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Summary

This thesis is a foundational and systematic investigation of the principles which ensure that a piece

of communicating software can be replaced by another piece of communicating software, without

hindering the operations of the pre-existing system.

By “foundational” we mean that our approach is mathematical; we define in formal terms notions

such as “system correctness” and “safe software replacement”, thereby providing reasoning techniques

(i.e. proof methods) for the notions themselves.

By “systematic” we mean that our results lay bare the principles which allow the replacement of

software in all the roles it can take: servers, clients and peers.

The investigation presented in this thesis stems from practical questions, such as the following:

Q1) if the client r is satisfied by the server p1, what relation between p1 and a server p2 guarantees

that p2 satisfies r?

Q2) if the server p satisfies the client r1, what relation between r1 and a client r2 guarantees that p

satisfies r2?

Q3) if the peer p1 satisfies and is satisfied by the peer q, what relation between p1 and a peer p2

guarantees that p2 satisfies and is satisfied by q?

The questions above are motivated by the practice of software maintenance; as they stand, though,

they are rather vague, and a priori it is clear neither what they really mean, nor how to answer them.

Our foundational approach allows us to formulate the precise meaning of the questions above, and

to answer them.

The contributions of this thesis are the following:

• we enrich the standard testing theory of [De Nicola and Hennessy, 1984] with new pre-orders, one

for clients and one for peers, and present their behavioural characterisations (Theorem 4.2.37,

Theorem 4.3.17);

• we introduce a compliance relation inspired to [Castagna et al., 2009; Laneve and Padovani,

2007], the pre-orders that arise from it, respectively for servers, clients, and peers; and we

present the behavioural characterisations of these pre-orders (Theorem 5.1.15, Theorem 5.2.25,

Theorem 5.3.26);

• we show a fully abstract model of the sub-typing à la [Gay and Hole, 2005] on first-order session

types (Theorem 6.3.4). We define the model in two alternative ways, one uses to the testing

theory, and one uses to the compliance theory (Proposition 6.5.19). The model justifies and

explains in behavioural terms the sub-typing relation;

• we generalise the first-order model so as to exhibit a fully abstract model of the sub-typing on

higher-order (i.e. standard) session types (Theorem 8.4.9). We also explain which conditions

are necessary and sufficient to extend the first-order model to the higher-order setting.





Contents

Acknowledgements xi

1 Introduction 1

1.1 Must theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Compliance theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Session types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I First-order theories 15

2 First-order languages 17

2.1 The session type language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Sub-typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Session Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Client and peer satisfaction 31

3.1 Must testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Compliance relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Comparing satisfactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Syntactic characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Syntactic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Syntactic must testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Must pre-orders 51

4.1 Server pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Client pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Peer pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Relations between notions and pre-orders . . . . . . . . . . . . . . . . . . . . . 92

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Compliance pre-orders 97

5.1 Server pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 Server pre-orders on restricted LTSs . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Client pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Comparison with other pre-orders . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Peer pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Relations between pre-orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Modelling first-order session types 133

6.1 Restricted server pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Restricted must client pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 A behavioural model of first-order sub-typing . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Revisiting the restricted server pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Restricted compliance client pre-order . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

II Higher-order theories 163

7 Higher-Order Languages 165

7.1 Session types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Session Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.1 Dependent compliance relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.2 Dependent duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3 Transitive closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Modelling higher-order session-types 179

8.1 Client pre-orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.1.1 Syntactic client pre-orders and transitivity . . . . . . . . . . . . . . . . . . . . . 183

8.2 Server pre-orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.3 Client and server pre-orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.4 A behavioural model of sub-typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9 Ongoing work: session contracts as types 197

9.1 Pi-calculus with session contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.1.1 Runtime errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.2 Type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.2.1 Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10 Literature Review 211

11 Conclusion 219

11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.2 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A A complete lattice of pre-orders on higher-order session contracts 223

B Necessary and sufficient conditions 227

C Monotone functionals 235

References 237

Result Index 243

Notation Index 245



Acknowledgements
My supervisor Matthew Hennessy is the person that during my PhD has influenced me most, both

from a technical standpoint and a human standpoint. Matthew has incessantly given to me all the

advices and explanations that I needed, and he has displayed an everlasting patience by listening to

my ideas. He has also been my most constructive critic. I thank Matthew for all these things; I am

grateful to have been one of his students.

One of the most remarkable people that I have met in Trinity is Vasileios Koutavas. I thank

him for the time that he has spent discussing technical matters with me, and for all the pictures of

the board that he has taken. His keen observations and his cheerful demeanour kept me motivated

throughout the second half of my PhD, and helped me rearrange some thoughts.

As to my fellow PhD students, I thank Andrea Cerone, Colm Bhandal, and Carlo Spaccasassi.

Andrea welcomed me in the fair city, and introduced me to its jolly social life. Colm and his thoughts

out of the box secured us from boredom, making the office a lively place, and letting us forget the

gloomy environment. Carlo supplied the office with an everlasting stock of fine coffee, and an even

better mood.

I wish to thank my examiners, Andrew Butterfield and Simon Gay. Their careful review of this

thesis helped in improving it, and lead to many engaging questions during my viva.

Many people filled my PhD years with good memories.

I thank the “Sunday brunch bunch”: Francesco Caiazza, Florence De Filippis, and Silvia Taddei.

They made me face many rainy, gray, and windy Mondays with a smile.

I thank Brendan Dunne, Paul Hynds, Anna Madden, Andres Mori, Heather Quinn, and Carlos

Rodriguez. They have been an endless source of wit, wisdom, and have provided subjects for discussion

aplenty. The climbing trip to Sardinia has been a turning point in my life, and I am glad that some of

these fine fellows were there, and began sharing their ideas with me; let alone mirth and mirto. Also,

it is a great pleasure to be still in the position of thanking all of them for having saved my life ever

so often.

The regular escapades to Fontainebleau have been a panacea for the mood. This is true also

because of Françoise and Bernard at the Gı̂tes des Jonquilles. Their dog Leo helped as well, for he

always cheered me up, even after the most unsuccessful climbing days.

As a matter of fact, I happened to stay often in France, and not just around Fontainebleau. For
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Chapter 1

Introduction

Software that relies on the Internet pervades our lives. To check e-mails, read the news on the web,

interact with people on social networks, buy items on-line, look for information on wikipedia, these are

almost daily routines for many of us. At present even the political life of countries can be influenced by

the discussions that take place via the World Wide Web [Grillo, 2013; Hauslohner, 2011; Woodward,

2011].

Much of the computations that let us carry out the above activities amount to a series of commu-

nications between two software systems:

• to browse the web we use clients that interact with http servers

• to read e-mails we use clients that interact with pop/imap servers

• to call a friend over the Internet, our friend and us use programs that implements VoIP

Two scenarios emerge from the examples above, the communication takes place between a client

and a server, or between two peers. In a client/server setting the overall aim of the communication is

to satisfy the client. In a peer to peer setting the aim is to satisfy both communicating parties.

The programs mentioned in the example list above follow communication protocols that are com-

pletely independent from each other; consider for instance the pop3 and the http protocols. A

consequence is that different programs have to be used to avail of different communication protocols.

The widespread adoption of the World Wide Web has lead to a general consensus on the technolo-

gies and the languages that underpin it, such as XML, CSS, javascript, and http. In turn, this has

lead to a shift of paradigm in the development of applications: today much of the activities listed in

our initial example can be carried out within a web browser, rather than requiring stand-alone ap-

plications. Via the World Wide Web, major IT companies offer to their users services such as e-mail

boxes, programs to chat, and even simple office programs. In this setting web technologies provide

the backbone for the deployment of the applications, and the protocols other than the http are used

only by the servers that provide the services.

These facts give an intuition of what web-services are. According to [w3c, 2004],

A Web-service is a software system identified by a URI [RFC 2396], whose public interfaces

and bindings are defined and described using XML. Its definition can be discovered by other

software systems. These systems may then interact with the Web-service in a manner

prescribed by its definition, using XML based messages conveyed by Internet protocols.

Web-services depend on standard and widespread web technologies such as XML. This feature

is meant to help integrate the middlewares and information systems of companies connected via a

network, thereby facilitating the business to business (b2b) activities. If a company runs a service p,

1



2 Chapter 1. Introduction

and another company runs a program r that needs p to work, then via a network and thanks to the

standard format of the messages, r can interact with p, and the two programs can cooperate.

Also web-services for b2b fall into the client/server and the peer to peer scenarios that we described

earlier on.

From now on we disregard the technological details and the particular aim of software, and focus

only on the fundamental aspects that characterise clients, servers, peers and their correctness.

Let us think of “systems” as compositions of two programs r and p that interact with each other;

we write r || p to denote the concurrent execution of the programs r and p. The systems that we

normally use are correct, in the sense that when we let clients interact with servers, the clients are in

some sense satisfied; and similarly for peers. The situation is analogous for companies and the services

that they offer. The meaning of “correctness” of a software system, or of “satisfaction” is not clear a

priori. If we want to test software, our tests are satisfied if they are passed. If we want to browse the

web, the client that we use is satisfied if all its requests are answered by some web server. If we chat

with a friend via a network, our programs are satisfied as long as they can keep on interacting.

It is not easy to understand when a piece of software can be changed without breaking the cor-

rectness of a system. For instance, suppose that a client r1 is satisfied by a server p, that is r1 || p1
is a correct system. If we were to replace a client r1 with a client r2 would the new system still be

correct? In particular,

(Q1) what is the relation between r1 and r2 which guarantees that r2 is satisfied by p?

We have also the dual question, if r || p1 is a correct system, and we were to replace p1 with a server p2

how could we tell whether r would still be satisfied? That is

(Q2) what is the relation between p1 and p2 which guarantees that p2 satisfies r?

If we deal with peers, then the question becomes symmetric; if p1 || q is a correct system of peers, and

we want to replace p1 with p2, then

(Q3) what is the relation between p1 and p2 which guarantees that p2 satisfies q and that q satisfies p2?

The practice of software maintenance shows that the questions above are not mere theoretical

speculation. For instance, the e-mail service of Google, Gmail, underwent a failure on the 31st of

April, 2011. [Treynor, 2011] commented on the official Gmail blog as follows,

So what caused this problem? We released a storage software update that introduced the

unexpected bug, which caused 0.02% of Gmail users to temporarily lose access to their

email. When we discovered the problem, we immediately stopped the deployment of the

new software and reverted to the old version.

In December 2012 the same e-mail service was hampered again, by a problem traced down to a bug

in a routine update to the load balancing software.

As for web-services and the b2b scenarios, similar issues have taken place. On the 29th of June

2012, Amazon web-services, AWS, underwent a service disruption. The [AWS Team, 2012] explains in

great detail what happened. One problem was due to software,

[. . . ] a small number of Multi-AZ RDS1 instances did not complete failover, due to a

software bug. The bug was introduced in April when we made changes to the way we

handle storage failure. It is only manifested when a certain sequence of communication

failure is experienced, situations we saw during this event as a variety of server shutdown

sequences occurred.

1Availability Zone, Relational Database Service.
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Both explanations remark that the issues in the software systems were due to software updates. The

explanation provided by Amazon also lay bare that their problem was due to the communication

sequence that the software engaged in.

These facts highlight the importance of having means to guarantee that software update can take

place without hampering the existing communication patterns, and without introducing unexpected

communication patterns that may disrupt the operations of a software system.

This thesis is a systematic investigation of five theories that let us answer the questions on software

replacement that we posed earlier, (Q1), (Q2), and (Q3). By “systematic” we mean that our results

lay bare the principles which allow the replacement of software in all the roles it can take: servers,

clients and peers.

The aim of this thesis is largely foundational; we want to state in a mathematical and rigorous way

what it means for a software system to be correct, and understand when a program p can be replaced

by a program q keeping the system correct. In our thinking we focus on the characteristic features of

software interaction, inputs and output operations, and we abstract away from minor details.

Our foundational approach sheds light on the design of software. To answer rigorously the questions

(Q1), (Q2), and (Q3), we will have to put forth a series of mathematical notions; these notions give us

design principles to write software that does not invalidate the correctness of existing systems. The

design principles are correct by virtue of the mathematical treatment that they emerge from.

Our mathematical reasoning is based on set theory; we will use relations on programs, denoted

by S and v, to mean that it is safe to run the client r with the server p, r S p; and that if we replace p1

with p2 in a correct system r || p1, then the new system r || p2 is still correct; this is denoted p1 v p2.

We have argued that there are different ways to think of the satisfaction of clients, and of the

correctness of software systems. Thinking in terms of sets and relations, this means that we can

define many relations S on programs, to express some notion of satisfaction. As different relations

S1,S2,S2, . . . are of interest, different theories have to be investigated.

The main objects of our study are not the relations to express the satisfaction of a program.

Rather, our efforts are devoted towards the understanding of the refinement relations that arise from

the satisfaction relations that we pick. Let us fix a relation S, and write p vsvr q if r S p implies

that r S q. The relation vsvr that we obtain tells us when a server q can replace a server p without

hindering the correctness of a system r || p. The relation vsvr embodies a principle to replace servers.

In similar ways we can define refinements for clients and for peers, so as to obtain three relations,

vsvr, vclt, vp2p

It is necessary to study all the pre-orders above. Suppose we studied only how to safely replace

servers, that is vsvr, and not how to safely replace clients. Then the correctness of a system could

be hampered by replacing the clients. The study of vclt solves the problem; and similarly does the

study of vp2p for the peer to peer scenario.

The properties of the relations above depend on the notion of satisfaction S that generated them.

One may wish the pre-orders to enjoy some particular properties. For instance, if two servers are

related, say p vsvr q, then q may offer to the clients more choices than p. This property is known as

“width extension” [Laneve and Padovani, 2007].

We give a more concrete example. Let ATMA denote a cash machine that allows us withdraw

cash, and then starts again,

ATMA =?withdraw.ATMA

and let ATMB be a similar cash machine that allows us also to top-up mobile phones,

ATMB =?withdraw.ATMB + ?phone.ATMB
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ATMA

?withdraw

ATMB

?withdraw

?topup

Figure 1.1: Two cash machines

Intuitively, the equalities above define two programs; the symbols ?withdraw and ?phone stand for

interactions that the programs can perform with the environment. The symbol + in the definition

of ATMB represents a choice, ATMB lets the environment decide which interaction to perform. The

syntax ?withdraw.ATMB means that after the interaction ?withdraw the program behaves accordingly

to the definition of ATMB . The behaviours of the programs ATMA and ATMB are sketched in

Figure 1.1.

One could argue that ATMB is in some sense better than ATMA, in that ATMB satisfies all the

customers satisfied by ATMA, and it also offers them more choices. So, once we have fixed a notion

of satisfaction S, we may wish that the following be true,

ATMA vsvr ATMB

In general, this may or may not be the case; that is the refinement for servers given by a particular S
may or may not allow the inequality above.

If a refinement vsvr generated by a relation S does not enjoy a certain property, and we cannot

change S, then other ways to vary vsvr have to be investigated. For example, a relation for satis-

faction S can give rise to many different refinements for servers, clients and peers; the properties of

these pre-orders depends on the language used to write programs. This introduces yet another reason

to study different theories.

In this thesis we we investigate five theories. Rather than putting forth new formalisms, we examine

existing ideas and deepen our understanding of them, shedding light on their implications and on the

connections between them. Two theories that we investigate are due to two notions of satisfaction

applied to the same general language, the well known CCS without τ ’s of [De Nicola and Hennessy,

1987]. The other theories are given by applying the same notions of satisfaction to the more restrictive

language of session contracts [Bernardi and Hennessy, 2012].

Before describing the theories that we will be concerned with, we explain how we think of interac-

tions between programs.

To formalise the sequence of operations (i.e. interactions) that a program performs, we use graphs

such as the ones in Figure 1.2. In that figure, the graph at the top describes a program r that inputs

two values, an integer and a boolean, and then is in a successful state, (i.e. it can perform X). Graphs

such as the ones in Figure 1.2 describe the operational semantics of software, and they are referred

to as labelled transition systems, LTS. An LTS contains the states that a program can be in, and the

transitions that lead from one state to another. The transitions are usually depicted as arrows, and

are decorated with a label. Labels describe the interactions that make a program change states; that

is, they explain why a program changes state. For instance, the fact that the program r Figure 1.2 is

willing to input an integer, thereby moving to state r1 is represented by the following transition:

r r1
?Int
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r r1 1 0

q

?Int ?Bool X

τ

Figure 1.2: A program that succeeds after the input of an integer and of a boolean; and a program
that loops forever

p1 p2 p3 p4

q1 q2 q3 q4

?Int ?Int

τ

!Bool

?Int ?Int !Bool

Figure 1.3: Two programs that interact according to the sequence ?Int?Int!Bool

Intuitively, interactions between r and a program q take place when we execute them concurrently,

denoted r || p, and each input/output operation of one program is matched by a co-action performed

by the other program. For instance, let the operations of p be described by the following LTS

p 0
!Int

The action !Int represents the output of an integer, and it is a co-action of ?Int.

The program p is willing to output an integer, and then perform no other operations. According to

the intuitions we have described, the parallel composition r || p performs one interaction, denoted r ||
p

τ−→ r1 || 0, and then becomes stable; the system cannot proceed further.

The bottom graph in Figure 1.2 describes a program q that performs only one transition, labelled

by τ . That transition represents a computation that takes place inside of q, and that the environment

has no power over. Since the τ action represents internal computation, the program q performs an

infinite sequence of internal computations,

q
τ−→ q

τ−→ q
τ−→ q

τ−→ . . .

We say that q diverges, whereas programs that perform only finite internal computations converge.

If we execute q in parallel with r, then also the resulting composition diverges,

q || r τ−→ q || r τ−→ q || r τ−→ . . .

The framework that we have sketched is essentially CCS; it has been put forth by Milner, and his

book [Milner, 1989] is a standard reference on the topic.
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1.1 Must theory

The theory of must testing, known also as testing theory, has been presented in [De Nicola and

Hennessy, 1984], and the subsequent [Hennessy, 1985]. Testing theory is a landmark within the

formalisms to assess software equivalence, and this renders it a good starting point for our research.

It is common practice to test software in order to exhibit errors. Testing can be performed also in

presence of communications between programs.

By running a process p in parallel with r, denoted r || p, we can check whether in all the possible

executions r reaches its successful state. This means that the interactions offered by p satisfy the

test r; in other words p must pass the test r. Intuitively, this is the meaning of the relation must; in

particular of statements such as p must r.

Plainly, in this setting a process q is better than a process p if q passes more tests; and q and p

are equivalent is they pass the same set of tests.

The must testing relation has been introduced in [De Nicola and Hennessy, 1984], to define a

refinement for processes described by the intuition above, the well known must pre-order, <∼must .

The relation must expresses the satisfaction of tests, so the theory of must testing can be

smoothly casted into a more general client/server setting. As the satisfaction is biased towards the

tests, they can be seen as clients, while processes can be seen as servers.

To study peers we use a symmetric version of must which requires the satisfaction of both parties

involved in a software system r || p. To this end we have also to combine the language of processes and

the language of tests; this allows us to write terms that model programs that can reach satisfaction,

while testing another program.

In this thesis we will extend the standard framework by studying three pre-orders, one for servers

(i.e. processes), one for clients (i.e. tests), and a pre-order for peers,

<∼svr,
<∼clt,

<∼p2p

Note that it is necessary to study anew the pre-order for servers, because we allow processes to

perform X, thereby extending the language of [De Nicola and Hennessy, 1984; Hennessy, 1985]; so we

have to check the impact of this extension, as <∼svr may differ from <∼must .

Roughly speaking, the outcome of our investigation is that in this setting,

• a server p2 is better than a server p1 if (a) all the interaction sequences of p2 can be performed

also by p1; and (b) the two servers converge along the execution of the interaction sequences in

the same manner

• a client r2 is better than a client r1 if (a) all the interaction sequences that r2 performs without

being satisfied are performed also by r1 without being satisfied;(b) if an interaction leads r1 out

of a deadlock, then that interaction leads also r2 out of a deadlock

• a peer q is better than a peer p if q is a better client than p, and if this is true, then q is also a

better server than p.

As to the meaning of “converging along”, observe Figure 1.3. There the program q1 converges along

the interaction sequence ?Int?Int!Bool, because all the states it reaches during the execution con-

verge. On the contrary, the program p1, does not converge along that sequence, because after having

performed ?Int?Int! it reaches a divergent state.

Observe that a posteriori the principles to replace servers are the same prescribed by the stan-

dard must pre-order; moreover, they imply that

ATMA 6<∼svr ATMB (1.1)
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Plane

Plane ′ Plane ′′

τ

!fln

τ

!lnd

Figure 1.4: A program for a plane

To see why Eq. (1.1) is true, consider the following LTS,

Test

01

!topup!withdraw

X

The only interaction that Test can engage in with ATMA is due to withdraw, and Test reports success

after that interaction. With ATMB there exists the possibility of an interaction via topup, which leads

Test to a deadlock state. The fact that Test is always passed by ATMA but it may not be passed by

ATMB proves Eq. (1.1).

To extend the standard theory with new pre-orders for clients and peers has also the advantage of

laying bare some fundamental notions that we will need to study the refinements of a second theory.

1.2 Compliance theory

The second formalism that we study is a theory of compliance, and it is an alternative to the must

testing theory.

We motivate the investigation of the compliance theory. Recall the ATM we described earlier

on, ATMA; and observe Plane in Figure 1.4. The program Plane keeps on performing some internal

computation, represented by the τ actions, whereby it decides to communicate to the environment

either that it is landed (!lnd), or that it is flying (!fln). Plainly, the program Plane follows a com-

pletely different communication pattern than ATMA. Nevertheless, if we compare the two programs

as clients according the the must setting, they are equivalent, ATMA hclt Plane. This may look

surprising, but indeed it is sensible. If clients are tests, then when we use <∼clt we compare software

as tests. Now we see why ATMA hclt Plane; as none of these programs ever reach a successful state

(i.e. perform X), they are indeed equivalent as tests, for they are never passed.

This criterion to assess when a client can replace another client neither fits with our daily experience

of the services we use on the web, nor fits with the usage of web-services at large.

This motivates the introduction of an alternative relation to formalise the satisfaction of a client,

or of two peers. This is the compliance relation, a.

Roughly speaking, according to the compliance relation, a client r is satisfied by a server p, r a p,
as long as the requests of the client are answered by the server, and if the interactions cannot go

on, then the client has successfully completed its computation. This notion of satisfaction differs

from must; the compliance relation essentially ensures that the interactions can go on, whereas the

must testing checks the presence of successful states in the computations.

The compliance relation and its symmetric version also give rise to three pre-orders in a natural

fashion,

vsvr, vclt, vp2p
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In this setting we can indeed prove that ATMA 6=clt Plane. For example, the server S =!withdraw.S

satisfies ATMA, but not Plane. Intuitively, this is true because ATMA keep on interacting with forever

S; whereas the composition Plane || S enters in a deadlock, without Plane being satisfied:

Plane || S τ−→ Plane || S
τ

6−→

Even though the must testing and the relation a are altogether different, the reasoning techniques

for the pre-orders due to the compliance are quite close to the reasoning techniques for the pre-orders

due to must.

Our investigation of the compliance theory leads to the following principles:

• a server p2 is better than a server p1 if (a) all the interaction sequences of p2 can be performed

also by p1; and (b) the two servers converge after the execution of the interaction sequences in

the same manner

• a client r2 is better than a client r1 if (a) all the interaction sequences that r2 performs reaching

a deadlock are performed also by r1 reaching a deadlock; (b) if an interaction leads r1 out of a

deadlock, then that interaction leads also r2 out of a deadlock

• a peer q is better than a peer p if q is a better client than p, and if this is true, then q is also a

better server than p.

We have already argument that the program p1 in Figure 1.3 does not converge along the interaction

sequence ?Int?Int!Bool; on the other hand it converges after having performed the sequence, for the

state that it reaches, p4, does not diverge.

Also in this case the principles to replace servers let us prove that ATMB is not a better server

than ATMA,

ATMA 6vsvr ATMB

The inequality above and Eq. (1.1) ensure that neither the compliance pre-orders nor the must pre-

orders that allow width extension to take place. However, by restricting the power of the programming

language at hand, we can use must and a to obtain refinements that allow width extension. This

brings us to the study of session types.

1.3 Session types

Most of the software we use interacts via binary communication channels, the so-called sockets. These

channels are binary because are made of two end-points. If we represent abstractly the channels

as a, b, c, . . ., then the end-points of a channel are a+ and a−. Intuitively, at each moment in a

network, one program owns the end-point a+, and one program owns the dual end-point, a−.

Session types, proposed first by [Honda, 1993], are syntactic annotations usually assigned to the

end-points used by programs. These types describe the sequence of data input/outputs that a program

is willing to perform on a given end-point.

Let the session types S be defined as follows,

S = µX.&〈 add : ?[ Int ]; ?[ Int ]; ![ Int ];X, stop : end 〉 (1.2)

Let us comment the syntax above. The type S is defined using recursion on the variable X (recX. . .);

the body of S is defined by a branch constructor ( &〈 . . . 〉), which maps two labels (add and stop) to

other two types. After add there is a type defined by two input constructs (?[−]), and output (![−])

and the variable to perform recursion. After stop there is the termination type, end, that represents

a terminated communication.
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If a program p uses an end-point a+ at type S, then p operates on a+ according the this logic: p

offers a “menu” with two choices, add and stop, and waits for the program with the end-point a− to

make a choice;

• if the choice is add, then p proceeds as follows,

1) p reads via a+ a datum of type Int,

2) p reads via a+ a datum of type Int,

3) p write on a+ a datum of type Int,

4) p starts again to act on a+ as we described;

• if the choice is stop, then p does not interact any longer via the end-point a+.

The notion of duality in the theory of session types is a central one. The end-points associated

to a channel are “dual”, and the programs that use them are supposed to show “dual”, that is

complementary, behaviours on the end-points. If a program offers some choices, then the program

at the other end of the channel chooses among these choices. If one program performs an input, the

other program has to perform an output, and so forth.

The duality between types expresses the notion of satisfaction in the setting of session types, for

if S is the dual of S, than each communication performed on one end-point, will be matched by a

communication on the dual end-point (if communications can take place at all).

The main refinement in the theory of session types is the sub-typing relation, 4sbt, defined by [Gay

and Hole, 2005].2 This sub-typing adds flexibility to the overall theory, in that it allows to replace

session types without breaking the correctness of a system. For instance, if S1 = &〈 tea : end 〉
and S2 = &〈 tea : end, moka : end 〉, then the sub-typing ensures that S1 4sbt S2. Note that this

means that the refinement 4sbt allows width extension.

Session types lack any semantics; they are merely syntactic entities. As a consequence, the rela-

tion 4sbt is inevitably defined by using the syntax of terms. This has some drawbacks:

• the definition of 4sbt explains neither how the behaviours of programs are related, nor how the

behaviour of types are related

• there is a degree of arbitrariness in the definition of 4sbt. Why should we use that definition

of [Gay and Hole, 2005], rather than some other relation?

• a priori, it is not clear how to adapt the definition of 4sbt to alternative type refinements; in

particular the ones biased towards clients

To overcome the drawbacks above, in our study we explain the existing theory of session types.

We do this by interpreting types into a language equipped with an operational semantics; in turn, the

semantics lets us define pre-orders for servers and clients in a straightforward and non arbitrary way;

and these pre-orders let us justify the standard sub-typing via a fully abstract model. Essentially,

a posteriori it turns out that if we assign a semantics to session types, and S1 4sbt S2, then the

behaviours of S1 and S2 are indeed related.

Other than the models of the sub-typing, the outcome of our investigation is that it is possible to

reason about the behavioural pre-orders for session types merely by looking at the syntax of types.

First-order session types

Our investigation on session types begin with first-order types. First-order session types are types

that can express inputs and outputs operations only on terms that are not session types. For instance

2In that paper the sub-typing is denoted ≤c.



10 Chapter 1. Introduction

σ

σ1

1 σ2

0

σ3

σ4

τ

?stop

?add
?Int

?Int

!Int

X

Figure 1.5: Operational semantics of the encoding of the type S (see Eq. (1.2))

the following terms are first-order session types

?[ Real ];end, µX. ![ Bool ]; ?[ Int ];X,

the intuition being that Real and Int are base types, so not session types. The following terms are

not first-order,

![µX. ?[ Bool ];X ];end, &〈 opt1 : ?[end ];end, opt2 : ![ ?[end ]; ];end 〉 (1.3)

The input/output fields ?[−] and ![−] of the types in Eq. (1.3) contain session types, so the terms in

Eq. (1.3) are higher-order.

The first task that we carry out is to assign an operational semantics to first-order session types.

To this end, we adapt the semantics of the processes in CCSwτ , and define the language of session

contracts. A straightforward encoding of session types into session contracts lets us associate the

semantics of session contracts to session types. In Figure 1.2 we saw the operational semantics of

simple processes; essentially some graphs. Intuitively, we use the same approach to describe how a

type is meant to interact with the environment, thereby giving a meaning to session types.

For instance, we will associate the term S in Eq. (1.2) with the graph depicted in Figure 1.5; in

that graph σ is the session contract resulting from the encoding of S.

In view of the operational semantics assigned to session types, we use the relations for satisfac-

tion must and a to study the refinements for servers and clients that arise in the setting of session

types. These refinements are respectively

<∼
fo
svr,

<∼
fo
clt

and

vfo
svr, vfo

clt

The definitions of the pre-orders above follow the intuitions that lead to the definitions of the pre-

orders for the general theories of testing and of compliance. Hence the relations above are not defined

in a syntactic way, but in a behavioural way.

We do not define the refinements for peers, for we use the sub-typing on first-order types, 4fo
sbt, as

the refinement for peers (up-to the interpretation of contracts into types).

In the sequel of this discussion, let us assume that σ1 and σ2 are the encoding of two types S1

and S2. If σ1 is related by <∼
fo
svr with σ2, then the way in which σ2 interacts with the environment,

i.e. its observable behaviour, will satisfy all the clients passed by σ1. A similar property is true also

for vsvr.
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σ1

0σ2

?(1). 1

1

!(1). 1

X

!(µx. ?Bool.x)
?opt1

?opt2 !(1)

?(1)

Figure 1.6: An instance of the LTS of higher-order session contracts. The higher-order session contracts
appear on the transitions as well as in the states

By and large, the outcome of our study is that the behavioural pre-orders can be characterised

purely in a syntactic manner, and that the intersections of these pre-orders are a fully abstract model

of 4fo
sbt (via our encoding):

• S1 4fo
sbt S2 if and only if σ1 (<∼

fo
svr ∩ <∼

fo
clt) σ2

• S1 4fo
sbt S2 if and only if σ1 (vfo

svr ∩ vfo
clt) σ2

First-order session types have limited applications, so we extend the language of session types by

allowing them to input/output also session types; and we investigate the resulting theory.

Higher-order session types

As we saw in Eq. (1.3), higher-order session types can contain session types in their input/output

fields. The language of higher-order session types amounts to the session types á la [Gay and Hole,

2005]. In this context we study only the pre-orders due to the compliance relation,

vho
svr, vho

clt

The outcome of our investigation is an extension of the results proven in the first-order setting:

• the behavioural pre-orders can be characterised purely in a syntactic manner

• the intersection of those pre-orders is a fully abstract model of the sub-typing 4sbt: S1 4sbt S2

if and only if σ1 (vho
svr ∩ vho

clt) σ2

We do not investigate the must pre-orders in the higher-order setting, and leave this as an open

problem.

The chief difficulty in unravelling the results is due to a technical issue, that we briefly comment

on.

To accommodate the higher-order terms in the existing model of first-order types, we extend the

language of session contracts with higher-order constructs. For example, the session contracts that

represent the types in Eq. (1.3) are the following terms,

σ1 =!(µx. ?Bool.x). 1 σ2 =?opt1.(?(1). 1) + ?opt2.(!(1). 1)

In turn, this forces us to extend the operational semantics of session contracts; we have to allow

the transition of the semantics to be labelled with higher-order session contracts themselves. The

operations of the session contracts above are depicted in Figure 1.6.

As a result, the intuitions of co-action and of when transitions should synchronise is no longer

clear; in fact, this is a non-trivial matter, and to account for it we parametrise the LTS via a binary

relation on session contracts, B, and introduce a family of “dependent” LTSs.
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In order to obtain an LTS that does not depend on any arbitrary relation B, we study certain

functions, which turn out to have greatest fixed points. These fixed points are the pre-orders vho
svr

and vho
clt. Indeed, in devising the higher-order theory of compliance our efforts are principally oriented

towards the definition of the fixed points vho
svr and vho

clt.

1.4 Contributions

From a technical standpoint, the contributions of this thesis are the following ones,

(a) we enrich the standard testing theory with new pre-orders, and present their behavioural charac-

terisations (Theorem 4.2.37, Theorem 4.3.17);

(b) we introduce a new compliance relation, the three pre-orders that arise from it, and we show

the behavioural characterisations of these pre-orders (Theorem 5.1.15, Theorem 5.2.25, Theo-

rem 5.3.26);

(c) we show a fully abstract model of the sub-typing relation on first-order session types (Theo-

rem 6.3.4); the model we use can be defined in two alternative ways, one due to the testing

theory, and the other due to the compliance theory (Proposition 6.5.19);

(d) we generalise the model due to the compliance so as to exhibit a fully abstract model of the

sub-typing on higher-order session types (Theorem 8.4.9).

The first two contributions ((a) and (b)), i.e. the systematic study of the testing theory and the

compliance theory, are a necessary step to use the formalisms themselves as foundations for software

maintenance.

The last two contributions ((c) and (d)), that is the models for first-order and higher-order session

types, essentially show that the theory of session types à la [Gay and Hole, 2005] can be recovered

and justified by using the must testing, or the compliance relation. The connection that we estab-

lish between the different formalisms shows that the testing and the compliance theories on session

contracts are more primitive than the theory of session types.

Also, our model shows that session contracts in some sense extend the theory of session types, by

virtue of a series of server pre-orders and client pre-orders.

In the first-order setting, we take the sub-typing 4fo
sbt to be the peer pre-order; the must theory

for session types amounts to the refinements

<∼
fo
svr,

<∼
fo
clt,

<∼
fo
clt ∩ <∼

fo
svr

while the compliance theory amounts to the refinements

vfo
svr, vfo

clt, vfo
svr ∩ vfo

clt

In the higher-order setting, the pre-order for peers is the sub-typing 4sbt, and the compliance theory

amounts to the following pre-orders

vho
svr, vho

clt, vho
svr ∩ vho

clt

The material is presented in such a way as to render the transition from one theory to another

theory as smooth as possible, showing the crucial differences between the subjects, and exploiting

their similarities.
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Equivalences and pre-orders In this thesis we study the characteristic properties of a number

of refinement relations; that is pre-orders. We study these relations rather than equivalences because

pre-orders are more primitive than equivalences: each pre-order we study through this thesis generates

an equivalence. For instance we deem two clients r1 and r2 as equivalent, r1 =clt r2, if r1 vclt r2

and r2 vclt r1. The properties of the pre-order vclt then shed light immediately on the equivalence

relation =clt.

Structure of the thesis

This thesis is divided into two parts.

The first part is devoted to the study of first-order theories; this means that the transition systems

that we use as operational semantics have “basic” entities as labels, for example actions, and base

types.

The second part is devoted to the extension of some results of the first part to transition systems

generated by higher-order languages. Roughly speaking, in these transition systems the labels can be

“programs” themselves.

We briefly describe the contents of each chapter.

In Chapter 2 we define the languages that we use throughout the first part of the thesis. While

session types need little discussion and are merely syntactical entities, to define processes (i.e. CCSwτ )

and session contracts we have also to introduce the operational semantics of these languages. We

conclude the chapter showing how to encode session types in session contracts, thereby assigning

them an operational semantics.

In Chapter 3 we use the LTS to formalise the satisfaction of clients and peers; that is to define

the must testing and the compliance relation. We also show that in the restricted setting of session

contracts, both relations can be faithfully described using only the syntax of terms.

In Chapter 4 we extend the standard testing theory, by investigating the pre-orders for servers,

clients and peers due to must.

Chapter 5 is organised as Chapter 4, but the theory investigated is due to the compliance relation.

At the end of Chapter 5 we summarise our knowledge of the pre-orders studied on the general LTS

of CCSwτ ; moreover, we prove a series of results on more restrictive LTSs.

In Chapter 6 we turn our attention to the LTS of session contracts, tailoring the definitions of the

refinements to it. We study both the resulting must theory and the resulting compliance theory, and

exhibit a fully abstract model of first-order session types. This sheds light on the known theory of

session types, and also show how to extend it.

In Chapter 7 we extend the languages for sessions of Chapter 2. In particular, we parametrise

on a relation B the LTS that describes the interactions of higher-order session contracts. This leads

to the definition of dependent compliance relations, aB. The chief result of the chapter is that the

syntactical characterisation of a still holds true for the dependent compliances.

In Chapter 8 we introduce the dependent client and server pre-orders, vBclt and vBsvr. By using

these pre-orders we show that there is non-arbitrary way to remove the parameter B from the LTS.

We do this by building the fixed points of suitable functions of the form λX. vXclt and λX. vXsvr. We

use these results to exhibit a fully abstract model of higher-order session types.

In Chapter 9 we outline the ongoing work and the problems that we want to tackle by means of

our behavioural models of session types.

In Chapter 10 we review the relevant literature, summarising the development of the formalisms

we use, and showing the state of the art.

We conclude the thesis in Chapter 11, by summarising the results, and briefly discussing a series

of open questions.
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Prerequisites

The reader is expected to be familiar with näıve set theory, order theory, and first order logic. Standard

references on these topics are respectively [Halmos, 1960], [Davey and Priestley, 2002], and [Mendelson,

1997].

The notation that we do not explain, for example how we define syntax languages, is standard and

used regularly in the literature, for instance in [Hennessy, 2007; Milner, 1999; Pierce, 2002].

Throughout the thesis we use heavily induction and co-induction; an excellent and broad expla-

nation of both techniques is [Sangiorgi, 2012]. Chapter 21 of [Pierce, 2002] is a standard reference

on (co)induction, while another standard reference on induction is [Winskel, 1993, Chapters 3 and 4].

More advanced books on the matter are [Barwise and Moss, 1996] and [Sangiorgi and Rutten, 2011].

Notation We explain a few conventions on the notation that we will use.

We will use the symbols v and <∼ to denote pre-orders defined by using the operational semantics

of programs. We will use the symbols � and - to denote “alternative” relations, that shed light on

the observable behaviour of programs.

We will use many relations defined by (co)induction; normally we will define these relations by

using explicitly rule functionals, and taking their least or greatest fixed points. We use the symbol F
to denote such rule functionals. When interested in the greatest fixed point of a functional, we

decorate F with a superscript, for example FA,FB , . . .; when interested in the least fixed point of a

functional, we decorate F with a subscript FA,FB , . . ..
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First-order theories
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Chapter 2

First-order languages

In this chapter we formally define the languages that we will use throughout the first part of this

thesis: a language of communicating processes, the language of session contracts, and the language of

session types. The first two languages have an operational semantics in the form of an LTS, and their

terms are really meant as handy denotations for parts of the LTS. The third language, session types,

has no formal semantics.

The languages we deal with in this part of the thesis are first-order, in the sense that they cannot

perform input/output operations on the terms of the languages themselves.

Structure of the chapter. We first introduce the language of first-order session types, which

is closely related to the language of [Gay and Hole, 2005], and define a sub-typing relation on the

first-order session types.

In Section 2.2 we present the language of processes, and endow its terms with a structural oper-

ational semantics. Our processes are terms of infinitary ccs without τ ’s [De Nicola and Hennessy,

1987] enriched with the special term 1, which represents success. We will use the LTS denoted by

processes in two chapters of the thesis.

It will become evident that there is a natural way to map first-order session types into a sub-

LTS of the one denoted by processes. To render this mapping precisely, in Section 2.3 we introduce

the language of session first-order session contracts. This languages is a bridge between the LTS of

processes and the syntax of first-order session types. In particular, (a) first-order session contracts

denote a sub-LTS of the one of processes, and (b) it is straightforward to prove that there is a bijection

between the syntax of session types and session contracts.

2.1 The session type language

To define the syntax of types, we presupposes three denumerable sets; a set of labels L, ranged over

by l, a set of ground types BT ranged over by t, and a set of variables V, ranged over by X; the last

set let us express recursive types.

The syntax of terms for types is given by the grammar in Figure 2.1; let us denote with LSTfo
the

language given by that grammar.

The use of variables leads to the usual notion of free and bound occurrences of variables in terms

in the standard manner; we say that a term is closed if it contains no free variables. We also have the

standard notion of capture avoidance substitution of terms for free variables. For the sake of clarity

let us recall this definition: a substitution s is a mapping from the set V to the set of terms in LSTfo
.

Let

s−X =

s \ {(X, s(X))} if X ∈ dom(s)

s otherwise

17
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R,S, T ::= Session types
end Terminated session
?[ t ];S Input
![ t ];S Output
&〈 l1 : S1, . . . , ln : Sn 〉 Branch
⊕〈 l1 : S1, . . . , ln : Sn 〉 Choice
X Type variable
µX. S Recursive session type

Where n > 0, and i 6= j implies that li 6= lj .

Figure 2.1: Grammar for first-order session types

Ss =



end if S = end

s(X) if S = X, and X ∈ dom(S)

X if S = X, and X 6∈ dom(S)

![ t ]; (S′s) if S = ![ t ];S′

?[ t ]; (S′s) if S = ?[ t ];S′

&〈 l1 : (S1s), . . . , ln : (Sns) 〉 if S = &〈 l1 : S1, . . . , ln : Sn 〉
⊕〈 l1 : (S1s), . . . , ln : (Sns) 〉 if S = ⊕〈 l1 : S1, . . . , ln : Sn 〉
µX. (S′(s−X)) if S = µX.S′

t if S = t

Figure 2.2: Application of substitution to first-order session types.

The result of applying a substitution s to the term S is defined in Figure 2.2, by structural

induction.

In the final clause of the definition, the application of s − X embodies the idea that in µX.S′

occurrences of X in the sub-term S′ are bound, and therefore substitutions have no effect on them.

It is easy to check that the effect of a substitution depends only on free variables; that is, Ss1 = Ss2

whenever s1(X) = s2(X) for every free variable X occurring in S. We use
{
T /X

}
to denote the

singleton substitution {(X,T )}.
In the language LSTfo

we have recursive terms, so we introduce a way to unfold them. We formalise

the notion of unfolding, which we define inductively.

Notation If X denotes a set, then we let P(X) denote the powerset of X; that is P(X) is the set

of subsets of X.

Definition 2.1.1. [ Unfolding ]

Let Funf : P(L2
STfo

) −→ P(L2
STfo

) be the rule functional given by the inference rules in Figure 2.3. We

denote the least fixed point of Funf with the symbol unf, and we refer to it as the unfold function.

The relation unf is a partial function, so we write unf(S) = T in place of Sunf(T ).

T unf T
T 6= µZ. S; [unf-a]

T ′
{
µX. T /X

}
unf S

T unf S
T = µX. T ′; [unf-r]

Figure 2.3: Inference rules for the rule functional Funf
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T depth 0
T 6= µZ. S

T ′
{
µY. T /Y

}
depth n

µY. T depth 1 + n
T = µZ. T ′

Figure 2.4: Inference rules to compute the depth of closed terms

Intuitively, unf(T ) unfolds top-level recursive terms until a type constructor appears, which is

not µ. This will be extremely useful in manipulating session types. Not all the terms can be unfolded,

for instance µX.X cannot be unfolded.

The fact that we can unfold a closed term of LSTfo
does not imply that also its sub-terms can be

unfolded.

Example 2.1.2. [ Unfolding and sub-terms ]

Let T = &〈 moka : µX.X 〉. On the one hand, the term T is closed and the top-most constructor in

it is not a recursion, thus we can prove that unf(T ) = T . The proof of this is given by the axiom of

Figure 2.3:

T unf T
T 6= µZ. S

On the other hand, a sub-term of T is µX.X, and it can not be unfolded.

We will need to deal only with types whose subterms can be unfolded. To rule out terms that do

not satisfy this property we introduce guarded recursion, which we now explain formally.

Definition 2.1.3. [ Type term depth ]

Let Fdepth : P(L2
STfo

) −→ P(L2
STfo

) be the rule functional given by the inference rules in Figure 2.4.

We denote with depth the least fixed point of the rule functional Fdepth , and we refer to it as the

depth function.

The function depth from terms to N provides a measure of session types over which we can perform

induction. Moreover, the depth of a closed term is defined if and only if the term can be unfolded.

Lemma 2.1.4. For every closed T ∈ LSTfo
, depth(T ) ∈ N if and only if unf(T ) = S for some S.

Proof. We are required to prove two implications,

a) if depth(T ) ∈ N then unf(T ) = S for some S

b) if unf(T ) = S for some S then depth(T ) ∈ N

The proof of both implications are by rule induction.

In [Gay and Hole, 2005] the function unf is defined co-inductively. This seems to contrast with

our inductive definition. In Example 2.1.5 we show that a co-inductive definition does not give rise to

a function. In Proposition 2.1.6 we explain how the co-inductive definition can lead to the inductive

notion of unfolding: when reasoning on terms with finite depth there is no difference between the

inductive and the co-inductive definitions of unf.

Example 2.1.5. Let S = µX.X. In this example we show that the pairs (S, ?[ Int ];end) and

(S, &〈 l : end 〉) are in the fixed point νX.Funf(X). Thanks to the Knaster-Tarski theorem all we

have to do is to exhibit a prefixed point of Funf which contains the pairs at hand.

Consider the ensuing relation

R = { (S, ?[ Int ];end), (S, &〈 l : end 〉) }
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We prove that R ⊆ Funf(R); to this aim, we have to to show that each pair in R can be derived by

instantiating one of the inference rules in Figure 2.3. As X
{
S/X

}
= S, we have the derivations

S unf ?[ Int ];end

S unf ?[ Int ];end
[unf-r]

S unf &〈 l : end 〉
S unf &〈 l : end 〉

[unf-r]

Thus R is a prefixed point of unf. The Knaster-Tarski theorem ensures that the pairs at hand are in

the fixed point νX.Funf(X).

The intuition behind the previous example is that if the depth of the first element of a pair (T, S)

is not defined, then the axiom [unf-a] is not necessary to derive the pair itself.

Lemma 2.1.6. If depth(T ) ∈ N and (T, S) ∈ νX.Funf(X), then unf(T ) = S.

Proof. We reason by induction on depth(T ) ∈ N.

If depth(T ) = 0, then T 6= µX. T ′, thus we can derive

T unf T
T 6= µX. T ′; [unf-a]

This proves that unf(T ) = T .

In the inductive case depth(T ) = n+1, thus T = µX. T ′, and the hypothesis (T, S) ∈ νX.Funf(X)

implies that there exists the derivation

T ′
{
T /X

}
unf S

T unf S
[unf-r]

This proves that (T ′
{
T /X

}
, S) ∈ νX.Funf(X). Since depth(T ′

{
T /X

}
) = n, we can apply the

inductive hypothesis, and state that unf(T ′
{
T /X

}
) = S; this means that there exists a finite deriva-

tion
...

T ′
{
T /X

}
unf S

It follows that also the following derivation is finite

...

T ′
{
T /X

}
unf S

T unf S
[unf-r]

so unf(T ) = S.

To make sure that all the sub-terms of a terms T can be unfolded, we introduce the predicate gd.

Definition 2.1.7. [ Guarded term ]

A term T is guarded, T gd if every sub-term of the form µX.S satisfies depth(S) ∈ N.

In view of Definition 2.1.7, Example 2.1.2 shows that to have a depth and to be guarded are different

properties. In Example 2.1.15 we will see why we need to ensure that all the sub-terms of a given

term can be unfolded.

Definition 2.1.8. [ Language of first-order session types ]

Let STfo denote the set of closed guarded terms,

STfo = {T ∈ LSTfo
| T gd }

We refer to the elements in STfo as first-order session types.



2.1. The session type language 21

BoundedBool

Int Real Num Random

Figure 2.5: A sub-type relation on a set of basic types BT; the arrow represents the relation 4b (see
Example 2.1.10).

First-order session types afford the following properties.

Proposition 2.1.9. Let T be a session type,

a) the depth of T is finite

b) the unfolding of T is a session type

Proof. The first point follows from the definition of STfo and Definition 2.1.7. To prove the second

point, we have to show that unf(T ) is closed and guarded. The proof is by induction on depth(T ).

It relies on the fact that each step of unfolding replaces one variable with a closed and guarded term;

hence the overall unfolding is closed.

2.1.1 Sub-typing

There are three sources for the sub-typing relation over types. The first is some predefined pre-order

over the base types, t1 4b t2, which intuitively says that all data-values of type t1 may be safely used

where values of t2 are expected.

Example 2.1.10. An example of sub-typing on base types is given in Figure 2.5, for the ensuing set

of types, BT = { Bounded, Bool, Int, Real, Num, Random }. In the figure the pre-order 4b is depicted by

the arrows; for instance, the arrow from type Int to type Real means that Int 4b Real.

More generally, if JtK denotes the set of values of the base type t then we can define 4b by letting

t1 4b t2 whenever Jt1K ⊆ Jt2K. The other sources for the sub-typing are two constructs of the

language: the branch construct allows sub-typing by extending the set of labels involved, while in the

choice construct the set of labels may be restricted. We give two examples.

Example 2.1.11. [ Sub-typing on branch types ]

In this example we explain how the sub-typing relates the branch types. Consider the type

BarTender = &〈 espresso : T1 〉

Intuitively, the BarTender offers only the label espresso, thus all the customers satisfied by BarTender,

are satisfied by any other type that offers at least the label espresso. Let

ItalianBarTender =&〈 espresso : T ′1,

deka : T ′2,

double− deka− restr : T ′3,

double− espresso : T ′4 〉
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Following the intuition, The ItalianBarTender will satisfy all the customers satisfied by the BarTender;

this is formalised by the sub-typing, which relates the two types as follows

BarTender 4sbt ItalianBarTender

as long as also the continuations T1 and T ′1 are related as well (ie. T1 4sbt T
′
1).

We have shown that, intuitively, it is safe to replace a branch type with a branch type that offers

more labels.

Example 2.1.12. [ Sub-typing on choice types ]

In this example we show how the sub-typing relate the choice types. Let ItalianCustomer describe

the different coffees that a process may want to order when interacting with a bar tender.

ItalianCustomer =⊕ 〈 espresso : T ′1,

deka : T ′2,

double− deka− restr : T ′3,

double− espresso : T ′4 〉

All the bar tenders that are able to satisfy this range of choices, have to offer at least the four labels

that appear in ItalianCustomer. Now consider the type

Customer = ⊕〈 espresso : T ′1 〉

Since Customer chooses among fewer options than ItalianCustomer, it is safe to use a channel

at type Customer in place of a channel at type ItalianCustomer. This is formalised by the

sub-typing relation as follows,

ItalianCustomer 4sbt Customer

In this example we have shown that, intuitively, it is safe to replace a choice type, with a choice

type that chooses among fewer labels.

Moreover, we will have the standard co-variance/contra-variance of input/output types [Pierce and

Sangiorgi, 1996], extended to both the branch and choice constructs.

Because of the recursive nature of our collection of types, the formal definition of the sub-typing

relation is given co-inductively.

Definition 2.1.13. [ First-order sub-typing ]

Let F4fo
sbt : P(STfo

2) −→ P(STfo
2) be the rule functional given by the inference rules in Figure 2.6.

If X ⊆ F4fo
sbt(X), then we say that X is a first-order type simulation. Lemma C.0.17 and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F4fo
sbt(X); we call

this solution the first-order sub-typing relation, and we denote it 4fo
sbt. That is 4fo

sbt = νX.F4fo
sbt(X).

Figure 2.6 contains a schema of inference rules rather than a set of finite inference rules. This

because the premises of the rules [r-Branch] and [r-Choice] depend on the cardinality of two sets,

respectively I and J . The schema gives rise to an infinite amount of inference rules. An infinite

set of inference rules gives rise to a rule functional as a finite set of rules does. The details of the

construction are explained in [Sangiorgi, 2012, Chapter 2].

Example 2.1.14. [ Side conditions on depth of terms ]

In this example we explain why rule [r-Unfold] in Figure 2.6 has the side condition depth(S1) +
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end 4fo
sbt end

[a-End]

S′1 4
fo
sbt S

′
2

?[ t1 ];S′1 4
fo
sbt ?[ t2 ];S′2

t1 4b t2; [r-In]

S′1 4
fo
sbt S

′
2

![ t1 ];S′1 4
fo
sbt ![ t2 ];S′2

t2 4b t1; [r-Out]

S1
1 4

fo
sbt S

2
1 . . . S1

m 4
fo
sbt S

2
m

&〈 l1 : S1
1 , . . . lm : S1

m 〉 4fo
sbt &〈 l1 : S2

1 , . . . , ln : S2
n 〉

m ≤ n; [r-Branch]

S1
1 4

fo
sbt S

2
1 . . . S1

n 4
fo
sbt S

2
n

⊕〈 l1 : S1
1 , . . . lm : S1

m 〉 4fo
sbt ⊕〈 l1 : S2

1 , . . . , ln : S2
n 〉

n ≤ m; [r-Choice]

unf(S1) 4fo
sbt unf(S2)

S1 4fo
sbt S2

depth(S1) + depth(S2) > 0; [r-Unfold]

Figure 2.6: Inference rules for the rule functional F4fo
sbt

depth(S2) > 0. Intuitively, the side condition ensures that the rules cannot be applied vacuously, that

is to terms that equal their unfoldings.

Let S1 = ![ Int ];end and S2 = ?[ Bool ];end, and let 4bad be the relation defined as 4fo
sbt, but

without the side condition in rule [r-Unfold]. We prove that the bad sub-typing 4bad relates S1

to S2. We have to show a prefixed point of F4bad that contains the pair (S1, S2); let R= { (S1, S2) }.
To prove that R ⊆ F4bad(R) we need to show just that (S1, S2) ∈ F4bad(R). This follows form the

equalities unf(S1) = S1, unf(S2) = S2, and an application of rule [r-Unfold]:

unf(S1) 4bad unf(S2)

S1 4bad S2

Note that thanks to the side condition depth(S1) + depth(S2) > 0 we cannot prove S1 4fo
sbt S2.

The requirement that session types be guarded is crucial for the first-order sub-typing relation to

be well-defined. We explain this fact in the next example.

Example 2.1.15. [ Sub-typing and guardedness ]

In this example we show why the guardedness of terms is required in the definition of session types.

Consider again the term T = &〈 l : µX.X 〉 of Example 2.1.2. Suppose we wanted to check

whether T 4fo
sbt &〈 l : S 〉 for some term S. The definition of 4fo

sbt requires us to check whether

unf(µX.X) 4fo
sbt unf(S)

This check, though, can not be done because unf(µX.X) is not defined at all (and unf(S) may not

be defined either).

The co-inductive type simulations are closed with respect to unfolding.

Lemma 2.1.16. [ 4fo
sbt and unfolding ]

For every co-inductive type simulation R, and every S, T ∈ STfo, if S R T then unf(T ) R unf(T ).

Proof. Let S R T . The argument depends on the depths of S and T . If depth(S) + depth(T ) = 0,

then unf(S) = S and unf(T ) = T , so the assumption S R T implies unf(S) R unf(T ). If depth(S)+

depth(T ) > 0, then recall that by hypothesis R ⊂ F4fo
sbt(R). It follows that (S, T ) ∈ F4fo

sbt(R). The
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assumption on the depths of the types at hand ensures that the only way to prove (S, T ) ∈ F4fo
sbt(R)

is an application of rule [r-Unfold],

unf(S) 4fo
sbt unf(T )

S 4fo
sbt T

depth(S) + depth(T ) > 0; [r-Unfold]

It follows that unf(S) R unf(T ).

Proposition 2.1.17. The relation 4fo
sbt is a pre-order on STfo.

Proof. See [Gay and Hole, 2005].

In [Gay and Hole, 2005] the set of types STfo are used to give a typing system for the pi calculus,

and appropriate Type Safety and Type Preservation theorems are proved.

In Chapter 6 our aim will be to find a pre-order isomorphic to 4fo
sbt, which is based on the semantics

of terms rather than their syntax. In particular, as session types are meant to be protocol descriptions,

a natural decision is to try to map session types into ccs without τ ’s, and use the operational semantics

of this language to define a fully abstract model for 4fo
sbt. We will achieve this result in Theorem 6.3.4.

In the next two sections we introduce respectively, an infinitary version of ccs without τ ’s; and

then a language that lets us focus on a sub-LTS of the general one given by CCSwτ , and interpret

session types via a bijection.

2.2 Processes

In this section we define an LTS of processes by means of a language and its operational semantics.

The language is an infinitary version of CCSwτ , and the operational semantics of the terms is specified

by standard inference rules.

Let Act be a set of actions, ranged over by α, β, γ, . . . and let τ, X be two distinct actions not

in Act ; the first will denote internal unobservable activity while the second will be used to report the

success of an experiment. To emphasise their distinctness we use Actτ X to denote the set Act∪{ τ, X },
Actτ to denote the set Act ∪ { τ }, and ActX to denote the set Act ∪ { X }. We assume Act has an

idempotent complementation function, with α being the complement to α.

We let αX to range over ActX, ατ range over Actτ , and µ range over Actτ X.

Labelled Transition System A labelled transition system, LTS, consists of a triple

〈P, Actτ X, −→〉

where P is a set of processes and −→ ⊆ P × Actτ X × P is a transition relation between processes

decorated with labels drawn from the set Actτ X. We use the infix notation p
µ−→ q in place of (p, µ, q) ∈

−→. An LTS is finite-branching if for all p ∈ P and for all µ ∈ Actτ X, the set { q | p µ−→ q } is finite.

In this thesis we will not assume that all LTSs are finite-branching.

We use standard notation for operations in LTSs. For example Act?τ X, ranged over by t, denotes the

set of finite sequences of actions from the set Actτ X, and for any t ∈ Act?τ X we let p
t−→ q be the obvious

generalisation of the single transition relations to sequences. For an infinite sequence u ∈ Act∞τ X of the

form µ0µ1 . . . we write p
u−→ to mean that there is an infinite sequence of actions p

µ0−→ po
µ1−→ p1 . . ..

The relation
t−→ is lifted to the weak case in the standard manner, using a function which projects a

sequence t ∈ Act?τ X into a sequence 〈t〉\τ ∈ Act?X, by ignoring all occurrences of τ . Then for s ∈ Act?X
we write p

s
=⇒ q if p

t−→ q for some t ∈ Act?τ X such that s = 〈t〉\τ . Similarly for u ∈ Act∞X we

write p
u

=⇒ to mean p
t−→ for some t ∈ Act∞τ X such that for every finite prefix un of u there exists

some prefix tk of t such that 〈tk〉\τ = un.
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p, q, r ::= Processes

1 Succesful process

A Definitional constant

α.p Prefix

p || q Parallel composition∑
i∈I pi External choice⊕
j∈J pi Internal choice

where α ∈ Act , I, J are countable index sets, with J 6= ∅. A,B,C, . . . range over a set of definitional

constants each of which has an associated definition A
def
= pA.

Figure 2.7: Syntax of infinitary CCSwτ .

Language and semantics To describe LTSs we use an infinitary version of CCS without τs, [De Nicola

and Hennessy, 1987], augmented with a success operator, 1.

Definition 2.2.1. Let CCSwτ be the set of terms defined by the grammar in Figure 2.7.

We use 0 to denote the empty external sum
∑
i∈∅ pi, and p1 + p2 for the binary sum

∑
i∈{ 1,2 } pi.

Similarly the binary internal sum
⊕

i∈{ 1,2 } pi will be rendered as p1 ⊕ p2.

Each term in the language CCSwτ denotes an LTS; the easiest way to describe this interpretation

is to define one overarching LTS, whose states are the terms in CCSwτ and where the relations p
µ−→ q

are the least ones determined by the (standard) rules in Figure 2.8. Note the side condition in rule

[p-Synch]; when reasoning on processes, we assume the relation ./ to be given by the co-action

function: α ./ α.

In the next chapters we will need the following concepts.

Definition 2.2.2. [ Computation ]

For every process r and p a sequence of reductions

r || p τ−→ r1 || p1
τ−→ r2 || p2 −→ . . .

is called a computation of r || p and each derivative ri || pi is a state of the computation.

Definition 2.2.3. [ Convergent ]

We write p ⇓ whenever there exists a k ∈ N such that if p
τ−→
n
p′, then n ≤ k. If p ⇓ then we say

that p converges.

2.3 Session Contracts

In Section 2.2 we have define a general LTS given by the terms of CCSwτ and their operational

semantics.

Here we turn our attention to a sub-LTS of 〈CCSwτ , Actτ X, −→〉, that is denoted by the terms of

yet another language, the language of session contracts. In this section we assume Act to be the set

{ ?b, !b | b ∈ BT } ∪ { l?, l! | l ∈ L }

The syntax for the language LSCfo
is given in Figure 2.9. The language LSCfo

is not a sublanguage

of CCSwτ , because of recursion; the term µx. α.x is not in CCSwτ . Despite this apparent difference,

it will become evident that the LTSs denoted by the two languages are related. For instance we will
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1
X−→ 0

[a-Ok]
α.p

α−→ p
[a-Pre]

p ⊕ q τ−→ p
[a-In-l]

p ⊕ q τ−→ q
[a-In-r]

p
α−→ p′

p + q
α−→ p′

[r-Ext-l]
q

α−→ q′

p + q
α−→ q′

[r-Ext-r]

p
τ−→ p′

p + q
τ−→ p′ + q

[r-In-l]
q

τ−→ q′

p + q
τ−→ p + q′

[r-In-r]

pA
µ−→ p′

A
µ−→ p′

A
def
= pA; [r-Const]

q
µ−→ q′

q || p µ−→ q′ || p
[p-Left]

p
µ−→ p′

q || p µ−→ q || p′
[p-Right]

q
α−→ q′ p

β−→ p′

q || p τ−→ q′ || p′
α ./ β; [p-Synch]

Figure 2.8: The operational semantics of CCSwτ

see that the process A
def
= α.A ⊕ α.A has the same operational semantics of µx. α.x. To our aims the

construct µx. is not necerray; nevertheless, we introduce it to render as straightforward as possible

the encoding of session types into session contracts.

As of now, we still have to formally define the language of session contracts. To do so, we make

sure that session contracts can be unfolded.

Recursive definitions are handled in much the same way as we did for session types, and so we

do not spell out all the details; we assume a definition of capture-avoiding substitution s. We define

the functions depth and unf as in Section 2.1, but using the inference rules on closed terms of LSCfo

instead of LSTfo
.

Once again, one can prove the following lemma.

Lemma 2.3.1. For every closed σ ∈ LSCfo
, depth(σ) ∈ N if and only unf(σ) = σ′ for some σ′.

ρ, σ ::= First-order session contracts

1 Satisfied contract

?t.σ Input

!t.σ Output∑
i∈I?li.σi External sum⊕
i∈I !li.σi Internal sum

x Session contract variable

µx. σ Recursive session contract

Where I is not empty, and i 6= j implies that li 6= lj .

Figure 2.9: Grammar for first-order session contracts
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µx. σ
τ−→ σ { µx. σ/x }

[a-Unf]

Figure 2.10: Operational semantics of recursive session contracts

Proof. Analogous to the proof of Lemma 2.1.4.

We extend to the closed terms of LSCfo
also the definition of the predicate gd; for instance the

term µx. α.µx. x is not guarded.

Definition 2.3.2. [ Language of session contracts ]

Let SCfo = {σ ∈ LSCfo
| σ gd }. We refer to the terms in the set SCfo as session contracts.

Thanks to the requirement that the σ’s be guarded, one can prove that for every σ ∈ SCfo, σ ⇓ .

Note that in session contracts

• external choices are restricted to inputs on labels

• internal choices are restricted to outputs on labels

Note also that 0 is not a session contract. Instead we have chosen 1 to be the base contract, for

reasons which will become apparent.

The operational semantics of session contracts is given by the rules in Figure 2.8 with the additional

rule for recursive terms given in Figure 2.10.

Also, we instantiate the relation ./ of rule [p-Synch] to ./c, with ./c determined by

α ./c β whenever



α = ?b, β = !b′ b′ 4b b

α = !b, β = ?b′ b 4b b
′

α = ?l, β = !l

α = !l, β = ?l

Using the basic sub-typing relation depicted in Figure 2.5 the following examples should be clear:

1. ?Num ./c!Int: a contract that can read a datum of type Num can read a datum of type Int

because Int 4b Num.

2. ?Int 6./c!Num: conversely a contract ready to read a datum of type Int cannot read a datum of

type Num because Num 64b Int.

3. ?Random ./c!Bool: as in point (i), Bool 4b Random hence an interaction between the ac-

tions ?Random and!Bool can take place.

In view of the definition of Act and of the previous example we also introduce a way to compare

sets of action, that mirrors the impact of 4b on ./c.

Definition 2.3.3. Let A and B be subset of Act ; we write Avrs B whenever for every αA ∈ A and

every β such that β ./c αA there exists some action αB ∈ B such that β ./c αB also.

Example 2.3.4. In this example we show how the vrs relates sets of actions. It turns out that AvrsB

whenever the following conditions are true,

• !l ∈ A implies !l ∈ B for every l ∈ L

• ?l ∈ A implies ?l ∈ B for every l ∈ L
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• ?bA ∈ A implies ?bB ∈ B for some type bB such that bB 4b bA

• !bA ∈ A implies !bB ∈ B for some type bB such that bA 4b bB

We recall some examples of session contracts from the literature.

Example 2.3.5. [ e-vote, [Barbanera and de’Liguoro, 2010; Laneve and Padovani, 2008] ]

Ballot = µx. ?Login.( !Wrong.x⊕ !Ok.( ?VoteA.x+ ?VoteB.x ) )

Voter = µx. !Login.( ?Wrong.x+ ?Ok.( !VoteA. 1 ⊕ !VoteB. 1 ) )

The session contract Ballot describes a service for e-voting. Such a service lets a client log in. If the

log in fails the services starts anew, while if the log in succeeds the two actions are offered to the

environment, namely VoteA and VoteB.

The contract Voter is a recursive client for the protocol described by the contract Ballot.

Example 2.3.6. [ e-commerce, [Bernardi et al., 2008] ]

Customer = !Request.( !PayDebit.ρ′⊕
!PayCredit.ρ′⊕
!PayCash. 1 )

ρ′ = !Long.?Bool. 1

Bank = µx. ?Request.( ?PayCredit.?Long.!Bool.x+

?PayDebit.?Long.!Bool.x+

?PayCash.x )

The session contracts above describe the conversation that should take place between a client

(described by the session contract Customer) and a bank (described by the session contract Bank)

involved in an on-line payment. The conversation unfolds as follows: the Customer sends a request

to the bank and afterwards it chooses the payment method; the choice is taken by an internal sum

and this means that the decision of the Customer is independent from the environment (i.e., the Bank

contract). If the Customer decides to pay by cash then no other action has to be taken; while if the

payment is done by debit or credit card the Customer has to send the card number, this is represented

by the output !Long. After the card number has been received the Bank answers with a boolean.

Intuitively, this represents the fact that the bank can approve or reject the payment. The Customer

protocol finishes after such boolean has been received, while the Bank starts anew.

Session contracts, due to the their restrictive syntax, enjoy some properties that are fundamental

to prove the results of Section 3.3 and Chapter 6. We prove these properties.

Lemma 2.3.7. Let σ be a contract.

(i) If σ
τ

6−→ then unf(σ) = σ

(ii) σ
τ

=⇒ unf(σ)

Proof. Property (i) is proved by structural induction on σ;

We prove point (ii); the argument is by induction on depth(σ). If depth(σ) = 0 then from the

definition of depth it follows that σ 6= µx. σ′; by definition of unf then unf(σ) = σ. The reflexivity

of
τ

=⇒ implies σ
τ

=⇒ unf(σ).

If depth(σ) > 1 then, due to the definition of depth, σ = µx. σ′. The definition of unf implies

that unf(σ) = unf(σ′ { σ/x }), while the definition of depth implies depth(σ) = 1 + depth(σ′ { σ/x }) ,
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and therefore depth(σ′ { σ/x }) is smaller than depth(σ). We are now allowed to use the inductive

hypothesis on σ′ { σ/x }:
σ′ { σ/x }

τ
=⇒ unf(σ′ { σ/x })

We use rule [a-Unf] (see Figure 2.10) to infer σ
τ−→ σ′ { σ/x }, and then the transitivity of

τ
=⇒ to

obtain

σ
τ

=⇒ unf(σ′ { σ/x })

We already know that unf(σ) = unf(σ′ { σ/x }), and, by applying this equality to the reduction

sequence above, we get

σ
τ

=⇒ unf(σ)

This concludes the proof.

A statement weaker than the converse of point (ii) of Lemma 2.3.7 is true.

Lemma 2.3.8. For every σ ∈ SCfo, if σ
τ−→
n
σ̂. Let k = depth(σ). If n ≥ k then σk = unf(σ), where

the reduction sequence above is σ
τ−→
k
σk

τ−→
n−k

σ̂.

Proof. We reason by induction on k.

Base case (k = 0) If k = 0 then σ has not top-most µ, so unf(σ) = σ, and indeed σ0 = σ.

Inductive case (k = k′+ 1) In this case σ = µx. σ′ for some variable x and σ′, and σ
τ−→ σ1

τ−→
n1

σ̂. The only way to derive σ
τ−→ σ1 is by applying [a-Unf], so σ1 = σ′ { σ/x }. The definition

of depth() ensures that depth(σ1) = k′. Since σ1
τ−→
n−1

σ̂, and n ≥ k ensures n − 1 ≥ k − 1, the

inductive hypothesis implies that σ1
τ−→
k−1

unf(σ1)
τ−→
n−k

σ̂. Since the definition of unf implies

that unf(σ) = unf(σ1), it follows that It follows that the original reduction sequence is σ
τ−→
k

unf(σ)
τ−→
n−k

σ̂.

Lemma 2.3.9. Let σ be a session contract. Then

(i) σ
X−→ if and only if σ = 1

(ii) σ =⇒ X−→ if and only if unf(σ) = 1

Proof. Part (i) follows from the restrictive syntax of session contract. The proof of part (ii) requires

two arguments. The if side, unf(σ) = 1 implies σ =⇒ X−→, is justified by part (ii) of Lemma 2.3.7.

The only if side, σ =⇒ X−→ implies unf(σ) = 1, can be proven by induction on the length of the

sequence =⇒; the base case being part (i) of this lemma.

Lemma 2.3.10. If σ
α−→ then σ

X
6−→.

Interpreting session types into session contracts

Session contracts play a key role in giving a semantics to session types; this is true because session

contracts denote the LTS 〈SCfo, Actτ X, −→〉, and there is a straightforward way to map session types

into session contracts, and vice-versa. We define this interpretation, and prove its properties,

The next results will be crucial in Section 6.3. The interpretation of session types as contracts is ex-

pressed as a function from the language LSTfo
in Section 2.1 to the language LSCfo

in of Definition 2.3.2.

The function is just a syntactic transformation.
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Let M : LSTfo
−→ LSCfo

be defined by:

M(S) =



1 if S = end

!t.M(S) if S = ![ t ];S

?t.M(S) if S = ?[ t ];S∑
i∈[1;n]?li.M(Si) if S = &〈 l1 : S1, . . . , ln : Sn 〉⊕
i∈[1;n]!li.M(Si) if S = ⊕〈 l1 : S1, . . . , ln : Sn 〉

µx.M(S′) if S = µX.S′

x if S = X

It is easy to see that M maps session types, STfo, to session contracts, SCfo; indeed it defines a

bijection between these sets:

• for every σ ∈ SCfo there exists some session type T such that M(T ) = σ

• if M(T1) =M(T2) then T1 = T2

where T1 = T2 denotes syntactic identity. Further, substitution is preserved by M.

The next two lemmas will be crucial in Section 6.3.

Lemma 2.3.11. Let S, T ∈ STfo. Then M(S
{
T /X

}
) = (M(S))

{M(T )/M(X)

}
.

Proof. The proof is by structural induction on S.

The interpretation also commutes with the two functions depth(−) and unf(−):

Lemma 2.3.12. For every T ∈ STfo and σ ∈ SCfo the ensuing properties are true,

(i) depth(T ) = depth(M(T ))

(ii) unf(M(T )) =M(unf(T ))

(iii) unf(M−1(σ)) = T if and only if unf(σ) =M(T )

Proof. The proofs of the first two points are by induction on depth(T ); we prove point (ii) using

point (i) and Lemma 2.3.11. The third point follows immediately from point (ii).

The interpretation M allows us to assign indirectly an LTS to session types; this deserves further

explanation. One may wonder why we have not assigned directly an LTS to session types, defining

it from scratches. The reason is that we do not wish to reason on a completely arbitrary LTS; we

want to carry out our reasoning on (minor variations of) the standard LTS of CCS without τs, so as

to embed session types into its well known theory, rather than developing a new behavioural theory

from scratches.

2.4 Related Work

All the material we presented in this chapter is fairly standard and an account of it is given in

Chapter 10.
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Client and peer satisfaction

One major concern is that the software systems we use be, in some sense, correct. In particular, we

would like that clients we use be satisfied by servers; and that the peers be all satisfied.

A priori, there are many ways to define satisfaction, and it is not clear which one to pick. However,

since the feature of software we are concerned with is communication, the notions of satisfaction that

we will employ involve the interactions that take place in software systems.

The action X in the LTS of processes turns out to be a key ingredient of our formalism. Intuitively,

we think that if some process p can perform X, p
X−→, then p is satisfied.

In this chapter we introduce two relations for satisfaction, which now we discuss informally.

To test software is common practice. In our framework, we can test a process p by running it in

parallel with a test r, and letting them interact as they wish. The test is passed if eventually it reaches

a state that reports success, that is some r′
X−→, regardless of the particular communication pattern

that take place between p and r. These intuitions are behind the well-known testing theory [De Nicola

and Hennessy, 1984].

The testing theory, falls smoothly in a more general client/server setting. The tests are clients,

and a client r is satisfied by a server p if p must pass r. This mirrors the intuition behind client/server

systems, for the satisfaction is biased towards the client.

Software testing is a routine, but it is not the reason why we develop and use software. We neither

use a web browser to test web servers, nor share files with our colleagues to ensure that they can

access them. In daily practice, if we let a client r interact with a server p, our main concern is not

the ability of r to always report success; rather that the requests of r be answered by p. The idea

of satisfaction used in testing theory is not sensible in the framework we just described, and an an

alternative definition of satisfaction is in order.

In the new client/server setting, it is sensible to deem r satisfied by p if

a) whenever r may require an interaction to go on computing, the server p will pay attention to r;

b) if r requires an interaction to go on, and p cannot answer to any request of r, then r has to be

satisfied already

This notion of satisfaction is much more involved than the idea of passing a test, but, as we have

discussed, it mirrors better the daily practice of using software. For instance, if our web browser sends

to a web-server the request of a page, and the server does not reply, then neither the web-client nor

we are satisfied. If we have a copy of that page, though, we already satisfied, and it does not matter

that the server did not answer to the request of the client.

The two criteria for satisfaction that we described are formally described by the following relations,

must, a (3.1)

31
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One is the well-known must testing relation [De Nicola and Hennessy, 1984], and the other is a

compliance relation [Castagna et al., 2009; Laneve and Padovani, 2007; Padovani, 2010]. They are

relations between processes, but their definitions apply equally well to session contracts, so we will

abuse the notation and write statements such as ρ must σ, or ρ a σ.

Structure of the chapter. In Section 3.1 we formally define the must testing, and its symmetric

version for peers. We also prove the properties of these relations that we will need in the oncoming

chapters. Similarly, in Section 3.2 we introduce formally the compliance relation, its symmetric

version, and we prove their properties. We conclude Section 3.2 by exposing the differences between

the relations must and a. In the last section of the chapter, Section 3.3, we prove that in the

sub-LTS of session contracts, the must testing and the compliance relation can be characterised in a

syntax-oriented way.

3.1 Must testing

To formally define the must testing, we need some ancillary terminology. Recall the notion of com-

putation of a composition r || p. We say that a state r || p is client-successful if r
X−→, and if a

computation contains a client-successful state, then we say that the computation is client-successful.

If a computation is client-successful, and it contains also a state r || p in which p
X−→, then we say

that computation is successful.

A computation of r || p, say

r || p = r0 || p0
τ−→ r1 || p1

τ−→ r2 || p2
τ−→ r3 || p3

τ−→ τ−→ . . .

is maximal if one of the following conditions is true,

• the computation is infinite

• the computation is finite, and it cannot be extended

The last conditions above means that there exists some n ∈ N such that rn || pn
τ

6−→.

We are ready to define the must testing.

Definition 3.1.1. [ must testing ]

For all processes r, p we write p must r if and only if all the maximal computations of r || p are

client-successful. We refer to the relation denoted by must as the must testing.

Note that in the above definition r can be thought of as a client, while p can be thought of as a server.

Example 3.1.2. For every server p, all the maximal computations of

1 +α. 0 || p

are client-successful because in the first state reports success 1 +α. 0
X−→, so p must 1 +α. 0.

Consider the processes A
def
= α.A and B

def
= α.B. No computation of A || B is client-successful,

because A cannot perform X; it follows that B 6must A.

The same argument lets us prove that for every p, p 6must 0 and p 6must τ∞.

The definition of must requires maximal computations to be client-successful; that is only clients

are required to reach successful states; this asymmetry is what lets us think of tests as client.

To reason on the satisfaction of peers, we focus on the symmetric version of the must testing.

Definition 3.1.3. [ Peer must testing ]

We write p mustp2p r if and only if all the maximal computations of p || r are successful.
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If ./ is not symmetric, then mustp2p is not a symmetric relation.

Example 3.1.4. If ./ is not symmetric, then the relation ap2p is not symmetric. Suppose that α ./ β,

and that β 6./ α. Plainly, β. 1 mustp2p α. 1, because all the maximal computation of α. 1 || β. 1 are

successful. However, α. 1 6mustp2p β. 1, because β. 1 || α. 1
τ

6−→, and none of the processes is successful.

The following statement is true.

Lemma 3.1.5. If ./ is symmetric then the relation mustp2p is symmetric.

In the remaining part of the section, we discuss only the must testing and prove some of its

properties; analogous properties of mustp2p follow in a straightforward way.

We will need three properties of the must testing relation.

Lemma 3.1.6. For every r, p ∈ CCSwτ , if p 6⇓ and p must r, then r
X−→.

Proof. Let us pick a p such that p 6⇓ ; for instance τ∞. Since p 6⇓ , the process p engages in an infinite

sequence of τ ’s, and there exists the maximal computation

r || p0
τ−→ r || p1

τ−→ r || p2
τ−→ r || p3

τ−→ . . .

Since p must r, the computation above is client-successful; as the only state in the client side of the

computation is r, it follows that r
X−→.

Lemma 3.1.7. Let p, r ∈ CCSwτ . If every maximal computation of r || p contains a state ri || pi such

that pi must ri, then p must r.

Proof. Fix a maximal computation C of r || p; by hypothesis C contains a state ri || pi such

that pi must ri. The suffix of C after ri || pi is a maximal computation of ri || pi, thus Defini-

tion 3.1.1 ensures that in the suffix there exists a client-successful state r′ || p′. This implies that C

is client-successful. As the only assumption on C is its being maximal, we apply the argument to

every maximal computation of r || p, thereby proving that every maximal computation of r || p is

client-successful. This means that p must r.

Corollary 3.1.8. For every r, p ∈ CCSwτ , p must r if and only if every maximal computation of r || p
contains a state r′ || p′ such that p′ must r′.

Proof. If p must r then every computation contains a state r′ || p′ such that p′ must r′, namely r || p
itself. If every maximal computation of r || p contains a state r′ || p′ such that p′ must r′, then

Lemma 3.1.7 ensures that p must r.

Every maximal computation of two session contracts ρ || σ contains the unfolding of these terms.

This lets us prove that the relation must is closed with respect to unfolding.

Lemma 3.1.9. Let σ and ρ be session contracts. σ must ρ if and only if unf(σ) must unf(ρ).

Proof. We have to prove two implications, namely

a) if σ must ρ then unf(σ) must unf(ρ)

b) if unf(σ) must unf(ρ) then σ must ρ

We prove the first implication. Suppose that σ must ρ and fix a maximal computation of unf(ρ) ||
unf(σ); we have to prove that the computing at hand contains a state in which the derivative of unf(ρ)

is successful.
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Append the maximal computation of unf(ρ) || unf(σ) to the computation

ρ || σ =⇒ unf(ρ) || unf(σ)

We know that this computation exists in view of the rules [a-Unfold], [p-Left], and [p-Right]. We

can prove that in the computation above, which is due to the unfoldings of the contracts, no state can

be successful. Since by assumption σ must ρ a state in the computation of unf(σ) || unf(ρ) must be

successful.

Now we prove the second implication. Suppose that unf(σ) must unf(ρ). Fix a maximal com-

putation of ρ || σ; since the computation is maximal it has length at least depth(σ) + depth(ρ), for

otherwise it can be extended by unfolding one of the contracts. Lemma 2.3.8 applied twice implies

that implies the maximal computation contains the state unf(ρ) || unf(σ).

It follows that every maximal computation contains the state unf(ρ) || unf(σ); the assumption

that unf(σ) must unf(ρ), and Lemma 3.1.7 ensure that σ must ρ.

3.2 Compliance relation

In this section we introduce the compliance relation. Our definition is a variation on that proposed

in [Laneve and Padovani, 2007].

Definition 3.2.1. [ Compliance relation ]

Let Fa : P(CCS2wτ ) −→ P(CCS2wτ ) be the rule functional defined so that (r, p) ∈ Fa(R) whenever

the following conditions hold:

(a) if r ⇓ then p ⇓

(b) if r || p
τ

6−→ then r
X−→

(c) if r || p τ−→ r′ || p′ then r′ R p′

If X ⊆ Fa(X), then we say that X is a co-inductive compliance relation. Lemma C.0.18 and the

Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X = Fa(X); we

call this solution the compliance relation, and we denote it a. That is a = νX.Fa(X). If r a p we

say that the process r complies with the process p.

There is an asymmetry in the relation r a p. The intention is that any client process r when

interacting with a server process p will be satisfied, if

• if the client may need to interact with the server to go on computing , r ⇓ , then the server will

try to interact with r, p ⇓

• if the interaction gets stuck, the client is in a state in which it is satisfied, r
X−→

• the interaction between client and server will go on indefinitely

The first property above, which is due to condition (a), is conservative; in the following sense. Consider

the client 1 ⊕ 1 and the server τ∞. More in general, it is not clear whether 1 ⊕ 1 is satisfied or not

by the server τ∞. Consider the infinite computation due to the divergence of τ∞,

1 ⊕ 1 || τ∞ τ−→ 1 ⊕ 1 || τ∞ τ−→ 1 ⊕ 1 || τ∞ τ−→ . . .

The client 1 ⊕ 1 can reach a successful state on its own, but in the computation above this never

happens; nor the computation can be extended to make it happen. Condition (a) establishes if a

client r by interacting with a server p ends up in an unclear situation as the one sketched, then r is
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not satisfied. For instance, 1 ⊕ 1 6a τ∞, because 1 ⊕ 1 ⇓ , whereas τ∞ 6⇓ . Since 1 ⇓ and τ∞ 6⇓ ,

1 6a τ∞. This shows how conservative is condition (a) of Definition 3.2.1. According to a, a stable

client r is not satisfied by a server p unless p will surely let the client perform some action.

Example 3.2.2. [ Compliance and divergent terms ]

In this example we show some instances of how divergent terms are related by the compliance relation.

For every process p, τ∞ a p; to see why this is true, note that the following relation is a co-inductive

compliance,

R= { (τ∞, p′) | p =⇒ p′ }

Now we prove that τ∞ + α. 0 6a τ∞ + α. 0; the reason for this is the following computation

τ∞ + α. 0 || τ∞ + α. 0
τ−→ 0 || 0

τ

6−→

The state 0 || 0 is stable and 0
X
6−→, so 0 6a 0. Point (c) of Definition 3.2.1 implies that

τ∞ + α. 0 6a τ∞ + α. 0

Example 3.2.3. [ Clients and X action ]

According to our definition of compliance, the client need not ever perform X. We have shown

an instance of this in Example 3.2.2: τ∞ a τ∞. This phenomenon, though, does not depend on

the divergence of the client. For example, Let A
def
= α.A and B

def
= α.B, and consider the set

R= { (A, B) }. The relation R is a co-inductive compliance relation, and the client process, A, does

not perform X at all.

Intuitively, 0 represents a non satisfied client; formally this is the case because 0 6a p for every

process p. The process 1 is satisfied by all the servers that converges, and the process τ is always

satisfied, for it does not need any server to carry on its computation.

Lemma 3.2.4. For every p ∈ CCSwτ , the following statements are true,

i) 0 6a p

ii) if p ⇓ then 1 a p

iii) τ∞ a p

Proof. The first fact is true if p 6⇓ . If p ⇓ the p reduces to some stable p′, so 0 || p =⇒ 0 || p′
τ

6−→, and

0
X
6−→. The second fact is true because 1 cannot interact with p, and all the states reached by 1 || p

are client-successful, so the following relation is a co-inductive compliance, R= { (1, p′) | p =⇒ p′ }.
The third fact is proven in Example 3.2.2.

Example 3.2.5. Referring to Example 2.3.5, it is routine work to check that the relation in Figure 3.1

is a co-inductive compliance.

The following properties of the compliance relation will be useful later in the thesis.

Lemma 3.2.6. Let R be a co-inductive compliance such that r R p. If r || p τ−→n r′ || p′ for some

n ∈ N, then r′ R p′

Proof. The proof is by induction on n.

Base case. In this case n = 0, so r′ || p′ = r || p. The hypothesis r R p ensures that r′ R p′.
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R= {(Voter,Ballot),

(?Wrong.Voter + ?Ok.( !VoteA. 1 ⊕ !VoteB. 1 ),

!Wrong.Ballot⊕ !Ok.(?VoteA.Ballot + ?VoteB.Ballot)),

(?Ok.( !VoteA. 1 ⊕ !VoteB. 1 ), !Ok.(?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA. 1 ⊕ !VoteB. 1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA. 1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteB. 1, ?VoteA.Ballot + ?VoteB.Ballot),

(1,Ballot)}

Figure 3.1: A co-inductive compliance R; see Example 3.2.5

Inductive case. In this case n = m+1 for some m ∈ N, and the reduction sequence r || p τ−→nr′ || p′

can be split as follows,

r || p τ−→ r′′ || p′′ τ−→m r′ || p′

The hypothesis thatR is co-inductive compliance, and point (c) of Definition 3.2.1 imply that r′′ R p′′.

Since r′′ || p′′ τ−→m r′ || p′ and m is smaller than n, we are allowed to use the inductive hypothesis

which implies that r′ R p′.

Corollary 3.2.7. If r a p and r || p =⇒ r′ || p′, then r′ a p′.

Lemma 3.2.8. Let r1, r2, p1, and p2 be processes. The following statements hold,

(i) if r a p1, r a p2 then r a p1 ⊕ p2

(ii) if r1 a p, r2 a p then r1 ⊕ r2 a p

Proof. As an example we outline the proof of (i). Let R be the relation defined by

R= { (r, p) | r a p or p = p1 ⊕ p2 where r a p1 and r a p2 }

It is straightforward to show that R is a compliance relation, from which the result follows.

The next two propositions show that we can reason up-to unfolding on the compliance relation.

Corollary 3.2.9. For every co-inductive compliance R, and ρ, σ ∈ SCfo, if ρ R σ then ρ R unf(σ)

and unf(ρ) R σ.

Proof. Both facts follow in a straightforward manner from point (ii) of Lemma 2.3.7 and point (c) of

Definition 3.2.1.

The converse is also true:

Proposition 3.2.10. For all session contracts ρ, σ, we have the following

(a) if ρ a unf(σ) then ρ a σ

(b) if unf(ρ) a σ then ρ a σ

Proof. Let us look at the proof of (a). Let R= { (ρ, σ) | ρ a σ or ρ a unf(σ) }. The result will follow

if we can prove that R is a co-inductive compliance relation, as given in Definition 3.2.1.

(i) Suppose ρ || σ
τ

6−→. If ρ a σ then by definition r
X−→. Otherwise

ρ a unf(σ)
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Note that σ
τ

6−→ and therefore by Lemma 2.3.7 it follows that unf(σ) = σ, which means, since

now ρ a σ, r
X−→.

(ii) Suppose ρ || σ τ−→ ρ′ || σ′. We have to show ρ′ R σ′, which is obvious if ρ a σ. On the other hand

if ρ a unf(σ) there are three cases, depending on the inference of the action ρ || σ τ−→ ρ′ || σ′. If

the action is due to a silent move of ρ, the result follows from point (c) of Definition 3.2.1. In the

other cases the result will follow by an application of Lemma 2.3.7 of point (c) of Definition 3.2.1.

Definition 3.2.11. [ Peer compliance relation ]

Let Fap2p : P(CCS2wτ ) −→ P(CCS2wτ ) be the rule functional defined so that (r, p) ∈ Fap2p(R) whenever

both the following hold:

(i) r ⇓ if and only p ⇓

(ii) if r || p
τ

6−→ then r
X−→, p

X−→

(iii) if r || p τ−→ r′ || p′ then r′ R p′

If X ⊆ Fap2p(X), then we say that X is a co-inductive peer compliance relation. Lemma C.0.19

and the Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X =

Fap2p(X); we call this solution the peer compliance relation, and we denote it ap2p. That is ap2p =

νX.Fap2p(X).

If r ap2p p we say that the contract r mutually complies with the contract p.

Example 3.1.4 can be used to prove that if ./ is not symmetric then ap2p is not symmetric either.

The following result is true.

Lemma 3.2.12. If ./ is symmetric, then the relation ap2p is the greatest symmetric co-inductive

compliance relation.

3.2.1 Comparing satisfactions

A comparison between the must testing and the compliance relation is in order, at least to make sure

that we have indeed formalised different criteria for satisfactions.

First we remark a nuisance. When dealing with must, the servers are on the right-hand and the

clients appear on the left-hand side; so p must r means that p is a server and r a client. When

dealing with the compliance, the situation is the converse, if r a p, then p is the server, while r is the

client. So to compare the compliance and the testing one has to actually use the inverse of one of the

relations.

There are two differences between the criteria formalised respectively by must and by a. The first

difference is how ever lasting computations are treated.

Example 3.2.13. [ Ever lasting computations ]

In this example we prove that a 6⊆ must−1. Recall the process A and B from Example 3.1.2 and

Example 3.2.3. In the first example we have proven that B 6must A, whereas in the second example

we have shown that A a B.

The example above shows that the compliance relation does not require the testing process to ever

report success, provided that the communication between the processes can continue indefinitely. On

the contrary, for p must r requires that r reports success.

The second difference between must and a is what happens after a client has reached a successful

state. The subsequent computation is disregarded by must, whereas the compliance relation has to

hold for all the states in all computations.
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Example 3.2.14. [ Continuations after X ]

In this example, following the intuition given above, we prove that must−1 6⊆a. The two following

facts are true.

1) α. 0 must 1 +α. 0

2) 1 +α. 0 6a α. 0

Where 1) is true because 1 +α. 0
X−→, and 2) is true because 1 +α. 0 || α. 0 τ−→ 0 || 0

τ

6−→ and 0
X
6−→.

We have proven that the relations must−1 and a, in general are not comparable,

must−1 6⊆ a, a 6⊆ must−1

If we restrict the LTS that we use, though, a relation between a and must−1 may arise. For

instance, let CCSfin
wτ be the language of processes that perform only finite action sequences.

Proposition 3.2.15. Let R be a co-inductive compliance relation on terms of CCSfin
wτ . If r R p then

p must r.

Proof. We have to prove that, under the hypothesis that r R p, all the maximal computations of r || p
are client-successful. Fix a maximal computation C of r || p,

r || p = r0 || p0
τ−→ r1 || p1

τ−→ r2 || p2
τ−→ . . .

Since r, p ∈ CCSfin
wτ the computation must be finite, that is there exists a rk || pk for some k ∈ N such

that rk || pk
τ

6−→. Since rk a pk, condition (b) of Definition 3.2.1 implies that rk
X−→. Since there is

no particular assumption on C, the argument above can be applied to all the maximal computations

of r || p, thus p must r.

3.3 Syntactic characterisations

Thus far we have presented the must testing and the compliance relation in the general within setting of

processes. We have mentioned session contracts only to show that we can reason on the relations must

and a up-to unfolding. In this section we focus completely on session contracts, and we prove that

in this setting the compliance relation and the must testing can be characterised looking only at the

syntax of the terms. Essentially, this is possible because the syntax of session contracts is restrictive

enough to capture the behavioural properties of session contracts.

3.3.1 Syntactic compliance

The restrictive syntax of session contracts let us give a syntactic characterisation of the compliance

relation and of the must testing relation. In this section we focus on the former characterisation, which

we prove in Lemma 3.3.10. This characterisation relies on a co-inductive relation (Definition 3.3.1),

that we define now.

Definition 3.3.1. [ Syntactic compliance relation ]

Let Fasmusts : P(SC2
fo) −→ P(SC2

fo) be the rule functional given by the inference rules in Figure 3.2.

If X ⊆ Fasmusts(X), then we say that X is a co-inductive syntactic compliance. Lemma C.0.20 and the

Knaster-Tarski theorem ensure that there exists the greatest solution of the equation X = Fasmusts(X);

we call this solution the syntactic compliance, and we denote it as . That is as = νX.Fasmusts(X).
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1 as σ [a-Unit]

ρ′ as σ′

α.ρ′ as α.σ′
α contains no labels [r-Alpha]

ρ1 as σ1 . . . ρĵ as σĵ∑
i∈I?li.ρi as

⊕
j∈J !lj .σj

J ⊆ I, ĵ = |J |; [r-Exch]

ρ1 as σ1 . . . ρî as σî⊕
i∈I !li.ρi as

∑
j∈J?lj .σj

I ⊆ J, î = |I|; [r-Inch]

unf(ρ) as unf(σ)

ρ as σ depth(ρ) + depth(σ) > 0; [r-Unfold]

Figure 3.2: Inference rules for the rule functional Fasmusts

We briefly comment the definition above. The rule functional Fasmusts gives rise not only to a compliance

relation (by taking its greatest fixed point), but also to a must testing relation (by taking its least

fixed point). This justifies the use of both a subscript and a superscript.

A side condition is in [r-Alpha], that requires α not to contain a label. This condition guarantees

that the rule functional Fasmusts is invertible (see chapter 21 of Pierce [2002]). Intuitively, if there was

no such requirement, the rules defining the rule functional Fasmusts would be ambiguous.

Example 3.3.2. In this example we show how the side condition

α contains no label [r-Alpha]

resolves a possible ambiguity in the application of the rules defining Fasmusts .

Let R= {(?l. 1, !l. 1), (1, 1)}. If rule [r-Alpha] did not have the side conditions above, then we

would have two ways to prove that R is a co-inductive syntactic compliance:

(1, 1)
[a-Unit]

(?l. 1, !l. 1)
[r-Alpha]

(1, 1)
[a-Unit]

(?l. 1, !l. 1)
[r-Exch]

(a) (b)

The requirement on α in rule [r-Alpha] ensures that the only way to prove that R is a co-inductive

syntactic compliance is by using the inference tree (b).

The co-inductive syntactic compliances are closed with respect to unfolding.

Lemma 3.3.3. For every co-inductive syntactic compliance R, and ρ, σ ∈ SCfo, if ρ R σ then

unf(ρ) R unf(σ).

Proof. The argument is similar to the proof of Lemma 2.1.16.

Lemma 3.3.4. Let R be a co-inductive compliance on session contracts. The relation R is a co-

inductive syntactic compliance.

Proof. We have to prove that if R ⊆ Fa(R), then R ⊆ Fasmusts(R).

Fix a pair ρ R σ; we are required to show that (ρ, σ) ∈ Fasmusts(R); this amounts in proving that

we can derive the pair (ρ, σ) by instantiating one of the rules in Figure 3.2, and using the pairs in R
as premises.
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We first look at the depth of ρ and σ. Suppose that depth(ρ) + depth(σ) > 0. Corollary 3.2.9

implies that unf(ρ) R unf(σ). The following derivation proves that (ρ, σ) ∈ Fasmusts(R),

unf(ρ) as unf(σ)

ρ as σ [r-Unfold]

Suppose now that depth(ρ) + depth(σ) = 0. The argument proceeds by case analysis on ρ. Since

depth(ρ) = 0 the term ρ has no top-most µ.

i) If ρ = 1, then we have the derivation

ρ as σ [a-Unit]

ii) Suppose that ρ = α.ρ′ with α containing no labels. We show that ρ as σ by using rule [r-Alpha];

we explain how.

Plainly ρ
X
6−→, thus Definition 3.2.1 implies that ρ || σ τ−→. Since ρ

τ

6−→, either ρ can interact

with σ, or σ
τ−→.

As σ =⇒ σ̂
τ

6−→ implies that ρ must interact with σ̂, the restrictive syntax of session types implies

that σ̂ = α.σ′. Thanks to the syntax of session contracts and to the assumption depth(σ) = 0,

we can prove that σ = β.σ′.

There exists the computation ρ || σ =⇒ ρ′ || σ′, thus Corollary 3.2.7 ensures that ρ′ R σ′.

We can now instantiate [e-Alpha] as follows,

ρ′ as σ′
ρ as σ [r-Alpha]

iii) If ρ =
∑
i∈I?li.ρi, then ρ

X
6−→. We derive (ρ, σ) by using rule [r-Exch]. Consider the set

S = {σ′ | σ =⇒ σ′
τ

6−→}. The syntax of session contracts ensures that the set S is non-empty,

and the syntax ensures that it is finite; so let S= {σ1, . . . , σn}. Corollary 3.2.7 ensures that that

ρ R σj , for every j ∈ [1;n].

Fix a j ∈ [1;n]; as ρ
X
6−→, Definition 3.2.1 implies that ρ || σj

τ−→. Since both ρ and σj are stable,

they must interact. Given the syntax of ρ, we know that ρ
li−→ ρ′ for some i ∈ I, that σj

li−→ σ′j
for some j ∈ [1;n], and ρ′ R σ′j . In view of the syntax of session contracts, it must be the case

that

σ = !l1.σ
′
j1 ⊕ . . . ⊕ !ln.σ

′
jn

and n ≤ |I|. Moreover for every k ∈ [1;n] we have ρk R σ′jk .

Now we apply rule [r-Exch]

ρ1 as σ1 . . . ρk̂ a
s σk̂

ρ as σ [r-Exch]

iv) If ρ =
⊕

i∈I !li.ρi, then the argument is similar to the one used in the previous case of this proof.

The converse of Lemma 3.3.4 is not true.
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Example 3.3.5. We prove that a co-inductive syntactic compliance needs not be a co-inductive

compliance. First let

ρ = !l1. 1 ⊕ (!l2. 1 ⊕ !l3. 1)

σ = ?l1. 1 + ?l2. 1 + ?l3. 1

and then let

R= {(ρ, σ), (1, 1), (!l1. 1, σ), (!l2. 1, σ), (!l3. 1, σ)}

We prove that R is a co-inductive syntactic compliance. Consider the following inference tree

(1, 1)
[a-Unit]

(!l1. 1, σ)
[r-Inch]

(1, 1)
[a-Unit]

(!l2. 1, σ)
[r-Inch]

(1, 1)
[a-Unit]

(!l3. 1, σ)
[r-Inch]

(ρ, σ)
[r-Inch]

The tree above proves that R ⊆ µX.Fasmusts(X), thus R ⊆ νX.Fasmusts(X) = as .

The relation R is not a co-inductive compliance. To prove this, we show a pair ρ R σ that does

not satisfy point (c) of Definition 3.2.1, that is ρ || σ τ−→ ρ′ || σ′ and ρ′ 6 R σ′.

We can infer the reduction ρ
τ−→!l2. 1 ⊕ !l3. 1, thus ρ || σ τ−→!l2. 1 ⊕ !l3. 1 || σ. Checking the

pairs in R, we see that !l2. 1 ⊕ !l3. 1 6R σ.

Notwithstanding Example 3.3.5, we would like to prove that the syntactic compliance coincides with

the compliance relation (on session contracts). To prove this, we need two ancillary results; they show

that the problem exhibited in Example 3.3.5 can be easily solved, and does not affect the relations as ,

ie. the greatest co-inductive syntactic compliance.

Lemma 3.3.6. For every co-inductive syntactic compliance R, and ρ, σ ∈ SCfo, if ρ R σ, then the

following implications are true

a) if ρ
τ−→ ρ′ then the relation {(ρ′, σ)}∪ R is a co-inductive syntactic compliance

b) if σ
τ−→ σ′ then the relation {(ρ, σ′)}∪ R is a co-inductive syntactic compliance

Proof. The proofs of a) and b) are similar, so we discuss only a).

Let R′= {(ρ′, σ)}∪ R. We are required to prove the set inclusion R′ ⊆ Fasmusts(R′). To this end,

we have to show that if ρ̂ R′ σ̂ then we can use one of the rules in Figure 3.2 to infer

. . .
ρ̂ as σ̂

using in the premises in elements of R′ itself.

Fix a pair ρ̂ R′ σ̂. Either ρ̂ R σ̂, or ρ̂ = ρ′ and σ̂ = σ. In the first case we know that the derivation

we have to show exists; this is true because by hypothesis R ⊆ Fasmusts(R).

Suppose that ρ̂ = ρ′ and σ̂ = σ. The argument is by case analysis and depends on why ρ
τ−→ ρ′;

the restrictive syntax of session contracts guarantees that the silent move can have been inferred by

applying one of the rules [a-Unf], [a-In-L], [a-In-R] (see Figure 2.10 and Figure 2.8).

If the silent move is due to the axiom [a-Unf], then depth(ρ) > 0 and unf(ρ) = unf(ρ′).

The hypothesis ρ R σ and Lemma 3.3.3 imply that unf(ρ) R unf(σ), thus unf(ρ′) R unf(σ).

If depth(ρ′) + depth(σ) > 0 then we can instantiate [r-Unfold],

unf(ρ′) as unf(σ)

ρ′ as σ
depth(ρ′) + depth(σ) > 0; [r-Unfold]

If depth(ρ′) + depth(σ) = 0, then unf(ρ′) = ρ′ and unf(σ) = σ. The fact that unf(ρ′) R unf(σ)

implies that ρ′ R σ, so the hypothesis R ⊆ Fasmusts(R) ensures that (ρ′, σ) ∈ Fasmusts(R).
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If the silent move is due to the axiom [a-In-L], then the session contract ρ must be a choice of

labels, ρ = ρ′ ⊕ ρ′′; in view of the syntax of session contracts we have the following equality,

ρ = !l1.ρ1 ⊕ (
⊕
i∈I

!li.ρi)

The hypothesis that R ⊆ Fasmusts(R) implies that we have the derivation

ρ1 as σ1 . . . ρ|I| as σ|I|
ρ as σ [r-Inch]

It follows that σ =
∑
j∈J?lj.σj , and {1} ∪ I ⊆ J . We know that ρ′ is either !l1.ρ1 or

⊕
i∈I !li.ρi; to

see why (ρ′, σ) ∈ Fasmusts(R′) notice that can instantiate [r-Inch] as follows,

ρ1 as σ1
!l1.ρ1 as

∑
j∈J?lj.σj

{1} ⊆ J ; [r-Inch]

and
ρi1 as σi1 . . . ρi1 as σi1⊕
i∈I !li.ρi as

∑
j∈J?lj.σj

I ⊆ J ; [r-Inch]

If the internal move is due to the axiom [a-In-R] the argument is analogous.

Corollary 3.3.7. Let ρ as σ. The following statements are true,

(a) if ρ
τ−→ ρ′ then ρ′ as σ

(b) if σ
τ−→ σ′ then ρ as σ′

Proof. We prove (a). We apply Lemma 3.3.6 to as ,

{ (ρ′, σ) }∪ as ⊆ Fasmusts({ (ρ′, σ) }∪ as) By Lemma 3.3.6

{ (ρ′, σ) }∪ as ⊆ νX.Fasmusts(X) By the Knaster-Tarski theorem

= as By Definition 3.3.1

From the argument above, it follows that ρ′ as σ. The proof of (b) is similar.

Lemma 3.3.8. Let R ⊆ Fasmusts(R). If ρ R σ and ρ || σ
τ

6−→ then ρ
X−→.

Proof. From the hypothesis ρ || σ
τ

6−→, it follows ρ, and σ are stable. Lemma 2.3.7 states the ensuing

equalities,

unf(ρ) = ρ, unf(σ) = σ

These equalities implies that depth(ρ) + depth(σ) = 0.

In view of the restrictive syntax of session contracts, the fact that ρ and σ are stable, ensures that

these terms are not defined by an internal choice.

Observe now that the rule instantiation that proves (ρ, σ) ∈ Fasmusts(R) does not involve the rules

[r-Alpha], [r-Exch], and [r-Inch], because in all these cases ρ and σ would engage in an interaction,

and this cannot happen by hypothesis (ρ || σ
τ

6−→). Further, the rules [r-Unfold] and [r-Fold!!!!!!!!]

can not have been used either, because depth(ρ) + depth(σ) = 0.

It follows that the proof of (ρ, σ) ∈ Fasmusts(R) must be due to the axiom [a-Unit], and so ρ = 1.

It follows that ρ
X−→.

Lemma 3.3.9. The relation as is a co-inductive compliance. Formally, as ⊆ Fa( a
s).

Proof. We have to prove that if ρ as σ, then (ρ, σ) ∈ Fa(as). To this aim, we have to prove that the

pair (ρ, σ) enjoys three properties,
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a) if ρ ⇓ then σ ⇓

b) if ρ || σ
τ

6−→, then ρ
X−→

c) if ρ || σ τ−→ ρ′ || σ′, then ρ′ R σ′

Fix a pair ρ as σ. Condition a) is true because every session contract converges. If ρ || σ
τ

6−→, then

Lemma 3.3.8 ensures that ρ
X−→. We have proven b). If ρ || σ τ−→ ρ′ || σ′, then our work amounts in

checking that ρ′ as σ′; the argument depends on the rule used to infer the internal move.

If [p-Left] or [p-Right] were applied, then ρ′ as σ′ follow from Corollary 3.3.7.

If the internal move is due to rule [p-Synch], then we know that its premises are true,

ρ
α−→ ρ′ σ

α−→ σ′

ρ || σ τ−→ ρ′ || σ′
[p-Synch]

The argument is by case analysis on the form of ρ. Since ρ and σ performs visible actions, we have

unf(ρ) = ρ, and unf(σ) = σ, neither ρ nor σ have a top-most recursive constructor.

i) If ρ = α.ρ′ and α contains no labels, then (ρ, σ) ∈ Fasmusts(as) must be proven by the derivation

ρ′ as σ′

α.ρ′ as β.σ′
α ./c β; [r-Alpha]

The premises of the rule ensure that ρ′ as σ′.

ii) If ρ =!l.ρ′, then then (ρ, σ) ∈ Fasmusts(as) must be proven by the derivation

ρ′ as σ′

!l1.ρ
′ as?l1.σ

′ [r-Inch]

Again, the premises of the rule ensure that ρ′ as σ′.

iii) If ρ =?l.ρ′ the argument is similar to the one used in the previous case; the only difference being

that now we use rule [r-Exch] in place of [r-Inch].

Lemma 3.3.10. [ Syntactic characterisation compliance ]

For every ρ, σ ∈ SCfo, ρ a σ if and only if ρ as σ.

Proof. Suppose that ρ a σ; then Lemma 3.3.9 and the Knaster-Tarski theorem ensure that ρ as σ.

Suppose that ρ as σ, then Lemma 3.3.4 and the Knaster-Tarski theorem ensure that ρ a σ.

3.3.2 Syntactic must testing

Definition 3.3.11. [ Syntactic must testing ]

In Figure 3.2 replace the symbol as with the symbol musts. Lemma C.0.20 and the Knaster-Tarski

theorem ensure that there exists the least solution of the equation X = Fasmusts(X); we call this solution

the syntactic must, and we denote it musts: That is musts = µX.Fasmusts(X).

The syntactic must is the inverse of the must relation on session contracts. We explain first why

the syntactic must is contained in the inverse of must (Lemma 3.3.13), and then we go on showing

the converse.

The maximal computations performed by session contracts are finite.

Lemma 3.3.12. For every ρ, σ ∈ SCfo, let C be a computation of ρ || σ;
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a) if a derivative of ρ is succesful, then the computation C is finite

b) if a derivative of σ is successful, then the computation is finite

Proof. Consider a successful computation of ρ || σ that contains a state ρ′ || σ′ that is client-successful.

Since ρ
X−→, point (i) of Lemma 2.3.9 implies that ρ′ = 1. Since σ′ is a session contract, it must

converge, σ′ ⇓ . As ρ′ offers no visible action and is stable, the computation has to be finite.

A symmetric argument let us prove point (b).

Lemma 3.3.13. For every ρ, σ ∈ SCfo, if ρ musts σ, then σ must ρ.

Proof. Let ρ musts σ; as musts is defined inductively, this means that there exists a finite derivation

tree
...

ρ musts σ (3.2)

done by using the rules in Figure 3.2. The proof of this lemma is by induction on the derivation above,

with a case analysis on the last rule applied.

In the base case the last rule used is [ax-smst], thus ρ = 1; it follows that σ must ρ.

Now we discuss the inductive cases.

• If the last rule applied was [r-Alpha] then the derivation in (3.2) is

...
ρ′ musts σ′

?α.ρ′ musts!α.σ′
[r-Alpha]

ρ =?α.ρ′, σ =!α.σ′, and ρ′ musts σ′. Since the derivation of ρ′ musts σ′ is shorter than the

derivation of ρ musts σ, we can apply the inductive hypothesis and state that σ′ must ρ′. All

the maximal computations of σ || ρ contain the state σ′ || ρ′, thus Lemma 3.1.7 let us conclude

that σ must ρ.

• If the last rule applied was [r-Exch] then the derivation in (3.2) ends as follows,

...
ρ1 musts σ1 . . .

...
ρn musts σn∑

i∈[1,k]?li.ρi must
s
⊕

j∈[1,n]!lj .σj
n ≤ k; [r-Exch]

and so σ =
⊕

j∈[1,n]!lj .σj , ρ =
∑
i∈[1,k]?li.ρi, n ≤ k. For every i ∈ [1, n] the derivation of

ρi musts σi is shorter than the derivation of ρ musts σ, thus we can apply the inductive

hypothesis to state that if i ∈ [1, n] then σi must ρi. Let S= { (σi, ρi) | i ∈ [1, n] }; we have

proven that S⊆ must. Since all the computations of σ || ρ contain a state whose components

are in S, Lemma 3.1.7 ensures that σ must ρ.

• If the last rule used was [r-Inch] the argument is similar.

• If the last rule applied was [r-Unfold], then (3.2) is

...
unf(ρ) musts unf(σ)

ρ musts σ
depth(ρ) + depth(σ) > 0, [r-Unfold]

The inductive hypothesis implies that unf(σ) must unf(ρ). An application of Lemma 3.1.9

shows that σ must ρ.
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Lemma 3.3.14. [ Inductive characterisation must ]

Let ρ and σ be session contracts; σ must ρ if and only if ρ musts σ.

Proof. We have to prove two set inclusions, namely

(a) musts ⊆ must−1, and

(b) must−1 ⊆ musts

We have proven the set inclusion (a) in Lemma 3.3.13, so we prove just the second set inclusion (b).

To this end, for every pair σ must ρ, we have to exhibit a finite derivation as the following one,

...
ρ musts σ

by using the rules in Figure 3.2.

Let be σ and ρ be two session contracts such that σ must ρ. Lemma 3.3.12 ensures that all

the maximal computations of σ || ρ are finite. Since the LTS of session contracts is finite state we

know that there exists a longest maximal computation of σ || ρ, whose length we denote n. We

proceed by induction on n. The intuition being that we have to mimic each synchronisation that

takes place between σ and ρ with one of the inference rules in Figure 3.2, the axiom being used if no

synchronisation happens.

In the base case n = 0, so the longest maximal computation is ρ || σ
τ

6−→. Since by assumption

σ must ρ, Definition 3.1.1 implies that ρ
X−→; point (i) of Lemma 2.3.9 implies that ρ = 1, and so we

can derive

ρ musts σ
[ax-smst]

In the inductive case n = m + 1 for some m ∈ N. It follows that there exists a reduction

ρ || σ τ−→ ρ′ || σ′. The rest of the argument is a case analysis on the rule used to derive this internal

move. There are three cases, due respectively to the rules [p-Synch], [p-Left], and [p-Right]; we

discuss only two of them.

If rule [p-Synch] was applied then this derivation exists

ρ
α−→ ρ′ σ

α−→ σ′

ρ || σ τ−→ ρ′ || σ′
[p-Synch]

Our reasoning in this case amounts in two parts; first we justify the use of the inductive hypothesis

on the pair (ρ′, σ′), and then we show a derivation of ρ musts σ.

Since ρ engages in a visible action, Lemma 2.3.10 imply that ρ
X
6−→, and so the state ρ || σ is not

successful. It follows that σ′ must ρ′. The longest maximal computation of ρ′ || σ′ must have length

m, so we can use the inductive hypothesis to state that there exists a derivation

...
ρ′ musts σ′

To extend the derivation of one further step we have to know which one of the inference rules to

apply; the choice depends on the form of α. We discuss one case; if α = !t then σ = ?t.σ′ and ρ = !t.ρ′.



46 Chapter 3. Client and peer satisfaction

Since α contains no labels we can apply rule [r-Alpha],

...
ρ′ musts σ′

!t.ρ′ musts?t.σ′
[r-Alpha]

If α = ?t then the rule to use is [r-Alpha], if α = ?l the rule to use if [r-Exch], and if α = !l

then the rule to be applied is [r-Inch].

We have discussed the case in which the internal move of ρ || σ τ−→ ρ′ || σ′ is due to [p-Synch].

If rule [p-Right] was applied then σ
τ−→ σ′ and ρ = ρ′; the last equality implying that σ must ρ′.

Since σ
τ−→ σ′ the session contract σ must be defined by an internal choice or a recursion.

• If σ is defined by an internal choice, since σ is a session contract it must be

σ =
⊕

i∈[1,m]

!li.σm = (
⊕

i∈[1,m−1]

!li.σi)⊕ !lm.σm

for some m ∈ N. It must be σ′ =
⊕

i∈[1,m−1]!li.σi or σ′ =!lm.σm; in both cases the hypothesis

σ must ρ implies that σ′ must ρ′, moreover the longest maximal computation of σ′ || ρ′ has

length at most m. It follows that we can apply he inductive hypothesis to exhibit two derivations,

namely
...

ρ musts
⊕

i∈[1,k−1]!li.σi

...
ρ musts!lk.σk

(α) (β)

Note that the last rule used in the derivation (α) must be [r-Exch], we have therefore, that

ρ =
∑
j∈[1,p]?lj .ρj , with k ≤ p. The inference (β) must be due to rule [r-Exch] as well, so it

ensures that for some p̂ ∈ [1, p],
...

ρp̂ must
s σk

A similar argument holds for the derivation (α), thus for every i ∈ [1, k − 1], a derivation

...
ρi must

s σi

must exist. Now we know enough to show the following derivation

...
ρ1 musts σ1 . . .

...
ρp̂ must

s σm∑
j∈[1,p]?lj .ρj must

s
⊕

i∈[1,m]!li.σm
m ≤ p; [r-Exch]

• Suppose that σ is defined by recursion and σ
τ−→ σ′ is due to [a-Unf]. The assumption implies

that depth(σ) > 0. Lemma 3.1.9 implies that unf(σ) must unf(ρ). As ρ || σ =⇒ unf(ρ) ||
unf(σ), the successful computation of unf(ρ) || unf(σ) has length at most m, so we can use

the inductive hypothesis; there exists a derivation of

...
unf(ρ) musts unf(σ)

Since unf(σ) = unf(σ′) and depth(σ) > 0 we can extend the derivation above by applying rule
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ρ || σ

!l1.?l2. 1 || σ

?l2. 1 ||!l2.?Int. 1

1 ||?Int. 1

!l3. 1 || σ

1 ||!l1. 1

τ

τ

τ

τ

τ

1 musts?Int. 1
[ax-smst]

?l2. 1 musts!l2.?Int. 1,
[r-Branch]

!l1.?l2. 1 musts?l1.!l2.?Int. 1,
[r-Branch]

1 musts!l1. 1
[ax-smst]

!l3. 1 musts?l3.!l1. 1
[r-Branch]

ρ musts σ
[r-Branch]

Figure 3.3: Successful computations of ρ || σ and derivation of ρ musts σ (see Example 3.3.15)

[r-Unfold],

...
unf(ρ) musts unf(σ)

ρ musts σ′
depth(ρ) + depth(σ) > 0, [r-Unfold]

If rule [p-Left] was applied then the argument is symmetric to the one used for rule [p-Right].

We comment on the previous result. Its proof exhibits how the structure of the derivation of

ρ musts σ mirrors the internal moves that appear in the successful computations of ρ || σ; that is ,

each application of one the rules [p-Left], [p-Right], and [p-Synch] is mirrored by an application

of a (series of) rules of Figure 3.2. We give an example of this fact.

Example 3.3.15. [ Succesful computations and derivations of musts ]

In this example we show one instance of the mentioned similarity between the successful computations

of a composition ρ || σ such that σ must ρ, and the derivation of ρ musts σ.

Consider the session contracts

σ = ?l1.!l2.?Int. 1 + ?l3.!l1. 1

ρ = !l1.?l2. 1 ⊕ !l3. 1

In Figure 3.3 we have depicted the successful computations of the composition ρ || σ, and the

derivation which proves that ρ musts σ.

The similarity between the pairs of session contracts that appear in the computations and the ones

that appear in the derivation is striking. To begin with, the successful states of the computations are

the ones derived by applying the axiom [ax-smst]. Secondly, each time a composition ρ′ || σ′ performs

an interaction, the terms in the reduct appear in the premises of the derivation of ρ′ musts σ′.

According to what we have stated so far, the meaning of Lemma 3.3.14 is that, given a pair σ, ρ,

there is a correspondence between the computational tree made by the successful computations of

ρ || σ, and the proof that ρ musts σ.
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3.4 Related Work

The must testing of Definition 3.1.1 is taken directly from [De Nicola and Hennessy, 1984; Hennessy,

1985]; the only novelty is that in our framework processes and tests are not distinguished; for instance 1

is a process. This is not the case in the original presentations of [De Nicola and Hennessy, 1984], in

the sense that there processes cannot perform the action ω. To mix tests and processes is necessary

in order to express the notion of peer, and render Definition 3.1.3 sensible.

The first compliance defined in terms of the interactions of clients, servers and the action X is the

behavioural compliance [Laneve and Padovani, 2007]; let us denote it abhv.

The comparison of our results with the work of Laneve and Padovani is complicated by the fact

that in their theory compliance judgements take the form i1[ρ] a i2[σ] where i1, i2 are finite sets of

actions representing in some sense the interfaces of the processes guaranteeing the contracts; moreover,

for a contract i[σ] to be valid its interface i has to contain all the action names (including X) that

appear in the behaviour σ. Let us refer to the pairs i[σ] as constrained contracts. It is relatively easy

to prove the following facts,

1 6a τ∞ ∅[1] abhv ∅[τ∞]

τ∞ a τ∞ ∅[τ∞] 6abhv ∅[τ∞]

Regardless of the difference between the relations a and abhv, Example 3.2.13 and Example 3.2.14 are

similar to the examples used by Laneve and Padovani. Moreover, the results we will show in Chapter 5

can be adapted to the framework that arise from abhv, as long as we disregard the interfaces and work

only with the LTS.

The most recent compliance theories are [Padovani, 2010] and [Castagna et al., 2009].

Let us denote astr the strong compliance of [Padovani, 2010, Definition 2.1]. In that paper the LTS

is

〈CCSrec,fb,⇓
wτ , Actτ X, −→〉 (3.3)

where the states are terms of a recursive version of CCSwτ , and the LTS is convergent and finite state.

Up-to the encoding of recursive terms into our syntax, the LTS in Eq. (3.3) is contained in our LTS,

and our relation a and the relation astr coincide.

Now we discuss the compliance of [Castagna et al., 2009]. A striking difference between our setting

and the theory of that paper is that their LTS is deterministic, while ours is not.

Let CCScoind,⇓
wτ denote the language (a) generated co-inductively by the grammar for finite terms

of CCSwτ , and (b) whose terms are regular (in the sense of [Courcelle, 1983, Section 4.1]) and conver-

gent.

Castagna et al. define the transitions of the following LTS by using inference rules that are not

the standard ones for CCS;

〈 CCScoind,⇓
wτ , ActX, 7−→ 〉 (3.4)

The rules are designed so that if σ
α7−→ σ′ and σ

α7−→ σ′′ then σ′ = σ′′. This implies that the

acceptance sets of contracts à la Castagna et al. contain at most one ready set. Note also that the

set of labels ActX contains no τ , there are no τ transitions in the LTS of Eq. (3.4).

The LTS that we used, 〈CCSwτ , Actτ X, −→〉, is more general than the LTS in Eq. (3.4), in the

following sense. The transitions are not deterministic: p
α−→ p′ and p

α−→ p′′ do not imply that

p′ = p′′; and so the acceptance set of a process p after a trace s may contain an infinite amount

of ready sets. Moreover processes may diverge. The LTS used by Castagna et al., though, is not

contained in our LTS, because of the difference in the transitions. Consider the term p = α. 1 +α. 0;

by using the rules of that paper one can infer

p
α7−→ 1 ⊕ 0, p 6 α7−→ 0, p 6 α7−→ 1
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whereas in our setting

p
α

6−→ 1 ⊕ 0, p
α−→ 0, p

α−→ 1

In principle it is not clear whether our compliance relation coincides with their strong compliance

(Definition 2.6 in their paper), a09.

A relation similar to a09 but presented in a different setting, is the Type Compliance, denoted ∝,

of [Acciai and Boreale, 2008, Definition 5]. There the states of the LTS are basic parallel pro-

cesses [Christensen et al., 1993] and the transitions are given by standard inference rules of operational

semantics. We leave as an open problem the comparison of ∝ with a (see (Q1) in Section 11.2).

The syntactic characterisation of compliance is similar to [Barbanera and de’Liguoro, 2010, Propo-

sition 2.9]. To the best of our knowledge, the syntactic characterisations of the must testing on session

contracts is original.

Fair theories Other compliances have been proposed, which are inspired to the fair testing of

[Rensink and Vogler, 2007] rather than the must testing. One such theory has been presented

in [Bravetti and Zavattaro, 2009]. We will compare our results with the theory of Bravetti and

Zavattaro in the oncoming chapters.
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Chapter 4

Must pre-orders

This chapter is devoted to the study of the pre-orders that arise from the must relation (see Defini-

tion 3.1.1). Processes can be seen as clients, servers, or peers, so there are three pre-orders: a server

pre-order, a client pre-order, and a peer pre-order. They are denoted respectively

<∼svr,
<∼clt,

<∼p2p (4.1)

The relations in (4.1) let us state when a process is “better” than another one, given the role that

we want the processes to play. For instance 0 <∼clt 1 means that the process 1 is a better client than

the process 0, in the sense that all the servers that satisfy 0 satisfy also 1. Similarly, the inequality

α. 0 ⊕β. 0 <∼svr α. 0 +β. 0 means that the server process α. 0 +β. 0 satisfies all the clients that the

process α. 0 ⊕β. 0 satisfies.

The formal definitions of these pre-orders have two disadvantages. First, they use a universal

quantification on all processes. If we were to prove r1 <∼clt r2 by using the definition of <∼clt (Def-

inition 4.2.1), we would have to prove that all the processes p that satisfy r1 satisfy also r2. The

quantification on all processes is a burden, as they are infinite, so it is not clear how to account for

all of them. Second, it is not clear when two processes are related by the pre-orders in (4.1); that is,

as long as we use the definitions of the pre-orders above, we cannot answer questions such as

under which conditions are p1 and p2 related by <∼clt ? (4.2)

To solve these issues we introduce reasoning techniques for the pre-orders in (4.1). Throughout

this chapter we will introduce such notions as to let us define three relations, namely

-svr, -clt, -p2p (4.3)

We will prove that each one of the “alternative” relations above equal one of the pre-orders in (4.1).

We refer to the relations in Eq. (4.3) as the behavioural characterisations of the must pre-orders. The

equalities between the relations in (4.1) and the relations in (4.3) have two advantages.

• The alternative relations are defined by using properties that describe the observable behaviour

of processes; so the alternative pre-orders lay bare how the relations in (4.1) relate the operational

semantics of processes. This sheds light on what it means for two processes to be related by one

of the pre-orders in (4.1), and lets us answer questions such as the one in (4.2)

• The definitions of the behavioural characterisations do not present a universal quantification on

processes; rather, they explain why two processes, say p and q, are related, just by examining p

and q themselves.

51
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The behavioural characterisation of the server pre-order, gives us a straightforward way to prove when

two processes are related by <∼svr (see Example 4.1.22).

Structure of the chapter. We begin our study by discussing the server pre-order, as it is the

simplest of the three relations. The server pre-order is a mild generalisation of the testing pre-order [De

Nicola and Hennessy, 1984; Hennessy, 1985], in that it relates terms that (a) can report success and

(b) can be infinite branching, whereas the standard presentation of the testing pre-order does not.

Nevertheless, the behavioural characterisation (Theorem 4.1.21) of <∼svr coincides with the well-known

characterisation of the testing pre-order [Hennessy, 1985]. In Section 4.2 we use the characterisation of

the server pre-order as starting point to characterise the client pre-order <∼clt. By means of examples

we expose the subtleties of the pre-order for clients, we explain why the characterisation of the server

pre-order fails to capture the client pre-order, and then we show how to amend that characterisation

so as to describe <∼clt (Theorem 4.2.37). In Section 4.3 we discuss the peer pre-order. In particular,

we use the machinery devised in the earlier sections to characterise the peer pre-order; the discussion

is facilitated by the fact that Theorem 4.1.21 and Theorem 4.2.37 have the same form.

4.1 Server pre-order

We begin our investigation of the must pre-orders by unravelling the characteristic properties of the

server pre-order. We consider a server p2 better than a server p1 if p2 satisfies all the clients that are

satisfied by p1. This intuition is formalised by the oncoming definition.

Definition 4.1.1. [ must server-pre-order ]

We write p1 <∼svr p2 whenever p1 must r implies p2 must r. We refer to the relation denoted by the

symbol <∼svr as the must server pre-order .

Notation Throughout this thesis we will at times use the symbols
∑

and
⊕

to write processes,

for instance ∑
i∈[1;m] pi in place of p1 + p2 + . . . + pm⊕
i∈[1;n] pi in place of p1 ⊕ p2 ⊕ . . . ⊕ pn

This is by justified to the fact that

p ⊕ r hsvr r ⊕ p p ⊕ (p′ ⊕ p′′) hsvr (p ⊕ p′) ⊕ p′′

p + r hsvr r + p p + (p′ + p′′) hsvr (p + p′) + p′′

where hsvr is the equivalence relation given in the obvious way by <∼svr.

In order to acquaint ourselves with the relation <∼svr, we prove a lemma and discuss two examples.

The pre-order <∼svr has bottom elements, namely all the processes that diverge.

Lemma 4.1.2. [ Bottom elements ]

If p1 6⇓ then p1 <∼svr p2 for every process p2.

Proof. We have to show that if p1 must r then p2 must r, for every process r. Suppose that p1 must

r; the hypothesis that p1 6⇓ and Lemma 3.1.6 imply that r
X−→. It follows that p2 must r for

every p2.

We discuss why some processes are (not) related by the server pre-order.
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Example 4.1.3. The relation p <∼svr q essentially compares the interactions offered by the servers p

and q. For instance,

α. 1 <∼svr α. 0

1 <∼svr 1 ⊕ 1

α. 1 6<∼svr 1 ⊕ 1

p 6<∼svr 0

where p = α.(β. 0 + δ. 1) + α.(β. 1 + δ. 0).

The first inequality, α. 1 <∼svr α. 0, is true because the server α. 1 offers to the clients as much

interaction as α. 0; that is the action α.

The same argument lets us prove also the second inequality, which is an instance of the more

general fact p <∼ p ⊕ p for every process p. To see why the general inequality is true, note that all

the maximal computations of r || p ⊕ p are also maximal computations of r || p; so p must r implies

that p ⊕ p must r.

To prove the third inequality we have to exhibit a client that is satisfied by α. 1 and not by 1 ⊕ 1.

Consider r = α. 1. Plainly, α. 1 must r, whereas

r || 1 ⊕ 1
τ−→ r || 1

τ

6−→

and r
X
6−→, so 1 ⊕ 1 6must r. The crucial difference between α. 1 and 1 ⊕ 1 is that the latter server

offers fewer interactions than α. 1.

A similar argument lets us prove the fourth inequality, for the server 0 offers fewer interactions

than p; the client α.β.δ. 1 is satisfied by p and is not satisfied by 0.

In Example 4.1.3 we have compared only processes that converges. In the next example we discuss

divergent processes.

Example 4.1.4.

1 + τ∞ <∼svr β.τ∞

β. 1 6<∼svr 1 ⊕ τ∞

The first inequality is true because any term that diverges is a bottom element of <∼svr; we have

seen this in Lemma 4.1.2.

To prove the second inequality we use the client β. 1, which is satisfied by β. 1 and not by 1 ⊕ τ∞.

Intuitively, β. 1 cannot be smaller than 1 ⊕ τ∞ because β. 1 is not a bottom element of <∼svr,

whereas 1 ⊕ τ∞ is a bottom element.

The characterisation of <∼svr that we will provide is based on a comparison of the observable

behaviours of processes. In Lemma 4.1.2 and Example 4.1.4 we have seen that if a process p1 diverges,

then the reasons why p1 <∼svr p2 has nothing to do with the relation between the behaviour of p2

and the behaviour of p1. It follows that to provide a complete characterisation of <∼svr we need some

notation to express the convergence of processes after a trace.

Definition 4.1.5. [ Residuals after trace ]

For any process p ∈ CCSwτ and s ∈ Act? let (p after s) = { q | p s
=⇒ q }.

Definition 4.1.6. [ Convergence along trace ]

Let F⇓ : P(CCSwτ ×Act?) −→ P(CCSwτ ×Act?) be the rule functional given by the inference rules

in Figure 4.1. Lemma C.0.21 and the Knaster-Tarski theorem ensure that there exists the least

solution of the equation X = F⇓(X); we call this solution the convergence predicate, and we denote

it ⇓ : That is ⇓ = µX.F⇓(X). We extend the relation ⇓ to infinite strings by letting, for every

u ∈ Act∞, p ⇓ u, if and only if for every n ∈ N, p ⇓ un.
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p ⇓ ε p ⇓ ; [conv-ax]

p ⇓ αs p ⇓ , p
α

6=⇒; [conv-ax-not]⊕
(p after α) ⇓ s′

p ⇓ αs′ p ⇓ , p α
=⇒; [conv-alpha]

Figure 4.1: Inference rules for the functional F⇓

Lemma 4.1.7. Let p be a process; p ⇓ s if and only if for every s′ prefix of s, if p
s′

=⇒ p′ then p′ ⇓

Proof. We have to show two implications, namely

i) if p ⇓ s then for every s′ prefix of s, if p
s′

=⇒ p′ then p′ ⇓

ii) if for every s′ prefix of s, p
s′

=⇒ p′ implies p′ ⇓ , then p ⇓ s.

We prove them separately. We begin by showing (i). The assumption that p ⇓ s ensures that there

exists a finite derivation
...

p ⇓ s (4.4)

We have to prove that

for every s′ prefix of s, p
s′

=⇒ p′ implies p′ ⇓ . (4.5)

The argument is by induction on the derivation in (4.4).

Base case. In this case the whole derivation in (4.4) amounts an application of the axiom [conv-ax],

or of the axiom [conv-ax-not].

If [conv-ax] was applied then (4.4) is

p ⇓ ε p ⇓ ; [conv-ax]

It follows that s is the empty string, and so (4.5) requires us to prove that if p
ε

=⇒ p′ then p′ ⇓ . Fix

such a p′; the definition of =⇒ ensures that p
τ−→n p′ for some n ∈ N. Reasoning by induction on n,

we can show that the side condition p ⇓ implies p′ ⇓ .

If [conv-ax-not] was applied, then (4.4) is

p ⇓ αs′ p ⇓ , p
α

6=⇒; [conv-ax-not]

It follows that s = αs′. The side condition p
α

6=⇒ implies that the only prefix of s performed by p is

the empty string, so (4.5) requires us to prove that if p
ε

=⇒ p′ then p′ ⇓ . To prove this we reason as

we did discussing the application the axiom [conv-ax].

Inductive case. In this case the last step in the derivation in (4.4) is rule [conv-alpha], so the

derivation in (4.4) is
...⊕

(p after α) ⇓ s′

p ⇓ αs′ p ⇓ , p α
=⇒; [conv-ax-not]

The derivation of
⊕

(p after α) ⇓ s′ is shorter than the derivation above, so we are allowed to use

the inductive hypothesis, for every s′′ prefix of s′, if
⊕

(p after α)
s′′

=⇒ p′ then p′ ⇓ .
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We prove (4.5). Fix a ŝ prefix of s such that p
s′

=⇒ p′. If ŝ = ε, then we reason as we did in the

base case to prove that p′ ⇓ . If ŝ 6= ∅ then ŝ = αs′′ for some s′′ prefix of s′. The definition of after

ensures that
⊕

(r1 after α)
s′′

=⇒ p′, and so the inductive hypothesis implies that p′ ⇓ .

We have proven the first implication of the lemma, namely i. Now we prove the second implication,

ii. Let us assume that for every s′ prefix of s, p
s′

=⇒ p′ implies p′ ⇓ . Our aim is to exhibit a finite

derivation of p ⇓ s. First we prove p ⇓ . The string ε is a prefix of every string s, so the assumption

and p
ε

=⇒ p imply that p ⇓ .

The main part of the argument is by induction on s.

Base case (s = ε) In this case use the axiom [conv-ax],

p ⇓ ε p ⇓ ; [conv-ax]

Inductive case (s = αs′) In this case the argument depends on p
α

=⇒.

If p
α

6=⇒, then we use [conv-ax-not]:

p ⇓ αs′
p ⇓ ; [conv-ax-not]

If p
α

=⇒, then the process
⊕

(p after α) is well-defined, so let p̂ =
⊕

(p after α). The string s′

is shorter than s, so the inductive hypothesis states that

if for every s′′ prefix of s′, p′
s′′

=⇒ p′′ implies p ⇓ s, then p′′ ⇓ s′

Let s′′ be a prefix of s′ such that p̂
s′′

=⇒ p′′. The construction of p̂ implies that p
αs′′
=⇒ p′′, and αs′′ is a

prefix of s. Our assumption on p implies that p′′ ⇓ . This prove that for every prefix s′′ of s′, p̂
s′′

=⇒ p′′

implies that p′′ ⇓ . The inductive hypothesis now ensures that there exists a finite derivation of p̂ ⇓ s′.
Now we use [conv-alpha]:

...⊕
(p after α) ⇓ s′

p after αs′
p ⇓ , p α

=⇒; [conv-alpha]

We are ready to prove the first relation that <∼svr enforces on the behaviour of a server p1 that

converges (after a trace), and the behaviour of a better server p2.

Lemma 4.1.8. Let p1 <∼svr p2. For every s ∈ Act?, if p1 ⇓ s then p2 ⇓ s.

Proof. In view of Lemma 4.1.7, we have to show that

for every s′ prefix of s, if p2
s′

=⇒ p′2 then p′2 ⇓ (4.6)

Let s′ be the longest prefix of s performed by p2, and let s′ = α1α2 . . . αn. To prove the lemma,

we define a client C such that

1. p1 must C

2. p2 must C implies (4.6)

For every 0 ≤ k ≤ n, let

Ck
def
=

(1 ⊕ 1) + αk+1.Ck+1 if 0 ≤ k < n

1 ⊕ 1 if k = n
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Note that if s′ is a prefix of s, and C0
s′

=⇒ r
τ

6−→, then r
X−→.

We prove that p1 must C0. We have to show that all the maximal computations of C0 || p1 are

client-successful. By construction C0 ⇓ s and s is the longest trace that C0 can perform; moreover, by

hypothesis p1 ⇓ s, and s is finite; it follows that all the maximal computations of C0 || p1 are finite.

Fix such a computation,

C0 || p1 = r0 || p01
τ−→ r2 || p11

τ−→ . . .
τ−→ rk || p1m

τ

6−→

Since C0
s′

=⇒ rk
τ

6−→ for some s′ prefix of s, it follows that rk
X−→; the maximal computation is

client-successful. This argument is true for every maximal computation of C0 || p1, so we have proven

that p1 must C0.

Since p1 must C0, the hypothesis ensure that p2 must C0. To prove (4.6) we reason by contra-

diction. Suppose that (4.6) is false: there exists a k such that p2
sk=⇒ p02 and p02 diverges; then the

following maximal computation is not client-successful,

C0 || p2 =⇒ Ck+1 || p02
τ−→ Ck+1 || p12

τ−→ Ck+1 || p22
τ−→ . . .

It follows that p2 6must C0, which contradicts p2 must C0. In view of this contradiction, (4.6) is

true.

Lemma 4.1.9. Let p1 <∼svr p2. For every s ∈ Act?, if p1 ⇓ s and p2
s

=⇒ then p1
s

=⇒.

Proof. We have to prove that under the hypothesis there exists p′1 such that p1
s

=⇒ p′1. To prove

this we define a test A such that

1. p2 6must A

2. p1 6must A implies that there exists a p′1 such that p1
s

=⇒ p′1

We define a suitable client. Let s = α1α2 . . . αn, and let

Ai
def
=

(1 ⊕ 1) + αi+1.Ai+1 if 0 ≤ i < n

0 if i = n

We prove that p2 6must A0. The hypothesis imply that there exists a p′2 such that p2
s

=⇒ p′2. If p′2

diverges we can infer the maximal computation

A0 || p2 =⇒ 0 || p′2
τ−→ 0 || p12

τ−→ 0 || p22
τ−→ . . .

If p′2 does not diverge, then there exists a p′′2 such that p′2
ε

=⇒ p′′2
τ

6−→. We can infer the maximal

computation

A0 || p2 =⇒ 0 || p′′2
τ

6−→

The computation is not client-successful. In both cases we have shown non client-successful compu-

tation of A0 || p2, so we have proven that p2 6must A0. It follows that p1 6must A0.

The hypothesis p1 ⇓ s, and p1 6must A0 imply that p1
s

=⇒ p′1 for some p′1, for otherwise all the

maximal computations of A0 || p1 would be client-successful. We explain this fact. Let k < n be

such that sk is the longest prefix of s performed by p1. Every maximal computation of A0 || p1 must

be finite, because p ⇓ s and the longest trace that A0 performs is s. Every maximal computation

of A0 || p1 must contain the contributions

A0
sk=⇒ Ak, p1

sk=⇒ p′1
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Figure 4.2: Process p of Example 4.1.12.

for otherwise the computations can be extended with one further interaction due an α. Since k ≤ i < n,

by construction we know that Ak = (1 ⊕ 1) + αk+1.Ak+1. As the computation at hand is maximal

and Ai
τ−→, the computation can be extended. Since p′1

αk+1

6=⇒ , the only way to extend the computation

is an internal move of Ak. The move reduces the client to a successful state, namely 1 +αk+1.Ak+1,

thus the computation is client-successful.

We have shown that if p1
s

6=⇒ all the maximal computations of A0 || p1 are client-successful. This

contradicts p 6must A0, so p1
s

=⇒ p′1 for some p′1.

The property of <∼svr that we have exhibited in Lemma 4.1.8 is not enough to characterise the

pre-order.

Example 4.1.10. It is not true that for every p and q, if p ⇓ s then q ⇓ s imply that p <∼clt q. For

instance, for every s ∈ Act?, α. 0 ⇓ s and β. 0 ⇓ s. Nevertheless, one sees easily that α. 0 6<∼svr β. 0; to

prove this, let us use the client α. 1. The server α. 0 satisfy α. 1, because all the maximal computations

of α. 1 || α. 0 are client-successful. On the contrary β. 0 6must α. 1, because α. 1 || β. 0
τ

6−→ and α. 1
X
6−→.

To characterise <∼svr we need some notation to compare the interactions offered by processes. In

particular, we wish to compare the actions that a process can perform after a trace s.

Definition 4.1.11. [ Acceptance set ]

For every s ∈ Act?, and process p, we let

acc(p, s) = {S(p′) | p s
=⇒ p′

τ

6−→}

where S(p) = {α ∈ Act | p α−→}.

Example 4.1.12. Consider the process p of Figure 4.2. We show the non-empty acceptance sets of p.

acc(p, ε) = {{α}} acc(p, αδ) = {∅}
acc(p, α) = {{δ}} acc(p, β) = {∅}

Plainly, for all the string s ∈ Act? not used above it holds acc(p, s) = ∅; the reason being that there

exists no p′ such that p
s

=⇒ p′.

Note though that the ready set in acc(p, β) does not contain the action X. This is crucial for the

characterisation to capture the equality 1 hsvr 0.

Example 4.1.13. It is easy to show that whenever unf(σ) = 1 then S(σ) ⊆ A for every A. Consider

the action X; it does not belong to Act , therefore by definition X 6∈ S(σ). But X is the only visible

action performed by σ, hence S(σ) = ∅.

Corollary 4.1.14. For every p1, p2 ∈ CCSwτ , and every s ∈ Act?, if p1 <∼svr p2, p1 ⇓ s and acc(p2, s) 6=
∅ then acc(p1, s) 6= ∅.
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Proof. The hypothesis acc(p2, s) 6= ∅ implies that p2
s

=⇒. Since p1 ⇓ s Lemma 4.1.9 implies

that p1
s

=⇒ p′1 for some p′1. The hypothesis p1 ⇓ s implies that p′1 ⇓ , and so there exists a p′′1

such that p1
s

=⇒ p′′1
τ

6−→. This implies that S(p′′1) ∈ acc(p1, s).

Lemma 4.1.15. Let p1 <∼svr p2. For every s ∈ Act?, if p1 ⇓ s, then for every B ∈ acc(p2, s) there

exists a set A ∈ acc(p1, s) such that A ⊆ B.

Proof. Fix a s ∈ Act? such that B ∈ acc(p2, s). It follows that acc(p2, s) 6= ∅, thus Corollary 4.1.14

implies that acc(p1, s) 6= ∅, so acc(p1, s) = {Ai | i ∈ I } for some non-empty set I.

The proof proceeds by contradiction; we suppose that

for every i ∈ I, the set Ai contains an action αi 6∈ B (4.7)

We use this assumption to build a client C that distinguishes p1 and p2; that is

1. p1 must C

2. p2 6must C

The string s is finite, so let s = β0β1 . . . βn for some n ∈ N.

Let

Ck
def
=

(1 ⊕ 1) + βk.Ck+1 if 0 ≤ k < n∑
i∈I αi. 1 if k = n

We depict the LTS of the processes Ck in Figure 4.3.

The client we are after is C0. We prove that p2 6must C0; that is, we exhibit a maximal computation

of p2 || C0 that is not client-successful.

By construction, we can infer C0
s

=⇒ Cn, and none of the states in the sequence is successful.

Definition 4.1.11 and the hypothesis B ∈ acc(p2, s) imply that there exists a p′2 such that S(p′2) = B

and p2
s

=⇒ p′2. Either p′2 diverges or it converges. In the first case, observe the ensuing computation

C0 || p2 =⇒ Cn || p′2
τ−→ Cn || p12

τ−→ Cn || p22
τ−→ . . .

this computation is maximal and it is not client-successful. In the second case, we infer the computa-

tion

C0 || p2 =⇒ Cn || p′2
τ

6−→

where the fact that p′2 || Cn is stable follows from three things: p′2
τ

6−→, Cn
τ

6−→, and by construction no

action performed by Cn can interact with the actions offered by p′2. It follows that the computation

above is maximal. What argued so far proves that p2 6must C0.

We have to prove that p1 must C0. Definition 3.1.1 requires us to prove that all the maximal

computations of C0 || p1 are client-successful. Fix a maximal computation of p1 || C0. The only

traces that C0 performs are the prefixes of s; since p ⇓ s, and no Ck is stable but Cn, every maximal

computation of C0 || p must contain a state Cn || p′, where p
s

=⇒ p′ and p′
τ

6−→.

Definition 4.1.11 ensures that S(p′) ∈ acc(p1, s), so the assumption in (4.7) and the construction

of Cn imply that there exists an αi ∈ S(p′) such that Cn
αi−→ 1. It follows that p′ and Cn can interact.

Since the computations we are discussing are maximal, and the only reduction of Cn || p′ is due to

an interaction, all the maximal computations of C0 || p contain a state 1 || p′′; this means that the

computations are client-successful.

We need to prove one more property of <∼svr. Its importance will become evident in Example 4.1.18.

Lemma 4.1.16. Let p1 <∼svr p2. For every u ∈ Act∞, if p1 ⇓ u and p2
u

=⇒ then p1
u

=⇒.
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Figure 4.3: Tests to distinguish servers (see Lemma 4.1.15)
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Figure 4.4: Infinite traces

Proof. Let u = α1α2α3 . . ., and for every n ∈ N let An
def
= (1 ⊕ 1) + αn.An+1. No An is successful, so

the infinite computation of A0 || p2 due to the interactions on the α’s, proves that p2 6must A0. The

hypothesis p1 <∼svr p2 implies that p1 6must A0. If p1
u

6=⇒ then, thanks to the hypothesis p ⇓ u, we can

prove that all the maximal computations of A0 || p1 are client-successful; this contradicts p1 6must A0,

so it follows that p1
u

=⇒.

The next definition is a minor generalisation of the well-known behavioural characterisation of

the must testing pre-order [De Nicola and Hennessy, 1984; Hennessy, 1985]. The only novelty is the

condition on infinite traces.

Definition 4.1.17. [ Semantic must server pre-order ]

Let p1 -svr p2 if

(1) for every s ∈ Act? such that p1 ⇓ s,

(a) p2 ⇓ s

(b) for every B ∈ acc(p2, s) there exists some A ∈ acc(p1, s) such that A ⊆ B

(2) for every w ∈ Act? ∪Act∞ such that p1 ⇓ w, p2
w

=⇒ implies p1
w

=⇒.

The condition on the existence of infinite computations in point (2) is already present for finite

computations in point (1b). For suppose p1 ⇓ s. Then if p1
s

=⇒ we know that p2
s

=⇒. However in

general, in particular in LTSs which are not finite branching, point (2) on infinite computations does

not follow automatically from condition point (1b).

Example 4.1.18. [ Infinite traces ]

Consider the processes in Figure 4.4. There pk denotes a process which performs a sequence of k α

actions and then becomes 0; so the process p performs every finite sequence of α’s. On the contrary,

the process q performs an infinite sequence of α. Then p ⇓ s and q ⇓ s for every s, and the pair (p, q)
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satisfies condition (1b) of -svr. However condition (2) is not satisfied; let u denotes the infinite

sequence of αs. On the one hand the self loop of q let us prove that q
u

=⇒. On the other hand p does

not perform the infinite trace u, that is p
u

6=⇒.

In fact p 6<∼svr q. For consider the process A
def
= (1 ⊕ 1) + α.A. When A is run as test on p, or as

a client using the server p, every computation is finite and successful; p must A. However when q is

run as a server, there is the possibility of an infinite computation, the indefinite synchronisation on α,

which is not successful; q 6must A.

The previous example can be adapted to prove that the co-inductive technique used in [Laneve and

Padovani, 2007], which is sound in the setting used there, is not sound with respect to the relation <∼svr

in our setting.

Example 4.1.19. [ Standard co-inductive characterisation not sound ]

Let 4bad be the greatest relation such that p1 4bad p2 if and only if

1. if p2
τ−→ p′2 then p1 4bad p

′
2

2. if B ∈ acc(p2, ε) then there exists a A ∈ acc(p1, ε) such that A ⊆ B

3. if p2
α−→ p′2 then p1

α
=⇒ and

⊕
(p1 after α) 4bad p

′
2

In this example we prove that the relation 4bad 6⊆ <∼svr. To this end, we show two processes p

and q such that p 4bad q and p 6<∼svr q. Consider the processes p and q that we used in Example 4.1.18.

As we have already argued that p 6<∼svr q, it is enough to show that p 4bad q. Let αn denote the string

of n α’s, and let pn denote the process that performs n actions α and then becomes 0, with p0 = 0.

One can prove the that for every n > 1 following equality is true,⊕
(p after αn) =

⊕
i=0

pi

Consider now the relation R= { (p, q), (
⊕

(p after α), q) }. Thanks to the equality above one can

prove that R ⊆ 4bad, so p 4bad q.

The relation -svr is complete with respect to <∼svr.

Proposition 4.1.20. [ Completeness ]

If p1 <∼svr p2 then p1 -svr p2.

Proof. The proposition follows from Lemma 4.1.8, Lemma 4.1.15 and Lemma 4.1.16.

Theorem 4.1.21. [ Alternative characterisation <∼svr ]

For every p1, p2 ∈ CCSwτ , p1 <∼svr p2 if and only if p1 -svr p2.

Proof. For every two processes p1 and p2, we are required to prove two implications:

i) if p1 <∼svr p2 if and only if p1 -svr p2,

ii) if p1 -svr p2 then p1 <∼svr p2

The implication (i) is proven in Proposition 4.1.20, so we prove only why the implication in (ii) is

true.

Let p1 -svr p2, and suppose that r1 must r. We have to explain why p2 must r. Definition 3.1.1

requires us to show that all the maximal computations of r || p2 are client-successful.

Fix a maximal computation of r || p2,

r || p2 = r0 || p02
τ−→ r1 || p12

τ−→ r3 || p32
τ−→ r3 || p32

τ−→ . . . (4.8)
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The computation in (4.8) is finite or infinite. We discuss the two cases separately.

Suppose that the computation in (4.8) is finite. Let us unzip the maximal computation at hand;

since it is finite, we get two finite contributions

r
s

=⇒ r′, p2
s

=⇒ p′2

and the state r′ || p′2 is stable. If p1 6⇓ s, then p1 reaches a state p′1 by performing a prefix of s

and p′1 diverges. By zipping r
s

=⇒ r′ with the action sequence of p′1 we obtain a maximal computation

of r || p1; since p1 must r, the new computation is client-successful, and so is the one unzipped.

Suppose now that p1 ⇓ s. The definition of Definition 4.1.11 implies that S(p′2) ∈ acc(p2, s), and

so point (1b) of Definition 4.1.17 implies that there exists a set A ∈ acc(p1, s) such that A ⊆ S(p′2).

The assumption that p1 ⇓ s and Definition 4.1.11 ensures that there exists a p′1 such that p1
s

=⇒ p′1
τ

6−→
such that S(p′1) ⊆ S(p′2). It follows that there exists the maximal computation

r || p1 =⇒ r′ || p′1
τ

6−→

Since p1 must r, the finite computation above is client-successful, and so also the computation in (4.8)

is client-successful.

We have proven that if the maximal computation in (4.8) is finite, then it is client-successful. Now

we prove that if that computation is infinite then it is client-successful.

Suppose that he computation in (4.8) is infinite. This may be true because the processes engage

in infinite traces, or because (at least) one of the two diverges.

Unzip the computation in (4.8) and suppose that obtain infinite contributions

r
u

=⇒, p2
u

=⇒

We have to prove that one of the states reached by r is successful. Point (2) of Definition 4.1.17

implies that p2
u

=⇒. By zipping together the infinite contribution of r and the infinite contribution

of p1 we obtain a maximal computation of r || p1. The assumption that p1 must r ensures that the

new computation is client-successful. Since the derivatives of r in this computation are the same that

appear in (4.8), we have proven that the computation we unzipped is client-successful.

Now we discuss the case of divergence. Unzip the computation in (4.8) and suppose that obtain

finite contributions

r
s

=⇒ r′, p2
s

=⇒ p′2

Since the computation is infinite r′ diverges or p′2 diverges (or both diverge).

Suppose that p′2 diverges. This assumption implies that p2 6⇓ s. Point (1a) of Definition 4.1.17

ensures that p1 6⇓ s; in turn this means that there exists a prefix s′ of s such that p1
s′

=⇒ p′1 and p′1

diverges. By zipping r
s′

=⇒ r′ with p1
s′

=⇒ p′1 we obtain an infinite maximal computation of r || p1.

The assumption p1 must r implies that r reaches a successful state, so the computation we unzipped

is client-successful.

Suppose that r′ diverges. Either p1 6⇓ s or p1 ⇓ s. If p1 6⇓ s then we reason as explain above.

If p1 ⇓ s, then point (2) of Definition 4.1.17 implies p1
s

=⇒ p′1. By zipping this action sequence of p1

with r
s

=⇒ r′ we obtain an infinite maximal computation of r || p1. The assumption that p1 must r

implies that r reaches a successful state, so the computation we unzipped is client-successful.

Theorem 4.1.21 gives a proof method for the relation <∼svr. We discuss this fact in the next

example.

Example 4.1.22. [ Proof method ] In this example we wish a) to use Theorem 4.1.21 to prove that
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two processes are related by <∼svr, and b) to compare the proof method with the one given by the

definition of <∼svr.

We prove p1 <∼svr p2, where p1 = α. 0 ⊕β. 0 and p2 = α. 0 +β. 0. Thanks to Theorem 4.1.21,

p1 <∼svr p2 will follow if we show that p1 -svr p2. Definition 4.1.17 requires us to show the following

properties,

(1) for every s ∈ Act? such that p1 ⇓ s,

(a) p2 ⇓ s

(b) for every B ∈ acc(p2, s) there exists some A ∈ acc(p1, s) such that A ⊆ B

(2) for every w ∈ Act? ∪Act∞ such that p1 ⇓ w, p2
w

=⇒ implies p1
w

=⇒.

Since each state reached by p1 or p2 converges, (1a) above is true. Now observe that the traces

performed by p1 and p2 are the same, namely ε, α, β. This ensures that (2) above is true.

To prove condition (1b), let us compare the non-empty acceptance sets of p2 with the acceptance

sets of p1,

acc(p2, ε) = { {α, β } } acc(p1, ε) = { {α }, {β } }

acc(p2, α) = { ∅ } acc(p1, α) = { ∅ }

acc(p2, β) = { ∅ } acc(p1, β) = { ∅ }

For each ready set in the non-empty acceptance sets of p2, there exists a ready set in the acceptance

sets of p1, so also (1b) above is satisfied; this concludes the proof that p1 -svr p2.

Now let us sketch a proof of p1 <∼svr p2 that relies on the definition of <∼svr. We are required to

show that that for every r if p must r, then q must r. In this example, thanks to the very simple

behaviour of p1, it is possible to prove the implication above. In general, though, it is not clear that

the implication can be proven, because of the universal quantification on all the rs.

Theorem 4.1.21 is essentially the characterisation of the must pre-order of [Hennessy, 1985]. Our

server pre-order <∼svr, though, is bigger than the must pre-order; this is because <∼svr relates also

terms that contains 1 (i.e. processes whose LTS performs X), whereas <∼ relates only terms that

cannot perform X. The following inclusion is true, <∼ ⊆ <∼svr.

The next result will be crucial in Section 4.3.

Lemma 4.1.23. For every process p, p hsvr p +
∑
i∈I 1 for every set I.

Proof. If I is empty then the lemma is trivially true, so suppose that I 6= ∅. Thanks to Theorem 4.1.21,

it is enough to prove that

i) p -svr p +
∑
i∈I 1

ii) p +
∑
i∈I 1 -svr p

For every s ∈ Act?, p ⇓ s if and only if p +
∑
i∈I 1 ⇓ s; and acc(p, s) = acc(p +

∑
i∈I 1, s). Moreover

for every u ∈ Act∞, p
u

=⇒ if and only if p +
∑
i∈I 1

u
=⇒. In view of these facts, one can prove both

i) and ii).

In this section we have defined and characterised the server pre-order <∼svr. We have seen that a

server p2 is better than another server p1, if p2 offers at least the interactions that p1 offers, converges

as p1 does, and up-to convergence, p1 performs the traces that p2 performs. To lay bare the way

whereby <∼svr relates the behaviours of processes, we have had to introduce the notions to reason

about convergence, ready sets, and acceptance sets. These ideas will turn out to be paramount, as

their variations will let us characterise many more pre-orders. The next pre-order that we study is

the client pre-order.
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4.2 Client pre-order

In the previous section we have studied when a server p2 is better than a server p1, in the sense

that p2 satisfies more clients than p1 with respect to the must relation. In this section we take the

dual stance; we study when a client process r2 is satisfied by more servers than a client r1. To this

end we introduce a pre-order for clients (Definition 4.2.1), and show examples of refinements take can

(not) take place. The examples show that the client pre-order differs from the server pre-order (4.9),

thus we have to devise an alternative characterisation for the client pre-order. Throughout this section

we put forth the notions that we need to give this alternative characterisation (Theorem 4.2.37).

Definition 4.2.1. [ must-client pre-order ]

We write r1 <∼clt r2 if and only if p must r1 implies p must r2 for every process p. We refer to the

relation <∼clt as must client pre-order .

Notation Similarly what done for <∼svr, also to reason on <∼clt we are free to use the general

summations
∑

and
⊕

. This is justified by the fact that hclt is commutative and associative with

respect to ⊕ and + , where hclt is the equivalence relation given in the obvious way by <∼svr.

The relation <∼clt is indeed a pre-order, as the definition implies immediately that <∼clt is reflexive

and transitive. In view of Lemma 3.1.6, the process 1 is a top element of <∼clt, while the terms 0

and τ∞ are bottom elements of <∼clt. In our study the elements of <∼clt which are not bottom will

play a crucial role.

Definition 4.2.2. [ Usable client ]

Let

Umust
clt = { r | p must r, for some server p }

If r ∈ Umust
clt we say that r is a usable client.

Intuitively, a client is usable if there is at least one server which satisfies it. It is straightforward to

see that every usable client is not a bottom element of <∼clt: if r ∈ Umust
clt then r 6<∼clt 0.

Intuitively, if r1 <∼clt r2, then relation <∼clt ensures that the interactions required by r2 to reach a

successful state are fewer then the interaction required by r1.

Example 4.2.3. In this example we discuss some pairs of clients (not) related by the client pre-order.

Let r1 denote the process depicted in Figure 4.6.

α. 0 <∼clt 0

α. 1 <∼clt 1 ⊕ 1

1 6<∼clt 0

r1 <∼clt 0

The inequality α. 0 <∼clt 0 is true because neither client ever report success, so they are not satisfied

by any server. In fact, α. 0 hclt 0.

To prove the second inequality let p must α. 1; we have to show that p must 1 ⊕ 1. Intuitively, the

assumption p must α. 1 implies that p ⇓ , and this lets us prove that in all the maximal computations

of p || 1 ⊕ 1 the client reduces to 1 (i.e. reaches a successful state).

The third inequality follows from p must 1 and p 6must 0 for every p; this being true because 1

reports success immediately, whereas 0 can never report X.

The intuition behind the fourth inequality is that all the trace that lead r1 to a successful state,

can be performed by r1 also never reaching a successful state and eventually getting stuck.
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Example 4.2.4. Here we discuss how sensitive <∼clt is to divergence.

1 6<∼clt 1 ⊕ 1

1 <∼clt 1 + τ∞

1 6<∼clt 1 ⊕ τ∞

α. 1 <∼clt (α. 1) ⊕ ((1 + τ∞) ⊕ (1 + τ∞))

(1 + τ∞) ⊕ (1 + τ∞) 6<∼clt τ∞

The divergence on the server side lets us explain the inequality 1 6<∼clt 1 ⊕ 1. The process 1 reports

success immediately, whereas 1 ⊕ 1 requires one reduction to reach a successful state. A server that

does not allow the clients to reduce distinguishes the two processes.For instance

τ∞ must 1, τ∞ 6must 1 ⊕ 1

The latter fact follows from 1 ⊕ 1
X
6−→ and the maximal computation

τ∞ || 1 ⊕ 1
τ−→ τ∞ || 1 ⊕ 1

τ−→ . . .

To prove that 1 6<∼clt 1 ⊕ 1 it is necessary to use a divergent server, and in Example 4.2.26 we will see

that under the assumption of convergence one can prove that 1 <∼clt 1 ⊕ 1.

The inequality 1 <∼clt 1 + τ∞ is true because both processes perform X, so for every process p

one can prove that p must 1 and p must 1 + τ∞. This shows that a client is free to diverge after it

has reached a successful state.

The inequality 1 6<∼clt 1 ⊕ τ∞ is true because the client 1 ⊕ τ∞ can diverge having reached no

successful state.

We discuss the fourth inequality, α. 1 <∼clt r, where r = (α. 1) ⊕ ((1 + τ∞) ⊕ (1 + τ∞)). The

reason for the inequality to be true is that if p must α. 1 then p converges; we prove this fact.

Suppose that p must α. 1; this implies that p does not diverge, for otherwise there would exist a non

client-successful computation of p || α. 1, namely

α. 1 || p τ−→ α. 1 || p τ−→ α. 1 || p τ−→ α. 1 || p τ−→ . . .

We have proven that if p must α. 1 then p converges. Now we prove that if p must α. 1 then p must r.

Suppose that p must α. 1; we show that all the maximal computations of r || p are client-successful.

The state r is defined by a top-most internal choice, so it does not perform any visible action. It follows

that in any maximal computation of r || p, the process p is bound to reach a stable state p′; this being

true because r does not communicate and p converges. After p has reached a stable state, r reduces to

(a) α. 1 or to (b) (1 + τ∞) ⊕ (1 + τ∞), and this term reduces further to the successful state 1 + τ∞.

If (a), then p′ must α. 1 follows from the assumption on p must α. 1, so the maximal computation

at hand must be client-successful; if (b) then the maximal computation at hand is client-successful

as 1 + τ∞
X−→. We have shown that p must r.

The last inequality shows that unsuccessful divergence is not equivalent to successful divergence;

for instance 0 must (1 + τ∞) ⊕ (1 + τ∞), and 0 6must τ∞. This lets us insist on the fact that

it does not matter whether a client diverges or not; the important aspect is whether the divergent

computations of a client reach a successful state or not.

In view of the Example 4.1.3, and Example 4.2.3, one can show that <∼svr is not comparable

with <∼clt; moreover divergence is not necessary to prove this;

<∼svr 6⊆ <∼clt,
<∼clt 6⊆ <∼svr (4.9)
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p
ε

=⇒6Xp
p
X
6−→; [ut-Ax]

p′
s

=⇒6Xq
p

s
=⇒6Xq

p
τ−→ p′, p

X
6−→; [ut-tau]

p′
s

=⇒6Xq
p

αs
=⇒6Xq

p
α−→ p′, p

X
6−→; [ut-alpha]

Figure 4.5: Inference rules for the functional F=⇒6X

To see why the negative inclusions (4.9) are true observe that

α. 1 <∼svr α. 0 α. 1 6<∼clt α. 0

α. 1 +α. 0 6<∼svr 0 α. 1 +α. 0 <∼clt 0

It follows the characterisation of <∼svr given in Theorem 4.1.21 does not capture <∼clt.

This section is devoted to the formulation of a behavioural characterisation of <∼clt. To characterise

the server pre-order we used the notions of convergence, trace and acceptance set. We follow a similar

approach to characterise the client pre-order; throughout this section we show that, as they stand,

those notions do not let us characterise <∼clt, and we amend them so as to obtain a characterisation

of <∼clt.

Example 4.2.5. One can prove that β.α. 1 <∼clt r, where r denotes β.(γ. 0 + 1). However the

acceptance sets of those clients are not related as required by Theorem 4.1.21. For example {γ} ∈
acc(r, β) but there is no B ∈ acc(β.α. 1, β) satisfying B ⊆ {γ}. This follows since acc(β.α. 1, β)

contains only the set {α}.

The characterisation of the server pre-order p1 <∼svr p2 in Theorem 4.1.21 demands that every

interaction offered by p2 after performing a trace s, represented by a ready set in acc(p2, s), be

matched appropriately by a set of interactions of p1 after performing s. However, the reasons for

r1 <∼clt r2 being true are different. We only require possible deadlocks in r2 to be matched by r1

so long as r2 has not reported a success. So in Example 4.2.5 we should not require the ready

set {γ} ∈ acc(r2, β) to be matched by one in acc(β.α. 1, β) because r2 can report success immediately

after performing β.

To formalise this intuition we need some notation for ready sets of deadlocks1 after unsuccessful

sequences of actions.

Definition 4.2.6. [ Unsuccesful traces ]

Let F=⇒6X : P(CCSwτ ×Act? × CCSwτ ) −→ P(CCSwτ ×Act? × CCSwτ ) be the rule functional given

by the inference rules in Figure 4.5. Lemma C.0.22 and the Knaster-Tarski theorem ensure that

there exists the least solution of the equation X = F=⇒6X(X); we call this solution the unsuccesful

traces, and we denote it =⇒6X: That is =⇒6X = µX.F=⇒6X(X). The predicate =⇒6X is extended to

u ∈ Act∞ by letting r
u

=⇒6X if and only if there exists a t ∈ Act∞τ such that

• if t = α1
τα

2
τα

3
τ . . ., then r = r0

α1
τ−→ r1

α2
τ−→ r2

α3
τ−→ . . ., and for every n ∈ N, rn

X
6−→;

• for every n ∈ N un = 〈tk〉\τ for some k ∈ N

Intuitively, we would like p
s

=⇒ 6Xq to mean that p performs the sequence of external actions s

ending up in state q without passing through any state which can report success; in particular that

1In this context we deem a state “deadlock” if it is stable.
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neither p nor q can report success. As the relation =⇒6X is not defined directly in terms of −→, but

it is a fixed point of a rule functional, a proof is in order.

Proposition 4.2.7. [ Operational meaning of =⇒6X ]

For every p, q ∈ CCSwτ , p
s

=⇒6Xpn if and only if s = 〈α1
τα

2
τ . . . α

n
τ 〉\τ , p

α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn and for

every 0 ≤ i ≤ n, pi
X
6−→.

Proof. We have to prove two implications, namely

(i) if p
〈α1
τα

2
τ ...α

n
τ 〉\τ

=⇒ 6Xpn then p
α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn and for every 0 ≤ i ≤ n, pi
X
6−→;

(ii) if p
α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn and for every 0 ≤ i ≤ n, pi
X
6−→, then p

s
=⇒6Xq.

We prove the implication (i). The argument is by induction on the derivation of p
〈α1
τα

2
τ ...α

n
τ 〉\τ

=⇒ 6Xq.

Base case In this case, the last rule applied in the derivation is the axiom [ut-Ax], that is

p
ε

=⇒6Xp
p
X
6−→; [ut-ax]

so pn = p. By letting n = 0 (i.e. α1
τα

2
τ . . . α

n
τ = ε), we see that p

X
6−→.

Inductive case The last rule used to derive p
s

=⇒6Xq is [ut-tau] or [ut-alpha]. In the first case

the derivation has form
...

p′
s

=⇒6Xpn
p

s
=⇒6Xpn

p
X
6−→, p τ−→ p′; [ut-tau]

Since the derivation of p′
s

=⇒6Xq is shorter than the derivation of p
s

=⇒6Xq, the inductive hypothesis

ensures that s = 〈α1
τα

2
τ . . . α

n
τ 〉\τ , p′ = p0

α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn and for every 0 ≤ i ≤ n, pi
X
6−→. By

letting p0 = p and p′ = p1 we obtain the action sequence

p0
τ−→ p1

α1
τ−→ p2

α2
τ−→ . . .

αnτ−→ pn

and since p
X
6−→, for every 0 ≤ i ≤ n, pi

X
6−→.

If rule [ut-alpha] was applied then the derivation of p
s

=⇒6Xq has form

...

p′
s′

=⇒6Xq

p
αs′
=⇒6Xq

p
X
6−→, p α−→ p′[ut-alpha]

It follows that s = αs′. Since the derivation of p′
s′

=⇒6Xq is shorter than the derivation of p
αs′
=⇒6Xq,

the inductive hypothesis ensures that s = 〈α1
τα

2
τ . . . α

n
τ 〉\τ , p′ = p0

α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn and for

every 0 ≤ i ≤ n, pi
X
6−→. By letting p0 = p, p′ = p1, β1 = α and for i > 1, βi = αi−1τ we obtain the

action sequence

p0
β1−→ p1

β2−→ p2
β3−→ . . .

βn+1−→ pn

and since p0
X
6−→, for every 0 ≤ i ≤ n, pi

X
6−→.

We have proven implication (i); now we prove implication (ii). Suppose that

a) p
α1
τ−→ p1

α2
τ−→ . . .

αnτ−→ pn, and
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b) for every 0 ≤ i ≤ n, pi
X
6−→.

Let t = α1
τα

2
τ . . . α

n
τ , and s = 〈r〉\τ . We have to exhibit a finite derivation of p

s
=⇒6Xq.

The argument is by induction on n.

(Base case n = 0) In this case t = ε, so pn = p. The string s is empty as well, so we have to

derive p
ε

=⇒6Xp. The derivation amounts in an application of the axiom,

p
ε

=⇒6Xp
p
X
6−→; [ut-Ax]

(Inductive case n = m + 1) In this case t = α1t
′ or t = τt′ for some t′ ∈ Act? such that t′ has

length m.

In the first case, there exists a p1 such that p
α−→ p1

t′−→ pn. Since for every 1 ≤ i ≤ n, pi
X
6−→, and t′

is shorter than t, the inductive hypothesis ensures that there exists a finite derivation of p1
〈t′〉\τ
=⇒ 6Xpn.

We extend this derivation as follows,

...

p1
〈t′〉\τ
=⇒ 6Xpn

p
α〈t′〉\τ
=⇒ 6Xpn

p
X
6−→, p α−→ p1 [ut-alpha]

Since α〈t′〉\τ = 〈αt′〉\τ = 〈t〉\τ = s, we have derived p
s

=⇒6Xq.

In the second case, there exists a p′ such that p
τ−→ p′

t′−→ q. e, there exists a p1 such that p
τ−→

p1
t′−→ pn. Since for every 1 ≤ i ≤ n, pi

X
6−→, and t′ is shorter than t, the inductive hypothesis ensures

that there exists a finite derivation of p1
〈t′〉\τ
=⇒ 6Xpn. Now we apply rule [ut-tau],

...

p′
〈t′〉\τ
=⇒ 6Xpn

p
〈t′〉\τ
=⇒ 6Xpn

p
X
6−→, p τ−→ p1 [ut-tau]

As 〈t′〉\τ = 〈τt′〉\τ = 〈t〉\τ = s, we have derived p
s

=⇒6Xq.

By using unsuccessful traces, we can define a notion of acceptance set that suits our aim (i.e.

characterise <∼clt).

Definition 4.2.8. [ Unsuccesful acceptance sets ]

For every process p and trace s ∈ Act?, let

acc6X(p, s) = {S(q) | p s
=⇒6Xq

τ

6−→}

We call the set acc6X(p, s) the unsuccessful acceptance set of p after s.

We can now try to adapt the characterisation for servers in Theorem 4.1.21 to clients as follows:

Definition 4.2.9. Let r1 4bad r2 if for every s ∈ Act?, if r1 ⇓ s then

(i) r2 ⇓ s,

(ii) for every B ∈ acc6X(r2, s), there exists some A ∈ acc6X(r1, s) such that A ⊆ B.
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r1

r′1 r′′1

0 1 0

α α

β δ β δ

XX

r2

r′2 r′′2

0 1 0

α α

β δ β

δ
X

XX

r3

r′3 r′′3

0

α α

β

X

δ

X

Figure 4.6: Unusable and usable processes (see Example 4.2.13)

Example 4.2.10. [ Ready sets of deadlocks ]

The difference between Definition 4.2.8 and Definition 4.1.11 is that unsuccessful acceptance sets

are defined taking into the account only unsuccessful traces, and we have already motivated this

difference. There is a second more subtle difference. While in Definition 4.1.11 it is not necessary

to use deadlock states, in Definition 4.2.8 it is necessary. We explain why. Let 4′bad be defined

as 4bad, but omitting the requirement that q
τ

6−→ in the definition of unsuccessful acceptance sets.

The relation 4′bad is not complete: <∼clt 6⊆ 4
′
bad. For instance, observe that α. 1 <∼clt 1 ⊕α. 1. We

cannot prove α. 1 4′bad 1 ⊕α. 1. The problem is that ∅ ∈ acc6X(1 ⊕α. 1, ε) , that the set acc6X(α. 1, ε)

contains only the singleton {α}, and that {α} 6⊆ ∅.

Intuitively, only deadlock states have to be taken into the account in the unsuccessful acceptance

sets, because the interactions they offer are necessary to reach a successful state. In Example 4.2.10,

the term 1 ⊕α. 1 does not need to perform α in order to reach success, as it is not stable, and, in

particular, it can reduce to a successful state. On the other hand 1 ⊕α. 1 τ−→ α. 1 and the client α. 1

has to perform α in order to report success.

Unfortunately, as the name suggests, there are still problems with the alternative pre-order 4bad.

Example 4.2.11. One can show that r <∼clt γ.α. 1 where r denotes the client γ.(α. 1+β. 0). However

they are not related by the proposed 4bad in Definition 4.2.9, as the comparison of the acceptance sets

fails. Obviously r ⇓ γ and {α} ∈ acc6X(γ.α. 1, c). But there is no B ∈ acc6X(r, γ) such that B ⊆ {α};
this is because acc6X(r, γ) contains only one element, namely {α, β}.

The problem is the presence of b in the ready set of α. 1 + β. 0.

To overcome this problem we need to develop even more notation. But first we give some intuition.

No server that satisfies the client r in Example 4.2.11 can ever offer an interaction on β after an offer

on the unsuccessful trace γ, because this would make the client fail. Intuitively the action β is unusable

for r after having performed the unsuccessful trace γ; this is because performing β leads to a client, 0,

which is unusable, because it can never be satisfied by any server. So when comparing ready sets after

unsuccessful traces in Definition 4.2.9 we should ignore occurrences of unusable actions.

To formalise this notion of usable actions of a client after an unsuccessful trace s we use the notion

of usable client (Definition 4.2.2). We also modify the definition of p after s, which gives the set of

residuals of p after any trace s, so that only the unsuccessful traces are considered

Definition 4.2.12. [ Unsuccesful after ]

For any process r ∈ CCSwτ and s ∈ Act? let (r after 6X s) = { q | r s
=⇒6Xq }.

Example 4.2.13. In this example we use after 6X to discuss the usability of the processes in Fig-

ure 4.6. Consider the left-most process, r1 = α.(β. 0 + δ. 1) + α.(β. 1 + δ. 0). The longest traces

that r1 are ab and ad. According to Definition 4.2.8,

(r1 after6X αβ) = {0}
(r1 after6X αδ) = {0}
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r usbl6X ε
r ∈ Umust

clt ; [cconv-ax]

r usbl6X αs
r ∈ Umust

clt , r
α

6=⇒6X; [cconv-not]⊕
(r after 6X α) usbl6X s

r usbl6X αs
r ∈ Umust

clt , r
α

=⇒6X; [cconv-alpha]

Figure 4.7: Inference rules for the functional Fusbl 6X

The sets above contain an unusable client, namely 0. This means that while performing the traces αβ

and αδ, the process r1 may reach 0 and we do not know, a priori, if this will happen or not. Indeed,

one can prove that r1 6∈ Umust
clt .

The process r2 = α.(β. 0 + δ. 1) + α.(1 +β. 1 + δ. 0), on the other hand is usable. Consider the

following sets

(r2 after 6X αβ) = {0}
(r2 after 6X αδ) = ∅

The process r2 has the same issue as r1 along αβ (i.e.. it may non-deterministically fail), but it

performs αδ passing always via a successful state; this is the reason why (r1 after 6X ad) is the

empty set. Indeed, if r2
α−→ r12

δ−→ r22 then either

• r12 = r′2, r22 = 1 and so r22
X−→, or

• r12 = r′′2 and so r12
X−→

Indeed one can prove α.δ. 0 must r2, so r1 ∈ Umust
clt .

Let us apply after 6X to the longest traces of r3 = α.(β. 0 + 1) + α.(1 + δ. 0).

(r3 after6X αβ) = ∅
(r3 after6X αδ) = ∅

Similar to r2 the trace αδ always leads r3 to a successful state, and so does the trace αβ; for instance

one can show that α.β. 0 must r3. It follows that also r3 is a usable client, r3 ∈ Umust
clt .

Now we define a convergence predicate for clients.

Definition 4.2.14. [ Usability after unsuccesful traces ]

Let Fusbl 6X : P(CCSwτ ×Act?) −→ P(CCSwτ ×Act?) be the rule functional given by the inference

rules in Figure 4.7. Lemma C.0.23 and the Knaster-Tarski theorem ensure that there exists the least

solution of the equation X = Fusbl 6X(X); we call this solution the client convergence predicate, and we

denote it usbl6X: That is usbl6X = µX.Fusbl 6X(X). We extend the relation usbl6X to infinite strings

by letting for every u ∈ Act∞, p usbl6X u if and only if p usbl6X uk for every finite prefix uk of u.

Although the predicate usbl6X seems to check only the usability of a client, in Lemma 4.2.21 we

will establish that usbl6X enforces also a form of convergence. This justifies the symbol ⇓.

Intuitively r usbl6X s means that any state reachable from r by performing any subsequence of s

is usable.

Lemma 4.2.15. For every s, s′ ∈ Act? and r ∈ CCSwτ , if r usbl6X s, s′ is a prefix of s and r
s′

=⇒6X,

then
⊕

(r after 6X s
′) ∈ Umust

clt .

Proof. First observe that
⊕

(r after 6X ε) ∈ Umust
clt . This is true because regardless of the string s, to

derive r usbl6X s it is necessary that r ∈ Umust
clt .

We reason by induction on the length of s.
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r

r1 r2 r3 r4

r5 r6 r7

r8 r9

pα must r1 ⊕ r2 ⊕ r3 ⊕ r4

pβ must r5 ⊕ r6 ⊕ r7

pγ must r8 ⊕ r9

α
α α

α

β β β

γ γ

Figure 4.8: Suppose that r usbl6X αβγ. The existence of pα, pβ , and pγ is a consequence of
Lemma 4.2.15.

(Base case, len(s) = 0) In this case s = ε, so if s′ is a prefix of s then it is empty. We have to prove

that
⊕

(r after 6X ε); we have already seen that this is true.

(Inductive case, len(s) = n + 1) In this case s = αs′′ for some s′′ ∈ Act?; and we have to prove

that for every s′ prefix of s,
⊕

(r after 6X αs
′) ∈ Umust

clt .

Fix a s′ that is a prefix of s. If s′ = ε, then we have to show that
⊕

(r after6X ε); we have already

proven this. Suppose now that s′ 6= ε; then s′ = αw, where w is a prefix of s′′. We have to show

that
⊕

(r after6X αw) ∈ Umust
clt . Definition 4.2.12 implies that⊕

(r after 6X αw) =
⊕

(
⊕

(r after6X α) after6X w)

so, by letting r̂ =
⊕

(r after6X α), it is enough to to prove that
⊕

(r̂ after 6X w) ∈ Umust
clt .

Since s′′ is shorter than s, the inductive hypothesis states that

for every w′ ∈ Act? and r′ ∈ CCSwτ , if r usbl6X w
′, w′ is a prefix of s′′ and r

w′
=⇒6X,

then
⊕

(r after6X w
′) ∈ Umust

clt .

The hypothesis r usbl6X αw implies that r̂ usbl6X w; the hypothesis r
αw
=⇒6X implies that r̂

w
=⇒6X, and

by assumption w is a prefix of s′′.

The inductive hypothesis implies that
⊕

(r̂ after w) ∈ Umust
clt .

In Figure 4.8 we suppose that the client r usbl6X αβγ, and it performs the trace αβγ unsuccessfully.

The existence of the processes p’s on the right side of the the figure is the consequence of Lemma 4.2.15.

We do not know how these servers p’s are defined; nevertheless, Lemma 4.2.15 ensures that they exist

so in our reasoning we can use them.

Now the set of usable actions for a client can be defined as follows.

Definition 4.2.16. [ Usable actions after unsuccesful trace ]

For every r ∈ CCSwτ and s ∈ Act?, let

ua6X(r, s) = {α ∈ Act | r sα
=⇒6X implies r usbl6X sα }

be the set of usable actions of r after s.

Thus if α ∈ ua6X(r, s) we know that the set of clients (r after 6X sα) is non-empty, and the client

given by the internal choice among them is usable; that is, there is some server which satisfies it.

Example 4.2.17. Let us revisit Example 4.2.11. First note that although r can perform the se-

quence γβ, the action β is not in ua6X(r, γ) because (r after 6X γβ) is the singleton set containing 0,

which is not in Umust
clt . Instead we have ua6X(r, γ) = {α}.
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Now suppose we were to amend Definition 4.2.9 so that instead of demanding A ⊆ B, we relaxed

this to A ∩ ua6X(r1, s) ⊆ B. It would then follow that r 4bad γ.α. 1, thereby correctly reflecting the

fact that r <∼clt γ.α. 1.

It is essential that in Definition 4.2.14 we consider only the unsuccessful traces s rather than all

the traces.

Example 4.2.18. We explain the previous statement. Consider the client

r = β.((1 + α. 0) ⊕ α.(1 ⊕ 1))

and note that β.α. 0 must r while β.α. 0 6must β. 0, and so r 6<∼clt β. 0

Now consider the consequences of using after rather than after 6X in Definition 4.2.14. The

proposed amendment to the definition of 4bad suggested in Example 4.2.17 would no longer be sound,

as r 4bad β. 0 would be a consequence.

This is because (r after βα) is the set {0, 1} and so
⊕

(r after βα) is the client 0 ⊕ 1 which

is not in Umust
clt . This would lead in turn to ua6X(r, β) being ∅, from which r 4bad β. 0 would follow.

The incorrect reasoning involves the unsuccessful acceptances after the trace β. acc6X(β. 0, β) = {∅}
and the unique ready set it contains, ∅, can be matched by A ∩ ∅ for some set A ∈ acc6X(r, β),

namely A = { a }.
However, with the correct Definition 4.2.14 this reasoning no longer works, as ua6X(r, β) = {α}.

The amendment to Definition 4.2.9 suggested in Example 4.2.17 is still not sufficient to obtain a

complete characterisation of the client pre-order.

Example 4.2.19. Consider the clients r1 = α.(β.δ. 0 +β. 1) and r2 = α.γ.δ. 1. The term r1 is not

usable, so r1 <∼clt r2, although r1 64bad r2, even when 4bad is amended as suggested in Example 4.2.17.

To see this first note {δ} ∈ acc6X(r2, αγ), and r1 ⇓ αγ, although r1 can not actually perform the

sequence of actions αγ; r1 ⇓ αγ merely says that if r1 can perform any prefix of the sequence ac to

reach r′ then r′ must converge. Consequently acc6X(r1, αγ) is empty and thus no ready set B can be

found to match the ready set {δ}.

To fix this problem we need to relax the circumstances under which the ready sets in Definition 4.2.9

are matched. Note that there the predicate ⇓ s already moderates when the matching is required.

For example α.(τ∞ + β. 1) 4bad α.γ.δ. 1, where τ∞ denotes some process which does not converge.

This is because α.(τ∞ + β. 1) ⇓ a is false and therefore the ready set {γ} ∈ acc6X(α.γ.δ. 1, α) does

not have to be matched by α.(τ∞ + β. 1) . A convenient way to address the problem encountered in

Example 4.2.19 is to strengthen this convergence predicate.

The client convergence predicate suits our aims, as it describes precisely when we expect ready

sets and unsuccessful traces to be compared. We explain this in a series of lemmas.

First we deal with some technicalities. We introduce a predicate that ensures that if a client

diverges, then it reaches a successful state.

Definition 4.2.20. [ Convergence to success ]

We say that r converges to success, denoted r ⇓X , whenever if there exists an infinite reduction

sequence as r = r0
τ−→ r1

τ−→ r2
τ−→ r3

τ−→ . . . then there exists n ∈ N such that rn
X−→.

The predicate ⇓X ensures that if a process diverges, then along the diverging computations it reaches

a successful state in a finite amount of internal moves. For instance τ∞ 6⇓X , whereas if we let

r = 0 ⊕ (0 ⊕ (1 + τ∞))
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then r ⇓X ; this is true because the infinite computation

r
τ−→ 0 ⊕ (1 + τ∞)

τ−→ 1 + τ∞
τ−→ 1 + τ∞

τ−→ . . .

is the only diverging computation of r, and it reaches a successful state after 2 reductions. Note

that 0 ⊕ 0 ⇓X ; this is true because 0 ⊕ 0 performs no infinite series of reductions, so the predicate ⇓X

is trivially true.

Since for every s ∈ Act?, r usbl6X s ensures that r ∈ Umust
clt , there is relation between the convergence

predicate for client, usbl6X, and the predicate of convergence to success ⇓X .

Lemma 4.2.21. If r ∈ Umust
clt then r ⇓X .

Proof. As r ∈ Umust
clt there exists a p such that p must r. Fix a divergent computation of r, and zip

it with p,

p || r = p || r0
τ−→ p || r1

τ−→ p || r2
τ−→ . . .

The definition of must ensures that one of the derivatives of r is successful.

Note that r usbl6X s ensures that r converges only while performing unsuccessful traces; for in-

stance (1 + τ∞) usbl6X ε, and τ∞ 6usbl6X ε. We motivate this choice in Example 4.2.33.

We have enough material to expose the properties of vsvr that we require in the characterisation.

Lemma 4.2.22. Suppose r1 <∼clt r2 and αs ∈ Act?. If r1 usbl6X αs and r2
α

=⇒6X. Then

(i) r1
α

=⇒6X

(ii)
⊕

(r1 after 6X α) usbl6X s

(iii)
⊕

(r1 after 6X α) <∼clt

⊕
(r2 after6X α)

Proof. We divide the argument in three parts, which prove respectively point (i), point (ii) and

point (iii).

We prove that r1
α

=⇒6X. The hypothesis r1 usbl6X αs implies that r1 ∈ Umust
clt , thus there exists

a p such that p must r1. Let p̂ = p + α.τ∞. By hypothesis there exists a r′2 such that r2
α

=⇒6Xr′2; it

follows that the composition r2 || p̂ performs the following maximal computation

r2 || p̂ =⇒ r′2 || τ∞ =⇒ r′2 || τ∞ =⇒ r′2 || τ∞ =⇒ . . .

The computation above is due to an interaction (via α) and then to the divergence of τ∞. The deriva-

tives of r2 that appear in the computation above also appear in r2
α

=⇒6Xr′2, so they are not successful.

It follows that the maximal computation we have depicted is not client-successful, and so p̂ 6must r2.

The hypothesis r1 <∼clt r2 ensures that p̂ 6must r1, so there exists a maximal computation of p̂ || r1
that is not client-successful. In view of the construction of p, this computation cannot be due to p, for

otherwise p 6must r1, so it must be due to α.τ∞. This is possible only if r1
α

=⇒. Since the resulting

computation is not client-successful it follows that r1
α

=⇒6Xr′1.

We prove point (ii); namely that
⊕

(r1 after 6X α) usbl6X s. By hypothesis r1 usbl6X αs, so

if r1
α

=⇒6X then
⊕

(r1 after6X α) usbl6X s. We have already proven that r1
α

=⇒6X, so
⊕

(r1 after 6X

α) usbl6X s.

Now we prove point (iii). First, note that point (i) and Definition 4.2.12 imply that (r1 after 6X

α) 6= ∅, so the term
⊕

(r1 after6X α) exists. We have to explain why
⊕

(r1 after 6X α) <∼clt⊕
(r2 after6X α). Let p′ must

⊕
(r1 after 6X α); we have to prove that p′ must

⊕
(r2 after 6X

α). Let p̂ = p + α.p′, where p must r1. The ensuing implication is true

if p̂ must r2 then p′ must
⊕

(r2 after6X α).
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In view of the hypothesis that r1 <∼clt r2, to show that p̂ must r2 it suffices to prove that p̂ must r1.

This is what we prove. Definition 3.1.1 requires us to show that all the maximal computations of r1 || p̂
are client-successful.

Fix a maximal computation of r1 || p̂,

r1 || p̂ = r01 || p̂0
τ−→ r11 || p̂1

τ−→ r21 || p̂2
τ−→ . . . (4.10)

In the computation above either there are no interactions, or an interaction happens.

Suppose that no interaction happens. Then p̂1
τ−→ p̂2

τ−→ p̂3
τ−→ and r01

τ−→ r11
τ−→ r21

τ−→ . . .

If the computation reaches a stable state ri1 || p̂i, then there exists a p′ such that p =⇒ p′
τ

6−→, and

ri1 || p′
τ

6−→; it follows that there exists also the maximal computation

r1 || p =⇒ ri1 || p′
τ

6−→

The assumption p must r1 implies that the computation is client-successful; this ensures that the

computation in (4.10) is client-successful as well.

If the computation in (4.10) contains no stable state, then one of the processes diverge. If the

client diverges, then there exists the infinite computation

r01 || p
τ−→ r11 || p

τ−→ r21 || p
τ−→ . . .

The assumption p must r1 implies that the computation we unzipped is client-successful. If the server

diverges then there exists the infinite computation

r1 || p
τ−→ r1 || p1

τ−→ r1 || p2
τ−→ . . .

The assumption p must r1 implies that r1
X−→, so the computation we unzipped is client-successful.

Suppose now that the computation in (4.10) contains interactions. Let ri1 || pi be the state that

performs the first interaction; that is r01 =⇒ ri1 and p̂ =⇒ pi. Moreover, let ri+1
1 || pi+1 be the state

reached by the interaction that is

ri1
δ−→ ri+1

1 pi
δ−→ pi+1

ri1 || pi
τ−→ ri+1

1 || pi+1

[p-Synch]

If ri+1
1 6∈ (r1 after 6X δ), then there exists a 0 ≤ k ≤ i + 1 such that rk1

X−→, so the computation

in (4.10) is client-successful. In the opposite case we have r1
δ

=⇒6Xri+1
1 . Our reasoning now depends

on the process pi+1.

• If pi+1 = p′, then δ = α. It follows that ri+1
1 ∈ (r01 after6X α). By construction we know that

pi+1 must
⊕

(r01 after 6X α), so the computation in (4.10) must be client-successful.

• If pi+1 6= p′, then p
δ

=⇒ pi+1. The facts that p must r1, and r01
δ

=⇒6Xri+1
1 ensure that pi+1 must

ri+1
1 , and so the computation in (4.10) is client-successful.

We have proven that a maximal computation of r1 || p̂ is client-successful. Since we used no assumption

on the maximal computation, we have shown that all the maximal computations of r1 || p̂ are client-

successful, and so Definition 3.1.1 ensures that p̂ must r1.

Lemma 4.2.23. Suppose that r1 <∼clt r2. For every s ∈ Act?, if r1 usbl6X s then r2 usbl6X s.

Proof. We begin by proving that r2 ∈ Umust
clt . By hypothesis r1 usbl6X ε, so there exists a p such

that p must r1. The hypothesis r1 <∼clt r2 ensures that p must r2; this implies that r2 ∈ Umust
clt .
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Now we prove the lemma, reasoning by induction on the length of s.

Base case (len(s) = 0) In this case s = ε and we have to prove r2 usbl6X ε. Since r2 ∈ Umust
clt we

use the axiom in Figure 4.7 to derive

r1 usbl6X ε
r2 ∈ Umust

clt [cconv-ax]

Inductive case (len(s) = n + 1) In this case s = αs′, and we have to prove that r2 usbl6X αs′.

If r2
α

6=⇒6X, then we can infer

r1 usbl6X αs
′ r2 ∈ Umust

clt , r2
α

6=⇒6X [cconv-not]

If r2
α

=⇒ 6X, then we have to prove that
⊕

(r2 after 6X α) usbl6X s′. The hypothesis r1 <∼clt r2,

r1 usbl6X αs
′ and the assumption r1

α
=⇒ allow us to use Lemma 4.2.22. That lemma implies

•
⊕

(r1 after 6X α) <∼clt

⊕
(r2 after 6X α)

•
⊕

(r1 after6X α) usbl6X s
′

As s′ has length n we are allowed to apply the inductive hypothesis, which implies that
⊕

(r2 after 6X

α) usbl6X s
′. Now we derive⊕

(r2 after 6X α) usbl6X s
′

r1 usbl6X αs
′ r2 ∈ Umust

clt , r2
α

=⇒6X [cconv-alpha]

Lemma 4.2.24. Suppose r1 <∼clt r2, and r1 usbl6X s. If r2
s

=⇒6X then r1
s

=⇒6X.

Proof. First we prove that r1
X
6−→. By hypothesis we know that r2

s
=⇒ 6X for some s; this ensures

that r2
X
6−→. As the process τ∞ diverges, we can infer the following maximal computation,

r2 || τ∞ =⇒ r2 || τ∞ =⇒ r2 || τ∞ =⇒ . . .

Since the computation is not client-successful, it follows that that τ∞ 6must r2, and so the hypothe-

sis r1 <∼clt r2 implies that τ∞ 6must r1; it follows that r1
X
6−→, for otherwise τ∞ must r1.

We are ready to prove the lemma. The argument is by induction on the length of s.

Base case (|s| = 0) In this case s = ε, so we have to prove r1
ε

=⇒ 6X. Consider the following

inference tree,

r1
ε

=⇒6Xr1
r1

X
6−→ [ut-ax]

from which it follows r1
ε

=⇒6X.

Inductive case (|s| = n+1) In this case s = αs′, so we know that (a) r1 usbl6X αs
′, and (b) r2

αs′
=⇒6X.

We have to prove that r1
αs′
=⇒6X.

Point (b) above implies that r1
α

=⇒6X, so (a) and the hypothesis r1 <∼clt r2 let us apply Lemma 4.2.22.

It follows that

(1)
⊕

(r1 after6X α) <∼clt

⊕
(r2 after 6X α)

(2)
⊕

(r1 after6X α) usbl6X s
′
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Since s′ is shorter than s, we can use the inductive hypothesis, so in view of (1) and (2),⊕
(r2 after6X α)

s′
=⇒6X implies

⊕
(r1 after6X α)

s′
=⇒6X (4.11)

We prove that the premises of the implication above are true. The hypothesis r2
αs′
=⇒6X ensures that

there exists a r′2 such that r2
α

=⇒6Xr′2
s′

=⇒6X; Definition 4.2.12 implies that r′2 ∈ (r2 after6X α). It

follows that one can infer
⊕

(r2 after 6X α)
ε

=⇒6Xr′2
s′

=⇒6X; in turn this implies that
⊕

(r2 after6X

α)
s′

=⇒6X. The implication in (4.11) ensures that
⊕

(r1 after 6X α)
s′

=⇒6Xr for some r. There exists a r′1

such that r1
α

=⇒6Xr′1
s′

=⇒6Xr1 . Proposition 4.2.7 and the transitivity of =⇒ imply that r1
s′

=⇒6Xr.

Lemma 4.2.24 is true also for infinite unsuccessful traces.

Corollary 4.2.25. Suppose r1 <∼clt r2 and r1 usbl6X u. For every u ∈ Act∞, if r2
u

=⇒6X then r1
u

=⇒6X.

Proof. We have to prove that r1
u

=⇒6X. Definition 4.2.6 requires us to show a t ∈ Act∞τ such that

• if t = α1
τα

2
τα

3
τ . . ., then r = r0

α1
τ−→ r1

α2
τ−→ r2

α3
τ−→ . . ., and for every n ∈ N, rn

X
6−→;

• for every n ∈ N un = 〈tk〉\τ for some k ∈ N

Let u = α1α2α3 . . .. The hypothesis r1 usbl6X u, Definition 4.2.14, and Lemma 4.2.15 imply

that for every k ∈ N there exists a pk such that pk must
⊕

(r1 after 6X uk). For every k ∈ N,

let Ak
def
= pk + αkk+1.Ak+1.

The hypothesis r2
u

=⇒ 6X let us prove that A0 6must r2, so the hypothesis r1 <∼clt r2 implies

that A0 6must r1. There exists a maximal computation of r1 || A0, say C, which is not client-

successful. We prove that C is due to the trace u.

By hypothesis r1 usbl6X u, thus in C no derivatives of r1 diverges, for otherwise C would be

client-successful. Thanks to the construction of the pk’s, for every k ∈ N, no interaction is due to

the summand pk, because otherwise the computation would be client-successful. It follows that the

interactions that take place in C are due to the summands αi.Ai . Let t be the contribution of r1 in

the computation C. What argued thus far implies that for every n ∈ N there exists a k ∈ N such

that 〈tk〉\τ = un. Let t = α1
τα

2
τ . . .; in C the client r1 performs the action sequence r1 = r01

α1
τ−→ r11

α2
τ−→

. . . ; since C is not client-successful, it follows that for every n ∈ N, rn1
X
6−→.

Lemma 4.2.24 is not true if there is no divergent term in the LTS.

Example 4.2.26. In Example 4.2.4 we have argued that 1 6<∼clt 1 ⊕ 1 because of the divergent

server τ∞. In this example we prove that convergent servers cannot distinguish 1 and 1 ⊕ 1. Suppose

that p ⇓ for every p . Then 1 <∼clt 1 ⊕ 1; to prove this we have to show that p must 1 ⊕ 1 for

every p, under the assumption of convergence.

Take a maximal computation of 1 ⊕ 1 || p:

1 ⊕ 1 || p τ−→ r1 || p1
τ−→ . . . (4.12)

As p ⇓ , any prefix of the computation due to internal moves of p is finite: for some k ∈ N the

computation in (4.12) contains a state pk || rk such that pk
τ

6−→ and rk = r0. Since the computation is

maximal, and rk
τ−→ 1, the state pk || rk is followed by the state state pk+1 || rk+1 where pk+1 = pk

and rk+1 = 1. Since rk+1
X−→ the computation in (4.12) is client-successful.

We have shown that 1 <∼clt 1 ⊕ 1. To see why Lemma 4.2.24 is false, note that 1 usbl6X ε,

and 1 ⊕ 1
ε

=⇒6X. The lemma states that 1
ε

=⇒6X, but this is not true, because 1
X−→.

In general 1 ⊕ 1 <∼clt 1. What argued in the previous example implies that convergent servers cannot

tell apart 1 from 1 ⊕ 1: 1 hclt 1 ⊕ 1. This means that under the assumption of convergence it is safe

to postpone the action X after any finite amount of internal moves. We depict this in Figure 4.9.
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hclt p
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p2

hclt p′

p′1

p′2

p′3

X τ

X

τ

τ

X

Figure 4.9: If servers converge, it is safe to perform internal computations before reaching success.
See Example 4.2.26.

Lemma 4.2.27. Suppose r1 <∼clt r2. For every s ∈ Act?, if r1 usbl6X s and acc6X(r2, s) 6= ∅,
then acc6X(r1, s) 6= ∅.

Proof. The proof is by induction on the length of s.

Base case (|s| = 0) In this case s = ε, and we have to prove acc6X(r1, ε) 6= ∅. Definition 4.2.8

requires us to exhibit a r′1 such that r1
ε

=⇒6Xr′1
τ

6−→.

By hypothesis we know that acc6X(r2, ε) 6= ∅ and that r1 usbl6X ε; the former fact ensures that for

some r′2, r2
ε

=⇒6Xr′2
τ

6−→. As the process 0 is stable and offers no actions, we can infer the following

maximal computation,

r2 || 0 =⇒ r′2 || 0 =⇒ r′2 || 0
τ

6−→

The computation above is not client-successful, so 0 6must r2, and so the hypothesis r1 <∼clt r2 implies

that 0 6must r1. Definition 3.1.1 implies that r1 || 0 performs a maximal computation which is not

client-successful. The process 0 cannot interact with r1, thus the computation is due either to (a) a

divergence of r1, or (b) a reduction sequence r1
ε

=⇒6Xr′1
τ

6−→, for some r′1. The hypothesis r1 usbl6X ε

implies that r1 ⇓X , so the maximal computation at hand cannot be due a divergence of r1, for other-

wise it would be client-successful. It follows that (b) above is true, and so that S(r1) ∈ acc6X(r1, ε).

Inductive case (|s| = n+ 1) In this case s = αs′, so we know that

(a) r1 usbl6X αs
′,

(b) acc6X(r2, αs
′) 6= ∅.

We have to prove that acc6X(r1, αs
′) 6= ∅.

The hypothesis acc6X(r2, αs
′) 6= ∅ implies that r2

α
=⇒6X; the hypothesis r1 <∼clt r2, r1 usbl6X αs′.

Lemma 4.2.22 imply the ensuing statements

(1)
⊕

(r1 after6X α) <∼clt

⊕
(r2 after6X α)

(2)
⊕

(r1 after6X α) usbl6X s
′

As s′ is shorter than s, the inductive hypothesis guarantees that

acc6X(
⊕

(r2 after 6X α), s′) 6= ∅ implies acc6X(
⊕

(r1 after 6X α), s′) 6= ∅ (4.13)

We show that the premises of the implication in (4.13) are true: acc6X(
⊕

(r2 after 6X α), s′) 6= ∅.
This fact follows from the hypothesis that acc6X(r2, s) 6= ∅, (b), and the equality

acc6X(r2, αs
′) = acc6X(

⊕
(r2 after6X α), s′)
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Now the implication in (4.13) implies that acc6X(
⊕

(r1 after 6X α), s′) 6= ∅, so the equality

acc6X(r1, αs
′) = acc6X(

⊕
(r1 after6X α), s′)

ensures that acc6X(r1, αs
′) 6= ∅.

Lemma 4.2.27 uses Lemma 4.2.22, which requires a divergent term, τ∞, to be in the LTS.

Lemma 4.2.27, though, can be proven without using Lemma 4.2.22 and a divergent term τ∞. The

alternative proof relies on the property that (unsuccessful) acceptance sets contain the ready sets of

stable states; we have used this fact in the base case of the proof, but not in the inductive case. Also

the next lemma can be strengthened without requiring τ∞ in the LTS.

Lemma 4.2.28. Suppose r1 <∼clt r2. For every s ∈ Act?, if r1 usbl6X s then for every B ∈ acc6X(r2, s)

there exists some A ∈ acc6X(r1, s) such that A ∩ ua6X(p, s) ⊆ B .

Proof. Fix a string s such that B ∈ acc6X(r2, s) for some set B, r1 usbl6X s, and let s = β1 . . . βn.

The hypothesis let us use Lemma 4.2.27, which ensures that acc6X(r1, s) = {Ai | i ∈ I } for some

non-empty set I. This implies that r1
s

=⇒6Xr′1
τ

6−→, and so r1
s

=⇒.

We reason by contradiction: suppose that

for every i ∈ I, the set Ai ∩ ua6X(p, s) contains an action αi 6∈ B (4.14)

In the rest of the proof we use this supposition to define a process P such that

(a) P 6must r2, and

(b) P must r1

For every i ∈ I, the assumption that αi ∈ Ai ∩ ua6X(p, s) and Definition 4.2.16 ensure that there

exists a process p̂i such that

p̂i must
⊕

(r1 after6X sαi) (4.15)

Moreover, as r1 usbl6X s and r1
s

=⇒6X, for every 0 ≤ k ≤ n Lemma 4.2.15 implies that there exists a

process pk such that

pk must
⊕

(r1 after 6X sk) (4.16)

where sk is the prefix of s with length k. We are ready to define the process P . For 0 ≤ k ≤ n let

Pk
def
=

pk + βk+1.Pk+1 if k < n∑
i∈I αi.p̂i if k = n

The P we are after is P0.

(a) We prove that P0 6must r2 . It suffices to exhibit a maximal computation of r2 || P0 that is not

client-successful. Since B ∈ acc6X(r2, s), there exists a derivative r′2 of r2 such that r2
s

=⇒6Xr′2
τ

6−→;

by zipping this transition sequence with P0
s

=⇒ Pn+1 we obtain the computation

r1 || P0 =⇒ r′2 || Pn

As all the (co)actions offered by Pn are not in B, and both Pn and r′2 are stable, so it follows

that r′2 || Pn
τ

6−→, thus the computation is maximal and not client-successful. We have proven (a),

that is A0 6must r2.

(b) Now we show that P0 must r1. Definition 3.1.1 requires us to show that all the maximal compu-

tations of r1 || P0 are client-successful. Fix a maximal computation of r1 || P0.
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pk + βk+1.Ak+1 Ak+1

βk+1

An+1

p̂0 p̂1 p̂2 . . .

α0
α1

α2

Figure 4.10: Tests to distinguish clients (see Lemma 4.2.28)

The contributions of r1 and P0 being with a possibly empty prefix of s (resp. s), say

r1
sj

=⇒ r′, P0
sj

=⇒ Pj

Let sj be the longest prefix of s that in the computation at hand leads P0 to a Pi.

The state Pj converges. For suppose Pj diverges. Then j < n, Pj = pj + βj+1.Pj+1, and

pj diverges. (4.16) ensures that pj must
⊕

(r1 after6X sj). Pick a r ∈ (r1 after6X sj),

Definition 4.2.12 implies that r
X
6−→, so we can show a maximal computation of r || pj which is not

client-successful. This contradicts pj must
⊕

(r1 after6X sj). Since Pj converges, so does pj ,

and the action sequence P0
sj

=⇒ Pj can be extended to P0
sj

=⇒ Pj =⇒ P ′, where P ′
τ

6−→ (where P ′

may be Pj itself, for instance if j = n).

If there is a successful state in r1
sj

=⇒ r′ then the computation is client-successful. Suppose

that r1
sj

=⇒6Xr′ . If r′ diverges, then it converges to success, because of the hypothesis r1 usbl6X s

and Lemma 4.2.21, so the computation is client-successful. Let us suppose that r′ converges, and

that it is stable.2 As the computation is maximal it contains the state r′ || P ′.

If i = n, then P ′ = Pn, and as r′ is stable, S(r′) ∈ acc6X(r1, s). The set S(r′) contains and

action αi such that Pn
αi−→. It follows that the computation contains a reduction r′ || P ′ τ−→

r′′ || p̂i; either r′′
X−→, or, in view of (4.15) p̂i must r′′. In both cases the computation is

client-successful.

If i < n, then P ′ = p′j + βj+1.Pj+1. Since r′
X
6−→, the state r′ || P ′ is not stable, for other-

wise p′j 6must r′, which implies that pj 6must
⊕

(r1 after 6X sj). It follows that r′ || P ′ τ−→
r′′ || P ′′; as both r′ and P ′ are stable, this reduction is due to an interaction: p′j

δ−→ P ′′ for

some δ ∈ Act . Our assumption on sj ensures that the reduction cannot be due to βj+1.Pj+1 ,

so it is due to p′k. If r′′
X−→ the computation is client-successful. If r′′

X
6−→, then r1

sj
=⇒ r′′ and

(4.16) imply that P ′′ must r′′, so the computation we unzipped is client-successful.

We have proven that the maximal computation of r1 || P0 are client-successful, so P0 must r1.

By assuming the thesis false (see (4.14)), we have defined a process P which lets us contradict the

hypothesis r1 <∼clt r2; it follows that the thesis of the lemma is true.

In the previous lemma the server P is defined using an external sum. This is necessary; we explain

why in the next example.

Example 4.2.29. In Lemma 4.2.28 (resp. Figure 4.10) the test used to distinguish two clients is

defined using an external sum. This contrasts with Lemma 4.1.15 (resp. Figure 4.3), in which the test

used to distinguish servers is defined by an internal sum. If we defined the server P in Lemma 4.2.28

using an internal sum then the proof would not work. In this example we explain why.

2Since r′ converges, if it is not stable, the computation contains a stable state r′′ such that r′ =⇒ r′′. If r′ is not
stable we use r′′ in place of r′.
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Consider the clients r1 = β.(1 ⊕ 1) ⊕ α.γ. 1 and r2 = α.γ. 1. One can prove that r1 <∼clt r2; this

is true because r1 =⇒6Xr2 . Moreover note that r1 usbl6X a and {c} ∈ acc6X(r2, a), so the clients r1

and r2 satisfy the hypothesis of Lemma 4.2.28.

Observe how P0 is defined in Lemma 4.2.28, and replace the external sum with an internal sum,

P ′0 = p ⊕ α.P1

where p must r1. It is not true that P ′0 must r1, so one of they key steps of the proof fails. To see

why P ′0 6must r1, note that we can infer the computation

r1 || P0
τ−→ r1 || α.P1

τ−→ β.(1 ⊕ 1) || α.P1

τ

6−→

This computation is maximal and not client-successful.

We have gathered enough results to state the alternative characterisation of <∼clt.

Definition 4.2.30. [ Semantic must client pre-order ]

Let r1 -clt r2 if

(1) for every s ∈ Act? such that r1 usbl6X s,

(a) r2 usbl6X s

(b) for every B ∈ acc6X(r2, s) there exists some A ∈ acc6X(r1, s) such that

A ∩ ua6X(r1, s) ⊆ B

(2) for every w ∈ Act? ∪Act∞ such that r1 usbl6X w, r2
w

=⇒6X implies r1
w

=⇒6X.

We obtain the completeness of -clt immediately.

Proposition 4.2.31. [ Completeness ]

If r1 <∼clt r2 then r1 -clt r2.

Proof. This is true because of Lemma 4.2.23, Lemma 4.2.28, Lemma 4.2.24, and Corollary 4.2.25.

Unsuccessful acceptance sets contain the ready sets only of stable states; we have motivated this

in Example 4.2.10. This property of unsuccessful acceptance sets implies that in Definition 4.2.30

condition (1b) and condition (2) are independent, so we have to require both of them.

Example 4.2.32. First, observe that 1
X−→, so 1

ε

6=⇒6X; whereas 1 ⊕ 1
ε

=⇒6X, because

1 ⊕ 1
ε

=⇒6X 1 ⊕ 1
1 ⊕ 1

X
6−→; [ut-Ax]

This difference between 1 and 1 ⊕ 1 is essentially the reason why 1 6<∼clt 1 ⊕ 1 (see Example 4.2.4).

Without point (2) in Definition 4.2.30, the relation -clt would not be a sound with respect to <∼clt.

Let 4′bad be defined as Definition 4.2.30 but omitting point (2). One can prove that 1 4′bad 1 ⊕ 1.

This follows from the fact that for every s ∈ Act? the set acc6X(1 ⊕ 1, s) is empty, and 1 ⊕ 1 usbl6X s.

It follows that the relation 4′bad is not sound: 4′bad 6⊆ <∼clt.

Similar to point (2), also point (1b) is necessary to obtain soundness. Define 4′bad according

to Definition 4.2.30, but omitting point (1b), and let r1 = α.(1 ⊕ 1). One can prove that r1 4′bad

α.β. 1. Let us see why. The only unsuccessful traces of α.β. 1 are ε and α ; the client r1 usbl6X ε, α,

moreover r1
ε

=⇒ 6X and r1
α

=⇒ 6X so r1 4′bad α.β. 1. Note now that r1 6<∼clt α.β. 1; this being true

because α. 0 must r1 while α. 0 6must α.β. 1.
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Example 4.2.33. The predicate usbl6X enforces convergence only along unsuccessful traces; if it

required all the traces to converge, as the original ⇓ does, then Definition 4.2.30 would not be

complete. Let r denote α.(β. 1 ⊕ (1 + τ∞)), and observe that α.β. 1 <∼clt r; this is because if the

right-hand term diverges, then it reaches a successful state. We cannot prove α.β. 1 -clt r by using ⇓
in place of usbl6X, as α.β. 1 ⇓ a, but r 6⇓ α because (r after6X α) 6⇓ . The predicate usbl6X, on the

contrary, is insensible to the divergence of (r after6X α), so one can prove both α.β. 1 usbl6X α

and r usbl6X α.

Example 4.2.34. Let us revisit the clients r1, r2, in Example 4.2.19. The client β.δ. 0+β. 1 is not

usable; that is β.δ. 0+β. 1 6∈ Umust
clt because it cannot be satisfied by any server. Consequently r1 usbl6X

αγ does not hold, and therefore when checking whether r1 -clt r2 the set {δ} ∈ acc6X(r2, αγ) does

not have to be matched by r1.

Indeed it is now straightforward to check that r1 -clt r2; the only s ∈ Act∗ for which acc6X(r2, s)

is non-empty and r1 usbl6X s is the empty sequence ε.

The use of the predicate usbl6X s in Definition 4.2.30 is very strong. As an example consider again

the client r = α.(β. 0 + γ. 1) + α.(β. 1 + γ. 0). Note that r 6∈ Umust
clt as there is no server which can

satisfy it. Consequently r usbl6X s is false for every trace s, from which it follows that r -clt r
′ for

any other client r′.

We prove two properties of the predicate usbl6X that we need.

Lemma 4.2.35. Let p must r.

(i) If p
s

=⇒, then r usbl6X s.

(ii) If p
u

=⇒, then r usbl6X u.

Proof. First note that the hypothesis p must r ensures that r ∈ Umust
clt .

The proof of point (i) is by induction on the length of s. In the base case len(s) = 0, so s = ε and

we have to prove that r usbl6X ε; the following derivation suffices

r usbl6X ε
r ∈ Umust

clt [cconv-ax]

In the inductive case len(s) = n+ 1, so s = αs′ and we have to prove that r usbl6X αs
′. If r

α

6=⇒6X
then we can derive

r usbl6X αs
′ r ∈ Umust

clt , r
α

6=⇒6X [cconv-ax]

If r
α

=⇒6X then Definition 4.2.12 ensures that (r after 6X α) is non-empty. The hypothesis p
s

=⇒
implies that p

α
=⇒ p′ for some p′. The hypothesis p must r and the assumption r

α
=⇒ 6X im-

ply that p′ must
⊕

(r after6X α). Since s′ is shorter than s, the inductive hypothesis ensures

that
⊕

(r after6X α) usbl6X s
′. Now we can derive

...⊕
(r after6X α) usbl6X s

′

r usbl6X αs
′ r ∈ Umust

clt , r
α

=⇒6X [cconv-alpha]

We have proven point (i); now we explain why point (ii) is true. Suppose that p
u

=⇒; we have

to show that r usbl6X u. Definition 4.2.14 requires us to prove that for every n ∈ N , r usbl6X un.

Fix a number n ∈ N; the hypothesis p
u

=⇒ implies that p
un=⇒. Since un ∈ Act?, point (i) implies

that r usbl6X un. We have no assumption on n, hence we have proven that for every finite s prefix of

the string u, r usbl6X s.

Lemma 4.2.36. For every s ∈ Act?, if r usbl6X s and r
s

=⇒6Xr′, then r′ usbl6X ε.

Proof. The argument is by induction on the length of s.
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Base case (|s| = 0) In this case s = ε. By hypothesis r
ε

=⇒6Xr′, so the definition of =⇒6X implies

that is r
τ−→
∗
r′, and none of the states in the reduction sequence is successful (see Proposition 4.2.7).

We have to prove that r′ usbl6X ε. If r = r′ then this is trivially true, otherwise it suffices to show

that r′ ∈ Umust
clt , as this allows us to infer

r′ usbl6X ε
r′ ∈ Umust

clt [cconv-ax]

We prove that r′ ∈ Umust
clt . By hypothesis r usbl6X ε, so r ∈ Umust

clt . It follows that there exists a p

such that p must r. We prove that p must r′. Fix a maximal computation of r′ || p; since r
τ−→
∗
r′

the chosen computation is a suffix of a maximal computation of r || p. The computation of r || p is

client-successful: there exists a state r̂ || p̂ wherein r̂
X−→. As no state along the reductions r

τ−→
∗
r′

is successful, the state r̂ || p̂ must appear after r′ || p, that is

r || p =⇒ r′ || p =⇒ r̂ || p̂

It follows that the computation of r′ || p is client-successful. As this argument applies to all the

maximal computations of r′ || p, we have proven that p must r′. It follows that r′ ∈ Umust
clt .

Inductive case (|s| = n + 1) In this case s = αs′ for some s′ ∈ Act?. The hypothesis r
αs′
=⇒6Xr′

implies that r
α

=⇒6X, and so the hypothesis r usbl6X s now implies that
⊕

(r after 6X α) usbl6X s′.

As s′ is shorter than s we can use the inductive hypothesis:

if
⊕

(r after 6X α)
s′

=⇒6Xr′′ then r′′ usbl6X ε.

The hypothesis r
αs′
=⇒6Xr′ implies that

⊕
(r after 6X α)

s′
=⇒6Xr′, thus r′ usbl6X ε.

We are ready to prove the chief result of this section.

Theorem 4.2.37. [ Alternative characterisation <∼clt ]

For every r1, r2 ∈ CCSwτ , r1 <∼clt r2 if and only if r1 -clt r2.

Proof. We are required to prove two implications, namely

(i) if r1 <∼clt r2 then r1 -clt r2

(ii) if r1 -clt r2 then r1 <∼clt r2

The first implication is Proposition 4.2.31, so we discuss only the second implication.

Fix a pair r1 -clt r2, and let p must r1; we have to show that all the maximal computations of

the composition r2 || p are client-successful. Fix such a computation,

r2 || p = r02 || p0
τ−→ r12 || p1

τ−→ r32 || p3
τ−→ r42 || p4

τ−→ . . . (4.17)

The computation in (4.17) is finite or infinite. We discuss the two cases separately.

Suppose that the computation is finite, and unzip it; the resulting contributions of p and r2 are

r2
s

=⇒ rk2 , p
s

=⇒ pk

for some s ∈ Act?, and stable rk2 || pk. The hypothesis p must r1, p
s

=⇒, and Lemma 4.2.35

imply that r1 usbl6X s. The argument is by contradiction: suppose that no state in the contribution

of r2 reports success. It follows r2
s

=⇒ 6Xrk2 , and as rk2
τ

6−→, S(rk2 ) ∈ acc6X(r2, s); so point (1b)

of Definition 4.2.30 implies that A ∈ acc6X(r1, s), for some A such that A ∩ ua6X(r1, s) ⊆ S(rk2 ).

Definition 4.2.8 implies that there exists a r′1 such that S(r′1) = A and r1
s

=⇒6Xr′1
τ

6−→. Zip together
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the contributions along s of p and r1, the resulting computation reaches the state r′1 || pk; if this state

is terminal, then the computation is maximal and not client-successful, so p 6must r1. This contradicts

our assumption that p must r1.

Terminal state To prove the contradiction just described we have to show that rk1 || pk is stable;

both pk and rk1 are stable, so we show only that if pk
α−→ then α 6∈ S(r′1). To this end, we partition

the set S(r′1) according to the usability of the actions in it; let

• U = S(r′1) ∩ ua6X(r1, s) be the partition of usable actions

• N = S(r′1) \ ua6X(r1, s) be the partition of unusable actions.

We prove that if pk
α−→ then α 6∈ N and α 6∈ U . Suppose that pk

α−→.

• Since p
s

=⇒ pk, the assumption pk
α−→ implies that p

sα
=⇒. The assumption that p must r1

and Lemma 4.2.15 imply that r1 usbl6X sα. If r1
sα

=⇒6X, then Definition 4.2.16 implies that α ∈
ua6X(r1, s). If rk1

α−→ then α ∈ ua6X(r1, s), so α 6∈ N ; if rk1
α

6−→ then α 6∈ N . We have proven

that α 6∈ N

• The stability if pk || rk2 , the set inclusion A ∩ ua6X(r1, s) ⊆ S(r′2), and the equality S(r′1) = A

imply that α 6∈ U .

It follows that the state r′1 || pk is stable.

We have discussed the case of a finite maximal computation of r2 || rp. We turn our attention the

argument for the infinite computations.

Suppose that the computation in (4.17) is infinite, and unzip it. Either p and r2 perform infinite

traces, or they perform finite traces and then (at least) one of them diverge.

If we are in the first case, then

r2
u

=⇒, p
u

=⇒

The assumption p must r1, the fact that p
u

=⇒, and Lemma 4.2.35 imply that r1 usbl6X u. The proof

that there is a successful term in r2
u

=⇒ is by contradiction; for suppose that r2
u

=⇒6X; then point (2)

of Definition 4.2.30 implies that r1
u

=⇒ 6X. By zipping r1
u

=⇒ 6X with p
u

=⇒ we obtain a maximal

computation of r1 || p which is not client-successful; this implies that p 6must r1, which contradicts

our original assumption on p.

Suppose now that p and r2 engage in finite traces and then there is a divergence; by unzipping the

computation in (4.17) we get the contributions

r2
s

=⇒ rk2 , p
s

=⇒ pk

The assumption p must r1, the fact that p
s

=⇒, and Lemma 4.2.35 imply that r1 usbl6X s. Either pk

diverge or rk2 diverge, or both diverge.

Suppose that pk diverges. To prove that the computation in (4.17) is client-successful we reason by

contradiction: suppose that there is no successful state among r2, . . . , r
k
2 ; this implies that r2 performs

the trace s unsuccessfully,

r2
s

=⇒6X

Point (2) of Definition 4.2.30 ensures that r1
s

=⇒6Xr′1. We zip the contribution of p with the unsuc-

cessful transition of r1; as pk diverges the resulting computation is maximal,

p || r1 =⇒ pk || r′1 =⇒ pk || r′1 =⇒ . . . (4.18)
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All the derivatives of r1 in the maximal computation above are in r1
s

=⇒6Xr′1, so they are not successful;

it follows that the computation in Eq. (4.18) is not client-successful. This proves that p 6must r1. As

this contradicts our assumption on p, it follows that one of the states in r2, . . . , r
k
2 is successful.

Suppose that rk2 diverges. If there is a successful state in r2
s

=⇒ rk2 then the maximal compu-

tation we unzipped is client-successful. Suppose that there is no successful state in the contribution

of r2, that is r2
s

=⇒ 6Xrk2 . As r1 usbl6X s, point (1a) of Definition 4.2.30 implies that r2 usbl6X s.

Lemma 4.2.36 ensures that rk2 usbl6X ε, and the definition of usbl6X ensures that rk2 converges to

success (Definition 4.2.20), thus after rk2 there is a successful state in the contribution of rk2 .

In Section 4.1 and in this section we have studied the pre-orders that arise from the must relation

in a client/server environment. One pre-order <∼svr, states when a server satisfies more clients than

another server; the other pre-order, <∼clt, establishes when a client is satisfied by more servers than

another client. Theorem 4.1.21 and Theorem 4.2.37 are the chief results of our study; those theorems

provide proof methods for the server and the client pre-orders. They have have a similar form, with

Theorem 4.2.37 showing explicitly the role played by the notion of usable term. This does not appear

in Theorem 4.2.37 because every server is usable (i.e. satisfies some client), and so are the actions

performed by server.

In the next section we will carry out a work similar to what done so far, but in a peer to peer

setting rather than a client/server setting.

4.3 Peer pre-order

So far we have studied the pre-orders given by the relation must. Since the relation is not symmetric,

it gives rise to two natural pre-orders, one for the servers and one for clients. The investigation we

have carried out has shown that servers are compared assessing the amount of interaction that they

offer to the environment; while clients are compared assessing the interactions that they require to be

satisfied.

In this section we move from a client/server setting to a peer to peer setting. Roughly speaking,

this means that now our definitions (and our results) are no longer biased towards one side of the

compositions r || p.
Recall Definition 3.1.3.

Definition 4.3.1. [ must-peer-pre-order ]

We write p <∼p2p q if and only if p mustp2p r implies q mustp2p r for every process r. We refer to the

relation <∼p2p as must peer pre-order .

Notation Similarly what done for <∼p2p, also to reason on <∼clt we are free to use the general

summations
∑

and
⊕

. This is by justified to the fact that hp2p is commutative and associative with

respect to ⊕ and ⊕ , where hp2p is the equivalence relation generated in the obvious way from <∼p2p.

Since mustp2p is the symmetric version of must, one would expect that <∼p2p= <∼svr ∩ <∼clt. This

is not true.

Example 4.3.2. In this we prove that <∼p2p 6⊆ <∼svr ∩ <∼clt. It suffices to prove that <∼p2p 6⊆ <∼svr; to

this end we have to exhibit two processes p and q such that p <∼p2p q and p 6<∼svr q.

It is easy to see that α. 0 <∼p2p β. 0. This is true because α. 0 can never be satisfied, for it offers no

X at all. However, α. 0 6<∼svr β. 0, as the client α. 1 is satisfied by α. 0, whereas β. 0 6must α. 1.

The proof of the inclusion <∼svr ∩ <∼clt ⊆ <∼p2p is straightforward.

Lemma 4.3.3. For every p, q ∈ CCSwτ , if p (<∼svr ∩ <∼clt) q , then p <∼p2p q.
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Proof. Fix two processes p and q that satisfy the hypothesis. We have to prove that if p mustp2p r

then q mustp2p r, for every process r. We reason as follows,

p mustp2p r By assumption

p must r and r must p Thanks to Definition 3.1.3

q must r and r must q Thanks to the hypothesis p (<∼svr ∩ <∼clt) q

q mustp2p r Thanks to Definition 3.1.3

Example 4.3.4. It is necessary to use the intersection of <∼clt and <∼svr to prove the previous lemma.

The following inequalities prove this.

α. 1 <∼svr α. 0 α. 1 6<∼p2p α. 0

1 +α. 0 <∼clt 1 +β. 0 1 +α. 0 6<∼p2p 1 +β. 0

We explain why α. 1 6<∼p2p α. 0. This is true because the peers α. 1 and α. 0 are distinguished by

α. 1: α. 1 mustp2p α. 1, while α. 0 6mustp2p α. 1.

To prove that 1 +α. 0 6<∼p2p 1 +β. 0 we use the peer α. 1; it is easy to see that all the maximal

computations of 1 +α. 0 || α. 1 are successful. On the contrary, no maximal computation of 1 +β. 0 ||
α. 1 is successful, as the peers are stable, and α. 1 is not successful.

The inequalities proven in (4.3.4) imply that the relations Definition 4.1.17 and Definition 4.2.30

do not describe faithfully the peer pre-order. Moreover, Example 4.3.2 shows that neither does the

intersection -svr ∩ -clt provide a complete description of <∼p2p. Our aim in this section is therefore

to characterise <∼p2p; we want to understand under which conditions the behaviours of two processes p

and q are related by <∼p2p.

Since peers are at the same time clients and servers, we expect them to be compared both as

clients and as servers. In other words, we expect <∼p2p to enjoy some properties of <∼clt and some

properties of <∼svr. We refer to the first properties as client-properties and to the second properties

as server-properties.

The client-properties of the peer pre-order are due to the next result.

Proposition 4.3.5. The peer pre-order is contained in the client pre-order. Formally, <∼p2p ⊆ <∼clt.

Proof. Fix a pair of processes in the peer pre-order, r1 <∼p2p r2. We are required to prove that r1 <∼clt

r2. Take a process p such that p must r1; Lemma 4.1.23 implies that p + 1 must r1. Since p +

1
X−→ it follows that r1 must p + 1, so the assumption that p must r1 and Definition 3.1.3 imply

that r1 mustp2p p + 1. The hypothesis r1 <∼p2p r2 implies that r2 mustp2p p + 1; in turn this ensures

that p + 1 must r2. Lemma 4.1.23 lets us conclude that p must r2.

Proposition 4.3.5 ensures that if p <∼p2p q then q in the role of client is better than the client p. It

follows that Lemma 4.2.23, Lemma 4.2.28, Lemma 4.2.24, and Corollary 4.2.25 are true also for the

processes related by <∼p2p. Note though that in Example 4.3.4 we have seen that <∼clt 6⊆ <∼p2p, so

the peer pre-order is more demanding than <∼clt. In particular, <∼p2p compares the processes also as

servers.

The remaining work needed to characterise <∼p2p amounts in proving the server-properties of that

relation. In Example 4.3.2 we have highlighted that <∼p2p 6⊆ <∼svr, so the properties required by -svr

differ from the server-properties guaranteed by <∼p2p. The set inclusion <∼svr ∩ <∼clt ⊆ <∼p2p suggests

that the server-properties of <∼p2p are a relaxed version of the ones required by -svr. The intuitive

reason why <∼p2p 6⊆ <∼svr is the non trivial usability of peers, so we relax -svr taking the usability

into account.

We define an amended version of -svr and of the server convergence predicate ⇓ .
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Definition 4.3.6. [ Peer must convergence along trace ]

For every s ∈ Act? we write p ⇓p2p s if and only if p ⇓ s and p usbl6X s. We extend the predicate ⇓p2p
to infinite strings in the obvious way.

Definition 4.3.7. Let p -usvr q whenever

(1) for every s ∈ Act?, if p ⇓p2p s then

(a) q ⇓ s

(b) for every B ∈ acc(q, s) there exists some A ∈ acc(p, s) such that A ∩ ua6X(p, s) ⊆ B

(2) for every w ∈ Act? ∪Act∞, if p ⇓p2p w, and q
w

=⇒, then p
w

=⇒

Definition 4.3.7 takes the usability into account in two ways; first, if p -usvr q, then requirements of

-svr after any trace are enforced by -usvr only if p is usable after that trace; and second, only the

usable actions of p (after a trace) are used to compare ready sets.

In the next lemmas we prove that the relations -usvr is a complete description of <∼p2p (i.e.. <∼p2p

⊆ -usvr). Those lemmas (Lemma 4.3.8, Lemma 4.3.11 and Lemma 4.3.13) are indeed analogous to

Lemma 4.1.8, Lemma 4.1.9, and Lemma 4.1.15.

Structure of the proofs Intuitively, during unsuccessful execution of traces, peers behave at the

same time as clients and servers; whereas after reporting success they behave only as servers. The

oncoming proofs witness this intuition, and amounts to a mixture of the proofs we gave in Section 4.1

and Section 4.2. In particular, the peers that prove the completeness of the characterisation of <∼p2p

are build combining the clients and the servers used in the previous sections.

If p is a usable client, then the convergence of p implies the convergence of q.

Lemma 4.3.8. For every s ∈ Act?, and every p, q ∈ CCSwτ , if p <∼p2p q , p ⇓p2p s and q
s

=⇒ q′,

then q′ ⇓ .

Proof. Let s = α1α2 . . . αn. Let s′ be the longest prefix of s such that p
s′

=⇒6X. The proof is divided in

two cases, which depend on the existence of s′. In both cases the argument has the same structure;

we define a peer C such that

1) p mustp2p C, and

2) q mustp2p C lets us prove that if q
s

=⇒ q′ then q′ ⇓

s′ does not exist In this case one cannot infer p
ε

=⇒6X, thus p
X−→. Let the process C be defined

as in Lemma 4.1.8. The proof of that lemma shows that p must C. Since p
X−→ we also know

that C must p, and so Definition 3.1.3 implies that p mustp2p P . The hypothesis p <∼p2p implies

that q mustp2p P . We prove that if q
s

=⇒ q′ then q′ by reasoning as we did in Lemma 4.1.8.

s′ exists In this case p
s′

=⇒6X for some s′; let s′ = α1α2 . . . αm, with m ≤ n. For every 0 ≤ j ≤ m

the assumption p
s′

=⇒6X ensures that p
sj

=⇒6X. Lemma 4.2.15 ensures that for every 0 ≤ j ≤ m there

exists a r̂j such that

r̂j must
⊕

(p after 6X sj)

For every 0 ≤ k ≤ n+ 1 let

Ck
def
=



((r̂k + 1) ⊕ (r̂k + 1)) + αk+1.Pk+1 if 0 ≤ k ≤ m

(1 ⊕ 1) + αk+1.Ak+1 if m < k ≤ n

(r̂n + 1) ⊕ (r̂n + 1) if k = n+ 1, m = n

1 ⊕ 1 if k = n+ 1, m < n
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The process C that we are after is C0.

We prove that p mustp2p C0. Definition 3.1.3 requires us to prove that the maximal computations

of p || C0 are successful. Fix a maximal computation of p || C0,

p || C0 = p0 || C0
0

τ−→ p1 || C1
0

τ−→ p2 || C2
0

...−→ (4.19)

Note that the computation in (4.19) may be infinite.

Because of the construction of C0, the computation in (4.19) begins with moves due to a (possibly

empty) prefix of s, say sj for some 0 ≤ j ≤ n, that leads C0 to Cj0 (which is C0 itself is sj is empty).

Let us consider the longest sj that satisfies the condition just given. By unzipping the computation

at hand we obtain the contributions of p and C0, which begins with the ensuing prefixes,

p
sj

=⇒ p′, C0
sj

=⇒ Cj0

Our assumption on sj ensures that Cj0 and p′ cannot interact, because the only action to synchronise

is αj+1, and sjαj+1 cannot appear in the computation.

We explain why in the computation there is a successful derivative of C0. If in the prefix of

contribution of C0 there is an internal move, then that contribution contain a successful state. In

the opposite case, observe that the hypothesis p ⇓p2p s ensures that p ⇓ s, and so p′ ⇓ . This

fact, Cj0
τ−→ X−→, and the fact that the computation in (4.19) is maximal imply that the computation

contains a derivative of Cj0 which is successful.

Now we discuss why p reaches a successful state. If the contribution p
sj

=⇒ p′ contains a successful

state, then we have nothing more to discuss. In the opposite case, j ≤ m, and p′ ∈ (p after 6X sj).

Since j ≤ m, Cj0 = ((r̂j + 1)⊕ (r̂j + 1))) + αj+1.Ck+1, and by construction r̂j must
⊕

(p after 6X sj).

It follows that r̂j must p
′. Since p′ and Cj0 cannot interact, the computation in (4.19) after the state

p′ || Cj0 contains a maximal computation of p′ || r̂j . Since r̂j must p′ it follows that p′ reaches a

successful state.

We have proven that p mustp2p C0, so the hypothesis p <∼p2p q implies that q mustp2p C0. We still

have to prove that if q
s

=⇒ q′ then q′ ⇓ . This is true for otherwise there exist a maximal computation

of q || C0 which is not successful, namely

q || C0 =⇒ q′ || 1 ⊕ 1
τ−→ q′ || 1 ⊕ 1

τ−→ q′ || 1 ⊕ 1
τ−→ . . .

This computations contradicts q mustp2p C0.

Corollary 4.3.9. For every s ∈ Act?, and every p, q ∈ CCSwτ , if p <∼p2p q and p ⇓p2p s, then q ⇓ s.

Proof. Thanks to Lemma 4.1.7, to prove that q ⇓ s we have to show that

for every s′ prefix of s, if q
s′

=⇒ q′ then q′ ⇓ (4.20)

Let s′ be a prefix of s such that q
s′

=⇒ q′. The hypothesis p ⇓p2p s implies that p ⇓p2p s′, so Lemma 4.3.8

and q
s′

=⇒ q′ ensure that q′ ⇓ . Since the only assumption on s′ is that it is a prefix of s, we have

proven the implication in (4.20).

Lemma 4.3.10. If r ∈ Umust
clt , then there exists a p such that p must r, p

X
6−→ and p

τ

6−→.

Proof. We prove that if r ∈ Umust
clt then there exists a process p such that p

X
6−→. The assumption that

r ∈ Umust
clt implies that there exists a p such that p must r. If p

X
6−→ there is nothing more to prove. If

p
X−→, then p = p′ +

∑
i∈I 1 for some non-empty set I and p′ such that p′

X
6−→. Lemma 4.1.23 implies

that p′ hS p, so p′ must r.
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Now we prove that there exists a process p such that p must r and p
τ

6−→. The assumption that

r ∈ Umust
clt implies that there exists a p such that p must r. If p

τ

6−→, then there is nothing more to

prove. If p
τ−→, then either p diverges or p converges. If p diverges, then Lemma 3.1.6 implies that

r
X−→. It follows that 0 must r; as 0

τ

6−→, the process 0 suit our aims.

If p converges then there exists a stable p′ such that all the maximal computation of r || p′ are

suffix of the computation

r || p =⇒ r || p′

Since p must r, it follows that all the maximal computations of r || p′ are client-successful, and so

p′ must r.

Lemma 4.3.11. Let p <∼p2p q. For every s ∈ Act?, if p ⇓p2p s and q
s

=⇒, then p
s

=⇒.

Proof. Under the hypothesis, we have to exhibit a p′ such that p
s

=⇒ p′.

Let n be the length of s (i.e. n = len(s)), s = α1α2 . . . αn, and let s′ be the longest prefix of s such

that p
s′

=⇒6X. The argument depends on the existence of s′, and has to following structure: we define

a process C such that

1. q 6mustp2p C

2. C must p

3. p 6must C implies that acc(p, s) 6= ∅

Either s′ exists or it does not exist.

s′ does not exist In this case we cannot infer p
ε

=⇒6X, thus p
X−→. We define the process C as we

did in Corollary 4.1.14. The argument in that lemma implies that q 6must C, and so Definition 3.1.3

implies that q 6mustp2p C. The hypothesis p <∼p2p q ensures that p 6mustp2p C. Since p
X−→, it is clear

that C must p, and therefore p 6mustp2p C implies that p 6must C. The hypothesis p ⇓p2p s implies

that p ⇓ s, and so to prove that p
s

=⇒ p′ for some process p′, we can reason as in Corollary 4.1.14.

s′ exists Let s′ = α0α1 . . . αm, with m ≤ n. For every 0 ≤ k ≤ m, the assumption p
s

=⇒ 6X
ensures that p

sk=⇒6X, and so Lemma 4.2.15 and Lemma 4.3.10 implies that there exists a r̂k such that

r̂k must
⊕

(p after 6X sk), r̂k
τ

6−→ and r̂k
X
6−→. For every 0 ≤ i ≤ n+ 1, let

Ci
def
=



((r̂i + 1) ⊕ (r̂i + 1)) + αi.Ci+1 if 0 ≤ i ≤ m

(1 ⊕ 1) + αi+1.Ci+1 if m < i < n

r̂n if i = n+ 1, m = n

0 if i = n+ 1, m < n

The C we are after is C0. Note that by construction Cn is either 0 or r̂n, so Cn
τ

6−→ and Cn
X
6−→.

1. We prove that q 6mustp2p C0. By hypothesis acc(q, s) 6= ∅, so there exists a q′ such that q
s

=⇒ q′.

If q′ diverges then we infer the ensuing maximal computation

q || C0 =⇒ q′ || Cn
τ−→ q′1 || Cn

τ−→ q′2 || Cn
τ−→ . . .

The computation above is not successful, because no Ci is successful. If q′ converges, then there

exists a stable q′′ such that we can infer the following maximal computation

q || C0 =⇒ q′′ || Cn
τ

6−→
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The finite computation above is not successful. What we have argued so far proves that q 6mustp2p

C0.

2. We prove that C0 must p. We are required to show that all the maximal computations of p || C0

are client-successful. Fix a maximal computation of p || C0 and unzip it; the contributions that

we obtain begin with the following prefixes of s,

p
sj

=⇒ p′, C0
sj

=⇒ Cj

where we let 0 ≤ j ≤ m be greatest j such that a state Cj appears in the computation. If

the action sequence p
sj

=⇒ p′ contains a successful state, then the whole computation is client-

successful. In the opposite case, p
sj

=⇒6Xp′, and so j ≤ m. It follows that Cj contains a term r̂j

such that r̂j must
⊕

(p after sj); this implies that r̂j must p
′. Our assumption on sj and Cj

ensure that the remaining part of the computation we unzipped contain a maximal computation

of p′ || r̂j ; it follows that the maximal computation at hand is client-successful.

We have explained why all the maximal computations of p || C0 are client-successful, thus

C0 must p.

Since q 6mustp2p C0 the hypothesis p <∼p2p q implies that p 6mustp2p C0. As C0 must p, it must be

the case that p 6must C0. By reasoning as we did in Lemma 4.1.9 we prove that p
s

=⇒ p′ for some

p′.

Corollary 4.3.12. Let p <∼p2p q. For every s ∈ Act?, if p ⇓p2p s and acc(q, s) 6= ∅ then acc(p, s) 6= ∅.

Proof. The hypothesis acc(q, s) 6= ∅ implies that q
s

=⇒, Lemma 4.3.11 implies that p
s

=⇒ p′1 for some

p′1. The hypothesis that p ⇓p2p s implies p ⇓ s. In turn this ensures that p′ ⇓ , and so there exists a

p′′ such that p
s

=⇒ p′′
τ

6−→. It follows that S(p′′) ∈ acc(p, s).

The last lemma that we need to prove establishes how the ready sets of peers are related by <∼p2p.

This lemma is analogous to Lemma 4.1.15, but the matching of ready sets is relaxed by focusing on

usable actions.

Lemma 4.3.13. Let p <∼p2p q. For every s ∈ Act?, if p ⇓p2p s, then for every B ∈ acc(q, s) there

exists a set A such that A ∈ acc(p, s) and A ∩ ua6X(p, s) ⊆ B.

Proof. Fix a string s such that B ∈ acc(q, s) for some set B, that p⇓clts, p ⇓ s, and let s = β1 . . . βn.

The hypothesis of this lemma let us use Corollary 4.3.12, which ensures that the set acc(p, s) is

non-empty: acc(p, s) = {Ai | i ∈ I } for some non-empty set I. The proof is by contradiction; we

suppose that

for everyi ∈ I there exists an action αi ∈ Ai ∩ ua6X(p, s) such that αi 6∈ B (4.21)

Using this assumption we contradicts the hypothesis that p <∼p2p q; that is, we define a peer C that

can distinguish p and q, in the sense that

a) C 6mustp2p q

b) C mustp2p p

The argument depends on p being successful or not.

If p
X−→, then we define the peer C as we did in Lemma 4.1.15; the same reasoning we used in that

lemma implies that C 6must q and that C must p. The former fact implies C 6mustp2p q. The latter

fact and p
X−→ imply that C mustp2p p.
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If p
X
6−→, then there exists a longest s′ such that p

s′
=⇒ 6X and that s′ is a prefix of s. Let

s′ = β1β2 . . . βm, with m ≤ n. We partition the set I in two subsets U and S by letting U = { i ∈ I |
p
sαi=⇒6X and p usbl sαi } and S = { i ∈ I | p

sαi
6=⇒6X }.

For every u ∈ U , p usbl sαu, p
sαu=⇒6X, Lemma 4.2.15, and Lemma 4.3.10 ensure that there exists a

r̂u such that

• r̂u must
⊕

(p after 6X sαu)

• r̂u
τ

6−→

For every 0 ≤ j ≤ m, the assumption p
s

=⇒6X, the hypothesis p⇓clts and Lemma 4.2.15 ensure that

there exists a rj such that rj must
⊕

(p after 6X sj). For every 0 ≤ k ≤ n, let

Ck =


((rk + 1) ⊕ (rk + 1)) + βk+1.Ck+1 if 0 ≤ k ≤ m

(1 ⊕ 1) + βk+1.Ck+1 if m < k < n

(
∑
u∈U αu.(r̂u + 1)) + (

∑
j∈S αj . 1) if k = n

Note that Ck ⇓ for every 0 ≤ k ≤ n, and that Cn
τ

6−→ and Cn
X
6−→.

a) We prove that q 6mustp2p C0; it is enough to exhibit a maximal computation of C0 || q that is

not client-successful. Definition 4.1.11 implies that there exists a q
s

=⇒ q′ and S(q′) = B. If q′

diverges, we there exists the maximal computation

C0 || q =⇒ Cn || q′
τ−→ Cn || q′1

τ−→ Cn || q′2
τ−→ . . .

The computation above is not client-successful. If q′ converges, then there exists a stable q′′ such

that S(q′′) ⊆ B, and q′ =⇒ q′′; hence there exists the maximal computation C0 || q =⇒ Cn || q′′
τ

6−→
where Cn || q′′ is stable because both processes are, and by construction the state q′ cannot interact

with Cn. The computation is not client-successful.

b) We prove that p mustp2p C0; Definition 3.1.3 requires us to prove that every maximal computation

of p || C0 is successful.

Fix a maximal computation of p || C0, and unzip it. The contributions that we obtain begins with

a (possibly empty) prefix of s,

C0
sj

=⇒ Cj , p
sj

=⇒ p′

We can assume sj to be the longest prefix of s such that in the computation at hand C0
sj

=⇒ Cj .

The hypothesis that p ⇓p2p s implies that p′ ⇓ .

We explain why C0 and p reaches a successful state.

• If j = n then Ci
τ

6−→. Since p′ ⇓ , Cn
τ

6−→ implies that in the computation we unzipped there

is p′′ such that p′ =⇒ p′′
τ

6−→. Definition 4.1.11 and the construction of Cn imply that Cn

and p′′ can interact via some action αi. As the unzipped computation is maximal, and both

Cn and p′′ are stable, the computation contains the state r || p̂ resulting from the interaction.

By construction r
X−→.

Now we explain why p reaches a successful state. The argument depends on the action αi. If

i ∈ S then p
sαi
6=⇒6X, thus there is a successful state in the action sequence p

sαi=⇒ p̂. If i ∈ U ,

then r = r̂u + 1, so the remaining part of the unzipped computation is a maximal computation

of p̂ || r̂u. The construction of r̂u implies in the computation p̂ reaches a successful state, and

so does p.
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A0

r̂0 + 1 +α0.A1

0

A1

r̂1 + 1 +α1.A2

0

A2

1 +α2.A3

0

A3

τ

α0

X

α0
τ

α1

X

α1
τ

α2

α2

X

Figure 4.11: Peer used to prove Lemma 4.3.13, with m = 1 and n = 3

• If j ≤ n, then Cj = (r′ ⊕ r′) + βi+j .Ci+j and Cj ⇓ . Since p′ ⇓ and p′ cannot interact on

βi+j , the computation contains a state p′′ || Cj such that p′′ is stable and p′ =⇒ p′′. As the

computation is maximal, the facts that p′′
τ

6−→ and that p′′ and Cj cannot interact, imply

that the computation contains a state reached by Cj || p′′ thanks to an internal move of Cj .

This state is r′ + βi+j .Ci+j || p′′. The construction of r′ ensures that r′
X−→.

Now let us see why p reaches a successful state. If the action sequence p
sj

=⇒ p′′ contains

a successful state, then we have nothing more to discuss. Let us suppose that p
sj

=⇒ 6Xp′′.
It follows that r′ = rj + 1, and that rj must

⊕
(p after sj). In turn this ensures that

rj must p′′. The remaining part of the unzipped computation must be a computation of

rj || p′′, so rj must p′′ implies that p′′ reaches a successful state. It follows that p reaches a

successful state in the computation that we unzipped.

We have proven that the maximal computations of p || C0 are successful, so p mustp2p C0.

We have proven that p mustp2p C0 and that q 6mustp2p C0; this contradicts the hypothesis p <∼p2p q,

and so the assumption is (4.21). This proves the lemma.

Lemma 4.3.14. Let p <∼p2p q. For every u ∈ Act∞, if p ⇓p2p u and q
u

=⇒, then p
u

=⇒.

Proof. If p
X−→, then the argument is the same we used in Lemma 4.1.16. If p

X
6−→, then we have other

two cases. If p
u

=⇒6X, then p
u

=⇒. Suppose that p
u

6=⇒6X, then there exists the greatest m ∈ N such

that p
um=⇒6X. The hypothesis p ⇓p2p u ensures that p usbl6X u, so for every 0 ≤ i ≤ m there exists a

process ri such that ri must
⊕

(p after ui). For every n ∈ N let

An
def
=

((rn + 1) ⊕ (rn + 1)) + αn.An+1 if i ≤ m

(1 ⊕ 1) + αn.An+1 otherwise

The proof now proceeds as the proof of Lemma 4.1.16, and relies on the fact that the hypothesis

p ⇓p2p u implies that p ⇓ u.

The previous lemmas state that peers related by <∼p2p are compared as servers, only if they are

usable as clients. Indeed, this is the intuition behind Definition 4.3.7.

The peer pre-order turns out to be a nesting of the server pre-order inside the client pre-order, in

the following sense.

Definition 4.3.15. [ Semantic peer-preorder ]

Let p -p2p q if and only if p -clt q and p -usvr q.

Proposition 4.3.16. [ Completeness ]

If p <∼p2p q then p -p2p q.
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Proof. We have to prove that <∼p2p ⊆ -clt and that <∼p2p ⊆ -usvr. The first inclusion follows

from Proposition 4.3.5 and Theorem 4.2.37. The second set inclusion follows from Proposition 4.3.5,

Corollary 4.3.9, Lemma 4.3.13, and Lemma 4.3.14.

Theorem 4.3.17. [ Alternative characterisation <∼p2p ]

For every p, q ∈ CCSwτ , p <∼p2p q if and only if p -p2p q.

Proof. We have to prove two implications:

• if p <∼p2p q then p -p2p q

• if p -p2p q then p <∼p2p q

In view of Proposition 4.3.16, we prove only the second implication. Fix two processes p and q

such that p -p2p q; we are required to show that p <∼p2p q; that is, if p mustp2p r then q mustp2p r for

every process r. Fix a process r such that p mustp2p r; we explain why q mustp2p r. Definition 3.1.3

requires us to prove that all the maximal computations of q || r are successful.

We prove a preliminary result that will ease our task. The definition of <∼p2p ensures that p -clt q,

so Theorem 4.2.37 implies that p <∼clt q. Since p mustp2p r, it follows that r must p. The inequality

p <∼clt q implies that r must q. It follows that all the maximal computations of q || r are client-

successful.

It follows that we have to prove only that the maximal computations of q || r contain a state q′ || r′

wherein r′
X−→.

Fix a maximal computation of q || r,

q || r = q0 || r0
τ−→ q1 || r1

τ−→ q2 || r2
τ−→ . . . (4.22)

The computation is either finite or it is infinite.

If it is finite, then by unzipping the computation we obtain

q
s

=⇒ qk, r
s

=⇒ rk

where qk || rk
τ

6−→. Since r
s

=⇒ rk, and p mustp2p r implies r must p, Lemma 4.2.35 (point (i))

guarantees that p usbl6X s. We are required to exhibit a successful state among the derivatives of r.

Since q
s

=⇒ qk, S(qk) ∈ acc(q, s). As p usbl6X s, point (1b) of Definition 4.3.7 implies that either

p 6⇓ s, or there exists a set A ∈ acc(p, s) such that A∩ ua6X(p, s) ⊆ S(qk). In the first case p performs

a prefix of s, say s′, and reaches a state p′ that diverges: p
s′

=⇒ p′ =⇒ . . .. By zipping this action

sequence of p with a prefix of the action sequence r
s

=⇒ rk we obtain a maximal computation of p || r
in which p diverges. As p mustp2p r, the computation of p || r contains a successful derivative of

r; this derivative appears also in (4.22), so the maximal computation in (4.22) contains a successful

derivative of r.

In the second case, there exists a stable p′ such that S(p′) = A and p
s

=⇒ p′. Consider the

computation

p || r =⇒ p′ || rk

If the state p′ || rk is terminal (i.e. stable), then the computation is maximal, and so p mustp2p r

ensures that one of the derivatives of r is successful. This implies that also the computation in (4.22)

contains a successful derivative of r.

We have to prove that p′ || rk
τ

6−→. The argument is the same that we used in paragraph Terminal

state of the proof of Theorem 4.2.37.

We have proven that if the computation in (4.22) is finite, then r reaches a successful state. Now

we prove that also the infinite computations enjoy this property. If the computation at hand is infinite,
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then there are three subcases to discuss: q and r engage in infinite traces, or q diverges along the

computation, or r diverges.

Suppose that by unzipping the computation in (4.22) we obtain the infinite contributions

q
u

=⇒ . . . , r
u

=⇒ . . . (4.23)

We have to show that one of the derivatives of r is successful.

As r
u

=⇒ and p mustp2p r, point (ii) of Lemma 4.2.35 implies that p usbl6X u. Either p 6⇓ u or p ⇓ u.

In the first case p performs some prefix s of u and reaches a state p′ that diverges. Let us zip the

action sequence p
s

=⇒ p′ with r
s

=⇒ r′; we obtain an infinite computation that reaches a state p′ || r′

and then let p′ diverge. Since p mustp2p r the new computation must contain a successful derivative

of r. This derivative appears also in the computation in (peer-max-comp).

In the second case, p ⇓p2p u. Since q
u

=⇒, point (2) of Definition 4.3.7 implies that p
u

=⇒. By

zipping this infinite trace of p with r
u

=⇒ we obtain a maximal computation of p || r. The assumption

p mustp2p r ensures that r reaches a successful state.

We have shown that if the computation in (4.22) is due to two infinite traces, then r reaches a

successful state.

We discuss the case of divergence of q or r. Suppose that the visible traces performed by q and r

be finite:

q
s

=⇒ qk, r
s

=⇒ rk (4.24)

The fact that r
s

=⇒ rk implies p usbl6X s. Either qk diverges, or rk diverges, or both states diverge.

qk diverges We have to show a successful state among r, . . . , rk. As qk diverges, q 6⇓ s. Point (1a)

implies that p 6⇓p2p s. Since p usbl6X s, the fact that p 6⇓p2p s implies that p 6⇓ s. This implies that

there exists a prefix s′ of s such that p
s′

=⇒ p′ and p′ diverges.

Zip this action sequence of p with the suitable prefix of the actions sequence of r, and let p′ diverge.

As p mustp2p r it follows that there is a successful state in the contribution of r; this state is reached

by r also in the computation we unzipped.

rk diverges We have to show a successful state among r, . . . , rk. Point (2) of Definition 4.3.7, q
s

=⇒,

and p usbl6X s imply that either p 6⇓ s or p
s

=⇒. In the first case p
s′

=⇒ p′ for some prefix s′ of s and

p′ diverges. By zipping this action sequence of p a prefix of the actions sequence of r, we obtain a

maximal computation of p || r. The assumption p mustp2p r implies p must r, so the new computation

contains a state in which the derivative of r is successful. The successful derivative of r appears also

in Eq. (4.24).

In the second case, p
s

=⇒. By zipping this action sequence of p with the actions sequence of r in

Eq. (4.24), we obtain a maximal computation of p || r in which the client side diverges. It follows that

one of the derivatives of r in it is successful. As the derivatives of r in the new computation appear

also in (4.24), the computation of q || r that we unzipped contains a successful derivative of r.

4.3.1 Relations between notions and pre-orders

Throughout the last three sections of this chapter we have studied the pre-orders given by the must

relation. Our study has been driven by the need for alternative characterisations for these pre-orders,

and we have shown the equalities

<∼svr = -svr, <∼clt = -clt, <∼p2p = -p2p

where the relations -svr,-clt, and -p2p are defined using the following behavioural notions:



4.3. Peer pre-order 93

Server: =⇒ after ⇓ acc – –

Client: =⇒6X after 6X ⇓X acc6X ua6X usbl6X

Peer: – – ⇓p2p – – ⇓p2p

Figure 4.12: Predicates to characterise the server, the client, and the peer pre-orders.

<∼svr ∩ <∼clt ⊂ <∼p2p ⊂ <∼clt

Figure 4.13: Relations among the must pre-orders

• (unsuccessful) traces

• (unsuccessful) acceptance sets

• convergence (to success)

• usability

Figure 4.12 contains the symbols that we have used to formalise the notions listed above. Roughly

speaking, for each server-side predicate, we had to define an analogous client-side predicate, by re-

stricting our attention to the unsuccessful traces/actions; and we had to make explicit the role of

usable clients/actions. Note that if Definition 4.1.17 does not mention explicitly the usability of the

servers or their actions, it is because every server is usable: for every process p there exists a client r

such that p must r; the client 1 is an example. The characterisation of the peer pre-order relies an

the predicates used to reason on <∼svr and <∼clt; the only feature typical of <∼p2p is the combination of

⇓ and usbl6X that is denoted by ⇓p2p .

In Figure 4.13 we have depicted how the must pre-orders are related with each other. The set

inclusions are proven respectively in Lemma 4.3.3 and Proposition 4.3.5. The set inclusions are strict

because of the following facts

<∼p2p 6⊆ <∼svr,
<∼clt 6⊆ <∼p2p

which are proven by the ensuing inequalities,

α. 0 6<∼svr β. 0 α. 0 <∼p2p β. 0

α.(1 +β. 0) 6<∼p2p α.(1 + γ. 0) α.(1 +β. 0) <∼clt α.(1 + γ. 0)

Syntax free proofs of completeness To prove the completeness of the alternative pre-orders

-svr, -clt and -p2p, we defined ad-hoc processes A’s, C’s, and so forth. In general, these processes

allow us to distinguish, in some sense, the other two processes that we are comparing, say p1 and p2, or

r1 and r2. Although we used the syntax of CCSwτ to define the processes A’s and C’s, the arguments

do not depend on the syntax. The arguments for the server, client and peer pre-order, can be used in

any LTS that contains the graphs depicted respectively in Figure 4.3, Figure 4.10, and Figure 4.11.

In this chapter we have investigated the three pre-orders that are naturally given the must testing

relation: 〈<∼svr,
<∼clt,

<∼p2p 〉. In particular we have unravelled the behavioural properties that two

processes have to enjoy in order to be related by one of the pre-orders. While Theorem 4.2.37 and

Theorem 4.3.17 are novel, Theorem 4.1.21 is very similar to the characterisation of the standard must

pre-order [De Nicola and Hennessy, 1984, see Theorem 6.4.5].
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4.4 Related Work

We compare our results with the relevant literature.

The behavioural characterisation of our must server pre-order is the same of the well-known must

pre-order <∼must ; to see why it is enough to compare Definition 4.1.17 with [De Nicola and Hennessy,

1984, Definition 6.4.1]. Nevertheless, the axioms for <∼must on finite terms that are proposed by [De

Nicola and Hennessy, 1984, Table 1] and are not complete for <∼svr. This is a consequence of having

defined <∼svr on terms that can perform X; indeed, with the original axioms we cannot prove 1 = 0,

which is true, in the sense that 1 hsvr 0.

To the best of our knowledge, the client and the peer pre-orders based on the must testing are

original.

As for the client pre-order, the standard axiomatisation of the must pre-order is not sound with

respect to it (on the general LTS of processes). Consider the axiom at the bottom of [Hennessy, 1985,

Figure 3.6],

p ≤ p ⊕ p (w)

This axiom lets us prove that 1 ≤ 1 ⊕ 1; in Example 4.2.4, though, we have shown that 1 6<∼clt 1 ⊕ 1.

The usability of clients and actions play a crucial role in the behavioural characterisation of <∼clt.

Condition (1b) of Definition 4.2.30 ensures that if r1 <∼clt r2 then the non-usable actions of r1 need

not to be performed by r2. This fact was already pointed out in [Laneve and Padovani, 2007, Section

4], but in the setting of compliance.

Fair theories Refinements for peers in the context of compliance and behavioural contracts for web-

services have been investigated; one of these theories is presented in [Bravetti and Zavattaro, 2009].

Regardless of the differences between our framework and the framework of that paper, a comparison

is in order. First we swiftly introduce the formalism used in [Bravetti and Zavattaro, 2009], and then

compare our peer pre-order must with their refinement.

In the rest of this section let us denote output actions as α, β and input actions without any

decoration, α, β, . . ..

Bravetti and Zavattaro use an LTS denoted by contracts, which are a sublanguage of recursive

CCS, and are output persistent. A contract C is output persistent if given C
w

=⇒ C ′ with C ′
α−→ then:

C ′
X
6−→ and if C ′

α−→ p′′ with α 6= α then also C ′′
α−→. For instance the term α. 1 +β. 1 is a process

in our theory, that is ruled out in their setting, because it is not output persistent. Systems can have

any finite number of parties, as general compositions of contracts are allowed

[C1] || [C2] || . . . || [Cn]

The notion of successful state differs from our presentation: for a composition to be successful (i.e.

perform X), all its components have to be successful (i.e. be able of performing X) at the same time.

Bravetti and Zavattaro defined the satisfaction following the fair testing of Rensink and Vogler:

a system P is a correct contract composition, denoted P ↓ if for every P ′ such that P
τ−→
∗
P ′ there

exists a P ′′ such that P ′
τ−→
∗
P ′′

X−→.

Definition 12 of that paper introduces the subcontract relations �O on output persistent contracts,

where the parameter O is a the set of output actions that the compositions used as tests can show.

The comparison between the peer pre-order <∼p2p and the pre-orders �O is complicated by two

aspects,

• if C ′ �O C then it is safe to use C ′ in place of C; in view of this, we will compare our peer

pre-order with the inverse of the pre-orders �O;
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• a priori, it is not clear how to choose the parameter O. To solve this complication we treat �O
as a function of O, and briefly discuss its monotonicity.

The function �O is not monotonically increasing, as ∅ ⊆ {α}, while

α. 0 �∅ α. 1

α. 0 6�{α} α. 1

On the other hand �O is monotonically decreasing in O.

Proposition 4.4.1. If O ⊆ O′ then �O′ ⊆ �O.

This proposition gives us two criteria to reason on all the pre-orders �O:

• for every O the pairs in �N are in �O, where N is the set of output actions

• for every O,O′, if O ⊆ O′, then the pairs not in �O are not in �O′ .

As for the restriction on output persistent contracts, in the oncoming examples we will use only terms

that enjoy that property; thus our arguments are sound.

For every action α, the following inequalities are true

α. 1 <∼p2p 1 +α. 0

α. 1 6�−1{α} 1 +α. 0

where the peer used to prove the second fact is α. 1.

Also the ensuing facts are true,

1 �−1N τ. 1 + τ. 1

1 6<∼p2p 1 ⊕ 1

Our arguments show that the pre-order <∼p2p and the pre-orders �−1O are not comparable, except

when O is trivial:

Proposition 4.4.2. For every set of output actions O, the following statements are true,

• if O is non-empty, then <∼p2p 6⊆ �
−1
O

• �−1O 6⊆ <∼p2p
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Chapter 5

Compliance pre-orders

In Chapter 4 we have studied the pre-orders given by the must relation, if we use it to establish

when a process q satisfies more clients, servers or peers than a process p. The definition of must

(Definition 3.1.1), implies that in the must setting, what we mean by “clients” are really tests, so the

relation <∼clt tells us when a test r2 is passed by more processes than a test t1. It makes sense to use

the theory we unravelled in Chapter 4, only if the notion of client coincides with that of test.

Example 5.0.3. Let us define two processes

Plane
def
= !flying.Plane

publican
def
= !stout.?cash.!chat.publican

The term Plane describes the simplest interaction that we expect a flying plane to perform: communi-

cate (to some control tower) that it is indeed flying. Notwithstanding how simple the communication

described by Plane is, it is useful. For if such a communication is disrupted and the plane is not

landed, then there exists some problem, either in the plane or in the control towers. Note that a priori

it is not know how long a plane may fly, thus the communication can go on forever.

The second process, publican, represents the interaction that a bar tender may carry out with a

typical customer: pour (output) a pint, receive (input) some money, and then do a bit of chat.

In the must theory, one can prove that publican is a better client that Plane, and vice-versa,

Plane <∼clt publican, publican <∼clt Plane

This proves that according to the must theory there is no difference between the client Plane and

the client publican, Plane hclt publican. Indeed, it is true that there is no difference between Plane

and publican, for in the must setting they are both tests, and neither of them can be satisfied.

The previous examples shows that the pre-orders given by must, in particular <∼clt, should not

be used if we think of clients not as tests, but as software whose requests have to be answered by

servers. For instance, if we reason in the setting of web-services, one would like the client Plane to

be distinguished from publican. This can be achieved by using the pre-orders that arise from the

compliance relation (Definition 3.2.1).

In this chapter we investigate the compliance pre-orders. As in Chapter 4, we define three pre-

orders,

vsvr, vclt, vp2p (5.1)

and we study under which conditions two processes are related by each one of them. In other words,

we show the alternative characterisations of the pre-orders in (5.1),

�svr, �clt, �p2p (5.2)

97
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The work we carry out to define the relations in (5.1) is necessary, for the compliance pre-orders are

not comparable with the must pre-orders. The intuitions and the notions that we have put forth in

Chapter 4, turn out to be useful also in reasoning on the compliance relation, and let us define the

pre-orders in (5.1).

After having studied the server and the client compliance pre-orders, we compare them with their

must counterparts. The must pre-orders are not comparable with the compliance pre-orders. One

natural question then is to check whether in sub-LTSs of 〈CCSwτ , Actτ X, −→〉, there is some relation

between the must and the compliance pre-orders.

In the case of the server pre-orders, this task is eased by a property of their alternative charac-

terisations. The alternative relations given by Definition 4.1.17 and Definition 5.1.7 characterise the

server pre-orders; these characterisation remain sound and complete also in certain sub-LTSs of the

general one 〈CCSwτ , Actτ X, −→〉. It is thus relatively easy to compare the server pre-orders while

restricting the LTS at hand.

In the case of the client pre-orders, on the contrary, the alternative characterisations are tightly

related to the LTS at hand. In general, when we change the LTS we should also change the alternative

characterisations of <∼clt and vclt. It follows that the alternative relations -clt and �clt do give us

a straightforward way to compare the client pre-orders, if we restrict the LTS at hand.

Structure of the chapter. In this chapter we study first the server pre-order (in Section 5.1),

for it is the simplest of the relations in (5.1). The characterisation of vsvr is not too different from

the characterisation of -svr; in fact, in certain LTSs the two relations coincide (see Section 5.1.1).

In Section 5.2 we study the client pre-order, vclt. Its characterisation is reminiscent of the of vsvr,

although it requires us to use the notion of usability, and to adjust the definition of ready set. As we

anticipated, the characterisations of vclt and <∼clt do not aid us when it comes to comparing these

two pre-orders on sub-LTSs of 〈CCSwτ , Actτ X, −→〉. We leave this as an open problem, that we

partly address in the following chapters.

In Section 5.3 we study the peer pre-order vp2p. In view of the structure of Definition 4.3.15,

which is a nesting of -svr into -clt, we directly define the alternative characterisation of vp2p, and

prove it sound and complete.

5.1 Server pre-order

In this section we study when, according to the compliance relation, a server p2 is better than a

server p1. We define a compliance-based pre-order for servers, vsvr, and we expose its characteristic

properties.

Definition 5.1.1. [ Compliance server pre-order ]

We write p1 vsvr p2 if and only if r a p1 implies r a p2 for every process r. We refer to the relation

vsvr as the compliance server pre-order.

Notation As usual, the operations + and ⊕ are commutative and associative with respect to =svr,

so we are allows to use the notations
∑

and
⊕

.

We already know a server pre-order, namely the must server pre-order (Definition 4.1.1). The

alternative characterisation of <∼svr, that is -svr, provides a touchstone to devise the characterisation

of vsvr. Indeed, we have to provide a characterisation of vsvr, because the pre-orders <∼svr and vsvr

are not comparable.

In the next two examples we expose the differences between <∼svr and vsvr.

Example 5.1.2. [ Convergence of servers ]

In this example we prove that <∼svr 6⊆ vsvr. Let p1 = τ∞ + α.β. 0 and p2 = α.(τ∞ + β. 0). The LTS
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p1 β. 0 0

τ

α β

p2 τ∞ + β. 0 0α β

τ

Figure 5.1: Processes used in Example 5.1.2; p1 and p2 are related by <∼svr, but not by vsvr.

of these processes is depicted in Figure 5.1

We prove p1 <∼svr p2. Since p1 6⇓ , for every r ∈ CCSwτ , if p1 must r then r
X−→; it follows

that if p1 must r then p2 must r. However p1 6vsvr p2. To prove this we have to exhibit a client

r such that r a p1 and r 6a p2. Let r = τ∞ + α. 1. To prove that r a p1 Definition 3.2.1 requires

us to show a co-inductive compliance that contains the pair (r, p1). The following relation will do,

R= {(r, p1), (1, β. 0)}. It is routine work to check that R ⊆ Fa(R). Will still have to prove that

r 6a p2. Consider the ensuing computation

r || p1 =⇒ 1 || τ∞ + β. 0

Since 1 ⇓ and τ∞ + β. 0 6⇓ , Definition 3.2.1 ensures that 1 6a τ∞ + β. 0. It follows that r 6a p2.

Example 5.1.2 exhibits a first difference between <∼svr and vsvr. The mismatch is of course due

to the definitions of must and a.

Let us discuss must. If at any point in a computation a server p diverges, then in that point

the clients that p passes have to be successful (Lemma 3.1.6). This means that convergence has to

be accounted for along the execution of every trace. The requirement of checking the converges of a

server along traces is expressed by the predicate ⇓ in Definition 4.1.17.

The relation a imposes a weaker requirement; for for a the convergence of servers matters only as

long as clients converge. So if r a p and r converges only after a trace s, then p is required to converge

only after s; the converge of p along s does not matter.

In Example 5.1.2 the server p1 diverges along the trace αβ, because p1 6⇓ , but not after, for

p
α−→ β. 0

β−→ 0, and 0 ⇓ . The divergence along αβ implies that p 6⇓ s for every s, so in the must

setting p1 can be replaced by any server. This is not true in the compliance setting, because if r a p1,

then the requests of r have to be satisfied by p1 also after α and after αβ.

The second difference between <∼svr and vsvr is how infinite traces as treated.

Example 5.1.3. [ Infinite traces ]

In this example we prove that the processes in Figure 4.4 are related by vsvr: p vsvr q.

We have to prove that if r a p then r a q. Suppose that r a p. Definition 3.2.1 requires us to

exhibit a relation R such that (a) r R q and (b) R is a prefixed point of the rule functional Fa. Let

R = { (r′, q′) | r uk=⇒ r′, q
uk=⇒ q′ for every k ∈ N }

Since r
ε

=⇒ r and q
ε

=⇒ q, by definition r R q; this proves (a).

To prove (b) we have to show that if r′ || q′ then the ensuing properties are true,

i) if r′ ⇓ then q′ ⇓

ii) if r′ || q′
τ

6−→ then r
X−→
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iii) if r′ || q′ τ−→ r′′ || q′′ then r′′ R q′′

Pick a pair (r′, q′) from the relation R.

We prove i). The definition of R implies that q
uk=⇒ q′ for some k ∈ N, so Lemma 4.1.7 implies

that q′ ⇓ . Since the consequences of the implication in i) are true, the whole implication is true.

We prove ii). Suppose that r′ || q′
τ

6−→. The definition of R implies that for some k ∈ N, r
uk=⇒ r′,

and the assumption r′ || q′
τ

6−→ implies that r′
τ

6−→. By hypothesis p
uk=⇒ 0, so there exists the

computation

r || p =⇒ r′ || 0
τ

6−→

The assumption that r a p and Corollary 3.2.7 imply that r′ a 0. Now r′ || 0 and point (b) of

Definition 3.2.1 implies that r′
X−→. This proves ii).

We prove iii). Suppose that r′ || q′ τ−→ r′′ || q′′; we show why r′′ R q′′. By construction of R
we know that r

uk=⇒ r′ and q
uk=⇒ q′′ for some k ∈ N. The argument is a case analysis on the rule

used to infer the reduction. If rule [p-Left] was applied then r′
τ−→ r′′ and q′ = p′′; as r

uk=⇒ r′′ the

definition of R implies that r′′ R q′′. If rule [p-Right] was applied then q′
τ−→ q′′ and r′ = r′′. We

infer q
uk=⇒ q′′, so the definition of R implies that r′′ R q′′. If rule [p-Synch], then the reduction is

due to an interaction. The only actions that the q′ offer are in u, so it must be the case that q
ukα=⇒ q′′,

r
ukα=⇒ r′′ and ukα = uk+1. The definition of R implies that r′′ R q′′.

We have proven that R is a prefixed point of Fa, so Definition 3.2.1 and the Knaster-Tarski

theorem imply that R ⊆ a. Now (a) implies that r a q.

Example 5.1.3 shows that the relation vsvr does not compare infinite traces as <∼svr does.

Again, the difference between vsvr and <∼svr stems from the definitions of a and of must. To

check that p must r, one has to prove that every maximal computation of r || p, is client-successful.

To check that r a p, on the other hand, one has to check only that finite computations either end in

a client-successful state or can be extended.

We laid bare the differences between server pre-orders vsvr and <∼svr, thereby proving that these

pre-orders are not comparable,

<∼svr 6⊆ vsvr, vsvr 6⊆ <∼svr (5.3)

These differences show that in the compliance setting

i) the convergence of servers is compared only after traces have been performed

ii) the divergence of a server does not imply that it is worse than the other servers

iii) the infinite traces of servers do not matter

Our task now is to adapt Definition 4.1.17 so as to characterise the relation vsvr. The proper-

ties we listed previously sheds light on what to do. Point (i) above calls for the definition of a new

predicate to check convergence. Point (ii) suggests that we drop the requirement p1 ⇓ w from con-

dition (2) of Definition 4.1.17. Point (iii) suggests that we drop infinite traces from condition (2) of

Definition 4.1.17.

We introduce the novel predicate to check the convergence of servers.

Definition 5.1.4. [ Convergence after trace ]

Let F� : P(CCSwτ ×Act?) −→ P(CCSwτ ×Act?) be the rule functional given by the inference rules

in Figure 5.2. Lemma C.0.24 and the Knaster-Tarski theorem ensure that there exists the least

solution of the equation X = F�(X); we call this solution the weak convergence predicate, and we

denote it �: That is � = µX.F�(X).
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p � ε
p ⇓ ; [wconv-ax]

p � αs p
α

6=⇒; [wconv-ax-not]⊕
(p after α) � s′

p � αs′
p

α
=⇒; [wconv-alpha]

Figure 5.2: Inference rules for the functional F�

As the name suggests the predicate � is weaker than ⇓ , in the sense that p � s does not imply p ⇓ s.
We show this in Example 5.1.5.

By using � in place of ⇓ we relax the condition under which the comparison between ready sets

has to be performed; the result is that the amended definition checks more ready sets than the wrong

definition.

Example 5.1.5. In this example we show a process p such that p � αβ and p 6⇓ αβ. Let p′ = τ∞ ⊕ β. 0
and p = τ∞ + α.p′. The proof that p � αβ is the following inference tree

0 ⇓ ε 0 ⇓ ; [wconv-ax]

p′ � β p′
β

=⇒; [wconv-alpha]

p � αβ
p

α
=⇒; [wconv-alpha]

To derive p ⇓ αβ we need an inference tree like the above one. The tree for ⇓ , though, does not

exist because p′ 6⇓ , so after the axiom [conv-ax] the derivation cannot proceed.

The previous example shows the difference between � and ⇓ . Suppose that p
s

=⇒. If p � s then

p converges after the string s. If p ⇓ s then all the states in all the branches encountered while

performing s must converge.

We prove a technicality.

Lemma 5.1.6. For every s ∈ Act? and every p ∈ CCSwτ , if p � s and p
τ−→ p′, then p′ � s.

Proof. The argument is by induction on s.

Base case (s = ε) In this case we want to prove that p′ � ε. In view of [wconv-ax], it is enough

to prove that p′ ⇓ . By hypothesis there exists the derivation of p � ε, we can be only the axiom

[wconv-ax]. The side conditions of the axiom imply that p ⇓ . The hypothesis that p =⇒ p′ implies

that p′ ⇓ .

Inductive case (s = αs′) We have to prove that p′ � αs′. If p′
α

6=⇒, the we use the second axiom

of �,

p′ � αs′ p
′

α

6=⇒; [wconv-ax-not]

If p′
α

=⇒, then p
α

=⇒. The last fact and the hypothesis p � αs′ imply that
⊕

(p after α) � s′. Since

(p′ after α) ⊆ (p after α), it follows that
⊕

(p′ after α) � s′, and so we derive⊕
(p′ after α) � s′

p′ � αs′
p′

α
=⇒; [wconv-alpha]

We are ready to define a relation that characterises vsvr.
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Definition 5.1.7. [ Semantic compliance server pre-order ]

Let p1 �svr p2 whenever for every s ∈ Act?,

(1) if p1 � s then

(a) p2 � s

(b) for every B ∈ acc(p2, s) there exists some A ∈ acc(p1, s) such that A ⊆ B

(2) if p2
s

=⇒, then p1
s

=⇒

To prove that �svr is a complete description of vsvr, we have to explain why vsvr satisfied all the

properties required in Definition 5.1.7. We carry out this task in a series of lemmas.

For every process p there exists a client that is not satisfied by p, namely 0. This implies the

following result.

Lemma 5.1.8. [ Finite trace simulation ]

For every s ∈ Act?, and every p1, p2 ∈ CCSwτ , if p1 vsvr p2 and p2
s

=⇒ then p1
s

=⇒.

Proof. By hypothesis there exists a p′2 such that p2
s

=⇒ p′2. Let s = α1α2 . . . αn, and let

Ci
def
=

τ∞ + αi.Ci+1 if i < n

0 if i = n

The definition of a lets us prove that 0 6a p′2, and also that C0 6a p2. The hypothesis p1 vsvr p2 implies

that C 6a p1. If p1
s

6=⇒, then the divergence of all the Ci but Cn let us prove that C0 a p1. It follows

that p1
s

=⇒.

does not extend to traces that involve infinite states; we have proven this in Example 5.1.3.

The relation between the convergence of the servers in vsvr is proven in the next lemma.

Lemma 5.1.9. For every s ∈ Act? and p1, p2 ∈ CCSwτ , if p1 vsvr p2 and p1 � s then p2 � s.

Proof. Fix a string s ∈ Act? such that p1 � s. We have to show a finite derivation of p2 � s. the

proof is by induction on s.

Base case (s = ε) We have to derive p1 � ε. The hypothesis that p1 � ε implies that p1 ⇓ .

Lemma 3.2.4 ensures that 1 a p1, so the hypothesis p1 vsvr p2 implies that 1 a p2. Definition 3.2.1

ensures that p2 ⇓ , thus we derive

p2 � ε
p2 ⇓ ; [wconv-ax]

Inductive case (s = αs′) We have to derive p2 � αs′. If p2
α

6−→ then the derivation is the following

one

p2 � αs′ p2
α

6=⇒; [wconv-ax-not]

Suppose that p2
α

=⇒. In this case if we knew that
⊕

(p2 after α) � s′, then we could apply

[wconv-alpha] to obtain the derivation we are after.

We prove that
⊕

(p2 after α) � s′. Since s′ is smaller than s, the inductive hypothesis states

that

for every p̂1 vsvr p̂2, if p̂1 � s′ then p̂2 � s′

Let p̂2 =
⊕

(p2 after α); to show that p̂1 � s′ it suffices to exhibit a p̂1 such that p̂1 vsvr p̂2 and

p̂1 � s′. The assumption p2
α

=⇒, the hypothesis p1 vsvr p2 and Lemma 5.1.8 imply that p1
α

=⇒, so

the set (p1 after α) is non-empty. Let p̂1 =
⊕

(p1 after α). The hypothesis p1 � αs′ and p1
α

=⇒
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imply that p̂1 � s′. We still have to prove that p̂1 vsvr p̂2. Fix a process r such that r a p̂1. It is

relatively easy to prove that

τ∞ + α.r a p1 (5.4)

so the hypothesis p1 vsvr p2 implies that τ∞ + α.r a p2. For every p′2 ∈ (p2 after α), the

computation τ∞ + α.r || p2 =⇒ r || p′2 and Corollary 3.2.7 let us prove that r a p′2. It follows that

r a p̂2.

We have proven enough facts to use the inductive hypothesis, which implies that p̂2 � s′. Now we

derive
...

p̂2 � s′

p2 � αs′
p2

α
=⇒; [wconv-alpha]

Corollary 5.1.10. For every s ∈ Act?, and p1, p2 ∈ CCSwτ , if p1 vsvr p2, p1 � s and acc(p2, s) 6= ∅
then acc(p1, s) 6= ∅.

Proof. The hypothesis acc(p2, s) 6= ∅ implies that p2
s

=⇒. Lemma 5.1.8 implies that p1
s

=⇒ p′1 for

some p′1. The hypothesis p1 � s implies that p′1 ⇓ , and so there exists a p′′1 such that p1
s

=⇒ p′′1
τ

6−→.

This implies that S(p′′1) ∈ acc(p1, s).

Lemma 5.1.11. For every s ∈ Act?, and every p1, p2 ∈ CCSwτ , if p1 vsvr p2, p1 � s and B ∈
acc(p2, s), then there exists a set A ∈ acc(p1, s) such that A ⊆ B.

Proof. Fix a s ∈ Act? and a set B ∈ acc(p2, s). We have to exhibit a set A ∈ acc(p1, s) that is a

subset of B. Corollary 5.1.10 and the hypothesis of this lemma imply that the set is acc(p1, s) is

non-empty, that is acc(p1, s) = {Ai | i ∈ I } where I is some non-empty set.

The proof is by contradiction; we assume the following

for every i ∈ I, there exists a αi ∈ Ai such that αi 6∈ B.

By using this assumption we define a client C that contradicts the hypothesis p1 vsvr p2. Let

s = β1β2 . . . βn. Let

Ci
def
=

τ∞ + βi+1.Ci+1 if i < n,∑
i∈I αi.τ

∞ if i = n

We prove that C0 6a p2. Definition 4.1.11 and the hypothesis B ∈ acc(p2, s) imply that there exists

a p′2 such that p2
s

=⇒ p′2
τ

6−→ and S(p′2) = B. Consider the computation, C0 || p2 =⇒ Cn || p′2
τ

6−→.

As Cn
X
6−→, Cn 6a p2; it follows that C0 6a p2.

We prove that C0 a p1. Let

R = { (C, p) | C0
s′

=⇒ C, p1
s′

=⇒ p with s′ prefix of s } ∪ { (τ∞, p) | p1
sαi=⇒ p }

By construction C0 R p1. We prove that the relation R is a co-inductive compliance. Fix a pair in

R, say (C, p); Definition 3.2.1 requires us to prove three properties

a) if C ⇓ then p ⇓

b) if C || p
τ

6−→ then C
X−→

c) if C || p τ−→ C ′ || p′ then C ′ || p′

If C = τ∞ and p1
sαi=⇒ p, then the pair (C, p) satisfies all the points above. This is true because C 6⇓ ,

C || p
τ

6−→, and if C || p τ−→ C ′ ||′, then C ′ = τ∞ and p1
sαi=⇒ p′.
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Now suppose that C and p are in R because for some s′ prefix of s, C0
s′

=⇒ C and p1
s′

=⇒ p.

Suppose that C ⇓ ; then C = Cn and s′ = s; it follows that p1
s

=⇒ p. The hypothesis p1 � s

implies that p ⇓ . This proves a).

To prove that b) is true we show that C || p τ−→. If s′ is shorter than s then C
τ−→ because C

diverges. If s′ = s then C =
∑
i∈I αi.τ

∞; since p1
s

=⇒ p, the hypothesis
⊕

(p1 after s) ⇓ implies

that p ⇓ , and so Definition 4.1.11 ensures that S(p) ∈ acc(p1, s). It follows that for some i ∈ I, there

is an action αi ∈ S(p) such that C
α−→. It follows that C and p can interact, so C || p τ−→.

We have to discuss c). Suppose that C || p τ−→ C ′ || p′. The argument depends on the rule used

to infer the reduction. If [p-Left] or [p-Right] was used, then C
s′

=⇒ C ′ or p1
s′

=⇒ p′. If [p-Synch]

was applied then there exists the inference

C
δ−→ C ′ p

δ−→ p′

C || p τ−→ C ′ || p′
[p-Synch]

If δ = βi for some βi in s, then C ′ R p′. If δ = αi for some αi, then C ′ = τ∞ and p1
sαi=⇒ p′, so

C ′ R p′.

The proof that the relation �svr is a complete description of vsvr is now easy.

Proposition 5.1.12. [ Completeness ]

For every p1, p2 ∈ CCSwτ , p1 vsvr p2 implies p1 �svr p2.

Proof. It follows from Lemma 5.1.9, Lemma 5.1.11, and Lemma 5.1.8.

In order to prove the soundness of �svr with respect to vsvr, we need the following lemmas.

Lemma 5.1.13. For every p1, p2 ∈ CCSwτ , if p1 �svr p2 and p2
τ−→ p′2, then p1 �svr p

′
2.

Proof. Definition 5.1.7 requires us to prove three properties of the pair (p1, p
′
2), namely that for every

s ∈ Act?,

a) if p1 � s then

i) p2 � s

ii) if B ∈ acc(p′2, s) then there exists a set A ∈ acc(p1, s) such that A ⊆ B

b) if p′2
s

=⇒, then p1
s

=⇒

We prove these properties one by one. Fix a s ∈ Act?.

a) Suppose that p1 � s.

i) We have to show that p′2 � s. The hypothesis p1 �svr p2, the assumption p1 � s and point (1a)

of Definition 5.1.7 imply that p2 � s. Lemma 5.1.6 implies that p′2 � s.

ii) Suppose that B ∈ acc(p′2, s). Definition 4.1.11 ensures that B ∈ acc(p2, s), and so the

hypothesis p1 �svr p2 and Definition 4.1.17 imply that there exists a set A ∈ acc(p1, s) such

that A ⊆ B.

b) Suppose that p′2
s

=⇒ p′′2 . It follows that p2
s

=⇒ p′′2 , and so the hypothesis p1 �svr p2 and point (2)

of Definition 5.1.7 imply that p1
s

=⇒.

Lemma 5.1.14. For every p1, p2 ∈ CCSwτ , if p1 � α, p1 �svr p2 and p2
α−→ p′2 then

i) the set (p1 after α) is non-empty
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ii)
⊕

(p1 after α) �svr p
′
2.

Proof. Suppose that for some α ∈ Act and p′2, p2
α−→ p′2. The hypothesis p1 �svr p2 and point (2) of

Definition 5.1.7 implies that p
α−→. Definition 4.1.5 implies that p′1 ∈ (p1 after α).

We prove point (ii). Point (i) guarantees that the process
⊕

(p1 after α) exists, and we have to

show that
⊕

(p1 after α) �svr p
′
2. Let p̂ =

⊕
(p1 after α). Definition 5.1.7 requires us to prove

that for every s ∈ Act?, the processes p̂ and p′2 enjoy the ensuing properties,

a) if p̂ � s then

i) p′2 � s

ii) if B ∈ acc(p′2, s) then there exists a set A ∈ acc(p̂, s) such that A ⊆ B

b) if p′2
s

=⇒ p′′2 , then p̂
s

=⇒

Fix a string s ∈ Act? such that p̂ � s. To prove point (ai), we have to explain why p′′2 � s. The

assumption on p̂ ensures that we can derive

p̂ � s

p1 � αs
p1

α
=⇒; [wconv-alpha]

Since p1 �svr p2, point (1a) of Definition 5.1.7 implies that p2 � αs. Since p2
α

=⇒, it follows that⊕
(p2 after α) � s. Since {p′2} ⊆ (p2 after α), it follows that p′2 � s.

We prove point (aii). Fix a B ∈ acc(p′2, s); we have already proven that p1 � αs, so p2
α−→ p′2

and Definition 4.1.11 ensure that B ∈ acc(p2, αs). Now point (1b) of Definition 5.1.7 implies that

there exists a set A ∈ acc(p1, αs) such that A ⊆ B. The equality acc(p1, αs) = acc(p̂, s) implies

that A ∈ acc(p̂, s).

To prove point (b) suppose that p′2
s

=⇒ p′′2 . The hypothesis p1 �svr p2, p2
αs

=⇒ p′′2 and point (2) of

Definition 5.1.7 imply that p1
αs

=⇒. In turn this implies that p̂
s

=⇒.

Theorem 5.1.15. [ Alternative characterisation vsvr ]

For every p1, p2 ∈ CCSwτ , p1 vsvr p2 if and only if p1 �svr p2.

Proof. We have to prove the ensuing implications,

i) if p1 vsvr p2 then p1 �svr p2

ii) if p1 �svr p2 then p1 vsvr p2

The first implication is shown in Proposition 5.1.12. We prove only the second implication.

We are required to show that for every r, if r a p1 then r a p2. To this end we define a suitable

co-inductive compliance relation. Let

R= { (r, p2) | p1 �svr p2, r a p1, for some r ∈ CCSwτ }

The construction of R implies that if r a p1 and p1 �svr p2, then r R p2. To show that r a p2 we

have to prove that R is a co-inductive compliance. Definition 3.2.1 requires us to prove that if r R p

then three properties are true,

(a) if r ⇓ then p ⇓

(b) if r || p
τ

6−→ then r
X−→

(c) if r || p τ−→ r′ || p′ then r′ R p′
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Fix some r and p such that r R p. We prove the properties listed above. By definition of R there

exists a process p1 such that

p1 �svr p, r a p1

Suppose that r ⇓ . Definition 3.2.1 implies that p1 ⇓ ; in turn this means that
⊕

(p1 after ε) ⇓ .

point (1a) of Definition 5.1.7 and p1 �svr p2 ensure that if p
τ

=⇒ p′ then p′ ⇓ . By reflexivity, p
ε

=⇒ p,

so p ⇓ . We have proven (a).

Suppose that r || p
τ

6−→. Then S(p) 6⊆ S(r). Since p
τ

6−→, p ⇓ , and so S(p) ∈ acc(p, ε). As

r is stable, r is convergent, and so r a p1 implies that p1 ⇓ . It follows that
⊕

(p1 after ε) ⇓ .

point (1b) of �svr and the assumption p1 �svr p imply that there exists a A ∈ acc(p1, ε) such that

A ⊆ S(p). Definition 4.1.11 and Definition 4.1.6 imply that there exists a p′1 such that p1
ε

=⇒ p′1
τ

6−→
and S(p′1) ⊆ A. It follows that S(p′1) ⊆ S(p), and so S(p′1) 6⊆ S(r). The last fact and r and p′1

are stable, imply that r || p′1
τ

6−→. Since r || p1 =⇒ r || p′1 Corollary 3.2.7 implies that r a p′1;

Definition 3.2.1 now ensures that r
X−→.

Suppose that r || p τ−→ r′ || p′; we have to explain why r′ R p′. The definition of R requires us to

show a p̂ such that

r′ a p̂, p̂ �svr p
′

The argument depends on the rule used to infer the reduction.

If the reduction is due to rule [p-Left], then r
τ−→ r′, and p′ = p. Let p̂ = p1. Definition 3.2.1

and r a p1 ensure that r′ a p̂, and p̂ �svr p
′, so r′ R p′.

If the reduction is due to rule [p-Right], then p
τ−→ p′, and r = r′; the candidate p̂ is p1. We

know that p1 �clt p, thus Lemma 5.1.13 implies that p1 �svr p
′; and we already know that r′ a p1,

because r = r′.

If the reduction is due to rule [p-Synch], the r
α−→ r′, p

α−→ p′. the fact that p1 �svr p

and point (2) of Definition 5.1.7 implies that p1
α

=⇒. We can use Corollary 3.2.7 to prove that

r′ a
⊕

(p1 after α), so let our candidate p̂ be
⊕

(p1 after α). We have to prove that p̂ �svr p
′; this

follows from Lemma 5.1.14.

Comparison with other pre-orders

In Chapter 4 we have studied three pre-orders, and so far we have compared vsvr only with one of

them, namely <∼svr. By exposing the differences between the server pre-orders, we have justified the

characterisation of vsvr.

Now we swiftly prove that vsvr is comparable neither with the other must pre-orders, nor with a

well-known pre-order from the literature, the shd testing pre-order.

The following inequalities should not be surprising.

α. 0 <∼clt β. 0 α. 0 6vsvr β. 0

1 6<∼clt 0 1 vsvr 0

α. 1 +β. 0 <∼p2p α. 1 α. 1 +β. 0 6vsvr α. 1

The inequalities above are true because of the non trivial usability of clients (and of peers alike).

Intuitively, non-usable clients are always equivalent, even if they offer different communication pattern.

The last fact lets vsvr distinguish the clients. Moreover, it is safe to remove from a peer a non-usable

action and the derivation after it. This, though, is detected by vsvr, because the all the (co)actions

offered by servers can be used by clients. Since vsvr 6⊆ <∼clt, the set inclusion <∼p2p ⊆ <∼clt implies

that vsvr 6⊆ <∼p2p.

Now we turn our attention to the setting of shd testing by [Rensink and Vogler, 2007]. Our aim

is merely to prove that the pre-order vsvr is not not comparable with the should pre-order. Let vshd

be defined as in [Rensink and Vogler, 2007, Section 3.2].
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Example 5.1.16. [ Should pre-order ]

In this example we prove the following inequalities,

vsvr 6⊆ vshd, vshd 6⊆ vsvr

We show that vsvr is not contained in the vshd. Let A
def
= (α.A ⊕ β.A ) and B

def
= α.B. It is

relatively easy to prove that A vsvr B; this being true because all the clients that comply with A

have to be ready to interact on α. To prove that A 6vshd B we use the client C
def
= α.C + β. 1. We

can prove that A shd C, whereas B 6shd C, because B never allows C to reach a successful state.

Now we explain why vshd is not contained in vsvr. The proof that 0 vshd τ∞ relies on two

facts: if 0 shd r then if r =⇒ r′ implies r′
X

=⇒; and since τ∞ offers no interaction, the states in the

computations of r || τ∞ contain a derivative r′ of r such that r =⇒ r′. However, 0 6vsvr τ
∞ because

1 a 0 while 1 6a τ∞.

Essentially, the proof that vsvr 6⊆ vshd follows from the fact that the compliance allows ever-lasting

computation with not client-successful state; whereas the proof of vshd 6⊆ vsvr follows from condi-

tion (a) of Definition 3.2.1, that is how the compliance deal with the divergence of servers.

5.1.1 Server pre-orders on restricted LTSs

The must server pre-order and the compliance server pre-order are not comparable (see 5.3). This

result is true in the LTS of processes 〈CCSwτ , Actτ X, −→〉 , which contains

• infinite branching terms

• infinite states

• divergent terms

By dropping some of the properties listed above, we can restrict the LTS, thereby focusing on

different LTSs. We study how the relations <∼svr and vsvr are related in some sub-LTSs of the general

LTS of processes,

〈CCSwτ , Actτ X, −→〉

First we compare point (1a) of Definition 5.1.7 with point (1a) of Definition 4.1.17. What we saw in

(Example 5.1.2) shows that point (1a) of Definition 4.1.17 does not imply point (1a) of Definition 5.1.7.

The converse is true.

Lemma 5.1.17. For every p1, p2 ∈ CCSwτ , if for every s ∈ Act?, p1 � s implies p2 � s, then for

every s ∈ Act?, p1 ⇓ s implies p2 ⇓ s.

Proof. Fix two processes p1, p2 ∈ CCSwτ such that for every s ∈ Act?, if p1 � s then p2 � s. Fix a

string s ∈ Act? and two processes such that p1 ⇓ s; we have to prove that p2 ⇓ s. To this end, it is

enough to show that for every s′ prefix of s, if p2
s′

=⇒ p′2 then p′2 ⇓ .

Fix a s′ prefix of s. The hypothesis p1 ⇓ s implies if p1
s′

=⇒ p′1 then p′1 ⇓ . In turn this ensures

that p1 � s′. The hypothesis now imply that p2 � s′, so if p2
s′

=⇒ p′2 then p′2 ⇓ .

The only assumption on s′ is that it is a prefix of s, so we have proven that for every s′ prefix of

s, if p1 ⇓ s then p2 ⇓ s. As there is no assumption on s, the result is true for every s ∈ Act?.

Lemma 5.1.17 implies that if �svr is not contained in -svr, it is because of point (2) in the definition

of -svr.

Let us decorate the symbols CCSwτ , vsvr and <∼svr in order to specify the LTS wherein we define

the pre-orders. It is relatively easy to prove that in certain sub-LTS of 〈CCSwτ , Actτ X, −→〉, the

alternative characterisations -svr and �svr remains sound and complete. For instance, we let CCSfb
wτ
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denote the finite branching processes, and vfb
svr,<∼

fb
svr the server pre-orders defined in the obvious way

on the LTS 〈CCSfb
wτ , Actτ X, −→〉. One can prove the following properties of -svr.

• if p1 <∼
fb
svr p2 then p1 -svr p2

• if p1, p2 ∈ CCSfb
wτ and p1 -svr p2, then p1 <∼

fb
svr p2

Let 〈CCS⇓wτ , Actτ X, −→〉 be the LTS in which each state is convergent.

Proposition 5.1.18. For every p1, p2 ∈ CCS⇓wτ , if p1 <∼
⇓
svr p2 then p1 v⇓svr p2.

Proof. The result follows from the next three set inclusions, which we prove;

a) <∼
⇓
svr ⊆ -svr

b) for every p1, p2 ∈ CCS⇓wτ , if p1 -svr p2 then p1 �svr p2

c) for every p1, p2 ∈ CCS⇓wτ , if p1 -svr p2 then p1 v⇓svr p2

The set inclusion in a) is true because the tests used in (the lemmas that imply) Proposition 4.1.20,

are convergent, and so they are in the LTS 〈CCS⇓wτ , Actτ X, −→〉. This implies that Proposition 4.1.20

is true also in the LTS of convergent states.

We prove b). In a convergent LTS the requirements of -svr and �svr on the convergence of

processes are trivially true, so for every p1, p2 ∈ CCS⇓wτ , p1 �svr p2 if and only if

• for every s ∈ Act? and B ∈ acc(p2, s) there exists a set A ∈ acc(p2, s) such that A ⊆ B

• for every w ∈ Act?, if p2
w

=⇒ then p1
w

=⇒

The two conditions above follow from p1 -svr p2, and this explains b). The third inequality follows

from Theorem 5.1.15.

We introduce a property of states that relates infinite traces to their finite prefixes,

pPrefInf whenever for every u ∈ Act∞, if p
un=⇒ for every n ∈ N, then p

u
=⇒

Let 〈CCSpinf , Actτ X, −→〉 be the LTS in which each state enjoys the property PrefInf.

Proposition 5.1.19. For every p1, p2 ∈ CCSpinf , if p1 vpinf
svr p2 then p1 <∼

pinf
svr p2.

Proof. We process in a manner similar to Proposition 5.1.18, and prove three set inclusions that imply

the proposition;

a) vpinf
svr ⊆ �svr

b) for every p1, p2 ∈ CCSpinf , if p1 �svr p2 then p1 -svr p2

c) for every p1, p2 ∈ CCSpinf , if p1 -svr p2 then p1 <∼
pinf
svr p2

The first inclusion is true because all the clients used to prove the completeness of �svr (Proposi-

tion 5.1.12) enjoy PrefInf, so they are in the LTS at hand.

The second inclusion follows from the definition of �svr, Lemma 5.1.17, and the fact that if

p1, p2 ∈ CCSpinf , then they enjoy PrefInf.

The third inequality follows form Theorem 5.1.15.

Let CCSweb = { p ∈ CCSwτ | pPrefInf, for every s ∈ Act?, p
s

=⇒ p′ implies p′ ⇓ }; we recover

the LTS 〈CCSweb, Actτ X, −→〉 in the usual manner. The LTS of CCSweb is essentially the LTS of

contracts for web-services, because it contains the LTS of [Padovani, 2010], and the one of [Castagna

et al., 2009].
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Theorem 5.1.20. For every p1, p2 ∈ CCSweb, p1 <∼
web
svr p2 if and only if vweb

svr.

Proof. We have to prove two set inclusions,

a) <∼
web
svr ⊆ v

web
svr

b) vweb
svr ⊆ <∼

web
svr

The proof of the first inclusion is analogous to the proof of Proposition 5.1.18, and we do not discuss

it.

In principle the proof of the second inclusion is similar to the one of Proposition 5.1.19, but there

are more complications. We wish to show the three inclusions that follow,

i) vweb
svr ⊆ �svr

ii) for every p1, p2 ∈ CCSweb, if p1 �svr p2 then p1 -svr p2

iii) for every p1, p2 ∈ CCSweb, if p1 -svr p2 then p1 <∼
web
svr p2

While the inclusions ii) and iii) can be proven as in Proposition 5.1.19, inclusion i) cannot; it does

not follow from the proof of completeness of �svr (Proposition 5.1.12), because the clients used in

Lemma 5.1.9, Lemma 5.1.11, and Lemma 5.1.8 are not in CCSweb, because those clients diverge. These

lemmas, though, are true also in the LTS of CCSweb; their proofs are similar to the ones we have given,

but rely on different clients obtained by replacing τ∞ with 1.

The client to prove the analogous of Lemma 5.1.8 is

Ci
def
=

1 +αi.Ci+1 if i < n

0 if i = n

To prove the analogous of Lemma 5.1.9, in Eq. (5.4), we use 1 +α.r in place of τ∞ + α.r. The client

to prove the analogous of Lemma 5.1.11 is as follows,

Ci
def
=

1 +βi+1.Ci+1 if i < n,∑
i∈I αi. 1 if i = n

By using the clients above, we one can show that vweb
svr ⊆ �svr. The inclusions b) and c) are proven

as in Proposition 5.1.19.

Example 5.1.2, Example 5.1.3, and Theorem 5.1.20 show the conditions necessary and sufficient

for the server pre-orders to coincide; they are used in the definition of CCSweb. But there is a more

natural definition of an LTS, where the server pre-orders coincide. Let CCSfs
web = { p ∈ CCSwτ |

p finite state, for every s ∈ Act?, p
s

=⇒ p′ implies p′ ⇓ }.

Proposition 5.1.21. For every p1, p2 ∈ CCSfs
web, p1 <∼

fs
svr p2 if and only if vfs

svr.

Proof. Note that since every p in CCSfs
web is finite state, Königs’lemmaimplies that p enjoys PrefInf:

for every u ∈ Act∞, if for every n ∈ N, p
un=⇒ then p

u
=⇒; so CCSfs

web is contained in CCSweb.

The inclusion <∼
fs
svr ⊆ v

fs
svr follows from Theorem 5.1.20. The proof of the converse inclusion is

essentially the same of of b) in Theorem 5.1.20, as the clients used there are in the LTS of CCSfs
web.

A similar equality has been proven directly in [Bernardi and Hennessy, Bernardi and Hennessy,

2011], where the LTS is finite state, finite branching, and every term converges, but ./ is an unspecified

parameter.
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In this section we have introduced the compliance server pre-order, we have explained why it differs

from the must pre-orders, and we have devised an alternative characterisation for it (Theorem 5.1.15).

We have also exhibited the two conditions on the LTS that are necessary for the resulting server pre-

orders to coincide (Example 5.1.2, Example 5.1.3, Theorem 5.1.20).

The next natural problem is to study the client pre-order given by the compliance relation, and

compare it with <∼clt.

5.2 Client pre-order

Now we study when a client r2 is better than a client r1, if we use the compliance relation to express

satisfaction. It turns out that the pre-order we obtain is different from the must client pre-order

(and the other pre-orders we studied thus far), so we develop yet anther alternative characterisation

(Theorem 5.2.25).

Definition 5.2.1. [ Client pre-order ]

We write r1 vclt r2 whenever for every process p, r1 a p implies r2 a p. We refer to the relation vclt

as the compliance client pre-order.

Notation In the usual way we reason on vclt up-to associativity and commutativity of ⊕ and + .

One of the difference between vclt and <∼clt is the manner in which clients that perform infinite

computations are treated. Similarly to what we saw in Section 5.2, also vclt disregards infinite traces.

Example 5.1.3 can be adapted to prove this.

Example 5.2.2. Let the process r be defined as p in Figure 4.4, where the pk’s a replaced by rk’s,

and rk denotes a process which performs a sequence of k α actions followed by 1. Let q be a the

process with only the self loop α.

In this example we prove that r vclt q. To this aim we define a suitable co-inductive compliance,

R = { (q′, p′) | r a p, q αn
=⇒ q′, p

αn
=⇒ p′, for some n ∈ N }

To prove thatR is a co-inductive compliance we have to show that the pairs in it enjoy three properties,

a) q′ ⇓ implies p′ ⇓

b) q′ || p′
τ

6−→ implies q′
X−→

c) q′ || p′ τ−→ q′′ || p′′

Let us fix a pair q′ R p′. We prove the requires properties. By construction we know that r a p,
and for some n ∈ N , q

αn
=⇒ q′ and p

αn
=⇒ p′.

Suppose that q′ ⇓ ; we have to show that p′ ⇓ . Since r performs every finite sequence of α’s, the

following computation exists,

r || p =⇒ r′ || p′

for some r′; by construction r′ converges. The fact that r a p implies that r′ a p′; r′ ⇓ now ensures

that p′ ⇓ .

We prove the second property of q′ and p′: if q′ || p′
τ

6−→ then q′
X−→. To prove that the implication

is true, we show that its premises are false. First note that if p′
τ−→ then q′ || p′ τ−→, so let us suppose

that p′
τ

6−→.

We know that q
αn

=⇒ q′ for some n ∈ N. The construction of r ensures that r
αn

=⇒ r′
α−→ for some

r′ such that r′
X
6−→. The computation r || p =⇒ r′ || p′ and r a p imply that r′ a p′. Since r′

X
6−→,
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the composition r′ || p′ is not stable; since p′
τ

6−→, it follows that p′
α−→. Now we can prove that

q′ || p′ τ−→ because q
α−→.

To prove the third property that q′ and p′ have to enjoy, suppose that q′ || p′ τ−→ q′′ || p′′. We

have to show that q′′ R p′′; this follows immediately from the construction of R, and the fact that

the only visible action performed by q is α.

In the example above we have shown two processes r and q related by vclt, r vclt q, and such that

q
α∞
=⇒, while r

α∞

6=⇒.

The other differences between vclt and <∼clt pertain only the client side of our frameworks.

Example 5.2.3. [ All traces vs. unsuccesful traces ]

In this example we prove that vclt 6⊆ <∼clt. Let r1 = 1 +α. 0 and r2 = τ∞ + α. 0. We prove that

r1 6<∼clt r2. Plainly 0 must r1, whereas 0 6must r2, because r2 has no successful states.

On the contrary, r1 vclt r2. Intuitively, this is true because if r1 a p, then p does not perform

the action α. The only interaction that r2 offers is α, so r2 and p cannot communicate; moreover, r2

is never stable, so the following relation is a co-inductive compliance, R = { (r2, p) | r1 a p }. This

proves that r1 vclt r2.

The example above shows that the characterisation of vclt should account for all the executions of the

traces, and not only the unsuccessful ones. The reason why we can define a server that distinguishes

the tests r1 and r2 (i.e. proves that r1 6<∼clt r2) is that r2
α

=⇒6X, whereas r1
α

6=⇒6X. Intuitively, this is

the case because must disregards what a client does after a successful state; on the contrary a checks

what a client does also after having reached a successful state (see Example 3.2.14).

The last difference between vclt and <∼clt is how the action X is compared with other actions.

The pre-order <∼clt never compares X, because only unsuccessful traces matters, and they do not

contain states that perform X. The pre-order vclt, on the contrary, treats X as the best action.

Example 5.2.4. [ Action X in the ready sets ]

In this example we prove that vclt treats X as the best action. To do so, we prove that the following

implication is neither sound nor complete with respect to the pair (r1, r2) in vclt,

for every s ∈ Act? if B ∈ acc(r2, s) then there exists some A ∈ acc(r1, s) such that A ⊆ B.

One sees easily that 1 6vclt 0, for 1 a 0 whereas 0 6a 0; this means that the implication above is

not sound; we prove this. Observe that either ∅ ∈ acc(0, s) or acc(0, s) = ∅. If ∅ ∈ acc(0, s), then

s = ε; since ∅ ∈ acc(1, ε) we have the matching ∅ ⊆ ∅.
The implication above is not complete. We show two clients r1 and r2 such that r1 vclt r2, and

that (r1, r2) does not satisfy the implication above. Let r1 = α. 1 and r2 = 1. We explain why

α. 1 vclt 1. Let α. 1 a p for some p; the assumption and Definition 3.2.1 ensure that p ⇓ . It follows

that the relation R = { (1, p) | p ⇓ } is a co-inductive compliance. This is true because p ⇓ , 1
X−→,

and 1 offers no interactions.

Now observe that the pair (α. 1, 1) does satisfy the implication above. We explain why; we have

to exhibit a s ∈ Act? and a B ∈ acc(1, s) such that there is no set A ∈ acc(α. 1, s) that is contained

in B. Clearly, ∅ ∈ acc(1, ε); since the set acc(α. 1, ε) is the singleton { {α } }, there is indeed no

A ∈ acc(α. 1, ε) such that A ⊆ ∅.

Example 5.2.4 shows that the action X should be in the ready sets of processes, and that it should

be treated as the best action.

In view of the previous examples, the pre-orders vclt and <∼clt are not comparable,

<∼clt 6⊆ vclt, vclt 6⊆ <∼clt (5.5)

We summarise the differences between the client pre-orders,
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r

1 +α. 0 α. 1

0 1

τ τ

αX α
X

Figure 5.3: LTS of r = (1 +α. 0) ⊕ α. 1

i) the must pre-order, <∼clt, compares (unsuccessful) infinite traces of clients. The compliance

pre-order disregards infinite traces. This is similar to what the server pre-orders scenario (see

point (iii) on 100).

ii) the pre-order <∼clt compares the behaviour of clients only along unsuccessful executions of a trace.

The compliance pre-order checks the behaviour along all the executions of a trace.

iii) the pre-order <∼clt disregards completely the action X. The relation vclt compares X with the

other actions and considers it as the best action.

Now our touchstone is Definition 4.2.30, that is the characterisation of <∼clt. We want to adapt

that definition, so as to mirror the differences between vclt and <∼clt, and characterise vclt. To carry

out this task, we have to introduce more notation.

In Lemma 3.2.4 we have established that 0 complies with no process at all, and τ∞ complies with

every process. These facts leads to the ideas of usable client and of non-perfect client.

Definition 5.2.5. [ Usable clients ]

Let

Uaclt = { r | r a p, for some server p }

If r ∈ Uaclt then we say that r is a usable client.

The set Uaclt differs from Umust
clt , and the two notions of usability are not to be confused.

Example 5.2.6. [ Usability of clients are not comparable ]

In this example we prove that Umust
clt 6⊆ Uaclt and that Uaclt 6⊆ Umust

clt .

We prove the first inequality. Let r = (1 +α. 0) ⊕ α. 1. We depict the client r in Figure 5.3.

To prove that r ∈ Umust
clt we have to show a server p such that p must r. It easy routine work to

check that all the maximal computations of r || α. 0 are client-successful; so α. 0 must r. We have

proven that r ∈ Umust
clt .

Now we want to prove that r 6∈ Uaclt, that is r 6a p for every p ∈ CCSwτ . Intuitively, this is the

case because r
τ−→ α. 1, so for a server p to satisfy r (with respect to a) it is necessary that p offers

(modulo internal moves) the action α; so p
α

=⇒ p′. But this implies the existence of the computation

r || p τ−→ 1 +α. 0 || p =⇒ 0 || p′

and plainly 0 6a p′, so r 6a p.
We have shown that r ∈ Umust

clt , and r 6∈ Uaclt, so Umust
clt 6⊆ Uaclt.

We prove the second inequality, Uaclt 6⊆ Umust
clt . Intuitively, this is the case because a admits

livelocks with no client-successful states, whereas must requires all the computations to be client-

successful. We have already seen in Lemma 3.2.4 that τ∞ a p for every process p, so τ∞ Uaclt. On the

contrary, p 6must τ∞ for every p, so τ∞ 6∈ Umust
clt .
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We expect that if r1 vclt r2 then the observable behaviours of r1 and r2 be related. This is not

true if r2 is “perfect”, that it is satisfied by every server (τ∞ is such a client). We need some notation

to focus on the clients that are not satisfied by every server.

Definition 5.2.7. [ Non-perfect clients ]

Let

npf = { r | r 6a pbad for some server pbad }

If r ∈ npf then we say that the process r is non-perfect.

We give immediately a result that we will need in Lemma 5.2.24, and, in general, to prove the

soundness of the characterisation of vclt. Afterwards by means of examples we briefly comment on

perfect clients and their characteristic property.

Lemma 5.2.8. [ Characteristic property of non-perfect clients ]

For every r ∈ CCSwτ , r ∈ npf if and only if r
s

=⇒ r′ and r′ ⇓ , for some s ∈ Act?.

Proof. We have to show two implications,

ii) if r ∈ npf then there exists a s ∈ Act? such that r
s

=⇒ r′ and r′ ⇓ ;

iiii) if there exists a s ∈ Act? such that r
s

=⇒ r′ and r′ ⇓ , then r ∈ npf .

We prove the first implication. Let r ∈ npf . By definition there exists a server pbad such that

r 6a pbad. Consider the following relation,

R = { (r, p) | r, p ∈ CCSwτ , s ∈ Act?, r
s

=⇒ r′ implies r′ 6⇓ }

One can prove that R is a co-inductive compliance. Intuitively, this is true because if r R p, then r 6⇓
and r

τ−→, so condition (a) and condition (b) of Definition 3.2.1 are trivially true. Condition (c) is

also true, by construction of R. Since r 6a pbad, it follows that r 6R pbad.

In turn this implies that for some r′ and p′, r || pbad =⇒ r′ || p′ and one of the following is true,

• r′ ⇓ and p′ 6⇓

• r′ || p′
τ

6−→ and r′
X
6−→

In both cases, r′ ⇓ . Since r
s

=⇒ r′ for some s ∈ Act?, we have proven that if r ∈ npf then for some

s ∈ Act? and r′, r
s

=⇒ r′ and r′ ⇓ .

We prove the second implication. Fix a process r such that for some s ∈ Act? and r′, r
s

=⇒ r′ and

r′ ⇓ . To prove that r ∈ npf we have to exhibit a server that does not satisfy r with respect to the

compliance relation.

Let s = α1α2 . . . αn, and let pbad = α1.α2. . . . .αn.τ
∞. The computation r || pbad =⇒ r′ || τ∞, and

the fact that r′ ⇓ while τ∞ 6⇓ let us prove that r′ 6a τ∞, and so r 6a pbad.

Lemma 5.2.8 tells us that perfect clients are tightly related to divergence. Consider the next

example.

Example 5.2.9. [ Perfect clients ]

Let r = (τ∞ + β.τ∞) ⊕ τ∞; we prove that α. 1 vclt r. This is trivially true, because r is a perfect

client. Plainly, there is no trace of r that leads to a state that converges, so Lemma 5.2.8 ensures that

r is perfect.

Alternatively, we can prove also that r a p for every p. Consider the following relation,

R= { (r, p) | p ∈ CCSwτ } ∪ { (τ∞, p) | p ∈ CCSwτ }
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r usbl ε
r ∈ Uaclt; [usb-ax]

r usbl αs r ∈ U
a
clt, r

α

6=⇒; [usb-not]⊕
(r after α) usbl s

r usbl αs
r ∈ Uaclt, r

α
=⇒; [usb-alpha]

Figure 5.4: Inference rules for the functional Fusbl

The argument to prove that R is a co-inductive compliance is the same we used in Lemma 5.2.8 for

the R defined there.

Note that to prove Lemma 5.2.8 we need divergence in the LTS at hand, for we have used τ∞ to

prove the second implication.

The characteristic property of perfect clients under the assumption of convergence is not the one

stated in Lemma 5.2.8. We prove this by showing a client r that is perfect in 〈CCSwτ , Actτ X, −→〉
but not in 〈CCS⇓wτ , Actτ X, −→〉.

Example 5.2.10. [ Divergence and perfect clients ]

Let r2 = 1 +β. 1. In order to distinguish the clients α. 1 and r2 divergence is necessary. For instance,

let p = α. 0 +β.τ∞; α. 1 a p; whereas r2 6a p, because r1 || p =⇒ 1 || τ∞, and 1 ⇓ , while τ∞ 6⇓ , so

1 6a τ∞. This shows that r2 is not perfect.

In this example we prove that under the assumption of convergence , that is in the LTS

〈CCS⇓wτ , Actτ X, −→〉

the client r2 is perfect, and so α. 1 vclt r2.

We have to show that r2 a p for every p ∈ CCS⇓wτ . We prove that the following relation is a

co-inductive compliance,

R = { (r2, p) | p ∈ CCS⇓wτ } ∪ { (1, p) | p ∈ CCS⇓wτ }

We give the intuition behind the argument. Let r R p; since pp ∈ CCS⇓wτ point (a) of Defini-

tion 3.2.1 is satisfied. Moreover, by construction r
X−→, also point (b) of Definition 3.2.1 is true. Now

let r be a derivative of r2 and p′ a derivative of p. if r || p τ−→ r′ || p′, then either r′ = 1, or r′ = r2.

In both cases r′ R p′ by construction of R.

We introduce the notation to reason on the usability of clients along all the executions of finite

traces.

Definition 5.2.11. [ Usability after trace ]

Let Fusbl : P(CCSwτ ×Act?) −→ P(CCSwτ ×Act?) be the rule functional given by the inference

rules in Figure 5.4. Lemma C.0.25 and the Knaster-Tarski theorem ensure that there exists the least

solution of the equation X = Fusbl(X); we call this solution the usable after, and we denote it usbl :

That is usbl = µX.Fusbl(X).

The predicate usbl tells us nothing about the convergence of the clients, for instance τ∞ usbl s for

every string s ∈ Act?. This explains why we do not use the symbol ⇓.

The predicate usbl allows us to prove a property of traces analogous to what we proved in

Lemma 4.2.15.
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Lemma 5.2.12. For every s ∈ Act? and r ∈ CCSwτ , if r usbl s and r
s′

=⇒ for some s′ prefix of s, then⊕
(r after s′) ∈ Uaclt.

Proof. The argument is similar to the proof of Lemma 4.2.15.

By using usbl, we amend the definition of usable actions; we also take into account what we

discussed in Example 5.2.4.

Definition 5.2.13. [ Usable actions and X after trace ]

Let

uaX(r, s) = {α ∈ Act | r sα
=⇒ and r usbl sα } ∪ { X | r s

=⇒ X−→}

We refer to the set uaX(r, s) as the usable actions of r after s.

Again, the difference with Definition 4.2.16 is that the new predicate accounts for all the executions

of s, and not only the unsuccessful ones. Moreover, now we account for the action X; the role of this

action in the set uaX will become evident later on.

Definition 5.2.14. [ Acceptance sets with X ]

For every process r and s ∈ Act?, let

accX(r, s) = {SX(r′) | r s
=⇒ r′

τ

6−→}

where SX(r) = {α ∈ Act | r α−→} ∪ { X | r X−→}. We call accX(r, s) the acceptance set (with X)

of r after s.

To treat X as the best action, we change the way whereby we compare ready sets.

Let A vX B if and only

• if α ∈ A then α ∈ B or X ∈ B.

• if X ∈ A then X ∈ B

The relation vX provides a sound comparison between ready sets.

Example 5.2.15. All the following inequalities are true by definition of vX.

{α, β} vX {X}
{X} 6vX {α}
{α, δ} vX {X, δ}
{X} 6vX ∅

The first three inequalities show that X is better than any observable action.

We have all the notation we need to spell out the behavioural characterisation of vclt.

Definition 5.2.16. [ Semantic compliance client pre-order ]

Let r1 �clt r2 whenever for every s ∈ Act?, if r1 usbl s then for every B ∈ accX(r2, s), there exist a

set A ∈ accX(r1, s), such that A ∩ uaX(r1, s) vX B.

We prove first the completeness of �clt (Proposition 5.2.22), and then the soundness (Theo-

rem 5.2.25).

Lemma 5.2.17. For every r1, r2 ∈ CCSwτ , if r1 vclt r2, r1 Uaclt and r2
α

=⇒ r′2, r′2 ∈ npf , then

r1
α

=⇒ r′1, r′1 ∈ npf .
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Proof. The hypothesis that r′2 ∈ npf ensures that there exists a pbad such that r′2 6a pbad. The

hypothesis that r1 ∈ Uaclt ensures that there exists a p such that r1 a p. Let p̂ = p + α.pbad.

We prove that r2 6a p̂. This follows from the existence of the computation r2 || p̂ =⇒ r′2 || pbad, the

assumption r′2 6a p and Definition 3.2.1.

The hypothesis imply that r1 6a p̂. Consider the following relation,

R = { (r, p + α.q) | r, p, q ∈ CCSwτ , r a p, r
α

6=⇒} ∪ a

The construction of R ensures that it is a co-inductive compliance; intuitively, if r R p + α.q, then

either r a p + α.q, or r a p and no interaction on α can happen. In both cases we can prove that all

the requirements of Definition 3.2.1 are satisfied.

Since r 6a p̂, it follows that r 6R p̂; the assumption r a p and the definition of R ensure that r
α

=⇒
must be true.

The previous lemma is not true for traces which are not dangerous.

Example 5.2.18. [ Non perfect clients are necessary ]

Let us drop, in Lemma 5.2.17, the hypothesis that r′2 ∈ npf . The statement that we obtain is false.

It is relatively easy to prove that β. 1 vclt r, where r = β. 1 +α.τ∞. To see why the new version

of the lemma is false, note that β. 1 usbl α, r
α

=⇒, and β. 1
α

6=⇒.

Lemma 5.2.19. For every r1, r2 ∈ CCSwτ , if r1 vclt r2, r1 ∈ Uaclt, r1
α

=⇒ and r2
α

=⇒, then⊕
(r1 after α) vclt

⊕
(r1 after α).

Proof. Let r̂2 =
⊕

(r2 after α) and r̂1 =
⊕

(r1 after α). We have to prove that r̂1 vclt r̂2. Fix a

process p′ such that r̂1 a p′, we are required to prove that r̂2 a p′.
By hypothesis r1 ∈ Uaclt, so there exists a process p such that r1 a p. Let p̂ = p + α.p′. Thanks

to the assumptions on p′ and p, one can show that r1 a p̂; the witness of this is the co-inductive

compliance

R = { (r′, p + α.q) | r1 =⇒ r′, r1 a p, r̂1 a q } ∪ a

The hypothesis r1 vclt r2 ensures that r2 a p̂. For every r′ ∈ (r2 after α). the computation

r2 || p̂ =⇒ r′ || p′ and Corollary 3.2.7 imply that r′ a p′. In turn this implies that r̂2 a p′.
We have proven that if r̂1 a p′ then r̂2 a p′, so r̂1 vclt r̂2.

The compliance client pre-order relates the existence of stable states after a trace.

Lemma 5.2.20. For every s ∈ Act?, and every r1, r2 ∈ CCSwτ , if r1 vclt r2, r1 usbl s and r2
s

=⇒
r′2

τ

6−→ then r1
s

=⇒ r′1
τ

6−→.

Proof. Fix a string s and two processes r1 vclt r2 such that r2
s

=⇒ r′2
τ

6−→; we have to to exhibit a r′1

such that r1
s

=⇒ r′1
τ

6−→.

The proof is by induction on s.

Base case (s = ε) In this case r2
ε

=⇒ r′2
τ

6−→, and we have to show that there exists r′1 such that

r1
ε

=⇒ r′1
τ

6−→.

As r′2 is stable, it follows that r′2 6a τ∞, because r′2 ⇓ and τ∞ 6⇓ . In turn, this ensures that

r2 || τ∞ =⇒ r′2 || τ∞, imply that r2 6a τ∞. The hypothesis r1 vclt r2 ensures that r1 6a τ∞. The next

relation is not a co-inductive compliance

R = { (r′, τ∞) | r1 =⇒ r′ }
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Since the pairs in R satisfy point (b) and point (c) of Definition 3.2.1, it follows that R contains a

pair (r′, τ∞) such that r′ ⇓ . The definition of R implies that r1
ε

=⇒ r′. The definition of ⇓ ensures

that r′ =⇒ r′′
τ

6−→ for some r′′, and so r1
ε

=⇒ r′′
τ

6−→.

Inductive case (s = αs′) In this case we have to prove that r2
αs′
=⇒ r′2 ⇓ . The hypothesis ensure

that r1 usbl αs′.

Since s′ is shorter than s, the inductive hypothesis states that

for every r̂1, r̂2 ∈ CCSwτ , if r̂1 vclt r̂2, r̂′1 usbl s and r̂2
s′

=⇒ r̂′2
τ

6−→ then r̂1
s′

=⇒ r̂′1
τ

6−→.

Let r̂2 =
⊕

(r2 after α). Definition 4.1.5 implies that r̂2
s′

=⇒ r′2. Since r′2 ⇓ , r′2 ∈ npf , and so we

can prove that r2
α

=⇒. As r1 usbl αs′ implies r1 ∈ Uaclt, we use Lemma 5.2.17 to prove that r1
α

=⇒; so

the set (r1 after α) is non-empty. Let r̂1 =
⊕

(r1 after α). Since r1
α

=⇒, the hypothesis r1 usbl αs′

must have been derived by using rule [usb-alpha],

...⊕
(r1 after α) usbl s

r1 usbl αs
r1 ∈ Uaclt, r1

α
=⇒; [usb-alpha]

The premises of rule [usb-alpha] above ensure that r̂1 usbl s′; now Lemma 5.2.19 implies that

r̂1 vclt r̂2, and that r̂1 usbl s′.

Since r̂2
s′

=⇒ r′2 ⇓ , we know enough to apply the inductive hypothesis to r̂1 and r̂2; it follows that

r̂1
s′

=⇒ r′1 ⇓ for some r′1. The definition of r̂1 lets us prove that r1
αs′
=⇒ r′1 ⇓ .

The next results are analogous to Lemma 4.2.27 and Lemma 4.2.28.

Lemma 5.2.21. For every s ∈ Act?, and r1, r2 ∈ CCSwτ , if r1 vclt r2 and r1 usbl s, then for every

B ∈ accX(r2, s), there exist a A ∈ accX(r1, s), such that A ∩ uaX(r1, s) vX B.

Proof. The argument is by induction on the string s.

Base case (s = ε) Fix a ready set B ∈ accX(r2, ε). Thanks to the hypothesis and Lemma 5.2.20,

the set accX(r1, ε) is non-empty, accX(r1, ε) = {Ai | i ∈ I } for some non-empty set I. Now we

proceed by contradiction; suppose that

for every i ∈ I there exists an action α̂i such that α̂i ∈ Ai ∩ uaX(r1, ε), α̂i 6∈ B.

This essentially means two things,

• X 6∈ B,

• for every i ∈ I such that α̂i ∈ Act , α̂i 6∈ B

By using this assumption, we show a server p such that (a) r2 6a p, and (b) r1 a p.
Let for J ⊆ I, be the indexes of the actions α̂j in Act ; that is the α̂i which are not X.

The definition of uaX ensures that for every j ∈ J there exists a p̂j such that⊕
(r1 after α̂j) a p̂j

Let p =
∑
j∈J α̂j .p̂j .

We prove point (a): r2 6a p. Let r′2 be the state such that SX(r′2) = B and r′2
τ

6−→. By construction

p
τ

6−→, so Cn || r′′2 stable. This is true because none of the actions offered by p is matched by any

actions in B. Since X 6∈ B, it follows that r′2 6a p. Corollary 3.2.7 and r2 || p =⇒ r′2 || p imply that

r2 6a p.
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We have proven (a), that is r2 6a p; now we prove (b). We have to show that r1 a p. We are

required to exhibit a co-inductive compliance R such that r1 R p̂. Let

R′ = { (r′,
∑
j∈J α̂j .p̂j) | r1 =⇒ r′,

⊕
(r1 after α̂j) a p̂j }

R = R′ ∪ a

Plainly, r1 R p; we prove that R is a co-inductive compliance. That is, we show that R ⊆ Fa(R).

Fix a pair r R p; Definition 3.2.1 requires us to prove three properties, namely

i) if r ⇓ then p ⇓

ii) if r || p
τ

6−→ then r
X−→

iii) if r || p τ−→ r′ || p′ then r′ R p′

Since r R p, either r a p or r R′ p. In the first case Definition 3.2.1 ensures that the pair (r, p)

enjoys the three properties. Suppose that r R′ p. It follows that r1
sk=⇒ r and p =

∑
j∈J α̂j .p̂j .

• We prove that if r ⇓ then p ⇓ . This is true because by construction p ⇓ .

• We prove that if r || p
τ

6−→ then r
X−→. As r

τ

6−→ and r1 =⇒ r, SX(r) ∈ accX(r1, ε). The

assumption r || p
τ

6−→ ensures that r does not engage in any visible action α̂j ; the assumption

on the ready sets Ai’s, and the actions α̂j ’s ensure that X ∈ SX(r). It follows that r
X−→

• We have to prove that if r || p τ−→ r′ || p′, then r′ R p′. The argument depends on the rule used

to infer the reduction. Note that p is stable, so we have only two cases to discuss.

– If rule [p-Right] was used, then r
τ−→ r′, and p′ = p. Since r1 =⇒ r

τ−→ r′, r1 =⇒ r′. It

follows that r′ R′ p′, and so r′ R p′.

– If rule [p-Synch] was applied, then there exists the derivation

r
δ−→ r′

...

p
δ−→ p′

r || p τ−→ r′ || p′
[p-Synch]

The construction of p ensures that δ = α̂j for some j ∈ J , and p′ = p̂j . Moreover,

r′ ∈ (r1 after α̂j). Since by construction
⊕

(r1 after α̂j)p̂j , one can prove that r′ a p̂j ,
thus r′ R p′.

We have proven that the relation R is a co-inductive compliance, so (b) is proven: r1 a C0.

Inductive case (s = αs′) In this case we want to prove that if B ∈ acc(r2, αs
′), then A ∈

acc(r1, αs
′) such that A ∩ uaX(r1, αs

′) vX B. As s′ is shorter than s, the inductive hypothesis

ensures the following implication,

for every r̂1, r̂2 ∈ CCSwτ , if r̂1 vclt r̂2, r̂1 usbl s′ and then for every B′ ∈ accX(r2, s
′), there exist a

A′ ∈ accX(r1, s
′), such that A′ ∩ uaX(r1, s

′) vX B′.

We prove enough facts as to let us use the inductive hypothesis. Since B ∈ acc(r2, αs
′) we know

that r2
α

=⇒; let r̂2 =
⊕

(r2 after α). Note that B ∈ acc(r2, αs
′) ensures that there exists a r′2 such

that r2
α

=⇒ r′2wts
′r′ ⇓ , where r′ is the term with ready set B. Lemma 5.2.8 and r′2

s′
=⇒ r′ ⇓ , imply

that r′2 ∈ npf . The hypothesis r1 usbl αs′ implies that r1 ∈ Uaclt. Now r2
α

=⇒ r′2 and r′2 ∈ npf and

Lemma 5.2.17 implies that r1
α

=⇒. Let r̂1 =
⊕

(r1 after α). Lemma 5.2.19 implies that r̂1 vclt r̂2.
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Since r1
α

=⇒, the hypothesis r1 usbl αs′ ensures that r̂1 usbl s′. We have proven all we need to use the

inductive hypothesis.

Since B ∈ acc(r2, αs
′), B ∈ acc(r̂2, s

′). The inductive hypothesis ensures that there exists a

A ∈ acc(r̂1, s
′) such that A′∩uaX(r̂1, s

′) vX B. Since acc(r1, αs
′) = acc(r̂1, s

′) and uaX(r1, αs
′) =

uaX(r1, s
′), it follows that there exists a set A ∈ acc(r1, αs

′) such that A ∩ uaX(r1, αs
′) vX B.

Proposition 5.2.22. [ Completeness ]

If r1 vclt r2 then r1 �clt r2.

Proof. Follows from Lemma 5.2.21.

We need two lemmas to prove the converse of Proposition 5.2.22.

Lemma 5.2.23. If r1 �clt r2 and r1
τ−→ r′2 then r1 �clt r

′
2.

Proof. Fix two processes r1 and r2 such that r1 �clt r2 and r2
τ−→ r′2. We have to show that

r1 �clt r
′
2. Definition 5.2.16 requires us to prove the following properties, for every s ∈ Act? such that

r1 usbl s, for every B ∈ accX(r′2, s), there exist a A ∈ accX(r1, s), such that A ∩ uaX(r1, s) vX B.

Fix a string s ∈ Act? such that r1 usbl s. Suppose that B ∈ accX(r′2, s); Definition 5.2.14 and the

hypothesis r2
τ−→ r′2 imply that B ∈ accX(r2, s). The hypothesis r1 �clt r2 and Definition 5.2.16

imply that there exist a A ∈ accX(r1, s), such that A ∩ uaX(r1, s) vX B.

Lemma 5.2.24. Let r1 �clt r2. If r1 ∈ Uaclt, r2
α−→ r′2, and r′2 ∈ npf , then

i) the set (r1 after α) is non-empty

ii) if (r1 after α) 6= ∅, then
⊕

(r1 after α) �clt r
′
2

Proof. We prove point (i). Since r′2 ∈ npf , Lemma 5.2.8 ensures that r′2
s

=⇒ r′′2 ⇓ for some r′′2 , and

so r2
αs

=⇒ r′′2 . Either r1 6usbl αs or r1 usbl αs.

• if r1 6usbl αs then rule [usb-not] (see Figure 5.4) cannot be used, for otherwise r1 usbl α. Since

r1 ∈ Uaclt, it follows that the second side condition of [usb-not] must be false: r1
α

=⇒.

• if r1 usbl αs then r2
αs

=⇒ r′′2 and the hypothesis r1 �clt r2 implies that r1
αs

=⇒ r′1; so r1
α

=⇒

We prove point (ii). Suppose that the set (r1 after α) be non-empty, and let r̂ =
⊕

(r1 after α).

We have to explain why r̂ �clt r
′
2. Definition 5.2.16 requires us to prove the following condition, for

every B ∈ accX(r′2, s), there exist a A ∈ accX(r̂, s), such that A ∩ uaX(r1, s) vX B
First note that the hypothesis r1 ∈ Uaclt ensures the implication

for every s ∈ Act?, if r̂ usbl s then r1 usbl αs (5.6)

This is true because if r̂ usbl s then there is the following derivation

r̂ usbl s
r1 usbl αs

r1 ∈ Uaclt, r1
α

=⇒; [usb-alpha]

Fix a string s ∈ Act? such that r̂ usbl s and B ∈ accX(r′2, s) for some set B.

Since r1 usbl αs, Definition 5.2.16, and the hypothesis r1 �clt r2 imply that there exist a A ∈
accX(r1, αs), such that A ∩ uaX(r1, αs) vX B. Thanks to the equality uaX(r1, αs) = uaX(r̂, s) the

previous inclusion becomes A ∩ uaX(r̂, s) vX B. The equality accX(r1, αs) = accX(r̂, s) implies

that A ∈ accX(r1, s).

Theorem 5.2.25. [ Alternative characterisation vclt ]

For every r1, r2 ∈ CCSwτ , r1 vclt r2 if and only if r1 �clt r2.
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Proof. We have to show that if r1 �clt r2, then r1 vclt r2. It suffices to prove that the relation R
defined below is a co-inductive compliance.

R = { (r2, p) | r1 �clt r2, r1 a p }

Fix a pair r R p; we are required to prove that the pair affords three properties, namely

a) if r ⇓ then p ⇓

b) if r || p
τ

6−→, then r
X−→

c) if r || p τ−→ r′ || p′, then r′ R p′

Either r 6∈ npf or r ∈ npf . In the first case r a p, so (a) and point (b) are guaranteed by

Definition 3.2.1. We prove (c). Suppose that r || p τ−→ r′ || p′. Since r is perfect, so must be r′; it

follows that r′ a p′. Since r′ �clt r
′, r′ R p′.

Suppose that r ∈ npf . Then there exists an r1 and a p such that r1 a p and r1 �clt r. Since

r1 a p, r1 usbl ε; that is

r1 ∈ Uaclt (5.7)

We prove (a). Suppose r ⇓ ; then r
ε

=⇒ r′
τ

6−→. Since r1 ∈ Uaclt (Eq. (5.7) above), and Defini-

tion 5.2.16 ensures that the set r1
ε

=⇒ r′1
τ

6−→. The assumption that r1 a p and r1 || p =⇒ r′1 || p,
imply that r′1 a p. Condition (a) of Definition 3.2.1 and r

τ

6−→ imply that p ⇓ .

We prove point (b). Assume that r || p
τ

6−→; our aim is to show that r
X−→.

The composition r || p is stable, so r
τ

6−→. It follows that SX(r) ∈ accX(r, ε). As r1 usbl ε, so

Lemma 5.2.21 implies that there exists a set A ∈ accX(r1, ε) such that

A ∩ uaX(r1, ε) vX SX(r)

Definition 5.2.14 ensures that there exists a state r′1 such that r1
ε

=⇒ r′1
τ

6−→, and SX(r′1) = A. It

follows that

SX(r′1) ∩ uaX(r1, ε) vX SX(r)

We prove that r′1 || p
τ

6−→.

It suffices to show that if p
α−→ p′, then α 6∈ SX(r′1).

If α ∈ SX(r′1), then let r′ ∈ (r1 after α); plainly r1 || p
τ−→ r′ || p′. The assumption r1 a p implies

that r′ a p′. This can be used to prove that
⊕

(r1 after α) a p′. It follows that if α ∈ SX(r′1), then

α ∈ uaX(r1, ε). This implies that α ∈ SX(r), and so r || p τ−→. As this contradicts the assumption

r || p
τ

6−→, it follows that r′1 6∈ SX(r′1).

Since p is stable, r′1 is stable, and p
α−→ implies that r′1

α

6−→, it follows that r′1 || p
τ

6−→. The

assumption r1 a p, and r1 =⇒ r′1 imply that r′1 a p. Since r′1 || p
τ

6−→, Definition 3.2.1 ensures that

r′1
X−→, so X ∈ SX(r′1); in turn this implies that X ∈ SX(r). It follows that r

X−→.

Now we prove (c). Suppose that r || p τ−→ r′ || p′; we are required to prove that r′ R p′. The

definition of R requires us to exhibit a r̂ such that

r̂ �clt r
′, r̂ a p′

The argument is by case analysis on why r || p τ−→ r′ || p′.
If r′ is perfect, then r′ �clt r

′ and r′ a p′, so the r̂ we are after is r itself.

Let us assume r′ ∈ npf . If the reduction is due to rule [p-Left], then r
τ−→ r′, and p′ = p. The

assumption r1 �clt r and Lemma 5.2.23 let us prove that r1 �clt r
′. As r1 a p, we know enough to

state that r′ R p′.
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If the reduction is due to rule [p-Right], then p
τ−→ p′, and r = r′; the candidate r̂ is r1. On

the one hand know that r1 �clt r, thus r1 �clt r′; on the other hand r1 a p, thus point (c) of

Definition 3.2.1 implies that r1 a p′. It follows that r′ R p′.

If the reduction is due to rule [p-Synch], the r
α−→ r′, p

α−→ p′. Since r′ ∈ npf , Eq. (5.7) above,

r1 �clt r and Lemma 5.2.24 imply that
⊕

(r1 after α) �clt r
′.

Our candidate r̂ is
⊕

(r1 after α). We have to prove that r̂ a p′. Let

R′ = { (r′, p′) | r̂ =⇒ r′, p
α

=⇒ p′ }
R = R′ ∪ a

The argument to prove that the relation R is a co-inductive compliance is similar to proof of

Lemma 3.2.8.

Since r̂ a p′ and r̂ �clt r
′, the definition of R ensures that r′ R p′.

5.2.1 Comparison with other pre-orders

In this section we show that vclt differs from all the pre-orders that we have studied so far. This is

not surprising, as one would not expect clients to be compared as servers or peers; yet it proves that

it is necessary to introduce Definition 5.2.16.

In Eq. (5.5) we have shown that the client pre-orders are not comparable. Also the following

inequalities are true

1 vsvr 0 1 6vclt 0

α. 1 +β. 0 6vsvr α. 0 α. 1 +β. 0 vclt α. 0

α. 1 <∼p2p 1 +α. 0 α. 1 6vclt 1 +α. 0

The inequalities in the first two rows let us prove also that vclt is not comparable with <∼svr. The

fact that vclt 6⊆ <∼clt and the set inclusion <∼p2p ⊂ <∼clt imply that vclt 6⊆ <∼p2p.

In Section 5.1, we have used the relations -svr and �svr to prove that in sub-LTSs of

〈CCSwτ , Actτ X, −→〉

the must server pre-order and the compliance server pre-order are comparable, or even coincide.

This is possible because the characterisations remain sound and complete even if we focus on certain

sub-LTSs of the original one. This is not the case for the client characterisations -clt and �clt.

Let us restrict our attention to the LTS of convergent terms.

Proposition 5.2.26. The relation -clt is not a complete description of <∼
⇓
clt: <∼

⇓
clt 6⊆ -clt.

Proof. In Example 4.2.26 we have shown that 1 <∼clt 1 ⊕ 1 under the assumption of convergence.

Observe now that 1 6-clt 1 ⊕ 1, because 1 ⊕ 1
ε

=⇒6X, whereas 1
ε

6=⇒6X.

A similar result is true for the compliance based pre-order.

Proposition 5.2.27. The relation �clt is not a complete description of v⇓clt: v⇓clt 6⊆ �clt.

Proof. In Example 5.2.10 we have proven that α. 1 v⇓clt 1 +β. 1. Note now that α. 1 6�clt 1 +β. 1,

because { X } ∈ accX(1 +β. 1, β), whereas accX(α. 1, β) = ∅.

We leave as an open problem the characterisation of the client pre-orders on sub-LTSs of the

one we used. We partly address this issue in Section 6.2 and Section 6.5, where we characterise the

client pre-orders on the LTS denoted by session contracts. In that context the restricted must client

pre-order is coarser than than the restricted compliance client pre-order (see Corollary 6.5.15).
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5.3 Peer pre-order

Our knowledge of the compliance server pre-order and of the compliance client pre-order lets us study

easily the third pre-order given by the relation a, the compliance peer pre-order.

Definition 5.3.1. [ Compliance peer pre-order ]

We write p vp2p q if and only if p ap2p r implies that q ap2p r for every process r. We refer to the

relation vp2p as the compliance peer pre-order.

First, we prove that vp2p and <∼p2p are not comparable, so we have to find a behavioural charac-

terisation for vp2p.

Example 5.3.2. In this example we prove the following inequalities,

vp2p 6⊆ <∼p2p,
<∼p2p 6⊆ vp2p

We prove the left inequality. We exhibit two processes p and q such that p vp2p q and p 6<∼p2p q. In

Example 5.2.6 we proved that that the term p = (1 +α. 0) ⊕ α. 1 is not usable with respect to a.1

Let q = α. 0. The inequality p vp2p q is true because the process p is not a usable peer, that is there

exist no r such that r ap2p p, then r ap2p q.
In the must setting, the process p is a usable peer, for instance α.β. 1 mustp2p p. The process q

on the other hand is not a usable peer, because it perform no X at all. It follows that r 6mustp2p q,

and so p 6<∼p2p q. We have shown that vp2p 6⊆ <∼p2p.

We prove the right inequality. We see easily that α. 1 <∼p2p 1 +α. 0. On the contrary, α. 1 6vp2p

1 +α. 0; a peer that shows this is r = α. 1. The proof that α. 1 ap2p r amounts to showing that the

following relation is a peer compliance,

{ (α. 1, α. 1), (1, 1) }

On the contrary, 1 +α. 0 || r τ−→ 0 || 1; since 0
X
6−→, 1 +α. 0 6ap2p r. We have proven that <∼p2p 6⊆ vp2p.

The scenario that we haven seen in Section 4.3 appears in the setting of compliance as well:

it is easy to show that vclt ∩ vsvr ⊆ vp2p (see Proposition 5.3.28), while the converse is false,

vp2p 6⊆ vclt ∩ vsvr. This is because vp2p 6⊆ vsvr, and the core of the difference between vp2p and

vsvr is the non-trivial usability of peers.

Example 5.3.3. The mutual compliance pre-order is not in the server pre-order; that is vp2p 6⊆ vsvr.

We have α. 0 vp2p 1; this is true because the peer α. 0 is not usable.

On the contrary, α. 0 6vsvr 1, the distinguishing test being r = α. 1.

We will see that the pre-order vp2p is related to vsvr and vclt in the same way that <∼p2p is related

to <∼svr and <∼clt. The proofs of the client-properties of vp2p, though, are not as easy as the the proof

of Proposition 4.3.5.

In Section 4.3 we have used Lemma 4.1.23 to prove that <∼p2p ⊆ <∼clt (Proposition 4.3.5). The

proof of Proposition 4.3.5 does not work for vp2p. The crucial difference between the must setting

and the compliance setting is that if r
X−→ then p must r is trivially true, whereas r a p may be false;

for instance α. 0 must α. 0 + 1, whereas α. 0 + 1 6a α. 0.

Another issue, and indeed the more demanding one, is that the usability of peers differs from the

usability of clients.

1Note that the term p is called r1 in Example 5.2.6.
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Example 5.3.4. [ Usability of peers ]

In this example we show that r ∈ Uaclt does not imply that there exists a peer p such that r ap2p p.
Let r = α.τ∞ + α. 1. It is easy to prove that r ∈ Uaclt, for instance r a α. 0.

If we treat r as a peer, then to show that is usable we have to exhibit a p such that r ap2p p.
Observe point (i) of Definition 3.2.11, and consider a process α.p. If p ⇓ then r 6ap2p α.p because

τ∞ 6⇓ . If p 6⇓ then r 6ap2p α.p because 1 ⇓ . It follows that for every p ∈ CCSwτ , r 6a p.

Example 5.3.4 motivates the introduction of yet another set of usable processes. In the current setting,

it is convenient to discuss few general properties of peers and vp2p, then prove the client-properties

of vp2p, and afterwards its server-properties. The client-properties and the server-properties of vp2p

are proven in two different subsections.

Definition 5.3.5. [ Usable peers ] Let Uap2p = { p | p ap2p q for some peer q }

In Example 5.3.4 we have seen a client that is not a usable peer. Indeed, to be usable as a peer

is more demanding than to be usable as a client. The additional requirement that is necessary for a

peer p to be usable is that after any trace, all the derivatives of p be either convergent or divergent;

formally, if p
s

=⇒ then one of the following is true,

1. for every p′ ∈ (p after s), p′ ⇓

2. for every p′ ∈ (p after s), p′ 6⇓

For instance, in Example 5.3.4 r is not usable because (r after α) = { τ∞, 1 }, and τ∞ 6⇓ , while

1 ⇓ .

From now on we use the symbol usbl to denote a predicate defined as in Definition 5.2.11, but

using Uap2p in place of Uaclt. This is true also for the set of usable actions ua.

Lemma 5.3.6. For every s ∈ Act? and p ∈ CCSwτ , if p usbl s and p
s′

=⇒ for some s′ prefix of s, then⊕
(p after s′) ∈ Uap2p .

Proof. The argument is similar to the proof of Lemma 4.2.15.

We need a result on the convergence of peers. Recall the symbol � given in Definition 5.1.4.

Lemma 5.3.7. For every p, r ∈ CCSwτ such that p ap2p r, if r � s and r
s

=⇒, then p � s.

Proof. If p
s

6=⇒ the argument is straightforward. Suppose that p
s

=⇒. Pick a r′ ∈ (r after s); for

every p′ ∈ (p after s) we infer the computation

p || r =⇒ p′ || r′

from which it follows that p′ ap2p r′. The hypothesis that r � s implies that r′ ⇓ , and so point (a)

of Definition 3.2.11 ensures that p′ ⇓ . The only assumption on p′ is that p′ ∈ (p after s), so the

argument implies that
⊕

(p after s) ⇓ . In turn this lets us prove that p � s.

Lemma 5.3.8. For every string s ∈ Act?, and p, q ∈ CCSwτ , if p vp2p q, p usbl s, q
s

=⇒, then p
s

=⇒.

Proof. Fix a string s ∈ Act? and two processes p and q that satisfy the hypothesis. To prove that p
s

=⇒
we reason by contradiction. Suppose that p

s

6=⇒, and let s′ be the longest prefix of s performed by p.

Let s′ = α1α2 . . . αn, where n < len(s). We use this assumption to define a peer A that distinguishes,

in the sense that

a) A ap2p p

b) A 6ap2p q
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The hypothesis that p usbl s and Lemma 5.3.6 imply that for every 0 ≤ i ≤ n there exists a peer rn

such that ⊕
(p after sn) ap2p rn

Let

Ai
def
=

ri + αi+1.Ai+1 if i ≤ n

αi. 0 if i = n+ 1

The peer that distinguishes p and q is A0.

To see why A0 6ap2p q, consider the computation

A0 || q =⇒ 0 || q′

where q′ is reached by q after the trace α1 . . . αn+1. If q′ 6⇓ , then 0 6ap2p q′; if q′ ⇓ then the computation

can be extended to a stable state 0 || q′′; since 0 it follows that 0 6ap2p q′′. In both cases A0 6ap2p q.
The hypothesis p vp2p q implies that A0 6a p. In view of this fact, to prove that p

s
=⇒ it is enough

to show a co-inductive mutual compliance R such that if p
s

6=⇒, then A0 R p.

Let

R = { (r + β.q, p) | r ap2p p, if p
α

=⇒ then
⊕

(p after β) ap2p q } ∪ ap2p

We explain why the elements of R enjoy the properties required by Definition 3.2.11. Let A R p′,

we show one by one the following facts,

i) A ⇓ if and only p′ ⇓

ii) if A || p′
τ

6−→ then A
X−→, p

X−→

iii) if A || p′ τ−→ A′ || p′′ then A′ R p′′

If A a p′ then the properties above are true, so suppose that A R p′ because of the auxiliary relation

in the definition of R. It follows that A = r + β.q, that r a p, and that p
β

=⇒.

Point (ii) is true because r ap2p p and A ⇓ if and only if r ⇓ .

To prove point (ii) suppose that A || p′
τ

6−→. It follows that A
τ

6−→, and that r || p′
τ

6−→, so r ap2p p
implies r

X−→; this ensures that A
X−→.

The proof of point (iii) is by case analysis on the rule used to infer the reduction A || p′ τ−→ A′ || p′′.
If the rule used is [p-Left], then A

τ−→ A′ and p′ = p′′. The internal move of A must have been due

to the r in it, so A′ = r′ + β.q and r
τ−→ r′. Definition 3.2.11 ensures that r′ a p, so A′ R p′′.

If the rules used to infer the reduction was [p-Right], then A = A′ and p′
τ−→ p′′. Definition 3.2.11

ensures that r′ a p. If p′′
β

6=⇒ then A′ R p′′. If p′′
β

=⇒, then note that
⊕

(p′ after β) ap2p q implies

that
⊕

(p′′ after β) ap2p q, and so A′ R p′′.

If the reduction is due to [p-Synch], then the argument depends on the which one of the summands

of A performed the action. If r caused the interaction of A, then A′ = r′ for some r′ such that r
δ−→ r′;

it follows that p′
δ−→ p′′. Since r ap2p p, Definition 3.2.11 implies that r′ ap2p p′′; in turn this implies

that A′ R p′′.

If β.q caused the interaction of A, then A′ = q and p′ ∈ (p′ after β). As
⊕

(p′ after β) ap2p q,
it follows that p′′ ap2p q, and so A′′ ap2p p′′.

If p
s

6=⇒ then one can prove that A0 R p, but this cannot be true, so p
s

=⇒.

Lemma 5.3.9. For every p, q ∈ CCSwτ , if p vp2p q, p ∈ Uap2p , and q
α

=⇒, then p
α

=⇒.

Proof. The argument is similar to the proof of Lemma 5.2.17, but in this case we use pbad = 0.

Lemma 5.3.10. For every p, q ∈ CCSwτ , if p vp2p q, p ∈ Uap2p , p
α

=⇒, and q
α

=⇒, then
⊕

(p after

α) vp2p

⊕
(p after α).
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Proof. The proof of this lemma is similar to the proof of Lemma 5.2.19.

Client-properties of vp2p

Now we turn our attention to the client-properties of vp2p.

Lemma 5.3.11. For every s ∈ Act?, and every p, q ∈ CCSwτ , if p vp2p q, p usbl s and accX(q, s) 6= ∅
then accX(p, s) 6= ∅.

Proof. The proof of this lemma is similar to the proof of Lemma 5.2.20

To adapt Lemma 5.2.21 to the pre-order vp2p we have to change the way in which the action X

is compared with the other actions. According to the compliance client pre-order, the action X is

better than any visible action, and this fact is mirrored by the use of vX in Lemma 5.2.21. When we

use the peer pre-order, X is no longer the best action.

Example 5.3.12. [ X not best action ]

We prove that α. 1 6vp2p 1. Intuitively, this is true because 1 offers to the peers fewer interactions than

α. 1. In fact, α. 1 ap2p α. 1, as the relation { (α. 1, α. 1), (1 1) } is a co-inductive peer compliance. On

the contrary, 1 6ap2p α. 1, because 1 || α. 1
τ

6−→ and α. 1
X
6−→.

Lemma 5.3.13. For every s ∈ Act?, and p, q ∈ CCSwτ , if p vp2p q and p usbl s, then for every

B ∈ accX(q, s), there exist a A ∈ accX(p, s), such that A ∩ uaX(p, s) ⊆ B.

Proof. The proof of this lemma is similar to the proof of Lemma 5.2.21, and uses Lemma 5.3.11 in

place of Lemma 5.2.20. In the current setting, the action X may be in the ready set B, and we replace

the server p of Lemma 5.2.21 with a peer r. The proof that r 6ap2p q depends on the fact that r does

not perform X.

Corollary 5.3.14. For every s ∈ Act?, and p, q ∈ CCSwτ , if p vp2p q and p usbl s, then for every

B ∈ accX(q, s), there exist a A ∈ accX(p, s), such that A ∩ uaX(p, s) vX B.

Proof. It follows from the fact that A ⊆ B implies that A vX B.

Lemma 5.3.15. The pre-order vp2p is contained in �clt.

Proof. It follows from Corollary 5.3.14 and Definition 5.2.16.

Example 5.3.12 proves that converse of Lemma 5.3.15 is not true.

Server-properties of vp2p

To prove the server-properties of vp2p we amend the convergence predicate � (Definition 5.1.4) and

�svr (Definition 5.1.7) so as to account for the usability of peers.

Definition 5.3.16. [ Peer compliance convergence after trace ]

For every s ∈ Act? and process p, we write p �p2p s if and only if p usbl s and p � s.

Definition 5.3.17. Let p 4usvr q whenever for every s ∈ Act?, if p �p2p s, then

(1) q � s

(2) for every B ∈ acc(q, s) there exists some A ∈ acc(p, s) such that A ∩ uaX(p, s) ⊆ B

(3) if q
s

=⇒, then p
s

=⇒

We adapt Lemma 5.1.9 and Lemma 5.1.11 to the new setting.

Lemma 5.3.18. For every string s ∈ Act?, and every p, q ∈ CCSwτ , if p vp2p q and p �p2p s, then

q � s.

Proof. The argument is by induction on s.
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Base case (s = ε) In this case p �p2p ε, so p ∈ Uap2p and p ⇓ . We have to prove that q � ε, that is

q ⇓ . Since p ∈ Uap2p there exists a peer r such that p ap2p r; since p ⇓ , r ⇓ . The hypothesis p vp2p q

implies that q ap2p r. Definition 3.2.11 and r ⇓ ensure that q ⇓ .

Inductive case (s = αs′) In this case we have to prove that q � αs′. If q
α

6=⇒ then we derive

q � αs′ q
α

6=⇒; [wconv-ax-not]

If q
α

=⇒, then let q̂ =
⊕

(q after α). Since s′ is shorter than s, the inductive hypothesis states the

following implication,

for every p′, q′ ∈ CCSwτ , if p′ vp2p q
′, and p′ �p2p s

′, then q′ � s′.

Since p ∈ Uap2p , Lemma 5.3.9 and q
α

=⇒ imply that p
α

=⇒; let p̂ =
⊕

(p after α). Lemma 5.3.10

implies that p̂ vp2p q̂. The hypothesis p �p2p αs
′ ensures that p̂ �p2p s

′. We have proven enough facts

to use the inductive hypothesis, which implies that q̂ � s′. Since q
α

=⇒, we derive the following fact,

p̂ � s′

q � αs′
q

α
=⇒; [wconv-alpha]

Corollary 5.3.19. For every s ∈ Act?, and p, q ∈ CCSwτ , if p vp2p q and p �p2p s, then for every

B ∈ acc(q, s), there exist a A ∈ acc(p, s), such that A ∩ uaX(p, s) ⊆ B.

Proof. The hypothesis p �p2p s implies that p usbl s, so the result follows from Lemma 5.3.13 and the

facts that for every r and s′ ∈ Act? (a) B ∈ accX(r, s′) if and only if B \ {X} ∈ accX(r, s′); and (b)

A ∩ uaX(p, s) ⊆ B implies that A \ {X} ∩ uaX(p, s) ⊆ B \ {X}.

Thanks to these results we can define a server pre-order that takes the usability of peers into the

account.

Lemma 5.3.20. For every p, q ∈ CCSwτ , p vp2p q if and only if p 4usvr q.

Proof. Immediate from Lemma 5.3.18, Corollary 5.3.19, and Lemma 5.3.8.

The converse of the previous lemma is not true.

Example 5.3.21. In this example we prove that 4usvr 6⊆ vp2p. Let p = τ∞ and q = β. 0. Since p

diverges and perform no trace, for every s ∈ Act?, p 6�p2p s; it follows that p 4usvr q is trivially true.

However, p ap2p τ∞, whereas q 6ap2p τ∞, so p 6vp2p q.

We will need the next two lemmas.

Lemma 5.3.22. For every p, q ∈ CCSwτ , if p 4usvr q and q
τ−→ q′ then p 4usvr q′.

Proof. The argument is analogous to the proof of Lemma 5.1.13.

Lemma 5.3.23. For every p, q ∈ CCSwτ , if p 4usvr q, p ∈ Uap2p , and q
α−→ q′ then

i) the set (p after α) is non-empty

ii)
⊕

(p after α) 4usvr α
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Proof. The argument is analogous to the proof of Lemma 5.1.14, with the additional argument that

if
⊕

(p after α) usbl s then p usbl αs, which is proven by the derivation

...⊕
(p after α) usbl s

p usbl αs
p ∈ Uap2p , p α

=⇒; [usb-alpha]

We have seen that up-to the usability of peers, vp2p enjoys the properties required by �svr, and

this has lead to the definition of 4usvr. It is now clear how to define a behavioural characterisation

of vp2p.

Definition 5.3.24. [ Semantic compliance peer pre-order ]

Let p �p2p q whenever p �clt q and p 4usvr q.

The relation �p2p is preserved by internal and external moves, in the following sense.

Corollary 5.3.25. For every p, q ∈ CCSwτ , if p �p2p q then

i) if q
τ−→ q′ then p �p2p q

′

ii) if q
α−→ q′ then (p after α) 6= ∅ and

⊕
(p after α) �p2p q

′

Proof. The first implication follows from Lemma 5.2.23 and Lemma 5.3.22. The second implication

follows form Lemma 5.3.23 and Lemma 5.3.23.

In Example 5.3.12 and Example 5.3.21 we have seen that the relations �clt and 4usvr are not

sound descriptions of vp2p. The intersection used in Definition 5.3.24 let us prove the soundness of

�p2p.

Theorem 5.3.26. [ Alternative characterisation vp2p ]

For every p, q ∈ CCSwτ , p vp2p q if and only if p �p2p q.

Proof. We are required to prove two implications, that after unwinding the definition of �p2p become

• if p vp2p q then p �clt q and p 4usvr p

• if p �clt q and p 4usvr p then p vp2p q

The first implication is proven by Lemma 5.3.15 and Lemma 5.3.20, so we prove only the second one.

We have to show that for every pair p �p2p q, if p ap2p r, then q ap2p r. As we have to exhibit

that two processes are in the mutual compliance relation, it is enough to show a co-inductive mutual

compliance that contains them.

Let

R= { (q, r) | p �clt q, p 4usvr q, and r ap2p p }

We prove that the relation R is a co-inductive mutual compliance: R ⊆ Fap2p(R).

Fix a pair q R r. There exists a process p such that p �clt q, p 4usvr q, and p ap2p r. It follows

that r usbl ε.

Definition 3.2.11 requires us to prove the following three facts,

a) q ⇓ if and only if r ⇓

b) if r || q
τ

6−→ then r
X−→ and q

X−→

c) if r || q τ−→ r′ || q′ then r′ R q′



128 Chapter 5. Compliance pre-orders

We prove point (a). We are requires to show two implications,

• if q ⇓ then r ⇓ ,

• if r ⇓ then q ⇓

We prove the first implication. Suppose that q ⇓ ; we have to explain why r ⇓ . The assumption

q ⇓ implies that SX(q) ∈ accX(q, ε). Since r usbl ε, Definition 5.2.16 implies that there exists a

ready set in accX(p, ε). Definition 5.2.14 implies that there exists a p′ such that p =⇒ p′ ⇓ . Since

p ap2p r, Corollary 3.2.7 and the computation r || p =⇒ r || p′ ensure that r′ ap2p p′. Since p′ ⇓
Definition 3.2.11 implies that r ⇓ .

We have proven the first one of the two implications above; now we prove the second one. Suppose

that r ⇓ ; we have to prove that q ⇓ . The proof of this is analogous to the proof of point (a) in

Theorem 5.1.15.

We have proven point (a). Now we prove point (b): if r || q
τ

6−→, then r
X−→ and q

X−→. The proof

that q
X−→ is analogous to the proof of point (b) in Theorem 5.2.25. The proof that r

X−→ relies on

Definition 5.3.17 and is similar to the proof of point (b) in Theorem 5.1.15.

The proof of point (c) is analogous to the proof of point (c) in Theorem 5.1.15, but in this case

the argument relies on Corollary 5.3.25 rather than Lemma 5.1.13 and Lemma 5.1.14.

5.3.1 Relations between pre-orders

The compliance pre-orders and the must pre-orders are related alike (see Figure 4.13):

vsvr ∩ vclt ⊂ vp2p ⊂ vclt (5.8)

In Figure 5.5 and Figure 5.6 we summarise our knowledge on the pre-orders for processes that we

have studied.

To prove that the above set inclusions between the pre-orders above are strict, we use Example 5.3.3

and Example 5.3.12, in which we have shown the ensuing inequalities

α. 0 vp2p 1 α. 0 6vsvr 1

α. 1 +β. 1 vclt 1 +β. 1 α. 1 +β. 1 6vp2p 1 +β. 1

The proofs of the set inclusions in (5.8) are straightforward.

Proposition 5.3.27. vp2p ⊆ vclt

Proof. Thanks to Theorem 5.3.26 the set vp2p equals �p2p, and Definition 5.3.24 implies that �p2p ⊆
�clt. Theorem 5.2.25 implies that vp2p ⊆ vclt.

Proposition 5.3.28. vsvr ∩ vclt ⊆ vp2p.

Proof. Let (p1, p2) ∈vsvr ∩ vclt; we are required to prove that if r ap2p p1, then r ap2p p2. Fix a

process r which mutually complies with p1; we reason as follows.

r ap2p p1 By assumption

r a p1 and p1 a r Thanks to Lemma 3.2.12

r a p2 and p1 a r Because p1 vsvr p2

r a p2 and p2 a r Because p1 vclt p2

r ap2p p2 Thanks to Lemma 3.2.12
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vsvr vsvr ∩ vclt ⊂ vp2p ⊂ vclt

6= 6= 6=

<∼svr
<∼svr ∩ <∼clt ⊂ <∼p2p ⊂ <∼clt

Figure 5.5: The relations between must and compliance pre-orders on processes.

vcltvsvr

vp2p

<∼clt<∼svr

<∼p2p

Figure 5.6: Euler diagram of the set theoretic relations between the must pre-orders and the compli-
ance pre-orders on processes.

We have fully exhibited the properties of the pre-orders due to must and the ones due to the

relation a. In Figure 5.7 we recall the symbols that we devised so far. Each row of Figure 5.7 contains

the notation that we had to introduce in order to characterise the pre-order on the left.

5.4 Related Work

While the server pre-order vsvr is inspired by the strong subcontract relations of [Padovani, 2010]

and [Castagna et al., 2009], we believe that the client and the peer pre-orders, vclt and vp2p, are

original.

To the best of our knowledge, this thesis presents the first comparison between the refinements

for servers generated respectively by the must testing and the compliance relation, in an infinite

branching LTS with divergence.

We compare our results with the state of the art.

Recall from Section 3.4 the strong compliance and the behavioural compliance, denoted respec-

tively astr and abhv.

We have already seen that in the LTS used in [Padovani, 2010], 〈CCSrec,fb,⇓
wτ , Actτ X, −→〉, our

relation a and the relation astr coincide. It follows that our vfb,⇓
svr is the strong subcontract (Definition

2.2 of the work by Padovani). The alternative characterisation of the pre-order vfb,⇓
svr given afterwards

in Definition 2.6 (co-inductive strong subcontract) seems to be not complete, as it does not allow

<∼svr: – =⇒ after ⇓ acc – –

vsvr: – =⇒ after � acc – –

<∼clt: Umust
clt =⇒6X after6X ⇓X acc6X ua6X usbl6X

vclt: Uaclt =⇒ after ⇓ accX uaX usbl

vp2p: Uap2p – – – – – –

Figure 5.7: Predicates to characterise the server, the client, and the peer pre-orders.
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1 � 0. This glitch is due to the presence of X in the ready sets.

Since vfb,⇓
svr and the strong subcontract of [Padovani, 2010] coincide, our Theorem 5.1.20 implies

that server pre-order given by astr (see Definition 2.2 in that paper) coincides with the must testing

pre-order. Padovani states that this was proven in [Laneve and Padovani, 2007], but this seems not to

be the case, as the definitions in [Laneve and Padovani, 2007] are not the ones used in [Padovani, 2010].

To remark the differences between the two settings, we give some details of [Laneve and Padovani,

2007].

Let �lp07 denote the subcontract relation used in [Laneve and Padovani, 2007, Definition 2], and

recall from Section 3.4 the notion of constrained contracts. Laneve and Padovani prove a theorem

which resembles our Theorem 5.1.20, but is weaker:

Theorem 2 Let i = names(τ). i[σ] �lp07 i[τ ] if and only if σ <∼must τ .

First of all, as constrained contracts are pairs (ie. a set of actions and a behaviour), the subcon-

tract �lp07 is not comparable with the must pre-order; formally

�lp07 6⊆ <∼svr,
<∼svr 6⊆ �

lp07 (5.9)

One may argue that this has no significance, as it is still easy to prove that

if σ1 <∼svr σ2 then names(σ2)[σ1] �lp07 names(σ2)[σ2]

The converse implication, though, relies heavily on the interfaces of the constrained contracts at hand,

and in general is not true:

i[σ] �07 i’[σ′] does not imply that σ <∼svr σ
′ (5.10)

For instance, we can prove the following

∅[0] �lp07 {α }[α. 0]

0 6<∼must α. 0

It follows that in the sense shown above the pre-order �lp07 is coarser than the must pre-order. As a

matter of fact, the introduction of [Laneve and Padovani, 2007] states that �lp07 resembles the must

pre-order; not that �lp07 equals the must pre-order.

In Section 3.4 we have discussed the framework used by [Castagna et al., 2009], and pointed out

that it is not clear whether our compliance relation equals their strong compliance. As a consequence,

the claim (see page 13 of that paper) that on their LTS the must pre-order and the strong subcontract

(i.e. the server pre-order) coincide does not follow trivially from our results.

The peer pre-order vp2p is reminiscent of the symmetric pre-order vds of [Bugliesi et al., 2010].

There the LTS as a number of restrictions, which we do not have in this thesis, so we think that vp2p

is a generalisation of vds, as long as we focus on compositions of two peers.

Fair theories Recall the peer refinements �−1O used by [Bravetti and Zavattaro, 2009]; we already

discussed them in Section 4.4. In Example 5.1.16 we have described the intuitions that are also behind

the next results. For every action α, the following inequalities are true

µx. (α.x ⊕ 1 ) vp2p µx. α.x

µx. (α.x ⊕ 1 ) 6�−1{α} µx. α.x

where the peer used to prove the second fact is α. 1.
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Also the ensuing facts are true,

µx. α.x �−1N µx. β.x

µx. α.x 6vp2p µx. β.x

The first fact holds because no system containing µx. α.x can be correct (in the sense of [Bravetti and

Zavattaro, 2009]). The peer that we use to prove the second fact is µx. α.x.

The pre-order vp2p and the pre-orders �−1O are not comparable, but when O is trivial:

Proposition 5.4.1. For every set of output actions O, the following statements are true,

• if O is non-empty, then vp2p 6⊆ �−1O

• �−1O 6⊆ vp2p



132 Chapter 5. Compliance pre-orders



Chapter 6

Modelling first-order session types

Thus far we have studied two theories that let us replace processes preserving the correctness of

the overall system, and we have explained why the compliance-theory should be preferred over the

must-theory.

In this chapter we shift our attention from the theories for the general LTS of processes, to the

theories for session contracts and their LTS 〈SCfo, Actτ X, −→〉. By doing this, we can try to explain

the behavioural meaning of the relation 4fo
sbt in terms of one of the pre-orders we have introduced.

This attempt does not work. In a series of examples that go from Example 6.0.2 to Example 6.0.5 we

explain why none of the pre-orders that we defined is a fully abstract model of the relation 4fo
sbt.

By and large, the issue is that the must and the compliance pre-orders are defined on the LTS

of processes, and not of session contracts. The consequence is that those behavioural pre-orders are

more demanding than a model of 4fo
sbt should be, for they compare the terms with respect to too many

contexts.

Example 6.0.2. [ <∼svr not complete ]

Recall the bijection M defined in Section 2.3. We prove that according to the interpretation M,

it is not true that if T 4fo
sbt S, then M(T ) <∼svr M(S). Let T = &〈 latte : end 〉 and S =

&〈 latte : end, moka : end 〉. It is relatively easy to prove that the ensuing relation is a co-inductive

sub-typing,

{(&〈 latte : end 〉, &〈 latte : end, moka : end 〉), (end, end)}

It follows that T 4fo
sbt S.

Consider now that images of the types T and S through M;

M(T ) = ?latte. 1

M(S) = ?latte. 1 + ?moka. 1

A client that distinguishes these servers is r =!latte. 1 + !moka. 0; for M(T ) must r, whereas r and

M(S) in parallel perform a maximal computation that is not client-successful,

r || M(S)
τ−→ 0 || 1

τ

6−→

The computation above is due to the synchronisation on moka.

The previous examples can be used to prove that the compliance server pre-order is not a complete

model of the First-order sub-typing.

Example 6.0.3. [ <∼clt not sound ]

We prove that ρ1 <∼clt ρ2 does not imply that M−1(ρ1) 4fo
sbt M−1(ρ2). The impact of usability of

133
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clients on <∼clt lets us prove this fact easily. On the one hand µx. !moka.x <∼clt 1, while there is no

co-inductive sub-typing relation that contains the pair (µX. ⊕ 〈 moka : X 〉, end).

In Example 6.0.3 the processes we used are session contracts, so the example proves that the relation

<∼
fo
clt is not a sound model of 4fo

sbt either.

Example 6.0.4. [ <∼clt not complete ]

We show two session types, T and S that are related by the First-order sub-typing, but whose images

through M are not related by <∼clt. Consider the types

T = &〈 latte : end 〉
S = &〈 latte : end, moka : tea : end 〉

A co-inductive sub-typing that contains the pair (T, S) is the following relation

{(T, S), (end, end)}

so T 4fo
sbt S. However, the ensuing inequality is true,

?latte. 1 6<∼clt?latte. 1 + ?moka.?tea. 1

A server that distinguishes the two process clients above is p = !moka. 0 + !latte. 0. The maximal

computations of M(T ) || p are client-successful, whereas there exists the following computation of

M(S) || p:
M(S) || p τ−→?tea. 1 || 0

τ

6−→

The last example proves that neither vclt provides a complete model of First-order sub-typing.

Example 6.0.5. [ vclt not sound ]

We can easily prove !Bool. 1 vclt 1; at the same time ![ Bool ];end 64fo
sbt end; this proves that vclt

does not provide a sound model of 4fo
sbt.

Example 6.0.5 can be adapted to prove that neither vsvr is a sound model of 4fo
sbt.

The peer pre-orders are contained in the client pre-orders, so the examples above prove that neither

the relations <∼p2p and vp2p are fully abstract models of 4fo
sbt.

The examples we have shown highlights some features of the model of 4fo
sbt that we are looking for:

• the domain we reason on should contain only terms that are images of session types;

• the image of end has to be related only with itself;

• in CCSwτ -like languages the image of branch types &〈 . . . 〉 has to allow refinements of the form

α � α + β to happen.

The definitions of pre-orders that we used in Chapter 4 and Chapter 5 apply equally well to session

contracts; but they turn out to be inappropriate, as they compare session contracts from the point of

view of satisfying contexts who may be the general processes from Section 2.2. We have shown this

in Example 6.0.2 and Example 6.0.4.

In this chapter we tailor the definitions of the server and the client pre-orders so as to consider

only the LTS of session contracts. We introduce four pre-orders,

<∼
fo
svr,

<∼
fo
clt, vfo

svr, vfo
clt (6.1)
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We refer to the pre-orders in (6.1) as the restricted pre-orders. Two of the restricted pre-orders are

defined using the must testing, and the other two are based on the compliance relation. All the new

pre-orders differ from the ones of Chapter 4 and Chapter 5. This calls for the definitions of their

alternative characterisation; in particular behavioural characterisations.

The alternative pre-orders are the following three,

-synsvr, -synclt, �synclt (6.2)

The relations that characterise the four pre-orders in (6.1) are just three. Indeed, we will prove that

the relations <∼
fo
svr and vfo

svr coincide (Corollary 6.4.8), while the relations <∼
fo
clt and vfo

clt differ, and

the latter is contained in the former (Corollary 6.5.15).

It may come as a surprise that in (6.1) we do not define the pre-orders for peers. In this setting

this is not necessary, because we will use the sub-typing relation 4fo
sbt as refinement for peers.

The relations in (6.2) are syntax oriented, in that -synsvr and �synclt are defined completely looking

at the syntax of terms; whereas -synclt is defined using the syntax of terms, but also their usability

as clients. Since the pre-orders in (6.2) are also co-inductively defined, it it easy to prove the main

results of this chapter,

• the intersections of the restricted server and the client pre-orders is a behavioural description of

4fo
sbt; that is, vfo

svr ∩ vfo
clt is a fully abstract model of 4fo

sbt with respect to the interpretation M
of Section 6.3;

• the pre-order vfo
svr ∩ vfo

clt coincides with the pre-order <∼
fo
svr ∩ <∼

fo
clt (Proposition 6.5.19).

The second result means that as long as we are concerned with the behaviour that session contracts

can express and models of 4fo
sbt, it does not matter whether we pick the must testing or the compliance

relation as our satisfaction relation, for both choices give rise to the same behavioural explanation of

the First-order sub-typing.

Structure of the chapter. In Section 6.1 we define and characterise the pre-order <∼
fo
svr, while in

Section 6.2 we define and characterise the pre-order <∼
fo
clt. Both pre-orders are unsound models of 4fo

sbt,

so we use a set intersection to remove the pairs that hinder the soundness of the pre-orders, and in

Section 6.3 we prove that the relation <∼
fo
svr ∩ <∼

fo
clt is a fully abstract model of 4fo

sbt (see Theorem 6.3.4).

In Section 6.4 and Section 6.5 we study the the restricted pre-orders given by the compliance

relation, respectively the one for servers and the one for clients.

6.1 Restricted server pre-order

In this section we introduce a server pre-order for session contracts, <∼
fo
svr. This pre-order is a variation

of the must server pre-order which is less demanding than the original one (Definition 4.1.1), in that

it considers as possible clients only session contracts. The chief result of this section is an alternative

characterisation of <∼
fo
svr (Proposition 6.1.10), which is a) co-inductive, and b) syntax oriented. These

two properties of the characterisation will help us in showing a fully abstract model of the First-order

sub-typing (Theorem 6.3.4).

Let us introduce the new pre-order.

Definition 6.1.1. [ Restricted must server pre-order ]

We write σ1 <∼
fo
svr σ2 if and only if { ρ ∈ SCho | ρ a σ1 } ⊆ { ρ ∈ Cho | ρ a σ2 }. The symbol <∼

fo
svr

denotes a binary relation that we name restricted server pre-order.

The restricted must server pre-order is more generous than <∼svr, in that it allows refinements of

the kind α v α + β.
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Example 6.1.2. We prove that ?latte. 1 <∼
fo
svr?moka. 1 + ?latte. 1. If a ?latte. 1 must ρ then,

modulo unfolding, ρ has to be defined by an internal sum. Moreover this sum can only contain the

summand !latte.ρ′, and therefore ?moka. 1 + ?latte. 1 must ρ.

Consider now the process p = !latte. 1 + !moka. 0. One can check that ?latte. 1 must p,

whereas ?moka. 1 + ?latte. 1 6must p. It therefore follows that ?latte. 1 6<∼svr?moka. 1 + ?latte. 1.

Example 6.1.2 proves that <∼
fo
svr does not enjoy point (1b) of Definition 4.1.17; so in the LTS

〈SCfo, Actτ X, −→〉

the pre-order -svr is not a complete characterisation of the must server pre-order.

Example 6.1.3. [ e-vote, ballot refinement ]

We give a more concrete instance of the previous example. Recall Example 2.3.5 and consider the

session contract

BallotB =µx. ?Login.( !Wrong. 1 ⊕

!Ok.( ?VoteA. 1 + ?VoteB. 1 + ?VoteC. 1 + ?VoteD. 1 ) )

BallotB offers to a voter more options than Ballot, and intuitively it should be possible to use a

server that guarantees BallotB in place of a server that guarantees Ballot. This is not the case if the

contracts are compared with <∼svr, because Ballot 6<∼svr BallotB. On the other hand, if we restrict our

attention to session contracts, and thus to the pre-order <∼
fo
svr, we have Ballot <∼

fo
svr BallotB.

Lemma 6.1.4. For every σ1, σ2 ∈ SCfo, σ1 <∼
fo
svr σ2 if and only if unf(σ1) <∼

fo
svr unf(σ2).

Proof. This lemma follows from Lemma 3.1.9.

Lemma 6.1.5. [ Bottom element ]

The pre-order <∼
fo
svr enjoys the following properties,

(i) it has a bottom element

(ii) if σ⊥ is a bottom element of <∼
fo
svr then unf(σ⊥) = 1

Proof. To prove point (i) we show that 1 is a bottom element of <∼
fo
svr, that is 1 <∼

fo
svr σ for every

session contract σ. Let ρ be a session contract such that 1 must ρ. The session contract 1 offers no

interaction. Because of the restricted syntax of session contracts, ρ must also be, modulo unfolding,

the session contract 1. Now fix a session contract σ. Clearly σ must 1, therefore from an application

of Proposition 3.2.10 it follows that ρ a σ.

To prove part point (ii) let σ⊥ be an arbitrary bottom element of <∼
fo
svr. We are required to show

that unf(σ⊥) = 1. From the definition of bottom element follows σ⊥ <∼
fo
svr 1. An application of

Lemma 6.1.4 gives unf(σ⊥) <∼
fo
svr 1. Now an analysis of the possible syntactic structure of unf(σ⊥)

yields that it must be 1 itself.

Point (ii) of Lemma 6.1.5 is relevant because 1 is not the only bottom element; for example it is

also true that µX. 1 <∼
fo
svr σ for every σ.

The bottom elements of <∼
fo
svr make this pre-order a non sound model of the sub-typing 4fo

sbt.

Example 6.1.6. Recall that M(end) = 1. In the restricted must server pre-order the session

contract 1 is a least element, being smaller or equal to every other session contract. On the other



6.1. Restricted server pre-order 137

1 -synsvr σ2
[ax-Srv]

σ′1 -
syn
svr σ

′
2

!t1.σ
′
1 -

syn
svr!t2.σ

′
2

t2 4b t1; [r-Out-F]

σ′1 -
syn
svr σ

′
2

?t1.σ
′
1 -

syn
svr?t2.σ

′
2

t1 4b t2; [r-In-F]

σ1
1 -

syn
svr σ

2
1 . . . σ1

|I| -
syn
svr σ

2
|I|∑

i∈I?li.σ
1
i -

syn
svr

∑
j∈J?lj.σ

2
j ,
I ⊆ J [r-Branch]

σ1
1 -

syn
svr σ

2
1 . . . σ1

|J| -
syn
svr σ

2
|J|⊕

i∈I?li.σ
1
i -

syn
svr

⊕
j∈J?lj.σ

2
j

J ⊆ I; [r-Choice]

unf(σ1) -synsvr unf(σ2)

σ1 -
syn
svr σ2

depth(σ1) + depth(σ2) > 0; [r-Unfold]

Figure 6.1: Inference rules for the rule functional F-synsvr

hand, for session types end 4fo
sbt T if and only if unf(T ) = end. Consequently the relation <∼

fo
svr is

an unsound model for sub-typing between session types. For example:

1 <∼
fo
svr !Bool. 1, end 64fo

sbt ![ Bool ];end

Although the restricted must server pre-order is not a fully abstract model of 4fo
sbt, we provide

a characterisation of this restricted pre-order. The reason is that in Section 6.3 we will use <∼
fo
svr to

define a fully abstract model of 4fo
sbt.

Lemma 6.1.7. Let σ1 and σ2 be session contracts such that σ1 <∼
fo
svr σ2. The following properties

are true,

(a) if unf(σ1) = !t1.σ
′
1 then unf(σ2) = !t2.σ

′
2, t2 4b t1 and σ′1 <∼

fo
svr σ

′
2

(b) if unf(σ1) = ?t1.σ
′
1 then unf(σ2) = ?t2.σ

′
2, t1 4b t2 and σ′1 <∼

fo
svr σ

′
2

(c) if unf(σ1) =
∑
i∈I?li.σ

1
i then unf(σ2) =

∑
j∈J?lj.σ

2
j , with I ⊆ J and σ1

i
<∼

fo
svr σ

2
i

(d) if unf(σ1) =
⊕

i∈I !li.σ
1
i then unf(σ2) =

⊕
j∈J !lj.σ

2
j , with J ⊆ I and σ1

j
<∼

fo
svr σ

2
j

Proof. We discuss the point (a), as the arguments for the other points of the lemma are analogous.

Let unf(σ1) = !t1.σ
′
1; we have to prove that unf(σ2) = !t2.σ

′
2, for some base type t2 such

that t2 4b t1, and some session contract σ′2 such that σ′1 <∼
fo
svr σ

′
2.

We begin by defining a client that is passed by σ′1. Pick a ρ′ such that σ′1 must ρ′, and let ρ =

?t1.ρ
′. It is relatively easy to prove that σ1 must ρ.

The hypothesis σ1 <∼
fo
svr σ2 imply that σ2 must ρ. Lemma 6.1.4 implies that unf(σ1) <∼

fo
svr

unf(σ2). Given the form of ρ, it follows that unf(σ2) =!t2.σ
′
2 , for some t1 such that ?t1 ./c!t2.

Since unf(σ2)
X
6−→, and ρ || unf(σ2)

τ−→ ρ′ || σ′2, it follows that σ′2 must ρ′. Since the only hypothesis

on ρ′ is that σ′1 must ρ′, it follows that σ′1 <∼
fo
svr ρ

′ .

The properties of <∼
fo
svr exhibited in Lemma 6.1.7, let us define the alternative characterisation of

the restricted must server pre-order.
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Definition 6.1.8. [ Syntactic server pre-order ]

Let F-synsvr : P(SC2
fo) −→ P(SC2

fo) be the rule functional given by the inference rules in Figure 6.1.

If X ⊆ F-synsvr (R), then we say that X is a syntactic server pre-order. Lemma C.0.26 and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F-synsvr (R); we call

this solution the syntactic server pre-order, and we denote it -synsvr. That is -synsvr = νX.F-synsvr (R).

Corollary 6.1.9. The restricted must server pre-order is a co-inductive syntactic server pre-order.

Formally, <∼
fo
svr ⊆ F

-synsvr (<∼
fo
svr)

Proof. It follows from Lemma 6.1.7.

Proposition 6.1.10. [ Co-inductive characterisation <∼
fo
svr ]

The restricted must server pre-order and the syntactic server pre-order coincide. Formally, <∼
fo
svr=

-synsvr.

Proof. We have to prove two set inclusions, namely

a) <∼
fo
svr ⊆ -

syn
svr

b) -synsvr ⊆ <∼
fo
svr

The first set inclusion follows form the fact that <∼
fo
svr is a co-inductive server pre-order (Corol-

lary 6.1.9), and the Knaster-Tarski theorem, which ensures that -synsvr =
⋃
{R |R ⊆ F-synsvr

(R) }.
To prove the second set inclusion, we show a more general result. Let S be a co-inductive server

pre-order. We prove the following implication

if σ1 S σ2 and σ1 must ρ then σ2 must ρ.

Let

R = { (σ2, ρ) | σ1 must ρ, and σ1 S σ2 for some σ1 ∈ SCfo }

the proof of the implication above amounts in showing the set inclusion R ⊆ must.

In view of Lemma 3.3.14, we know the equalities

R = { (σ2, ρ) | ρ musts σ1, and σ1 S σ2 for some σ1 ∈ SCfo }
= (musts ◦ S)−1

and the set inclusion that we want to prove becomes (musts ◦ S)−1 ⊆ musts −1. It suffices to prove

that musts ◦ S ⊆ musts .

Fix a pair ρ (musts ◦ S) σ2; by construction there exists a σ1 such that ρ musts σ1 and σ1 S σ2.

The argument to prove that ρ musts σ2 is by rule induction on the derivation of

...
ρ musts σ1 (6.3)

In the base case the last rule used in the derivation is the axiom [a-Unit], thus ρ = 1, and we can

derive

ρ musts σ2
[a-Unit]

In the inductive case, we have five subcases to discuss. Since all the arguments are similar, we give

the details of just two cases.
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• Suppose the the last rule applied in the derivation (6.3) is [r-Alpha]. The derivation has the

shape
...

ρ musts σ′1
!t.ρ′ musts ?t1.σ

′
1

?t1 ./c!t; [r-Alpha]

so σ1 =?t1.σ
′
1.

Knowing the form of σ1, we show the form of σ2. By hypothesis S ⊆ F-synsvr
(S), so we know that

(σ1, σ2) ∈ F-synsvr
(S); and, given the form of σ1 and Definition 6.1.8 it must be the case that

unf(σ2) = ?t2.σ
′
2 for some t2 such that t1 4b t2, and σ′2 ∈ SCfo such that σ′1 S σ′2.

We are now ready to show the derivation of ρ musts σ2. As that the derivation of ρ′ musts σ′1 is

shorter than the derivation in (6.3), and ρ′ musts σ′1 S σ′2, we can use the inductive hypothesis

to state that there exists the following derivation

...
ρ musts σ′2

We extend the derivation above with an application of the rule [r-Alpha]. First, we check that

the side conditions are true. We have proven that t1 4b t2. The last fact and t 4b t1 implies

that t 4b t2, so ?t2 ./c!t. Now we apply the rule and obtain the derivation

...
ρ′ musts σ′2

!t.ρ′ musts ?t2.σ
′
2

?t2 ./c!t; [r-Alpha]

We have derived ρ1 musts unf(σ2). If depth(σ2) = 0, then we have derived ρ1 musts σ2.

If depth(σ2) > 0, then we extend the derivation above as follows,

...
ρ′ musts σ′2

!t.ρ′ musts ?t2.σ
′
2

?t2 ./c!t; [r-Alpha]

ρ1 musts σ2
depth(ρ1) + depth(σ2) > 0; [r-Unfold]

• Suppose that the last rule used in the derivation (6.3) is [r-Unfold]. The premises of the rule

ensures that there exists a derivation of unf(ρ) musts unf(σ1). By construction σ1 S σ2; the

hypothesis that S is a syntactic server pre-order ensures that unf(σ1) S unf(σ2).

It follows that unf(ρ) musts unf(σ1) S unf(σ2). Now, since the derivation of unf(ρ) musts

unf(σ1) is shorter than the derivation in (6.3), we can apply the inductive hypothesis, which

ensures that there exists the derivation

...
unf(ρ) musts unf(σ2)

If depth(ρ) + depth(σ2) = 0, then unf(ρ) = ρ and unf(σ2) = σ2, so unf(ρ) musts unf(σ2)

implies that ρ musts ρ2.

If depth(ρ) + depth(σ2) > 0, we can extend the derivation above,

...
unf(ρ) musts unf(σ2)

ρ musts σ2
depth(ρ) + depth(σ2) > 0; [r-Unfold]



140 Chapter 6. Modelling first-order session types

Since the relations -synsvr is a co-inductive syntactic server pre-order the implication that we have

proven ensures that -synsvr ⊆ <∼
fo
svr.

To prove the previous proposition we have used Lemma 3.3.14. This is not necessary, and there exists

a direct proof of the Proposition 6.1.10 that use the definition of must. We have presented a proof

based on Lemma 3.3.14 because the direct proof is almost identical to the proof of Proposition 6.4.7.

To prove Proposition 6.4.7, we will need a weaker version of Lemma 4.1.15 that explains how the

acceptance sets of session contracts in -synsvr are related. In this context, the acceptance sets are related

as long as no visible is performed.

Lemma 6.1.11. LetR be a co-inductive syntactic server pre-order. For every σ1, σ2 ∈ SCfo, if σ1 R σ2

and B ∈ acc(σ2, ε), then there exists a set A ∈ acc(σ1, ε) such that A ⊆ B.

Proof. Fix a set B ∈ acc(σ2, ε); since acc(σ2, ε) = acc(unf(σ2), ε), B ∈ acc(unf(σ2), ε).

According to the cases in Definition 6.1.8 and a case analysis on the form of unf(σ2), one can show

an A ∈ acc(unf(σ1), ε) which satisfies the required properties. We discuss two cases. If unf(ρ1) = 1,

then acc(unf(σ1), ε) = {∅}, and ∅ ⊆ B. If unf(σ1) =!t1.σ
′
1, then B = {t2} for some t2 such

that t2 4b t1. Since {!t1} ∈ acc(σ1, ε), the singleton {!t1} is the A we are after. We leave the details

of the other case analysis to the reader.

Since σ1 =⇒ unf(σ1), acc(unf(σ1), ε) ⊆ acc(σ1, ε), so A ∈ acc(σ1, ε).

In this section we have introduced and characterised the server pre-order that results from restrict-

ing our attention on the LTS of session contracts 〈SCfo, Actτ X, −→〉. In the next section we perform

a similar task, but focusing on the client side.

6.2 Restricted must client pre-order

We define the restricted must client pre-order in the obvious way, and then we characterise it.

Definition 6.2.1. [ Restricted must client pre-order ]

If ρ1 and ρ2 are session contracts, then we write ρ1 <∼
fo
clt ρ2 whenever for every σ ∈ SCfo, σ must ρ1

implies that σ must ρ2. We call the relation denoted by the symbol <∼
fo
clt the restricted must client

pre-order.

The new pre-order differs from the original <∼clt of Definition 4.2.1.

Example 6.2.2. We have shown in Example 6.1.2 that ?latte. 1 <∼
fo
svr?moka. 1 + ?latte. 1. A similar

argument, this time applied to client-side session contracts, can be used to show that

?latte. 1 <∼
fo
clt ?moka.?moka. 1 + ?latte. 1

Similarly to what happens for server session contracts, if we turn our attention to processes then

the session contracts above are no longer related. Let us see why. The client ?latte. 1 is satisfied by

the server !latte. 1 + !moka. 1, because the action !moka will never be performed by the server. On the

other hand ?moka.?moka. 1 + ?latte. 1 ||!latte. 1 + !moka. 1
τ−→?moka. 1 || 1

τ

6−→. and ?moka. 1
X
6−→;

this proves that !latte. 1 + !moka. 1 6must?moka.?moka. 1 + ?latte. 1

This argument above would have proves that !latte. 1 6<∼clt?moka.?moka. 1 + ?latte. 1. We have

therefore shown that <∼
fo
clt 6⊆<∼clt .

Lemma 6.2.3. For every σ1, σ2 ∈ SCfo, σ1 <∼
fo
clt σ2 if and only if unf(σ1) <∼

fo
clt unf(σ2).

Proof. This lemma follows from Lemma 3.1.9.
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In Lemma 6.1.5 we saw that the pre-order <∼
fo
svr has bottom elements; the pre-order <∼

fo
clt enjoys

both the same property, and the dual one: <∼
fo
clt has top and bottom elements.

Lemma 6.2.4. [ Top element ]

The pre-order vfo
clt enjoys the following two properties,

(i) it has a top element

(ii) if σ> is a top element of vfo
clt then unf(σ>) = 1

Proof. Since σ must 1 for every session contract σ, the session contract 1 it is a top element in the

restricted compliance client pre-order. Moreover, reasoning as in Lemma 6.1.5 we can show that if σ>

is an arbitrary top element then unf(σ>) = 1.

Intuitively, the bottom elements in <∼
fo
clt are the clients that are not not satisfied by any server.

These clients are the session contracts that never perform X, for instance µx. !Int.x.

Lemma 6.2.5. [ Bottom ] For every ρ ∈ SCfo, and every t ∈ BT, µx. !t.x <∼
fo
clt ρ.

Proof. Let ρ be a session contract. The argument to prove that µx. !t.x <∼
fo
clt ρ does not depend on ρ.

The inequality is true because for every session contract σ, no maximal computation of µx. !t.x || σ
is client-successful.

Definition 6.2.6. [ Usable clients ]

Let

USCfo
clt = { ρ ∈ SCfo | σ must ρ for some σ ∈ SCfo }

The existence of top elements of <∼
fo
clt renders the restricted must client pre-order a non sound

model of 4fo
sbt.

Example 6.2.7. Recall that M(end) = 1. The restricted must client pre-order presents the dual

issue as it relates every session contract to 1; it is one of the top element. Once again a model based

on <∼
fo
clt would be unsound:

!(!Int). 1 <∼
fo
clt 1, ![ !Int ];end 64fo

sbt end

The relation <∼
fo
clt is not a sound model of 4fo

sbt also because of the non usable clients.

Example 6.2.8. [ <∼
fo
clt not sound with respect to 4fo

sbt ] Also in this example we prove that there

exists session contracts ρ1 and ρ2 such that ρ1 <∼
fo
clt ρ2 and M−1(ρ1) 64fo

sbt M−1(ρ2). In this example,

though, we leverage the non-trivial usability of clients rather than the top elements of <∼
fo
clt.

We discuss first some preliminary facts. It is relatively easy to prove the following inequalities

µx. !Bool.x <∼
fo
clt ?Int. 1

?moka. 1 + ?latte. 1 + ?stout.µx. !Bool.x <∼
fo
clt ?moka. 1 + ?latte. 1 + ?tea.σ

The first inequality is true because µx. !Real.x and µx. !Bool.x are not usable. Intuitively, the

third inequality is true because the action ?stout is not usable, so it is safe to drop it altogether. Let

ρ1 =?moka. 1 + ?latte. 1 + ?stout.µx. !Bool.x and ρ2 =?moka. 1 + ?latte. 1 + ?tea.σ. If σ must ρ1,

then the unfolding of σ must be an internal sum, possibly with just one summand. The term unf(σ)

can interact only with the usable actions of ρ; since these actions are ?moka and ?latte, and they are

both offered by ρ2, one can prove that σ must ρ2.
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All the inequalities that we have shown prove that <∼
fo
clt is not a sound model of 4fo

sbt; that is, the

terms related by <∼
fo
clt above, have images via M not related by the sub-typing:

µX. ![ Bool ];X 64fo
sbt ?[ Int ];end

S1 64fo
sbt S2

where S1 = &〈 moka : end, latte : end, stout : µX. BoolX 〉 and S2 = &〈 moka : end, latte : end, tea : M−1(σ) 〉.

In Lemma 6.1.7 we exhibited the properties of the restricted must server pre-order. A similar

result holds for the restricted must client pre-order, up-to the impact of non usable clients.

Lemma 6.2.9. Let ρ1 and ρ2 be two session contracts such that ρ1 <∼
fo
clt ρ2. If ρ1 ∈ USCfo

clt and

unf(ρ2) 6= 1, then one of the following is true

(i) if unf(ρ1) =!t1.ρ
′
1, then unf(ρ2) =!t2.ρ

′
2 t2 4b t1 and ρ′1 -

syn
clt ρ

′
2

(ii) if unf(ρ1) =?t1.ρ
′
1, t1 4b t2 then unf(ρ2) =?t2.ρ

′
2 and ρ′1 -

syn
clt ρ

′
2

(iii) if unf(ρ1) = (
∑
i∈I?li.ρ

1
i ) + (

∑
k∈K?lk.ρ

1
k) with ρ1k ∈ U

SCfo
clt for every k ∈ K, and ρ1i 6∈ U

SCfo
clt for

every i ∈ I then unf(ρ2) =
∑
j∈J?lj.ρ

2
j with K ⊆ J , and ρ1n -

syn
clt ρ

2
n for every n ∈ (I ∪K) ∩ J ,

(iv) if unf(ρ1) =
⊕

i∈I !li.ρ
1
i then unf(ρ2) =

⊕
j∈J !lj.ρ

2
j with J ⊆ I and ρ1j -

syn
clt ρ

2
j for every i ∈ J

Proof. The proof is almost the same of Lemma 6.1.7. The main difference is that to define a session

contract σ that satisfies the ρ1 at hand, we need ρ1 to be usable. This has an impact on how external

sums are related by <∼
fo
clt, so we present the proof of point (iii).

Fix two session contracts such that ρ1 <∼
fo
clt ρ2 and ρ1 ∈ USCfo

clt , and suppose that

unf(ρ1) = (
∑
i∈I

?li.ρ
1
i ) + (

∑
k∈K

?lk.ρ
1
k)

for some finite sets I and K. Let k̂ be the cardinality of K. We have to prove that

a) unf(ρ2) =
∑
j∈J?lj.ρ

2
j

b) K ⊆ J

c) ρ1n -
syn
clt ρ

2
n for every n ∈ I ∩ J

Since ρ1 ∈ USCfo
clt also unf(ρ1) is usable. This implies that the set K must be non-empty. For each

k ∈ K let σk a session contract such that ρ1k musts σk, and let σ =
⊕

k∈K !tk.σk. Now we derive

...

ρ11 musts σ1 . . .

...

ρ1
k̂
musts σk̂∑

i∈I?li.ρ
1
i must

s
⊕

k∈K !lk.σk
K ⊆ I; [r-Exch]

Lemma 3.3.14 ensures that σ must unf(ρ1). The hypothesis ρ1 <∼
fo
clt ρ2 and Lemma 3.1.9 imply that

unf(ρ1) <∼
fo
clt unf(ρ2). The last fact and σ must unf(ρ1) imply that σ must unf(ρ2), so, in view of

Lemma 3.3.14, there exists the derivation of unf(ρ2) musts σ. By hypothesis unf(ρ2) 6= 1, and so,

as depth(unf(ρ2)) + depth(σ) = 0, the derivation of unf(ρ2) musts σ must be due to rule [r-Exch],

...

ρ21 musts σ1 . . .

...

ρ2
k̂
musts σk̂∑

j∈J?lj.ρ
2
j must

s
⊕

k∈K !lk.σk
K ⊆ J ; [r-Exch]
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The derivation above proves that unf(ρ2) =
∑
j∈J?lj.ρ

2
j for some set J such that K ⊆ J . We prove

that ρ1n <∼
fo
clt ρ

2
n for every n ∈ (I ∪ K) ∩ J . Fix an n ∈ (I ∪ K) ∩ J . Either n ∈ K or n 6∈ K. For

all the n ∈ K, the only hypothesis on σn is that ρ1n musts σn. Since the derivation above proves

that ρ2n musts σn, Lemma 3.3.14 ensures that we have proven that if σ must ρ1n then σ must ρ2n. If

n 6∈ K, then ρ1n is not usable; this implies that ρ1n <∼
fo
clt ρ

2
n.

Example 6.2.8 shows that in the proof of the previous lemma the hypothesis of ρ1 being usable is

necessary.

Definition 6.2.10. [ Syntactic must client pre-order ]

Let F-synclt
: P(SCfo

2) −→ P(SCfo
2) be defined so that (ρ1, ρ2) ∈ F-synclt

(R) whenever if ρ1 ∈ USCfo
clt and

unf(ρ2) 6= 1 one of the following is true:

(i) if unf(ρ1) =!t1.ρ
′
1, then unf(ρ2) =!t2.ρ

′
2 t2 4b t1 and ρ′1 -

syn
clt ρ

′
2

(ii) if unf(ρ1) =?t1.ρ
′
1, t1 4b t2 then unf(ρ2) =?t2.ρ

′
2 and ρ′1 -

syn
clt ρ

′
2

(iii) if unf(ρ1) = (
∑
i∈I?li.ρ

1
i ) + (

∑
k∈K?lk.ρ

1
k) with ρ1k ∈ U

SCfo
clt for every k ∈ K, and ρ1i 6∈ U

SCfo
clt for

every i ∈ I then unf(ρ2) =
∑
j∈J?lj.ρ

2
j with K ⊆ J , and ρ1n -

syn
clt ρ

2
n for every n ∈ (I ∪K) ∩ J

(iv) if unf(ρ1) =
⊕

i∈I !li.ρ
1
i then unf(ρ2) =

⊕
j∈J !lj.ρ

2
j with J ⊆ I and ρ1j -

syn
clt ρ

2
j for every i ∈ J

If X ⊆ F-synclt (X), then we say that X is a syntactic client relation. Lemma C.0.27 and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F-synclt (X); we call

this solution the client pre-order, and we denote it -synclt. That is -synclt = νX.F-synclt (X).

In Definition 6.2.10 we refer to the set USCfo
clt ; since this set is not syntactically defined, this seems to

hinder the relation -synclt from being syntactic-oriented.

Corollary 6.2.11. The restricted must client pre-order is a co-inductive client pre-order. Formally,

<∼
fo
clt⊆ F-synclt

(<∼
fo
clt)

Proof. It follows from Lemma 6.2.9.

The converse of Corollary 6.2.11 is also true.

Proposition 6.2.12. [ Alternative characterisation <∼
fo
clt ]

The restricted must client pre-order and the syntactic must client pre-order coincide. Formally,

<∼
fo
clt= -synclt.

Proof. We are required to prove two set inclusions,

a) <∼
fo
clt ⊆ -

syn
clt

b) -synclt ⊆ <∼
fo
clt

The first implication follows from Corollary 6.2.11, so we prove only the second implication. To this

end, we prove a more general result: we show that every co-inductive syntactic server pre-order is

contained in <∼
fo
clt.

Fix a relation S that is a co-inductive syntactic server pre-order. To prove that S ⊆ <∼
fo
clt, we have

to show that if ρ1 S ρ2 and σ must ρ1, then σ must ρ2. Let

R = { (ρ2, σ) | σ must ρ1, ρ1 S ρ2 }

it is enough to show that R ⊆ must−1. Thanks to Lemma 3.3.14, this is equivalent to showing that

R ⊆ musts . We prove this fact.
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Fix a pair ρ2 R σ; by construction of R, we know that σ(must ◦ S)ρ2, so there exist a ρ1 such

that σ must ρ1 and ρ1 S ρ2.

Lemma 3.3.14 implies that there is a finite derivation of ρ1 musts σ. The argument to prove that

ρ2 musts σ is by rule induction on the derivation of

...
ρ1 musts σ (6.4)

In the base case the last rule used in the derivation in (6.4) is the axiom [a-Unit]. It follows that

ρ1 = 1. As unf(ρ1) = 1, Definition 6.1.8 and ρ1 S ρ2 ensure that unf(ρ2) = 1. Now we apply the

axiom,

unf(ρ2) musts σ
[a-Unit]

If depth(ρ2) + depth(ρ1) = 0 then ρ2 = unf(ρ2), thus we have derived ρ2 musts σ.

If depth(ρ2) + depth(ρ1) > 0 then we extend the derivation by unfolding the session contracts,

unf(ρ2) musts σ
[a-Unit]

ρ2 musts σ
depth(ρ2) + depth(ρ1) > 0; [r-Unfold]

In the inductive case we have to discuss five cases, depending on the last rule used in (6.4). We

show the arguments for two cases, as the other cases can be proven by using similar arguments.

• If the last rule in (6.4) is [r-Alpha], then the derivation is

...
ρ′1 musts σ′

α.ρ′1 musts α.σ′
[r-Alpha]

It follows that ρ1 = α.ρ′1 and that σ = α.σ′. Since unf(ρ1) = ρ1, the fact that ρ1 S ρ2 and

Definition 6.1.8 imply that unf(ρ2) = β.ρ′2 for some β such that α ./c β and ρ′1 S ρ2. Since the

derivation of ρ′1 musts σ′ is shorter than (6.4), and σ′ must ρ′1 S ρ′2, the inductive hypothesis

ensures that ρ′2 musts σ′. It follows that we can derive

...
ρ′2 musts σ′

β.ρ′2 musts α.σ′
[r-Alpha]

We have proven that unf(ρ2) musts σ. If depth(ρ2) = 0 then we have proven that ρ2 musts σ.

If depth(ρ2) > 0 then an application of rule [r-Unfold] lets us prove that unf(ρ2) musts σ.

• If the last rule used in (6.4) is [r-Unfold], then the derivation is

...
unf(ρ1) musts unf(σ)

ρ1 musts σ
[r-Unfold]

Since unf(ρ1) S unf(ρ1) and unf(ρ1) musts unf(σ), it follows that unf(ρ2) R unf(σ).

The inductive hypothesis states that there exists a derivation of unf(ρ2) musts unf(σ). If
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depth(ρ2) + depth(σ) = 0 then we have proven that ρ2 musts σ. Otherwise we derive

...
unf(ρ2) musts unf(σ)

ρ2 musts σ
depth(ρ2) + depth(σ) > 0 [r-Unfold]

We have proven that for every ρ2 R σ we can derive ρ2 musts σ. In view of the definition of R, this

proves that if ρ1 -
syn
clt rho2 then ρ1 <∼

fo
clt ρ2.

In this section we have unravelled the behavioural characterisation of the pre-order <∼
fo
clt. This

characterisation turns out to to be co-inductive and syntax directed, as the characterisation of <∼
fo
svr.

In the next section we will use the characterisation of the restricted must server pre-order and

the restricted must client pre-order to define a fully abstract model of the sub-typing on first-order

session types.

6.3 A behavioural model of first-order sub-typing

As we have shown, the difficulty is to find a natural pre-order on session contracts which accurately

reflects the sub-typing relation on session contracts. There are two obvious candidates, the restricted

must server pre-order and the restricted must client pre-order on session contracts. The difficulty

lies in the interpretation of end.

Definition 6.3.1. [ Session contract pre-order ]

For σ1, σ2 ∈ SCfo let σ1 vfo
p2p σ2 whenever σ1 <∼

fo
svr σ2 and σ1 <∼

fo
clt σ2.

Example 6.3.2. It is instructive to see the behaviour of 1, the image of end under M, relative to

this combined pre-order. First suppose σ vfo
p2p 1 for some session contract σ. This implies σ <∼

fo
svr 1

and therefore, as we have shown in Lemma 6.1.5, σ must be a bottom element relative to <∼
fo
svr, so

unf(σ) must be 1. A similar argument, using the pre-order <∼
fo
clt ensures that if 1 vfo

p2p σ then unf(σ)

must be 1.

In other words modulo unfolding the only session contract related to 1 via vfo
p2p is 1 itself.

Proposition 6.3.3. [ Completeness ]

For every σ1, σ2 ∈ SCfo, σ1 vfo
p2p σ2 implies M−1(σ1) 4fo

sbt M−1(σ2).

Proof. Let R be the relation over session types defined as follows,

R = {(M−1(σ1),M−1(σ2)) | σ1 -synsvr σ2, σ1 -
syn

clt σ2}

If we prove that R is a type simulation (see Definition 2.1.13), then the result will follow because of

Proposition 6.1.10 and Proposition 6.2.12.

To show that R is a type simulation we are required to prove the set inclusion R ⊆ F4fo
sbt(R).

Fix a pair S1 R S2. There exist a σ1 and a σ2 such that S1 = M−1(σ1), S2 = M−1(σ1), and

σ1 -
syn
svr σ2 and σ1 -

syn
clt σ2.

The proof proceeds by a case analysis on the depth of the types S1 and S2, and then by case

analysis on S1.

Suppose that depth(S1) + depth(S2) > 0. Since σ1 -
syn
svr σ2 and σ1 -

syn
clt σ2, Lemma 6.1.4 and

Lemma 6.2.3 ensure that unf(σ1) -synsvr unf(σ2) and unf(σ1) -synclt unf(σ2), and so

M−1(unf(σ1)) R M−1(unf(σ2))
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point (iii) of Lemma 2.3.12 implies the following fact,

unf(M−1(σ1)) R unf(M−1(σ2))

so unf(S1) R unf(S2). Now we can apply [r-Unfold],

unf(S1) 4fo
sbt unf(S2)

S1 4fo
sbt S2

depth(S1) + depth(S2) > 0 [r-Unfold]

Suppose now that depth(S1) + depth(S2) = 0; then the unfoldings of S1 and S2 are the types

themselves. Now we reason by case analysis on S1; that is M−1(σ1).

• SupposeM−1(σ1) = end. According to Definition 2.1.13 we have to show thatM−1(σ2) = end.

The definition of M implies that σ1 = 1; moreover In Example 6.3.2 above we have already

reasoned that unf(σ2) must be 1, and so M−1(σ2) = end.

• Suppose M−1(σ1) = ![ t1 ];S′1. We are required to prove that

M−1(σ2) = ![ t2 ];S′2, (6.5)

for some t2 and S′2 such that t2 4b t1 and (M(S′1),M(S′2)) ∈-synsvr ∩ -synclt.

As σ1 -
syn
svr σ2, Definition 6.1.8 implies that σ2 =!t2.σ

′
2 for some t2 such that t2 4b t1 and

some σ′2 such that M(S1) -synsvr σ
′
2. This ensures that (6.5) above is satisfied. By the definition

of S2 we also have the requirement M(S1) -synsvr σ
′
2.

It remains to showM(S1) -synclt M(S2). But this follows from σ1 -
syn
clt σ2, and Definition 6.2.10.

• A case that requires particular care is when S1 = &〈 l1 : S1
1 , . . . , li : S1

m 〉. Definition 2.1.13

requires us to prove that three things

1) S2 = &〈 l1 : S2
1 , . . . , li : S2

n 〉

2) m ≤ n

3) for every 1 ≤ i ≤ m, S1
i R S2

i

The construction ofR ensures that there are two session contracts σ1 and σ2 such that σ1 -
syn
svr σ2

and σ1 -
syn
clt σ2; and such that S1 =M(σ1) and S2 =M(σ2). We know that σ1 =

∑
i∈I?li.σ

1
i ,

withM−1(S1i ) = σ1
1 for every i ∈ [1;n]. Rule [r-Branch] in Figure 6.1 Definition 6.1.8 ensures

that σ2 =
∑
j∈J?lj.σ

1
j for some set J such that [1;n] ⊆ J and that for every i ∈ [1;m],

σ1
i -

syn
svr σ

2
i .

The set inclusion [1;m] ⊆ J implies that J = [1;n] for some n ∈ N such that m ≤ n.

Since S2 = M(σ2), σ2 =
∑
j∈J?lj.σ

1
j , and J = [1;n], we can prove 1) and 2) above: S2 =

&〈 l1 : S2
1 , . . . li : S2

n 〉 for some n such that m ≤ n.

We still have to prove 3). The equality in Eq. (6.5) ensures that for every j ∈ [1;n], S2
j =Mσ2

j ;

that is M−1(S2i ) = σ2
j . We have already proven that for every i ∈ [1;m], M−1(S1i ) = σ1

1 . We

have to show that S1
i R S2

i for every i ∈ [1;m]. Fix an i ∈ [1;m]. To prove that S1
i R S2

i we have

to show two facts, namely that M−1(S1
i ) -synsvr M−1(S2

i ) and that M−1(S1
i ) -synclt M−1(S2

i ).

Thanks to the equalities that we have already proven, we have to show that σ1
i -

syn
svr σ

2
i and

that σ1
i -

syn
clt σ

2
i . We have already shown the first fact; so we have to explain why σ1

i -
syn
clt σ

2
i .

As σ1 -
syn
clt σ2, Point (iii) of Definition 6.2.10 and I ⊆ J imply that for every i ∈ I, σ1

1 -
syn
clt σ

1
2 .

The proof for the remaining cases is similar to the argument already shown, and left to the

reader.
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Theorem 6.3.4. [ Full abstraction ]

For every T1, T2 ∈ STfo, T1 4fo
sbt T2 if and only if M(T1) vfo

p2pM(T2).

Proof. Thanks to Proposition 6.3.3, it is sufficient to prove that T1 4fo
sbt T2 implies M(T1) <∼

fo
svr

M(T2) and M(T1) <∼
fo
clt M(T2). As an example we outline the proof of the former. Because of

Proposition 6.1.10 it is sufficient to show that the relation R given by

R = { (σ1, σ2) | T1 4fo
sbt T2, M(T1) = σ1, M(T2) = σ2 }

is a syntactic server pre-order, that is R ⊆ F-synsvr (R), where F-synsvr is given in Definition 6.1.8.

Suppose σ1 R σ2; we have to prove that the pair (σ1, σ2) is in F-synsvr (R). By definition there exist

T1 and T2 such that M(T1) = σ1, that M(T2) = σ2, and that T1 4fo
sbt T2.

We do first a case analysis on the depth of σ1 and σ2, and then reason by case analysis on σ1.

Suppose that depth(σ1) + depth(σ2) > 0; to prove that (σ1, σ2) ∈ F-synsvr (R) it is enough to show

that unf(σ1) R unf(σ2). The fact that T1 4fo
sbt T2 and Lemma 2.1.16 imply that unf(T1) 4fo

sbt

unf(T2). The construction of R guarantees that

M(unf(T1)) RM(unf(T2))

Point (iii) of Lemma 2.3.12 ensures that we can commute the unfolding with the interpretation M,

unf(M(T1)) R unf(M(T2))

and so unf(σ1) R unf(σ2). Now we apply [r-Unfold],

unf(σ1) -synsvr unf(σ2)

σ1 -
syn
svr σ2

depth(σ1) + depth(σ2) > 0 [r-Unfold]

Suppose now that depth(σ1) + depth(σ2) = 0; this implies that unf(σ1) = σ1 and that unf(σ2) =

σ2. We proceed reasoning by case analysis on σ1.

• If σ1 = 1, then Definition 6.1.8 ensures that (σ1, σ2) is in F-synsvr (R).

• If σ1 = ?t1.σ
′
1 we have to show that

σ2 = ?t2.σ
′
2

with t1 4b t2 and σ′1 R σ′2.

The fact that M−1(σ1) 4fo
sbt M−1(σ2) let us use Definition 2.1.13 to deduce that M−1(σ2) =

?[ t2 ]; .M−1(σ′2) for some t2 such that t1 4b t2 and some M−1(σ′2) such that M−1(σ′1) 4fo
sbt

M−1(σ′2). From the last inequality and the definition ofR it follows that σ′1 R σ′2. Since we have

proven the conditions on the input actions t1, t2 and on the continuations σ′1, σ
′
2 we have left

only to show that the structure of σ2 is the required one; this follows from another application

of part (iii) of Lemma 2.3.12.

The other cases are analogous and left to the reader.

Corollary 6.3.5. If ./c is decidable, then the relation vfo
p2p is decidable.

Proof. To begin with, note thatM is defined by structural induction, and in a similar fashion we can

define its inverseM−1; soM−1 is decidable. The corollary then follows from Corollary 2 of [Gay and

Hole, 2005], which ensures that the relation 4fo
sbt is decidable, and our Theorem 6.3.4, whereby we can

prove the isomorphism 4fo
sbt
∼= vfo

p2p.
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6.3.1 Examples and applications

In this subsection we give a series of examples in order to discuss the results we obtained. The first

two example are of theoretical nature, whereas the last one shows an application.

Example 6.3.6. [ Type simulations and the weak simulation relation ]

At this stage, a natural question arises, which concerns the relationship between type simulations and

weak simulations [Milner, 1999]. Assume the standard definition of the weak simulation [Milner,

1999]; we use the symbol . to denote the greatest weak simulation relation.

We begin by showing that, even though two session types are in a co-inductive types simulation,

their images through M need not be in a weak simulation. Consider the relation

R = { (⊕〈 l1 : end, l2 : end 〉, (⊕〈 l1 : end 〉), (end,end) }

The standard co-inductive proof technique let one prove that the relation R is a type simulation. On

the other hand, the definition of M implies that

M(⊕〈 l1 : end, l2 : end 〉) = !l1. 1 ⊕ !l2. 1

M(⊕〈 l1 : end 〉) = !l1. 1

Then M(⊕〈 l1 : end, l2 : end 〉) 6.M(⊕〈 l1 : end 〉) because !l1. 1 ⊕ !l2. 1
τ−→ l2−→, while !l1. 1

l2
6−→.

We have proven that S1 4fo
sbt S2 does not imply M(S1) .M(S2).

Looking at the foregoing argument, one might be tempted to reason that if S1 4fo
sbt S2 then

M(S2) .M(S1). We prove that this is not the case. We can prove that

?l1. 1 vfo
p2p?l2. 1+?l1. 1

An application of M−1 gives us:

M−1(?l1. 1) = &〈 l1 : end 〉

M−1(?l2. 1+?l1. 1) = &〈 l1 : end, l2 : end 〉

A look at the definition of 4fo
sbt, Definition 2.1.13, lets one prove that for every type simulation R

&〈 l1 : end, l2 : end 〉 6R &〈 l1 : end 〉

and, therefore,

&〈 l1 : end, l2 : end 〉 64fo
sbt &〈 l1 : end 〉

Example 6.3.7. [ e-vote, revisited ]

In this example we use Theorem 6.3.4 in conjunction with Theorem 2 of [Gay and Hole, 2005], in

order to show how the set based pre-order vfo
p2p can be used to guarantee that a process Pa can be

safely replaced by a suitable process Pb.

Consider two contracts BallotA and BallotB such that BallotA vfo
p2p BallotB. Let BallotA =

M−1(BallotA) and BallotB =M−1(BallotB). From Theorem 6.3.4 it follows that

BallotA 4fo
sbt BallotB (6.6)

Let ⊥c denote the coinductive duality relation defined as in Definition 9 of [Gay and Hole, 2005].

Suppose now that BltSrvA(x+), BltSrvB(x+) and Voter(x−) are pi calculus processes (as in [Gay
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and Hole, 2005]) such that

{x+ : BallotA} ` BltSrvA(x+),

{x+ : BallotB} ` BltSrvB(x+),

{x− : V oter} ` Voter(x−)

for some session type V oter such that V oter⊥cBallotA. By means of the typing rules of [Gay and

Hole, 2005], it is possible to derive

...
{x+ : BallotA} ` BltSrvA(x+)

...
{x− : V oter} ` Voter(x−)

{x+ : BallotA}, x− : V oter ` BltSrvA(x+) | Voter(x−)
[T-Par]

` (νx : BallotA) BltSrvA(x+) | Voter(x−)
[T-NewS]

Then (6.6) above and Theorem 2 of [Gay and Hole, 2005] can be used to guarantee that if process

BltSrvB(x+) is used in place of process BltSrvA(x+), then no communication error will happen

along the channel x.

One can use non-recursive versions of the contracts seen in Examples 2.3.5 and 6.1.3 to obtain

contracts that satisfy the assumptions above:

BallotA = ?Login.( !Wrong. 1 ⊕ !Ok.( ?VoteA. 1 + ?VoteB. 1 ) )

BallotB = ?Login.( !Wrong. 1 ⊕
!Ok.( ?VoteA. 1 + ?VoteB. 1 + ?VoteC. 1 + ?VoteD. 1 ) )

V oter = M−1(!Login.( ?Wrong. 1 + ?Ok.( !VoteA. 1 ⊕ !VoteB. 1 ) ))

Example 6.3.8. [ Protocol conformance ]

As already remarked, the language for contracts is a sublanguage of CCS without τ ’s [De Nicola and

Hennessy, 1987], and consequently contracts are suitable for specifying communication protocols.

Assume a protocol Pr to be specified by a contract σ, and let Q be a process (in the sense of [Gay

and Hole, 2005]), which is well-typed under the environment Γ. Assume also that Γ(x) = S for some

channel x.

We want to answer the following question:

(Q) “Does the session type S conform to the protocol specification σ?”

Clearly, as long as the notion of conformance is not well defined, it is not possible to give an answer

(at least not a trutworthy one).

In light of Theorem 6.3.4, we propose the following definition of conformance. Assume the standard

definition of weak bisimilarity equivalence [Milner, 1999]; we denote this relation ≈. We say that a

session type S conforms to a protocol specification σ if and only if M(S) ≈ σ.

To answer the question (Q) now one has only to prove that M(S) ≈ σ or to show a counter

example to this statement.

For example, if we had given a specification of the protocol pop3 [Rose, 1988] with a contract σ,

then we would have been able to check whether the session type pop3 of [Gay et al., 2003] conforms

to σ.

In order for the notion of conformance we have given to be of some practical consequence, one last

thing has to be ascertained. We have to study whether weak bisimilarity equivalence, when restricted

to session contracts, is decidable. We leave this as an open problem worth further investigation.
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6.4 Revisiting the restricted server pre-order

In this section we investigate the restricted pre-order for server that arise by using the compliance rela-

tion. The result of our study is that the restricted pre-orders for servers coincide (see Corollary 6.4.8).

Definition 6.4.1. [ Restricted compliance server pre-order ]

For every σ1, σ2 ∈ SCfo, we write σ1 vfo
svr σ2 if and only if whenever for every ρ ∈ SCfo, ρ a σ1

implies that ρ a σ2. We call the relation denoted by the symbol vfo
svr the restricted compliance server

pre-order.

When comparing session contracts relative to this pre-order it will be convenient to work modulo

unfolding, which is possible because of the following result:

Lemma 6.4.2. For every σ1, σ2 ∈ SCfo, σ1 vfo
svr σ2 if and only if unf(σ2) vfo

svr unf(σ2).

Proof. Follows from Corollary 3.2.9 and 3.2.10.

The set based relation vfo
svr is contained in -synsvr; this will follow if we can show the former satisfies

the defining properties of the latter.

Lemma 6.4.3. Let σ1, σ2 ∈ SCfo, σ1 = unf(σ1), σ2 = unf(σ2) and σ1 vfo
svr σ2. Then

(i) if unf(σ1) = !t1.σ
′
1 then unf(σ2) =!t2.σ

′
2, t2 4b t1 and σ′1 <∼

fo
svr σ

′
2

(ii) if unf(σ1) = ?t1.σ
′
1 then unf(σ2) = ?t2.σ

′
2, t1 4b t2 and σ′1 <∼

fo
svr σ

′
2

(iii) if unf(σ1) =
∑
i∈I?li.σ

1
i then unf(σ2) =

∑
j∈J?lj.σ

2
j , with I ⊆ J and σ1

i
<∼

fo
svr σ

2
i

(iv) if unf(σ1) =
⊕

i∈I !li.σ
1
i then unf(σ2) =

⊕
j∈J !lj.σ

2
j , with J ⊆ I and σ1

j
<∼

fo
svr σ

2
j

Proof. The proof is by case analysis on the structure of σ1 and depends greatly on the restricted

syntax of session contracts. We give the details of the first case; the others are analogous.

Suppose σ1 =!t1.σ
′
1. Then ?t1. 1 a σ1 and because σ1 vfo

svr σ2 it follows that ?t1. 1 a σ2. Since

?t1. 1 is stable, σ2 has to engage in an action !t2 such that ?t1 ./c!t2. It follows t2 4b t1. In reason

of the syntax and the the hypothesis σ2 = unf(σ2), the equality σ2 =!t2.σ
′
2 must hold.

We also have to prove that σ′1 vfo
svr σ

′
2. Pick a session contract ρ such that ρ a σ′1. Clearly ?t1.ρ a

σ1, and thus ?t1.ρ a σ2. Since ?t1 ./c!t2, we apply rule [p-Synch] to infer ?t1.ρ || σ2
τ−→ ρ || σ′2.

From the definition of compliance it follows that ρ a σ′2.

Corollary 6.4.4. The relation vfo
svr is a co-inductive syntactic server pre-order.

Proof. We prove that vfo
svr is a prefixed point of F-synsvr of Definition 6.1.8, that is σ1 vfo

svr σ2 implies

(σ1, σ2) ∈ F-synsvr (vfo
svr). Suppose σ1 vfo

svr σ2. Then by Lemma 6.4.2 it follows that unf(σ1) vfo
svr

unf(σ2). Now if unf(σ1) = 1 by definition (σ1, σ2) ∈ F-synsvr (vfo
svr). Otherwise we can apply

Lemma 6.4.3 to the pair unf(σ1), unf(σ2). This provides the required information to satisfy the

requirements (ii) to (v) in Definition 6.1.8, thereby ensuring that (σ1, σ2) ∈ F-synsvr (vfo
svr).

A brief comparison between the properties of �svr and -synsvr is in order. In Example 6.1.2 we have

seen that <∼
fo
svr does not satisfy point (1b) of Definition 5.1.7. This implies that the property of -svr

proven in Lemma 5.1.14 is not enjoyed by -synsvr.

Example 6.4.5. We prove that σ1 -
syn
svr σ2 and σ2

α−→ do not imply that (σ1 after α ) 6= ∅. Let

σ1 =?latte. 1 and σ2 =?moka. 1 + ?latte. 1, and R= {(σ1, σ2), (1, 1)}. Since the relation R is a

co-inductive syntactic server pre-order, σ1 -
syn
svr σ2. Now observe that σ2

?moka−→ 1; however the set

(σ1 after?moka) is empty.

On the other hand we have the analogous of Lemma 5.1.13.
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Lemma 6.4.6. Let R be a co-inductive syntactic server relation and let σ1 R σ2. If σ2
τ−→ σ′2 then

σ1 R σ′2.

Proof. First note that from Definition 6.1.8 it follows that

unf(σ1) R unf(σ2) (6.7)

There are two different cases to be discussed, depending on the unfolding of σ2 being σ2 itself or not.

(a) If unf(σ2) 6= σ2 then σ2 has a top-most recursion, and therefore we can prove that unf(σ2) =

unf(σ′2). This equality and (6.7) above imply that unf(σ1) R unf(σ′2), which in turn means that

σ1 R σ′2.

(b) If unf(σ2) = σ2 then σ2 must be an internal sum, say σ2 =
⊕

i∈I !li.σ
2
i , because σ2 can perform

a silent move and can not unfold.

Since σ2 =
⊕

i∈I !li.σ
2
i , the term σ′2 is the internal sum

⊕
k∈K !lk.σ

2
k, for some K ⊆ I. From

Definition 6.1.8 it follows that unf(σ1) =
⊕

j∈J !lj.σ
2
j with I ⊆ J . Since unf(σ′2) = σ′2 and

K ⊆ I ⊆ J one can prove that unf(σ1) R unf(σ′2), and thus σ1 R σ2.

The main result of this section is the following proposition.

Proposition 6.4.7. [ Co-inductive characterisation vfo
svr ]

For every σ1, σ2 ∈ SCfo, σ1 vfo
svr σ2 if and only if σ1 -

syn
svr σ2.

Proof. In view of Corollary 6.4.4 we have to prove only the inclusion -synsvr ⊆ vfo
clt. It is enough to

show that the relation

R′ = { (ρ, σ2) | ρ a σ, σ1 -synsvr σ2, for some σ1 ∈ SCfo }

is a co-inductive compliance. Thanks to Lemma 3.3.10 it is enough to prove that the following relation

is a syntactic compliance,

R = { (ρ, σ2) | ρ as σ, σ1 -synsvr σ2, for some σ1 ∈ SCfo }

Let ρ R σ; by definition of R there exists a σ1

ρ as σ1, σ1 -
syn

svr σ2

We have to explain why (σ2, ρ) ∈ Fas (R, T ). That is, we have to apply one of the rules in Figure 3.2

to derive . . .
ρ as σ2

Lemma 6.1.4 and Lemma 3.3.3 guarantee the follows facts

unf(σ1) -synsvr unf(σ2), unf(σ1) as unf(ρ)

We first check the depths of σ2 and ρ. If depth(σ2) + depth(ρ) > 0, then It follows that unf(σ2) R
unf(ρ). We apply [r-Unfold],

unf(σ2) as unf(ρ)

ρ as σ2
depth(σ2) + depth(ρ) > 0; [r-Unfold]

Suppose now that depth(σ2) + depth(ρ) = 0.

The argument is by case analysis on the form of σ2.
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i) If σ2 = 1 then we can derive

ρ as σ2
[a-Unit]

ii) If σ2 =?t2.ρ
′
2 then unf(σ1) -synsvr σ2 implies that unf(σ1) =?t1.ρ

′
1 with t1 4b t2 and ρ′1 -

syn
svr ρ

′
2.

The assumption ρ as unf(σ1) now implies that ρ =!t.ρ′, with ?t1 ./c!t, and ρ′ as σ′1. The fact

that ?t1 ./c!t implies that t 4b t1.

We have seen that t2 4b t1, and that t1 4b t. Since 4b is transitive, t2 4b t. The definition of

./c guarantees that !t2 ./c?t2. We also know that ρ′1 -
syn
svr ρ

′
2 and that ρ′ as σ′1, thus ρ′2 R ρ′. We

have proven enough to derive

ρ′ as σ′2
ρ as σ2

!t2 ./c?t2; [r-Alpha]

iii) An argument similar to the one we used in the previous case can be used if σ2 =?t2.ρ
′
2.

iv) If σ2 =
⊕

i∈I !li.σ
2
i , then we prove that we can derive

. . .
ρ as σ2

[r-Inch]

We have to prove that ρ =
∑
j∈J?lj.ρj , with I ⊆ J , and ρ2i R σi for every i ∈ I. As unf(σ1) -synsvr

σ2, it follows that unf(σ1) =
⊕

k∈K !lk.σ
1
k, with I ⊆ K, and ρ1i -

syn
svr ρ

2
i . As ρ as unf(σ1) it must

be ρ =
∑
j∈J?lj.ρj , with K ⊆ J , and ρk as σ1

k for every k ∈ K. As I ⊆ K ⊆ J , we have I ⊆ J ,

moreover for every i ∈ I we have

ρ1i -
syn

svr ρ
2
i , ρ1i as ρi

thus ρ2i R ρi.

v) If σ2 =
∑
i∈I?li.ρ

2
i , then the argument is similar to the one used in the previous case.

Corollary 6.4.8. The restricted compliance server pre-order equals the restricted must server pre-

order.

Proof. It follows from Proposition 6.4.7 and Proposition 6.1.10.

6.5 Restricted compliance client pre-order

We introduce a new pre-order which compares the capacity of clients to be satisfied by servers. The

structure of this sub-section is similar to that of the previous one on the restricted compliance server

pre-order.

Definition 6.5.1. [ Restricted compliance client pre-order ]

For ρ1, ρ2 ∈ SCfo let ρ1 vfo
clt ρ2 whenever ρ1 a σ implies ρ2 a σ for every σ in SCfo.

Also the restricted compliance client pre-order let us reason modulo unfolding.

We can reason on vfo
clt modulo unfolding.

Lemma 6.5.2. For every ρ1, ρ2 ∈ STfo, ρ1 vfo
clt ρ2 if and only if unf(ρ1) vfo

clt unf(ρ2).

Proof. Follows from Corollary 3.2.9.
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1 Dual 1
[a-Dual]

x Dual x
[a-Var]

ρ′ Dual σ′

!t.ρ′ Dual ?t.σ′
[r-In-f]

ρ′ Dual σ′

?t.ρ′ Dual !t.σ′
[r-Out-f]

ρ1 Dual σ1 . . . ρ|I| Dual σ|I|⊕
i∈I !li.ρi Dual

∑
i∈I?lii.σi

[r-Branch]

ρ1 Dual σ1 . . . ρ|I| Dual σ|I|∑
i∈I !li.ρi Dual

⊕
i∈I !li.σi

[r-Choice]

ρ Dual σ

µx. ρ Dual µx. σ
[r-rec]

Figure 6.2: Inference rules for the rule functional FDual

We have seen in Lemma 6.1.5 that the session contract 1 is a bottom element in the restricted

compliance server pre-order. The compliance client pre-order enjoys the dual property.

Corollary 6.5.3 ( Top element ).

The pre-order vfo
clt enjoys the following two properties,

(i) it has a top element

(ii) if σ> is a top element of vfo
clt then unf(σ>) = 1

Proof. Since 1 a σ for every contract σ, the session contract 1 it is a top element in the restricted

compliance client pre-order. Moreover, reasoning as in Lemma 6.1.5 we can show that if σ> is an

arbitrary top element then unf(σ>) = 1.

All the client pre-orders we studied thus far have non usable clients. This is not the case for vfo
clt.

The definition of compliance and the restrictive syntax of session contracts let us prove that for every

ρ there exists some σ such that ρ a σ. Intuitively, this is true because of two factors,

• the only stable session contract that does not engage in any action is 1;

• the compliance relation allows everlasting computations.

To prove the main result of this section, Proposition 6.5.18, it is necessary to use the duals of

session contracts, so now we explain how to construct the dual of every ρ.

Definition 6.5.4. [ Dual ]

If ρ a σ then we say that σ is a dual of ρ.

We want to prove that every session contract has a dual. This means that for every session

contract ρ, we can define a server contract σ such that ρ a σ. We do this reasoning by induction on

the terms of LSCfo
.

Definition 6.5.5. [ Dual session contracts ]

Let FDual : P(L2
SCfo

) −→ P(L2
SCfo

) be the rule functional given by the inference rules in Figure 6.2.

Lemma C.0.28 and the Knaster-Tarski theorem ensure that there exists the least solution of the
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equation X = FDual(X); we call this solution the duality relation, and we denote it Dual: That

is Dual = µX.FDual(X).

We state two basic properties of Dual.

Lemma 6.5.6. The relation Dual is a total function.

Proof. We have to prove two things, that is

a) for every ρ, σ, and σ′ ∈ SCfo, if ρ Dual σ and ρ Dual σ′ then σ = σ′

b) for every ρ ∈ LSCfo
, there exists a σ such that ρ Dual σ.

The proof of point (a) is by induction on the derivation of ρ Dual σ. The proof of point (b) is by

structural induction on ρ.

In view of the previous lemma, from now on instead of using the infix notation ρ Dual σ, we will use

the functional notation Dual(ρ) = σ; except when using the inference rules of Figure 6.2.

Lemma 6.5.7. For every ρ ∈ LSCfo
, if ρ is closed then Dual(ρ) is closed.

Proof. The proof is by structural induction on ρ. The only interesting case is ρ = µx. ρ′. By defi-

nition Dual(ρ) = µx.Dual(ρ′). The fact that µx.Dual(ρ′) is closed depends on the fact that the

function Dual is an identity on the variables, and preserves the bindings µx.

Lemma 6.5.8. [ Substitution lemma ]

For every ρ, σ, ρ′, σ′ ∈ LSCfo
and variable x, if Dual(ρ) = σ and Dual(ρ′) = σ′, then the equal-

ity Dual(ρ
{
ρ′/x

}
) = σ

{
σ′/x

}
holds true.

Proof. The argument is by structural induction on ρ.

Base cases If ρ = 1, then ρ
{
ρ′/x

}
= ρ, and the hypothesis Dual (ρ) = σ implies that σ = 1,

so σ
{
σ′/x

}
= 1. The equalities we have shown ensure that both ρ

{
ρ′/x

}
and σ

{
σ′/x

}
are 1, so

we derive

ρ
{
ρ′/x

}
Dual σ

{
σ′/x

} [a-Dual]

If ρ = y and y 6= x, then an argument as the previous one, but with an application of [a-Var],

lets us prove that ρ
{
ρ′/x

}
Dual σ

{
σ′/x

}
.

If ρ = x, then ρ
{
ρ′/x

}
= ρ′, and the hypothesis Dual(ρ) = σ implies that σ = x, so σ

{
σ′/x

}
=

σ′. The hypothesis that Dual(ρ′) = σ′ implies that there exists an finite inference tree that

proves Dual(ρ
{
ρ′/x

}
) = σ

{
σ′/x

}
.

Inductive cases The arguments for the inductive cases have the same structure, so we discuss only

one case.

If ρ =!t.ρ′′ then the hypothesis Dual(ρ) = σ implies that σ =?t.σ′′ and that Dual(ρ′′) = σ′′.

Since ρ′′ is a sub-term of ρ, the inductive hypothesis states the following implication,

for every ρ̂, σ̂′′, and σ̂ ∈ LSCfo
, and variable y, if Dual (ρ′′) = σ̂′′ and Dual (ρ̂) = σ̂,

then Dual (ρ′′
{
ρ̂/y

}
) = σ̂′′

{
σ̂/y

}
.

The fact that Dual (ρ′′) = σ′′ and the hypothesis that Dual (ρ′) = σ′ let us use the inductive

hypothesis: Dual (ρ′′
{
ρ′/x

}
) = σ′′

{
σ′/x

}
. This means that there exists a finite inference tree as

the following one,
...

ρ′′
{
ρ′/x

}
Dual σ′′

{
σ′/x

}
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By applying rule [r-In-f] we obtain the next tree,

...

ρ′′
{
ρ′/x

}
Dual σ′′

{
σ′/x

}
!t.(ρ′′

{
ρ′/x

}
) Dual ?t.(σ′′

{
σ′/x

}
)

[r-Out-f]

The definition of capture avoiding substitution now implies that Dual(ρ
{
ρ′/x

}
) = σ

{
σ′/x

}
.

Lemma 6.5.9. For every ρ ∈ SCfo, Dual(ρ) = σ implies that Dual(unf(ρ)) = unf(σ).

Proof. The argument is by induction on the depth of ρ.

Base case (depth(ρ) = 0) In this case unf(ρ) = ρ and ρ 6= µx. ρ′. The hypothesis that Dual(ρ) = σ

ensures that σ 6= µx. σ′, so unf(σ) = σ. The hypothesis now ensures that Dual(unf(ρ)) = unf(σ).

Inductive case (depth(ρ) = n+1) In the inductive case ρ = µx. ρ′, and the hypothesis Dual(ρ) = σ

implies that σ = µx. σ′ and Dual (ρ′) = σ′.

Consider the term ρ̂ = ρ′ { ρ/x }. Since depth(ρ) = n + 1, the depth of ρ̂ is n, so the inductive

hypothesis ensures that

if Dual(ρ̂) = σ̂ then Dual(unf(ρ̂)) = unf(σ).

Since Dual (ρ′) = σ′ and Dual (ρ) = σ, Lemma 6.5.8 implies that Dual (ρ′ { ρ/x }) = σ′ { σ/x }. In

turn this means that Dual (ρ̂) = σ′ { σ/x }. The inductive hypothesis now ensures that

Dual (unf(ρ̂)) = unf(σ′ { σ/x })

The definitions of unf and ρ̂ imply that unf(ρ̂) = unf(ρ); the equality σ = µx. σ′ and the definition

of unf imply that unf(σ′ { σ/x }) = unf(σ); from these equalities it follows that Dual (unf(ρ)) =

unf(σ).

Lemma 6.5.10. For every ρ ∈ SCfo, Dual(ρ) ∈ SCfo.

Proof. The proof is by rule induction on the derivation of the dual of ρ. The argument depends on

Lemma 6.5.7 and on the fact that the function Dual does not introduce recursive constructors that

are not in ρ.

Lemma 6.5.11. For every ρ ∈ SCfo, ρ a Dual(ρ).

Proof. Fix a session contract ρ. Thanks to Lemma 3.3.9, it is enough to prove that ρ as Dual(ρ).

We defined a suitable co-inductive syntactic compliance,

R = { (ρ, σ) | Dual(ρ) = σ, ρ, σ ∈ SCfo }

We prove that R ⊆ Fas (R). It suffices to show that each pair in R can be derived applying one

of the rules in Figure 6.2, and drawing the premises from R itself.

Fix a pair ρ R σ . By definition of R we know that Dual(ρ) = σ. We reason first on the depth

of ρ and σ.

If depth(ρ) + depth(σ) > 0, then note that unf(ρ) R unf(σ); this is a consequence Lemma 6.5.9

and Lemma 6.5.10. We know enough to apply [r-Unfold],

unf(ρ) as unf(σ)

ρ as σ
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ρ1 �synclt 1
[ax-Clt]

Figure 6.3: Same rules of Figure 6.1, but [ax-Srv] is replaced by [ax-Clt]. Inference rules for the
rule functional F�synclt

If depth(ρ) + depth(σ) = 0, then we reason by case analysis on ρ. The arguments for all the cases

are similar, so we discuss only one case.

If ρ = !t.ρ′, then Dual (ρ) = σ implies that σ = ?t.σ′, and that Dual (ρ′) = σ′. Since ρ and σ are

session contracts, also ρ′ and σ′ must be session contracts. It follows that ρ′ R σ′. We know enough

to apply rule [r-Out-f],
ρ′ as σ′
ρ as σ !t ./c?t; [r-Out-f]

Lemma 6.5.12. For every ρ1, ρ2 ∈ SCfo, if unf(ρ2) 6= 1 and ρ1 vfo
clt ρ2, then one of the following is

true

(i) if unf(ρ2) = !t2.ρ
′
2 then unf(ρ1) = !t1.ρ

′
1, t2 4b t1 and ρ′1 vfo

clt ρ
′
2

(ii) if unf(ρ2) = ?t2.ρ
′
2 then unf(ρ1) = ?t1.ρ

′
1, t1 4b t2 and ρ′1 vfo

clt ρ
′
2

(iii) if unf(ρ2) =
∑
j∈J?lj.ρ

2
j then unf(ρ1) =

∑
i∈I?li.ρ

1
i with I ⊆ J and ρ1i vfo

clt ρ
2
i

(iv) if unf(ρ2) =
⊕

j∈J !lj.ρ
2
j then unf(ρ1) =

⊕
i∈I !li.ρ

1
i with J ⊆ I and ρ1j vfo

clt ρ
2
j

Proof. We prove the implication in point (ii). The other cases are analogous.

Suppose that unf(ρ2) = ?t2.ρ
′
2. The hypothesis ρ1 vfo

clt ρ2 and Lemma 6.5.2 imply that unf(ρ1) vfo
clt

unf(ρ2). First we show that unf(ρ1) has the required syntax, and then we prove the properties of

the base types and the continuations of the contracts.

Point (b) of Lemma 6.5.6 and Lemma 6.5.11 ensure that there exists a σ such that unf(ρ1) a σ. It

follows that unf(ρ2) a σ. Pick a stable derivative of σ, σ′. Corollary 3.2.7 ensures that unf(ρ2) a σ′.

Since unf(ρ2)
X
6−→, Definition 3.2.1 ensures that ρ2 || σ

τ−→. As both terms in the composition ρ2 || σ
are stable, they must interact. Thanks to the syntax of session contracts, it follows that σ = !t.σ′ for

some t. As unf(ρ1) a σ, it follows that unf(ρ1) = ?t1.ρ
′
1.

Now we prove that t1 4b t2 and that ρ′1 vfo
clt ρ′2. Since ρ′1 is usable there exists a σ̂′ such

that ρ′1 a σ̂′. Let σ̂ = !t1.σ̂
′; it is relatively easy to see that unf(ρ1) a σ̂ . It follows that unf(ρ2) a σ̂.

Since unf(ρ2)
X
6−→ the session contracts unf(ρ2) and σ̂ must interact; it follows that t1 4b t2, and

that ρ′2 a σ̂′. As we have no assumption on σ̂′, we have proven that ρ′1 vfo
clt ρ

′
2.

Definition 6.5.13. [ Syntactic compliance client pre-order ]

Let F�synclt : P(SC2
fo) −→ P(SC2

fo) be the rule functional given by the inference rules in Figure 6.3.

If X ⊆ F�synclt (X), then we say that X is a syntactic client pre-order . Lemma C.0.29 and the Knaster-

Tarski theorem ensure that there exists the greatest solution of the equation X = F�synclt (X); we call

this solution the syntactic client pre-order, and we denote it �synclt. That is �synclt = νX.F�synclt (X).

Corollary 6.5.14. For every session contract ρ1 and ρ2, if ρ1 vfo
clt ρ2 then ρ1 �synclt ρ2.

Proof. The argument is similar to the one of Corollary 6.4.4, but here we use the function F�synclt and

Lemma 6.5.12.
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Corollary 6.5.15. The pre-order vfo
clt is contained the restricted must client pre-order.

Proof. Definition 6.5.13 and Definition 6.2.10 imply that �synclt is a co-inductive syntactic must client

pre-order, and therefore �synclt ⊆ -synclt. Consider the following steps,

vfo
clt = �synclt Because of Corollary 6.5.14

⊆ -synclt Proven above

= <∼
fo
clt Because of Proposition 6.2.12

The converse of the previous corollary it is not true. The third inequality of Example 6.2.8 proves

this.

Lemma 6.5.16. Let R be a co-inductive syntactic client pre-order and let ρ1 �synclt ρ2. If ρ2
τ−→ ρ′2

then ρ1 �synclt ρ
′
2.

Proof. The proof is similar to the proof of Lemma 6.4.6.

Recall the symbol vrs (Definition 2.3.3).

Lemma 6.5.17. For every ρ1, ρ2 ∈ SCfo, if σ1 �synclt ρ2, unf(σ2) 6= 1 and B ∈ acc(ρ2, ε), then there

exists a set A ∈ acc(ρ1, ε) such that Avrs B.

Proof. The proof is similar to the proof of Lemma 6.1.11 but it relies on the use of Definition 6.5.13.

Proposition 6.5.18. [ Co-inductive characterisation of vfo
clt ]

Let ρ, σ ∈ SCfo. Then ρ �synclt σ if and only if ρ vfo
clt σ.

Proof. In view of Corollary 6.5.14 we have to prove only the inclusion �synclt ⊆ vfo
clt. It is enough to

show that the relation

R′ = { (ρ2, σ) | ρ1 �synclt ρ2, ρ1 a σ, for some ρ1 ∈ SCfo }

is a co-inductive compliance. Thanks to Lemma 3.3.10 it is enough to prove that the following relation

is a syntactic compliance,

R = { (ρ2, σ) | ρ1 �synclt ρ2, ρ1 as σ, for some ρ1 ∈ SCfo }

The argument is similar to the proof of Proposition 6.4.7.

Alternative definition model

The intersection of the pre-orders vfo
svr and vfo

svr provides the same fully abstract model of 4fo
sbt that

we exhibited in Theorem 6.3.4.

Proposition 6.5.19. For every σ1, σ2 ∈ SCfo, σ1 vfo
p2p σ2 if and only if σ1 vfo

svr σ2 and σ1 vfo
clt σ2.

Proof. We have to prove two implications,

1. if σ1 vfo
svr σ2 and σ1 vfo

clt σ2 then σ1 vfo
p2p σ2

2. if σ1 vfo
p2p σ2 then σ1 vfo

svr σ2 and σ1 vfo
clt σ2

The proof of the first implication amounts in three steps,

σ1 vfo
svr σ2, σ1 vfo

clt σ2 By assumption

σ1 <∼
fo
svr σ2, σ1 v

fo
clt σ2 By Corollary 6.4.8

σ1 <∼
fo
svr σ2, σ1

<∼
fo
clt σ2 By Corollary 6.5.15

σ1 vfo
p2p σ2 By Definition 6.3.1
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(<∼
fo
svr ∩ <∼

fo
clt) ∼= 4fo

sbt

= ⊂

(vfo
svr ∩ vfo

clt) ∼= 4fo
sbt

Figure 6.4: Relations between the restricted pre-orders and first-order sub-typing

To prove the second implication we have to show that vfo
p2p ⊆ vfo

svr and that vfo
p2p ⊆ vfo

clt. The

first set inclusion is true because by definition vfo
p2p ⊆ <∼

fo
clt, and because of Corollary 6.4.8.

The proof of the set inclusion vfo
p2p ⊆ vfo

clt requires more work. Thanks to the Proposition 6.1.10,

Proposition 6.2.12 and Proposition 6.5.18, it is enough to prove that -synsvr ∩ -synclt ⊆ �synclt. Defini-

tion 6.5.13 ensures that this inclusion follows from the inclusion -synsvr ∩ -synclt ⊆ F�
syn
clt (-synsvr ∩ -synclt).

We prove that last inclusion: -synsvr ∩ -synclt is a co-inductive syntactic compliance client pre-order.

Suppose that ρ1 (-synsvr ∩ -synclt) ρ2; the argument to prove that the pair (ρ1, ρ2) is in the set

F�synclt (-synsvr ∩ -synclt) is by case analysis on the form of unf(ρ1).

In view of the definitions of -synsvr, -synsvr, and �synclt, all the cases except one are straightforward;

namely, when unf(ρ1) =
∑
i∈I?ti.ρ

1
i . If this is the case, then we reason as we did in the proof of

Proposition 6.3.3.

In this chapter we have investigated the server and the client pre-orders that arise from the must

testing and the compliance relations, if we restrict our attention to the LTS of session contracts. The

main results are Theorem 6.3.4 and Proposition 6.5.19.

We summarise our knowledge on the pre-orders for session contracts in Figure 6.4.

Meaning of Theorem 6.3.4 and Proposition 6.5.19 The fully abstract model of 4fo
sbt shown in

Theorem 6.3.4 shows that the definition of 4fo
sbt is not arbitrary. Indeed, Theorem 6.3.4 explains the

syntactic relation in terms of the observable behaviours of session contracts; so if S1 4fo
sbt S2 then the

behaviours (i.e. the communication patterns) of M(S1) and M(S2) are related.

Further, Theorem 6.3.4 proves that the theory of first-order session types can be formulated by

means of the testing theory, but reasoning on the LTS 〈SCfo, Actτ X, −→〉 instead of the more general

LTS 〈CCSwτ , Actτ X, −→〉.
Proposition 6.5.19 proves that the behavioural explanation of 4fo

sbt given by Theorem 6.3.4 does

not depend on the relation for satisfaction that we pick; both must and a give rise to the same model.

Pre-orders for peers In this chapter we have not studied the pre-orders generated by the symmetric

relations for satisfaction mustp2p and ap2p.

It is possible to prove that the pre-order due to the peer compliance coincide with vfo
p2p, and so the

theory of compliance provides the behavioural counterpart of the theory of first-order session types.

On the contrary, the peer pre-order due to mustp2p does not coincide with vfo
p2p.

Example 6.5.20. [ Restricted must peer pre-order ]

Also in the setting of first-order session contracts the usability of peers with respect to the must

testing is not trivial, for instance ρ = µx. !bool.x is not usable.

Define <∼
fo
p2p in the obvious way; since ρ is not a usable peer, the proof of ρ <∼

fo
p2p 1 is trivial.

This shows that <∼
fo
p2p 6⊆v

fo
p2p, and so the restricted must peer pre-order does not model the sub-

typing 4sbt.

In view of the example above, we can see the testing theory on first-order session types as slightly

more general than the compliance theory.
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6.6 Related Work

The refinements for session contracts that have been proposed thus far in the literature have been

inspired either by must testing (and defined using the compliance), or by should testing.

According to this criterion, first we compare the refinement vfo
p2p with the pre-orders used in the

papers that have influenced us most, namely [Barbanera and de’Liguoro, 2010; Laneve and Padovani,

2008]. The theories presented in these papers are related the compliance relation; thus we will refer

to them as compliance-theories.

Afterwards, we compare vfo
p2p with the refinements of two theories inspired to the fair testing,

the one of Bravetti and Zavattaro that we have already discussed, and the theory of “fair sub-

typing” proposed by [Padovani, 2011]. We refer to those theories as fair-theories. As we will see,

the compliance-theories bear some similarities with our results; whereas the fair-theories turns out to

generate pre-orders not comparable with vfo
p2p.

From now on we reason under the assumption that in our definition of compliance the synchroni-

sation relation ./ be the usual co-action relation · (so ./= { (α, α) | α ∈ Act }).

Must-theories

Similar to [Laneve and Padovani, 2007], also the paper [Laneve and Padovani, 2008] uses constrained

contracts (see the discussion in Section 3.4). [Laneve and Padovani, 2008] presents the first comparison

between a sublanguage of first-order session types and contracts; in particular, it tries to show that the

subcontract relation �lp08 together with two interpretations similar to M provide two sound models

for the sub-typing. These interpretations are denoted J−K1 and J−K0. The proposed full abstraction

result, [Laneve and Padovani, 2008, see Theorem 2], though, appears not to be true. According to

that definition and the interpretation J−K0

∅[0] �lp08 {`}[`. 0]

Their Theorem 2 therefore implies &〈 ` : end 〉 4fo
sbt end, which is not true. On the other hand if J−K1

is used then there are two issues. According to Theorem 2 the pair (end,&〈 ` : end 〉) is interpreted

as (∅[X. 0], {`}[`.X. 0]). Then

1. neither ∅[X. 0] nor {`}[`.X. 0] are constrained contracts, because their interfaces do not contain

all the action names which appear in the respective behaviours; moreover

2. even if the interpretation was correct, Theorem 2 would be false because

{X}[X. 0] �lp08 {`, X}[`.X. 0]

while, as stated above, &〈 ` : end 〉 4fo
sbt end is not true.

Our study of the restricted pre-orders on session contracts (Definition 6.4.1 and Definition 6.5.1)

is clearly inspired by [Barbanera and de’Liguoro, 2010]. In [Barbanera and de’Liguoro, 2010] the

language for session types is the same one as we used, whereas the subset of contracts in which session

types are embedded is the set of session behaviours. The set of session behaviours is bigger than the

set of session contracts because of the lack of distinction between labels and base types. It is possible

to write session behaviours as

?Int. 1+?l1. 1

which are image of no session type according to the given interpretation J−K. Note, though, that

J−K =M, so the range of J−K is the set of session contracts, and our Theorem 6.3.4 proves that J−K
and their pre-order �: [Barbanera and de’Liguoro, 2010, Definition 3.4] provides a complete model

for the sub-typing. The completeness of �: was only conjectured in [Barbanera and de’Liguoro, 2010].
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Their approach is complementary to ours, in that they provide a co-inductive characterisation of

the pre-order �:, which turns out to equal the intersection of their sub-server and sub-client pre-

orders. In contrast, we have studied the (restricted) server and the client pre-orders independently,

providing their co-inductive characterisations; we have then (1) explained why it is necessary to use the

intersection of the two pre-orders to obtain a fully-abstract model; and (2) proven that the intersection

of these pre-orders is a sound and complete model of the sub-typing.

Fair-theories

We compare the peer pre-order vfo
p2p with the pre-orders proposed in [Padovani, 2011], and [Bravetti

and Zavattaro, 2009].

To begin with, observe that the pre-order vfo
p2p allows the refinements such as the following one,

a ⊕ b v a (6.8)

For instance we can prove the following facts

µx. ( !espresso.x⊕ !moka. 1 ) vfo
p2p µx. !espresso.x

µX. ⊕ 〈 livelock : X, stop : end 〉 4fo
sbt µX. ⊕ 〈 livelock : X 〉

(6.9)

In [Padovani, 2011] it is pointed out that the refinements shown above are not sound with respect to

the fair testing of Rensink and Vogler. Indeed, this lets us prove that the refinements proposed in by

Padovani and Bravetti and Zavattaro are not contained in our relation vfo
p2p.

In Section 4.4 and Section 5.4 we have already discussed the details of [Bravetti and Zavattaro,

2009], thereby showing that their refinements for peers differ from our refinements. This is the case

also in for the pre-order vfo
p2p: the relations �−1O of [Bravetti and Zavattaro, 2009] are not comparable

with vfo
p2p. Compare the inequalities in Eq. (6.9) with the following one,

µx. ( τ.!livelock.x+ τ.!stop. 1 ) 6�−1∅ µx. !livelock.x

Thus our relation vfo
p2p is coarser than �∅. As �−1N relates also terms more general than first-order

session contracts, we have the following facts

vfo
p2p 6⊆ �−1∅ , �−1N 6⊆ v

fo
p2p

Similar to the work of Bravetti and Zavattaro, in [Padovani, 2011] the notion of correctness requires

all the components of a composition to be successful (ie. be able of performing X) at the same time

in order for the whole composition to be successful. This requirement implies that the compositions

which contain terms as

0, µx. a.x

cannot be correct, because the contracts above do not perform X at all. This phenomenon renders

the viability of contracts [Padovani, 2011, Definition 3.1] a non trivial matter; on the contrary, in our

theory every peer is viable with respect to a.

The language used in [Padovani, 2011] is similar to our session contracts, the differences being that

actions are decorated with a role tag p, q, . . . ; and there is a special session type fail. Then sessions

are multiparty, that is they are general compositions of session types (tagged with a role), for instance

p1 : T1 || p2 : T1 || . . . || pk : Tk

The notion of correct session type composition is given in [Padovani, 2011, Definition 2.1], and it is

used to define a set-theoretical sub-typing relation on session types [Padovani, 2011, Definition 2.2],
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which is denoted ≤. We can prove

µx. ( p!livelock.x ⊕ p!stop. 1 ) 6≤ µx. p!livelock.x

because the term µx. p!livelock.x cannot reach a successful state at all. This means that (6.8) is not

sound for ≤.

Also the following inequalities are true:

µx. p!livelock.x ≤ µx. p!stop.x

µx. !livelock.x 6vfo
p2p µx. !stop.x

The first fact is true because no composition containing the session type µx. p!livelock.x can be

correct, as this term does not perform X at all. The second fact is true because from µx. !livelock.x a
µx. ?livelock.x and µx. !stop.x 6a µx. ?livelock.x.

It follows that the relations vfo
p2p and ≤ are not comparable,

≤ 6⊆ vfo
p2p, vfo

p2p 6⊆ ≤ (6.10)

We leave for future work the comparison of the must peer pre-order on first-order session contracts,

<∼
fo
p2p, with the fair pre-orders studied by Bravetti and Zavattaro, and Padovani.
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Chapter 7

Higher-Order Languages

In the first part of this thesis we have been concerned with theories for first-order languages. Our

investigation has lead to two definitions of a fully abstract model of the sub-typing on first-order

session types (see Theorem 6.3.4 and Proposition 6.5.19). In particular, we have proven the following

isomorphism,

vfo
svr ∩ vfo

clt
∼= 4fo

sbt (7.1)

From a technical standpoint this result is not yet satisfactory.

Higher-order session types Session types are one of the most studied type systems for concurrent

languages; one of their typical application is within the pi-calculus [Sangiorgi and Walker, 2001].

Roughly speaking, the primitive operations in the pi-calculus are the input and output of names over

names; observe the following interaction of two processes,

a!(b).P || a?(x : S).Q
τ−→ P || Q

{
b/x
}

The process on the left, a!(b).P , is willing to output the name b through the name a; the process

on the right is willing to input over the name a another name, that will replace x in Q.1 Since an

interaction on a can happen, the name b is moved from one process to the other one, by using name a.

Note the type annotation S in the input construct ?(x : S).Q. The session type S is meant to

describe how Q behaves on x, and indeed this is an intuition behind the typing discipline: they are

assigned to the names manipulated by processes, and describe how the names are manipulated. What,

then, is the session type that describes how a is used by the process a?(x : S).Q ?

Assuming that Q acts on a according to the type T , then a?(x : S).Q acts on a according to the

type Sa = ?[S ];T . Noticeably, Sa contains another session types in the input field.

This discussion shows that in order to type names in the pi-calculus, it is necessary to use higher-

order session types, that is types that can input/output other types. The following terms are an

example,

![µX. ?[ Bool ];X ];end, &〈 opt1 : ?[end ];end, opt2 : ![ ?[end ];end ];end 〉

Moreover, the co-inductive definition of the sub-typing [Gay and Hole, 2005] on session types is

formulated in terms of higher-order types.

To provide a model for the sub-typing à la Gay and Hole, then we have to extend the result shown

in Eq. (7.1), to the language of higher-order session types. This is our aim in this part of the thesis.

We will extend to the higher-order setting only the model defined using the compliance, and we leave

as an open problem the extension of the model due to the must testing (see (Q13) in Section 11.2).

1Intuitively the input ?(x : S).Q binds x in Q as λx : t.M binds x in M .
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S, T ::= Higher-order session types

... see Figure 2.1

?[T ];S Input

![T ];S Output

Figure 7.1: Additional terms for higher-order input/output

Ss =


...

![T s ]; (S′s) if S = ![T ];S′

?[T s ]; (S′s) if S = ?[T ];S′

Figure 7.2: Additional cases for substitution on session types.

To model the higher-order session types, we extend the language of first-order session contracts,

so as to let them input/output session contracts. This forces us to parametrise the LTS over binary

relations B on session contracts. To this end, we merely transform the relation ./ in the side conditions

of rule [p-Synch], into a function of B: ./B. This allows us to extend smoothly the result in Eq. (7.1)

to the higher-order setting.

In Chapter 6 we leveraged the restricted LTS of session contracts to model the sub-typing on

first-order session types. As the extension of the model is our only aim in this part of the thesis, we

will not be concerned with the LTS of processes any longer.

In this chapter we present two languages, namely the language of higher-order session types, and

the language of higher-order session contracts. We adapt to the new setting the definition of sub-

typing, and also the operational semantics of session contracts. We also show that our definition of

sub-typing and the [Gay and Hole, 2005, Definition 4] generate the same relation (Lemma 7.1.6).

Structure of the chapter. In Section 7.1 we extend the theory of session types so as to include

higher-order terms. In Section 7.2 we extend the theory of session contracts, and, most importantly, we

parametrise their LTS over the binary relations on session contracts. We also generalise the compliance

relation, and prove that its syntactic characterisation is valid also when the LTS is parametrised.

7.1 Session types

Let the language LT be the set of terms described in Figure 7.1. In Figure 7.2 we adapt the way in

which we apply syntactic substitutions to terms.

What we have seen in Section 2.1 about unfolding and guardedness of terms is still true for the

extended language, and the definitions of depth, unf and gd do not change.

Definition 7.1.1. [ Higher-order session types ]

Let STho denote the set of closed guarded terms of LT ,

STho = {T ∈ LSTho
| T closed, T gd }

We refer to the elements in STho as higher-order session types.
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S′1 4sbt S
′
2 Ŝ1 4sbt Ŝ2

?[ Ŝ1 ];S′1 4sbt ?[ Ŝ2 ];S′2
[r-In-h]

S1 4sbt S2 Ŝ2 4sbt Ŝ1

![ Ŝ1 ];S1 4sbt ![ Ŝ2 ];S2

[r-Out-h]

Figure 7.3: Additional inference rules for the rule functional F4sbt . See also the rules in Figure 2.6

We amend the definition of the sub-typing relation so as to account for the higher-order terms.

Definition 7.1.2. [ Sub-typing ]

Let F4sbt : ST2
ho −→ ST2

ho be the rule functional given by the inference rules in Figure 7.3. If X ⊆
F4sbt(X), then we say that X is a type simulation. Lemma C.0.30 and the Knaster-Tarski theorem

ensure that there exists the greatest solution of the equation X = F4sbt(X); we call this solution the

sub-typing relation, and we denote it 4sbt. That is 4sbt = νX.F4sbt(X).

Example 7.1.3. [ Sub-typing on higher-order types ]

Let S = µX. ?[X ];X and T = µY. ?[Y ]; ?[Y ];Y . In this example we prove that µX. ?[X ];X 4sbt

µY. ?[Y ]; ?[Y ];Y .

Thanks to the Knaster-Tarski theorem, we have to exhibit a prefixed point of the rule functional

F4sbt , that contains the pair (S, T ). Consider the following relation

R = { (S, T ), (?[S ];S, ?[T ]; ?[T ];T ), (?[S ];S, ?[T ];T ), (S, ?[T ];T ) }

To show that R ⊆ F4sbt(R), we have to prove that each pair in R can be inferred by applying one of

the rules in Figure 7.3 using the elements of R as premises. The following one step derivations show

how to infer all the pairs in R.

?[S ];S 4sbt ?[T ]; ?[T ];T

S 4sbt T
depth(S) + depth(T ) > 0; [r-Unfold]

S 4sbt ?[T ];T S 4sbt T

?[S ];S 4sbt ?[T ]; ?[T ];T
[r-In-h]

?[S ];S 4sbt ?[T ];T

S 4sbt ?[T ];T
depth(S) + depth(T ) > 0; [r-Unfold]

S 4sbt T S 4sbt T

?[S ];S 4sbt ?[T ];T
[r-In-h]

The additional inference rules of Figure 7.3 have no impact on the unfolding rule, so Lemma 2.1.16

is true also for 4sbt.

Lemma 7.1.4. [ 4sbt and unfolding ]

For every co-inductive type simulation R, and every S, T ∈ STfo, if S R T then unf(T ) R unf(T ).

Proof. The argument is the same used in Lemma 2.1.16.

Our main aim in this section was to introduce the relation 4sbt. As session types have no semantics,

the work we had to do was minimal.
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Before proceeding, though, we make sure that our sub-typing 4sbt coincides with the co-inductive

sub-typing ≤c of [Gay and Hole, 2005], up-to the presence of base types and the restriction to types

with only one parameter in the input/output field.

In the sequel, U is another meta variable for higher-order session types.

Definition 7.1.5. [ Co-inductive sub-typing ]

A relation R is a type simulation à la GH if (T,U) ∈ R implies the following conditions:

• if unf(T ) = end then unf(U) = end

• if unf(T ) = ?[T1 ];S1 then unf(U) = ?[U1 ];S2 and (S1, S2) ∈R and (T1, U1) ∈R.

• if unf(T ) = ![T1 ];S1 then unf(U) = ![U1 ];S2 and (S1, S2) ∈R and (U1, T1) ∈R

• if unf(T ) = &〈 l1 : S1, . . . lm : Sm 〉 then unf(U) = &〈 l1 : S′1, . . . , ln : S′n 〉 where m ≤ n and

(Si, S
′
i) ∈R for all i ∈ [1, . . . ,m]

• if unf(T ) = ⊕〈 l1 : S1, . . . lm : Sm 〉 then unf(U) = ⊕〈 l1 : S′1, . . . , ln : S′n 〉 where n ≤ m and

(Si, S
′
i) ∈R for all i ∈ [1, . . . , n]

The co-inductive sub-typing relation ≤c is defined by T ≤c U if and only if there exists a type

simulation R such that (T,U) ∈R.

Lemma 7.1.6. Let T and U be higher-order session types.

i) if T ≤c U then T 4sbt U

ii) if T and U contain no base type and T 4sbt U , then T ≤c U

Proof. We have to prove two implications; we begin explaining why i) is true.

To prove that if T ≤c U then T 4sbt U is equivalent to showing that ≤c ⊆ 4sbt. To prove the set

inclusion it is enough to show that ≤c ⊆ F4sbt(≤c). We prove that if T ≤c U then (T, U) ∈ F4sbt(≤c).
Fix a pair T ≤c U ; we have to prove that an application of one of the inference rules that define

F4sbt (see Figure 7.3) lets us derive T 4sbt U , by using the elements in the relation ≤c as premises.

We reason first on the depth of the types T and U . Suppose that depth(T ) + depth(U) > 0; in this

case observe that the definition of ≤c ensures that unf(T ) ≤c unf(U). We know enough to apply

[r-Unfold]:
unf(R) 4sbt unf(U)

T 4sbt U
depth(T ) + depth(U) > 0; [r-Unfold]

Suppose now that depth(T ) + depth(U) = 0. Then T = unf(T ) and U = unf(U), and the

argument proceeds by case analysis on T .

• If T = end, then the definition of ≤c ensures that u = end, so we can derive

T 4sbt U
[a-End]

• If T = ?[T1 ];S1 then U = ?[U1 ];S2, T1 ≤c U1 and S1 ≤c S2. We apply rule [r-In-h]:

S1 4sbt S2 T1 4sbt U1

T 4sbt U

• If T = ![T1 ];S1 then the argument is similar to the previous one, but relies on [r-Out-h].

• If T = &〈 l1 : S1, . . . lm : Sm 〉, then then unf(U) = &〈 l1 : S′1, . . . , ln : S′n 〉 where m ≤ n and

Si ≤c S′i for all i ∈ [1, . . . ,m]. It follows that we can apply rule [r-Branch],

S1 4sbt S
′
1 . . . Sm 4sbt S

′
m

T 4sbt U
m ≤ n; [r-Branch]
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• If T = ⊕〈 l1 : S1, . . . lm : Sm 〉 the argument is similar to the previous one, but relies on rule

[r-Choice].

We have proven that if T ≤c U , then (T, U) ∈ F4sbt(≤c); this means that ≤c is a prefixed point

of F4sbt , and so the definition of 4sbt ensures that ≤c ⊆ 4sbt.

We have proven the first implication of the lemma; now we prove the second implication: if T and

U contain no base type and T 4sbt U , then T ≤c U . To prove the implication, it is enough to show

that the following relation is a type simulation à la GH,

R = { (T, U) | T 4sbt U, T, U contain no base types }

Observe that R ⊆ F4sbt(R).

Fix a pair T R U . Lemma 7.1.4 ensures that unf(T ) R unf(U); and so the set inclusion above

implies that (unf(T ), unf(U)) ∈ F4sbt(R). This means that one of the inference rules that define F4sbt

allows us to derive unf(T ) 4sbt unf(U) by using the elements inR as premises. Since depth(unf(T ))+

depth(unf(U)) = 0 the rule that lets us derive

unf(T ) 4sbt unf(U) (7.2)

is not [r-Unfold].

The argument is by case analysis on unf(T ).

• If unf(T ) = end, then Eq. (7.2) must have been derived by using [a-End], so unf(U) = end.

• If unf(T ) = ?[T1 ];S1, then Eq. (7.2) must have been derived by using [r-In-h], so unf(U) =

?[U1 ];S2 and the premises of the rule ensures that S1 R S2 and T1 R S1.

• If unf(T ) = ![T1 ];S1 then the argument is similar to the previous one, but we use rule [r-Out-

h].

• If unf(T ) = unf(T ) = &〈 l1 : S1, . . . lm : Sm 〉 then Eq. (7.2) must have been derived by using

rule [r-Branch]. It follows that unfoldU = &〈 l1 : S′1, . . . , ln : S′n 〉, for some n ∈ N such that

m ≤ n; moreover the premises of the rule ensure that for every i ∈ [1;m], Si R S′i.

• If unf(T ) = ⊕〈 l1 : S1, . . . lm : Sm 〉 the argument is similar to the previous one, but relies on

rule [r-Choice]

Note that in the case analysis above we have not considered the cases in which unf(T ) performs

an input/output on a base type. The definition of R ensure that these cases cannot happen, for T

and U contain no base types, so neither their unfoldings do.

In the next section we turn our attention to the higher-order session contracts and their LTSs.

7.2 Session Contracts

In Chapter 2 we introduced session contracts to assign to session types an LTS via a straightforward

interpretation, namely M, which preserves the sub-typing.

In the new setting, the language SCfo does not provide any straightforward way to encode the terms

of STho, so as to preserve 4sbt. Nevertheless, we resolved to extend Theorem 6.3.4 to the higher-order

setting. To this end, in this section we introduce the language of higher-order session contracts SCho.

This language provides a natural way to encode session types, thereby assigning them a operational

semantics.
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ρ, σ ::= Higher-order session contracts

... see Figure 2.9

!(σ).σ Higher-order output

?(σ).σ Higher-order input

Figure 7.4: Additional syntax for higher-order session contracts

The arguments about the syntax of the new language are straightforward; what is noticeably more

involved is the LTS that we use. In fact, higher-order session contracts do not have one LTS, but

an infinite amount of LTSs. Thanks to the restrictive syntax of the language, though, all these LTSs

enjoy some properties that we will take advantage of.

After having discussed the syntax and the semantics of higher-order session contracts, we introduce

some technicalities that we will need further on. We also adapt to the new setting the definition of

compliance and its syntactic characterisation (Lemma 3.3.10).

The language Lho is given by the grammar in Figure 7.4. The depth and the unfoldings of terms

in Lho is handled as in Section 2.3.

Definition 7.2.1. [ Language of higher-order session contracts ]

Let SCho = {σ ∈ Lho | σ closed, σ gd }. We refer to the terms in the set SCho as session contracts.

Let η, θ, . . . range over the sets Act ∪ SCho, and µ range over Actτ X ∪ SCho. From now one we use

a series of symbols to range over relations on SCho; we let

• B denote a binary relation on SCho

• R denote a (reflexive) binary relation on SCho

• T denote a transitive relation on SCho

Operational semantics and interactions

In Section 2.1 we used the rules in Figure 2.8 and Figure 2.10 to define the LTS 〈SCfo, Actτ X, −→〉.
To use the same technique here we have to explain when higher-order session contracts can interact;

we have to discuss rule [p-Synch]. Since now input and output actions can be session contracts as

well, we have to amend the side condition of rule [p-Synch],

q
α−→ q′ p

β−→ p′

q || p τ−→ q′ || p′
α ./ β; [p-Synch]

We would like that also session contracts be related by ./. There are two ways to do so. We may

define a particular ./′, that relates higher-order session contracts in a fixed way; this is similar to what

we did with ./c. In Section 2.3 this was a sound idea, for the relation 4b, which we assumed, provides

a way to compare base types. Indeed, the relation ./c depends on 4b. This technique, though, cannot

be easily used in the new setting: it is not clear how to assume a priori a pre-order on SCho that we

could use to define a ./′. This difficulty leads to the second way to extend ./ to higher-order session

contracts. Since a priori we do not know when two session contracts, say σ and ρ, should be deemed as

“co-contracts”, i.e. σ ./ ρ, we make ./ depend on a parameter B, and we use the following definition
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ρ
η−→B ρ′ σ

θ−→B σ′

ρ || ρ τ−→B σ′ || σ′
η ./B θ; [p-Synch]

Figure 7.5: Operational semantics of recursive session contracts

Parameter of ./ Interactions (as per rules in Figure 7.5)

B = ∅ ρ || σ
τ

6−→B

B = {(0, 0)} ρ || σ τ−→B 1 || 0

B = {(0, 0), (1, 1)} ρ || σ τ−→B 1 || 0
ρ || σ τ−→B 0 || 0

Figure 7.6: Interactions of two contracts, as the parameter B of ./ varies

of ./B,

./B=



(!t1, ?t2) if t1 4b t2

(?t1, !t2) if t2 4b t1

(!l, ?l) if l ∈ L

(?l, !l) if l ∈ L

(!(σ1), ?(σ2)) if σ1 B σ2
(?(σ1), !(σ2)) if σ2 B σ1

The definition of ./, implies that the behaviour of a composition depends on the relation B given

to ./.

Example 7.2.2. [ Contract interactions depend on B ]

Let ρ =!(0). 1 + ?(1). 0 and σ =?(0). 0 + !(1). 0. In Figure 7.6 we show, for different binary relations

B, how the interactions of ρ and σ change. In particular, we show how the interactions in Figure 7.6

are inferred.

The contracts ρ and σ are stable, thus the rules [p-Left], and [p-Right] can not be applied to

the composition ρ || σ. To prove ρ || σ τ−→ we have to use rule [p-Synch].

If B = ∅, then the side condition of rule [p-Synch] is false, because !(0) 6./∅?(0), !(0) 6./∅!(1),

?(1). 0 6./∅?(0), ?(1). 0 6./∅!(1), hence rule [p-Synch] can not be applied to ρ || σ either. It follows that

ρ || σ
τ

6−→B.

If B = {(0, 0)}, then the definition of ./ implies that !(0) ./B?(0), thus we can infer

ρ
!(0)−→B 1 σ

?(0)−→B 0

ρ || σ τ−→B 1 || 0
[p-Synch]

If B = {(0, 0), (1, 1)}, then we can again infer ρ || σ τ−→B 1 || 0; but now we also have ?(1) ./B!(1),

thus we can derive also

ρ
?(1)−→B 1 σ

!(1)−→B 0

ρ || σ τ−→B 0 || 0
[p-Synch]
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Parameter of ./ Dependent compliances

B = ∅ ρ 6aB σ for every σ

B = {(0, 0)} ρ aB σ

B = {(0, 0), (1, 1)} ρ 6aB σ

Figure 7.7: The relations aB vary, as B does

Note that Lemma 2.3.7, Lemma 2.3.8, Lemma 2.3.9 and Lemma 2.3.10 do not depend on the rule

[p-Synch], therefore they are true for every LTS parametrised on B.

Recall the function M of Section 2.3.

To assign the operational semantics provided by the parametrised LTS to session types, we have

to amend the definition ofM so as to account for the higher-order terms. LetM : STho −→ SCho be

defined as follows,

M(S) =



...

cases in definition of M,

!(M(M)).M(S) if S = ![M ];S and M ∈ STho,

?(M(M)).M(S) if S = ![M ];S and M ∈ STho

The next proposition can be proven as we did in Section 2.3.

Proposition 7.2.3. The function M is a bijection.

7.2.1 Dependent compliance relations

As the semantics of parallel composition depends on a parameter B, so do the transitions
τ−→. The

definition of compliance has to be genralised so as to mirror this dependency.

Definition 7.2.4. [ B-dependent compliance relation ]

Let Fa : P(SC2
ho)× P(SC2

ho) −→ P(SC2
ho) be the rule functional defined so that (r, p) ∈ Fa(R,B)

whenever the following conditions hold:

(a) if r ⇓ then p ⇓

(b) if r || p
τ

6−→B then r
X−→B

(c) if r || p τ−→B r′ || p′ then r′ R p′

Fix a binary relation B. If X ⊆ Fa(X,B), then we say that X is a co-inductive B-compliance relation.

Lemma C.0.31 and the Knaster-Tarski theorem ensure that there exists the greatest solution of the

equation X = Fa(X,B); we call this solution the B-compliance relation, and we denote it aB. That

is aB = νX.Fa(X,B). If r aB p we say that the process r B-complies with the process p.

All the relations aB enjoy few properties that do not depend on the specific B at hand. We list

these properties in the next proposition.

Lemma 7.2.5. [ Properties of the dependent compliances ]

For every binary relation B ⊆ SC2
ho, the following statements are true:

i) if ρ aB σ1, ρ aB σ2 then ρ aB σ1 ⊕ σ2
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ρ′ asB σ′

η.ρ′ asB θ.σ′
η ./B θ, and η contains no label; [r-Eta]

Figure 7.8: Consider the rules in Figure 3.2, and replace [r-Alpha] with [r-Eta].

ii) if ρ1 aB σ, ρ2 aB σ then ρ1 ⊕ ρ2 aB σ

iii) ρ aB σ if and only if unf(ρ) aB unf(σ)

Proof. The proofs are almost identical to the ones of Corollary 3.2.9, Proposition 3.2.10, and Lemma 3.2.8.

Syntactic compliance

The restrictive syntax of session types let us give a syntactic oriented characterisation of the compliance

relation (Lemma 3.3.10). This characterisation relies on a co-inductive relation (Definition 3.3.1), that

we define now.

Definition 7.2.6. [ B-syntactic compliance relation ]

Let Fas : P(SC2
ho)× P(SC2

ho) −→ P(SC2
ho) be the rule functional given by the inference rules in

Figure 7.8. Fix a relation B. If X ⊆ Fas (X,B), then we say that X is a co-inductive B-syntactic

compliance relation. Lemma C.0.32 and the Knaster-Tarski theorem ensure that there exists the

greatest solution of the equation X = Fas (X,B); we call this solution the B-syntactic compliance

relation, and we denote it asB. That is asB = νX.Fas (X,B).

We have the generalisation of Lemma 3.3.3.

Lemma 7.2.7. For every B ⊆ SCho, and R-syntactic compliance relation, ρ R σ if and only if

unf(ρ) R unf(σ).

Lemma 7.2.8. For every B ⊆ SCho, if R is a co-inductive B-compliance relation, then R is a co-

inductive B-syntactic compliance relation.

Proof. The proof of this lemma proceeds as the proof of Lemma 3.3.4. The only difference is the

discussion of point (ii), in which the application of rule [r-Alpha], must be replaced with rule [r-

Eta]. We discuss this case.

ii) Suppose that ρ = η.ρ′ with η containing no labels. We prove that we can derive (ρ, σ) by using

rule [r-Eta].

Plainly ρ
X
6−→, thus (ρ, σ) ∈ Fa(R,B) can have been proved only by applying rule [r-Eta] of

Figure 7.8. This means that ρ is not stuck together with σ.

Since ρ
τ

6−→B, either ρ can interact with σ, or σ
τ−→B.

As σ =⇒B σ̂
τ

6−→ implies that ρ must interact with σ̂, the restrictive syntax of session types implies

that σ̂ = θ.σ′ and that η ./B θ. The last fact ensures that θ contains no labels; thanks to the

syntax of session contracts, we can prove that σ = σ̂ = θ.σ′.

Note now that ρ || σ τ−→B ρ′ || σ′, thus Definition 7.2.4 ensures that ρ′ R σ′.

We can now derive
ρ′ asB σ′

ρ asB σ
η ./B θ; [e-Eta]
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The proof of Lemma 3.3.6 does not depend on rule [r-Alpha], so that lemma is true for the LTS

of every B. The consequence is the next corollary.

Corollary 7.2.9. For every B ⊆ SCho, if R is a co-inductive B-syntactic compliance relation, then

following statements hold:

(a) if ρ
τ−→B ρ′ then ρ′ asB σ

(b) if σ
τ−→B σ′ then ρ asB σ′

Proof. We prove (a). The argument is a generalisation of the proof of Corollary 3.3.7, in that we

account for the parameter B.

asB ⊆ Fa
s

(asB,B) By definition

{(ρ′, σ)}∪ asB ⊆ Fa
s

({(ρ′, σ)}∪ asB,B) By Lemma 3.3.6, and definition of sd

{(ρ′, σ)}∪ asB ⊆ νX.Fa
s

(X,B) By the Knaster-Tarski theorem

=asB By definition

From the argument above, it follows that ρ′ asB σ. The proof of (b) is similar.

We generalise Lemma 3.3.8.

Lemma 7.2.10. For every B ⊆ SCho, and every R such that R ⊆ Fas (R,B), if ρ R σ and ρ || σ
τ

6−→
then ρ

X−→B.

Proof. It is enough to use the proof of Lemma 3.3.8, but replace [r-Alpha] with [r-Eta].

Lemma 7.2.11. For every B ⊆ SCho, the relation asB is a co-inductive B-compliance relation. For-

mally, asB ⊆ Fa(asB,B)

Proof. The argument is similar to the proof of Lemma 3.3.9. The only difference appears in point (i),

where we have to use the more general [r-Eta] in place of [r-Alpha]. We give the details of that

case.

i) If ρ = η.ρ′ and η contains no labels, then (ρ, σ) ∈ Fasmusts(as) must be proven by the derivation

ρ′ asB σ′

η.ρ′ aB θ.σ′
η ./B θ; [r-Eta]

The premises of the rule ensure that ρ′ a σ′.

Lemma 7.2.12. [ Syntactic characterisation B-compliance relation ]

For every B ⊆ SCho, ρ aB σ if and only if ρ asB σ.

Proof. The result follows from Lemma 7.2.8 and Lemma 7.2.11. The argument is analogous to the

proof of Lemma 3.3.10.

Proposition 7.2.13. If B ⊆ B′, then Fas (R,B) ⊆ Fas (R,B′).

7.2.2 Dependent duality

In this section our aim is twofold; we want (a) to understand which conditions are necessary to (b)

generalise Lemma 6.5.6 to the LTS parametrised on B. In general this is not possible, there exists

relations B and higher-order session contracts ρ such that ρ 6aB σ for every σ ∈ SCho.

We begin by extending the notion of dual, and defining two properties of binary relations.
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ρ′ Dual σ′

?(ρ̂).ρ′ Dual !(σ̂).σ′
ρ̂ B σ̂; [r-In-H]

ρ′ Dual σ′

?(ρ̂).ρ′ Dual !(σ̂).σ′
σ̂ B ρ̂; [r-Out-H]

Figure 7.9: B-Inference rules for the rule functional FDual. Take the rules in Figure 6.2, and add the
rules above

Definition 7.2.14. [ B-dual session contract ]

If ρ asB σ then we say that σ is a B-dual of ρ.

Definition 7.2.15. [ Strongly total ]

We say that a relation R ⊆ A × A is total if for every a ∈ A there exists a a′ ∈ A such that a R a′.

We say that R is strongly total if and only if for every a ∈ A there exists a′, a′′ ∈ A such that a R a′,

and a′′ R a; that is if R and R−1 are total.

We are ready to define a functional that, under suitable hypothesis, will let us prove that every

session contract has a B-dual.

Definition 7.2.16. [ B-dual session contracts ]

Let FDual : P(SC2
ho)× P(SC2

ho) −→ P(SC2
ho) be the rule functional given by the inference rules in

Figure 7.9. Fix a relation B. Lemma C.0.33 and the Knaster-Tarski theorem ensure that there exists

the least solution of the equation X = FDual(X,B); we call this solution the B-duality relation, and

we denote it Dual(B): That is Dual(B) = µX.FDual(X,B).

All the properties of the function Dual that studied in Section 6.5. Most of them do not depend

on the parameter B at all.

The next proposition shows under which hypothesis Dual(B) is a total function.

Lemma 7.2.17. For every B ⊆ SCho, if B is strongly total then Dual(B) is total.

Proof. The proof is analogous to the proof of point (b) in Lemma 6.5.6. Since B is strongly total we

know that if we need to apply [r-In-H] or [r-Out-H], the side conditions are true.

Lemma 7.2.18. For every B ⊆ SCho, the relation Dual(B) is a co-inductive B-compliance relation.

Proof. Similar to the proof of Lemma 6.5.11.

Corollary 7.2.19. If R is a reflexive relation, then Dual(R) is a total R-compliance relation.

Proof. It follows from Lemma 7.2.17, Lemma 7.2.18 and the fact that a reflexive relation is strongly

total.

7.3 Transitive closures

In the next chapter we will use the the transitive closures of binary relations on session contracts. We

explain here how to build inductive transitive closures.

Let F+ : P(SC2
ho)× P(SC2

ho) −→ P(SC2
ho) be the rule functional given by the inference rules in

Figure 7.10. Proposition C.0.37 and the Knaster-Tarski theorem ensure that there exists the least

solution of the equation X = F+(X,B); we call this solution the transitive closure of B , and we

denote it [B]+: That is [B]+ = µX.F+(X,B).
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a [B]+ b
a B b; [trc-a]

a [B]+ b b [B]+ c

a [B]+ c
[trc-r]

Figure 7.10: Inference rule for the rule functional F+

Example 7.3.1. In this example we justify the use of a fixed point in the definition of transitive

closure. In particular, we show that the operation adding to a relation the pairs necessary to prove

its transitivity has to be iterated.

Consider the relations

T1 = {(?l1. 1, 0), (1, ?l1. 1)}

T2 = {(0, !l2. 1)}

If we add to the relation T1 ∪ T2 all the pairs according to rule [trc-r], then we get

T1 ∪ T2 ∪ {(?l1. 1, !l2. 1), (1, 0)}

Note, though, that this relation is not transitive, as

{(1, ?l1. 1), (?l1. 1, !l2. 1)} ⊆ T1 ∪ T2 ∪ {(?l1. 1, !l2. 1)}

while (1, !l2. 1) 6∈ T1 ∪ T2 ∪ {(?l1. 1, !l2. 1)}.
On the other hand, we can prove that the relation [B]+ is

T1 ∪ T2 ∪ {(?l1. 1, !l2. 1), (1, 0), (1, !l2. 1)}

and indeed it is transitive.

Lemma 7.3.2. For every B ⊆ SCho, the transitive closure of B contains B: B ⊆ [B]+.

Lemma 7.3.3. For every B ⊆ SCho, the relation [B]+ is transitive.

Proof. Let a [B]+ b and b [B]+ c; we have to prove that a [B]+ c.

The hypothesis that a [B]+ b and b [B]+ c ensure that we have the finite inference trees

...
a [B]+ b

...
b [B]+ c

We can now apply rule [trc-r] to obtain the finite inference tree

...
a [B]+ b

...
b [B]+ c

a [B]+ c
[trc-r]

This is enough to prove that a [B]+ c.

7.4 Related Work

The higher-order session types that we introduced in Definition 7.1.1 in the literature are know just

as “session types”, and they have been introduced by [Takeuchi et al., 1994].
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We comment on the distinction between first-order and higher-order session types that we intro-

duced. The purpose of the distinction was to ease the transition of our reasoning from processes to

session types. The labels in the transitions of processes are actions of Actτ X, so to move from from

processes to first-order session contracts does not require a complete change in our reasoning. After

having established the full abstraction result (Theorem 6.3.4) in the first-order setting, we moved to

the higher-order setting, that is the notion of session type used throughout the literature.

The definition of the sub-typing à la Gay and Hole differs from our Definition 7.1.2. In particular,

in Figure 2.6 we have inference rules to explicitly (un)fold terms, and these rules have side conditions.

Definition 4 of Gay and Hole, on the other hand, is given by case analysis on the unfoldings of types.

Lemma 7.1.6 shows that the difference has no impact in the relation obtained. The first presentation

of sub-typing for session types was put forth also by Gay and Hole in 1999, and is algorithmic. That

formulation is given by using inference rules (see Figure 1 of that paper), and the (un)folding of terms

is treated by two rules, namely [AS-Rec-L] and [AS-Rec-R]. The role played by the side conditions

of our rule [r-Fold!!!!!!!!] and [r-Unfold], there is played by the type environment and the form of

[AS-Rec-L], [AS-Rec-R]. Also, the way in which unfoldings are treated by the mentioned rules is

reminiscent of the rule [Coind] work by [Brandt and Henglein, 1998, see Figure 9].
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Chapter 8

Modelling higher-order

session-types

Higher-order session contracts allow us to easily assign an operational semantics to higher-order session

types, but they come at a cost. We had to parametrise the transitions of session contracts on binary

relations B, thereby obtaining an infinite amount of LTSs.

In this chapter we purse two aims. First, we study the client and the server pre-orders on the LTSs

〈 SCho, Actτ X ∪ SCho −→B 〉

We do this in two steps, first we parametrise the relations -synsvr and �synclt over the relations B, and

introduce the dependent pre-order

vBsvr, vho
p2p B

Then we show that as long as the parameter B is a pre-order on session contracts, Proposition 6.4.7

and Proposition 6.5.18 extend to the higher-order setting,

vBsvr = �Bsvr, vBclt = �Bclt

Pre-orders on higher-order session contracts will be so important that we will denote the their set

with the symbol Pre(SC2
ho).

Our investigation, of the dependent pre-orders, lets us cut the Gordian knot represented by the

parameter B. At the end of Section 8.1 and of Section 8.2, we prove that if we restrict our attention the

the pre-orders on SCho, then the functions λX. vBclt and λX. vXsvr are monotone endofunctions , so

the Knaster-Tarski theorem ensure that their greatest fixed points exist; we denote them respectively

vho
clt, vho

svr (8.1)

The pre-orders in Eq. (8.1) generalise the pre-orders vfo
clt and vfo

svr, and let us generalise Eq. (7.1).

In Theorem 8.4.9) we show the following isomorphism,

vho
clt ∩ vho

svr
∼= 4sbt

Structure of the chapter. In Section 8.1 we study the dependent client pre-orders, and we show

the conditions required to extend the syntactic characterisation of vfo
clt to the new setting. We also

prove the results that ultimately lead to the proof that λX. vXclt is monotone if X ∈ Pre(SC2
ho).

Section 8.2 follows the structure of Section 8.1 and we state the results about the dependent server

pre-orders without proving them. In Section 8.4 we adapt the proofs of Section 6.3 to prove that the

179
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full abstraction result holds true also in the higher-order setting.

8.1 Client pre-orders

In this section we generalise the results of Section 6.5 to the dependent LTSs. Also in this context we

study when the client ρ2 is better, with respect to the dependent compliance aB, than a client ρ1.

Following this intuition, in this section we define a family of binary relations on session contracts

(Definition 8.1.1), the dependent client pre-orders:

{vBclt}B∈P(SC2
ho)

We will be concerned, at first, with the properties of these pre-orders; and then with their syntactic

characterisation (Proposition 8.1.11). As we will see, the results that we will accumulate to prove

Proposition 8.1.11, imply also that the abstraction λX. vXclt is monotone as long as X is a reflexive

and transitive relation. This fact will be crucial later on (see Section 8.4).

Definition 8.1.1. [ B-dependent client pre-order ]

Given a binary relation on session contracts B ⊆ SC2
ho, we write ρ1 vBclt ρ2 whenever ρ1 aB σ implies

that ρ2 aB σ for every σ ∈ SCho. We refer to the symbol vBclt as the the B-dependent client pre-order.

We call the relations vBclt “dependent”, because in general their properties depend on the param-

eter B. We give an example of this fact.

Example 8.1.2. Let B = {(ρ̂, ρ̂)}. We prove that

a) ?(ρ̂). 1 v∅clt!l. 1

b) ?(ρ̂). 1 6vBclt!l. 1

To show point (a), we prove that ?(ρ̂). 1 6a∅ σ for every stable σ. Let σ be a stable session

contract. Plainly ?(ρ̂). 1 || σ
τ

6−→∅, because ρ̂ 6./∅ σ, and ?(ρ̂). 1
X
6−→∅, so ?(ρ̂). 1 6a∅ σ. It follows that

?(ρ̂). 1 v∅clt!l. 1.

For every action θ we have that ?(ρ̂) 6./∅ θ; this let us prove that ρ || σ
τ

6−→∅; at the same time,

?(ρ̂). 1
X
6−→∅, so condition (b) of Definition 7.2.4 lets us prove that ?(ρ̂). 1 6a∅ σ. Since we have no

particular assumption on σ, other than its being stable, we have proven that ?(ρ̂). 1 6a∅ σ for every

stable session contract σ. This can be used to prove the following equality,

{σ ∈ SCho | ?(ρ̂). 1 a∅ σ } = ∅

The equality above ensures that ?(ρ̂). 1 v∅clt σ is trivially true for every session contract σ. It follows

that ?(ρ̂). 1 v∅clt!l. 1, so point (a) is proven.

Now we show point (b). Let R = { (?(ρ̂). 1, !(ρ̂). 1), (1, 1) }. The relation R is a co-inductive

B-syntactic compliance relation (that is R ⊆ Fas (R,B)); the derivation that proves this is

1 asB 1
[a-Unit]

?(ρ̂). 1 asB!(ρ̂). 1
?(ρ̂) ./B!(ρ̂); [r-Eta]

Lemma 3.3.10 guarantees that ?(ρ̂). 1 aB!(ρ̂).σ.

We prove that !l. 1 6aB!(ρ̂). 1; this is true because !l 6./B!(ρ̂), so !l. 1 ||!(ρ̂). 1
τ

6−→, and !l. 1
X
6−→B.
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Even though, in general, the properties of vBclt depend on B, all the pre-orders vBclt enjoy some

properties that do not depend on the B’s. This is a consequence of the properties of the dependant

compliance relations which do not depend on any B’s (Lemma 7.2.5).

For instance, we generalise Corollary 6.5.3.

Corollary 8.1.3 ( Top elements ).

Let B be a binary relation on session contracts.

(a) the term 1 is a top element of vBclt

(b) if 1 vBclt ρ2 then unf(ρ2) = 1.

Proof. The proof of this corollary is similar to the proof of Corollary 6.5.3, but relies on point (iii) of

Lemma 7.2.5.

The corollary above ensures that for every B, the relation vBclt is not a sound model of 4sbt. The

problem is still the one exhibited in Example 6.2.7.

Corollary 8.1.4. ρ1 vBclt ρ2 if and only unf(ρ1) vBclt unf(ρ2).

Under suitable hypothesis on B, we can give a syntactic characterisation of vBclt.

Lemma 8.1.5. Let R be a reflexive relation on session contracts, and let ρ1 vRclt ρ2. One of the

following is true:

(i) unf(ρ2) = 1

(ii) unf(ρ2) =!(ρ̂2).ρ′2, unf(ρ1) =!(ρ̂1).ρ′1, ρ̂2 R ρ̂1, and ρ′1 vRclt ρ′2

(iii) unf(ρ2) =?(ρ̂2).ρ′2, unf(ρ1) =?(ρ̂1).ρ′1, ρ̂1 R ρ̂2, and ρ′1 vRclt ρ′2

(iv) if unf(ρ2) = !t2.ρ
′
2 then unf(ρ1) = !t1.ρ

′
1, t2 4b t1 and ρ′1 vRclt ρ′2

(v) if unf(ρ2) = ?t2.ρ
′
2 then unf(ρ1) = ?t1.ρ

′
1, t1 4b t2 and ρ′1 vRclt ρ′2

(vi) if unf(ρ2) =
∑
j∈J?lj.ρ

2
j then unf(ρ1) =

∑
i∈I?li.ρ

1
i with I ⊆ J and ρ1i vRclt ρ2i

(vii) if unf(ρ2) =
⊕

j∈J !lj.ρ
2
j then unf(ρ1) =

⊕
i∈I !li.ρ

1
i with J ⊆ I and ρ1j vRclt ρ2j

Proof. The proof of this lemma is similar to the proof of Lemma 6.5.12. We have to discuss only that

cases that involve higher-order terms, that is point (ii) and point (iii).

We prove that if ρ2 =!(ρ̂2).ρ′2 then point (ii) is true. We prove the following facts:

(b.1) if ρ2 =!(ρ̂2).ρ′2, then ρ1 =!(ρ̂1).ρ′1

(b.2) if ρ1 =!(ρ̂1).ρ′1, then ρ2 =!(ρ̂2).ρ′2, ρ̂2 R ρ̂1, and ρ′1 vRclt ρ′2

We give the proofs in order. Suppose ρ2 =!(ρ̂2).ρ′2 and let ρ1 aR σ; thanks to Corollary 7.2.19 and

the reflexivity of R we know that there exist such a σ (ie. ρ1).

The hypothesis ρ1 vRclt ρ2 ensures that ρ2 aR σ. The last fact, given the form of ρ2, can be proved

only by using rule [r-Eta], thus the premises must be true: σ = θ.σ′, ρ̂2 ./R θ, and ρ′2 aR σ′. The

assumption ρ1 aR σ now implies that ρ1 =!(ρ̂1).ρ′1. We have proven (1), and now we prove (2).

Let ρ1 =!(ρ̂1).ρ′1; thanks to Corollary 7.2.19 and the reflexivity of R we know that there exist a

σ′ such that ρ1 asR σ′ (ie. ρ1). As R is reflexive, we can prove that !(ρ̂1) ./B?(ρ̂1), thus we can prove

that ρ1 asR?(ρ̂1).σ′. The hypothesis implies that ρ2 asR?(ρ̂1).σ′, and this can be proven only by using

rule [r-Eta]; thus it must be ρ2 = η2.ρ
′
2, η2 =!(ρ̂2), ρ̂2 R ρ̂1, and ρ′2 asR σ′; as there is no particular

assumption on σ′, the last fact implies that ρ′1 vRclt ρ′2.

The proof that point (iii) is true is similar to the argument above.
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ρ′1 �Bclt ρ′2
!(ρ̂1).ρ′1 �Bclt!(ρ̂2).ρ′2

ρ̂2 B ρ̂1; [r-Out-H]

ρ′1 �Bclt ρ′2
?(ρ̂1).ρ′1 �Bclt?(ρ̂2).ρ′2

ρ̂1 B ρ̂2; [r-In-H]

Figure 8.1: Additional inference rules for the rule functional F�clt . The other rules are in Figure 6.3

In Lemma 8.1.5, the hypothesis ofR being reflexive is necessary. We explain why in Example B.0.6.

Definition 8.1.6. [ B-syntactic client pre-order ]

Let F�clt : P(SC2
ho)× P(SC2

ho) −→ SC2
ho be the rule functional given by the inference rules in Fig-

ure 8.1. Fix a binary relation B. If X ⊆ F�clt(X,B), then we say that X is a co-inductive B-syntactic

client pre-order. Lemma C.0.35 and the Knaster-Tarski theorem ensure that there exists the greatest

solution of the equation X = F�clt(X,B); we call this solution the B-syntactic client pre-order, and

we denote it �Bclt. That is �Bclt = νX.F�clt(X,B).

We can reason on the pre-orders �Bclt up-to unfolding.

Lemma 8.1.7. For every B ⊆ SCho and ρ1, ρ2 ∈ SCho, ρ1 �Bclt ρ2 if and only if unf(ρ1) �Bclt unf(ρ2).

Proof. Analogous to the proof of Lemma 2.1.16.

The next result is crucial for our aims.

Proposition 8.1.8. The rule functional F�clt is monotone in its second variable.

Proof. Let R ⊆ R′ and S,R,R′ ⊆ SCho × SCho. We have to prove the following set inclusion

F�clt(S,R) ⊆ F�clt(S,R′)

Element-wise, we are required to prove that if (ρ1, ρ2) ∈ F�clt(S,R), then (ρ1, ρ2) ∈ F�clt(S,R′).
Suppose that (ρ1, ρ2) ∈ F�clt(S,R), this means that there exists a one step derivation

. . .

ρ1 �R
′

clt ρ2

generated by instantiating one of the rules in Figure 8.1. Note that if the side conditions and the

premises of the rule used do not depend on R (this the case if the rule used is, for instance, [r-Choice]

or [r-In-fo]), then the derivation above proves that (ρ1, ρ2) ∈ F�clt(S,R′). Suppose now that the

derivation is due to rule [r-Out-H] or [r-In-H]; these are the only two rules whose premises and side

conditions depend on the second variable of F�clt . The derivation above must have the form

ρ1 �Rclt ρ2
!(ρ̂1).ρ1 �Rclt!(ρ̂2).ρ2

ρ̂2 R ρ̂1; [r-Out-ho]

The hypothesis that R ⊆ R′ and the fact that ρ2 R ρ̂1 ensure that ρ2 R′ ρ̂1, thus we can derive

ρ1 �R
′

clt ρ2

!(ρ̂1).ρ1 �R
′

clt!(ρ̂2).ρ2
ρ̂2 R′ ρ̂1; [r-Out-ho]

This derivation proves that (ρ1, ρ2) ∈ F�clt(S,R′). The argument for rule [r-In-ho] is similar.
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The proof of the previous proposition ultimately relies on the restrictive syntax of session contracts,

and it is relatively easy to see that if we parametrise the more generous LTS of processes, then the

foregoing proposition is not true.

Corollary 8.1.9. Let B,B′ be two binary relations on session contracts. If B ⊆ B′ then �Bclt ⊆ �B
′

clt.

Proof. Our definitions imply two equalities,

�Bclt = νX.F�clt(X,B) By definition

= F�clt(�Bclt,B) By definition of fixed point

⊆ F�clt(�Bclt,B) By weakening

We have proven that �Bclt is a prefixed point of F�clt(X,B′). The Knaster-Tarski theorem implies

that �Bclt ⊆ νX.F�clt(X,B′), because νX.F�clt(X,B′) =
⋃
{R |R ⊆ F�clt(R,B′) }. The definition

of �B′clt ensures now that �Bclt ⊆ �B
′

clt.

Lemma 8.1.10. If T is a transitive binary relation on session contracts, then �Tclt ⊆ vTclt

Proof. The proof of this lemma is similar to the proof of Proposition 6.5.18, but it relies on [r-Eta]

in place of [r-Alpha]. We have to add to the original proof the discussion for the higher-order terms.

We discuss one case. The only difference with the first-order argument is that the transitivity of 4b

is replaced by the transitivity of T , which is true by hypothesis.

If ρ2 = !(ρ̂2).ρ′2 then unf(ρ1) �Tclt ρ2 implies that unf(ρ1) = η1.ρ
′
1 and ρ′1 �Tclt ρ′2, and ρ̂2 T ρ̂1.

The assumption ρ1 asT σ now implies that σ = θ.σ′, with !(ρ̂1) ./T θ, and ρ′1 asT σ′. The fact that

!(ρ̂1) ./T θ implies that θ = ?(σ̂) for some σ̂ such that ρ̂1 T σ̂. We have seen that ρ̂2 T ρ̂1, and that

ρ̂1 T σ̂, thus the hypothesis of T being transitive ensures that ρ̂2 T σ̂. The definition of ./ guarantees

that !(ρ̂2) ./T ?(σ̂). We also know that ρ′1 �Tclt ρ′2 and that ρ′1 asT σ′, thus ρ′2 R σ′. We have proven

enough to derive
ρ′2 asT σ′

ρ2 asT σ
!(ρ̂2) ./T ?(σ̂); [r-Eta]

If ρ2 = ?(ρ̂2).ρ′2 then the argument is similar to the previous one.

The hypothesis of the previous lemma can not be weakened. We explain why in Example B.0.7.

Notation Let us denote the set of pre-orders on session contracts with the symbol Pre(SC2
ho), and

its elements with the symbols O,P.

We are ready to give the alternative characterisation of the dependent client pre-orders.

Proposition 8.1.11. [ Alternative characterisation dependent client pre-orders ]

Let O be a pre-order on session contracts; �Oclt = vOclt

Proof. The set inclusion vOclt ⊆ �Oclt follows from Lemma 8.1.5, O being reflexive, and the Knaster-

Tarski theorem. The set inclusion �Oclt ⊆ vOclt follows from Lemma 8.1.10, and O being transitive.

8.1.1 Syntactic client pre-orders and transitivity

In the next subsection we will need few technical results which we devise here. We dwell on the

relation between the rule functional F�clt , the transitivity of its arguments, and the transitivity of its

images.

In order to prove that an image of F�clt is transitive, it is not enough to take into account only

one of its parameters. It is necessary that both parameters of F�clt be transitive.

The next lemma is a standard result of lattice theory.
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Lemma 8.1.12. [ Golden lemma [Arnold and Niwiński, 2001, Proposition 1.3.2] ]

Let the symbol θ range over µ and ν. Let E be a complete lattice, and h : E × E −→ E a function

monotonic with respect to all its arguments. The ensuing equalities are true,

θx.θy.h(x, y) = θx.h(x, x) = θy.θx.h(x, y)

Proof. We give the proof for θ = µ. The proof for θ = ν is similar, by the principle of symmetry.

Let h′(x) = µy.h(x, y). The definition of fixed point implies that

h(x, h′(x)) = h(x, µy.h(x, y)) (8.2)

Let a = µx.h′(x); it follows that a = µx.µy.h(x, y); and let b = µx.h(x, x). We have

a = h′(a) By definition of fixed point

= h(a, h′(a)) In view of Eq. (8.2)

= h(a, a) By definition of h′

It follows that b ≤ a. On the other hand, b = h(b, b), hence, b ≥ µy.h(b, y), and b ≥ µx.µy.h(x, y) =

a.

In the next lemma we show a set of prefixed points of F�clt that are closed with respect to transitive

closure.

Proposition 8.1.13. For every B ⊆ SC2
ho, if B ⊆ F�clt(B,B) then [B]+⊆ F�clt([B]+, [B]+).

Proof. We have to prove that if σ1 [B]+ σ3, then it is also in F�clt([B]+, [B]+). The main argument

is by rule induction on the proof of σ1 [B]+ σ3.

In the base case we have the derivation

σ1 [B]+ σ3
σ1 B σ3; [trc-a]

The side conditions of rule [trc-a] and the hypothesis ensure that (σ1, σ3) ∈ F�clt(B,B). Lemma C.0.32,

Corollary 8.1.9, and B ⊆[B]+ (Proposition C.0.37) imply that (σ1, σ3) ∈ F�clt([B]+, [B]+).

In the inductive case, the derivation which proves that σ1 [B]+ σ3 has the form

...
σ1 [B]+ σ2

...
σ2 [B]+ σ3

σ1 [B]+ σ3
[trc-r]

By inductive hypothesis we have that (a) (σ1, σ2) ∈ F�clt([B]+, [B]+) and (b) (σ2, σ3) ∈ F�clt([B]+

, [B]+). To prove that (σ1, σ3) ∈ F�clt([B]+, [B]+) we show a derivation

. . .

σ1 �[B]+
clt σ3

done using the rules in Figure 8.1. We proceed by case analysis on σ3. If σ3 = 1, then we can derive

σ1 �[B]+
clt σ3

[a-Goal-C]

Before discussing the other cases, note that the (a) and (b) means that we can use the inference rules

in Figure 8.1 to derive the following . . .

σ1 �[B]+
clt σ2 (8.3)
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. . .

σ2 �[B]+
clt σ3 (8.4)

Note that the rules instantiated depend on the form of σ3.

If σ3 =!(σ̂3).σ′3, then the derivation in (8.4) has to be due to rule [r-Out-H], so σ2 =!(σ̂2).σ′2 and

σ′2 �
[B]+
clt σ′3 σ̂3 �[B]+

clt σ̂2

σ2 �[B]+
clt σ3

[r-Out-H]

Similarly, the form of σ2 and the derivation in (8.3) ensure that σ1 =!(σ̂1).σ′1 and that the derivation

is as follows

σ′1 �
[B]+
clt σ′2 σ̂2 �[B]+

clt σ̂1

σ1 �[B]+
clt σ2

[r-Out-H]

So far, we have proven that

σ′1 [B]+ σ′2 [B]+ σ′3, σ̂3 [B]+ σ′2 [B]+ σ′1

The transitivity of [B]+ (Lemma 7.3.3) ensures that

σ′1 [B]+ σ′3, σ̂3 [B]+ σ′1

We are ready to apply rule [r-Out-H], to derive (σ1, σ3):

σ′1 �
[B]+
clt σ′3 σ̂3 �[B]+

clt σ̂1

σ1 �[B]+
clt σ3

[r-Out-H]

This derivation proves that (σ1, σ3) ∈ F�clt([B]+, [B]+).

The arguments for the other cases are analogous.

Corollary 8.1.14. The fixed point νX.F�clt(X,X) is a transitive relation.

Proof. To prove that a relation is transitive, it is enough to show that it contains its transitive closure;

so to prove that νX.F�clt(X,X) is transitive, it suffices to show that

[(νX.F�clt(X,X))]+⊆ νX.F�clt(X,X)

Let A = νX.F�clt(X,X); we have to show the ensuing set inclusion,

[A]+⊆ νX.F�clt(X,X)

The definition of fixed point guarantees that A = F�clt(A,A), so, by weakening, we have A ⊆
F�clt(A,A). Proposition 8.1.13 ensures that

[A]+⊆ F�clt([A]+, [A]+)

We proceed as follows.

[A]+ ⊆ F�clt([A]+, [A]+) Proven above

⊆ νX.F�clt(X, [A]+) By the Knaster-Tarski theorem

⊆ νY.νX.F�clt(X,Y ) By the Knaster-Tarski theorem

= νX.F�clt(X,X) By Lemma 8.1.12
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Monotone functions

The dependent client pre-orders vBclt are parametrised over a binary relation B, so we have a family

of these pre-orders {vBclt}B∈P(SC2
ho)

; for instance,1

B1 B2 B3 B4 . . .

↓ ↓ ↓ ↓
vB1

clt vB2
clt vB3

clt vB4
clt . . .

It is natural to abstract away from the relations B’s, and study the monotonicity of the functions

given by the function λX. vXclt. In view of Proposition 8.1.8, and Proposition 8.1.11 it is easy to see

that this function is monotone, as long as X ∈ Pre(SC2
ho).

Lemma 8.1.15. Let R be a reflexive relation on session contracts, and let T be a transitive relation

on session contracts. If R ⊆ T then vRclt ⊆ vTclt.

Proof.

vRclt ⊆ �Rclt By Lemma 8.1.5

⊆ �Tclt By Proposition 8.1.8

⊆ vTclt By Lemma 8.1.10

Corollary 8.1.16. Let Fvho
clt : Pre(SC2

ho) −→ Pre(SC2
ho) be the function

Fv
ho
clt(O) = vOclt

The function Fvho
clt is a monotone endofunction.

Proof. The function Fvho
clt is monotone because of Lemma 8.1.15 and of the fact that pre-orders are

reflexive and transitive. The function Fvho
clt is indeed an endofunction because vOclt is a pre-order for

every O.

8.2 Server pre-orders

In this section we extend to the parametrised LTS the restricted compliance server pre-order that we

studied in Section 6.4. The results are similar to ones we have proven in the previous section, so we

do not discuss them at length.

Definition 8.2.1. [ B-dependent server pre-order ]

Given a binary relation on session contracts B ⊆ SC2
ho, we write σ1 vBsvr σ2 whenever ρ aB σ1 implies

that ρ aB σ2, for every ρ ∈ SCho. We refer to the symbol vBsvr as the the B-dependent server pre-order.

Example 8.1.2 can be adapted to prove that as B varies also the dependent pre-orders vBsvr changes;

some properties of the pre-orders vBclt, though, do not depend on the parameter B.

The dual of the property Corollary 8.1.3 is true.

Corollary 8.2.2 ( Bottom elements ).

Let B be a binary relation on session contracts.

(a) the term 1 is a bottom element of vBsvr
1We use natural numbers to distinguish the B’s, not to say that they are countable.
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ρ′1 �Bsvr ρ′2
!(ρ̂1).ρ′1 �Bsvr!(ρ̂2).ρ′2

ρ̂2 B ρ̂1; [r-Out-H]

ρ′1 �Bsvr ρ′2
?(ρ̂1).ρ′1 �Bsvr?(ρ̂2).ρ′2

ρ̂1 B ρ̂2; [r-In-H]

Figure 8.2: Additional inference rules for the rule functional F�clt . The other rules are in Figure 6.3

(b) if σ1 vBsvr 1 then σ1 = 1.

Proof. The proof is similar to the proof of Lemma 6.1.5.

Corollary 8.2.3. ρ1 vBsvr ρ2 if and only unf(ρ1) vBsvr unf(ρ2).

Lemma 8.2.4. Let R be a reflexive relation on session contracts. If σ1 vRsvr σ2 then one of the

following is true.

(a) unf(σ1) = 1

(b) unf(σ1) = !(ρ̂1).σ′1, unf(σ2) = !(ρ̂2).σ′2, ρ̂2 B ρ̂1 and σ′1 vRsvr σ′2

(c) unf(σ1) = ?(ρ̂1).σ′1, unf(σ2) = ?(ρ̂2).σ′2, ρ̂1 B ρ̂2 and σ′1 vRsvr σ′2

(d) unf(σ1) = !t1.σ
′
1, unf(σ2) = !t2.σ

′
2, t2 4b t1 and σ′1 vRsvr σ′2

(e) unf(σ1) = ?t1.σ
′
1, unf(σ2) = ?t2.σ

′
2, t1 4b t2 and σ′1 vRsvr σ′2

(f) unf(σ1) =
∑
i∈I?li.σ

1
i , unf(σ2) =

∑
j∈J?lj.σ

2
j , with I ⊆ J and σ1

i vRsvr σ2
i for every i ∈ I

(g) unf(σ1) =
⊕

i∈I !li.σ
1
i , unf(σ2) =

⊕
j∈J !lj.σ

2
j , with J ⊆ I and σ2

j vRsvr σ2
j for every j ∈ J

Proof. The proof is similar to the one of Lemma 8.1.5.

Definition 8.2.5. [ B-syntactic dependent server pre-order ]

Let F�svr : P(SC2
ho)× P(SC2

ho) −→ P(SC2
ho) be the rule functional given by the inference rules in

Figure 8.2.

Fix a binary relation B. If X ⊆ F�svr(X,B), then we say that X is a co-inductive B-syntactic

server pre-order. Lemma C.0.36 and the Knaster-Tarski theorem ensure that there exists the greatest

solution of the equation X = F�svr(X,B); we call this solution the B-syntactic server pre-order, and

we denote it �Bsvr. That is �Bsvr = νX.F�svr(X,B).

Lemma 8.2.6. Let T be a transitive on session contracts. The set inclusion �Bsvr ⊆ vBsvr holds true.

Proof. The argument is analogous to the proof of Lemma 8.1.10.

Proposition 8.2.7. [ Alternative characterisation dependent server pre-order ]

Let O be a pre-order on session contracts. We have the equality

vOsvr = �Osvr

Proof. The argument is analogous to the one used to prove Proposition 8.1.11.
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Lemma 8.2.8. Let F srv : Pre(SC2
ho) −→ Pre(SC2

ho) be the function

F srv(O) = vOsvr

The function F srv is monotone endofunction.

Proof. The argument is similar to the proof of Corollary 8.1.16.

8.3 Client and server pre-orders

Thus far, in Section 8.1 and Section 8.2 we have introduced two families of pre-orders, namely the

dependent client ones and the dependent server ones:

{vBclt}B∈P(SC2
ho)
, {vBsvr}B∈P(SC2

ho)

After having studied the elements of these families, we have turned our attention the functions that

map binary relations B to the pre-orders vBclt or vBsvr; and we have shown when these functions are

monotone. The outcome of our study are the monotone endofunctions Fvho
clt and Fvho

svr . Thanks to

the Knaster-Tarski theorem these functions have fixed points, in particular the greatest ones (Defi-

nition 8.3.2, Definition 8.3.6). These objects turns out to depend only on themselves (Lemma 8.3.3,

Lemma 8.3.7). In a sense, these fixed points embody the notion of “absolute” client and of “absolute”

server pre-orders, and they give us a non-arbitrary relation to let session contracts interact.

We have argued that, a priori, we cannot fix a relation that formalises when a higher-order action

should interact with another higher-order action; and so we have introduced the dependency of the

LTS on the relations B’s.

The intersection of the fixed points of Fvho
clt and Fvho

svr will give us an LTS that does not depend

on any binary relation on session contracts other than the intersection itself, thus these fixed points

free us from the dependency of the LTS on B.

The chief results of this section are the properties of the mentioned fixed points, and two properties

of their intersection (Lemma 8.3.10, Lemma 8.3.12).

We are first concerned with the client pre-order; and then move on to the server pre-order. After the

suitable definitions, for each pre-order we show that it depends on itself (Lemma 8.3.3, Lemma 8.3.7),

we give a syntactic characterisation (Lemma 8.3.4, Lemma 8.3.8) and a proof method (Lemma 8.3.5,

Lemma 8.3.9).

First, we establish a technicality; the last result that we need in order to apply the Knaster-Tarski

theorem. We defer the proof to Appendix A.

Proposition 8.3.1. The pre-order 〈Pre(SC2
ho), ⊆〉 is a complete lattice.

Proof. See Lemma A.0.4.

Definition 8.3.2. [ Client pre-order ]

Recall the function Fvho
clt defined in Corollary 8.1.16. If X ⊆ Fvho

clt(X), then we say that X is a co-

inductive client pre-order. Corollary 8.1.16 and the Knaster-Tarski theorem ensure that there exists

the greatest solution of the equation X = Fvho
clt(X); we call this solution the client pre-order, and we

denote it vho
clt. That is vho

clt = νX.Fvho
clt(X).

Lemma 8.3.3. The client pre-order is a dependent client pre-order: vho
clt =vv

ho
clt

clt .
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Proof. Consider the following equalities.

vho
clt = νFvho

clt By definition

= Fvho
clt(νFvho

clt) By definition of fixed point

= vνFv
ho
clt

clt By definition of Fvho
clt

= vv
ho
clt

clt By definition of vho
clt

Now we show how the client pre-order is related to the rule functional F�clt .

Lemma 8.3.4. vho
clt = νX.F�clt(X,X)

Proof. Let A = νX.F�clt(X,X).

We have to show two set inclusions, namely

A ⊆ vho
clt, vho

clt ⊆ A

We prove the left inclusion.

νX.F�clt(X,X) = νY νX.F�clt(X,Y ) By Lemma 8.1.12

= νY. �Yclt By definition of �clt

= �νX.F
�clt (X,X)

clt By definition of fixed point

⊆ vνX.F
�clt (X,X)

clt By Lemma 8.1.10, and Corollary 8.1.14,

⊆ vho
clt By the Knaster-Tarski theorem

Now we prove the right set inclusion.

vho
clt = vv

ho
clt

clt By definition

⊆ �v
ho
clt

clt By Lemma 8.1.5, vho
clt being reflexive

= νX.F�clt(X,vho
clt) By definition

⊆ νY νX.F�clt(X,Y ) By the Knaster-Tarski theorem

= νX.F�clt(X,X) By Lemma 8.1.12

Lemma 8.3.5. [ Proof method for vho
clt ]

If R is a co-inductive R-syntactic client pre-order, then R ⊆ vho
clt.

Proof. Consider the ensuing passages.

R ⊆ F�clt(R,R) By hypothesis

[R]+ ⊆ F�clt([R]+, [R]+) By Proposition 8.1.13

⊆ νX.F�clt(X, [R]+) By the Knaster-Tarski theorem

⊆ νXνY.F�clt(X,Y ) By the Knaster-Tarski theorem

= νX.F�clt(X,X) By Lemma 8.1.12

= vho
clt By Lemma 8.3.4

As to the server pre-order, we proceed similarly to what we did for vho
clt.

Definition 8.3.6. [ Server pre-order ]

Recall the definition of Fvho
svr . If X ⊆ Fvho

svr(X), then we say that X is a co-inductive server pre-

order. Lemma 8.2.8 and the Knaster-Tarski theorem ensure that there exists the greatest solution of
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the equation X = Fvho
svr(X); we call this solution the server pre-order, and we denote it vho

svr. That

is vho
svr = νX.Fvho

svr(X).

Lemma 8.3.7. The server pre-order is a dependent server pre-order: vho
svr=vv

ho
svr

svr .

Proof. The proof is analogous to the one of Lemma 8.3.3.

Lemma 8.3.8. vho
svr = νX.F�svr(X,X)

Proof. The proof is analogous to the one of Lemma 8.3.4.

Lemma 8.3.9.

If R is a co-inductive R-syntactic server pre-order, then R ⊆ vho
svr.

Proof. Similar to the proof of Lemma 8.3.5.

In the remaining part of this section we study some properties of the intersection of the fixed points

of Fvho
clt and Fvho

svr . The corollaries (Corollary 8.3.11, Corollary 8.3.13)of the results (Lemma 8.3.10,

Lemma 8.3.12) are necessary to prove Proposition 8.4.2 in Section 8.4.

Lemma 8.3.10. Let R be a fixed point of Fvho
clt , and S be a fixed point of Fvho

svr . The relation R ∩ S
is a co-inductive (R ∩ S)-syntactic client pre-order.

Proof. Let B = R ∩ S. We have to prove the set inclusion B ⊆ F�clt(B,B). The definitions of Fvho
clt

and Fvho
svr and the hypothesis imply the following equality,

B = vRclt ∩ vSsvr (8.5)

so it is enough to show that

vRclt ∩ vSsvr ⊆ F�clt(B,B)

Fix a pair (ρ1, ρ2) ∈vRclt ∩ vSsvr; we have to prove that

(ρ1, ρ2) ∈ F�clt(B,B)

If depth(ρ1) + depth(σ2) > 0 then we use Corollary 8.2.3 and Corollary 8.1.4; they ensure that

unf(ρ1) vRclt unf(ρ2) and that unf(ρ1) vSclt unf(ρ2). It follows that we can apply [r-Unfold],

unf(ρ1) �Bclt unf(ρ2)

ρ1 �Bclt ρ2
depth(ρ1) + depth(ρ2) > 0 [r-Unfold]

If depth(ρ1) + depth(ρ2) = 0 then we reason differently. The relations vRclt and vRsvr are pre-orders,

so they are reflexive; it follows that R and S are reflexive as well. This allows us to use Lemma 8.1.5

and Lemma 8.2.4.

We proceed reasoning by case analysis on ρ2.

(a) If ρ2 = 1, then we have the derivation

ρ1 �Bclt ρ2
[a-Goal-C]

(b) If ρ2 =!(ρ̂2).ρ′2, then ρ1 vRclt ρ2 implies that ρ1 =!(ρ̂1).ρ′1, with ρ̂2 R ρ̂1, and ρ′1 vRclt ρ′2;

while ρ1 vSsvr ρ2 implies that ρ̂2 S ρ̂1, and ρ′1 vSsvr ρ′2. We know enough to state that

ρ̂2 B ρ̂1, ρ′1 vRclt ∩ vSsvr ρ′2
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Thanks to (8.5) we know that ρ′1 B ρ′2. Now we can infer

ρ′1 �Bclt ρ′2 ρ̂2 �Bclt ρ̂1
ρ1 �Bclt ρ2

[r-Out-H]

(c) If ρ2 =?(ρ̂2).ρ′2, then argument is analogous to the one we used in the previous case.

(d) If ρ2 =!t2.ρ
′
2, then ρ1 vRclt ρ2 implies that ρ1 =!t1.ρ

′
1, with t2 4b t1, and ρ′1 vRclt ρ′2; the

assumption ρ1 vSsvr ρ2 that ρ′1 vSsvr ρ′2. Now we can infer

ρ′1 �Bclt ρ′2
ρ1 �Bclt ρ2

t2 4b t1 [r-Put-F]

(e) If ρ2 =?t2.ρ
′
2, the the argument is analogous to the one used in case (d).

(f) If ρ2 =
∑
j∈J lj .ρ

2
j , then ρ1 vRclt ρ2 and Lemma 8.1.5 implies that ρ2 =

∑
i∈I?li.ρ

1
i with I ⊆ J

and ρ1i vRclt ρ2i . Since we know also that ρ1 vSsvr ρ2, Lemma 8.2.4 implies that ρ1i vSsvr ρ2i for

every i ∈ I. It follows that for every i ∈ I, ρ1i B ρ2i ; and so we can apply [r-Branch],

ρ11 �Bclt ρ21 . . . ρ1|I| �
B
clt ρ

2
|I|∑

i∈I?li.ρ
1
i �Bclt

∑
j∈J?lj.ρ

2
j ,
I ⊆ J [r-Branch]

(g) If ρ2 =
⊕

j∈J lj .ρ
2
j , then the argument is similar to the one for the previous case.

We need the previous lemma to prove what really interests us.

Corollary 8.3.11. If R=vRclt and S =vSsvr, then the relation R ∩ S is contained in vR∩Sclt .

Proof. Lemma 8.3.10 ensures that R ∩ S ⊆ F�clt(R ∩ S,R ∩ S), hence Lemma 8.3.9 guarantees

that R ∩ S ⊆ vR∩Sclt .

Note that Corollary 8.3.11 is not obvious; the obvious statement is

R=vRclt implies R ∩ S⊆vRclt (8.6)

in the sense that (8.6) is true by definition, and the consequences tell us nothing more than the

hypothesis. On the contrary, Corollary 8.3.11 states that

S =vSsvr,R=vRclt imply R ∩ S ⊆ vR∩Sclt (8.7)

The statement (8.7) is not obvious because the parameter of vclt in the consequences (i.e. R ∩ S)

differs from the parameter that appear in the hypothesis (i.e. R). Moreover, the corollary means

that we can use a dependent server pre-order to infer some of the properties of a dependent client

pre-order.

Lemma 8.3.12. LetR be a fixed point of Fvho
clt , and S be a fixed point of Fvho

svr . The pre-orderR ∩ S
is a co-inductive R ∩ S-syntactic server pre-order.

Proof. the proof of this lemma is similar to the proof of Lemma 8.3.10.

Corollary 8.3.13. If R=vRclt and S =vSsvr , then the relation R ∩ S is contained in vR∩Ssvr .

Proof. Lemma 8.3.12 states thatR ∩ S ⊆ F�svr(R ∩ S,R ∩ S). From Lemma 8.3.9, it follows

that R ∩ S ⊆ vR∩Ssvr .
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8.4 A behavioural model of sub-typing

In the previous section we have defined two pre-orders, namely vho
clt and vho

svr; these pre-orders

generalise the first-order pre-orders vfo
clt and vfo

svr, in the following sense

vfo
clt ⊆ v∅clt ⊆ vho

clt

vfo
svr ⊆ v∅svr ⊆ vho

svr

In this section we prove that the intersection of the pre-orders vho
clt and vho

svr is a fully abstract

model of the sub-typing 4sbt via the interpretation M. The proofs are similar to the ones we saw in

Section 6.3.

Definition 8.4.1. [ Session contract pre-order ]

The session pre-order vho
p2p is defined as vho

p2p = vho
clt ∩ vho

svr. We say that a relationR is a co-inductive

session contract pre-order if and only if R ⊆ vRclt ∩ vRsvr.

Proposition 8.4.2. vho
p2p ⊆ v

vho
p2p

clt ∩ v
vho

p2p
svr .

Proof. By definition vho
clt = Fvho

clt(vho
clt) and vho

svr = Fvho
svr(vho

svr), hence we can apply Corollary 8.3.11

and Corollary 8.3.13, to state that 1) vho
p2p⊆ v

vho
p2p

clt , and that 2) vho
p2p⊆ v

vho
p2p

svr . This is enough to see

that vho
p2p ⊆ v

vho
p2p

clt ∩ v
vho

p2p
svr .

Corollary 8.4.3. The intersection of the greatest fixed points of Fvho
clt and Fvho

clt is the greatest fixed

point of the the intersection of the two functionals. Formally,

vho
p2p= νX.(vXclt ∩ vXsvr)

Proof. On the one hand, vho
p2p ⊆ v

vho
p2p

clt ∩ v
vho

p2p
svr , thus vho

p2p ⊆ νX. vXclt ∩ vXsvr. On the other hand, if

we let A = νX. vXclt ∩ vXsvr, then A ⊆ vAclt, and A ⊆ vAsvr, thus A ⊆ vho
clt and A ⊆ vho

svr; and so

A ⊆ vho
clt ∩ vho

svr = vho
p2p.

Corollary 8.4.4. Every co-inductive session contract pre-order R is contained in vho
p2p.

Proof. The Knaster-Tarski theorem ensures that R ⊆ νX. vXclt ∩ vXsvr, and Corollary 8.4.3 ensures

that νX. vXclt ∩ vXsvr = vho
p2p. The transitivity of ⊆ ensures that R ⊆ vho

p2p.

Lemma 8.4.5. Let R be a co-inductive session contract pre-order, and let

T = { (M−1(σ1),M−1(σ2)) | σ1 R σ2 }

The relation T is a type simulation.

Proof. We have to prove that T ⊆ F4sbt(T ). Fix a S1 T S2. By definition there exists σ1 R σ2, such

that

1) S1 =M−1(σ1)

2) S2 =M−1(σ2)

The proof is similar to the proof of Proposition 6.3.3, and amounts to a case analysis on S1. The only

difference with that lemma is that we have two more cases to discuss; namely the ones that involve

higher-order. We discuss only one of the two cases, for the other is analogous.

a) If S1 = ![S ];S′1 then σ1 =!(M−1(S)).M−1(S′1), thus point (b) of Lemma 8.2.4 implies that

unf(σ2) =!(σ̂2).σ′2, with M−1(S) R σ̂2, and M−1(S′1) R σ′2. The definition of M and the
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construction of T ensure that unf(S2) = ![ Ŝ ];S′2, for some Ŝ and S′2 such that S T Ŝ and

S′1 T S′2. Now we can infer

S′1 4sbt S
′
2 S 4sbt Ŝ

![S ];S′1 4sbt ![ Ŝ ];S′2
[r-Out]

The arguments for the other cases are in Proposition 6.3.3

Lemma 8.4.6. Let T be a type simulation, and let

R = { (M(S1),M(S2)) | S1 T S2 }

the relation R is a R-syntactic client pre-order.

Proof. We have to prove that R ⊆ F�clt(R,R). Let ρ1 R ρ2; by construction there exist two session

types S1, and S2 such that ρ1 =M(S1), ρ2 =M(S1), and S1 T S2.

The proof is similar to the argument described in Theorem 6.3.4. We proceed by case analysis on

ρ2; all the cases that do not involve higher-order terms are exactly as in Theorem 6.3.4. We discuss

only one of the higher-order cases.

If ρ2 =!(ρ̂2).ρ2, then the definition ofM implies that S2 = ![ Ŝ2 ];S′2 for some Ŝ2 and S′2 such that

ρ̂2 = M(Ŝ′2) and ρ′2 = M(S′2); since T is a type simulation it follows that S1 = ![ Ŝ1 ];S′1, Ŝ2 T Ŝ1,

S′1 T S′2. The equality ρ1 = M(S1) ensures that ρ1 =!M(Ŝ1)M(S′1) By construction it follows that

ρ̂2 RM(Ŝ1) and M(S′1) R ρ′2, thus we can infer

M(S′1) 4sbt ρ
′
2 ρ̂2 4sbt M(Ŝ1)

ρ1 4sbt ρ2
[r-Out-H]

Lemma 8.4.7. Let T be a type simulation, and let

R= { (M(S1),M(S2)) | S1 T S2 }

the relation R is a R-syntactic server pre-order.

Proof. We have to prove that R ⊆ F�svr(R); this to aim fix a pair σ1 R σ2; by construction there

exist two session types S1, and S2 such that ρ1 =M(S1), ρ2 =M(S1), and S1 T S2.

The proof proceeds as in Lemma 8.4.6. We reason by case analysis on σ1.

Corollary 8.4.8. Let T be a type simulation, and let

R = { (M(S1),M(S2)) | S1 T S2 }

the relation R is a co-inductive session contract pre-order.

Proof. We want to prove that R ⊆ vRclt ∩ vRsvr; thus, in view of Proposition 8.1.11 and Proposi-

tion 8.2.7, it suffices to prove that R ⊆ �Rclt ∩ �Rsvr. This set inclusion follows from R ⊆�Rclt and

R ⊆�Rsvr, and, by definition, to prove these inclusions it is enough to show that

(1) R ⊆ F�clt(R,R)

(2) R ⊆ F�svr(R,R)

The set inclusions are proven in Lemma 8.4.6 and Lemma 8.4.7.
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Theorem 8.4.9. [ Full abstraction ]

Let S1 and S2 be strict session types. M(S1) vho
p2p M(S2) if and only if S1 4sbt S2.

Proof. The two inclusions that we are required to prove follow from Lemma 8.4.5 and Corollary 8.4.8.

Theorem 8.4.9 extends to the whole theory of session types sub-typing à la Gay and Hole the

behavioural model due to the compliance relation.

Throughout this chapter we have shown how to adapt the proof that

vfo
svr ∩ vfo

clt
∼=4fo

sbt

in order to prove that

vho
clt ∩ vho

svr
∼=4sbt

At the end of Chapter 6 we have already commented on the meaning of such a model as the one

exhibited by Theorem 8.4.9. Here we remark just that our models show that the the standard sub-

typing for session types is a refinement for peers. This means that the endpoints of a communication

channel, say a− and a+, should not be referred to as client and server, for they are not used according

to a client/server logic. If two processes interact correctly via the endpoints a− and a+, then both

processes have to be equally satisfied by the interactions that take place on a.

8.5 Related Work

In order to model the sub-typing on higher-order types we had to face a technical difficulty: to remove

in a non-arbitrary way the parameter B from the LTS of session contracts. To do so we followed the

approach of [Padovani, 2013], and studied the monotonicity of the (endo)functions that map pre-orders

on session contracts to the dependent client and server. Once established the monotonicity, the main

results followed just by tailoring the proof of Theorem 6.3.4.

In Section 6.6 we have seen that vfo
p2p and the fair pre-order of [Padovani, 2011] are not comparable

(see Eq. (6.10)). This result extends to the higher-order setting:

≤ 6⊆ vho
p2p, vho

p2p 6⊆ ≤ (8.8)

The right inequality follows form vfo
p2p ⊆ vho

p2p and vfo
p2p 6⊆ le.

The left inequality is true because µx. p!livelock.x ≤ µx. p!stop.x, while µx. !livelock.x 6vho
p2p

µx. !stop.x.

Recently Dardha et al. have shown a fully abstract encoding of session types into the standard

types of pi-calculus. Theorem 3 of [Dardha et al., 2012] show that the sub-typing on types of the

pi-calculus, <:, captures exactly the sub-typing à la Gay and Hole,

Theorem 3 For every session type S, T , S 4sbt T if and only if JSK <: JT K.

Our Theorem 8.4.9 justifies and explains in behavioural terms the relation 4sbt; essentially it states

that the relation 4sbt is the peer pre-order given by the compliance in the LTS

〈 SCho, Actτ X ∪ SCho, −→vho
p2p
〉

Theorem 3 above, instead, shows that there are other syntactic means to define this peer pre-order.

The combination of the two theorems establishes a connection between the standard sub-typing <:,

a subset of the types for pi-calculus, the pre-orders given by the compliance relation, and the higher-

order session contracts.



8.5. Related Work 195

To what extent the compliance relation can be used to explain the standard pre-order <: becomes

a natural problem to address (see (Q16) in Section 11.2).
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Chapter 9

Ongoing work: session contracts as

types

We concluded Chapter 8 by showing that higher-order session contracts and the pre-order vho
p2p are

a fully abstract model of higher-order session types, and the sub-typing 4sbt (Theorem 8.4.9). This

result justifies in a behavioural fashion the definition of 4sbt: within the theory of compliance, the

sub-typing à la Gay and Hole not only looks natural, but it is natural, in the sense that there is no

syntactical definition of vho
p2p other than the definition of 4sbt.

Now we shift our standpoint: the full abstraction result lets us think of higher-order session

contracts as types, and of the relation vho
p2p as a sound sub-typing relation. The natural concern that

arises from this shift, is whether session contracts can help us in advancing the existing type systems

based on session types.

In this chapter we briefly address this issue. First we sketch a type system for a dialect of the

pi-calculus, where types are session contracts. Afterwards, by means of the type system, we propose

a way to ensure that the observable behaviour of well-typed processes enjoys certain properties. Our

approach relies on the connection between the observable behaviour of types (i.e. session contracts) as-

signed to session end-points, and the behaviour of processes on these end-points (see Conjecture 9.2.18

and Example 9.2.19).

This chapter is merely exploratory and should be taken as a proof of concept. The conjectures

that we state are currently under investigation, so the discussion is based on examples.

Structure of the chapter. In Section 9.1 we define the syntax and the reduction semantics of πSC,

a dialect the pi-calculus. Our version of the pi-calculus resembles the one of [Gay and Hole, 2005],

but we use recursion instead of replication. In Section 9.2 we present a type discipline for πSC, and

discuss it in a series of examples. We also discuss the results that at present we are after. As this

chapter contain no new results, we omit the related work section.

9.1 Pi-calculus with session contracts

In this section we define a dialect of the pi-calculus [Milner, 1999]. We assume a finite set of ground

types, BT; with the proviso that BT contains the types Bool and Int:

{Bool, Int} ⊆ BT

The semantics of the type Bool is the set {true, false}, and this set provides the basic cases for the

grammar of boolean expressions B (see Figure 9.1). The semantics of type Int is a finite subset of

197
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the natural numbers, and provides the base elements for the arithmetic expressions A.

Further, we assume the existence of the following denumerable sets,

• a set of names N , whose elements we range over with a, b, c, . . . , x, y, z, . . .

• a set of process variables, that we denote χ1, χ2, χ3, . . .

The set V of values is defined as the union of the semantics of the ground types: V =
⋃

t∈BTJtK.
We let u range over names and values (N ∪ V), and v range over values (V).

We use names to represent sessions, which are as private connections, characterised by two different

and complementary end-points. To denote the end-points of a session a, we decorate a with polarities.

Definition 9.1.1. [ Polarities ]

The sets of polarities and of optional polarities are defined respectively as

P = {−,+}
O = {−,+, ε}

We range over P with the symbol p, which denotes a polarity; and we range over O with the symbol

o, which denotes an optional polarity. The complement of the (optional) polarity o, is denoted o, and

defined as follows,

o =


+ if o = −

− if o = +

ε if o = ε

Let Lπ be the language defined by the grammar in Figure 9.1. Also in this case we use the standard

notions of capture avoiding substitution, depth, guarded terms and unfolding (see Section 2.1).

Definition 9.1.2. [ π-processes with session contracts ]

Let

πSC = {P ∈ Lπ | P closed, P gd }

We refer to the terms in πSC as processes.

The type t that appears in the input construct in Figure 9.1 ranges over the set SCho ∪ BT. We will

discuss types in Section 9.2.

The set of free names of a term P , denoted fn(P ), is defined in the standard manner.

The non deterministic outputs in Figure 9.1 are not a standard construct, so we briefly comment

on it.

Example 9.1.3. [ Non-deterministic terms ]

The non-deterministic sums let us render explicitly the non-determinism typical of choices. For the

time being, we impose some restrictions on the syntax of these terms. For instance, if the names a

and b are different, then the ensuing term is not a non-deterministic process,

a![ l1 ].0 ⊕ b![ l2 ].0

whereas the following term is a non-deterministic process

a![ l1 ].0 ⊕ a![ l2 ].0

because it is generated by the grammar for Na.
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P,Q ::= Processes
0 Empty process
up![ vo ].P Value output
Nu Nondeterministic output on u
up?[xo : t ].P Binding input
up� { l1 : P1, . . . , ln : Pn } Offer
if (B) then P else Q If then else
(νa)P Session creation
P || Q Parallel composition
χ Process variable
µχ. P Recursive process

Nu ::= Non deterministic outputs
up![ l ].P Label output
Nu ⊕ Nu Non deterministic sum

B ::= Boolean expressions
true
false
u = u′

u > u
A ::= Arithmetic expressions

1, 2, 3 . . . Natural numbers

With the proviso that in the terms Nu (for every u) the labels are pair-wise distinct.

Figure 9.1: Grammar for processes

P || 0 ≡ P [Par-Zero]
P || Q ≡ Q || P [Par-Comm]
P || (Q || R) ≡ (P || Q) || R [Par-Assoc]

(νa) 0 ≡ 0 [Scp-Void]
(νa)P || Q ≡ (νa) (P || Q), if a not free in Q [Scp-Extr]
(νa) (νb)P ≡ (νb) (νa)P [Scp-Flip]

Figure 9.2: Axioms for structural congruence

Reduction semantics We assume an evaluation relation ⇓ for the boolean expressions B. The

reduction semantics of the language depends on a structural congruence relation and on ↓. The

structural congruence relation ≡ is the least relation that satisfies the axioms in Figure 9.2, while the

reduction semantics is the least relation −→ that satisfies the rules in Figure 9.3.

From now on we will assume that on private names (i.e. session channels), only other private

names are communicated. The intuition behind this assumption is that the names which are not

private are public, thus known to everybody, and there is no need to communicate them.

9.1.1 Runtime errors

The reductions semantics tells us how to execute processes; the execution of processes, though, may

stop because of some issues.

In general, we can think of a predicate −→err, such that if P −→err, then the computation of P

cannot proceed: P
τ

6−→. If P −→err then we say that P reduces into an error.

Rather than defining −→err, in this section we exhibit some archetypal processes that reduce into

errors.
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uo
′
?[xo : T ].P || uo′ ![ vo ].Q || R −→ P

{
vo/xo

}
|| Q || R

[a-Comm]

up� { l : P1, . . . , ln : Pn } || up![ li ].Q || R −→ Pi || Q || R
[a-Synch]

µχ. P −→ unf(µχ. P )
[a-Unf]

Nu ⊕ N ′u −→ Nu
[a-Inch-L]

Nu ⊕ N ′u −→ N ′u
[a-Inch-R]

if (B) then P else Q −→ P
B ⇓ true; [a-True]

if (B) then P else Q −→ Q
B ⇓ false; [a-False]

P −→ Q

(νa)P −→ (νa)Q
[r-Res]

P −→ Q

P || R −→ Q || R
[r-Par]

P ′ −→ Q′

P −→ Q
P ≡ P ′, Q ≡ Q′; [r-Struct]

Figure 9.3: Rules for the reduction semantics

In the language πSC there are terms that use names, variables, and polarities in ways that are not

coherent with the intuitions behind the end-points of sessions. We show few of these “malformed”

processes in the next example.

Example 9.1.4. [ Malformed processes ]

Observe the ensuing processes

P1 = a−![ 3 ].a+![ 3 ].0

P2 = a−![ 3 ].0 ⊕ a+![ 3 ].0

P3 = if (v) = v′then a−![ true ].0 else a+![ false ].0

P4 = ap� { l1 : b+![ 1 ].0, l2 : b−![ 2 ].0 }

Let us think of the end-points a− and a+ as resources. These two resources represents the two ends

of a peer to peer connections, and are meant to let two distinct processes interact with each other.

Thus a process that owns a+ should not own a− and vice-versa. Each one of the process above, on

the contrary, owns both endpoints of the connection a, so we deem those terms as malformed.

The issue shared by all the processes in the previous example, is that both end-points of a con-

nection appear in them. This does not mirror the reality, as normally no program sends messages to

itself. Moreover, the presence of both endpoints of a connection in a process means that the logic of

the process changes as interactions take place; this appears not to mirror the reality, as the client of

a connection and the server of the same connection have well distinguished logics.

Other errors that may take place during communications are type mismatches, mismatches in the

polarities of names, and the non-linear usage of session endpoints.
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Example 9.1.5. [ Data mismatch ]

Consider the following processes,

P =s?[ y− : ?Int.!Bool.0 ].y−?[x : Int ].if (x > 0) then y−![ true ].0 else y−![ false ].0

Q =(νa) (s![ a+ ].a+![ true ].0)

Intuitively, we should not accept the composition Q || P as a “good” process, as its reductions lead

to the term

(νa) (0 || if (true > 0) then a![ 1 ].0 else a![ 0 ].0)

As it stands, it is not clear how to make sense of this term. The problem lies in the fact that the type

of the formal parameters of >, is not the type of the actual parameter true.

Example 9.1.6. [ Polarity mismatches ]

In Figure 9.3 rule [a-Comm] allows a communication to take place only if the polarity of the value

sent, vo, matched the polarity at which the value is expected, xo.

On the one hand, this ensures complementary end-points cannot be mixed because of communica-

tion, and show explicitly which one of the end-points of a session is sent, and which can be received.

On the other hand, the requirement that the polarities match may let processes reduce into an error.

The following composition is an example of the phenomenon,

a−![ b− ].b+?[ y : Int ].P || a+?[x+ : !Int.σ ].x+![ 3 ].Q

Even though the process on the left is willing to perform an output via the end-point a−, and the

process on the right is ready to read via the end-point a+, the overall composition is stable, because

the polarity of b− does not match with the polarity of x+, so rule [a-Comm] cannot be applied.

Example 9.1.7. [ Linearity of session channels ]

Consider the processes

P =s?[x− : ?(?Int. 1). 1 ].x−?[ y : Int ].0

Q =(νa) (s![ a− ].(a+![ 3 ].0 || a+![ 3 ].0))

up-to structural equivalence, the composition P || Q reduces to the term

S = (νa) (a+![ 3 ].0)

which is not structurally equivalent to 0, and is stable. The problem here amounts to the fact that in

Q there are two threads communicating with P , and this leads to a sort of “misalignment” between

the session as seen by P and the session as seen by the two threads in Q. In particular, when P has

finished communicating, one of the processes in Q is “left behind”, and is still expecting to perform

an output on a+.

9.2 Type system

Let P denote the set of polarities, Let O denote the set of optional polarities. Let T = O× (SCho ∪ BT).

Types T are pairs in the set T , while the set SCho ∪ BT is ranged over by t. Let pol((p, t)) = p and let

body((p, t)) = t.

Type environments We denote with Γ the functions from polarised names to types,

Γ : (N × P) −→ T
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with the additional requirement that the polarities of the names be equal to the polarities of the

relative types. Formally

T = Γ(ap) implies pol(T ) = p (9.1)

Example 9.2.1. The following relation is not a Γ, because it is not a function

R= {(a−, (−, !l. 1)), (a−, (−, 1))}

The following relation is not a Γ because it does not satisfy Eq. (9.1),

{(a−, (+, !l. 1))}

We denote with ∆ the relations from optionally polarised names to types, that is

∆ ⊆ (N × O)× T

with the additional proviso that the ∆’s satisfy the condition in Eq. (9.1). The set ∆uo is defined as

{T | (uo, T ) ∈ ∆ }.

Example 9.2.2. The relation R defined In the previous example we defined a relation R which is

not a Γ; that relation, though, is a valid ∆. The following relation is not a ∆ because it does not

satisfy Eq. (9.1),

{(a−, (+, !l. 1))}

Environments for process variables We need a last ingredient in our type environments. We

denote with Z any function from process variables χ, χ′, . . . to pairs Γ; ∆. We write Z − χ to denote

the function Z \ {(χ,Z(χ))}.

Definition 9.2.3. [ Type environment ]

We refer to the triple Z; Γ; ∆ as type environment. Moreover, we let E denote the set of type envi-

ronments.

The purpose of having a set Γ and a set ∆ is that we are going to put names and variables to be

treated in a linear manner in Γ, and the other ones in ∆.

Notation We let ao : T denote the pair (ao, (o, t)); so, for instance, instead of writing

{(a−, (−, !l. 1)), (a−, (−, 1))}

we will write

{a− : l. 1, a− : 1}

We also let dom(Γ; ∆) = dom(Γ)∪ dom(∆), and let the symbol =p2p denote equivalence generated by

the pre-order vho
p2p. We lift the relation =p2p from session contracts to environments in the following

way. For every sets of types A and B we write A =p2p B whenever

1. (uo, t) ∈ A if and only (uo, t′) ∈ B

2. (uo, t) ∈ A and (uo, t′) ∈ B imply that either t =p2p t
′ or t = t′

We stipulate that Γ; ∆ =p2p Γ′; ∆′ whenever Γ =p2p Γ′ and ∆ =p2p ∆′.
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Definition 9.2.4. [ Completed ]

We write Z; ΓCompleted and say that Z; Γ is completed, if up ∈ dom(Γ) implies that one of the following

conditions is true,

a) up ∈ dom(Z(χ)) for some χ

b) Γ(up) = 1.

Intuitively, a type environment is completed if the communications on the end-points of the sessions

terminated (i.e. have been completed), and Z accounts for the end-points on which the communica-

tions are not terminated.

We will need an operation to manipulate in a sound way the linear environment Γ. To this end

we define +.

Definition 9.2.5. The addition of a typed name to an environment is defined by

Γ + {up : T} = Γ ∪ {up : T}

if up 6∈ dom(Γ), and is undefined in all other cases.

Definition 9.2.6. [ Type relation ]

Let F` : P(E × Lπ) −→ P(E × Lπ) be the rule functional given by the inference rules in Figure 9.4.

Lemma C.0.38 and the Knaster-Tarski theorem ensure that there exists the least solution of the

equation X = F`(X); we call this solution the type relation, and we denote it `: That is ` =

µX.F`(X).

Type judgements have the following form

Z; Γ; ∆ ` P

While Γ and ∆ are the environments that associate types to the names and the values that appear in

P , Z expresses how the free process variables of P , once substituted, will be typed. We will show the

role played by Z in a series of examples about typing recursive processes.

Almost all the inference rules in Figure 9.4 are standard. The only ones that need explanation are

[t-NonD-L], and the rules for recursive terms.

The two rules [t-NonD-L] together are meant to to generalise the usual rules for the processes

that perform a choice; see for instance rule [T-Choose] of [Gay and Hole, 2005],

l = li ∈ { l1, . . . , ln } Γ, xp : Ti ` P
Γ, xp : ⊕ 〈 li : Ti 〉1≤i≤n ` xp � l.P

[T-Choose]
(9.2)

The rule in Eq. (9.2) can type processes that choose only one label. The rules [t-NonD-L], [t-

Out-L] generalise [T-Choose] in the sense that they can type processes that can choose different

labels.

Example 9.2.7. [ Multiple choices ]

Consider the following processes,

P ′ = a+![ sign ].a+![ 3 ].a+?[x : Int ].0

P = a+![ close ].0 ⊕ P ′

The process P expects to be offered a choice along channel a, by some peer that owns a−; P is free

to choose either to close the connection, or the ask to invoke the function sign, send the parameter
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Z; Γ; ∆ ` 0
Z; ΓCompleted; [t-Void]

Z; Γ + {ap : σ, ap : σ′}; ∆ ` P
Z; Γ; ∆ ` (νa)P

σ ap2p σ′; [t-Res]

Z; Γ1; ∆ ` P Z; Γ2; ∆ ` Q
Z; Γ; ∆ ` P || Q

Γ = Γ1 + Γ2; [t-Par]

Z; Γ; ∆ ` P Z; Γ; ∆ ` Q
Z; Γ; ∆ ` if (B) then P else Q

[t-If]

Rules for branches and choices

Z; Γ + {up : σ1}; ∆ ` P1 . . . Z; Γ + {up : σn}; ∆ ` Pm
Z; Γ + {up :

∑
i∈[1;m]?li.σi}; ∆ ` up� { l1 : P1, . . . , ln : Pn }

1 ≤ m ≤ n; [t-Branch]

Z; Γ + {up : σ1}; ∆ ` P1 . . . Z; Γ + {up : σn}; ∆ ` Pn
Z; Γ + {up :

⊕
i∈[1;n]!li.σi}; ∆ ` up![ l1 ].P1 ⊕ . . . ⊕ up![ ln ].Pn

[t-NonD-L]

Input and output of values

Z; Γ + {xp : σ′, yq : σ}; ∆ ` P
Z; Γ + {xp : ?(σ′′).σ′}; ∆ ` xp?[ yq : σ ].P

σ′′ vho
p2p σ; [t-In-Ss]

Z; Γ + {xp : σ}; ∆ ∪ {y : t} ` P
Z; Γ + {xp : ?t′.σ}; ∆ ` xp?[ y : t ].P

t′ 4b t; [t-In-Sv]

Z; Γ; ∆ ∪ {y : t, x : σ} ` P
Z; Γ; ∆ ∪ {x : ?t′.σ} ` x?[ y : t ].P

t′ 4b t; [t-In-Uv]

Z; Γ + {xp : σ} ` P
Z; Γ′ + {xp : !(σ′′).σ, up

′
: σ′}; ∆ ` xp![up′ ].P

σ′ vho
p2p σ

′′; [t-Out-S]

Z; Γ′ + {xp : σ}; ∆ ` P
Z; Γ′ + {xp : !(t′).σ}; ∆ ∪ {v : t} ` xp![ v ].P

t 4b t
′; [t-Out-V]

Rules for recursive terms

Z; Γ; ∆ ` χ χ ∈ dom(Z), Z; ΓCompleted; [t-Var]

Z;Z(χ) ` P
Z − χ; Γ; ∆ ` µχ. P Z(χ) =p2p Γ; ∆; [t-Rec]

Figure 9.4: Inference rules for the rule functional F`. The polarities of types are understood; they
coincide with the polarities of the names that types are assigned to
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for the function, and read the outcome. Let σ1 =!close. 1 and σ2 =!sign.!Int.?Int. 1 The inference

tree below sketched the type derivation for P ; note that we omit Z as P contains no process variable,

{u+ : 1}; {3: Int} ` 0
[t-Void]

{u+ : 1}; ∅ ` 0
[t-Void]

{u+ : ?Int. 1}; ∅ ` a+?[x : Int ].0
[t-In-Sv]

{u+ : !Int.?Int. 1}; {3: Int} ` a+![ 3 ].a+?[x : Int ].0
[t-Out-V]

{u+ : σ1 ⊕ σ2}; {3: Int} ` P
[t-NonD-L]

In a series of examples we show how the rules for recursive terms and process variables are meant

to be used. The axiom [t-Var] and the rule [t-Rec] are inspired by the type discipline of [Honda

et al., 1998] and [Demangeon and Honda, 2011]. Observe that in the side condition of [t-Rec], the

equality =p2p allows us to unfold the session contracts in the environments.

Example 9.2.8. [ Typing a recursive process ]

Let P = µχ. ap![ 3 ].ap![ 1 ].χ, and let

σ = µx. !Int.x

∆ = {3: Int, 1: Int}
Z(χ) = {ap : !Int.!Int.σ}; ∆

Intuitively, the behaviour shown by the process P on the channel ap is described by σ. This is

formalised by the following type derivation.

Z; {ap : σ}; ∅ ` χ
[t-Var]

Z; {ap : σ}; {1: Int} ` ap![ 1 ].χ
[t-Out-Sv]

Z; {ap : !Int.!Int.σ}; ∆ ` ap![ 3 ].ap![ 1 ].χ
[t-Out-Sv]

Z; {ap : σ}; ∆ ` P
Z(χ) =p2p {ap : σ}; ∆ [t-Rec]

Example 9.2.9. [ Typing nested recursion ]

Let P = µχ. a−� { neg : a−?[x : Bool ].a−![not x ].χ, k : µχ′. a−![ 3 ].χ′ }. The process P recursively

offers two choices to the peer that owns the end-point a+. The label neg represents the negation

function, and P after neg interacts on a+ accordingly. The label k represents the choice of a constant,

so P after k sends a constant number.

Now let
σ′ = µy. !Int.y

σ = µx. ?neg.?Bool.!Bool.x+ !k.σ′

∆ = {3: Int}
Γ = {a− : σ}
Z(χ) = {a− : unf(σ)}; ∆

Z(χ′) = {a− : unf(σ′)}; ∆

The following inference tree shows how to type P . Note that Z(χ) =p2p Γ; ∆, so we can apply rule
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[t-Unf] at the bottom of the tree.

Z; {a− : σ′}; ∅ ` χ′
[t-Var]

Z; {a− : !Int.σ′}; ∅ ` χ′
Int 4b Int; [t-Out-Sv]

Z; {a− : σ′}; ∆ ` µχ′. a−![ 3 ].χ′
Z(χ′) =p2p {a− : σ′}; ∆ [t-Rec]

(A)

Z; {a− : σ}; ∅ ` χ
[t-Var]

Z; {a− : !Bool.σ}; {x : Bool} ` a−![not x ].χ
Bool 4b Bool; [t-Out-Sv]

Z; {a− : ?Bool.!Bool.σ}; ∆ ` a−?[x : Bool ].a−![not x ].χ
[t-In-Sv]

...
(A)

Z; {a− : unf(σ)}; ∆ ` a−� { neg : a−?[x : Bool ].a−![not x ].χ, k : µχ′. a−![ 3 ].χ′ }
[t-Branch]

Z; Γ; ∆ ` P [t-Rec]

In the next example we will see how to type a process that recursively reads a name and interacts

over it.

Example 9.2.10. [ Recursively read name ]

The process that we want to type in this example is P = µχ. z+?[ y− : σ ].y−![ 3 ].χ, where σ =

µx. ?(ρ).x and ρ =!Int. 1. In the process P the end-point y− depends on the name x+, for y− it is

read through x+. The recursive behaviour is shown on the “outermost” channel x+. The variable

y− is bound afresh at each recursive loop, so the end-point that replaces y− is used only for a finite

communication.

Let
Γ = {z+, σ}
Γ′ = {z+, ?(ρ).σ}
∆ = {3: Int}
Z(χ) = Γ′; ∆

Note that Γ =p2p Γ′. The inference tree that types P is the following one,

Z; {z+ : µx. ?(ρ).x; y− : 1}; ∅ ` χ
[t-Var]

Z; {z+ : µx. ?(ρ).x; y− : !Int. 1}; ∆ ` y−![ 3 ].χ
[t-Out-Sv]

Z; Γ′; ∆ ` z+?[ y− : σ ].y−![ 3 ].χ
!Int.σ vho

p2p σ; [t-In-Ss]

Z; Γ; ∆ ` P Z(χ) =p2p Γ; ∆ [t-Rec]

In order to prove the valuable properties of the type system based on higher-order session contracts,

we have to establish the normal results of type systems.

Lemma 9.2.11. [ Free names ]

If Z; Γ; ∆ ` P , then xp ∈ dom(Γ) implies up ∈ fn(P ) or Γ(up) = 1 or up ∈ dom(Z(P )).

As the symbol T ranges over ground types and session contracts, we have to state the substitution

lemma with a case analysis.

Conjecture 9.2.12 ( Substitution lemma ). If Z; Γ + {xo : T2}; ∆ ` P , and Γ + {uo : T1} is defined,

then

1. body(T1) 4b body(T2) implies that Z; Γ + {uo : T1}; ∆ ` P
{
uo/xo

}
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2. body(T1) vho
p2p body(T2) implies that Z; Γ + {uo : T1}; ∆ ` P

{
uo/xo

}
Lemma 9.2.13. The operation + affords the following properties

a) Γ = Γ + ∅

b) Γ + Γ′ = Γ′ + Γ

c) (Γ + Γ′) + Γ′′ = Γ + (Γ′ + Γ′′)

The previous lemma is necessary to prove the following fact.

Lemma 9.2.14. [ Compatibility with ≡ ]

If Z; Γ; ∆ ` P and P ≡ Q, then Z; Γ; ∆ ` Q.

Conjecture 9.2.15 ( Subject reduction ). If Z; Γ; ∆ ` P and P −→ Q then Γ′; ∆′ ` Q for some

Z ′; Γ′; ∆′ such that dom(Γ′) ⊆ dom(Γ), dom(∆′) ⊆ dom(∆), and dom(Z ′) ⊆ dom(Z).

9.2.1 Conjectures

Recall from Section 9.1.1 the idea of runtime error and the symbol −→err. One of the properties that

we wish to prove for the proposed type system (possibly amending the rules), is type safety.

Conjecture 9.2.16 ( Type safety ). For every P ∈ πSC, if Z; ∅; ∅ ` P , then P 6−→err.

It is well-known that session types guarantee type safety, so to prove Conjecture 9.2.16 we expect to

use standard techniques, and we do not consider such a result a novelty.

In Section 9.1.1 we have shown in a series of examples few processes that reduce into errors. Let

us revisit one of those examples.

Example 9.2.17. Consider the processes P and Q of Example 9.1.5; we argued there that the

composition P || Q reduces to a term that does not make sense, so P || Q −→err. According to

Conjecture 9.2.16, we should not be able to type check P || Q. In this example we argue that this is

indeed the case.

The type discipline shows that the composition above should be regarded as a badly formed process,

for it cannot be typed.

Intuitively, we can provide types the channels of P ,1

{y− : ?Int.!Bool. 1}; {s : ?(?Int.!Bool.end). 1} ` P

and similarly for the other peer Q,

{a+ : !Bool. 1}; {s : !(!Bool. 1). 1} ` Q

Now we see clearly the mismatch between the way in which P uses y, and the way in which Q uses

a; there are two kinds of mismatches;

1) the first mismatch is that on y a datum at type Int is read, whereas on a a datum of type Bool

is written

2) the second mismatch is that after the tentative input on y−, P is willing to write on y−; the process

Q, on the contrary, after the output on a+ stops using a+.

These mismatches do not allow us to type check the composition P || Q.

A similar argument can be applied to the process P || Q of Example 9.1.7. The composition P || Q
cannot be typed using session contracts, because rule [t-Res] cannot be applied to it, so it is ruled

out as a malformed program; indeed P || Q −→err

1We omit Z as there are no process variables in P and Q.
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Figure 9.5: Evolution of the states of the sessions, during the computation described in Example 9.2.19

What we believe to be the main advance that session contracts may lead to, is the verification of

behavioural properties of processes.

Protocol specification

Session contracts are equipped with an operational semantics similar to the one of CCS. If we specify a

communication protocol by using a session contract σ, thanks to the semantics, we can check whether

the protocol enjoys given properties: by writing a property as a formula ϕ of the Hennessy-Milner

Logic [Aceto et al., 2007], we can prove whether σ |= ϕ. If this is the case, then the protocol specified

by σ enjoys the property ϕ.

Roughly speaking, the typing rules in Figure 9.4 ensure that if Z; Γ; ∆ ` P , and ao appears in Γ,

then there is relation between the behaviour of Γ(ao) and the behaviour of P on the name ao.

We are currently investigating the relation between the behaviours of types and the behaviours of

processes, so as to define a function lift suitable to prove the following theorem.

Conjecture 9.2.18 ( Behavioural properties of processes via types ).

For every P ∈ πSC such that fn(P ) = {a}, for some a ∈ N , if Z; Γ; ∆ ` P and Γ(ao) |= ϕ,

then P |= lift(ϕ, ao).

The intuitive meaning of Conjecture 9.2.18 is that under certain conditions, if P is typed by a triple

Z; Γ; ∆, then the behavioural properties of the session contracts in Γ, should imply analogous prop-

erties, “lifted” to the behaviour of processes.

If we think of session contracts as protocol specifications, then we can take processes of πSC to

be protocol implementations. Conjecture 9.2.18 then guarantees that if a specification σ enjoys a

property ϕ, then the implementations of σ enjoy lift(ϕ, ao) for some polarised name α. Such a result

provides a way to ensure that the way in which programs communicate over peer to peer connections

adhere to formally specified properties ϕ1, ϕ2, . . ..

We conclude this chapter motivating Conjecture 9.2.18 by means of an example.

Example 9.2.19. In this example we show how the observable behaviour that processes show on

sessions a, b, c, . . . is described by the session contracts that type the end-points of those sessions (i.e.

a, b, c, . . . ).
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Store Boyfriend
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y+?[x+ : 1 ].y+� { l1.0, l2.0 }

s+� { l1.0, l2.0 }
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Figure 9.6: Observable behaviours of (1) the processes in Example 9.2.19, and of (2) the session
contracts that type the session end-points used by those processes.

We assume two public names, urls and urlb, and we define three processes: a girlfriend gf, her

boyfriend, bf, and a store, store.

gf = (νb) ((νs) (urls![ s ].s−![κ ].urlb![ b+ ].b−![ s− ].0))

bf = urlb?[ z+ : σb ].z+?[x : !l1. 1 ].x−![ l1 ].0

st = urls?[ y+ : σs ].y+?[x : 1 ].y+� { l1.0, l2.0 }

where
σs = ?(1).(σ′s + ?l2. 1)

σ′s = ?l1 1

σb = ?(!l1. 1) 1

In Figure 9.5, we depict how the state of the session end-points evolve during the execution of the

composition gf || bf || st. There each process is decorated with the set of names that it owns.

The girlfriend wishes to give a present to her boyfriend, and the present has to be bought in a store

that only the girlfriend has access to. In Figure 9.5 (a) represents the initial state, in which no session

have been created. The girlfriend begins a session s with the store; the store gets the server end-point

s+, whereas the girlfriend gets the client end-point s− (see (b) in Figure 9.5). The communication

between the girlfriend and the boyfriend takes place on a different session, b, whose server end-point

b+ is used by the boyfriend (see (c)). After having sent on s a name κ that the boyfriend is not aware

of (for instance some credentials), the girlfriend passes its endpoint, s−, to the boyfriend (see (d)),

that uses it to choose a gift.

We can infer the following typing judgement (we omit Z as there are no process variables)

Γ; ∆ ` (νb) ((νs) (gf || st) || bf)

where ∆ = {urlb : σb, urls : σs, κ : 1}.

In Figure 9.6 we depict the behaviour shown by the store and the boyfriend on the session s

(respectively in column (a) and (d)). The behaviour of σs is depicted as well, in column (b), while

column (c) shows the behaviour of σ′s. Observe how the behaviour of σs describes exactly how
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the composition gf || bf || st acts upon s+. In the LTS of σs, the first transition is due to the

communication of credentials κ between st and gf, while the second transition is due to the choices

that st offers to bf.

Since s− is communicated to bf only after a part of the interaction on the session has been realised,

the session contract σ′s in bf describes only the remaining part of the interaction pattern that is to be

performed. Indeed, bf performs this part of the interaction with the the store, st, showing exactly

the behaviour described by σ′s.

In this chapter we have sketched the research line that we are following at the moment. In

particular, in Conjecture 9.2.18 we have stated what may be the chief advantage brought by session

contracts into type systems for the pi-calculus.



Chapter 10

Literature Review

Chapter 2

The Calculus of Communicating Systems is a well established formalism to reason on the interactions

performed by concurrent software. Well-known books on CCS are [Milner, 1989, 1999].

Milner presented the CCS in 1980, as a result of a research line started with the use of “processes”

in [Milner, 1975], and pursed in [Milne and Milner, 1979] by introducing “communicating processes”.

In the language of CCS internal computations are represented by the action τ . Consider the

processes τ.b and a + τ.b. The process τ.b performs some internal computation (for instance it

chooses a branch of an if statement) and then becomes ready to interact on b. The process a + τ.b

either engages in the interaction a, or it performs some computation, and then becomes ready to

perform b. The presence of the τ action creates some issues, as it makes relations such as the must

pre-order not to be pre-congruences:

b <∼must τ.b a + b 6<∼ must a + τ.b

The inequality above is from [De Nicola and Hennessy, 1984, Page 92].

In view of the issue due to the action τ in the syntax, in 1987 De Nicola and Hennessy presented

the CCS without τ ’s (CCSwτ ). The syntax of CCSwτ has the sum ⊕ to express internal computation,

and does not allow us to write τ , thereby solving the problem shown above.

Session contracts emerged recently within the field of “contracts for web services” (see next para-

graph). Laneve and Padovani in 2008 have been the first to attempt to model with a compliance

pre-order the sub-typing à la Gay and Hole. They focused on a sublanguage of first-order session

types without input/output constructs. Barbanera and de’Liguoro later on (2010) exhibited a sound

model of the sub-typing à la Gay and Hole tailored to the whole language of first-order session types.

Their model uses session behaviours, which are too general to be interpreted into first-order ses-

sion types. To prove also the completeness of the model suggested by Barbanera and de’Liguoro,

in [Bernardi and Hennessy, 2012] we restricted the language of session behaviours, introducing session

contracts, and we proved that the model is indeed fully abstract.

Chapter 3

The theories of compliance that appeared in the literature use versions of CCS as object language,

and the terms of the chosen language are usually referred to as “contracts”, or “contracts for web

services”. Hereafter we will use the word “contract” with this meaning.

The first compliance relation appeared in the literature is given in [Carpineti et al., 2006, Definition

4], which improves on the thesis [Carpineti, 2007].

The approach of Carpineti et al. to define the compliance is the converse of ours (and of subsequent
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works). We first introduce the compliance, a, and then define the refinements generated from it;

whereas Carpineti et al. first define a subcontract relation (Definition 2), denoted �, then, by means

of a syntactic notion of dual contract, define the compliance: ρ complies with σ if only if ρ � σ. This

style of definition has been dropped in the subsequent works.

The original idea of compliance has been reworked in [Laneve and Padovani, 2007], which presents

a behavioural compliance. In that paper a testing-like approach has been taken, thereby showing some

connections between the testing theory and the compliance theory. Laneve and Padovani first define

the LTS

〈CCSrec,fb
wτ , Actτ X, −→〉

where CCSrec,fb
wτ is essentially a finite branching version of CCSwτ with recursion, and the transitions

are given by standard inference rules.

Then the authors define the language of constrained contracts (see Section 3.4) and the behavioural

compliance, which is defined in terms of computations performed by clients and servers, deadlocks,

and the action X (see Definition 1 in that paper).

The compliance relation has been further studied, and the most recent accounts of it are given

in [Castagna et al., 2009; Padovani, 2010]. Also these papers follow the testing-like approach.

Thus far, the only presentation of the compliance that treats divergence explicitly is [Laneve and

Padovani, 2007], while Castagna et al. and Padovani focus on LTSs of convergent terms; respectively

the LTS of co-inductively generated regular trees

〈CCScoind,⇓
wτ ActX, 7→ 〉

and the LTS of recursive terms of CCSwτ ,

〈CCSrec,fb,⇓
wτ , Actτ X, −→〉

At present two styles are used to define the (strong) compliance, Padovani uses computations (see

[Padovani, 2010, Definition 2.1]), whereas [Castagna et al., 2009] prefers a co-inductive definition (see

Definition 2.4 there).

The only comparison between the various compliances appeared in the literature is [Bugliesi et al.,

2010].

Chapter 4

Testing theory was introduced by [De Nicola and Hennessy, 1984], and the standard reference on the

topic is the “green book” [Hennessy, 1985].

In [De Nicola and Hennessy, 1984] a semantic theory for CCS is developed, and testing pre-orders

are used to state when two processes are equivalent with respect to a set of tests. That paper

contains the axiomatisation of testing pre-orders on finite terms (see Theorem 4.3.8 there), and define

a denotational model of these pre-orders, which is based on representation trees (Theorem 5.2.10

there). The axiomatisation of the must pre-order sheds light also on other equivalences; one example

is the failure equivalence of [Brookes et al., 1984]. This equivalence provides a denotational model

for the language CSP, and its axiomatisation has been discussed by De Nicola first in 1983, and then

in an extended paper appeared in 1985. An account of testing theory, failure equivalence, and other

equivalences for concurrent languages can be found in [Sangiorgi, 2012, Chapter 5].

In [Cleaveland and Hennessy, 1993] a connection is established between the must testing equiva-

lence hmust and a certain kind of bisimulations, the Π-bisimulations; this connection is exploited to

show a decision procedure for testing on finite-state processes.

Recently the logical characterisation of the must pre-order has been shown by [Cerone and Hen-
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nessy, 2010]. In that paper the authors isolate the fragment of recursive Hennessy-Milner logic which

expresses exactly the properties that can distinguish two processes with respect to the equivalence

hmust : p 6<∼must q if and only if there exists a formula φ such that p satisfies φ while q does not satisfy

it.

Chapter 5

The overall aim of the research on the compliance theory is practical, and largely motivated by the

adoption of web-services.

[Carpineti et al., 2006] is the first paper that shows, by means of examples, that it is possible to

encode fragments of WSDL and WSCL in the proposed language of contracts.

In [Laneve and Padovani, 2007] a subcontract relation is defined as we define our server pre-orders,

but using the behavioural compliance abhv and requiring also a condition on the interfaces of the

constrained contracts. The authors focus on a set of well-behaved contracts and show that they have

duals, in the sense that if i[ρ] is well-behaved then there exists a i[σ] such that i[ρ] abhv i[σ] (see

Theorem 3 of that paper).

In view of the limitations of the subcontract relation, for instance its lack of “width extension”,

Castagna et al. and Padovani have introduced auxiliary tools in the theory: filters and orchestrators.

[Castagna et al., 2009] follows the research line opened in [Carpineti et al., 2006], extending the

results. The strong subcontract, v, (see Definition 2.7 there) is the server refinement of the theory, and

an alternative characterisation is proven in Theorem 2.9. To overcome the limitations of the strong

subcontract, a weak subcontract is defined, �. The import of the weak relation is that if σ1 � σ2 then

it is possible to “filter” the behaviour of σ2, so that σ2 v f(σ2). Filters are essentially coercions on

the behaviour of contracts, and are meant to hide the interactions that would disrupt the correctness

of the overall system. An effective deduction system for � is provided (see Proposition 3.25). The

authors show also how to encode WS-BPEL activities [OASIS, 2007] into contracts, and discuss the

implementation details of filters.

Padovani’s approach is similar to the one of [Castagna et al., 2009]. Also in [Padovani, 2010] a weak

refinement for servers is introduced, �, such that if f : σ1 � σ2 then σ1 v f(σ2). The filters devised by

Padovani, and referred to as orchestrators, are more sophisticated than the ones of [Castagna et al.,

2009], in that they acts as buffers and mediate the (possibly asynchronous) actions of clients and

servers.

Fair theories Other approaches have been taken to investigate the notions of compliance; for in-

stance [Bravetti and Zavattaro, 2009] are theories inspired by the fair testing of [Rensink and Vogler,

2007]. In this case the theories pertain only refinements for peers, and do not deal with the refinements

for servers and clients. Filters have been adapted to the fair framework in [Bernardi et al., 2008].

Chapter 6

To the best of our knowledge, the only papers in the literature that discuss models of the sub-typing

on first-order session types are [Barbanera and de’Liguoro, 2010; Laneve and Padovani, 2008] and

our [Bernardi and Hennessy, 2012].

A detailed discussion of first two papers is in Section 6.6. Our paper contains the theory of

compliance for session contracts that we have described in Section 6.5 and Section 6.5. In the paper the

model of 4fo
sbt is defined directly in terms of the compliance pre-orders, as we had not yet investigated

the must pre-orders on first-order session contracts.



214 Chapter 10. Literature Review

Chapter 7

Sessions and session types have gained much consensus, and fostered so much research as to nearly

overwhelm the novice.

First, we focus our discussion on the feature of session types that pertains our work most, namely

the sub-typing relation; then we comment on other works and give an exhaustive series of pointers to

the relevant literature.

[Dezani-Ciancaglini and de’Liguoro, 2009] overviews the state of the art, and the reader interested

in technical details may find them in that paper.

The advent of computer networks, and the Internet in particular, has called for the development

of means to help programmers check patterns of communication that software perform.

The system of types for interactions put forth by [Honda, 1993] has laid the ground for the subse-

quent introduction of session types, which are a restricted version of the interaction types; for instance

the types ↓ nat; 1& ↑ nat; 1 is an interaction type which is not a session type, as it is a branch type

that contains an output (↑ nat) and an input (↓ nat).

The idea of session as pattern of information flowing between two programs, via a connection

private to them, has been proposed for the first time by [Takeuchi et al., 1994]. There, a concurrent

language with constructs to organise sessions is presented, along with a type discipline based on session

types (see Definition 5.1). Intuitively, session types are meant to capture precisely the information

flow that takes place via a given connection. [Honda et al., 1998] elaborates further on these ideas,

comparing the need for structured computing with the urging need of primitives for structured com-

munications. The paper by Honda et al. contains various examples which illustrate the advantages of

sessions and session types; that paper is also the first account of recursive session types.

By and large, the paper [Pierce and Sangiorgi, 1996] on (sub)typing for mobile processes has laid

the ground for the theory of sub-typing on session types; this theory has been developed by Gay and

Hole.

The first account of sub-typing for session types was given in 1999. The proposed programming

language is a dialect of the pi-calculus; the sub-typing, ≤, acts on non-session types as proposed

by Pierce and Sangiorgi, whereas on session types acts as we described in Section 2.1.1.

The sub-typing is given by inference rules to be interpreted in an algorithmic fashion, as the

algorithmic subsort relation of Pierce and Sangiorgi. To the best of our knowledge, [Gay and Hole,

1999] present the fist specification of a standard protocol, the pop3, by means of session types.

The next development of the sub-typing is in [Gay and Hole, 2005]. The new relation, denoted

≤c, is defined co-inductively (see Definition 4 there), and is essentially the one we have presented in

Definition 7.1.5. The differences between Definition 7.1.5 and the original definition of Gay and Hole

are two,

• the co-inductive sub-typing of Definition 7.1.5 allows only one type in the input/output fields of

types, whereas the original definition allows n types

• the original definition treats also standard channel types (i.e. non-session types).

In [Gay and Hole, 2005] the algorithmic sub-typing is still present, and is used to prove that the

relation ≤c is decidable (see Theorem 4 in that paper). In turn this result is used to define a type

checking algorithm for the proposed programming language.

To add more flexibility to the sub-typing, in [Gay, 2008] it shown a version of finite session types

with bounded polymorphism, along with a sub-typing relation defined inductively on these terms.

The sub-typing is proven decidable (Theorem 3 there), and a type checking algorithm is given.

The most recent account of sub-typing on (session) types is [Gay and Vasconcelos, 2010]. There the

object language is multi-threaded, functional, and the communication, which takes places on buffered

channels, is asynchronous. Session types are used to (a) ensure that threads do not become blocked,
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and (b) prove statically the bounds on the size of the buffers required by the communication channels;

this result depends on the sub-typing. The authors define the sub-typing by mixing the sub-typing

à la Gay and Hole on session types with the sub-typing on function types and pairs as per [Pierce,

2002]; there is also an additional rule for linear function,

T → U <: T ( U (10.1)

The rule above ensures that a function that can be used exactly once can be replaced by a function

that can be used an unlimited amount of times. The definition of <: (Definition 1) adheres to the

style of [Vasconcelos, 2009a], and shows the set-theoretical construction of the the operator F whose

greatest fixed point is the sub-typing. We followed a similar style, but we defined our functional F4sbt

by means of inference rules.

The various versions of the sub-typing à la Gay and Hole are defined in syntactical terms.

Another approach has been taken in [Giachino, 2009, Chapter 3], and the paper [Castagna et al.,

2009]. Giachino puts forth a theory of types and session descriptors for a dialect of the pi-calculus

named PiST. The main result is that the well-typed compositions of processes that (a) are closed

and (b) contain no private channels, enjoy the progress property (Theorem 3.2.22 in the PhD thesis

of Giachino).

As for syntax, session descriptors are strikingly similar to CCSwτ , but types are generated co-

inductively in the style of [Castagna et al., 2009]. Moreover, the operational semantics of session

descriptors differ from the one of CCSwτ . The sub-typing on session descriptors is defined semantically;

the construction relies on the techniques of Castagna and Frisch [2005], and starts from a sub-typing

on base reminiscent of our 4b.

The sub-typing is but one of the many areas in which session types have been applied. The

oncoming paragraphs are roughly organised by “theme”; in each paragraph we give the pointers to

the relevant literature on session types with respect to the theme.

Programming paradigms The research community has invested much effort in adapting session

types to suit different kinds of programming languages; for example,

• process calculi (pi-calculus, CaSPiS) [Dezani-Ciancaglini and de’Liguoro, 2009; Gay and Hole,

1999, 2005; Mezzina, 2008]

• ambient calculi [Garralda et al., 2006]

• functional languages [Vasconcelos, 2009b; Vasconcelos et al., 2006] and the most recent [Gay

and Vasconcelos, 2010]

• object oriented languages [Dezani-Ciancaglini et al., 2009; Gay et al., 2012; Giachino, 2009]

Implementations Implementations of session types also exist,

• in Haskell [Imai et al., 2010; Neubauer and Thiemann, 2004; Pucella and Tov, 2008; Sackman

and Eisenbach, 2008],

• in Sing#, which is a variant of C#, by [Fähndrich et al., 2006]

• in Java [Gay et al., 2012, 2010; Hu et al., 2008]

• [Honda et al., 2012] suggests to use the multiparty asynchronous session types presented

in [Honda et al., 2008] to verify MPI programs.
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Logic Linear logic [Girard, 1987] is a useful tool in reasoning on resource ownership, replication,

and phenomenon as interference. Connection between linear logic and session types have been shown

in [Caires and Pfenning, 2010], and simplified in 2012 by Wadler.

He defines two calculi, respectively called CP and GV. CP is a version of the pi-calculus tailored to

be typed by propositions of classical linear logic, while GV is a slightly amended version of the language

of [Gay and Vasconcelos, 2010]. Wadler defines an interpretation of the calculus GV into the calculus

CF (see Figure 6 and 7 in his paper), that preserves types and shows a relation reminiscent of the

Curry-Howard isomorphism, propositions are (session) types, proofs are processes, and communication

is the cut elimination.

Deadlock freedom The standard type systems based on session types, as the one used by [Gay

and Hole, 2005], are not strong enough to prove that well-typed processes progress. The archetypal

example is the following composition,

x!(3).y!(true).0 || y?(z : Bool).x?(v : Int).0

The composition above is well types, as the two processes run in parallel use the channel x and y in

complementary ways, and the type safety indeed works: if a communication takes places, then there

is no mismatch-between the type of the sent data and the data expected by the input operations.

Nevertheless, the processes above use x and y in opposite order, so no interaction can take place; the

composition is stuck.

This issue has been tackled by [Giachino, 2009] and by [Dezani-Ciancaglini et al., 2007]. The result

obtained by Dezani-Ciancaglini et al. is similar to the progress theorem of Giachino, which we have

already described.

Higher-order languages In [Mostrous and Yoshida, 2007] two versions of session types for HOπ-

calculus have been presented. The first type system, which we refer to as “simple”, relies on a

combination of session types and types of the simply typed λ-calculus, with the additional rule in

Eq. (10.1). The type safety result (Theorem 3.4) ensures that well-typed processes with balanced

sessions do not reduce into errors. The second type system put forth by Mostrous and Yoshida is

based on fine grained session types, in turn inspired to the works [Yoshida, 2004; Yoshida and Hennessy,

2002], and [Hennessy et al., 2005]. The fine-grained type system allows to type more processes than the

simple type system, and still guarantees that well typed programs do not reduce to errors (Theorem

4.2).

Multi-party session types Most of the research on sessions and their types pertains to binary

sessions, that is communication patterns realised by parties that communicate via two endpoints of a

connection. The consequence is that binary sessions are not expressive enough to model interactions

that do not follow a strict peer to peer logic. For instance, multicasting allows messages to be sent to

a finite number of parties; also, more than two parties may (in some sense) combine their behaviours

to reach a common end.

These facts have called for an extension of session types expressive enough to specify and statically

check the behaviour of n-parties; that is multi-party composition of processes.

The global types of [Honda et al., 2008] are such an extension. Roughly speaking, a global type

describes the overall communications that n-parties should adhere to. The local type of each partic-

ipant is obtain as a projection of the global type, and the code of the participant is checked against

the local type. The type system of Honda et al. is powerful enough to ensure communication safety

and progress (Theorem 5.5 and 5.12 there).
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A sub-typing for multi-party session types has been studied by [Padovani, 2011]. The fair sub-

typing defined there follows a testing approach inspired to the fair testing, and it turns out to differ

from the sub-typing à la Gay and Hole. The fair testing (a) does not allow refinements such as

a ⊕ b ≤ a, for they may hinder the possibility of reaching success; and (b) allows the refinement

a + b ≤ a if b is not a usable action. This is similar to our restricted must client pre-order (see

point (iii) of Lemma 6.2.9).

Chapter 8

To the best of our knowledge, there exist two encodings of session types and the sub-typing à la Gay

and Hole into other domains.

[Gay et al., 2008] show an encoding of session types in the generic type system (GTS) of [Igarashi

and Kobayashi, 2004]. The correspondences obtained are on process reduction, typing derivations (see

Theorem 1 and 3), and type safety. By and large, the outcome of the study of Gay et al. is that

since reasoning techniques for session types are conceptually fairly straightforward, the effort required

to use the GTS in practice seems not to pay off.

The second interpretation has been put forth by [Dardha et al., 2012]. The authors are concerned

with the expressive power of session types. The result of their investigation is that session types

and their features can be recovered by using the standard types of pi-calculus [Sangiorgi and Walker,

2001, see Part III]. Moreover, results such as preservation and type safety for session types become

consequences of the same results in the standard theory of types.

Chapter 9

The pi-calculus is the evolution of the CCS that can express the notion of mobility, and was presented

first in [Milner et al., 1992]. The standard books on the pi-calculus are [Milner, 1999], and [Sangiorgi

and Walker, 2001]; while Milner’s work is an introductory text, the book by Sangiorgi and Walker can

be considered as the encyclopedia of the pi-calculus.

The pi-calculus has two remarkable features. First, many notions such as labels, channels, variables,

pointers, and so forth are replaced by names. Processes operates on names, and mobility is modelled

by name passing. This leads to a great simplification in the formalism, while retaining the expressive

power of usual programming languages. The second feature, shown by [Sangiorgi, 1993], is that even

though formally only names can be passed around by processes, this is enough to represent also the

mobility of processes (i.e. programs) themselves.
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Chapter 11

Conclusion

Truly there is no such thing as finality.

— Bram Stocker, Dracula

11.1 Summary

In this thesis we have taken a foundational approach, and proposed two ways to formalise the correct-

ness of a software system, namely the must testing and the compliance relation. This has allowed us

to propose a series of pre-orders that let us understand and answer rigorously questions such as

Q) if r || p is a correct system, what relation between p and q guarantees that r || q is a correct system

as well?

In particular, by proving the behavioural characterisations of the pre-orders generated by must and a,

we have laid bare a series of principles that let us replace a given piece of software, with another piece

of software, without hampering the overall correctness of the system.

We started our investigation in Chapter 4, studying an extension of the well-known testing theory

on processes and exhibiting the characterisation of the must pre-orders for servers, clients, and peers.

In Chapter 5 we moved to the compliance theory, and the compliance pre-orders for servers, clients

and peers. The results of Chapter 4 proved to be useful touchstones to characterise the compliance pre-

orders. Indeed, common ideas lay at the heart of the behavioural characterisation of the compliance

and the must pre-orders, for instance traces, convergence, usability, and acceptance sets, to name a

few.

The must testing and the compliance relation, when used in LTSs as general as the one of processes,

generate pre-orders that do not allow width extension: a 6v a + b.

Because of this reason in Chapter 6 we focused our attention on the LTS of session contracts, and

we have studied the must pre-orders and the compliance pre-orders that emerge in the restricted LTS

of session contracts. It turned out that the pre-orders of both families, when combined, provide a

fully abstract model of the sub-typing on first-order session types.

Motivated by this result, in the second part of the thesis we have enriched the language of session

contracts with higher-order terms, thereby providing a fully abstract model of the well-known sub-

typing à la Gay and Hole on session types.

In this thesis we began our exposition from processes and must, and we concluded it discussing

session types and sub-typing, passing through the theory of compliance. Step by step, we have

motivated the oncoming ideas, and we have tried to show the connections between the theories, so as

to unravel them in an organic and harmonious way. The reader will decide the extent of our success.

219
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11.2 Open questions

Death: Don’t you ever stop asking?

Antonius Block: No. I never stop.

— Ingmar Bergman, The Seventh Seal

This section contains a series of problems which arise from our results. The order in which we

present the questions follows the structure of the chapters.

Q1) A relation on basic parallel processes (BPP) called type compliance and denoted ∝ is presented

by [Acciai and Boreale, 2008]. BPP is not a subset of our language for processes, because BPP

has replication, whereas CCSwτ has not. Does an encoding of BPP into CCSwτ which preserves

the behaviour of terms (possibly up-to weak bisimulation) exist? If such an encoding exists then

it is conceivable that our compliance relation, a, coincides (possibly up-to weak bisimulation)

with ∝. This would prove that the relation vsvr is the sub-typing, thereby answering a question

posed in the last section of [Acciai and Boreale, 2008].

Q2) In Section 4.2 we introduced the pre-order for clients <∼clt. The obvious question to be answered

about <∼clt is whether that relation is decidable or not. Given the non-trivial role played by

the usability in the characterisation of <∼clt, a problem related to the decidability of <∼clt is the

decidability of Umust
clt .

Q3) The must peer pre-order <∼p2p that we defined in Section 4.3 is given by the relation mustp2p.

The relation mustp2p does not require the peers to report success at the same time, so one may

introduce a synchronous version of mustp2p, say mustsnc, that require this. That is r mustsnc p

if and only if all the maximal computations of r || p contain a state r′ || p′ in which r′
X−→

and p′
X−→.

In the obvious way we obtain the synchronous must peer pre-order <∼snc. Plainly <∼p2p 6⊆ <∼snc,

for instance α. 1 <∼p2p 1 +α. 0, whereas α. 1 6<∼snc 1 +α. 0; the peer α. 1 lets us prove the last

inequality.

What is the behavioural characterisation of the the synchronous must peer pre-order?

Q4) A second pre-order for clients that we introduced is vclt (see Section 5.2). As for <∼clt, the open

question regards the decidability of vclt. In turn this leads to the question is Uaclt decidable? A

starting point to answer the question may be Section 4 of [Padovani, 2010], in which a co-inductive

characterisation of viable contracts is proven.

Q5) Some peer pre-orders studied in the literature, see for instance [Bravetti and Zavattaro, 2009;

Padovani, 2011], are formulated in terms of multi-party systems; that is systems with any finite

number of distinguished participants,

p1 || p2 || p3 || . . . || pn

Our pre-orders for peers (see Definition 4.3.1 and Definition 5.3.1), on the contrary, take into

the account only two participants. Let us denote with <∼
n

p2p the pre-order defined in terms of n

participants being satisfied, with n > 2. It is easy to prove that if p <∼
n

p2p q then p <∼p2p q. The

open question is the converse, is it true that if p <∼p2p q then p <∼
n

p2p q for every n > 2? If it is

not true, what is, then the characterisation of <∼
n

p2p?

The same question can be asked also about vp2p.

Q6) In Chapter 8 we have seen that there exists a straightforward way to map session types into

contracts, namely the function M, which preserves the sub-typing relation on types; the image
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of 4sbt throughM being the pre-order vho
p2p. We have not addressed the converse question; does a

mapping from contracts to session types exist, which maps any one of the behavioural pre-orders

we studied, into the sub-typing relation?

Q7) We have seen that in general the must server pre-order and the compliance server pre-order are

not comparable (see Eq. (5.3)). Then we have shown that in the LTSs 〈CCS⇓wτ , Actτ X, −→〉,
〈CCSfb,⇓

wτ , Actτ X, −→〉, and 〈SCfo, Actτ X, −→〉 the server pre-orders are comparable, and in the

second and third LTS they coincide (Theorem 5.1.20, Corollary 6.4.8),

<∼
⇓,fb
svr = v⇓,fbsvr , <∼

fo
svr = vfo

svr

A question that we have not addressed is whether the conditions of being convergent and finite

branching are sufficient for the server pre-orders to coincide.

More formally, if S is some set of states, is it true that if the LTS 〈S , Actτ X, −→〉 is convergent

and finite-branching then <∼
S

svr = vS
svr?

Q8) We have seen that <∼clt 6= vclt, and that <∼
fo
clt 6= v

fo
clt (Eq. (5.5), Example 6.2.8).

We conjecture that in the LTS of finite (i.e. non recursive) session contacts, 〈SCfin, Actτ X, −→〉,
the equality vSCfin

clt =<∼
SCfin

clt holds true.

What conditions on the LTS are necessary to prove the equality between the client pre-orders?

Is there a non-trivial LTS in which the refinements for clients coincide?

Q9) In [Cerone and Hennessy, 2010] a logical characterisation of the standard must pre-order has

been proven. This lets us prove that p 6<∼must q if there is some formula φ that is satisfied by p

and not by q.

What is the logical characterisation of the must client pre-order? What are the logical charac-

terisations of the compliance pre-orders?

Q10) In the opening of Chapter 6 we pointed out that the pre-orders on the general LTS

〈CCSwτ , Actτ X, −→〉

do not allow width extension, that is refinements such as the following α � α + β. In the LTS of

session contract 〈SCfo, Actτ X, −→〉, on the contrary, the server and the client pre-orders allow

width extension.

Which restriction on an LTS are necessary so that the must and the compliance pre-orders allow

width extension?

Q11) In Section 6.2 we put forth a characterisation of the pre-order <∼
fo
clt which is syntax-oriented

(Proposition 6.2.12). The characterisation, though, is not completely syntactical, because it

involves the set of usable clients USCfo
clt , which we have not characterised syntactically.

What is the syntactic characterisation of the set USCfo
clt ?

Q12) In Section 6.3 we have shown a fully abstract model of the relation 4fo
sbt. Can the interpretation

of session types into session contracts, and the language of session contracts be adapted so as to

provide a model also of the sub-typing on standard channel types?

Q13) The dependent compliance relation lets us exhibit a model of the sub-typing 4sbt on higher-order

session types (see Theorem 8.4.9).

Does the dependent must testing provide the same model of 4sbt given by the dependent com-

pliance?
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Q14) What is the relation between the fair sub-typing of [Padovani, 2011] and the must pre-orders on

session contracts?

Q15) To what degree can the model exhibited in Theorem 8.4.9 be extended to the polymorphic types

of [Gay, 2008]?

Q16) What are the implication of the interpretation of 4sbt given in [Dardha et al., 2012]? To What

degree CCSwτcan be used as a model for the sub-typing for the types of the pi-calculus?

Q17) The results of Chapter 8 rely heavily on the fixed points of particular functionals. For instance

the model of 4sbt is provided by νX.Fvho
clt(X)∩Fvho

svr(X). Have the functionals Fvho
clt and Fvho

svr

a unique fixed point?

Q18) Can we obtain the session contract pre-order by applying the functionals Fvho
clt and Fvho

svr one

after the other? Formally, is the following equality true?

νX.Fv
ho
clt(Fv

ho
svr(X)) =vho

p2p



Appendix A

A complete lattice of pre-orders on

higher-order session contracts

Many of the relations used throughout the thesis are defined as fixed point of functions (or rule

functionals). To prove the existence of these fixed points we rely on the Knaster-Tarski theorem,

which we can apply only to endofunctions on complete lattices. This raises the problem of finding a

suitable complete lattice each time we need one. In particular, the functions Fclt (Lemma C.0.34)

and Fsrv (Lemma 8.2.8) are monotone, but their domain is not closed with respect to set inclusion,

so we have to find another operation to obtain the least upper bound of Pre(SC2
ho).

Example A.0.1. In this example we show that if we order pre-orders by using the set inclusion ⊆,

the the operation ∪ on pre-orders does not give the lub of its two arguments. This is a consequence

of a more general fact that pertains transitive relations.

Let T be the set of transitive relations on session contracts. A natural way to order the elements

of T is the set inclusion. The operations that give the lub, and the glb on sets are ∪ and ∩.

The structure 〈 T , ∪ 〉 is not a magma. See also Figure A.1. Let

T1 = {(?l1. 1, 0)}

T2 = {(0, !l. 1)}

Both relations are trivially transitive, thus they are in T . Consider the naive candidate as lub of T1

and T2, that is T1 ∪ T2. We know by construction that

(1, 0) ∈ T1 ∪ T2, (0, !l. 1) ∈ T1 ∪ T2

Note, though, that (?l1. 1, !l. 1) 6∈ T1 ∪ T2, so T1 ∪ T2 is not an element of T . This means that if we

order transitive relations according to ⊆, the relation T1 ∪ T2 can not be a lub of T1 and T2.

The example above shows that the problem lies in the naive use of the operation ∪ to (try to)

construct the lubs of objects. To provide a (complete) lattice on transitive relations, we have to use

operations that preserve the structure of “being transitive”, and the operation ∪ does not.

The right operations are the transitive closure of the union of sets, and the intersection on sets;

we denote them as follows, ⊔
X = [

⋃
{O | O ∈ X } ]+

l
X =

⋂
{O | O ∈ X }

Hereafter we will use the infix notation when using t and u as binary operations.

223
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{(?l1. 1, 0), (0, !l. 1), (?l1. 1, !l. 1)}

{(?l1. 1, 0), (0, !l. 1)}

{(?l1. 1, 0)} {(0, !l. 1)}

Figure A.1: The result of the operations ∪ (dashed arrows) and t (dashed and solid arrows).

Example A.0.2. Consider again the relations T1 and T2 of Example A.0.1. The definition of t
implies that

T1 t T2 = {(?l1. 1, 0), (0, !l. 1), (?l1. 1, !l. 1)}

The relation T1 t T2 is the smallest transitive relation that contains T1 and T2.

To prove the result of this appendix, we need an auxiliary lemma.

Lemma A.0.3. Let Y ⊆ Pre(SC2
ho), and O ∈ Y . If for every P ∈ Y , P ⊆ O, then

⊔
Y ⊆ O.

Proof. Let B=
⋃
{P | P ∈ Y }. Fix a pair (σ1, σ3) ∈

⊔
Y . Note that by definition of

⊔
, (σ1, σ3) ∈⊔

Y if and only if σ1 [B]+ σ3.

We prove that if σ1 [B]+ σ3 then σ1Oσ3; the argument is by induction on the derivation of

σ1 [B]+ σ3.

Base case In this case the derivation that σ1 [B]+ σ3 is due to the axiom in Figure 7.10,

σ1 [B]+ σ3
(σ1, σ3) ∈B; [trc-a]

The side conditions and the definition of B ensure that there exists a P ∈ Y such that σ1Pσ3. The

hypothesis that for every P ∈ Y the inclusion P ⊆ O holds true, implies that σ1Oσ3.

Inductive case In the inductive case the last rule in the derivation of σ1 [B]+ σ3 has to be [trc-r],

and the derivation has the following form,

...
σ1 [B]+ σ2

...
σ2 [B]+ σ3

σ1 [B]+ σ3
[trc-r]

The inductive hypothesis ensures that σ1Oσ2 and σ2Oσ3. The transitivity of O implies that σ1Oσ3.

Lemma A.0.4. The pre-order 〈Pre(SC2
ho), v〉 is a complete lattice.

Proof. We have to prove that every subset of Pre(SC2
ho) has least upper bound and greatest lower

bound. Let X be a subset of Pre(SC2
ho), that is a set of pre-orders on higher-order session contracts.

We show that
d
X is the greatest lower bound of X. We have to prove two things:

1) for every O ∈ X,
d
X ⊆ O

2) if O is a lower bound of X, then O ⊆
d
X
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Let O ∈ X; to prove 1) we have to show that
⋂
X ⊆ O. This is obvious in view of the definition

of set intersection. To prove 2) above let O be a lower bound of the set X; we have to show that

O ⊆
⋂
X. As O is a lower bound, O ⊆ P for every P ∈ X. This and the definition of set intersection

imply that O ⊆
⋂
X.

Now we show that
⊔
X is the least upper bound of X:

3) for every O ∈ X, O ⊆
⊔
X

3) if O is an upper bound of X, then
⊔
X ⊆ O

Let O ∈ X; 3) above follows from the following set inclusions

O ⊆
⋃
{P | P ∈ X } ⊆ [

⋃
{P | P ∈ X } ]+=

⊔
X

To prove 4), let O ∈ X and assume that P ⊆ O for every P ∈ X. Lemma A.0.3 implies that⊔
X ⊆ O.
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Appendix B

Necessary and sufficient conditions

In Section 8.1 we have proven that if we restrict our attention to the pre-orders on higher-order session

contracts, then we can provide a characterisation of the dependent client pre-orders, and also show

that the function λX. vXclt is monotone. We have proven that the fixed point νX.F�clt(X,X) is a

transitive relation (Corollary 8.1.14).

In this appendix we explain why it is necessary to use pre-orders to achieve the results of Section 8.1.

The first example pertains the existence of dual session contracts; in the higher-order setting it is

not an obvious fact.

Example B.0.5. [ Strong totality is necessary ]

In Lemma 7.2.17 we have proven that if a relation B is strongly total, then Dual(B) is total.

In this example we show that if a relation B is not strongly totalthen Dual(B) is not a total B-

compliance relation. This is true because if B is not strongly total, then there exists a session contract

ρ that does not comply with any other session contract. Let us see why.

Suppose that B be not total. It follows that there exists some ρ̂ such that for every σ̂, (a) ρ̂ 6B σ̂,

or (b) σ̂ 6B ρ̂.

Without loss of generality we can assume (a), and let ρ = !(ρ̂). 1. Thanks to (a), we can prove that

for every σ, ρ || σ
τ

6−→; we can prove also that ρ
X
6−→, thus Definition 7.2.4 ensures that ρ 6aB σ.

The next examples show that the relation B has to be a pre-order if we want our syntactical

characterisation of vBclt to be true.

Example B.0.6. [ Reflexivity is necessary ]

Let B be a binary relation on session contracts, that is not reflexive. In this example we show that

Lemma 8.1.5 is not true for the pre-order vBclt. In other terms, we prove that

vBclt 6⊆ �Bclt

We have to exhibit a pair in vBclt which does not satisfy any one of the points (i) . . . (??) of

Lemma 8.1.5.

There exists a session contract ρ̂ such that ρ̂ 6B ρ̂. The argument depends on B being strongly total

or not. We discuss first the latter case.

If B is not strongly total, then Example B.0.5 implies that there exists a ρ =!(ρ̂). 1 such that

{σ | ρ aB σ } = ∅

This let us prove that ρ vBclt?l. 1. It is routine work to check that the pair

(!(ρ̂). 1, ?l. 1)

227
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does not satisfy any of the points point (i) . . . point (vii) of Lemma 8.1.5.

Now we define a relation B which is strongly total, but not reflexive; and then we exhibit a pair

in vBclt, that does not satisfy any of the points in Lemma 8.1.5.

Let

B = Iho \{(?l.1, ?l.1), (!l.1, !l.1)}

∪ {(1 !l.1), (1, ?l. 1)}

∪ {(?l. 1, !l.!l.1), (!l.1, !l.!l.1)}

The relation B is not reflexive, as !l.1 6B !l.1; though, the relation is strongly total: for every ρ ∈ SCho

we can show a σ such that ρ B σ or σ B ρ. As to the pairs that we have added to Iho in the construction

of B, we depict them below, where the arrows connects the first elements to the second elements of

the pairs.

!l. 1

1

?l. 1

!l.!l.1

The picture shows that if we think of B as a pre-order, then we can see that the terms !l. 1, and ?l. 1

have a lub and glb, but they are not related by B. This is the property of B that makes the example

work.

Let ρ1 = ?(!l. 1). 1 and ρ2 = ?(?1. 1). 1. The bulk of the work is to prove that ρ1 vBclt ρ2; to show

this, it suffices to prove that the relation

R′ = { (ρ2, σ) | ρ1 aB σ }

is a co-inductive B-compliance relation. Lemma 3.3.10 ensures that we can prove a different result,

that is that the relation

R = { (ρ2, σ) | ρ1 asB σ }

is a co-inductive B-syntactic compliance relation. We are required to prove an implication: if ρ2 R σ,

then (ρ2, σ) ∈ Fas (R,B). To prove the consequences, if ρ′ R σ′, then it is enough to a one step

derivation of the form . . .
ρ2 asB σ

done by instantiating one of the rules in Figure 7.8.

Let ρ R σ, either ρ = 1 or ρ = ρ2. In the former case, we have the derivation

ρ asB σ
[a-Goal]

In the latter case, ρ1 asB σ. Given the shape of ρ1, the fact that ρ1 asB σ can be proven only by the

derivation
1 asB σ′

ρ1 asB σ
σ =!(σ̂).σ′, ?(!l. 1) ./B!(σ̂); [r-Eta]

From the definition of ./, it follows that σ̂ B!l. 1. The construction of B guarantees that σ̂ = 1. So

far, we have proven that if ρ1 asB σ, then (a) σ = !(1).σ′ and (b) 1 asB σ′.

Since 1 B?l. 1, the definition of ./ implies that ?(?l. 1) ./B!(1); moreover, by construction, we have
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1 R σ′, thus we have the derivation

1 asB σ′

ρ2 asB σ
?(?l. 1) ./B!(1); [r-Eta]

We have shown that every pair in R, is also in Fas (R,B). Given the definition of R, it follows

that if ρ1 asB σ then ρ2 asB σ. Thanks to Lemma 3.3.10, we have proven that ρ1 vBclt ρ2.

To conclude the example, we have to show that the pair (ρ1, ρ2) does not satisfy any of the points

(a) . . . (g). Since ρ1 = ?(!l. 1). 1 and ρ2 = ?(?1. 1). 1, the only point that could be true is point (iii),

but !l. 1 6B?1. 1, thus point (iii) is false.

Example B.0.7. [ Transitivity is necessary ]

In this example, we show that if B is a binary relation on session contracts, which is not transitive,

then Lemma 8.1.10 is false, that is

�Bclt 6⊆ vBclt

To this aim, we define the following relation,

B= Iho ∪{ (1, 0), (0, !l. 1) }

The relation B is not transitive, because 1 B 0 and 0 B !l. 1, while 1 6B !l. 1.

Let ρ1 = !(0). 1 and let ρ2 = !(1). 1. We prove that ρ1 �Bclt ρ2. It is enough to show a prefixed point

of F�clt , that contains the pair at hand. Let the candidate prefixed point be R = {(ρ1, ρ2), (1, 1)}.
We are required to prove that R ⊆ F�clt(R,B); this amounts in showing that a) (1, 1) ∈ F�clt(R,B),

and b) (ρ1, ρ2) ∈ F�clt(R,B). To prove both points we have to show an application of one of the

rules in Figure 8.1, which has as consequence one of the two pairs at issue.

The proof of a) is the derivation

1 �Bclt 1
[a-Goal-C]

The proof of b) is the derivation

1 �Bclt 1

ρ1 �Bclt ρ2
1 B 0; [r-Out-H]

It follows that ρ1 �Bclt ρ2.

Now we prove that ρ1 6vBclt ρ2. We have to exhibit a session contract σ, such that ρ1 aB σ, and

ρ2 6aB σ. Let σ =?(!l. 1). 1; this is our candidate σ. To see why ρ1 aB σ, note that the relation

R= { (ρ1, σ), (1, 1) } is contained in a co-inductive B-compliance relation. To conclude the example,

we have to prove that ρ2 6aB σ. The witness that B is not transitive is the fact that !(1) 6./B?(!l. 1).

This implies that ρ2 || σ
τ

6−→. Since ρ2
X
6−→B, it follows that ρ2 6aB σ.

In this example, using the fact that B is not transitive, we have exhibited two session contracts

ρ1, ρ2, such that ρ1 �Bclt ρ2, and that ρ1 6vBclt ρ2.

To prove that νX.F�clt(X,X) we used Proposition ??. That proposition essentially states when

the image via F�clt of two relations is a transitive relation. This is the case is both the parameters of

F�clt are transitive. We prove this in the next two examples.

Example B.0.8. In this example we show that if T is a transitive relation on session contracts, and

B is not, then F�clt(B, T ) need not be transitive.

Let T = {(1, 1)}, and let B= {(1, 0), (0, !l. 1)} We exhibit three session contracts ρ1, ρ2, and ρ3

such that

{(ρ1, ρ2), (ρ2, ρ3)} ⊆ F�clt(B, T ), (ρ1, ρ3) 6∈ F�clt(B, T )
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This proves that F�clt(B, T ) is not transitive. Let

ρ1 =!(1). 1

ρ2 =!(1). 0

ρ3 =!(1).!l. 1

The proof that (ρ1, ρ2) ∈ F�clt(B, T ) is the derivation

1 �Bclt 0

!(1). 1 �Bclt!(1). 0
1 T 1; [r-Out-H]

The proof that (ρ2, ρ3) ∈ F�clt(B, T ) is the derivation

0 �Bclt!l. 1

!(1). 0 �Bclt!(1).!l. 1
1 T 1; [r-Out-H]

To prove that (ρ1, ρ3) 6∈ F�clt(B, T ) we have to show that no inference rule let us derive

. . .

ρ1 �Bclt ρ3

Because of the form of ρ1 (or, equivalently, ρ3), the only inference rule that can be applied to derive

(ρ1, ρ3) is [r-Out-H]; we see easily, though, that the premises of the rule are not satisfied. Let us

consider the derivation
1 �Bclt!l. 1

!(1). 1 �Bclt!(1).!l. 1
1 T 1; [r-Out-H]

The premises require the pair (1, !l. 1) to be in the relation B; this is not the case. Note, moreover,

that 1 B!l. 1 is the witness of the fact that B is not transitive. This means that we have shown that

F�clt(B, T ) is not transitive, because B is not.

Example B.0.9. In this example we show that if T is a transitive relation on session contracts, and

B is not, then F�clt(T ,B) need not be transitive. Let the relations B and T be defined as in the

previous example, T = {(1, 1)}, and let B= {(1, 0), (0, !l. 1)}; and let

ρ1 =?(1). 1

ρ2 =?(0). 1

ρ3 =?(!l.1). 1

We prove that F�clt(T ,B) is not transitive, by showing the following

{(ρ1, ρ2), (ρ2, ρ3)} ⊆ F�clt(B, T ), (ρ1, ρ3) 6∈ F�clt(B, T )

The proof that (ρ1, ρ2) ∈ F�clt(T ,B) is the ensuing derivation

1 �Bclt 1

?(1). 1 �Bclt?(0). 1
1 B 0; [r-In-H]

The proof that (ρ2 �Bclt ρ3) ∈ F�clt(T ,B) is the ensuing derivation

1 �Bclt 1

?(0). 1 �Bclt?(!l.1). 1
0 B!l.1; [r-In-H]

Now we show that it is not possible to derive the pair (ρ1, ρ3). Given the form of ρ3, the only rule
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that could let us derive the pair at issue is [r-In-H]; the side conditions of the rule, though are not

satisfied:
1 �Bclt 1

?(1). 1 �Bclt?(!l.1). 1
1 B!l.1; [r-In-H]

Plainly, we have 1 6B!l. 1.

In this example, we have used the witness that B is not transitive, to prove that neither F�clt(T ,B)

is transitive.

Now we turn our attention the monotonicity of the function λX. vXclt. In the next two examples

we show that if we let X range over relations that are not transitive, then

1. the function λX. vXclt is not monotone

2. Lemma 8.1.15 is false

Example B.0.10. [ Strong totality is necessary ] Let R be a relation which is not strongly total.

There exists a relation R′ such that R ⊆ R′, and vRclt 6⊆ vR
′

clt.

We can assume without loss of generality that there exists a session contract ρ̂ such that ρ̂ 6R σ̂ for

every σ̂ ∈ SCho; that is R is not total. If R−1 is not total the argument is similar to one we use now.

Let ρ1 =!(ρ̂). 1; thanks to the assumption on ρ̂, we can prove that for every stable σ we have

ρ1 || σ
τ

6−→R; since ρ
X
6−→R it follows that ρ̂ 6aR σ. We can use this to prove that ρ̂ 6aR σ for every

σ ∈ SCho. Definition 8.1.1 ensures that

{σ ∈ SCho | ρ aR σ } = ∅

so we trivially have ρ vRclt ρ2 for every ρ2 ∈ SCho.

Let us fix ρ2 =!l. 1, and let R′=R ∪{(ρ̂, ρ̂)}. We have !(ρ̂) ./R′?(ρ̂), and we can prove that the

relation

{(!(ρ̂). 1, ?(ρ̂). 1), (1, 1)}

is a co-inductive compliance relation, hence ρ aR′?(ρ̂). 1.

To prove that ρ 6vR′clt ρ2, it suffices to observe that ρ2 6aR′?(ρ̂). 1. The observation follows from

ρ2 || σ
τ

6−→, ρ2
τ

6−→R′ , and condition (b) of Definition 7.2.4.

We have exhibit a relation R′ such that R ⊆ R′ and that vRclt 6⊆ vR
′

clt, so the lemma is proven.

Example B.0.11. In this example we show that for Lemma 8.1.15 to be true, it is necessary that

the relation T in its hypothesis be transitive, as long as we assume R reflexive.

First, we define two suitable relations.

R = Iho ∪{(!l. 1, 1)}
R′ = R ∪{(0, !l. 1)}

The relation R is reflexive, because it contains the identity relation; and the relation R′ is not

transitive, because

0 R!l. 1, !l. 1 R 1, 0 6R′ 1

By construction, we also know that R ⊆ R′.

(a) We prove that ?(!l. 1). 1 vRclt?(1). 1.

Suppose that ?(!l. 1). 1 aR σ; it follows that σ has to interact with ?(!l. 1). 1, and this can happen

only via the action !(!l. 1). From the definition of ./R it follows that σ can interact also with ?(1),

and so ?(1). 1 aR σ.
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(b) Now we prove that ?(!l. 1). 1 6vR′clt?(1). 1.

We have to show a σ such that ?(!l. 1). 1 aR′ σ, and ?(1). 1 6aR′ σ. Let σ =!(0). 1. The definitions

of ./ and of R′ ensure that ?(!l. 1) ./R!(0), thus we can prove that

S= {(?(!l. 1). 1, σ), (1, 1)}

is a co-inductive compliance; it follows that ?(!l. 1). 1 aR′ σ.

Consider now the composition ?(1). 1 || σ; the witness that R′ is not transitive is the fact that

0 6R′ 1, and this implies that ?(1) 6./R′ !(0). It follows that ?(1). 1 || σ
τ

6−→; since ?(1). 1
X
6−→R′

Definition 7.2.4 ensures that ?(1). 1 6aR′ σ.

The argument we have unravelled shows that vRclt 6⊆ vR
′

clt.

In Lemma B.0.15 we prove that the function λX. vXclt is monotone not only if X ranges over

pre-orders, but also if X ranges over another kind of relations. We define these relations now.

Definition B.0.12. [ Transitive identity ]

We say that a relation R ⊂ A × A is a transitive identity, if and only if for every a R b and b R c

imply a = c; that is [R]+⊆ IA.

Notice that to be transitive identity is a property independent from the property of being a reflexive

relation. We show this in the next example.

Example B.0.13. In this example we prove that the properties of being reflexive, and of being a

transitive identity, are independent; that is

a) to be reflexive does not imply to be a transitive identity

b) to be a transitive identity does not imply to be reflexive

Let R be the relation

Iho ∪{(0, 1)}

As Iho ⊂ R, the relation R is reflexive. The proof that R is not a transitive identity is that

{ (0, 1), (1, 1) } ⊂ R and 0 6= 1.

Let S be the relation

Iho \{ (1, 1), (!l. 1, !l. 1) } ∪ { (1, !l. 1), (!l. 1, 1) }

The relation S is not reflexive, because 1 6S 1. We prove that S is a transitive identity. Let σ S σ′ and

σ′ S σ′′; we have to prove that σ = σ′′. If σ = 1, then by construction it must be σ′ =!l. 1; hence,

again by construction, it must be σ′′ = 1; we have thus σ = 1 = σ′′. A similar argument can be used

if σ =!l. 1.

If σ 6∈ {1, !l. 1}, then σ Iho σ
′, thus σ = σ′. It follows that σ′ 6∈ {1, !l. 1}, and so σ′ Iho σ

′′. It

follows σ = σ′ = σ′′.

The reflexive relations and the transitive identities are not disjoint; there is one relation which is

reflexive and a transitive identity.

Proposition B.0.14. Let R be a reflexive transitive identity on the set A. The relation R is the

identity.

Proof. We have to prove that R =IA. The set inclusion IA ⊂ R is true because R is reflexive, so we

have to check only why R ⊆ IA. Let a R b; we have to show that a IA b. As R is reflexive we know

that a R a; it follows that a [R]+ b. The hypothesis of R being a transitive identity ensures that

a IA b.
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The next lemma implies that to let X range over pre-orders is a condition sufficient for λX. vXclt
to be monotone, but it not necessary.

Lemma B.0.15. Let R be a strongly total transitive identity on session contracts. If R ⊆ R′ then

vRclt ⊆ vR
′

clt.

Proof. We have to prove that for every ρ1, ρ2 ∈ SCho, if ρ1 vRclt ρ2 then ρ1 aR′ σ implies ρ2 aR′ σ.

Thanks to Lemma 7.2.12, the latter implication is equivalent to if ρ1 asR′ σ then ρ2 asR′ σ.

Lemma 7.2.7 ensures that it is enough to prove that if ρ1 asR′ σ then ρ2 asR′ σ. We prove this fact.

Let

S = { (ρ1, σ) | ρ1 vRclt ρ2, ρ1 asR′ σ }

Plainly, ρ2 S σ; so to prove ρ2 asR′ σ it suffices to show that S is a co-inductiveR′-syntactic compliance

relation.

The argument is by case analysis on the depth of ρ2 and σ, and then on the form of unf(ρ1).

Suppose that depth(ρ2) + depth(σ) > 0. If ρ2 = µx. ρ2, then note that depth(ρ2) > 0. Corollary 8.1.4

and Lemma 7.2.7 ensure the following facts,

unf(ρ1) vRclt unf(ρ2), unf(ρ1) asR′ unf(σ)

The definition of S ensures that unf(ρ2) S unf(σ). It follows that we can apply [r-Unfold],

unf(ρ2) asR′ unf(σ)

ρ2 asR′ σ
depth(ρ2) + depth(σ) > 0; [r-Unfold]

Now suppose that depth(ρ2) + depth(σ) = 0. Now we reason by case analysis on unf(ρ1); all the

cases are straightforward, except the higher-order ones. For instance ρ1 =?(ρ̂1).ρ′1. We discuss this

case. If unf(ρ1) =?(ρ̂1).ρ′1, we show that we can apply rule [r-Eta] to prove ρ2 asR′ σ.

We have to prove four things: 1) ρ2 =?(ρ̂2).ρ′2, 2) σ = θ.σ′, 3) ?(ρ̂2) ./R′ θ, 4) ρ′2 R′ σ′.
We know that unf(ρ1) asR′ σ and that unf(ρ1) vRclt ρ2.

1) As by hypothesis R is strongly total, we know that ρ̂ R ρ̂1 for some ρ̂ ∈ SCho, so the definition of

./ ensures that ?(ρ̂1) ./R!(ρ̂).

Let ρ′1 asR σ′′; Lemma 7.2.17 and the totality of R ensure that one such σ′′ exists (ie. Dual(ρ′1,R
) 6= ∅). We can prove that unf(ρ1) asR!(ρ̂).σ′′.

From ρ1 vRclt ρ2, it follows that ρ2 asR!(ρ̂).σ′′, thus ρ2 =?(ρ̂2).ρ′2, ρ̂ R ρ̂2, and ρ′1 vRclt ρ′2. We have

proven 1). By hypothesis R is a transitive identity, thus from ρ̂1 R ρ̂ and ρ̂ R ρ̂2, it follows that

ρ̂1 = ρ̂2 (B.1)

2) The fact that unf(ρ1) asR′ σ implies that σ =!(σ̂).σ′, σ̂ R′ ρ̂1, and ρ′1 asR′ σ′. We have proven 2),

with θ =!(σ̂).

3) We prove ?(ρ̂2) ./R′ !(σ̂). It suffices to show that σ̂ R′ ρ̂2. We know that σ̂ R′ ρ̂1, thus the equality

in B.1 ensures that σ̂ R′ ρ̂2.

4) To prove 4) we have to exhibit a ρ′′ such that ρ′′ vRclt ρ′2 and ρ′′ asR′ σ′. The ρ′′ we are after is ρ′1,

for we have already proven that

ρ′1 vRclt ρ′2 and ρ′1 asR′ σ′
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We are now aware of two sets of conditions which are sufficient to prove that λX. vXclt is monotone.

These conditions essentially are that X range over pre-orders, or over transitive identities.

We prove that these conditions on X are necessary for λX. vXclt to be monotone.

Example B.0.16. [ Reflexive relations or transitive identities are necessary ]

In this example we show that for the function λX. vXclt to be monotone, it is necessary that R be a

reflexive relation or a transitive identity.

We define an R which is nor reflexive, neither a transitive identity; and a transitive R′ such that

R ⊆ R′, and we prove that vRclt 6⊆ vR
′

clt.

Consider the following relations.

R = I ∪ {(1, !l. 1), (1, !l.!l. 1), (!l. 1, ?l. 1)} \ {(!l. 1, !l. 1)}
R′ = R′ ∪{(!(1). 1, !l. 1), (!(1). 1, ?l. 1)}

The relation R is not reflexive, because !l. 1 6R!l. 1, and it is not a transitive identity, because

{(1, 1), (1, !l.!l. 1)} ⊂ R and 1 6= !l.!l. 1. We can prove that the relation R is strongly total; the

pair (!l. 1, ?l. 1) is in it exactly to this aim. Plainly, R ⊆ R′, moreover the relation R′ is transitive.

We prove that

?(!l. 1). 1 vRclt?(!l.!l. 1). 1

Let ?(!l. 1). 1 aR σ; since ?(!l. 1). 1
X
6−→R, it follows that σ must interact with ?(!l. 1). 1; we can prove

that σ performs the action !(1). As ?(!l.!l. 1) ./R!(1), it follows that ?(!l.!l. 1). 1 aR σ.

Now we prove that

?(!l. 1). 1 6vR
′

clt?(!l.!l. 1). 1

On the one hand, we can prove that ?(!l. 1) ./R′ !(!(1). 1); this is enough to show that the following

set

{(?(!l. 1). 1, !(!(1). 1). 1)), (1, 1)}

is a co-inductive compliance relation (with respect to R′). It follows that

?(!l. 1). 1 aR′ !(!(1). 1). 1

On the other hand, we have ?(!l.!l. 1) 6./R′ !(!(1). 1), thus ?(!l.!l. 1). 1 ||!(!(1). 1). 1
τ

6−→; moreover,

?(!l.!l. 1). 1
X
6−→R′ , thus

?(!l.!l. 1). 1 6aR′ !(!(1). 1). 1

As R ⊆ R′ and vRclt 6⊆ vR
′

clt, we have proven that R has to be reflexive or a transitive identity, in

order for λX. vXclt to be monotone.



Appendix C

Monotone functionals

Throughout the this thesis we have used (co)inductive definitions; that is we have used least and

greatest fixed points of suitable rule functionals. To ensure that these fixed points exist, it is necessary

that the functionals be monotone. The statements that guarantee the monotonicity of the functionals

we defined are collected in this appendix. Their proofs are obvious, and we omit them.

Lemma C.0.17. The rule functional F4fo
sbt is monotone.

Lemma C.0.18. The functional Fa is monotone.

Lemma C.0.19. The functional Fap2p is monotone.

Lemma C.0.20. The rule functional Fasmusts is monotone.

Lemma C.0.21. The rule functional F⇓ is monotone.

Lemma C.0.22. The rule functional F=⇒6X is monotone.

Lemma C.0.23. The rule functional F⇓clt is monotone.

Lemma C.0.24. The rule functional F� is monotone.

Lemma C.0.25. The rule functional Fusbl is monotone.

Lemma C.0.26. The rule functional F-synsvr is monotone.

Lemma C.0.27. The rule functional F-synclt is monotone.

Lemma C.0.28. The rule functional FDual is monotone.

Lemma C.0.29. The rule functional F�synclt is monotone.

Lemma C.0.30. The rule functional F4sbt is monotone.

Lemma C.0.31. The rule functional Fa is monotone in its first variable.

Lemma C.0.32. The rule functional Fas is monotone in its first variable.

Lemma C.0.33. The rule functional FDual is monotone in its first variable.

Lemma C.0.34. The rule functional Fvho
clt is monotone.

Lemma C.0.35. The rule functional F�clt is monotone in its first variable.

Lemma C.0.36. The rule functional F�svr is monotone in its first variable.

Proposition C.0.37. The rule functional F+ is monotone in its first argument.

Lemma C.0.38. The rule functional F` is monotone.
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S. B. Fröschle and F. D. Valencia (Eds.), EXPRESS’10, Volume 41 of EPTCS, pp. 31–45.

Christensen, S., Y. Hirshfeld, and F. Moller (1993). Bisimulation equivalence is decidable for basic

parallel processes. See Best [1993], pp. 143–157.

Cleaveland, R. and M. Hennessy (1993). Testing equivalence as a bisimulation equivalence. Formal

Asp. Comput. 5 (1), 1–20.

Courcelle, B. (1983). Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95–169.

Dardha, O., E. Giachino, and D. Sangiorgi (2012). Session types revisited. In D. D. Schreye,

G. Janssens, and A. King (Eds.), PPDP, pp. 139–150. ACM.

Davey, B. A. and H. A. Priestley (2002). Introduction to Lattices and Order (2. ed.). Cambridge

University Press.

De Nicola, R. (1983). A complete set of axioms for a theory of communicating sequential processes. In

M. Karpinski (Ed.), FCT, Volume 158 of Lecture Notes in Computer Science, pp. 115–126. Springer.

De Nicola, R. (1985). Two complete axiom systems for a theory of communicating sequential processes.

Information and Control 64 (1-3), 136–172.

De Nicola, R. and M. Hennessy (1984). Testing equivalences for processes. Theoretical Computer

Science 34, 83–133.

De Nicola, R. and M. Hennessy (1987). ccs without τ ’s. In H. Ehrig, R. A. Kowalski, G. Levi, and

U. Montanari (Eds.), TAPSOFT, Vol.1, Volume 249 of Lecture Notes in Computer Science, pp.

138–152. Springer.

Degano, P., R. De Nicola, and J. Meseguer (Eds.) (2008). Concurrency, Graphs and Models, Essays

Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, Volume 5065 of Lecture Notes

in Computer Science. Springer.



References 239

Demangeon, R. and K. Honda (2011). Full abstraction in a subtyped pi-calculus with linear types. In

J.-P. Katoen and B. König (Eds.), CONCUR, Volume 6901 of Lecture Notes in Computer Science,

pp. 280–296. Springer.

Dezani-Ciancaglini, M. and U. de’Liguoro (2009). Sessions and session types: An overview. In

C. Laneve and J. Su (Eds.), WS-FM, Volume 6194 of Lecture Notes in Computer Science, pp. 1–28.

Springer.

Dezani-Ciancaglini, M., U. de’Liguoro, and N. Yoshida (2007). On progress for structured commu-

nications. In G. Barthe and C. Fournet (Eds.), TGC, Volume 4912 of Lecture Notes in Computer

Science, pp. 257–275. Springer.

Dezani-Ciancaglini, M., S. Drossopoulou, D. Mostrous, and N. Yoshida (2009). Objects and session

types. Inf. Comput. 207 (5), 595–641.

Fähndrich, M., M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and S. Levi (2006).

Language support for fast and reliable message-based communication in singularity os. In Y. Berbers

and W. Zwaenepoel (Eds.), EuroSys, pp. 177–190. ACM.

Garralda, P., A. B. Compagnoni, and M. Dezani-Ciancaglini (2006). Bass: boxed ambients with safe

sessions. In A. Bossi and M. J. Maher (Eds.), PPDP, pp. 61–72. ACM.

Gay, S. J. (2008). Bounded polymorphism in session types. Mathematical Structures in Computer

Science 18 (5), 895–930.

Gay, S. J., N. Gesbert, and A. Ravara (2008, May). Session types as generic process types. In

PLACES.

Gay, S. J., N. Gesbert, A. Ravara, and V. T. Vasconcelos (2012). Modular session types for objects.

CoRR abs/1205.5344.

Gay, S. J. and M. Hole (1999). Types and subtypes for client-server interactions. In S. D. Swierstra

(Ed.), ESOP, Volume 1576 of Lecture Notes in Computer Science, pp. 74–90. Springer.

Gay, S. J. and M. Hole (2005). Subtyping for session types in the pi calculus. Acta Inf. 42 (2-3),

191–225.

Gay, S. J., V. Vasconcelos, and A. Ravara (2003, February 11). Session types for inter-process commu-

nication. Technical Report TR-2003-133, Department of Computing Science, University of Glasgow.

Gay, S. J. and V. T. Vasconcelos (2010). Linear type theory for asynchronous session types. J. Funct.

Program. 20 (1), 19–50.

Gay, S. J., V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira (2010). Modular session

types for distributed object-oriented programming. In M. V. Hermenegildo and J. Palsberg (Eds.),

POPL, pp. 299–312. ACM.

Giachino, E. (2009, December). Session Types: Semantic Foundations and Object-Oriented Applica-
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