URI [RFC 2396], whose public interfaces
and bindings are defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the Web-service in a manner

prescribed by its definition, using XML based messages conveyed by Internet protocols.

Web-services depend on standard and widespread web technologies such as XML. This feature
is meant to help integrate the middlewares and information systems of companies connected via a

network, thereby facilitating the business to business (b2b) activities. If a company runs a service p,

2 Chapter 1. Introduction

and another company runs a program 7 that needs p to work, then via a network and thanks to the
standard format of the messages, r can interact with p, and the two programs can cooperate.

Also web-services for b2b fall into the client/server and the peer to peer scenarios that we described
earlier on.

From now on we disregard the technological details and the particular aim of software, and focus
only on the fundamental aspects that characterise clients, servers, peers and their correctness.

Let us think of “systems” as compositions of two programs r and p that interact with each other;
we write 7 || p to denote the concurrent execution of the programs r and p. The systems that we
normally use are correct, in the sense that when we let clients interact with servers, the clients are in
some sense satisfied; and similarly for peers. The situation is analogous for companies and the services
that they offer. The meaning of “correctness” of a software system, or of “satisfaction” is not clear a
priori. If we want to test software, our tests are satisfied if they are passed. If we want to browse the
web, the client that we use is satisfied if all its requests are answered by some web server. If we chat
with a friend via a network, our programs are satisfied as long as they can keep on interacting.

It is not easy to understand when a piece of software can be changed without breaking the cor-
rectness of a system. For instance, suppose that a client 7 is satisfied by a server p, that is r1 || p1
is a correct system. If we were to replace a client r; with a client ro would the new system still be

correct? In particular,
(Q1) what is the relation between r; and r5 which guarantees that ro is satisfied by p?

We have also the dual question, if r || p; is a correct system, and we were to replace p; with a server py
how could we tell whether r would still be satisfied? That is

(Q2) what is the relation between p; and py which guarantees that po satisfies r7

If we deal with peers, then the question becomes symmetric; if p; || ¢ is a correct system of peers, and

we want to replace p; with po, then
(Q3) what is the relation between p; and p, which guarantees that p, satisfies ¢ and that g satisfies po?

The practice of software maintenance shows that the questions above are not mere theoretical
speculation. For instance, the e-mail service of Google, Gmail, underwent a failure on the 315 of
April, 2011. [Treynor} 2011] commented on the official Gmail blog as follows,

So what caused this problem? We released a storage software update that introduced the
unexpected bug, which caused 0.02% of Gmail users to temporarily lose access to their
email. When we discovered the problem, we immediately stopped the deployment of the

new software and reverted to the old version.

In December 2012 the same e-mail service was hampered again, by a problem traced down to a bug
in a routine update to the load balancing software.

As for web-services and the b2b scenarios, similar issues have taken place. On the 29" of June
2012, Amazon web-services, AWS, underwent a service disruption. The [AWS Team|, [2012] explains in

great detail what happened. One problem was due to software,

[...] a small number of Multi-AZ RDSH instances did not complete failover, due to a
software bug. The bug was introduced in April when we made changes to the way we
handle storage failure. It is only manifested when a certain sequence of communication
failure is experienced, situations we saw during this event as a variety of server shutdown

sequences occurred.

1 Availability Zone, Relational Database Service.

Both explanations remark that the issues in the software systems were due to software updates. The
explanation provided by Amazon also lay bare that their problem was due to the communication
sequence that the software engaged in.

These facts highlight the importance of having means to guarantee that software update can take
place without hampering the existing communication patterns, and without introducing unexpected
communication patterns that may disrupt the operations of a software system.

This thesis is a systematic investigation of five theories that let us answer the questions on software
replacement that we posed earlier, (, (Q2), and (Q3). By “systematic” we mean that our results
lay bare the principles which allow the replacement of software in all the roles it can take: servers,
clients and peers.

The aim of this thesis is largely foundational; we want to state in a mathematical and rigorous way
what it means for a software system to be correct, and understand when a program p can be replaced
by a program ¢ keeping the system correct. In our thinking we focus on the characteristic features of
software interaction, inputs and output operations, and we abstract away from minor details.

Our foundational approach sheds light on the design of software. To answer rigorously the questions
(7 (Q2), and (Q3), we will have to put forth a series of mathematical notions; these notions give us
design principles to write software that does not invalidate the correctness of existing systems. The
design principles are correct by virtue of the mathematical treatment that they emerge from.

Our mathematical reasoning is based on set theory; we will use relations on programs, denoted
by S and C, to mean that it is safe to run the client r with the server p, r S p; and that if we replace p;
with po in a correct system r || p1, then the new system r || po is still correct; this is denoted p; C po.

We have argued that there are different ways to think of the satisfaction of clients, and of the
correctness of software systems. Thinking in terms of sets and relations, this means that we can
define many relations S on programs, to express some notion of satisfaction. As different relations
81,85, 8, ... are of interest, different theories have to be investigated.

The main objects of our study are not the relations to express the satisfaction of a program.
Rather, our efforts are devoted towards the understanding of the refinement relations that arise from
the satisfaction relations that we pick. Let us fix a relation S, and write p Cgyr ¢ if » S p implies
that r S q. The relation Cgy that we obtain tells us when a server ¢ can replace a server p without
hindering the correctness of a system r || p. The relation Cgyr embodies a principle to replace servers.

In similar ways we can define refinements for clients and for peers, so as to obtain three relations,

ESVRv ECLTa EPZP

It is necessary to study all the pre-orders above. Suppose we studied only how to safely replace
servers, that is Cgyg, and not how to safely replace clients. Then the correctness of a system could
be hampered by replacing the clients. The study of Ty solves the problem; and similarly does the
study of Cpop for the peer to peer scenario.

The properties of the relations above depend on the notion of satisfaction S that generated them.

One may wish the pre-orders to enjoy some particular properties. For instance, if two servers are
related, say p Cgyr ¢, then ¢ may offer to the clients more choices than p. This property is known as
“width extension” |Laneve and Padovanil [2007].

We give a more concrete example. Let ATM,4 denote a cash machine that allows us withdraw
cash, and then starts again,

ATM 4 =?withdraw. ATM 4

and let ATMp be a similar cash machine that allows us also to top-up mobile phones,

ATMp =?withdraw.ATMp + 7phone. ATMp

4 Chapter 1. Introduction

?withdraw ?withdraw

ATMA ATMB
(ATM,)

7topup

Figure 1.1: Two cash machines

Intuitively, the equalities above define two programs; the symbols ?withdraw and 7phone stand for
interactions that the programs can perform with the environment. The symbol + in the definition
of ATMp represents a choice, ATMp lets the environment decide which interaction to perform. The
syntax ?withdraw.ATMp means that after the interaction ?withdraw the program behaves accordingly
to the definition of ATMpg. The behaviours of the programs ATM, and ATMpg are sketched in
Figure [T}

One could argue that ATMp is in some sense better than ATM,, in that ATMp satisfies all the
customers satisfied by ATM 4, and it also offers them more choices. So, once we have fixed a notion

of satisfaction S, we may wish that the following be true,
ATMA ESVR ATMB

In general, this may or may not be the case; that is the refinement for servers given by a particular S
may or may not allow the inequality above.

If a refinement Cgyy generated by a relation S does not enjoy a certain property, and we cannot
change S, then other ways to vary Cgyr have to be investigated. For example, a relation for satis-
faction S can give rise to many different refinements for servers, clients and peers; the properties of
these pre-orders depends on the language used to write programs. This introduces yet another reason
to study different theories.

In this thesis we we investigate five theories. Rather than putting forth new formalisms, we examine
existing ideas and deepen our understanding of them, shedding light on their implications and on the
connections between them. Two theories that we investigate are due to two notions of satisfaction
applied to the same general language, the well known CCS without 7’s of |De Nicola and Hennessyl
1987]. The other theories are given by applying the same notions of satisfaction to the more restrictive
language of session contracts [Bernardi and Hennessy, [2012].

Before describing the theories that we will be concerned with, we explain how we think of interac-
tions between programs.

To formalise the sequence of operations (i.e. interactions) that a program performs, we use graphs
such as the ones in Figure[I.2] In that figure, the graph at the top describes a program r that inputs
two values, an integer and a boolean, and then is in a successful state, (i.e. it can perform v'). Graphs
such as the ones in Figure describe the operational semantics of software, and they are referred
to as labelled transition systems, LTS. An LTS contains the states that a program can be in, and the
transitions that lead from one state to another. The transitions are usually depicted as arrows, and
are decorated with a label. Labels describe the interactions that make a program change states; that
is, they explain why a program changes state. For instance, the fact that the program r Figure is

willing to input an integer, thereby moving to state r; is represented by the following transition:

. ?7Int .

Figure 1.2: A program that succeeds after the input of an integer and of a boolean; and a program
that loops forever

? ? |
@ ’Int @ ’Int @ 'Bool @
? ? |
@ /Int @ /Int @ 'Bool @
T

Figure 1.3: Two programs that interact according to the sequence ?Int?Int!Bool

Intuitively, interactions between r and a program ¢ take place when we execute them concurrently,
denoted r || p, and each input/output operation of one program is matched by a co-action performed

by the other program. For instance, let the operations of p be described by the following LTS

. !Int @

The action !Int represents the output of an integer, and it is a co-action of 7Int.

The program p is willing to output an integer, and then perform no other operations. According to
the intuitions we have described, the parallel composition r || p performs one interaction, denoted r ||
p— 1 [| 0, and then becomes stable; the system cannot proceed further.

The bottom graph in Figure [I.2] describes a program ¢ that performs only one transition, labelled
by 7. That transition represents a computation that takes place inside of ¢, and that the environment
has no power over. Since the 7 action represents internal computation, the program ¢ performs an

infinite sequence of internal computations,
T T T T
qg—q—q—>q—> ...

We say that q diverges, whereas programs that perform only finite internal computations converge.

If we execute ¢ in parallel with r, then also the resulting composition diverges,
qllr—qllrql|lr——...

The framework that we have sketched is essentially CCS; it has been put forth by [Milner, and his

book [Milner} 1989 is a standard reference on the topic.

6 Chapter 1. Introduction

1.1 Must theory

The theory of MUST testing, known also as testing theory, has been presented in |[De Nicola and
Hennessyl 1984], and the subsequent |[Hennessyl [1985]. Testing theory is a landmark within the
formalisms to assess software equivalence, and this renders it a good starting point for our research.

It is common practice to test software in order to exhibit errors. Testing can be performed also in
presence of communications between programs.

By running a process p in parallel with r, denoted r || p, we can check whether in all the possible
executions 7 reaches its successful state. This means that the interactions offered by p satisfy the
test r; in other words p must pass the test r. Intuitively, this is the meaning of the relation MUST; in
particular of statements such as p MUST 7.

Plainly, in this setting a process ¢ is better than a process p if ¢ passes more tests; and ¢ and p
are equivalent is they pass the same set of tests.

The MUST testing relation has been introduced in |[De Nicola and Hennessy, 1984], to define a
refinement for processes described by the intuition above, the well known MUST pre-order, EMUST.

The relation MUST expresses the satisfaction of tests, so the theory of MUST testing can be
smoothly casted into a more general client/server setting. As the satisfaction is biased towards the
tests, they can be seen as clients, while processes can be seen as servers.

To study peers we use a symmetric version of MUST which requires the satisfaction of both parties
involved in a software system r || p. To this end we have also to combine the language of processes and
the language of tests; this allows us to write terms that model programs that can reach satisfaction,
while testing another program.

In this thesis we will extend the standard framework by studying three pre-orders, one for servers

(i.e. processes), one for clients (i.e. tests), and a pre-order for peers,

C C
~YSVR’ ~cLr? ~p2p

Note that it is necessary to study anew the pre-order for servers, because we allow processes to
perform v, thereby extending the language of [De Nicola and Hennessy, [1984; Hennessy, [1985]; so we

have to check the impact of this extension, as may differ from

C C
~SVR ~IMUST *

Roughly speaking, the outcome of our investigation is that in this setting,

e a server ps is better than a server p; if (a) all the interaction sequences of ps can be performed
also by p1; and (b) the two servers converge along the execution of the interaction sequences in

the same manner

e a client ry is better than a client r; if (a) all the interaction sequences that ro performs without
being satisfied are performed also by r; without being satisfied;(b) if an interaction leads r; out

of a deadlock, then that interaction leads also 75 out of a deadlock

e a peer ¢ is better than a peer p if ¢ is a better client than p, and if this is true, then ¢ is also a

better server than p.

As to the meaning of “converging along”, observe Figure There the program ¢; converges along
the interaction sequence 7Int?Int!Bool, because all the states it reaches during the execution con-
verge. On the contrary, the program p;, does not converge along that sequence, because after having
performed ?Int?Int! it reaches a divergent state.

Observe that a posteriori the principles to replace servers are the same prescribed by the stan-

dard MUST pre-order; moreover, they imply that

ATMy %.,. ATMp (1.1)

SVR

1.2. Compliance theory 7

1f1n 1nd

Figure 1.4: A program for a plane

To see why Eq. (1.1) is true, consider the following LTS,

The only interaction that Test can engage in with ATM 4 is due to withdraw, and Test reports success
after that interaction. With ATMp there exists the possibility of an interaction via topup, which leads
Test to a deadlock state. The fact that Test is always passed by ATM 4 but it may not be passed by
ATMp proves Eq. .

To extend the standard theory with new pre-orders for clients and peers has also the advantage of

laying bare some fundamental notions that we will need to study the refinements of a second theory.

1.2 Compliance theory

The second formalism that we study is a theory of compliance, and it is an alternative to the MUST
testing theory.

We motivate the investigation of the compliance theory. Recall the ATM we described earlier
on, ATM 4; and observe Plane in Figure The program Plane keeps on performing some internal
computation, represented by the 7 actions, whereby it decides to communicate to the environment
either that it is landed (!1nd), or that it is flying (f1n). Plainly, the program Plane follows a com-
pletely different communication pattern than ATM 4. Nevertheless, if we compare the two programs
as clients according the the MUST setting, they are equivalent, ATM4 ~¢+ Plane. This may look

surprising, but indeed it is sensible. If clients are tests, then when we use we compare software

C
~CLT
as tests. Now we see why ATM 4 <cr Plane; as none of these programs ever reach a successful state
(i.e. perform V'), they are indeed equivalent as tests, for they are never passed.

This criterion to assess when a client can replace another client neither fits with our daily experience
of the services we use on the web, nor fits with the usage of web-services at large.

This motivates the introduction of an alternative relation to formalise the satisfaction of a client,
or of two peers. This is the compliance relation, .

Roughly speaking, according to the compliance relation, a client r is satisfied by a server p, r 4 p,
as long as the requests of the client are answered by the server, and if the interactions cannot go
on, then the client has successfully completed its computation. This notion of satisfaction differs
from MUST; the compliance relation essentially ensures that the interactions can go on, whereas the
MUST testing checks the presence of successful states in the computations.

The compliance relation and its symmetric version also give rise to three pre-orders in a natural
fashion,

Esvm ECLT7 EPZP

8 Chapter 1. Introduction

In this setting we can indeed prove that ATM 4 #¢.r Plane. For example, the server S =lwithdraw.S
satisfies ATM 4, but not Plane. Intuitively, this is true because ATM 4 keep on interacting with forever

S; whereas the composition Plane || S enters in a deadlock, without Plane being satisfied:

Plane || S - Plane || S 7;

Even though the MUST testing and the relation - are altogether different, the reasoning techniques
for the pre-orders due to the compliance are quite close to the reasoning techniques for the pre-orders
due to MUST.

Our investigation of the compliance theory leads to the following principles:

e a server ps is better than a server p; if (a) all the interaction sequences of ps can be performed
also by p1; and (b) the two servers converge after the execution of the interaction sequences in

the same manner

e a client 7o is better than a client r1 if (a) all the interaction sequences that ro performs reaching
a deadlock are performed also by r; reaching a deadlock; (b) if an interaction leads r1 out of a

deadlock, then that interaction leads also ro out of a deadlock

e a peer ¢ is better than a peer p if g is a better client than p, and if this is true, then ¢ is also a

better server than p.

We have already argument that the program p; in Figure does not converge along the interaction
sequence ?Int?Int!Bool; on the other hand it converges after having performed the sequence, for the
state that it reaches, pys, does not diverge.
Also in this case the principles to replace servers let us prove that ATMp is not a better server
than ATM 4,
ATM g YLgyr ATMp

The inequality above and Eq. (1.1)) ensure that neither the compliance pre-orders nor the MUST pre-
orders that allow width extension to take place. However, by restricting the power of the programming
language at hand, we can use MUST and - to obtain refinements that allow width extension. This

brings us to the study of session types.

1.3 Session types

Most of the software we use interacts via binary communication channels, the so-called sockets. These
channels are binary because are made of two end-points. If we represent abstractly the channels
as a,b,c, ..., then the end-points of a channel are at and a~. Intuitively, at each moment in a
network, one program owns the end-point a®, and one program owns the dual end-point, a~.

Session types, proposed first by |[Hondal, [1993], are syntactic annotations usually assigned to the
end-points used by programs. These types describe the sequence of data input/outputs that a program
is willing to perform on a given end-point.

Let the session types S be defined as follows,
S =pX.&(add: ?[Int];?[Int];![Int]; X, stop: END) (1.2)

Let us comment the syntax above. The type S is defined using recursion on the variable X (recX...);
the body of S is defined by a branch constructor (&(...)), which maps two labels (add and stop) to
other two types. After add there is a type defined by two input constructs (?[—]), and output (![-])
and the variable to perform recursion. After stop there is the termination type, END, that represents

a terminated communication.

1.8. Session types 9

If a program p uses an end-point a™ at type S, then p operates on a™ according the this logic: p
offers a “menu” with two choices, add and stop, and waits for the program with the end-point ¢~ to

make a choice;
e if the choice is add, then p proceeds as follows,

1) p reads via a™ a datum of type Int,

)

2) p reads via a* a datum of type Int,

3) p write on a™ a datum of type Int,
)

4) p starts again to act on a™ as we described;
e if the choice is stop, then p does not interact any longer via the end-point a™.

The notion of duality in the theory of session types is a central one. The end-points associated
to a channel are “dual”, and the programs that use them are supposed to show “dual”’, that is
complementary, behaviours on the end-points. If a program offers some choices, then the program
at the other end of the channel chooses among these choices. If one program performs an input, the
other program has to perform an output, and so forth.

The duality between types expresses the notion of satisfaction in the setting of session types, for
if S is the dual of S, than each communication performed on one end-point, will be matched by a
communication on the dual end-point (if communications can take place at all).

The main refinement in the theory of session types is the sub-typing relation, <, defined by [Gay
and Hole, 2005]E| This sub-typing adds flexibility to the overall theory, in that it allows to replace
session types without breaking the correctness of a system. For instance, if S = &(tea: END)
and Sy = &(tea: END, moka: END), then the sub-typing ensures that S; <t S2. Note that this
means that the refinement < allows width extension.

Session types lack any semantics; they are merely syntactic entities. As a consequence, the rela-

tion <t is inevitably defined by using the syntax of terms. This has some drawbacks:

e the definition of < explains neither how the behaviours of programs are related, nor how the

behaviour of types are related

e there is a degree of arbitrariness in the definition of x¢,t. Why should we use that definition

of |Gay and Hole, [2005], rather than some other relation?

e a priori, it is not clear how to adapt the definition of < to alternative type refinements; in

particular the ones biased towards clients

To overcome the drawbacks above, in our study we explain the existing theory of session types.
We do this by interpreting types into a language equipped with an operational semantics; in turn, the
semantics lets us define pre-orders for servers and clients in a straightforward and non arbitrary way;
and these pre-orders let us justify the standard sub-typing via a fully abstract model. Essentially,
a posteriori it turns out that if we assign a semantics to session types, and S; <ept S2, then the
behaviours of S; and Sy are indeed related.

Other than the models of the sub-typing, the outcome of our investigation is that it is possible to

reason about the behavioural pre-orders for session types merely by looking at the syntax of types.

First-order session types

Our investigation on session types begin with first-order types. First-order session types are types

that can express inputs and outputs operations only on terms that are not session types. For instance

2In that paper the sub-typing is denoted <.

10 Chapter 1. Introduction

IInt

7Int

g1 g3
?StV \Int
?add i
:

v

©

Figure 1.5: Operational semantics of the encoding of the type S (see Eq. (1.2)))

the following terms are first-order session types
?[Real]; END, uX. 1[Booll; ?[Int |; X,

the intuition being that Real and Int are base types, so not session types. The following terms are

not first-order,
[puX. ?[Bool]; X |; END, &(optl: ?[END];END, opt2: ![?[END]; |;END) (1.3)

The input/output fields ?[—] and ![—] of the types in Eq. contain session types, so the terms in
Eq. are higher-order.

The first task that we carry out is to assign an operational semantics to first-order session types.
To this end, we adapt the semantics of the processes in CCSy,, and define the language of session
contracts. A straightforward encoding of session types into session contracts lets us associate the
semantics of session contracts to session types. In Figure we saw the operational semantics of
simple processes; essentially some graphs. Intuitively, we use the same approach to describe how a
type is meant to interact with the environment, thereby giving a meaning to session types.

For instance, we will associate the term S in Eq. with the graph depicted in Figure in
that graph o is the session contract resulting from the encoding of S.

In view of the operational semantics assigned to session types, we use the relations for satisfac-
tion MUST and to study the refinements for servers and clients that arise in the setting of session

types. These refinements are respectively

Efo I:fO
~SVR’ ~CLT
and
fo fo
Esvw ECLT

The definitions of the pre-orders above follow the intuitions that lead to the definitions of the pre-
orders for the general theories of testing and of compliance. Hence the relations above are not defined
in a syntactic way, but in a behavioural way.

We do not define the refinements for peers, for we use the sub-typing on first-order types, #i‘t’)t, as
the refinement for peers (up-to the interpretation of contracts into types).

In the sequel of this discussion, let us assume that o; and oy are the encoding of two types S;
and Sy. If oy is related by EZ‘iR with o9, then the way in which o interacts with the environment,
i.e. its observable behaviour, will satisfy all the clients passed by o1. A similar property is true also

for Cgyg.

1.8. Session types 11

?optl

7opt2

Figure 1.6: An instance of the LTS of higher-order session contracts. The higher-order session contracts
appear on the transitions as well as in the states

By and large, the outcome of our study is that the behavioural pre-orders can be characterised
purely in a syntactic manner, and that the intersections of these pre-orders are a fully abstract model

of xf. (via our encoding):

e 5; xfo Sy if and only if oy (‘:fo nch) oo

~SVR ~CLT
e Sp xfo Sy if and only if oy (0, N M) o

First-order session types have limited applications, so we extend the language of session types by

allowing them to input/output also session types; and we investigate the resulting theory.

Higher-order session types

As we saw in Eq. (L.3), higher-order session types can contain session types in their input/output
fields. The language of higher-order session types amounts to the session types 4 la |Gay and Hole,
2005). In this context we study only the pre-orders due to the compliance relation,

EhO I:hO

—SVR)? —CLT

The outcome of our investigation is an extension of the results proven in the first-order setting:
e the behavioural pre-orders can be characterised purely in a syntactic manner

e the intersection of those pre-orders is a fully abstract model of the sub-typing <spt: S1 <sbt S

if and only if oy (ERS, N CMC.) 0

We do not investigate the MUST pre-orders in the higher-order setting, and leave this as an open
problem.

The chief difficulty in unravelling the results is due to a technical issue, that we briefly comment
on.

To accommodate the higher-order terms in the existing model of first-order types, we extend the
language of session contracts with higher-order constructs. For example, the session contracts that
represent the types in Eq. are the following terms,

o1 =!(ux. 7Bool.x). 1 o2 =7opt1.(?(1).1) 4+ ?optsy.(1(1).1)

In turn, this forces us to extend the operational semantics of session contracts; we have to allow
the transition of the semantics to be labelled with higher-order session contracts themselves. The
operations of the session contracts above are depicted in Figure

As a result, the intuitions of co-action and of when transitions should synchronise is no longer
clear; in fact, this is a non-trivial matter, and to account for it we parametrise the LTS via a binary

relation on session contracts, B, and introduce a family of “dependent” LTSs.

12 Chapter 1. Introduction

In order to obtain an LTS that does not depend on any arbitrary relation B, we study certain
functions, which turn out to have greatest fixed points. These fixed points are the pre-orders C1o,
and CMe, . Indeed, in devising the higher-order theory of compliance our efforts are principally oriented

towards the definition of the fixed points Ch9, and Che, .

1.4 Contributions

From a technical standpoint, the contributions of this thesis are the following ones,

(a) we enrich the standard testing theory with new pre-orders, and present their behavioural charac-

terisations (Theorem Theorem 4.3.17));

(b) we introduce a new compliance relation, the three pre-orders that arise from it, and we show
the behavioural characterisations of these pre-orders (Theorem [5.1.15] Theorem [5.2.25] Theo-

rem [5.3.20));

(c) we show a fully abstract model of the sub-typing relation on first-order session types (Theo-
rem ; the model we use can be defined in two alternative ways, one due to the testing
theory, and the other due to the compliance theory (Proposition [6.5.19));

(d) we generalise the model due to the compliance so as to exhibit a fully abstract model of the
sub-typing on higher-order session types (Theorem [8.4.9)).

The first two contributions ((ED and @), i.e. the systematic study of the testing theory and the
compliance theory, are a necessary step to use the formalisms themselves as foundations for software
maintenance.

The last two contributions (and @), that is the models for first-order and higher-order session
types, essentially show that the theory of session types & la |Gay and Hole, 2005] can be recovered
and justified by using the MUST testing, or the compliance relation. The connection that we estab-
lish between the different formalisms shows that the testing and the compliance theories on session
contracts are more primitive than the theory of session types.

Also, our model shows that session contracts in some sense extend the theory of session types, by
virtue of a series of server pre-orders and client pre-orders.

In the first-order setting, we take the sub-typing 42‘& to be the peer pre-order; the MUST theory
for session types amounts to the refinements

Efo Efo Efo Efo
~/SVR’ ~cLrt’ ~CLT ~SVR

while the compliance theory amounts to the refinements

f f f f
ES‘i’R7 EL?LT7 ;SC\J/R m E(§LT
In the higher-order setting, the pre-order for peers is the sub-typing <spt, and the compliance theory
amounts to the following pre-orders
h h h h
E83R7 EC?II‘? ES\c/)R m EC?fl‘
The material is presented in such a way as to render the transition from one theory to another
theory as smooth as possible, showing the crucial differences between the subjects, and exploiting

their similarities.

1.4. Contributions 13

Equivalences and pre-orders In this thesis we study the characteristic properties of a number
of refinement relations; that is pre-orders. We study these relations rather than equivalences because
pre-orders are more primitive than equivalences: each pre-order we study through this thesis generates
an equivalence. For instance we deem two clients 71 and ro as equivalent, 11 =cip 72, if 71 Ecip 72
and 7y Cor 1. The properties of the pre-order T then shed light immediately on the equivalence

relation =y .

Structure of the thesis

This thesis is divided into two parts.

The first part is devoted to the study of first-order theories; this means that the transition systems
that we use as operational semantics have “basic” entities as labels, for example actions, and base
types.

The second part is devoted to the extension of some results of the first part to transition systems
generated by higher-order languages. Roughly speaking, in these transition systems the labels can be

“programs” themselves.

We briefly describe the contents of each chapter.

In Chapter [2] we define the languages that we use throughout the first part of the thesis. While
session types need little discussion and are merely syntactical entities, to define processes (i.e. CCSy,)
and session contracts we have also to introduce the operational semantics of these languages. We
conclude the chapter showing how to encode session types in session contracts, thereby assigning
them an operational semantics.

In Chapter [3| we use the LTS to formalise the satisfaction of clients and peers; that is to define
the MUST testing and the compliance relation. We also show that in the restricted setting of session
contracts, both relations can be faithfully described using only the syntax of terms.

In Chapter [l we extend the standard testing theory, by investigating the pre-orders for servers,
clients and peers due to MUST.

Chapter [f] is organised as Chapter [d] but the theory investigated is due to the compliance relation.
At the end of Chapter [5| we summarise our knowledge of the pre-orders studied on the general LTS
of CCSy,; moreover, we prove a series of results on more restrictive LTSs.

In Chapter [6] we turn our attention to the LTS of session contracts, tailoring the definitions of the
refinements to it. We study both the resulting MUST theory and the resulting compliance theory, and
exhibit a fully abstract model of first-order session types. This sheds light on the known theory of
session types, and also show how to extend it.

In Chapter [7] we extend the languages for sessions of Chapter In particular, we parametrise
on a relation B the LTS that describes the interactions of higher-order session contracts. This leads
to the definition of dependent compliance relations, —iz. The chief result of the chapter is that the
syntactical characterisation of - still holds true for the dependent compliances.

In Chapter [8| we introduce the dependent client and server pre-orders, C5 . and C . By using
these pre-orders we show that there is non-arbitrary way to remove the parameter B from the LTS.
We do this by building the fixed points of suitable functions of the form AX. C& = and AX. C&,. We
use these results to exhibit a fully abstract model of higher-order session types.

In Chapter [9] we outline the ongoing work and the problems that we want to tackle by means of
our behavioural models of session types.

In Chapter [10] we review the relevant literature, summarising the development of the formalisms
we use, and showing the state of the art.

We conclude the thesis in Chapter by summarising the results, and briefly discussing a series

of open questions.

14 Chapter 1. Introduction

Prerequisites

The reader is expected to be familiar with naive set theory, order theory, and first order logic. Standard

references on these topics are respectively [Halmos| [1960], [Davey and Priestley},[2002], and [Mendelson|
1997,

The notation that we do not explain, for example how we define syntax languages, is standard and
used regularly in the literature, for instance in [Hennessyl, [2007; [Milner}, |1999; Piercel 2002].

Throughout the thesis we use heavily induction and co-induction; an excellent and broad expla-
nation of both techniques is 2012]. Chapter 21 of is a standard reference
on (co)induction, while another standard reference on induction is Chapters 3 and 4].
More advanced books on the matter are [Barwise and Moss| [1996] and [Sangiorgi and Rutten) 2011].

Notation We explain a few conventions on the notation that we will use.

We will use the symbols C and & to denote pre-orders defined by using the operational semantics
of programs. We will use the symbols < and = to denote “alternative” relations, that shed light on
the observable behaviour of programs.

We will use many relations defined by (co)induction; normally we will define these relations by
using explicitly rule functionals, and taking their least or greatest fixed points. We use the symbol F
to denote such rule functionals. When interested in the greatest fixed point of a functional, we
decorate F with a superscript, for example F4, FB_ .. .; when interested in the least fixed point of a

functional, we decorate F with a subscript Fa, Fp,....

Part 1

First-order theories

15

Chapter 2

First-order languages

In this chapter we formally define the languages that we will use throughout the first part of this
thesis: a language of communicating processes, the language of session contracts, and the language of
session types. The first two languages have an operational semantics in the form of an LTS, and their
terms are really meant as handy denotations for parts of the LTS. The third language, session types,
has no formal semantics.

The languages we deal with in this part of the thesis are first-order, in the sense that they cannot

perform input/output operations on the terms of the languages themselves.

Structure of the chapter. We first introduce the language of first-order session types, which
is closely related to the language of |[Gay and Hole, |2005], and define a sub-typing relation on the
first-order session types.

In Section we present the language of processes, and endow its terms with a structural oper-
ational semantics. Our processes are terms of infinitary ccs without 7’s [De Nicola and Hennessyl,
1987| enriched with the special term 1, which represents success. We will use the LTS denoted by
processes in two chapters of the thesis.

It will become evident that there is a natural way to map first-order session types into a sub-
LTS of the one denoted by processes. To render this mapping precisely, in Section 2.3 we introduce
the language of session first-order session contracts. This languages is a bridge between the LTS of
processes and the syntax of first-order session types. In particular, (a) first-order session contracts
denote a sub-LTS of the one of processes, and (b) it is straightforward to prove that there is a bijection

between the syntax of session types and session contracts.

2.1 The session type language

To define the syntax of types, we presupposes three denumerable sets; a set of labels L, ranged over
by 1, a set of ground types BT ranged over by t, and a set of variables V, ranged over by X; the last
set let us express recursive types.

The syntax of terms for types is given by the grammar in Figure let us denote with LsT,, the
language given by that grammar.

The use of variables leads to the usual notion of free and bound occurrences of variables in terms
in the standard manner; we say that a term is closed if it contains no free variables. We also have the
standard notion of capture avoidance substitution of terms for free variables. For the sake of clarity
let us recall this definition: a substitution s is a mapping from the set V to the set of terms in Lst,, .
Let

oy o)s VX s(X))} i X € domfs)
S otherwise

17

18 Chapter 2. First-order languages

R, ST := Session types
END Terminated session
?[t]; S Input
Nt]; S Output
&(11:81,...,1,: S,) Branch
@®(11:57,...,15: Sp) Choice
X Type variable
uX.S Recursive session type

Where n > 0, and ¢ # j implies that 1; # 1;.

Figure 2.1: Grammar for first-order session types

END if S = END
s(X) if S =X, and X € dom(S)
X if S =X, and X & dom(S)
Nt]; (9’s) it S=1t];9

Ss =< 7?[t];(9's) it S=7t];9

&(11:(518),..., 1 : (Sps)) S =&(11:851,...,1,:5,)
@®(11:(518),...,1,: (Sps)) I S=d®(1;:51,...,1,:5,)
uX. (S'(s — X)) if S =pX.5

t ifS=t

Figure 2.2: Application of substitution to first-order session types.

The result of applying a substitution s to the term S is defined in Figure by structural
induction.

In the final clause of the definition, the application of s — X embodies the idea that in uX.S’
occurrences of X in the sub-term S’ are bound, and therefore substitutions have no effect on them.

It is easy to check that the effect of a substitution depends only on free variables; that is, Ss; = Sss
whenever s1(X) = so(X) for every free variable X occurring in S. We use {?/x } to denote the
singleton substitution {(X,T)}.

In the language LsT,, we have recursive terms, so we introduce a way to unfold them. We formalise

the notion of unfolding, which we define inductively.

Notation If X denotes a set, then we let P(X) denote the powerset of X; that is P(X) is the set
of subsets of X.

Definition 2.1.1. [Unfolding |
Let Fuxr : P(Lér,) — P(LZy,,) be the rule functional given by the inference rules in Figure We

denote the least fixed point of Fyyy with the symbol UNF, and we refer to it as the unfold function.
O

The relation UNF is a partial function, so we write UNF(S) = T in place of SUNF(T).

T {r*T/x } UNF S
T UNF S

T # puZ. S; [UNF-A] T = uX.T'; [UNF-R]

T UNF T

Figure 2.3: Inference rules for the rule functional Fyyr

2.1. The session type language 19

T {7 /y } depthn
wY. T depth 1 +n

T+ pZ.S T=pu2.T

T depth O

Figure 2.4: Inference rules to compute the depth of closed terms

Intuitively, UNF(T') unfolds top-level recursive terms until a type constructor appears, which is
not u. This will be extremely useful in manipulating session types. Not all the terms can be unfolded,
for instance pX. X cannot be unfolded.

The fact that we can unfold a closed term of Lst, does not imply that also its sub-terms can be
unfolded.

Example 2.1.2. [Unfolding and sub-terms |
Let T = &(moka: puX. X). On the one hand, the term T is closed and the top-most constructor in

it is not a recursion, thus we can prove that UNF(T') = T. The proof of this is given by the axiom of

Figure 2.3}

TUNFTT#”Z'S

On the other hand, a sub-term of T is uX. X, and it can not be unfolded. O

We will need to deal only with types whose subterms can be unfolded. To rule out terms that do

not satisfy this property we introduce guarded recursion, which we now explain formally.

Definition 2.1.3. [Type term depth |

Let Fepn : P(Lér,) — P(Lét,) be the rule functional given by the inference rules in Figure
We denote with depth the least fixed point of the rule functional Fgepn, and we refer to it as the
depth function. O

The function depth from terms to N provides a measure of session types over which we can perform

induction. Moreover, the depth of a closed term is defined if and only if the term can be unfolded.
Lemma 2.1.4. For every closed T' € Lst,, , depth(T) € N if and only if UNF(T') = S for some S.
Proof. We are required to prove two implications,

a) if depth(T) € N then UNF(T) = S for some S

b) if UNF(T') = S for some S then depth(T) € N

The proof of both implications are by rule induction. O

In |Gay and Hole| 2005] the function UNF is defined co-inductively. This seems to contrast with
our inductive definition. In Example [2.1.5] we show that a co-inductive definition does not give rise to
a function. In Proposition we explain how the co-inductive definition can lead to the inductive
notion of unfolding: when reasoning on terms with finite depth there is no difference between the

inductive and the co-inductive definitions of UNF.

Example 2.1.5. Let S = pX.X. In this example we show that the pairs (S, ?[Int];END) and
(S, &(1: END)) are in the fixed point vX.Fyx(X). Thanks to the Knaster-Tarski theorem all we
have to do is to exhibit a prefixed point of Fyxr which contains the pairs at hand.

Consider the ensuing relation

R ={(S, ?[Int];END), (S, &(1: END)) }

20 Chapter 2. First-order languages

We prove that R C Fyxr(R); to this aim, we have to to show that each pair in R can be derived by
instantiating one of the inference rules in Figure As X { /x } = S, we have the derivations

S UNF 7[Int]; END S UNF &(1: END)
[UNF-R]

S UNF ?[Int]; END S UNF &(1: END) [UNP-R]

Thus R is a prefixed point of UNF. The Knaster-Tarski theorem ensures that the pairs at hand are in
the fixed point v X.Funp(X). O

The intuition behind the previous example is that if the depth of the first element of a pair (T, .S)

is not defined, then the axiom [UNF-A] is not necessary to derive the pair itself.
Lemma 2.1.6. If depth(T) € N and (T, S) € vX.Fune(X), then UNF(T) = S.

Proof. We reason by induction on depth(T) € N.
If depth(T) = 0, then T # uX.T’, thus we can derive
/. ~
TONE T T # uX.T'; [UNF-A]
This proves that UNF(T) =T.

In the inductive case depth(T) = n+1, thus T = pX.T’, and the hypothesis (T, S) € vX. Fynp(X)
implies that there exists the derivation

T'{T/x } UNF S
T UNF S

[UNF-R]

This proves that (I"{*/x }, S) € vX.Foxe(X). Since depth(T'{*/x }) = n, we can apply the
inductive hypothesis, and state that UNF(T” { T/x }) = S; this means that there exists a finite deriva-

tion

T’{T/Xl} UNF S

It follows that also the following derivation is finite

T'{"/x } UNF S
T UNF S

[UNF-R]

so UNF(T) = S. O
To make sure that all the sub-terms of a terms 7" can be unfolded, we introduce the predicate GD.

Definition 2.1.7. [Guarded term |
A term T is guarded, T gd if every sub-term of the form pX. S satisfies depth(S) € N. O

In view of Definition Example 2.1.2 shows that to have a depth and to be guarded are different
properties. In Example [2.1.15] we will see why we need to ensure that all the sub-terms of a given

term can be unfolded.

Definition 2.1.8. [Language of first-order session types]
Let STy, denote the set of closed guarded terms,

STfO = {T c LSTfo | ng}

We refer to the elements in STy, as first-order session types. O

2.1. The session type language 21

Bool Bounded

Int Real Num Random

Figure 2.5: A sub-type relation on a set of basic types BT; the arrow represents the relation < (see
Example |2.1.10)).

First-order session types afford the following properties.
Proposition 2.1.9. Let 7 be a session type,

a) the depth of T is finite

b) the unfolding of T is a session type

Proof. The first point follows from the definition of STy, and Definition 2.1.7] To prove the second
point, we have to show that UNF(T) is closed and guarded. The proof is by induction on depth(T).
It relies on the fact that each step of unfolding replaces one variable with a closed and guarded term:;

hence the overall unfolding is closed. O

2.1.1 Sub-typing

There are three sources for the sub-typing relation over types. The first is some predefined pre-order
over the base types, t1 <p ta, which intuitively says that all data-values of type t; may be safely used
where values of t, are expected.

Example 2.1.10. An example of sub-typing on base types is given in Figure for the ensuing set
of types, BT = { Bounded, Bool, Int,Real, Num, Random }. In the figure the pre-order =<, is depicted by

the arrows; for instance, the arrow from type Int to type Real means that Int <}, Real. O

More generally, if [t] denotes the set of values of the base type t then we can define < by letting
t1 <b tz2 whenever [t;] C [ta]. The other sources for the sub-typing are two constructs of the
language: the branch construct allows sub-typing by extending the set of labels involved, while in the

choice construct the set of labels may be restricted. We give two examples.

Example 2.1.11. [Sub-typing on branch types |
In this example we explain how the sub-typing relates the branch types. Consider the type

BARTENDER = &(espresso: T)

Intuitively, the BARTENDER offers only the label espresso, thus all the customers satisfied by BARTENDER,
are satisfied by any other type that offers at least the label espresso. Let

ITALIANBARTENDER =& (espresso: T},
deka: Ty,
double — deka — restr: T4,

double — espresso: T})

22 Chapter 2. First-order languages

Following the intuition, The ITALIANBARTENDER will satisfy all the customers satisfied by the BARTENDER;
this is formalised by the sub-typing, which relates the two types as follows

BARTENDER =<t ITALIANBARTENDER

as long as also the continuations 7} and 77 are related as well (ie. T1 <spt 7).
We have shown that, intuitively, it is safe to replace a branch type with a branch type that offers

more labels. O

Example 2.1.12. [Sub-typing on choice types]
In this example we show how the sub-typing relate the choice types. Let ITALIANCUSTOMER describe

the different coffees that a process may want to order when interacting with a bar tender.

ITALIANCUSTOMER = & (espresso: T},
deka: Ty,
double — deka — restr: T3,

double — espresso: Ty)

All the bar tenders that are able to satisfy this range of choices, have to offer at least the four labels

that appear in ITALIANCUSTOMER. Now consider the type
CUSTOMER = &(espresso: 1})

Since CUSTOMER. chooses among fewer options than ITALIANCUSTOMER, it is safe to use a channel
at type CUSTOMER in place of a channel at type ITALIANCUSTOMER. This is formalised by the

sub-typing relation as follows,
ITALIANCUSTOMER =<spt CUSTOMER

In this example we have shown that, intuitively, it is safe to replace a choice type, with a choice

type that chooses among fewer labels. O

Moreover, we will have the standard co-variance/contra-variance of input/output types [Pierce and
Sangiorgi, [1996], extended to both the branch and choice constructs.
Because of the recursive nature of our collection of types, the formal definition of the sub-typing

relation is given co-inductively.

Definition 2.1.13. [First-order sub-typing |

Let F<e: P(ST?) — P(ST?) be the rule functional given by the inference rules in Figure

IfXCF <o (X), then we say that X is a first-order type simulation. Lemma and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F S (X); we call

this solution the first-order sub-typing relation, and we denote it <% . That is <, = vX.F <§?>t(X).
O

Figure contains a schema of inference rules rather than a set of finite inference rules. This
because the premises of the rules [R-BRANCH| and [R-CHOICE| depend on the cardinality of two sets,
respectively I and J. The schema gives rise to an infinite amount of inference rules. An infinite
set of inference rules gives rise to a rule functional as a finite set of rules does. The details of the

construction are explained in [Sangiorgi, 2012, Chapter 2].

Example 2.1.14. [Side conditions on depth of terms |
In this example we explain why rule [R-UNFOLD| in Figure has the side condition depth(S1) +

2.1. The session type language 23

[A-END]

END <P END

S <8 S
2187 <8, 2 2]; S5

t1 <b to; [R-IN]

/ fo /
1 Ssbt 92

to <p T1s [R-OUT]
a8 <o [E2]s Sy~

SE=Be St ... Sh<RSh
&(1y 08t il s SEY <P & (10821, 52)

m < n; [R-BRANCH]

1 _fo 2 1 fo 2
Sl -\<sbt Sl Sn —\<sbt Sn

T — > o+ 1 < m; [R-CHOICE]
B(11:87, .l 1 S5) S ®(11: 57, ..., 1,0 S,)

UNF(S1) <, UNF(S2)
S1 =8 S

depth(S1) + depth(S2) > 0; [R-UNFOLD]

Figure 2.6: Inference rules for the rule functional F S

depth(S2) > 0. Intuitively, the side condition ensures that the rules cannot be applied vacuously, that
is to terms that equal their unfoldings.

Let S; = ![Int];END and S = ?[Bool]; END, and let <p.q be the relation defined as ;<‘;‘§,t, but
without the side condition in rule [R-UNFOLD]. We prove that the bad sub-typing =<p.q relates S;
to S3. We have to show a prefixed point of F=b¢ that contains the pair (S, Sa); let R= { (S1, S2) }.
To prove that R C F~»¢(R) we need to show just that (Si, S3) € F~¢(R). This follows form the
equalities UNF(S1) = S1, UNF(S2) = S3, and an application of rule [R-UNFOLD]:

UNF(S1) <bad UNF(S3)
51 <bad 52

Note that thanks to the side condition depth(S1) + depth(S2) > 0 we cannot prove S; < S5. O

The requirement that session types be guarded is crucial for the first-order sub-typing relation to

be well-defined. We explain this fact in the next example.

Example 2.1.15. [Sub-typing and guardedness |

In this example we show why the guardedness of terms is required in the definition of session types.
Consider again the term T = &(1 : pX.X) of Example Suppose we wanted to check
whether 7' <, &(1:9) for some term S. The definition of < requires us to check whether

Nsbt
UNF(uX. X) s unr(9)
This check, though, can not be done because UNF(uX. X) is not defined at all (and UNF(S) may not
be defined either). O
The co-inductive type simulations are closed with respect to unfolding.

Lemma 2.1.16. [<, and unfolding |
For every co-inductive type simulation R, and every S,T € STy, if S R T then UNF(T') R UNF(T).

Proof. Let S R T. The argument depends on the depths of S and T. If depth(S) + depth(T) = 0,
then UNF(S) = S and UNF(T') = T, so the assumption S R T implies UNF(S) R UNF(T). If depth(S)+
depth(T) > 0, then recall that by hypothesis R C F¥%(R). It follows that (S, T) € F~#(R). The

24 Chapter 2. First-order languages

assumption on the depths of the types at hand ensures that the only way to prove (S, T') € F {&(R)
is an application of rule [R-UNFOLD],

UNF(S) st UNE(T)
S<b.T

Nsbt

depth(S) + depth(T) > 0; [R-UNFOLD]

It follows that UNF(S) R UNF(T). O
Proposition 2.1.17. The relation di‘t’)t is a pre-order on STy,.
Proof. See |Gay and Hole| |2005]. O

In |Gay and Hole, [2005] the set of types STy, are used to give a typing system for the pi calculus,
and appropriate Type Safety and Type Preservation theorems are proved.

In Chapter@ our aim will be to find a pre-order isomorphic to <, which is based on the semantics
of terms rather than their syntax. In particular, as session types are meant to be protocol descriptions,
a natural decision is to try to map session types into cCs without 7’s, and use the operational semantics
of this language to define a fully abstract model for < . We will achieve this result in Theorem m

In the next two sections we introduce respectively, an infinitary version of ccs without 7’s; and
then a language that lets us focus on a sub-LTS of the general one given by CCS,,, and interpret

session types via a bijection.

2.2 Processes

In this section we define an LTS of processes by means of a language and its operational semantics.
The language is an infinitary version of CCSy,,, and the operational semantics of the terms is specified
by standard inference rules.

Let Act be a set of actions, ranged over by «,3,7,... and let 7, v' be two distinct actions not
in Act; the first will denote internal unobservable activity while the second will be used to report the
success of an experiment. To emphasise their distinctness we use Act, , to denote the set ActU{ 7, v' },
Act, to denote the set Act U {7}, and Act, to denote the set Act U { v }. We assume Act has an
idempotent complementation function, with @ being the complement to «.

We let a to range over Act,, a, range over Act,, and p range over Act, .

Labelled Transition System A labelled transition system, LTS, consists of a triple
< P, Act, ,, — >

where P is a set of processes and — C P x Act,, X P is a transition relation between processes
decorated with labels drawn from the set Act, .. We use the infix notation p LN g in place of (p, i, q) €
—>. An LTS is finite-branching if for all p € P and for all u € Act, ,, the set {q | p LN q } is finite.
In this thesis we will not assume that all LTSs are finite-branching.

We use standard notation for operations in LTSs. For example Act} ,, ranged over by ¢, denotes the
set of finite sequences of actions from the set Act, ., and for any t € Act; , we let p N q be the obvious
generalisation of the single transition relations to sequences. For an infinite sequence u € Act;", of the
form popts . .. we write p — to mean that there is an infinite sequence of actions p -~ p, - p1
The relation — is lifted to the weak case in the standard manner, using a function which projects a
sequence t € Act} , into a sequence (thr € Act”,, by ignoring all occurrences of 7. Then for s € Act”,
we write p == ¢ if p LN q for some t € Act} , such that s = (t)\,. Similarly for u € Acty we
write p == to mean p Y for some t € Act®, such that for every finite prefix w,, of u there exists

some prefix 3, of ¢ such that (tx)\; = tp.

2.8. Session Contracts 25

p,q, T = Processes
1 Succesful process
A Definitional constant
a.p Prefix
pllq Parallel composition

Eiel p; FExternal choice
@jeJ pi Internal choice

where o € Act, I, J are countable index sets, with J # (. A, B,C,... range over a set of definitional
constants each of which has an associated definition A % PA-

Figure 2.7: Syntax of infinitary CCSy,.

Language and semantics To describe LTSs we use an infinitary version of CCS without 7s, |De Nicgla

and Hennessy, [1987], augmented with a success operator, 1.
Definition 2.2.1. Let CCS,,; be the set of terms defined by the grammar in Figure O

We use 0 to denote the empty external sum » .4 p;, and py + po for the binary sum Eie{ 1,2} Pi-
Similarly the binary internal sum €, (1,2} Pi will be rendered as p; @ po.

Each term in the language CCS,,, denotes an LTS; the easiest way to describe this interpretation
is to define one overarching LTS, whose states are the terms in CCSy,, and where the relations p 5y
are the least ones determined by the (standard) rules in Figure Note the side condition in rule
[P-SYNCH]; when reasoning on processes, we assume the relation 1 to be given by the co-action
function: a < @.

In the next chapters we will need the following concepts.

Definition 2.2.2. [Computation |

For every process r and p a sequence of reductions
T T
rllp—ri||p1—r2||p2— ...

is called a computation of r || p and each derivative r; || p; is a state of the computation. O

Definition 2.2.3. [Convergent]
We write p | whenever there exists a k € N such that if p — p/, then n < k. If p |l then we say
that p converges. O

2.3 Session Contracts

In Section [2:2] we have define a general LTS given by the terms of CCSy,, and their operational
semantics.
Here we turn our attention to a sub-LTS of { CCSy,,, Act, ,, —>), that is denoted by the terms of

yet another language, the language of session contracts. In this section we assume Act to be the set
{7, |beBT} U {17,1! |1€L}

The syntax for the language Lsc,, is given in Figure 2.9} The language Lsc,, is not a sublanguage
of CCSy,~, because of recursion; the term px.a.x is not in CCSy,,. Despite this apparent difference,

it will become evident that the LTSs denoted by the two languages are related. For instance we will

26 Chapter 2. First-order languages

[A-Oxk] ——— [A-PRrE]

1—0 ap—p
——— [A-IN-L] ———— [A-IN-R]
pHqg—0p p®qg—4q

W N
% [R-EXT-L] % [R-EXT-R]
ptq—7p ptq—dq

Ty Ty

pT—pl [R-IN-L] qr—q/ [R-IN-R]
p+q—p +t4q p+tq—p+gq

H /
pa 4
———— A= p4; [R-CoNsT]
A—yp

H / H ’
B B
% [P-LEFT] % [P-RIGHT]

qllp—4q"llp qallp—qll?
o / B /
q—q p——Dp

allp—4d |

a1 3; [P-SYNCH]

Figure 2.8: The operational semantics of CCSy,,

see that the process A 4 0.4 @ a.A has the same operational semantics of uz. a.z. To our aims the
construct pz. is not necerray; nevertheless, we introduce it to render as straightforward as possible
the encoding of session types into session contracts.

As of now, we still have to formally define the language of session contracts. To do so, we make
sure that session contracts can be unfolded.

Recursive definitions are handled in much the same way as we did for session types, and so we
do not spell out all the details; we assume a definition of capture-avoiding substitution s. We define
the functions depth and UNF as in Section but using the inference rules on closed terms of Lsc,,
instead of Lst,, .

Once again, one can prove the following lemma.

Lemma 2.3.1. For every closed o € Lsc,,, depth(o) € N if and only UNF(¢) = ¢’ for some o”.

p,0 = First-order session contracts
1 Satisfied contract
t.0 Input
lt.o Output

> icrli.op Esternal sum

P, 1i.0s Internal sum

€T Session contract variable
px.o Recursive session contract

Where [is not empty, and ¢ # j implies that 1; # 1.

Figure 2.9: Grammar for first-order session contracts

2.8. Session Contracts 27

= [A-UNF]
pxr.c — o {**/.}

Figure 2.10: Operational semantics of recursive session contracts

Proof. Analogous to the proof of Lemma [2.1.4 O

We extend to the closed terms of Lsc, also the definition of the predicate gd; for instance the

term px. a.px. x is not guarded.

Definition 2.3.2. [Language of session contracts |

Let SCt, = {0 € Lsc,, | ogd}. We refer to the terms in the set SCy, as session contracts. O

Thanks to the requirement that the ¢’s be guarded, one can prove that for every o € SCy,, o |} .

Note that in session contracts
e external choices are restricted to inputs on labels
e internal choices are restricted to outputs on labels

Note also that 0 is not a session contract. Instead we have chosen 1 to be the base contract, for
reasons which will become apparent.

The operational semantics of session contracts is given by the rules in Figure 2.8 with the additional
rule for recursive terms given in Figure [2.10)

Also, we instantiate the relation > of rule [P-SYNCH] to <., with <. determined by

a=7,8=1 b <pb

a=, 8= b=<yb
a . 3 whenever

a=7,8=1

a=11,8="1

Using the basic sub-typing relation depicted in Figure the following examples should be clear:

1. ?Num >.!Int: a contract that can read a datum of type Num can read a datum of type Int

because Int <y Num.

2. ?Int B4 !Num: conversely a contract ready to read a datum of type Int cannot read a datum of

type Num because Num =, Int.

3. 7Random 1<.!Bool: as in point (i), Bool =}, Random hence an interaction between the ac-

tions 7Random and!Bool can take place.

In view of the definition of Act and of the previous example we also introduce a way to compare

sets of action, that mirrors the impact of <y on ..
Definition 2.3.3. Let A and B be subset of Act; we write A Crs B whenever for every ay € A and
every 3 such that 8 <. a4 there exists some action ag € B such that 8. ap also. O
Example 2.3.4. In this example we show how the Cgq relates sets of actions. It turns out that ACys B
whenever the following conditions are true,

e !1 € Aimplies !1 € B for every 1 € L

e 71 € A implies 71 € B for every 1 € L

28 Chapter 2. First-order languages

e by € A implies by € B for some type bg such that bg <, ba
e by € Aimplies 'bp € B for some type bpg such that bs <y, bp O
We recall some examples of session contracts from the literature.

Example 2.3.5. [e-vote, [Barbanera and de’Liguoro, 2010} Laneve and Padovanil 2008| |

Ballot = puz.?Login.(!Wrong.z & !0k.(?VoteA.z + ?VoteB.x))

Voter = px.!Login.(?Wrong.x + ?0k.(!VoteA.1 @ !VoteB.1))

The session contract Ballot describes a service for e-voting. Such a service lets a client log in. If the
log in fails the services starts anew, while if the log in succeeds the two actions are offered to the
environment, namely VoteA and VoteB.

The contract Voter is a recursive client for the protocol described by the contract Ballot. O

Example 2.3.6. [e-commerce, [Bernardi et al.l 200§]

Customer = IRequest.(!PayDebit.p’ @
IPayCredit.p’ @
IPayCash.1)
o = ILong.?Bool.1
Bank = pz.?Request.(?PayCredit.?Long.!Bool.z +

?PayDebit.?”Long.!Bool.z +
?PayCash.z)

The session contracts above describe the conversation that should take place between a client
(described by the session contract Customer) and a bank (described by the session contract Bank)
involved in an on-line payment. The conversation unfolds as follows: the Customer sends a request
to the bank and afterwards it chooses the payment method; the choice is taken by an internal sum
and this means that the decision of the Customer is independent from the environment (i.e., the Bank
contract). If the Customer decides to pay by cash then no other action has to be taken; while if the
payment is done by debit or credit card the Customer has to send the card number, this is represented
by the output !Long. After the card number has been received the Bank answers with a boolean.
Intuitively, this represents the fact that the bank can approve or reject the payment. The Customer

protocol finishes after such boolean has been received, while the Bank starts anew. O

Session contracts, due to the their restrictive syntax, enjoy some properties that are fundamental

to prove the results of Section [3.3] and Chapter [} We prove these properties.
Lemma 2.3.7. Let o be a contract.

(i) If o 7TL> then UNF(o) = o

(ii) o == uNF(0)

Proof. Property (i) is proved by structural induction on o;

We prove point (ii); the argument is by induction on depth(c). If depth(c) = 0 then from the
definition of depth it follows that o # px.o’; by definition of UNF then UNF(o) = o. The reflexivity
of == implies 0 == UNF(0).

If depth(o) > 1 then, due to the definition of depth, o = pxz.o’. The definition of UNF implies
that UNF(o) = UNF(o’ {7/, }), while the definition of depth implies depth(c) = 1+ depth(c’{/+ }) ,

2.8. Session Contracts 29

and therefore depth(o’ {7/, }) is smaller than depth(c). We are now allowed to use the inductive
hypothesis on ¢’ {7/, }:
o' {7z} = uNE(0' {7/a})

We use rule [A-UNF] (see Figure [2.10) to infer ¢ — ¢’ {7/, }, and then the transitivity of == to
obtain
o= UNF(o' {7/, })

We already know that UNF(o) = UNF(o’ {7/, }), and, by applying this equality to the reduction
sequence above, we get

-
0 = UNF(0)

This concludes the proof. O

A statement weaker than the converse of point of Lemma is true.

Lemma 2.3.8. For every o € SCy,, if 0 — 6. Let k = depth(o). If n > k then o}, = UNF(0), where
k —k
the reduction sequence above is 0 — o}, P

Proof. We reason by induction on k.
Base case (k=0) If k=0 then o has not top-most u, so UNF(o) = o, and indeed oy = 0.

Inductive case (k = k' +1) In this case ¢ = pax. o’ for some variable z and ¢’, and ¢ — o Ty
6. The only way to derive 0 — oy is by applying [A-UNF], so 01 = o’ {?/,}. The definition
of depth() ensures that depth(oy) = k'. Since oy T 6,and n > k ensures n — 1 > k — 1, the
inductive hypothesis implies that o; L>k71 UNF(01) %nik 6. Since the definition of UNF implies
that UNF(o) = UNF(0y), it follows that It follows that the original reduction sequence is o 7,k

n—

UNF(0) — 6. O

Lemma 2.3.9. Let o be a session contract. Then
(i) o 4 if and onlyif o =1
(ii) o =>—Y+ if and only if UNF(0) = 1

Proof. Part (i) follows from the restrictive syntax of session contract. The proof of part (ii) requires
two arguments. The if side, UNF(¢) = 1 implies o =Y is justified by part (ii) of Lemma
The only if side, o — implies UNF(o) = 1, can be proven by induction on the length of the

sequence =>; the base case being part (i) of this lemma. O
o v
Lemma 2.3.10. If 0 — then o /.

Interpreting session types into session contracts

Session contracts play a key role in giving a semantics to session types; this is true because session
contracts denote the LTS (SCs,, Act,,, —), and there is a straightforward way to map session types
into session contracts, and vice-versa. We define this interpretation, and prove its properties,

The next results will be crucial in Section[6.3] The interpretation of session types as contracts is ex-
pressed as a function from the language Lst,, in Sectionto the language Lsc,, in of Deﬁnitionm

The function is just a syntactic transformation.

30 Chapter 2. First-order languages

Let M : Lst,, — Lsc,, be defined by:

1 if S = END
It M(S) it S=1t];S
7. M(S) if S=7[t];S

M(S) = {3 i 1 M(S;) S =& (112 S1,.. ., 10 Si)
Dicpi'LiM(S:) S =8(11:51,...,10: Sp)
px. M(S") if S =pX. S

x ifS=X

It is easy to see that M maps session types, STg,, to session contracts, SCg,; indeed it defines a

bijection between these sets:
e for every o € SC, there exists some session type T such that M(T) = o
o if M(T1) = M(T3) then Ty =Tp

where 17 = T denotes syntactic identity. Further, substitution is preserved by M.

The next two lemmas will be crucial in Section 6.3l

Lemma 2.3.11. Let S,T € STg,. Then M(S{T/x }) = (M(S)) { M/ rq(x) }
Proof. The proof is by structural induction on S. O
The interpretation also commutes with the two functions depth(—) and UNF(—):
Lemma 2.3.12. For every T € STg, and o € SCy, the ensuing properties are true,

(i) depth(T) = depth(M(T))

(ii) UNF(M(T)) = M(UNF(T))

(iii) UNF(M (o)) =T if and only if UNF(o) = M(T)

Proof. The proofs of the first two points are by induction on depth(T); we prove point using
point and Lemma [2.3.11} The third point follows immediately from point . O

The interpretation M allows us to assign indirectly an LTS to session types; this deserves further
explanation. One may wonder why we have not assigned directly an LTS to session types, defining
it from scratches. The reason is that we do not wish to reason on a completely arbitrary LTS; we
want to carry out our reasoning on (minor variations of) the standard LTS of CCS without 7s, so as
to embed session types into its well known theory, rather than developing a new behavioural theory

from scratches.

2.4 Related Work

All the material we presented in this chapter is fairly standard and an account of it is given in

Chapter

Chapter 3

Client and peer satisfaction

One major concern is that the software systems we use be, in some sense, correct. In particular, we
would like that clients we use be satisfied by servers; and that the peers be all satisfied.

A priori, there are many ways to define satisfaction, and it is not clear which one to pick. However,
since the feature of software we are concerned with is communication, the notions of satisfaction that
we will employ involve the interactions that take place in software systems.

The action v in the LTS of processes turns out to be a key ingredient of our formalism. Intuitively,

we think that if some process p can perform v/, p L>, then p is satisfied.

In this chapter we introduce two relations for satisfaction, which now we discuss informally.

To test software is common practice. In our framework, we can test a process p by running it in
parallel with a test r, and letting them interact as they wish. The test is passed if eventually it reaches
a state that reports success, that is some r’ —/>, regardless of the particular communication pattern
that take place between p and r. These intuitions are behind the well-known testing theory [De Nicola
and Hennessyy, [1984].

The testing theory, falls smoothly in a more general client/server setting. The tests are clients,
and a client r is satisfied by a server p if p must pass r. This mirrors the intuition behind client/server
systems, for the satisfaction is biased towards the client.

Software testing is a routine, but it is not the reason why we develop and use software. We neither
use a web browser to test web servers, nor share files with our colleagues to ensure that they can
access them. In daily practice, if we let a client r interact with a server p, our main concern is not
the ability of r to always report success; rather that the requests of r be answered by p. The idea
of satisfaction used in testing theory is not sensible in the framework we just described, and an an
alternative definition of satisfaction is in order.

In the new client/server setting, it is sensible to deem r satisfied by p if
a) whenever r may require an interaction to go on computing, the server p will pay attention to ;

b) if r requires an interaction to go on, and p cannot answer to any request of r, then r has to be

satisfied already

This notion of satisfaction is much more involved than the idea of passing a test, but, as we have
discussed, it mirrors better the daily practice of using software. For instance, if our web browser sends
to a web-server the request of a page, and the server does not reply, then neither the web-client nor
we are satisfied. If we have a copy of that page, though, we already satisfied, and it does not matter
that the server did not answer to the request of the client.

The two criteria for satisfaction that we described are formally described by the following relations,

MUST, = (3.1)

31

32 Chapter 3. Client and peer satisfaction

One is the well-known MUST testing relation |[De Nicola and Hennessy, [1984], and the other is a
compliance relation |[Castagna et al., 2009; Laneve and Padovanil [2007; [Padovani, 2010]. They are
relations between processes, but their definitions apply equally well to session contracts, so we will

abuse the notation and write statements such as p MUST o, or p 4 0.

Structure of the chapter. In Section we formally define the MUST testing, and its symmetric
version for peers. We also prove the properties of these relations that we will need in the oncoming
chapters. Similarly, in Section we introduce formally the compliance relation, its symmetric
version, and we prove their properties. We conclude Section by exposing the differences between
the relations MUST and . In the last section of the chapter, Section [3:3] we prove that in the
sub-LTS of session contracts, the must testing and the compliance relation can be characterised in a

syntax-oriented way.

3.1 Must testing

To formally define the MUST testing, we need some ancillary terminology. Recall the notion of com-
putation of a composition r || p. We say that a state r || p is client-successful if r L), and if a
computation contains a client-successful state, then we say that the computation is client-successful.
If a computation is client-successful, and it contains also a state r || p in which p 4, then we say
that computation is successful.

A computation of r || p, say
T T T T T
rllp=rollpo—=rillp —r2llp2 —=rsllps —— ...

is mazimal if one of the following conditions is true,
e the computation is infinite
e the computation is finite, and it cannot be extended

-
The last conditions above means that there exists some n € N such that r, || p, -

We are ready to define the MUST testing.

Definition 3.1.1. [MUST testing |
For all processes r,p we write p MUST r if and only if all the maximal computations of r || p are

client-successful. We refer to the relation denoted by MUST as the MUST testing. O
Note that in the above definition r can be thought of as a client, while p can be thought of as a server.

Example 3.1.2. For every server p, all the maximal computations of
1+a.0]lp

are client-successful because in the first state reports success 1 + .0 4, so p MUST 1 4+ «. 0.
Consider the processes A = a.4 and B = @.B. No computation of A || B is client-successful,
because A cannot perform v'; it follows that B MusT A.

The same argument lets us prove that for every p, p MUST 0 and p MUST 7°°. O

The definition of MUST requires maximal computations to be client-successful; that is only clients
are required to reach successful states; this asymmetry is what lets us think of tests as client.

To reason on the satisfaction of peers, we focus on the symmetric version of the MUST testing.

Definition 3.1.3. [Peer MUST testing]

We write p MUST™ 7 if and only if all the maximal computations of p || r are successful. O

3.1. Must testing 33

If < is not symmetric, then MUST" is not a symmetric relation.

Example 3.1.4. If < is not symmetric, then the relation pop is not symmetric. Suppose that a < 3,

and that 8 p4 a. Plainly, 8.1 MUST™ «.1, because all the maximal computation of a.1 || 8.1 are

p
successful. However, . 1 MUST™ .1, because 8.1 || a.1 -4, and none of the processes is successful.
O

The following statement is true.
Lemma 3.1.5. If 1 is symmetric then the relation MUST™" is symmetric.

In the remaining part of the section, we discuss only the MUST testing and prove some of its
properties; analogous properties of MUST™® follow in a straightforward way.

We will need three properties of the MUST testing relation.
Lemma 3.1.6. For every r,p € CCSy, if p J§ and p MUST r, then r .

Proof. Let us pick a p such that p |/ ; for instance 7°°. Since p | , the process p engages in an infinite

sequence of 7’s, and there exists the maximal computation
rllpo—=rllpr =71 |lpe —>r|lps ...

Since p MUST 7, the computation above is client-successful; as the only state in the client side of the

computation is r, it follows that r <. O

Lemma 3.1.7. Let p,r € CCSy,. If every maximal computation of r || p contains a state r; || p; such

that p; MUST r;, then p MUST r.

Proof. Fix a maximal computation C' of r || p; by hypothesis C contains a state r; || p; such
that p; MusT r;. The suffix of C after r; || p; is a maximal computation of r; || p;, thus Defini-
tion ensures that in the suffix there exists a client-successful state r’ || p’. This implies that C
is client-successful. As the only assumption on C' is its being maximal, we apply the argument to
every maximal computation of r || p, thereby proving that every maximal computation of r || p is

client-successful. This means that p MUST r. O

Corollary 3.1.8. For everyr,p € CCSyy, p MUST 1 if and only if every mazimal computation of r || p

contains a state r' || p' such that p" MUST 7/,

Proof. If p MUST r then every computation contains a state r’ || p’ such that p’ MUST 7/, namely r || p
itself. If every maximal computation of r || p contains a state r’ || p’ such that p’ MUST 7/, then
Lemma [3:1.7 ensures that p MUST r. O

Every maximal computation of two session contracts p || o contains the unfolding of these terms.

This lets us prove that the relation MUST is closed with respect to unfolding.

Lemma 3.1.9. Let o and p be session contracts. ¢ MUST p if and only if UNF(0) MUST UNF(p).
Proof. We have to prove two implications, namely

a) if o MUST p then UNF(o) MUST UNF(p)

b) if UNF(0) MUST UNF(p) then o MUST p

We prove the first implication. Suppose that o MUST p and fix a maximal computation of UNF(p) ||
UNF(0); we have to prove that the computing at hand contains a state in which the derivative of UNF(p)

is successful.

34 Chapter 3. Client and peer satisfaction

Append the maximal computation of UNF(p) || UNF(o) to the computation
o1l & = UNE(p) || UNF(2)

We know that this computation exists in view of the rules [A-UNFOLD], [P-LEFT], and [P-RIGHT]. We
can prove that in the computation above, which is due to the unfoldings of the contracts, no state can
be successful. Since by assumption o MUST p a state in the computation of UNF(o) || UNF(p) must be
successful.

Now we prove the second implication. Suppose that UNF(o) MUST UNF(p). Fix a maximal com-
putation of p || o; since the computation is maximal it has length at least depth(c) + depth(p), for
otherwise it can be extended by unfolding one of the contracts. Lemma [2.3.8] applied twice implies
that implies the maximal computation contains the state UNF(p) || UNF(0).

It follows that every maximal computation contains the state UNF(p) || UNF(o); the assumption
that UNF(o) MUST UNF(p), and Lemma ensure that o MUST p. O

3.2 Compliance relation

In this section we introduce the compliance relation. Our definition is a variation on that proposed

in [Laneve and Padovani, [2007].

Definition 3.2.1. [Compliance relation]
Let F7: P(CCS%.) — P(CCSZ.) be the rule functional defined so that (r, p) € F(R) whenever

the following conditions hold:

(a) if r § thenpl

(b) if7“||p7l>thenri>

(c) if r || p —>7"|| p' then ' R p’

If X € FY(X), then we say that X is a co-inductive compliance relation. Lemma |C.0.18] and the
Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X = F7(X); we
call this solution the compliance relation, and we denote it 4. That is 4 = vX.F (X). Ifr-dpwe

say that the process r complies with the process p. O

There is an asymmetry in the relation » 4 p. The intention is that any client process r when

interacting with a server process p will be satisfied, if

e if the client may need to interact with the server to go on computing , 7 |} , then the server will

try to interact with r, p |
e if the interaction gets stuck, the client is in a state in which it is satisfied, r <
e the interaction between client and server will go on indefinitely

The first property above, which is due to condition @, is conservative; in the following sense. Consider
the client 1 & 1 and the server 7°°. More in general, it is not clear whether 1 & 1 is satisfied or not

by the server 7°°. Consider the infinite computation due to the divergence of 7°°,
1ol 1ol -1l ...

The client 1 @ 1 can reach a successful state on its own, but in the computation above this never
happens; nor the computation can be extended to make it happen. Condition @ establishes if a

client r by interacting with a server p ends up in an unclear situation as the one sketched, then r is

3.2. Compliance relation 35

not satisfied. For instance, 1 & 1 A 7°°, because 1 @ 1 |} , whereas 7> |{ . Since 1 || and 7 } |
1 7 7°°. This shows how conservative is condition (b)) of Definition According to H, a stable

client r is not satisfied by a server p unless p will surely let the client perform some action.

Example 3.2.2. [Compliance and divergent terms]

In this example we show some instances of how divergent terms are related by the compliance relation.
For every process p, 7°° - p; to see why this is true, note that the following relation is a co-inductive
compliance,

R={(>0) | p=17"}

Now we prove that 7° + «.0 A 7>° + @.0; the reason for this is the following computation

7 4 .07 + @0 -"501]0 oA

v
The state 0 || 0 is stable and 0 -4+, so 0 A 0. Point of Definition [3.2.1| implies that

7° 4+ a.0 A7 + @.0

Example 3.2.3. [Clients and v action |
According to our definition of compliance, the client need not ever perform v'. We have shown

an instance of this in Example 7% 4 7°°. This phenomenon, though, does not depend on

the divergence of the client. For example, Let A © 4.4 and B E @.B, and consider the set

R={(A, B)}. The relation R is a co-inductive compliance relation, and the client process, A, does

not perform v at all. O

Intuitively, 0 represents a non satisfied client; formally this is the case because 0 # p for every
process p. The process 1 is satisfied by all the servers that converges, and the process 7 is always

satisfied, for it does not need any server to carry on its computation.

Lemma 3.2.4. For every p € CCS,,,, the following statements are true,
i) 0Ap
ii) if p then1-p
iii) 7 dp
Proof. The first fact is true if p §f . If p | the p reduces to some stable p’, so 0 || p =0 || p’ />, and

v
0 —4». The second fact is true because 1 cannot interact with p, and all the states reached by 1 || p
are client-successful, so the following relation is a co-inductive compliance, R={ (1, p') | p = p' }.
The third fact is proven in Example O]

Example 3.2.5. Referring to Example it is routine work to check that the relation in Figure|3.1

is a co-inductive compliance. O
The following properties of the compliance relation will be useful later in the thesis.

Lemma 3.2.6. Let R be a co-inductive compliance such that » R p. If r || p —" ¢/ || p’ for some
n €N, then ' R p’

Proof. The proof is by induction on n.

Base case. In this case n =0, so 7’ || p’ = r || p. The hypothesis r R p ensures that ' R p’.

36 Chapter 3. Client and peer satisfaction

R = {(Voter, Ballot),

(?Wrong.Voter 4 70k.(!VoteA.1 & VoteB. 1),

Wrong.Ballot @ !0k.(?VoteA.Ballot + ?VoteB.Ballot)),
(?70k.(!VoteA.1 @ !VoteB. 1), !0k.(?VoteA.Ballot + ?VoteB.Ballot),
('WoteA.1 @ WoteB. 1, ?VoteA.Ballot + ?VoteB.Ballot),
(IVoteA.1,?VoteA.Ballot + ?VoteB.Ballot),

(IVoteB. 1, ?VoteA.Ballot + ?VoteB.Ballot),
(1, Ballot)}

Figure 3.1: A co-inductive compliance R; see Example [3.2.5]

Inductive case. In this case n = m+1 for some m € N, and the reduction sequence r || p—="1" || p’
can be split as follows,

rllp =" [9" —me |y

The hypothesis that R is co-inductive compliance, and point (i) of Definition imply that " R p”.
Since " || p"” ™ ¢’ || p’ and m is smaller than n, we are allowed to use the inductive hypothesis
which implies that 7' R p'. O

Corollary 3.2.7. Ifr4p and r||p=1"|| p/, then v’ 4 p'.

Lemma 3.2.8. Let r1,79,p1, and ps be processes. The following statements hold,
(i) if r 4 py, r 4 po then r 4p; & po
(ii) if ry 4p, 7o Ap then ry & ro 4p

Proof. As an example we outline the proof of (i). Let R be the relation defined by
R={(r,p) | rdporp=p1 © px wherer +p; and r 4 p, }

It is straightforward to show that R is a compliance relation, from which the result follows. O]
The next two propositions show that we can reason up-to unfolding on the compliance relation.

Corollary 3.2.9. For every co-inductive compliance R, and p,o € SCy,, if p R o then p R UNF(o)
and UNF(p) R o.

Proof. Both facts follow in a straightforward manner from point of Lemma and point of
Definition 3211 [

The converse is also true:
Proposition 3.2.10. For all session contracts p, o, we have the following

(a) if p HUNF(o) then p o
(b) if UNF(p) 4o then pd o

Proof. Let us look at the proof of (a). Let R={(p, o) | p 1o or p 4 UNF(0) }. The result will follow

if we can prove that R is a co-inductive compliance relation, as given in Definition [3.2.1

(i) Suppose p || o 7; If p 4 o then by definition r 5. Otherwise

p - UNF(0)

3.2. Compliance relation 37

Note that ¢ -4+ and therefore by Lemma it follows that UNF(o) = o, which means, since
now p-o,r .

(ii) Suppose p || ¢ — p’ || o’. We have to show p’ R ¢’, which is obvious if p 4 . On the other hand
if p 4 UNF(o) there are three cases, depending on the inference of the action p || 0 — p' || 0. If
the action is due to a silent move of p, the result follows from point (d) of Definition [3.2.1] In the
other cases the result will follow by an application of Lemma of point of Definition

O

Definition 3.2.11. [Peer compliance relation |
Let Fg,,, : P(CCS2.) — P(CCS2,.) be the rule functional defined so that (r,p) € Fu,,, (R) whenever
both the following hold:

(i) »{ if and only p |
(ii) if7’||p7l>thenri>,pi>

(iii) if r || p — 7" || p’ then 7' R p

If X C Fr(X), then we say that X is a co-inductive peer compliance relation. Lemma
and the Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X =
ol (X); we call this solution the peer compliance relation, and we denote it —pop. That is dpop =
vX. F e (X).

If r 4pop p we say that the contract » mutually complies with the contract p. O

Example can be used to prove that if < is not symmetric then —pop is not symmetric either.

The following result is true.

Lemma 3.2.12. If < is symmetric, then the relation —pop is the greatest symmetric co-inductive

compliance relation.

3.2.1 Comparing satisfactions

A comparison between the MUST testing and the compliance relation is in order, at least to make sure
that we have indeed formalised different criteria for satisfactions.

First we remark a nuisance. When dealing with MUST, the servers are on the right-hand and the
clients appear on the left-hand side; so p MUST r means that p is a server and r a client. When
dealing with the compliance, the situation is the converse, if r 4 p, then p is the server, while r is the
client. So to compare the compliance and the testing one has to actually use the inverse of one of the
relations.

There are two differences between the criteria formalised respectively by MUST and by . The first

difference is how ever lasting computations are treated.

Example 3.2.13. [Ever lasting computations]

In this example we prove that 4 ¢ MUsT~!. Recall the process A and B from Example and
Example [3:233] In the first example we have proven that B MUST A, whereas in the second example
we have shown that A 4 B. O

The example above shows that the compliance relation does not require the testing process to ever
report success, provided that the communication between the processes can continue indefinitely. On
the contrary, for p MUST 7 requires that r reports success.

The second difference between MUST and - is what happens after a client has reached a successful
state. The subsequent computation is disregarded by MUST, whereas the compliance relation has to

hold for all the states in all computations.

38 Chapter 3. Client and peer satisfaction

Example 3.2.14. [Continuations after v]
In this example, following the intuition given above, we prove that MUST~'Z-. The two following

facts are true.
1) .0MUST 1 +@.0
2) 1+a@.0A4a.0

T v
Where 1) is true because 1 +a.0 L>, and 2) is true because 1 +@.0 || .0 — 0 || 0 -+ and 0 —>.

O
We have proven that the relations MUST ! and , in general are not comparable,

musT ! ¢ H, + ¢ musT !

1

If we restrict the LTS that we use, though, a relation between - and MUST ™' may arise. For

instance, let CCS?V“T be the language of processes that perform only finite action sequences.

Proposition 3.2.15. Let R be a co-inductive compliance relation on terms of CCSE,"T. If r R p then

D MUST 7.

Proof. We have to prove that, under the hypothesis that r R p, all the maximal computations of r || p

are client-successful. Fix a maximal computation C of r || p,
T T T
rllp=rollpo —rillpr —rallp2 — ...

Since r,p € CCSCV"T the computation must be finite, that is there exists a ry || px for some k € N such
T

that ry || pr -~. Since r = pg, condition of Definition implies that ry Y, Since there is

no particular assumption on C', the argument above can be applied to all the maximal computations

of r || p, thus p MUST r. O

3.3 Syntactic characterisations

Thus far we have presented the must testing and the compliance relation in the general within setting of
processes. We have mentioned session contracts only to show that we can reason on the relations MUST
and - up-to unfolding. In this section we focus completely on session contracts, and we prove that
in this setting the compliance relation and the must testing can be characterised looking only at the
syntax of the terms. Essentially, this is possible because the syntax of session contracts is restrictive

enough to capture the behavioural properties of session contracts.

3.3.1 Syntactic compliance

The restrictive syntax of session contracts let us give a syntactic characterisation of the compliance
relation and of the must testing relation. In this section we focus on the former characterisation, which
we prove in Lemma This characterisation relies on a co-inductive relation (Definition ,
that we define now.

Definition 3.3.1. [Syntactic compliance relation |

Let Fyligps : P(SC2) — P(SC2) be the rule functional given by the inference rules in Figure
If X C Fylops(X), then we say that X is a co-inductive syntactic compliance. Lemma and the
Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X = Fl« (X);

we call this solution the syntactic compliance, and we denote it 4°. That is 4° = vX.F o« (X). O

3.8. Syntactic characterisations 39

T 5 [A-UNIT]
p/ _{5 O./

— !

—————— « contains no labels [R-ALPHA]
a.p 4 ao

p1 PPor ... P; —° o;
ZiEI?li'pi _|S ®j€J!1j'Uj

J C 1,5 =|J|;[R-ExcH]

S

p1450'1 p;4 ag;
@ze]llipl —s ZjeJ?lj'Jj

I C J,i=|I|;[R-INCH]

UNF(p) -° UNF(0)
po

depth(p) + depth(o) > 0; [R-UNFOLD]

Figure 3.2: Inference rules for the rule functional F ;.

We briefly comment the definition above. The rule functional F\ ;. gives rise not only to a compliance
relation (by taking its greatest fixed point), but also to a MUST testing relation (by taking its least
fixed point). This justifies the use of both a subscript and a superscript.

A side condition is in [R-ALPHA], that requires a not to contain a label. This condition guarantees
that the rule functional F . is invertible (see chapter 21 of Pierce| [2002]). Intuitively, if there was

no such requirement, the rules defining the rule functional F./ .. would be ambiguous.
Example 3.3.2. In this example we show how the side condition
a contains no label [R-ALPHA]

resolves a possible ambiguity in the application of the rules defining F e
Let R= {(71.1,1.1),(1, 1)}. If rule [R-ALPHA] did not have the side conditions above, then we

would have two ways to prove that R is a co-inductive syntactic compliance:

[A-UNIT]
[R-ALPHA]

[A-UNIT]

1) 1) [R-ExcH]

(71.1,11.1) (71.1,11.1)
(a) (b)
The requirement on « in rule [R-ALPHA] ensures that the only way to prove that R is a co-inductive

syntactic compliance is by using the inference tree (b). O
The co-inductive syntactic compliances are closed with respect to unfolding.

Lemma 3.3.3. For every co-inductive syntactic compliance R, and p,o0 € SCq, if p R o then
UNF(p) R UNF(0).

Proof. The argument is similar to the proof of Lemma [2.1.16 O

Lemma 3.3.4. Let R be a co-inductive compliance on session contracts. The relation R is a co-

inductive syntactic compliance.

Proof. We have to prove that if R C F4(R), then R C Filors(R).
Fix a pair p R o; we are required to show that (p, o) € Fyl s« (R); this amounts in proving that
we can derive the pair (p, o) by instantiating one of the rules in Figure and using the pairs in R

as premises.

40

Chapter 3. Client and peer satisfaction

We first look at the depth of p and o. Suppose that depth(p) + depth(c) > 0. Corollary

implies that UNF(p) R UNF(c). The following derivation proves that (p, o) € Fyfteps(R),

UNF(p) —° UNF(0)
p1o

[R-UNFOLD]

Suppose now that depth(p) + depth(o) = 0. The argument proceeds by case analysis on p. Since

depth(p) = 0 the term p has no top-most p.

i)

ii)

iii)

If p = 1, then we have the derivation

P [A-UNIT]

Suppose that p = «.p’ with « containing no labels. We show that p =4° o by using rule [R-ALPHA];

we explain how.

v T
Plainly p —/, thus Definition [3.2.1| implies that p || ¢ —. Since p —£+, either p can interact

with o, or ¢ —.

-
As 0 = & -/ implies that p must interact with &, the restrictive syntax of session types implies
that & = @.c’. Thanks to the syntax of session contracts and to the assumption depth(c) = 0,
we can prove that o = 8.0”.

There exists the computation p || o0 = p’ || ¢/, thus Corollary ensures that p/ R o’

We can now instantiate [E-ALPHA] as follows,

/ _|s /
’0p_|7sz [R-ALPHA]

v
If p = > ;c;7i.pi, then p -/ We derive (p, o) by using rule [R-ExcH]. Consider the set

-
S={0" | o = ¢’ /> }. The syntax of session contracts ensures that the set S is non-empty,
and the syntax ensures that it is finite; so let S= {oy,...,0,}. Corollary ensures that that
p R oj, for every j € [1;n].

v
Fix a j € [1;n]; as p -/, Definition [3.2.1{implies that p || o; —. Since both p and o; are stable,

they must interact. Given the syntax of p, we know that p iy p’ for some i € I, that o; 2y 03
for some j € [1;n], and p' R 0. In view of the syntax of session contracts, it must be the case
that

o= !11.0;1 D ...D !1n.cr;-n
and n < [I|. Moreover for every k € [1;n] we have pr R o, .
Now we apply rule [R-EXCH]

p1Por ... pi 1% o},

o [R-EXCH]

iv) If p = @, ;!1;.p;, then the argument is similar to the one used in the previous case of this proof.

iel”

O

The converse of Lemma [3.3.4] is not true.

3.8. Syntactic characterisations 41

Example 3.3.5. We prove that a co-inductive syntactic compliance needs not be a co-inductive

compliance. First let

and then let
R={(p, 0),(1,1),(111.1, 0),(115.1, 0),(15.1, 0) }

We prove that R is a co-inductive syntactic compliance. Consider the following inference tree

[A-UNIT] [A-UNIT] [A-UNIT]
(!11.1, O') ('121, O') ('131, O')
() [R-INCH]

The tree above proves that R C puX.Fyleps (X), thus R C v X Files (X) = 45,
The relation R is not a co-inductive compliance. To prove this, we show a pair p R ¢ that does

not satisfy point () of Definition thatis p || o —= p' || ¢’ and p’ R o’.
We can infer the reduction p —=!15.1 ®!15.1, thus p || 0 —=!15.1 ®!15.1 || 0. Checking the
pairs in R, we see that 11,.1 ®!13.1 R o. O

Notwithstanding Example [3:3.5] we would like to prove that the syntactic compliance coincides with
the compliance relation (on session contracts). To prove this, we need two ancillary results; they show
that the problem exhibited in Example can be easily solved, and does not affect the relations =,

ie. the greatest co-inductive syntactic compliance.

Lemma 3.3.6. For every co-inductive syntactic compliance R, and p,o € SCq,, if p R o, then the

following implications are true
a) if p — p’ then the relation {(p’, @)} U R is a co-inductive syntactic compliance
b) if ¢ - ¢’ then the relation {(p, 0')} U R is a co-inductive syntactic compliance

Proof. The proofs of a) and b) are similar, so we discuss only a).
Let R' = {(p/,)} U R. We are required to prove the set inclusion R’ C Fy¢s(R). To this end,
we have to show that if p R’ & then we can use one of the rules in Figure to infer

FERE
using in the premises in elements of R’ itself.

Fix a pair p R’ 6. Either p R &, or p = p’ and 6 = o. In the first case we know that the derivation
we have to show exists; this is true because by hypothesis R C Fyliops(R).

Suppose that p = p’ and & = 0. The argument is by case analysis and depends on why p — p/;
the restrictive syntax of session contracts guarantees that the silent move can have been inferred by
applying one of the rules [A-UNF], [A-IN-L], [A-IN-R] (see Figure and Figure [2.8).

If the silent move is due to the axiom [A-UNF], then depth(p) > 0 and UNF(p) = UNF(p').
The hypothesis p R ¢ and Lemma imply that UNF(p) R UNF(o), thus UNF(p’) R UNF(o).
If depth(p') + depth(o) > 0 then we can instantiate [R-UNFOLD],

UNF(p') H° UNF(0)

o depth(p') + depth(c) > 0; [R-UNFOLD]

If depth(p’) + depth(c) = 0, then UNF(p’) = p’ and UNF(o) = o. The fact that UNF(p') R UNF(o)
implies that p’ R o, so the hypothesis R C Fy/l.(R) ensures that (o', o) € Fyfgrs(R).

42 Chapter 3. Client and peer satisfaction

If the silent move is due to the axiom [A-IN-L], then the session contract p must be a choice of

labels, p = p' @ p”; in view of the syntax of session contracts we have the following equality,

p="11.p & (P11.p:)
1€l

The hypothesis that R C Fl o« (R) implies that we have the derivation

P1 —s g1 ... p|[| —s Jm

o [R-INCH]

It follows that o = 3. ;71;.05, and {1} UL C J. We know that p' is either !1,.p; or B
see why (p/, o) € Filisps(R') notice that can instantiate [R-INCH] as follows,

ier'li-pi; to

p1 1% o1
!11.,01 s ZjeJ?lj'Jj

{1} C J; [r-INcCH]

and) i
p’il _| Ui] Ph _| G’h

@ie]lli'pi 48 ZjeJ?lj‘Uj

If the internal move is due to the axiom [A-IN-R] the argument is analogous. O

I C J; [r-INCH]

Corollary 3.3.7. Let p 7% 0. The following statements are true,

(a) if p—> p then p' +° o

(b) if o — o’ then p=° o

Proof. We prove (a). We apply Lemma to %,

Fuvsr=({ (0, 0) JU =) By Lemma [3.3.6]

VX . Filigrs (X) By the Knaster-Tarski theorem
s By Definition [3:3.]

{(, o) u=+

C
{(,o)yu+ C

From the argument above, it follows that p’ 4° o. The proof of (b) is similar. O
Lemma 3.3.8. Let R C Filigp:(R). If pR o and p || ¢ /> then p <.

.
Proof. From the hypothesis p || o -/, it follows p, and o are stable. Lemma states the ensuing
equalities,

UNF(p) = p, UNF(0) =0

These equalities implies that depth(p) + depth(c) = 0.

In view of the restrictive syntax of session contracts, the fact that p and o are stable, ensures that
these terms are not defined by an internal choice.

Observe now that the rule instantiation that proves (p,) € Fyer=(R) does not involve the rules

[R-ALPHA], [R-EXCH], and [R-INCH], because in all these cases p and o would engage in an interaction,

can not have been used either, because depth(p) + depth(c) = 0.
It follows that the proof of (p, o) € Fileps(R) must be due to the axiom [o-UNIT], and so p = 1.
v
It follows that p —. O

Lemma 3.3.9. The relation -° is a co-inductive compliance. Formally, 4° C .7-'(_' —4%).

Proof. We have to prove that if p 4° o, then (p, o) € F4(4%). To this aim, we have to prove that the

pair (p, o) enjoys three properties,

3.8. Syntactic characterisations 43

a) if p || then o |
b) ifp||a7l>,thenpi>
c) if p||o - p'|| o', then p' R o

Fix a pair p +° . Condition a) is true because every session contract converges. If p || o 7TL>, then
Lemma ensures that p Y. We have proven b). If p || 0 - p’ || ¢/, then our work amounts in
checking that p’ 4° ¢’; the argument depends on the rule used to infer the internal move.

If [P-LEFT] or [P-RIGHT] were applied, then p’ +* ¢’ follow from Corollary [3.3.7]

If the internal move is due to rule [P-SYNCH], then we know that its premises are true,

@ a oy
p——=p oS0

oo Dplo o

The argument is by case analysis on the form of p. Since p and ¢ performs visible actions, we have

UNF(p) = p, and UNF(o) = o, neither p nor o have a top-most recursive constructor.

i) If p = a.p’ and a contains no labels, then (p, o) € Fyliqps(4°) must be proven by the derivation

p/ 4|s 0_/

———— a . f; [R-ALPHA
a.p 4% B.o’ @ Bi)

The premises of the rule ensure that p’ =% ¢’.
ii) If p =!1.p/, then then (p, o) € Fyfigp=(+°) must be proven by the derivation

p/ _|s O_/

———— [R-INCH
!l1.pl _{5?11.0'/ []

Again, the premises of the rule ensure that p’ 4° o’.

iii) If p =71.p’ the argument is similar to the one used in the previous case; the only difference being

that now we use rule [R-ExcH] in place of [R-INCH].

Lemma 3.3.10. [Syntactic characterisation compliance]

For every p,o € SCy,, p 7o if and only if p 4° 0.

Proof. Suppose that p 4 o; then Lemma and the Knaster-Tarski theorem ensure that p 4° o.
Suppose that p 4° o, then Lemma and the Knaster-Tarski theorem ensure that p 4 o. O

3.3.2 Syntactic must testing

Definition 3.3.11. [Syntactic MUST testing |
In Figure replace the symbol 4° with the symbol MUST®. Lemma and the Knaster-Tarski
theorem ensure that there exists the least solution of the equation X = F.' ... (X); we call this solution

the syntactic MUST, and we denote it MUST®: That is MUST® = uX.Fy\ oo (X). O

The syntactic MUST is the inverse of the MUST relation on session contracts. We explain first why
the syntactic MUST is contained in the inverse of MUST (Lemma |3.3.13]), and then we go on showing
the converse.

The maximal computations performed by session contracts are finite.

Lemma 3.3.12. For every p,o € SCy,, let C be a computation of p || o3

44 Chapter 3. Client and peer satisfaction

a) if a derivative of p is succesful, then the computation C' is finite
b) if a derivative of ¢ is successful, then the computation is finite

Proof. Consider a successful computation of p || o that contains a state p’ || ¢’ that is client-successful.
Since p L>, point H of Lemma implies that p’ = 1. Since o’ is a session contract, it must
converge, o’ || . As p’ offers no visible action and is stable, the computation has to be finite.

A symmetric argument let us prove point (]ED O

Lemma 3.3.13. For every p,o € SCy,, if p MUST® o, then ¢ MUST p.

Proof. Let p MUST® ¢; as MUST® is defined inductively, this means that there exists a finite derivation

tree

p MUST® o (3.2)

done by using the rules in Figure[3.2] The proof of this lemma is by induction on the derivation above,
with a case analysis on the last rule applied.
In the base case the last rule used is [AX-SMST], thus p = 1; it follows that o MUST p.

Now we discuss the inductive cases.

o If the last rule applied was [R-ALPHA] then the derivation in (3.2) is

p MusT® o’
?a.p’ MUsTSla.o’

[R-ALPHA]

p =%a.p, o =la.o’, and p’ MUST® ¢’. Since the derivation of p’ MUST® ¢’ is shorter than the
derivation of p MUST® &, we can apply the inductive hypothesis and state that ¢/ MUsT p’. All
the maximal computations of o || p contain the state ¢’ || p/, thus Lemma let us conclude
that o MUST p.

e If the last rule applied was [R-EXCH] then the derivation in (3.2]) ends as follows,

p1 MUST® 0 .e. pp MUST® 0
Zie[l,k]?li'pi MUSTS® @je[l’n]!lj.aj

n < k; [R-EXCH]

and so 0 = Dc(1.'15-05, p = Dicpy?Li-pi, n < k. For every i € [1,n] the derivation of
pi MUST® ¢; is shorter than the derivation of p MUST® ¢, thus we can apply the inductive
hypothesis to state that if ¢ € [1,n] then o; MUST p;. Let S= { (0, p;) | @ € [1,n] }; we have
proven that SC MUST. Since all the computations of o || p contain a state whose components

are in S, Lemma [3.1.7 ensures that o MUST p.
o If the last rule used was [R-INCH]| the argument is similar.

o If the last rule applied was [R-UNFOLD], then (3.2)) is

UNF(p) MUST® UNF(0)
p MUST® o

depth(p) + depth(o) > 0, [R-UNFOLD]

The inductive hypothesis implies that UNF(o) MUST UNF(p). An application of Lemma
shows that o MUST p.

3.8. Syntactic characterisations 45

Lemma 3.3.14. [Inductive characterisation MUST |

Let p and o be session contracts; o MUST p if and only if p MUST® 0.
Proof. We have to prove two set inclusions, namely

(a) MUsT® C MUST 1, and

(b) musT~! C MUST®

We have proven the set inclusion (a) in Lemma [3.3.13] so we prove just the second set inclusion (b).

To this end, for every pair 0 MUST p, we have to exhibit a finite derivation as the following one,

p MUST® o

by using the rules in Figure |3.2

Let be 0 and p be two session contracts such that ¢ MUST p. Lemma ensures that all
the maximal computations of ¢ || p are finite. Since the LTS of session contracts is finite state we
know that there exists a longest maximal computation of o || p, whose length we denote n. We
proceed by induction on n. The intuition being that we have to mimic each synchronisation that
takes place between o and p with one of the inference rules in Figure the axiom being used if no

synchronisation happens.

-
In the base case n = 0, so the longest maximal computation is p || ¢ —/>. Since by assumption
o MUST p, Definition implies that p —7+; point H of Lemma

can derive

.9/implies that p =1, and so we

—————— [AX-SMST]
p MUST® o

In the inductive case n = m + 1 for some m € N. It follows that there exists a reduction
pll o~ p' || o’. The rest of the argument is a case analysis on the rule used to derive this internal
move. There are three cases, due respectively to the rules [P-SYNCH], [P-LEFT]|, and [P-RIGHT]; we

discuss only two of them.

If rule [P-SYNCH] was applied then this derivation exists

oy a oy
p——=p oS0

o Do Lo

Our reasoning in this case amounts in two parts; first we justify the use of the inductive hypothesis

on the pair (p’,0’), and then we show a derivation of p MUST® o.

v
Since p engages in a visible action, Lemma [2.3.10 imply that p -/, and so the state p || o is not

successful. Tt follows that ¢’ MUST p’. The longest maximal computation of p’ || ¢/ must have length

m, so we can use the inductive hypothesis to state that there exists a derivation

o MUST® ¢’

To extend the derivation of one further step we have to know which one of the inference rules to

apply; the choice depends on the form of o. We discuss one case; if a =t then ¢ =7t.0" and p =!t.p’.

46 Chapter 3. Client and peer satisfaction

Since « contains no labels we can apply rule [R-ALPHA],

' MUST® o’
'p,—sal [R-ALPHA]
It.p) MUST®*?t.0

If o =7t then the rule to use is [R-ALPHA], if @ =71 the rule to use if [R-EXCH], and if o =1
then the rule to be applied is [R-INCH].

We have discussed the case in which the internal move of p || 0 — p’ || 0’ is due to [P-SYNCH].

If rule [P-RIGHT] was applied then 0 — ¢’ and p = p'; the last equality implying that o MUST p'.

. T
Since ¢ — ¢’ the session contract o must be defined by an internal choice or a recursion.

e If o is defined by an internal choice, since o is a session contract it must be

o= @ i.0m = (@ 1i.0)®.0m

1€[1,m] 1€[1,m—1]

for some m € N. It must be ¢/ = @ie[l,mfl]!li'gi or 0’ =!1,,.0,,; in both cases the hypothesis

o MUST p implies that ¢/ MUST p’, moreover the longest maximal computation of ¢’ || p’ has
length at most m. It follows that we can apply he inductive hypothesis to exhibit two derivations,

namely

p MUST?® EBie[qu]!li-Ui p MUST®!1.0p

(@) (8)

Note that the last rule used in the derivation (o) must be [R-EXCH|, we have therefore, that
P =2 ey Lj-pj, with k < p. The inference (8) must be due to rule [R-ExcH] as well, so it

ensures that for some p € [1, p),

pPp MUST® oy,

A similar argument holds for the derivation («), thus for every ¢ € [1,k — 1], a derivation

pi MUST?® o

must exist. Now we know enough to show the following derivation

p1 MUST® o1 ... pp MUST® op,

ZjE[l,p]?lj'pj MUST® ®i€[1,m]!11'0m

m < p; [R-EXCH]

e Suppose that o is defined by recursion and o — ¢’ is due to [A-UNF]. The assumption implies
that depth(c) > 0. Lemma implies that UNF(o) MUST UNF(p). As p || ¢ = UNF(p) ||
UNF(0), the successful computation of UNF(p) || UNF(o) has length at most m, so we can use

the inductive hypothesis; there exists a derivation of

UNF(p) MUST® UNF(0)

Since UNF(0) = UNF(¢’) and depth(o) > 0 we can extend the derivation above by applying rule

3.8. Syntactic characterisations 47

pllo
N
'11?12 1 H g '13 1 H g
TJ
1/|?Int.1
————————— [AX-SMST)]
1 MusT®?Int. 1 [
R-BRANCH —_ -
715.1 MUST®!1,.7Int. 1, [R BRAllCH] 1 musT®!1,;.1 [ax [SRM]SSEANCH]
'11712 1 MUSTS?ll.!lg.?IHt. 1, ‘13 1 MUSTS?lg.!ll. 1 [R BRANCH]
p MUST® o :

Figure 3.3: Successful computations of p || o and derivation of p MUST® o (see Example [3.3.15])

[R-UNFOLD],

UNF(p) MUST® UNF(0)
p MUST® ¢’

depth(p) + depth(o) > 0, [R-UNFOLD]

If rule [P-LEFT] was applied then the argument is symmetric to the one used for rule [P-RiGHT]. O

We comment on the previous result. Its proof exhibits how the structure of the derivation of
p MUST® o mirrors the internal moves that appear in the successful computations of p || o; that is ,
each application of one the rules [P-LEFT]|, [P-RIGHT], and [P-SYNCH] is mirrored by an application
of a (series of) rules of Figure We give an example of this fact.

Example 3.3.15. [Succesful computations and derivations of MUST®]
In this example we show one instance of the mentioned similarity between the successful computations
of a composition p || o such that & MUST p, and the derivation of p MUST® o.

Consider the session contracts

g = ?11’12?:[11131 —|—713'111

In Figure we have depicted the successful computations of the composition p || o, and the
derivation which proves that p MUST® o.

The similarity between the pairs of session contracts that appear in the computations and the ones
that appear in the derivation is striking. To begin with, the successful states of the computations are
the ones derived by applying the axiom [AX-SMST]. Secondly, each time a composition p’ || ¢’ performs

an interaction, the terms in the reduct appear in the premises of the derivation of p’ MUST® o”. O

According to what we have stated so far, the meaning of Lemma is that, given a pair o, p,
there is a correspondence between the computational tree made by the successful computations of

p || o, and the proof that p MUST® 0.

48 Chapter 3. Client and peer satisfaction

3.4 Related Work

The MUST testing of Definition is taken directly from [De Nicola and Hennessy|, |1984} [Hennessy,
1985|; the only novelty is that in our framework processes and tests are not distinguished; for instance 1

is a process. This is not the case in the original presentations of [De Nicola and Hennessy}, [1984], in

the sense that there processes cannot perform the action w. To mix tests and processes is necessary
in order to express the notion of peer, and render Definition [3.1.3] sensible.

The first compliance defined in terms of the interactions of clients, servers and the action v is the

behavioural compliance [ILaneve and PadovaniL |2007||; let us denote it 4.

The comparison of our results with the work of |Laneve and Padovani| is complicated by the fact

that in their theory compliance judgements take the form 1;[p] 4 Iz[o] where 1;, Iy are finite sets of
actions representing in some sense the interfaces of the processes guaranteeing the contracts; moreover,
for a contract I[o] to be valid its interface I has to contain all the action names (including v’) that
appear in the behaviour o. Let us refer to the pairs I[o] as constrained contracts. It is relatively easy

to prove the following facts,
1 A7 O[] ™ 0[r>)

AT P[] A O]

Regardless of the difference between the relations - and —|bh", Example|3.2.13|and Example|3.2.14]are

similar to the examples used by [Laneve and Padovanil. Moreover, the results we will show in Chapter 5]

can be adapted to the framework that arise from —|th, as long as we disregard the interfaces and work
only with the LTS.

The most recent compliance theories are [Padovani, [2010] and [Castagna et al.l |2009).

Let us denote <" the strong compliance of 2010, Definition 2.1]. In that paper the LTS

is
(ccsreefd Act,,, —s) (3.3)
where the states are terms of a recursive version of CCSy,, and the LTS is convergent and finite state.

Up-to the encoding of recursive terms into our syntax, the LTS in Eq. (3.3)) is contained in our LTS,

and our relation - and the relation <" coincide.

Now we discuss the compliance of [Castagna et al. 2009]. A striking difference between our setting

and the theory of that paper is that their LTS is deterministic, while ours is not.

Let CCS&?;"d’lL denote the language (a) generated co-inductively by the grammar for finite terms
of CCSy, and (b) whose terms are regular (in the sense of Section 4.1]) and conver-
gent.

define the transitions of the following LTS by using inference rules that are not
the standard ones for CCS;

(CCsemddAct ;) (3.4)

The rules are designed so that if ¢ — ¢’ and 0 — ¢” then ¢/ = ¢”. This implies that the

acceptance sets of contracts a la contain at most one ready set. Note also that the
set of labels Act , contains no 7, there are no 7 transitions in the LTS of Eq. .

The LTS that we used, (CCSy,, Act; ,, —), is more general than the LTS in Eq. , in the
following sense. The transitions are not deterministic: p — p’ and p — p” do not imply that
p’ = p’; and so the acceptance set of a process p after a trace s may contain an infinite amount
of ready sets. Moreover processes may diverge. The LTS used by though, is not
contained in our LTS, because of the difference in the transitions. Consider the term p = a.1 + . 0;

by using the rules of that paper one can infer

pni>1€90, p>7&>0, p7&>1

3.4. Related Work 49

whereas in our setting
(03
p/180, p--0 p-—>1

In principle it is not clear whether our compliance relation coincides with their strong compliance
(Definition 2.6 in their paper), =°%.

A relation similar to % but presented in a different setting, is the Type Compliance, denoted o,
of [Acciai and Boreale| 2008, Definition 5]. There the states of the LTS are basic parallel pro-
cesses [Christensen et al.;[1993] and the transitions are given by standard inference rules of operational
semantics. We leave as an open problem the comparison of oc with - (see (in Section .

The syntactic characterisation of compliance is similar to [Barbanera and de’Liguoro}, 2010}, Propo-

sition 2.9]. To the best of our knowledge, the syntactic characterisations of the MUST testing on session

contracts is original.

Fair theories Other compliances have been proposed, which are inspired to the fair testing of

[Rensink and Vogler] [2007] rather than the MUST testing. One such theory has been presented
in [Bravetti and Zavattaro, [2009]. We will compare our results with the theory of [Bravetti and
in the oncoming chapters.

50

Chapter 3. Client and peer satisfaction

Chapter 4

Must pre-orders

This chapter is devoted to the study of the pre-orders that arise from the MUST relation (see Defini-
tion . Processes can be seen as clients, servers, or peers, so there are three pre-orders: a server
pre-order, a client pre-order, and a peer pre-order. They are denoted respectively

~YSVR’ ~CLT? ~p2p (4‘1)
The relations in let us state when a process is “better” than another one, given the role that
we want the processes to play. For instance 0 Ecm 1 means that the process 1 is a better client than
the process 0, in the sense that all the servers that satisfy 0 satisfy also 1. Similarly, the inequality
a.0®p.0 Esz .0 + 5.0 means that the server process a.0 + 3.0 satisfies all the clients that the
process .0 @ (.0 satisfies.

The formal definitions of these pre-orders have two disadvantages. First, they use a universal
quantification on all processes. If we were to prove r1 T .. ro by using the definition of & (Def-
inition , we would have to prove that all the processes p that satisfy r; satisfy also ro. The
quantification on all processes is a burden, as they are infinite, so it is not clear how to account for
all of them. Second, it is not clear when two processes are related by the pre-orders in ; that is,

as long as we use the definitions of the pre-orders above, we cannot answer questions such as

under which conditions are p; and po related by ,Ecm ? (4.2)

To solve these issues we introduce reasoning techniques for the pre-orders in (4.1). Throughout

this chapter we will introduce such notions as to let us define three relations, namely

< < < (4.3)

~JSVRy ~JCLT » ~P2P

We will prove that each one of the “alternative” relations above equal one of the pre-orders in (4.1)).
We refer to the relations in Eq. (4.3]) as the behavioural characterisations of the MUST pre-orders. The
equalities between the relations in (4.1) and the relations in (4.3]) have two advantages.

e The alternative relations are defined by using properties that describe the observable behaviour
of processes; so the alternative pre-orders lay bare how the relations in relate the operational
semantics of processes. This sheds light on what it means for two processes to be related by one
of the pre-orders in 7 and lets us answer questions such as the one in

e The definitions of the behavioural characterisations do not present a universal quantification on
processes; rather, they explain why two processes, say p and ¢, are related, just by examining p

and ¢ themselves.

o1

52 Chapter 4. Must pre-orders

The behavioural characterisation of the server pre-order, gives us a straightforward way to prove when
two processes are related by ESVR (see Example [4.1.22)).

Structure of the chapter. We begin our study by discussing the server pre-order, as it is the
simplest of the three relations. The server pre-order is a mild generalisation of the testing pre-order [De
Nicola and Hennessy, [1984; [Hennessy|, (1985, in that it relates terms that (a) can report success and
(b) can be infinite branching, whereas the standard presentation of the testing pre-order does not.
Nevertheless, the behavioural characterisation (Theorem of 5, coincides with the well-known
characterisation of the testing pre-order [Hennessy} [1985]. In Section[4.2] we use the characterisation of
the server pre-order as starting point to characterise the client pre-order T o By means of examples
we expose the subtleties of the pre-order for clients, we explain why the characterisation of the server
pre-order fails to capture the client pre-order, and then we show how to amend that characterisation
so as to describe Ecm (Theorem (4.2.37)). In Section we discuss the peer pre-order. In particular,

we use the machinery devised in the earlier sections to characterise the peer pre-order; the discussion
is facilitated by the fact that Theorem [4.1.21] and Theorem [4.2.37 have the same form.

4.1 Server pre-order

We begin our investigation of the MUST pre-orders by unravelling the characteristic properties of the
server pre-order. We consider a server py better than a server p; if po satisfies all the clients that are

satisfied by p;. This intuition is formalised by the oncoming definition.

Definition 4.1.1. [MUST server-pre-order |
We write p; ESVR p2 whenever p; MUST 7 implies po MUST r. We refer to the relation denoted by the

symbol ESVR as the MUST server pre-order . O

Notation Throughout this thesis we will at times use the symbols > and € to write processes,
for instance

Zie[l;m] p; inplaceof p; +ps+ ... + Pm

@ie[l;n] p; inplaceof p1 Dpo D ... D p,

This is by justified to the fact that
DDOTSsvrT P DD (p/ D p”) ~svr (P @ p/) @ p”
p/ + p//

P+ TR +D P+ ();SVR(p‘Fp/)‘FpN

where <gyy is the equivalence relation given in the obvious way by ESVR.

In order to acquaint ourselves with the relation Esvm

The pre-order Esz has bottom elements, namely all the processes that diverge.

we prove a lemma and discuss two examples.

Lemma 4.1.2. [Bottom elements |

If p1 ¥ then p; ,ESVR po for every process po.

Proof. We have to show that if p; MUST r then p, MUST r, for every process r. Suppose that p; MUST

r; the hypothesis that p; {f and Lemma [3.1.6| imply that r 5. Tt follows that p2 MUST r for
every ps. O

We discuss why some processes are (not) related by the server pre-order.

4.1. Server pre-order 53

Example 4.1.3. The relation p ESVR q essentially compares the interactions offered by the servers p

and ¢. For instance,
a.l & a.0

~’SVR

~ISVR lel
al Zo. 1a1l
P Hgm O

where p = a.(8.0 +4.1) + a.(5.1 +0.0).

The first inequality, «.1 ESVR .0, is true because the server a.1 offers to the clients as much
interaction as «.0; that is the action a.

The same argument lets us prove also the second inequality, which is an instance of the more
general fact p & p @ p for every process p. To see why the general inequality is true, note that all
the maximal computations of r || p @ p are also maximal computations of r || p; so p MUST r implies
that p & p MUST 7.

To prove the third inequality we have to exhibit a client that is satisfied by «. 1 and not by 1 & 1.

Consider r = @. 1. Plainly, @. 1 MUST r, whereas
rlltlel -S|l

and r 7&, so 1 @ 1 MusT r. The crucial difference between o.1 and 1 @ 1 is that the latter server
offers fewer interactions than . 1.

A similar argument lets us prove the fourth inequality, for the server 0 offers fewer interactions
than p; the client @.53.9. 1 is satisfied by p and is not satisfied by 0. O

In Example [£.1.3] we have compared only processes that converges. In the next example we discuss

divergent processes.

Example 4.1.4.
147 L B.7°

~SVR
5 1 %SVR Lo
The first inequality is true because any term that diverges is a bottom element of ESVR; we have

seen this in Lemma

To prove the second inequality we use the client 3.1, which is satisfied by 5.1 and not by 1 @& 7.
Intuitively, 8.1 cannot be smaller than 1 ®&7° because (.1 is not a bottom element of L .,
whereas 1 & 7°° is a bottom element. O

The characterisation of Esz that we will provide is based on a comparison of the observable
behaviours of processes. In Lemmal[f.1.2]and Example [1.1.4) we have seen that if a process p; diverges,
then the reasons why p; ESVR p2 has nothing to do with the relation between the behaviour of po
and the behaviour of p;. It follows that to provide a complete characterisation of ESVR we need some

notation to express the convergence of processes after a trace.

Definition 4.1.5. [Residuals after trace |
For any process p € CCSy,, and s € Act* let (p AFTER 5) = {¢q | p == ¢ }. O

Definition 4.1.6. [Convergence along trace |

Let Fy : P(CCSyr x Act™) — P(CCSyr x Act™) be the rule functional given by the inference rules
in Figure Lemma and the Knaster-Tarski theorem ensure that there exists the least
solution of the equation X = Fy(X); we call this solution the convergence predicate, and we denote
it : Thatis | = pX.Fy(X). We extend the relation || to infinite strings by letting, for every
u € Act™, p || u, if and only if for every n € N, p |} u,. O

54 Chapter 4. Must pre-orders

—— p | ; [cONV-AX]

ple
(03
plas? I ,p == [CONV-AX-NOT]

@D (p AFTER «) | &’
pl as’

pl,p==>; [CONV-ALPHA]

Figure 4.1: Inference rules for the functional F

Lemma 4.1.7. Let p be a process; p |} s if and only if for every s’ prefix of s, if p N p’ then p’ |}
Proof. We have to show two implications, namely

i) if p | s then for every s’ prefix of s, if p = p’ then p' |}

ii) if for every s’ prefix of s, p é p’ implies p’ |} , then p | s.

We prove them separately. We begin by showing (). The assumption that p |} s ensures that there

exists a finite derivation

pUs (4.4)

We have to prove that
for every s’ prefix of s,p == p’ implies p’ | . (4.5)

The argument is by induction on the derivation in (4.4)).

Base case. In this case the whole derivation in (4.4]) amounts an application of the axiom [CONV-AX],
or of the axiom [CONV-AX-NOT].
If [coNv-AX] was applied then (4.4]) is

—— p | ; [CONV-AX]

ple

It follows that s is the empty string, and so requires us to prove that if p == p’ then p’ |} . Fix
such a p’; the definition of = ensures that p —" p’ for some n € N. Reasoning by induction on n,
we can show that the side condition p || implies p’ |} .

If [CONV-AX-NOT] was applied, then is

«
plas P |} ,p == [CONV-AX-NOT]

«
It follows that s = as’. The side condition p =% implies that the only prefix of s performed by p is
the empty string, so 1) requires us to prove that if p = p’ then p’ | . To prove this we reason as
we did discussing the application the axiom [CONV-AX].

Inductive case. In this case the last step in the derivation in (4.4)) is rule [CONV-ALPHA], so the

derivation in (4.4)) is

PD(p AFT].ER a)l s
plas’

p | ,p==; [CONV-AX-NOT]

The derivation of @ (p AFTER «) || s is shorter than the derivation above, so we are allowed to use

the inductive hypothesis, for every s” prefix of s', if @(p AFTER o) == p’ then p’ || .

4.1. Server pre-order 55

We prove . Fix a § prefix of s such that p é p'. If § = ¢, then we reason as we did in the
base case to prove that p’ | . If 3 # () then 8 = as” for some s” prefix of s’. The definition of AFTER
ensures that @(r1 AFTER «) :> p’, and so the inductive hypothesis implies that p’ |} .

We have proven the first implication of the lemma namely[] Now we prove the second implication,
I Let us assume that for every s’ prefix of s, p :> p’ implies p’ || . Our aim is to exhibit a finite
derivation of p || s. First we prove p || . The string ¢ is a prefix of every string s, so the assumption
and p = p imply that p |} .

The main part of the argument is by induction on s.

Base case (s =¢) In this case use the axiom [CONV-AX],

—— p | ; [cONV-AX]

ple

Inductive case (s = as’) In this case the argument depends on p ==.

«
If p =%, then we use [CONV-AX-NOT]:

> pdb; [CONV-AX-NOT]

plas
If p ==, then the process @(p AFTER «) is well-defined, so let p = @(p AFTER «). The string s’

is shorter than s, so the inductive hypothesis states that
if for every s” prefix of ', p’ == p' implies p |} s, then p” |} &’

Let s’ be a prefix of s’ such that p é):”> p”. The construction of p implies that p a:él; p”, and as” is a
prefix of s. Our assumption on p implies that p” |} . This prove that for every prefix s’ of s, p S:”> p”
implies that p” || . The inductive hypothesis now ensures that there exists a finite derivation of p |} s’.
Now we use [CONV-ALPHA]:

@D(p AFTER) | &
D AFTER as’

p | ,p==; [CONV-ALPHA]

O

We are ready to prove the first relation that &_ enforces on the behaviour of a server p; that

~SVR
converges (after a trace), and the behaviour of a better server po.

Lemma 4.1.8. Let p; ESVR po. For every s € Act™, if p1 || s then po |} s.

Proof. In view of Lemma we have to show that
for every s’ prefix of s, if py N ph then ph | (4.6)

Let s’ be the longest prefix of s performed by ps, and let s’ = ajas...a,. To prove the lemma,

we define a client C such that
1. py musT C
2. po MUST C implies ({4.6)
For every 0 < k < mn, let

O, gt 1®1) + ap1.Crp1 f0<k<n
k:
141 ifk=n

56 Chapter 4. Must pre-orders

Note that if s’ is a prefix of s, and Cy = 7;, then r —5.

We prove that p; MUST Cy. We have to show that all the maximal computations of Cy || p1 are
client-successful. By construction Cj || s and 5 is the longest trace that Cy can perform; moreover, by
hypothesis p; | s, and s is finite; it follows that all the maximal computations of Cy || p; are finite.

Fix such a computation,
-
Collpr=rollpl =72 llpt = ... == i || pry =

Since Cjy N Tk 7; for some s’ prefix of s, it follows that 7 L>; the maximal computation is
client-successful. This argument is true for every maximal computation of Cy || p1, so we have proven
that p; musT Cy.

Since p; MUST Cy, the hypothesis ensure that p; MUST Cjy. To prove we reason by contra-
diction. Suppose that is false: there exists a k such that py == pJ and p9 diverges; then the

following maximal computation is not client-successful,
Co || p2 = Cry1 | 95 == Cryr || p2 == Crsr || 05 == ...

It follows that py MusT Cp, which contradicts po MUST Cy. In view of this contradiction, (4.6]) is
true. O

Lemma 4.1.9. Let p; 5, p2. For every s € Act”, if p1 || s and py == then p; ==

Proof. We have to prove that under the hypothesis there exists p/ such that p, == p}. To prove
this we define a test A such that

1. po MusT A
2. p; MUST A implies that there exists a p)| such that p; == p}

We define a suitable client. Let s = ajas ... a,, and let

def (]. (&) 1) + ai+1.Ai+1 if0<i<n
0 ifi=n

We prove that po MUST Ag. The hypothesis imply that there exists a p, such that py == ph. If p)

diverges we can infer the maximal computation
Ao [|p2==01[py =0 py —> 0 p3 ...

-
If p, does not diverge, then there exists a pf such that p), = p4 —/+. We can infer the maximal

computation
-
Ao |l p2 =01l py /=

The computation is not client-successful. In both cases we have shown non client-successful compu-
tation of Ay || p2, so we have proven that ps MUST Ay. It follows that p; MUST Ay.

The hypothesis p; |} s, and p; MUST Ag imply that p; == p/ for some p}, for otherwise all the
maximal computations of Ag || p1 would be client-successful. We explain this fact. Let k& < n be
such that sy is the longest prefix of s performed by p;. Every maximal computation of Ag || p1 must
be finite, because p || s and the longest trace that Ay performs is 5. Every maximal computation

of Ay || p1 must contain the contributions

35 3
A0:k>Ak, P1 :k>]9’1

4.1. Server pre-order 57

Figure 4.2: Process p of Example

for otherwise the computations can be extended with one further interaction due an a.. Since k <1i < n,

by construction we know that Ay = (1 & 1) + @ky1.Ak+1. As the computation at hand is maximal
QAp41
and A; ——, the computation can be extended. Since p| =%, the only way to extend the computation

is an internal move of Aj. The move reduces the client to a successful state, namely 1 +ag1.Ag+1,
thus the computation is client-successful.
S
We have shown that if p; == all the maximal computations of Ay || p1 are client-successful. This

contradicts p MUST Ay, so p; == p} for some p/. O

~SVR

The property of &_ that we have exhibited in Lemma is not enough to characterise the

pre-order.

Example 4.1.10. It is not true that for every p and ¢, if p |} s then ¢ || s imply that p ECLT q. For
5.0; to
prove this, let us use the client @. 1. The server «. 0 satisfy @. 1, because all the maximal computations
of@. 1| . 0 are client-successful. On the contrary 5.0 MUST @. 1, because @. 1 || 5.0 7L> anda.1 7&

O

instance, for every s € Act*, a.0} s and 5.0 || s. Nevertheless, one sees easily that a.0 %S\,R

To characterise ESVR we need some notation to compare the interactions offered by processes. In

particular, we wish to compare the actions that a process can perform after a trace s.

Definition 4.1.11. [Acceptance set |

For every s € Act™, and process p, we let

AcC(p, s) = {S() | p==p 1

where S(p) = {a € Act | p -} O

Example 4.1.12. Consider the process p of Figure We show the non-empty acceptance sets of p.

Acc(p,e) {{a}} acc(p,ad) = {0}
acc(p,a) = {64} accp,p) = {0}

Plainly, for all the string s € Act™ not used above it holds Acc(p, s) = 0; the reason being that there
exists no p’ such that p == p'.
Note though that the ready set in AcC(p, 8) does not contain the action v'. This is crucial for the

characterisation to capture the equality 1 ~gyy 0. O]

Example 4.1.13. It is easy to show that whenever UNF(o) = 1 then S(o) C A for every A. Consider
the action v'; it does not belong to Act, therefore by definition v ¢ S(o). But v is the only visible
action performed by o, hence S(o) = (. O

Corollary 4.1.14. For everyp1,p2 € CCSyyr, and every s € Act™, if p1 Sy, P2, p1 4 s and AcC(pa, s) #
0 then acc(py,s) # 0.

58 Chapter 4. Must pre-orders

Proof. The hypothesis ACC(pa,s) # () implies that po ==. Since p; |} s Lemma implies
that p; == p! for some p}. The hypothesis p; |} s implies that p} |} , and so there exists a p/

such that p; == pY —4+. This implies that S(p}) € Acc(py, s). O

Lemma 4.1.15. Let py 5. p2. For every s € Act®, if p; | s, then for every B € ACC(pa, s) there
exists a set A € AcC(p1, s) such that A C B.

Proof. Fix a s € Act™ such that B € ACC(pa, s). It follows that Acc(ps, s) # 0, thus Corollary [4.1.14
implies that Acc(py,s) # 0, so acc(p1,s) = { A; | i € I} for some non-empty set I.

The proof proceeds by contradiction; we suppose that
for every i € I, the set A; contains an action a; ¢ B (4.7)

We use this assumption to build a client C' that distinguishes p; and ps; that is
1. py musT C
2. po MusT C

The string s is finite, so let s = 5pf1 . .. B for some n € N.
Let
aet | (1@ 1) + Br.Cr1 if0<k<n

Dier @1 iftk=n

Ck

We depict the LTS of the processes Cf, in Figure

The client we are after is Cy. We prove that ps MUST Cj; that is, we exhibit a maximal computation
of po || Cp that is not client-successful.

By construction, we can infer Cj = C,,, and none of the states in the sequence is successful.
Definition and the hypothesis B € ACC(p2, s) imply that there exists a pf, such that S(py) = B

and po == p}. Either p), diverges or it converges. In the first case, observe the ensuing computation
Collp2 = Co || Py == Cull Pz = Cu [93 — ...

this computation is maximal and it is not client-successful. In the second case, we infer the computa-
tion

Co || p2 = Co || Py 7=

where the fact that p}, || C), is stable follows from three things: p/ 7TL>, Cp 7TL>, and by construction no
action performed by C,, can interact with the actions offered by p}. It follows that the computation
above is maximal. What argued so far proves that ps MUsT Cj.

We have to prove that p; MUST Cy. Definition [3.1.1] requires us to prove that all the maximal
computations of Cy || p1 are client-successful. Fix a maximal computation of p; || Cy. The only
traces that Cj performs are the prefixes of 5; since p || s, and no C}, is stable but C,,, every maximal
computation of C || p must contain a state C,, || p’, where p == p’ and p’ 7L>

Definition ensures that S(p’) € Acc(p, s), so the assumption in and the construction
of C}, imply that there exists an «; € S(p’) such that C, iy 1. Tt follows that p’ and C,, can interact.
Since the computations we are discussing are maximal, and the only reduction of C, || p’ is due to
an interaction, all the maximal computations of Cj || p contain a state 1 || p”; this means that the

computations are client-successful.
O

We need to prove one more property of & Its importance will become evident in Example{4.1.18

~SVR"

Lemma 4.1.16. Let p; 5 . po. For every u € Act™, if p; || u and py == then p; ==

4.1. Server pre-order 59

AN

FR T/

Figure 4.3: Tests to distinguish servers (see Lemma 4.1.15)

re@——0—"0

Figure 4.4: Infinite traces

Proof. Let u = ajasas ..., and for every n € N let A, L (1e® 1)+ a,.Ant1. No A, is successful, so
the infinite computation of Ag || p2 due to the interactions on the o’s, proves that po MUST Aj. The
hypothesis py 5, p2 implies that p; MusT Ag. If py ?Z> then, thanks to the hypothesis p |} u, we can
prove that all the maximal computations of Ay || p; are client-successful; this contradicts p; MUST Ay,

so it follows that p; == O

The next definition is a minor generalisation of the well-known behavioural characterisation of
the must testing pre-order [De Nicola and Hennessy, [1984; Hennessyl, [1985]. The only novelty is the

condition on infinite traces.

Definition 4.1.17. [Semantic MUST server pre-order |

Let py jSVR po if

(1) for every s € Act™ such that p; | s,

(a) p2 s
(b) for every B € ACC(p2, s) there exists some A € AcC(py, s) such that A C B

(2) for every w € Act* U Act™ such that p; || w, po == implies p; == O

The condition on the existence of infinite computations in point is already present for finite
computations in point 1) For suppose p1 || s. Then if p; == we know that ps ==. However in
general, in particular in LTSs which are not finite branching, point on infinite computations does

not follow automatically from condition point ((1b]).

Example 4.1.18. [Infinite traces |
Consider the processes in Figure [£.4] There p;, denotes a process which performs a sequence of k «
actions and then becomes 0; so the process p performs every finite sequence of a’s. On the contrary,

the process ¢ performs an infinite sequence of a. Then p |} s and ¢ | s for every s, and the pair (p, q)

60 Chapter 4. Must pre-orders

satisfies condition of Zgvr. However condition is not satisfied; let u denotes the infinite
sequence of as. On the one hand the self loop of ¢ let us prove that ¢ ==. On the other hand p does
not perform the infinite trace u, that is p ;,;

In fact p £

a client using the server p, every computation is finite and successful; p MUST A. However when ¢ is

. For consider the process A = (1 ® 1) + @.A. When A is run as test on p, or as
q 1% b,

SVR

run as a server, there is the possibility of an infinite computation, the indefinite synchronisation on «,
which is not successful; ¢ MUST A. O

The previous example can be adapted to prove that the co-inductive technique used in [Laneve and

Padovani), 2007], which is sound in the setting used there, is not sound with respect to the relation ESVR

in our setting.

Example 4.1.19. [Standard co-inductive characterisation not sound]

Let <pad be the greatest relation such that p; <paq p2 if and only if
1. if pg — ph then p1 <bad Ph
2. if B € ACC(p2,¢) then there exists a A € ACC(p1,¢) such that A C B
3. if py = pl then p; == and @(p1 AFTER @) <pad Ph

In this example we prove that the relation <p.g € ESVR. To this end, we show two processes p
q. Consider the processes p and g that we used in Example(4.1.18
it is enough to show that p <paq ¢. Let a™ denote the string

and ¢ such that p <paq ¢ and p £

SVR

As we have already argued that p £

4,
SVR
of n a’s, and let p™ denote the process that performs n actions o and then becomes 0, with p® = 0.

One can prove the that for every n > 1 following equality is true,
P arrer o) = Py’
i=0

Consider now the relation R = { (p, ¢), (B(p AFTER «),¢q) }. Thanks to the equality above one can
prove that R C <pad, S0 P <bad ¢- 0

The relation Zgyr is complete with respect to ESVR.

Proposition 4.1.20. [Completeness]
If py ESvR p2 then p1 Zsvr P2

Proof. The proposition follows from Lemma [£.1.8] Lemma [{.1.15 and Lemma [£.1.16] O

Theorem 4.1.21. [Alternative characterisation ESVR]

For every p1,p2 € CCSyr, p1 Sy P2 if and only if p1 Zsvr po-

Proof. For every two processes p; and ps, we are required to prove two implications:
i) if py ESVR po if and only if p; Zevr P2,
ii) if p1 Zsvr p2 then pq ESVR P2

The implication is proven in Proposition so we prove only why the implication in (i) is
true.

Let p1 Zsvr P2, and suppose that r; MUST 7. We have to explain why py MUST 7. Definition
requires us to show that all the maximal computations of r || ps are client-successful.

Fix a maximal computation of r || pa,

rllpe=r"Ip3 ' || py > || p3 1% || p) ... (4.8)

4.1. Server pre-order 61

The computation in (4.8) is finite or infinite. We discuss the two cases separately.
Suppose that the computation in (4.8) is finite. Let us unzip the maximal computation at hand;

since it is finite, we get two finite contributions
s ’ s /
=7, P2 = P

and the state r’ || p, is stable. If p; Jf 5, then p; reaches a state p] by performing a prefix of §
and p/, diverges. By zipping r == 7/ with the action sequence of p} we obtain a maximal computation
of r || p1; since p; MUST r, the new computation is client-successful, and so is the one unzipped.

Suppose now that p; || s. The definition of Definition implies that S(ph) € AcC(pe,3), and
o point of Definition implies that there exists a set A € ACC(p1,5) such that A C S(p5).
The assumption that p; |} s and Definition ensures that there exists a pj such that p; = P} 7TL>
such that S(p}) C S(ph). It follows that there exists the maximal computation

.
r|lpr =" || P} />

Since p; MUST 7, the finite computation above is client-successful, and so also the computation in
is client-successful.

We have proven that if the maximal computation in is finite, then it is client-successful. Now
we prove that if that computation is infinite then it is client-successful.

Suppose that he computation in is infinite. This may be true because the processes engage
in infinite traces, or because (at least) one of the two diverges.

Unzip the computation in (4.8)) and suppose that obtain infinite contributions
U u
r =, P2 —

We have to prove that one of the states reached by r is successful. Point of Definition
implies that ps == By zipping together the infinite contribution of r and the infinite contribution
of p; we obtain a maximal computation of r || p;. The assumption that p; MUST 7 ensures that the
new computation is client-successful. Since the derivatives of r in this computation are the same that
appear in , we have proven that the computation we unzipped is client-successful.

Now we discuss the case of divergence. Unzip the computation in and suppose that obtain
finite contributions

=7, P2 == pl
Since the computation is infinite 7’ diverges or p), diverges (or both diverge).

Suppose that pf diverges. This assumption implies that p, §f 5. Point of Definition
ensures that p; |/ 5; in turn this means that there exists a prefix s’ of s such that p; =L p) and pj
diverges. By zipping r =L+ with D1 TN p} we obtain an infinite maximal computation of r || p;.
The assumption p; MUST r implies that r reaches a successful state, so the computation we unzipped
is client-successful.

Suppose that ' diverges. Either p; §{ 5 or p; | 5. If p; Jf 5 then we reason as explain above.
If p; | 5, then point of Definition implies py = p). By zipping this action sequence of p;
with » == 7/ we obtain an infinite maximal computation of 7 || p;. The assumption that p; MUST r

implies that r reaches a successful state, so the computation we unzipped is client-successful.
O

Theorem [4.1.21] gives a proof method for the relation & We discuss this fact in the next

~SVR®

example.

Example 4.1.22. [Proof method] In this example we wish a) to use Theorem [4.1.21] to prove that

62 Chapter 4. Must pre-orders

two processes are related by ESVR, and b) to compare the proof method with the one given by the
definition of T .

We prove py ,ESVR pa2, where p;1 = .0 5.0 and ps = .0 + 3.0. Thanks to Theorem [4.1.21
p1 Sy P2 Will follow if we show that p1 Zsyr p2. Definition requires us to show the following

properties,
(1) for every s € Act* such that p; | s,

(a) p2 I s
(b) for every B € ACC(pa, s) there exists some A € ACC(p1, s) such that A C B

(2) for every w € Act* U Act™ such that p; |} w, po = implies p; ==

Since each state reached by p; or psy converges, above is true. Now observe that the traces
performed by p; and ps are the same, namely ¢, o, . This ensures that above is true.
To prove condition (|1b)), let us compare the non-empty acceptance sets of ps with the acceptance

sets of pq,

ACC(pa,e) ={{a, B}} Acc(pi,e)={{a}, {B}}
ACC(pg,) = {0} Acc(pr,a) = {0}
Acc(pe, B) = {0} AcC(py, B) = {0}

For each ready set in the non-empty acceptance sets of po, there exists a ready set in the acceptance
sets of p1, so also ([Lb)) above is satisfied; this concludes the proof that p1 ZSsvr po.

Now let us sketch a proof of p; 5 . p2 that relies on the definition of 5. We are required to
show that that for every r if p MUST r, then ¢ MUST r. In this example, thanks to the very simple
behaviour of pi, it is possible to prove the implication above. In general, though, it is not clear that

the implication can be proven, because of the universal quantification on all the rs. O

Theorem is essentially the characterisation of the MUST pre-order of [Hennessy, [1985]. Our
server pre-order Esvw though, is bigger than the MUST pre-order; this is because ESVR relates also
terms that contains 1 (i.e. processes whose LTS performs v'), whereas L relates only terms that
cannot perform v'. The following inclusion is true, & C ESVR.

The next result will be crucial in Section F3l

Lemma 4.1.23. For every process p, p ~gyr P + Ziel 1 for every set I.

Proof. If I is empty then the lemma is trivially true, so suppose that I # (). Thanks to Theorem [4.1.21

it is enough to prove that
i) p jSVRp + Ziel 1
i) p + Zie] 1 35w P

For every s € Act*, p | sifand only if p + 3, ;1 s; and AcC(p,s) = AcC(p + >_,.; 1,5). Moreover
for every u € Act™, p = if and only if p + Dierl == In view of these facts, one can prove both
i) and ii). O

In this section we have defined and characterised the server pre-order ESVR. We have seen that a
server po is better than another server py, if po offers at least the interactions that p; offers, converges
as p; does, and up-to convergence, p; performs the traces that p, performs. To lay bare the way
whereby ESVR relates the behaviours of processes, we have had to introduce the notions to reason
about convergence, ready sets, and acceptance sets. These ideas will turn out to be paramount, as
their variations will let us characterise many more pre-orders. The next pre-order that we study is

the client pre-order.

4.2. Client pre-order 63

4.2 Client pre-order

In the previous section we have studied when a server py is better than a server p;, in the sense
that po satisfies more clients than p; with respect to the MUST relation. In this section we take the
dual stance; we study when a client process 7y is satisfied by more servers than a client 1. To this
end we introduce a pre-order for clients (Definition , and show examples of refinements take can
(not) take place. The examples show that the client pre-order differs from the server pre-order ,
thus we have to devise an alternative characterisation for the client pre-order. Throughout this section
we put forth the notions that we need to give this alternative characterisation (Theorem .

Definition 4.2.1. [MUsT-client pre-order |
We write rq Ecn ro if and only if p MUST 7; implies p MUST 72 for every process p. We refer to the

relation Ecm as MUST client pre-order . O
Notation Similarly what done for Esvn’ also to reason on Ecm we are free to use the general

summations Y and €. This is justified by the fact that ~¢;r is commutative and associative with
respect to @& and +, where < is the equivalence relation given in the obvious way by ESVR.

The relation & o 18 indeed a pre-order, as the definition implies immediately that c o 18 reflexive
and transitive. In view of Lemma the process 1 is a top element of Ecmv while the terms 0

In our study the elements of & which are not bottom will

and 7°° are bottom elements of & ewr

~cLr’
play a crucial role.

Definition 4.2.2. [Usable client |
Let

UNET ={r | pMUST r, for some server p}

If r e UNTT we say that r is a usable client. O

Intuitively, a client is usable if there is at least one server which satisfies it. It is straightforward to

see that every usable client is not a bottom element of 5 : if r € Uy’ then r I 0.

Intuitively, if 1 & o T2, then relation L . ensures that the interactions required by ro to reach a

~CLT

successful state are fewer then the interaction required by ry.

Example 4.2.3. In this example we discuss some pairs of clients (not) related by the client pre-order.

Let 71 denote the process depicted in Figure [£.6]

a0 L, 0
al . 1&1
1 ”LZCLT 0
o Sgr O

The inequality «. 0 & o 018 true because neither client ever report success, so they are not satisfied
by any server. In fact, a.0 <cyr O.

To prove the second inequality let p MUST «. 1; we have to show that p MusT 1 & 1. Intuitively, the
assumption p MUST «. 1 implies that p || , and this lets us prove that in all the maximal computations
of p|| 1 & 1 the client reduces to 1 (i.e. reaches a successful state).

The third inequality follows from p MUST 1 and p MUST 0 for every p; this being true because 1
reports success immediately, whereas 0 can never report v .

The intuition behind the fourth inequality is that all the trace that lead r; to a successful state,

can be performed by 7 also never reaching a successful state and eventually getting stuck. O

64 Chapter 4. Must pre-orders

Example 4.2.4. Here we discuss how sensitive Ecm is to divergence.

Eon 101
~CLT 1 +TOO
%CLT 1 @TOO

~cLT (04-1) &b ((1 —|—T°°) &) (1 _|_7.oo))

Bow T

_ R R =

Q.
(1+7°) @ (1+7°

The divergence on the server side lets us explain the inequality 1 ZZ 1 @& 1. The process 1 reports

CLT
success immediately, whereas 1 @ 1 requires one reduction to reach a successful state. A server that
does not allow the clients to reduce distinguishes the two processes.For instance

T MusT 1, 7 MusT1® 1

v
The latter fact follows from 1 & 1 -/ and the maximal computation
1ol Sre|1el ...

To prove that 1 £

that under the assumption of convergence one can prove that 1 ,ECLT 11

o 1 @ 1t is necessary to use a divergent server, and in Example {4.2.26| we will see

The inequality 1 Ecm 1 +7°° is true because both processes perform v, so for every process p
one can prove that p MUST 1 and p MUST 1 4+ 7°°. This shows that a client is free to diverge after it
has reached a successful state.

The inequality 1 ¥

successful state.

o L © 7% is true because the client 1 & 7°° can diverge having reached no

We discuss the fourth inequality, a.1 5 =, where r = (a.1) & ((1 +7°°) @ (1 +7>°)). The
reason for the inequality to be true is that if p MUST «.1 then p converges; we prove this fact.
Suppose that p MUST «. 1; this implies that p does not diverge, for otherwise there would exist a non

client-successful computation of p || .1, namely
alllp"alllpalllp-alllp——...

We have proven that if p MUST «. 1 then p converges. Now we prove that if p MUST «. 1 then p MUST r.
Suppose that p MUST «.1; we show that all the maximal computations of r || p are client-successful.
The state r is defined by a top-most internal choice, so it does not perform any visible action. It follows
that in any maximal computation of r || p, the process p is bound to reach a stable state p’; this being
true because r does not communicate and p converges. After p has reached a stable state, r reduces to
(a) a.lor to (b) (1 +7°°) @ (1 +7°°), and this term reduces further to the successful state 1 + 7°°.
If (a), then p’ MUST «.1 follows from the assumption on p MUST a. 1, so the maximal computation
at hand must be client-successful; if (b) then the maximal computation at hand is client-successful
as 1 +7° 4. We have shown that P MUST 7.

The last inequality shows that unsuccessful divergence is not equivalent to successful divergence;
for instance 0 MUST (1 +7°°) @ (1 +7°°), and 0 MUST 7°°. This lets us insist on the fact that
it does not matter whether a client diverges or not; the important aspect is whether the divergent

computations of a client reach a successful state or not. O

~SVR

In view of the Example and Example one can show that L is not comparable

with ECLT; moreover divergence is not necessary to prove this;

ESVR ,@ ECLT’ ECLT g ESVR (4'9)

4.2. Client pre-order 65

v
p==,p P = [UT-AX]
V=uq v
p—=,q P PhP A [UTTA]
;s
D =yq

v
2% ,q P 5 p/,p - [UT-ALPHA]

Figure 4.5: Inference rules for the functional F—,

To see why the negative inclusions (4.9)) are true observe that

al S, a0 al Z.. a0
al+a0 ., 0 al+a0 5, . 0

~CLT"

It follows the characterisation of ESVR given in Theorem [4.1.21| does not capture &

This section is devoted to the formulation of a behavioural characterisation of & To characterise

~CLT"
the server pre-order we used the notions of convergence, trace and acceptance set. We follow a similar
approach to characterise the client pre-order; throughout this section we show that, as they stand,

those notions do not let us characterise & and we amend them so as to obtain a characterisation

~CLT?
of S .-

Example 4.2.5. One can prove that S.o.1 5 7, where 7 denotes 5.(y.0 + 1). However the
acceptance sets of those clients are not related as required by Theorem |4.1.21] For example {y} €
Acc(r, B) but there is no B € Acc(f.a. 1, 3) satisfying B C {v}. This follows since Acc(S.«.1,3)

contains only the set {a}. O

The characterisation of the server pre-order pq ,ESVR p2 in Theorem demands that every
interaction offered by p, after performing a trace s, represented by a ready set in ACC(pa,s), be
matched appropriately by a set of interactions of p; after performing s. However, the reasons for
1 Ecn ro being true are different. We only require possible deadlocks in o to be matched by ry
so long as ry has not reported a success. So in Example we should not require the ready
set {y} € AcC(rq, B) to be matched by one in Acc(5.a. 1, 8) because ro can report success immediately
after performing .

To formalise this intuition we need some notation for ready sets of deadlocksﬂ after unsuccessful

sequences of actions.

Definition 4.2.6. [Unsuccesful traces]

Let F—, : P(CCSy, x Act* x CCSyr) — P(CCSyr x Act™ x CCSy,) be the rule functional given
by the inference rules in Figure Lemma and the Knaster-Tarski theorem ensure that
there exists the least solution of the equation X = F_, (X); we call this solution the unsuccesful
traces, and we denote it =, : That is =, = pX.F—, (X). The predicate =, is extended to
u € Act™ by letting r :u>/ if and only if there exists a t € Act;” such that

. al o? al v
o ift=0ala2a3... then r =ryg —> r; — ro — ..., and for every n € N, r,, -/=;
o for every n € N u, = (t)\, for some k € N O

Intuitively, we would like p == ~q to mean that p performs the sequence of external actions s

ending up in state ¢ without passing through any state which can report success; in particular that

n this context we deem a state “deadlock” if it is stable.

66 Chapter 4. Must pre-orders

neither p nor ¢ can report success. As the relation =, is not defined directly in terms of —, but

it is a fixed point of a rule functional, a proof is in order.

Proposition 4.2.7. [Operational meaning of =/ |

1 2 n
For every p,q € CCSyr, p == py if and only if s = (ata?...a%)\,, p 2 g 25 25 py, and for
v
every 0 <1i <n, p; /.

Proof. We have to prove two implications, namely

1 2 n v
\T//pn then p i>p1 S ipn and for every 0 < i < n, p; -

aZ...am)

(i) it p 7oz
ey . al a? o . v s
(ii) if p — p1 — ... — p,, and for every 0 < i < n, p; -4, then p =, ¢.

(alaZ..am),

We prove the implication . The argument is by induction on the derivation of p =~ iy yae

Base case In this case, the last rule applied in the derivation is the axiom [UT-AX], that is

v

p=p P = [UT-AX]

v
2...a =¢), we see that p -/>.

T

o p, = p. By letting n =0 (i.e. ala

Inductive case The last rule used to derive p == ;¢ is [UT-TAU] or [UT-ALPHA]. In the first case

the derivation has form

==yt
,p — p'; [UT-TAU
p = pm PP]

Since the derivation of p/ == +q is shorter than the derivation of p == 4, the inductive hypothesis
v

1 2 n
ensures that s = (ata2...a2)\,, p' = po 2o 25 025 py, and for every 0 < i < n, p; —+. By

letting pg = p and p’ = p; we obtain the action sequence

2 a

T o o 7
Po——>pP1—>pP2 —7 ... 72 Dn

v v
and since p -4, for every 0 < i < n, p; /.

If rule [UT-ALPHA] was applied then the derivation of p ==, ¢ has form

P=wa
as! p -, p — p/[UT-ALPHA]
p 4

It follows that s = as’. Since the derivation of p/ == +q is shorter than the derivation of p = s

1 2 n
the inductive hypothesis ensures that s = (ala?. AN D= po RN P1 S5 pn and for

1

v .
every 0 < ¢ <mn, p; /. By letting po = p, p’ = p1, f1 = a and for i > 1, 5; = a’~! we obtain the

action sequence

po 25 pr Py B P,

v v
and since pg >, for every 0 < i < n, p; /.

We have proven implication ; now we prove implication . Suppose that

Otl

- of af
a) p—p1 — ... — pp, and

4.2. Client pre-order 67

v
b) for every 0 <i <mn, p; /.

Let t = ala?...a®, and s = (r)\,. We have to exhibit a finite derivation of p ==, q.

The argument is by induction on n.

(Base case n = 0) In this case t = ¢, so p, = p. The string s is empty as well, so we have to

derive p :€>/ p. The derivation amounts in an application of the axiom,

v
< ; [uT-Ax
p—p P el]

(Inductive case n = m + 1) In this case t = ayt’ or t = 7t’ for some ¢’ € Act™ such that ¢’ has
length m.
’ V/
In the first case, there exists a p; such that p — pq A Pn. Since for every 1 < i < n, p; -4, and ¢/

')\,
is shorter than ¢, the inductive hypothesis ensures that there exists a finite derivation of p; <:>\> 4 Dn-

We extend this derivation as follows,

')\~
P1 == ¢ Pn v
— (03
N p -, p — p1 [UT-ALPHA]
p = A Pn

Since a(t')\,; = (at')\» = (t)\, = s, we have derived p :S>/q.
In the second case, there exists a p’ such that p — p’ AN q. e, there exists a p; such that p —

’ \/
p1 LN Pn. Since for every 1 < i < mn, p; />, and t’ is shorter than ¢, the inductive hypothesis ensures

t' -
that there exists a finite derivation of p; <:>\> «Pn. Now we apply rule [UT-TAU],

;-
P = ¢ DPn v
- - T
s p —~,p — p1 [UT-TAU]
p :\> & Pn

As (t')\, = (Tt')\» = (t)\, = s, we have derived p ==, q. O

By using unsuccessful traces, we can define a notion of acceptance set that suits our aim (i.e.

characterise).

Definition 4.2.8. [Unsuccesful acceptance sets |

For every process p and trace s € Act™, let
AcCy (p,s) = {5(a) | p =540+)
We call the set ACC 4 (p, s) the unsuccessful acceptance set of p after s. O
We can now try to adapt the characterisation for servers in Theorem to clients as follows:
Definition 4.2.9. Let r{ <paq 72 if for every s € Act™, if r; || s then
(i) ra s,

(ii) for every B € ACC 4 (r2, s), there exists some A € ACC 4 (11, s) such that A C B. O

68 Chapter 4. Must pre-orders

a/\ N AN,
ﬁa 5/3/ ()8 5 (Y
/ /\ /\/

O, 0,0 © e O

Figure 4.6: Unusable and usable processes (see Example [4.2.13))

Example 4.2.10. [Ready sets of deadlocks]

The difference between Definition and Definition is that unsuccessful acceptance sets
are defined taking into the account only unsuccessful traces, and we have already motivated this
difference. There is a second more subtle difference. While in Definition 4.1.11] it is not necessary
to use deadlock states, in Definition it is _necessary. We explain why. Let <., be defined

as =<pad, but omitting the requirement that ¢ 7L> in the definition of unsuccessful acceptance sets.

The relation <4 is not complete: C = & <j.4. For instance, observe that .1 5 1 ®a.1. We
cannot prove a. 1 {4 1 @ a. 1. The problem is that) € AcC 4 (1 @ . 1,¢) , that the set ACC 4 (a. 1,¢)
contains only the singleton {«}, and that {«} Z 0. O

Intuitively, only deadlock states have to be taken into the account in the unsuccessful acceptance
sets, because the interactions they offer are necessary to reach a successful state. In Example
the term 1 @ a. 1 does not need to perform « in order to reach success, as it is not stable, and, in
particular, it can reduce to a successful state. On the other hand 1 ® .1 — .1 and the client a. 1
has to perform « in order to report success.

Unfortunately, as the name suggests, there are still problems with the alternative pre-order <paq-

Example 4.2.11. One can show that r Ecm ~v.a.. 1 where r denotes the client v.(a. 1 +4.0). However
they are not related by the proposed =<paq in Definition [1.2.9] as the comparison of the acceptance sets
fails. Obviously r || v and {a} € AcC 4 (v.a.1,¢). But there is no B € ACC 4 (r,7) such that B C {a};
this is because ACC 4 (r,7) contains only one element, namely {«, 5}.

The problem is the presence of b in the ready set of a.1 + 3. 0. O

To overcome this problem we need to develop even more notation. But first we give some intuition.
No server that satisfies the client 7 in Example can ever offer an interaction on g after an offer
on the unsuccessful trace 7, because this would make the client fail. Intuitively the action g is unusable
for r after having performed the unsuccessful trace «; this is because performing 3 leads to a client, 0,
which is unusable, because it can never be satisfied by any server. So when comparing ready sets after
unsuccessful traces in Definition we should ignore occurrences of unusable actions.

To formalise this notion of usable actions of a client after an unsuccessful trace s we use the notion
of usable client (Definition . We also modify the definition of p AFTER s, which gives the set of

residuals of p after any trace s, so that only the unsuccessful traces are considered

Definition 4.2.12. [Unsuccesful after]
For any process r € CCS,,, and s € Act* let (r AFTER 5) = {q | r ==, q}. O

Example 4.2.13. In this example we use AFTER , to discuss the usability of the processes in Fig-
ure Consider the left-most process, 11 = a.(8.0 +6.1) + a.(8.1 +6.0). The longest traces
that r1 are ab and ad. According to Definition [4.2.8

(ri AFTER o) = {0}
(ri AFTERy o) = {0}

4.2. Client pre-order 69

W re ug{%ST; [CCONV—AX}

e}
7 usbl, as "€ Uar T >y [CCONV-NOT]

@D(r AFTER 4 @) usbl /s
rusbl / as

r € UNST 7 == 45 [CCONV-ALPHA]

Figure 4.7: Inference rules for the functional Fp ,

The sets above contain an unusable client, namely 0. This means that while performing the traces o3
and ad, the process r; may reach 0 and we do not know, a priori, if this will happen or not. Indeed,
one can prove that r & UNST.
The process r2 = a.(8.0 +6.1) + a.(1 + 5.1 +0.0), on the other hand is usable. Consider the
following sets
(rg AFTERy) = {0}
(ro AFTER 4) =)

The process 7o has the same issue as ry; along af (i.e.. it may non-deterministically fail), but it
performs ad passing always via a successful state; this is the reason why (r; AFTER, ad) is the

. s .
empty set. Indeed, if ro — rd — r2 then either
o i =7, r2=1and so 12 -, or
2 —'272— 2 ’
v
e ri =rl and so ri ——

Indeed one can prove @.d.0 MUST 72, so rq € UMNSPT.

Let us apply AFTER 4 to the longest traces of r3 = a.(8.0 + 1) + «a.(1 +.0).

(rs AFTERy aff) =
(rs AFTER y af) =

Similar to ro the trace ad always leads r3 to a successful state, and so does the trace a3; for instance

one can show that @.53.0 MUST r3. It follows that also 73 is a usable client, r3 € UMYUST. O
Now we define a convergence predicate for clients.

Definition 4.2.14. [Usability after unsuccesful traces |

Let Fusbl, @ P(CCSyr x Act™) — P(CCSy, x Act™) be the rule functional given by the inference
rules in Figure[f.7] Lemma[C.0.23 and the Knaster-Tarski theorem ensure that there exists the least
solution of the equation X = Fypi, (X); we call this solution the client convergence predicate, and we
denote it usbl ,: That is usbl y = uX.Fuep, (X). We extend the relation usbl , to infinite strings
by letting for every u € Act™, p usbl , u if and only if p usbl , uy, for every finite prefix uj of u. O

Although the predicate usbl ; seems to check only the usability of a client, in Lemma [4.2.21] we
will establish that usbl , enforces also a form of convergence. This justifies the symbol {.
Intuitively 7 usbl , s means that any state reachable from r by performing any subsequence of s

is usable.

Lemma 4.2.15. For every s,s" € Act* and r € CCSy,, if 7 usbl ;- s, s’ is a prefix of s and r é/,
then @(r AFTER 4 s') € UM

Proof. First observe that @(r AFTER 4 €) € UMYST. This is true because regardless of the string s, to
derive 7 usbl / s it is necessary that r € Uy".

We reason by induction on the length of s.

70 Chapter 4. Must pre-orders

Pa MUST 171 D 12 D 13 D T4

\ o
«
B
pp MUST 15 @ 16 D 17

a
B \K

Y Y

Py MUST 15 @ 19

Figure 4.8: Suppose that r usbl, «afy. The existence of p,,pg, and p, is a consequence of
Lemma [4.2, 15|

(Base case, len(s) =0) In this case s = ¢, so if ' is a prefix of s then it is empty. We have to prove

that @(r AFTER 4 €); we have already seen that this is true.

(Inductive case, len(s) = n+ 1) In this case s = as” for some s” € Act™; and we have to prove
that for every s’ prefix of s, @(r AFTER y as’) € UNE".

Fix a s’ that is a prefix of s. If s’ = ¢, then we have to show that @(r AFTER 4 €); we have already
proven this. Suppose now that s’ # ¢; then s’ = aw, where w is a prefix of s”’. We have to show
that @(r AFTER y aw) € USSP . Definition implies that

@(r AFTER y QW) = @(@(r AFTER ;) AFTER 4 W)

so, by letting 7 = @(r AFTER 4 «), it is enough to to prove that @ (7 AFTER y w) € Uy .

Since s” is shorter than s, the inductive hypothesis states that

for every w’ € Act* and 1’ € CCSy, if 7 usbl ; w', w' is a prefix of s” and r ==/,
then @(r AFTER y w') € UNT".
The hypothesis 7 usbl , aw implies that 7 usbl , w; the hypothesis r %/ implies that 7 =w>/, and
by assumption w is a prefix of s”.

The inductive hypothesis implies that @ (7 AFTER w) € UNIST. O

In Figure we suppose that the client r usbl , a8y, and it performs the trace a3y unsuccessfully.
The existence of the processes p’s on the right side of the the figure is the consequence of Lemma[4.2.15
We do not know how these servers p’s are defined; nevertheless, Lemma [£:2.15 ensures that they exist
S0 in our reasoning we can use them.

Now the set of usable actions for a client can be defined as follows.

Definition 4.2.16. [Usable actions after unsuccesful trace |

For every r € CCS,,; and s € Act™, let
uay(r,s) ={a € Act | r =%, implies r usbl ; sa'}

be the set of usable actions of r after s. O

Thus if o € ua/(r,s) we know that the set of clients (r AFTER 4 sc) is non-empty, and the client

given by the internal choice among them is usable; that is, there is some server which satisfies it.

Example 4.2.17. Let us revisit Example First note that although r can perform the se-
quence vf3, the action § is not in ua 4 (r,7) because (r AFTER ; v(3) is the singleton set containing 0,

which is not in U} P°". Instead we have ua 4 (r,7v) = {a}.

4.2. Client pre-order 71

Now suppose we were to amend Definition [4.2.9] so that instead of demanding A C B, we relaxed
this to ANuay(r1,s) € B. It would then follow that r <paq 7.cv. 1, thereby correctly reflecting the
fact that r .. v.c. 1. O

~CLT

It is essential that in Definition [4.2.14] we consider only the unsuccessful traces s rather than all

the traces.

Example 4.2.18. We explain the previous statement. Consider the client
r=B.(1+a0)&a(lel))

and note that B.@.0 MUST r while B.@.0 MUST 8.0, and so r Z_ 3.0

Now consider the consequences of using AFTER rather than AFTER, in Definition The
proposed amendment to the definition of <pag suggested in Example [£.2.17] would no longer be sound,
as 1 <pad 8.0 would be a consequence.

This is because (r AFTER [a) is the set {0,1} and so @(r AFTER Sa) is the client 0 & 1 which
is not in Uy;"". This would lead in turn to ua 4 (r,) being 0, from which 7 <paa 3.0 would follow.
The incorrect reasoning involves the unsuccessful acceptances after the trace 5. Acc (8.0, 5) = {0}
and the unique ready set it contains, (), can be matched by A N @ for some set A € Acc y(r,),
namely A ={a}.

However, with the correct Definition this reasoning no longer works, as ua 4 (r, 8) = {a}.
O

The amendment to Definition suggested in Example is still not sufficient to obtain a

complete characterisation of the client pre-order.

Example 4.2.19. Consider the clients 71 = «.(8.6.0 + 8.1) and r9 = «.7y.6.1. The term 71 is not
usable, so r; & our 72> although 7y Zbad T2, €ven when <p,q is amended as suggested in Example
To see this first note {d} € ACC/ (r2, y), and 7 || ay, although 7 can not actually perform the
sequence of actions a7; 1 | @y merely says that if r; can perform any prefix of the sequence ac to
reach 7’ then 7" must converge. Consequently ACC 4 (71, ay) is empty and thus no ready set B can be
found to match the ready set {d}. O

To fix this problem we need to relax the circumstances under which the ready sets in Definition[4.2.9]
are matched. Note that there the predicate || s already moderates when the matching is required.
For example a.(7%° + [.1) <pad @.7.0.1, where 7°° denotes some process which does not converge.
This is because a.(7*° + 8.1) || a is false and therefore the ready set {y} € ACC 4 (a..6.1,) does
not have to be matched by a.(7%° + 5.1) . A convenient way to address the problem encountered in
Example is to strengthen this convergence predicate.

The client convergence predicate suits our aims, as it describes precisely when we expect ready
sets and unsuccessful traces to be compared. We explain this in a series of lemmas.

First we deal with some technicalities. We introduce a predicate that ensures that if a client

diverges, then it reaches a successful state.

Definition 4.2.20. [Convergence to success |
We say that r converges to success, denoted r |}¥, whenever if there exists an infinite reduction

. v
sequence as r = rq —~5 11 —5 19 —> 13 —> ... then there exists n € N such that r, ——. O]

The predicate ¥ ensures that if a process diverges, then along the diverging computations it reaches

a successful state in a finite amount of internal moves. For instance 7°° |{¥', whereas if we let

r=000 o1 +7))

72 Chapter 4. Must pre-orders

then 7 | ; this is true because the infinite computation

r—5001+7°) 5147 147
is the only diverging computation of r, and it reaches a successful state after 2 reductions. Note
that 0 @ 0 |; this is true because 0 @ 0 performs no infinite series of reductions, so the predicate |} ¥
is trivially true.
Since for every s € Act*, r usbl , s ensures that r € Uy, there is relation between the convergence

predicate for client, usbl -, and the predicate of convergence to success 4.
Lemma 4.2.21. If 7 € UM%" then r ||V .

Proof. As r € UMY there exists a p such that p MUST 7. Fix a divergent computation of r, and zip
it with p,
pllr=pllro—pllrn——pllrn—...

The definition of MUST ensures that one of the derivatives of r is successful. O

Note that r usbl , s ensures that r converges only while performing unsuccessful traces; for in-
stance (1 4+ 7°°) usbl /- ¢, and 7 ysbl , . We motivate this choice in Example [4.2.33

We have enough material to expose the properties of Cgy that we require in the characterisation.
Lemma 4.2.22. Suppose rq Ecm ro and as € Act™. If rq usbl / as and 7y :a>/. Then
(i) 1 =
(ii) @(r1 AFTER 4) usbl 4 s
(iil) @(r1 AFTERy) 5, @(r2 AFTER 4)

Proof. We divide the argument in three parts, which prove respectively point 7 point and
point .

We prove that r; == - The hypothesis r; usbl , «s implies that r; € UNTT, thus there exists
a p such that p MUST 1. Let p = p + @.7°°. By hypothesis there exists a 4 such that ro :a>/r’2; it

follows that the composition rq || p performs the following maximal computation
rol|lp=ry|| T = b || T =1 || T = ...

The computation above is due to an interaction (via) and then to the divergence of 7°°. The deriva-
tives of 75 that appear in the computation above also appear in 7y == + T, so they are not successful.
It follows that the maximal computation we have depicted is not client-successful, and so p MUST rs.
The hypothesis r; Ecm r9 ensures that p MUST rj, so there exists a maximal computation of p || rq
that is not client-successful. In view of the construction of p, this computation cannot be due to p, for
otherwise p MUST 7, so it must be due to @.7°°. This is possible only if 7 ==. Since the resulting
computation is not client-successful it follows that 7 :a>//r’1.

We prove point ; namely that @(r1 AFTER, «) usbl, s. By hypothesis ry usbl, as, so
if 7 ==, then @(r; AFTER 4) usbl , s. We have already proven that r; == ,, so (71 AFTER
«) usbl 4 s.

Now we prove point (iii). First, note that point (i) and Definition imply that (r; AFTER ,
a) # 0, so the term @(r1 AFTER, «) exists. We have to explain why @(r1 AFTER, o) S .
@D(r2 AFTER «). Let p" MUST @@(r1 AFTER, «); we have to prove that p’ MUST)(ry AFTER
a). Let p = p + @.p/, where p MUST r1. The ensuing implication is true

if p MUST ry then p’ MUST @ (72 AFTER / «).

4.2. Client pre-order 73

In view of the hypothesis that ECLT r9, to show that p MUST 79 it suffices to prove that p MUST ry.
This is what we prove. Definition requires us to show that all the maximal computations of r1 || p
are client-successful.

Fix a maximal computation of r || p,
rollp=rillpo =i llpr =13 |2 — ... (4.10)

In the computation above either there are no interactions, or an interaction happens.
Suppose that no interaction happens. Then p; — po — p3 — and 70 —» 1 5 2 T .
. T
If the computation reaches a stable state r% || p;, then there exists a p’ such that p = p’ -/, and

. T
ri || p’ —4; it follows that there exists also the maximal computation

. T
rllp=rillp

The assumption p MUST 7; implies that the computation is client-successful; this ensures that the
computation in (4.10) is client-successful as well.
If the computation in (4.10) contains no stable state, then one of the processes diverge. If the

client diverges, then there exists the infinite computation
rlp—rillp—rillp— ...

The assumption p MUST 7y implies that the computation we unzipped is client-successful. If the server

diverges then there exists the infinite computation
T T T
rillp—mrllpr—mrllp— ...

The assumption p MUST r; implies that r; L), so the computation we unzipped is client-successful.

Suppose now that the computation in (4.10)) contains interactions. Let ri || p; be the state that
performs the first interaction; that is r{ = r{ and p = p;. Moreover, let rlf"l || pit1 be the state
reached by the interaction that is

) i+1 5
ry— 1] Di — Pit+1

; i [P-SYNCH]
rillpi — i [pia

If ri*' & (ry AFTER §), then there exists a 0 < k < i + 1 such that r¥ —/>, so the computation
in 1' is client-successful. In the opposite case we have 7 SN +riT. Our reasoning now depends

on the process p;41.

e If p;y1 = p, then § = a. Tt follows that r{™* € () AFTER;). By construction we know that
pit1 MUST @(rY AFTER, «), so the computation in (4.10) must be client-successful.

e If p;ry # 9/, thenp 2 pir1. The facts that p MUST 71, and 7§ :5>/’I“i+1 ensure that p;41 MUST

Ti“, and so the computation in (4.10) is client-successful.

We have proven that a maximal computation of r; || p is client-successful. Since we used no assumption
on the maximal computation, we have shown that all the maximal computations of r; || p are client-
successful, and so Definition [3.1.1| ensures that p MUST r;.

O

Lemma 4.2.23. Suppose that rq ECLT re. For every s € Act™, if r usbl s then ry usbl / s.

Proof. We begin by proving that ro € UNT". By hypothesis 1 usbl, €, so there exists a p such
that p MUST r;. The hypothesis r; ECLT r9 ensures that p MUST rg; this implies that ro € UNST.

74 Chapter 4. Must pre-orders

Now we prove the lemma, reasoning by induction on the length of s.

uMUST

cur . We

Base case (len(s) = 0) In this case s = ¢ and we have to prove ry usbl , €. Since 75 €

use the axiom in Figure [£.7] to derive

— 1y € UMYST [cCONV-AX
1 usbl /€ 2 ar |]

Inductive case (len(s) = n+ 1) In this case s = as’, and we have to prove that 75 usbl, as’.

«
If ro =%, then we can infer

(03
_— MUST
71 usbl ;s ™2 € UNT" 1o == [CCONV-NOT]

If 7o :a>/, then we have to prove that @(rs AFTER, «) usbl, s’. The hypothesis Ecm 79,
r1 usbl » as’ and the assumption rq == allow us to use Lemma |4.2.22] That lemma implies

o @D(r1 AFTER 4) 5 D(r2 AFTER 4)
e P(r1 AFTER 4 «) usbl 4

As 5" has length n we are allowed to apply the inductive hypothesis, which implies that (72 AFTER

a) usbl 4 s’. Now we derive

r9 AFTER ; «) usbl / s’
i i

ro € UMYST o =25 [CCONV-ALPHA
,,,1 usbl/ as/ 2 CcLT 2 /[]

Lemma 4.2.24. Suppose r; Ecm ro, and r1 usbl ;4 s. If 7o :S>/ then rq :s>//.

v
Proof. First we prove that r; —/+. By hypothesis we know that ry == + for some s; this ensures

v
that ro —4>. As the process 7°° diverges, we can infer the following maximal computation,
ro || T = || T = || T = ...

Since the computation is not client-successful, it follows that that 7°° MUST ro, and so the hypothe-

v
sis r1 Ecm ro implies that 7°° MUST ry; it follows that ;1 -/, for otherwise 7°° MUST ry.

We are ready to prove the lemma. The argument is by induction on the length of s.

Base case (|s| = 0) In this case s = ¢, so we have to prove r; == ,. Consider the following

inference tree,
v

r1 > [UT-AX]

T1 :E>//T’1

from which it follows r = -

Inductive case (|s| = n+1) In this case s = as’, so we know that (a) r1 usbl , as’, and (b) ro g;//_
We have to prove that r; a:s;//.

Point (b) above implies that é/, so (a) and the hypothesis r1 5, . 72 let us apply Lemma
It follows that

(1) @(Tl AFTER y a) ECLT @(7’2 AFTER y Oz)

(2) @(r1 AFTER 4 «) usbl 4 s

4.2. Client pre-order 75

Since s’ is shorter than s, we can use the inductive hypothesis, so in view of (1) and (2),
@(7’2 AFTER ;) ==, implies @(rl AFTER 4 @) ==/ (4.11)

We prove that the premises of the implication above are true. The hypothesis 7o a:S; + ensures that
there exists a 7 such that ro == /7% é/; Definition implies that ry € (12 AFTER 4). It
follows that one can infer @(ro AFTER ; o) == ;7 = +; in turn this implies that @(ro AFTER »
@) é//. The implication in ensures that @ (r1 AFTER y «) é/r for some 7. There exists a r}
such that r; :a>/r’1 é/rl . Proposition and the transitivity of = imply that r; é/r. O

Lemma [4.2.24] is true also for infinite unsuccessful traces.
Corollary 4.2.25. Suppose rq Ecm ro and r1 usbl 4 u. For everyu € Act™, if ro :u>/ then rq $/,

Proof. We have to prove that ry :u>/. Definition requires us to show a t € Act.® such that

2 3 v
o if t =ala2a®... then 7 =79~ r —ry — ..., and for every n € N, r,, -
o for every n € N u,, = (fx)\, for some k € N O

Let u = aqasas.... The hypothesis 71 usbl, u, Definition and Lemma imply
that for every k € N there exists a pj such that py MUST @(r1 AFTER, uy). For every k € N,
let Ax = pp + rpr1-Ary1-

The hypothesis 7y == « let us prove that Ay MUST ra, so the hypothesis ry T = ro implies
that Ap MUST 7. There exists a maximal computation of r1 || Ag, say C, which is not client-
successful. We prove that C' is due to the trace u.

By hypothesis 71 usbl, u, thus in C' no derivatives of r diverges, for otherwise C' would be
client-successful. Thanks to the construction of the p;’s, for every k& € N, no interaction is due to
the summand py, because otherwise the computation would be client-successful. It follows that the
interactions that take place in C' are due to the summands @;.A; . Let ¢t be the contribution of r; in

the computation C. What argued thus far implies that for every n € N there exists a k € N such

1
that (tg)\r = un. Let t = ala? ... in C the client r; performs the action sequence rq = 19 RN ri 25
v
. ; since C' is not client-successful, it follows that for every n € N, r" —/>. O

Lemma [£:2:24] is not true if there is no divergent term in the LTS.

Example 4.2.26. In Example we have argued that 1 Z 1 @® 1 because of the divergent
server 7°°. In this example we prove that convergent servers cannot distinguish 1 and 1 & 1. Suppose

that p || for every p. Then 1 &_ . 1@ 1; to prove this we have to show that p MUST 1 @ 1 for

~CLT

CLT
every p, under the assumption of convergence.
Take a maximal computation of 1 ® 1 || p:
lelllp-—rlp —... (4.12)

As p || , any prefix of the computation due to internal moves of p is finite: for some k € N the

-
computation in (4.12)) contains a state py, || r such that pr -~ and rp = 1. Since the computation is
maximal, and 7, — 1, the state py, || r is followed by the state state pyi1 || rx41 Where pri1 = p
and 7+1 = 1. Since 141 L> the computation in 1) is client-successful.

We have shown that 1 Ecm 1@ 1. To see why Lemma [4.2.24 is false, note that 1 usbl/ e,

and 1 ® 1 :€>//. The lemma states that 1 é/, but this is not true, because 1 .

Ingeneral 1 ® 15 or 1. What argued in the previous example implies that convergent servers cannot

tell apart 1 from 1 @ 1: 1 <¢p 1 @ 1. This means that under the assumption of convergence it is safe

to postpone the action v* after any finite amount of internal moves. We depict this in Figure [4.9

76 Chapter 4. Must pre-orders

Figure 4.9: If servers converge, it is safe to perform internal computations before reaching success.
See Example [4.2.26)

Lemma 4.2.27. Suppose r1 L, 2. For every s € Act®, if ry usbl, s and AcCy (r2,s) # 0,
then ACC (11, s) # 0.

Proof. The proof is by induction on the length of s.

Base case (|s| = 0) In this case s = ¢, and we have to prove ACC 4 (r1,e) # 0. Definition

T

requires us to exhibit a r{ such that r; ==, 7] —/>.
By hypothesis we know that ACC 4 (rz,€) # (0 and that r1 usbl ;- ¢; the former fact ensures that for
T
some 14, ro = vy —+. As the process 0 is stable and offers no actions, we can infer the following

maximal computation,
-
ro|[|0=715||0 =150/

The computation above is not client-successful, so 0 MUST 75, and so the hypothesis r| & o T2 implies
that 0 MUST r;. Definition implies that r; || O performs a maximal computation which is not

client-successful. The process 0 cannot interact with r1, thus the computation is due either to (a) a

.
divergence of r1, or (b) a reduction sequence :€>//r’1 —~, for some 7. The hypothesis r; usbl / €
implies that 71 |}, so the maximal computation at hand cannot be due a divergence of ry, for other-
wise it would be client-successful. It follows that (b) above is true, and so that S(r1) € ACC 4 (11, €).
Inductive case (|s| =n+1) In this case s = as’, so we know that

(a) 71 usbl , as’,

(b) ACC (1o, aus") # 0.

We have to prove that ACC 4 (1, as”) # 0.
The hypothesis ACC 4 (2, as’) # () implies that ro == ,; the hypothesis r, e T2, 71 Usbl 4 as’.

Lemma [4.2.22] imply the ensuing statements
(1) @(Tl AFTER ¢ a) E(:LT GB(TQ AFTER y Oz)
(2) @(r1 AFTER ¢) usbl 4
As s’ is shorter than s, the inductive hypothesis guarantees that
accy (@D (r2 AFTER 4 @), s') # 0 implies Acc , (@D (r1 AFTER 4 @), ') # 0 (4.13)

We show that the premises of the implication in (4.13)) are true: AcC 4 ((r2 AFTER 4), ") # 0.
This fact follows from the hypothesis that ACC 4 (r2,5) # 0, (b), and the equality

ACC 4 (ro,as") = ACC/(@(T‘Q AFTER 4), s')

4.2. Client pre-order 77

Now the implication in (4.13)) implies that AcC 4 (D (r1 AFTER »), s") # 0, so the equality

ACC 4 (r1,as’) = ACC/(@(H AFTER y), s')

ensures that ACC (11, as’) # 0. O

Lemma uses Lemma which requires a divergent term, 7°°, to be in the LTS.
Lemma though, can be proven without using Lemma [4.2.22| and a divergent term 7°°. The
alternative proof relies on the property that (unsuccessful) acceptance sets contain the ready sets of
stable states; we have used this fact in the base case of the proof, but not in the inductive case. Also

the next lemma can be strengthened without requiring 7°° in the LTS.

Lemma 4.2.28. Suppose 1| Ecm ro. For every s € Act™, if rq usbl 4 s then for every B € ACC (12, s)
there exists some A € ACC 4 (71, s) such that ANua,(p,s) C B .

Proof. Fix a string s such that B € ACC (ro, s) for some set B, 71 usbl, s, and let s = B1...5,.

The hypothesis let us use Lemma [4.2.27, which ensures that AcC 4 (r1,5) = { A; | i € I} for some
T

non-empty set I. This implies that 71 == ;7] —/, and so 7] ==.

We reason by contradiction: suppose that
for every i € I, the set A; Nua/(p,s) contains an action a; ¢ B (4.14)

In the rest of the proof we use this supposition to define a process P such that
(a) P MUST rq, and
(b) P MUST 74

For every i € I, the assumption that o; € A; Nua 4 (p,s) and Definition 4.2.16 ensure that there
exists a process p; such that
Di MUST @(rl AFTER ; S0y;) (4.15)

Moreover, as 71 usbl , s and 74 :S>/, for every 0 < k < n Lemma [4.2.15| implies that there exists a
process py such that

Pk MUST @(rl AFTER y Sj) (4.16)
where sy, is the prefix of s with length k. We are ready to define the process P. For 0 < k < n let
def Pk + Bk+1'Pk+1 if k& <n

P, =
Zielai.fh‘ 1fk:n
The P we are after is Py.

(a) We prove that Py MUST ry . It suffices to exhibit a maximal computation of ro || Py that is not
T
client-successful. Since B € ACC 4 (12, s), there exists a derivative r5 of 7 such that o :S>/ rh -,

by zipping this transition sequence with Py == P,; we obtain the computation
r || Po= 14| P,

As all the (co)actions offered by P, are not in B, and both P, and r} are stable, so it follows

p
that 74 || P, -4, thus the computation is maximal and not client-successful. We have proven (a),
that is Ag MUST rs.

(b) Now we show that Py MUST 7. Definition requires us to show that all the maximal compu-

tations of m || Py are client-successful. Fix a maximal computation of r1 || Pp.

78

Chapter 4. Must pre-orders

[pk + Biia -Ak+1]£’

Figure 4.10: Tests to distinguish clients (see Lemma [4.2.28))

The contributions of r1 and Py being with a possibly empty prefix of s (resp. §), say
Sig 1 S
r =71, PO — Pj

Let s; be the longest prefix of s that in the computation at hand leads P, to a F;.

The state P; converges. For suppose P; diverges. Then j < n, P; = p; + BjH.PjH, and
p; diverges. (4.16) ensures that p; MUST @(r1 AFTER, s;). Pick a r € (ry AFTER, s;),

v
Definition 4.2.12|implies that r -4+, so we can show a maximal computation of r || p; which is not

client-successful. This contradicts p; MUST €@)(r1 AFTER s;). Since P; converges, so does pj,
. o)
and the action sequence Py N P; can be extended to P N P; = P', where P’ /> (where P’

may be P; itself, for instance if j = n).

If there is a successful state in r; =2 7/ then the computation is client-successful. Suppose
that %//r’ . If " diverges, then it converges to success, because of the hypothesis ry usbl /- s
and Lemma, so the computation is client-successful. Let us suppose that v’ converges, and
that it is stableﬂ As the computation is maximal it contains the state r’ || P’.

If i = n, then P = P,, and as r’ is stable, S(r') € ACCy(r1,s). The set S(r’) contains and
action a; such that P, —. It follows that the computation contains a reduction 1/ || P/ —»
" || py; either r” L>, or, in view of p; MUST 7”. In both cases the computation is
client-successful.

If i <mn, then P' = p} + Bj+1.Pj+1. Since 7’ 7£>, the state 7' || P’ is not stable, for other-
wise pjj MUST 7/, which implies that p; MUST @(r1 AFTER, s;). It follows that ' || P/ —
" || P"; as both 7' and P’ are stable, this reduction is due to an interaction: p 5 P" for

some ¢ € Act. Our assumption on s; ensures that the reduction cannot be due to 3;,.Pj41 ,

v .
so it is due to p},. If v 4 the computation is client-successful. If r” -/, then 7 s 1 and
(4.16)) imply that P” MUST r”, so the computation we unzipped is client-successful.

We have proven that the maximal computation of r; || Py are client-successful, so Py MUST 7.

By assuming the thesis false (see (4.14))), we have defined a process P which lets us contradict the

hypothesis rq ECLT ro; it follows that the thesis of the lemma is true. O

In the previous lemma the server P is defined using an external sum. This is necessary; we explain

why in the next example.

Example 4.2.29. In Lemma [4.2.28| (resp. Figure [4.10) the test used to distinguish two clients is
defined using an external sum. This contrasts with Lemma[4.1.15((resp. Figure 7 in which the test

used to distinguish servers is defined by an internal sum. If we defined the server P in Lemma [4.2.28

using an internal sum then the proof would not work. In this example we explain why.

2Since ' converges, if it is not stable, the computation contains a stable state v/ such that ' = r’/. If v/ is not

stable we use 7’/ in place of r’.

4.2. Client pre-order 79

Consider the clients r1 = 5.(1 ® 1) @ a.y.1 and ro = a.y. 1. One can prove that rq Ecm ro; this
is true because r1 =472 . Moreover note that 1 usbl , a and {c} € AcC 4 (r2,a), so the clients
and ry satisfy the hypothesis of Lemma

Observe how P is defined in Lemma and replace the external sum with an internal sum,

where p MUST r;. It is not true that P) MUST 71, so one of they key steps of the proof fails. To see
why P} MUST r1, note that we can infer the computation

|| P ||aP = B.1el)]| aP />

This computation is maximal and not client-successful. O]
We have gathered enough results to state the alternative characterisation of &

~CLT"

Definition 4.2.30. [Semantic MUST client pre-order]

Let ry Scur 72 if
(1) for every s € Act™ such that r1 usbl / s,
(a) o usbl /s
(b) for every B € ACC 4 (ra, s) there exists some A € ACC 4 (71, s) such that
Anuay(r,s) C B

(2) for every w € Act™ U Act™ such that ry usbl / w, ro :w>/ implies 71 :w>/. O

We obtain the completeness of 3¢ immediately.

Proposition 4.2.31. [Completeness |

If 11 Sy 72 then 71 Zepr 72

~

Proof. This is true because of Lemma [£.2.23] Lemma Lemma [£.2.24] and Corollary O

Unsuccessful acceptance sets contain the ready sets only of stable states; we have motivated this
in Example [4.2.10] This property of unsuccessful acceptance sets implies that in Definition [4.2.30
condition (1b)) and condition are independent, so we have to require both of them.

£
Example 4.2.32. First, observe that 1 L), so 1 =~ 4; whereas 1 @ 1 :5>//, because

lol-=,101 1@17&; [UT-AX]
This difference between 1 and 1 & 1 is essentially the reason why 1 %cm 1 ® 1 (see Example .
Without point li in Deﬁnition the relation =¢rr would not be a sound with respect to & oL
Let <{,q be defined as Definition but omitting point . One can prove that 1 <(,4,1& 1.
This follows from the fact that for every s € Act™ the set ACC 4 (1 & 1,) is empty, and 1 & 1 usbl ;- s.
It follows that the relation <4 is not sound: <j,4 Z 5,.-
Similar to point , also point is necessary to obtain soundness. Define <{,, according
to Definition but omitting point , and let 7 = a.(1 @ 1). One can prove that r <{,4
a.fB.1. Let us see why. The only unsuccessful traces of a..3.1 are € and « ; the client r; usbl / €, a,

moreover rq :E>/ and 7 :a>/ SO 71 <pa.q @.B.1. Note now that r £ «.8.1; this being true

CLT
because @.0 MUST r; while @.0 MUST «a.f. 1. O

80 Chapter 4. Must pre-orders

Example 4.2.33. The predicate usbl, enforces convergence only along unsuccessful traces; if it
required all the traces to converge, as the original || does, then Definition [£.:2:30] would not be
complete. Let r denote a.(8.1 @ (1 4+ 7°°)), and observe that a.5.1 5 7; this is because if the
right-hand term diverges, then it reaches a successful state. We cannot prove a.3.1 Z¢.r 7 by using |}
in place of usbl /, as a.5.1 || a, but r | a because (r AFTER «) | . The predicate usbl ,, on the
contrary, is insensible to the divergence of (r AFTER , «), so one can prove both «.5.1 usbl, «

and r usbl / a. O

Example 4.2.34. Let us revisit the clients r1, 75, in Example The client 3.6.0+0.1 is not
usable; that is 3.0.04+5.1 & Uy" because it cannot be satisfied by any server. Consequently 71 usbl
ay does not hold, and therefore when checking whether 71 Zcir 72 the set {0} € ACC 4 (r2, ay) does
not have to be matched by 7.

Indeed it is now straightforward to check that 71 Zepr 72; the only s € Act™ for which ACC 4 (12, 5)
is non-empty and r; usbl/ s is the empty sequence e.

The use of the predicate usbl , s in Definition is very strong. As an example consider again
the client = a.(8.0 +v.1) + a.(8.1 + ~.0). Note that r & U%S" as there is no server which can
satisfy it. Consequently r usbl, s is false for every trace s, from which it follows that r Sy 7/ for

any other client 77. O
We prove two properties of the predicate usbl , that we need.
Lemma 4.2.35. Let p MUST r.
(i) Ifp = then r usbl /- s.
(i) If p ==, then r usbl ; u.

Proof. First note that the hypothesis p MUST r ensures that r € UMST.
The proof of point (i) is by induction on the length of s. In the base case len(s) =0, so s = € and

we have to prove that r usbl / €; the following derivation suffices

r € UNS" [CCONV-AX]

rusbl, €

In the inductive case len(s) =n+ 1, so s = as’ and we have to prove that r usbl , as’. If r ;ag/
then we can derive
W reUnS,r ;é// [CCONV-AX]
If r = + then Definition ensures that (r AFTER, «) is non-empty. The hypothesis p =
implies that p == p’ for some p’. The hypothesis p MUST 7 and the assumption r == , im-
ply that p’ MUST @(r AFTER, «). Since s’ is shorter than s, the inductive hypothesis ensures
that @(r AFTER «) usbl , s’. Now we can derive

@D(r AFTER 4 «) usbl , &’

MUST o
| CCONV-ALPHA
r usbl , as’ €Ut =y |]
We have proven point H now we explain why point is true. Suppose that p :ﬂ>; we have
to show that r usbl, w. Definition requires us to prove that for every n € N, r usbl ; w,.
Fix a number n € N; the hypothesis p == implies that p ==. Since u,, € Act*, point H implies

that r usbl / u,. We have no assumption on n, hence we have proven that for every finite s prefix of

the string u, 7 usbl / s. O

Lemma 4.2.36. For every s € Act*, if 7 usbl 4 s and r ==, 7/, then ' usbl ; e.

Proof. The argument is by induction on the length of s.

4.2. Client pre-order 81

Base case (|s| =0) In this case s = . By hypothesis r :€>/r’, so the definition of =, implies
that is r — r’, and none of the states in the reduction sequence is successful (see Proposition .

We have to prove that 1’ usbl , e. If 7 = 7" then this is trivially true, otherwise it suffices to show
that ' € UNSST, as this allows us to infer

! MUST
— el CCONV-AX
' usbl ;e |)

We prove that ' € UNS". By hypothesis r usbl / ¢, so r € Uy Tt follows that there exists a p

CLT CLT

such that p MUST r. We prove that p MUST 7/. Fix a maximal computation of || p; since r T
the chosen computation is a suffix of a maximal computation of r || p. The computation of r || p is
client-successful: there exists a state 7 || p wherein 7 5. As no state along the reductions r Y

is successful, the state 7 || p must appear after ’ || p, that is
rllp=1"|lp=71p

It follows that the computation of 7' || p is client-successful. As this argument applies to all the

maximal computations of 7’ || p, we have proven that p MusT . It follows that r' € UNT.

Inductive case (|s| = n + 1) In this case s = as’ for some s’ € Act*. The hypothesis r == ;7'
implies that r == ,, and so the hypothesis r usbl ; s now implies that @(r AFTER ; a) usbl , s'.

As s is shorter than s we can use the inductive hypothesis:
if @(r AFTER ; o) == 47" then " usbl ; ¢.

The hypothesis 7 == ;7 implies that @ (r AFTER 4 «) == ,7/, thus 1’ usbl ; €.

We are ready to prove the chief result of this section.

Theorem 4.2.37. [Alternative characterisation 5,]

For every 1,713 € CCSyr, m1 K, 72 if and only if 1 Zeir 7o.
Proof. We are required to prove two implications, namely

(i) if ry ECLT ro then ry Scpr 1o

(ii) if 71 Sewr r2 then ry S o7

The first implication is Proposition [£.2:31] so we discuss only the second implication.
Fix a pair 71 Scur 72, and let p MUST rq; we have to show that all the maximal computations of

~

the composition rq || p are client-successful. Fix such a computation,
rollp=rg||p° Tyl 03 ([0 T |lpt T (4.17)

The computation in (4.17) is finite or infinite. We discuss the two cases separately.

Suppose that the computation is finite, and unzip it; the resulting contributions of p and ry are
Ty == 15, P = Pk

for some s € Act*, and stable 75 || p*. The hypothesis p MUST 7y, p =, and Lemma [4.2.35

imply that r; usbl , s. The argument is by contradiction: suppose that no state in the contribution
T
of 7y reports success. It follows ro == ,7%, and as r§ —/», S(r§) € Accy(r2,s); so point 1'

of Definition [4.2.30| implies that A € AcC 4 (r1,s), for some A such that A Nuay (r1,s) € S(r§).

T

Definition 4.2.8 implies that there exists a 7} such that S(r}) = A and r; ==, 1} —/>. Zip together

82 Chapter 4. Must pre-orders

the contributions along s of p and rq, the resulting computation reaches the state 7| || pg; if this state
is terminal, then the computation is maximal and not client-successful, so p MUST r;. This contradicts

our assumption that p MUST 7.

Terminal state To prove the contradiction just described we have to show that r¥ || ps. is stable;
both py and r¥ are stable, so we show only that if py — then a ¢ S(r}). To this end, we partition
the set S(r}) according to the usability of the actions in it; let

e U= S5(r})Nuay(r1,s) be the partition of usable actions
e N = 5(r1) \ uay(r1,s) be the partition of unusable actions.
We prove that if py —%5 then ¢ N and o € U. Suppose that py 2.

e Since p = Dk, the assumption py N implies that p =% The assumption that p MUST rq
and Lemma imply that r; usbl / sa. If ry %/, then Definition implies that a €
uay(ri,s). If r¥ % then o € uay (r1,s), so a € N; if rf 7Z> then a ¢ N. We have proven
that « ¢ N

e The stability if py, || 75, the set inclusion A Nua,(r1,s) C S(rh), and the equality S(r}) = A
imply that o ¢ U.

It follows that the state r| || py is stable.

We have discussed the case of a finite maximal computation of 73 || ,. We turn our attention the
argument for the infinite computations.

Suppose that the computation in is infinite, and unzip it. Either p and ro perform infinite
traces, or they perform finite traces and then (at least) one of them diverge.

If we are in the first case, then

U u
Ty —>, p =

The assumption p MUST 7y, the fact that p :H>, and Lomma imply that ry usbl ; u. The proof
that there is a successful term in ro == is by contradiction; for suppose that r, $//? then point
of Definition implies that r; :u>/. By zipping :u>/ with p =~ we obtain a maximal
computation of 71 || p which is not client-successful; this implies that p MUST 71, which contradicts
our original assumption on p.

Suppose now that p and ro engage in finite traces and then there is a divergence; by unzipping the
computation in we get the contributions

s k 5 k
7"2:>7"27 p=p

The assumption p MUST 71, the fact that p :g>, and Lemma imply that 7y usbl / s. Either pF
diverge or 7% diverge, or both diverge.

Suppose that py diverges. To prove that the computation in is client-successful we reason by
contradiction: suppose that there is no successful state among 7o, . .., 75; this implies that ro performs
the trace s unsuccessfully,

Ty == 4

Point of Definition [4.2.30 ensures that r; == +r1. We zip the contribution of p with the unsuc-

cessful transition of r1; as pi diverges the resulting computation is maximal,

pllmm=pllri=pel|r] = ... (4.18)

4.8. Peer pre-order 83

All the derivatives of r1 in the maximal computation above are in 71 =s>/ 7], 8o they are not successful;
it follows that the computation in Eq. is not client-successful. This proves that p MUST ry. As
this contradicts our assumption on p, it follows that one of the states in 7o, ..., 75 is successful.
Suppose that r§ diverges. If there is a successful state in ry == r’ﬁ then the maximal compu-
tation we unzipped is client-successful. Suppose that there is no successful state in the contribution
of 79, that is ro :S>//7'§. As 1y usbl, s, point of Definition implies that ro usbl / s.
Lemma ensures that 75 usbl, e, and the definition of usbl, ensures that r§ converges to
success (Definition 7 thus after r§ there is a successful state in the contribution of 4. O

In Section[4.1] and in this section we have studied the pre-orders that arise from the MUST relation

in a client/server environment. One pre-order L . states when a server satisfies more clients than
another server; the other pre-order, Ecm, establishes when a client is satisfied by more servers than

another client. Theorem [4.1.21f and Theorem are the chief results of our study; those theorems
provide proof methods for the server and the client pre-orders. They have have a similar form, with
Theorem [£:2.37] showing explicitly the role played by the notion of usable term. This does not appear
in Theorem because every server is usable (i.e. satisfies some client), and so are the actions
performed by server.

In the next section we will carry out a work similar to what done so far, but in a peer to peer

setting rather than a client/server setting.

4.3 Peer pre-order

So far we have studied the pre-orders given by the relation MUST. Since the relation is not symmetric,
it gives rise to two natural pre-orders, one for the servers and one for clients. The investigation we
have carried out has shown that servers are compared assessing the amount of interaction that they
offer to the environment; while clients are compared assessing the interactions that they require to be
satisfied.

In this section we move from a client/server setting to a peer to peer setting. Roughly speaking,
this means that now our definitions (and our results) are no longer biased towards one side of the
compositions r || p.

Recall Definition B.1.3

Definition 4.3.1. [MUST-peer-pre-order |
We write p 5, ¢ if and only if p MUST™ r implies ¢ MUST™ r for every process 7. We refer to the

relation EPZP as MUST peer pre-order . [
Notation Similarly what done for EPQP, also to reason on ECLT we are free to use the general

summations Y, and €. This is by justified to the fact that ~pop is commutative and associative with

respect to @ and @, where ~pgp is the equivalence relation generated in the obvious way from &, .

. o - . : C _LC C '
Since MUST™ is the symmetric version of MUST, one would expect that Fopap= mgvr | Ry Lhis

is not true.

Example 4.3.2. In this we prove that 5, ¢ 5. NE It suffices to prove that 5,, Z & .; to

~p2p ~CLT’ ~p2p
this end we have to exhibit two processes p and ¢ such that p &, ¢ and p %SVR q.
It is easy to see that .0 &, 3.0. This is true because .0 can never be satisfied, for it offers no

~Pp2p
v at all. However, a.0 i 3.0, as the client @. 1 is satisfied by .0, whereas 3.0 MusT a. 1. O

SVR.

The proof of the inclusion .. N L. C L . is straightforward.

~SVR ~CLT — "YP2P

Lemma 4.3.3. For every p,q € CCSyr, if p (Syyp Nopy) ¢ thenp 5,0 g

~SVR

84 Chapter 4. Must pre-orders

Proof. Fix two processes p and ¢ that satisfy the hypothesis. We have to prove that if p MUST™ r
then ¢ MUST"™ r, for every process r. We reason as follows,

p MUST™ 1 By assumption

p MUST 7 and » MUST p Thanks to Definition [B.1.3]

g MUST 7 and r MUST ¢ Thanks to the hypothesis p (S, N 5.pp) @
g MUST"™ 1 Thanks to Definition B.1.3|

O

Example 4.3.4. It is necessary to use the intersection of Ecm and ESVR to prove the previous lemma.

The following inequalities prove this.

al 5. a0 al %, a0
1+a.0 5, 1+53.0 l1+a.0 ¥, 1430

We explain why a.1 £ _ «.0. This is true because the peers o.1 and «.0 are distinguished by

P2p
@.l: @.1 MUST™ @. 1, while .. 0 MUST™ @. 1.
To prove that 1 +«.0 £

computations of 1 + «. 0 || @. 1 are successful. On the contrary, no maximal computation of 1 + 5.0 ||

bop 1+ 8.0 we use the peer @. 1; it is easy to see that all the maximal

@.1 is successful, as the peers are stable, and @. 1 is not successful. O]

The inequalities proven in (4.3.4) imply that the relations Definition and Definition [4.2.30
do not describe faithfully the peer pre-order. Moreover, Example shows that neither does the

intersection Zgyr N Zcur provide a complete description of Epzp' Our aim in this section is therefore

to characterise Epgp? we want to understand under which conditions the behaviours of two processes p

and ¢ are related by 5,
Since peers are at the same time clients and servers, we expect them to be compared both as
clients and as servers. In other words, we expect ,‘;PQP to enjoy some properties of Ecm and some

properties of & We refer to the first properties as client-properties and to the second properties

~YSVR®
as server-properties.

The client-properties of the peer pre-order are due to the next result.

Proposition 4.3.5. The peer pre-order is contained in the client pre-order. Formally, Epzp C Ecm'

Proof. Fix a pair of processes in the peer pre-order, rq EPQP ro. We are required to prove that r & our
ro. Take a process p such that p MUST r1; Lemma implies that p + 1 MUST 7. Since p +
1 % it follows that r1 MUST p + 1, so the assumption that p MUST r; and Definition imply
that r; MUST™™ p + 1. The hypothesis 1 EPQP ro implies that ro MUST™ p + 1; in turn this ensures
that p + 1 MUST 75. Lemma [£.1.23] lets us conclude that p MUST rs. O

Proposition ensures that if p 5, ¢ then ¢ in the role of client is better than the client p. It

follows that Lemma [£.2.23] Lemma [£:2.28] Lemma [£.:2.24] and Corollary [£.2.25] are true also for the
processes related by &_,,. Note though that in Example we have seen that & < 5.,., so

the peer pre-order is more demanding than Ecm' In particular, L:JPQP compares the processes also as

servers.

The remaining work needed to characterise EPQP amounts in proving the server-properties of that

relation. In Example we have highlighted that 5, & 5. ., so the properties required by Zsvr

~Pp2p
differ from the server-properties guaranteed by <, . The set inclusion &, N5 .. C 5., suggests
that the server-properties of EPQP are a relaxed version of the ones required by =gy. The intuitive
reason why &, & 5 . is the non trivial usability of peers, so we relax Zgyr taking the usability
into account.

We define an amended version of g and of the server convergence predicate |} .

4.8. Peer pre-order 85

Definition 4.3.6. [Peer MUST convergence along trace |
For every s € Act™ we write p {pop s if and only if p | s and p usbl , s. We extend the predicate {pop

to infinite strings in the obvious way. O
Definition 4.3.7. Let p Susvr ¢ whenever

(1) for every s € Act™, if p {pop s then

(@) q s
b) for every B € ACC(gq, s) there exists some A € ACC(p, s) such that ANua,(p,s) C B
V4

(2) for every w € Act* U Act™, if p |}pop w, and ¢ =, then p == O

Definition 4.3.7 “ takes the usability into account in two ways; first, if p Z,svr ¢, then requirements of
Zevr after any trace are enforced by =,gvr only if p is usable after that trace; and second, only the
usable actions of p (after a trace) are used to compare ready sets.

In the next lemmas we prove that the relations Z,svr is a complete description of & Soop (i€ Epzp

C Zusvr). Those lemmas (Lemma [4.3.8] Lemma [4.3.11] and Lemma [4.3.13) are indeed analogous to
Lemma [£.1.8] Lemma and Lemma [4.1.15

Structure of the proofs Intuitively, during unsuccessful execution of traces, peers behave at the
same time as clients and servers; whereas after reporting success they behave only as servers. The
oncoming proofs witness this intuition, and amounts to a mixture of the proofs we gave in Section 1]
and Section In particular, the peers that prove the completeness of the characterisation of & Ropap

are build combining the clients and the servers used in the previous sections.

If p is a usable client, then the convergence of p implies the convergence of g.

Lemma 4.3.8. For every s € Act”, and every p,q € CCSy, if p 5, ¢, p Up2e s and ¢ = ¢,
then ¢’ |} .

Proof. Let s = ajas ... a,. Let s’ be the longest prefix of s such that p s:/. The proof is divided in
two cases, which depend on the existence of s’. In both cases the argument has the same structure;

we define a peer C such that
1) p MusT™ C, and

2) ¢ MUST™ C lets us prove that if ¢ == ¢’ then ¢’ |}

s’ does not exist In this case one cannot infer p = v, thus p 5. Let the process C' be defined
as in Lemma The proof of that lemma shows that p MmusT C. Since p 5 we also know
that C MUST p, and so Definition implies that p MusT™ P. The hypothesis p 5, implies
that ¢ MUST™ P. We prove that if ¢ == ¢ then ¢’ by reasoning as we did in Lemma

s’ exists In this case p ==, for some §'; let s’ = ajas. ..y, with m < n. For every 0 < j < m
the assumption p Sz/ ensures that p S:J/ Lemma [4.2.15| ensures that for every 0 < j < m there

exists a 7; such that

7; MUST @(p AFTER s S;)

For every 0 <k <n+1let

(Fe + D)@ (Fx + 1) + Q1. Peyr1 f0<k<m

c, it (1®1) + i1 Ap1 ifm<k<n
(fn +1) & (fn + 1) ifk=n+1,m=n
11 ifk=n+1,m<n

86 Chapter 4. Must pre-orders

The process C' that we are after is Cj.
We prove that p MUST'* Cj. Definition [3.1.3 requires us to prove that the maximal computations

of p || Cy are successful. Fix a maximal computation of p || Co,
pll Co=p" || C§ —=p* || C5 — p* || CF = (4.19)

Note that the computation in may be infinite.

Because of the construction of Cy, the computation in begins with moves due to a (possibly
empty) prefix of s, say s; for some 0 < j < n, that leads Cj to C’g (which is Cy itself is s; is empty).
Let us consider the longest s; that satisfies the condition just given. By unzipping the computation

at hand we obtain the contributions of p and Cjy, which begins with the ensuing prefixes,
Si 4 55 j
p==7p, Co == Cj

Our assumption on s; ensures that C’g and p’ cannot interact, because the only action to synchronise
is oj 41, and s;a41 cannot appear in the computation.

We explain why in the computation there is a successful derivative of Cy. If in the prefix of
contribution of Cj there is an internal move, then that contribution contain a successful state. In
the opposite case, observe that the hypothesis p {pop s ensures that p || s, and so p’ || . This
fact, C’g L>L>’ and the fact that the computation in is maximal imply that the computation
contains a derivative of Cg which is successful.

Now we discuss why p reaches a successful state. If the contribution p =L p’ contains a successful
state, then we have nothing more to discuss. In the opposite case, j < m, and p’ € (p AFTER s;).
Since j < m, C) = ((7; +1) @ (7; + 1)) + @;4+1.Ch 11, and by construction #; MUST @(p AFTER ¢ s;).
It follows that 7; MUST p’. Since p’ and C"Oj cannot interact, the computation in after the state
P’ || CJ contains a maximal computation of p’ || ;. Since 7; MUST p’ it follows that p’ reaches a
successful state.

We have proven that p MUsT"* Cj, so the hypothesis p EPQP q implies that ¢ MUST™ Cy. We still
have to prove that if ¢ == ¢’ then ¢’ | . This is true for otherwise there exist a maximal computation

of ¢q || Cp which is not successful, namely
q)|Co=d 11|11l = ||l1el ...
This computations contradicts ¢ MUST™* Cj. O
Corollary 4.3.9. For every s € Act®, and every p,q € CCSyr, if p 5.y, ¢ and p {pop s, then q | s.
Proof. Thanks to Lemma to prove that ¢ || s we have to show that
for every s’ prefix of s, if ¢ N q then ¢’ | (4.20)

Let s’ be a prefix of s such that ¢ == ¢’. The hypothesis p |lpop s implies that p {lpop s, 0 Lemma

and ¢ == ¢ ensure that ¢’ || . Since the only assumption on s’ is that it is a prefix of s, we have
proven the implication in (4.20). O

v T
Lemma 4.3.10. If r € UMTPT, then there exists a p such that p MUST r, p -4 and p /.

CLT

v
Proof. We prove that if r € U5 7°" then there exists a process p such that p /. The assumption that

v
r € UNTST implies that there exists a p such that p MUST r. If p -/ there is nothing more to prove. If

v
D L>, then p = p’ + >, 1 for some non-empty set I and p’ such that p’ /. Lemma {4.1.23|implies

that p’ =g p, so p’ MUST r.

4.8. Peer pre-order 87

Now we prove that there exists a process p such that p MUST r and p 7TL> The assumption that
r € UNT" implies that there exists a p such that p MmusT 7. If p 7L> then there is nothing more to
prove If p -/, then either p dlverges or p converges. If p diverges, then Lemma implies that
r 5. Tt follows that 0 MUST r;as 0 7L>, the process 0 suit our aims.

If p converges then there exists a stable p’ such that all the maximal computation of r || p’ are
suffix of the computation

rilp=rly

Since p MUST r, it follows that all the maximal computations of r || p" are client-successful, and so

p' MUST 7. O
Lemma 4.3.11. Let p 5, q. For every s € Act™, if p |pop s and ¢ ==, then p ==

Proof. Under the hypothesis, we have to exhibit a p’ such that p == p'.
Let n be the length of s (i.e. n =len(s)), s = ajas ... a,, and let s’ be the longest prefix of s such
that p Sz//. The argument depends on the existence of s, and has to following structure: we define

a process C such that
1. g MusT™ C
2. C MUST p
3. p MusT C implies that Acc(p, s) # 0

Either s’ exists or it does not exist.

s’ does not exist In this case we cannot infer p :6>/, thus p 5. We define the process C' as we
did in Corollary The argument in that lemma implies that ¢ MUST C, and so Definition [3.1.3]
implies that ¢ MusT™ C. The hypothesis p 5, ¢ ensures that p MusT™ C. Since p L>, it is clear
that C MUST p, and therefore p MUST™ C' implies that p MUST C. The hypothesis p {p2p s implies
that p || s, and so to prove that p == p’ for some process p’, we can reason as in Corollary

s’ exists Let s’ = apay...aq,, with m < n. For every 0 < k < m, the assumption p =S>//
ensures that p %/, and so Lemma |4.2.15|and Lemma [4.3.10|implies that there exists a 7, such that
v

.
7 MUST @D(p AFTER 4 Si), 7, - and 7, —>. For every 0 <i <n+1, let

. det (1e1) + @1.Citr ifm<i<n
0 ifi=n+1,m<n

T v
The C we are after is Cy. Note that by construction C,, is either 0 or #,, so C,, /> and C,, /.

1. We prove that ¢ MUST™ Cj. By hypothesis AcC(q, s) # (), so there exists a ¢’ such that ¢ == ¢'.

If ¢’ diverges then we infer the ensuing maximal computation
ql|Co=d"1|Co = q || Cn == @3 [| Cr — ...

The computation above is not successful, because no C; is successful. If ¢’ converges, then there

exists a stable ¢’ such that we can infer the following maximal computation

|l Co=4q" || Cn -+~

88 Chapter 4. Must pre-orders

The finite computation above is not successful. What we have argued so far proves that ¢ MUsT**
Co.

2. We prove that Cy MUST p. We are required to show that all the maximal computations of p || Cy
are client-successful. Fix a maximal computation of p || Cy and unzip it; the contributions that

we obtain begin with the following prefixes of s,
p=%p, Co =% C

where we let 0 < j < m be greatest j such that a state C; appears in the computation. If
the action sequence p =L p’ contains a successful state, then the whole computation is client-
successful. In the opposite case, p %/p’, and so j < m. It follows that C; contains a term #;
such that 7#; MUST @ (p AFTER s;); this implies that #; MUST p’. Our assumption on s; and C;
ensure that the remaining part of the computation we unzipped contain a maximal computation

of p’ || 7;; it follows that the maximal computation at hand is client-successful.

We have explained why all the maximal computations of p || Cy are client-successful, thus
Co MUST p.

Since ¢ MusT™ Cj the hypothesis p 5, ¢ implies that p MUST™ Cj. As Cy MUST p, it must be

the case that p MusT Cjy. By reasoning as we did in Lemma we prove that p == p’ for some
/

D O

Corollary 4.3.12. Letp 5, q. For every s € Act”™, if p lpop s and ACC(q, s) # 0 then Acc(p, s) # 0.

Proof. The hypothesis ACC(q, s) # 0 implies that ¢ ==, Lemma |4.3.11|implies that p == p} for some

p}. The hypothesis that p {p2p s implies p | s. In turn this ensures that p’ |} , and so there exists a
T

p” such that p == p” —/>. It follows that S(p”) € Acc(p, s). O

The last lemma that we need to prove establishes how the ready sets of peers are related by EPZP.
This lemma is analogous to Lemma but the matching of ready sets is relaxed by focusing on

usable actions.

Lemma 4.3.13. Let p , ¢. For every s € Act™, if p Jpoe s, then for every B € Acc(q,s) there
exists a set A such that A € Acc(p,s) and ANuay(p,s) C B.

Proof. Fix a string s such that B € Acc(q, s) for some set B, that plcrs, p | s, and let s = 81 ... 5,.
The hypothesis of this lemma let us use Corollary which ensures that the set Acc(p,s) is
non-empty: ACC(p,s) = {A; | ¢ € I} for some non-empty set I. The proof is by contradiction; we
suppose that

for everyi € I there exists an action a; € A; Nua 4 (p, s) such that o; € B (4.21)

Using this assumption we contradicts the hypothesis that p EP2P q; that is, we define a peer C that

can distinguish p and ¢, in the sense that
a) C MUsST™ ¢
b) C MUST™ p

The argument depends on p being successful or not.
v S . .
If p —, then we define the peer C' as we did in Lemma [4.1.15} the same reasoning we used in that
lemma implies that C MUST ¢ and that C MUST p. The former fact implies C' MUST™ ¢. The latter
Vi P2P
fact and p — imply that C MUST™ p.

4.8. Peer pre-order 89

v /
If p —/», then there exists a longest s’ such that p é/ and that s’ is a prefix of s. Let
s =182 ... Bm, with m < n. We partition the set I in two subsets U and S by letting U = {i € I |

p==%, and pusbl sa; } and S = {i € | p;&;/}.

For every u € U, p usbl s, p %/, Lemma |4.2.15] and Lemma |4.3.10| ensure that there exists a
7 such that

e 7, MUST (p AFTER ¢ s0v,)
T
o 7y />

For every 0 < j < m, the assumption p == «», the hypothesis pllcirs and Lemma (4.2.15| ensure that
there exists a r; such that r; MUST @(p AFTER 4 s;). For every 0 < k < n, let

(e +1) ® (rk + 1)) + Bry1.Cr1 f0<Ek<m
Co=810&1) + B1.Cra ifm<k<n
(PCwer @u-(Fu + 1) + (Xjesa;.1) ifk=n

T v
Note that Cy |} for every 0 < k < n, and that C,, -/ and C,, -~

a) We prove that ¢ MUsT™ Cp; it is enough to exhibit a maximal computation of Cy || ¢ that is
not client-successful. Definition |4.1.11| implies that there exists a ¢ = ¢’ and S(¢') = B. If ¢

diverges, we there exists the maximal computation
Collag==Cnlld == Cullay —Cnllgy— ...

The computation above is not client-successful. If ¢’ converges, then there exists a stable ¢/ such
T

that S(¢”) C B, and ¢ = ¢”’; hence there exists the maximal computation Cy || ¢ = C,, || ¢" />

where C,, || ¢” is stable because both processes are, and by construction the state ¢’ cannot interact

with C,. The computation is not client-successful.
b) We prove that p MUsT™ Cp; Definition requires us to prove that every maximal computation
of p || Cy is successful.

Fix a maximal computation of p || Cp, and unzip it. The contributions that we obtain begins with
a (possibly empty) prefix of s,
C() % Cj, p % p/

We can assume s; to be the longest prefix of s such that in the computation at hand Cjy =% Cj.
The hypothesis that p {}pop s implies that p’ |} .
We explain why Cy and p reaches a successful state.

T T
e If j = n then C; —*». Since p’ || , C,, -/ implies that in the computation we unzipped there
T
is p” such that p’ = p”’ —/». Definition 4.1.11] and the construction of C,, imply that C,

and p” can interact via some action «;. As the unzipped computation is maximal, and both
C,, and p" are stable, the computation contains the state r || p resulting from the interaction.
By construction r <.

Now we explain why p reaches a successful state. The argument depends on the action «;. If
t € S then p i;/, thus there is a successful state in the action sequence p = p. If i € U,
then r = 7, + 1, so the remaining part of the unzipped computation is a maximal computation
of p || #4. The construction of 7, implies in the computation p reaches a successful state, and

so does p.

90 Chapter 4. Must pre-orders

71

(7"0+1+O[0 1] (7’1+1+C¥1A2J (1 +042A3
v v v

Ao

Figure 4.11: Peer used to prove Lemma withm=1and n =3

e If j<n,then C; = (' & ') + ﬁH_] i+; and C; |} . Since p’ | and p’ cannot interact on
B,y j, the computation contains a state p” || C; such that p” is stable and p’ = p’. As the

computation is maximal, the facts that p” 7L> and that p” and C; cannot interact, imply
that the computation contains a state reached by C; || p” thanks to an internal move of C;.
This state is 7' + 8, ;.Ciy; || p”. The construction of 7' ensures that r/ .

Now let us see why p reaches a successful state. If the action sequence p =L p” contains
a successful state, then we have nothing more to discuss. Let us suppose that p N "
It follows that " = r; + 1, and that r; MUST @(p AFTER s;). In turn this ensures that
r; MUST p”. The remaining part of the unzipped computation must be a computation of
rj || p”, so r; MUST p” implies that p” reaches a successful state. It follows that p reaches a

successful state in the computation that we unzipped.

We have proven that the maximal computations of p || Cy are successful, so p MUST™ C.

We have proven that p MUsT™ Cj and that ¢ MUsT™ Cl; this contradicts the hypothesis p 5, g,
and so the assumption is (4.21)). This proves the lemma. O

Lemma 4.3.14. Let p 5, ¢. For every u € Act™, if p {pop v and ¢ == then p ==

v
Proof. If p L>, then the argument is the same we used in Lemma 4.1.161 If p =4+, then we have other

u
two cases. If p =u>/7 then p ==. Suppose that p ==, then there exists the greatest m € N such
that p g}/. The hypothesis p {p2r © ensures that p usbl , u, so for every 0 < ¢ < m there exists a
process r; such that r; MUST @ (p AFTER u;). For every n € N let

et ((rn +1)® (rn, + 1)) + a@p.Aptr ifi<m
" 1®1) +a.4nt otherwise

The proof now proceeds as the proof of Lemma [4.1.16] and relies on the fact that the hypothesis
p {pop uw implies that p | . O

The previous lemmas state that peers related by Epzp are compared as servers, only if they are
usable as clients. Indeed, this is the intuition behind Definition
The peer pre-order turns out to be a nesting of the server pre-order inside the client pre-order, in

the following sense.

Definition 4.3.15. [Semantic peer-preorder |
Let p Zpop ¢ if and only if p Scir ¢ and p Susvr G- O

Proposition 4.3.16. [Completeness |
If p Eppp ¢ then p Zeop g

4.8. Peer pre-order 91

Proof. We have to prove that & C =Zur and that T C Zusve- The first inclusion follows

~p2p — ~v ~p2p
from Proposition [4.3.5] and Theorem [£.2.37] The second set inclusion follows from Proposition [.3.5]
Corollary Lemma and Lemma O

Theorem 4.3.17. [Alternative characterisation 5,]

For every p,q € CCSyr, p 5., ¢ if and only if p Zpoe ¢
Proof. We have to prove two implications:

o if p,. ¢ then p Zpop g

o if pZpopgthenp L, g

In view of Proposition [£.:3:16] we prove only the second implication. Fix two processes p and g
such that p Zpep ¢; We are required to show that p ., ¢; that is, if p MUST™ 7 then ¢ MUST™ 7 for
every process r. Fix a process r such that p MUST'* r; we explain why ¢ MUST™ r. Definition [3.1.3
requires us to prove that all the maximal computations of ¢ || r are successful.

We prove a preliminary result that will ease our task. The definition of EPQP ensures that p Scir ¢,
so Theorem implies that p 5. ¢. Since p MUST™ r, it follows that MUST p. The inequality
P ECLT q implies that » MUST ¢. It follows that all the maximal computations of ¢ || are client-
successful.

It follows that we have to prove only that the maximal computations of ¢ || 7 contain a state ¢’ || r/
wherein ' —5.

Fix a maximal computation of ¢ || r,
allr=awllro—aqallrn——qlrn—... (4.22)

The computation is either finite or it is infinite.

If it is finite, then by unzipping the computation we obtain
s s
q = qk, =Tk

where qi || 7% 7L> Since r == rj, and p MUST™ r implies r MUST p, Lemma (point H
guarantees that p usbl , s. We are required to exhibit a successful state among the derivatives of 7.
Since ¢ == qi, S(qx) € ACC(g,s). As p usbl, s, point of Definition implies that either
p ¥ s, or there exists a set A € ACC(p, s) such that ANua(p,s) C S(gx). In the first case p performs
a prefix of s, say s’, and reaches a state p’ that diverges: p é p’ = By zipping this action
sequence of p with a prefix of the action sequence r = T, we obtain a maximal computation of p || r
in which p diverges. As p MUST'® r, the computation of p || r contains a successful derivative of
r; this derivative appears also in , so the maximal computation in contains a successful
derivative of r.

In the second case, there exists a stable p’ such that S(p’) = A and p == p’. Consider the
computation

pllr=p"Ir

If the state p’ || 74 is terminal (i.e. stable), then the computation is maximal, and so p MUST™ r
ensures that one of the derivatives of r is successful. This implies that also the computation in
contains a successful derivative of 7.

We have to prove that p’ || ry 7TL> The argument is the same that we used in paragraph Terminal
state of the proof of Theorem [1.2.37]

We have proven that if the computation in is finite, then r reaches a successful state. Now

we prove that also the infinite computations enjoy this property. If the computation at hand is infinite,

92 Chapter 4. Must pre-orders

then there are three subcases to discuss: ¢ and r engage in infinite traces, or ¢ diverges along the
computation, or r diverges.

Suppose that by unzipping the computation in (4.22)) we obtain the infinite contributions

= ..., T=... (4.23)

We have to show that one of the derivatives of 7 is successful.

As 71 =% and p MUST™ 7, point of Lemmaimplies that p usbl , u. Either p f wor p | u.
In the first case p performs some prefix s of u and reaches a state p’ that diverges. Let us zip the
action sequence p = p’ with r == r’; we obtain an infinite computation that reaches a state p’ || 1’
and then let p’ diverge. Since p MUST'® r the new computation must contain a successful derivative
of r. This derivative appears also in the computation in (peer-max-comp).

In the second case, p {lpop u. Since ¢ ==, point of Definition implies that p ==. By
zipping this infinite trace of p with r =2, we obtain a maximal computation of p || r. The assumption
p MUST"™ r ensures that r reaches a successful state.

We have shown that if the computation in is due to two infinite traces, then r reaches a
successful state.

We discuss the case of divergence of g or 7. Suppose that the visible traces performed by ¢ and r
be finite:

== qu, = (4.24)

The fact that r = 7, implies p usbl , s. Either g diverges, or r; diverges, or both states diverge.

qr diverges We have to show a successful state among r,..., 7. As g diverges, ¢ Jf s. Point
implies that p e 5. Since p usbl, s, the fact that p {fpop s implies that p ¥ s. This implies that
there exists a prefix s’ of s such that p N p’ and p’ diverges.

Zip this action sequence of p with the suitable prefix of the actions sequence of r, and let p’ diverge.
As p MUST™ r it follows that there is a successful state in the contribution of r; this state is reached

by 7 also in the computation we unzipped.

r, diverges We have to show a successful state among r, ..., r;. Point of Deﬁnitionm q ==,
and p usbl, s imply that either p Jf s or p == In the first case p Sﬁ/ p’ for some prefix s’ of s and
p’ diverges. By zipping this action sequence of p a prefix of the actions sequence of r, we obtain a
maximal computation of p || . The assumption p MUST** r implies p MUST r, so the new computation
contains a state in which the derivative of r is successful. The successful derivative of r appears also
in Eq. .

In the second case, p ==. By zipping this action sequence of p with the actions sequence of r in
Eq. , we obtain a maximal computation of p || r in which the client side diverges. It follows that
one of the derivatives of r in it is successful. As the derivatives of r in the new computation appear

also in (4.24), the computation of ¢ || r that we unzipped contains a successful derivative of r. O

4.3.1 Relations between notions and pre-orders

Throughout the last three sections of this chapter we have studied the pre-orders given by the MUST
relation. Our study has been driven by the need for alternative characterisations for these pre-orders,

and we have shown the equalities

C =< C

- =< -
~NSvR . ~SVRs ~Ncorr . ~CLTs ~p2p . ~P2P

where the relations Sgyr, Scur, and Zpop are defined using the following behavioural notions:

4.8. Peer pre-order 93

Server: — AFTER [} ACC - -
Client: =, AFTER, |¥ ACC, wuay, usbl,

Peer: - - Ipop - - Ipop

Figure 4.12: Predicates to characterise the server, the client, and the peer pre-orders.

C NnCc

~SVR ~CLT

c £ c £

~p2p ~CLT

Figure 4.13: Relations among the MUST pre-orders

e (unsuccessful) traces
e (unsuccessful) acceptance sets

e convergence (to success)

usability

Figure [£.12] contains the symbols that we have used to formalise the notions listed above. Roughly
speaking, for each server-side predicate, we had to define an analogous client-side predicate, by re-
stricting our attention to the unsuccessful traces/actions; and we had to make explicit the role of
usable clients/actions. Note that if Definition does not mention explicitly the usability of the
servers or their actions, it is because every server is usable: for every process p there exists a client r
such that p MUST r; the client 1 is an example. The characterisation of the peer pre-order relies an
the predicates used to reason on ESVR and ECLT; the only feature typical of EP2P is the combination of
| and usbl , that is denoted by {p2p .

In Figure we have depicted how the MUST pre-orders are related with each other. The set
inclusions are proven respectively in Lemma [4.3.3] and Proposition [£.3.5] The set inclusions are strict

because of the following facts

EPQP g Esz7 Ecrrr g ’EPQP

which are proven by the ensuing inequalities,

a0 Z . B.0 a0 LT, 3.0
a.(1+p.0) ¥, o(l+7.0) a.(1+4.0) 5., o(l+~.0)

Syntax free proofs of completeness To prove the completeness of the alternative pre-orders
Sevry Scur and Zpop, we defined ad-hoc processes A’s, C’s, and so forth. In general, these processes
allow us to distinguish, in some sense, the other two processes that we are comparing, say p; and pa, or
r1 and ro. Although we used the syntax of CCSy,, to define the processes A’s and C’s, the arguments
do not depend on the syntax. The arguments for the server, client and peer pre-order, can be used in
any LTS that contains the graphs depicted respectively in Figure 1.3 Figure [£.10, and Figure [4.11
In this chapter we have investigated the three pre-orders that are naturally given the MUST testing

relation: (& In particular we have unravelled the behavioural properties that two

~YSVR’ ECLT’ EP2P>'
processes have to enjoy in order to be related by one of the pre-orders. While Theorem [4.2.37] and
Theorem are novel, Theorem is very similar to the characterisation of the standard MUST

pre-order |[De Nicola and Hennessyl, (1984, see Theorem 6.4.5].

94 Chapter 4. Must pre-orders

4.4 Related Work

We compare our results with the relevant literature.

The behavioural characterisation of our MUST server pre-order is the same of the well-known MUST
pre-order T ; to see why it is enough to compare Definition [4.1.17| with [De Nicola and Hennessy,

~YMUST?

1984, Definition 6.4.1]. Nevertheless, the axioms for & on finite terms that are proposed by [De

~~YMUST

Nicola and Hennessy}, (1984, Table 1] and are not complete for ESVR. This is a consequence of having

defined ESVR on terms that can perform v'; indeed, with the original axioms we cannot prove 1 = 0,
which is true, in the sense that 1 ~gy 0.

To the best of our knowledge, the client and the peer pre-orders based on the MUST testing are
original.

As for the client pre-order, the standard axiomatisation of the MUST pre-order is not sound with
respect to it (on the general LTS of processes). Consider the axiom at the bottom of [Hennessy, 1985,
Figure 3.6],

p<p@p (W)

1oL

CLT

This axiom lets us prove that 1 <1 @ 1; in Example though, we have shown that 1 £

The usability of clients and actions play a crucial role in the behavioural characterisation of Ecm'
Condition of Definition ensures that if rq Ecm r9 then the non-usable actions of r; need
not to be performed by ro. This fact was already pointed out in [Laneve and Padovanil [2007, Section

4], but in the setting of compliance.

Fair theories Refinements for peers in the context of compliance and behavioural contracts for web-
services have been investigated; one of these theories is presented in [Bravetti and Zavattaro, [2009].
Regardless of the differences between our framework and the framework of that paper, a comparison
is in order. First we swiftly introduce the formalism used in [Bravetti and Zavattaro, 2009], and then
compare our peer pre-order MUST with their refinement.

In the rest of this section let us denote output actions as @,/ and input actions without any
decoration, «, 3,

Bravetti and Zavattaro| use an LTS denoted by contracts, which are a sublanguage of recursive

CCS, and are output persistent. A contract C is output persistent if given C' == C’ with C" -5 then:

v _
C" —/» and if ¢’ - p” with a # @ then also C” —%5. For instance the term @.1 + 3.1 is a process
in our theory, that is ruled out in their setting, because it is not output persistent. Systems can have

any finite number of parties, as general compositions of contracts are allowed

[CUC] - T [C]

The notion of successful state differs from our presentation: for a composition to be successful (i.e.
perform v'), all its components have to be successful (i.e. be able of performing v') at the same time.
Bravetti and Zavattaro| defined the satisfaction following the fair testing of Rensink and Vogler;
a system P is a correct contract composition, denoted P | if for every P’ such that P 73" P’ there
exists a P such that P’ 5 P" 5.
Definition 12 of that paper introduces the subcontract relations <o on output persistent contracts,
where the parameter O is a the set of output actions that the compositions used as tests can show.
The comparison between the peer pre-order Epzp and the pre-orders <o is complicated by two

aspects,

e if C' <o C then it is safe to use C’ in place of C; in view of this, we will compare our peer

pre-order with the inverse of the pre-orders <p;

4.4. Related Work 95

e a priori, it is not clear how to choose the parameter O. To solve this complication we treat <o

as a function of O, and briefly discuss its monotonicity.

The function <o is not monotonically increasing, as () C {@}, while

a.0 =Xy a.l
a.0 ﬁ{&} a.l

On the other hand =< is monotonically decreasing in O.
Proposition 4.4.1. If O C O’ then <o C =o.
This proposition gives us two criteria to reason on all the pre-orders <p:
e for every O the pairs in <y are in <o, where N is the set of output actions
e for every O,0’,if O C O, then the pairs not in <o are not in <o.

As for the restriction on output persistent contracts, in the oncoming examples we will use only terms
that enjoy that property; thus our arguments are sound.

For every action «, the following inequalities are true

al 5,0 14a.0

al 2z 1+a0

where the peer used to prove the second fact is @. 1.

Also the ensuing facts are true,
1 jxfl 7.1+7.1

1 ¥, 1a1

Our arguments show that the pre-order EPQP and the pre-orders 551 are not comparable, except

when O is trivial:
Proposition 4.4.2. For every set of output actions O, the following statements are true,
e if O is non-empty, then 5, Z <"

-1
i jO g EPZP

96

Chapter 4. Must pre-orders

Chapter 5

Compliance pre-orders

In Chapter [we have studied the pre-orders given by the MUST relation, if we use it to establish
when a process ¢ satisfies more clients, servers or peers than a process p. The definition of MUST
(Definition , implies that in the MUST setting, what we mean by “clients” are really tests, so the
relation & o bells us when a test ro is passed by more processes than a test 1. It makes sense to use
the theory we unravelled in Chapter [only if the notion of client coincides with that of test.

Example 5.0.3. Let us define two processes

Plane = flying. Plane

publican = !stout.”cash.!chat.publican

The term Plane describes the simplest interaction that we expect a flying plane to perform: communi-
cate (to some control tower) that it is indeed flying. Notwithstanding how simple the communication
described by Plane is, it is useful. For if such a communication is disrupted and the plane is not
landed, then there exists some problem, either in the plane or in the control towers. Note that a priori
it is not know how long a plane may fly, thus the communication can go on forever.

The second process, publican, represents the interaction that a bar tender may carry out with a
typical customer: pour (output) a pint, receive (input) some money, and then do a bit of chat.

In the MUST theory, one can prove that publican is a better client that Plane, and vice-versa,

Plane ECLT publican, publican Ecm Plane

This proves that according to the MUST theory there is no difference between the client Plane and

the client publican, Plane =<cir publican. Indeed, it is true that there is no difference between Plane

and publican, for in the MUST setting they are both tests, and neither of them can be satisfied. O
The previous examples shows that the pre-orders given by MUST, in particular Ecmv should not

be used if we think of clients not as tests, but as software whose requests have to be answered by
servers. For instance, if we reason in the setting of web-services, one would like the client Plane to
be distinguished from publican. This can be achieved by using the pre-orders that arise from the
compliance relation (Definition [3.2.1)).
In this chapter we investigate the compliance pre-orders. As in Chapter] we define three pre-
orders,
ESVRa ECLTa EPQP (5~1)

and we study under which conditions two processes are related by each one of them. In other words,
we show the alternative characterisations of the pre-orders in ([5.1)),

jSVRa jCLTv jPZP (5'2)

97

98 Chapter 5. Compliance pre-orders

The work we carry out to define the relations in is necessary, for the compliance pre-orders are
not comparable with the MUST pre-orders. The intuitions and the notions that we have put forth in
Chapter [d turn out to be useful also in reasoning on the compliance relation, and let us define the
pre-orders in .

After having studied the server and the client compliance pre-orders, we compare them with their
MUST counterparts. The MUST pre-orders are not comparable with the compliance pre-orders. One
natural question then is to check whether in sub-LTSs of (CCSy,,, Act,,, —>), there is some relation
between the MUST and the compliance pre-orders.

In the case of the server pre-orders, this task is eased by a property of their alternative charac-
terisations. The alternative relations given by Definition [£.1.17] and Definition [5.1.7] characterise the
server pre-orders; these characterisation remain sound and complete also in certain sub-LTSs of the
general one (CCSy, Act, ,, —). It is thus relatively easy to compare the server pre-orders while
restricting the LTS at hand.

In the case of the client pre-orders, on the contrary, the alternative characterisations are tightly
related to the LTS at hand. In general, when we change the LTS we should also change the alternative
characterisations of I and Ccip. It follows that the alternative relations =cir and =¢rr do give us

~/CLT
a straightforward way to compare the client pre-orders, if we restrict the LTS at hand.

Structure of the chapter. In this chapter we study first the server pre-order (in Section ,
for it is the simplest of the relations in . The characterisation of Cgyy is not too different from
the characterisation of Zgyr; in fact, in certain LTSs the two relations coincide (see Section .
In Section we study the client pre-order, Cr. Its characterisation is reminiscent of the of Cgyy,
although it requires us to use the notion of usability, and to adjust the definition of ready set. As we
anticipated, the characterisations of T and Ecn do not aid us when it comes to comparing these
two pre-orders on sub-LTSs of {(CCSy, Act,,, —). We leave this as an open problem, that we
partly address in the following chapters.

In Section we study the peer pre-order Cpop. In view of the structure of Definition
which is a nesting of Zgyr into S, we directly define the alternative characterisation of Cpop, and

prove it sound and complete.

5.1 Server pre-order

In this section we study when, according to the compliance relation, a server po is better than a
server p;. We define a compliance-based pre-order for servers, Cgqyy, and we expose its characteristic

properties.

Definition 5.1.1. [Compliance server pre-order |
We write p; Cgyg po if and only if » - p; implies r - py for every process r. We refer to the relation

Csvr as the compliance server pre-order. O

Notation As usual, the operations + and @ are commutative and associative with respect to =gy,
so we are allows to use the notations > and €p.
We already know a server pre-order, namely the MUST server pre-order (Definition [4.1.1). The

alternative characterisation of &

Fogyps that is Zsvr, provides a touchstone to devise the characterisation

of Cgyr. Indeed, we have to provide a characterisation of Cgyy, because the pre-orders ESVR and Cgygr
are not comparable.

In the next two examples we expose the differences between . = and Cgyy.

~SVR

Example 5.1.2. [Convergence of servers |
In this example we prove that ESVR Z Cevr. Let p1 =7 + a.4.0 and ps = a.(7*° + $.0). The LTS

5.1. Server pre-order 99

T

OESHENG
B)@

T

Figure 5.1: Processes used in Example [5.1.2} p; and ps are related by Esvr{’ but not by Cgyg-

of these processes is depicted in Figure [5.1

We prove pq ESVR p2. Since py ¥ , for every r € CCSy,, if p;1 MUST r then r L>; it follows
that if p; MUST 7 then py MUST r. However p; gy p2. To prove this we have to exhibit a client
r such that » 4 p; and 7 A po. Let r = 7°° 4 @.1. To prove that » — p; Definition [3:2.1] requires
us to show a co-inductive compliance that contains the pair (r, p1). The following relation will do,
R= {(r, p1), (1, B.0)}. It is routine work to check that R C F7(R). Will still have to prove that

r 7 pa. Consider the ensuing computation
r|lpp=1]|7° + 5.0

Since 1 || and 7*° + 3.0 |/, Definition [3:2.T] ensures that 1 A 7°° + 3.0. It follows that r A ps. O

Example exhibits a first difference between ESVR and Cgyg. The mismatch is of course due
to the definitions of MUST and .

Let us discuss MUST. If at any point in a computation a server p diverges, then in that point
the clients that p passes have to be successful (Lemma . This means that convergence has to
be accounted for along the execution of every trace. The requirement of checking the converges of a
server along traces is expressed by the predicate || in Definition

The relation - imposes a weaker requirement; for for - the convergence of servers matters only as
long as clients converge. So if » 4 p and r converges only after a trace s, then p is required to converge
only after s; the converge of p along s does not matter.

In Example the server p; diverges along the trace o3, because p; {f , but not after, for
p = 5.0 LN 0, and 0 || . The divergence along «f implies that p }f s for every s, so in the MUST
setting p; can be replaced by any server. This is not true in the compliance setting, because if r 4 pq,
then the requests of r have to be satisfied by p; also after a and after af.

The second difference between ,ESVR and Cgyg is how infinite traces as treated.

Example 5.1.3. [Infinite traces |
In this example we prove that the processes in Figure [I.4] are related by Ceyr: p Cevr g

We have to prove that if » 4 p then r 4 ¢q. Suppose that r -4 p. Definition [3.2.1] requires us to
exhibit a relation R such that (a) 7 R ¢ and (b) R is a prefixed point of the rule functional F~. Let

R={(",q) | r%r’,q%q’foreverykeN}

Since r == r and ¢ = ¢, by definition 7 R ¢; this proves (a).

To prove (b) we have to show that if ' || ¢’ then the ensuing properties are true,
i) if 7/ |} then ¢’ |

.
i) if ' || ¢ 4~ then r —»

100 Chapter 5. Compliance pre-orders

i) if 7 || ¢ > " || ¢ then v R ¢"

Pick a pair (', ¢') from the relation R.
We prove i). The definition of R implies that ¢ = ¢’ for some k € N, so Lemma implies

that ¢’ |} . Since the consequences of the implication in i) are true, the whole 1mphcat10n is true.
We prove ii). Suppose that r’ | ¢ 7L> The deﬁmtlon of R implies that for some k € N, r b r,
and the assumption 7’ || ¢ 7L> implies that 7’ 7L> By hypothesis p == 0, so there exists the

computation
-
rilp=r"10+

The assumption that r 4 p and Corollary imply that ' 4 0. Now #’ || 0 and point @ of
Definition implies that 7’ . This proves ii).

We prove iii). Suppose that r’ || ¢ — " || ¢""; we show why r” R ¢”. By construction of R
we know that r == ' and ¢ == ¢” for some k € N. The argument is a case analysis on the rule
used to infer the reduction. If rule [P-LEFT] was applied then ' — ¢ and ¢’ = p’; as r S 1 the
definition of R implies that "/ R ¢”. If rule [P-RIGHT] was applied then ¢ — ¢” and 7/ = r"". We
infer ¢ =% ¢”, so the definition of R implies that 7" R ¢”. If rule [P-SYNcH], then the reduction is
due to an interaction. The only actions that the ¢’ offer are in u, so it must be the case that ¢ == ¢,
r 22 0 and ug = ugy1. The definition of R implies that 7/ R ¢”.

We have proven that R is a prefixed point of F, so Definition and the Knaster-Tarski

theorem imply that R C -. Now (a) implies that r 4 g. O
Example 3 shows that the relation Cgyy does not compare infinite traces as & Ry does.
Agaln the difference between Cgy and & mogv Stems from the definitions of 4 and of musT. To

check that p MUST r, one has to prove that every maximal computation of r || p, is client-successful.
To check that r 4 p, on the other hand, one has to check only that finite computations either end in
a client-successful state or can be extended.

We laid bare the differences between server pre-orders Cqyr and & thereby proving that these

~SVR?
pre-orders are not comparable,

ESVR Z Csvr, Csvr ESVR (5.3)

These differences show that in the compliance setting
i) the convergence of servers is compared only after traces have been performed
ii) the divergence of a server does not imply that it is worse than the other servers
ili) the infinite traces of servers do not matter

Our task now is to adapt Definition so as to characterise the relation Cgyr. The proper-
ties we listed previously sheds light on what to do. Point above calls for the definition of a new
predicate to check convergence. Point suggests that we drop the requirement p; |} w from con-
dition of Definition Point suggests that we drop infinite traces from condition of
Definition

We introduce the novel predicate to check the convergence of servers.

Definition 5.1.4. [Convergence after trace |

Let F|) : P(CCSyr x Act™) — P(CCSy, x Act™) be the rule functional given by the inference rules
in Figure Lemma [C.0.24] and the Knaster-Tarski theorem ensure that there exists the least
solution of the equation X = F| (X); we call this solution the weak convergence predicate, and we
denote it ||: That is || = puX.F| (X). O

5.1. Server pre-order 101

——— p | ; [WCONV-AX

plle
@
pllas? =~; [WCONV-AX-NOT]

@D (p AFTER «) || ¢’
pll as’

p ==; [WCONV-ALPHA]

Figure 5.2: Inference rules for the functional F|;

As the name suggests the predicate || is weaker than |} , in the sense that p || s does not imply p |} s.
We show this in Example [5.1.5

By using || in place of || we relax the condition under which the comparison between ready sets
has to be performed; the result is that the amended definition checks more ready sets than the wrong

definition.

Example 5.1.5. In this example we show a process p such that p || af andp §f a. Let p’ = 7° ® 3.0
and p = 7 + a.p’. The proof that p || a3 is the following inference tree

0 ; [WCONV-AX]
(/w - P’ N [WCONV-ALPHA|
PUpB o

WCONV-ALPHA
pll aB p []

To derive p || af we need an inference tree like the above one. The tree for |} , though, does not

exist because p’ |} , so after the axiom [CONV-AX] the derivation cannot proceed. O

The previous example shows the difference between || and || . Suppose that p ==. If p || s then

p converges after the string s. If p || s then all the states in all the branches encountered while
performing s must converge.

We prove a technicality.
Lemma 5.1.6. For every s € Act* and every p € CCSy, if p || s and p — ¢/, then p’ || s.

Proof. The argument is by induction on s.

Base case (s =¢) In this case we want to prove that p’ || . In view of [WCONV-AX], it is enough
to prove that p’ || . By hypothesis there exists the derivation of p || &, we can be only the axiom
[wcONV-AX]. The side conditions of the axiom imply that p |} . The hypothesis that p = p’ implies
that p’ |} .

[e3%
Inductive case (s = as’) We have to prove that p’ || as’. If p’ ==, the we use the second axiom

of ||,

(0%
o1l as p/ ==; [WCONV-AX-NOT]

If p’ ==, then p ==. The last fact and the hypothesis p || as’ imply that @(p AFTER «) || s’. Since
(p' AFTER) C (p AFTER), it follows that @(p’ AFTER «) || s’, and so we derive

@D (p' AFTER @) ||
Pl s’

;)
p' =>; [WCONV-ALPHA]

We are ready to define a relation that characterises Cgyg.

102 Chapter 5. Compliance pre-orders

Definition 5.1.7. [Semantic compliance server pre-order]

Let p; =<svr p2 Whenever for every s € Act”,
(1) if py || s then
(a) p2 Il s
(b) for every B € ACC(p2, s) there exists some A € ACC(py, s) such that A C B
(2) if py ==, then p; == O

To prove that <gyy is a complete description of Cgyr, we have to explain why Cgyy satisfied all the
properties required in Definition We carry out this task in a series of lemmas.
For every process p there exists a client that is not satisfied by p, namely 0. This implies the

following result.

Lemma 5.1.8. [Finite trace simulation |

For every s € Act*, and every p1,ps € CCSyr, if p1 Cevr p2 and py == then p; ==.
Proof. By hypothesis there exists a pfy such that py = ph. Let s = ajaq...ap,, and let
qef | T + ai.ci+1 ifi<n
0 ifi=n

The definition of - lets us prove that 0 A p),, and also that Cy # po. The hypothesis p; Cgyp pe implies
that C A p;. If p; ==, then the divergence of all the C; but C), let us prove that Cy - p;. It follows
that p; = O]

does not extend to traces that involve infinite states; we have proven this in Example

The relation between the convergence of the servers in Cgyy is proven in the next lemma.
Lemma 5.1.9. For every s € Act™ and p1,ps € CCSyr, if p1 Cgyr p2 and py || s then po || s.
Proof. Fix a string s € Act™ such that p; || s. We have to show a finite derivation of ps || s. the

proof is by induction on s.

Base case (s = ¢€) We have to derive p; || e. The hypothesis that p; || & implies that p; | .
Lemma ensures that 1 4 pq, so the hypothesis p1 CTgvr p2 implies that 1 4 p,. Definition [3.2.1]

ensures that ps |} , thus we derive

p2 | ; [WCONV-AX]

p2lle

(03
Inductive case (s = as’) We have to derive py || as’. If py =/ then the derivation is the following
one N

2 || s’ P2 73 [WCONV-AX-NOT]

Suppose that p, ==. In this case if we knew that @(p2 AFTER «) || s, then we could apply
[WCONV-ALPHA] to obtain the derivation we are after.

We prove that @(p2 AFTER «) || s’. Since s’ is smaller than s, the inductive hypothesis states
that

for every p1 Esvr P2, if p1 || 8" then p || s

Let po = @(p2 AFTER «); to show that p; || s’ it suffices to exhibit a p; such that p; Ceyr p2 and
p1 1l s’. The assumption py ==, the hypothesis p; Cgvr p2 and Lemma imply that p; ==, so
the set (pl AFTER «) is non-empty. Let p; = @ (p1 AFTER o). The hypothesis p; || s’ and p; ==

5.1. Server pre-order 103

imply that p; || s’. We still have to prove that p; Cgyvr po. Fix a process r such that r 4 p;. It is
relatively easy to prove that
T + a.r-dp (5.4)

so the hypothesis p; Cgyp p2 implies that 7°° + @.r o ps. For every p, € (py AFTER «), the
computation 7°° + @.r || po = r || p5 and Corollary let us prove that r - p5. It follows that
r - ps.

We have proven enough facts to use the inductive hypothesis, which implies that ps || s’. Now we

derive

4 : p —; [WCON\/ ALPHA]
2 ’ -
D2 u as’

O

Corollary 5.1.10. For every s € Act*, and p1,p2 € CCSyr, if P1 Csvr P2, 1 Ll s and AcC(pa, s) # 0

then AcC(p1,s) # 0.

Proof. The hypothesis ACC(pa, s) # @ implies that py ==. Lemma implies that p; == p} for
T

some p/. The hypothesis p; || s implies that p} |} , and so there exists a p/ such that p; == p/ .

This implies that S(pf) € acc(ps,). O

Lemma 5.1.11. For every s € Act*, and every p1,ps € CCSyr, if p1 Cgyr P2, p1 [l s and B €
ACC(pa, $), then there exists a set A € AcC(py, s) such that A C B.

Proof. Fix a s € Act* and a set B € ACC(p2,s). We have to exhibit a set A € ACC(py, s) that is a
subset of B. Corollary [5.1.10| and the hypothesis of this lemma imply that the set is Acc(py, s) is
non-empty, that is Acc(py,s) = { A; | i € I} where I is some non-empty set.

The proof is by contradiction; we assume the following
for every i € I, there exists a o; € A; such that «; ¢ B.

By using this assumption we define a client C' that contradicts the hypothesis p; Cgyr p2. Let
S:ﬂl/@Q.../Bn. Let

aef | T + Bi+1.ci+1 if i <n,
D ier @ T ifi=n
We prove that Cy A pa. Definition [4.1.11}and the hypothesis B € AcC(p2, s) imply that there exists
T T
a pl such that py == pj —/+ and S(p) = B. Consider the computation, Cq || po = C,, || ph .

v
As C,, -, C,, A po; it follows that Cy A po.
We prove that Cy 4 p;. Let

R={(C,p) | Co=5 C.p1 =5 pwith &' prefix of s } U{ (7™, p) | p1 224 p}

By construction Cy R p;. We prove that the relation R is a co-inductive compliance. Fix a pair in
R, say (C, p); Definition requires us to prove three properties

a) if C | thenpl
b) ifCHp7TL>thenCL>
c) if C'||p—>C"|| p' then C" || p/

If C = 7°° and p; == p, then the pair (C, p) satisfies all the points above. This is true because C' }f ,
Cllp = andif C || p > C"||', then O = 7°° and p; =2 /.

104 Chapter 5. Compliance pre-orders

Now suppose that C and p are in R because for some s’ prefix of s, Cy = ¢ and D1 é p.

Suppose that C' || ; then C = C,, and s’ = s; it follows that p; == p. The hypothesis p; || s
implies that p || . This proves a).

To prove that b) is true we show that C || p —. If s is shorter than s then C' — because C
diverges. If s’ = s then C' = } ., @;.7°; since p; == p, the hypothesis @ (p; AFTER s) |} implies
that p |} , and so Definition [4.1.11]ensures that S(p) € ACC(py, s). It follows that for some i € I, there
is an action a; € S(p) such that C 2, Tt follows that C and p can interact, so C lp —.

We have to discuss c). Suppose that C' || p — C’ || p’. The argument depends on the rule used
to infer the reduction. If [P-LEFT| or [P-RIGHT] was used, then C = ' or py LI p'. If [P-SYNCH]
was applied then there exists the inference

o2 pi>p’
Cllp—=C"|lp

[P-SYNCH]

If § = ; for some f; in s, then C' R p'. If § = «; for some a;, then €’ = 7> and p; == p/, so
C'"RYp. 0

The proof that the relation =gy is a complete description of Cgyy is now easy.

Proposition 5.1.12. [Completeness]
For every p1,p2 € CCSyr, p1 Cevr p2 implies p1 Zgvx po.

Proof. Tt follows from Lemma Lemma [5.1.11} and Lemma [5.1.8 O
In order to prove the soundness of =gy with respect to Cgyr, we need the following lemmas.
Lemma 5.1.13. For every py,ps € CCSyr, if p1 <svr p2 and py — ph, then p; =gy Ph.

Proof. Definition requires us to prove three properties of the pair (p1, p5), namely that for every
s € Act™,

a) if p; || s then

i) p2ll s
ii) if B € Acc(ph, s) then there exists a set A € AcC(p1, s) such that A C B

b) if pf, ==, then p; ==
We prove these properties one by one. Fix a s € Act*.
a) Suppose that py || s.

i) We have to show that p}, || s. The hypothesis p; =gy p2, the assumption p; || s and point
of Definition imply that ps || s. Lemma implies that p} || s.

ii) Suppose that B € Acc(ph,s). Definition [4.1.11] ensures that B € ACC(pq,s), and so the
hypothesis p; <gvr p2 and Definition 4.1.17| imply that there exists a set A € AcC(py, s) such
that A C B.

b) Suppose that py, == pj. Tt follows that p, == p4, and so the hypothesis p; <syx p2 and point
of Definition imply that p; ==. O

O
Lemma 5.1.14. For every p1,ps € CCSwr, if p1 || o, p1 <svr p2 and ps — ph then

i) the set (p1 AFTER «) is non-empty

5.1. Server pre-order 105

i) P(p1 AFTER) =gy Dh-

Proof. Suppose that for some o € Act and p}, po N ph. The hypothesis p1 <gvx p2 and point of

Definition implies that p ——. Definition implies that p} € (p1 AFTER a).
We prove point . Point guarantees that the process @(p1 AFTER «) exists, and we have to

show that @(p1 AFTER a) =g p5. Let p = @(p1 AFTER «). Definition requires us to prove

that for every s € Act”, the processes p and ph enjoy the ensuing properties,
a) if p || s then

i) pylls

ii) if B € Acc(ph, s) then there exists a set A € ACC(p, s) such that A C B
b) if pf == p4, then p ==

Fix a string s € Act* such that p || s. To prove point , we have to explain why pf || s. The
assumption on p ensures that we can derive

plls

e
oy Ll as P1 =1 [WCONV-ALPHA]

Since p; =gyr P2, point of Definition implies that ps || as. Since ps ==, it follows that
@D (p2 AFTER «) || s. Since {p4} C (p2 AFTER «), it follows that pf || s.

We prove point . Fix a B € ACC(ph, s); we have already proven that p; || as, so py — pl
and Definition ensure that B € ACC(p2, as). Now point of Definition implies that
there exists a set A € ACC(p1, as) such that A C B. The equality ACC(p1, as) = ACC(p, s) implies
that A € Acc(p, s).

To prove point @ suppose that py, == p4. The hypothesis p; <svr P2, P2 = pl and point of
Definition imply that p; =>. In turn this implies that p ==.

O

Theorem 5.1.15. [Alternative characterisation Cgyy, |

For every p1,ps € CCSyr, p1 Csvr p2 if and only if p; <gvg po-
Proof. We have to prove the ensuing implications,

i) if p1 Cevr p2 then p1 Zgvr p2

ii) if p1 <svr p2 then p1 Covn p2

The first implication is shown in Proposition [5.1.12] We prove only the second implication.
We are required to show that for every r, if r 4 p; then r 4 ps. To this end we define a suitable

co-inductive compliance relation. Let
R={(r, p2) | p1 =svr P2, r 1 p1, for some r € CCSy, }

The construction of R implies that if r 4 p; and p; =gvr P2, then 7 R po. To show that r 4 po we
have to prove that R is a co-inductive compliance. Definition requires us to prove that if r R p

then three properties are true,
(a) if r | thenpl
(b) ifer%thean)

(c) ifr||p—>7"||p then ' Rp

106 Chapter 5. Compliance pre-orders

Fix some r and p such that » R p. We prove the properties listed above. By definition of R there

exists a process p; such that

P1 Zsvr Ps r=p

Suppose that r |} . Definition implies that p; | ; in turn this means that @(p; AFTER €) |} .
point of Definition and p; <gyr P2 ensure that if p == p’ then p’ || . By reflexivity, p = p,
so p |} . We have proven (a).

Suppose that r || p 7TL> Then S(p) € S(r). Since p 7;, p { , and so S(p) € acc(p,e). As
r is stable, r is convergent, and so r - p; implies that p; | . It follows that @(p1 AFTER ¢) | .
point of <gyr and the assumption p; =gy p imply that there exists a A € Acc(py,e) such that
A C S(p). Definition and Definition |4.1.6/ imply that there exists a p} such that p; == p} 7TL>
and S(p;) C A. Tt follows that S(p}) C S(p), and so S(p}) € S(r). The last fact and r and p}
are stable, imply that r || p} 7L> Since r || p1 = r || pj Corollary implies that r - pi;

.. v
Definition now ensures that r —.

Suppose that 7 || p — ' || p’; we have to explain why 7/ R p’. The definition of R requires us to
show a p such that

r’ A D, D Ssvr p,

The argument depends on the rule used to infer the reduction.

If the reduction is due to rule [P-LEFT], then r — 7/, and p’ = p. Let p = p;. Definition
and r - p; ensure that v’ - p, and p <gyr p’, s0 7 R p'.

If the reduction is due to rule [P-RIGHT], then p — p/, and r = r’; the candidate p is p;. We
know that p; =<cir p, thus Lemma [5.1.13| implies that p; =g p’; and we already know that r’ = py,
because r = r’.

If the reduction is due to rule [P-SyNcH], the r —*5 ¢/, p N p’. the fact that p; =gz P
and point of Definition implies that p; =% We can use Corollary to prove that
r’ 4 E(p1 AFTER «), so let our candidate p be @(p; AFTER a). We have to prove that p =gy p'; this
follows from Lemma [5.1.14 O

Comparison with other pre-orders

In Chapter [] we have studied three pre-orders, and so far we have compared Cgy only with one of
them, namely S .. By exposing the differences between the server pre-orders, we have justified the
characterisation of Cgyg.

Now we swiftly prove that Cgyy is comparable neither with the other MUST pre-orders, nor with a
well-known pre-order from the literature, the shd testing pre-order.

The following inequalities should not be surprising.

a0 5, . 5.0 a.0 FZsr B.0
1 Zow O 1 Con O
al+p0 L, al a.l+8.0 Ugr a.l

The inequalities above are true because of the non trivial usability of clients (and of peers alike).
Intuitively, non-usable clients are always equivalent, even if they offer different communication pattern.
The last fact lets Cgyy distinguish the clients. Moreover, it is safe to remove from a peer a non-usable
action and the derivation after it. This, though, is detected by Cgyg, because the all the (co)actions
offered by servers can be used by clients. Since Cgyr € 5, the set inclusion &, € 5 . implies
that Cevg g EP2P'

Now we turn our attention to the setting of shd testing by |Rensink and Vogler, |2007]. Our aim
is merely to prove that the pre-order Cgyy is not not comparable with the should pre-order. Let Cgpg
be defined as in [Rensink and Vogler| 2007, Section 3.2].

5.1. Server pre-order 107

Example 5.1.16. [Should pre-order |

In this example we prove the following inequalities,

Csve € Cshds Eshd € Esvr

We show that Cgyy is not contained in the Cghg. Let A et (A ® B.A) and B © 0B, Tt is
relatively easy to prove that A Cgyy B; this being true because all the clients that comply with A
have to be ready to interact on a. To prove that A Zgg B we use the client C T a.c + B.1. We
can prove that A shd C, whereas B shd C, because B never allows C to reach a successful state.

Now we explain why Cghg is not contained in Cgyg. The proof that 0 Cghg 7°° relies on two
facts: if 0 shd r then if r = 7’ implies r’ :/>; and since 7°° offers no interaction, the states in the

computations of r || 7°° contain a derivative ' of r such that r = /. However, 0 Zsyr 7 because
140 while 1 7.

Essentially, the proof that Cgyp € Cepg follows from the fact that the compliance allows ever-lasting
computation with not client-successful state; whereas the proof of Cgy € Cgyr follows from condi-
tion (a)) of Definition that is how the compliance deal with the divergence of servers.

5.1.1 Server pre-orders on restricted LTSs

The MUST server pre-order and the compliance server pre-order are not comparable (see [5.3)). This
result is true in the LTS of processes (CCSy,, Act,,, —) , which contains

e infinite branching terms
e infinite states
e divergent terms

By dropping some of the properties listed above, we can restrict the LTS, thereby focusing on
different LTSs. We study how the relations Esz and Cgyy are related in some sub-LTSs of the general

LTS of processes,
(CCSywr, Act, vy, —)

First we compare point of Definition with point of Definition[4.1.17, What we saw in
(Example[5.1.2)) shows that point of Definition [4.1.17|does not imply point of Definition

The converse is true.

Lemma 5.1.17. For every pi,ps € CCSy,, if for every s € Act™, p; || s implies po || s, then for
every s € Act™, p1 | s implies ps |} s.

Proof. Fix two processes p1,ps € CCSy» such that for every s € Act™, if p; || s then ps || s. Fix a
string s € Act* and two processes such that p; || s; we have to prove that ps || s. To this end, it is
enough to show that for every s’ prefix of s, if po = ph then pf | .

Fix a s’ prefix of s. The hypothesis p; |} s implies if p; N p) then p} | . In turn this ensures
that p1 || s’. The hypothesis now imply that ps || s, so if ps £/> ph then pf || .

The only assumption on s’ is that it is a prefix of s, so we have proven that for every s’ prefix of

s, if p1 |} s then po || s. As there is no assumption on s, the result is true for every s € Act*. O

Lemma implies that if <gyy is not contained in Zgyg, it is because of point in the definition
of jSVR'
Let us decorate the symbols CCSy,, Cgyr and ESVR in order to specify the LTS wherein we define

the pre-orders. It is relatively easy to prove that in certain sub-LTS of (CCSy,, Act,,, —), the

alternative characterisations Sgyr and =gy remains sound and complete. For instance, we let CCS‘;‘V’T

108 Chapter 5. Compliance pre-orders

denote the finite branching processes, and Eg{,R, EZ&,R the server pre-orders defined in the obvious way
on the LTS (CCS™

wWT?

Act,,, —). One can prove the following properties of Sgyg-
. fb

o if p1 5., P2 then p1 Zsvr P2
. fb

o if p1,p2 € CCST_ and p1 Zsvw P2, then p1 5O po

Let (CCSY_, Act,,, —) be the LTS in which each state is convergent.

WT?

Proposition 5.1.18. For every pi,ps € CCS&T7 if py Eg\m po then py EéLVR Pa.

Proof. The result follows from the next three set inclusions, which we prove;

a) O <

SSVR = ~SVR
b) for every py,pa € CCSY_, if p1 Zsvn P2 then py <sun po
c) for every pi,p2 € CCSY., if pi Zsvn p2 then pi Ty po

The set inclusion in a) is true because the tests used in (the lemmas that imply) Proposition
are convergent, and so they are in the LTS (CCSY | Act,,, —). This implies that Proposition
is true also in the LTS of convergent states.

We prove b). In a convergent LTS the requirements of Zgyr and =<gy on the convergence of

processes are trivially true, so for every pi,ps € CCS&T, p1 =gvr P2 if and only if
e for every s € Act* and B € ACC(p2, s) there exists a set A € ACC(p2, s) such that A C B
o for every w € Act*, if py == then p; ==

The two conditions above follow from p; Zgyr P2, and this explains b). The third inequality follows
from Theorem [5.1.151 O

We introduce a property of states that relates infinite traces to their finite prefixes,
p Prefinf whenever for every u € Act™, if p == for every n € N, then p ==

Let (CCSpi"f, Act, ,, —) be the LTS in which each state enjoys the property Preflnf.

Proposition 5.1.19. For every p1,ps € CCSP™ if p; TP) then p; Egl:: Da.

Proof. We process in a manner similar to Proposition [5.1.18] and prove three set inclusions that imply

the proposition;
inf
a) E‘s){/na C =swr

Spinf

b) for every py,p2 € CC , if p1 Zgvr P2 then pr Zevr P2

c) for every p1,ps € CCSP™ if p1 Zeve p2 then py ES{”; P2

The first inclusion is true because all the clients used to prove the completeness of =gy (Proposi-
tion enjoy Preflnf, so they are in the LTS at hand.

The second inclusion follows from the definition of <gvy, Lemma and the fact that if
p1,p2 € CCSP™ . then they enjoy Preflnf.

The third inequality follows form Theorem [5.1.15 O

Let CCSyep = {p € CCSy, | pPrefnf, for every s € Act*,p == p implies p’ || }; we recover
the LTS (CCSyep, Act, », —>) in the usual manner. The LTS of CCSyep is essentially the LTS of
contracts for web-services, because it contains the LTS of [Padovani, |2010], and the one of |[Castagnal
et al., 2009).

5.1. Server pre-order 109

Theorem 5.1.20. For every py,ps € CCSyepb, p1 E‘x; po if and only if CYeP.

Proof. We have to prove two set inclusions,

web web
a) ’ESVR g ESVR

b web
b) L8P C Kgon

The proof of the first inclusion is analogous to the proof of Proposition [5.1.18] and we do not discuss
it.
In principle the proof of the second inclusion is similar to the one of Proposition [5.1.19] but there

are more complications. We wish to show the three inclusions that follow,

i) CWeb C <gin

ii) for every p1,p2 € CCSyeb, if p1 <svr P2 then pi Zevr P2
iii) for every pi,ps € CCSueb, if P1 Zeve P2 then p1 5o py

While the inclusions ii) and iii) can be proven as in Proposition inclusion i) cannot; it does
not follow from the proof of completeness of <g (Proposition , because the clients used in
Lemmal[5.1.9] Lemmal[5.1.11} and Lemma are not in CCS,ep, because those clients diverge. These
lemmas, though, are true also in the LTS of CCS,ep; their proofs are similar to the ones we have given,
but rely on different clients obtained by replacing 7°° with 1.

The client to prove the analogous of Lemma is

def 1 +a7;.07;+1 ifi<n

0 ifi=n

To prove the analogous of Lemma in Eq. (5.4), we use 1 +@.r in place of 7 + @.r. The client
to prove the analogous of Lemma [5.1.11] is as follows,

dot |1 +Bi41.Ciy1 ifi<nm,
Sier®i-1 ifi=n

By using the clients above, we one can show that g;vgg C =gvr- The inclusions b) and ¢) are proven

as in Proposition [5.1.19
O

Example [5.1.2] Example |5.1.3] and Theorem [5.1.20| show the conditions necessary and sufficient
for the server pre-orders to coincide; they are used in the definition of CCS,ep. But there is a more
natural definition of an LTS, where the server pre-orders coincide. Let ccst, = {p € CCSy, |

web

p finite state, for every s € Act*, p == p implies p’ |} }.
. f . .
Proposition 5.1.21. For every pi,ps € CCSiieb, Pl ,E:VR pe if and only if Cf..

Proof. Note that since every p in CCS\fzeb is finite state, Konigs'lemmaimplies that p enjoys Prefinf:
for every u € Act™, if for every n € N, p == then p ==; so CCSfjeb is contained in CCS,ep.
The inclusion 5° € Cf follows from Theorem [5.1.20, The proof of the converse inclusion is

~YSVR — —SVR

essentially the same of of b) in Theorem [5.1.20 as the clients used there are in the LTS of ccs' O

web*

A similar equality has been proven directly in [Bernardi and Hennessyl, [Bernardi and Hennessyl,
2011], where the LTS is finite state, finite branching, and every term converges, but < is an unspecified

parameter.

110 Chapter 5. Compliance pre-orders

In this section we have introduced the compliance server pre-order, we have explained why it differs
from the MUST pre-orders, and we have devised an alternative characterisation for it (Theorem.
We have also exhibited the two conditions on the LTS that are necessary for the resulting server pre-
orders to coincide (Example Example [5.1.3] Theorem [5.1.20)).

The next natural problem is to study the client pre-order given by the compliance relation, and

compare it with 5 .

5.2 Client pre-order

Now we study when a client r5 is better than a client 71, if we use the compliance relation to express
satisfaction. It turns out that the pre-order we obtain is different from the MUST client pre-order

(and the other pre-orders we studied thus far), so we develop yet anther alternative characterisation

(Theorem [5.2.25)).
Definition 5.2.1. [Client pre-order |

We write r1 Cepp 72 whenever for every process p, r1 - p implies ro 4 p. We refer to the relation Cepyp

as the compliance client pre-order. O

Notation In the usual way we reason on Cg up-to associativity and commutativity of & and +.
One of the difference between Ty and 5 o 18 the manner in which clients that perform infinite
computations are treated. Similarly to what we saw in Section m also C,r disregards infinite traces.

Example [5.1.3] can be adapted to prove this.

Example 5.2.2. Let the process r be defined as p in Figure where the pi’s a replaced by ri’s,
and 7 denotes a process which performs a sequence of k « actions followed by 1. Let g be a the
process with only the self loop «.

In this example we prove that r C¢r ¢. To this aim we define a suitable co-inductive compliance,
R={(d,7) | T4p,qi>q'7p§>p’7 for some n € N}

To prove that R is a co-inductive compliance we have to show that the pairs in it enjoy three properties,
! : : /
a) ¢’ | implies p’ |
T v
b) ¢' || p" 4 implies ¢ ——
o) d |l —d"IIp"
Let us fix a pair ¢’ R p’. We prove the requires properties. By construction we know that r - p,
and for some n € N, ¢ == ¢ and p = p'.
Suppose that ¢’ || ; we have to show that p’ |} . Since r performs every finite sequence of a’s, the

following computation exists,

rllp=r"p

for some r’; by construction r’ converges. The fact that r 4 p implies that ' 4 p; 7' || now ensures
that p’ |} .

We prove the second property of ¢’ and p': if ¢ || p’ 7TL> then ¢’ 5 To prove that the implication
is true, we show that its premises are false. First note that if p’ — then ¢’ || p’ ——, so let us suppose
that p’ 7Z>

We know that ¢ N q' for some n € N. The construction of r ensures that r <L 3 % for some

v v
r’ such that ' —/». The computation r || p = /|| p’ and r - p imply that +' - p’. Since 1’ -/,

5.2. Client pre-order 111

the composition " || p’ is not stable; since p’ 7TL>, it follows that p’ ——. Now we can prove that
¢ || P’ = because ¢ .

To prove the third property that ¢’ and p’ have to enjoy, suppose that ¢’ || p’ — ¢" || p’. We
have to show that ¢” R p”; this follows immediately from the construction of R, and the fact that

the only visible action performed by ¢ is «. O

In the example above we have shown two processes r and ¢ related by Ceir, 7 Ecir ¢, and such that
oo a™
q =, while r =%~.

The other differences between Ty and 5 o Pertain only the client side of our frameworks.

Example 5.2.3. [All traces vs. unsuccesful traces]
In this example we prove that Copr € Ecm' Let 11 =1 4+a.0and ro = 7 4+ «.0. We prove that
1 ¥y T2- Plainly 0 MUST ry, whereas 0 MUST ra, because r; has no successful states.

On the contrary, vy Cgpr 2. Intuitively, this is true because if 71 4 p, then p does not perform
the action @. The only interaction that ro offers is «;, so ro and p cannot communicate; moreover, ro
is never stable, so the following relation is a co-inductive compliance, R = { (r9, p) | r1 4 p}. This

proves that vy Cepp 7. H

The example above shows that the characterisation of C¢;r should account for all the executions of the
traces, and not only the unsuccessful ones. The reason why we can define a server that distinguishes
the tests r1 and ro (i.e. proves that rq %cm r9) is that ro :a>/, whereas rq ;aab/. Intuitively, this is
the case because MUST disregards what a client does after a successful state; on the contrary - checks
what a client does also after having reached a successful state (see Example .

The last difference between Cor and & is how the action v is compared with other actions.

~CLT

The pre-order ECLT never compares v , because only unsuccessful traces matters, and they do not

contain states that perform v'. The pre-order T, on the contrary, treats v' as the best action.

Example 5.2.4. [Action v in the ready sets]
In this example we prove that T, treats v~ as the best action. To do so, we prove that the following

implication is neither sound nor complete with respect to the pair (r1, r2) in Cepr,
for every s € Act™ if B € ACC(rg, s) then there exists some A € Acc(ry, s) such that A C B.

One sees easily that 1 Lo 0, for 1 4 0 whereas 0 # 0; this means that the implication above is
not sound; we prove this. Observe that either () € Acc(0, s) or acc(0,s) = 0. If § € acc(0,s), then
s = ¢; since () € Acc(1, &) we have the matching () C ().

The implication above is not complete. We show two clients 71 and 79 such that r1 C¢p 72, and
that (r1, r2) does not satisfy the implication above. Let r;1 = «.1 and ro = 1. We explain why
a.1Cqr 1. Let a.1 - p for some p; the assumption and Definition ensure that p |} . It follows
that the relation R = { (1, p) | p { } is a co-inductive compliance. This is true because p |} , 1 L>,
and 1 offers no interactions.

Now observe that the pair («.1,1) does satisfy the implication above. We explain why; we have
to exhibit a s € Act* and a B € Acc(l, s) such that there is no set A € Acc(a. 1, s) that is contained
in B. Clearly,) € Acc(l,¢); since the set AcC(a. 1,¢) is the singleton {{«}}, there is indeed no
A € acc(a. 1,¢) such that A C 0. O

Example shows that the action v* should be in the ready sets of processes, and that it should
be treated as the best action.

In view of the previous examples, the pre-orders T and & or are not comparable,

LT
ECLT Z Ceur, Cor € ECLT (5~5)

We summarise the differences between the client pre-orders,

112 Chapter 5. Compliance pre-orders

Figure 5.3: LTS of r = (1 +a.0) & a.1

i) the MUST pre-order, ECLT, compares (unsuccessful) infinite traces of clients. The compliance

pre-order disregards infinite traces. This is similar to what the server pre-orders scenario (see

point on (100]).

ii) the pre-order _ . compares the behaviour of clients only along unsuccessful executions of a trace.

The compliance pre-order checks the behaviour along all the executions of a trace.
iii) the pre-order &

. disregards completely the action v'. The relation Ceir compares v with the

other actions and considers it as the best action.

Now our touchstone is Definition [4.2.30 that is the characterisation of & We want to adapt

~CLT"

that definition, so as to mirror the differences between T and & s and characterise Cepr. To carry
out this task, we have to introduce more notation.
In Lemma we have established that 0 complies with no process at all, and 7°° complies with

every process. These facts leads to the ideas of usable client and of non-perfect client.

Definition 5.2.5. [Usable clients]

Let

Ui, ={r | r-p, for some server p}
If r € U}, then we say that r is a usable client. O
The set U, differs from YY", and the two notions of usability are not to be confused.

Example 5.2.6. [Usability of clients are not comparable]
In this example we prove that UMPST Z U} and that U, Z UMNPET.

We prove the first inequality. Let » = (1 + «@.0) & «.1. We depict the client in Figure

To prove that r € UNTT we have to show a server p such that p MUST r. It easy routine work to
check that all the maximal computations of r || @.0 are client-successful; so @.0 MUST r. We have
proven that r € USS".

Now we want to prove that r ¢ U, that is » A p for every p € CCS,,,. Intuitively, this is the
case because r — .1, so for a server p to satisfy r (with respect to) it is necessary that p offers

(modulo internal moves) the action @; so p == p/. But this implies the existence of the computation
rllp——=1+a0|lp=0]7p

and plainly 0 A p’, so r A p.

We have shown that r € UMY and r € U, so UM Z U .

We prove the second inequality, U\, Z UMYST. Intuitively, this is the case because - admits
livelocks with no client-successful states, whereas MUST requires all the computations to be client-
successful. We have already seen in Lemma that 7°° - p for every process p, so 7°° U .. On the

contrary, p MUST 7 for every p, so 7°° & UNST. O

5.2. Client pre-order 113

We expect that if 71 Cgyr ro then the observable behaviours of r; and r9 be related. This is not
true if ro is “perfect”, that it is satisfied by every server (7°° is such a client). We need some notation

to focus on the clients that are not satisfied by every server.

Definition 5.2.7. [Non-perfect clients |
Let

npf = {r | 7 /A ppad for some server ppaq }

If r € npf then we say that the process r is non-perfect. O

We give immediately a result that we will need in Lemma and, in general, to prove the
soundness of the characterisation of C;. Afterwards by means of examples we briefly comment on

perfect clients and their characteristic property.

Lemma 5.2.8. [Characteristic property of non-perfect clients |
For every r € CCSy,, 7 € npf if and only if » == ' and ' || , for some s € Act*.

Proof. We have to show two implications,
ii) if » € npf then there exists a s € Act* such that » == ¢’ and ' || ;
iiii) if there exists a s € Act* such that 7 == 7/ and ' || , then r € npf.

We prove the first implication. Let r € npf. By definition there exists a server ppaq such that
7 7 ppad- Consider the following relation,

R=1{(r,p) | r,p € CCSyr, s € Act*, r == 7/ implies r’' { }

One can prove that R is a co-inductive compliance. Intuitively, this is true because if » R p, then r
and r —, so condition @) and condition (]Eb of Definition are trivially true. Condition is
also true, by construction of R. Since r A ppad, it follows that r R ppad-

In turn this implies that for some " and p’, 7 || pras = ' || p’ and one of the following is true,
e 7' |l and p’ ¥

T v
o 7' || p /> and ' />

In both cases, 7’ |} . Since r == 7’ for some s € Act*, we have proven that if r € npf then for some
s€ Act* and 7, r == 1" and 1’ || .

We prove the second implication. Fix a process r such that for some s € Act* and r/, r == r’ and
r" |l . To prove that r € npf we have to exhibit a server that does not satisfy r with respect to the
compliance relation.

Let s = ajas...qp, and let ppag = @1.0o. @,,.7%°. The computation r || ppag = ' || 7°°, and
the fact that v’ |} while 7°° }{ let us prove that v’ A 7°°, and so 7 A ppaq- O

Lemma [5.2.8] tells us that perfect clients are tightly related to divergence. Consider the next

example.

Example 5.2.9. [Perfect clients]

Let r = (7°° + B.7°°) @ 7°°; we prove that .1 Cgp 7. This is trivially true, because r is a perfect
client. Plainly, there is no trace of r that leads to a state that converges, so Lemma [5.2.8| ensures that
r is perfect.

Alternatively, we can prove also that r 4 p for every p. Consider the following relation,

R={(r,p) | p€CCSyw, }U{ (7, p) | p € CCSy- }

114 Chapter 5. Compliance pre-orders

4 .
r usbl e r € Uy [USB-AX]

«
Tusblas " € Uckym 71 [UsB-NoT]

@ (r AFTER «) usbl s N
r usbl as re u:LTv r =—>; [USB-ALPHA]

Figure 5.4: Inference rules for the functional F gy

The argument to prove that R is a co-inductive compliance is the same we used in Lemma for
the R defined there. O

Note that to prove Lemma we need divergence in the LTS at hand, for we have used 7°° to
prove the second implication.

The characteristic property of perfect clients under the assumption of convergence is not the one
stated in Lemma We prove this by showing a client r that is perfect in (CCSy,, Act,,, —)
but not in (CCSY_, Act,,, —).

wWT?

Example 5.2.10. [Divergence and perfect clients |
Let ro =1 + 8. 1. In order to distinguish the clients a. 1 and ro divergence is necessary. For instance,
let p = @.0 +(.7%°; a.1 - p; whereas ry A p, because 71 || p == 1 || 7°°, and 1 || , while 7> }} , so
1 A 7°°. This shows that ry is not perfect.

In this example we prove that under the assumption of convergence , that is in the LTS

(ccsy

WT?

Act, ., —>>

the client ro is perfect, and so a.1 Ceyr 72.
We have to show that ro - p for every p € CCS&T. We prove that the following relation is a

co-inductive compliance,
R={(r2,p) | p€CCSL, }U{(L,p) | p€CCS,)

We give the intuition behind the argument. Let r R p; since pp € CCS&T point @) of Defini-
tion is satisfied. Moreover, by construction » —, also point (EI) of Definition is true. Now
let r be a derivative of 5 and p’ a derivative of p. if 7 || p — ¢/ || p, then either ' =1, or ' = 5.

In both cases " R p’ by construction of R. O

We introduce the notation to reason on the usability of clients along all the executions of finite

traces.

Definition 5.2.11. [Usability after trace]

Let Fuspi @ P(CCSyr x Act™) — P(CCSyr x Act™) be the rule functional given by the inference
rules in Figure[5.4] Lemma and the Knaster-Tarski theorem ensure that there exists the least
solution of the equation X = F,sp(X); we call this solution the usable after, and we denote it usbl :
That is usbl = pX. Fuepi(X). O

The predicate usbl tells us nothing about the convergence of the clients, for instance 7°° usbl s for
every string s € Act”™. This explains why we do not use the symbol .

The predicate usbl allows us to prove a property of traces analogous to what we proved in
Lemma [4.2.15l

5.2. Client pre-order 115
Lemma 5.2.12. For every s € Act* and 7 € CCSy,, if 7 usbl s and r == for some s’ prefix of s, then
@(r AFTER 5') € U,

Proof. The argument is similar to the proof of Lemma O

By using usbl, we amend the definition of usable actions; we also take into account what we

discussed in Example [5.2.4

Definition 5.2.13. [Usable actions and v after trace |

Let
v sq s, v
uav(r,s)={a€Act | r= andrusblsa}U{v | r=—"1}
We refer to the set uaY (r,s) as the usable actions of r after s. O

Again, the difference with Definition [4.2.16]is that the new predicate accounts for all the executions
of s, and not only the unsuccessful ones. Moreover, now we account for the action v’; the role of this

action in the set ua¥ will become evident later on.

Definition 5.2.14. [Acceptance sets with v |

For every process r and s € Act™, let
-
AccY (r,s) ={8Y (") | r=1 4}

where SV (r) ={a € Act | r -SYU{Vv | r —/>} We call AccY (r, s) the acceptance set (with V')
of r after s. O

To treat v* as the best action, we change the way whereby we compare ready sets.
Let ACY B if and only

e ifa € Athena€e Bor v € B.
o if v € Athen v € B
The relation T ¥ provides a sound comparison between ready sets.

Example 5.2.15. All the following inequalities are true by definition of C ¥ .

{a, 8y T {v}
{(vi zv {a}
{0} CY {8}
{vi z7 0
The first three inequalities show that v is better than any observable action. O

We have all the notation we need to spell out the behavioural characterisation of Ty .

Definition 5.2.16. [Semantic compliance client pre-order |
Let 71 =cur 72 whenever for every s € Act*, if 71 usbl s then for every B € AccY (rq, s), there exist a
set A € Acc¥ (ry,s), such that ANua¥ (r,s) CY B. O

We prove first the completeness of <¢r (Proposition [5.2.22), and then the soundness (Theo-
rem [5.2.25)).

Lemma 5.2.17. For every ri,79 € CCSy,, if 71 Cor 72, 11U, and 7o == 74, rh € npf, then
r == ri, r} € npf.

116 Chapter 5. Compliance pre-orders

Proof. The hypothesis that), € npf ensures that there exists a ppag such that 75 A ppag. The
hypothesis that r; € U}, ensures that there exists a p such that r; 4 p. Let p = p + @.ppad-

We prove that ro A p. This follows from the existence of the computation 73 || p = 74 || Poad, the
assumption 75 A p and Definition m

The hypothesis imply that r; A p. Consider the following relation,
R={(rp+aq) | rpqeCCSyu; r-dp r=}UH-

The construction of R ensures that it is a co-inductive compliance; intuitively, if » R p + @.q, then
either » 4 p 4+ @.q, or r 4 p and no interaction on a can happen. In both cases we can prove that all
the requirements of Definition [3.2.1] are satisfied.

Since r A p, it follows that r R p; the assumption r 4 p and the definition of R ensure that 7 ==

must be true.]

The previous lemma is not true for traces which are not dangerous.

Example 5.2.18. [Non perfect clients are necessary]

Let us drop, in Lemma the hypothesis that 5 € npf. The statement that we obtain is false.
It is relatively easy to prove that 8.1 Cep 7, where r = 5.1 + a.7°°. To see why the new version

of the lemma is false, note that 8.1 usbl a, r ==, and .1 ;fé O

Lemma 5.2.19. For every ry,70 € CCSy,, if 71 Cep 72, 71 € Z/{:LT, r1 = and ro :a>, then
@ (r1 AFTER) Ceyr @(r1 AFTER).

Proof. Let 79 = @(r2 AFTER «) and #; = @(r1 AFTER «). We have to prove that 71 Cep 2. Fix a
process p’ such that 71 4 p’, we are required to prove that 7y 4 p’.

By hypothesis r; € U\, so there exists a process p such that r; 4 p. Let p = p + @.p’. Thanks
to the assumptions on p’ and p, one can show that r; 4 p; the witness of this is the co-inductive
compliance

R={("p+aq) | rmn=r,r-dp i dqg}U-

The hypothesis r; Cepr ro ensures that 7o - p. For every v/ € (ry AFTER «). the computation
r2 || p=>r"|| p’ and Corollary imply that ' 4 p’. In turn this implies that 7 - p'.
We have proven that if #1 - p’ then 7o 4 p’, so 71 Ceur 7a. O

The compliance client pre-order relates the existence of stable states after a trace.

Lemma 5.2.20. For every s € Act*, and every ry,79 € CCSyr, if 71 Cepp 72, 71 usbl s and ry ==
T T
rhy -~ then 7| == r| —>.

.

Proof. Fix a string s and two processes 11 Copr 72 such that ro = rl, —/~; we have to to exhibit a]
N T

such that 7y == r| /.

The proof is by induction on s.

Base case (s =¢) In this case ro = 7} 7TL>, and we have to show that there exists 7} such that
=7 7;

As rl is stable, it follows that 75 A 7°°, because r5 || and 7°° Jf . In turn, this ensures that
ro || 7°° = r} || 7°°, imply that 7o A 7°°. The hypothesis 71 C¢yp 72 ensures that r; A 7°°. The next

relation is not a co-inductive compliance

R={0"1°)|rn="1"}

5.2. Client pre-order 117

Since the pairs in R satisfy point (]ED and point of Definition it follows that R contains a
pair (r/, 7°°) such that 7’ | . The definition of R implies that 7; == /. The definition of | ensures

-
g
that " = " -/ for some ", and so 1 = " —/.

Inductive case (s = as’) In this case we have to prove that r, == 75 || . The hypothesis ensure
that 71 usbl as’.

Since s’ is shorter than s, the inductive hypothesis states that

’ T ’ T
for every 71,7y € CCSyy, if 71 Copr 72, 7 usbl s and 7y == 7, -4+ then 7} == 7| —/.
Let 79 = @)(r2 AFTER «). Definition implies that 75 == . Since 5 || , v, € npf, and so we
can prove that ro == As 7y usbl as’ implies 1 € L{(;'LT, we use Lemma [5.2.17|to prove that rq :a>; SO
the set (r; AFTER «) is non-empty. Let 71 = @ (r; AFTER). Since r; ==, the hypothesis r; usbl as’
must have been derived by using rule [USB-ALPHA],

@ (r1 AFTER «) usbl s
r1 usbl as

r €UL,, T ==; [USB-ALPHA]

The premises of rule [USB-ALPHA] above ensure that 77 usbl s’; now Lemma implies that
71 Corr 72, and that 71 usbl s’

Since 75 é rh |}, we know enough to apply the inductive hypothesis to 71 and ; it follows that
1 EIN r} | for some rj. The definition of #; lets us prove that r as, i . O

The next results are analogous to Lemma [£:2.27] and Lemma [£.2.28]

Lemma 5.2.21. For every s € Act”, and ry,79 € CCSyr, if r1 Ecppr 72 and 7y usbl s, then for every
B € AccY (rq, 8), there exist a A € accY (rq, s), such that ANua¥ (r,s) C¥ B.

Proof. The argument is by induction on the string s.
Base case (s =¢) Fix a ready set B € ACC" (r2,¢). Thanks to the hypothesis and Lemma |5.2.20)

the set AcC¥ (ry,¢€) is non-empty, AcCY (r1,e) = { A; | i € I} for some non-empty set I. Now we

proceed by contradiction; suppose that
for every i € I there exists an action &; such that &; € A; Nua¥ (ry,¢), &; &€ B.
This essentially means two things,
e V ¢B,
e for every i € I such that &; € Act, &; € B

By using this assumption, we show a server p such that (a) ro / p, and (b) r; - p.
Let for J C I, be the indexes of the actions &; in Act; that is the &; which are not v'.

The definition of ua¥ ensures that for every j € J there exists a p; such that
@(rl AFTER &;) - p;

Let p = ZjeJEj.ﬁj.
-
We prove point (a): 72 7 p. Let r} be the state such that S¥ (r}) = B and 7 —/+. By construction
T

p =, so Cy, || vy stable. This is true because none of the actions offered by p is matched by any
actions in B. Since v' ¢ B, it follows that r} A p. Corollary and 7o || p = 74 || p imply that

ro A p.

118 Chapter 5. Compliance pre-orders

We have proven (a), that is ro A p; now we prove (b). We have to show that r;1 4 p. We are

required to exhibit a co-inductive compliance R such that ;1 R p. Let

R/ = {(7”/, Zje‘]dijﬁj) | ry — 7'/, @(Tl AFTER d]) -]5]}
R = R uUH

Plainly, 1 R p; we prove that R is a co-inductive compliance. That is, we show that R C F4(R).
Fix a pair 7 R p; Definition [3.2.1] requires us to prove three properties, namely

i) if r |} thenp |
ii) ifr||p7l>thenri>
i) if 7 || p —> ' || p’ then v’ R p/

Since r R p, either r 4 p or r R’ p. In the first case Definition ensures that the pair (r, p)
enjoys the three properties. Suppose that » R’ p. It follows that r; = r and p = ZjeJéTj.ﬁj.

e We prove that if » || then p |} . This is true because by construction p |} .

T T
e We prove that if r || p -/ then r s Asvr -+ and 1y = r, SY(r) € Acc¥ (ry,¢). The
T
assumption 7 || p -/ ensures that r does not engage in any visible action &;; the assumption
on the ready sets A;’s, and the actions d;’s ensure that v € S¥ (r). It follows that r -

e We have to prove that if r || p — 7/ || p/, then 7’ R p’. The argument depends on the rule used

to infer the reduction. Note that p is stable, so we have only two cases to discuss.

— If rule [P-RIGHT] was used, then r — 7/, and p’ = p. Since r; =>r — 1/, 1y = 1'. It
follows that " R’ p’, and so ' R p'.

— If rule [P-SYNCH] was applied, then there exists the derivation

g !/ g /
r—r p—p

RTFEaeTTE S

The construction of p ensures that § = &; for some j € J, and p’ = p;. Moreover,
r’ € (ry AFTER &;). Since by construction @(ry AFTER &;)p;, one can prove that ' H p;,
thus » R p/.

We have proven that the relation R is a co-inductive compliance, so (b) is proven: r; 4 Cj.

Inductive case (s = as’) In this case we want to prove that if B € Acc(rq,as’), then A €
Acc(ry,as’) such that A NuaY (r;,as’) CY B. As s is shorter than s, the inductive hypothesis

ensures the following implication,

for every 71,72 € CCSyr, if 71 Cepr 2, 71 usbl s’ and then for every B’ € Acc¥ (rq, s'), there exist a
A’ € acc¥ (ry,s'), such that A’ Nua¥ (r,s') CY B'.

We prove enough facts as to let us use the inductive hypothesis. Since B € ACC(ra, as’) we know
that ro ==; let 7o = @(ro AFTER a). Note that B € ACC(ry, as’) ensures that there exists a 5 such
that ro == rhwts'r’ |} , where 7/ is the term with ready set B. Lemma and 14 =L |}, imply
that 5 € npf. The hypothesis r; usbl as’ implies that 7, € U . Now ry == 7} and 5, € npf and

Lemma |5.2.17| implies that r, ==. Let #; = @P(r1 AFTER). Lemma [5.2.19| implies that 71 Ceyp 7o.

5.2. Client pre-order 119

Since r; ==, the hypothesis r; usbl as’ ensures that #; usbl s’. We have proven all we need to use the
inductive hypothesis.

Since B € ACC(rq,as’), B € ACC(f2,s"). The inductive hypothesis ensures that there exists a
A € Acc(fy, 8') such that A’Nua¥ (f1,s") T B. Since AcC(ry, as’) = Acc(fy,s') and ua¥ (ry, as’) =
ua¥ (ry,s’), it follows that there exists a set A € ACC(ry, as’) such that ANua¥ (r,as’) °Y B. O

Proposition 5.2.22. [Completeness |

If 71 Cour 72 then 1 Zcir 2.

Proof. Follows from Lemma [5.2.21 O
We need two lemmas to prove the converse of Proposition [5.2.22

Lemma 5.2.23. If 7; <cr 72 and 71 — 5 then 71 <o 7.

Proof. Fix two processes r1 and ro such that ry =<cr ro and ro SN rh. We have to show that
71 Seur Th Deﬁnitionrequires us to prove the following properties, for every s € Act* such that
71 usbl s, for every B € acc¥ (1}, s), there exist a A € Acc¥ (rq, s), such that ANua¥ (ry,s) CY B.
Fix a string s € Act* such that 71 usbl s. Suppose that B € acc¥ (1}, s); Deﬁnitionand the
hypothesis 7 — 7 imply that B € AccY (r,s). The hypothesis r; <cir 72 and Definition
imply that there exist a A € Acc¥ (71, s), such that ANua” (ry,s) C¥ B. O

Lemma 5.2.24. Let 1| <cp ro. If 71 € UL, 70 = 7, and 75 € npf, then
i) the set (r; AFTER «) is non-empty
ii) if (r1 AFTER @) # 0, then @(r1 AFTER @) =cir 7h

Proof. We prove point ‘ Since 4 € npf, Lemma ensures that 7y, == r4 || for some 7Y, and

as .
so ro = 4. Either r1 ysbl as or r; usbl as.

o if 1 ysbl as then rule [USB-NOT] (see Figure [5.4) cannot be used, for otherwise ;1 usbl cv. Since
r1 € U, it follows that the second side condition of [USB-NOT] must be false: 7| ==.

e if ry usbl as then ro => 7% and the hypothesis 7, <¢ir 72 implies that r; == 7/; so r; ==

We prove point (ii). Suppose that the set (r; AFTER «) be non-empty, and let # = @(r1 AFTER).
We have to explain why # =<¢; 5. Definition requires us to prove the following condition, for
every B € AcCY (rh, s), there exist a A € AccY (7,), such that ANua” (ry,s) °¥ B

First note that the hypothesis r; € U

v €nsures the implication

for every s € Act™, if 7 usbl s then r; usbl as (5.6)

This is true because if 7 usbl s then there is the following derivation

7 usbl s

1 € Uy, 71 ==; [USB-ALPHA]
r1 usbl as OLT? ’

Fix a string s € Act* such that 7 usbl s and B € Acc¥ (1}, s) for some set B.

Since 71 usbl as, Definition and the hypothesis 1 =<¢;p ro imply that there exist a A €
AccY (ry,as), such that ANua¥ (r1,as) ¥ B. Thanks to the equality ua¥ (r, as) = ua¥ (#, s) the
previous inclusion becomes A Nua¥ (7,5) C¥ B. The equality Acc¥ (r,as) = acc¥ (#,s) implies
that A € AccY (ry, s).

O

Theorem 5.2.25. [Alternative characterisation Ty]

For every r1,19 € CCSyr, 71 Ecpr 72 if and only if 71 <cip 72.

120 Chapter 5. Compliance pre-orders

Proof. We have to show that if r; =¢r 72, then ry T ro. It suffices to prove that the relation R

defined below is a co-inductive compliance.
R={(r2,p) | 1 Zcrrr2, r1 Ap}

Fix a pair 7 R p; we are required to prove that the pair affords three properties, namely
a) if r || thenp |

. 7 v
b) if r || p 4>, then r —
c) ifr || p ——7"|| ¢, then v’ R p/

Either r ¢ npf or r € npf. In the first case r 4 p, so @ and point (]ED are guaranteed by
Definition We prove . Suppose that 7 || p — 7/ || p’. Since r is perfect, so must be r'; it
follows that v’ - p’. Since v’ Zcir 7', ' R p'.

Suppose that r € npf. Then there exists an r1 and a p such that r; 4 p and r; =¢r r. Since
r1 -1 p, r1 usbl €; that is

€U, (5.7)

We prove (Eb Suppose 7 || ; then r == ¢/ 7TL> Since 71 € U, (Eq. above), and Defini-
tion ensures that the set r; == r} 7; The assumption that 11 4 p and 71 || p = 7} || p,
imply that i 4 p. Condition (@) of Definition and r 7TL> imply that p | .

We prove point . Assume that r || p 7TL>; our aim is to show that r —.

T

The composition 7 || p is stable, so r —/+. It follows that S (r) € Acc¥ (r,e). As ry usbl g, so
Lemma [5.2.21] implies that there exists a set A € AcC¥ (rq,) such that

AnuaY(r,e) Y SY(r)

-
Definition |5.2.14] ensures that there exists a state 7} such that r; == { -+, and S¥ (r}) = A. Tt
follows that

SY () NnuaY (r,e) CY S (r)

We prove that 71 || p 7TL>

It suffices to show that if p — p/, then @ & S ().

Ifa € S (r}), thenlet 7' € (r;y AFTER «); plainly 71 || p — ' || p’. The assumption r; 4 p implies
that 7 - p’. This can be used to prove that @ (r; AFTER) - p’. It follows that if @ € S (r}), then
@ € ua¥ (ry,e). This implies that @ € S¥ (r), and so 7 || p —. As this contradicts the assumption

rlp 7L>, it follows that r} ¢ S (r}).

Since p is stable, r} is stable, and p —~+ implies that 7/ 7&, it follows that r} || p 7TL> The
assumption r; - p, and r; = r{ imply that 7 - p. Since | || p 7TL>, Definition ensures that
r} 4 50 v € S¥(r}); in turn this implies that v" € SY (r). It follows that r .

Now we prove H Suppose that r || p — ' || p/; we are required to prove that ' R p’. The

definition of R requires us to exhibit a 7 such that

7 Zarr, 7P
The argument is by case analysis on why r || p — 7 || p'.

If 7’ is perfect, then ' < r ' and ' 4 p’, so the 7 we are after is r itself.

Let us assume 7’ € npf. If the reduction is due to rule [P-LEFT], then r — 7/, and p’ = p. The
assumption r; =<¢r 7 and Lemma let us prove that r; <¢r 7', As r1 4 p, we know enough to
state that ' R p'.

5.2. Client pre-order 121

If the reduction is due to rule [P-RIGHT], then p — p’, and r = r’; the candidate 7 is r;. On
the one hand know that ry =<qr 7, thus 71 =cr 7’; on the other hand r; I p, thus point of
Definition implies that 71 - p’. It follows that 7" R p'.

If the reduction is due to rule [P-SYNCH], the » - ¢/, p %5 p'. Since 1’ € npf, Eq. above,

71 =cur 7 and Lemma [5.2.24] imply that @(r1 AFTER «) <cir 7.
Our candidate 7 is @(r1 AFTER «). We have to prove that # - p’. Let

R = {(p)| =1 p=7p}
R = R UA

The argument to prove that the relation R is a co-inductive compliance is similar to proof of
Lemma [3.2.8]
Since 7 4 p’ and 7 <qur 7, the definition of R ensures that ' R p'. O

5.2.1 Comparison with other pre-orders

In this section we show that Cqp differs from all the pre-orders that we have studied so far. This is
not surprising, as one would not expect clients to be compared as servers or peers; yet it proves that
it is necessary to introduce Definition [5.2.16

In Eq. we have shown that the client pre-orders are not comparable. Also the following

inequalities are true

1 G O 1 ZCLT 0
a.l1+B.0 Esr .0 a.l+5.0 Cor a.0
a.1 EPQP 1+a.0 a.l ,ZCLT 14+a.0
The inequalities in the first two rows let us prove also that C..r is not comparable with ESVR. The
fact that Cer € 5\, and the set inclusion 5, € 5, imply that Ceir € Sy,

In Section we have used the relations Zgyr and =gy to prove that in sub-LTSs of
(CCSyr, Act, v, —)

the MUST server pre-order and the compliance server pre-order are comparable, or even coincide.
This is possible because the characterisations remain sound and complete even if we focus on certain
sub-LT'Ss of the original one. This is not the case for the client characterisations =S¢ and =g

Let us restrict our attention to the LTS of convergent terms.

Proposition 5.2.26. The relation =S¢.r is not a complete description of c¥ .t Z Zcur

~YCLT" ~~YCLT

Proof. In Example [4.2.26] we have shown that 1 1 @ 1 under the assumption of convergence.

~CLT

g
Observe now that 1 Zcur 1 @ 1, because 1 @ 1 =€>//, whereas 1 =54 . O
A similar result is true for the compliance based pre-order.

Proposition 5.2.27. The relation <. is not a complete description of E%LT: gﬁm Z <cur-

Proof. In Example [5.2.10| we have proven that a.1 E&T 1 +B.1. Note now that a.1 Acr 1 + 8.1,
because { v' } € Acc¥ (1 + 8.1, 8), whereas accY (a. 1, 8) = (). O

We leave as an open problem the characterisation of the client pre-orders on sub-LTSs of the
one we used. We partly address this issue in Section [6.2] and Section where we characterise the
client pre-orders on the LTS denoted by session contracts. In that context the restricted MUST client
pre-order is coarser than than the restricted compliance client pre-order (see Corollary .

122 Chapter 5. Compliance pre-orders

5.3 Peer pre-order

Our knowledge of the compliance server pre-order and of the compliance client pre-order lets us study

easily the third pre-order given by the relation -, the compliance peer pre-order.

Definition 5.3.1. [Compliance peer pre-order]
We write p Cpop ¢ if and only if p —pop r implies that g —pop 7 for every process r. We refer to the

relation Cpop as the compliance peer pre-order.]

First, we prove that Cpop and Emp are not comparable, so we have to find a behavioural charac-

terisation for Cpop.

Example 5.3.2. In this example we prove the following inequalities,

Cpop Z EPQP’ EPQP Z Cpop

We prove the left inequality. We exhibit two processes p and ¢ such that p Cpop g and p %np q. In
Example we proved that that the term p = (1 +«.0) @ «.1 is not usable with respect to —|E|
Let ¢ = a.0. The inequality p Cpop ¢ is true because the process p is not a usable peer, that is there
exist no r such that r 4pop p, then r =pop q.

In the MUST setting, the process p is a usable peer, for instance @.3.1 MUST"> p. The process ¢

q,

P2P

on the other hand is not a usable peer, because it perform no v at all. It follows that r MusT
q. We have shown that Cpop € 5,
We prove the right inequality. We see easily that .1 & _ 1 +«.0. On the contrary, o.1 Zpop

~p2p

and so p ¥,
1 + «.0; a peer that shows this is » = @. 1. The proof that .1 —pop 7 amounts to showing that the

following relation is a peer compliance,
{(e.l,2.1), (1, 1)}

v
On the contrary, 1 +a.0 || 7 — 0 || 1; since 0 -4+, 1 4+ a.. 0 #Apap 7. We have proven that EPQP Z Cpop.
O

The scenario that we haven seen in Section [£.3] appears in the setting of compliance as well:
it is easy to show that Cgp N Ceyr © Cpop (see Proposition [5.3.28), while the converse is false,
Crop € Cepr N Egyr- This is because Cpop € Cgygr, and the core of the difference between Cpop and

Cgyr 18 the non-trivial usability of peers.

Example 5.3.3. The mutual compliance pre-order is not in the server pre-order; that is Cpop & Cgyg-
We have a. 0 Cpop 1; this is true because the peer «. 0 is not usable.

On the contrary, o.0 gy 1, the distinguishing test being r = @. 1. O

We will see that the pre-order Cpop is related to Cgyr and Cepr in the same way that Epzp is related
to ,‘;SVR and & o The proofs of the client-properties of Epap, though, are not as easy as the the proof
of Proposition

In Section we have used Lemma to prove that &, € 5 = (Proposition . The
proof of Proposition does not work for Cpop. The crucial difference between the MUST setting
and the compliance setting is that if r 4 then p MUST 7 is trivially true, whereas r -4 p may be false;
for instance . 0 MUST @.0 + 1, whereas @.0 + 1 A . 0.

Another issue, and indeed the more demanding one, is that the usability of peers differs from the

usability of clients.

INote that the term p is called r1 in Example

5.3. Peer pre-order 123

Example 5.3.4. [Usability of peers |
In this example we show that r € U, does not imply that there exists a peer p such that r =pop p.
Let r = a.7® + «.l. It is easy to prove that r € U}, for instance r 4@.0.
If we treat r as a peer, then to show that is usable we have to exhibit a p such that r —pop p.
Observe point of Definition and consider a process a.p. If p |} then r pop @.p because
7 . If pJf then r Zpop @.p because 1 | . It follows that for every p € CCSy, r A p. O

Example[5.3.4|motivates the introduction of yet another set of usable processes. In the current setting,
it is convenient to discuss few general properties of peers and Cpop, then prove the client-properties
of Crop, and afterwards its server-properties. The client-properties and the server-properties of Cpop

are proven in two different subsections.
Definition 5.3.5. [Usable peers | Let > = {p | p =pap q for some peer ¢ } O

In Example [5.3:4] we have seen a client that is not a usable peer. Indeed, to be usable as a peer
is more demanding than to be usable as a client. The additional requirement that is necessary for a
peer p to be usable is that after any trace, all the derivatives of p be either convergent or divergent;

formally, if p == then one of the following is true,
1. for every p’ € (p AFTER s), p’ |
2. for every p’ € (p AFTER), p' |f

For instance, in Example r is not usable because (r AFTER a) = {7°°, 1}, and 7°° |{ , while
1.
From now on we use the symbol usbl to denote a predicate defined as in Definition [5.2.11] but

using U > in place of U_,. This is true also for the set of usable actions ua.

Lemma 5.3.6. For every s € Act* and p € CCSyr, if p usbl s and p == for some s’ prefix of s, then
@ (p AFTER s') € U .

Proof. The argument is similar to the proof of Lemma O
We need a result on the convergence of peers. Recall the symbol || given in Definition
Lemma 5.3.7. For every p,r € CCSy,; such that p —pop 7, if r || 5 and r :§>, then p || s.

S
Proof. If p =~ the argument is straightforward. Suppose that p ==. Pick a 7/ € (r AFTER s); for
every p’ € (p AFTER s) we infer the computation

pllr=p"l+

from which it follows that p’ —pop r’. The hypothesis that r || s implies that r’ | , and so point (@)
of Definition [3.2.11| ensures that p’ || . The only assumption on p’ is that p’ € (p AFTER s), so the
argument implies that @(p AFTER s) | . In turn this lets us prove that p || s. O

Lemma 5.3.8. For every string s € Act*, and p,q € CCSyr, if p Cpop ¢, p usbl s, ¢ ==, then p ==.

Proof. Fix a string s € Act* and two processes p and ¢ that satisfy the hypothesis. To prove that p ==
S

we reason by contradiction. Suppose that p ==, and let s’ be the longest prefix of s performed by p.

Let s = ajs ... ay, where n < len(s). We use this assumption to define a peer A that distinguishes,

in the sense that
a) A o p

b) A 7{P2P q

124 Chapter 5. Compliance pre-orders

The hypothesis that p usbl s and Lemma [5.3.6] imply that for every 0 < i < n there exists a peer 7,
such that

@(p AFTER $p,) Ipop Tp

Let
get | Ti + @ir1.Aip1 ifi<n

@;.0 ifi=n+1

The peer that distinguishes p and ¢ is Ag.

To see why Ay 7Apop g, consider the computation
Aollg=0]¢

where ¢’ is reached by ¢ after the trace ay ... avpp1. If ¢ I, then 0 Apop ¢; if ¢’ | then the computation
can be extended to a stable state 0 || ¢”; since 0 it follows that 0 #Apep ¢/ In both cases Ag Zpap g.
The hypothesis p Cpop ¢ implies that Ay A p. In view of this fact, to prove that p == it is enough
to show a co-inductive mutual compliance R such that if p qé, then Ay R p.
Let

R={(r+ B.¢,p) | 7o p, ifp == then @(p AFTER f3) —pap ¢ } U "pop

We explain why the elements of R enjoy the properties required by Definition [3.2.11} Let A R p/,

we show one by one the following facts,
i) A| if and only p’ |}
i) if A|| p' o then A Y5, p -
i) if A || p’ — A" || p” then A’ R p”
If A - p’ then the properties above are true, so suppose that A R p’ because of the auxiliary relation
in the definition of R. It follows that A = r + B.¢, that r - p, and that p £,

Point is true because r —pop p and A || if and only if » || .

To prove point suppose that A || p’ 7TL> It follows that A 7TL>, and that r || p’ 7;, SO T —pop P
implies 7 L>; this ensures that 4 —s.

The proof of point is by case analysis on the rule used to infer the reduction A || p’ — A’ || p”.
If the rule used is [P-LEFT], then A — A’ and p’ = p”. The internal move of A must have been due
to the 7 in it, so A’ =7’ + (.q and r — 7’. Definition ensures that v’ 4 p, so A’ R p”.

If the rules used to infer the reduction was [P-RIGHT], then A = A" and p’ — p”. Definition
ensures that ' - p. If p” ;ai then A’ R p”. If p” :ﬂ>, then note that @ (p’ AFTER) —lpgp ¢ implies
that @(p” AFTER) —p2p ¢, and so A’ R p”.

If the reduction is due to [P-SYNCH], then the argument depends on the which one of the summands
of A performed the action. If r caused the interaction of A, then A’ =’ for some 7’ such that r LN r';
it follows that p’ LI p”. Since r p2p p, Definition implies that 7/ —pop p”’; in turn this implies
that A" R p”.

If B.q caused the interaction of A, then A’ = q and p’ € (p’ AFTER 3). As @(p’ AFTER) —pop ¢,

it follows that p” —pop ¢, and so A” —pop p”.
S
If p =~ then one can prove that Ay R p, but this cannot be true, so p == O

Lemma 5.3.9. For every p,q € CCSyr, if p Crop ¢, p € U, and g ==, then p ==
Proof. The argument is similar to the proof of Lemma but in this case we use ppag = 0. O

Lemma 5.3.10. For every p,q € CCSyr, if p Cpop ¢, p € U™ p == and q ==, then @ (p AFTER
a) Cpop P (p AFTER a).

5.3. Peer pre-order 125

Proof. The proof of this lemma is similar to the proof of Lemma [5.2.19 O

Client-properties of Cpap
Now we turn our attention to the client-properties of Cpop.

Lemma 5.3.11. For every s € Act*, and every p,q € CCSy, if p Cpop ¢, p usbl s and acc¥ (q,s) # 0
then accY (p, s) # 0.

Proof. The proof of this lemma is similar to the proof of Lemma [5.2.20 O

To adapt Lemma to the pre-order Cpop we have to change the way in which the action v/
is compared with the other actions. According to the compliance client pre-order, the action v is
better than any visible action, and this fact is mirrored by the use of C¥ in Lemma|5.2.21] When we

use the peer pre-order, v is no longer the best action.

Example 5.3.12. [v/ not best action]
We prove that a. 1 Zpop 1. Intuitively, this is true because 1 offers to the peers fewer interactions than

a.1. In fact, a. 1 Hpgp @. 1, as the relation { (.1, a. 1), (1 1) } is a co-inductive peer compliance. On

T v
the contrary, 1 Apop @. 1, because 1 || @.1 -4 and @. 1 /. O

Lemma 5.3.13. For every s € Act*, and p,q € CCSy.,, if p Crap ¢ and p usbl s, then for every
B € Acc¥ (g, s), there exist a A € AccY (p, s), such that ANuaY(p,s) C B.

Proof. The proof of this lemma is similar to the proof of Lemma [5.2.21] and uses Lemma in
place of Lemmal[5.2.20] In the current setting, the action v may be in the ready set B, and we replace
the server p of Lemma _ with a peer r. The proof that r 79 ¢ depends on the fact that r does
not perform v'. O

Corollary 5.3.14. For every s € Act”™, and p,q € CCSyy, if p Cpop ¢ and p usbl s, then for every
B € acc¥ (q,s), there exist a A € AccY (p, s), such that ANua¥ (p,s) C¥ B.

Proof. Tt follows from the fact that A C B implies that A C v B. O

Lemma 5.3.15. The pre-order Cpop is contained in =<¢pr.

Proof. Tt follows from Corollary and Definition [5.2.16 O

Example |5.3.12] proves that converse of Lemma [5.3.15|is not true.

Server-properties of Cpap

To prove the server-properties of Cpop we amend the convergence predicate || (Definition [5.1.4]) and
=svr (Definition [5.1.7)) so as to account for the usability of peers.

Definition 5.3.16. [Peer compliance convergence after trace |

For every s € Act™ and process p, we write p ||pop s if and only if p usbl s and p || s. O

Definition 5.3.17. Let p <usvr ¢ Whenever for every s € Act™, if p ||pop s, then

(1) qlls

(2) for every B € ACC(q, s) there exists some A € ACC(p, s) such that ANua” (p,s) C B

(3) if ¢ ==, then p == O
We adapt Lemma and Lemma to the new setting.

Lemma 5.3.18. For every string s € Act*, and every p,q € CCSy, if p Epop ¢ and p ||pop 8, then
qll s.

Proof. The argument is by induction on s.

126 Chapter 5. Compliance pre-orders

Base case (s =¢) In this case p ||pop €, 50 p € U and p |} . We have to prove that ¢ || , that is
q |} . Since p € U™ there exists a peer 7 such that p —pop 7; since p |} , r | . The hypothesis p Tpop ¢
implies that ¢ dpop 7. Definition [3.2.11] and r || ensure that ¢ | .

«
Inductive case (s = as’) In this case we have to prove that q || as’. If ¢ == then we derive
o
g1l as 9 =~; [WCONV-AX-NOT]

If ¢ ==, then let ¢ = @(q AFTER «). Since s’ is shorter than s, the inductive hypothesis states the

following implication,
for every p’,q € CCSyr, if p’ Crop ¢/, and p’ || pop s', then ¢’ || s'.

Since p € U™, Lemma and ¢ == imply that p ==; let p = @(p AFTER «). Lemma [5.3.10
implies that p Cpop ¢. The hypothesis p || pop as’ ensures that p || pop s’. We have proven enough facts

to use the inductive hypothesis, which implies that § || s’. Since ¢ ==, we derive the following fact,

pls 4
7l as 1 =—; [WCONV-ALPHA]

O

Corollary 5.3.19. For every s € Act”, and p,q € CCSyyr, if p Epop q¢ and p |lpop S, then for every
B € Acc(q, s), there exist a A € ACC(p, s), such that ANuaY (p,s) C B.

Proof. The hypothesis p ||pop s implies that p usbl s, so the result follows from Lemma [5.3.13 and the
facts that for every r and s’ € Act* (a) B € accY (r,s') if and only if B\ {v'} € acc¥ (r,s'); and (b)
AnNua¥(p,s) C B implies that A\ {v'}Nua*(p,s) C B\ {v}. O

Thanks to these results we can define a server pre-order that takes the usability of peers into the

account.
Lemma 5.3.20. For every p,q € CCSyr, p Cpop ¢ if and only if p <usvr ¢-

Proof. Immediate from Lemma [5.3.18] Corollary [5.3.19] and Lemma [5.3.8 O

The converse of the previous lemma is not true.

Example 5.3.21. In this example we prove that <ysvg € Cpop. Let p = 7% and ¢ = .0. Since p
diverges and perform no trace, for every s € Act*, p [pop s; it follows that p <,svr ¢ is trivially true.

However, p —pop 7°°, whereas g 7pop 7°°, 0 p Lpop q. O
We will need the next two lemmas.
Lemma 5.3.22. For every p,q € CCSyr, if p <usvr ¢ and ¢ — ¢/ then p <usvr ¢'-

Proof. The argument is analogous to the proof of Lemma [5.1.13 O

Lemma 5.3.23. For every p,q € CCSyr, if p <usvr ¢, p € U, and ¢ — ¢ then

i) the set (p AFTER «) is non-empty

ii) P(p AFTER @) Sysvr @

5.3. Peer pre-order 127

Proof. The argument is analogous to the proof of Lemma [5.1.14] with the additional argument that

if @(p AFTER «) usbl s then p usbl s, which is proven by the derivation

@D (p AFTER «) usbl s
p usbl as

p € U p ==; [USB-ALPHA]

O

We have seen that up-to the usability of peers, Cpop enjoys the properties required by <gyg, and
this has lead to the definition of <,qvg. It is now clear how to define a behavioural characterisation

of Tpop.

Definition 5.3.24. [Semantic compliance peer pre-order]

Let p =p2p ¢ whenever p =cir ¢ and p <usvr - O
The relation <pop is preserved by internal and external moves, in the following sense.
Corollary 5.3.25. For every p,q € CCSy., if p Spap q then
i) if ¢ == ¢ then p <pop ¢
i) if ¢ — ¢’ then (p AFTER) # () and @(p AFTER) <pap ¢’

Proof. The first implication follows from Lemma [5.2.23] and Lemma [5.3.22] The second implication
follows form Lemma [5.3.23 and Lemma [5.3.23 O

In Example [5.3.12] and Example [5.3.21] we have seen that the relations < r and <,syr are not
sound descriptions of Cpop. The intersection used in Definition [5.3.24] let us prove the soundness of
jPQP'

Theorem 5.3.26. [Alternative characterisation Cpop]

For every p,q € CCSyr, p Cpop ¢ if and only if p <pop q.
Proof. We are required to prove two implications, that after unwinding the definition of <pop become
o if p Cpop ¢ then p =cir ¢ and p Susvr D

o if p Zcir ¢ and p <usve P then p Ceop ¢

The first implication is proven by Lemma[5.3.15 and Lemma [5.3.20] so we prove only the second one.
We have to show that for every pair p <pop ¢, if p Jpop 7, then g —pop 7. As we have to exhibit
that two processes are in the mutual compliance relation, it is enough to show a co-inductive mutual
compliance that contains them.
Let

R= { (Q7 T) | D Zeir ¢ P Susve ¢ and 7 Hpop p}

We prove that the relation R is a co-inductive mutual compliance: R C F ' (R).
Fix a pair ¢ R r. There exists a process p such that p <cir ¢, P <usvr ¢, and p —pop 7. It follows
that r usbl e.

Definition [3.2.11] requires us to prove the following three facts,
a) ¢ if and only if r |}

. i v v
b) if r || ¢ 4> then r — and ¢ —

c) ifr || g —>7"|| ¢ then ' R ¢

128 Chapter 5. Compliance pre-orders

We prove point @ We are requires to show two implications,
e if gl thenr |,
e if r |} then gl

We prove the first implication. Suppose that ¢ |} ; we have to explain why r |} . The assumption
q | implies that S¥ (q) € AccY (g,¢). Since r usbl ¢, Definition implies that there exists a
ready set in AccY (p,). Definition implies that there exists a p’ such that p = p’ || . Since
p pop 7, Corollary and the computation r || p = r || p’ ensure that r" =pep p’. Since p’ |}
Definition [3.2.11} implies that r) .

We have proven the first one of the two implications above; now we prove the second one. Suppose
that r | ; we have to prove that ¢ |} . The proof of this is analogous to the proof of point @ in
Theorem ET.T5

We have proven point @) Now we prove point (El): ifr]|q 7L>, then r % and q 5. The proof
that ¢ s analogous to the proof of point in Theorem The proof that r 4 relies on
Definition and is similar to the proof of point (@ in Theorem

The proof of point is analogous to the proof of point in Theorem but in this case
the argument relies on Corollary rather than Lemma and Lemmal[5.1.14] O

5.3.1 Relations between pre-orders

The compliance pre-orders and the MUST pre-orders are related alike (see Figure [4.13)):
Esve M Ecur € Epor C Ecrr (5'8)

In Figure and Figure [5.6) we summarise our knowledge on the pre-orders for processes that we
have studied.

To prove that the above set inclusions between the pre-orders above are strict, we use Example[5.3.3]
and Example [5.3.12] in which we have shown the ensuing inequalities

.0 Cpop 1 .0 Zgn 1
.1 4+B.1 Cor 1+8.1 .l +B.1 Zpp 1+4.1

The proofs of the set inclusions in (5.8]) are straightforward.
Proposition 5.3.27. Cpop C Cp

Proof. Thanks to Theorem the set Cpop equals =<pop, and Definition implies that <pop C
=cur- Theorem [5.2.25implies that Cpop C Cepp. O]

Proposition 5.3.28. Cgyp N Cepr € Cpop.

Proof. Let (p1, p2) €Cgvr N Cour; we are required to prove that if r —dpop p1, then r —pop po. Fix a

process r which mutually complies with p;; we reason as follows.

T pop P1 By assumption

r - p; and p; 47 Thanks to Lemma
r "1 py and p; 4r Because p1 Cgyr p2

r 4 p2 and po 47 Because p; Cepr po

7 p2p P2 Thanks to Lemma

5.4. Related Work 129

ESVR ESVR N ECLT - EPQP - ECLT
#
C
~SVR ~SVR N ~CLT C ~Pp2p C ~CLT

Figure 5.5: The relations between MUST and compliance pre-orders on processes.

. C
Ccrr C et
~SVR I

Figure 5.6: Euler diagram of the set theoretic relations between the MUST pre-orders and the compli-
ance pre-orders on processes.

We have fully exhibited the properties of the pre-orders due to MUST and the ones due to the
relation . In Figure [5.7] we recall the symbols that we devised so far. Each row of Figure [5.7] contains

the notation that we had to introduce in order to characterise the pre-order on the left.

5.4 Related Work

While the server pre-order Cgyy is inspired by the strong subcontract relations of [Padovani, 2010]
and |Castagna et al., [2009], we believe that the client and the peer pre-orders, Cp and Cpop, are
original.

To the best of our knowledge, this thesis presents the first comparison between the refinements
for servers generated respectively by the MUST testing and the compliance relation, in an infinite
branching LTS with divergence.

We compare our results with the state of the art.

Recall from Section the strong compliance and the behavioural compliance, denoted respec-
tively = and —°".

We have already seen that in the LTS used in [Padovani, [2010], (CCS/™¥ Act,,, —), our
relation 4 and the relation 4" coincide. It follows that our g?{:ﬁf is the strong subcontract (Definition
2.2 of the work by |[Padovani). The alternative characterisation of the pre-order E;lz,’é} given afterwards

in Definition 2.6 (co-inductive strong subcontract) seems to be not complete, as it does not allow

- = AFTER U ACC - -

~YSVR"®

Covr: — = AFTER I ACC - -
Eopt UNST =, AFTER, Y ACCy wuay usbl,

Com: Uiy = AFTER | AccY wua” ushl

Cpop: u_h% - - - - - -

Figure 5.7: Predicates to characterise the server, the client, and the peer pre-orders.

130 Chapter 5. Compliance pre-orders

1 < 0. This glitch is due to the presence of v* in the ready sets.

Since gi@i} and the strong subcontract of coincide, our Theorem implies
that server pre-order given by *" (see Definition 2.2 in that paper) coincides with the MUST testing
pre-order. states that this was proven in [Laneve and Padovani, |2007], but this seems not to
be the case, as the definitions in |[Laneve and Padovani,2007] are not the ones used in 2010].
To remark the differences between the two settings, we give some details of [Laneve and Padovani)

2007].

Let <!P°7 denote the subcontract relation used in |[Laneve and Padovani, 2007, Definition 2], and

recall from Section the notion of constrained contracts. |Laneve and Padovanil prove a theorem
which resembles our Theorem [5.1.20 but is weaker:

Theorem 2 Let 1 = names(7). 1[o] <07 1[7] if and only if 0 5 .. 7.

First of all, as constrained contracts are pairs (ie. a set of actions and a behaviour), the subcon-
tract <97 is not comparable with the MUST pre-order; formally

<07 7 [Cp € <07 (5.9)

~SVR?
One may argue that this has no significance, as it is still easy to prove that

Ilp07

if o1 5, 02 then names(oz)[o1] <07 names(o2)[o2]

The converse implication, though, relies heavily on the interfaces of the constrained contracts at hand,
and in general is not true:

1jo] <°7 1’[0’] does not imply that o C_ o’ (5.10)

~SVR
For instance, we can prove the following

0] =" {a}fa.0]
0 %MUST Q. 0

Ip07

It follows that in the sense shown above the pre-order < is coarser than the MUST pre-order. As a

matter of fact, the introduction of [Laneve and Padovani, [2007] states that <'P°7 resembles the MUST

pre-order; not that <97 equals the MUST pre-order.
In Section [3.4] we have discussed the framework used by [Castagna et al., [2009], and pointed out

that it is not clear whether our compliance relation equals their strong compliance. As a consequence,

the claim (see page 13 of that paper) that on their LTS the MUST pre-order and the strong subcontract

(i.e. the server pre-order) coincide does not follow trivially from our results.

The peer pre-order Cpop is reminiscent of the symmetric pre-order Cds of ﬂBugliesi et al.L |2010[|.

There the LTS as a number of restrictions, which we do not have in this thesis, so we think that Cpop

is a generalisation of C%, as long as we focus on compositions of two peers.

Fair theories Recall the peer refinements 551 used by []Bravetti and ZavattaroL |2009ﬂ; we already
discussed them in Section[£.4] In Example we have described the intuitions that are also behind

the next results. For every action «, the following inequalities are true

pr.(ax ® 1) Cpop pr.a.x
pr. (ax & 1) ﬁ{;} LT, .

where the peer used to prove the second fact is a@. 1.

5.4. Related Work 131

Also the ensuing facts are true,

LT . jxfl px. B.x
pr.a.x Upp px.px

The first fact holds because no system containing px. a.z can be correct (in the sense of [Bravetti and
Zavattaro, 2009]). The peer that we use to prove the second fact is pz.@.z.

The pre-order Cpop and the pre-orders 551 are not comparable, but when O is trivial:
Proposition 5.4.1. For every set of output actions O, the following statements are true,
e if O is non-empty, then Cpop & 551

L4 551 Z Crop

132 Chapter 5. Compliance pre-orders

Chapter 6

Modelling first-order session types

Thus far we have studied two theories that let us replace processes preserving the correctness of
the overall system, and we have explained why the compliance-theory should be preferred over the
MUST-theory.

In this chapter we shift our attention from the theories for the general LTS of processes, to the
theories for session contracts and their LTS (SCy,, Act,,, —). By doing this, we can try to explain
the behavioural meaning of the relation 42‘& in terms of one of the pre-orders we have introduced.
This attempt does not work. In a series of examples that go from Example to Example [6.0.5] we
explain why none of the pre-orders that we defined is a fully abstract model of the relation —\{f)t.

By and large, the issue is that the MUST and the compliance pre-orders are defined on the LTS
of processes, and not of session contracts. The consequence is that those behavioural pre-orders are
more demanding than a model of 42%,[should be, for they compare the terms with respect to too many
contexts.

Example 6.0.2. [5 = not complete |
Recall the bijection M defined in Section We prove that according to the interpretation M,
it is not true that if 7 <% S, then M(T) 5, M(S). Let T = &(latte: END) and S =
&(latte: END, moka: END). It is relatively easy to prove that the ensuing relation is a co-inductive
sub-typing,

{(&(1latte: END), &(latte: END, moka: END)), (END, END)}

It follows that T <f S.
Consider now that images of the types 7" and S through M;

?latte. 1
M(S) = 7?latte.l 4 ?moka.l

S
3
I

A client that distinguishes these servers is r =!latte. 1 + Imoka.0; for M(T") MUST r, whereas r and

M(S) in parallel perform a maximal computation that is not client-successful,
rllM(S) =011+~
The computation above is due to the synchronisation on moka. O

The previous examples can be used to prove that the compliance server pre-order is not a complete

model of the First-order sub-typing.

Example 6.0.3. [&

5yp Dot sound]

We prove that p; Ecm p2 does not imply that M~*(p;) 42‘& M~1(p3). The impact of usability of

133

134 Chapter 6. Modelling first-order session types

clients on

.o lets us prove this fact easily. On the one hand pz.!moka.z 5 = 1, while there is no

~CLT

co-inductive sub-typing relation that contains the pair (uX. @ (moka: X), END). O

In Example the processes we used are session contracts, so the example proves that the relation

fo fo

Rewur ¢ either.

is not a sound model of <

Example 6.0.4. [L not complete]

~CLT
We show two session types, T and S that are related by the First-order sub-typing, but whose images
through M are not related by 5 . Consider the types

T = &(latte: END)
S = &(latte: END, moka: tea: END)

A co-inductive sub-typing that contains the pair (T, S) is the following relation
{(T, S), (END, END) }
so T < S. However, the ensuing inequality is true,
?latte. 1, 7latte.l + “moka.’tea.l

A server that distinguishes the two process clients above is p = !moka.0 + !latte.0. The maximal
computations of M(T) || p are client-successful, whereas there exists the following computation of
M(S) || p:

M(S) || p Ts7tea.1]]0 A

O
The last example proves that neither T provides a complete model of First-order sub-typing.

Example 6.0.5. [Ty not sound |
We can easily prove 1Bool.1 Cqr 1; at the same time ![Bool]; END 7\42‘[’),{ END; this proves that Ty
does not provide a sound model of < . O

Example can be adapted to prove that neither Cgy is a sound model of ‘\{Et-
The peer pre-orders are contained in the client pre-orders, so the examples above prove that neither
the relations Ep2p and Cpop are fully abstract models of ﬁi‘k’)t.

The examples we have shown highlights some features of the model of 42& that we are looking for:

e the domain we reason on should contain only terms that are images of session types;
e the image of END has to be related only with itself;

e in CCS,,,-like languages the image of branch types &(...) has to allow refinements of the form

a = «a + [to happen.

The definitions of pre-orders that we used in Chapter [4 and Chapter [5]apply equally well to session
contracts; but they turn out to be inappropriate, as they compare session contracts from the point of
view of satisfying contexts who may be the general processes from Section We have shown this
in Example [6.0.2] and Example [6.0.4]

In this chapter we tailor the definitions of the server and the client pre-orders so as to consider
only the LTS of session contracts. We introduce four pre-orders,

Efo Efo Efo Efo (6.1)

~SVR’ ~cLr’ —SVR? —CLT

6.1. Restricted server pre-order 135

We refer to the pre-orders in as the restricted pre-orders. Two of the restricted pre-orders are
defined using the MUST testing, and the other two are based on the compliance relation. All the new
pre-orders differ from the ones of Chapter] and Chapter This calls for the definitions of their
alternative characterisation; in particular behavioural characterisations.

The alternative pre-orders are the following three,

S et Seir (6.2)

The relations that characterise the four pre-orders in are just three. Indeed, we will prove that
the relations E sy and Cfo . coincide (Corollary 7 while the relations Efcc;l and Cfo_ differ, and
the latter is contained in the former (Corollary .

It may come as a surprise that in we do not define the pre-orders for peers. In this setting
this is not necessary, because we will use the sub-typing relation <, as refinement for peers.

The relations in are syntax oriented, in that Z§Vn and <¢i1 are defined completely looking
at the syntax of terms; whereas ;jf% is defined using the syntax of terms, but also their usability
as clients. Since the pre-orders in are also co-inductively defined, it it easy to prove the main

results of this chapter,

° the intersections of the restricted server and the client pre-orders is a behavioural description of
<fo; that is, Cfo, N Cfo is a fully abstract model of <, with respect to the interpretation M
of Section

e the pre-order C N Cf coincides with the pre-order 5°. N 5 (Proposition [6.5.19)).

~SVR ~/CLT

The second result means that as long as we are concerned with the behaviour that session contracts
can express and models of $£%t7 it does not matter whether we pick the MUST testing or the compliance
relation as our satisfaction relation, for both choices give rise to the same behavioural explanation of

the First-order sub-typing.

Structure of the chapter. In Section we deﬁne and characterise the pre-order &
Sectlonﬂwe define and characterise the pre—order

Nsm? Whlle in

NCLT Both pre-orders are unsound models of < Sbt,

SO we use a set intersection to remove the pairs that hinder the soundness of the pre-orders, and in
Sectionwe prove that the relation CP AL isa fully abstract model of 42& (see Theorem [6.3.4)).

~SVR ~CLT

In Section and Section we study the the restricted pre-orders given by the compliance

relation, respectively the one for servers and the one for clients.

6.1 Restricted server pre-order

In this section we introduce a server pre-order for session contracts This pre-order is a variation

’ NSVR
of the MUST server pre-order which is less demanding than the original one (Definition [4.1.1)), in that
it considers as possible clients only session contracts. The chief result of this section is an alternative
characterisation of Esm (Proposition [6.1.10)), which is a) co-inductive, and b) syntax oriented. These

two properties of the characterisation will help us in showing a fully abstract model of the First-order

sub-typing (Theorem [6.3.4]).
Let us introduce the new pre-order.

Definition 6.1.1. [Restricted MUST server pre-order]
We write oy EE%R og if and only if {p € SCyo | p 101} C {p € Cuo | p 1 02}. The symbol Cfo

~SVR
denotes a binary relation that we name restricted server pre-order. O

The restricted MUST server pre-order is more generous than & in that it allows refinements of

the kind o« C a0 + S.

~SVR’

136 Chapter 6. Modelling first-order session types

Example 6.1.2. We prove that ?latte.1 L. 7moka.l +?latte.l. If a ?latte.l MUST p then,

NSVR
modulo unfolding, p has to be defined by an internal sum. Moreover this sum can only contain the
summand !latte.p’, and therefore ?moka.1l + 7latte. 1 MUST p.

Consider now the process p = !latte.l +!moka.0. Omne can check that ?latte.l MUST p,
whereas "moka.1 + ?1latte. 1 MUST p. It therefore follows that ?1latte.1Z 7moka.l + ?latte.l.

O

Example 2| proves that & Fogyr d0€s not enjoy point of Definition |4.1.17} so in the LTS

<S(:f07 Act, ., —>>

SVR

the pre-order Zgyr is not a complete characterisation of the must server pre-order.

Example 6.1.3. [e-vote, ballot refinement |
We give a more concrete instance of the previous example. Recall Example and consider the

session contract

BallotB =pux. ?Login.(!Wrong. 1 &
!0k.(?VoteA.1 4 ?VoteB.1 4 7VoteC.1 + 7VoteD.1))

BallotB offers to a voter more options than Ballot, and intuitively it should be possible to use a
server that guarantees BallotB in place of a server that guarantees Ballot. This is not the case if the
because Ballot BallotB On the other hand, if we restrict our

we have Ballot £'° BallotB. m

Nsvu’ ~SVR

contracts are compared with & Rsvi

attention to session contracts, and thus to the pre-order &

Lemma 6.1.4. For every 01,09 € SCq,, 01 EZ‘;R oy if and only if UNF(o7) ,EWR UNF(073).

Proof. This lemma follows from Lemma O

Lemma 6.1.5. [Bottom element |

The pre-order L. = enjoys the following properties,

NSVR

(i) it has a bottom element

(ii) if o, is a bottom element of 5 ~then UNF(o,) =1

~SVR

NWR, that is 1 & gy O for every

Proof. To prove point (| . we show that 1 is a bottom element of
session contract . Let p be a session contract such that 1 MUST p. The session contract 1 offers no
interaction. Because of the restricted syntax of session contracts, p must also be, modulo unfolding,
the session contract 1. Now fix a session contract o. Clearly ¢ MUST 1, therefore from an application
of Proposition 0]it follows that p 4 o.

To prove part point (iil) let o, be an arbitrary bottom element of & We are required to show

NSVR
that UNF(o,) = 1. From the deﬁmtlon of bottom element follows oy T 1. An application of
Lemma gives UNF(o 1) &, 1. Now an analysis of the possible syntactic structure of UNF(o 1)

yields that it must be 1 itself. O

Point (i) of Lemma is relevant because 1 is not the only bottom element; for example it is

also true that uX. 1 5. o for every o.

~SVR

fo
The bottom elements of ESVR make this pre-order a non sound model of the sub-typing < \sbt

Example 6.1.6. Recall that M(END) = 1. In the restricted MUST server pre-order the session

contract 1 is a least element, being smaller or equal to every other session contract. On the other

6.1. Restricted server pre-order 137

—— [AX-SRvV
1 jé% 02 []

/ syn 1
o] Zsvh 0

o to <Xp Ty R-OUT-F
!tl.O'i jsfm!tg.aé o ’ []

/ syn /
01 Jsvr O
L SR 2 t1 b to; [R-IN-F]

/! k /
?tl-gl j;\y,;?tg.aé

1 syn 2 1 syn 2
07 JVR OT -+ - 011 ~svr 0|1

1 syn 2
Ziel?li’gi Jsvr jeJ?lj‘Uj’

I C J [R-BRANCH]

1 s 2 1 s 2
o] JVR 0T - - 91| Jsvr]
1 <syn 2
@'Lef?li'ai jSVR jGJ?lJJ]
UNF(01) Z5ti UNF(02)

01 j;i’,{{ g2

J C I; [R-CHOICE]

depth(cy) + depth(cz2) > 0; [R-UNFOLD]

Figure 6.1: Inference rules for the rule functional F<%"

hand, for session types END —\{%t T if and only if UNF(T) = END. Consequently the relation E:/R is

an unsound model for sub-typing between session types. For example:

1 5® 1Bool.1, END %P, I[Bool];END

~SVR

O
Although the restricted MUST server pre-order is not a fully abstract model of 43’)“ we provide
a characterisation of this restricted pre-order. The reason is that in Section ﬁ we will use EZ?R to

define a fully abstract model of <.

Lemma 6.1.7. Let 01 and o2 be session contracts such that oy CP 02. The following properties

~SVR
are true,
. fo
(a) if UNF(01) =!t1.07 then UNF(02) =!t2.0%, t2 b t1 and o} S, 09
. f
(b) if UNF(01) = ?t1.07 then UNF(02) =7t2.0%, t1 <b t2 and o} 5 0}

(c) if UNF(01) = 32,c;715.0] then UNF(03) = . ;715.07, with I C J and o} EQR o?

(d) if UNF(01) = @ye;!Li-0/ then UNF(02) = @, ;!15.07, with J C T and o} E:R o7

Proof. We discuss the point @, as the arguments for the other points of the lemma are analogous.

Let UNF(o1) =!tq.0]; we have to prove that UNF(o3) =!ts.05, for some base type ts such
fo ’
svr 92

that t2 < t1, and some session contract ¢4 such that o] &
We begin by defining a client that is passed by of. Pick a p’ such that o] MUST p’, and let p =
7t1.p . It is relatively easy to prove that oy MUST p.
The hypothesis oy 51 imply that L 6.1.4] implies that ch
ypothesis o1 L. o2 imply that oo MUST p. Lemma [6.1.4] implies that UNF(o1) T
UNF(03). Given the form of p, it follows that UNF(o2) =!ts.04 , for some t; such that 7ty b lts.
v
Since UNF(09) —/, and p || UNF(02) — p’ || o, it follows that o, MUST p’. Since the only hypothesis
on p' is that o} MUST p/, it follows that of ,‘;;’,R o O
. fo a1 s
The properties of .. exhibited in Lemma let us define the alternative characterisation of

~SVR
the restricted MUST server pre-order.

138 Chapter 6. Modelling first-order session types

Definition 6.1.8. [Syntactic server pre-order |
Let F3s%' : P(SC2) — P(SC2)) be the rule functional given by the inference rules in Figure
If X C FRS&"(R), then we say that X is a syntactic server pre-order. Lemma|C.0.26{and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F<+%" (R); we call
syn

this solution the syntactic server pre-order, and we denote it =5%. That is <3 = vX.FI5W (R).
O

Corollary 6.1.9. The restricted MUST server pre-order is a co-inductive syntactic server pre-order.
Formally, S C FR" (P)

~SVR ~’SVR

Proof. Tt follows from Lemma [6.1.7] O

Proposition 6.1.10. [Co-inductive characterisation EZ?,R]
fo

The restricted MUST server pre-order and the syntactic server pre-order coincide. Formally, L:JSVR:

syn
~SVR*

Proof. We have to prove two set inclusions, namely

fo syn
a) ESVR C Zsvm

b) _<5yn C Efo

~SVR = ~ROgyR

The first set inclusion follows form the fact that Egn is a co-inductive server pre-order (Corol-

lary [6.1.9), and the Knaster-Tarski theorem, which ensures that ZJsVz = U{ R|R C F<sun(R) }.

To prove the second set inclusion, we show a more general result. Let S be a co-inductive server

pre-order. We prove the following implication
if 09 S 02 and o1 MUST p then g9 MUST p.

Let
R ={ (02, p) | 01 MUST p, and o1 S o5 for some o1 € SCg, }

the proof of the implication above amounts in showing the set inclusion R C MUST.

In view of Lemma|3.3.14] we know the equalities

R = {(o2,p) | pMUST® 01, and o1 S o3 for some o1 € SCy, }
= (MUST® 0 S)7!

and the set inclusion that we want to prove becomes (MUST® o §)~1 C MusT® ~L. It suffices to prove
that MUST® o & C MUST® .
Fix a pair p (MUST® o §) 09; by construction there exists a o1 such that p MUST® o1 and o1 S 03.

The argument to prove that p MUST® o5 is by rule induction on the derivation of

p MUST® 01 (6.3)

In the base case the last rule used in the derivation is the axiom [A-UNIT], thus p = 1, and we can
derive
———— [A-UniIT]
p MUST” 09
In the inductive case, we have five subcases to discuss. Since all the arguments are similar, we give

the details of just two cases.

6.1. Restricted server pre-order 139

e Suppose the the last rule applied in the derivation (6.3)) is [R-ALPHA]. The derivation has the
shape

p MUST® o}
It.p) MUST?® 7t;.07

7ty X!t; [R-ALPHA]

so o1 =7t1.07%.

Knowing the form of oy, we show the form of 3. By hypothesis S C F<sun (S), so we know that
(01, 02) € F<syn(S); and, given the form of o1 and Definition it must be the case that
UNF(02) = 7tq.04 for some ty such that t; <y ta, and o} € SCy, such that o] S 5.

We are now ready to show the derivation of p MUST® o5. As that the derivation of p’ MUST® o7 is

shorter than the derivation in (6.3), and p’ MUST® o] S o}, we can use the inductive hypothesis

to state that there exists the following derivation

: /
p MUST?® 05

We extend the derivation above with an application of the rule [R-ALPHA]. First, we check that
the side conditions are true. We have proven that t; <y t,. The last fact and t <3, t; implies

that t <p ta, S0 7ty <.!t. Now we apply the rule and obtain the derivation

/ : S /
p’ MUST® 05
It.p) MUST® 7t5.04

7ty ,!t; [R-ALPHA]

We have derived p; MUST® UNF(03). If depth(oz) = 0, then we have derived p; MUST® 0.

If depth(o2) > 0, then we extend the derivation above as follows,

/ : !/

p' MUST?® o5
't.p) MUST® 7t5.0%

p1 MUST® 09

7ty X!t; [R-ALPHA]
depth(p1) + depth(o2) > 0; [R-UNFOLD]

e Suppose that the last rule used in the derivation (6.3]) is [R-UNFOLD]. The premises of the rule
ensures that there exists a derivation of UNF(p) MUST® UNF(c7). By construction o1 S og; the
hypothesis that S is a syntactic server pre-order ensures that UNF(o1) S UNF(032).

It follows that UNF(p) MUST® UNF(01) S UNF(o3). Now, since the derivation of UNF(p) MUST®
UNF(0q) is shorter than the derivation in (6.3), we can apply the inductive hypothesis, which

ensures that there exists the derivation

UNF(p) MUST® UNF(02)

If depth(p) + depth(oz) = 0, then UNF(p) = p and UNF(o2) = 02, S0 UNF(p) MUST® UNF(o2)
implies that p MUST® ps.

If depth(p) 4+ depth(o2) > 0, we can extend the derivation above,

UNF(p) MUST® UNF(03)
p MUST® o9

depth(p) + depth(cz) > 0; [R-UNFOLD]

140 Chapter 6. Modelling first-order session types
Since the relations =¥n is a co-inductive syntactic server pre-order the implication that we have

f
proven ensures that 33n € 5 . O

To prove the previous proposition we have used Lemma This is not necessary, and there exists
a direct proof of the Proposition that use the definition of MUST. We have presented a proof
based on Lemma because the direct proof is almost identical to the proof of Proposition 6.4.7]

To prove Proposition [6.4.7] we will need a weaker version of Lemma that explains how the
acceptance sets of session contracts in 3svn are related. In this context, the acceptance sets are related

as long as no visible is performed.

Lemma 6.1.11. Let R be a co-inductive syntactic server pre-order. For every 01,09 € SCy,, if 01 R 09
and B € ACC(03,¢), then there exists a set A € Acc(o1,¢e) such that A C B.

Proof. Fix a set B € ACC(09,¢); since ACC(02,¢) = ACC(UNF(03),¢), B € ACC(UNF(032),€).
According to the cases in Deﬁnition and a case analysis on the form of UNF(03), one can show
an A € ACC(UNF(o1), €) which satisfies the required properties. We discuss two cases. If UNF(p;) = 1,
then ACC(UNF(01),e) = {0}, and & C B. If UNF(o1) =!t1.07, then B = {t,} for some t, such
that t5 < t1. Since {!t1} € Acc(o1,¢), the singleton {!t;} is the A we are after. We leave the details
of the other case analysis to the reader.
Since 01 = UNF(01), ACC(UNF(01),e) C ACC(0q,€), so A € ACC(o1,¢€). O

In this section we have introduced and characterised the server pre-order that results from restrict-
ing our attention on the LTS of session contracts (SCg,, Act,,, —). In the next section we perform

a similar task, but focusing on the client side.

6.2 Restricted must client pre-order
We define the restricted MUST client pre-order in the obvious way, and then we characterise it.

Definition 6.2.1. [Restricted MUST client pre-order |
If p; and py are session contracts, then we write p; ,EfCOLT p2 whenever for every o € SCq,, 0 MUST p;
implies that o MUST py. We call the relation denoted by the symbol EE)LT the restricted MUST client

pre-order. O

The new pre-order differs from the original & = of Definition m

~/CLT

Example 6.2.2. We have shown in Example that ?1atte. 1 E];c;,R?moka. 1 4+ 71atte. 1. A similar

argument, this time applied to client-side session contracts, can be used to show that
7latte. 1l EZOLT ?moka.”moka.l + ?latte. 1

Similarly to what happens for server session contracts, if we turn our attention to processes then
the session contracts above are no longer related. Let us see why. The client ?1latte. 1 is satisfied by

the server !latte. 1 + lmoka. 1, because the action Imoka will never be performed by the server. On the

T v
other hand ?moka.’moka.l + ?latte.l ||!latte.l + 'moka.1 —+7moka.l || 1 —/+. and ?moka.l —/>;
this proves that !latte.l + lmoka. 1 MUST 7moka.?moka. 1 + 7latte. 1

This argument above would have proves that !latte.1Z 7moka.’moka.l + ?latte.1l. We have
therefore shown that 5° ¢C . O

~CLT &~"YCLT

Lemma 6.2.3. For every 01,09 € SCq,, 01 ,E?;l o9 if and only if UNF(oq) Cf UNF(03).

~CLT

Proof. This lemma follows from Lemma [3.1.9 O

6.2. Restricted must client pre-order 141

In Lemma we saw that the pre- order
both the same property, and the dual one:

has bottom elements; the pre-order & .. enjoys

Nb\ R ~CLT

£, has top and bottom elements.

Lemma 6.2.4. [Top element |

The pre-order T, enjoys the following two properties,

(i) it has a top element

(ii) if o1 is a top element of Cf then UNF(o7) =1

Proof. Since o MUST 1 for every session contract o, the session contract 1 it is a top element in the
restricted compliance client pre-order. Moreover, reasoning as in Lemma [6.1.5| we can show that if o+

is an arbitrary top element then UNF(oT) = 1. O

Intuitively, the bottom elements in ECLT are the clients that are not not satisfied by any server.

These clients are the session contracts that never perform v, for instance ux.!Int.x.

Lemma 6.2.5. [Bottom] For every p € SCy,, and every t € BT, ux.!t.x Ch

~CLT p-

Proof. Let p be a session contract. The argument to prove that px.!t.x Cf p does not depend on p.

~/CLT
The inequality is true because for every session contract o, no maximal computation of pz.!t.z || o

is client-successful. O

Definition 6.2.6. | Usable clients]
Let
UsS = {p € SCt, | 0 MUST p for some o € SCt, }

O

The existence of top elements of . renders the restricted MUST client pre-order a non sound

~CLT

model of 42&

Example 6.2.7. Recall that M(END) = 1. The restricted MUST client pre-order presents the dual
issue as it relates every session contract to 1; it is one of the top element. Once again a model based

on Ecm would be unsound:

I(0Int).15° 1, 1[!Int];END £, END

~/CLT

The relation Ec . 18 not a sound model of < \sbt also because of the non usable clients.

Example 6.2.8. | Ef:LT not sound with respect to < \sbt] Also in this example we prove that there
exists session contracts p; and py such that p; Nf o p2 and M~ (p1) £ M1 (py). In this example,
though, we leverage the non-trivial usability of clients rather than the top elements of 5 .

We discuss first some preliminary facts. It is relatively easy to prove the following inequalities

ux. 'Bool.x Cf 21nt.1

NCI r

7moka.l + 7latte.l + 7?stout.ux. !Bool.x C 7moka.l +?latte.l + 7tea.o

~CLT

The first inequality is true because pz.!Real.x and uz.!Bool.x are not usable. Intuitively, the
third inequality is true because the action ?stout is not usable, so it is safe to drop it altogether. Let
p1 =Tmoka.l + 7latte.l + ?stout.ux.!Bool.x and po =7moka.l 4 ?latte.l + 7tea.c. If 0 MUST py,
then the unfolding of o must be an internal sum, possibly with just one summand. The term UNF(o)
can interact only with the usable actions of p; since these actions are Tmoka and ?latte, and they are

both offered by ps, one can prove that ¢ MUST ps.

142 Chapter 6. Modelling first-order session types

All the 1nequaht1es that we have shown prove that L. is not a sound model of <sbt, that is, the

N(,LT
terms related by 5 above, have images via M not related by the sub-typing:

pX. [Bool]; X #f ?[Int];END
51 Ao S

where S; = &(moka: END, latte: END, stout: uX.BoolX) and So = &(moka: END, latte: END, tea: M~ 1(0)).
O]

In Lemma we exhibited the properties of the restricted MUST server pre-order. A similar
result holds for the restricted MUST client pre-order, up-to the impact of non usable clients.

Lemma 6.2.9. Let p; and ps be two session contracts such that p; ,EfCOLT p2. If p1 € UCSLCTf° and
UNF(p2) # 1, then one of the following is true

(i) if UNF(p1) =!t1.p], then UNF(ps) =lta.p) ta <b t1 and p) 3% ph
(ii) if UNF(p1) =7t1.p], t1 < to then UNF(pa) =7tq.p5 and p} S ph

(i) if UNF(p1) = (3;e,715.07) + (ZkeK?lk py) with pi € USSE for every k € K, and p! & USSE for
every i € I then UNF(p2) =3, ;71;. pJ with K C J, and pl Z&n p2 for every n € (IUK) N J,

(iv) if UNF(p1) = @, 11.p; then UNF(ps) = D15 p3 with J C I and pj St p3 for every i € J

Proof. The proof is almost the same of Lemma [6.1.7] The main difference is that to define a session

contract o that satisfies the p; at hand, we need p; to be usable. This has an impact on how external
f N

sums are related by Ec(lw so we present the proof of point .

Fix two session contracts such that p; Eic;[p2 and py € UCSLCTfD, and suppose that

UNE(p1) = () _715.00) + (D Mepp)

el keK
for some finite sets I and K. Let k be the cardinality of K. We have to prove that

a) UNF(p2) = 3 ¢ ;7150
b) K CJ

c) pL Zen p2 foreveryn e INJ

SCro

Since p1 € Ugx® also UNF(py) is usable. This implies that the set K must be non-empty. For each

k € K let o a session contract such that p,lc MUST® ok, and let o = @keKltk.ak. Now we derive

1 1 '
p1 MUST® 0 Py MUST® o7},

Y ier s .PF MUST® Drc 1ok

K C I; [R-EXcH]

Lemma |3. 3 14| ensures that o MUST UNF(p;). The hypothesis p; Efcc;l p2 and Lemma imply that
UNF(p1) S UNF(p2). The last fact and o MUST UNF(p;) imply that o MUST UNF(p2), so, in view of

Lemma m there exists the derivation of UNF(py) MUST® 0. By hypothesis UNF(p3) # 1, and so,
as depth(UNF(p2)) + depth(o) = 0, the derivation of UNF(p2) MUST® o must be due to rule [R-EXCH],

S S
pi MUST® 01 ... p7 MUST® 0}

>ies’Ll 7 MUST® @ ' 1x.0%

K C J; [R-ExXCH]

6.2. Restricted must client pre-order 143

The derivation above proves that UNF(p2) = ngj?lj'/’i for some set J such that K C J. We prove
that pl EiOLT p2 for every n € (IUK)NJ. Fixann € (IUK)NJ. Either n € K or n ¢ K. For
all the n € K, the only hypothesis on o, is that p. MUST® o,. Since the derivation above proves
that p2 MUST® 0, Lemma [3.3.14] ensures that we have proven that if ¢ MUST pl then o MUST p2. If

n ¢ K, then pl is not usable; this implies that pl ch 02 O

~CLT

Example [6.2.8] shows that in the proof of the previous lemma the hypothesis of p; being usable is

necessary.

Definition 6.2.10. [Syntactic MUST client pre-order |
Let Fxsun : P(SCs%) — P(SCs°) be defined so that (p1, pa) € F<swm(R) whenever if py € USe and
UNF(p2) # 1 one of the following is true:

(i) if UNF(p1) =!t1.p}, then UNF(p2) =lta.p5 ta <p t1 and p) S ph

(ii) if UNF(p1) =7t1.p}, t1 <b to then UNF(p2) =7tq.p5 and p} 3n ph

1 ~Y
(iii) if UNF(p1) = (3 ;e;711-08) + (X pex Mx-pp) with pp € USSE for every k € K, and p! & USSE for
every i € I then UNF(p2) = >, ;715 .p? with K C J, and p} 2% p2 for everyn € (IUK)NJ
(iv) if UNF(p1) = @;c;'11.p} then UNF(ps) = GajeJ!lj.p? with J C I and p} St p3 for every i € J

If X C FRat"(X), then we say that X is a syntactic client relation. Lemma and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F=ai" (X); we call
this solution the client pre-order, and we denote it 33n. That is < = vX. Far (X). O

In Definition |6.2.10| we refer to the set L{CSLCTf"; since this set is not syntactically defined, this seems to

hinder the relation 3g¥r from being syntactic-oriented.

Corollary 6.2.11. The restricted MUST client pre-order is a co-inductive client pre-order. Formally,

£ C Faom

~CLT — ~SCLT (ECLT)
Proof. Tt follows from Lemma [6.2.9] O

The converse of Corollary [6.2.11]is also true.

Proposition 6.2.12. [Alternative characterisation ,Ezc:[]

The restricted MUST client pre-order and the syntactic must client pre-order coincide. Formally,
Efo — <syn

~cLT . ~CLT*

Proof. We are required to prove two set inclusions,

a) |:f0 C <syn

oLt = ~CLT

b) < syn C |:f0

~CLT = ~cpr

The first implication follows from Corollary so we prove only the second implication. To this
end, we prove a more general result: we show that every co-inductive syntactic server pre-order is
contained in EfCOLT.

Fix a relation S that is a co-inductive syntactic server pre-order. To prove that S C EI;OLT, we have

to show that if p1 S p2 and o MUST p;, then ¢ MUST po. Let

R ={(p2, 0) | o MUST p1,p1 S p2 }

it is enough to show that R C MusT—!. Thanks to Lemma [3.3.14] this is equivalent to showing that
R C MUST® . We prove this fact.

144 Chapter 6. Modelling first-order session types

Fix a pair ps R o; by construction of R, we know that ¢(MUST o S)pa, so there exist a p; such
that o MUST p; and p1 S po.

Lemma [3.3.14] implies that there is a finite derivation of p; MUST® ¢. The argument to prove that

p2 MUST® ¢ is by rule induction on the derivation of

p1 MUST® ¢ (6.4)

In the base case the last rule used in the derivation in (6.4) is the axiom [A-UNrT|. It follows that
p1 = 1. As UNF(p1) = 1, Definition and p; S po ensure that UNF(ps) = 1. Now we apply the

axiom,

[A-UNIT]
UNF(p2) MUST® o

If depth(p2) + depth(p1) = 0 then ps = UNF(p2), thus we have derived ps MUST® 0.

If depth(p2) + depth(p1) > 0 then we extend the derivation by unfolding the session contracts,

[A-UNIT]

UNF MUST®
(p2) 7 depth(p2) + depth(p1) > 0; [R-UNFOLD]

p2 MUST® o

In the inductive case we have to discuss five cases, depending on the last rule used in (6.4)). We

show the arguments for two cases, as the other cases can be proven by using similar arguments.

o If the last rule in (6.4) is [R-ALPHA], then the derivation is

/ y s

p1 MUST”® o
/1—57/ [R—ALPHA}
a.p7 MUST” a..o

It follows that p; = a.p} and that o = @.o’. Since UNF(p1) = pi, the fact that p; S pa and
Definition imply that UNF(p2) = B.p4 for some 3 such that @<, 5 and p} S pa. Since the
derivation of pj MUST® ¢’ is shorter than (6.4), and ¢’ MUST p} S pj, the inductive hypothesis

ensures that pj, MUST® ¢’. It follows that we can derive

/ y s +/
Py MUST® o
.0, MUST a0’ [RALPHA]
.Po MUST” .0
We have proven that UNF(p2) MUST® o. If depth(p2) = 0 then we have proven that ps MUST® o.

If depth(p2) > 0 then an application of rule [R-UNFOLD] lets us prove that UNF(ps) MUST® o.

o If the last rule used in (6.4) is [R-UNFOLD], then the derivation is

UNF(p1) MUST® UNF(0)
p1 MUST® &

[R-UNFOLD]

Since UNF(p1) S UNF(p;1) and UNF(p;) MUST® UNF(o), it follows that UNF(p3) R UNF(o).
The inductive hypothesis states that there exists a derivation of UNF(p2) MUST® UNF(o). If

6.3. A behavioural model of first-order sub-typing 145

depth(p2) + depth(o) = 0 then we have proven that ps MUST® o. Otherwise we derive

UNF(p2) MUST® UNF(0)
p2 MUST® o

depth(p2) + depth(o) > 0 [R-UNFOLD]

We have proven that for every pa R o we can derive p; MUST® ¢. In view of the definition of R, this

< syn

f
proves that if p; 3% rhoy then p; ECOLT po. O

In this section we have unravelled the behavioural characterisation of the pre-order NfcoLT This

characterisation turns out to to be co-inductive and syntax directed, as the characterisation of & v
In the next section we will use the characterisation of the restricted MUST server pre-order and
the restricted MUST client pre-order to define a fully abstract model of the sub-typing on first-order

session types.

6.3 A behavioural model of first-order sub-typing

As we have shown, the difficulty is to find a natural pre-order on session contracts which accurately
reflects the sub-typing relation on session contracts. There are two obvious candidates, the restricted
MUST server pre-order and the restricted MUST client pre-order on session contracts. The difficulty

lies in the interpretation of END.

Definition 6.3.1. [Session contract pre-order |

f fo fo
For 01, 03 € SC, let 01 %, 02 whenever o1 S 02 and 01 5 09. O

Example 6.3.2. It is instructive to see the behaviour of 1, the image of END under M, relative to
this combined pre-order. First suppose o EPQP 1 for some session contract o. This implies o EE?R 1

and therefore, as we have shown in Lemma o must be a bottom element relative to ,EZ?,R, SO
UNF (o) must be 1. A similar argument, using the pre—order Nfc ensures that if 1 Cf,, o then UNF(0)
must be 1.

In other words modulo unfolding the only session contract related to 1 via Cf,, is 1 itself. O

Proposition 6.3.3. [Completeness |
For every o1, 09 € SCy,, 01 C%,, 09 implies M~1(07) <. M1 (02).

Proof. Let R be the relation over session types defined as follows,
R ={(M ™ (01), M (02)) | 01 Zii 0, 01 Sk 02}

If we prove that R is a type simulation (see Definition , then the result will follow because of
Proposition 0| and Proposition [6.2.12

To show that R is a type simulation we are required to prove the set inclusion R C F~ b (R).

Fix a pair S; R Sz. There exist a 01 and a oy such that S = M~1(0y), So = M~1(0y), and
o1 Zivk 02 and o1 Zotr 0.

The proof proceeds by a case analysis on the depth of the types S; and Ss, and then by case
analysis on S7.

Suppose that depth(S1) + depth(S2) > 0. Since o1 33n o2 and o1 3¢t 02, Lemma and

~S

Lemma ensure that UNF(oq1) 259 UNF(02) and UNF(o1) Z&% UNF(02), and so

MY (uNF(o1)) R MY (UNF(02))

146

Chapter 6. Modelling first-order session types

point of Lemma [2.3.12 implies the following fact,

UNF(M " (01)) R UNF(M ™ (03))

s0 UNF(S1) R UNF(S2). Now we can apply [R-UNFOLD],

UNF(S1) <fo. UNF(S,)
St <5 S

depth(S1) + depth(S2) > 0 [R-UNFOLD]

Suppose now that depth(S1) + depth(S3) = 0; then the unfoldings of S; and Sy are the types

themselves. Now we reason by case analysis on S;; that is M~!(oy).

e Suppose M~1(o1) = END. According to Definition [2.1.13|we have to show that M ~!(o3) = END.

The definition of M implies that o; = 1; moreover In Example above we have already

reasoned that UNF(o3) must be 1, and so M~1(o9) = END.

Suppose M~1(o1) = ![t1];S;. We are required to prove that
M (o2) = ![22]; 53, (6.5)

for some to and S such that to <3 t1 and (M(S]), M(S%)) €35%n N Ix.

As o1 Z§Un o2, Definition implies that oy =!ty.05 for some t, such that ty < t; and
some o% such that M(S7) 35vn o4. This ensures that (6.5) above is satisfied. By the definition

of Sy we also have the requirement M(S1) 33¥s 5.

It remains to show M(S7) Z&it M(S2). But this follows from o 3% 0a, and Definition [6.2.10]

A case that requires particular care is when S; = &(1;: S{, ... ,1;: S}). Definition [2.1.13

requires us to prove that three things

1) 52:&<11: S%, 7li:S?L>
2) m<n

3) for every 1 <i <m, S} R S?

The construction of R ensures that there are two session contracts o1 and o5 such that o1 Zghn 02
and o1 Z¢¥t 09; and such that S; = M(o1) and Sy = M(03). We know that o1 = Ziel?li.a}7

with M~1(S}) = o1 for every i € [1;n]. Rule [R-BRANCH] in Figure[6.1] Definition ensures
that o9 EjeJ?lj.ajl- for some set J such that [1;n] C J and that for every ¢ € [1;m],

ol Zn ol

i ~SVR
The set inclusion [1;m] C J implies that J = [1;n] for some n € N such that m < n.
Since So = M(o3), o9 = ZjeJ?lj.ajl-, and J = [1;n], we can prove 1) and 2) above: Sy =

&(1y: S%,...1;: S2) for some n such that m < n.

We still have to prove 3). The equality in Eq. 1) ensures that for every j € [1;n], sz = ./\/lajz;

that is M~'(S7) = 03. We have already proven that for every i € [1;m], M~!(S}) = . We

have to show that S} R S? for every i € [1;m]. Fix an i € [1;m]. To prove that S} R S? we have
to show two facts, namely that M~1(S}) Z3n M~1(S?) and that M~1(S}) Zan M~1(S?).
Thanks to the equalities that we have already proven, we have to show that o} Zin o2 and

that o} 2t 02. We have already shown the first fact; so we have to explain why o} Z&1 o2.

As 01 28t 09, Point of Definition |6.2.10{and I C J imply that for every i € I, o1 27 od.

The proof for the remaining cases is similar to the argument already shown, and left to the

reader. O

6.3. A behavioural model of first-order sub-typing 147

Theorem 6.3.4. [Full abstraction]
For every T1, Ty € STy, T1 <, Ty if and only if M(T7) Cfo, M(T3).

Proof. Thanks to Proposition it is sufficient to prove that T} ‘\{Et T implies M(T}) CP

~SVR

M(Ty) and M(Ty) o M(Tz). As an example we outline the proof of the former. Because of

~CLT

Proposition [6.1.10| it is sufficient to show that the relation R given by
R={(o1,02) | Tv x5, T2, M(T1) =01, M(T2) =02}

is a syntactic server pre-order, that is R C F<5% (R), where F<o%" is given in Definition
Suppose 1 R 02; we have to prove that the pair (o1, 03) is in F<5% (R). By definition there exist
T; and T3 such that M(Ty) = o1, that M(T) = 09, and that T 42& Ts.
We do first a case analysis on the depth of o1 and o2, and then reason by case analysis on o7.
Suppose that depth(o1) + depth(os) > 0; to prove that (o1, 03) € FI5% (R) it is enough to show
that UNF(01) R UNF(03). The fact that Ty <® T, and Lemma imply that UNF(T}) <o
UNF(T3). The construction of R guarantees that

M(UNF(T1)) R M(UNF(T2))
Point of Lemma |2.3.12] ensures that we can commute the unfolding with the interpretation M,
UNF(M(T1)) R UNF(M(T?))

and so UNF(o1) R UNF(03). Now we apply [R-UNFOLD],

UNF(01) 2 UNF(02)

depth depth 0 [R-U
o1 Z3h 02 epth(o1) + depth(oz) > 0 [R-UNFOLD]

Suppose now that depth(cy1) + depth(o2) = 0; this implies that UNF(o1) = o7 and that UNF(o2) =

02. We proceed reasoning by case analysis on o1.
.. .. <syn
e If 01 = 1, then Definition ensures that (o1, og) is in F~sw (R).

e If oy = 7t;.0] we have to show that

o9 = Tt9.0%
with t; <p t2 and o] R o}.

The fact that M~1(07) <. M~1(02) let us use Definition to deduce that M~1(o3) =
?[t2]; . M~ Y(0h) for some ty such that t; <p to and some M~1(a%) such that M~1(ah) <fo,
M~1(ah). From the last inequality and the definition of R it follows that of R o}. Since we have
proven the conditions on the input actions ty, t, and on the continuations o},) we have left

only to show that the structure of o5 is the required one; this follows from another application

of part (iii) of Lemma [2.3.12

The other cases are analogous and left to the reader. O

Corollary 6.3.5. If <. is decidable, then the relation T, is decidable.

Proof. To begin with, note that M is defined by structural induction, and in a similar fashion we can
define its inverse M~!; so M~! is decidable. The corollary then follows from Corollary 2 of |[Gay and
Holel [2005], which ensures that the relation <, is decidable, and our Theorem whereby we can

prove the isomorphism < = Cfo, . O

148 Chapter 6. Modelling first-order session types

6.3.1 Examples and applications

In this subsection we give a series of examples in order to discuss the results we obtained. The first

two example are of theoretical nature, whereas the last one shows an application.

Example 6.3.6. [Type simulations and the weak simulation relation]
At this stage, a natural question arises, which concerns the relationship between type simulations and
weak simulations [Milner} [1999]. Assume the standard definition of the weak simulation [Milner}
1999|; we use the symbol < to denote the greatest weak simulation relation.

We begin by showing that, even though two session types are in a co-inductive types simulation,

their images through M need not be in a weak simulation. Consider the relation
R ={(®(1:: END, 1p: END), (®(1;: END)), (END,END) }

The standard co-inductive proof technique let one prove that the relation R is a type simulation. On
the other hand, the definition of M implies that

M(@<11 END, 15: END>) :'11 1 @'12 1
M(®(1;: END)) =11,.1

Then M(®(11: END, 1y: END)) & M(®(11: END)) because 11;.1 §11,.1 T2, while 11;.1 71L2>
We have proven that S; <. Sy does not imply M(S1) < M(Sz).

Looking at the foregoing argument, one might be tempted to reason that if S; < S5 then
M(S2) < M(S1). We prove that this is not the case. We can prove that

71,.1Cf0 7151471501

—P2pP

An application of M~! gives us:

Mﬁl(?ll. 1) = &< 1:: END>
MY(?15.1471,.1) = &(1;: END, 1,: END)

A look at the definition of ﬁi‘gt, Definition [2.1.13] lets one prove that for every type simulation R
&(1;: END, 15: END) R &(1;: END)

and, therefore,
&(1;: END, 15: END) £ &(1;: BEND)

Example 6.3.7. [e-vote, revisited]
In this example we use Theorem in conjunction with Theorem 2 of [Gay and Hole, |2005], in
order to show how the set based pre-order C,, can be used to guarantee that a process P, can be
safely replaced by a suitable process P,.

Consider two contracts BallotA and BallotB such that BallotA Cf, BallotB. Let BallotA =

M~ (BallotA) and BallotB = M~!(BallotB). From Theorem it follows that
BallotA <%, BallotB (6.6)

Let L. denote the coinductive duality relation defined as in Definition 9 of [Gay and Hole, 2005].
Suppose now that BLTSRVA (z7), BLTSRVB(z1) and VOTER(z ™) are pi calculus processes (as in |Gay

| 6.3. A behavioural model of first-order sub-typing 149

and Hole, 2005]) such that
{zT: BallotA} F BLTSRVA(zT),

{z*: BallotB} F BLTSRVB(z1),
{z7: Voter} F VOTER(z")
for some session type Voter such that Voter 1. BallotA. By means of the typing rules of [Gay and
2005], it is possible to derive

{zT: BallotA} + BLTSRVA(2) {2~ : Voter} - VOTER(z ™)
{z": BallotA},z~: Voter b BLTSRVA(z") | VOTER(z ™)
F (vz: BallotA) BLTSRVA(zt) | VOTER(z™)

[T-PAR|
[T-NEWS]

Then above and Theorem 2 of [Gay and Hole, 2005 can be used to guarantee that if process
BLTSRVB(21) is used in place of process BLTSRVA (z1), then no communication error will happen

along the channel x.

One can use non-recursive versions of the contracts seen in Examples and to obtain

contracts that satisfy the assumptions above:

BallotA = ?Login.(!Wrong.1 @ !0k.(?VoteA.1 + ?VoteB.1))
BallotB = 7?Login.(!Wrong.1 &
10k.(?VoteA.1 + ?VoteB.1 + ?VoteC.1 + ?VoteD.1))

Voter = M™!(ILogin.(?Wrong.1 + ?0k.(!VoteA.1 & !VoteB.1)))

Example 6.3.8. [Protocol conformance |
As already remarked, the language for contracts is a sublanguage of CCS without 7’s |[De Nicola and

1987], and consequently contracts are suitable for specifying communication protocols.
Assume a protocol Pr to be specified by a contract o, and let @ be a process (in the sense of [Gay
and Hole| [2005]), which is well-typed under the environment I'. Assume also that I'(z) = S for some

channel z.

We want to answer the following question:
(Q) “Does the session type S conform to the protocol specification o?”

Clearly, as long as the notion of conformance is not well defined, it is not possible to give an answer

(at least not a trutworthy one).

In light of Theorem|[6.3.4] we propose the following definition of conformance. Assume the standard
definition of weak bisimilarity equivalence [Milner} 1999]; we denote this relation ~. We say that a

session type S conforms to a protocol specification o if and only if M(S) =~ o.

To answer the question (Q) now one has only to prove that M(S) =~ o or to show a counter

example to this statement.

For example, if we had given a specification of the protocol POP3 1988| with a contract o,
then we would have been able to check whether the session type POP3 of [Gay et al., [2003] conforms

to o.
In order for the notion of conformance we have given to be of some practical consequence, one last
thing has to be ascertained. We have to study whether weak bisimilarity equivalence, when restricted

to session contracts, is decidable. We leave this as an open problem worth further investigation. O

150 Chapter 6. Modelling first-order session types

6.4 Revisiting the restricted server pre-order

In this section we investigate the restricted pre-order for server that arise by using the compliance rela-
tion. The result of our study is that the restricted pre-orders for servers coincide (see Corollary [6.4.8)).

Definition 6.4.1. [Restricted compliance server pre-order]
For every o1,09 € SCq,, we write o Eg‘{,R o9 if and only if whenever for every p € SCi, p 4 01

implies that p 4 o2. We call the relation denoted by the symbol ;f;;R the restricted compliance server

pre-order. O

When comparing session contracts relative to this pre-order it will be convenient to work modulo

unfolding, which is possible because of the following result:

Lemma 6.4.2. For every 01,09 € SCq, 01 E‘;‘QR o9 if and only if UNF(03) Q;‘\’,R UNF(032).

Proof. Follows from Corollary [3.2.9) and O

The set based relation Cf, is contained in =<3¥; this will follow if we can show the former satisfies

the defining properties of the latter.

Lemma 6.4.3. Let 0,05 € SCy,, 01 = UNF(01), 03 = UNF(09) and 0y T, 0. Then

(i) if UNF(o1) =!t;.07 then UNF(02) =!t,.0%, ta <p t1 and o EZC;R oh
(ii) if UNF(o1) =7t4.07 then UNF(o32) = 7t5.0%, t1 <p t2 and o} ESR oh

(i) if UNF(01) = ,¢,711.0; then UNF(og) =

i NYSVR 1

jEJ?lj.O'JZ, with I C J and o} Cfo 42

. f
!lj.o'?-, with J C I and crjl- ES(\)/R o’?-

(iv) if UNF(01) = @;e;!Li.07 then UNF(o2) = B¢,

Proof. The proof is by case analysis on the structure of o7 and depends greatly on the restricted
syntax of session contracts. We give the details of the first case; the others are analogous.

Suppose o1 =!t;.0]. Then 7t;.1 - o7 and because o, Eg‘(,R o9 it follows that 7t4.1 - 05. Since

7t4.1 is stable, oo has to engage in an action !ty such that 7t; <.!t,. It follows t5 <3, t1. In reason
of the syntax and the the hypothesis oo = UNF(02), the equality oy =!t5.05 must hold.
We also have to prove that o} T, o5. Pick a session contract p such that p 4 o. Clearly 7t;.p -

—SVR
o1, and thus 7t;.p 4 09. Since 7t; >.!ty, we apply rule [P-SYNCH] to infer ?t1.p || 0o — p || 0.
From the definition of compliance it follows that p - 0. O

Corollary 6.4.4. The relation T, is a co-inductive syntactic server pre-order.

Proof. We prove that = is a prefixed point of F S8 of Definition that is oy Cf, o9 implies

—SVR
(01,09) € FRsw'(Cf.). Suppose o1 T, 0o. Then by Lemma it follows that UNF(oy) Cf,
UNF(03). Now if UNF(oy) = 1 by definition (oy, 0p) € F<o (Cf). Otherwise we can apply
Lemma to the pair UNF(o1), UNF(og2). This provides the required information to satisfy the

requirements (ii) to (v) in Definition thereby ensuring that (oq, og) € FIW (CfR). O

syn

A brief comparison between the properties of <y and Zi¥p is in order. In Example we have
seen that 5° does not satisfy point 1) of Definition This implies that the property of Sgyr

~SVR

proven in Lemma [5.1.14]is not enjoyed by ZiVi.

Example 6.4.5. We prove that oy 33 02 and oy — do not imply that (o, AFTER o) #). Let
o1 =7latte.l and oo =7?moka.l 4 ?latte.l, and R= {(o1, 02),(1, 1)}. Since the relation R is a

syn

. . . ?moka
co-inductive syntactic server pre-order, o; 3svn 02. Now observe that oo — 1; however the set

~

(01 AFTER?moka) is empty. O

On the other hand we have the analogous of Lemma [5.1.13

6.4. Revisiting the restricted server pre-order 151

Lemma 6.4.6. Let R be a co-inductive syntactic server relation and let o1 R o5. If 09 LN ol then

o1 R .

Proof. First note that from Definition it follows that
UNF(01) R UNF(03) (6.7)

There are two different cases to be discussed, depending on the unfolding of oo being o itself or not.

(a) If UNF(02) # o2 then o2 has a top-most recursion, and therefore we can prove that UNF(o3) =
UNF(0%). This equality and (6.7) above imply that UNF(o1) R UNF(0%), which in turn means that

o1 R ab.

(b) If UNF(02) = o2 then o2 must be an internal sum, say oo = @iel!li.af, because o9 can perform
a silent move and can not unfold.

Since oy = @iel!li.af, the term o is the internal sum @keKllk.J,%, for some K C I. From
Definition it follows that UNF(01) = @, ;!15.07 with I C J. Since UNF(d3) = o and
K C I C J one can prove that UNF(o1) R UNF(0%), and thus o1 R 0.

O

The main result of this section is the following proposition.

Proposition 6.4.7. [Co-inductive characterisation Cf0]

For every 01,09 € SCq,, 01 Eg‘{,R o4 if and only if o1 Z§%n oo.

Proof. In view of Corollary we have to prove only the inclusion <g¥n C Cf . It is enough to

—CLT"

show that the relation
R ={(p, 02) | p-o, o1 3 02, for some o1 € SCy, }

is a co-inductive compliance. Thanks to Lemma[3.3.10]it is enough to prove that the following relation

is a syntactic compliance,
R={(p,02) | p° 0, o1 33 09, for some o1 € SCy, }
Let p R o; by definition of R there exists a o1
p=or, o1 IR 02

We have to explain why (o2, p) € F' (R, T). That is, we have to apply one of the rules in Figure
to derive o

p % o2
Lemma and Lemma guarantee the follows facts

UNF(071) Ziv% UNF(032), UNF(oqp) 1° UNF(p)

We first check the depths of o and p. If depth(oz) + depth(p) > 0, then It follows that UNF(o2) R
UNF(p). We apply [R-UNFOLD],

UNF(02) =° UNF(p)
p =% o2

depth(o2) + depth(p) > 0; [R-UNFOLD]

Suppose now that depth(os) + depth(p) = 0.

The argument is by case analysis on the form of o5.

152 Chapter 6. Modelling first-order session types

i) If o9 = 1 then we can derive

P [A-UNIT]

syn

ii) If o9 =7t5.p5 then UNF(07) 35¥s o2 implies that UNF(oq) =7t4.p] with t1 <p to and p} Z&h p5.
The assumption p 4° UNF(o1) now implies that p =!t.p’, with 7ty < !t, and p’ 4° o]. The fact
that 7t pa.!t implies that t <, ts.

We have seen that to <y ti1, and that t; <3, t. Since =<, is transitive, t5 <p t. The definition of
. guarantees that 1ty x.7t,. We also know that p} S p) and that p’ 4% o7, thus p;, R p'. We
have proven enough to derive

P oy

1ty X7ty [R-ALPHA
p _{5 o9 2 c+ L2, []

iii) An argument similar to the one we used in the previous case can be used if oo =7tq.p5.

iv) If g = @iellli.af, then we prove that we can derive

o [R-INCH]

We have to prove that p = 3. ;71;.p;, with I C J, and p? R o; for every i € I. As UNF(oy) 33
o9, it follows that UNF(oq) = @keKllk.ai, with I C K, and p} 35% p2. As p —° UNF(0q) it must

1 ~S

be p = Zjej?lj'pj7 with K C J, and pp =° a,i forevery k€ K. AsI C K C J, we have I C J,

moreover for every ¢ € I we have
pi Ssm ol Pt
thus p? R p;.
v) Iifop =3, I?li.pf, then the argument is similar to the one used in the previous case.

O

Corollary 6.4.8. The restricted compliance server pre-order equals the restricted MUST server pre-

order.

Proof. Tt follows from Proposition [6.4.7] and Proposition [6.1.10] O

6.5 Restricted compliance client pre-order

We introduce a new pre-order which compares the capacity of clients to be satisfied by servers. The
structure of this sub-section is similar to that of the previous one on the restricted compliance server

pre-order.

Definition 6.5.1. [Restricted compliance client pre-order |

For p1, p2 € SCq let py EfgLT p2 whenever p; 4 o implies po - o for every o in SCy,. O

Also the restricted compliance client pre-order let us reason modulo unfolding.

We can reason on £ modulo unfolding.

Lemma 6.5.2. For every p1,pa € STy, p1 £, po if and only if UNF(p;) £, UNF(p2).

Proof. Follows from Corollary O

6.5. Restricted compliance client pre-order 153

DALl [A-Duat]
aDuaLs VAR
_pDuaLd
It.p’ DUAL 7t.0’
’ /
o' DUAL o
= [R-OUT-F
?t.p" DUAL !t.o’ []
prDuaLoy ... pj DuAL oy [R-BRANCH]
Dicr!Li-pi DUAL Y, ;714504
prDuaLoy ... pj DAL oy [R-CHOICE]
> icr'Li-pi DUAL ;¢ '1i.04
DuaL
P d [R-REC]

px.p DUAL px. o

Figure 6.2: Inference rules for the rule functional Fpyar

We have seen in Lemma [6.1.5] that the session contract 1 is a bottom element in the restricted

compliance server pre-order. The compliance client pre-order enjoys the dual property.

Corollary 6.5.3 (Top element).

The pre-order TP enjoys the following two properties,
(i) it has a top element
(ii) if o1 is a top element of Cf.. then UNF(oT) = 1

Proof. Since 1 4 ¢ for every contract o, the session contract 1 it is a top element in the restricted
compliance client pre-order. Moreover, reasoning as in Lemma we can show that if o1 is an

arbitrary top element then UNF(oT) = 1. O

All the client pre-orders we studied thus far have non usable clients. This is not the case for Cfo,..
The definition of compliance and the restrictive syntax of session contracts let us prove that for every

p there exists some o such that p 4 o. Intuitively, this is true because of two factors,
e the only stable session contract that does not engage in any action is 1;
e the compliance relation allows everlasting computations.

To prove the main result of this section, Proposition [6.5.18] it is necessary to use the duals of

session contracts, so now we explain how to construct the dual of every p.

Definition 6.5.4. [Dual |
If p 4 o then we say that o is a dual of p. O

We want to prove that every session contract has a dual. This means that for every session
contract p, we can define a server contract o such that p 4 0. We do this reasoning by induction on

the terms of Lsc,, .

Definition 6.5.5. [Dual session contracts |
Let FPUA: P(LEc,) — P(Lc,,) be the rule functional given by the inference rules in Figure
Lemma and the Knaster-Tarski theorem ensure that there exists the least solution of the

154 Chapter 6. Modelling first-order session types

equation X = Fpyan(X); we call this solution the duality relation, and we denote it DuaL: That

is DuaL = puX.Fpuar(X). O
We state two basic properties of DUAL.

Lemma 6.5.6. The relation DUAL is a total function.

Proof. We have to prove two things, that is

a) for every p,o, and o’ € SCy,, if p DUAL ¢ and p DUAL ¢’ then o = ¢’

b) for every p € Lsc,,, there exists a o such that p DUAL o.

The proof of point @ is by induction on the derivation of p DUAL o. The proof of point (]E[) is by

structural induction on p. O

In view of the previous lemma, from now on instead of using the infix notation p DUAL o, we will use

the functional notation DUAL(p) = o; except when using the inference rules of Figure
Lemma 6.5.7. For every p € Lsc,,, if p is closed then DUAL(p) is closed.

Proof. The proof is by structural induction on p. The only interesting case is p = px. p’. By defi-
nition DUAL(p) = px. DUAL(p’). The fact that puz. DUAL(p') is closed depends on the fact that the
function DUAL is an identity on the variables, and preserves the bindings px. O

Lemma 6.5.8. [Substitution lemma |
For every p,o,p’,0’ € Lsc,, and variable z, if DUAL(p) = o and DUAL(p') = o’, then the equal-
ity DuaL(p { '/ }) =0 { "/ } holds true.

Proof. The argument is by structural induction on p.

Base cases If p = 1, then p{p//gg} = p, and the hypothesis DUAL (p) = o implies that o = 1,
SO o { ‘7//,; } = 1. The equalities we have shown ensure that both p { pl/m } and o { ”//I } are 1, so

we derive

- - [A-DuAL]

p{p/x}DUALU{U /I}

If p = y and y # z, then an argument as the previous one, but with an application of [A-VAR],
lets us prove that p { '/ } DuAL o { o } .

If p =, then p { P'/z } = p/, and the hypothesis DUAL(p) = o implies that 0 = x, so o { "’/z } =

o’. The hypothesis that DUAL(p’) = o’ implies that there exists an finite inference tree that

proves DUAL(p { '/ }) =0 { /e }

Inductive cases The arguments for the inductive cases have the same structure, so we discuss only
one case.
If p =!t.p"” then the hypothesis DUAL(p) = o implies that o =?t.c” and that DUAL(p”) = o”.

Since p” is a sub-term of p, the inductive hypothesis states the following implication,

for every p, 6", and 6 € Lsc,,, and variable y, if DUAL (p") = 6" and DUAL (p) = &,
then DUAL (p” {?/, }) =6" {7/, }.

The fact that DUAL (p”) = ¢” and the hypothesis that DUAL (p’) = ¢’ let us use the inductive
hypothesis: DUAL (p” { . }) =o" { o } This means that there exists a finite inference tree as

the following one,

o {7 Y oo {7,

6.5. Restricted compliance client pre-order 155

By applying rule [R-IN-F| we obtain the next tree,

AT TatN

It.(p" { /oy }) DuaL ?t.(o” { "/ })

[R-OUT-F]

The definition of capture avoiding substitution now implies that DUAL(p { '/ }) =0 { o } O
Lemma 6.5.9. For every p € SC¢,, DUAL(p) = o implies that DUAL(UNF(p)) = UNF(0).

Proof. The argument is by induction on the depth of p.

Base case (depth(p) = 0) In this case UNF(p) = p and p # px. p’. The hypothesis that DUAL(p) = o
ensures that o # px. o', so UNF(o) = 0. The hypothesis now ensures that DUAL(UNF(p)) = UNF(0).

Inductive case (depth(p) = n+1) Inthe inductive case p = px. p’, and the hypothesis DUAL(p) = o
implies that 0 = pzx. o’ and DUAL (p’) = o’.
Consider the term p = p’' {#/, }. Since depth(p) = n + 1, the depth of p is n, so the inductive

hypothesis ensures that
if DUAL(p) = 6 then DUAL(UNF(p)) = UNF(0).

Since DUAL (p') = ¢’ and DUAL (p) = o, Lemma implies that DUAL (p'{?/+}) =0¢'{7/.}. In
turn this means that DUAL (p) = o’ {7/, }. The inductive hypothesis now ensures that

DUAL (UNF(p)) = UNF(0' {7/, })

The definitions of UNF and p imply that UNF(p) = UNF(p); the equality o = pz. o’ and the definition
of UNF imply that UNF(o’' {7/, }) = UNF(0); from these equalities it follows that DUAL (UNF(p)) =
UNF(0). O

Lemma 6.5.10. For every p € SCy,, DUAL(p) € SCs,.

Proof. The proof is by rule induction on the derivation of the dual of p. The argument depends on
Lemma, and on the fact that the function DUAL does not introduce recursive constructors that

are not in p. O
Lemma 6.5.11. For every p € SCy,, p 4 DUAL(p).

Proof. Fix a session contract p. Thanks to Lemma m it is enough to prove that p 4° DUAL(p).

We defined a suitable co-inductive syntactic compliance,
R ={(p, o) | DuaL(p) =0, p,0 € SC }

We prove that R C F (R). It suffices to show that each pair in R can be derived applying one
of the rules in Figure [6.2] and drawing the premises from R itself.

Fix a pair p R o . By definition of R we know that DUAL(p) = 0. We reason first on the depth
of p and o.

If depth(p) + depth(c) > 0, then note that UNF(p) R UNF(c); this is a consequence Lemma [6.5.9]
and Lemma We know enough to apply [R-UNFOLD],

UNF(p) —I° UNF(0)
p1o

156 Chapter 6. Modelling first-order session types

m [AX-CLT)

Figure 6.3: Same rules of Figure but [AX-SRv] is replaced by [AX-CrLT]. Inference rules for the
rule functional F=ar"

If depth(p) + depth(o) = 0, then we reason by case analysis on p. The arguments for all the cases
are similar, so we discuss only one case.

If p =1t.p/, then DUAL (p) = o implies that ¢ = 7t.¢’, and that DUAL (p’) = o’. Since p and o are
session contracts, also p’ and ¢’ must be session contracts. It follows that p’ R ¢’. We know enough

to apply rule [R-OUT-F],
pl _|5 0./

o It <. 7t; [R-OUT-F]

O

Lemma 6.5.12. For every pi, p2 € SCy,, if UNF(p2) # 1 and p; .. po, then one of the following is

true
(i) if UNF(p2) =!tq.ph then UNF(p1) =!t1.0], t2 <b t1 and pj C.. ph
(ii) if UNF(p2) = 7ta.04 then UNF(p1) = 7t1.p}, t1 < t2 and pf T ph

(iii) if UNF(pg) = ngJ?lj'P? then UNF(p1) = Y, ?1s.p; with I € J and p} T, p?

(iv) if UNF(p2) = @je.]!lj'p? then UNF(p1) = @,¢,'11.p} with J C I and p; T, p?

Proof. We prove the implication in point . The other cases are analogous.

Suppose that UNF(p2) = 7t5.p5. The hypothesis p; £ py and Lemmaimply that UNF(p;) T,
UNF(p2). First we show that UNF(p;) has the required syntax, and then we prove the properties of
the base types and the continuations of the contracts.

Point (b)) of Lemma [6.5.6]and Lemmal6.5.11] ensure that there exists a o such that UNF(p;) = 0. It
follows that UNF(p2) 4 0. Pick a stable derivative of o, ¢’. Corollary ensures that UNF(p3) - o”.

v
Since UNF(p3) —, Definition [3.2.1| ensures that py || ¢ —. As both terms in the composition py || o

are stable, they must interact. Thanks to the syntax of session contracts, it follows that o =!t.0’ for
some t. As UNF(p;) - o, it follows that UNF(p;) = 7t1.p].

Now we prove that t; =< t, and that pj T p). Since p} is usable there exists a 6’ such

that pj 4 6’. Let & =!t4.67; it is relatively easy to see that UNF(p;) 46 . It follows that UNF(p2) 4 6.

v
Since UNF(pa) - the session contracts UNF(p2) and 6 must interact; it follows that t; < ta, and

that p) = 6’. As we have no assumption on ¢’, we have proven that pj Cf.. pb. O

Definition 6.5.13. [Syntactic compliance client pre-order |

syn

Let F=3ar" : P(SC2) — P(SC2) be the rule functional given by the inference rules in Figure
If X C F=ar" (X), then we say that X is a syntactic client pre-order . Lemma|C.0.29|and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F3eir (X); we call

syn <syn

this solution the syntactic client pre-order, and we denote it <¢¥r. That is <gir = v X . F=ar (X).
O

Corollary 6.5.14. For every session contract p1 and pa, if p1 T, pa then p1 <% po.

Proof. The argument is similar to the one of Corollary but here we use the function F=ar and
Lemma [6.5.12) O

6.5. Restricted compliance client pre-order 157

Corollary 6.5.15. The pre-order T is contained the restricted MUST client pre-order.

Proof. Definition 3| and Definition [6.2.10| imply that <+ is a co-inductive syntactic must client

pre-order, and therefore <g¥n C 3. Consider the following steps,

Cl: = =% Because of Corollary [6.5.14]
c Zar Proven above
_ I:fo

Rour Because of Proposition [6.2.12

O

The converse of the previous corollary it is not true. The third inequality of Example proves
this.

Lemma 6.5.16. Let R be a co-inductive syntactic client pre-order and let p; <&/ po. If py — 0h
then py <7 ph.

Proof. The proof is similar to the proof of Lemma O
Recall the symbol Crg (Definition [2.3.3]).

Lemma 6.5.17. For every p1,ps € SCyo, if 01 <% pa, UNF(02) # 1 and B € ACC(pa,), then there
exists a set A € AcC(py,¢€) such that A Cry B.

Proof. The proof is similar to the proof of Lemmal6.1.11|but it relies on the use of Definition[6.5.13] O

Proposition 6.5.18. [Co-inductive characterisation of 0,]

Let p,0 € SCt,. Then p =&r o if and only if p £, o

Proof. In view of Corollary [6.5.14] we have to prove only the inclusion <gi7 C EC°LT It is enough to
show that the relation

R’ ={(p2.0) | p1 <% pa, p1 o, for some py € SCro }

is a co-inductive compliance. Thanks to Lemma [3.3.10]it is enough to prove that the following relation

is a syntactic compliance,
R ={(p2,0) | p1 2z p2, p1 4° o, for some py € SCyo }
The argument is similar to the proof of Proposition [6.4.7} O

Alternative definition model

The intersection of the pre-orders Cf, and Cfo, provides the same fully abstract model of <, that
we exhibited in Theorem [6.3.4]

Proposition 6.5.19. For every 01,09 € SCq,, 01 T, 0 if and only if o1 Cf0. 09 and oy T 0y
Proof. We have to prove two implications,
1. if oy Cf, 09 and o1 £, 09 then oy T, 0

2. if oy £, 09 then o CR 09 and o7 £, 0y

The proof of the first implication amounts in three steps,

o1 Cf L 09, 01 £, 02 By assumption

o1 E::/R o9, 01 £ 0o By Corollary
o1 Ch 09, 01 Ch oy By Corollary [6.5.15

~SVR ~CLT

o o By Definition [6.3.1

158 Chapter 6. Modelling first-order session types

(Efo m [fo) o~ _<f0

~SVR ~CLT Nsbt
I U
fo fo o~ fo
(ESVR N ECLT) = Ssbt

Figure 6.4: Relations between the restricted pre-orders and first-order sub-typing

To prove the second implication we have to show that Cf%, C £ and that C%, C Cf . The
first set inclusion is true because by definition Cf%, C EZOLI, and because of Corollary (6.4.8

The proof of the set inclusion Cf%, C Cf requires more work. Thanks to the Proposition [6.1.10

—CLT
Proposition [6.2.12| and Proposition [6.5.18] it is enough to prove that Zgvn N Z&ir € <t. Defini-
tion |6.5.13| ensures that this inclusion follows from the inclusion Zgvn N Z¥n C Flar (Zgvm N Zam).

syn

We prove that last inclusion: 3g9n N Zévn is a co-inductive syntactic compliance client pre-order.

Suppose that p; (Z¥r N 3e¥t) pe; the argument to prove that the pair (p1, p2) is in the set
FRar' (Z5vn N Za4n) is by case analysis on the form of UNF(py).

In view of the definitions of I¥n, Zsvr, and <&¥r, all the cases except one are straightforward;
namely, when UNF(py) = >, 7ts.p;. If this is the case, then we reason as we did in the proof of

Proposition [6.5.9 O

In this chapter we have investigated the server and the client pre-orders that arise from the MUST
testing and the compliance relations, if we restrict our attention to the LTS of session contracts. The
main results are Theorem and Proposition [6.5.19

We summarise our knowledge on the pre-orders for session contracts in Figure [6.4]

Meaning of Theorem and Proposition The fully abstract model of 42‘;,: shown in
Theorem shows that the definition of g{‘,’x is mot arbitrary. Indeed, Theorem explains the
syntactic relation in terms of the observable behaviours of session contracts; so if Sy 42‘& S then the
behaviours (i.e. the communication patterns) of M(S7) and M(Ss) are related.

Further, Theorem proves that the theory of first-order session types can be formulated by
means of the testing theory, but reasoning on the LTS (SCy,, Act, ,, —) instead of the more general
LTS (CCSy, Act, v, —).

Proposition proves that the behavioural explanation of <® given by Theorem does

not depend on the relation for satisfaction that we pick; both MUST and H give rise to the same model.

Pre-orders for peers In this chapter we have not studied the pre-orders generated by the symmetric
relations for satisfaction MUST™ and —pop.

It is possible to prove that the pre-order due to the peer compliance coincide with Cf,,, and so the
theory of compliance provides the behavioural counterpart of the theory of first-order session types.

On the contrary, the peer pre-order due to MUST** does not coincide with Cf,.

Example 6.5.20. [Restricted MUST peer pre-order |
Also in the setting of first-order session contracts the usability of peers with respect to the MuUsT
testing is not trivial, for instance p = uz.!bool.x is not usable.

Define £ in the obvious way; since p is not a usable peer, the proof of p ELC;P 1 is trivial.

~P2p
This shows that ELOQP,@EL"QP, and so the restricted MUST peer pre-order does not model the sub-
typing <sbr. N

In view of the example above, we can see the testing theory on first-order session types as slightly

more general than the compliance theory.

6.6. Related Work 159

6.6 Related Work

The refinements for session contracts that have been proposed thus far in the literature have been
inspired either by MUST testing (and defined using the compliance), or by should testing.

According to this criterion, first we compare the refinement Cf,, with the pre-orders used in the

papers that have influenced us most, namely [Barbanera and de’Liguoro| [2010; Laneve and Padovani,
2008|. The theories presented in these papers are related the compliance relation; thus we will refer

to them as compliance-theories.

Afterwards, we compare T, with the refinements of two theories inspired to the fair testing,

the one of Bravetti and Zavattaro| that we have already discussed, and the theory of “fair sub-

typing” proposed by [Padovani, 2011]. We refer to those theories as fair-theories. As we will see,
the compliance-theories bear some similarities with our results; whereas the fair-theories turns out to

generate pre-orders not comparable with Cf9,.
From now on we reason under the assumption that in our definition of compliance the synchroni-

sation relation 1 be the usual co-action relation = (so <= { (a, @) | a € Act }).

Must-theories

Similar to [Laneve and Padovani, 2007], also the paper |[Laneve and Padovanil 2008] uses constrained

contracts (see the discussion in Section[3.4)). [Laneve and Padovanil [2008] presents the first comparison

between a sublanguage of first-order session types and contracts; in particular, it tries to show that the
subcontract relation <'P%8 together with two interpretations similar to M provide two sound models

for the sub-typing. These interpretations are denoted [—]; and [—]o. The proposed full abstraction

result, |[Laneve and Padovanil 2008, see Theorem 2|, though, appears not to be true. According to

that definition and the interpretation [—]o
0[0] =7 {£}[¢.0]

Their Theorem 2 therefore implies & (£ : END) < END, which is not true. On the other hand if [-];
is used then there are two issues. According to Theorem 2 the pair (END, & (¢ : END)) is interpreted

as (0[v'.0],{¢}[¢. v'.0]). Then

1. neither @[v". 0] nor {£}[¢. v".0] are constrained contracts, because their interfaces do not contain

all the action names which appear in the respective behaviours; moreover

2. even if the interpretation was correct, Theorem 2 would be false because
{V}[v.0] <P 10 /Y e.v. 0]

while, as stated above, &(£: END) < END is not true.

Our study of the restricted pre-orders on session contracts (Definition and Definition [6.5.1])
is clearly inspired by [Barbanera and de’Liguoro, [2010]. In [Barbanera and de’Liguorol [2010] the

language for session types is the same one as we used, whereas the subset of contracts in which session
types are embedded is the set of session behaviours. The set of session behaviours is bigger than the
set of session contracts because of the lack of distinction between labels and base types. It is possible
to write session behaviours as

?7Int.1+471,.1

which are image of no session type according to the given interpretation [—]. Note, though, that
[-] = M, so the range of [—] is the set of session contracts, and our Theorem [6.3.4] proves that [—]
and their pre-order <: [Barbanera and de’Liguoro, 2010, Definition 3.4] provides a complete model

for the sub-typing. The completeness of <: was only conjectured in [Barbanera and de’Liguorol 2010].

160 Chapter 6. Modelling first-order session types

Their approach is complementary to ours, in that they provide a co-inductive characterisation of
the pre-order =<:, which turns out to equal the intersection of their sub-server and sub-client pre-
orders. In contrast, we have studied the (restricted) server and the client pre-orders independently,
providing their co-inductive characterisations; we have then (1) explained why it is necessary to use the
intersection of the two pre-orders to obtain a fully-abstract model; and (2) proven that the intersection

of these pre-orders is a sound and complete model of the sub-typing.

Fair-theories

We compare the peer pre-order Cf,, with the pre-orders proposed in |[Padovani, 2011], and [Bravetti

land Zavattaro, 2009].

To begin with, observe that the pre-order =%, allows the refinements such as the following one,

a®bCa (6.8)
For instance we can prove the following facts

ux. (lespresso.z @ !moka. 1) Cfo, uz.lespresso.r

6.9
pX. ® (livelock: X, stop: END) <o uX. @ (livelock: X) (6.9)

In [Padovani, 2011] it is pointed out that the refinements shown above are not sound with respect to
the fair testing of |Rensink and Vogler| Indeed, this lets us prove that the refinements proposed in by

Padovani| and [Bravetti and Zavattarol are not contained in our relation Cf9,.

In Section and Section we have already discussed the details of |[Bravetti and Zavattaro,
, thereby showing that their refinements for peers differ from our refinements. This is the case
also in for the pre-order Cf%_: the relations 551 of ﬂBravetti and ZavattaroL |2009ﬂ are not comparable
with Cf,,. Compare the inequalities in Eq. with the following one,

px. (7)1livelock.x + 7.!stop.1) ﬁal pz.!livelock.x

Thus our relation Cf9, is coarser than <y. As <! relates also terms more general than first-order

session contracts, we have the following facts

f —1 —1 f
EPOZP Z j) j/\/ Z EPOZP

Similar to the work of Bravetti and Zavattaro, in [Padovani, 2011] the notion of correctness requires

all the components of a composition to be successful (ie. be able of performing v') at the same time
in order for the whole composition to be successful. This requirement implies that the compositions
which contain terms as

0, px.ax

cannot be correct, because the contracts above do not perform v at all. This phenomenon renders
the viability of contracts Definition 3.1] a non trivial matter; on the contrary, in our
theory every peer is viable with respect to .

The language used in is similar to our session contracts, the differences being that
actions are decorated with a role tag p, q, ...; and there is a special session type FAIL. Then sessions

are multiparty, that is they are general compositions of session types (tagged with a role), for instance
P Ti I po: Tl |l Pyt Th

The notion of correct session type composition is given in [Padovani, [2011, Definition 2.1], and it is
used to define a set-theoretical sub-typing relation on session types [Padovani, 2011} Definition 2.2],

6.6. Related Work 161

which is denoted <. We can prove

px. (p!livelock.x @ plstop.1) £ px.pllivelock.x

because the term pz. p!livelock.x cannot reach a successful state at all. This means that is not
sound for <.

Also the following inequalities are true:

pz.pllivelock.x < uz.plstop.x

px.livelock.x for . !stop.w

The first fact is true because no composition containing the session type px.p!livelock.z can be
correct, as this term does not perform v at all. The second fact is true because from puz.!livelock.x -
pz. 7livelock.x and px.!stop.x A px.?livelock.x.

It follows that the relations Cf%, and < are not comparable,
f f
<ZLCH LEp €< (6.10)

We leave for future work the comparison of the MUST peer pre-order on first-order session contracts,
fo

Fopop» With the fair pre-orders studied by Bravetti and Zavattaro, and |Padovani.

162 Chapter 6. Modelling first-order session types

Part 11

Higher-order theories

163

Chapter 7

Higher-Order Languages

In the first part of this thesis we have been concerned with theories for first-order languages. Our
investigation has lead to two definitions of a fully abstract model of the sub-typing on first-order
session types (see Theorem and Proposition . In particular, we have proven the following
isomorphism,

Efo ﬂl:fo ~ _fo (71)

Esvr M Eeur = <sbt

From a technical standpoint this result is not yet satisfactory.

Higher-order session types Session types are one of the most studied type systems for concurrent
languages; one of their typical application is within the pi-calculus [Sangiorgi and Walker, [2001].
Roughly speaking, the primitive operations in the pi-calculus are the input and output of names over

names; observe the following interaction of two processes,
al(b).P || a?(z:9).Q —= P | Q{"/}

The process on the left, a!(b).P, is willing to output the name b through the name a; the process
on the right is willing to input over the name a another name, that will replace = in QE| Since an
interaction on a can happen, the name b is moved from one process to the other one, by using name a.

Note the type annotation S in the input construct ?(z : S).Q. The session type S is meant to
describe how @ behaves on x, and indeed this is an intuition behind the typing discipline: they are
assigned to the names manipulated by processes, and describe how the names are manipulated. What,
then, is the session type that describes how a is used by the process a?(x : S).Q 7

Assuming that @ acts on a according to the type T, then a?(x :S).Q acts on a according to the
type Sq = ?[S];T. Noticeably, S, contains another session types in the input field.

This discussion shows that in order to type names in the pi-calculus, it is necessary to use higher-
order session types, that is types that can input/output other types. The following terms are an

example,
[nX. ?[Bool]; X];END, &(optl: ?[END];END, opt2: ![?[END];END|;END)

Moreover, the co-inductive definition of the sub-typing |Gay and Hole| [2005] on session types is
formulated in terms of higher-order types.

To provide a model for the sub-typing a la|Gay and Hole, then we have to extend the result shown
in Eq. , to the language of higher-order session types. This is our aim in this part of the thesis.
We will extend to the higher-order setting only the model defined using the compliance, and we leave
as an open problem the extension of the model due to the MUST testing (see (in Section .

Mntuitively the input ?(x : S).Q binds z in Q as Az : t.M binds z in M.

165

166 Chapter 7. Higher-Order Languages

S, T == Higher-order session types
see Figure 27
AT S Input
NTI];S Output

Figure 7.1: Additional terms for higher-order input/output

Ss = i[Ts];(s’S) if §=1T];5
?[Ts); (S's) if S =7[T]; 9

Figure 7.2: Additional cases for substitution on session types.

To model the higher-order session types, we extend the language of first-order session contracts,
o0 as to let them input/output session contracts. This forces us to parametrise the LTS over binary
relations BB on session contracts. To this end, we merely transform the relation i< in the side conditions
of rule [P-SYNCH], into a function of B: >g. This allows us to extend smoothly the result in Eq.
to the higher-order setting.

In Chapter [6] we leveraged the restricted LTS of session contracts to model the sub-typing on
first-order session types. As the extension of the model is our only aim in this part of the thesis, we

will not be concerned with the LTS of processes any longer.

In this chapter we present two languages, namely the language of higher-order session types, and
the language of higher-order session contracts. We adapt to the new setting the definition of sub-
typing, and also the operational semantics of session contracts. We also show that our definition of

sub-typing and the |Gay and Hole| 2005, Definition 4] generate the same relation (Lemma [7.1.6]).

Structure of the chapter. In Section we extend the theory of session types so as to include
higher-order terms. In Section[7.2]we extend the theory of session contracts, and, most importantly, we
parametrise their LTS over the binary relations on session contracts. We also generalise the compliance

relation, and prove that its syntactic characterisation is valid also when the LTS is parametrised.

7.1 Session types

Let the language L7 be the set of terms described in Figure In Figure we adapt the way in
which we apply syntactic substitutions to terms.

What we have seen in Section about unfolding and guardedness of terms is still true for the
extended language, and the definitions of depth, UNF and gd do not change.

Definition 7.1.1. [Higher-order session types |
Let STy, denote the set of closed guarded terms of L,

STho ={T € Lst,. | T closed, T'gd}

We refer to the elements in STy, as higher-order session types. O

7.1. Session types 167

Si <sbt Sé Sl <sbt SQ
20811, <sbe 7[S2 555

[R-IN-H]

S1 <eot S Sy <ept 51
1S51]; 81 <sbt 1[S2]; G2

[R-OUT-H]

Figure 7.3: Additional inference rules for the rule functional F=#t. See also the rules in Figure

We amend the definition of the sub-typing relation so as to account for the higher-order terms.

Definition 7.1.2. [Sub-typing]

Let F=st : ST2 — ST2_ be the rule functional given by the inference rules in Figure If X C
F=#t(X), then we say that X is a type simulation. Lemma and the Knaster-Tarski theorem
ensure that there exists the greatest solution of the equation X = F=st(X); we call this solution the

sub-typing relation, and we denote it <gpt. That is <epy = vX.F 0t(X). O

Example 7.1.3. [Sub-typing on higher-order types |
Let S =pX. ?7[X]; X and T = uY. ?[Y];?[Y];Y. In this example we prove that uX. 7[X |; X <ept
pY Y[Y LY.

Thanks to the Knaster-Tarski theorem, we have to exhibit a prefixed point of the rule functional

F=st_that contains the pair (S, T'). Consider the following relation
R={(51T), ?[SS T)?(T];T), LSS, TET), (S, ?[T];T)}

To show that R C F~t(R), we have to prove that each pair in R can be inferred by applying one of
the rules in Figure using the elements of R as premises. The following one step derivations show

how to infer all the pairs in R.

2SS Kot [T ?T];T
S#sth

depth(S) + depth(T) > 0; [R-UNFOLD]

S Zsbt ?[TLT S <t T
SKS <t AT LT T

[R-IN-H]

2[S]; S Kbt [T
S <t [T T

T
depth(S) + depth(T) > 0; [R-UNFOLD]

S <sbt T S <sbt T
2S);S Kbt T); T

[R-IN-H]

O

The additional inference rules of Figure[7.3|have no impact on the unfolding rule, so Lemma [2.1.10|

is true also for =<gpt.

Lemma 7.1.4. [% and unfolding]
For every co-inductive type simulation R, and every S,T € STy, if S R T then UNF(T') R UNF(T).

Proof. The argument is the same used in Lemma [2.1.16 O

Our main aim in this section was to introduce the relation <. As session types have no semantics,

the work we had to do was minimal.

168 Chapter 7. Higher-Order Languages

Before proceeding, though, we make sure that our sub-typing <sv: coincides with the co-inductive
sub-typing <. of |Gay and Hole, 2005], up-to the presence of base types and the restriction to types
with only one parameter in the input/output field.

In the sequel, U is another meta variable for higher-order session types.

Definition 7.1.5. [Co-inductive sub-typing |
A relation R is a type simulation a la GH if (T,U) € R implies the following conditions:

e if UNF(T') = END then UNF(U) = END

o if UNF(T') = ?[T1]; S1 then UNF(U) = ?[U; |; Sz and (S1,S2) €R and (T1,U;) €R.

e if UNF(T) =![T1];S1 then UNF(U) = ![U;]; Sz and (S1,52) €R and (Uy,Th) €R

e if UNF(T) = &(11: S1,...0ln: Sm) then UNF(U) = &(1;: 57,...,1,: S,) where m < n and

o if UNF(T) = ®(11: S1,...lm: S) then UNF(U) = &(11: S1,...,1,: S),) where n < m and

(
(Si,S)) ER for all i € [1,...,m]
(
(5, 5;)

eR forallie[l,...,n]

The co-inductive sub-typing relation <. is defined by T <. U if and only if there exists a type
simulation R such that (T,U) €R. O

Lemma 7.1.6. Let T and U be higher-order session types.
1) if T <. U then T Kgpx U

ii) if T"and U contain no base type and T' <¢pt U, then T' <. U

Proof. We have to prove two implications; we begin explaining why i) is true.
To prove that if T <. U then T <4t U is equivalent to showing that <. C <. To prove the set
inclusion it is enough to show that <. C F=t(<.). We prove that if T <. U then (T, U) € F=#(<,).
Fix a pair T <. U; we have to prove that an application of one of the inference rules that define
Fsbt (see Figure lets us derive T' <Xspt U, by using the elements in the relation <. as premises.
We reason first on the depth of the types T and U. Suppose that depth(T') + depth(U) > 0; in this
case observe that the definition of <. ensures that UNF(T') <. UNF(U). We know enough to apply

[R-UNFOLD]:
UNF(R) Zsbt UNF(U)
T <sbt U

depth(T') + depth(U) > 0; [R-UNFOLD]

Suppose now that depth(T) + depth(U) = 0. Then T = UNF(T) and U = UNF(U), and the

argument proceeds by case analysis on 7.

e If T = END, then the definition of <. ensures that © = END, so we can derive

T2 U [A-END]

o If T=7T)];S; then U =?[U; |;Se, T1 <.U; and S; <. S2. We apply rule [R-IN-H]:

St <sbt 52 11 <sbt U
T <sbt U

o If T =1[T1];S; then the argument is similar to the previous one, but relies on [R-OUT-H].

IfT = &(11: S1,...ln: Sy), then then UNF(U) = &(11: 5%,...,1,: S},) where m < n and
S; <. S} foralliell,...,m]. It follows that we can apply rule [R-BRANCH],

Sl <sbt Si e Sm <sbt 57/71
T <sbt U

m < n; [R-BRANCH]

7.2. Session Contracts 169

o If T = ®(11: S1,...ln: Sy) the argument is similar to the previous one, but relies on rule

[R-CHOICE].

We have proven that if T <. U, then (T, U) € F~#t(<,); this means that <, is a prefixed point
of F=#t and so the definition of < ensures that <, C <.

We have proven the first implication of the lemma; now we prove the second implication: if 7" and
U contain no base type and T K¢t U, then T' <, U. To prove the implication, it is enough to show

that the following relation is a type simulation a la GH,
R={(T,U) | T %ot U, T,U contain no base types }

Observe that R C F=#t(R).

Fix a pair T R U. Lemma ensures that UNF(7T') R UNF(U); and so the set inclusion above
implies that (UNF(T'), UNF(U)) € F=(R). This means that one of the inference rules that define JF s
allows us to derive UNF(T') <spt UNF(U) by using the elements in R as premises. Since depth(UNF(T'))+
depth(UNF(U)) = 0 the rule that lets us derive

UNF(T') Zspt UNF(U) (7.2)

is not [R-UNFOLD].

The argument is by case analysis on UNF(T').
e If UNF(T') = END, then Eq. (7.2) must have been derived by using [A-END], so UNF(U) = END.

e If UNF(T') = ?[T1]; S1, then Eq. (7.2) must have been derived by using [R-IN-H], so UNF(U) =
?[U;]; S2 and the premises of the rule ensures that S R S and T3 R S;.

e If UNF(T) = ![T7]; S1 then the argument is similar to the previous one, but we use rule [R-OUT-
H].

o If UNF(T) = UNF(T) = &(11: S1,...0ln: Sp) then Eq. (7.2) must have been derived by using
rule [R-BRANCH]. It follows that unfoldU = &{11: S7,...,1,: S;), for some n € N such that

m < n; moreover the premises of the rule ensure that for every i € [1;m], S; R S..

o If UNF(T) = ®(11: S1,...lm: S) the argument is similar to the previous one, but relies on

rule [R-CHOICE]

Note that in the case analysis above we have not considered the cases in which UNF(T') performs

an input/output on a base type. The definition of R ensure that these cases cannot happen, for T
and U contain no base types, so neither their unfoldings do.

O

In the next section we turn our attention to the higher-order session contracts and their LT'Ss.

7.2 Session Contracts

In Chapter [2] we introduced session contracts to assign to session types an LTS via a straightforward
interpretation, namely M, which preserves the sub-typing.

In the new setting, the language SC¢, does not provide any straightforward way to encode the terms
of STho, S0 as to preserve <¢n:. Nevertheless, we resolved to extend Theoremto the higher-order
setting. To this end, in this section we introduce the language of higher-order session contracts SCy.
This language provides a natural way to encode session types, thereby assigning them a operational

semantics.

170 Chapter 7. Higher-Order Languages

p, 0 = Higher-order session contracts

see Figure [2.9]
(0).c Higher-order output

?(c).c Higher-order input

Figure 7.4: Additional syntax for higher-order session contracts

The arguments about the syntax of the new language are straightforward; what is noticeably more
involved is the LTS that we use. In fact, higher-order session contracts do not have one LTS, but
an infinite amount of LT'Ss. Thanks to the restrictive syntax of the language, though, all these LTSs
enjoy some properties that we will take advantage of.

After having discussed the syntax and the semantics of higher-order session contracts, we introduce
some technicalities that we will need further on. We also adapt to the new setting the definition of
compliance and its syntactic characterisation (Lemma .

The language Ly, is given by the grammar in Figure[7.4] The depth and the unfoldings of terms

in Ly is handled as in Section [2.3

Definition 7.2.1. [Language of higher-order session contracts |
Let SCyo = {0 € Lno | o closed, o gd }. We refer to the terms in the set SCyo as session contracts.
O

Let 1,0, ... range over the sets Act USC,, and p range over Act, , USCyo. From now one we use

a series of symbols to range over relations on SCyp; we let
e B3 denote a binary relation on SCy,
e R denote a (reflexive) binary relation on SCy,

e 7 denote a transitive relation on SCyq

Operational semantics and interactions

In Section we used the rules in Figure and Figure to define the LTS (SCy,, Act, ,, —).
To use the same technique here we have to explain when higher-order session contracts can interact;
we have to discuss rule [P-SYNCH]. Since now input and output actions can be session contracts as

well, we have to amend the side condition of rule [P-SYNCH],

-5q p-Syp
allp—=4d |

a < f3; [P-SYNCH]

We would like that also session contracts be related by 0. There are two ways to do so. We may
define a particular i</, that relates higher-order session contracts in a fixed way; this is similar to what
we did with .. In Section [2.3] this was a sound idea, for the relation <, which we assumed, provides
a way to compare base types. Indeed, the relation <. depends on <. This technique, though, cannot
be easily used in the new setting: it is not clear how to assume a priori a pre-order on SCy, that we
could use to define a <. This difficulty leads to the second way to extend < to higher-order session
contracts. Since a priori we do not know when two session contracts, say ¢ and p, should be deemed as

“co-contracts”, i.e. o X p, we make <1 depend on a parameter B, and we use the following definition

7.2. Session Contracts 171

7 / 0 /
p—"Bp 0 —B0

iy Tomo |l o 1 X< 0; [P-SYNCH]
B

Figure 7.5: Operational semantics of recursive session contracts

Parameter of 0 Interactions (as per rules in Figure |7.5])
B=10 pllo s
B ={(0,0)} pllo =510

B={(0,0),(1,1)} plloc—p51]0
plle —50]0

Figure 7.6: Interactions of two contracts, as the parameter B of b varies

of Xz,
('tq, 7t2) if t1 <p to
(7t4, ta) if to <p t1
(11, 71) if1eL
Xp=
(71, 11) iflel
(!(0'1), ?(0'2)) if 01 BO’Q
(?(01), '(0'2)) ifO'QBO’l

The definition of b, implies that the behaviour of a composition depends on the relation B given

to .

Example 7.2.2. [Contract interactions depend on B]

Let p =!(0).1 +?(1).0 and ¢ =7(0).0 +!(1).0. In Figure we show, for different binary relations
B, how the interactions of p and o change. In particular, we show how the interactions in Figure
are inferred.

The contracts p and o are stable, thus the rules [P-LEFT|, and [P-RIGHT] can not be applied to
the composition p || o. To prove p || ¢ —— we have to use rule [P-SYNCH].

If B = 0, then the side condition of rule [P-SYNCH] is false, because !(0) péy?(0), !(0) véy!(1),
7(1).05497(0), 7(1).0 14p!(1), hence rule [P-SYNCH] can not be applied to p || o either. It follows that
pllo 7LT>B~

If B={(0, 0)}, then the definition of i implies that !(0) xi57(0), thus we can infer

pﬂ)gl U@)BO

- [P-SYNCH]
plle —s51]0

If B={(0,0),(1, 1)}, then we can again infer p || o —5 1 || 0; but now we also have ?(1) >i5!(1),
thus we can derive also) '
1% ﬂg 1 o ﬂ)g 0

pllo 500

[P-SYNCH]

172 Chapter 7. Higher-Order Languages

Parameter of Dependent compliances
B=10 p 7 o for every o
B ={(0,0)} ps o

B = {(Ov 0)7 (17 l)} p7Bo

Figure 7.7: The relations g vary, as B does

Note that Lemma [2.3.7] Lemma [2.3.8] Lemma and Lemma [2.3.10] do not depend on the rule

[P-SYNCH], therefore they are true for every LTS parametrised on B.

Recall the function M of Section 2.3l

To assign the operational semantics provided by the parametrised LTS to session types, we have
to amend the definition of M so as to account for the higher-order terms. Let M : ST, — SCyo be

defined as follows,

cases in definition of M,
{(M(M)).M(S) if S=1M];S and M € STy,
2M(M)).M(S) it S=1M];S and M € STy,

M(S) =

The next proposition can be proven as we did in Section [2.3]

Proposition 7.2.3. The function M is a bijection.

7.2.1 Dependent compliance relations

As the semantics of parallel composition depends on a parameter B, so do the transitions —s. The

definition of compliance has to be genralised so as to mirror this dependency.

Definition 7.2.4. [B-dependent compliance relation |
Let F7 : P(SC2,) x P(SC2,) — P(SC2,) be the rule functional defined so that (r, p) € F(R,B)

whenever the following conditions hold:
(a) if r{ thenp |

(b) ifr||p 743 then r Lﬁ;

(c) ifr||p —>pr"||p then ' Rp

Fix a binary relation B. If X C F7(X, B), then we say that X is a co-inductive B-compliance relation.
Lemma and the Knaster-Tarski theorem ensure that there exists the greatest solution of the
equation X = .F%(X, B); we call this solution the B-compliance relation, and we denote it 5. That
is 45 = vX.F(X,B). If r 45 p we say that the process r B-complies with the process p. O

All the relations -z enjoy few properties that do not depend on the specific B at hand. We list

these properties in the next proposition.

Lemma 7.2.5. [Properties of the dependent compliances |

For every binary relation B C SCIQIO, the following statements are true:

i) if p-p 01, p g 02 then p Hg 01 ® 02

7.2. Session Contracts 173

/ _|5 /
P B0 9 .)
W n<p 0, and n contains no label; [R-ETA]

Figure 7.8: Consider the rules in Figure and replace [R-ALPHA] with [R-ETA].

ii) if p1 4 0, p2 A o then p1 ® pa g o
iii) p g o if and only if UNF(p) g UNF(0)

Proof. The proofs are almost identical to the ones of Corollary Proposition|3.2.10} and Lemma|3.2.8
O

Syntactic compliance

The restrictive syntax of session types let us give a syntactic oriented characterisation of the compliance
relation (Lemma|3.3.10]). This characterisation relies on a co-inductive relation (Definition , that

we define now.

Definition 7.2.6. [B-syntactic compliance relation]

Let F' : P(SCZ,) x P(SCZ,) — P(SC2,) be the rule functional given by the inference rules in
Figure Fix a relation B. If X C F'(X,B), then we say that X is a co-inductive B-syntactic
compliance relation. Lemma [C.0.32] and the Knaster-Tarski theorem ensure that there exists the
greatest solution of the equation X = F (X, B); we call this solution the B-syntactic compliance
relation, and we denote it . That is - = vX.F(X,B). O

We have the generalisation of Lemma [3.3.3]

Lemma 7.2.7. For every B C SC;,, and R-syntactic compliance relation, p R o if and only if
UNF(p) R UNF(0).

Lemma 7.2.8. For every B C SCy, if R is a co-inductive B-compliance relation, then R is a co-

inductive B-syntactic compliance relation.

Proof. The proof of this lemma proceeds as the proof of Lemma [3.3.4 The only difference is the
discussion of point , in which the application of rule [R-ALPHA], must be replaced with rule [R-
ETa]. We discuss this case.

i) Suppose that p = n.p’ with n containing no labels. We prove that we can derive (p, o) by using
rule [R-ETA].

v
Plainly p £+, thus (p, o) € F(R,B) can have been proved only by applying rule [R-ETA] of
Figure[7.8] This means that p is not stuck together with o.

-
Since p -+, either p can interact with o, or 0 5.

-
As 0 =5 6 -/ implies that p must interact with &, the restrictive syntax of session types implies
that & = 6.0’ and that 1 <t 6. The last fact ensures that 6 contains no labels; thanks to the

syntax of session contracts, we can prove that o = 6 = 6.0".
Note now that p || 0 —5 p' || o/, thus Definition ensures that p’ R o’.

We can now derive
p s o
m 7 Xpg 9, [E—ETA]
B

174 Chapter 7. Higher-Order Languages

The proof of Lemma does not depend on rule [R-ALPHA], so that lemma is true for the LTS

of every B. The consequence is the next corollary.

Corollary 7.2.9. For every B C SCyo, if R is a co-inductive B-syntactic compliance relation, then

following statements hold:
(a) if p—p p then p' 50
(b) if o 5 o' then p 5 o'

Proof. We prove (a). The argument is a generalisation of the proof of Corollary [3.3.7] in that we

account for the parameter B.

45 € F ' (g, B) By definition
{(¢/, o)y uHs C F ({0, 0)}U 5, B) By Lemma [3.3.6] and definition of s
{(¢/, o)} UHs CvX.F'(X,B) By the Knaster-Tarski theorem
=3 By definition
From the argument above, it follows that p’ 4% 0. The proof of (b) is similar. O

We generalise Lemma [3.3.8]

Lemma 7.2.10. For every B C SCyo, and every R such that R € F (R, B),if pR o and p|| ¢ -+
then p 5.

Proof. Tt is enough to use the proof of Lemma but replace [R-ALPHA] with [R-ETA]. O

Lemma 7.2.11. For every B C SCy, the relation 43 is a co-inductive B-compliance relation. For-
mally, -5 C F7(45, B)

Proof. The argument is similar to the proof of Lemmam The only difference appears in point ,
where we have to use the more general [R-ETA] in place of [R-ALPHA]. We give the details of that

case.
If p = n.p’ and 7 contains no labels, then (p, o) € Fyligps (%) must be proven by the derivation

p s o
W 7 Xp 0, [R—ETA]

The premises of the rule ensure that p’ - o’.

Lemma 7.2.12. [Syntactic characterisation B-compliance relation |

For every B C SCyo, p -5 0 if and only if p 4} 0.

Proof. The result follows from Lemma [7.2.8] and Lemma [7.2.11] The argument is analogous to the
proof of Lemma [3.3.10] O

Proposition 7.2.13. If BC B', then F ' (R,B) C F ' (R,B).

7.2.2 Dependent duality

In this section our aim is twofold; we want (a) to understand which conditions are necessary to (b)
generalise Lemma to the LTS parametrised on . In general this is not possible, there exists
relations B and higher-order session contracts p such that p 7z o for every o € SCyp.

We begin by extending the notion of dual, and defining two properties of binary relations.

7.3. Transitive closures 175

o DUAL ¢’
7(p).p’ DuAL!(6).0

- p B &; [R-IN-H]

o DuaL o’
?(p).p' DUAL!(5).0’

& B p; [R-OuT-H]

Figure 7.9: B-Inference rules for the rule functional Fpy,,. Take the rules in Figure and add the
rules above

Definition 7.2.14. [B-dual session contract |

If p 4} o then we say that o is a B-dual of p. O

Definition 7.2.15. [Strongly total]

We say that a relation R C A x A is total if for every a € A there exists a a’ € A such that a R d'.
We say that R is strongly total if and only if for every a € A there exists a’,a” € A such that a R o,
and @’ R a; that is if R and R~ are total. O

We are ready to define a functional that, under suitable hypothesis, will let us prove that every

session contract has a B-dual.

Definition 7.2.16. [B-dual session contracts |

Let Fpua : P(SC3,) x P(SC2,) — P(SC2,) be the rule functional given by the inference rules in
Figure[7.9] Fix a relation B. Lemma and the Knaster-Tarski theorem ensure that there exists
the least solution of the equation X = Fpy,(X, B); we call this solution the B-duality relation, and
we denote it DUAL(B): That is DUAL(B) = uX.Fpua(X, B). O

All the properties of the function DUAL that studied in Section Most of them do not depend
on the parameter B at all.

The next proposition shows under which hypothesis DUAL(B) is a total function.
Lemma 7.2.17. For every B C SC,q, if B is strongly total then DUAL(B) is total.

Proof. The proof is analogous to the proof of point (]ED in Lemma Since B is strongly total we
know that if we need to apply [R-IN-H] or [R-OuT-H], the side conditions are true. O

Lemma 7.2.18. For every B C SC,, the relation DUAL(B) is a co-inductive B-compliance relation.

Proof. Similar to the proof of Lemma [6.5.11 O
Corollary 7.2.19. If R is a reflexive relation, then DUAL(R) is a total R-compliance relation.

Proof. Tt follows from Lemma Lemma and the fact that a reflexive relation is strongly
total. O

7.3 Transitive closures

In the next chapter we will use the the transitive closures of binary relations on session contracts. We
explain here how to build inductive transitive closures.

Let F, : P(SC3,) x P(SC2,) — P(SCZ,) be the rule functional given by the inference rules in
Figure Proposition [C.0.37] and the Knaster-Tarski theorem ensure that there exists the least
solution of the equation X = F(X,B); we call this solution the transitive closure of B , and we
denote it [B]T: That is [B]T = puX.F4 (X, B). O

176 Chapter 7. Higher-Order Languages

a[BITb b[B]tec
alB)tec

[TRC-R]

Figure 7.10: Inference rule for the rule functional F

Example 7.3.1. In this example we justify the use of a fixed point in the definition of transitive
closure. In particular, we show that the operation adding to a relation the pairs necessary to prove
its transitivity has to be iterated.

Consider the relations

Ty = {(71:.1, 0), (1,71,. 1)}
Ty = {(0, 11,.1)}

If we add to the relation T3 U Ty all the pairs according to rule [TRC-R], then we get
Ty UT,U{(71;.1, 11,.1),(1,0)}
Note, though, that this relation is not transitive, as
{(1,711.1),("11. 1, . D} C T U TR U {(714.1, 115. 1)}

On the other hand, we can prove that the relation [B]* is

T UTe U{(714.1, 11,.1),(1, 0), (1, '15.1)}
and indeed it is transitive.
Lemma 7.3.2. For every B C SCyo, the transitive closure of B contains B: B C [B]*.

Lemma 7.3.3. For every B C SCy,, the relation [B]T is transitive.

Proof. Let a [B]* b and b [B]" ¢; we have to prove that a [B]T c.
The hypothesis that a [B]" b and b [B]T ¢ ensure that we have the finite inference trees

This is enough to prove that a [B]T c. O

7.4 Related Work

The higher-order session types that we introduced in Definition in the literature are know just
as “session types”, and they have been introduced by [Takeuchi et al.| [1994].

7.4. Related Work 177

We comment on the distinction between first-order and higher-order session types that we intro-
duced. The purpose of the distinction was to ease the transition of our reasoning from processes to
session types. The labels in the transitions of processes are actions of Act, ., so to move from from
processes to first-order session contracts does not require a complete change in our reasoning. After
having established the full abstraction result (Theorem in the first-order setting, we moved to
the higher-order setting, that is the notion of session type used throughout the literature.

The definition of the sub-typing & la|[Gay and Hole| differs from our Definition In particular,
in Figure We have inference rules to explicitly (un)fold terms, and these rules have side conditions.
Definition 4 of |Gay and Hole], on the other hand, is given by case analysis on the unfoldings of types.
Lemma shows that the difference has no impact in the relation obtained. The first presentation
of sub-typing for session types was put forth also by |Gay and Hole|in 1999 and is algorithmic. That
formulation is given by using inference rules (see Figure 1 of that paper), and the (un)folding of terms
is treated by two rules, namely [AS-REC-L] and [AS-REC-R]. The role played by the side conditions

[AS-REc-L], [AS-REC-R]. Also, the way in which unfoldings are treated by the mentioned rules is
reminiscent of the rule [COIND] work by [Brandt and Henglein| |1998| see Figure 9].

178 Chapter 7. Higher-Order Languages

Chapter 8

Modelling higher-order

session-types

Higher-order session contracts allow us to easily assign an operational semantics to higher-order session
types, but they come at a cost. We had to parametrise the transitions of session contracts on binary
relations B, thereby obtaining an infinite amount of LTSs.

In this chapter we purse two aims. First, we study the client and the server pre-orders on the L'TSs
< SCyo, Act, , USCyo —B >

We do this in two steps, first we parametrise the relations Zivp and <7 over the relations B, and
introduce the dependent pre-order

B ho
ES\/Ra EPZP B

Then we show that as long as the parameter B is a pre-order on session contracts, Proposition

and Proposition [6.5.18| extend to the higher-order setting,

B B B B

—=SVR = —SVR? =CLT =~ —CLT

Pre-orders on higher-order session contracts will be so important that we will denote the their set
with the symbol PRE(SCZ,).

Our investigation, of the dependent pre-orders, lets us cut the Gordian knot represented by the
parameter . At the end of Section[8.1]and of Section[8.2] we prove that if we restrict our attention the
the pre-orders on SCy,, then the functions AX. C5 . and AX. C, are monotone endofunctions , so
the Knaster-Tarski theorem ensure that their greatest fixed points exist; we denote them respectively

h h

e, (5.1
The pre-orders in Eq. (8.1)) generalise the pre-orders T and Cf° | and let us generalise Eq. (7.1).
In Theorem [8.4.9) we show the following isomorphism,

E?‘ET n Eg\?R = <sbt

Structure of the chapter. In Section [8.1] we study the dependent client pre-orders, and we show
the conditions required to extend the syntactic characterisation of ES’LT to the new setting. We also
prove the results that ultimately lead to the proof that AX. CX. is monotone if X € PRE(SCZ,).
Section follows the structure of Section [8.1] and we state the results about the dependent server
pre-orders without proving them. In Section [8:4] we adapt the proofs of Section [6.3] to prove that the

179

180 Chapter 8. Modelling higher-order session-types

full abstraction result holds true also in the higher-order setting.

8.1 Client pre-orders

In this section we generalise the results of Section to the dependent LTSs. Also in this context we
study when the client ps is better, with respect to the dependent compliance -z, than a client p;.

Following this intuition, in this section we define a family of binary relations on session contracts
(Definition , the dependent client pre-orders:

B
{ECLT}B€P(SC30)

We will be concerned, at first, with the properties of these pre-orders; and then with their syntactic
characterisation (Proposition . As we will see, the results that we will accumulate to prove
Proposition imply also that the abstraction AX. CX is monotone as long as X is a reflexive
and transitive relation. This fact will be crucial later on (see Section .

Definition 8.1.1. [B-dependent client pre-order |

Given a binary relation on session contracts B C SCZ,, we Write p1 CB .. ps whenever p; -5 o implies

that ps 5 o for every o € SCyo. We refer to the symbol C5 | as the the B-dependent client pre-order.
O

We call the relations QELT “dependent”, because in general their properties depend on the param-

eter B. We give an example of this fact.
Example 8.1.2. Let B = {(p,p)}. We prove that
a) 7(p)-1Cf, 1.1

b) ?(p). 1 ZE, 1.1

To show point @ we prove that 7(p).1 Ay o for every stable o. Let o be a stable session

contract. Plainly 7(p).1 || o 79@, because p g o, and ?(p).1 79@, so 7(p).1 Ap o. It follows that
?2(p).1C8, 1.1
For every action 6 we have that ?(p) 4y 6; this let us prove that p || o 7%@, at the same time,

72(p).1 79@, so condition of Definition [7.2.4] lets us prove that ?(p).1 7y o. Since we have no

particular assumption on o, other than its being stable, we have proven that ?(p).1 Ay o for every

stable session contract o. This can be used to prove the following equality,
{o€SCuo [7(p).1H4go} =10

The equality above ensures that ?(p).1 T2 . o is trivially true for every session contract o. It follows
that ?(p).1 C2 .11.1, so point (EI) is proven.
Now we show point (b). Let R = {(?(p).1, !(p).1), (1, 1)}. The relation R is a co-inductive

B-syntactic compliance relation (that is R C F4s(R, B)); the derivation that proves this is

[A-UNIT]

LB o) sasl(); [Ea)

2(0)- 1431(7)- 1

Lemma [3.3.10| guarantees that 7(p).1 -g!(p).o
T v
We prove that 1.1 7Ag!(p). 1; this is true because 1 tag!(p), so 11.1 ||1(p).1 -4, and 1.1 /5.
O

8.1. Client pre-orders 181

Even though, in general, the properties of 2. depend on B, all the pre-orders =5, enjoy some
properties that do not depend on the B’s. This is a consequence of the properties of the dependant
compliance relations which do not depend on any B’s (Lemma |7.2.5)).

For instance, we generalise Corollary

Corollary 8.1.3 (Top elements).

Let B be a binary relation on session contracts.
(a) the term 1 is a top element of C5

(b) if 1CE . py then UNF(ps) = 1.

Proof. The proof of this corollary is similar to the proof of Corollary [6.5.3] but relies on point of
Lemma [T.2.5] [

The corollary above ensures that for every B, the relation EELT is not a sound model of <. The
problem is still the one exhibited in Example

Corollary 8.1.4. p; C5. py if and only UNF(p;) CE . UNF(pg).
Under suitable hypothesis on B, we can give a syntactic characterisation of ;?LT

Lemma 8.1.5. Let R be a reflexive relation on session contracts, and let p; CX,. ps. One of the

following is true:
(i) UNE(p) = 1
(ii) UNF(p2) =!(p2).p3, UNF(p1) =!(p1).p1, p2 R p1, and py EE; ph
(i) UNF(p2) =7(32).pb, UNF(p1) =2(31)-ph 1 R f, and g} CBy o
(iv) if UNF(pg) =!tp.p) then UNF(p1) =t1.0], t2 < t1 and pj TR o)
(v) if UNF(p2) = 7tq.p5 then UNF(p1) = 7t1.p}, t1 < t2 and p) CX. ph
(vi) if UNF(p2) = > ;715 p then UNF(p1) = Y, 71s.p; with I € J and p} T, p?

(vii) if UNF(p2) = D¢ ;15 p? then UNF(p1) = @,¢,'1s.p; with J C I and p} cX. P

Proof. The proof of this lemma is similar to the proof of Lemma[6.5.12] We have to discuss only that
cases that involve higher-order terms, that is point and point .
We prove that if po =!(p2).p5 then point is true. We prove the following facts:

(b.1) if po =!(p2).p3, then py =!(p1).p}
(b:2) if p1 =!(p1).p, then pa =!(p2).p5, p2 R 1, and pi Ty ph

We give the proofs in order. Suppose p2 =!(p2).p5 and let p; -ig o; thanks to Corollary [7.2.19 and
the reflexivity of R we know that there exist such a o (ie. p7).

The hypothesis p; EZ}LT p2 ensures that ps 4 o. The last fact, given the form of ps, can be proved
only by using rule [R-ETA], thus the premises must be true: o = 0.0/, ps <z 0, and p g ¢’. The
assumption p; <z o now implies that p; =!(p1).p]. We have proven (1), and now we prove (2).

Let p1 =!(p1).p}; thanks to Corollary W 7.2.19 and the reflexivity of R we know that there exist a
o’ such that p; 4% o’ (ie. pr). As R is reflexive, we can prove that !(p1) >ig?7(p1), thus we can prove
that p1 4% 7(p1).0’. The hypothesis implies that ps 4% ?(p1).0”, and this can be proven only by using
rule [R-ETAJ; thus it must be pa = n2.p5, 172 =(p2), p2 R p1, and ph 4% o’; as there is no particular
assumption on ¢, the last fact implies that p} CX . ph.

The proof that point (iii) is true is similar to the argument above. O

182 Chapter 8. Modelling higher-order session-types

Pl —<CLT p2
/

" A p2 B p1; [R-OuT-H]
!(Pl)-Pl —CLT (p2) P2
p/l gLT p/2

A /

?([71) pl —CLT (pQ) P2

p1 B po; [R-IN-H]

Figure 8.1: Additional inference rules for the rule functional F=cr. The other rules are in Figure

In Lemma the hypothesis of R being reflexive is necessary. We explain why in Example

Definition 8.1.6. [B-syntactic client pre-order |

Let FZar : P(SCZ,) x P(SCZ,) — SC2, be the rule functional given by the inference rules in Fig-
ure Fix a binary relation B. If X C F=as (X, B), then we say that X is a co-inductive B-syntactic
client pre-order. Lemma and the Knaster-Tarski theorem ensure that there exists the greatest
solution of the equation X = F=ar (X, B); we call this solution the B-syntactic client pre-order, and
we denote it <5 . That is <8 = vX.FZu (X, B). O

We can reason on the pre-orders <5 up-to unfolding.
Lemma 8.1.7. For every B C SCyo and p1, pa € SCyo, p1 <5, po if and only if UNF(p1) <B.. UNF(p2).
Proof. Analogous to the proof of Lemma [2.1.16 O
The next result is crucial for our aims.
Proposition 8.1.8. The rule functional F=es is monotone in its second variable.

Proof. Let R C R and S, R, R’ C SCyo x SCyo. We have to prove the following set inclusion
fﬁcm (S’ R) g fj('ljl' (87 R,)

Element-wise, we are required to prove that if (p;, p2) € F=ar(S,R), then (p1, p2) € FZx (S, R').
Suppose that (p1, p2) € F=ar(S,R), this means that there exists a one step derivation

RI
P1 jCLT P2

generated by instantiating one of the rules in Figure 8] Note that if the side conditions and the
premises of the rule used do not depend on R (this the case if the rule used is, for instance, [R-CHOICE]

r [R-IN-FO]), then the derivation above proves that (p1, p2) € F=ar(S,R’). Suppose now that the
derivation is due to rule [R-OuT-H] or [R-IN-H]J; these are the only two rules whose premises and side

conditions depend on the second variable of F=cr. The derivation above must have the form

p1 _?LT p2
!</31) p1 = —CLT (P2) P2

P2 R p1; [R-OUT-HO]

The hypothesis that R C R’ and the fact that p; R p1 ensure that ps R’ p1, thus we can derive

/RI
Pl Zcrr P2

(p1).p1 = —CLT (PZ) P2

p2 R’ p1; [R-OUT-HO]

This derivation proves that (p1, p2) € F=en(S,R'). The argument for rule [R-IN-HO] is similar. [

8.1. Client pre-orders 183

The proof of the previous proposition ultimately relies on the restrictive syntax of session contracts,
and it is relatively easy to see that if we parametrise the more generous LTS of processes, then the

foregoing proposition is not true.

Corollary 8.1.9. Let B, B be two binary relations on session contracts. If B C B then <5, C <g;l

Proof. Our definitions imply two equalities,

%fu = vX. F (X, B) By definition
=F 5(”(<§LT, B) By definition of fixed point
C Far(285,B) By weakening

We have proven that <5 is a prefixed point of F=ex(X,B’). The Knaster-Tarski theorem implies
that <8 . C vX.F=ar(X,B'), because v X.FZer(X,B") = [J{R|R C FZaua(R,B') }. The definition
of *cm ensures now that <5, C <f§IT O

Lemma 8.1.10. If 7 is a transitive binary relation on session contracts, then <7 C C7

Proof. The proof of this lemma is similar to the proof of Proposition but it relies on [R-ETA]
in place of [R-ALPHA]. We have to add to the original proof the discussion for the higher-order terms.
We discuss one case. The only difference with the first-order argument is that the transitivity of <
is replaced by the transitivity of 7, which is true by hypothesis.

If py =!(p2).p then UNF(p;y) <7, po implies that UNF(py) = n1.p} and p} jZLT ph, and po T py.
The assumption p; 45 o now implies that o = 6.0’, with !(p1) a7 6, and pj 45 o’. The fact that
(p1) <7 6 implies that 6 =7(6) for some & such that p; T 6. We have seen that p2 T p1, and that
p1 T &, thus the hypothesis of 7 being transitive ensures that po 7' &. The definition of > guarantees
that !(p2) >7?7(5). We also know that pj =7, ph and that p} 4% ¢, thus p5 R o’. We have proven

enough to derive

p/ S 0./
2T \(py) <7 ?(6); [R-ETa]
P2
If po =7(p2).ph then the argument is similar to the previous one. O

The hypothesis of the previous lemma can not be weakened. We explain why in Example

Notation Let us denote the set of pre-orders on session contracts with the symbol PRE(SCZ,), and
its elements with the symbols O, P.

We are ready to give the alternative characterisation of the dependent client pre-orders.

Proposition 8.1.11. [Alternative characterisation dependent client pre-orders |

Let O be a pre-order on session contracts; <9, = C9.

Proof. The set inclusion T, € <9, follows from Lemma [8.1.5] “ O being reflexive, and the Knaster-
Tarski theorem. The set inclusion <9, C C& . follows from Lemma/|8.1.10, and O being transitive. [

8.1.1 Syntactic client pre-orders and transitivity

In the next subsection we will need few technical results which we devise here. We dwell on the
relation between the rule functional F=ar, the transitivity of its arguments, and the transitivity of its
images.

In order to prove that an image of F=or is transitive, it is not enough to take into account only
one of its parameters. It is necessary that both parameters of F=cr be transitive.

The next lemma is a standard result of lattice theory.

184 Chapter 8. Modelling higher-order session-types

Lemma 8.1.12. [Golden lemma [Arnold and Niwinski, 2001, Proposition 1.3.2] |
Let the symbol 6 range over p and v. Let E be a complete lattice, and h : E x E — E a function

monotonic with respect to all its arguments. The ensuing equalities are true,
0x.0y.h(x,y) = 0x.h(z,z) = Oy.0x.h(z,y)

Proof. We give the proof for § = p. The proof for § = v is similar, by the principle of symmetry.
Let W/ (z) = py.h(z,y). The definition of fixed point implies that

h(z, ' (2)) = h(z, py.h(z,y)) (8.2)
Let a = px.h/(x); it follows that a = pz.py.h(z,y); and let b = pz.h(z,). We have

(a) By definition of fixed point

I
h(a,h'(a)) In view of Eq. (8.2)
h(a,a) By definition of A’

S
I

It follows that b < a. On the other hand, b = h(b,b), hence, b > py.h(b,y), and b > px.py.h(z,y) =
a. O

In the next lemma we show a set of prefixed points of F=er that are closed with respect to transitive

closure.
Proposition 8.1.13. For every B C SCZ, if B C F=ur (B, B) then [B]tC F=a ([B], [B]1).

Proof. We have to prove that if oy [B]* o3, then it is also in F=r([B]T, [B]*). The main argument
is by rule induction on the proof of oy [B]T o3.

In the base case we have the derivation

_ B o3; [TRC-A

o1 [B]* o3 o1 B os: |]

The side conditions of rule [TRC-A] and the hypothesis ensure that (o1, 03) € F=ex (B, B). Lemma
Corollary and B C[B]* (Proposition |C.0.37) imply that (o1, o3) € F=as ([B]F,[B]1).

In the inductive case, the derivation which proves that o1 [B]* o3 has the form

g1 [B}—i_ g9 g9 [B}—i_ g3
g1 [B]Jr 03

[TRC-R]

By inductive hypothesis we have that (a) (o1, 02) € F=ar([B]*,[B]*) and (b) (02, 03) € F=ax ([B]*
,[B]*). To prove that (o1, o3) € F=n([B]*, [B]*) we show a derivation
=
o1 < 03

done using the rules in Figure [8.1 We proceed by case analysis on o3. If o3 = 1, then we can derive

[A-GoAL-C]

B+
o1 j[CLJ[‘ 03

Before discussing the other cases, note that the (a) and (b) means that we can use the inference rules
in Figure [8.1] to derive the following .
BT
01 jEL’]I‘ 02 (8~3)

8.1. Client pre-orders 185

-
(op) ﬁ[cIi]T o3 (8.4)

Note that the rules instantiated depend on the form of o3.
If o3 =!(63).0%, then the derivation in (8.4]) has to be due to rule [R-OUT-H], so o9 =!(62).0% and

;BT
09 2cir O3

N Bt .
03 ﬁLL]T 02 [
B+
02 jgl]l g3

R-OuT-H]

Similarly, the form of oo and the derivation in (8.3]) ensure that o1 =!(61).0] and that the derivation

is as follows .
(8]
(o) /1 =eorr Ulz

R Bt .

02 ﬁLL]T 01
B+

o1 jgu]r o2

[r-OuT-H]

So far, we have proven that
oy (BT o3 BT o3, &3 [B]" o3 [B]" o}
The transitivity of [B]" (Lemma ensures that
o1 [B]" o3, &3 [B]" o}
We are ready to apply rule [R-OuT-H], to derive (o1, 03):

BT A Bt .
0'/1 j[CLJI‘ 0':/3 03 j[CL]T 01

BT
01 jLL’]I‘ g3

[R-OuT-H]
This derivation proves that (o1, o3) € F=ax([B]*, [B]T).
The arguments for the other cases are analogous. O

Corollary 8.1.14. The fized point vX.F=ox(X, X) is a transitive relation.

Proof. To prove that a relation is transitive, it is enough to show that it contains its transitive closure;
so to prove that v X.F=ar (X, X) is transitive, it suffices to show that

(VX . FZar(X, X))|TC v X . Far (X, X)
Let A = vX.FZar (X, X); we have to show the ensuing set inclusion,
[A]TC vX.F3ar (X, X)

The definition of fixed point guarantees that A = F=ar(A, A), so, by weakening, we have A C
FZar(A, A). Proposition [8.1.13| ensures that

[A]FC F=or([A]F, [A]F)

We proceed as follows.

[A]T C FRax([A]T, [A]T) Proven above
CuvX.Far(X,[A]T) By the Knaster-Tarski theorem
CVYwX. Far(X,Y) By the Knaster-Tarski theorem

=vX.F o (X, X) By Lemma [§1.12]

186 Chapter 8. Modelling higher-order session-types

Monotone functions

The dependent client pre-orders C5 . are parametrised over a binary relation B, so we have a family

of these pre-orders {E(I?LT}BGP(SCgO); for instance

B By Bs By
+ i S +

B B B B
Coir Coir Coir G

It is natural to abstract away from the relations B’s, and study the monotonicity of the functions
given by the function AX. CX . In view of Proposition [8.1.8] and Proposition [8.1.11]it is easy to see
that this function is monotone, as long as X € PRE(SCZ,).

Lemma 8.1.15. Let R be a reflexive relation on session contracts, and let T be a transitive relation

3 R T
on session contracts. If R C 7T then C5, C T/

Proof.

R
Coir

<%, By Lomma[T3
<7 By Proposition [8.1.8

—CLT

C7, By Lemma[LIQ

N 1NN

Corollary 8.1.16. Let F=ir PRrRE(SCZ,) — PRE(SCZ,) be the function
FEE(0) = B

. ho . .
The function FEeix is a monotone endofunction.

Proof. The function F L& is monotone because of Lemma [8.1.15{ and of the fact that pre-orders are
reflexive and transitive. The function =&+ is indeed an endofunction because 9, is a pre-order for

every O. O

8.2 Server pre-orders

In this section we extend to the parametrised LTS the restricted compliance server pre-order that we
studied in Section The results are similar to ones we have proven in the previous section, so we

do not discuss them at length.

Definition 8.2.1. [B-dependent server pre-order]
Given a binary relation on session contracts B C SC2,, we write oy C5, o5 whenever p - o1 implies
that p Hp o9, for every p € SCyo. We refer to the symbol EEVR as the the B-dependent server pre-order.

O

Example can be adapted to prove that as B varies also the dependent pre-orders C3, . changes;

—SVR
some properties of the pre-orders CZ ., though, do not depend on the parameter 8.

The dual of the property Corollary is true.

Corollary 8.2.2 (Bottom elements).

Let B be a binary relation on session contracts.

(a) the term 1 is a bottom element of C5 .

1We use natural numbers to distinguish the B’s, not to say that they are countable.

8.2. Server pre-orders 187

;B
P1 Zsvr P2

,52 B [)1; [R—OUT—H]

(p1).p1 = —SVR 1(p2)-p2

Pl jSVR p2

N /

?(/61) pl —%VR (P2) P2

p1 B pa; [R-IN-H]

Figure 8.2: Additional inference rules for the rule functional F=ar. The other rules are in Figure

(b) if o1 CB, 1 then oy = 1.
Proof. The proof is similar to the proof of Lemma O

Corollary 8.2.3. p; T8 ps if and only UNF(p1) C5,. UNF(p2).

Lemma 8.2.4. Let R be a reflexive relation on session contracts. If o1 TR, o5 then one of the

following is true.
(a) UNF(oq) =1

(b) UNE(01) =!(p1).01, UNF(02) =(p2).0%, p2 B p1 and o} EF, o

(c) UNF(o1) =7(p1).0%, UNF(02) =7(p2).0%, p1 B po and o EF; 05

d) UNF(o1) =t1.07, UNF(03) =!t5.0%, to <p t1 and of CR o
1 2 1 =svr O

e) UNF(o1 :?tl.O'/, UNF (02 :?tQ.J,, t1 <p to and o' CR_ o
1 2 1 =svr 02

(f) UNF(o1) = 3, 71s5.0}, UNF(09) = Y. ;?15.0%, with [C J and o} CF, o7 for every i € I

g) UNF(o1) = @..;'1;.01, UNF(09) = 11 0' , with J C I and 02 CR. o2 for every j € J
i€l % YISO =SVR Y j

Proof. The proof is similar to the one of Lemma O

Definition 8.2.5. [B-syntactic dependent server pre-order]
Let F3sx : P(SCZ,) x P(SC2,) — P(SCZ,) be the rule functional given by the inference rules in

Figure [8:2]

Fix a binary relation B. If X C F=s(X,B), then we say that X is a co-inductive B-syntactic
server pre-order. Lemma and the Knaster-Tarski theorem ensure that there exists the greatest
solution of the equation X = F=su (X, B); we call this solution the B-syntactic server pre-order, and
we denote it <5, . That is <8, = vX.F3w (X, B). O

Lemma 8.2.6. Let 7 be a transitive on session contracts. The set inclusion <58, C C5, holds true.

Proof. The argument is analogous to the proof of Lemma O

Proposition 8.2.7. [Alternative characterisation dependent server pre-order]

Let O be a pre-order on session contracts. We have the equality

SVR —SVR

Proof. The argument is analogous to the one used to prove Proposition [8.1.11 O

188 Chapter 8. Modelling higher-order session-types

Lemma 8.2.8. Let 5% : PRE(SC2,) — PRE(SCZ,) be the function

fSRV(O) _ EO

—SVR
The function 7% is monotone endofunction.

Proof. The argument is similar to the proof of Corollary O

8.3 Client and server pre-orders

Thus far, in Section [8.1] and Section [8.2] we have introduced two families of pre-orders, namely the

dependent client ones and the dependent server ones:

B B
{ECLT}BGP(Scﬁo)a {ESVR}BEP(SCEO)

After having studied the elements of these families, we have turned our attention the functions that
map binary relations B to the pre-orders C5 . or C& . : and we have shown when these functions are
monotone. The outcome of our study are the monotone endofunctions F L& and FE%. Thanks to
the Knaster-Tarski theorem these functions have fixed points, in particular the greatest ones (Defi-
nition [8.3.2] Definition [8.3.6). These objects turns out to depend only on themselves (Lemma [8.3.3]
Lemma. In a sense, these fixed points embody the notion of “absolute” client and of “absolute”
server pre-orders, and they give us a non-arbitrary relation to let session contracts interact.

We have argued that, a priori, we cannot fix a relation that formalises when a higher-order action
should interact with another higher-order action; and so we have introduced the dependency of the
LTS on the relations B’s.

The intersection of the fixed points of F Ce% and FES will give us an LTS that does not depend
on any binary relation on session contracts other than the intersection itself, thus these fixed points
free us from the dependency of the LTS on B.

The chief results of this section are the properties of the mentioned fixed points, and two properties
of their intersection (Lemma Lemma [8.3.12)).

We are first concerned with the client pre-order; and then move on to the server pre-order. After the
suitable definitions, for each pre-order we show that it depends on itself (Lemma Lemma,
we give a syntactic characterisation (Lemma [8.3.4] Lemma and a proof method (Lemma [8.3.5)
Lemma .

First, we establish a technicality; the last result that we need in order to apply the Knaster-Tarski
theorem. We defer the proof to Appendix [A]

Proposition 8.3.1. The pre-order (PRE(SC2,), C) is a complete lattice.

Proof. See Lemma O

Definition 8.3.2. [Client pre-order]

Recall the function FE& defined in Corollary If X C FE& (X), then we say that X is a co-
inductive client pre-order. Corollary and the Knaster-Tarski theorem ensure that there exists
the greatest solution of the equation X = F E'3?:!'()(); we call this solution the client pre-order, and we
denote it CM° . That is C"° = pX.FCon (X). O

—CLT" —CLT

I:ho

Lemma 8.3.3. The client pre-order is a dependent client pre-order: gggT =LCgar,

8.8. Client and server pre-orders 189

Proof. Consider the following equalities.

Che = vF Cetr By definition
= F QCL’T(V]: Q«‘iT) By definition of fixed point
ho o
= ngfc” By definition of F Tt
ho
= Cow By definition of Cho_
O
Now we show how the client pre-order is related to the rule functional F=eu,
Lemma 8.3.4. LM = v X . F=ar (X, X)
Proof. Let A =vX.F=aur (X, X).
We have to show two set inclusions, namely
AcCCy, Ck.CA
We prove the left inclusion.
vX.FZa(X,X) = vYvX.FZur(X,Y) By Lemma [8.1.12]
= vY. jéfm By definition of <,
<(',L'l'
= <yXFTenX.X) By definition of fixed point
_<FLT
- Eéﬁ'}: (XX By Lemma |8.1.10] and Corollary [8.1.14
C C By the Knaster-Tarski theorem
Now we prove the right set inclusion.
h che eps
Cor = LCai’ By definition
ho
C =ew By Lemma Che. being reflexive
= vX.Flu(X,Ch) By definition
C vYvX.FZar(X,Y) By the Knaster-Tarski theorem
= vX.Flu(X,X) By Lemma [8.1.12
O
Lemma 8.3.5. [Proof method for Ch,]
If R is a co-inductive R-syntactic client pre-order, then R C Cho .
Proof. Consider the ensuing passages.
R C FZar(R,R) By hypothesis
[RT C Fla([R]F,[R]) By Proposition [8.1.13]
C vX.Fu(X,[R]T) By the Knaster-Tarski theorem
C vXvY.FZur(X,Y) By the Knaster-Tarski theorem
= vX.Fiu(X,X) By Lemma
= Che. By Lemma
O

As to the server pre-order, we proceed similarly to what we did for £, .

Definition 8.3.6. [Server pre-order]
Recall the definition of FEwe, Tf X - .7-'53311(X)7 then we say that X is a co-inductive server pre-

order. Lemma [8.2.8] and the Knaster-Tarski theorem ensure that there exists the greatest solution of

190 Chapter 8. Modelling higher-order session-types

the equation X = F E231{(X); we call this solution the server pre-order, and we denote it C1°,. That
is Cho, = vX. f—S\R(). O
Lemma 8.3.7. The server pre-order is a dependent server pre-order: IZSVR_IZSE\%‘:“.

Proof. The proof is analogous to the one of Lemma [8:3.3] O
Lemma 8.3.8. Cho, = v X.F=w (X, X)

Proof. The proof is analogous to the one of Lemma O
Lemma 8.3.9.

If R is a co-inductive R-syntactic server pre-order, then R C Cho, .

Proof. Similar to the proof of Lemma [8.3.5 O

In the remaining part of this section we study some properties of the intersection of the fixed points

of FE& and FE%. The corollaries (Corollary [8.3.11} Corollary [8.3.13)of the results (Lemma [8.3.10
Lemma [8.3.12)) are necessary to prove Proposition in Section

Lemma 8.3.10. Let R be a fixed point of]-‘Em and S be a fixed point of FE. The relation R NS

is a co-inductive (R N §)-syntactic client pre-order.

Proof. Let B=TR NS. We have to prove the set inclusion B C F=ar(B,B). The definitions of FE&
and FE% and the hypothesis imply the following equality,

B= EELT N ESVR (8.5)

S0 it is enough to show that
CR NCSy C Fiar(B,B)

—CLT —SVR

Fix a pair (p1, p2) ECX, N ESy; we have to prove that
(Pl, p2) €]:jCLT(Ba B)

If depth(pl) + depth(c2) > 0 then we use Corollary and Corollary they ensure that
UNF(p1) EX . UNF(p2) and that UNF(p;) £5 . UNF(pg2). It follows that we can apply [R-UNFOLD],

UNF(p1) <&y UNF(p2)
f1 j?LT P2

depth(p1) + depth(p2) > 0 [R-UNFOLD]

If depth(p1) + depth(p2) = 0 then we reason differently. The relations CX . and CR, are pre-orders,

—CLT
so they are reflexive; it follows that R and S are reflexive as well. This allows us to use Lemma [8.1.5

and Lemma R.2.4

We proceed reasoning by case analysis on ps.
(a) If po = 1, then we have the derivation

———— [A-GoAL-C]
P1 ngT P2

(0) 1 p2 <U(p2)ph then g Ty o implcs that gy =lpu)h with pu R pr. and pf B,
while p; £, po implies that po S p1, and pj TS, ph. We know enough to state that

p2 B p1s pl EZQLT Nt —SVR p2

8.8. Client and server pre-orders 191

Thanks to (8.5) we know that p} B p5. Now we can infer

B A B 4
pll =our pl2 [)2 =aur P1

p = CLT P2

[R-Out-H]

(¢) If po =7(p2).p5, then argument is analogous to the one we used in the previous case.

(d) If po =!tq.ph, then p1 CX. po implies that p; =lt1.p}, with to < ti, and p} TR, ph; the

assumption p; CS,, p2 that p) TS, ph. Now we can infer

I B
P1 Zcir P2

ty <p t1 [R-PUT-F]
B
P1 2o P2

(e) If po =7t,.ph, the the argument is analogous to the one used in case (d).

(f) If po = deJ ;- p?, then p; CX,. po and Lemma implies that ,02 =Y ier s pF with I C J
and p} CR. p?. Since we know also that p; TS, p2, Lemma implies that p} TS, p? for

every i € I. Tt follows that for every i € I, pi B p?; and so we can apply [R-BRANCH],

pl (LT pl . p\]\ (LTpm

B
Zze[1. pz =cur]GJ 1. ng

I C J [R-BRANCH]

(g) T po=6P ied lj.p?, then the argument is similar to the one for the previous case.

We need the previous lemma to prove what really interests us.

Corollary 8.3.11. If R=CF, and S=LC3,

C3 ., then the relation R NS is contained in TROS.

Proof. Lemma [8.3.10| ensures that R N S C F=ar(R N S,R N S), hence Lemma guarantees
that R NS C CROS. O

CLT

Note that Corollary |8.3.11|is not obvious; the obvious statement is

R=CF, implies R N SCCE, (8.6)

in the sense that is true by definition, and the consequences tell us nothing more than the
hypothesis. On the contrary, Corollary [8.3.11] states that

S=C$,, R=CX imply RNSCCRN® (8.7)

The statement is not obvious because the parameter of C ., in the consequences (i.e. R N S)
differs from the parameter that appear in the hypothesis (i.e. R). Moreover, the corollary means
that we can use a dependent server pre-order to infer some of the properties of a dependent client

pre-order.

Lemma 8.3.12. Let R be a fixed point of]—'Emv, and S be a fixed point of FES. The pre-order RN S

is a co-inductive R N S-syntactic server pre-order.
Proof. the proof of this lemma is similar to the proof of Lemma [8.3.10 O
Corollary 8.3.13. If R=CF, and S=LCS, , then the relation R NS is contained in CTROS.

Proof. Lemma [8.3.12 states thatR NS C F (R N S,R N S). From Lemma it follows
that RN S C CROS. O

—SVR

192 Chapter 8. Modelling higher-order session-types

8.4 A behavioural model of sub-typing

In the previous section we have defined two pre-orders, namely Ch°. and Ch9.: these pre-orders

generalise the first-order pre-orders Cf. and Cf_ . in the following sense

fo 0 ho
Coar & Cor € L

fo 0 ho
—=SVR - ESVR - gvr

In this section we prove that the intersection of the pre-orders Cho. and Ch9, is a fully abstract

model of the sub-typing < via the interpretation M. The proofs are similar to the ones we saw in
Section

Definition 8.4.1. [Session contract pre-order]

The session pre-order S, is defined as Chg, = C"°. N Cho,. We say that a relation R is a co-inductive

session contract pre-order if and only if R C CX NCR, . O

s che Che
Proposition 8.4.2. Ch3, C Cawr N T

Proof. By definition Che, = FE& (Che) and Che, = FEN (Che,), hence we can apply Corollary [8.3.11
ho ho
and Corollary [8.3.13] to state that 1) Chg,C ;%L"T?", and that 2) Ch,C ES%;{". This is enough to see
o ho
that £, C Cai' N Cev O

—=pP2p

Corollary 8.4.3. The intersection of the greatest fized points of F Cé and FE& is the greatest fived

point of the the intersection of the two functionals. Formally,

Che=vX.(CE, NCEL)

—=P2p —CLT —SVR

ho
P

ho
Proof. On the one hand, ChS, C E%LT‘”‘ N Es%ﬁ", thus C"9, C vX. CX N CX . On the other hand, if

=pr2p =CLT =SVR*
_ X b'e A A h ho .
we let A =vX. Cf, N Cgy, then A C T4, and A C Cf,,, thus A C T, and A C Cgoy; and so
h ho _ h
A g EC‘I:tT m Eng - EPSP' D

Corollary 8.4.4. Every co-inductive session contract pre-order R is contained in ChS,.

Proof. The Knaster-Tarski theorem ensures that R C vX. CX. N CX., and Corollary ensures

—CLT —SVR?

that vX. CX_ N CX,. =C",. The transitivity of C ensures that R C C"S,.. O

—CLT —SVR —P2pP" —pP2pP

Lemma 8.4.5. Let R be a co-inductive session contract pre-order, and let
T ={(M " (o1), M (02)) | o1 R0z}

The relation 7 is a type simulation.

Proof. We have to prove that 7 C F~#t(T). Fix a S; T S2. By definition there exists o1 R o9, such
that

1) Sl = M_l(al)
2) Sy = M_l(O'Q)

The proof is similar to the proof of Proposition and amounts to a case analysis on S;. The only
difference with that lemma is that we have two more cases to discuss; namely the ones that involve

higher-order. We discuss only one of the two cases, for the other is analogous.

a) If S; = ![S];S] then o; =!(M~1(S)).M~1(S]), thus point (@ of Lemma implies that
UNF(02) =!(62).04, with M~Y(S) R a2, and M~1(S]) R 0. The definition of M and the

8.4. A behavioural model of sub-typing 193

construction of 7 ensure that UNF(Sy) = ![S]; S}, for some S and S such that S 7 S and

S1 T S4. Now we can infer
St <ebt S5 S <ebt S
L bt 2 st [R-OuT]
ST 81 <sbt 1[S];95

The arguments for the other cases are in Proposition [6.3.3 O

Lemma 8.4.6. Let 7 be a type simulation, and let
R ={(M(S51), M(S52)) | S1 T S2}

the relation R is a R-syntactic client pre-order.

Proof. We have to prove that R C F=ar(R,R). Let p; R pa; by construction there exist two session
types S1, and S5 such that p; = M(S1), po = M(S1), and S1 T Ss.

The proof is similar to the argument described in Theorem We proceed by case analysis on
p2; all the cases that do not involve higher-order terms are exactly as in Theorem We discuss
only one of the higher-order cases.

If py =!(p2).p2, then the definition of M implies that Sy = ![S]; S4 for some Sy and S such that
pa = M(S}) and ph, = M(S}); since T is a type simulation it follows that S; = ![$;]; S}, So T Si,
S, T Sh. The equality p; = M(S;) ensures that p; =!M(S1)M(S}) By construction it follows that
p2 R M(S1) and M(S}) R pb, thus we can infer

M(S]) Ssbt py P2 <ot M(S1)
P1 sbt P2

[R-OuT-H]

Lemma 8.4.7. Let T be a type simulation, and let
R={(M(S1), M(S2)) | S1 T Sz}

the relation R is a R-syntactic server pre-order.

Proof. We have to prove that R C F=sw(R); this to aim fix a pair 01 R 09; by construction there
exist two session types S7, and S such that p; = M(S1), po = M(S1), and S; T Ss.
The proof proceeds as in Lemma We reason by case analysis on o;.

Corollary 8.4.8. Let T be a type simulation, and let
R ={(M(S1), M(S2)) | S1 T S2}

the relation R is a co-inductive session contract pre-order.

Proof. We want to prove that R C CX . N CR_ : thus, in view of Proposition [8.1.11| and Proposi-
tion it suffices to prove that R C <%, N <R . This set inclusion follows from R C<%X, and

—CLT —CLT

R C=X., and, by definition, to prove these inclusions it is enough to show that
(1) R C F3ax(R,R)
(2) R C F3(R,R)

The set inclusions are proven in Lemma [8.4.6] and Lemma [8.4.7 O

194 Chapter 8. Modelling higher-order session-types

Theorem 8.4.9. [Full abstraction]
Let S; and S be strict session types. M(S1) TN, M(Ss) if and only if S; <spt So.

Proof. The two inclusions that we are required to prove follow from Lemma and Corollary
O]

Theorem [8.4.9] extends to the whole theory of session types sub-typing a la |(Gay and Hole| the
behavioural model due to the compliance relation.
Throughout this chapter we have shown how to adapt the proof that
f fo ~v_F
ES%R n ECOLT:<S?)t

in order to prove that

ho ho ~
ECLT N Esvgzﬁsbt

At the end of Chapter [6] we have already commented on the meaning of such a model as the one
exhibited by Theorem Here we remark just that our models show that the the standard sub-
typing for session types is a refinement for peers. This means that the endpoints of a communication
channel, say a~ and a™, should not be referred to as client and server, for they are not used according
to a client/server logic. If two processes interact correctly via the endpoints a~ and a*, then both

processes have to be equally satisfied by the interactions that take place on a.

8.5 Related Work

In order to model the sub-typing on higher-order types we had to face a technical difficulty: to remove
in a non-arbitrary way the parameter B from the LTS of session contracts. To do so we followed the
approach of [Padovani, |2013|, and studied the monotonicity of the (endo)functions that map pre-orders
on session contracts to the dependent client and server. Once established the monotonicity, the main
results followed just by tailoring the proof of Theorem

In Section We have seen that Cf%,, and the fair pre-order of [Padovani, 2011] are not comparable
(see Eq.) This result extends to the higher-order setting:

<gch,, Che.g< (8.8)

The right inequality follows form Cf,, C ChS, and Cf,, Z le.

The left inequality is true because px.p!livelock.z < px.p!stop.r, while yz.!livelock.w IZhS,

px. !stop.x.

Recently [Dardha et al| have shown a fully abstract encoding of session types into the standard
types of pi-calculus. Theorem 3 of [Dardha et all |2012] show that the sub-typing on types of the
pi-calculus, <:, captures exactly the sub-typing a la|Gay and Hole|

Theorem 3 For every session type S, 7T, S st T if and only if [S] <: [T7].

Our Theorem justifies and explains in behavioural terms the relation <qp; essentially it states
that the relation <q; is the peer pre-order given by the compliance in the LTS

<SCH0, Act-,-,/ USCH(), _>gggp >

Theorem 3 above, instead, shows that there are other syntactic means to define this peer pre-order.
The combination of the two theorems establishes a connection between the standard sub-typing <:,
a subset of the types for pi-calculus, the pre-orders given by the compliance relation, and the higher-

order session contracts.

8.5. Related Work 195

To what extent the compliance relation can be used to explain the standard pre-order <: becomes
a natural problem to address (see (QL6) in Section |11.2)).

196 Chapter 8. Modelling higher-order session-types

Chapter 9

Ongoing work: session contracts as

types

We concluded Chapter [8| by showing that higher-order session contracts and the pre-order TS, are
a fully abstract model of higher-order session types, and the sub-typing < (Theorem . This
result justifies in a behavioural fashion the definition of =<¢: within the theory of compliance, the
sub-typing a la |Gay and Hole not only looks natural, but it i¢s natural, in the sense that there is no
syntactical definition of E?,‘Q’P other than the definition of <.

Now we shift our standpoint: the full abstraction result lets us think of higher-order session
contracts as types, and of the relation CNS, as a sound sub-typing relation. The natural concern that
arises from this shift, is whether session contracts can help us in advancing the existing type systems
based on session types.

In this chapter we briefly address this issue. First we sketch a type system for a dialect of the
pi-calculus, where types are session contracts. Afterwards, by means of the type system, we propose
a way to ensure that the observable behaviour of well-typed processes enjoys certain properties. Our
approach relies on the connection between the observable behaviour of types (i.e. session contracts) as-
signed to session end-points, and the behaviour of processes on these end-points (see Conjecture
and Example [9.2.19)).

This chapter is merely exploratory and should be taken as a proof of concept. The conjectures

that we state are currently under investigation, so the discussion is based on examples.

Structure of the chapter. In Section[0.I]we define the syntax and the reduction semantics of 7SC,
a dialect the pi-calculus. Our version of the pi-calculus resembles the one of [Gay and Hole| [2005],
but we use recursion instead of replication. In Section we present a type discipline for 7SC, and
discuss it in a series of examples. We also discuss the results that at present we are after. As this

chapter contain no new results, we omit the related work section.

9.1 Pi-calculus with session contracts

In this section we define a dialect of the pi-calculus [Milner} 1999]. We assume a finite set of ground

types, BT; with the proviso that BT contains the types Bool and Int:
{Bool, Int} C BT

The semantics of the type Bool is the set {true, false}, and this set provides the basic cases for the
grammar of boolean expressions B (see Figure [9.1). The semantics of type Int is a finite subset of

197

198 Chapter 9. Ongoing work: session contracts as types

the natural numbers, and provides the base elements for the arithmetic expressions A.
Further, we assume the existence of the following denumerable sets,
e a set of names N, whose elements we range over with a,b,c,...,2,y,2,...
e a set of process variables, that we denote x1, x2, X3, - - -

The set V of values is defined as the union of the semantics of the ground types: V = (J, g [t]-
We let u range over names and values (N U V), and v range over values (V).
We use names to represent sessions, which are as private connections, characterised by two different

and complementary end-points. To denote the end-points of a session a, we decorate a with polarities.

Definition 9.1.1. [Polarities]

The sets of polarities and of optional polarities are defined respectively as

{_>+}
0 = {—,+,¢

We range over P with the symbol p, which denotes a polarity; and we range over 0 with the symbol
o0, which denotes an optional polarity. The complement of the (optional) polarity o, is denoted o, and
defined as follows,
+ ifo=-—
o=4¢— ifo=+
e ifo=ce

O

Let L, be the language defined by the grammar in Figure[0.1] Also in this case we use the standard
notions of capture avoiding substitution, depth, guarded terms and unfolding (see Section .

Definition 9.1.2. [m-processes with session contracts |
Let
7SC={P €L, | Pclosed, Pgd}

We refer to the terms in wSC as processes. O

The type t that appears in the input construct in Figure [9.1| ranges over the set SCyo UBT. We will
discuss types in Section [0.2]

The set of free names of a term P, denoted FN(P), is defined in the standard manner.

The non deterministic outputs in Figure [9.1] are not a standard construct, so we briefly comment

on it.

Example 9.1.3. [Non-deterministic terms |
The non-deterministic sums let us render explicitly the non-determinism typical of choices. For the
time being, we impose some restrictions on the syntax of these terms. For instance, if the names a

and b are different, then the ensuing term is not a non-deterministic process,
a![l1].0 &3] b![lz}.O

whereas the following term is a non-deterministic process
alll1].0 & al[l2].0

because it is generated by the grammar for N,. O

9.1. Pi-calculus with session contracts 199

P,Q = Processes
0 Empty process
uPl[v°].P Value output
N, Nondeterministic output on u
uP?[z°: t].P Binding input

uP>{1ly: P,...,1,: P, } Offer
IF (B) THEN P ELSE) If then else

(va) P Session creation
PllQ Parallel composition
X Process variable
wx. P Recursive process
N, == Non deterministic outputs
uPl[1].P Label output
N, ® N, Non deterministic sum
B n= Boolean expressions
true
false
u=1u
u>u
A n= Arithmetic expressions
1,2,3... Natural numbers

With the proviso that in the terms N, (for every w) the labels are pair-wise distinct.

Figure 9.1: Grammar for processes

Pllo=P [PAR-ZERO]
PllQ=Q|lP [PAR-COMM|
Pll@QIR=(FIQIR [PAR-Assoc]
(va)0=0 [Scp-VoID]
(va) P || Q = (va) (P || Q), if a not free in Q [SCP-EXTR]
(va) (vb) P = (vb) (va) P [ScP-FLIP]

Figure 9.2: Axioms for structural congruence

Reduction semantics We assume an evaluation relation |} for the boolean expressions B. The
reduction semantics of the language depends on a structural congruence relation and on |. The
structural congruence relation = is the least relation that satisfies the axioms in Figure while the
reduction semantics is the least relation — that satisfies the rules in Figure (9.3

From now on we will assume that on private names (i.e. session channels), only other private
names are communicated. The intuition behind this assumption is that the names which are not

private are public, thus known to everybody, and there is no need to communicate them.

9.1.1 Runtime errors

The reductions semantics tells us how to execute processes; the execution of processes, though, may
stop because of some issues.

In general, we can think of a predicate —>, such that if P —¢,, then the computation of P
cannot proceed: P 7TL> If P — ¢ then we say that P reduces into an error.

Rather than defining —¢,, in this section we exhibit some archetypal processes that reduce into

€rrors.

200 Chapter 9. Ongoing work: session contracts as types

- — - [A-ComM]
w’ ?[a?: TP |[u”l[v°].Q||R— P{" /s } || Q|| R

= [A-SYNCH]
wP>{1: P,...,Li: P} || W[] Q||R— P || Q|| R

A-UNF
px. P — UNF(uy. P) []

’ [A-INCH-L]
N, ® N, — N,

N, O N SN [A-INCH-R]

u

B | true; [A-TRUE
IF (B) THEN P ELSE Q — P b trues |]

B | false; [A-FALSE
IF (B) THEN P ELSE Q — Q I false; | }

P—Q
(va) P — (va) Q [R-REs]
P—0Q [R-PAR]

PlIlR— QIR

P —Q

P50 P=P,Q=Q; [R-STRUCT]

Figure 9.3: Rules for the reduction semantics

In the language wSC there are terms that use names, variables, and polarities in ways that are not
coherent with the intuitions behind the end-points of sessions. We show few of these “malformed”

processes in the next example.

Example 9.1.4. [Malformed processes |

Observe the ensuing processes

P = a7![3].a™![3].0

P, = a7![3].0 ® a™![3].0

Py = 1F(v) =v'THEN a ![true].0 ELSE a™![false].0
Py = aP>{1;:b71].0,15: b7 ![2].0}

Let us think of the end-points @~ and a™ as resources. These two resources represents the two ends
of a peer to peer connections, and are meant to let two distinct processes interact with each other.
Thus a process that owns a™ should not own a~ and vice-versa. Each one of the process above, on

the contrary, owns both endpoints of the connection a, so we deem those terms as malformed. O

The issue shared by all the processes in the previous example, is that both end-points of a con-
nection appear in them. This does not mirror the reality, as normally no program sends messages to
itself. Moreover, the presence of both endpoints of a connection in a process means that the logic of
the process changes as interactions take place; this appears not to mirror the reality, as the client of
a connection and the server of the same connection have well distinguished logics.

Other errors that may take place during communications are type mismatches, mismatches in the

polarities of names, and the non-linear usage of session endpoints.

9.2. Type system 201

Example 9.1.5. [Data mismatch |

Consider the following processes,

P =s?[y~: 7Int.!Bool.0].y ?[z: Int].IF (x > 0) THEN y~ ![true].0 ELSE y~![false].0
Q =(va) (s![a™].a™![true].0)

Intuitively, we should not accept the composition @ || P as a “good” process, as its reductions lead
to the term
(va) (0 || 1F (true > 0) THEN a![1].0 ELSE a![0].0)

As it stands, it is not clear how to make sense of this term. The problem lies in the fact that the type

of the formal parameters of >, is not the type of the actual parameter true. O

Example 9.1.6. [Polarity mismatches]
In Figure rule [A-ComM] allows a communication to take place only if the polarity of the value
sent, v°, matched the polarity at which the value is expected, x°.

On the one hand, this ensures complementary end-points cannot be mixed because of communica-
tion, and show explicitly which one of the end-points of a session is sent, and which can be received.
On the other hand, the requirement that the polarities match may let processes reduce into an error.

The following composition is an example of the phenomenon,
a [b” .67 ?[y: Int].P || a™?[z": !Int.o .2 T[3].Q

Even though the process on the left is willing to perform an output via the end-point a~, and the
process on the right is ready to read via the end-point a*, the overall composition is stable, because

the polarity of b~ does not match with the polarity of T, so rule [A-ComM] cannot be applied. O

Example 9.1.7. [Linearity of session channels |

Consider the processes

P =s?a”:?(?Int.1).1].27 ?[y: Int].0
Q =(va) (s![a”].(a™![3].0 || a™![3].0))

up-to structural equivalence, the composition P || @ reduces to the term
S = (va) (a™![3].0)

which is not structurally equivalent to 0, and is stable. The problem here amounts to the fact that in
Q there are two threads communicating with P, and this leads to a sort of “misalignment” between
the session as seen by P and the session as seen by the two threads in (). In particular, when P has
finished communicating, one of the processes in @ is “left behind”, and is still expecting to perform

an output on a™. O

9.2 Type system

Let P denote the set of polarities, Let 0 denote the set of optional polarities. Let 7= 0 x (SCyo UBT).
Types T are pairs in the set T, while the set SCy, UBT is ranged over by ¢. Let pol((p,t)) = p and let

body((p, t)) = t.
Type environments We denote with I" the functions from polarised names to types,

:(WNxp)—T

202 Chapter 9. Ongoing work: session contracts as types

with the additional requirement that the polarities of the names be equal to the polarities of the
relative types. Formally
T =T'(a”) implies pol(T) = p (9.1)

Example 9.2.1. The following relation is not a I', because it is not a function

R={(a",(-1.1)),(a",(~1)}

The following relation is not a I because it does not satisfy Eq. (9.1)),

{(a”, (+,'1.1))}

We denote with A the relations from optionally polarised names to types, that is
ACNx0)xT

with the additional proviso that the A’s satisfy the condition in Eq. (9.1). The set Au® is defined as
{T | (u°, T)€ A}.

Example 9.2.2. The relation R defined In the previous example we defined a relation R which is

not a I'; that relation, though, is a valid A. The following relation is not a A because it does not
satisfy Eq. (9.1),
{(a”, (+,11.1))}

O
Environments for process variables We need a last ingredient in our type environments. We

denote with Z any function from process variables x, X/, ... to pairs I'; A. We write Z — x to denote
the function Z \ {(x, Z(x))}.

Definition 9.2.3. [Type environment]
We refer to the triple Z;I'; A as type environment. Moreover, we let E denote the set of type envi-

ronments. O

The purpose of having a set I' and a set A is that we are going to put names and variables to be

treated in a linear manner in I", and the other ones in A.

Notation We let a°: T denote the pair (a°, (o,t)); so, for instance, instead of writing

{(aiv (7a . 1))7 (ai’ (7’ 1))}

we will write
{a7:1.1,a7: 1}

We also let dom(I'; A) = dom(I") Udom(A), and let the symbol =pgp denote equivalence generated by
the pre-order ChS,. We lift the relation =pyp from session contracts to environments in the following

way. For every sets of types A and B we write A =p9p B whenever
1. (u°, t) € Aif and only (u°, t') € B
2. (u° t) € A and (u°, t') € B imply that either ¢ =pop t' or t = ¢/

We stipulate that I'; A =pop T; A’ whenever T =pgp IV and A =p9p A,

9.2. Type system 203

Definition 9.2.4. [Completed |
We write Z; T'comrreren and say that Z; T is completed, if u? € dom(T") implies that one of the following

conditions is true,
a) u? € dom(Z(x)) for some x
b) T(u?) = 1. O

Intuitively, a type environment is completed if the communications on the end-points of the sessions
terminated (i.e. have been completed), and Z accounts for the end-points on which the communica-
tions are not terminated.

We will need an operation to manipulate in a sound way the linear environment I'. To this end
we define +.

Definition 9.2.5. The addition of a typed name to an environment is defined by
F+{u: T} =TU{u?: T}

if u? & dom(T"), and is undefined in all other cases. O

Definition 9.2.6. [Type relation |

Let Fr : P(E x Ly) — P(E X L) be the rule functional given by the inference rules in Figure
Lemma and the Knaster-Tarski theorem ensure that there exists the least solution of the
equation X = Fi(X); we call this solution the type relation, and we denote it F: That is b =
pX.Fr(X). O

Type judgements have the following form
Z; T AR P

While I and A are the environments that associate types to the names and the values that appear in
P, Z expresses how the free process variables of P, once substituted, will be typed. We will show the
role played by Z in a series of examples about typing recursive processes.

Almost all the inference rules in Figure [9.4] are standard. The only ones that need explanation are
[T-NoND-L], and the rules for recursive terms.

The two rules [T-NOND-L] together are meant to to generalise the usual rules for the processes

that perform a choice; see for instance rule [T-CHOOSE] of |Gay and Hole} 2005],

l=lie{ly...,1,) T,a?: T, P
IzP: & <1iZT’i>1§iSn|_.'L‘p<]1.P

[T-CHOOSE] (9.2)

The rule in Eq. (9.2)) can type processes that choose only one label. The rules [T-NoND-L], [T-
OuT-L] generalise [T-CHOOSE] in the sense that they can type processes that can choose different
labels.

Example 9.2.7. [Multiple choices |

Consider the following processes,

P’ = a'![sign].a™![3].a™?[z: Int].0
P = a'!close].0 ¢ P’

The process P expects to be offered a choice along channel a, by some peer that owns a™; P is free

to choose either to close the connection, or the ask to invoke the function sign, send the parameter

204 Chapter 9. Ongoing work: session contracts as types

m Z; T'CompLETED; [T—VOID]

Z;T+{aP: 0,aP: o'}; A+ P
Z;; A ¢ (va) P

o pop 0’5 [T-RES]

Z; T AFP Z:T AFQ

I'=I1+ FQ; [T—PAR}

Z;T;ARP|Q
Z: AP ZT;ARQ - Te]
Z;T; A+ 1F (B) THEN P ELSE @
Rules for branches and choices
Z;T+{uP: o1 }; AP ... Z;T+{uP:0,};AF P,

1 <m < n; [T-BRANCH
Z;0 + {uP: Zie[l;m]?li'ai};A}_upb{ll: Pi,....1,: Py} <m < n; [

Z;T+{uf: o }; AP ... Z;T+{uP:0,};AF P,
ZiD+{u’: @jep'li-ois AR wPl[11].PL & ... © ull[1,].P,

[T-NoND-L]

Input and output of values

ZiU+{aP:0',y?: o)A P " Cho g poIN-S
Z;F+{$pl ?(g”),g’};AFxp?[yq: U].P 0" pop 0; [T— N- S]
Z;0+{a?: o}; AU{y: t} - P
Z; T+ {zP: 7t .o}; AF 2P?y: t].P

t' <p t; [T-IN-SV]

Z;T; AU{y: t,z: 0} H P
Z; DA U{x: 7ot Fa?y: t].P

t' %p t; [T-IN-UV]

Z;T+{aP: 0} P
Z;T 4+ {a?: 1(0").o,ul : o'} A F aPl[u? |.P

o' Chs, o [T-OuT-S]

Z;I"+{zP: c}; AL P
Z; T+ {aP: (t).o}; AU{v: t} F 2Pl[v].P

t <p t’; [T-OUT-V]

Rules for recursive terms

m X € dom(Z), Z;TComrreren; [T-VAR]

Z;Z(x)F P
Z —x; AR px. P

Z(x) =v2e T; A; [T-REC]

Figure 9.4: Inference rules for the rule functional F-. The polarities of types are understood; they
coincide with the polarities of the names that types are assigned to

9.2. Type system 205

for the function, and read the outcome. Let o0; =!close.l and 03 =!sign.!Int.?Int.1 The inference

tree below sketched the type derivation for P; note that we omit Z as P contains no process variable,

— T-V
100 [T-VoID]
- - [T-IN-SV]
Vo] {ut: ?7Int.1};0 Fa*?[x: Int].0 [r-OUT-V]
{ut: 1};{3: Int} F 0 "{ut: Int.?Int.1}; {3: Int} F a™![3].aT?[z: Int].0 T-NOND-L
{ut:o1 ® 02};{3: Int} - P) _
O

In a series of examples we show how the rules for recursive terms and process variables are meant
to be used. The axiom [T-VAR] and the rule [T-REC] are inspired by the type discipline of [Honda
et al [1998] and [Demangeon and Hondal 2011]. Observe that in the side condition of [T-REC], the

equality =pop allows us to unfold the session contracts in the environments.

Example 9.2.8. [Typing a recursive process
Let P = px.aP![3].aP![1].x, and let

o = pz.!Int.x
A = {3:Int,1: Int}
Z(x) = {a?:!Int.lInt.c} A

Intuitively, the behaviour shown by the process P on the channel a? is described by o. This is

formalised by the following type derivation.

[T-VAR]

[T-OuT-SV]

[T-OUT-SV]

Z(x) =p2p {a?: 0}; A [T-RE(]

Zi{aP: o} 0k x

Z;{aP: o};{1: Int} F a?![1].x

Z;{a?: 1Int.\Int.c}; A F a?![3].aP![1].x
Zi{a?: 0};AFP

Example 9.2.9. [Typing nested recursion |
Let P = px.a” > {neg: a~?[z: Bool].a![not z].x, k: pux'.a~![3].x" }. The process P recursively
offers two choices to the peer that owns the end-point a™. The label neg represents the negation

+

function, and P after neg interacts on a™ accordingly. The label k represents the choice of a constant,

so P after k sends a constant number.

Now let
o = puy.!Int.y
o = pux.7neg.?Bool.!Bool.x + k.o’
A = {3:Int}
r = {a":0}
200 = fa: oNR(o)hA
200) = {o: oNe(o)}A

The following inference tree shows how to type P. Note that Z(x) =per I'; A, so we can apply rule

206 Chapter 9. Ongoing work: session contracts as types

[T-UNF] at the bottom of the tree.

[T-VAR]
Int < Int; [T-OUT-SV]
Z(X') =papr {a”: o'}; A [T-REC]

Z{a o' 0F X
Z:;{a": Int.o’}; 0 F X/
Z{a o' AR px a7 [3].)
(4)

Z{a":0};0F x [r-VAR]

Z;{a":Bool.o};{z: Bool} Fa~![not x].x

Bool =<, Bool; [T-OUT-SV]

T-IN-Sv —
Z;{a": Bool.lBool.c}; At a~?[z: Bool].a™![not z].x [} (A) - BrANCH]
Z;{a”: UNF(0)}; At a” > {neg: a~?[x: Bool].a” ![not x].x,k: ux'.a"1[3].x"} R
ZT;AF P [r-ReC]
O

In the next example we will see how to type a process that recursively reads a name and interacts

over it.

Example 9.2.10. [Recursively read name]

The process that we want to type in this example is P = ux.z"?[y~: o]y~ ![3].x, where o =
ux.?(p).x and p =!Int.1. In the process P the end-point 4y~ depends on the name z*, for y~ it is
read through z*. The recursive behaviour is shown on the “outermost” channel z+. The variable

y~ is bound afresh at each recursive loop, so the end-point that replaces y~ is used only for a finite

communication.
Let
r = {zT,0}
r = {z*,2(p).0}
A = {3:Int}
Z(x) = I'A

Note that T" =p9p IV, The inference tree that types P is the following one,

[T-VAR]

[T-OuT-Sv]

'Int.o CNS, o; [T-IN-Ss]
Z(x) =p2e I'; A [T-REC]

Zi{ztpm. 2(p)eyy: 10 x
Zi {2z px.?(p).x;y: Int. 1} A Ry~ 1[3].x
Z; T AR 22y~ o)y Y [3].x

Z; T ARP

O

In order to prove the valuable properties of the type system based on higher-order session contracts,

we have to establish the normal results of type systems.

Lemma 9.2.11. [Free names |
If Z;T; Ak P, then z? € dom(T") implies u? € FN(P) or I'(uP) = 1 or u? € dom(Z(P)).

As the symbol T ranges over ground types and session contracts, we have to state the substitution

lemma with a case analysis.

Conjecture 9.2.12 (Substitution lemma). If Z;T + {z°: To}; A+ P, and T'+ {u®: T1} is defined,
then

1. body(T1) < body(T3) implies that Z;T + {u®: T1 }; AE P { U/ o }

9.2. Type system 207

2. body(T1) TN, body(T2) implies that Z;T + {u: T1 }; A+ P {% /40 }
Lemma 9.2.13. The operation + affords the following properties
a) =T+
by T+I"=I"4T
¢) T4+ +I" =T+ T"+4+T1")
The previous lemma is necessary to prove the following fact.

Lemma 9.2.14. [Compatibility with =]
If Z;T;AF Pand P=Q, then Z;T; A+ Q.

Conjecture 9.2.15 (Subject reduction). If Z;T;A F P and P — Q then I"; A’ + Q for some
Z"; 15 A" such that dom(T”) C dom(T), dom(A’) C dom(A), and dom(Z') C dom(Z).

9.2.1 Conjectures

Recall from Section [9.1.1] the idea of runtime error and the symbol —¢,,. One of the properties that
we wish to prove for the proposed type system (possibly amending the rules), is type safety.

Conjecture 9.2.16 (Type safety). For every P € nSC, if Z;0;0 = P, then P +/—ey.

It is well-known that session types guarantee type safety, so to prove Conjecture [0.2.16) we expect to
use standard techniques, and we do not consider such a result a novelty.
In Section we have shown in a series of examples few processes that reduce into errors. Let

us revisit one of those examples.

Example 9.2.17. Consider the processes P and @ of Example [9.1.5} we argued there that the
composition P || @ reduces to a term that does not make sense, so P || @ —er. According to
Conjecture we should not be able to type check P || Q. In this example we argue that this is
indeed the case.

The type discipline shows that the composition above should be regarded as a badly formed process,
for it cannot be typed.

Intuitively, we can provide types the channels of PE|

{y™: ?Int.1Bool.1};{s: ?(?Int.!Bool.END).1} - P
and similarly for the other peer @,
{a™: Bool.1}; {s: !(!Bool.1).1} - Q
Now we see clearly the mismatch between the way in which P uses y, and the way in which @Q uses

a; there are two kinds of mismatches;

1) the first mismatch is that on y a datum at type Int is read, whereas on a a datum of type Bool

is written

2) the second mismatch is that after the tentative input on y~, P is willing to write on y~; the process

Q, on the contrary, after the output on a™ stops using a™.

These mismatches do not allow us to type check the composition P || Q.
A similar argument can be applied to the process P || @ of Example The composition P || @
cannot be typed using session contracts, because rule [T-RES] cannot be applied to it, so it is ruled

out as a malformed program; indeed P || Q@ —err O

1We omit Z as there are no process variables in P and Q.

208 Chapter 9. Ongoing work: session contracts as types

{urls, s, urlb,bt, s~ ,b" } {urlb,b*, s, b7}
gf gt
st bf st b
{urls} {urlb} {sT} {urlb,b"}

st o bf St m--mmmmmmmm——o - bf
{s*} {o} {s*} {s7}
(c) (d)

Figure 9.5: Evolution of the states of the sessions, during the computation described in Example[9.2.19

What we believe to be the main advance that session contracts may lead to, is the verification of

behavioural properties of processes.

Protocol specification

Session contracts are equipped with an operational semantics similar to the one of CCS. If we specify a
communication protocol by using a session contract o, thanks to the semantics, we can check whether
the protocol enjoys given properties: by writing a property as a formula ¢ of the Hennessy-Milner
Logic |Aceto et al.l [2007], we can prove whether o |= . If this is the case, then the protocol specified
by o enjoys the property .

Roughly speaking, the typing rules in Figure [9.4] ensure that if Z;T'; A + P, and a° appears in I’
then there is relation between the behaviour of I'(a®) and the behaviour of P on the name a°.

We are currently investigating the relation between the behaviours of types and the behaviours of

processes, so as to define a function lift suitable to prove the following theorem.

Conjecture 9.2.18 (Behavioural properties of processes via types).
For every P € wSC such that ¥N(P) = {a}, for some a € N, if Z;T;A + P and T'(a®) = o,
then P = lift(p, a®).

The intuitive meaning of Conjecture [0.2.18)is that under certain conditions, if P is typed by a triple
Z;T; A, then the behavioural properties of the session contracts in I', should imply analogous prop-
erties, “lifted” to the behaviour of processes.

If we think of session contracts as protocol specifications, then we can take processes of 7SC to
be protocol implementations. Conjecture then guarantees that if a specification o enjoys a
property ¢, then the implementations of ¢ enjoy lift(p, a®) for some polarised name «. Such a result
provides a way to ensure that the way in which programs communicate over peer to peer connections
adhere to formally specified properties ¢1, 2,

We conclude this chapter motivating Conjecture by means of an example.

Example 9.2.19. In this example we show how the observable behaviour that processes show on
sessions a, b, ¢, ...is described by the session contracts that type the end-points of those sessions (i.e.

a, b, c,...).

9.2. Type system 209

STORE BOYFRIEND
st bf
urls?y urlb?z
yT?zt: 1yt > {11.0, 1,.0 } Os 2P?x:113.1).271[14].0
sttt 71 2T s~
st>{1;.0,1,.0} 71;.1471,.1 o s7![11].0
st71, st71, 714 71, ‘!11 s711,
0 1 1 0
(a) (b) (c) (d)

Figure 9.6: Observable behaviours of (1) the processes in Example [9.2.19] and of (2) the session
contracts that type the session end-points used by those processes.

We assume two public names, urls and urlb, and we define three processes: a girlfriend gf, her

boyfriend, bf, and a store, store.

gf = (vb)((vs)(urls![s].s7![x].urlb![bT].07![s7].0))
bf = urlb?[zt:op]2T? @ 11;.1].27![1].0
st = urls?(y’:os]yT? [z 1]yt > {11.0,1,.0}
where
os = 7(1).(cL+715.1)
ol = 711
op = ?(!ll.l)l

In Figure we depict how the state of the session end-points evolve during the execution of the
composition gf || bf || st. There each process is decorated with the set of names that it owns.

The girlfriend wishes to give a present to her boyfriend, and the present has to be bought in a store
that only the girlfriend has access to. In Figure (a) represents the initial state, in which no session
have been created. The girlfriend begins a session s with the store; the store gets the server end-point
sT, whereas the girlfriend gets the client end-point s~ (see (b) in Figure . The communication
between the girlfriend and the boyfriend takes place on a different session, b, whose server end-point
bT is used by the boyfriend (see (c)). After having sent on s a name x that the boyfriend is not aware
of (for instance some credentials), the girlfriend passes its endpoint, s~, to the boyfriend (see (d)),
that uses it to choose a gift.

We can infer the following typing judgement (we omit Z as there are no process variables)
IS AE (vd) ((vs) (ef || st) || bf)

where A = {urlb: op,urls: o, k: 1}.
In Figure [9.6] we depict the behaviour shown by the store and the boyfriend on the session s
(respectively in column (a) and (d)). The behaviour of o is depicted as well, in column (b), while

column (c) shows the behaviour of ¢. Observe how the behaviour of o, describes exactly how

210 Chapter 9. Ongoing work: session contracts as types

the composition gf || bf || st acts upon s*. In the LTS of oy, the first transition is due to the
communication of credentials x between st and gf, while the second transition is due to the choices
that st offers to bf.

Since s~ is communicated to bf only after a part of the interaction on the session has been realised,
the session contract o/, in bf describes only the remaining part of the interaction pattern that is to be
performed. Indeed, bf performs this part of the interaction with the the store, st, showing exactly
the behaviour described by o?. O

In this chapter we have sketched the research line that we are following at the moment. In
particular, in Conjecture [0.2.18| we have stated what may be the chief advantage brought by session

contracts into type systems for the pi-calculus.

Chapter 10

Literature Review

Chapter

The Calculus of Communicating Systems is a well established formalism to reason on the interactions
performed by concurrent software. Well-known books on CCS are [Milner} [1989)} |1999).

Milner| presented the CCS in [1980], as a result of a research line started with the use of “processes”
in [Milner}, 1975, and pursed in [Milne and Milner} 1979 by introducing “communicating processes”.

In the language of CCS internal computations are represented by the action 7. Consider the
processes 7.b and a + 7.b. The process 7.b performs some internal computation (for instance it
chooses a branch of an IF statement) and then becomes ready to interact on b. The process a + 7.b
either engages in the interaction a, or it performs some computation, and then becomes ready to
perform b. The presence of the 7 action creates some issues, as it makes relations such as the MusT
pre-order not to be pre-congruences:

b 5 T.b a+b Zwvust a+ 7b

~~MUST

The inequality above is from |[De Nicola and Hennessyl, [1984, Page 92].

In view of the issue due to the action 7 in the syntax, in [1987||De Nicola and Hennessy| presented
the CCS without 7’s (CCSy). The syntax of CCSy,+ has the sum @ to express internal computation,
and does not allow us to write 7, thereby solving the problem shown above.

Session contracts emerged recently within the field of “contracts for web services” (see next para-
graph). [Laneve and Padovani| in 2008 have been the first to attempt to model with a compliance
pre-order the sub-typing a la |Gay and Hole. They focused on a sublanguage of first-order session
types without input/output constructs. Barbanera and de’Liguoro| later on (2010)) exhibited a sound
model of the sub-typing a la |Gay and Hole| tailored to the whole language of first-order session types.
Their model uses session behaviours, which are too general to be interpreted into first-order ses-
sion types. To prove also the completeness of the model suggested by [Barbanera and de’Liguorol,
in [Bernardi and Hennessyl, 2012] we restricted the language of session behaviours, introducing session

contracts, and we proved that the model is indeed fully abstract.

Chapter

The theories of compliance that appeared in the literature use versions of CCS as object language,
and the terms of the chosen language are usually referred to as “contracts”, or “contracts for web
services”. Hereafter we will use the word “contract” with this meaning.

The first compliance relation appeared in the literature is given in [Carpineti et al., 2006, Definition
4], which improves on the thesis |Carpineti, |2007].

The approach of |Carpineti et al.| to define the compliance is the converse of ours (and of subsequent

211

212 Chapter 10. Literature Review

works). We first introduce the compliance, -, and then define the refinements generated from it;
whereas (Carpineti et al.| first define a subcontract relation (Definition 2), denoted =, then, by means
of a syntactic notion of dual contract, define the compliance: p complies with o if only if p < . This

style of definition has been dropped in the subsequent works.

The original idea of compliance has been reworked in |[Laneve and Padovani, [2007], which presents

a behavioural compliance. In that paper a testing-like approach has been taken, thereby showing some

connections between the testing theory and the compliance theory. [Laneve and Padovanil first define
the LTS

(ccsreef Act,, —)

where CCS;‘ji’fb is essentially a finite branching version of CCS,,; with recursion, and the transitions
are given by standard inference rules.

Then the authors define the language of constrained contracts (see Section and the behavioural
compliance, which is defined in terms of computations performed by clients and servers, deadlocks,
and the action v" (see Definition 1 in that paper).

The compliance relation has been further studied, and the most recent accounts of it are given

in [Castagna et al. [2009}; [Padovanil [2010]. Also these papers follow the testing-like approach.
Thus far, the only presentation of the compliance that treats divergence explicitly is [Laneve and
2007], while [Castagna et al.| and [Padovani focus on LTSs of convergent terms; respectively

the LTS of co-inductively generated regular trees

(ccseindb Act))
and the LTS of recursive terms of CCSy,,,
(ccsreefd Act, , —)

At present two styles are used to define the (strong) compliance, uses computations (see
Definition 2.1]), whereas |[Castagna et al., 2009] prefers a co-inductive definition (see
Definition 2.4 there).

The only comparison between the various compliances appeared in the literature is

010]

Chapter [4]

Testing theory was introduced by [De Nicola and Hennessyl, [1984], and the standard reference on the

topic is the “green book” [Hennessy, |1985].

In [De Nicola and Hennessyl, [1984] a semantic theory for CCS is developed, and testing pre-orders

are used to state when two processes are equivalent with respect to a set of tests. That paper
contains the axiomatisation of testing pre-orders on finite terms (see Theorem 4.3.8 there), and define
a denotational model of these pre-orders, which is based on representation trees (Theorem 5.2.10

there). The axiomatisation of the MUST pre-order sheds light also on other equivalences; one example

is the failure equivalence of [Brookes et al., [1984]. This equivalence provides a denotational model
for the language CSP, and its axiomatisation has been discussed by [De Nicolal first in [1983], and then
in an extended paper appeared in 1985l An account of testing theory, failure equivalence, and other

equivalences for concurrent languages can be found in [Sangiorgi, 2012, Chapter 5].

In [Cleaveland and Hennessy, [1993] a connection is established between the MUST testing equiva-

lence ~yusr and a certain kind of bisimulations, the II-bisimulations; this connection is exploited to

show a decision procedure for testing on finite-state processes.

Recently the logical characterisation of the MUST pre-order has been shown by [Cerone and Hen-|

| 213

2010]. In that paper the authors isolate the fragment of recursive Hennessy-Milner logic which
expresses exactly the properties that can distinguish two processes with respect to the equivalence
~aust: P Eyuer ¢ if and only if there exists a formula ¢ such that p satisfies ¢ while ¢ does not satisfy
it.

Chapter

The overall aim of the research on the compliance theory is practical, and largely motivated by the

adoption of web-services.

|Carpineti et al. [2006] is the first paper that shows, by means of examples, that it is possible to

encode fragments of WSDL and WSCL in the proposed language of contracts.

In [Laneve and Padovani, 2007] a subcontract relation is defined as we define our server pre-orders,

but using the behavioural compliance v and requiring also a condition on the interfaces of the
constrained contracts. The authors focus on a set of well-behaved contracts and show that they have
duals, in the sense that if 1[p] is well-behaved then there exists a 1[o] such that 1[p] *™ 1[o] (see
Theorem 3 of that paper).

In view of the limitations of the subcontract relation, for instance its lack of “width extension”,

|Castagna et al| and [Padovani| have introduced auxiliary tools in the theory: filters and orchestrators.

[Castagna et al., [2009] follows the research line opened in |Carpineti et al., [2006], extending the

results. The strong subcontract, C, (see Definition 2.7 there) is the server refinement of the theory, and
an alternative characterisation is proven in Theorem 2.9. To overcome the limitations of the strong
subcontract, a weak subcontract is defined, <. The import of the weak relation is that if 07 < o9 then
it is possible to “filter” the behaviour of o9, so that oo T f(02). Filters are essentially coercions on
the behaviour of contracts, and are meant to hide the interactions that would disrupt the correctness
of the overall system. An effective deduction system for < is provided (see Proposition 3.25). The
authors show also how to encode WS-BPEL activities into contracts, and discuss the

implementation details of filters.

[Padovani[s approach is similar to the one of [Castagna et al.,[2009]. Also in [Padovani,[2010] a weak

refinement for servers is introduced, =<, such that if f : 01 < 09 then o1 C f(02). The filters devised by

and referred to as orchestrators, are more sophisticated than the ones of |Castagna et al.

2009], in that they acts as buffers and mediate the (possibly asynchronous) actions of clients and

servers.

Fair theories Other approaches have been taken to investigate the notions of compliance; for in-

stance |[Bravetti and Zavattarol [2009] are theories inspired by the fair testing of [Rensink and Vogler|
2007]. In this case the theories pertain only refinements for peers, and do not deal with the refinements

for servers and clients. Filters have been adapted to the fair framework in |[Bernardi et al., |2008].

Chapter [6]

To the best of our knowledge, the only papers in the literature that discuss models of the sub-typing

on first-order session types are [Barbanera and de’Liguorol [2010; Laneve and Padovani, 2008] and

our |Bernardi and Hennessy} 2012].

A detailed discussion of first two papers is in Section Our paper contains the theory of
compliance for session contracts that we have described in Section[6.5and Section[6.5] In the paper the
model of -\{%t is defined directly in terms of the compliance pre-orders, as we had not yet investigated

the must pre-orders on first-order session contracts.

214 Chapter 10. Literature Review

Chapter [7]

Sessions and session types have gained much consensus, and fostered so much research as to nearly
overwhelm the novice.

First, we focus our discussion on the feature of session types that pertains our work most, namely
the sub-typing relation; then we comment on other works and give an exhaustive series of pointers to
the relevant literature.

[Dezani-Ciancaglini and de’Liguoro, 2009] overviews the state of the art, and the reader interested
in technical details may find them in that paper.

The advent of computer networks, and the Internet in particular, has called for the development
of means to help programmers check patterns of communication that software perform.

The system of types for interactions put forth by [Hondal, [1993] has laid the ground for the subse-
quent introduction of session types, which are a restricted version of the interaction types; for instance
the types | nat;1& 71 nat;1 is an interaction type which is not a session type, as it is a branch type
that contains an output (1 nat) and an input (} nat).

The idea of session as pattern of information flowing between two programs, via a connection
private to them, has been proposed for the first time by [Takeuchi et all [1994]. There, a concurrent
language with constructs to organise sessions is presented, along with a type discipline based on session
types (see Definition 5.1). Intuitively, session types are meant to capture precisely the information
flow that takes place via a given connection. |[Honda et al., [1998] elaborates further on these ideas,
comparing the need for structured computing with the urging need of primitives for structured com-
munications. The paper by |Honda et al.| contains various examples which illustrate the advantages of
sessions and session types; that paper is also the first account of recursive session types.

By and large, the paper |[Pierce and Sangiorgil [1996] on (sub)typing for mobile processes has laid
the ground for the theory of sub-typing on session types; this theory has been developed by |Gay and
Holel

The first account of sub-typing for session types was given in (1999, The proposed programming
language is a dialect of the pi-calculus; the sub-typing, <, acts on non-session types as proposed
by [Plerce and Sangiorgl, whereas on session types acts as we described in Section [2:1.1]

The sub-typing is given by inference rules to be interpreted in an algorithmic fashion, as the
algorithmic subsort relation of |[Pierce and Sangiorgil To the best of our knowledge, |Gay and Holel
1999] present the fist specification of a standard protocol, the pop3, by means of session types.

The next development of the sub-typing is in [Gay and Holel 2005]. The new relation, denoted
<., is defined co-inductively (see Definition 4 there), and is essentially the one we have presented in
Definition [7.1.5] The differences between Definition and the original definition of |(Gay and Hole

are two,

e the co-inductive sub-typing of Definition allows only one type in the input/output fields of

types, whereas the original definition allows n types
e the original definition treats also standard channel types (i.e. non-session types).

In [Gay and Hole, [2005] the algorithmic sub-typing is still present, and is used to prove that the
relation <. is decidable (see Theorem 4 in that paper). In turn this result is used to define a type
checking algorithm for the proposed programming language.

To add more flexibility to the sub-typing, in |Gay, |2008] it shown a version of finite session types
with bounded polymorphism, along with a sub-typing relation defined inductively on these terms.
The sub-typing is proven decidable (Theorem 3 there), and a type checking algorithm is given.

The most recent account of sub-typing on (session) types is [Gay and Vasconcelos, 2010]. There the
object language is multi-threaded, functional, and the communication, which takes places on buffered

channels, is asynchronous. Session types are used to (a) ensure that threads do not become blocked,

215

and (b) prove statically the bounds on the size of the buffers required by the communication channels;

this result depends on the sub-typing. The authors define the sub-typing by mixing the sub-typing

a la |Gay and Hole| on session types with the sub-typing on function types and pairs as per [Pierce
2002|; there is also an additional rule for linear function,

T—U<:T—U (10.1)

The rule above ensures that a function that can be used exactly once can be replaced by a function

that can be used an unlimited amount of times. The definition of <: (Definition 1) adheres to the

style of [Vasconcelos| 2009a], and shows the set-theoretical construction of the the operator F whose

greatest fixed point is the sub-typing. We followed a similar style, but we defined our functional F s
by means of inference rules.

The various versions of the sub-typing & la are defined in syntactical terms.

Another approach has been taken in Chapter 3], and the paper [Castagna et al.
. puts forth a theory of types and session descriptors for a dialect of the pi-calculus
named PIST. The main result is that the well-typed compositions of processes that (a) are closed
and (b) contain no private channels, enjoy the progress property (Theorem 3.2.22 in the PhD thesis
of Claching).

As for syntax, session descriptors are strikingly similar to CCSy., but types are generated co-

inductively in the style of |[Castagna et al.) 2009]. Moreover, the operational semantics of session

descriptors differ from the one of CCSy,,. The sub-typing on session descriptors is defined semantically;

the construction relies on the techniques of (Castagna and Frischl [2005], and starts from a sub-typing

on base reminiscent of our <.
The sub-typing is but one of the many areas in which session types have been applied. The
oncoming paragraphs are roughly organised by “theme”; in each paragraph we give the pointers to

the relevant literature on session types with respect to the theme.

Programming paradigms The research community has invested much effort in adapting session

types to suit different kinds of programming languages; for example,

e process calculi (pi-calculus, CaSPiS) [Dezani-Ciancaglini and de’Liguorol 2009} (Gay and Holel
(1999, |2005; Mezzina, 2008]

e ambient calculi |[Garralda et al.| 2000]

e functional languages [Vasconcelos| [2009b; |Vasconcelos et al., 2006 and the most recent [Gay
land Vasconcelos, 2010]

e object oriented languages [Dezani-Ciancaglini et al., 2009; |Gay et al., [2012; |Giachino, [2009]

Implementations Implementations of session types also exist,

e in Haskell |Imai et all 2010; Neubauer and Thiemann| 2004; Pucella and Tov, [2008; Sackman)
land Eisenbachl, [2008],

e in Sing#, which is a variant of C#, by [Fahndrich et al., 2006]

e in Java |Gay et al.,|2012, 2010; Hu et all |2008]

e |[Honda et al) |2012] suggests to use the multiparty asynchronous session types presented
in [Honda et al.| [2008] to verify MPI programs.

216 Chapter 10. Literature Review

Logic Linear logic |Girard), [1987] is a useful tool in reasoning on resource ownership, replication,
and phenomenon as interference. Connection between linear logic and session types have been shown
in |Caires and Pfenning), 2010], and simplified in |2012| by [Wadler|

He defines two calculi, respectively called CP and GV. CP is a version of the pi-calculus tailored to
be typed by propositions of classical linear logic, while GV is a slightly amended version of the language
of |[Gay and Vasconcelos, 2010]. Wadler| defines an interpretation of the calculus GV into the calculus
CF (see Figure 6 and 7 in his paper), that preserves types and shows a relation reminiscent of the
Curry-Howard isomorphism, propositions are (session) types, proofs are processes, and commaunication

is the cut elimination.

Deadlock freedom The standard type systems based on session types, as the one used by [Gay
and Holel 2005, are not strong enough to prove that well-typed processes progress. The archetypal

example is the following composition,
x!(3).y!(true).0 || y?(z: Bool).z?(v: Int).0

The composition above is well types, as the two processes run in parallel use the channel z and y in
complementary ways, and the type safety indeed works: if a communication takes places, then there
is no mismatch-between the type of the sent data and the data expected by the input operations.
Nevertheless, the processes above use x and y in opposite order, so no interaction can take place; the
composition is stuck.

This issue has been tackled by |Giachino), |2009] and by |[Dezani-Ciancaglini et al.||2007]. The result
obtained by |Dezani-Ciancaglini et al| is similar to the progress theorem of |Giachino|, which we have

already described.

Higher-order languages In [Mostrous and Yoshida) 2007] two versions of session types for HO7-
calculus have been presented. The first type system, which we refer to as “simple”, relies on a
combination of session types and types of the simply typed A-calculus, with the additional rule in
Eq. . The type safety result (Theorem 3.4) ensures that well-typed processes with balanced
sessions do not reduce into errors. The second type system put forth by [Mostrous and Yoshida is
based on fine grained session types, in turn inspired to the works [Yoshidal [2004} [Yoshida and Hennessy,
2002, and |[Hennessy et al.,2005]. The fine-grained type system allows to type more processes than the
simple type system, and still guarantees that well typed programs do not reduce to errors (Theorem
4.2).

Multi-party session types Most of the research on sessions and their types pertains to binary
sessions, that is communication patterns realised by parties that communicate via two endpoints of a
connection. The consequence is that binary sessions are not expressive enough to model interactions
that do not follow a strict peer to peer logic. For instance, multicasting allows messages to be sent to
a finite number of parties; also, more than two parties may (in some sense) combine their behaviours
to reach a common end.

These facts have called for an extension of session types expressive enough to specify and statically
check the behaviour of n-parties; that is multi-party composition of processes.

The global types of [Honda et al.| 2008] are such an extension. Roughly speaking, a global type
describes the overall communications that n-parties should adhere to. The local type of each partic-
ipant is obtain as a projection of the global type, and the code of the participant is checked against
the local type. The type system of |[Honda et al.| is powerful enough to ensure communication safety

and progress (Theorem 5.5 and 5.12 there).

217

A sub-typing for multi-party session types has been studied by [Padovani, |2011]. The fair sub-
typing defined there follows a testing approach inspired to the fair testing, and it turns out to differ

from the sub-typing & la |Gay and Hole, The fair testing (a) does not allow refinements such as
a @& b < a, for they may hinder the possibility of reaching success; and (b) allows the refinement

a + b < aif bis not a usable action. This is similar to our restricted MUST client pre-order (see

point of Lemma [6.2.9)).

Chapter

To the best of our knowledge, there exist two encodings of session types and the sub-typing & la [Gay]
land Holel into other domains.
|Gay et all [2008] show an encoding of session types in the generic type system (GTS) of [[garashi

land Kobayashi, [2004]. The correspondences obtained are on process reduction, typing derivations (see
Theorem 1 and 3), and type safety. By and large, the outcome of the study of (Gay et al| is that

since reasoning techniques for session types are conceptually fairly straightforward, the effort required

to use the GTS in practice seems not to pay off.

The second interpretation has been put forth by |[Dardha et al.,2012]. The authors are concerned

with the expressive power of session types. The result of their investigation is that session types

and their features can be recovered by using the standard types of pi-calculus [Sangiorgi and Walker|

2001, see Part ITI]. Moreover, results such as preservation and type safety for session types become

consequences of the same results in the standard theory of types.

Chapter [9]

The pi-calculus is the evolution of the CCS that can express the notion of mobility, and was presented
first in [Milner et al., [1992]. The standard books on the pi-calculus are [Milner| [1999], and [Sangiorgi|
land Walker] 2001]; while [Milner[s work is an introductory text, the book by [Sangiorgi and Walker| can

be considered as the encyclopedia of the pi-calculus.

The pi-calculus has two remarkable features. First, many notions such as labels, channels, variables,
pointers, and so forth are replaced by names. Processes operates on names, and mobility is modelled
by name passing. This leads to a great simplification in the formalism, while retaining the expressive
power of usual programming languages. The second feature, shown by , is that even
though formally only names can be passed around by processes, this is enough to represent also the

mobility of processes (i.e. programs) themselves.

218 Chapter 10. Literature Review

Chapter 11

Conclusion

Truly there is no such thing as finality.

— Bram Stocker, Dracula

11.1 Summary

In this thesis we have taken a foundational approach, and proposed two ways to formalise the correct-
ness of a software system, namely the MUST testing and the compliance relation. This has allowed us

to propose a series of pre-orders that let us understand and answer rigorously questions such as

Q) if r || p is a correct system, what relation between p and ¢ guarantees that r || ¢ is a correct system

as well?

In particular, by proving the behavioural characterisations of the pre-orders generated by MUST and ,
we have laid bare a series of principles that let us replace a given piece of software, with another piece

of software, without hampering the overall correctness of the system.

We started our investigation in Chapter [d] studying an extension of the well-known testing theory
on processes and exhibiting the characterisation of the MUST pre-orders for servers, clients, and peers.

In Chapter [f] we moved to the compliance theory, and the compliance pre-orders for servers, clients
and peers. The results of Chapter [d] proved to be useful touchstones to characterise the compliance pre-
orders. Indeed, common ideas lay at the heart of the behavioural characterisation of the compliance
and the MUST pre-orders, for instance traces, convergence, usability, and acceptance sets, to name a
few.

The MUST testing and the compliance relation, when used in LTSs as general as the one of processes,
generate pre-orders that do not allow width extension: a [Z a + b.

Because of this reason in Chapter [6] we focused our attention on the LTS of session contracts, and
we have studied the MUST pre-orders and the compliance pre-orders that emerge in the restricted LTS
of session contracts. It turned out that the pre-orders of both families, when combined, provide a
fully abstract model of the sub-typing on first-order session types.

Motivated by this result, in the second part of the thesis we have enriched the language of session
contracts with higher-order terms, thereby providing a fully abstract model of the well-known sub-
typing a la |Gay and Hole| on session types.

In this thesis we began our exposition from processes and MUST, and we concluded it discussing
session types and sub-typing, passing through the theory of compliance. Step by step, we have
motivated the oncoming ideas, and we have tried to show the connections between the theories, so as

to unravel them in an organic and harmonious way. The reader will decide the extent of our success.

219

220

11.

Chapter 11. Conclusion

2 Open questions

Death: Don’t you ever stop asking?
Antonius Block: No. I never stop.

— Ingmar Bergman, The Seventh Seal

This section contains a series of problems which arise from our results. The order in which we

present the questions follows the structure of the chapters.

Q1)

Q2)

Q3)

Q4)

Q5)

Q6)

A relation on basic parallel processes (BPP) called type compliance and denoted o is presented
by |Acciai and Boreale, |2008]. BPP is not a subset of our language for processes, because BPP
has replication, whereas CCSy,; has not. Does an encoding of BPP into CCS,,, which preserves
the behaviour of terms (possibly up-to weak bisimulation) exist? If such an encoding exists then
it is conceivable that our compliance relation, -, coincides (possibly up-to weak bisimulation)
with o. This would prove that the relation Cgyy is the sub-typing, thereby answering a question

posed in the last section of [Acciai and Boreale, [2008].

In Section we introduced the pre-order for clients Ecm' The obvious question to be answered
about Ecm is whether that relation is decidable or not. Given the non-trivial role played by

the usability in the characterisation of & a problem related to the decidability of L5, . is the

~CcLr? ~/CLT
3 13 MUST
decidability of Uy*".

The MUST peer pre-order 5, that we defined in Section is given by the relation MUsST™.
The relation MUST™ does not require the peers to report success at the same time, so one may
introduce a synchronous version of MUST', say MUST™, that require this. That is » MUST*™ p
if and only if all the maximal computations of 7 || p contain a state r’ || p’ in which 7’ N
and p/ .

In the obvious way we obtain the synchronous MUST peer pre-order C_ . Plainly &, € &_

~snc’
for instance .1 &, 1 + .0, whereas .1 £

~p2p

1 + «.0; the peer @.1 lets us prove the last

snc

inequality.

What is the behavioural characterisation of the the synchronous MUST peer pre-order?

A second pre-order for clients that we introduced is Cepr (see Section [5.2). As for &

~CLT?

the open
question regards the decidability of Cerp. In turn this leads to the question is U, decidable? A
starting point to answer the question may be Section 4 of [Padovani,2010], in which a co-inductive

characterisation of viable contracts is proven.

Some peer pre-orders studied in the literature, see for instance [Bravetti and Zavattarol [2009;
Padovani), 2011], are formulated in terms of multi-party systems; that is systems with any finite

number of distinguished participants,

pillp2 sl pn

Our pre-orders for peers (see Definition and Definition [5.3.1)), on the contrary, take into
the account only two participants. Let us denote with EZQP the pre-order defined in terms of n
participants being satisfied, with n > 2. It is easy to prove that if p EZQP q then p Ep2p q. The
open question is the converse, is it true that if p Epzp q then p E:zp q for every n > 27 If it is
not true, what is, then the characterisation of E?QP.

The same question can be asked also about Cpop.

In Chapter |8] we have seen that there exists a straightforward way to map session types into

contracts, namely the function M, which preserves the sub-typing relation on types; the image

Q7)

Q8)

Q9)

Q10)

Q11)

Q12)

Q13)

11.2. Open questions 221

of <t through M being the pre-order ChS,. We have not addressed the converse question; does a
mapping from contracts to session types exist, which maps any one of the behavioural pre-orders

we studied, into the sub-typing relation?

We have seen that in general the MUST server pre-order and the compliance server pre-order are
not comparable (see Eq.) Then we have shown that in the LTSs (CCS&T, Act; ,, —),
(ccstt Act,,, —), and (SCy,, Act, ,, —) the server pre-orders are comparable, and in the

WT 9

second and third LTS they coincide (Theorem [5.1.20} Corollary ,

Ufb _ —y.b fo _ —fo
ESVR. - ESVR7 ESVR - ESVR

A question that we have not addressed is whether the conditions of being convergent and finite

branching are sufficient for the server pre-orders to coincide.

More formally, if S is some set of states, is it true that if the LTS (.S, Act,,, —) is convergent

. . S _ —s
and finite-branching then T7 = E5.7

f
We have seen that 5, # Ceur, and that S # T (Eq. 1) Example .
We conjecture that in the LTS of finite (i.e. non recursive) session contacts, (SC/™", Act, ,, —),
in fin
the equality CSC :EifT holds true.

What conditions on the LTS are necessary to prove the equality between the client pre-orders?

Is there a non-trivial LTS in which the refinements for clients coincide?

In |Cerone and Hennessyl [2010] a logical characterisation of the standard MUST pre-order has
been proven. This lets us prove that p %MUST q if there is some formula ¢ that is satisfied by p
and not by q.

What is the logical characterisation of the MUST client pre-order? What are the logical charac-

terisations of the compliance pre-orders?

In the opening of Chapter @we pointed out that the pre-orders on the general LTS
(CCSyr, Acty v, —)

do not allow width extension, that is refinements such as the following o < o + S. In the LTS of
session contract (SCy,, Act,,, —>), on the contrary, the server and the client pre-orders allow

width extension.

Which restriction on an LTS are necessary so that the MUST and the compliance pre-orders allow

width extension?

In Section we put forth a characterisation of the pre-order C which is syntax-oriented

~CLT
(Proposition [6.2.12)). The characterisation, though, is not completely syntactical, because it

involves the set of usable clients Z/{ELCT“’, which we have not characterised syntactically.

What is the syntactic characterisation of the set ungfo?
In Section we have shown a fully abstract model of the relation < . Can the interpretation

of session types into session contracts, and the language of session contracts be adapted so as to

provide a model also of the sub-typing on standard channel types?

The dependent compliance relation lets us exhibit a model of the sub-typing <s,: on higher-order
session types (see Theorem [8.4.9)).

Does the dependent MUST testing provide the same model of <, given by the dependent com-

pliance?

222

Q14)

Q15)

Q16)

Q17)

Q18)

Chapter 11. Conclusion

What is the relation between the fair sub-typing of [Padovani, |2011] and the MUST pre-orders on

session contracts?

To what degree can the model exhibited in Theorem be extended to the polymorphic types
of |Gay| 2008]?

What are the implication of the interpretation of <spt given in [Dardha et all 2012]? To What
degree CCSy,-can be used as a model for the sub-typing for the types of the pi-calculus?

The results of Chapter [§| rely heavily on the fixed points of particular functionals. For instance
the model of Zgpt is provided by v X.F Conr (X)NnF EES‘R(X). Have the functionals F Cer and FEW

a unique fixed point?

Can we obtain the session contract pre-order by applying the functionals F L and FE% one

after the other? Formally, is the following equality true?

VX_]:EE'ET (fE';‘\OR (X)) :I:ho

—pP2pP

Appendix A

A complete lattice of pre-orders on

higher-order session contracts

Many of the relations used throughout the thesis are defined as fixed point of functions (or rule
functionals). To prove the existence of these fixed points we rely on the Knaster-Tarski theorem,
which we can apply only to endofunctions on complete lattices. This raises the problem of finding a
suitable complete lattice each time we need one. In particular, the functions Fer (Lemma
and Fgry (Lemma are monotone, but their domain is not closed with respect to set inclusion,
so we have to find another operation to obtain the least upper bound of PRE(SCZ,).

Example A.0.1. In this example we show that if we order pre-orders by using the set inclusion C,
the the operation U on pre-orders does not give the LUB of its two arguments. This is a consequence
of a more general fact that pertains transitive relations.

Let 7 be the set of transitive relations on session contracts. A natural way to order the elements
of T is the set inclusion. The operations that give the LUB, and the GLB on sets are U and N.

The structure (7, U) is not a magma. See also Figure Let

Ty ={(?1:.1, 0)}
Ty = {(0, 11.1)}

Both relations are trivially transitive, thus they are in 7. Consider the naive candidate as LUB of T}
and T5, that is 77 U T>. We know by construction that

1,0)eThUT (0,1.1)eThUTs

Note, though, that (?1;.1,!1.1) & 71 U Tz, so Ty U T3 is not an element of 7. This means that if we

order transitive relations according to C, the relation 77 U T, can not be a LUB of 77 and T5. O

The example above shows that the problem lies in the naive use of the operation U to (try to)
construct the LUBs of objects. To provide a (complete) lattice on transitive relations, we have to use
operations that preserve the structure of “being transitive”, and the operation U does not.

The right operations are the transitive closure of the union of sets, and the intersection on sets;

we denote them as follows,

|| x=[UJ{o|oex}*
[]x={oloex}

Hereafter we will use the infix notation when using LI and M as binary operations.

223

224 Appendiz A. A complete lattice of pre-orders on higher-order session contracts

{(71,.1, 0), (0, 11.1), (?1.1, 11.1)}

|

{(71,.1,0),(0, '1.1)}

- ~
- ~
- ~
- ~
-~ ~

{(?11.1, 0)} {(0,11.1)}

Figure A.1: The result of the operations U (dashed arrows) and U (dashed and solid arrows).

Example A.0.2. Consider again the relations 77 and T3 of Example The definition of U
implies that
Ty UTs = {(?1:.1, 0), (0, 11.1), (?1,.1, 11.1)}

The relation 717 LI T5 is the smallest transitive relation that contains 77 and T5. O
To prove the result of this appendix, we need an auxiliary lemma.
Lemma A.0.3. Let Y C PRE(SC2,), and O € Y. If for every P €Y, P C O, then | |Y CO.

Proof. Let B=J{P | P €Y }. Fix a pair (01, 03) € |]Y. Note that by definition of | |, (¢1, 03) €
L]Y if and only if o1 [B]T o3.

We prove that if o1 [B]t o3 then 010cs; the argument is by induction on the derivation of
o1 [B]T os.

Base case In this case the derivation that o1 [B]T o3 is due to the axiom in Figure

- B _
T (01, 03) €B; [TRC-A]

The side conditions and the definition of B ensure that there exists a P € Y such that o1Po3. The
hypothesis that for every P € Y the inclusion P C O holds true, implies that o1 Oos.

Inductive case In the inductive case the last rule in the derivation of oy [B]* o3 has to be [TRC-R],

and the derivation has the following form,

The inductive hypothesis ensures that 01Oocs and 02Oc3. The transitivity of O implies that 0;Ocj.
O

Lemma A.0.4. The pre-order (PRE(SCZ,), C) is a complete lattice.

Proof. We have to prove that every subset of PRE(SCf{O) has least upper bound and greatest lower
bound. Let X be a subset of PRE(SC2,), that is a set of pre-orders on higher-order session contracts.

We show that [] X is the greatest lower bound of X. We have to prove two things:
1) forevery O € X, [1X CO

2) if O is a lower bound of X, then O C[]X

225

Let O € X; to prove 1) we have to show that (| X C O. This is obvious in view of the definition
of set intersection. To prove 2) above let O be a lower bound of the set X; we have to show that
O CNX. As Oisalower bound, O C P for every P € X. This and the definition of set intersection
imply that O C N X.

Now we show that | | X is the least upper bound of X:

3) forevery O e X, O C | |X
3) if O is an upper bound of X, then | | X C O

Let O € X; 3) above follows from the following set inclusions

oc| f{rplrex}yciiPrIPex}it=| X

To prove 4), let O € X and assume that P C O for every P € X. Lemma implies that
L] X CO. O

226 Appendiz A. A complete lattice of pre-orders on higher-order session contracts

Appendix B

Necessary and sufficient conditions

In Section [8.I] we have proven that if we restrict our attention to the pre-orders on higher-order session
contracts, then we can provide a characterisation of the dependent client pre-orders, and also show
that the function AX. CX

transitive relation (Corollary [8.1.14]).

In this appendix we explain why it is necessary to use pre-orders to achieve the results of Section

is monotone. We have proven that the fixed point vX.F=or(X, X) is a

The first example pertains the existence of dual session contracts; in the higher-order setting it is

not an obvious fact.

Example B.0.5. [Strong totality is necessary |
In Lemma we have proven that if a relation B is strongly total, then DUAL(B) is total.

In this example we show that if a relation B is not strongly totalthen DUAL(B) is not a total B-
compliance relation. This is true because if B is not strongly total, then there exists a session contract
p that does not comply with any other session contract. Let us see why.

Suppose that B be not total. It follows that there exists some p such that for every &, (a) p B &,

r (b) 6 B p.

Without loss of generality we can assume (a), and let p =1(p).1. Thanks to (a), we can prove that

for every o, p || o 7L> we can prove also that p 7L> thus Definition [7.2.4] ensures that p /A o. O

The next examples show that the relation B has to be a pre-order if we want our syntactical

characterisation of C5 . to be true.

Example B.0.6. [Reflexivity is necessary]
Let B be a binary relation on session contracts, that is not reflexive. In this example we show that
Lemma is not true for the pre-order C5 .. In other terms, we prove that

—CLT Z —CLT

We have to exhibit a pair in C5, which does not satisfy any one of the points (i) ...(??) of
Lemma B.T.5

There exists a session contract p such that p B p. The argument depends on B being strongly total
or not. We discuss first the latter case.

If B is not strongly total, then Example implies that there exists a p =!(p).1 such that

{olpisa}=10
This let us prove that p C5?1.1. It is routine work to check that the pair

(1(p).1, 71.1)

227

228 Appendiz B. Necessary and sufficient conditions

does not satisfy any of the points point ({i) ... point of Lemma
Now we define a relation B which is strongly total, but not reflexive; and then we exhibit a pair
in CB ., that does not satisfy any of the points in Lemma

Let

B =T, \{(71.1, 70.1), (111, 11.1)}
U{(11.1),(1, 71.1)}
U{(?1.1, '1.11.1), ('1.1, '1.11.1)}

The relation B is not reflexive, as 1.1 3!1.1; though, the relation is strongly total: for every p € SCyo
we can show a o such that p B o or 0 B p. As to the pairs that we have added to Zy, in the construction
of B, we depict them below, where the arrows connects the first elements to the second elements of

the pairs.

The picture shows that if we think of B as a pre-order, then we can see that the terms !1.1, and 71.1
have a LUB and GLB, but they are not related by . This is the property of B that makes the example

work.

Let p; =7('1.1).1 and py =7(?1.1).1. The bulk of the work is to prove that p; C5 . pa; to show

this, it suffices to prove that the relation

R'={(p2;0) | ppAs0}

is a co-inductive B-compliance relation. Lemma [3.3.10] ensures that we can prove a different result,
that is that the relation

R={(p2,0) | pr g0}

is a co-inductive B-syntactic compliance relation. We are required to prove an implication: if ps R o,
then (p2, o) € F(R,B). To prove the consequences, if p’ R o', then it is enough to a one step
derivation of the form o

P2 _% g
done by instantiating one of the rules in Figure

Let p R o, either p =1 or p = py. In the former case, we have the derivation

A-GOAL
po []
In the latter case, p1 % 0. Given the shape of p;, the fact that p; 4} o can be proven only by the

derivation
ldgo’ . ' 21 1(5): RE
T o =1(6).0",7(11.1) xp!(6); [R-ETA]

From the definition of <, it follows that ¢ B!1.1. The construction of B guarantees that 6 = 1. So
far, we have proven that if p; -} o, then (a) o =!(1).0’ and (b) 1% o’.

Since 1 B?1.1, the definition of >t implies that ?(?1.1) pag!(1); moreover, by construction, we have

229

1R o', thus we have the derivation

ilg(ﬂ ?(71.1) xip!(1); [R-ETA]
p2 50 7

We have shown that every pair in R, is also in F ' (R, B). Given the definition of R, it follows
that if p; -} o then py 4% 0. Thanks to Lemma we have proven that p; Efm 02

To conclude the example, we have to show that the pair (p1, p2) does not satisfy any of the points
(a) ...(g). Since py =?('1.1).1 and p; =?(?1.1).1, the only point that could be true is point (i),
but !1.1 j371.1, thus point is false. O

Example B.0.7. [Transitivity is necessary |
In this example, we show that if B is a binary relation on session contracts, which is not transitive,

then Lemma is false, that is

B B
jCLT g ECLT

To this aim, we define the following relation,
B=TIn, U{(1,0), (0,'1.1) }

The relation B is not transitive, because 1 B0 and 0 B!1.1, while 1 B!1. 1.

Let p; =!(0).1 and let po =!(1). 1. We prove that p; <5 ps. It is enough to show a prefixed point
of F=ar, that contains the pair at hand. Let the candidate prefixed point be R = {(p1, p2), (1, 1)}.
We are required to prove that R C F=as(R, B); this amounts in showing that a) (1, 1) € FZar (R, B),
and b) (p1, p2) € Fax(R,B). To prove both points we have to show an application of one of the
rules in Figure which has as consequence one of the two pairs at issue.

The proof of a) is the derivation

———— [A-GoaL-C
I |
The proof of b) is the derivation
1=<5.1
——5—— 1B0; [r-OuT-H]
P1 Zcur P2

It follows that p; jgm, p2-

Now we prove that p; Z5. ps. We have to exhibit a session contract o, such that p; 45 o, and
p2 7 0. Let ¢ =7(!1.1).1; this is our candidate 0. To see why p; g o, note that the relation
R={(p1, 0),(1, 1)} is contained in a co-inductive B-compliance relation. To conclude the example,
we have to prove that ps 7ig 0. The witness that B is not transitive is the fact that !(1) pag?(!1.1).

T v
This implies that py || o /. Since ps —/~ 3, it follows that py Az o.
In this example, using the fact that B is not transitive, we have exhibited two session contracts

p1, p2, such that p; =B ps. and that p; Z5 . po. O

To prove that vX.F=ax (X, X) we used Proposition ??. That proposition essentially states when
the image via F=ar of two relations is a transitive relation. This is the case is both the parameters of

FZax are transitive. We prove this in the next two examples.

Example B.0.8. In this example we show that if 7 is a transitive relation on session contracts, and
B is not, then F=ux (B, T) need not be transitive.

Let T= {(1, 1)}, and let B= {(1, 0),(0, !1.1)} We exhibit three session contracts pi, p2, and p3
such that

{(p1, p2), (p2, p3)} © F==(B,T), (p1, p3) & F=(B,T)

230 Appendiz B. Necessary and sufficient conditions

This proves that F=ax (B, T) is not transitive. Let

The proof that (p1, p2) € F=ar(B,T) is the derivation

1<8B
S 0 17 1; [R-OvuT-H]
1(1).1 <B_1(1).0

—CLT"

The proof that (pa, p3) € F=ax(B,T) is the derivation

0=<5.11.1
—5 1T 1; [R-OuT-H]
1(1).0 <B_1(1).11. 1

To prove that (p1, p3) & F=ar(B,T) we have to show that no inference rule let us derive
P1 ngT P3
Because of the form of p; (or, equivalently, p3), the only inference rule that can be applied to derive
(p1, p3) is [R-OUT-H]; we see easily, though, that the premises of the rule are not satisfied. Let us
consider the derivation
1=<5. 1.1

— L 17 1; [r-Out-H
1(1).1 <8 _1(1).J1.1 |]

The premises require the pair (1, !1.1) to be in the relation B; this is not the case. Note, moreover,
that 1 B'1.1 is the witness of the fact that B is not transitive. This means that we have shown that

FZar(B,T) is not transitive, because B is not. O

Example B.0.9. In this example we show that if 7 is a transitive relation on session contracts, and
B is not, then F=ar(T,B) need not be transitive. Let the relations B and T be defined as in the
previous example, 7= {(1, 1)}, and let B= {(1, 0), (0, !1.1)}; and let

p2 =7(0).1

We prove that F=ar (T, B) is not transitive, by showing the following

{(Ph pZ)v (02, pJ)} c -FjCLT(BvT)a (pl’ PS) g fj(LT(Bﬂ T)
The proof that (p1, p2) € F=ex(T,B) is the ensuing derivation

1=<5.1
" 1 B 0; [R-IN-H]
?(1).1 =B..7(0).1

—CLT *

The proof that (ps <5, p3) € F=ax(T,B) is the ensuing derivation

1<5.1
i 0 B'1.1; [r-IN-H]
7(0).1 =B 7(11.1).1

—CLT *

Now we show that it is not possible to derive the pair (p1, p3). Given the form of ps, the only rule

231

that could let us derive the pair at issue is [R-IN-H]; the side conditions of the rule, though are not

satisfied:
1<5.1
: 1 B!1.1; [R-IN-H]
?(1).1 =B..72('11.1).1

—CLT *

Plainly, we have 1 J3!1.1.
In this example, we have used the witness that B is not transitive, to prove that neither F=cr (7", B)

is transitive. O

Now we turn our attention the monotonicity of the function AX. C . In the next two examples

we show that if we let X range over relations that are not transitive, then

1. the function AX. £ is not monotone

2. Lemma is false

Example B.0.10. [Strong totality is necessary | Let R be a relation which is not strongly total.
There exists a relation R’ such that R € R/, and T}, ¢ CR.

We can assume without loss of generality that there exists a session contract p such that p R & for
every & € SCyo; that is R is not total. If R™! is not total the argument is similar to one we use now.

Let p1 =!(p).1; thanks to the assumption on p, we can prove that for every stable o we have

T v
p1 || o /r; since p /> it follows that p Az 0. We can use this to prove that p Az o for every
o € SCyo. Definition [B:1.1] ensures that

{0€SCho | pirc}=0

so we trivially have p T, po for every ps € SCyo.
Let us fix po =!1.1, and let R'=R U{(p, p)}. We have !(p) xg-?(p), and we can prove that the
relation

{(1(p)-1, 7(p)- 1), (1, 1)}

is a co-inductive compliance relation, hence p 4/ ?(p). 1.
To prove that p ,Z?L'T p2, it suffices to observe that ps Ag/?(p).1. The observation follows from

p2 || ¢ >, p2 >r+, and condition of Definition

We have exhibit a relation R’ such that R C R’ and that E?LT g EZ}L/T, so the lemma is proven.

O

Example B.0.11. In this example we show that for Lemma [8.1.15| to be true, it is necessary that
the relation 7 in its hypothesis be transitive, as long as we assume R reflexive.

First, we define two suitable relations.

R = Tn U{(1.1,1)}
R = RU{(0,'1.1)}

The relation R is reflexive, because it contains the identity relation; and the relation R’ is not
transitive, because

0RI1.1, N.1R1, 0R' 1
By construction, we also know that R C R'.

(a) We prove that ?(!1.1).1 CX ?(1). 1.

Suppose that ?(11.1).1 4% o; it follows that o has to interact with ?(!1.1). 1, and this can happen
only via the action !(!1.1). From the definition of i it follows that o can interact also with 7(1),
and so 7(1).1 4% o.

232 Appendiz B. Necessary and sufficient conditions

(b) Now we prove that 7(11.1).1 ZR.7(1). 1.

We have to show a ¢ such that ?(!11.1).1 4g+ o, and ?(1).1 Az/ 0. Let o =!(0). 1. The definitions
of 1 and of R’ ensure that ?(11.1) >z !(0), thus we can prove that

S={(?2(1.1).1, o), (1, 1)}

is a co-inductive compliance; it follows that ?(!11.1).1 4%’ o.
Consider now the composition 7(1).1 || o; the witness that R’ is not transitive is the fact that

T v
0 R’ 1, and this implies that ?(1) tdg/!1(0). It follows that ?(1).1 || o —>; since ?(1).1 —/ox/
Definition ensures that 7(1).1 Az o.

The argument we have unravelled shows that CX EZ}L; O

In Lemma [B.0.15| we prove that the function AX. CX . is monotone not only if X ranges over

—CLT

pre-orders, but also if X ranges over another kind of relations. We define these relations now.
Definition B.0.12. [Transitive identity |

We say that a relation R C A x A is a transitive identity, if and only if for every a R b and b R ¢
imply a = ¢; that is [R]TC Z4. O

Notice that to be transitive identity is a property independent from the property of being a reflexive

relation. We show this in the next example.

Example B.0.13. In this example we prove that the properties of being reflexive, and of being a

transitive identity, are independent; that is
a) to be reflexive does not imply to be a transitive identity
b) to be a transitive identity does not imply to be reflexive

Let R be the relation
Iho U{(07 1)}

As 7, C R, the relation R is reflexive. The proof that R is not a transitive identity is that
{(0,1),(1,1)} C R and 0 # 1.
Let S be the relation

To \{ (1, 1), (11.1,71.1) JU { (1, 11.1), (1.1, 1)}

The relation S is not reflexive, because 1 § 1. We prove that S is a transitive identity. Let o S ¢’ and
o’ 8 ¢”; we have to prove that ¢ = ¢”. If ¢ = 1, then by construction it must be ¢’ =!1.1; hence,
again by construction, it must be ¢” = 1; we have thus ¢ =1 = ¢”. A similar argument can be used
if o =11.1.

If o ¢ {1,!1.1}, then o Iy, o', thus ¢ = o’. It follows that ¢’ & {1,!1.1}, and so ¢’ Zy, 0”. Tt

follows 0 = o/ = ¢”. O

The reflexive relations and the transitive identities are not disjoint; there is one relation which is

reflexive and a transitive identity.

Proposition B.0.14. Let R be a reflexive transitive identity on the set A. The relation R is the
identity.

Proof. We have to prove that R =Z4. The set inclusion Z4 C R is true because R is reflexive, so we
have to check only why R C Z4. Let a R b; we have to show that a Z4 b. As R is reflexive we know
that @ R a; it follows that a [R]* b. The hypothesis of R being a transitive identity ensures that
aZyb. O

233

The next lemma implies that to let X range over pre-orders is a condition sufficient for AX. CX .

to be monotone, but it not necessary.

Lemma B.0.15. Let R be a strongly total transitive identity on session contracts. If R C R’ then

R R’
Eoir € Ecir

Proof. We have to prove that for every p1, ps € SCyo, if p1 Q?m p2 then p; 4x/ o implies ps 4/ 0.

Thanks to Lemma |7.2.12) the latter implication is equivalent to if p; %, o then py %, o.
Lemma [7.2.7] ensures that it is enough to prove that if p; 4%, o then ps 4%, 0. We prove this fact.
Let

S={(p1,0) | p1 E&x po2, p1 s 0}
Plainly, p2 S o; so to prove py %, o it suffices to show that S is a co-inductive R/-syntactic compliance
relation.
The argument is by case analysis on the depth of ps and o, and then on the form of UNF(p;).

Suppose that depth(ps) + depth(o) > 0. If po = px. pa, then note that depth(pz) > 0. Corollary
and Lemma ensure the following facts,

UNF(p1) CR, UNF(p2), UNF(p1) H UNP(0)

The definition of S ensures that UNF(p2) S UNF(o). It follows that we can apply [R-UNFOLD],

UNF(p2) 4%, UNF(0)
p2 A%, o

depth(p2) + depth(o) > 0; [R-UNFOLD]

Now suppose that depth(pz) + depth(c) = 0. Now we reason by case analysis on UNF(p;); all the
cases are straightforward, except the higher-order ones. For instance p; =7(p1).p]. We discuss this
case. If UNF(p1) =7(p1).p}, we show that we can apply rule [R-ETA] to prove ps 4%, o.

We have to prove four things: 1) ps =7(p2).p5, 2) 0 = 0.0", 3) 7(p2) <ig 6, 4) ph R' o’.

We know that UNF(p1) 4%, o and that UNF(p;) T, po.

1) As by hypothesis R is strongly total, we know that s R p; for some p € SCyp, so the definition of
> ensures that 7(p1) dg!(p).

Let p} 4% ¢o”; Lemma |7.2.17| and the totality of R ensure that one such ¢” exists (ie. DUAL(p], R
) # (). We can prove that UNF(p1) "%!(p).0”.

From p; CX, po, it follows that pa +%!(p).0”, thus pa =?(p2).ph, p R pe, and pj CX ph. We have
proven 1). By hypothesis R is a transitive identity, thus from p; R p and p R pe, it follows that

p1 = p2 (B.1)

2) The fact that UNF(p;) 1%, o implies that o =!(6).0’, 6 R’ p1, and p} 4%, o’. We have proven 2),
with 6 =!(4).

3) We prove ?(ps2) xig/!1(6). It suffices to show that & R’ pa. We know that & R’ p1, thus the equality
in ensures that & R’ ps.

4) To prove 4) we have to exhibit a p” such that p” CX, pb and p” %, o’. The p” we are after is p},

for we have already proven that

/ ’
pl E(LT p2 and P1 _{;192/ g

234 Appendiz B. Necessary and sufficient conditions

We are now aware of two sets of conditions which are sufficient to prove that AX. CX . is monotone.
These conditions essentially are that X range over pre-orders, or over transitive identities.

We prove that these conditions on X are necessary for AX. CX.. to be monotone.

Example B.0.16. [Reflexive relations or transitive identities are necessary |

In this example we show that for the function AX. CX,. to be monotone, it is necessary that R be a

reflexive relation or a transitive identity.

We define an R which is nor reflexive, neither a transitive identity; and a transitive R’ such that
R C R/, and we prove that CX | E?L/T

Consider the following relations.

R TU{(1,11.1),(1,11.11.1), (1. 1, 71. 1)} \ {(11. 1, 11.1)}
R’ = R U{((1).1,11.1), (I(1).1, 71.1)}

The relation R is not reflexive, because !1.1 R!1.1, and it is not a transitive identity, because
{(1,1),(1,'1.11.1)} € R and 1 # '1.!11.1. We can prove that the relation R is strongly total; the
pair (1.1, 71.1) is in it exactly to this aim. Plainly, R C R’, moreover the relation R’ is transitive.
We prove that
?7('.1).1 2% 7('1.1).1

—CLT *

v
Let ?(11.1).1 4% o; since ?(11.1).1 />, it follows that o must interact with 7(!1.1).1; we can prove
that o performs the action !(1). As 7(!11.11.1) g !(1), it follows that ?7(11.11.1).1 4z o.
Now we prove that
?2(11.1).1 zR 2(11.11.1). 1
On the one hand, we can prove that ?(11.1) g/!(!(1).1); this is enough to show that the following
set

{(201.1).1, 1((1). 1). 1)), (1, 1)}

is a co-inductive compliance relation (with respect to R’). It follows that
?(11.1). 1 4% 1(1(1).1).1

On the other hand, we have 7(!1.11.1) pég/!(1(1).1), thus ?(11.11.1). 1 ||!(!(1).1).1 7TL>; moreover,
v
2(11.11.1). 1 A/ 1(1(1).1). 1

AsRCR and CX.. € E?L/T, we have proven that R has to be reflexive or a transitive identity, in

order for AX. CX | to be monotone. O

Appendix C

Monotone functionals

Throughout the this thesis we have used (co)inductive definitions; that is we have used least and
greatest fixed points of suitable rule functionals. To ensure that these fixed points exist, it is necessary
that the functionals be monotone. The statements that guarantee the monotonicity of the functionals

we defined are collected in this appendix. Their proofs are obvious, and we omit them.

Lemma C.0.17. The rule functional F <& is monotone.

Lemma C.0.18.
Lemma C.0.19.
Lemma C.0.20.
Lemma C.0.21.
Lemma C.0.22.
Lemma C.0.23.
Lemma C.0.24.
Lemma C.0.25.
Lemma C.0.26.
Lemma C.0.27.
Lemma C.0.28.
Lemma C.0.29.
Lemma C.0.30.
Lemma C.0.31.
Lemma C.0.32.
Lemma C.0.33.
Lemma C.0.34.
Lemma C.0.35.

Lemma C.0.36.

The functional 7' is monotone.

The functional F 7 is monotone.

The rule functional F . is monotone.

The rule functional F; is monotone.

The rule functional F—,, is monotone.

The rule functional Fj;,, is monotone.

The rule functional F); is monotone.

The rule functional F,e, is monotone.

The rule functional F<5%" is monotone.

The rule functional F=at" is monotone.

The rule functional Fpy,;, iS monotone.

The rule functional F=&+" is monotone.

The rule functional F=t is monotone.

The rule functional ™ is monotone in its first variable.
The rule functional 7" is monotone in its first variable.
The rule functional Fpyar is monotone in its first variable.
The rule functional F=& is monotone.

The rule functional F=er is monotone in its first variable.

The rule functional F=sr is monotone in its first variable.

Proposition C.0.37. The rule functional F, is monotone in its first argument.

Lemma C.0.38.

The rule functional F- is monotone.

235

236 Appendiz C. Monotone functionals

References

Acciai, L. and M. Boreale (2008). A type system for client progress in a service-oriented calculus. See
Degano et al.| [2008], pp. 642-658.

Aceto, L., A. Ingélfsdéttir, K. G. Larsen, and J. Srba (2007). Reactive Systems: Modelling, Specifica-
tion and Verification. New York, NY, USA: Cambridge University Press.

Arnold, A. and D. Niwinski (2001). Rudiments of p-calculus. Studies in Logic and the Foundations

of Mathematics. Elsevier.

Barbanera, F. and U. de’Liguoro (2010). Two notions of sub-behaviour for session-based client /server
systems. In T. Kutsia, W. Schreiner, and M. Ferndndez (Eds.), PPDP, pp. 155-164. ACM.

Barwise, J. and L. Moss (1996, August). Vicious Circles. (Center for the Study of Language and

Information.

Bernardi, G., M. Bugliesi, D. Macedonio, and S. Rossi (2008). A theory of adaptable contract-based
service composition. In V. Negru, T. Jebelean, D. Petcu, and D. Zaharie (Eds.), SYNASC, pp.
327-334. IEEE Computer Society.

Bernardi, G. and M. Hennessy. Modelling session types using contracts. Mathematical Structures in

Computer Science.

Bernardi, G. and M. Hennessy (2011, Aug). Modelling session types using contracts. Technical Report
TCD-CS-2011-7, University of Dublin, Trinity College.

Bernardi, G. and M. Hennessy (2012). Modelling session types using contracts. In S. Ossowski and
P. Lecca (Eds.), SAC, pp. 1941-1946. ACM.

Bernardo, M., L. Padovani, and G. Zavattaro (Eds.) (2009). Formal Methods for Web Services, 9th
International School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SEM 2009, Bertinoro, Italy, June 1-6, 2009, Advanced Lectures, Volume 5569 of Lecture

Notes in Computer Science. Springer.

Best, E. (Ed.) (1993). CONCUR ’93, jth International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, Volume 715 of Lecture Notes in Computer

Science. Springer.

Brandt, M. and F. Henglein (1998). Coinductive axiomatization of recursive type equality and sub-
typing. Fundam. Inform. 33(4), 309-338.

Bravetti, M. and G. Zavattaro (2009). Contract-based discovery and composition of web services. See
Bernardo et al.[[2009], pp. 261-295.

Brookes, S. D., C. A. R. Hoare, and A. W. Roscoe (1984). A theory of communicating sequential
processes. J. ACM 81(3), 560-599.

237

238 References

Bugliesi, M., D. Macedonio, L. Pino, and S. Rossi (2010). Compliance preorders for web services. In
C. Laneve and J. Su (Eds.), Web Services and Formal Methods, Volume 6194 of Lecture Notes in
Computer Science, pp. 76-91. Springer Berlin / Heidelberg.

Caires, L. and F. Pfenning (2010). Session types as intuitionistic linear propositions. In P. Gastin and
F. Laroussinie (Eds.), CONCUR, Volume 6269 of Lecture Notes in Computer Science, pp. 222—-236.
Springer.

Carpineti, S. (2007, March). Data and Behavioural Contracts for Web Services. Ph. D. thesis,

Universita di Bologna — Universita di Padova.

Carpineti, S., G. Castagna, C. Laneve, and L. Padovani (2006). A formal account of contracts for
web services. In M. Bravetti, M. Ninez, and G. Zavattaro (Eds.), WS-FM, Volume 4184 of Lecture
Notes in Computer Science, pp. 148-162. Springer.

Castagna, G., M. Dezani-Ciancaglini, E. Giachino, and L. Padovani (2009). Foundations of session
types. See Porto and Lépez-Fraguas| [2009], pp. 219-230.

Castagna, G. and A. Frisch (2005). A gentle introduction to semantic subtyping. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung (Eds.), ICALP, Volume 3580 of Lecture Notes
in Computer Science, pp. 30-34. Springer.

Castagna, G., N. Gesbert, and L. Padovani (2009). A theory of contracts for web services. ACM
Trans. Program. Lang. Syst. 31(5), 1-61. Supersedes the article in POPL ’08.

Cerone, A. and M. Hennessy (2010). Process behaviour: Formulae vs. tests (extended abstract). In
S. B. Froschle and F. D. Valencia (Eds.), EXPRESS’10, Volume 41 of EPTCS, pp. 31-45.

Christensen, S., Y. Hirshfeld, and F. Moller (1993). Bisimulation equivalence is decidable for basic
parallel processes. See Best|[1993], pp. 143-157.

Cleaveland, R. and M. Hennessy (1993). Testing equivalence as a bisimulation equivalence. Formal
Asp. Comput. 5(1), 1-20.

Courcelle, B. (1983). Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95-169.

Dardha, O., E. Giachino, and D. Sangiorgi (2012). Session types revisited. In D. D. Schreye,
G. Janssens, and A. King (Eds.), PPDP, pp. 139-150. ACM.

Davey, B. A. and H. A. Priestley (2002). Introduction to Lattices and Order (2. ed.). Cambridge

University Press.

De Nicola, R. (1983). A complete set of axioms for a theory of communicating sequential processes. In
M. Karpinski (Ed.), FCT, Volume 158 of Lecture Notes in Computer Science, pp. 115-126. Springer.

De Nicola, R. (1985). Two complete axiom systems for a theory of communicating sequential processes.
Information and Control 64(1-3), 136-172.

De Nicola, R. and M. Hennessy (1984). Testing equivalences for processes. Theoretical Computer
Science 34, 83-133.

De Nicola, R. and M. Hennessy (1987). ccs without 7’s. In H. Ehrig, R. A. Kowalski, G. Levi, and
U. Montanari (Eds.), TAPSOFT, Vol.1, Volume 249 of Lecture Notes in Computer Science, pp.
138-152. Springer.

Degano, P., R. De Nicola, and J. Meseguer (Eds.) (2008). Concurrency, Graphs and Models, Essays
Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, Volume 5065 of Lecture Notes

in Computer Science. Springer.

References 239

Demangeon, R. and K. Honda (2011). Full abstraction in a subtyped pi-calculus with linear types. In
J.-P. Katoen and B. Konig (Eds.), CONCUR, Volume 6901 of Lecture Notes in Computer Science,
pp- 280-296. Springer.

Dezani-Ciancaglini, M. and U. de’Liguoro (2009). Sessions and session types: An overview. In
C. Laneve and J. Su (Eds.), WS-FM, Volume 6194 of Lecture Notes in Computer Science, pp. 1-28.
Springer.

Dezani-Ciancaglini, M., U. de’Liguoro, and N. Yoshida (2007). On progress for structured commu-
nications. In G. Barthe and C. Fournet (Eds.), TGC, Volume 4912 of Lecture Notes in Computer
Science, pp. 257-275. Springer.

Dezani-Ciancaglini, M., S. Drossopoulou, D. Mostrous, and N. Yoshida (2009). Objects and session
types. Inf. Comput. 207(5), 595-641.

Fahndrich, M., M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and S. Levi (2006).
Language support for fast and reliable message-based communication in singularity os. In Y. Berbers
and W. Zwaenepoel (Eds.), EuroSys, pp. 177-190. ACM.

Garralda, P., A. B. Compagnoni, and M. Dezani-Ciancaglini (2006). Bass: boxed ambients with safe
sessions. In A. Bossi and M. J. Maher (Eds.), PPDP, pp. 61-72. ACM.

Gay, S. J. (2008). Bounded polymorphism in session types. Mathematical Structures in Computer
Science 18(5), 895-930.

Gay, S. J., N. Gesbert, and A. Ravara (2008, May). Session types as generic process types. In
PLACES.

Gay, S. J., N. Gesbert, A. Ravara, and V. T. Vasconcelos (2012). Modular session types for objects.
CoRR abs/1205.5344.

Gay, S. J. and M. Hole (1999). Types and subtypes for client-server interactions. In S. D. Swierstra
(Ed.), ESOP, Volume 1576 of Lecture Notes in Computer Science, pp. 74-90. Springer.

Gay, S. J. and M. Hole (2005). Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191-225.

Gay, S. J., V. Vasconcelos, and A. Ravara (2003, February 11). Session types for inter-process commu-

nication. Technical Report TR-2003-133, Department of Computing Science, University of Glasgow.

Gay, S. J. and V. T. Vasconcelos (2010). Linear type theory for asynchronous session types. J. Funct.
Program. 20(1), 19-50.

Gay, S. J., V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira (2010). Modular session
types for distributed object-oriented programming. In M. V. Hermenegildo and J. Palsberg (Eds.),
POPL, pp. 299-312. ACM.

Giachino, E. (2009, December). Session Types: Semantic Foundations and Object-Oriented Applica-
tions. Ph. D. thesis, Universita degli Studi di Torino — Université Paris 7.

Girard, J.-Y. (1987). Linear logic. Theor. Comput. Sci. 50, 1-102.

Grillo, G. (2013, February). The end of the third republic. http://www.beppegrillo.it/en/2013/
02/the_end_of_the_third_republic.html.

Halmos, P. (1960). Naive Set Theory. Undergraduate Texts in Mathematics. Princeton, NJ.

http://www.beppegrillo.it/en/2013/02/the_end_of_the_third_republic.html
http://www.beppegrillo.it/en/2013/02/the_end_of_the_third_republic.html

240 References

Hauslohner, A. (2011). Dispatch from 'Free Libya’: The Right to Laugh at Gaddafi. http://www.
time.com/time/world/article/0,8599,2053198,00.html.

Hennessy, M. (1985). Algebraic theory of processes. Cambridge, MA, USA: MIT Press.
Hennessy, M. (2007). A Distributed Pi-Calculus. Cambridge University Press.

Hennessy, M., J. Rathke, and N. Yoshida (2005). safedpi: a language for controlling mobile code.
Acta Inf. 42(4-5), 227-290.

Honda, K. (1993). Types for dynamic interaction. See Best|[1993], pp. 509-523.

Honda, K., E. R. B. Marques, F. Martins, N. Ng, V. T. Vasconcelos, and N. Yoshida (2012). Verifi-
cation of mpi programs using session types. In J. L. Traff, S. Benkner, and J. J. Dongarra (Eds.),
FEuroMPI, Volume 7490 of Lecture Notes in Computer Science, pp. 291-293. Springer.

Honda, K., V. T. Vasconcelos, and M. Kubo (1998). Language primitives and type discipline for
structured communication-based programming. In C. Hankin (Ed.), ESOP, Volume 1381 of Lecture
Notes in Computer Science, pp. 122-138. Springer.

Honda, K., N. Yoshida, and M. Carbone (2008). Multiparty asynchronous session types. In G. C.
Necula and P. Wadler (Eds.), POPL, pp. 273-284. ACM.

Hu, R., N. Yoshida, and K. Honda (2008). Session-based distributed programming in java. In J. Vitek
(Ed.), ECOOP, Volume 5142 of Lecture Notes in Computer Science, pp. 516-541. Springer.

Igarashi, A. and N. Kobayashi (2004, January). A generic type system for the pi-calculus. Theor.
Comput. Sci. 311, 121-163.

Imai, K., S. Yuen, and K. Agusa (2010). Session type inference in haskell. In PLACES.

Laneve, C. and L. Padovani (2007). The must preorder revisited. In Proceedings of the 18th interna-
tional conference on Concurrency Theory, Berlin, Heidelberg, pp. 212-225. Springer-Verlag.

Laneve, C. and L. Padovani (2008). The pairing of contracts and session types. See [Degano et al.
[2008], pp. 681-700.

Mendelson, E. (1997). Introduction to Mathematical Logic: Fourth Edition. Wadsworth & Brooks/Cole

mathematics series. Chapman & Hall.

Mezzina, L. G. (2008). How to infer finite session types in a calculus of services and sessions. In D. Lea
and G. Zavattaro (Eds.), COORDINATION, Volume 5052 of Lecture Notes in Computer Science,
pp. 216-231. Springer.

Milne, G. and R. Milner (1979). Concurrent processes and their syntax. J. ACM 26(2), 302-321.

Milner, R. (1975). Processes: A mathematical model of computing agents. In H. Rose and J. Shep-
herdson (Eds.), Logic Colloguium ’73 Proceedings of the Logic Colloquium, Volume 80 of Studies in
Logic and the Foundations of Mathematics, pp. 157 — 173. Elsevier.

Milner, R. (1980). A Calculus of Communicating Systems, Volume 92 of Lecture Notes in Computer

Science. Springer.
Milner, R. (1989). Communication and concurrency. PHI Series in computer science. Prentice Hall.
Milner, R. (1999). Communicating and mobile systems - the Pi-calculus. Cambridge University Press.

Milner, R., J. Parrow, and D. Walker (1992). A calculus of mobile processes, i. Inf. Comput. 100(1),
1-40.

http://www.time.com/time/world/article/0,8599,2053198,00.html
http://www.time.com/time/world/article/0,8599,2053198,00.html

References 241

Mostrous, D. and N. Yoshida (2007). Two session typing systems for higher-order mobile processes.
In S. R. D. Rocca (Ed.), TLCA, Volume 4583 of Lecture Notes in Computer Science, pp. 321-335.
Springer.

Neubauer, M. and P. Thiemann (2004). An implementation of session types. In B. Jayaraman (Ed.),
PADL, Volume 3057 of Lecture Notes in Computer Science, pp. 56—70. Springer.

Padovani, L. (2010). Contract-based discovery of web services modulo simple orchestrators. Theor.
Comput. Sci. 411(37), 3328-3347.

Padovani, L. (2011). Fair Subtyping for Multi-Party Session Types. In Proceedings of the 13th
Conference on Coordination Models and Languages, Volume LNCS 6721, pp. 127-141. Springer.

Padovani, L. (2013, January). Fair Subtyping for Multi-Party Session Types. Submitted for publica-
tion. Available at http://www.di.unito.it/~padovani/Papers/FairSubtypingLong.pdf|

Pierce, B. C. (2002, February). Types and Programming Languages. MIT Press.

Pierce, B. C. and D. Sangiorgi (1996). Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science 6(5), 409-453.

Porto, A. and F. J. Lépez-Fraguas (Eds.) (2009). Proceedings of the 11th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra,
Portugal. ACM.

Pucella, R. and J. A. Tov (2008). Haskell session types with (almost) no class. In A. Gill (Ed.),
Haskell, pp. 25-36. ACM.

Rensink, A. and W. Vogler (2007). Fair testing. Information and Computation 205(2), 125-198.
Rose, M. (1988, November). Post Office Protocol: Version 3. RFC 1081. Obsoleted by RFC 1225.

Sackman, M. and S. Eisenbach (2008, July). Session Types in Haskell: Updating Message Passing for
the 21st Century. Technical report, Imperial College London.

Sangiorgi, D. (1993). Eaxpressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. Ph. D. thesis, The University of Edinburgh.

Sangiorgi, D. (2012). An introduction to bisimulation and coinduction. Cambridge, New York: Cam-

bridge University Press.

Sangiorgi, D. and J. Rutten (2011). Advanced Topics in Bisimulation and Coinduction. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press.

Sangiorgi, D. and D. Walker (2001). The Pi-Calculus - a theory of mobile processes. Cambridge

University Press.

Takeuchi, K., K. Honda, and M. Kubo (1994). An interaction-based language and its typing system.
In C. Halatsis, D. G. Maritsas, G. Philokyprou, and S. Theodoridis (Eds.), PARLE, Volume 817 of
Lecture Notes in Computer Science, pp. 398-413. Springer.

AWS Team (2012, July 2). Summary of the aws service event in the us east region.
OASIS (2007). Web services business process execution language version 2.0.
w3c (2004, 11 February). Web services architecture requirements.

Treynor, B. (2011, March 1). Gmail back soon for everyone.

http://www.di.unito.it/~padovani/Papers/FairSubtypingLong.pdf

242 References

Vasconcelos, V. T. (2009a). Fundamentals of session types. See Bernardo et al.| [2009], pp. 158—-186.

Vasconcelos, V. T. (2009b). Session types for linear multithreaded functional programming. See Porto

and Lopez-Fraguas| [2009], pp. 1-6.

Vasconcelos, V. T., S. J. Gay, and A. Ravara (2006). Type checking a multithreaded functional
language with session types. Theor. Comput. Sci. 368(1-2), 64-87.

Wadler, P. (2012). Propositions as sessions. In P. Thiemann and R. B. Findler (Eds.), ICFP, pp.
273-286. ACM.

Winskel, G. (1993). The formal semantics of programming languages: an introduction. Cambridge,
MA, USA: MIT Press.

Woodward, P. (2011). The role of the internet in the libyan uprising. "http://warincontext.org/
2011/02/23/the-role-of-the-internet-in-the-libyan-uprising/".

Yoshida, N. (2004). Channel dependent types for higher-order mobile processes. In N. D. Jones and
X. Leroy (Eds.), POPL, pp. 147-160. ACM.

Yoshida, N. and M. Hennessy (2002). Assigning types to processes. Inf. Comput. 174(2), 143-179.

"http://warincontext.org/2011/02/23/the-role-of-the-internet-in-the-libyan-uprising/"
"http://warincontext.org/2011/02/23/the-role-of-the-internet-in-the-libyan-uprising/"

Result Index

Proposition [6.5.19] Alternative model of sub-typing on first-order session types,
Proposition [6.5.18) Alternative characterisation of C=f0 ., |157
Proposition 6.4.7|, Alternative characterisation of Cf , [151

—SVR?

Proposition [6.2.12] Alternative characterisation EEOLT, 143

Proposition |6.1.10, Alternative characterisation of E:/R, 138

Proposition [8.1.11] Alternative characterisation dependent client pre-orders,
Proposition [8.2.7] Alternative characterisation dependent server pre-orders,

Theorem Alternative characterisation Ceyr, [119

Theorem [5.3.26] Alternative characterisation Cpop, [127]

Theorem [6.3.4] Fully abstract model of sub-typing on first-order session types,
Theorem Fully abstract model of sub-typing on higher-order session types,
Theorem Alternative characterisation Cgyg, [105

Theorem Alternative characterisation EC?

Theorem [4.1.21} Alternative characterisation ES,

Theorem Alternative characterisation &, .,

243

Notation Index

Chapter
A,BC, ...
Lp,q...
R,S,T

\

CCSy~

SCo

STs,

fo
<sbt

Chapter
MUST

MUST"™

“p2p

4

E

MUST®
Chapter ﬂ
4

s

Upop s

usbl / s
AFTER ¢ s
AFTER s

;jCLT

Definitional constants for processes

Processes

Session types

Convergent process

Infinitary CCS without 7s

Language of session contracts

Language of first-order session types
Pre-orderfor sets of actions of session contracts
Depth

Session contracts

Unfolding

Encoding of session types into session contracts

First-order sub-typing

MUST testing

Peer MUST testing

Peer compliance relation
Compliance relation
Syntactic compliance relation

Syntactic MUST testing

Convergence to success

Convergence along trace s

Peer MUST convergence along trace s

Usability after unsuccesful traces s

Residuals after unsuccesful prefixes of a trace s s
Residuals after trace s

Semantic MUST client pre-order

245

| =] [&]

25
25
17
25
25
27]
20
27
26
25
26
29
22

32
32
37
34
38
43

71
53
35
69
68
53
79

~P2pP
;jSVR

uay s

~p2p

ACC

Chapter

accY
u4P2P

Upop s
s
jCLT
=p2p
Ssvr
usbl s
ECLT
Csvr

E;PZP

ua v

Chapter |§|

[:fo

~CLT
[:fo
~SVR

syn
jCLT

syn
~vCLT

[fo

—=pr2p

[fo

—CLT

fo
—=SVR

Chapter IZI
-+

s

STho

B, R, T
SCho

Semantic MUST peer pre-order
Semantic MUST server pre-order
Usable actions after unsuccesful trace s
MUST client pre-order

MUST server pre-order

MUST peer pre-order

Acceptance set

Acceptance sets with v/

Usable peers

Peer compliance convergence after trace s
Convergence after trace s

Semantic compliance client pre-order
Semantic compliance peer pre-order
Semantic compliance server pre-order
Usability after trace s

Compliance client pre-order
Compliance server pre-order
Compliance peer pre-order

Usable actions and v after trace

Restricted MUST client pre-order
Restricted MUST server pre-order
Syntactic compliance client pre-order
Syntactic MUST client pre-order
Session contract pre-order

Restricted compliance client pre-order

Restricted compliance server pre-order

B-syntactic compliance relation

B-dependent compliance relation

Higher-order session types

B-co action relation

Binary, reflexive, and transitive relations on SCy,

Language of higher-order session contracts

90
09
70
63
02
83
57

115
123
125
100
115
127
102
114
110
E
122
115

140
135
156
143
145
152
150

173
172
166
171
170
170

Chapter

Eho

—P2p

Chapter EI
wSC
FN

F

Session contract pre-order
B-dependent client pre-order
B-syntactic client pre-order
B-syntactic dependent server pre-order
B-dependent server pre-order

Client pre-order

Server pre-order

Pre-orders on higher-order session contracts

m-processes with session contracts
Free names of a 7SC process

Type relation

192
180
152
187
186
18§
190
183

10§
198

203

	Acknowledgements
	Introduction
	Must theory
	Compliance theory
	Session types
	Contributions

	I First-order theories
	First-order languages
	The session type language
	Sub-typing

	Processes
	Session Contracts
	Related Work

	Client and peer satisfaction
	Must testing
	Compliance relation
	Comparing satisfactions

	Syntactic characterisations
	Syntactic compliance
	Syntactic must testing

	Related Work

	Must pre-orders
	Server pre-order
	Client pre-order
	Peer pre-order
	Relations between notions and pre-orders

	Related Work

	Compliance pre-orders
	Server pre-order
	Server pre-orders on restricted LTSs

	Client pre-order
	Comparison with other pre-orders

	Peer pre-order
	Relations between pre-orders

	Related Work

	Modelling first-order session types
	Restricted server pre-order
	Restricted must client pre-order
	A behavioural model of first-order sub-typing
	Examples and applications

	Revisiting the restricted server pre-order
	Restricted compliance client pre-order
	Related Work

	II Higher-order theories
	Higher-Order Languages
	Session types
	Session Contracts
	Dependent compliance relations
	Dependent duality

	Transitive closures
	Related Work

	Modelling higher-order session-types
	Client pre-orders
	Syntactic client pre-orders and transitivity

	Server pre-orders
	Client and server pre-orders
	A behavioural model of sub-typing
	Related Work

	Ongoing work: session contracts as types
	Pi-calculus with session contracts
	Runtime errors

	Type system
	Conjectures

	Literature Review
	Conclusion
	Summary
	Open questions

	A complete lattice of pre-orders on higher-order session contracts
	Necessary and sufficient conditions
	Monotone functionals
	References
	Result Index
	Notation Index

