

A Dependency Modelling Approach for the

Management of Ontology-Based Integration

Systems

A thesis submitted to the

University of Dublin, Trinity College
for the degree of

Doctor of Philosophy

Aidan Boran

Alcatel-Lucent,

Blanchardstown Industrial Park,

Blanchardstown,

Dublin 15.

 2010

i

Declaration

I, the undersigned, declare that this work has not been previously submitted as an

exercise for a degree at this or any other University, and that, unless otherwise stated, it

is entirely my own work.

Aidan Boran

September 2010

ii

Permission to lend or copy

I, the undersigned, agree that the Trinity College Library may lend or copy this thesis

upon request.

Aidan Boran

September 2010

iii

ACKNOWLEDGEMENTS

"In the high country of the mind one has to become adjusted to the thinner air of

uncertainty..."

— Robert M. Pirsig

I would like to thank my supervisors Declan O’Sullivan and Vincent Wade for

agreeing to supervise my research, for their unflagging support and insightful

contributions.

I would also like to thank Lou Manzione, Lawrence Cowsar, Sam Samuel, Ben Lowe

and Julie Byrne from the wonderful Bell Labs, for their oversight, financial and

technical support during this research.

My thanks to all in the KDEG research group for the great collaboration and friendship.

A special word of thanks to my wife, Audrey, for her unconditional support, her

confidence and belief. I could not repay everything you have done for me. When we

were getting married, she thought she was getting “Mr. Dependable” – in fact it turned

out she got “Mr. Dependency”!

Finally, thanks are due to my son and daughter, Tom and Aimee, for keeping my feet

on the ground and keeping me up to date with the football scores.

This thesis is dedicated to the memory of my father and mother, Gerry and Noreen

Boran.

iv

ABSTRACT

Ontology-based approaches that formally represent the meaning of information in a

system, offer the hope of dealing with semantic heterogeneity when integrating

heterogeneous data sources [Halevy 2001, Noy 2004, Wache et al. 2001, Doan and

Halevy 2005, Pollock 2002]. While these ontology-based approaches offer significant

advantages [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001, Halevy 2005] over

traditional approaches (e.g. ETL
1
), they tend to require semantic mappings to create

loose coupling of systems to enable integration. The mappings may serve to relate

ontologies to other ontologies (inter-ontology mappings) or to relate ontologies to

underlying information sources (e.g. a database). However, when such semantic

systems are scaled up, the semantic mappings also need to grow and evolve [Bernstein

and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, Halevy et al. 2005, An

and Topaloglou 2007]. Failure to provide methods to manage and evolve the semantic

mappings can make the integration systems brittle.

There is currently little research to help identify, manage and evolve semantic

mappings when the integration system is evolving [Bernstein and Melnik 2007, Haas

2007, Doan and Halevy 2005, Kondylakis et al. 2009]. The first part of the evolution

problem, identifying and managing the mappings that need to evolve, is addressed by

the dependency model in this thesis. The dependency model is important in the context

of ontology-based data integration because it promises to enhance the scalability of

integration systems by allowing them to find which elements of the integration system

are impacted when a data source or ontology changes.

This thesis has developed an ontology-based domain specific dependency model, a

more general dependency metamodel and a tool that can represent and analyse

dependencies that occur between mappings, ontologies and databases in an ontology-

based integration system.

The approach has been developed and evaluated using two industrial datasets.

1
 Extract, Transform and Load.

5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF FIGURES ...9

1 INTRODUCTION...11

1.1 Motivation ... 11

1.2 Research Question ... 13

1.3 Research Methodology.. 15

1.3.1 Summary of Industrial Use Cases and Data Sets................................18

1.4 Contribution... 19

1.5 Overview of thesis ... 21

2 STATE OF THE ART ..23

2.1 Introduction ... 23

2.1.1 Overview of Information Integration Approaches23

2.1.2 State of the Art in Dependency Modelling and Dependency Analysis 23

2.1.3 State of the Art in Usage of Mappings in Schema &Ontology Evolution 24

2.1.4 State of the Art in Ontology-based Integration24

2.2 Overview of the Information Integration Approaches 24

2.3 State of the Art - Dependency ... 28

2.3.1 Application of Dependencies and Dependency Analysis28

2.3.2 Models of Dependency ..33

2.4 State of the Art - Mapping Usage in Schema and Ontology Evolution 37

2.4.1 Database Schema Evolution ...37

2.4.2 Ontology and Mapping Management..41

2.5 State of the Art - Ontology-based Integration Approaches 45

2.5.1 Use of Ontologies in Integration Systems ...46

2.5.2 Ontology Representations in Integration Systems49

2.5.3 Mapping Usage in Integration Systems ..51

2.5.4 Implementations of Ontology-based integration Systems54

2.6 Summary Analysis... 58

2.7 Background Design Choices ... 59

2.7.1 Measuring “Integration Quality”: THALIA Integration Benchmark .59

6

2.7.2 Supporting Technology Choices ...61

3 DESIGN AND IMPLEMENTATION...................................64

3.1 Introduction ... 64

3.2 Dependency Model Design ... 65

3.2.1 Design considerations for Dependency Analysis65

3.2.2 Dependency Abstractions used in the metamodel67

3.2.3 Dependency Metamodel Design..71

3.2.4 Domain Specific Dependency Model Creation Process77

3.2.5 A Domain Specific Ontology-Based Dependency Model (OBDM).....79

3.2.6 Dependency Analysis Tool (TomE) Implementation...........................85

3.3 Generalised Ontology-Based Integration Test System (HotFusion) . 99

3.3.1 Design Requirements ..99

3.3.2 System Overview ...100

3.3.3 Functional Architecture & Design..105

3.3.4 HotFusion Implementation..107

3.4 Summary.. 109

4 EVALUATION..110

4.1 Overview of Experiments.. 110

4.2 Experiment One – Measurement of “Integration Quality” Metric .. 113

4.2.1 Overview ...113

4.2.2 Objectives & Hypotheses ..113

4.2.3 Use Case Background...114

4.2.4 Experimental Approach ..115

4.2.5 Experimental Setup ...115

4.2.6 Experimental Results (based on THALIA) ..120

4.2.7 Discussion of Experimental Results ..122

4.2.8 Summary of Conclusions, Open Issues and Limitations124

4.3 Next Steps in Action Methodology ... 125

4.4 Experiment Two – Mapping Complexity Analysis......................... 125

4.4.1 Overview ...125

4.4.2 Objectives & Hypotheses ..126

4.4.3 Use Case Background...126

4.4.4 Experimental Approach ..127

4.4.5 Experimental Setup ...129

4.4.6 Experimental Results...132

4.4.7 Discussion of Experimental Results ..137

7

4.4.8 Summary of Conclusions, Open Issues and Limitations138

4.5 Next Steps in Action Methodology ... 140

4.6 Experiment Three – OBDM Performance....................................... 140

4.6.1 Overview ...140

4.6.2 Objectives & Hypotheses ..141

4.6.3 Experimental Approach ..141

4.6.4 Experimental Setup ...143

4.6.5 Experimental Results...147

4.6.6 Discussion of Experimental Results ..155

4.6.7 Summary of Conclusions, Open Issues & Limitations157

4.7 Next Steps in Action Methodology ... 159

4.8 Experiment Four – OBDM Performance .. 159

4.8.1 Overview ...159

4.8.2 Objectives & Hypotheses ..160

4.8.3 Use Case Background...160

4.8.4 Experimental Approach ..160

4.8.5 Experimental Setup ...161

4.8.6 Experimental Results...162

4.8.7 Discussion of Experimental Results ..168

4.8.8 Summary of Conclusions, Open Issues and Limitations169

4.9 Next Steps in Action Methodology ... 170

4.10 Corroborative Study – Genericity of the Dependency Metamodel . 170

4.10.1 Overview ...170

4.10.2 Objectives & Hypotheses ..170

4.10.3 Experimental Approach ..171

4.10.4 Experimental Setup ...172

4.10.5 Experimental Results...174

4.10.6 Discussion of Experimental Results ..181

4.10.7 Summary of Conclusions, Open Issues and Limitations181

4.11 Summary of Evaluation ... 183

5 CONCLUSIONS..185

5.1 Objectives & Achievements .. 185

5.1.1 Objective One - State of the Art Review..185

5.1.2 Objective Two - Design of Ontology-Based Dependency Model190

5.1.3 Objective Three - Design of Dependency Model Tool (TomE)191

5.1.4 Objective Four - Evaluation of Dependency Modelling Approach...191

5.2 Contribution... 192

8

5.3 Future Work... 195

5.3.1 Future work related to the performance of the dependency model...195

5.3.2 Future work related to the functionality of the dependency model...196

5.4 Final Remarks.. 198

6 Bibliography...199

APPENDIX I...215

Ontology-Based Dependency Metamodel... 215

Ontology-Based Dependency Model (OBDM)... 218

APPENDIX II ...220

Experimental Data for Experiment One .. 220

Upper Ontology ..220

Mapping file..229

Experimental Data for Experiment Two ... 237

Upper Ontology for Experiment two (Logistics). ...237

Mapping file for experiment two (Excerpt from full mapping on DVD)245

Experimental Data for Experiment Three ... 247

Manual Process Definition...247

User Questionnaire. ...249

First Mapping File (MS-Excel Format) ...263

Second Mapping File (MS-Excel Format)..264

Third Mapping File (MS-Excel Format) ..265

 265

Output from R Statistical Package. .. 266

Experimental Data for Experiment Four ... 270

Experimental Data for Experiment Five.. 271

Ontology-Based Dependency Model (domestic electrical domain)271

APPENDIX III..278

Worked Example of TomE tool .. 280

APPENDIX IV..282

Overview of contents of DVD .. 284

9

LIST OF FIGURES

Figure 1-1: Overview of Research Methodology. ...16

Figure 2-1: Keller’s Multidimensional space of dependencies.34

Figure 2-2: Ontology Management Infrastructures [Hepp et al. 2008].........................41

Figure 2-3: Three Ontology Approaches from [Wache et al. 2001]47

Figure 3-1: Illustration of Graph, Dependency and Dependency Chain69

Figure 3-2: Dependency Relations in the metamodel ...73

Figure 3-3: Descriptive Dependency Attributes supported in the metamodel.74

Figure 3-4: Process for domain model creation...77

Figure 3-5: Domain Specific Dependency Model..81

Figure 3-6: Illustration of Dependency Relations ...83

Figure 3-7: Functional Architecture TomE Tool...86

Figure 3-8: Class diagram for mapping factory ..87

Figure 3-9: In memory Dependency..89

Figure 3-10: Class diagram for model factory ..89

Figure 3-11: Sample Dependency Graph for a UE called “UE1”90

Figure 3-12: Sample Dependency Graph with levels and types....................................91

Figure 3-13: Call Sequence Diagram for TomE..91

Figure 3-14: TomE Level & Types Algorithm..94

Figure 3-15: API Usage...95

Figure 3-16: TomE Control Panel ...96

Figure 3-17: TomE Ontology Control ...96

Figure 3-18: TomE Visualisation ..97

Figure 3-19 Integration Test Bed Overview..101

Figure 3-20: Integration System Functional Architecture (HotFusion)105

Figure 3-21: Integration Process ...106

Figure 3-22: Class Diagram Mapping Factory..108

Figure 3-23: Class Diagrams for Model Factories ..108

Figure 3-24: Integration System Control Panel (HotFusion)109

Figure 4-1: Relationship between Experiments and Objectives..................................110

Figure 4-2: Excerpt from Upper Ontology...116

Figure 4-3: Integrated Report ..118

Figure 4-4: Logistics Rates Integration and Optimisation Applications.127

10

Figure 4-5: Dependency Visualization in TomE...129

Figure 4-6: Logistics Report..130

Figure 4-7: Concept overview from Logistics Ontology...131

Figure 4-8: Non-overlapping Dependency..134

Figure 4-9: Overlapping Dependency ...135

Figure 4-10: Function Based Dependency ..136

Figure 4-11: Excerpt from Excel mapping file..145

Figure 4-12: Collated survey data ...148

Figure 4-13: Accuracy & Time Means..150

Figure 4-14: Accuracy Means by Dataset size ..150

Figure 4-15: Accuracy Correlations ..151

Figure 4-16: Time Correlations ...152

Figure 4-17: Group Analysis (Accuracy) ..153

Figure 4-18: Group Analysis (Time) ...153

Figure 4-19: Control Group Accuracy and Time ..153

Figure 4-20: Automatic Approach Processing Time...154

Figure 4-21: Simple Mapping Dependency ..163

Figure 4-22: Services Dependency..164

Figure 4-23: Level and Types view...165

Figure 4-24: Very Complex Dependency..166

Figure 4-25: Levels and Types Dependency ...167

Figure 4-26: Scoped Domestic Circuit ..174

Figure 4-27: Excerpt from the Domain Specific Model..175

Figure 4-28: Domain Specific Models for each circuit ...177

11

1 INTRODUCTION

1.1 Motivation

Today, large enterprises have deployed many information and database systems across

distinct functional areas of the enterprise (e.g. logistics, sales, production, finance,

human resources). The widespread adoption of these systems has created the problem

of islands of heterogeneous and distributed information [Bernstein and Haas 2008,

Haas 2007, Lowell Database Report 2003]. These islands make the development of

integrated processes and applications difficult [Bernstein and Haas 2008, Haas 2007].

Within large enterprises, there is a business need for enterprise applications that can

operate across functional areas. These applications must facilitate automated

integration to allow business professionals to make informed decisions [Haas 2007,

Lowell Database Report, IBM 2004, Halevy et al. 2005]. The “distribution” of

information sources makes integration difficult because the databases and information

models tend to be managed and evolved separately [Halevy 2005]. Similarly, the

“heterogeneity” of the information sources makes integration difficult as it manifests

itself on three levels namely syntactic, schematic and semantic levels [Cruz and Xiao

2005, Sheth et al 1999].

Such data integration problems have meant that enterprises spend a great deal of time

and money on attempting to combine information from different sources into a unified

format. Frequently cited as the biggest and most expensive challenge that information-

technology organisations face, information integration is thought to consume about

40% of their IT budget [Bernstein and Haas 2008].

Existing data integration solutions (e.g. consolidation, federation and replication

systems) are capable of resolving syntactic and schematic heterogeneities in the

underlying sources but they are not capable of semantic integration [Cruz and Xiao

2005, Halevy 2005]. Since syntactic approaches do not encode meaning in the data or

messages passed through the integration systems, it becomes necessary to hardcode

this meaning in the applications themselves. Such hard coding leads to integration

systems that are difficult to maintain [Halevy et al. 2005, Zhou et al. 2006].

Other approaches, that formally represent the meaning of data in a system, offer the

hope of dealing with semantic heterogeneities. While these semantic (ontology) based

approaches offer significant advantages, they tend to require semantic mappings to

12

create relationships between the ontologies and data sources of the systems to enable

integration [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001]. However, as the

semantic systems are scaled up, semantic mappings also need to grow and evolve

[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, Halevy et al.

2005, An and Topaloglou 2007].

In spite of decades of research into data integration, recent surveys indicate that a

number of important challenges persist [Bernstein and Haas 2008, Haas 2007, Lowell

Database Report 2003, IBM 2004, Halevy et al. 2005, Zhou et al. 2006]. Bernstein

[Bernstein and Melnik 2007] described “data programmability” as the goal of making

access to large shared data sources easier. However, he noted that the data

programmability problem remains today due to the need for complex mappings

between different representations of data. Despite decades of research into databases

and data management, coping with heterogeneity remains one of the most time-

consuming data management problems. Bernstein [Bernstein and Melnik 2007]

indicates that anecdotal evidence suggests that it accounts for 40% of the work carried

out by enterprise IT departments. Bernstein has proposed an extensive model

management approach that seeks to provide lifecycle support for the mappings that are

central to the resolution of the data programmability problem. As noted by Bernstein,

many data integration approaches that are used in enterprise integration make use of

mappings (e.g. Extract, Transform and Load and message mapping tools). Despite the

broad usage of mappings across these approaches, there is little commonality in the

approach to the management of the mappings [Bernstein and Melnik 2007, Doan and

Halevy 2005, Halevy et al. 2005].

In [Halevy et al. 2005], scalability and metadata management are identified as two of

the key challenges facing enterprise information integration. In [Zhou et al. 2006], it is

pointed out that from a technical viewpoint the scalability of current integration

toolsets rely on specialists having a deep understanding of the data, the underlying

schema and the relationships across the various data sources.

This work has developed a model and tool to represent the dependencies that arise

within ontology-based integration systems due to the use of mappings. The model of

the mapping dependencies addresses the first step of mapping evolution i.e.

understanding what parts of the integration system are affected by a proposed change

in the data sources. The approach enables a deep understanding to be developed of the

13

dependency relations across the key parts of the integration system. The author of this

thesis believes that this is a key step that will allow the integration system to evolve

gracefully when the underlying data sources change.

1.2 Research Question

An important aspect for the deployment of any integration system in an industrial

context is its ability to adapt to changes in the underlying data sources. In ontology-

based integration systems, changes to the data sources can also impact the ontologies

and mappings that comprise the integration system [Bernstein and Melnik 2007,

Velegrakis et al. 2003, Yu and Popa 2005].

Thus, to ensure that the system can evolve when changes occur in the underlying data

sources, it is critical to be able to identify and evolve those parts of the ontology and

mappings that are impacted. This thesis asserts that a model of the dependencies that

arise between the ontologies, mappings and data sources provides a potential solution

to this evolution problem. The research question for this thesis is defined as:

How and to what extent can a dependency model enhance integration performance by

allowing for the identification of and support for the management of the semantic

mapping dependencies of an integration system?

In the context of the research in this these, a semantic mapping is defined a

correspondence between elements of different schema. Schema mappings are typically

used to support query rewriting and/or data transformations in data integration systems

[Halevy et al. 2006, Lenzerini 2002].

Many factors influence the integration performance such as the throughput, capacity or

speed (e.g. response time) of the system. The importance of a unified approach to the

measurement of integration performance has been regularly identified [Lowell

Database Report 2003, Halevy et al. 2005]. However, only a few unified benchmarks

exist [Böhm et al 2008, Othayoth and Poess 2006, Böhme and Rahm 2001]. These

approaches focus on processing performance of the integration system [Böhm et al

2008, Othayoth and Poess 2006]. The research in this thesis required a measurement of

the ability of the integration system to integrate heterogeneous data source rather than a

measurement of processing performance. This was required to measure how well a

new approach to integration coped with semantic heterogeneity. In particular, this

research has focused on the ability of ontology-based approaches for integration to

14

cope with semantic heterogeneity. In the industrial context, a key requirement for

integration systems is the ability to cope with changes to the underlying data sources

[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005]. To measure

these aspects of integration performance, this thesis has defined two integration

performance metrics called “Integration Quality” and “Dependency Identification

Performance”.

“Integration Quality” is defined as:

• A measure of the ability of the system to carry out integrations across a range

of different types of data heterogeneity.

This metric provides a qualitative measurement of the ability of the integration system

to cope with different types of heterogeneity. The THALIA integration benchmark

[Stonebraker 2005] provides an ideal framework to measure this aspect of integration

performance since it provides a set of tests to execute based on a systematic

classification of different types of syntactic and semantic heterogeneity.

“Dependency Identification Performance” is defined as:

• A measure of the ability of the system to accurately and quickly identify the

mapping dependencies.

This second aspect of integration performance is focused on the ability of the

integration system to evolve its mappings when new data sources are added.

Dependency identification performance is important to understand because the first

step of mapping evolution is to identify which mappings are impacted by the proposed

change. In this thesis, dependencies are used to support the evolution of mappings and

“Dependency Identification Performance” is calculated by measuring the accuracy of

the dependencies found and the time taken to find the dependencies.

Four objectives were derived in order to address the research question:

1) Perform a state of the art review of approaches for semantically linking local
2

schema and aggregate or global schema
3
.

2
 Local schema refers to a schema that represents the local sources to be integrated.

3
 Global schema refers to a common view of sources to be integrated.

15

 2) Research and develop a model to define the dependencies that arise when creating

semantic links between schemas to support an ontology-based integration approach

between local schemas and global schemas.

3) Research and develop a prototype tool capable of supporting this dependency

modelling approach.

4) Evaluate the dependency model and tool using industrial use cases.

1.3 Research Methodology

This research has been carried out in an iterative manner using the four step process

from the action-based research methodology [Fisher 2004, O'Brien R. 2001].

The action based methodology was selected because it provided an adaptive, flexible

and participatory approach to research. The approach involves an iterative inquiry

process that leads to a refinement of the research question. Each iteration involves

“plan”, “action”, “observe” and “refine” steps. The iterative inquiry process afforded

the flexibility needed to conduct research in an environment that is subject to regular

process, management and personnel changes such as the supply chains of large

enterprises where the use cases in this research originated. The participatory nature of

action based research was also important because it allowed business professionals

from Alcatel-Lucent to influence the research by supporting use case development, to

provide real industrial data sets and to participate in case studies.

The action-based research process was conducted using a series of iterations as shown

in Figure 1-1. The “observe” and “reflect” steps in the action-based methodology were

combined into a single step during the running of the experiments that were conducted

in this research.

16

Figure 1-1: Overview of Research Methodology.

The first iteration of the action based methodology began with an analysis of an

industrial use case from the Alcatel-Lucent Product Line Management supply chain.

The use case required the integration of multiple data sources that contained both

semantic and structural heterogeneity. To understand the best approach to tackle this

problem, a review of the state of the art in information integration was undertaken.

Using the outputs of this review, a generalised ontology-based integration test bed was

created to support the integration use case. An experiment was then designed to apply

the test bed to investigate the key issues when deploying ontology-based integration

systems using the industrial use case. The integration performance of the test bed was

verified by measuring its “Integration Quality” metric as defined earlier in Section 1.2.

By analysing the issues that arose during the experiment it was hypothesised that the

mappings that are part of the generalised ontology-based integration test bed create

complex couplings between different parts of the integration system and that these

couplings make the mappings difficult to evolve. This research iteration is described in

detail in experiment one (Section 4.2).

The next research iteration was designed to analyse the complex coupling of the

mappings in the integration system. A model of the mapping dependencies was used to

show the dependency relationships that exist between mappings from the generalised

ontology-based integration system. The model was developed in OWL [OWL] to

17

enable an ontological reasoner to automatically compute the dependencies. This is

called the ontology-based dependency model (OBDM). A tool called TomE (Towards

Ontology Mapping Evolution) was developed to instantiate the OBDM and to support

the analysis of dependencies in the ontology-based integration system. An experiment

was then developed to analyse the dependencies between the mappings from the

generalised ontology-based test bed. The mappings arose from a second industrial use

case from the Alcatel-Lucent logistics supply chain. Analysis of the dependencies

found using the OBDM showed that approximately 30% of the mappings exhibit

complex dependencies with other parts of the integration system. From the results of

this experiment, a hypothesis was developed that these mapping dependencies would

be difficult to identify without tool support. This research iteration is described in

detail in experiment two (Section 4.4).

The next research iteration was developed to demonstrate the difficulty of mapping

dependency analysis without tool support. To achieve this, a manual approach to

dependency analysis was developed with the help of integration and logistics

specialists. A manual approach was needed because current integration approaches

provide very limited support for mapping maintenance as noted in the state of the art

review [Bernstein and Melnik 2007, Haas 2007, Doan and Halevy 2005, Kondylakis et

al. 2009]. The performance and accuracy of a manual approach to dependency analysis

and OBDM were compared using the “Dependency Identification Performance” metric

as discussed earlier (Section 1.2). To achieve this, a group of 18 users were provided

with three sets of theoretical semantic mappings. The group was asked to carry out a

number of timed dependency analysis tasks. The semantic mappings used in the tasks

were designed to contain mappings of different complexities and represent a theoretical

set of mapping evolution needs. This research iteration is described in experiment three

(Sections 4.6).

The next research iteration was run to evaluate the performance of the OBDM and

TomE tool when used to support the evolution of the mappings when performing a real

mapping evolution task. These evolution tasks arose when a new logistics data source

needed to be added to the use case described in experiment two. The new data set

required both the update of existing mappings and the addition of new mappings. The

OBDM and TomE tool were used to analyse which mappings were impacted by the

18

addition of the new logistics data. This research iteration is described in experiment

four (Sections 4.8).

The final iteration carried out a corroborative study to provide an indication of the

genericity of the dependency metamodel that was used to build the ontology-based

dependency model. This study was carried out to assess the ability of the metamodel to

be applied in other domains. The study involved the development of a dependency

model to localise faults in a domestic electrical circuit. A domestic electrical circuit

was selected as the application domain because it provided a different set of

dependencies from the ontology-based integration system where the metamodel was

previously applied. A domain expert on electrical engineering was coached through an

eight-step process to build a dependency model, using the metamodel, of an electrical

circuit and to carry out a dependency analysis exercise using the model. This iteration

is described in the evaluation chapter (Section 4.10).

1.3.1 Summary of Industrial Use Cases and Data Sets

Throughout this work, two real integration problems and data sets from the Alcatel-

Lucent supply chain were used. The integration problems and datasets provided

excellent test data since they originate from multiple IT systems, multiple processes

and in the case of Alcatel-Lucent multiple companies.

The first integration problem required the generation of a report that integrated

financial information from the Sales, Product Lifecycle Management (PLM) and

Forecasting domains. To mitigate any risk associated with lack of consistency between

sales and forecasting views of the PLM, organisations attempt to balance forecasting

and sales opportunities [Gilliland 2002]. In Alcatel-Lucent’s supply chain, these risks

are managed using a manual integration of financial information from each system.

The report that is produced by this manual integration supplements the financial

information with an integrated view of the customers and products. This process

involves many manual steps to export data from the distributed databases and rework

within a spreadsheet where the various heterogeneities are resolved manually.

The second integration problem came from Alcatel-Lucent’s Reverse Logistics process.

This process used a manual process to select the lowest cost shipping option. To

19

simplify this process, a software application (ALTO
4
) was developed to automatically

generate simple routing instructions called routing guides. To simplify the database

update process of this application, the ontology-based integration platform was

deployed to integrate the different logistics supplier rate formats into a single common

model of logistics. From the central model, the scripts to load the ALTO database

could be automatically generated.

1.4 Contribution

The major contribution of this thesis is the ontology-based dependency model (OBDM)

that can represent the dependencies that occur between mappings, ontologies and

databases in an ontology-based integration system. The ontology-based dependency

model will be beneficial to system integrators when developing approaches to improve

the ability of the enterprise integration systems to evolve their mappings when data

sources change.

The approach supports mapping evolution by providing three levels of the dependency

graphs that enable the system integrators to manage and evolve the mappings in the

integration system. This is achieved by providing dependency views that allow the

user to focus in on areas of high dependence initially and then to progressively drill

down to the detail to understand the impact of each dependency. The OBDM is novel

because it automatically computes the dependency relationships. The automation is

achieved through its instrumental usage of ontological reasoning that requires coding

only to invoke the ontological reasoner. This contribution addresses, in part, the gap in

the state of the art regarding the lack of tools and techniques to support the

management of mappings [Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and

Popa 2005, Doan and Halevy 2005, Halevy et al. 2005] because it supports the first

step of mapping evolution i.e. how to identify which mappings are impacted when a

data source changes. The approach of using a dependency model of mappings could be

used to supplement the ontology-based integration frameworks and tools described in

the state of the art review (Section 2.5.4).

The ontology-based dependency model (OBDM) was tested using industrial data from

real systems from the Alcatel-Lucent supply chain. This provided a challenging set of

4
 Alcatel-Lucent Transport Optimization (ALTO) is deployed in the reverse logistics supply chain.

20

heterogeneous data sources for the system. The results of the evaluation of the OBDM

show how the approach enables the integration specialist to quickly identify all the

impacts of a complex set of changes to the data sources. By providing progressive

detail of the dependencies, the integration specialist can quickly focus and assess what

needs to be changed in the system. The results show that dependencies found can also

be used to develop regression tests after the integration system has been updated. This

analysis is useful for developers of integration systems who wish to understand the

complexity involved in evolution of mappings in an industrial context.

The design of the generalised ontology-based integration test system and the setup,

results and conclusions of experiment one were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Case Study of an

Ontology-Driven Dynamic Data Integration in a Telecommunications Supply

Chain. Proceedings of the Workshop on the First Industrial Results of Semantic

Technologies (FIRST2007) at ISWC/ASWC2007, Busan, South Korea, 2007.

The design of the ontology-based dependency model and the result of experiment two

were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, Managing Ontology Based

Integration Systems using Dependencies. Proceedings of the Workshop on the

Managing Ubiquitous Communications and Services Workshop (MUCS) at

PerCom 2010, Mannheim, Germany, 2010.

A minor contribution is the ontology-based dependency metamodel from which the

domain specific dependency model was created. The ontology-based dependency

metamodel could be beneficial to other management systems (e.g. service and fault

management) which need to model dependencies between parts of the system. The

genericity of the metamodel has been tested across two large industrial datasets that

originated from a dynamic industrial environment with multiple IT systems and

multiple processes. A corroborative study was carried out to demonstrate the

application of the metamodel in an entirely different domain (i.e. dependency analysis

in a domestic electrical circuit). The compact nature of the metamodel facilitates

design flexibility, behaviour reuse and scalability. This enabled a simple process to be

21

defined, in Section 3.2.4, to create domain specific models from the dependency

metamodel. To the authors knowledge, an ontology-based dependency metamodel has

not been published before that has support for both behavioural and descriptive

attributes and that can enable reasoning over the dependency relationships in the model

to enable automatic computation of dependencies.

The design of the ontology-based dependency metamodel, model and toolset was

published in a short paper at Network Operations and Management Symposium 2010:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Dependency Modelling

Approach for the Management of Ontology Based Integration systems.

Network Operations and Management Symposium (NOMS), Osaka, Japan,

2010.

1.5 Overview of thesis

The remainder of the thesis is structured as described below.

Chapter 2 contains a review of the state of the art in ontology-based integration system

and dependency modelling. The chapter gives a brief overview of the data integration

space, a detailed description of the ontology-based integration research, mapping

management and dependency analysis.

Chapter 3 describes the design of the dependency metamodel, a dependency model

derived from the metamodel that is specialised to the ontology-based integration

domain and a tool called TomE that was created to instantiate and reason over the

dependency model. The chapter concludes with a worked example of the dependency

model as applied to ontology-based integration systems.

Chapter 4 describes the four experiments and a corroborative study that were

conducted to evaluate the metamodelling approach. The first experiment created an

environment in which the performance of a generalised ontology-based integration

system was measured using data from product line management systems in an

industrial context. The second experiment developed the theoretic basis to allow the

evolution of mappings in an ontology-based integration system. The third experiment

evaluated the performance of the dependency modelling approach by measuring the

accuracy of and time taken to complete a dependency analysis exercise using the

22

OBDM and a manual approach to dependency analysis. The fourth experiment

demonstrated the utility of the dependency modelling approach when it is applied to an

ontology-based integration system that needed to incorporate a new dataset into its

integration. The corroborative study applied the ontology-based dependency

metamodel in a new domain to test the genericity of the metamodel when applied in

other domains.

Chapter 5 describes the conclusion, contributions and future work of this research.

Appendix I provides the OWL code for the ontology-based dependency metamodel

and the ontology-based dependency model (OBDM). Appendix II provides the data

associated with the experiments carried out in this thesis. Appendix III provides a

simple worked example of the inputs and outputs for the TomE tool. Appendix IV

provides the overview of the directory structure for the code for HotFusion and TomE

tools that is supplied on DVD with this thesis.

23

2 STATE OF THE ART

2.1 Introduction

This chapter reviews the state of the art in dependency modelling and analysis, schema

and ontology evolution and ontology-based approaches to information integration. The

reasons for selecting these areas are outlined below in Sections 2.1.1, 2.1.2, 2.1.3 and

2.1.4.

Before reviewing the state of the art in these three areas, this chapter begins with a

review of the background and context for other (non ontology-based) approaches to

information integration in Section 2.2. This is important because it describes the

current approaches to information integration and provides context for the review and

comparison of dependency modelling approach for the maintenance of mappings taken

in this research. The chapter concludes (Section 2.7) with a description of the choices

made for the background technologies used to support the ontology-based dependency

modelling approach taken in this thesis.

The state of art is provided in four parts as described below.

2.1.1 Overview of Information Integration Approaches

Section 2.2 provides an overview of the approaches and technologies used to support

information integration. Information integration is a complex space with many fields of

endeavour spanning both the business and research communities [Bernstein and Haas

2008, Halevy et al. 2005, Zhou et al. 2006]. The review presented here provides the

overall context for the ontology-based approaches discussed in detail later in this

chapter.

2.1.2 State of the Art in Dependency Modelling and Dependency Analysis

Section 2.3 provides a review of the prior art in dependency modelling and dependency

analysis (Section 2.3). Approaches to dependency modelling are important to consider

because experiment one, in this thesis, developed the hypothesis that the complex

nature of the mappings makes it difficult to quickly and accurately find the mappings

that are impacted when a data source changes. Experiment two evaluated the

hypothesis that this difficultly in managing changes to the data sources and mappings

could be improved by modelling the dependencies that exist between the parts of the

24

ontology-based integration system. This review compares the dependency modelling

approach taken in this research with the prior art.

2.1.3 State of the Art in the Usage of Mappings in Schema and Ontology

Evolution

Mappings are a fundamental part of the approaches taken to schema and ontology

evolution [Velegrakis et al. 2003, Noy and Klein 2002]. In the context of information

integration systems, the evolution of schemas is important to allow the integration

system to evolve as the schemas change. There are similarities between the usage of

schema mappings and ontology mappings i.e. in the context of information integration

the mappings are used to provide transformations between schemas or representation

of data sources [Kondylakis et al. 2009, Lenzerini 2002]. Therefore, the state of art

continues in Section 2.4 with a review of the prior art in schema and ontology

evolution to understand the relevance of the techniques in the ontology integration

domain. The approaches to schema and ontology mapping management are discussed

in the context of the ontology-based mapping dependency management approach taken

in this thesis. Note that, while there are similarities between these areas, there are also

many differences between the areas as noted in [Kondylakis et al. 2009, Noy and Klein

2002].

2.1.4 State of the Art in Ontology-based Integration

Section 2.5 reviews the state of the art on approaches to information integration that

use ontologies (ontology-based approaches). The research in this thesis developed a

generalised ontology-based integration test bed. A number of integration systems that

use ontology are described and compared to the approach used to create the test bed in

this thesis.

2.2 Overview of the Information Integration Approaches

In [Bernstein and Haas 2008], Bernstein describes five architectural approaches for

information integration that are summarised below:

• Data Warehouses: A data warehouse is a database that consolidates data from

multiple sources and integrates it into a single source. This requires the creation of

a single database schema for the warehouse and the loading of individual data

sources into the warehouse. Regular synchronisation between the data warehouse

25

and the data sources is required to ensure that the information in the warehouse is

up to date.

• Extract, Transform and Load (ETL): ETL approaches are typically used to

simplify the loading of data into data warehouses. ETL technologies are realised as

tool suites that provide loading, cleansing and querying functionality for the data

warehouse.

• Virtual Data Integration (VDI): Data warehouses materialise the individual data

sources in an integrated database. Virtual data integration offers users a mediated

database schema to support the execution of queries. Queries are run against the

mediated schema and the VDI software transforms the user query to queries over

the individual data sources. (VDI is often called data federation. Data federation

provides a single virtual view of one or more data sources. Typically, queries are

issued against these virtual views and the federation system resolves these queries

using either global-as-view or local-as-view approaches to access the data sources.)

• Message Mapping: Independently developed applications can be integrated using

message oriented middleware that perform information integration functions for the

enterprise. The integration functions can occur at the protocol level or at the data

level (e.g. transform a sales order from one format to another).

• Object-to-Relational Mappers: This type of technology is used to mediate

between the relational database schema and the object-oriented design approaches

taken when designing software applications. Many development environments (e.g.

NetBeans
5
) provide automated support to create Java classes for a relational

schema using this technology.

Bernstein concludes the review of architectural approaches to integration with a

discussion on “Document” and “Portal” management approaches. Today, enterprises

tend to store a wide variety of information in document formats that can be easily

accessed and distributed to the desktop of users. In this context, integration is focused

on providing a single document store with indexing to enable search over the document

store.

Bernstein described the enabling technologies that lie at the heart of these tools as:

5
 NetBeans is an integrated development environment (IDE) for developing a wide variety of

applications.

26

• Extensible Markup Language (XML): XML is a mark up language which is used

to mark up with user defined tags the content in a document. XML supports

information integration by providing a common representation of the data.

• Schema Standards: In the review by Bernstein, schema standards are discussed at

the most general level and include database, XML and ontologies. Schema

standards support integration because data is easier to integrate if the data sources

use the same schema.

• Schema Mapping & Matching: Bernstein describes schema mapping and

matching as fundamental technologies for integration in the review. Schema

mapping tools enable transformations (mappings) to be created between individual

data sources and a mediated schema. Because large schemas can have many

thousands of schema elements, schema matching algorithms have been an

important research area. A schema matching algorithm uses a variety of techniques

(e.g. heuristics or machine learning) to find candidate matches between schema

elements and thus support the user in schema management.

In [Zhou et al. 2006], data integration was classified into two categories, application

centric integration (ACI) and data centric integration (DCI).

ACI approaches refer to enterprise application integration (EAI) techniques that

integrate applications through the use of message brokers. EAI is defined as

approaches (software and architectures) to integrate a set of computer applications.

Two basic EAI patterns exist, the mediation pattern where the EAI system acts as a

broker between communication systems and the Federation pattern where the EAI

system acts as a global proxy for all incoming requests.

DCI approaches refer to both data warehousing and data federation approaches as

discussed earlier. DCI includes Enterprise Information Integration (EII) that is a more

recent term and is defined as the integration of data from multiple systems into a

unified and consistent view for the end user. It is closely related to data federation

because EII is focused toward the end user and not an application as in EAI. EII

requires the use of an information model to represent the domain of interest whereas

federation tends to use a global schema.

27

As noted in [Zhou and Wang 2006], most current enterprise information integration

approaches are based on principles of loosely coupled federated systems (e.g. IBM

Information Integrator
6
, BEA Liquid Data

7
).

In [Halevy et al. 2005], Halevy et al. noted the inability of these information

integration approaches to cope with semantic heterogeneity. Ontology-based

approaches provide expressive description languages (e.g. OWL [OWL]) that can

potentially support the resolution of semantic heterogeneity between schemas and

enable automated reasoning over the schema. The expressivity of the semantic

description languages offers considerable advantages over XML or relational schema

when creating conceptualisation of the information in any enterprise (e.g. OWL

supports of classes, subsumption and object properties). OWL also enabled format

reasoning over the model. This is a significant advantage that arises from the formal

semantics of the OWL language.

The scalability of current EII approaches is also discussed in [Halevy et al. 2005,

Zhou and Wang 2006], where it is noted that efficient scaling of the approaches is

complex due to the difficulty in constructing and maintaining a shared schema for a

large number of evolving data sources.

In this thesis, an ontology-based approach was taken to construct a generalised

integration test bed that used the expressive power and reasoning capability of OWL to

support the development of domain and data source ontologies. The domain and data

source ontologies are analogous to the mediated and local schema used in non-

semantic approaches. The ontology-based test bed was used in experiments one and

two to resolve semantic heterogeneities in a selection of data sources from the Alcatel-

Lucent supply chain.

6
 IBM Information Integration Suite. http://www-01.ibm.com/software/data/integration/

7
 BEA LiquidData Suite. http://download.oracle.com/docs/cd/E13190_01/liquiddata/docs81/index.html

28

2.3 State of the Art - Dependency

Models of dependency of varying formalism and complexity have been used widely

across a range of application areas. This state of the art review of dependency has

focused on the applications of dependency and formalisms used in those applications.

These areas were selected to enable an understanding of the breadth of application

opportunity for dependencies and the approaches in these applications to formalise

dependencies.

The first section reviews research on the applications of dependencies and dependency

analysis across several areas of application (e.g. service management, software

configuration management).

The second section reviews research on efforts to describe and classify dependencies.

2.3.1 Application of Dependencies and Dependency Analysis

This section reviews several applications which use dependencies to carry out a range

of management functions (e.g. service management, fault analysis). For each

application both the role that dependency analysis plays and the types of analysis that

are carried out are discussed. This review enables us to develop an understanding of

the importance and breadth of dependency analysis. The review starts by looking at

how dependencies are used in service management [Ensel and Keller 2002, Keller et al.

2000, Cox et al. 2001, Wang and Capretz 2009, Ensel 2001], continues with a review

of the application of dependency to test management [Borner and Paech 2009],

workflow analysis [Varol and Bayrak 2010], software dependency management [Luo

and Diao 2009, Sangal et al. 2005] and concludes with a review of application in

network management [Gruschke 1998, Kar et al. 2000, Brown et al. 2001].

Keller and Ensel address the role of dependencies in distributed service management

[Ensel and Keller 2002, Keller et al. 2000]. Keller notes the importance of dependency

analysis in today’s networked environment where applications and services depend on

many other supporting services. Dependencies are formed between various

components of a distributed system. The dependency relationship exists between

components if one component requires another component to carry out its tasks. Two

models of the dependencies in the service management domain were created. One

model, called the Functional model by Keller, defined generic service dependencies

(e.g. name service, database service). The other model, called the Structural model by

29

Keller, contains detailed descriptions of the dependencies between the components that

realise the broad services defined in the Functional model.

In [Cox et al. 2001], Cox and Delugach apply a more formal dependency model to two

simple examples. One example defines twelve unidirectional dependencies between

components of a computer system (i.e. Browser, Email, Network, and Word

Processing Package). Another example defines six dependencies between departments

(i.e. Contracts, Proposal and Engineering Departments) in an enterprise. The

importance of the type attributes are discussed in the context of the second example

where it is noted that adding attributes to the dependency relationship enabled different

types of dependency relationship to be distinguished.

Wang and Capretz [Wang and Capretz 2009] propose a model of service dependencies

to support the evolution of web services. Four types of service dependency are

identified that are needed to describe the types of relationships that exist between

services. The semantics of each dependency relation are clearly defined however the

relationships are specific to the domain. Collections of dependencies are represented as

directed graphs. Service dependency matrices can be constructed from the graphs to

support impact analysis.

Ensel presents an approach to automatic discovery of dependencies [Ensel 2001].

Dependencies between IT services in a heterogeneous network are constructed using a

neural network and data collected during specially prepared data collection agents

distributed in the network. The dependency model contains a simple ‘depends on’

relationship between two services and the work is predominately focused on the

collection and automatic detection of the simple dependencies.

A model of dependencies is used by Borner and Paech to support the selection of test

cases for the integration test process [Borner and Paech 2009]. The approach taken is

domain specific and applies a simple domain specific dependency model in that

domain. A dependency is defined as a simple unidirectional relationship between two

components in a software system. Dependency attributes are defined to represent the

important characteristics of the domain (e.g., dependencies exist because of class

inheritance). A bespoke tool is used to analyse source code files and extract

information that is loaded into an SQL database. Once the dependencies in the system

have been defined, statistical correlations between the dependent components and the

30

errors found (as reported in a software bug tracking system) were identified. These

correlations enabled the identification of the dependencies that had a higher probability

of containing errors (in the underlying components) and thus provides input to the

selection of integration test cases.

Varol and Bayrak [Varol and Bayrak 2010] use a simple notion of dependency

between operators of a workflow is used to generate workflows. The dependency

relations are used to support an algorithm that selects the best placement of operators

in a workflow. The approach is focused mainly on the workflow generation and thus

makes little comment on the dependency graphs illustrated in the work.

Luo and Diao define four types of feature dependencies (global, local, operational and

impact dependencies) in [Luo and Diao 2009] that are used to build a domain

dependency model of the features in a software product. The semantics of each

dependency relation is defined clearly but the relationships are specific to the domain.

This approach proposes to investigate feature transitivity and deduction from the

transitivity in the future.

Dependency models have also been used for some time for modelling of complex

software architectures [Sangal et al. 2005]. In this approach, dependencies are

extracted from the code by a conventional static analysis and shown in a tabular form

known as the ‘Dependency Structure Matrix’ (DSM). A variety of algorithms are

available to help organise the matrix in a form that reflects the architecture and

highlights patterns and problematic dependencies.

An ontology-based approach is taken to the analysis of dependencies by Drabble et al

in [Drabble et al. 2009]. Node and Event/Action ontologies are defined. The approach

used Protégé to build the ontologies, however it is not clear what ontology language is

used (e.g. OWL-DL). A node that exhibits a dependency is represented by a

“Dependency” Class and “dependentUpon” and “hasDependency” relations. The

event/action ontology provides an interesting and valuable addition to the domain

model because it appears to enable a bridge between events occurring in the domain

and the description of the dependencies in the domain. The architecture mentions the

use of reasoning over dependency relationships (e.g. transitivity) using a reasoning tool

called “Athena”; however no details on the reasoning carried out are given. The

authors claim that the approach enabled an information bridging service that allowed

31

information from different and disparate sources to be brought together based on the

dependencies implicit in the system.

In [Maddox and Shin 2009], Maddox and Shin propose a computational framework in

which dependencies between geo-spatial referencing variables are automatically

examined. The framework proceeds in four steps. The first and second steps are

responsible for the gathering and reformatting of the geo-spatial data into a common

relational database format. The third and fourth steps define and use the concepts of

homogeneity, selectivity and exclusivity between elements of the relational database

table. A set of heuristics rules are then applied to identify potential dependencies in the

data. While the notion of dependency is secondary in this work to the definition of the

data mining approaches taken, the value that the dependency analysis provides in

helping end users understand the data dependencies is noted by the authors.

In [Deng et al. 2004], Deng et al describe an approach to managing both simple and

complex mappings between ontologies representing loosely coupled domains. OWL is

extended to allow the specification of virtual properties whose values are derived

functionally and not stored. These virtual properties can be used to express complex

mappings between ontology terms.

In network management, dependency models have been used to support the correlation

of events and alarms to an underlying root cause [Gruschke 1998, Kar et al. 2000,

Brown et al. 2001]. In [Brown et al. 2001], a dynamic method to collect dependencies

in a distributed system is described. The method requires active perturbation of the

system and as such requires significant preparation to construct the dependency model.

In [Kar et al. 2000], an approach for managing application services is described that

enhanced existing network management infrastructure to cater for application service

management. In this case a simple list of dependent resources is maintained. In each of

the cases above, the dependency models, while simple, provide useful information to

localise faults. Because the dependency models are now explicitly represented in a

modelling language (but are part of management infrastructure), the potential for

reasoning over and transformation of the model is reduced.

2.3.1.1 Analysis

From the review above, it can be seen that dependencies play an important role across

a wide range of application domains. While each domain application above makes

32

specific use of dependencies, a number of common features appear with respect to

what dependency is used for, how they are visualised and what level of formalism is

used to represent the dependency model and relationships.

Usage of dependencies

The most common usage of dependency is to represent simple antecedent/dependant

relationship between elements in a domain under study [Sangal et al. 2005, Ensel

2001]. In [Wang and Capretz 2009], it is proposed to reason over the ontology-based

transitive dependencies relations. In [Deng et al. 2004, Bernstein and Melnik 2007],

chains of dependent elements are constructed. The creation of chains of dependencies

is also hinted at by Keller [Keller et al. 2000] as an advantage of the dependency

analysis approach but the model does not provide ability to automatically build using

chains other than using bespoke coding.

In [Drabble et al. 2009], the Event/Action concepts enable an innovative link between

the dependency relationships of the domain and the event/actions that trigger those

dependencies.

Visualisation of dependencies

A number of different forms are used to visualise dependencies. Dependencies are

often represented in tabular form as seen in [Sangal et al. 2005, Borner and Paech 2009,

Varol and Bayrak 2010, Wang and Capretz 2009, Maddox and Shin 2009]. Graphs are

a common presentation format for dependency as seen in [Ensel 2001, Gruschke 1998,

Ensel and Keller 2002, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al.

2009, Wang and Capretz 2009].

Formalisms

The formalisms used to represent dependencies vary greatly. Most approaches provide

only simple representations for the dependency relationship [Sangal et al. 2005, Ensel

2001, Borner and Paech 2009, Varol and Bayrak 2010]. In most cases, especially [Luo

and Diao 2009, Wang and Capretz 2009, Maddox and Shin 2009], the representation of

dependency is very domain specific and it is difficult to see how it could be applied in

the domain under study.

In [Ensel and Keller 2002], an RDF description of a simple dependency is described

and uses the XML path language, XPath [XML Path Language], to carry out query on

33

the RDF documents. In [Drabble et al. 2009] an OWL model is provided to represent

the domain and dependency model. These approaches provide the potential to carry

out reasoning over the dependency relationships however this is only hinted at in this

work and not discussed in detail.

In [Deng et al. 2004], the approach appears to support only dependency chains between

properties of classes in the context of ontology to ontology mappings. It does this at the

expense of adding extra semantics to the source ontologies and thus couples the

dependency model and domain explication in one source.

The approach taken in this thesis provides an ontology-based dependency metamodel

that provides formal semantics in OWL for the constructs related to dependency. The

dependencies in the ontology-based dependency model in this work are used to model

the dependency relationships between mappings, ontologies and data sources in an

integration system. The dependency model is used to carry out an impact analysis of

the mappings affected by a changing data source. The dependencies are represented

using three graphical views that allow the user to examine increasing detail of the

dependencies by navigating between the three views. The separation of the dependency

metamodel from the domain model enables independent evolution of the metamodel

and domain models. The compact nature of the metamodel and process (Design

Chapter, Section 3.2.4) for building domain specific models enables its application in

other domains. The ontological basis of the metamodel provides the formal semantic

for the dependency relationships over which automated reasoning can be carried out

(using ontological reasoners).

2.3.2 Models of Dependency

Keller [Keller et al. 2000] and Cox [Cox et al. 2001] attempt to define the fundamental

parts of dependency so that they are not tied to any specific domain.

In [Keller et al. 2000], dependencies are formed between various components of a

distributed system. The dependency relationship exists between components if one

component requires another component to carry out its tasks.

To support the model of dependencies in this domain, a multidimensional space of

dependency attributes were defined. As shown in Figure 2-1, six dimensions are

defined by Keller that represent the characteristics of dependencies between

components in the distributed system under analysis.

34

Figure 2-1: Keller’s Multidimensional space of dependencies.

Using these attributes of dependency, two models of the dependencies in the service

management domain were created. One model, called the Functional model by Keller,

defined generic service dependencies (e.g. name service, database service). The other

model, called the Structural model by Keller, contains detailed descriptions of the

dependencies between the components that realise the broad services defined in the

Functional model.

A technical realisation of the model, for example in UML or ontology-based is not

provided.

In [Cox et al. 2001], Cox et al. attempt to formalise the definition and characterisation

of dependencies in a unified approach. The approach taken is to identify and

characterise the dependencies that exist between entities in a model of any domain. A

dependency relation is defined by Cox and Delugach as a relation between a number of

entities in the domain model, where it can be said that change to one of the entities

implies a potential change to the other. Bidirectional and unidirectional dependency

relations are defined. Cox and Delugach defined six dependencies attributes, selecting

only two of the attributes defined by Keller, noting that six of the Keller dependency

attributes are more suited as attributes of the system and not the dependency relation.

While Cox et al. illustrate their dependency model using two simple examples, it is

clear again that a technical realisation of the model has not been created in any formal

modelling language.

35

In [Drabble et al. 2009], an ontology-based approach is taken to the analysis of

dependencies. A Node and Event/Action ontologies are defined. While the approach

defined the ontologies in OWL, they are domain specific and focus on the domain

description rather than the dependency description.

A number of high level description languages have been standardised in the IT systems

management domain. The OSI General Relationship Model (GRM) [OSI GRM] offers

a model for reasoning about, representing, managing and developing re-usable

specifications for relationships between resources. While GRM defines a powerful

generic model for defining relationships between managed objects and provides a

mechanism for qualifying these relationships by means of attributes, it is tightly

coupled with the OSI Structure of Management Information and CMISE and, thus, has

not been used outside of TMN [ITU-T TMN] environments.

2.3.2.1 Analysis

The models proposed in [Keller et al. 2000] and [Cox et al. 2001] provide useful

insight into the attributes and formalisation of dependency that are useful in the service

management domain. The models have the advantages, as noted by Keller [Keller et al.

2000], that no modification of the application is needed if existing system

configuration data can be used to populate the dependency model.

While both approaches provide a description of the dependency attributes, the core

behaviour of the dependency relationship is not described and represents simple

unidirectional or bidirectional relationships between antecedents and dependent

elements. The creation of chains of dependencies is hinted at by Keller as an advantage

of the dependency analysis approach but neither model provides ability to

automatically build using chains other than using bespoke coding.

The ontology-based dependency modelling approach presented in this thesis (Section

3.2, Chapter 3), describes two different aspects of dependency attributes – i.e.

behavioural attributes and descriptive attributes. While the descriptive attributes of the

model are important, it is the behavioural attributes that enable the automatic reasoning

over the ontology-based dependency model and thus provide the dependency analysis

with the capability to automatically build chains of dependencies.

In [Drabble et al. 2009] a dependency analysis approach is described that uses SWRL

rules [SWRL] to support “the mapping and additional deduction of information” in

36

collaborative environments. This is an interesting and useful addition to support the

design of models of dependency, however it is unclear where and how the SWRL rules

are applied.

In the approaches discussed above, the process to acquire instances to populate the

dependency model is not explicitly specified and the approaches use bespoke coded

solutions to acquire the instance data [Ensel and Keller 2002, Keller et al. 2000, Borner

and Paech 2009, Drabble et al. 2009]. This makes any generalisation of the approaches

difficult.

Derived Requirements

Based on the state of the review of dependency, the following requirements were

derived for the design of a dependency model that could model and analyse

dependency across more than one domain:

• Selection of the appropriate abstraction level to cater for a range of

dependencies that might exist in different domains (e.g. inter system, inter

domain and intra system).

• Selection of the method to support computation of dependencies (e.g. the

ability to traverse the dependencies to the deepest level to enable full root cause

analysis that is important for service management).

• Approach for extracting the domain or system knowledge about dependencies

to inject into the dependency model.

37

2.4 State of the Art – Mapping Usage in Schema and Ontology
Evolution

Schema mappings are used to support query rewriting and/or data transformations in

data integration systems [Halevy et al. 2006, Lenzerini 2002]. Mappings also are a

fundamental part of the approaches taken to schema and ontology evolution

[Kondylakis et al. 2009, Noy and Klein 2002]. Therefore, it is important to understand

if mappings management approaches taken in schema and ontology evolution are

useful in the context of managing mapping dependencies.

In the context of information integration systems, there are similarities between the

usage of schema mappings and ontology mappings, i.e. the mappings are used to

support data transformations and/or query rewriting between schema or ontology

representation of data sources [Kondylakis et al. 2009].

The approaches to schema and ontology mapping management are discussed in the

context of the ontology-based mapping dependency management approach taken in

this thesis. Note that, while there are similarities between schema and ontology

evolution, there are also differences between the areas as noted in [Kondylakis et al.

2009, Noy and Klein 2002].As described by [Noy & Klein 2000] the differences arise

from different usage paradigms and the presence of explicit semantics in ontologies.

For example, because ontologies can be used as controlled vocabularies the results of a

query over an ontology could include elements of the ontology itself (e.g. subclasses or

super classes).

The first section reviews research on the management and evolution of database

schema mappings (Section 2.4.1).

 The second section reviews research on the management of ontologies and ontology

mappings (alignments) (Section 2.4.2).

Each section starts with some basic definitions and a summary of the approaches to

schema and ontology evolution.

2.4.1 Database Schema Evolution

Rahm and Berstein [Rahm and Bernstein 2006] define schema evolution as “the ability

to change deployed schema, i.e. metadata structures formally describing complex

artefacts such as databases, messages, application programs or workflows”. Schema

38

mappings are used in the evolution process to “describe relationships between data

sources” [Yu and Popa 2005].

Kondylakis et al [Kondylakis et al. 2009] present a detailed review of the schema and

ontology evolution. Schema evolution techniques can be classified as approaches based

on mapping composition and approaches based on mapping adaptation. Approaches

that use mapping composition attempt to evolve schema by composing successive

schema mappings. Approaches that use mapping adaptation attempt to evolve schema

by updating schema mappings every time a primitive change operation occurs to the

schema. They cite a number of differences between changes in schema and ontologies

that mean that the approaches used for schema evolution are not appropriate for

ontology evolution.

From [Curino et al. 2008, Kondylakis et al. 2009], the most relevant current

approaches to schema evolution are outlined briefly below:

• In [Ra 2005], the Program Independency Schema Evolution (PISE)

methodology is described. The PISE methodology uses multiple views over

the sample data to ensure that as new applications are added, existing and

older applications can continue to access the older views without program

modification.

• In [Cleve and Hainaut 2006], an approach to maintain consistency between

the software applications and the database schema they access is proposed.

The approach requires the propagation of three types of schema

transformation (adding a schema entity, removing a schema entity,

transformation database key types) to the applications that access the

schema. Only the third transformation type allowed automatic update of the

software application. The first and second transformation types are used to

help the database programmer locate relevant program sections using

pattern searching or dependency graphs. The dependency graph approach is

not elaborated upon in this work.

• In [Bernstein and Melnik 2007], Bernstein proposed an extensive model

management approach that seeks to provide lifecycle support for the

mappings that are central to the resolution of the data programmability

problem. The model management approach defines the semantics behind a

39

range of operators (compose, difference, merge and inverse) that can be

applied to models such as database schema and schema mappings. This can

be classified as a mapping composition approach.

• In [Noy and Klein 2002], a mapping evolution technique that uses mapping

adaptation approach is described. This approach focuses on incrementally

adapting mappings as the schemas evolve. The approach has developed a

model for representation of the schema changes and an algorithm to rewrite

the mappings based on the model of the schema changes.

Two the recent tools to support schema evolution are PRISM and Clio. These were

selected because provide a comprehensive set of features for schema evolution based

on the current state of the art.

The PRISM workbench [Curino et al. 2008] represents the evolution step in terms of

Schema Modification Operators (SMO), an operational language that naturally

captures the atomic operations used to evolve an existing schema. The SMO operators

represent a detailed set of the “create”, “update” and “delete” operations on schema

elements (e.g. table, column).

An earlier project, called The Clio project [Miller et al. 2001], is a system for

managing and facilitating the complex tasks of heterogeneous data transformation and

integration. Clio consists of three components, the schema engine, the correspondence

engine and the mapping engine. The schema engine is responsible for loading and

verifying schemas. Given a pair of schemas, the correspondence engine generates and

manages a set of candidate correspondences between the two schemas. The generated

correspondences can be augmented, changed or rejected by a user using a graphical

user interface through which users can draw value correspondences between attributes.

The mapping engine supports the creation, evolution and maintenance of mappings

between pairs of schemas. In Clio, a mapping is a set of queries from a source schema

to a target schema that will translate source data into the form of the target schema.

The mapping creation process is inherently interactive and incremental. Clio stores the

current mapping within its knowledge base and allows users to extend and refine

mappings one step at a time.

40

2.4.1.1 Analysis

While mappings play key roles in the approaches to schema evolution described above,

however the management approaches taken for the maintenance of mappings is not

dealt with. Furthermore, there are also the fundamental reasons why the approaches are

not easily transferable to ontology evolution as described in Noy [Noy and Klein 2002]

Among these fundamental differences is that ontologies themselves are data that can be

reasoned over in a way that schemas cannot (e.g. a query on a database schema will

usually result in a set of instance data, while a query on an ontology can result in both

instance data and elements of the ontologies itself). Furthermore ontologies themselves

incorporate explicit semantics of a domain which in the case of schema based system

tend to be incorporated into the application itself.

In the context of ontology-based integration systems, these approaches to evolution

may not be directly applicable due to the differences in both the usage and nature of

mappings in the ontology domain. The expressive nature of ontology languages

compared to the relational model makes it unclear if the SMO operators defined in

[Curino et al. 2008] are relevant to the ontology domain. The process to ensure the

consistency of the evolved ontology is also more complex due to the higher expressive

nature of ontologies.

The process for schema mappings and schema evolution tends to be coupled and the

lifecycle of each is not identified or managed separately. Given the open nature of

usage of ontologies on the World Wide Web, the ontology mappings may well find

reuse outside the original application domain and therefore would benefit from a

defined management approach.

The formal semantics of ontology-based languages allow for the use of reasoning that

can be used for consistency checking of evolved ontologies that is not possible without

bespoke coding in the case of schemas.

The author of this thesis believes that, based on the evidence in [Noy and Klein 2002,

Lenzerini 2002], the mappings in the ontology-based integrations systems are

sufficiently different from the schema approaches that the mappings would benefit

from an independent management approach. The ontology-based dependency

modelling approach proposed in this thesis provides an approach for the management

of mappings in the ontology-based integration domain that see the mappings as

41

fundamental parts of the integration system that need to be evolved when the data

sources change.

2.4.2 Ontology and Mapping Management

Ongoing maintenance of the ontologies is also of critical importance for any industrial

deployment of an ontology-based integration solution as noted in [Wache et al. 2001,

Uschold and Gruniger 2004, Hepp et al. 2008].

Work by Doan and Halevy [Doan and Halevy 2005], also identified the maintenance

problem but concede that “it has received relatively little attention”.

Much research work has been carried out on process and tools to support the

development, evolution and alignment of ontologies [Harth et al. 2004, NeOn 2005,

Zablith 2009].

A comprehensive review of the state of the art in ontology management is presented in

[Hepp et al. 2008]. The review covers ontology management tools, ontology evolution

and ontology alignment in detail.

The following important ontology management infrastructures are discussed across a

range of functionality as shown in Figure 2-2.

Figure 2-2: Ontology Management Infrastructures [Hepp et al. 2008]

In [Hepp et al. 2008], it is noted that the current tools available for ontology

management are “limited with respect to (i) lifecycle support (ii) collaborative

42

development of semantic applications (iii) Web integration and (iv) the cost-effective

integration of heterogeneous components in large applications”.

Lifecycle support is important in the context of the research in this thesis as the

dependency modelling approach proposed here can support such dynamic lifecycles by

providing insight into the dependencies in data integration systems.

The NeOn project [NeOn 2005] attempts to address these limitations. NeOn is a large

European Research project developing an infrastructure and tools for large-scale

semantic applications in distributed organisations. Within NeOn, a reference

architecture of ontology management is under development that is capable of coping

with dynamic and evolving environments.

The NeOn project has created an Eclipse [Eclipse] based ontology development and

management toolkit – also called NeOn. The NeOn toolkit supports the addition of

plug-ins through the Eclipse plug-in infrastructure.

The Evolva [Zablith 2009] methodology for ontology evolution proposes to support the

evolution of ontologies covering both change management and adaptation of the

ontology. An initial version of Evolva is available as a plug-in for the NeOn toolkit. In

its current early implementation, the Evolva plug-in provides support for the evolution

of the ontologies and not the mappings that may exist in the system.

In [Hepp et al. 2008], a lifecycle for ontology mapping (alignments) is described. The

lifecycle notes that once an ontology changes, the alignments also need to change. It is

noted that to date very few tools offer support for mapping management.

In the Data Information and Process Integration with Semantic Web Services Project,

DIP [Harth et al. 2004], a review of ontology management was undertaken that

comprised of ontology specification languages, ontology storage and retrieval, change

management for support of evolving ontologies and devices for enabling access to

ontology repositories. It is important to note that this work covers change management

and versioning related to ontologies only and does not deal with the management and

evolution of mappings.

KAON [KAON] is an ontology and semantic web tool suite from the University of

Karlsruhe. KAON provides both ontology development and management functionality.

In KAON the user is provided with capabilities to customise and control the process of

ontology evolution as detailed in [Stojanovic 2002].

43

In [An and Topaloglou 2007], the challenges associated with the maintenance of

mappings are described as:

• The maintenance of the consistency of mapping when the database or ontology

changes.

• Application of changes in the ontologies and schema after updating the

semantic mappings (i.e. if the mappings are updated, then the schema or

ontologies may also need to be changed – this is sometimes referred to as round

tripping).

• Systematic maintenance process.

An approach to maintenance of semantic mappings is proposed that defines the

semantic mappings as conjunctive formulas that encode a sub-tree of the ontology. The

mapping is essentially a formula that defines parts of the ontology (in terms of a graph)

that are mappings to a schema element. The approach proposed is capable of updating

the semantic mappings in the local-as-view examples presented. The approach does not

provide any maintenance information to support the analysis of mappings that already

use the ontology property or database table attribute that is subject to change and as

such assumes the existence of a tool that will process and select the mappings that need

to change.

2.4.2.1 Analysis

The development of an ontology is a complex process that spans much more than just

the ontology development tools [O’Sullivan D. 2005, An and Topaloglou 2007, KAON,

NeOn 2005, Hepp et al. 2008].

Much fruitful research has been carried out [Hepp et al. 2008] and excellent tools

developed [NeOn].

The ongoing maintenance of the ontologies is also of critical importance for any

industrial deployment of an ontology-based integration solution as noted in [Wache et

al. 2001, Uschold and Gruniger 2004, Hepp et al. 2008]. The NeOn project [Hepp et al.

2008] provides an excellent, extensible framework for the development and

management of ontologies.

The evolution of semantic mappings is still in its early stages as noted by [Hepp et al.

2008] because of the difficulty of the task as noted by [An and Topaloglou 2007].

44

The ontology-based dependency modelling approach proposed in this thesis can

support the ontology alignment lifecycle proposed in [Hepp et al. 2008] by

automatically providing the candidate mappings that are dependent on the part of the

ontology that is evolving.

45

2.5 State of the Art - Ontology-based Integration Approaches

This section covers information integration approaches that use ontologies. In

experiment one and two, a generalised ontology-based integration test bed was created

to support the integration of heterogeneous data sources. This section describes how

ontologies can be used in ontology-based integration systems.

Ontological approaches to integration are defined as approaches that use ontologies to

formally define a shared domain and use mappings to create semantic links between

these ontologies [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001]. As noted in

Section 2.4, mappings were also used to support schema and ontology evolution. In

contrast, this section focuses on why and how ontologies are used in integration

systems. Part of this analysis focuses on the usage of mappings to support integration.

The three headings used by Wache et al [Wache et al. 2001], are used here to discuss

how and why ontologies are used in integration systems. The headings are:

• Use of ontologies in Integration Systems.

• Ontology representation in Integration Systems.

• Use of mappings in Integration Systems.

These three headings provide suitable criteria to discuss the generalised ontology-

based integration test bed used in this thesis because the integration test bed was

designed based on these principles. A discussion of the generalised ontology-based

integration test bed against these headings is contained in the respective analysis

sections below.

(Note that Wache discussed a fourth heading, Ontology Engineering. This is not

discussed in this research as the focus was on data integration approaches and not how

the integration ontologies can be created. In this thesis, the Protégé ontology

development tool [Protégé] has been used to create the integration ontologies used

through out the experiments.)

Recent ontology-based integration systems [Wu et al. 2006, Zhou and Wang 2006 ,

Biffl et al. 2010, Beneventano et al. 2009, Kwak and Yong 2008, Fu et al. 2008, Cruz

et al. 2004, Dong and Linpeng 2008] are discussed in Section 2.5.4 against these three

headings. These were selected because they make instrumental usage of ontologies and

46

thus can be compared to the state of the art and to the generalised ontology-based

integration test bed created in this research.

2.5.1 Use of Ontologies in Integration Systems

Nearly all integration systems that use ontologies employ them for the explicit

description of information that is in the information sources managed by the

integration systems. The most common definition of an ontology, from Gruber [Gruber

1993], is that an ontology represents a formal and explicit specification of shared

conceptualisation. In [Noy 2004], Noy defined an ontology as a formal description of a

domain of discourse.

In the integration context, the key usage of the ontology is to enable sharing of

information across application domains by leveraging an ontologies ability to perform

reasoning.

In [Cruz and Xiao 2005], Cruz and Xiao identify five uses of ontologies in data

integration:

• Metadata Representation. Metadata (i.e. source schemas) in each data source

can be explicitly represented by a local ontology, using a single language.

• Global Conceptualisation. The global ontology provides a conceptual view

over the schematically heterogeneous source schemas.

• Support for High-level Queries. Given a high-level view of the sources, as

provided by a global ontology, the user can formulate a query without specific

knowledge of the different data sources. The query is then rewritten into

queries over the sources, based on the semantic mappings between the global

and local ontologies.

• Declarative Mediation. Query processing in a hybrid peer-to-peer system uses

the global ontology as a declarative mediator for query rewriting between peers.

• Mapping Support. A thesaurus, formalised in terms of an ontology, can be

used for the mapping process to facilitate its automation.

From [Wache et al. 2001, Cruz and Xiao 2005], three types of architecture have been

identified for making use of ontologies a) single ontology approaches where a single

global ontology represents all of the semantic of the underlying data sources, b)

multiple ontology approaches where each data source is described by its own ontology

47

and c) hybrid ontology approaches where global and local sources ontologies are

arranged in a hierarchy.

Figure 2-3: Three Ontology Approaches from [Wache et al. 2001]

Single Ontology Approach. All source schemas are directly related to a shared global

ontology that provides a uniform interface to the user. However, this approach requires

that all sources have nearly the same view on a domain, with the same level of

granularity.

Multiple Ontology Approach. Each data source is described by its own (local)

ontology separately. Instead of using a common ontology, local ontologies are mapped

to each other. For this purpose, additional representation formalism is necessary for

defining the inter-ontology mappings.

Hybrid Ontology Approach. A combination of the two preceding approaches is used.

First, a local ontology is built for each source schema that is not mapped to other local

ontologies, but to a global shared ontology. New sources can be easily added with no

need to modify existing mappings between the data sources.

In [Uschold and Gruniger 2004], Uschold and Gruniger define “Common Access to

Information” as one of the four main categories to apply ontologies. In this context, the

48

ontology avoids the need to create and maintain many translators while making it

easier to introduce new systems and formats to the system. This is important because

Bernstein [Bernstein and Melnik 2007, Bernstein and Haas 2008] indicates that

significant costs, resulting from ongoing maintenance of the integration systems, can

be encountered in enterprise integration projects.

2.5.1.1 Analysis

The hybrid ontology approach (Figure 2-3) provides some benefits over the other

approaches. New data sources can be added by creating new source ontologies. The

addition of new source ontologies is easier for the hybrid approach when the local

ontology can adopt the Local-As-View approach. Local-As-View represents local

schema in terms of the global schema. This makes the hybrid ontology approach more

appropriate for building integration systems that provide a global or central

representation of data.

However, in the hybrid approach, impedance mismatches between the data source

ontologies and the shared ontology can arise. Impedance mismatches between

ontologies can occur if the representation format or modelling granularity is different.

These impedance mismatches can make mapping creation more difficult.

It is also worth noting that in integration systems the shared ontology may need to

represent integration semantics as well as representing the shared domain. Integration

semantics are formal definitions of knowledge that are used to support the integration

process (e.g. integration goal, ontology versioning). These integration semantics may

or may not sit within the main shared ontology.

The generalised ontology-based test bed in this thesis uses the hybrid ontology

approach, when the global schema is used to represent the domain of interest. The local

ontologies provided a common data model to represent the data sources. This approach

is taken by several ontology-based systems that are discussed later in Section 2.5.4. In

the case of the integration test bed in this thesis, the hybrid ontology approach also

enabled a functional separation of the domain ontologies, mappings and lower

ontologies. This was appropriate for the test bed because the domain ontologies for

different domains could be easily swapped in because the integration test bed was

developed so that the functional separation was maintained as shown in the design

chapter (Section 3.3).

49

2.5.2 Ontology Representations in Integration Systems

Description logics supplemented by rules languages are now the popular approach for

representing ontologies. However, some integration systems use frame based systems.

A full treatment of the expressive power of these representation types is described in

[Corcho and Gomez-Perez 2000] by Corcho and Gomez-Perez.

In [Cruz and Xiao 2005], Cruz and Xiao discuss the following ontology languages:

• XML Schema. Strictly speaking, XML Schema is a semantic mark-up

language for Web data. The database-compatible data types supported by XML

Schema provide a way to specify a hierarchical model. However, there are no

explicit constructs for defining classes and properties in XML Schema,

therefore ambiguities may arise when mapping an XML-based data model to a

semantic model.

• RDF and RDFS. RDF (Resource Description Framework) is a data model

developed by the W3C
8
 for describing web resources. RDF allows for the

specification of the semantics of data in a standardised, interoperable manner.

In RDF, a pair of resources (nodes) connected by a property (edge) forms a

statement: (resource, property, value). RDFS (RDF Schema)
9
 is a language for

describing vocabularies of RDF data in terms of primitives e.g. rdfs:Class,

rdfs:Property, rdfs:domain and rdfs:range. Therefore, RDFS is used to define

the semantic relationships between properties and resources.

• DAML+OIL. DAML+OIL (DARPA Agent Markup Language Ontology

Interface Language) is a fully-fledged Web-based ontology language developed

on top of RDFS. It features an XML-based syntax and a layered architecture.

DAML+OIL provides modelling primitives commonly used in frame-based

approaches to ontology engineering and formal semantics and reasoning

support found in description logic approaches. It also integrates XML Schema

data types for semantic interoperability in XML.

• OWL. OWL (Web Ontology Language) is a semantic mark up language for

publishing and sharing ontologies on the Web. It is developed as a vocabulary

extension of RDF and is derived from DAML+OIL.

8
 W3C. The World Wide Web Consortium is the standards organisation for web technologies.

9
 RDF Schema - http://www.w3.org/TR/rdf-schema/

50

A comprehensive review of the state of the art in ontology representation formalisms is

presented reported in [Harth et al. 2004]. This additionally adds Topic Maps [Topic

Maps] and the Unified Modelling Language (UML) [UML]. An ontology evaluation

schema is developed and each ontology language discussed in that context.

• Topic Maps. A topic map consists of a collection of topics, each of which

represents some concept. Topics are related to each other by associations,

which are typed n-ary combinations of topics. A topic may also be related to

any number of resources by its occurrences.

• Unified Modelling Language (UML) is a standardised specification language

for object modelling that includes a graphical notation used to create an abstract

model of a system, referred to as a UML model.

2.5.2.1 Analysis

For data integration systems, ontology languages provide two main advantages over

schema based approaches. Ontologies provide significantly more expressive power

than simpler XML schema. Additionally the formal semantics of the ontology

representation has enabled many reasoning tools to be developed.

As OWL provides three variants (Full, Lite and DL), OWL’s expressive flexibility is

useful when describing both domain (e.g. supply chain information) and integration

specific semantics (e.g. integration process). This is important because one

representation language can model different aspects and thus reduce the impedance

mismatch problem.

It is also important that the ontology language has a supporting query language to

enable the integration application to extract knowledge from the ontology. SPARQL

[SPARQL] is the predominant query language for ontologies. SPARQL is designed for

querying RDF and adopts a triple format to match ontology instances. However, it

does not have a natural ability to query basic ontology constructs (e.g. OWL object

properties). OWL-QL [OWL-QL] supports query-answering dialogues in which the

answering agent may use automated reasoning methods to derive answers to queries.

OWL-QL is a candidate standard language and protocol for query-answering dialogues

among Semantic Web computational agents using knowledge represented in OWL.

51

Ontologies were used in two places in the generalised ontology-based integration test

bed used in the experiments in this thesis. A shared domain vocabulary (called the

upper ontology in design chapter (Section 3.3.2)) was implemented in OWL-DL using

the Protégé ontology development environment. The ontology provides a domain

description in experiment one and two for the product line management and logistics

domains respectively. The data sources in experiment one and two were represented as

RDF descriptions – these are called the lower ontologies in the design chapter (Section

3.3.2). SPARQL was used as the query language, rather than OWL-QL, as SPARQL

was fully integrated with the Jena OWL API [Jena]. The usage of OWL and SPARQL

provided benefits for the generalised ontology-based integration test bed because OWL

reasoning (using the Pellet reasoner [Pellet]) could be used to verify the correctness of

the domain ontology created and SPARQL could be used to query both ontologies.

2.5.3 Mapping Usage in Integration Systems

In section 2.4, the usage of mappings to support ontology and schema evolution was

discussed. This section focuses on how mappings are used within ontology-based

integration system to support integration.

Mappings may serve to relate ontologies to other ontologies (inter-ontology mappings)

or to relate ontologies to underlying information sources (e.g. a database) [Wache et al.

2001]. For integration systems, both types of mappings are needed. For ontology to

information source mappings, there are a number of general approaches to mappings

from [Wache et al. 2001]:

• Structure Resemblance: This approach simply converts the data source

structure into the ontology language.

• Definition of Terms: This approach adds more semantics to the ontology that

are not explicitly represented in the data source.

• Structure Enrichment: A combination of the two previously mentioned

approaches.

• Meta-Annotation: This approach requires the addition of semantic information

to the data source.

For ontology to ontology mappings, the general approaches from [Wache et al. 2001]

are:

52

• Defined Mappings: Simple point to point and complex mappings can be

defined by a user.

• Lexical Relations: A defined set of linguistic relationships can be applied to

ontologies.

• Top-Level Grounding: Ontologies can map to a single top level ontology using

common super classes.

Noy [Noy 2004] describes two major architectures for mapping discovery, the shared

ontology approach and heuristics and machine learning based approaches. Using a

shared global ontology facilitates easier mapping creation because the domain specific

ontologies extend the global ontology and are thus grounded in a common vocabulary.

Heuristics and machine learning based approaches typically allow for semi-automatic

discovery of mappings by using features of the ontology such as class hierarchy or

property definitions. Kalfoglou and Schorlemmer [Kalfoglou and Schorlemmer 2003]

provide a comprehensive review of mapping techniques.

Once discovered, mappings themselves need to be represented and stored. Mappings

are typically stored either within the ontology itself using its description language or

externally using a defined mapping language. Noy [Noy 2004] describes several

mapping representations such as bridging axioms [Dou et al. 2003] in first-order logic

to represent transformations, using views [Calvanese et al. 2001] to describe mappings

from a global ontology to local ontologies and mappings that are represented as

instances of an ontology of mappings [Maedche et al. 2002].

Once mappings are created, they can be used to perform various integration tasks such

as data transformation or query answering. Reasoning is used to perform these tasks

and can be run over the ontology and/or the mappings. The OntoMerge [Dou et al.

2003] system uses reasoning over the ontology to perform several ontology translation

tasks. Other tools [Crubezy and Musen 2003] process instances of the mappings to

perform integration tasks.

Several approaches exist to automatically generate ontologies and mappings from

databases. The D2RQ [D2RQ API] API is a declarative language to describe mappings

between relational database schemata and OWL/RDFS ontologies. The D2RQ

platform uses these mappings to enable applications to access an RDF view on a non-

RDF database.

53

2.5.3.1 Analysis

Most ontology mappings (and matching) frameworks are semi-automatic because they

require human and manual intervention to support the mapping process. This is

especially true where complex conversions between structures are needed (e.g.

converting quarterly revenue to monthly revenue). These complex mappings tend not

to be discoverable in an automatic way. Thus, mapping generation requires strong tool

sets to support both the creation and the evolution of mappings.

Another issue with the mapping approach is that the mappings themselves tend to

create bindings (or dependencies) in the system from top level ontologies to bottom

level data sources. This is especially true when the hybrid ontology approach is applied

because there are multiple layers of dependency from the top level ontological concept

through the mapping to the lowest level data source item. Furthermore, these

dependencies can become more complex if there are multiple levels in the hierarchy of

ontologies.

Tools and processes that support the evolution of mappings after development is

finished are limited. In [Seidenberg and Rector 2006] methodologies for maintaining

both simple and semantically complex mappings are presented. However, the

maintenance model covers only ontology to ontology mappings and does not deal with

dependencies as they manifest themselves in an ontology-based integration system.

Mappings were used in two places in the generalised ontology-based integration test

bed used in the experiments in this thesis. The upper and lower ontologies of the

generalised ontology-based test bed (Section 3.3.2) are connected using mappings

based on the INRIA [Euzenat 2004] mapping format. These represent ontology to

ontology mappings and are used to support rewriting of the queries against the upper

ontology. These mappings were created manually because the mapping creation

process requires in depth knowledge of the domain ontology and the data source to

ensure the appropriate mappings are created.

The lower ontologies of the generalised ontology-based test bed are connected to the

data sources using mappings provided by the D2RQ API [D2RQ API]. These represent

ontology to data source type mappings and are also used to support rewriting of

SPARQL queries to SQL queries on the data sources. These mappings were created

automatically by the D2RQ API from the data sources.

54

2.5.4 Implementations of Ontology-based integration Systems

This section reviews recent implementations of ontology-based integration systems

based on their architecture, usage of ontologies and mappings. The approaches were

selected because they make instrumental use of ontologies to enable integration and are

this likely to take advantage of latest research on ontology-based integration. These

approaches are compared to the generalised ontology-based test bed created in this

research in the analysis Section 2.5.4.1.

In [Zhou and Wang 2006], Zhou and Wang propose a semantic grid architecture for

enterprise information integration. The authors state that the architecture requires the

"convergence of peer-to-peer, grid and semantic computing". The information

integration system proposed is comprised of Data Peers (DP), Semantic Peers (SP) and

Applications Peers (AP). Each peer has a schema describing the data held by that peer

and a set of mappings that specify relationships with the data exported by other peers.

The approach does not clearly fit into the three architectures defined by Wache in

[Wache et al. 2001] but could be considered a hybrid approach given semantic

descriptions at different levels in the system. The approach does not have a global or

mediated schema.

The approach makes use of four kinds of mapping (i.e. DP-SP, SP-SP, AP-AP, SP-AP).

The mappings are used to support query rewriting against queries that can be issued at

the DP, SP or AP. The mappings and schema representations for the data peers are

encoded using WSML [WSML]. The mappings are created at design time using the

WSMT [WSMT] tool.

The DartGrid system [Wu et al. 2006], proposed by Wu et al., provides a framework

for integrating heterogeneous relational databases. The framework includes tools for

mapping creation, ontology query and search. DartGrid follows the single ontology

approach because it contains a global ontology, in RDF, and mappings to ontology

representations of the relational data sources. The mappings are used to define

relationships between the global ontology and relational schemas. The mappings are

used to support rewriting of queries issued in SPARQL [SPARQL] against the global

ontology to SQL queries against the data sources. The representation of mappings is

not discussed but the mappings contain information about which database tables and

properties are mapped to which RDF class in the global ontology. A tool is provided to

support the development of the mappings at design time. The approaches taken to

55

support the management and evolution of the system (including the mappings) are not

discussed.

Biffl et al [Biffl et al. 2010] introduce a framework for the semantic integration of data

sources related to the management of the software development lifecycle (e.g. bug

tracking systems). The framework adopts the single ontology approach because it

provides a single domain conceptualisation that represents three data sources (bug

tracker, code management and a mailing list). The domain ontology is created in OWL

using Protégé. The framework is implemented as a Java application that uses the Jena

API to load and process the domain ontology. The system does not have a formal

mapping approach but uses bespoke coded adaptors to extract data from the underlying

data sources and populate the ontology instances. In this framework, the mappings are

used to support the populating of the ontology instances. As this system is at an early

stage of development, the approaches taken to support the management and evolution

of the system (including the mappings) are not discussed.

The MOMIN-STASIS system, described by Beneventano et al [Beneventano et al.

2009], is an ontology-based integration system (called MOMIS-STASIS) that

combines the two previous works - MOMIS [Beneventano et al. 2003] and STASIS

[Abels et al. 2008]. The MOMIS data integration system uses a single ontology

approach where WordNet is used as the shared vocabulary for the specification of the

semantics of the data sources. The STASIS system is a general framework to simplify

the mapping creation process between different schemas. The combined output of the

MOMIS-STASIS system is a global schema and a set of mappings that relate the

global schema to the data sources. The advantages of this approach are that global

schema can be generated automatically. To support this approach, the local sources

need to be annotated using simple name matching techniques. The mapping format in

the system supports simple and complex relationships (e.g. equivalence, more general,

less general and disjointness). The mappings are used to support the generation of the

global schema.

The approach taken for semantic integration in [Kwak and Yong 2008] describes how

a global ontology is used to integrate data sources from the automotive parts industry.

The domain ontology is mapped to the data source using three types of mapping

(equivalence, subclass/superclass, and disjointness). Although there are several

ontologies defined to represent automotive parts, the approach represents the single

56

ontology approach as the ontologies are essentially a single domain description. The

ontologies are represented in OWL. The mappings in the system are used to convert

instances of the data sources to instance of the ontology; however the mappings are

limited to 1-1 relationships between the data sources and global ontology. The authors

cite the management of the mappings as future work.

In [Fu et al. 2008], the hybrid ontology approach is adopted to provide an integration

framework for E-business and Logistics systems. The global ontology represents a

conceptualisation of the domain that relies on the usage of lexicons (e.g. ebXML
10

,

WordNet
11

) and upper ontologies (e.g. BULO
12

). The data sources are described using

local ontologies. The local ontologies are generated using a set of rules to convert

aspects of the data sources into ontologies in OWL (e.g. database attributes are mapped

to OWL datatype properties). Mappings are also used to establish relationships

between the local ontologies and global ontologies. The mappings are used to support

the translations of SPARQL queries on the global ontology to SQL queries on the data

sources. The format of the mappings used to relate the global schema to local schema

is not discussed.

Cruz et al describes an approach to the integration of XML schema using ontologies in

[Cruz et al. 2004]. The approach adopts the hybrid ontology approach where a global

ontology is created in RDF that is created by merging RDF representations (the local

ontologies) of the data sources. The RDF vocabulary was extended by the addition of a

“contains” property to support the representation of nesting structure of XML

documents. During the merging process, mappings are used relate the global and local

ontologies. The mappings are used to support translation of queries directed at the

global ontology to queries over the local ontologies and are maintained in a mapping

table by integration system for use later when performing query translation. Mappings

are generated at design time using the PROMPT [Noy and Musen 2000] system.

A similar approach is proposed, by Dong and Linpeng [Dong and Linpeng 2008], to

integrate XML schemas. This work defined thirteen heuristic rules to enable the

conversion of the XML schemas to the RDF local ontologies. A further heuristic eight

rules are defined to create a global ontology (in OWL) from the local ontologies. Again,

10

 Electronic Business using XML, ebXML. http://www.ebxml.org/
11

 WordNet. A lexical database for English. http://wordnet.princeton.edu/
12

 Base Upper Level Ontology. http://proton.semanticweb.org/

57

the system maintains a mapping table that is used populate data instances in the global

ontologies. This differs from other approaches that do not store the data at the global

ontology layer.

2.5.4.1 Analysis

The ontology-based integration systems described demonstrate the broad range

applications areas. The approaches follow both the single and hybrid ontology

approach described in the state of the art (section 2.5.1). Mappings are also used

widely in the approaches to provide query rewriting [Wu et al. 2006, Cruz et al. 2004,

Fu et al. 2008]. Many different and bespoke mapping representations (e.g. XML,

MOMIS-STATIS [Abels et al. 2008]) are used and therefore there is little consensus

on the best mapping representations. This lack of standardisation for mappings was

also noted in [Hendrik et al 2009].

It is also clear that while each approach has focused on the delivering an ontology-

based solution, the “integration quality” of the systems is not measured. Similarly the

approaches taken to manage the mappings in the integration systems are not described.

The generalised ontology-based integration test bed that was used in this thesis adopts

the hybrid ontology approach. The approach created a functional decomposition of the

domain conceptualisation, mappings and local ontologies. This approach was selected

as the most appropriate for the development of the test bed because different local data

sources from entirely different domains (e.g. sales in experiment one and logistics in

experiment two) was tested with system. The global ontology was developed in OWL

because the expressivity of OWL ensured that a wide range of domains can be

represented. The mappings used in test bed provide extra functionality that is not

present in any of the systems described above. The transformations function can be

assigned to each mapping to carry out instance level transformation. This was a

requirement for the use cases used in the experiments in this thesis – because simple

integrated views (without transformation) of heterogeneous data would need further

development work by the application consuming the views to transform the data.

It is important to note that the test system is not a fully featured integration system as

discussed in Section 3.3. In spite of this, the architecture of the test bed mirrors many

of the design approaches taken in the systems described above.

58

2.6 Summary Analysis

In this review, it was identified how and why ontologies can be used in integration

systems. It was shown that there are several options for ontology representation and

that OWL [OWL] is a suitable candidate due to its flexible and formal semantics.

While mappings are a fundamental part of non ontology-based integration systems, the

approaches taken for the evolution of schemas and mappings are different enough to

make them difficult to apply in the ontology-based integration domain [Kondylakis et

al. 2009, Noy and Klein 2002].

The lack of support for maintenance of the schemas and mappings after deployment

was identified as a fundamental weakness of all integration systems that use mappings

to create semantic links between entities in the systems [Bernstein and Melnik 2007,

Haas 2007, Kondylakis et al. 2009]. In [Doan and Halevy 2005], Doan and Halevy

identify the maintenance problem but concede that “it has received relatively little

attention”.

The author of this thesis believes that the maintenance of mappings is at least as

important as their initial construction in any industrial context.

The ontology-based dependency modelling approach proposed in this thesis provides

the framework to support the independent management of semantic mappings by

modelling the dependencies they exhibit. The author believes that this is a key first step

in the management and evolution of the mappings in ontology-based integration

systems. While some of the current implementations of ontology-based integrations

systems recognise this problem, most have not developed approaches towards a

resolution of the problem.

Dependencies and dependency analysis has been used across many domains [Borner

and Paech 2009, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al. 2009,

Wang and Capretz 2009, Maddox and Shin 2009]. Only a few approaches provide

formal representation of dependency that can be used to reason about. Most

representations of dependency are based on simple notions of dependency without any

behaviour aspects modelled as in the approach taken in this thesis.

This work distinguishes itself by modelling, and thus making explicit, the

dependencies that occur in the generalised ontology-based integration system between

the mappings ontologies and data sources. This explication of dependencies

59

compliments existing ontology integration techniques because it enables more flexible

approaches to the maintenance and scalability of the key knowledge assets of the

integration system (i.e. mappings and ontologies).

The compact ontology-based dependency metamodel provided an excellent basis to

construct the domain specific model. The formal semantics associated with the

dependency model enabled the automation of the computation of chains of dependent

elements.

2.7 Background Design Choices

This section describes the choices taken for the tools and technologies that were used

to implement and test the ontology-based dependency management approach proposed

in this thesis.

2.7.1 Measuring “Integration Quality”: THALIA Integration
Benchmark

The research question for this thesis required the measurement of the ability of the

ontology-based test bed to carry out integration over heterogeneous data sources. This

has been defined as the “Integration Quality” metric in the introduction (Section 1.2)

and was measured using the THALIA (Test Harness for the Assessment of Legacy

information Integration Approaches) integration benchmark.

THALIA is a publicly available and independently developed test bed and benchmark

for testing and evaluating integration technologies [Stonebraker 2005]. The system

provides researchers and practitioners with downloadable data sources that provide a

rich source of syntactic and semantic heterogeneities. In addition, the system provides

a set of twelve benchmark queries for ranking the ability of an integration system to

carry out integrations across a wide range of heterogeneities.

A score out of twelve can be assigned to an integration system based on how many of

the 12 THALIA tests the system can integrate successfully.

The 12 tests are summarised below:

Table 2-1 THALIA Tests

Test No. Name Description

Test 1 Synonyms Attributes with different names that

convey the same meaning

60

Test 2 Simple Mapping Related attributes in different schemas

differ by a mathematical transformation

of their values. (E.g. Euros to Dollars)

Test 3 Union Types Attributes in different schemas use

different data types to represent the

same information.

Test 4 Complex Mapping Related attributes differ by a complex

transformation of their values.

Test 5 Language Expression Names or values of identical attributes

are expressed in different languages.

Test 6 Nulls The attribute value does not exist in one

schema but exists in the other

Test 7 Virtual Columns Information that explicitly provided in

one schema is only implicitly available

in the other schema.

Test 8 Semantic

Incompatibility

A real-world concept that is modelled

by an attribute does not exist in the other

schema

Test 9 Same Attributes exist

in different structures

The same or related attributes may be

located in different position in different

schemas.

Test 10 Handling Sets A set of values is represented using a

single, set-valued attribute in one

schema vs. a collection of single-valued

hierarchical attributes in another schema

Test 11 Attribute name does

not reflect semantics

The name does not adequately describe

the meaning of the value that is stored.

Test 12 Attribute composition The same information can be

represented either by a single attribute

or by a set of attributes

As THALIA provided only a score out of twelve, for this research the THALIA system

was extended by introducing an effort classification system so that each query result in

THALIA could be assigned an effort estimate based on how automatic the solution is.

Efforts are categorised as follows:

• Fully automatic: no code, mapping or ontology changes needed.

• Automatic: Automatic regeneration of ontology or other configuration artefact.

• Semi Automatic: A mapping needs to be changed manually.

• Manual: Non core code artefact needs to be updated or added manually. (e.g. a

function associated with a mapping)

61

• Fail: core code changes needed. (e.g. core test bed code needs to be changed)

These effort classifications are specific to the ontology-based integration test bed

defined earlier in this chapter.

The THALIA system also provides dataset that can be used to provide test integration

systems. In this thesis, a comprehensive industrial data set was used because it already

contained nine of the twelve test data. To allow the full THALIA suite to be run, the

databases were supplemented by additional complexity in three areas (language

expression and virtual columns, nulls – see Table 2-1, Chapter 3). This was achieved

by adding specific data items to databases to cover these tests.

2.7.2 Supporting Technology Choices

This section provides a brief summary of the supporting technologies that were used in

the construction of the metamodel, domain specific model and implementations of the

TomE (Ontology-based dependency modelling tool, Section 3.2.6) and HotFusion

(Generalised Ontology-based integration test bed, Section 3.3) tools.

2.7.2.1 Ontology Representation

The Web Ontology Language (OWL) was chosen as the ontology language to

represent the ontology-based dependency metamodel and dependency model. OWL is

a family of knowledge representation languages for authoring ontologies, and is

endorsed by the World Wide Web Consortium. In this research OWL was used

extensively to create the dependency model, metamodel and integration ontologies.

The formal semantics that underpin OWL enable the reasoning over the ontologies

using OWL reasoners such as Pellet. The OWL-DL subset was used throughout this

research from the W3C Recommendation 10 February 2004.

2.7.2.2 Ontology Development APIs

The Jena API [Jena] was chosen as the development API to support the development

of OWL based ontologies in the dependency model. Jena (from Hewlett Packard) is a

Java framework for building Semantic Web applications. It provides a programmatic

environment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference

engine. Jena was used in the generalised ontology-based integration system and the

dependency modelling tools. In both these tools, Jena provided instantiation and query

62

operation and reasoning over the integration and dependency ontologies respectively.

Version 2.0 of Jena was used in this research.

The D2RQ API [D2RQ API] was chosen to lift the relational data to the ontological

level. D2RQ is a declarative language to describe mappings between relational

database schemata and OWL/RDFS ontologies. This allows for automatic generation

of the ontologies from the databases and once instantiated in a JENA model, the

ontologies can be queried using SPARQL. The D2RQ API automatically converts the

SPARQL queries to SQL and returns a set of triples to the caller. The API is used in

the generalised ontology-based integration system. Version 0.5 of D2RQ was used in

this research.

2.7.2.3 Ontology Reasoning

Pellet [Pellet] was selected as the ontological reasoner for this work. Pellet provides

reasoning services for OWL ontologies. Pellet has been used to provide reasoning of

the dependency model both programmatically using the Jena toolkit and also using the

DIG interface from Protégé. Version 2.0.0-rc4 of Pellet was used in this research.

2.7.2.4 Ontology Editor

Protégé [Protégé] was chosen as the development environment for building ontologies.

Protégé is a free, open source ontology editor. Protégé was used extensively to develop

and test both the integration ontologies and the dependency models. Version 3.2 of

Protege was used in this research.

2.7.2.5 Dependency Graph Visualisation

GraphML [GraphML] was chosen to provide serialisation of dependency graphs.

GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a

language core to describe the structural properties of a graph and a flexible extension

mechanism to add application-specific data. The GraphML format is used to represent

the dependency graphs that are generated by the dependency model. Version 1.0 of

GraphML was used in this research.

Prefuse is a set of software tools for creating rich interactive data visualisations. The

original Prefuse toolkit provides a visualisation framework for the Java programming

language. The Prefuse Flare toolkit provides visualisation and animation tools for

ActionScript and the Adobe Flash Player. The Prefuse Java API was used to build the

63

visualisation of the dependency graphs in the TomE tool. Version 2007.10.21 of

Prefuse was used in this research.

2.7.2.6 User Interface Development

CloudGarden's Jigloo GUI Builder was chosen as the user interface design tool. It

provides a plug-in for the Eclipse Java IDE and WebSphere Studio that enables the

building and management of both Swing and SWT GUI classes. This API is used to

render and manage the user interface for both the generalised ontology-based

integration system and the dependency modelling tool. Version 4.2.0 of Jigloo was

used in this research.

2.7.2.7 XML Processing API (for mapping files)

SAX (Simple API for XML) [SAX] was chosen as the serial access parser API for

XML. SAX provides a mechanism for reading data from an XML document. The SAX

API is used for reading and processing the XML mappings in the generalised ontology-

based integration system and the dependency modelling tool in this research.

2.7.2.8 Statistical Analysis Package

R [R] was chosen the statistical package to carry out statistical analysis of the data for

Experiment Three (The performance of the ontology-based dependency model). R is a

language and environment for statistical computing and graphics. It is a GNU project

that is similar to the S language and environment that was developed at Bell

Laboratories (formerly AT&T, then Lucent Technologies, now Alcatel-Lucent) by

John Chambers and colleagues. R provides a wide variety of statistical and graphical

techniques. R was used in Experiment Three.

2.8 Summary

This chapter has reviewed the state of the art dependency modelling and analysis,

schema and ontology evolution and ontology-based approaches to information

integration. It also provided background information for the tools and APIs used to

design and implement the dependency models and tools which are implemented in

Chapter 3.

64

3 DESIGN AND IMPLEMENTATION

3.1 Introduction

This chapter describes the design and implementation of the models, tools and test

beds that were created to support the dependency modelling approach taken in this

research. The dependency modelling approach enabled the analysis of the

dependencies in a generalised ontology-based integration system.

A compact ontology-based dependency metamodel was designed to support the

construction of a domain specific ontology-based dependency model (OBDM).

The OBDM was applied to the mappings from a generalised ontology-based

integration test bed. The OBDM was implemented in a tool, called TomE (Towards

Ontology Mapping Evolution), which uses ontological reasoning over the OBDM to

build views of the dependencies in the system. The reasoning uses the Pellet OWL

reasoner [Pellet].

The rest of this chapter is organised as described below. The design considerations for

dependency analysis and the dependency metamodel are described in Sections 3.2.1,

3.2.2 and 3.2.3. The domain specific ontology-based dependency model (OBDM) is

described in Section 3.2.5. The TomE tool that was created to support the OBDM is

described in Section 0. Section 3.3 describes the generalised ontology-based

integration test bed that was used in Experiment one.

65

3.2 Dependency Model Design

3.2.1 Design considerations for Dependency Analysis

It is important to consider the identification and analysis of dependencies in the design

of enterprise systems as they become more logically integrated but physically

distributed [Keller et al. 2000, Cox et al. 2001].

Systems can be logically integrated using such technologies as data federation,

distributed query or ontology-based approaches with the underlying data and systems

remaining physically separate.

Dependency analysis approaches have been used to support fault and event

management [Gruschke 1998, Katker and Paterok 1997], service management [Dreo

Rodosek and Lewis 2001, Varol and Bayrak 2010] and software configuration

management [Luo and Diao 2009, Borner and Paech 2009]. Dependency analysis

provides utility in each of these areas of application. However, the dependencies that

exist between these domains and within these domains tend to be defined implicitly as

noted by Keller in [Keller et al. 2000]. Furthermore, the analysis of dependencies in

these areas has generally focused on inter-system dependencies.

In the context of ontology-based integration systems, the author of this thesis believes

that dependencies between components of a single system are also useful to understand

as they can support analysis and evolution of the system. If the dependencies are

explicitly defined, then they can be reasoned over to provide useful insight in the

evolution of the system. This was the approach taken in the dependency analysis tool

(called TomE) that was built to support dependency analysis of the mappings in the

generalised ontology-based integration domain that was used in experiments one and

two.

While the dependency model proposed in this work focuses on dependencies within a

single system of interest (i.e. ontology-based integration system), the approach can be

applied in other domains as shown in experiment five.

Following a the literature review of the application and usage of dependencies (Section

2.3) in the service management, fault isolation and software configuration domains, the

key requirements for the design of a more general dependency analysis system were

summarised as:

66

• Selection of the appropriate abstraction level to cater for a range of

dependencies that might exist in different domains (e.g. inter system, inter

domain and intra system). [Requirement 1]

• Selection of the method to support computation of dependencies (e.g. the

ability to traverse the dependencies to the deepest level to enable full root cause

analysis that is important for service management [Keller et al. 2000].)

[Requirement 2]

• Approach for extracting the domain or system knowledge about dependencies

to inject into the dependency model. [Requirement 3]

The approach taken in this thesis for requirement 1 and 2 was to define a compact

ontology-based metamodel for representing dependencies and a process to construct

domain specific models from the metamodel. A metamodel provides an extensible set

of concepts to enable the creation of domain specific models. The dependency

metamodel in this research provides the basic building blocks needed to simplify the

computation of dependencies (Requirement 2).

A compact metamodel has the following advantages:

• Domain specific models can be constructed using all or part of the metamodel

affording design flexibility.

• Domain specific models can inherit key behaviours from the metamodel (e.g.

transitive relations) enabling reuse of key metamodel features.

• Metamodel and domain model can be evolved independently.

• The approach is non-intrusive as the system under test does not require code

updates because the dependency metamodel is external to the system under test.

A number of disadvantages for the metamodelling approach are:

• Difficultly in selected the appropriate abstraction level. (E.g. a very abstract

metamodel can be difficult for domain modellers to understand while low

abstraction level may not properly model all domains.

• A maintenance process to ensure controlled evolution for updates to the

metamodel and domain specific model may be required.

67

The approach taken for requirement 3 required the definition of a domain

decomposition process to enable the domain and system knowledge to be represented

in the dependency model, and this process is described in section 3.2.4.

3.2.2 Dependency Abstractions used in the metamodel

Based on the state of the art review in Section 2.3.2, the abstractions for the

dependency model in this work are based upon the following key ideas: dependent

relations, dependent elements, simple dependencies, dependency chains and

dependency graphs. This classification was selected following the state of the art

review of the usage of dependency models and the previous attempts to formalise

dependency relations (Section 0.)

These abstractions were designed to address the first and second design requirements

and are described below.

Dependent Relations & Dependent Elements

The central concept of the model is the dependency relation. The dependency relations

are classical binary relations [Fraissé 1986] between dependent elements. Dependency

elements are representations of the entities in the domain under study that exhibit

dependency relationships. Dependent elements can be derived from domain

descriptions such as functional or design specifications or from experts in the domain

(e.g. in experiment two on ontology-based integration systems presented later,

dependent elements are derived from the descriptions of the systems semantic

mappings.) In its most general sense, a dependent relation D is defined as an ordered

triple (S
1
, S

2
, G) where:

D: Binary relation (“depends on”)

S
1
: Set of domain elements

S
2
: Set of codomain elements

G: Subset of Cartesian product of S
1

and S
2

Behavioural & Descriptive Attributes of dependencies

Dependency relations can be defined with different attributes that describes the

behaviour of the dependency relation (called behavioural attributes) or some

descriptive information (called descriptive attributes) about the dependency relation.

Behaviour attributes are used to represent the behaviour of the dependency relation

68

such as transitivity, symmetry or functional as described later in the ontology-based

dependency metamodel.

Dependencies may also have descriptive attributes associated with them. Keller [Keller

et al. 2000] defines a classification of dependencies based upon six descriptive

attributes that are informed by the context of dependency analysis in enterprise service

management. Descriptive attributes are used to describe some information aspect

related to the dependency relation such as the importance or strength of the

dependency as described later in the ontology-based dependency metamodel.

Simple Dependencies & Dependency Chains

In this work, a simple dependency is defined as a pair wise dependent relation between

two nodes resulting from the decomposition process. A dependency chain can be

created by traversing the dependency relations to join multiple dependencies together

by following a single relation type appropriately (e.g. transitive relation).

For example, assume element (O) depends on an element (M) via the dependent

relation R and the element (M) depends on element (D) via dependent relation R’:

O � M (via R that is transitive)

M � D (via R’ that is transitive)

If the dependent relations (R and R’) are transitive, then the dependency model can be

traversed to build the full dependency chain:

O �M � D

The depth of the dependency chain (i.e. the number of elements in the chain) can be

computed by simply iterating a counter for each dependency relation found and

assigning it to that relation. This introduces a quantitative measure of direct and

indirect dependency relations. This is represented by a “Strength” attribute discussed

later.

The type of dependency can also be handled in a similar way. The type of dependency

can be seen as identification of the cause of the dependency relation (later in the

evaluation chapter we will see overlapping and function-based dependency types). This

is represented by a “Cause” attribute discussed later.

69

Dependency Graphs

Dependency graphs are used to visualise the dependency chains as illustrated in Figure

3-1. The nodes (vertices) of the graph represent the instances of the sets of elements in

the domain of the system under analysis. The edges represent the dependency relations

as described earlier. The graph represents the full dependency analysis of the domain

of interest and is computed by following the behaviour attributes of the dependency

relations. The graph is labelled with appropriate metadata to provide a description of

the domain, graph type and version.

All of the concepts described above are visualised in Figure 3-1. The figure shows two

dependency chains. The first dependency chain is for a UE (Upper Entity) called “UE-

carriers-names”. This dependency chain has a MP (Mapping Point) called “MP-c1”

and GEs (Ground Entities) called “GE-exp_test_db2-logistics-Awards” and GE-

exp_test_db2-Logistics-Awards”. The UEs represent entities in the domain ontology of

the integration system, the MPs represent mappings in the domain ontology and the

GEs represented the datasources entities which are accessed by the integration system.

Figure 3-1: Illustration of Graph, Dependency and Dependency Chain

70

Benefits of the abstraction level selected

The dependency abstractions selected in this research are domain independent and

general enough to be easily described to prospective users of the system. This enables

them to be applied in a variety of domains. The compact nature of the abstractions

facilitates easy adoption of the approach because the learning curve to understand the

abstractions is small. The approach of supporting the dependency relations with

formal semantics means that the domain dependency modeller can use the formal

semantics to automate the computation of dependency chains using ontological

reasoning as shown in Section 3.2.3 where chains of dependency elements are

automatically created using the dependency model and the Pellet reasoner [Pellet].

71

3.2.3 Dependency Metamodel Design

This section describes the dependency metamodel that was created using the

abstractions described in section 3.2.2.

The dependency metamodel provides an extensible set of concepts related to modelling

of dependencies. This extensible set of concepts enables the creation of a wide variety

of domain specific dependency models. For example, the metamodel can be used to

represent dependencies between software components by describing abstraction

representations of the components and the relationships between components. The

metamodel provides a palette of attributes for dependency relationships (e.g.

symmetric, transitive) that can be customised to the domain of interest.

The metamodel was realised in OWL-DL [OWL]. OWL-DL was selected because it is

a dialect of OWL which provides maximum expressiveness without losing

computational completeness. In the context of the dependency metamodel, OWL-DL

provides the formal semantics for the dependency relations over which reasoning can

occur using ontological reasoning. This removes the need to carry out some complex

programming tasks to compute chains of dependent items – this task is passed to the

reasoner and inferred from the semantics of the model. The metamodel was designed

using the Protégé ontology design tool [Protégé].

The metamodelling approach provides a compact solution because the metamodel

needs only to focus on the core aspects of dependency and not domain specific items.

The compact nature of the metamodel allows easier creation of domain dependency

models because the learning curve to understanding the abstractions is small. The

metamodelling approach also enables the domain specific model to remain decoupled

from the metamodel and thus allows additions to the metamodel to be made without

affecting the domain specific model.

The key concepts of the metamodel, based on general conceptualisation of the

dependency abstractions that was described in Section 3.2.2, are described below:

Architectural Entity: The concept is used to represent the dependent elements

described in Section 3.2.2. An Architectural Entity is a concept that represents the

nodes or elements in the system under study that exhibit dependencies. The domain

72

under study is composed of these architectural entities. The process of selection of the

architectural entities for any given domain is carried out only when the domain specific

model needs to be created. In the ontology-based metamodel, this concept is encoded

as an OWL class with the following datatype properties:

• Id [Mandatory]: This is a property to represent the name of the entity. This

is represented in the metamodel as an “rdf:ID” when the concept is created.

Code 1: Architectural Entity for a concept called UE with instance called “UE1”

• Type [Optional]: This property is used to represent the type of the entity.

This is encoded in the metamodel as a datatype property of type “String”. In

the metamodel, the value range for this property is unrestricted (i.e. it can

take any string value). The Type attribute can be used to specify any

domain specific grouping or information that could be used to distinguish

between forms of architectural entities.

Dependency Relation Attributes: These concepts are used to represent the

dependency relations that are supported by the metamodel. A set of dependency

relations are provided by the metamodel that represent transitive, symmetric and

functional dependant relations between architectural entities. These represent the

behavioural attributes described in Section 3.2.2 and illustrated in Figure 3-2. The

definition of each relation is given below:

• Transitive relation [Optional]: A transitive relation implies that if X has a

transitive relation with Y and Y has a transitive relation with Z, then X and

Z also have the transitive relation.

• Symmetric relation [Optional]: A symmetric relation implies that if X has

a symmetric relation with Y, then Y also has the relationship with X.

<owl:Class rdf:ID="UE">
<rdfs:subClassOf rdf:resource="#ArchitecturalEntities"/>
</owl:Class>

73

• Functional relation [Optional]: A functional relation implies that if X has

a functional relation with Y and X has a functional relation with Z, then Y

and Z must be the same.

• TransitiveSymmetric relation [Optional]: A transitive and symmetric

relation provides the combined behaviour of the transitivity and symmetry.

• InverseFunctional relation [Optional]: An inverse functional relation

provides the inverse of the behaviour provided by the functional relation.

In the ontology-based metamodel, these dependency relations are represented as OWL

object properties with the appropriate behavioural attributes set (e.g. transitive) using

the relevant OWL object property attribute. The behavioural attributes are set when the

metamodel is created using the Protégé ontology development environment. They are

subclasses of a general dependency relation object property called

“DependencyRelation” as shown in Figure 3-2 below.

Figure 3-2: Dependency Relations in the metamodel

The metamodel also defined the following descriptive properties for the dependency

relationships. These attributes play an important role in supporting the users

understanding of the origin and importance of any computed dependency.

In the ontology-based metamodel, the descriptive attributes are defined as an OWL

class to represent the each of the dependency attributes. The attributes can be

associated with any dependency relation using OWL object properties.

74

Figure 3-3: Descriptive Dependency Attributes supported in the metamodel.

The descriptive dependency attributes are optional because they provide supplementary

information for the dependency model and as such do not need to be in the

computation of the dependencies chains. However, the usage of “Strength” attribute

enabled more detailed dependency analysis as shown in Section 3.2.6.4.

The descriptive dependency attributes, shown in Figure 3-3, are described below:

Strength (Level) [Optional]: This attribute is a measure of the frequency of the need

or the importance of this dependency from any architectural entities viewpoint. In the

context of ontology-based integration systems, this can be interpreted as the level at

which the dependency occurs. For example, if element A depends on element B and

element B depends on element C then the second dependency relationship is at the

second level from the viewpoint of element A.

In the ontology-based metamodel, this is represented as the “Strength” concept that can

be associated with a dependency relation using the “hasstrenghtattribute” object

relation. This is a property (integer) to represent the level at which the dependency

occurs. In the metamodel, the value range for this property is unrestricted (i.e. it can

take any integer value).

Impact [Optional]: This attribute is used to define a measure of how the entity’s

function is affected by compromise or failure at this particular dependency. This can be

interpreted as the extent to which the elements, that are part of the dependency, are

critical to the operation of the integration system. For example, if the elements that

comprise the dependency relation are used in all (or many) integration use cases then

the failure to evolve the mapping would have a high impact on the integration system.

In the ontology-based metamodel, this is represented as the “Impact” concept that can

be associated with a dependency relation using the “hasimpactattribute” object relation.

75

This is represented as a datatype property of type String. In the metamodel, the value

range for this property is unrestricted (i.e. it can take any string value).

Cause [Optional]: This attribute provides a definition of the underlying cause of the

dependency relationship. As will be seen later in the case studies, in ontology-based

integration systems, we see dependencies occurring between mappings due to

overlapping of data elements (called overlapping dependency) or overlapping of the

functions specified for a mapping (called function-based dependency).

In the ontology-based metamodel, this is represented as the “Cause” concept that can

be associated with a dependency relation using the “hascauseattribute” object relation.

This is represented as a datatype property of type String to represent the underlying

reason for the dependency. In the metamodel, the value range for this property is

unrestricted (i.e. it can take any string value).

The OWL code for these relationships is shown the figure below (Code 2).

Dependency Graph: This concept represents the domain that is under study and, as

seen later, is represented by the root node in the graph visualisations. The graph

concept supports the following attributes:

• Type [Optional]: A property of type String to represent the graph type (e.g.

cyclic, acyclic, direct, undirected). This can be used to support the

automatic rendering of the graph in the visualisation factory code seen later.

<owl:ObjectProperty rdf:ID="hascauseattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Cause"/>

 </owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasimpactattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Impact"/>

 </owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasstrenghtattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Strength"/>

 </owl:ObjectProperty>

Code 2: Metamodel Descriptive Attributes

76

In the metamodel, the value range for this property is unrestricted (i.e. it can

take any string value).

• Name [Optional]: A property of type String to provide a name for the

graph. In the metamodel, the value range for this property is unrestricted

(i.e. it can take any string value).

• Version [Optional]: A property of type String to represent version number

of the graph. In the metamodel, the value range for this property is

unrestricted (i.e. it can take any string value).

The OWL code for the metamodel is provided in full in the Appendix. I.

77

3.2.4 Domain Specific Dependency Model Creation Process

The dependency metamodel can be used to create domain specific dependency models

using the process defined in (Figure 3-4). This process was developed during

experiment two by analysing the steps needed to build the domain specific model for

the generalised ontology-based integration test system. The steps were then generalised

to the process shown below:

Figure 3-4: Process for domain model creation

Step 1 - Domain Decomposition: This step is responsible for the decomposition of the

domain into abstract entities that represent the architectural parts of the domain. This

process step is required to create the abstract elements that participate in dependency

relationships. The purpose of decomposition is to identify the key elements in the

78

system under study. Once these key elements have been identified, appropriate

abstractions of these elements can be created and represented as Architectural entities

from the metamodel.

Step 2 - Dependency Relation Creation: This step is responsible for the design of the

dependency relations that exist between the architectural elements defined in the

previous step. This step is required to understand the relationships between the

elements in the domain under study. Input from domain experts is needed to support

the development of the relations. The experts need to select which types of relationship

exist between the elements in the domain from the available relationship types

supported by the metamodel. This step creates the input needed to describe the

behavioural and descriptive attributes of the dependency metamodel.

Step 3 - Model Creation: This step creates subclasses of the metamodel architectural

entities for all entities designed in step 1. These subclasses are domain specific and

form the parts of the system that participate in the dependency relationships.

Step 4 - Relation Creation: This step creates child object properties of the metamodel

dependency relations for all relations designed in step 2. These properties are domain

specific and are formed between the domain specific architectural elements from the

model creation step. Once this step is complete, the domain specific dependency model

has been created. The final step is to populate the model with data instances.

Step 5 - Instance Population: This step creates and populates instances of the

architectural elements into the domain specific model. Data from the system under test

is required to carry out this step. The data sources must identify instances of the

architectural entities and the first dependency of that architectural entity. In the context

of the dependency model that was created for generalised ontology-based integration

system in this thesis, the mapping file provided the source of this data.

79

3.2.5 A Domain Specific Ontology-Based Dependency Model
(OBDM)

This section describes the ontology-based dependency model that was created using

the process from Figure 3-4 (Section 3.2.4) and the ontology-based metamodel from

Section 3.2.3.

This dependency model was created to support the evolution of mappings in a

generalised ontology-based integration system that is described in detail in Section 3.3.

The generalised ontology-based integration test system was deployed to resolve the

heterogeneity in the logistics data in experiment two. The mapping file from the

integration system was used to support the development of the ontology-based

dependency model.

This section discusses steps one to four from the process (Figure 3-4) to create the

ontology-based dependency model from the mapping file for such an integration

system. The remaining step for the process is described in Section 3.2.6 where are tool

(called Towards Ontology Mapping Evolution) was developed to support step five.

Domain Decomposition

The decomposition step enabled the creation of sets of architectural abstractions (called

architectural entities) that represented key features of the integration system.

The mapping file was analysed to identify the major integration system components

referenced in the mapping file. The analysis was carried out by drawing out each

mapping using a simple graphical form where nodes represented ontology classes, data

properties and mappings and arrows represented a dependency relationship. Using this

analysis the ontology integration system was decomposed into its core architectural

elements. This yielded a list of the key elements that form the architectural elements of

the ontology-based dependency model. The architectural elements were represented in

OWL classes and are subclasses of the metamodel architectural elements and thus

inherit the metamodel behaviour.

80

Dependency Relation Creation

This step required the creation of pair wise dependency relations between each of these

sets of architectural elements already identified. The relations between the architectural

elements form the dependency relations between any two elements in the system. The

relations were created based on expert understanding of the architecture of the

integration system. Each relation created in this process step is added to the model as a

sub relation of the metamodel dependency relationships.

In the case of generalised ontology-based integration system, the dependency relations

were derived from the analysis of the mapping file and how the mapping file is used

(executed) by the integration system.

The sequence of execution of the generalised ontology-based integration system

indicates that the concepts in integration ontologies depend on the mapping

specification and the mapping specification depends on the lower ontology concepts

that in turn depend on the data sources.

Model Creation

The previous steps had identified the architectural elements and dependency relations

between them. The model creation step used the Protégé ontology development tool

[Protégé] to create a dependency model in OWL [OWL]. This step required that the

dependency metamodel is imported into Protégé. The architectural elements were

created as sub concepts of the metamodel “Architectural Entity” concept. The

dependency relations were created as sub properties of the metamodel “Dependency

relations”.

The resulting domain specific ontology-based dependency model is shown in Figure

3-5.

81

Figure 3-5: Domain Specific Dependency Model

The model consists of the following parts:

Architectural Elements
The fundamental parts of the integration system are represented by the following

abstracted elements.

• Upper Entity (UE): Represents an ontology class or property from the

integration ontology of the generalised ontology-based integration system. Each

upper entity has a dependent object relationship with a mapping using the

“ue2mp” dependency relationship.

• Mapping (MP): Represents an ontology mapping from the generalised

ontology-based integration system. Each mapping has a dependant object

relationship with a lower entity using the “mp2le” dependency relationship.

Each mapping has a function (FN) associated with it using the “executes”

dependency relationship.

82

• Lower Entity (LE): Represents an ontology property from the lower ontology.

This represents a URI
13

 (that has been created automatically using the D2RQ

API [D2RQ API]. Each lower entity has a dependant object relationship with a

grounded entity (GE, discussed next).

• Grounded Entity (GE): Represents a database property from the data sources

used by the generalised ontology-based integration system.

• Function (FN): This concept represents the executable function that is used to

transform the data sources elements into the ontology class. These functions are

referenced by the mappings in generalised ontology-based integration system.

• Input Parameters (IP): The input parameters of the mapping function (i.e.

names of the UE, MP, LE or GE elements that are used in the input parameters

of a mapping function).

• Output Parameters (OP): The names of the UE, MP, LE or GE that are used

in the output parameters of a mapping function.

• Local Parameters (LP): The names of the UE, MP, LE or GE that are used in

the local code of a mapping function.

The following object relations form the dependency relationships between the

architectural elements in the model.

• UE2MP: Transitive and symmetric object property with domain UE and range

MP.

• MP2LE: Transitive and symmetric object property with domain MP and range

LE.

• LE2GE: Transitive and symmetric object property with domain LE and range

GE.

• EXECUTES: An object property with domain MP and range FN.

• HASINPUTPARAMS: An object property with domain FN and range IP.

• HASOUTPUTPARAMS: An object property with domain FN and range OP.

13

 A Universal Resource Identifier.

83

• HASLOCALPARAMS: An object property with domain FN and range LP.

The dependent relations (ue2mp, mp2le, le2ge and executes) are sub properties of the

appropriate metamodel relations (e.g. transitive_symmentic_dependency_relation”)

that is in turn a sub property of the general “DependencyRelation” object property

from the metamodel. This allows transitive propagation to occur at the more general

“DependencyRelation” relation level, enabling chains of dependencies to be built using

an OWL reasoner.

Figure 3-6 provides an example of the dependency relations (ue2mp, mp2le and le2ge)

described above. This figure was generated using the TomE tool described in Section

3.2.6 and the logistics data described in Experiments two and four (Section 4.4 and

4.8). A dependency chain for a UE (Upper entity) called “UE-carriers-names” is shown

in the figure below. This dependency chain has a MP (Mapping Point) called “MP-c1”

LEs called “LE-exp_test_db2-logistics-Awards” and “LE-exp_test_db2-Logistics-

Awards” amd GEs (Ground Entities) called “GE-exp_test_db2-logistics-Awards” and

“GE-exp_test_db2-Logistics-Awards”.

Figure 3-6: Illustration of Dependency Relations

84

The UE represents a concept in the domain ontology of the integration system, the MP

represents the mapping between the domain ontology and datasources and the LEs and

GEs represented the datasources entities which are accessed by the integration system.

[Note that the TomE tool does not provide a view of the functions specified for this

mapping – this limitation is discussed in Future work in Section 5.3.2]

85

3.2.6 Dependency Analysis Tool (TomE) Implementation

The ontology-based dependency metamodel and process for domain model creation

(Figure 3-4) was used to create an ontology-based dependency model in OWL as

described earlier.

A tool called TomE (Towards Ontology Mapping Evolution) was developed to provide

software support for the last step in the process (that is, instance population described

in section 3.2.4), and in addition to enable analysis and visualisation of the

dependencies in the generalised ontology-based integration system.

The TomE tool was used in experiments three and four to support the analysis of the

dependencies in the mappings in an ontology-based integration system from

experiment one.

3.2.6.1 TomE Functional Architecture & Design

The TomE tool takes a mapping file from the generalised ontology-based integration

system as input and produces visualisations of the dependencies between the

architectural elements based on the dependency relations described in the ontology-

based dependency mode.

The functional architecture of the TomE tool is shown in Figure 3-7 below.

The architecture is composed of four functional areas. Each functional area follows a

factory design pattern where each functional area consumes data from the previous

area, processes it and passes it to the next area. This approach provided functional

segregation of code.

The “Mapping Factory” is responsible for loading the mapping file and generating

dependency model instances. The “Model Factory” is responsible for loading and

reasoning over the ontology-based dependency model. The “Dependency Factory” is

responsible for generating dependency graphs using the ontology-based dependency

model. The “Visualisation factory” is responsible for generating visualisations of the

dependency graphs.

The design of each functional area is described below.

86

Figure 3-7: Functional Architecture TomE Tool

Mapping factory: The mapping factory is a set of classes that provide access and

deserialisation functionality of mappings. Mappings are decomposed by this subsystem

into Java classes that represent each of the architectural elements in the domain model.

In the current implementation of the tool, a bespoke adapter class is needed to convert

the elements of the mappings into architectural elements as described in section 1 of

the process above. The final step is to generate ontological concepts for the

architectural entities. This is the role of the instance generation functionality.

The class diagram for the access and deserialisation is shown in Figure 3-8.

87

Figure 3-8: Class diagram for mapping factory

With reference to Figure 3-8, mappings are loaded from an XML file using Java SAX

API [SAX] and stored in a temporary DOM document object. This is handled by the

mapping_factory methods. The mapping document is parsed element by element to

extract the mappings fields into a Java list of mapping objects. In the current

implementation of the adaptor, a “mappingfunctionslist” class processes the mapping

functions separately as the function names need to be manually extracted from the

function descriptions in the generalised ontology-based integration system. The

“mappingfunctionslist” class is responsible for loading the function names associated

with each mapping.

The gen_model_instance() method of the mappings_factory class creates OWL model

instances of architectural entities from the runtime list of mappings. In the current

implementation, the adaptor is hand coded to decompose the mappings list to the

appropriate OWL instances and relationships that have been designed in the domain

specific model. The OWL instances are also saved to file to allow offline analysis and

debug (in Protégé for example).

88

An example OWL instance is shown below:

The resource type UE-UE1 represents the architectural entities of type “UE”. In this

case, it has one property called “ue2mp”. This property is an object relation that is

defined in the domain specific model.

Model factory: The ontology-based dependency model (OBDM) was created using

Protégé [Protégé] and realised in OWL-DL as described earlier. The model factory is

responsible for creation of the in memory ontology model from the dependent model,

preparation and validation of the model. The model is created in memory using the

Jena API [Jena] as follows:

These steps create the dependency model, bind it to the Pellet reasoner [Pellet] and

perform a validation of the model. Validation is used to verify the correctness of the

ontology elements created (architectural entities) in previous steps. Dependency

reasoning is to compute the dependent elements on any specified architectural element.

A containment reasoning method (builddependencies) invokes reasoning over the

model to compute the containment of any specified resource. The TomE tool computes

the containment for every upper entity (UE) in its model. Each containment

computation yields a list of the elements that depend on that UE. In the current

implementation of TomE, these elements are stored in a global list structure using a

Java array list type. The list structure is a simple representation of the dependencies

DM_model =

ModelFactory.createOntologyModel(PelletReasonerFactory.THE_S

PEC);

DM_model.read(ont);

DM_model.validate();

<UE rdf:ID="UE-UE1 ">

<ue2mp rdf:resource="#MP-MP1"/>

</UE>

Code 3: Instance (UE-UE1) of an Architectural Entity called a UE.

Code 4: OWL model creation in Jena.

89

related to the ontology-based integration system domain that contains fields for upper

entity (UE), mapping (MP), lower entity (LE) and ground entity (GE).

In the context of ontology-based integration system mappings, the in-memory

dependency structure has the following form based on Java array lists (Figure 3-9).

Figure 3-9: In memory Dependency

From these list structures, either the full dependency graph (all UEs) or individual

dependency graphs (single UE) can be created. While this may not be the most

optimum storage method, the array list is well supported for search in Java using Java

Iterators and Collections class. This strategy made programming of the list data simple

for the prototype.

The class diagram for the model factory is shown in Figure 3-10.

Figure 3-10: Class diagram for model factory

Dependency factory: The dependency factory is responsible for constructing the

dependency graphs from the in-memory dependency lists. In the current

90

implementation of the tool, the dependency graphs for all architectural elements are

pre-computed because the computation time is fast (minutes) even for the large

datasets used with hundreds of architectural elements.

The dependency factory creates GraphML [GraphML] output format from the

computed dependency graphs from the model factory. The transformation from

dependency model to GraphML is straightforward because the dependency model

Architectural Element is transformed to GraphML “node” and dependency model

dependency relationship is transformed to GraphML “edge”.

To simplify implementation and aid debugging, the TomE tool creates individual

GraphML files for the views described in the visualisation section. GraphML also

supported labels on edges of a graph. This is used in the prototype to assign levels and

types to the dependency relationships.

Visualisation: The visualisation subsystem is responsible for displaying the computed

graphs. The subsystem provides functionality for search, node expansion and zooming

features on each of the three types of graphical views.

The three graphical views are:

• Full dependency graph: provides the graphical view of the computed

dependency for each upper element in the dependency model.

• Individual node dependency graph: provides the graphical view of any

user selected upper entity. This allows the user to drill down to a localised

part of the dependency graph. (Figure 3-11).

Figure 3-11: Sample Dependency Graph for a UE called “UE1”

Note that the dependency graph for individual nodes (Figure 3-11) does not

display the function associated with the mapping point. However the TomE

91

system does include functions in the computation of dependencies. This is

discussed in the Future Work 5.3.2.

• Individual node dependency graph with levels and types: provides the

view of any user-selected node with the level and dependency types

displayed (Figure 3-12). In the current implementation of the TomE tool,

this view is fully automatic, as the user must update the tool with a list of

UEs to compute this view because it is unlikely to be required for every

upper entity.

Figure 3-12: Sample Dependency Graph with levels and types.

3.2.6.2 TomE Call Sequence

The process to create and view dependencies is managed by the user who follows a

number of screens in the TomE tool. The sequence of method invocation between the

user interface screens and factory classes is shown in Figure 3-13.

Figure 3-13: Call Sequence Diagram for TomE

92

The mappings which the integration system uses have already been created before the

dependency management using the TomE tool can begin. For the work in this thesis,

mappings were created manually using the help of domain experts as described in

experimental setup (Section 4.2.5).

Dependency management using TomE has three steps. The first step involves calls to

the mapping factory to load and process the mapping file. The mapping factory

consumes mapping files and produces model instances.

The second step involves calls to the model factory. The model factory consumes the

dependency model, dependency model instances (from step 1), run ontological

reasoning over the OBDM and produces in memory representations (Java lists) of the

dependencies.

The final step involves calls to the dependency factory. The dependency factory

consumes the in memory representations of dependencies and produces GraphML

representations that are ready for visualisation.

3.2.6.3 TomE Ontological Reasoning Operations

Reasoning over the OBDM is carried out in the model factory (3.2.6.1) as described

below. The TomE tool performs ontological reasoning over the dependency model to

automatically carry out some critical functions related to the creation of dependencies

as described below. The reasoning is carried out by the Pellet reasoner bound to the

Jena model that instantiates the ontology-based dependency model.

The first type of automated reasoning that TomE tool used is the model validation.

This ensures that the instances of the dependency model that have been constructed in

the mapping decomposition process are correct.

The TomE tool also uses reasoning over the model to pre-compute the dependencies

for each UE defined in the model. This is the longest computation task that the tool

needs to carry out. The OWL axiom for each UE takes the form shown below:

93

Code 5: OWL Axiom to infer dependency chain for any UE

This pre-computation approach might be a cause for concern if there were large

(thousands) of UEs in the model. In the samples with approximately 100 UEs from the

logistics domain used in experiment two, the computation still finishes in less than 4

minutes on a lower end machine.

A simple solution to this potential problem would be to compute the dependencies on

demand based on the particular UE the user is interested in working on.

3.2.6.4 TomE Dependency Types and Levels Processing

The TomE tool also computes the levels and types of dependency relations so that

these can be rendered in the graphical visualisation. In the current implementation of

the tool, this view of the data is not pre-computed. A second invocation of the TomE

because the tool is needed to compute and record the level and type for each

relationship as it built the chain of dependencies. The second invocation is needed to

allow the user to specify which entities to compute the types and levels for.

The level and types were computed using the procedure shown in Figure 3-14 below.

<owl:Class rdf:ID="InferDepsOf_UE1">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>

<owl:hasValue rdf:resource="#UE1"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

94

Figure 3-14: TomE Levels & Types Algorithm

The procedure is implemented in Java and does not make use of Pellet reasoning. This

would have required the creation of OWL axioms to support the various search and

find operations of the procedure. This java based approach was taken for the first

implementation of the Types and Levels algorithm but should be implemented in

future versions of TomE by adding the axioms to the domain specific model and

STEP 1. Specify Starting Node.

a) User specifies which UE instance to generate levels and types for.

STEP 2. Get first level MP

a) With the specified UE, find the direct dependents using the “ue2mp” relations.

Note down the MP(s) instances names

b) If MP from step 2(a) has functions specified, find the associated UE and MP

using the function parameters. Note down the MP(s) instances names.

STEP 3. Get first level GE

a) Find GE(s) which directly depend on the MP in step 2(a) using the “mp2ge”

relation. This yields a list of GE(s).

STEP 4. Get other levels

a) Find other MP(s) that have mp2ge relations with the GE(s) in step 3. Note the

MP instances names.

b) If the MP from step 4(a) has functions specified, find the associated UE and

MP using the function parameters. Note down the MP(s) instances names.

=> Set Level to X and Type to overlapping type.

=> Set Level to X and Type to function based type.

=> Set Level to X+1 and Type to overlapping type.

=> Set Level to X+1 and Type to function based type.

STEP 5. Repeat

Repeat step 4 until no more GE(s) remain to process.

95

updating the TomE tool to enable the axiom to be processed. This would reduce the

code complexity of the TomE tool by allowing reasoner to carry out parts of the

algorithm.

The current implementation created a GraphML output file for the user specified UEs.

The GraphML file can then be loaded in the TomE tool. The output file used dedicated

tags to label the levels and types as shown in the GraphML snippet below:

3.2.6.5 Technical Implementation

The TomE tool was implemented as a Java Desktop application using the Eclipse

development environment [Eclipse]. The user interface provides a set of tabbed panes

(Figure 3-16 and Figure 3-17) that map to the functional areas described above. The

process to generate the graphical views can be controlled by user interface to allow

inspection of the output at the end of each point in the process.

The third party libraries used by TomE are shown in Figure 3-15:

Component Task Library

Mapping factory XML processing SAX

Model factory Ontology Management Jena 2.0

Model factory Ontology Reasoning Pellet2.0.0rc4

Model factory Ontology Query ARQ

Visualisation GMF, GraphML Eclipse GMF, Java

GraphML
Figure 3-15: API Usage

To carry out dependency analysis using the tool, the user needs to navigate through the

TomE tool as described in the following three steps.

<key id="type" for="edge" attr.name="type" attr.type="string"/>

<key id="level" for="edge" attr.name="level" attr.type="string"/>

<edge source="MP1" target="MP2">

<data key="level">2</data>

<data key="type">2</data>

</edge>

Code 6: GraphML code snippet

96

Step 1 – Load and Decompose Mappings
The first tabbed pane (Figure 3-16) of the TomE tool provides control over the

mapping factory classes. This pane loads the mapping file and generates the instances

of the dependency model from the mapping file.

Figure 3-16: TomE Control Panel

Step 2 – Dependency Model Control and Dependency Generation
The second pane (Figure 3-17) of the tool provides user control over the ontology

model factory. Using this pane, the user can load the model, run dependency inferences

and create the GraphML outputs.

Figure 3-17: TomE Ontology Control

97

Step 3 – Run Visualisation
The final step is to load the visualisation of dependencies. The third pane (Figure 3-18)

runs the visualisation. The visualisation provides four main areas of functionality.

Dependency visualisations are loaded using the File menu.

Once loaded, the dependencies can be expanded, collapsed, zoomed and repositioned

using the main dependency-viewing pane (Area 1 below). The behaviour of main

viewing pane can be controlled using the graph control pane (Area 2 below) using the

standard functions provided by the GraphML viewer.

Figure 3-18: TomE Visualisation

Using the Node Search (Area 3 in Figure 3-18), any individual node can be searched

for. The overview panel (Area 4 in Figure 3-18) provides an overview panel of the

entire graph that is useful when looking at very large graphs.

98

3.2.6.6 Worked Example of TomE Usage

A worked example of the usage of the TomE tool is provided in Appendix III. It

illustrates the input and outputs of the TomE tool. It assumes the existence of a

mapping file based on a simplification of the mappings using in the generalised

ontology-based integration system designed for experiment one.

99

3.3 Generalised Ontology-Based Integration Test System (HotFusion)

This section describes the design of the generalised ontology-based integration test

system. The test system was used in experiments one and two to support the integration

of the heterogeneous data sources based on the use cases described in the experiments.

Note that a fully functional ontology-based integration system was not needed, rather

the test system focused on the specific requirements arising from the aims of

experiment one. The requirements for the ontology-based integration test system are

discussed in Section 3.3.1.

The test system was implemented in a tool created by the author of this thesis that was

called HotFusion.

3.3.1 Design Requirements

The requirements for the ontology-based integration system arose from the aims of

experiment one. The aim of experiment one was stated as “Discovery of key issues

related to integration performance when applying an ontology-based integration

approach in an industrial context.”

Following a state of the art review of approaches to ontology-based integration, the

hybrid ontology approach [Wache et al. 2001, Cruz and Xiao 2005] was adopted to

create the generalised ontology-based test system. The hybrid approach offers

improvements in implementation effort, support for semantic heterogeneities, adding,

and removing of source over the single or multiple ontology approaches [Wache et al.

2001].

The key requirements for the design of a test system based on the hybrid approach

were:

• Integration system to provide a general integration engine (code) that would

operate the same way across different integration domain. (Requirement 1)

• Clear separation of the domain ontology, mappings and data sources.

(Requirement 2)

• User interface to enable step-by-step analysis of the integration.

(Requirement 3)

Requirement 1 was created to ensure that as different integration use cases were tested

with the system, the basic integration engine (or code) did not have to change.

100

The system that was designed was tested using the THALIA integration benchmark

[Stonebraker 2005] to ensure it provided adequate integration capability.

Requirement 2 was created to ensure that relationships between the major components

of the system had well defined interfaces and that the minimum level of dependency

existed between the major parts of the system. A factory design approach was used that

divided the system into functional areas that consume an input, process it and pass it on

to the next functional area.

Requirement 3 was created to ensure that as integration use case was running, the

outputs of each step could be verified. To realise this, the generalised ontology-based

integration system has a graphical user interface that provides control over the

execution of the integration use case.

These specific requirements, defined above, for the generalised ontology-based

integration system meant that a full functional ontology-based integration was not

developed and was considered beyond the scope of this research.

In particular, the test system here does not provide functionality in a number of areas

where a fully functional system would need. For example, a full functional integration

system would provide user interface support of the creation of ontologies, mapping

creation and integrated view creation and reporting.

3.3.2 System Overview

The generalised ontology-based integration test system consists of an upper ontology,

that contains a high level definition of the business concepts used in the integration

domain and lower ontologies that lift the database schema to a resource description

framework (RDF) format [RDF]. The upper and lower ontologies are connected using

mappings based on the INRIA [Euzenat 2004] mapping format. The lower ontologies

are connected to the data sources using the D2RQ API [D2RQ API].

101

database 1

Lower Ontology 1

Upper Ontology

Lower Ontology n

database n

Integration Application

mappings

Figure 3-19 Integration Test Bed Overview

Upper Ontology

The upper ontology can be developed by gathering information about each domain

from domain professionals. The approach taken in experiment one and two was to have

each professional summarise their domain understanding in a short précis. These

descriptions were used to create a common view of the domain.

By extracting the concepts and relations described in the précis, an ontology can be

developed in OWL [OWL] using the Protégé development kit [Protégé].

Ontologies are instantiated in the integration application using the Jena API [Jena].

Lower Ontologies

The lower ontologies lift the basic database schema information into RDF using D2RQ

API [D2RQ API]. This allows for automatic generation of the ontologies from the

databases and once instantiated in a JENA model, the lower ontologies can be queried

using SPARQL. The D2RQ API automatically converts the SPARQL queries to SQL

and returns a set of triples to the caller.

The lower ontologies contains classes and properties for each of the underlying

database schema items and are accessed through a set of mapping files automatically

created by the D2RQ API.

102

Mappings

A bespoke mapping implementation was created by the author of this thesis that is

based on the INRIA format but additionally allows a Java function to be called to

execute a complex mapping.

The mappings used in this prototype support simple equivalence mappings (class to

class, property to property), union type mappings (property A is the union of property

B and property C) and complex conversion mappings (property A can be converted to

property B using relation AB). In this prototype, relations are encoded as standalone

Java functions.

A complex mapping (to sum three revenue fields into one) with a function specified

looks like:

This mapping method was realised using an XML format. The integration system

executes the mappings in a predefined way as shown later in this chapter.

The XML realisation of this mapping scheme requires that each mapping has the

following tags:

• Source ontology property name

• Destination ontology name

• Destination properties name

• Destination instance access information (Optional)

Some properties require “instance access” information. For example, to access a

customer name, we need to know its customer id. This link information is also with the

mappings (but raises some database schema knowledge into the mappings).

Entity1=http://someUrl/upperontology/#forecast_reveneue_q1

Entity2=http://someUrl/lowerontology/#forecast_revenue_m1,

 http://someUrl/lowerontology/#forecast_revenue_m2,

 http://someUrl/lowerontology/#forecast_revenue_m3,

Relation=function

FunctionHandle=sum_revenues

Code 7: Mapping Specification

103

A simple example of a mapping in XML follows:

This mapping means that the “Customers_region” property from the upper ontology is

mapped to the “region” property in the ontology “sales” and to access a region you

need to have a “customers id”.

A complex mapping is show below:

Code 9: XML mapping snippet

This mapping means that the “sales_rev_q1” property from the upper ontology is

mapped to the “revm1, revm2, revm3” properties in the ontology “forecasts” and to

access it requires an “oppid” and execute the “sum_revenue” function.

Functions are implemented using Java dynamic class loading and an interface class as

shown below.

<mapping>

 <mapping_number>19</mapping_number>
 <source_type>p</source_type>

 <source_name>sales_revq1</source_name>
 <dest_ont>forecasts</dest_ont>
 <dest_type>p</dest_type>

 <dest_prop_name>revm1,revm2,revm3</dest_prop_name>
 <dest_class_name>forecasted_items</dest_class_name>

 <dest_pkey>oppid</dest_pkey>
 <function>sum_revenue</function>
</mapping>

<mapping>
 <mapping_number>9</mapping_number>

 <source_type>p</source_type>
 <source_name>customers_region</source_name>
 <dest_ont>sales</dest_ont>

 <dest_type>p</dest_type>
 <dest_prop_name>region</dest_prop_name>

 <dest_class_name>customers</dest_class_name>
 <dest_pkey>id</dest_pkey>

</mapping>

Code 8: XML Mapping snippet

104

Code 10: Java Code snippet - Dynamic Class Loading

For each complex mapping in the mapping file, a class must be created that

implements the “convert” method from the interface class.

Mapping functions are dynamically loaded and executed by the integration system as

follows:

Code 11: Java Code snippet - Dynamic Class loading

The “funcname” is loaded from the mappings XML description.

This method of dynamic loading and mapping function naming is very flexible because

the existing mapping functions can be updated without interfering with the mappings

file or the main integration system code. New mapping functions can be added to the

system by updating the mapping file.

Ontology and Database Query

Ontologies are instantiated in the integration application using JENA API [Jena]. The

ARQ (SPARQL) API [SPARQL] is used to generate queries on the upper and lower

ontologies.

public interface mappingif {

 public String convert(…);

}

URLClassLoader loader = null;

loader = new URLClassLoader(new URL[] {file.toURL()});

Class c = loader.loadClass(funcname);

Mappingif var = (mappingif) c.newInstance();

var.convert(...);

105

3.3.3 Functional Architecture & Design

The functional architecture for generalised ontology-based integration system, called

HotFusion, is shown in

Figure 3-20.

Figure 3-20: Integration System Functional Architecture (HotFusion)

To fulfill design requirement 2 from Section 3.3.1, the system was divided into the

following functional areas:

• Mapping Factory: The mapping factory is responsible for loading and

processing the mapping file for the integration system. The classes in this

functional area convert the XML mapping file into an internal Java list

structure to enable fast searching over the mappings. This class is very similar

to the mapping factory class used in the TomE tool described earlier with

respect to the loading of XML mappings. The main difference between

implementations is that the search functions have different functionality based

on different needs of the TomE tool and integration test bed.

106

• Model Factory: The model factory is responsible for loading, verifying and

querying the upper ontology. It provides functionality to the Integration

Execution Engine that is described next.

• Integration Execution Engine: The integration execution engine executes a

series of steps that are described in Figure 3-21. This provides the functionality

need to fulfil design requirement 1 from Section 3.3.1.

• User Interface: A tabbed graphical user interface is provided by this functional

area. This provides control over the execution of the integration use case by

allowing the user to execute the integration in a series of steps using buttons on

the user interfaces.

The integration engine carries out the integration using the steps defined in Figure 3-21.

Figure 3-21: Integration Process

• Integration Goal Specification: The user or application specifies an

integration goal. In the test system, the goal is hard coded into the application.

The integration goal specifies what the users or applications wish to integrate

and contains the concepts to integrate and the data needed to select the

information (the key information).

107

• Concept Discovery: Using a SPARQL query [SPARQL] on the upper

ontology, each concept in the goal is supplemented with the properties

available for that concept. (e.g. customer_info concept ‘becomes’

customer_name, customer_id, customer_region etc…)

• Mapping Execution: The mappings are now applied to the concept and

property names. This step then generates SPARQL queries on the lower

ontologies.

• Lower Ontology Query: Output from the mappings step is a sequence of

SPARQL queries that are run against the lower ontology. These queries are in

turn converted to SQL queries by the D2RQ API [D2RQ API]

• Presentation of Results: Each requested property and the properties value is

returned to the application. In our test system, we have no semantics to help us

construct a formatted report so a simple list of attribute names and values are

returned.

3.3.4 HotFusion Implementation

This section describes the implementation details of the mapping factory, model

factory and user interface implementation.

3.3.4.1 Mapping factory

The mapping factory consists of a set of classes that provide access and manipulation

of the mappings that have been described earlier. The component provides methods to

load mappings from a specified file. Mappings are stored in memory during the

integration process in a Java array list structure. The class diagram for the mapping

factory is shown in Figure 3-22.

The class UCTest3Panel is the user interface class that is used to orchestrate the

integration steps as shown earlier (Figure 3-21).

108

Figure 3-22: Class Diagram Mapping Factory

3.3.4.2 Model Factory

The model factory consists of a set of classes that provide methods for loading,

verifying and querying integration ontology (upper ontology).

The class diagram for the model factory is shown in Figure 3-23

Figure 3-23: Class Diagrams for Model Factories

The model factory loads the integration ontologies using Jena API [Jena]. The

integration is stored in memory as a Jena OntModel Object.

The model factory also provides classes to load the lower ontologies. Each of the lower

ontologies are loaded as D2RQ objects “ModelD2RQ” from the D2RQ API [D2RQ

109

API]. Note that the integration code will need to load one lower ontology model for

each data source that is included in the integration system.

In the current implementation of the HotFusion, these object references are managed in

user interface code.

3.3.4.3 User Interface

The user interface (Figure 3-24) classes provides a set of Java tabbed panes to allow

independent setup, execution and monitoring of the different use cases (e.g. logistics

for experiment three).

In the current implementation of HotFusion, the orchestration of the use case needs to

be manually coded in the button action handler of the appropriate tabbed pane.

This approach was taken to simplify coding and ensure focus on what the integration

steps are and not how they might be automatically orchestrated (e.g. using some

orchestration or workflow approach).

Figure 3-24: Integration System Control Panel (HotFusion)

3.4 Summary

This chapter described the design and implementation of the models, tools and test

beds that were created to support the dependency modelling approach taken in this

research. Chapter 4 describes how these models, tools and test beds were used to

support the evaluation of the research question.

110

4 EVALUATION

4.1 Overview of Experiments

Four experiments and one corroborative study were conducted in keeping with the

action-based research methodology of this research. Each experiment supports the

analysis and evolution of the research question. The four experiments deal with the

development and evaluation of an approach to support the evolution of mappings in an

ontology-based integration system. The corroborative study provides an indication of

the genericity of the ontology-based dependency metamodel by applying the

metamodel in another domain.

Figure 4-1 provides an overview of the five experiments and the measurement

approaches applied to them.

Figure 4-1: Relationship between Experiments and Objectives.

The first experiment developed an understanding of the integration performance and

issues associated with ontology-based integration systems. The experiment created an

environment to measure the performance of a generalised ontology-based integration

system. To achieve this, a generalised ontology-based integration system test bed was

created. The integration test bed used data from product line management systems

from the Alcatel-Lucent supply chain. The “integration quality” metric, as defined in

Section 1.2, of the system was measured using the THALIA [Stonebraker 2005]

integration benchmark. In summary, experiment one showed that advantages are

111

gained by using the ontology approach because the solution can cope with semantic

heterogeneity using mappings. However the analysis of the results of experiment one

also showed that the mappings themselves create complex couplings between the

components of the integration system. Experiment one led to the hypothesis that the

complex nature of the mappings makes it difficult to quickly and accurately find the

mappings that are impacted when a data source changes. Experiment two evaluated

the hypothesis that this difficultly in managing changes to the data sources and

mappings could be alleviated by modelling the dependencies that exist between the

components of the ontology-based integration system.

The second experiment developed and evaluated an ontology-based dependency model

(OBDM) that would support understanding of the complex coupled nature of mappings.

The second experiment used mappings which resulted from the application of the

generalised ontology-based integration test bed. The generalised ontology-based

integration test bed was used to resolve the heterogeneities associated with data from

the Alcatel-Lucent logistics supply chain. This experiment confirmed the hypothesis

arising from experiment one regarding the complex nature of mappings by showing the

complex dependent relationships they exhibit with other parts of the system. From

analysis of the results of experiment two, the hypothesis was developed that the

mapping dependency relationships are difficult to identify without tool support. This

hypothesis is confirmed in experiment three.

The third experiment evaluated the performance of the dependency modelling

approach in terms of the accuracy and time taken to find answers in comparison to a

manual process oriented approach that does not have tool support. The manual

approach represents the key steps needed to find dependencies in semantic mappings.

The manual process was developed the author of this thesis by interviewing integration

and logistics experts to identify the key processes required to find the dependencies

within a theoretical set of mappings based on logistics data. A group of 18 users were

given an exercise to find predefined dependencies between sample mappings using the

manual process. A theoretical set of mappings was used during the experiment to

ensure an even distribution of the complexity of the answers across the exercises.

Metrics were collected during the exercises to enable statistical analysis of the time

taken and accuracy of users as they executed the process. The results of the evaluation

112

show that the ontology-based dependency model significantly outperforms the manual

process in both accuracy and time.

In experiment four the ontology-based dependency model and tool was used to support

the evolution of the mappings when performing a real evolution based on an industrial

dataset. For this experiment, a new logistics carrier was introduced that provides

transportation services by sea. This required the analysis and updating of the mappings

used in experiment two. A case study was carried out that identified the dependencies

that arise when the new logistics data source was added to the integration system from

experiment two. The results of experiment four demonstrate how the ontology-based

dependency model can support mapping evolution by showing the dependencies that

exist thus allowing the user to examine the dependency relationships in detail.

Finally, to provide an indication of the genericity of the ontology-based metamodel, a

corroborative study was carried out to test the ability of the metamodel to be applied

outside the ontology-based integration system. A scoped electrical circuit from a

domestic setting was selected as the domain and an electrical engineer was instructed

on the process to create a domain model from the metamodel. A sample dependency

analysis was run on the model based on the requirements of the electrical engineer. The

dependency analysis supported the identification of faults in the circuits based on the

analysis of dependent components in the circuit.

113

4.2 Experiment One – Measurement of “Integration Quality” Metric

4.2.1 Overview

During this experiment the technical environment to measure the performance of a

generalised ontology-based integration system was created. The technical environment

consisted of the generalised ontology-based integration system test bed and the

THALIA [Stonebraker 2005] integration benchmark. The integration test bed was

populated with data from product line management systems based on a use case from

the Alcatel-Lucent supply chain. The THALIA integration benchmark was used to

measure the “Integration Quality” metric of integration system performance as defined

in the introduction (Section 1.2).

In summary, experiment one showed that while advantages are gained by using the

ontology approach because the solution can cope with semantic heterogeneity using

mappings. However, as a result of experiment one a hypothesis was developed that

suggested that the complex nature of the mappings makes it difficult to quickly and

accurately find which mappings are impacted when a data source changes

Section 4.2.2 describes the objectives of the experiment in the context of the research

question.

Section 4.2.3 provides the background to the supply chain based use case that was used

for this experiment.

Section 4.2.5 describes in the detail the approach taken for this experiment.

Section 4.2.6 and 4.2.7 describe the results and conclusions of this experiment.

4.2.2 Objectives & Hypotheses

In the Introduction chapter, the first objective that was derived to evaluate the research

question was stated as “Perform a state of the art review of approaches for semantically

linking local
14

 schema and aggregate or global schema
15

”. To address this, experiment

one derived the following sub-objectives:

i) Identify the generalised ontology-based integration approach using a literature

review to identify the different approaches to support integration.

14

 Local schema refers to a schema that represents the local sources to be integrated.
15

 Global schema refers to a common view of sources to be integrated.

114

ii) Assess the integration performance of this approach using the generalised

ontology-based test bed and THALIA integration benchmark.

iii) Identify the issues that would affect upon an industrial deployment.

Hypotheses

From the state of the art review, the hypothesis was developed that ontology-based

integration approaches can support the semantic integration of heterogeneous data

sources. This experiment tests how well this hypothesis holds when using an industrial

use case and data set.

4.2.3 Use Case Background

Supply chains of large companies are typically comprised of many IT systems that

have developed over time to support various supply chain functions (e.g. Customer

Relationship Management, Demand Forecasting, Production, and Logistics). Each

stage of a product’s life is managed by one or more IT systems. While these systems

have introduced many productivity improvements in their individual areas, they have

also contributed to the creation of separate islands of data in the enterprise.

An important part of many supply chains is Product Lifecycle Management (PLM).

PLM is a supply chain process that manages enterprises’ products through all stages of

their life from initial sales opportunity, demand forecasting, product realisation,

manufacturing, delivery to customer and support to end of life. It is within this area of

the supply chain that data consistency and visibility issues were identified between the

systems that manage the Sales and Forecasting part of the product lifecycle. Lack of

consistency can lead to failure to deliver on time or result in excess of inventory.

To mitigate any risk associated with lack of consistency between sales and forecasting

views of the PLM, organisations attempt to balance forecasting and sales opportunities

[Gilliland 2002]. In the Alcatel-Lucent supply chain, these risks are managed using a

manual integration of financial information from each system. The report that is

produced by this manual integration supplements the financial information with an

integrated view of the customers and products. This involves many manual steps to

export data from the databases and rework with a spreadsheet where the various

heterogeneities are resolved manually.

115

4.2.4 Experimental Approach

Resulting from objective (i) for this experiment (as described above), a state of the art

review of approaches to ontology-based integration systems was undertaken. The

hybrid approach was selected, as discussed in the state of art review, because it offers

potential improvements in implementation effort, support for semantic heterogeneities,

adding, and removing of source over the single or multiple ontology approaches

[Wache et al. 2001].

Resulting from objectives (ii) and (iii) for this experiment, a generalised ontology-

based integration test bed was created, as described in the design chapter. The

generalised ontology-based integration test bed was populated with data based on the

use case from the Alcatel-Lucent supply chain as described in section 4.2.3. The

THALIA integration benchmark [Stonebraker 2005] provided an ideal framework to

measure the “Integration Quality” measurement. In the Introduction chapter, the

“Integration Quality” measurement was defined as:

• A measure of the ability of the system to carry out integrations across a range

of different types of data heterogeneity.

The THALIA benchmark system and tests specify 12 types of heterogeneity that can

be used to test performance of integration systems. The approach taken to run the

benchmark involved the following steps:

• Assess which THALIA tests are covered by the PLM data and manually add

data for any tests not covered. (Section 4.2.5)

• Set up the integration test bed to carry out the integrations based on the 12

THALIA tests (Section 4.2.5)

• Run the integration test bed to generate the integrated report. (Section 4.2.6)

4.2.5 Experimental Setup

This generalised ontology-based integration test bed required the creation of the upper

ontology, mappings and lower ontologies for this domain. The approaches adopted for

these tasks are described below.

116

Integration (Upper) Ontology

The upper ontology (Figure 4-2) was developed by gathering information about each

domain from three supply chain professionals, one working on forecasting, one

working on sales and one working on the current manual integration of the systems.

Each professional summarised his or her understanding of the domain in a short précis.

These descriptions were used to create a common view of the sales and forecasting

area. By extracting the concepts and relations described in the précis, an ontology was

developed by the author of this thesis in OWL [OWL] using the Protégé development

kit [Protege]. Ontologies are instantiated in the integration application using the Jena

API [Jena]. The ontology contained 8 classes, 20 data type properties and 5 object

properties.

Figure 4-2: Excerpt from Upper Ontology

Creation of Mappings

The mapping format was described in the design chapter (Section 3.3). For this

experiment, the relationships between the ontology concepts and database fields were

identified during the ontology design process with the help of the domain experts. The

mappings were then encoded manually into the mapping format. Thirty-one mappings

were needed to implement the use case. The mappings are listed in full in Appendix II.

117

Ten mappings required complex conversion functions to cater for conversions of

different product code formats, quarterly and monthly revenue figures, currency and

date conversions. In experiment one; these are referred to as complex mappings as they

contain a bespoke conversion functions coded in Java. The remaining 21 mappings did

not require conversion functions as they lift the data from the databases without

conversion.

Lower Ontologies

The lower ontologies were created automatically from the databases (described in the

next section) using the D2RQ API [D2RQ API] as noted in the design chapter. The

lower ontologies lift the basic database schema information into RDF (using D2RQ

API.) This allows for automatic generation of the ontologies from the databases and

once instantiated in a JENA model [Jena], the lower ontologies can be queried using

SPARQL [SPARQL].

Database Setup

Two databases from the Alcatel-Lucent supply chain were chosen based on the use

case requirements. The first is an Oracle based system that manages sales opportunities.

It contains high level product and financial information and detailed customer

information. This system has 58 tables and over 1200 attributes. The second system is

a Sybase based system that manages product forecasting. It contains high level

customer information but detailed product and financial information. This system has

50 tables with over 1500 attributes.

As these systems were very large and in active daily use, each database schema was

examined to extract the tables and data that were relevant to the integration use case

and this reduced data set was recreated in two MySQL databases. The integration use

case enabled reduction of the original dataset (tables and properties) to only that data

used in the use case. For example, one database also contains multiple levels of

customer contact detail that is not relevant to the integration use case. This reduced the

data sizes to 8 tables for each database. All schema and real data from the original

databases were preserved in the MySQL versions. To allow the full THALIA

benchmark to be run, the databases needed to be supplemented by additional

complexity in three areas (language expression and virtual columns, nulls – see Table

118

2-1, Section 2.7.1). This was achieved by adding specific data items to databases to

cover these tests.

The integration scenario involved the integration of financial information from each

database, ordered by sales opportunity and supplemented with financial information

with an integrated view of the customers and products. Real instance data from the

Alcatel-Lucent supply chain systems was loaded into the MySQL database to run the

use case.

The integrated report could be represented as shown in Figure 4-3

Figure 4-3: Integrated Report

Sales Opportunity (Opportunity) and Customer information (Customer) need to be

expanded from high level concepts to contain more detailed information such as

customer id and geographical region. This involves integrating information from both

databases (identified as 1 in Figure 4-3).

The Sales view of a product needs to be expanded from a single high level item (Equip

Install) to a collection of items (with ids 15, 16, 17, 18) in the Forecasted view

(identified as 2 in Figure 4-3).

Sales and Forecasted revenue needs to be converted from monthly to quarterly views

(identified as 3 in Figure 4-3).

The key heterogeneities that exist in the underlying data:

• Structural – Simple conversions

Example 1: currency units in one schema need to be converted to a

different unit in the second schema.

• Structural – Relations

119

A single product (high level description) in one schema is represented

by a list of parts (low level description) in the second schema. For

example, a product at the sales database is defined as “ADSL Access

Platform”, in the forecasting database this is broken down into many

parts (frames, cards, cabinets)

• Structural - complex conversions

Example 1: Revenue figures in one schema are stored monthly

compared with quarterly revenue in other schema. The upper ontology

deals with quarterly revenue and a conversion (summing) of monthly to

quarterly revenue needs to occur.

Example 2: “Long codes” used in one schema are comprised of three

subfields in the second schema.

• Semantic - Different class and property names conveying same information

Example 1: Upper ontology has a class called “customers” with

properties “name”, “id” and “region”. Lower ontologies have classes

“custs”, “account” and properties “name”, “id” and “FTS-Tier”

• Semantic - Same property name conveys different information

Example: product_id is used in both the lower schemas but conveys

different information with different granularity

120

4.2.6 Experimental Results (based on THALIA)

This section contains the results related to the objective to measure the performance of

our approach based on the THALIA integration benchmark (objective ii).

With respect to the THALIA integration benchmark, using the generalised approach,

50% automated integration (6/12 tests passed) was achieved. A test was deemed to

have passed if the integration test bed could perform the integration in at least a semi-

automatic way. Table 4-1 below shows the detailed results:

Test Result Effort

1. Synonyms PASS Semi Automatic

2. Simple Mapping FAIL Manual

3. Union Types PASS Semi Automatic

4. Complex Mapping FAIL Manual

5. Language Expression PASS Semi Automatic

6. Nulls PASS Fully Automatic

7. Virtual Columns FAIL Manual

8. Semantic Incompatibility PASS Semi Automatic

9. Same Attribute in different Structure FAIL Manual

10. Handling Sets FAIL Fail

11. Attribute names does not define

semantics

PASS Semi Automatic

12. Attribute Composition FAIL Manual
Table 4-1: THALIA Integration Benchmark Results

Efforts are categorised as follows:

• Fully automatic: no code, mapping or ontology changes needed.

• Automatic: Automatic regeneration of ontology or other configuration artefact.

• Semi Automatic: A mapping needs to be changed manually.

• Manual: Non core code artefact needs to be changed or added manually. (e.g. a

function associated with a mapping)

• Fail: core code changes needed. (e.g. core test bed code needs to be changed)

(Note: this is an extended method of classification that is not part of the core THALIA

system)

121

In total, 31 mappings were needed to implement the use case. Of these, 21 mappings

were simple (e.g. point to point relations) between ontologies and the remaining 10

were complex mappings requiring supporting ‘function code’ to be written.

As Table 4-1 indicates, tests 2,4,7,9 and 12 fail. This was because they required

conversions to be constructed, that in turn required some mapping code to be produced.

Examples of these are:

• In one schema, product id is encoded in a longer representation called

“longcode” and the product-id needs to be extracted (test 7).

Tests 1,3,5,8 and 11 require a mapping to be created that does not require any mapping

conversion function to be written.

Examples of these are:

• customer_name in one ontology is mapped to cust_name in another (test 1)

• product_description in the upper ontology is the union of product information

in the lower ontologies (test 3).

• customer_region in one ontology is mapped to “client” (test 5)

Test 10 fails outright because the mapping format used did not support such “set type”

constructs. To support this would require changes to the integration system code itself

in the way its handles the mappings (i.e. the semantics of the mappings would need to

change).

122

4.2.7 Discussion of Experimental Results

The goal of experiment one was to discover the key issues when applying the

ontology-based integration approach using the THALIA benchmark. The integration

performance and issues found are discussed below.

Integration Performance

The results of applying the THALIA benchmark show the complexity of carrying out

integration of heterogeneity data sources. The score achieved of 50% automated

integration reflects the variety of challenges that the THALIA tests provides.

Extra support could be provided during the mapping process to simplify the effort

needed for test 2 (simple mapping), test 4 (complex mapping) and test 9 (Same

Attributes exist in different structures). This could be achieved by providing the user

with a set of well-known conversions for important (or often used) data types. To

incorporate these conversions in the integration system would require update to both

the mapping structure (to identify which canned conversion to use and specify how to

apply it) and to the integration test system to enable execution of the appropriate

conversions.

To improve the performance of the system for test 7 (Virtual Columns), the ontology

design process could be improved to explicitly identify data of this type in the data

sources and then to make the relationships explicit in the ontology.

It is difficult to envisage how the current integration test bed could be improved for test

10 and 12 without additional coding of new functionality for the integration test bed.

While every data integration use case may not contain each type of heterogeneity

specified by THALIA, as the new integration use cases are added, new heterogeneities

can be expected due to different data designs implemented in the underlying databases.

The goal of the integration test bed was only to provide insight into the integration

system and mapping complexity and thus the improvements proposed above have not

been subsequently implemented.

Mappings create tight coupling.

A third of the mappings used to resolve the heterogeneities in our database were of the

complex type (tests 2, 4, 7, 9, 12). Unfortunately, these mappings create a tighter

123

coupling between the upper and lower ontologies than is desirable because the

conversion functions that need to be written tend to require information from both the

upper and lower ontologies. For example, a non trivial conversion function is needed to

sum the revenue for three months from the lower ontology into a quarterly value for

the upper ontology; however, the function specification for this summation needs to

know from which lower ontology resource to obtain the monthly value.

Furthermore, the number of mappings required will grow as different integration use

cases are implemented because different data properties may need to be mapped

between the lower and upper ontologies. This is problematic because it will require the

user to remember which mappings have already been implemented and what complex

conversions the mappings use. If the integration use case requires a specialisation or

generalisation of an existing concept in the domain ontology then as new mappings are

created they may well refer to some of the database properties used by existing

mappings. This is also problematic because it will require the user to develop an

understanding of the relationships between mappings, the data source and ontologies.

The abstraction level of the upper and lower ontologies also negatively impacts the

coupling. At the lower ontology, there is a low abstraction (few semantics) ontology

and at the upper ontology there is a high abstraction (domain conceptualisation). This

forced some aspects of the integration to be resolved in the application and not in the

ontologies or mappings. For example, there are a number of cases where a property

could be used to find other properties (“opportunity id” allows us to find a “customer

id” and that allows a customer name to be found). However, given the “opportunity id”,

this linkage is not encoded currently in the ontology or in the mappings.

Reasoning in the upper ontology

The integration test bed was designed to support integration by traversing the ontology

(via its OWL object properties) and use the associated mappings to build integrations

of the data that the ontology represents. While this represents reasoning over the

ontology, it did not use a separate ontology reasoner (e.g. the Pellet reasoner [Pellet])

to carry out this functionality since it requires also query functionality over the

ontology. This is implemented in the integration test bed by a piece of Java code and

used the SPARQL API to query the domain ontology. This approach means that the

124

code is reusable over any other domain ontology. The Pellet reasoner was used to carry

out validation of the integration ontology during both the ontology design process and

when the ontology is instanced in the integration system using the JENA API [Jena].

4.2.8 Summary of Conclusions, Open Issues and Limitations

Experiment one measured the performance of the ontology-based integration test bed

using an industrial use case and data set and the THALIA benchmark system. The

integration system achieved 50% automated integration. This score reflects the variety

of challenges that the THALIA tests provides.

From analysis of the results of this experiment, a hypothesis was developed that

mappings exhibit complex dependency relationships with the data sources and

ontologies. Furthermore support for understanding the mapping dependencies would

bring benefits to the integration system when the mappings need to be changed.

While the THALIA score could be improved by further development of the ontology-

based integration test system, a more important issue for an industrial deployment was

identified concerning how the mappings can be evolved as new integration use cases

are added to the system.

The THALIA benchmark provides a simple measure (i.e. a score out of twelve) of the

ability of the system to perform integrations across the twelve types of heterogeneity.

A more comprehensive suite of performance measurements (e.g. runtime performance)

would be needed to confirm the integration systems suitability for industrial

deployment. These aspects of performance were not tested in this research as the focus

here was to investigate the complexity of the mappings.

The THALIA benchmark system does not provide quantitative data on how much

effort is needed to run each test. This is important because, while a test may pass, it

may require costly manual intervention (e.g. mappings updates) that would impact the

scalability of the system. To address this in experiment one an effort classification was

developed and used that provides qualitative estimation of the effort needed for each

test in THALIA.

125

4.3 Next Steps in Action Methodology

From analysis of the results of experiment one, the hypothesis was developed that the

mappings exhibit complex dependency relationships with the data sources and

ontologies. Furthermore support for understanding the mapping dependencies would

bring benefits to the integration system when the mappings need to be changed

The next iteration in the action-based methodology was to create the ontology-based

dependency model to develop an understanding of the dependencies between mappings,

data sources and ontologies to confirm this hypothesis.

4.4 Experiment Two – Mapping Complexity Analysis

4.4.1 Overview

This experiment created the technical environment to support the analysis of the

complexity of the mappings in the generalised ontology-based integration system. This

was achieved by modelling the dependencies that existed between the mappings in the

generalised ontology-based integration system developed as part of experiment one. A

model of dependencies in the ontology-based integration systems was developed in

OWL [OWL]. This model was called the ontology-based dependency model (OBDM)

as described in the design chapter. A tool called TomE (Towards Ontology Mapping

Evolution) was created to load the OBDM and support the analysis of the dependencies.

The mappings used in the generalised ontology-based integration system for this

experiment came from a second use case from the logistics domain of the Alcatel-

Lucent supply chain. The new use case for this experiment required the creation by the

author of this thesis of a new integration ontology for the logistics domain, mappings

and lower ontologies. These were created using the same approaches as described

experiment one.

From the analysis of the mappings in this experiment, it was found that 30% of the

mappings exhibit complex dependency relationships with other mappings. It was

hypothesised that these complex relationships are difficult to identify without tool

support and thus makes the first step of mapping evolution difficult for integrators.

Section 4.4.2 describes in the objectives of the experiment in the context of the

research question.

126

Section 4.3.3 provides the background to the supply chain based use case that was used

for this experiment.

Section 4.4.4 describes in the detail the approach taken for this experiment.

Section 4.4.6 and 4.3.7 describe the results and conclusions of this experiment.

4.4.2 Objectives & Hypotheses

In the Introduction chapter, the second and third objectives that were derived to

evaluate the research question were stated as:

• “Research and develop a model to define the dependencies that arise when

creating semantic links between schemas to support an ontology-based

integration approach between local schemas to global schemas.”

• “Research and develop a prototype tool capable of supporting this dependency

modelling approach.”

To address these objectives, experiment two derived the following sub-objectives:

i) Develop and evaluate an ontology-based dependency model (OBDM) that

would support understanding of the complex coupled nature of mappings.

ii) Confirm the hypothesis from experiment one that the mappings exhibit

complex dependencies relationships with the data sources and ontologies.

Hypothesis

The hypothesis for experiment two was that the complex nature of the mappings in the

generalised ontology-based integration makes it difficult to quickly and accurately find

which mappings are impacted when a data source changes.

4.4.3 Use Case Background

For this experiment, the ontology-based integration systems from experiment one was

tested with a new dataset from the Alcatel-Lucent reverse logistics supply chain
16

. The

ontology-based integration system was used to replace a manual database update

process for a logistics optimization tool developed in Alcatel-Lucent called ALTO
17

.

ALTO is an enterprise system that generates simple cost optimized routing instructions

called routing guides. These routing guides specify the lowest cost logistics company

16

 Reverse Logistics is responsible to repair and return of faulty equipment to customers.
17

 Alcatel-Lucent Transport Optimization (ALTO) is deployed in reverse logistics supply chain.

127

and service to use for any user specified origin/destination/weight. ALTO stores the

rates for all logistics carriers in a relational database that was created using ETL
18

techniques. New logistics carriers and rate updates for existing carriers need to be

incorporated into the ALTO database regularly. To simplify the database update

process (Figure 4-4), the generalised ontology-based integration platform was tested

against this logistics use case to integrate the heterogeneous carrier rates formats into a

single common model of logistics. From the central model, the scripts to load the

ALTO database could be automatically generated.

Figure 4-4: Logistics Rates Integration and Optimisation Applications.

4.4.4 Experimental Approach

To achieve objective (i) for this experiment (as described above), a domain specific

model in OWL [OWL] to represent the dependencies in the system was developed.

This is called the ontology-based dependency model (OBDM). The ontology-based

dependency model was created using a metamodelling approach as described in the

design chapter.

A tool called TomE (Towards Ontology Mapping Evolution) was developed to

instantiate the OBDM and to support the analysis of dependencies in the ontology-

based integration system.

Resulting from objective (ii) for this experiment, the ontology-based dependency

model was used to carry out analysis of the inter-relationships that the mappings

exhibit in the logistics based use case presented in Section 4.4.3

Experiment two required the following steps to be carried out:

18

 Extract, Transform and Load

Logistics Carrier 1
database ALTO

Application

Routing

Guides

Ontology

Integration

System

Logistics

RDB

Load

Ontology-based Integration

Logistics Carrier 6
database

Data Sources Optimization Application

128

• Setup the generalised ontology-based integration system to carry out

integrations based on the logistics based use case. (Section 4.4.5)

• Carry out an analysis of the mapping dependencies using the ontology-based

dependency model (OBDM) (Section 4.4.4.1)

4.4.4.1 Dependency Analysis Approach using the OBDM

The TomE tool provides tool support for the analysis of dependencies in the

generalised ontology-based integration system. To carry out analysis of the

dependencies the user must navigate a set of graphical tabbed panes in TomE. The

tabbed panes are called “Mapping Control”, “Ontology Control” and “Visualisation” as

shown in the design chapter (Chapter 3, Figure 3-16: TomE Control Panel). This

sequence of steps taken to analyse the dependencies is described below.

Step 1 - Use “Mapping Control” tab to Load mapping file

Using the “mapping control” tab, the user can select and load the mapping file.

Step 2 - Use “Ontology Control” tab to generate dependencies.

Using the “ontology control” tab, the user loads the dependency model and model

instances (that are generated from the mapping file). The system tend computes the

dependencies for each elements in the system and generates GraphML data for the

dependencies.

Step 2 - Use “Visualisation” tab to launch visualisation

Using the “Visualisation” tab (Figure 4-5) the user can launch the three types of

graphical views of the dependencies as described in the design chapter.

129

Figure 4-5: Dependency Visualization in TomE

4.4.5 Experimental Setup

To create the mappings to load into the TomE tool, the generalised ontology-based

integration test bed needed to be updated with new upper ontology, mappings and

lower ontologies for this logistics based use case. The approaches adopted for these

tasks are the same to those adopted for experiment one and are described briefly below.

Database Setup
Although the ALTO system incorporates logistics rates from six databases, each

database represents the data from logistics providers that are either door-to-door (DTD)

services or airport-to-airport (ATA) services. In the ALTO system, four logistics

companies provide ATA services and two provide DTD services. The schema for each

the four ATA databases and two DTD databases were very similar. To avoid the

creation of 6 similar databases for the generalised ontology-based integration system, it

was decided to use one ATA and one DTD database. By selecting one ATA and one

DTD type dataset, all of the key heterogeneity was preserved. This step reduced the

number of databases in the ontology-based integration system from six to two for this

experiment. For this logistics dataset, the integration system needed to setup semantic

mappings between the integration ontology and the data sources to resolve the

130

heterogeneities in the data sources. A sample of the heterogeneity in the databases is

given below:

• Service definition: Services exhibit generalization conflicts.

• Destination country specification: Some logistics groups use zones to

represent a group of destination countries.

• Weight specification: Conflicts between unit specifications, single and range

weight specifications.

• Import/Export Charges: Semantic conflicts between the definitions of terms

with the same names.

The ontology-based integration system produces data integrations shown in MS-Excel

format below. (Note: All costs are normalised to USD based on a hand coded exchange

rate.)

 Figure 4-6: Logistics Report

Integration Ontology
The domain (upper ontology) for this case is described below (Figure 4-7). This

ontology was constructed to enable the collection of rates information from each

logistics carrier for any weight and is not designed to be full domain ontology for

logistics. The ontology was developed by interviewing four experts from the logistics

domain in Alcatel-Lucent.

131

Figure 4-7: Concept overview from Logistics Ontology

The main classes in the logistics ontology are summarised below:

• Carriers: A class to represent the details of the logistics provider.

• Services: A class represent the details of the services provided by the logistics

provider

• Ratessheets: A class to represent the rates information provides by the logistics’

provider.

• Surcharges: Classes to represent the various surcharges associated with

logistics (e.g. fuel surcharge, import and export duties).

• Routes: Classes to represent the origin and destination of the logistics routes.

Creation of Mappings
The mapping format was described in the design chapter (Section 3.3). For this

experiment, the relationships between the ontology concepts and database fields were

identified during the ontology design process with the help of the domain experts. The

mappings were then encoded manually into the format was described in the design

chapter (Section 3.3). For this logistics dataset, the integration system needed 92

132

mappings to perform the integrations across 2 databases containing a total of 19

database tables and 234 database fields.

Lower Ontology
The lower ontologies were created automatically from the databases (described in the

next section) using the D2RQ API [D2RQ API] as noted in the design chapter.

4.4.6 Experimental Results

The TomE tool was used to develop an understanding of the complexity of the

mappings from the reverse logistics application use case by carrying out an analysis of

the inter-relationships between the mappings in the system.

The mapping file contained 92 mappings that were decomposed into 92 upper entities

(UE), 92 mappings (MP) and 149 lower and ground entities (LE and GE). This section

describes the dependencies that were found, how they were formed and what impact

they have on the complexity of the mappings.

4.4.6.1 Definition of Dependency Types and Views

In the design chapter, a dependency chain was defined as the set of dependent elements

created by joining simple dependencies together to form a chain. A simple dependency

was defined as a dependent relationship between a pair of architectural elements from

the model (e.g. UE->MP).

The TomE tool creates three different views of dependency based on how dependency

relationships in the model are processed. These types of dependency chain can be

viewed individually using the tool.

The first type of dependency chain created represents a view of the full graph of

dependencies for all UE in the system. This is the default view loaded when the system

starts and can be used to navigate to the other views described below.

The second type of dependency chains created represent views of the dependent

elements within a single UE. These are inferred using its “ue2mp” and “mp2ge”

dependent relations from the OBDM.

The third type of dependency chains created represent views of how dependencies for a

single UE extend across other mappings in the systems. These chains are inferred using

133

the general “depends” relationships from the OBDM. As shown below, this type of

dependency chain can arise for two reasons:

• When some mappings (MP) that refer to a GE used in another mapping

• When some mappings using functions that refer to either UE used in another

mapping

4.4.6.2 Analysis of Dependency Types

The TomE tool created a total of 92 dependencies chains by inferring chains of

dependencies for each UE in the system using OWL axioms defined by the TomE for

each UE in the system as described in the design chapter (Section 3.2.6.3).

An analysis of the dependencies in the system using the different views provided by

the TomE tool shows that there different types of dependency exhibited as detailed

below:

• Non-Overlapping Dependency: This is the simplest dependency type and

occurs when the GE specified in the mapping do not overlap with any other

mapping.

• Overlapping Dependency: This type of dependency occur when mappings

share a GE concept. These are called overlapping dependencies in the analysis

below. (GE concepts represent entities in the data sources).

• Function-Based Dependency: This type of dependency occurs where a

function refers to a UE that is part of another dependency. These are called

function-based dependencies in the analysis below.

A description of each of these types is given below.

Non-Overlapping Dependency.

These dependencies occur when a chain of dependent elements exist as shown here.

 UE->MP->LE->GE

134

This is the simplest dependency type. It is a chain of dependent elements as shown in

Figure 4-8. This type of dependency arises from the mapping shown in XML snippet

below.

Code 12: Mapping Example

This mapping simply states that the ontology property (name) in class (carriers) is

composed of the set (mapping type) of properties found in lower ontologies as

specified by “log1/logistics/awards” and “log2/rates/cname”. This is modelled using

the following chain of architectural elements and can be “typed” as a non-overlapping

dependency. There were 92 dependencies of this type.

Figure 4-8: Non-overlapping Dependency

Overlapping Dependency

When two mappings share the same lower or ground entity (e.g. GE2 is shared below),

the dependency chain that is inferred includes the elements from both mappings. For

<mapping>

<mapping_number>c1</mapping_number>

<mapping_type>ps</mapping_type>

<source_name>carriers:name</source_name>

<dest_ont>log1:log2 </dest_ont>

<dest_prop_name>Awards:cname </dest_prop_name>

<dest_uri_name>logistics:rates</dest_uri_name>

<function>null:null</function>

</mapping>

135

example, in Figure 4-9, UE2 will be inferred to be dependent on MP2, MP3, LE1, LE2,

LE3, GE1, GE2 and GE3. This effectively means the mapping h1 and mapping h2 are

dependent. There were nine dependencies of this type identified in the analysis. This

type of dependency occurs when two concepts in the integration ontology use have

different abstraction levels for a concept and overlap partially. In this example, the

“carriers” concept (UE2) has a lightweight representation of service but the “services”

concept (UE3) has a detailed representation.

Figure 4-9: Overlapping Dependency

Function-Based Dependency

Function-based dependencies occur when a function (part of a mapping) references an

architectural element (a UE, LE or GE) that is part of another dependency. In the

ontology-based dependency model, each mapping (MP) concept has a function

associated with it. The function concept supports the definition of input, output and

local parameters. In Figure 4-10, function F1 requires access to concept UE2

(ratestructure) in its local parameters. The “ratestructure” concept allows access to

information in the database tables that allows transit times (among other things) to be

interpreted as either door-to-door or airport-to-airport.

136

Figure 4-10: Function Based Dependency

20 function-based dependencies were found. The function class of the ontology-based

dependency model requires the specification of input, output and local parameters.

Currently these inputs need to be prepared manually by analyzing each function

implementation (i.e. Java code) and selecting the local, input and local parameter used.

In future, the mapping functions could be automatically parsed to create the input,

output and local parameters.

Mixing Overlapping and Function-Based Dependencies

Mappings can also exhibit combinations of overlapping and function-based

dependencies. This is a composition of the other basic types already presented.

In 11 (of the 20 function based) cases, function based dependencies span multiple

dependencies.

Performance Measurements Taken for the TomE tool.

The dependency analysis was run on a low-end machine with 3G RAM, 2 GHz Dual

Core Processor running Windows XP Professional.

The performance of the TomE tool was measured by noting the time taken to execute

the computation associated with the dependency analysis. The time taken to run the

137

TomE tool up to the point when the tool is invoked to where the visualisations are

ready for the user to load was measured over a sample of five iterations. This time

measurement includes the time taken to load the mappings, run the ontological

reasoning over the 92 ontological axioms and time taken by the user to navigate from

screen to screen in the TomE tool. The average time taken to process the 92 mappings

in the mapping file was 201 seconds.

The dependencies that were created by the TomE tool were desk checked for accuracy

and the system achieved 100% accuracy.

4.4.7 Discussion of Experimental Results

This experiment developed an ontology-based dependency model (OBDM) and tool

(TomE) to support the analysis of mappings arising from the logistics based use case

that was applied to the generalised ontology-based integration system.

The ontology-based dependency model and tool provided a very fast method,

averaging 201 seconds, to represent the dependencies that occurred in the logistics data

set. The tool created 92 dependency chains. Further analysis of the dependency chains,

using the TomE tool, shows the existence of 9 overlapping and 20 function-based

dependencies.

This represents approximately 30% of the mappings. This significant proportion of the

mappings that exhibit these “overlapping” and “function-based” dependencies provides

clear evidence of the complex interconnections that the mappings exhibit.

The overlapping and function-based dependencies are particularly difficult to

recognize manually. This difficulty is due to the number of mappings that would need

to be manually viewed and correlated and the terse nature of data source names. In

TomE, search and visualization features allows impacted elements to be quickly

identified and provides much faster understanding of the complexity of the mappings

in the system. It is hypothesised that these complex mapping relationships are difficult

to identify without tool support and thus makes the first step of mapping evolution,

finding which mappings are impacted by a change, difficult for integrators. This

hypothesis is tested in experiment three.

In the current implementation of TomE, the mapping functions need to be manually

reviewed to understand what other entities in the system they access. While not

completely automatic in the current implementation of TomE, the automatic generation

138

of function derived dependencies is important because it is these functions that are

likely to be subject to change as mappings are evolved.

The system is extensible in a number of ways. The technique of using an ontology-

based dependency model to manage mapping evolution can be adapted to cater for

other mapping formats by simply decomposing the mapping format into the core

architectural entities. The other mapping formats were not tested explicitly in this

thesis. However, in experiment five the ontology-based metamodel was used to build a

dependency model for another domain.

4.4.8 Summary of Conclusions, Open Issues and Limitations

Experiment two has shown that approximately 30% of the mappings in the test system

exhibit complex dependency relationships with other parts of the integration system.

Each mapping exhibits a simple dependency with the ontology and data sources but

also may exhibit more complicated dependencies due to concept specialisation and

generalisation in the domain ontology and reuse of data source or ontology concepts in

the mapping functions.

The classification of types of dependencies (simple, overlapping, function-based)

presented in this experiment may not be exhaustive. However, the ontology-based

dependency model is not prescriptive about “typing” dependencies. The model will

compute all dependencies (irrespective of their type) based on the dependency

relationships that have been setup by the dependency model designer. As noted in the

future work section, an enhancement to the dependency model could use rules to

classify each dependency chain into a type based on the requirements of the

dependency model designer.

The data sources and ontologies have been selected from the industrial use case and

represent a difficult integration use case. The data exhibits all types of heterogeneity

specified in the THALIA tests except the “language expression” and “virtual columns”,

“nulls” tests as defined in Table 2-1, Section 2.7.1.

Only one mapping format (INRIA [Euzenat 2004]) was tested as part of this

experiment. Other mappings formats could cause dependencies between different parts

of the integration system not tested in this experiment. However, the approach taken in

the design of the dependency metamodel and model creation process means that

139

irrespective of the mapping format, once the mapping decomposition process is carried

out, the dependency model will be able to support other mapping formats.

Following analysis of the results of experiment two, a hypothesis was developed that

the mapping relationships are difficult to identify without tool support and thus makes

the first step of mapping evolution, finding which mappings are impacted by a change,

difficult for integrators.

140

4.5 Next Steps in Action Methodology

The next iteration of the action based research focused on the performance of the

ontology-based dependency model.

The hypothesis that was developed as a consequence of experiment two results

analysis, which stated “that complex mapping relationships are difficult to identify

without tool support and thus makes the first step of mapping evolution, finding which

mappings are impacted by a change, difficult for integrators”, now needed to be tested.

To achieve this, the performance and accuracy of a manual approach to dependency

analysis and the OBDM were compared using the “Dependency Identification

Performance” metric.

4.6 Experiment Three – OBDM Performance

4.6.1 Overview

This experiment aimed to demonstrate the difficulty associated with the identification

of the dependencies between mappings within an ontology-based integration system

without tool support. To measure the performance of dependency analysis without tool

support, a manual process for dependency analysis was defined. The process was

created by the author of this thesis following interviews with logistics and data

integration specialists. The interviews enabled the definition of the basic steps of the

process that is fully described in appendix II.

The manual process for dependency analysis was then provided to a group of 18

integration or logistics specialists. Using the process, this group was asked to carry out

a series of dependency analyses using the process. The “Dependency Identification

Performance” metric (Section 1.2) was used to measure the performance of the manual

approach, i.e. the ability of the system to accurately and quickly identify the mapping

dependencies. To measure the performance of the approach, metrics related to time and

accuracy were collected during these exercises.

The results of experiment three shows that with the theoretical set of evolution needs

as exemplified the mappings in the exercises, the dependency analysis is a very

difficult process to carry out without tool support. Furthermore, the results show that

the ontology-based dependency model (OBDM) provides fast, accurate and automatic

141

support of the first step of mapping evolution, i.e. to understand which parts of the

system are impacted by the change.

Section 4.4.2 describes in the objectives of the experiment in the context of the

research question.

Section 4.4.4 describes in detail the approach taken for this experiment.

Section 4.4.6 and 4.6.5.5 describe the results and conclusions of this experiment.

4.6.2 Objectives & Hypotheses

In the Introduction chapter, the fourth objective that was derived to evaluate the

research question was stated as:

• Evaluate the dependency model and tool using a concrete industrial use case.

This objective was addressed by experiments 3 and 4. Experiment three evaluates the

performance of the ontology-based dependency model using a theoretical set of

mappings. (Experiment four used the ontology-based dependency model to carry out a

real set of evolutions based on data from the Alcatel-Lucent logistics supply chain.)

Experiment three confirms the hypothesis derived from the results of experiment two.

This states that complex mapping relationships are difficult to identify without tool

support and thus makes the first step of mapping evolution, finding which mappings

are impacted by a change, difficult for integrators.

The objectives of the third experiment were:

i) To demonstrate the difficulty of the first step of mapping evolution (i.e.

identification of the dependencies in the system) by measuring the accuracy and

speed of a manual process oriented approach when presented with a set of

theoretical data source evolutions.

ii) To confirm the accuracy and runtime performance of the ontology-based

dependency model given the same set of theoretical data source evolutions.

4.6.3 Experimental Approach

 Objective (i) for this experiment required the development of the manual dependency

analysis process, setup of the dependency analysis exercises, setup of statistical

142

framework to measure accuracy and time metrics. The approach taken for each of these

tasks is summarised next.

Manual dependency analysis process

A manual dependency analysis process was developed by interviewing integration and

logistics experts to identify the key processes required to find the dependencies within

a theoretical set of mappings based on logistics data. The process is described in detail

in Section 4.6.4.1.

Dependency analysis exercises

A set of 12 dependency analysis questions was designed by the author of this thesis

based on a set of theoretical mappings. The mappings were divided into small, medium

and large mappings data files. Each dataset has 4 questions associated with it. The 12

questions were created with predefined complexity, based on the type and depth of the

dependency. The type of dependency was simple, overlapping or function-based

(Section 4.4.6.1). The depth of the dependency was a measure of depth of the

dependency chain that needed to be found in the exercises. The questions were

designed to ensure an even distribution in the complexity of the answers across the

exercises

A group of 18 users (described in detail in section 4.6.4.5) were given the datasets and

questions and were asked to find the predefined dependencies between sample

mappings using the manual process.

Statistical framework

Metrics were collected during the exercises to enable statistical analysis of the time

taken and accuracy of users as they executed the process. These metrics were used to

calculate accuracy and time of each exercise, and thus the dependency identification

performance. The statistical analysis was carried out using the R statistical package

(see section 3.5.10).

To achieve objective (ii) for this experiment, the TomE tool was used to compute the

answers to the same questions used in the exercises. The time taken to run the tests for

each data set was measured. The accuracy of the answers was also desk checked.

143

4.6.4 Experimental Setup

This section describes in detail the approach taken for creating the mapping data, the

manual process, for selecting the user groups and the process to run the exercises.

4.6.4.1 Manual Process Definition

The manual process was created by interviewing three integration and logistics experts

who have direct knowledge of the data (i.e. work in logistics) or are knowledge

engineering experts with more than 5 years experience. The interview process enabled

the identification of the important parts of the process to identify dependencies in

mappings.

It is difficult to generalise the process created using this approach to other dependency

analysis problems because the outputs of the interviews are relevant only to the

particular case of a generalised ontology-based integration system with logistics data.

This manual approach was taken because as noted in [Bernstein and Melnik 2007],

there are very few industrial scale integration systems that use ontologies. Furthermore,

the cost of non-ontology-based integration systems put them outside the scope of this

work. Dependency analysis approaches used in other domains, as discussed in the state

of the art, do not port easily to the data integration domain.

The key process steps defined by the interview process are summarised in Table 4-2.

Step Description Record Item

1 Identify the first row in the spreadsheet that

matches the data property defined in the

question.

Row Name

2 Find other rows that depend on the first row

due to the overlap in elements of the GE

columns.

Row Names

3 Iterate step 2 for every new row found Row Names

4 For each row name recorded already, find

other rows that depend on them due to the

function column

Row Names

Table 4-2: Key Process Steps from interviews

Using these key steps, a detailed process was developed for the exercise and this is

described in Appendix II. The detailed process added more navigation detail to help

the users understand which columns and data items are referenced. The detailed

144

process also added some house keeping details regarding the time taken for each

question, users name and clear identification of the dataset in use.

4.6.4.2 Theoretical Mapping Data Setup

Three theoretical mapping data sets were prepared. The datasets were derived from

Alcatel-Lucent logistics data used in experiment two. The small dataset contained 51

mappings (small data set), the medium contained 71 mappings (medium dataset) and

the large contained 102 mappings (large dataset). The different dataset sizes were

designed to provide an indication as to how both manual and tool-based approaches

scale with respect to time and accuracy as the number of mappings increases.

Within each data set, one question could be resolved by finding a simple dependency,

one question could be resolved by finding an overlapping dependency and two

questions by finding overlapping and function based dependencies. Each dataset was

setup to contain the same level of complexity in terms of the type (simple, overlapping

and function based) and depth of the dependencies.

The data properties names in the dataset were derived from the Logistics data. This

provided the opportunity to understand if knowledge of the underlying data would

improve the performance of dependency analysis. A control group of 3 users from the

Alcatel-Lucent logistics team was asked to carry out the exercise. This group had day-

to-day exposure to the logistics terminology that was used in naming the data

properties in the mapping files.

4.6.4.3 Evaluation Process

Each user was given a tutorial before the survey that covered in detail the steps of the

manual process that needed to be carried out. Each respondent was given 20 minutes to

work through the four questions associated with each dataset. The following materials

were provided:

Mapping files: The mapping file for each data set was provided electronically in

MS-Excel format. The MS-Excel mapping file provided a simple view of the

actually mappings from the logistics domain. A sample is shown below (Figure

4-11). All XML tags were removed and each mapping was represented on a single

row in the spreadsheet. Column A represents the Upper Entity (UE), Column B

represents the mapping (MP), Column’s C, D, E represent the lower entities (LE)

and column F represent the function identifier (F).

145

Figure 4-11: Excerpt from Excel mapping file

The mapping file for each data set is provided in Appendix II.

Question & Answer book: A booklet was provided to each user that contained the

questions for each data set and answer space to note the dependencies found. A

sample answer book is provided in Appendix II.

Dependency Analysis Process Description: The process to be used was the same

for each question. The process was demonstrated using an animated PowerPoint

presentation (using dummy data) to ensure each user understood the steps and

could ask questions about the process. Each user received a hardcopy of process

descriptions and slide ware. In summary, the process contained the following steps:

• Step 1: Note start time

• Step 2: Check data set name

• Step 3: Find the first row where the entity provided in the question

occurs and note this row down in the answer space

• Step 4: Find other occurrences of the columns C, D, E in the rest of the

rows of the spreadsheet and note these rows down in the answer space.

• Step 5: Check if any matched row found so far, has a function specified.

If the row has a function specified, check in other rows for this

identifier and note down these rows in the answer space.

• Step 6: Note end time.

The full process description is provided in Appendix II.

4.6.4.4 Performance Metrics

Using the measurements collected during the evaluation, the following statistical

measures were used to understand the performance of the manual process.

146

Central tendency: this statistic was used to determine whether there is a central

tendency for the automatic approach to outperform the manual approach with respect

to time and accuracy.

Dispersion: this statistic was used to determine the dispersion in the measured data

with respect to the time and accuracy. This was calculated using the standard deviation

and range of the time and accuracy data.

Correlation: this statistic was used to determine:

1) The association between the manual approach, complexity of dataset with

respect to time and accuracy.

2) The association between the automation approach complexity of dataset

with respect to time and accuracy.

3) The association between accuracy with respect to type user group

(integration versus logistics experts)

The following measurements were collected either during the evaluation or computed

before the evaluation as noted below.

Time

 Time to complete each question. (Collected from user)

 Time to complete each dataset. (Collected from user)

 Time to complete compete exercise. (Calculated)

Accuracy

 Number of Valid Dependencies found (Calculated from user answer)

 Number of Invalid Dependencies found (Calculated from user answer)

 Number Dependencies not found. (Calculated from user answer)

Answer Complexity (Calculated)

No. Nodes: No of nodes in the dependency graph for each mapping.

No. Levels: Depth of computed dependency graph for each mapping.

147

4.6.4.5 Selection of Groups

The primary users of the ontology-based integration system will be integration system

specialists and supply chain specialists. The population used for this evaluation has

been selected to represent these two constituencies. From this population, a sample of

representative users was randomly selected. The sample was divided into three groups.

The first (main) group comes from engineering, computer science backgrounds who

work on the research and development of the ontology-based information systems.

They are expert in database, and ontology techniques. The second group comes from

the professionals from the Supply Chain organisation within Alcatel-Lucent and are

expert on the data content (i.e. logistics). A third control group were provided with a

simpler manual process to carry out. The users in this third group had the same

background as the first group (i.e. integration specialists).

4.6.4.6 Post Exercise Interviews

Each user was interviewed after the exercise to collect qualitative data on the user’s

perception of the exercises. This interview was divided into two parts. The user was

asked to fill in a questionnaire which was attached to the back of the question and

answer booklet (Appendix II).

The first three questions of the questionnaire relate to the users perception of the

difficultly of the dependency analysis task (e.g. rate difficult of task, rate hardest

question). After filling out the questionnaire the user was asked to comment on their

perception of the exercise – using the first three questions as a common reference for

comment for each user.

4.6.5 Experimental Results

The evaluation ran over a period of four weeks in November and December 2009.

4.6.5.1 Data Summary

Three groups of respondents participated in the exercise. The first group represents the

integration specialists who have expertise either in enterprise or research database or

data integration technologies (including ontologies). The second group of respondents

is a smaller control group that consisted of logistics professionals from the Alcatel-

Lucent supply chain. These respondents have a deep understanding the logistics data

148

but are not integration specialists. The third and final group consisted of a smaller

group of integration specialists that were given a simplified MS-EXCEL format

mapping file. By comparing the results of this group to the main group an

understanding of the influence of the MS-EXCEL mapping format on the accuracy and

timeliness of answers could be gained.

Group No. of Users Demographic Mapping Format

Group1 12 Integration Specialists Normal

Group2 3 Logistics Specialists Normal

Group3 3 Integration Specialists Simple
Table 4-3: Group Overview

Smaller groups sizes were used for Group two and Group three. The size of the

logistics group (Group two) was limited by the availability of logistics experts at the

local site to carry out the dependency exercise. The size of Group three was limited to

three people as the analysis is used only access the effect of a new simpler MS-Excel

format for mappings.

The results from each group were collected and collated for each user and was entered

into a excel table of data. Figure 4-12 shows a sample of the collated answer data for a

single user (labelled u1 in the figure). Each row represents the results that the user (e.g.

user 1) gave to single answer (e.g. row 3 is the answer to Question 1 in the exercise).

Each row in the spreadsheet contained a Group identifier(GROUP), the computer

equipment type used (PC), the data set the question refers to (DSSIZ), the question

identifier (QUESTION), the correct answers data (NODES, LEVELS, OVERLAPS,

FUNCTIONS, MULTI, SINGLE), user identifiers(User, User Name), the actual

answer performance (TIME, ACCURACY).

Figure 4-12: Collated survey data

149

The answer accuracy was measured using a simple percentage of the number of correct

nodes found. The full data set contained 216 samples. The data set was processed as

follows:

Invalid Nodes: Answers that had invalid nodes were removed because the time users

spent following chains of invalid nodes would impact on the time and accuracy. This

step removed 45 samples from the dataset.

Out of time: Answers where the user noted “out of time” were removed as the

question was not completed correctly and was deeded invalid. This step removed 55

samples from the dataset.

Missing Data: Answers where the user forgot to note timings or answer data was not

intelligible were removed as the question was not completed correctly and was deeded

invalid. This step removed 3 samples from the dataset.

Following these data processing steps, the data contained 120 samples.

It was noted during the evaluation that during the first dataset, some questions were

asked about the process. This provides some concern that the process was still bedding

in during the first few questions. To cater for this effect, correlation statistics are

presented below that have the first two questions from the first data set removed.

Following these data processing steps, the data contained 90 samples.

The impact of removing these samples from the dataset is discussed in the conclusions

(section 4.6.7).

The statistical analysis was carried out using the R statistics package. R is a language

and environment for statistical computing and graphics.

4.6.5.2 Descriptive Statistics

The averages (mean) for accuracy and time to complete across the entire sample is

61.27% and 265 seconds, respectively. In the context of ensuring the evolution of

mappings is correct, the goal for accuracy needs to be as close to 100% as possible to

ensure correct functioning of the integration system. An error in mapping evolution

could lead in the worst case to erroneous data integration.

The standard deviation of the total data set for both accuracy and time indicates that the

spread of samples from the mean is wide. This wide spread reflects the difficulty of the

150

in attempting to carry out dependency analysis manually. In the post exercise

interviews, most respondents cited fatigue due to the repetitive nature of the task as a

significant factor that affected the performance.

 Mean St

Dev

Min Max Median

Accuracy 61.27 29.2 0 100 57.73

Time 265 171 60 900 234
Figure 4-13: Accuracy & Time Means

Breaking the data down by dataset size, it can be seen that the mean accuracy shows

only a moderate swing due to dataset size. This is important because it indicates that in

spite of the number of mappings in the dataset to be analysed, the accuracy is broadly

constant across the datasets. (The small data set had 51 mappings, the medium had 71

mappings and the large had 102 mappings.)

Accuracy Mean St. Deviation

Large 50.01858 24.04875

Medium 64.44444 33.07189

Small 63.31845 27.57551
Figure 4-14: Accuracy Means by Dataset size

4.6.5.3 Correlations

The correlations presented below are for the user population that were given the same

mapping format (i.e. Group 1 and Group 2 from Table 4-3). Group 3 was excluded

since they were given a simpler mapping format.

Each correlation is broken down by the number of functions, overlaps, nodes and

levels in the answer. Each of these measurements represented a different aspect of the

complexity of the answer to each question in the exercise.

Accuracy Correlations
The data in Figure 4-15 demonstrate a moderately strong negative correlation between

accuracy and various measures of answer complexity. This indicates that as the

complexity of the answer increases, the accuracy of the answer reduces. This

correlation also holds true across the small dataset and so indicates that in spite of a

smaller number of mappings in the mappings file, the accuracy still suffers.

151

Referring to Figure 4-15, the correlation for the “Levels” metric is stronger than the

“Node” metric. The “Levels” metric is a measure of the depth (number of levels) in the

dependency. The “Nodes” metric is a simple count of the number of nodes in the

answer. The stronger correlation for levels indicates that it is the depth of the answer

that impacts accuracy more than the number of nodes in the answer. This is important

because it indicates that a small mapping set with complex dependencies can still be

difficult to evolve.

The correlation for the “Functions” metric is stronger than the correlation for

“Overlaps” metric. The “Functions” metric is a simple count of the number of

dependencies that arise due to functions in the answer. The “Overlaps” metric is a

simple count of the number of dependencies that arise due to “overlapping” nodes in

the answer. This indicates that the dependencies that arise due to function overlap are

more difficult for the manual process to detect accurately. As function overlaps were

processed as the last step in the manual process, this may impact this accuracy of this

measurement due to the combined of effects of the “answer review” and “fatigue”

problems pointed out by most users. These effects are discussed in the conclusions

section of this experiment.

Accuracy Correlations

Dataset

Size

ALL Small Large Small+Large ALL
19

Nodes -0.56 -0.71 -0.83 -0.68 -0.66

Levels -0.66 -0.75 -0.85 -0.80 -0.78

Overlaps -0.29 -0.08 -0.61 -0.36 -0.36

Function -0.64 -0.73 -0.81 -0.77 -0.73
Figure 4-15: Accuracy Correlations

The statistical significance (p-value) for the all the accuracy correlations was less than

0.001.

Time Correlations
The data in Figure 4-16 demonstrate a moderately strong positive correlation between

time taken to answer each questions and various measures of answer complexity. This

indicates that as the complexity of the answer increased, the time taken to find the

dependencies also increased.

19

 Data associated with question 1 and question 2 removed as noted in data summary.

152

The correlation figures for each of the different measures of complexity (levels, nodes

etc) indicate no definite correlation preference. Therefore, from a time perspective it

appears that there is no advantage in having mappings that have fewer levels - as is the

case for accuracy correlations. The post exercise interviews provide evidence towards

the cause for this behaviour. Most respondents indicated that they needed to “redo”

certain steps in the process as they were inclined to lose track of what nodes in the

spreadsheet had been checked already. This behaviour would effectively add more

time to the answer for each question but would not necessarily improve the accuracy.

Time Correlations

Dataset
Size

ALL Small Large Small+Large ALL
20

Nodes 0.36 0.388 0.66 0.40 0.42

Levels 0.36 0.4 0.68 0.47 0.49

Overlaps 0.29 0.03 0.67 0.31 0.31

Function 0.22 0.38 0.46 0.35 0.38

Figure 4-16: Time Correlations

The statistical significance (p-value) for the all the time correlations was less than

0.001.

4.6.5.4 Impact Logistics Expertise and Simplified Mapping Format

Three groups of users were tested during this experiment. The second group (Group 2

from Table 4-3) was comprised of logistics experts who work within the Alcatel-

Lucent supply chain. They work day to day with the logistics data using in the

mapping exercise and thus are domain experts. The third group (Group 3 from Table

4-3) consists of integration specialists who were given a simplified mapping file format.

This mapping file format simplified the search required to find matches on any given

row by joining three columns of data together into one column.

Logistics User Group

Breaking down by experience level, Figure 4-17 shows that the mean accuracy for the

entire group, logistics and integration professionals. Logistics professions performed

better than the full population as indicated by mean answer accuracy of 77% for the

logistics user group.

20

 Data associated with question 1 and question 2 removed as noted in data summary

153

Accuracy Mean St. Deviation

Full Sample 61.3 29.2

Logistics Professionals 77.18254 19.63985

Integration Professionals 56.20316 28.66833

Figure 4-17: Group Analysis (Accuracy)

In the post exercise interviews with the logistics professional, most of this user group

indicated that while they recognised most data terms in the spreadsheets, they felt it did

not help them complete the task any better. It is also noted that two of the logistics

respondents used the advanced excel feature of column colouring, auto filtering and

Vlookup
21

 feature. This could have been a contributing factor for the improved

accuracy.

The analysis for the mean time to complete the answers is less clear (Figure 4-18). The

Logistics professionals show a marginally smaller mean time. However, because the

standard deviation is large, it is difficult to draw conclusive result in relation to time

for this user group. This behaviour may be a function of the “answer review” and

“fatigue” problems that most respondents highlighted in their post exercise interviews.

Time Mean St. Deviation

Full Sample 265 171

Logistics Professionals 218 111

Figure 4-18: Group Analysis (Time)

Simplified Mapping File User Group

The mean accuracy for this control group was 63%. This indicated that there is very

little difference in accuracy between this group and the larger population. The post

exercise interview provides a hint to understanding this behaviour because most

respondents felt the exercise was very difficult.

 Mean St. Deviation

Accuracy 63 35

Time 338 215

Figure 4-19: Control Group Accuracy and Time

21

 Vlookup is an advanced lookup feature of Microsoft Excel Spreadsheet

154

4.6.5.5 Performance of the automatic approach

In the current implementation of the TomE tool, all dependencies are pre-computed as

described in the design and implementation chapter. Once the processing stage is

complete, the time to search and query using the functionality of the tool is bound only

by the speed of the user.

Figure 4-20 shows the processing time for each mapping file used in the evaluation.

No of Mappings Processing time (Seconds)

51 127s

71 160s

102 205s

Figure 4-20: Automatic Approach Processing Time

The tests were run on a low end machine with 3 GB RAM, 2 GHz Dual Core Processor

running Windows XP Professional.

The answers from the automated approach were desk checked for accuracy and the

system achieved 100% accuracy.

The runtime performance of the every user interface function was not tested, however

the user interface performance of the test platform described above was adequate.

Node expansion and collapse was of the order of 1-2 second response time. The initial

loading of the full dependency graph took in the order of 3-4 seconds for the largest

mapping file with 102 mappings.

4.6.5.6 Collation of Post Exercise Interviews

This section contains a summary of the answers to the user questionnaires which was

attached to the question and answer book (Appendix). After the dependency analysis

exercise, each user was asked to complete the questionnaire. The answers given to each

question are described below.

Q1: “How do you find the task?”

7 users rated the task as Hard, 8 users rated the task as Very Hard and 3 users rated the

task as impossible,

Q2: “Which part of the process was the hardest?”

155

9 users rated Step 4 of the process as the hardest while 9 users rated step 5 as the

hardest.

Q3: “Rate the hardest and easiest dataset?”

Dataset 3 (largest) was rated as the most difficult. Dataset 2(Smallest) was rated as the

easiest.

Q4: “Rate the hardest and easiest question?”

Question 9 was rated as the most difficult question. Questions 2, 3 and 5 were rated as

among the easiest to answer.

Summary of findings from the Interviews.

These four questions were used as the context for a general discussion with each user

to gather more detailed information about the issues encountered while carrying out the

task. Two main themes emerged from the interviews. The first and biggest issue that

users encountered was described as the confusion the user experienced in remembering

which step of the process they were executing. This was described by some as “excel

overload” or “snow blindness”. To resolve this confusion, some parts of the process

were repeated or rechecked by the users. This was called the “Answer Review”

problem and is discussed in Section 4.6.6. The second issue that was highlighted by

half of the respondents was that “fatigue” set in during the exercise. The exercise lasted

60 minutes that was deemed to be “intensive”, “busy”, “heavy going” by respondents.

Some respondents noted that the fatigue was more prevalent in complex questions and

became more progressive as the exercise progressed. This was called the “Answer

Fatigue” problem and is also discussed in Section 4.6.6.

4.6.6 Discussion of Experimental Results

The statistical analysis above allows some conclusions to be drawn from the data.

These are summarised below.

4.6.6.1 Performance of Manual Approach

Accuracy
The strongest negative correlation is between answer complexity and accuracy. In

particular, the number of levels in the answer is the dominant correlation. This finding

156

has an interesting impact on the evolution of mappings in ontology-based integration

system. Even integration systems with small number of mappings can still prove a

challenging to evolve the mappings.

This finding could be further analysed to develop some design patterns for the creation

of mappings and ontological concepts to minimize the number of overlapping

mappings. One way that this can be achieved is to limit the number of

generalization/specialization concepts in the integration ontology (as they lead to

overlapping dependencies).

Time

The correlation picture for time is less clear. While a positive correlation exists in the

data between time and the answer complexity measures, the data does not allow for a

clear distinction to be made. The positive correlation indicates that more complex

answers will take longer to complex. The correlation is weaker than for accuracy. It is

clear from the post exercise interview and that fact that no respondent completed all

questions that the task is time consuming and performance is likely worsen the longer

the task is persisted.

Impact of Logistics Expertise and Simplified Mapping format.

A deep knowledge of the domain data (as was the case for the logistics control group)

allows for a small improvement in answer accuracy but does not improve the time to

complete. Providing a simple data format for the mappings did not influence the

accuracy of the answers (63% for the control group, 61% for the full group).

The “answer review” problem.

During the post exercise interview, many (12 of 18) users described the biggest issue

that they encountered as the confusion, described by some as “excel overload” or

“snow blindness”, as to which step of the process they were currently working on. To

resolve this confusion, some parts of the process were repeated or rechecked by the

users.

The “answer fatigue” problem.

157

Half of the respondents noted that “fatigue” set in during the exercise. The exercise

lasted 60 minutes that was deemed to be “intensive”, “busy”, “heavy going” by

respondents. Some respondents noted that the fatigue was more prevalent in complex

questions and became more progressive as the exercise progressed.

4.6.6.2 Performance of Automatic Approach

An exhaustive runtime performance test was run performed for the TomE tool.

However the discussion in this section provided an indication of the overall runtime

performance of the system and the main processing functions.

The answers from the automated system achieved 100% accuracy and completed the

exercises in 127, 160 and 205 seconds respectively.

As described in the design chapter (Figure 3-7), the TomE tool has four functional

areas (Mapping Factory, Model Factory, Dependency Factory, Visualisation). The

majority of the processing time is spent in the Model and Dependency Factories. The

model factory is responsible for the creation of the in memory ontology model (using

the Jena API [Jena]) and validating of the instances of the model using the Pellet

reasoner. Model validation is carried out twice to enable easier debug of the model

should an error occur – once after the dependency model instances are added and once

after dependency axioms are added. Finally, for each dependency axiom, the reasoner

is invoked to compute the dependencies associated with the axiom. These functions

account for approximately 70% of the processing time.

The dependency factory is responsible for creating the dependency graphs. In the

current TomE implementation both in memory and GraphML file dependency graphs

are maintained. These functions account for approximately 30% of the processing time.

These performance results cleared demonstrate the performance and accuracy

advantages of the automatic approach.

4.6.7 Summary of Conclusions, Open Issues & Limitations

As expected the results of this experiment show that the ontology-based dependency

model significantly outperforms the manual process for both accuracy and time

measurements. More significant from the experiment however is the clear indication of

the complexity involved in a manual processes and the difficulty in identification of

dependencies in ontology-based integration systems without tool support. With the

158

theoretical set of evolution needs, the ontology-based dependency model provides fast,

accurate and automatic support of the first step of mapping evolution.

This experiment used a group of ontology and information systems specialists to

represent the system integrators who would be the final users of a dependency analysis

system (within an integration system). However, the technical background of the group

that was selected would be very similar to database and system integrators. They might

also be reasonably expected to work in that field and thus represent an excellent proxy

for the system integrators.

While a large sample of data was collected in the experiment (i.e. 216 samples), the

data collected was noisy. In particular, 55 samples were removed because the user ran

out of time while answering the question. Note that all users were given explicit

direction at the beginning of each session to move the next question if more than 10

minutes was spent on any given question. 45 samples were removed as they users

answer contained both valid and invalid nodes. Both these effects are representative of

the complex and time consuming nature of the exercise.

By removing the invalid, out of time and missing data the remaining samples

represented the absolute best case performance of the manual approach and as such

provide a very conservative basis with which to compare to the automatic approach.

An alternative approach would be to use a precision and recall calculation rather than

simple accuracy; however this is likely to lower the accuracy levels of the exercise.

As noted in the state of the art review, most current data integration frameworks tend

not to provide mapping management functionality. Therefore the OBDM was

compared with a manual dependency analysis approach that was designed as part of

this experiment. To mitigate any risk that the manual approach is not representative,

the data used in the experiment is based on real industrial data and the manual process

was designed using the expertise of the integration and logistics specialists.

Furthermore two different mapping formats were tested to ensure that the format of the

mapping file did not impact the results.

159

4.7 Next Steps in Action Methodology

At this point in the action based research process, the dependencies that mappings

exhibit has been identified as the focus point for this research, an ontology-based test

system and ontology-based dependency model has been designed. The performance of

the OBDM has been verified using a comprehensive but synthetic set of mappings.

The next iteration focused on testing the ontology-based dependency model as a new

data source was introduced into an existing dataset and examined how the resultant set

of evolution needs were coped with.

4.8 Experiment Four – OBDM Performance

4.8.1 Overview

Experiment three demonstrated the performance of the dependency modelling

approach using a synthetic set of mappings. This experiment was designed to

demonstrate the capability of the ontology-based dependency model when presented

with a set of non-synthetic evolution needs.

 A new data source that represented a new logistics service provider was added to the

ontology-based integration system used in experiment two. The ontology-based

dependency model and TomE tool was used to support the identification of which

mappings were impacted by the introduction of the new data source.

The experiment shows that the ontology-based dependency model and TomE tool

enables the integration/ontology designer to quickly locate the impacted areas and

allow analysis of the changes to process in an ordered fashion. The approach supports

the mapping evolution process by providing global dependency views of the mappings

that allow the user to focus in on areas of high dependence initially and then to drill

down progressively to the detail to understand what impact of each computed

dependency. As noted in [Halevy et al. 2005, Zhou et al. 2006], this is one of the key

challenges facing enterprise integration systems.

Section 4.2.2 describes in the objectives of the experiment in the context of the

research question.

Section 4.2.3 provides the background to the supply chain based use case that was used

for this experiment.

160

Section 4.2.5 describes in the detail the approach taken for this experiment.

Section 4.2.6 and 4.2.7 describe the results and conclusions of this experiment.

4.8.2 Objectives & Hypotheses

In the Introduction chapter, the fourth objective that was derived to evaluate the

research question was stated as:

• “Evaluate the dependency model and tool using a concrete industrial use case.”

To address this objective, experiment four derived the following sub-objective:

i) To demonstrate the capability and relevance of the ontology-based

dependency model when presented with a set of non-synthetic evolution needs.

Hypothesis

Evolution of the mappings in an ontology-based integration system is difficult to

identify without tool support due to the difficultly in finding which mappings are

impacted when the data sources are updated.

4.8.3 Use Case Background

For this experiment, a new logistics carrier was introduced that provides transportation

services by sea and thus providing a new dataset for the ontology-based integration

system. The generalised ontology-based integration system was populated with the

logistics domain ontology, mappings and data sources from experiment two (Section

4.4.4).

The existing data sources came from logistics carriers that provide air transportation

services. For some forward logistics business where fast delivery time is not required,

sea transportation can provide very much reduced costs.

The main areas of difference in the data between air and sea logistics services originate

from the descriptions of services, surcharges associated with the services and the

package types.

4.8.4 Experimental Approach

The ontology-based dependency model and TomE tool were used to carry out an

evolution of the mappings of the generalised ontology-based integration system used in

161

experiment two. The TomE supported the evolution (in step 2 below) by identifying

which mappings were impacted for each ontological concept in the integration system.

This analysis provided by the TomE tool developed an understanding of which

mappings needed to be changed and what new mappings were required.

This following approach was used to apply the TomE tool to this task:

• Step 1: Load the new logistics data set.

The new logistics data set was loaded and the lower ontologies for this data source

was generated as described in the design chapter (Section 3.3).

• Step 2: Run Dependency Analysis on existing mappings.

The TomE tool was run using the current mapping file to identify which data items

and mappings are used for each concept in the logistics domain ontology. This step

provided detailed graphs of the dependencies for each ontological concept

including the mappings and data sources elements.

• Step 3: Identify candidate mapping updates from the new data sources.

Using the output from step (2), for each concept in the logistics ontology (e.g.

service name), identify similar data items in the new data sources. The TomE tool

provides the view of the current data sources that are mapped to this concept and

this can be used to find similar items in the new data sources.

• Step 4: Identify Missing Ontological Concepts.

Identify any data source items that are not modelled by the logistics domain

ontology that would require new mappings to be created. This enabled the

identification of new mappings that need to be added. This step enables the

identification of new mappings that need to be added.

4.8.5 Experimental Setup

This experiment was conducted by the author of the thesis and required the setup of the

new logistics data sources and execution of the TomE tool.

Database setup

The new logistics database represented sea transportation rates. The logistics company

for the sea rates also provided air transportation rates for experiment two and thus the

162

database schema was very similar to the air transportation data source. The key

differences in the database schema occurred in the service descriptions, rates and

surcharges tables. The key differences are described below:

• Service descriptions: The descriptions of services for sea transportation added

new concepts related to containers types that needed to be incorporated into the

existing logistics ontology.

• Rates: The descriptions of rates for sea transportation added new concepts

related to the fact that rates are based on a per container basis that needed to be

incorporated into the existing logistics ontology.

• Surcharges: The descriptions of surcharges for sea transportation added new

concepts related to the fact that rates are based on a per container basis that

needed to be added to the surcharges descriptions currently handled by logistics

ontology.

TomE Dependency Analysis Execution

The mapping file for experiment two was loaded into the TomE tool and the

dependency graph generation was carried out using the steps as described in the design

chapter (Section 3.2.6).

4.8.6 Experimental Results

For this experiment, a new logistics carrier was introduced that provides transportation

services by sea. This requires the analysis and update of the semantic mappings used in

experiment two.

Of the 92 mappings in the original integration system, it was found that 23 mappings

needed to be updated and 17 new mappings needed to be added (for the surcharges

concepts related to sea transportation).

4.8.6.1 Analysis of new mappings

The new logistics data represents costs associated with sea transportation. The existing

data sources all represent air transportation. The new data source required some

updates to the logistics ontology to incorporate new concepts related to the surcharges

associated with sea (for example port charges) that are not present in air transportation.

163

These new mappings were simple and exhibited no overlapping or function-based

dependencies.

4.8.6.2 Analysis of updated mappings

23 mappings were updated. These mappings cover the core concepts in the logistics

ontology that represent the logistics carrier information, rate information, basic service

information.

Using the TomE tool, it was found that 13 (of 23) mappings exhibited simple

dependencies that simply required the update of the lower entity part. 10 mappings

exhibited complex dependencies that require further analysis to ensure updates are

applied correctly. The following sections describe a sample of the simple and complex

dependencies that were found by the dependency management tool.

Simple Dependencies
The example in Figure 4-21 shows the dependency graph for the “carriers-name”

concept from the integration ontology. This concept has a mapping that needs to

collect the logistics carrier name from the databases and is dependent from two

database elements (GE). The update required to this mapping can be achieved by

adding the new GE reference to the existing GE references in the mapping. This is a

relatively simple and self-contained update because the mapping does not have a

function associated with it and does not overlap with other mappings. Therefore, the

impact of the change is localised to this mapping.

Figure 4-21: Simple Mapping Dependency

164

Complex Dependencies
10 mappings exhibited complex dependencies because they either overlapped with

other dependencies or have functions associated with them or overlapped and had

function associated. A representative selection of these mappings is discussed below.

The example in Figure 4-22 shows the dependency graph for the “services-

commodity” concept from the integration ontology. This concept has a mapping (MP-

s4) that collects the commodity description (name) from the databases and has

dependent relations with three other mappings.

Figure 4-22: Services Dependency

Figure 4-22 isolates the concept under investigation and show the hierarchy of

mappings impacted. On first view, there appears to be a complex set of dependencies

coming appearing. The Dependency Management tool provides the level view of the

dependencies to support the user in the mapping update decision making process.

The levels view, in Figure 4-23, shows the dependency levels and types. In this view

the edge highlighted in green is the direct dependency and is assigned level 1. The

dependency type and level are identified using the following syntax:

• Overlapping dependencies are identified by “o”.

• Function-based dependencies are identified by “f”.

165

• Level is identified by the number that preceded the dependency type (e.g. 2:o).

The graph shows that at level 2, there is an overlapping dependency with MP-s301 and

a function based dependency with MP-s700. Finally, MP-s700 has a function-based

dependency on MP-s701.

Armed with this additional information, the user can check the other mappings to see if

updates are needed to these also. In this case only updates to MP-s4 are required as

MP-S301 is a mapping that is used as part of the specification of packages concept that

requires access to commodity data also. MP-s700 and MP-s701 are mappings that are

used by the commodity concept. The commodity concept is a standalone concept used

to describe different types of commodity and there unique reference number that

describes various commodity types (e.g. dutiable or non-dutiable) and rules associated

with the types.

Figure 4-23: Level and Types view

Very complex dependencies
One mapping exhibited very complex set of dependencies. Figure 4-24 below indicates

that 32 other mappings exhibit some dependency relationship with “UE-services-

servicename”. This indicates that the change to this concept could have far reaching

impacts. The discussion below shows how these dependencies developed and thus

gives the ontology designer useful insight in the underlying database design.

166

Figure 4-24: Very Complex Dependency

The integration ontology concept “services-servicename” provides a simple abstraction

of the service names that are used by different logistics carriers (e.g. Express, Express

Saver, and Expedited). Unfortunately one of the underlying logistics databases uses the

poor database design practice of encoding both service name and weight category in

the schema (i.e. in a column names of tables. The ontological mapping in this case

needs to access each column name to extract the service name. The actual column

(instance data) for these columns contains the rates information but the service and

weight category is encoded in the column name. This creates overlapping

dependencies with other ontological concepts for weight, cost and service.

The dependency levels are shown in Figure 4-25.

167

Figure 4-25: Levels and Types Dependency

In the case of the update to “service-name” concept, only the first level dependencies

are impacted by the change and the deeper level dependencies do not require update.

The mapping associated with “service-name” (MP-s1) does not have a function

associated with it and therefore there is no function based dependency identified at

level 2 in the graph.

This example highlights a potential issue with the aggression of the dependency

algorithm when, as currently implemented, it is tasked with computing all dependent

elements. In the conclusions section, a user driven throttling mechanism for the

algorithm is discussed.

168

4.8.7 Discussion of Experimental Results

The ontology-based dependency model and TomE tool provided important advantages

to the evolution process carried out in this experiment.

The flexible visualisation capability of the computed dependencies allowed three views

of the systems dependencies. This provided quick and accurate computation and

visualization of the full impact of the dependencies in the integration system.

This output from the TomE tool supported the evolution of mappings by:

• Identifying which mappings are impacted by changes (Step 2, Section 4.8.4).

• Helping to identify which parts of the new data sources to look at to update the

mappings (Step 3, Section 4.8.4).

The TomE tool enabled the integration/ontology designer to quickly localise the

impacted areas and allow analysis of the changes to proceed in an ordered fashion. The

approach supports the mapping evolution process by providing global dependency

views that allow the user to focus in on areas of high dependence initially and then to

progressively drill down to the detail to understand what impact of each computed

dependency.

This case study has shown that for the update case, the direct (first level) dependencies

are the most critical to understand and evolve. This is a feature of this particular use

case that focused on the addition of new data source that required mainly updates of

existing mappings. However, it can be expected that full range of CRUD
22

 operations

will come into play when other data sources changes are made. In particular the

deletion of some fields from the data sources (perhaps to enable a cleanup or evolution

to a more complex schema) will require close study of the indirect (deeper level)

dependencies because a delete operation will remove the GE which other indirect

mappings depend on and thus break the integration.

Finally, the dependency modelling approach provides could be used to support of

verification and testing of the updated system as noted in the state of the art review for

dependency (Section 2.3.1). This can be achieved using the full dependency graph for

22

 Create, Request, Update and Delete

169

any given change because it provides a set of candidate areas to verify or regression

test.

4.8.8 Summary of Conclusions, Open Issues and Limitations

This experiment shows that the ontology-based dependency model and TomE tool

enables the integration/ontology designer to quickly localise the impacted areas and

allow analysis of the changes to process in an ordered fashion. The approach supports

the mapping evolution process by providing global dependency views that allow the

user to focus in on areas of high dependence initially and then to progressively drill

down to the detail to understand the impact of each computed dependency. As noted in

[Halevy et al. 2005, Zhou et al. 2006], this is one of the key challenges facing

enterprise integration systems.

The data used in the experiment came from the logistics based use case from

experiment two. While this data set may not be representative of every mapping

evolution task because this experiment focused on updating mappings (and not creating

new mappings or deleting existing mappings), the process that would be used to carry

out dependency analysis in the delete and new mappings cases is the same. This means

once the dependency model can accurately find all the dependencies then the delete

and new mappings cases can be accommodated by adding or deleting mappings and

rerunning the dependency analysis. A detailed process for the usage of the TomE tool

for these cases has not been defined but has been included in the future work (Section

5.3).

The aggression of the dependency algorithm could be throttled by changing the

dependency relations that are used to compute dependency graphs. For example, the

algorithm could be limited to look only for overlapping type dependencies or to

compute to a certain depth. Note that this adjustment capability is not available in the

TomE tool and would require changes to the dependency factory code of the TomE

tool. This update to TomE has been added to the future work (Section 5.3).

170

4.9 Next Steps in Action Methodology

The final iteration of the action based research carried out a corroborative study into

the genericity of the dependency metamodel that was used to build the ontology-based

dependency model (OBDM).

4.10 Corroborative Study – Genericity of the Dependency Metamodel

4.10.1 Overview

This corroborative study applied the dependency metamodel from the design chapter

(Section 3.2.3) in a new domain. This provided an extra indication of the genericity of

the ontology-based metamodel

The dependency metamodel has already been applied to datasets from both a Product

Line Management (Experiment one) and Logistics domains (Experiment two). In these

domains, the dependency metamodel was used to support the management of

dependencies between mappings in an integration system. In this study, the

dependency metamodel is not used to support mappings – rather it is used to support

the dependencies that might arise in a domestic electrical circuit.

In this study, a domestic electrical circuit was selected as the application domain

because it provided a different set of dependencies from the ontology-based integration

system where the metamodel was previously applied. In this domain, the dependency

model was used to localise faults in an electrical circuit.

A domain expert on electrical engineering was coached through an eight-step process

to build a dependency model, using the metamodel, of an electrical circuit and to carry

out a dependency analysis exercise using the model. The eight-step process used

Protégé [Protégé] and Pellet [Pellet] to support the dependency model development

and the dependency analysis exercise. The dependency analysis exercise was carried

out using the model based on the requirements of the electrical engineer.

After the eight-step process was completed, the engineer was interviewed to document

the issues that were encountered during the experiment.

4.10.2 Objectives & Hypotheses

This research has developed an approach for the management and evolution of

mappings in an ontology-based integration system. The approach taken to achieve this

171

developed an ontology-based dependency metamodel that defined the basic building

blocks of dependencies that can be applied in any domain.

The dependency metamodel has already been applied to the management and evolution

of mappings in ontology-based integration in Experiments two and four (Section 4.4

and Section 4.8). This experiment tested the application of the dependency metamodel

in a new domain. The metamodel is used in here to describe the dependencies between

electrical components in a scoped electrical circuit. The usage of the metamodel in this

new domain provides an indication of the genericity of the dependency metamodel.

The aims of the fifth experiment were:

i) To apply ontology-based dependency metamodel developed as part of this

research, in another domain to study the ability of the metamodel to be used in

other domains.

ii) To discover the issues when applying the metamodel in a second domain.

iii) To provide an indication of the genericity of the metamodel.

4.10.3 Experimental Approach

 An eight-step process was defined to support the electrical engineer on the steps

required to create a dependency model for an electrical circuit using the ontology-

based dependency metamodel. The Protégé Ontology development tool [Protégé] was

used instead of using the TomE tool as the TomE tool would have required updating of

the mapping factory code. As only a small number of instances would be loaded into

the model and visualisations of the dependencies were not required, the Protégé tool

was used.

Protégé was used to import the metamodel, to build the ontology-based dependency

model for this domain and to run the dependency analysis using the Pellet reasoner.

The electrical engineer was supported on the usage of Protégé by the thesis author.

This involved the thesis author carrying out one example of each step in the process

and then allowing the electrical engineer to complete the step.

Any errors made while inputting data into Protégé by the electrical engineer were

corrected while the data was being input. For example, if an invalid instance was

entered (Section 4.10.4 step 7) then this was corrected before moving to the step 8.

172

After the exercise, an interview was conducted to understand the key issues in carrying

out the steps in the process.

4.10.4 Experimental Setup

The following eight-step process was used to setup the experiment. The process was

executed over the course of three meetings that were held with the electrical engineer

as described below.

Step 1 – Development of electrical circuit domain
The electrical engineer was asked to draw an electrical circuit that represents the main

circuits used in a domestic setting based on his expert understanding of the domain. To

support the electrical engineer in this task, a meeting (30 minutes duration) was held to

present an overview of dependency analysis. The general approach to dependency

analysis was described to the electrical engineer using simple examples based on

family relations (i.e. Son depends on Father) and automotive engine (i.e. Engine

depends on Fuel Supply and Ignition System).

The electrical engineer was asked to draw a domestic electrical circuit that would cover

the basic elements of each type of circuit in the home. The electrical engineer was

asked to focus on the different types of circuit rather than the different appliances.

The electrical engineer without input from the thesis author created the domestic

circuit diagram over a two-day period.

Step 2 – Creation of main circuit components
Using the output of step 1, the electrical engineer was asked to select the major

component of the circuit he wished to model from the diagram. These components

form the architectural entities of the dependency model for this domain. To support the

electrical engineer in this task, a second meeting (90 minutes duration) was held to

define which elements of the circuit diagram were to be modelled. These elements

were selected based on the requirements of the electrical engineer, who wished to carry

out a dependency analysis of each circuit to compute which components were in each

circuit and which components depended on each switchboard fuse.

173

Step 3 – Dependency relation creation
With the output of step 2, the electrical engineer was asked to define the major

dependencies between the components. This step was completed during the second

meeting.

Step 4 – Generate graph
The output of steps 2 and 3 were used to create a scoped electrical diagram. This step

creates the basic dependency model (on paper) for this domain. This step was

completed during the second meeting.

Step 5 – Define dependency attributes
The electrical engineer was asked to specify the attributes (transitivity, symmetry etc.)

of each dependency relation. The engineer was coached on the meaning of each

dependency attribute. This step was completed during the second meeting.

Step 6 – Dependency Model input to Protégé
The author demonstrated the addition of one architectural entity (component) and one

dependency relation using Protégé. The electrical engineer was asked to enter the rest

of the architectural entities. This step was completed during the second meeting.

Step 7 – Instance input to Protégé
For each circuit type identified by the electrical engineer in step 1, instance data was

entered into Protégé. The author demonstrated the addition of one instance of an

architectural entity (component) and one dependency relation using Protégé. The

electrical engineer was asked to enter the rest of the instance data. This step was

completed during the second meeting.

Step 8 – Dependency Analysis
A dependency analysis was run for each circuit using the Protégé and Pellet tools. The

author of the thesis ran this step in conjunction with the electrical engineer during the

third and final meeting (duration 45 minutes).

174

4.10.5 Experimental Results

The outputs of each step in the eight-step process are described below.

4.10.5.1 Process Outputs

Output of Step 1
The first step of the process created a scoped domestic electrical circuit with the

following components: “Main Switch Board”, “Switch”, “Light” and “Consumer

Device”. The electrical circuit created by the electrical engineer for step 1 is shown in

Figure 4-26 below. Figure 4-26 contains three circuits (ring, lighting and single

appliance) that represent the major circuits in a domestic environment.

Figure 4-26: Scoped Domestic Circuit

Output of Steps 2, 3, 4, 5, 6
The dependency model created using the process had the following architectural

entities:

• Appliance: This architectural entity was created as a container concept for the

different types of electrical appliances in the home. It has “Light”, “Cooker”

and “TV” subclasses in this experiment. In Figure 4-26, “Light” and “Lamp”

were deemed to be the same by the electrical engineer.

175

• Socket: This architectural entity was created to represent the electrical sockets

that are part of the standard domestic ring circuit.

• SWFUSE: This architectural entity was created to represent the main fuse

board in the home. This represents a simple abstraction of Supplier Unit, Meter

and SwitchBoard entities in Figure 4-26. Each “SWFUSE” entity serves a

single circuit.

• Switch: This represents a switch of any kind on a circuit (e.g. a light switch).

• Junction: This represents electrical junctions that are typically used in lighting

circuits.

• ControlUnit: This represents a control unit that are typically connected to

domestic appliances that draw heavy electrical load (e.g. cooker).

Figure 4-27 below shows the concepts that were created in Protégé

Figure 4-27: Excerpt from the Domain Specific Model (from Protege).

176

The dependency model created using the process had the following dependency

relations:

• Light2switch: This dependency relation was created between the “Light” and

the “Switch” architectural entities. This relation had the transitive and

symmetric attribute set.

• Switch2junction: This dependency relation was created between the “Switch”

and the “Junction” architectural entities. This relation had the transitive and

symmetric attribute set.

• Junction2swfuse: This dependency relation was created between the

“Junction” and the SwitchBoardFuse” architectural entities. This relation had

the transitive and symmetric attribute set.

• Junc2junc: This dependency relation was created between the “Junction”

architectural entities. This relation had the symmetric attribute set.

• App2socket: This dependency relation was created between the “Appliance”

and “Socket” architectural entities. This relation had the transitive and

symmetric attribute set.

• Cu2swfuse: This dependency relation was created between the “Control Unit”

and “SWFUSE” architectural entities. This relation had the transitive and

symmetric attribute set.

• Socket2swfuse: This dependency relation was created between the “Socket”

and “SWFUSE” architectural entities. This relation had the transitive and

symmetric attribute set.

• App2cu: This dependency relation was created between the “Appliance” and

“Control Unit” architectural entities. This relation had the transitive and

symmetric attribute set.

The dependency attributes (Cause, Impact and Strength) were not applied in this model

as the electrical engineer felt that they were not required for the analysis of this scoped

domestic circuits because the dependency analysis exercise was to focus on the

elements in each circuit and not the attributes of the dependencies between them.

Domain specific models were created to represent each circuit as shown Figure 4-28.

177

Figure 4-28: Domain Specific Models for each circuit

Output of Steps 7
Based on the electrical components in Figure 4-26, the following instances were

created in Protégé to populate the model (Table 4-4: Domain Specific Model Instances

).

Instance Name Model

Concept

Circuit #

SWFUSE1 SWFUSE Circuit 1

SWFUSE2 SWFUSE Circuit 2

SWFUSE3 SWFUSE Circuit 3

Socket 1 Socket Circuit 2

Socket 2 Socket Circuit 2

TV1 Appliance Circuit 2

Lamp1 Appliance Circuit 2

Junction1 Junction Circuit 3

Junction 2 Junction Circuit 3

Switch 1 Switch Circuit 3

Switch 2 Switch Circuit 3

Light 1 Light Circuit 3

178

Light 2 Light Circuit 3

CU1 ControlUnit Circuit 1

Cooker1 Appliance Circuit 1
Table 4-4: Domain Specific Model Instances

During this process step, the electrical engineer was asked to enter the data into

Protégé. While the data was being entered, two types of error were corrected as

described below:

• Associating the wrong instance name with a Model concept. This error

occurred due to the instance creation panel in Protégé that must have the correct

concept name highlighted before the create instance operation is selected.

• Creating dependency relations between the wrong instances. This error

occurred because of the Electrical Engineers lack of familiarity with the names

used to identify the dependency relations (app2cu, app2socket) and instances

(light 1, CU1). The domain model constraints will not allow the wrong type of

concept to be entered but will allow any instance name to be entered, even if a

dependency relation does not exist in reality between those elements.

4.10.5.2 Outputs of Dependency Analysis Exercise

The Electrical engineer wished to test the system by requesting which elements were

dependent on each “SWFUSE” element specified in the system because this would

effectively find all elements in each circuit.

To achieve this, the thesis author created an OWL axiom for each “SWFUSE” element

and entered it into Protégé as shown in Table 4-5. The Pellet reasoner [Pellet] was used

to infer the dependency elements in each circuit by computing the dependency

elements for each “SWFUSE” instances.

Circuit # Axiom Result

1 <owl:Class rdf:ID="Axiom_FUSE1">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>

<owl:hasValue rdf:resource="#SWFUSE1_CT1"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

COOKER1

CU1

SWFUSE1_CT1

2 <owl:Class rdf:ID="Axiom_FUSE2">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>

<owl:hasValue rdf:resource="#SWFUSE2_CT2"/>

</owl:Restriction>

LIGHT1

SWITCH1

SWFUSE2_CT2

LIGHT2

179

</owl:equivalentClass>

</owl:Class>
SWITCH2

JUNCTION1

JUNCTION2

3 <owl:Class rdf:ID="Axiom_FUSE3">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>

<owl:hasValue rdf:resource="#SWFUSE3_CT3"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

TV1

SWFUSE3_CT3

LAMP1

SOCKET1

SOCKET2

Table 4-5: Reasoning Axioms for the domestic electrical circuits.

Given that the number of instances in the dependency model is small, the inferences

above executed in 1-2 seconds for each case.

The electrical engineer checked the output of each inference and agreed that it was

consistent with what he would expect.

4.10.5.3 Discussion of results

The issues that were identified during the process of applying the dependency

metamodel to this new domain are discussed below.

Instance Data Entry

The data entry of instances into the model was identified as an issue by the electrical

engineer. The process selected for this experiment used the Protégé tool to load

instance data. Two distinct problems are discussed below.

The first problem concerned the instance-loading screen in Protégé. The user interface

in Protégé provides all the available relationships for any defined concept (e.g.

dependency attribute of level, strength, impact). It is not clear when using Protégé

which attributes are mandatory and which are optional. During the exercise, the thesis

author needed to instruct the electrical engineer on the meanings of each attribute.

The second problem concerned the time taken to load instances. Even with a small

number of instances in this exercise, considerable time was spent on this step to ensure

correct and consistent data entry. A number of errors in the data entry needed to be

corrected as discussed earlier.

Separation of the Ontological Construct from the Model

The electrical engineer felt that the Protégé tool was not the most appropriate way to

present the domain specific model as it contained many non-essential features that are

related to building ontologies rather than the electrical domain.

180

The key issue was in the separation between the domain level (i.e. electrical domain)

that the electrical engineer wishes to work at and the low level modelling constructs

that are visible in Protégé.

Application of Dependency Attributes.

Two aspects of the application of the dependencies attributes were discussed.

The first aspect related to the dependency attributes for “Level”, “Strength” and

“Impact”. The electrical engineer who wished to focus on the fault isolation in the

scoped example did not use these attributes. It was noted that this information tends not

to be formally represented in circuit diagrams and would be the subjective view of the

circuit designer.

The second aspect related to dependency attributes concerns the usage of the

“junc2junc” dependency relationship. Circuit three (Lighting circuit) contains

symmetric and transitive/symmetric dependency relations. The “junc2junc”

dependency relationship is not transitive so the dependencies will not propagate across

this relationship. This means that a dependency analysis axiom for “LIGHT2” will

yield the dependent elements LIGHT2, JUNCTION2, SWITCH2.

Code 13: Axiom for “LIGHT2”

The axiom for “LIGHT1” will yield the dependent elements “LIGHT1”, “SWITCH1”,

“JUNCTION1” and “SWFUSE2_CT2”.

In the electrical circuit domain, this behaviour is correct and as required by the

electrical engineer because a failure on the LIGHT1 is unlikely to be caused by

components associated with LIGHT2.

Multiple Domain Models

In this experiment, the metamodel was used to represent three types of circuit as shown

in Figure 4-28. This approach was taken to limit the time spent by the electrical

engineer during the exercise. The dependency metamodel provided sufficient

<owl:Class rdf:ID="Axiom_LIGHT2">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>

<owl:hasValue rdf:resource="#LIGHT2 "/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

181

flexibility to design these three models. An alternative approach would be to create a

single overall model to represent a more generalised model of an electrical circuit.

4.10.6 Discussion of Experimental Results

The ontology-based dependency metamodel enabled an electrical engineer to quickly

create three domain specific models for a scoped domestic electrical circuit.

The automatic inference provided fast and accurate insight in the dependencies for any

point in the electrical circuit. This information is useful when both attempting to isolate

faults in the circuit as well as when adding new components to the circuit.

This study has highlighted the importance of tool support for the loading of instance

data. However, this tool support requires access to a structured information store from

where to load the instance data. In the case of the ontology-based information

integration system, the mapping file provided an excellent structured source. In other

domains, especially outside of the information technology space, this information may

not be easily available.

4.10.7 Summary of Conclusions, Open Issues and Limitations

The dependency metamodel was used, under supervision, by an electrical engineer to

carry out a dependency analysis of a scoped electrical circuit. The study showed that

the metamodel can be applied in a relatively short time (2-3 hours). The study showed

how different electrical circuit types can be supported by the metamodel.

The dependency axioms that were constructed to infer dependencies were similar to

other use cases tested in this research. This is due to the abstract nature of the

dependency metamodel that provides for dependency reasoning over architectural

entities (AE). In this domain, the Architectural Entities represent points in the circuit

from where a dependency analysis can be carried out.

Three areas of improvement have been identified as discussed below.

• More instructional information should have been provided on which concepts

and attributes of the dependency metamodel are mandatory and which are

optional. It was initially assumed by the electrical engineer that all concepts and

attributes were mandatory.

182

• The metamodel could be enhanced to include more support for representing the

different types of models. In this experiment, three models were created.

Currently the metamodel only supports the concept of a graph, that has name

and type attributes.

• The construction of axioms to infer dependencies is left to the domain specific

model. The process to construct the domain specific models could be enhanced

to provide a framework to support the creation of inferences related to the

dependencies.

183

4.11 Summary of Evaluation

This research has been carried out in an iterative manner using an action-based

methodology. Action based research involves an iterative inquiry process that leads to

a refinement of the research question. The inquiry process was conducted using a

series of experiments.

The aim of the first experiment was to discover the key issues related to integration

performance when applying an ontology-based integration approach in an industrial

context. The results of experiment one showed that while there is advantage to be

gained by using the ontology-based approach, because the solution can cope with

semantic heterogeneity using mappings, it is not easy to identify which mappings need

to change when one of the underlying data sources changes. This was due to the

complex nature of some of the mappings and the complex coupling between different

parts of the integration system that the mappings create. Experiment one noted that

approximately 33% of the mappings contained complex mappings functions.

Following analysis of the results from experiment one, a hypothesis was developed that

suggested that the complexity and coupling of the mappings would make the mappings

difficult to evolve and that support for understanding the complexity and couplings

would bring benefits to the integration system.

When a data source changes, the first step in evolving the mappings is to understand

which parts of the system are impacted. Experiment two evaluates the hypothesis that

this can be achieved by modelling the dependencies that exist between the parts of the

ontology-based integration system.

The second experiment developed and evaluated an ontology-based dependency model

(OBDM) that would support understanding of the complex coupled nature of mappings.

The results of this experiment showed that a significant proportion, approximately 30%,

of the mappings exhibit complicated dependency relationships. It was hypothesised

that these mapping relationships are difficult to identify without tool support and thus

makes the first step of mapping evolution difficult for integrators.

Experiment three confirmed the hypothesis by demonstrating the time consuming and

error prone nature of this first step of mapping evolution (i.e. identification of mapping

dependencies) through the use of a synthetic set of evolution needs. This was achieved

by comparing the performance of the OBDM with a manual dependency analysis

184

process that was carried out by 18 users. The results of the experiment show that the

ontology-based dependency model significantly outperforms the manual process in

both accuracy and time. With the synthetic set of evolution needs, the ontology-based

dependency model provides fast, accurate and automatic support for the first step of

mapping evolution.

The fourth experiment tested the ontology-based dependency model as a new data

source was introduced into an existing dataset and examined how the resultant set of

evolution needs were coped with. The set of evolution needs arising was more

unpredictable in comparison to the synthetic set designed for use in experiment three as

the data set was taken from an industrial context. The experiment shows that the

ontology-based dependency model and toolset enables the integration/ontology

designer to quickly localise the impacted areas and allows analysis of the changes to

proceed in an ordered fashion. The approach supports the mapping evolution process

by providing global dependency views that allow the user to focus in on areas of high

dependence initially and then to progressively drill down to the detail to understand the

impact of each computed dependency. As noted in [Halevy et al. 2005, Zhou et al.

2006], this is one of the key challenges facing enterprise integration systems.

A corroborative study applied the ontology-based dependency metamodel that was

created as part of experiment two, to build a dependency model for a domestic

electrical circuit. The key ideas concerning dependency analysis and dependency

models were presented to an electrical engineer who was asked to create a dependency

model for an electrical circuit from a domestic setting. A domain model was created by

the electrical engineer for the electrical circuit that contained four elements (Main

Switch Board, Switch, Light and Consumer Device). The engineer was asked to build a

model on paper using the dependency metamodel and domain elements. The engineer

was coached by the thesis author during this process to ensure that the experiment

focused on the metamodelling constructs and not on the Protégé [Protégé] or Pellet

[Pellet] toolset.

185

5 CONCLUSIONS

This chapter describes how well the objectives of the thesis were achieved (Section

5.1), summarises the contributions made (Section 5.2), describes work that may be

undertaken in the future (Section 5.3) and concludes with some final remarks (Section

5.4).

5.1 Objectives & Achievements

The research question in this thesis was defined in Chapter 1 as “How and to what

extent can a dependency model enhance integration performance by allowing for the

identification of and support for the management of the mapping dependencies of an

integration system?”

Four objectives were derived to address the research question:

1) Perform a state of the art review of approaches for semantically linking local
23

schema and aggregate or global schema
24

.

 2) Research and develop a model to define the dependencies that arise when creating

semantic links between schemas to support an ontology-based integration approach

between local schemas and global schemas.

3) Research and develop a prototype tool capable of supporting this dependency

modelling approach.

4) Evaluate the dependency model and tool using industrial use cases.

Each of these objectives and associated achievements are discussed in the following

sections.

5.1.1 Objective One - State of the Art Review

The state of the art chapter was divided into three sections. Before the state of the art a

background review of current information integration approaches and technologies was

undertaken.

The first part of the state of the art reviewed the prior art in dependency and

dependency analysis. The second part looked at approaches to schema and ontology

23

 Local schema refers to a schema that represents the local sources to be integrated.
24

 Global schema refers to a common view of sources to be integrated.

186

mapping management as they apply to management of semantic mappings. The third

part reviewed the state of the art in ontology-based integration systems.

Review of Information Integration

The background review into information integration illustrated that research has been

ongoing for at least 30 years in various forms but is as relevant today as ever. The

detailed state of the art for integration focused on ontology-based approaches to data

integration by providing a review of the fundamental ways to apply ontologies to the

integration problem and then reviewing several recent ontology-based integration

frameworks against these fundamentals.

The review showed how information integration is often cited as the biggest and most

expensive challenge that information-technology organisations face and how

information integration is thought to consume about 40% of their budget [Bernstein

and Haas 2008]. In spite of many successes in information integration (e.g. relational

databases, ETL
25

techniques, data federation techniques), the state of the art review

illustrates the relevance of research in data integration today [Bernstein and Melnik

2007, Lowell Database Report 2003, IBM 2004, Halevy et al. 2005, and Zhou et al.

2006].

The role that ontologies play in supporting the resolution of semantic heterogeneity

[Pollock 2002, Cruz and Xiao 2005, Calvanese et al. 2001, Noy 2004 and Wache et al.

2001] and how semantic mappings are used to create relationships between the

ontologies and data sources of the systems to enable integration [Cruz and Xiao 2005,

Noy 2004, Wache et al. 2001] was described. The review showed that as the ontology-

based systems are scaled up, semantic mappings also need to grow and evolve

[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, and Halevy et

al. 2005]. Despite the broad usage of mappings across these approaches, it was found

that there is little commonality in the approach to the management of the mappings

[Bernstein and Melnik 2007, Doan and Halevy 2005, Halevy et al. 2005].

To investigate this management gap in the state of the art, experiment one (Section 4.2)

was developed to discover the key issues related to integration performance when

applying an ontology-based integration approach in an industrial context. This led to a

number of important achievements that are described below.

25

 Extract, Transform and Load (ETL) is a data integration technique.

187

A test bed that represented a generalised ontology-based integration system using the

hybrid ontology approach was developed as described in the design chapter. The test

bed enabled the exploration of the semantic mappings that are at the heart of the

ontology-based system in experiment one. The “Integration Quality” metric of the

system was measured using the THALIA integration benchmark [Stonebraker 2005].

From the analysis of the results of the experiment a hypothesis was developed

concerning the complex nature of the mappings and the complex coupling between

different parts of the integration system that the mappings create. The test bed that was

created in this thesis adhered to the fundamental approaches for using ontologies for

integration as described in the state of the art review.

Mappings in Schema and Ontology Evolution

The state of the art in the management of schema and ontology mapping was reviewed

by first looking at mapping usage in schema evolution and then reviewing the state of

the art in ontology evolution.

While the mappings play a key role in the approaches to schema evolution, there are

fundamental reasons why the approaches are not easily transferable [Kondylakis et al.

2009, Noy and Klein 2002].

Among these fundamental differences is that ontologies themselves are data that can be

reasoned over to an extent that schemas cannot (e.g. a query on a database schema will

usually result in a set of instance data, while a query on an ontology can result in both

instance data and elements of the ontologies itself). Furthermore ontologies themselves

incorporate explicit semantics of a domain that in the case of schema based systems

tend to be incorporated into the application itself. The extra expressivity of the

ontological domain descriptions means the mappings in the ontological domain contain

semantic information themselves as illustrated by the fact that mappings are sometimes

represented using ontological languages.

The author of this thesis believes that, based on the evidence from the state of the art

review that the mappings in the ontology-based integrations systems are sufficiently

different from the schema approaches that the mappings would benefit from an

independent management approach. The ontology-based dependency modelling

approach proposed in this thesis provides an approach for the management of

mappings in the ontology-based integration domain in which the mappings are seen as

188

fundamental parts of the integration system that needs to be evolved when the data

sources change.

The review showed described two of the most recent tools (PRISM workbench [Curino

et al. 2008], Clio project [Miller et al. 2001]) to support schema evolution.

In the context of ontology-based integration systems, it was noted that these

approaches, while relevant, may not be directly applicable due to the differences in

both the usage and nature of mappings in the ontology-based integration domain. A

number of differences were noted as follows:

• The more expressive nature of the ontology languages made it unclear if the

approaches that use schema matching operators defined in [Curino et al. 2008]

are relevant to the ontology domain.

• The process for schema mappings and schema evolution tends to be coupled

and the lifecycle of each is not identified or managed separately.

• The formal semantics of ontology-based languages allow for the use of

reasoning that can be used for consistency checking of evolved ontologies.

The ontology-based dependency modelling approach proposed in this thesis provides a

new approach for the management of mappings in the ontology-based integration

domain that is not covered by the state of the art.

The state of art review noted that the development of ontology is a complex process

and recently much fruitful research has been carried out [Hepp et al. 2008] and is

beginning to be realised in excellent tools such as the NeOn project [NeOn].

The review highlighted that the ongoing maintenance and evolution of the ontologies is

also of critical importance for any industrial deployment of an ontology-based

integration solution as noted in [Wache et al. 2001, Uschold and Gruniger 2004, Hepp

et al. 2008]. The NeOn project [Hepp et al. 2008] provides an excellent, extensible

framework for the development and management of ontologies.

The complex nature of mapping evolution was described [An and Topaloglou 2007]

and the review revealed that the evolution of semantic mappings is still in its early

stages [Hepp et al. 2008]. This was further confirmed by the review of current

frameworks that use ontologies to support integration.

189

The ontology-based dependency modelling approach proposed in this thesis can

support the ontology alignment lifecycle proposed in [Hepp et al. 2008] by

automatically providing the candidate mappings that are dependent on the part of the

ontology that is evolving.

Dependency

In the state of the art review on dependency, it was shown that dependencies and

dependency analysis has been used across many domains such as distributed service

management, fault management and software configuration management [Borner and

Paech 2009, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al. 2009, Wang

and Capretz 2009 and Maddox and Shin 2009]. The approach enabled valuable

insight into the management of their respective systems by providing impact analysis

caused by changes (e.g. faults or data updates) in the underlying systems.

Very few approaches presented in the state of the art provide formal representations of

dependency that can be used to reason about dependencies. Most representations of

dependency are based on simple notions of dependency without any behaviour aspects

modelled as in the approach taken in this thesis. The models proposed in [Keller et al.

2000] and [Cox et al. 2001] provide useful insight into the descriptive attributes of

dependency that are useful in the service management domain.

The ontology-based dependency modelling approach presented in this thesis describes

two different types of dependency attribute i.e. behavioural attributes and descriptive

attributes. While the descriptive attributes of the model are important, it is the

behavioural attributes that enable the automatic reasoning over the ontology-based

dependency model and thus provide the dependency analysis with the capability to

automatically build chains of dependencies.

It was noted in the review that the processes to acquire instances to populate the

dependency model are not explicitly specified and tend to use bespoke coded solutions

to acquire the instance data [Ensel and Keller 2002, Keller et al. 2000, Borner and

Paech 2009 and Drabble et al. 2009]. This makes any generalisation of the approaches

difficult.

Summary

From the discussion above, the state of the art review identified the different

approaches that can be taken to use ontologies to support semantic integrations. These

190

fundamental approaches were applied in the construction of the generalised ontology-

based integration test bed used in experiment one and two.

The review highlights the hypothesis that semantic mappings can pose problems in

ontology-based data integration systems due to the difficulty in evolving them when

data sources change. This problem is exacerbated by the lack of mapping management

approaches.

The review showed the value of dependency analysis as it has been applied in other

domains but noted that the approaches are tightly coupled to the domain under test.

This thesis has developed a dependency modelling approach to support the

management of mappings in ontology-based integration systems as the data sources

evolve.

5.1.2 Objective Two - Design of Ontology-Based Dependency
Model

Following analysis of the results of experiment one, a hypothesis was developed that

stated that the complexity and coupling of the mappings would make the mappings

difficult to evolve. Furthermore support for understanding the mapping complexity and

coupling would bring benefits to the integration system when the mappings need to be

updated.

This thesis has demonstrated the complexity associated with mappings in the ontology-

based integration systems in experiment two. This was achieved by using a model of

dependencies to explicitly show the relationships between mappings and the rest of the

integration system.

This was achieved by the development of a domain specific model in OWL [OWL] to

represent the dependencies in the ontology-based integration system. This is called the

ontology-based dependency model (OBDM).

The ontology-based dependency model was created using a metamodelling approach.

The dependency metamodel that was created provided an extensible set of concepts

related to modelling of dependencies and can be reused to build other dependency

models. The dependency metamodel moved past the state of the art in dependency

modelling due to its support for dependency attributes (behavioural and descriptive)

and in its ability to enable reasoning about dependencies. The compact nature of the

191

metamodel enabled its application in a new domain as shown in the corroborative

study in the evaluation chapter.

The selection of OWL to create the ontology-based dependency model and metamodel

enabled automated reasoning about dependencies based on the formal semantics of the

OWL constructs used in the dependency metamodel and model. This automated

reasoning approach was used in the TomE tool described in Section 3.2.6.3 of the

design chapter.

5.1.3 Objective Three - Design of Ontology-Based Dependency
Model Tool (TomE)

A tool called TomE (Towards Ontology Mapping Evolution) was developed to

instantiate the OBDM and to support the analysis of dependencies in the ontology-

based integration system.

The TomE tool automatically computes the dependencies arising from the semantic

mappings in the ontology-based integration test system. The tool was used to support

experiment two, three and four.

The tool provides strong visualisation of the automatically computed dependencies by

providing three separate graphical representations of the dependencies. The tool

automatically populates the dependency model by reading the semantic mapping file

from the ontology-based integration system.

The tool is an important achievement because it abstracts the ontological aspects of the

dependency model from the user. This thesis has shown how the tool ensured fast and

accurate computation of the dependencies across a range of different semantic

mappings files in experiment two, three and four.

5.1.4 Objective Four - Evaluation of Dependency Modelling
Approach

The performance of the dependency modelling approach that uses an ontology-based

metamodel was measured in experiment two, three and four.

Experiment two demonstrated the three different types (non-overlapping, overlapping,

function-based) of dependencies that can arise when semantic mappings are used in the

192

generalised ontology-based system. The existence of different types of dependencies

supports the hypothesis that mappings are difficult to evolve because they exhibit

complex dependency relations with other parts of the system.

Experiment three demonstrated that the automated dependency approach will

significantly outperform manual process based approaches. Furthermore, the results of

experiment three show that even the dependencies in a small number of mappings can

present considerable difficulty in the absence of tool support. Knowledge of the

underlying data set did not significantly improve the performance of the manual

approach.

Experiment four demonstrated how the dependency modelling approach and the TomE

tool can be used to support the evolution of mappings when a data source changes. The

dependency modelling approach and TomE tool enabled the fast and accurate

identification of the mappings that were impacted by the introduction of a new data

source in the generalised ontology-based integration system.

The corroborative study provided an indication of the genericity of the dependency

metamodel by applying the ontology-based metamodel in a different domain. The

study showed that an electrical engineer could create a dependency model and carry

out dependency analysis using the metamodel. This is important because it provides

evidence of the straight forward approach that can be taken to apply the metamodel in

a new domain.

5.2 Contribution

The major contribution of this work is the ontology-based dependency model (OBDM)

that can represent the dependencies that occur between mappings, ontologies and

databases in an ontology-based integration system. The ontology-based dependency

model will be beneficial to system integrators when developing approaches to improve

the ability of the enterprise integration systems to evolve when data sources change.

In the context of the generalised ontology-based integration system, the dependency

modelling approach is automatic since it can decompose the mapping file, compute and

visualise dependencies without human intervention. As shown in experiment three, it

significantly outperforms manual process oriented approaches for both accuracy and

time measurements. The approach provides useful insight into the mapping evolution

in a fast and reliable way by providing three levels of dependency analysis, complete

193

with visualisation and navigation of the dependency graphs. A case study (experiment

four) that introduced a new data source to the integration system demonstrated the

relevance of the dependency model and toolset to the evolution problem by providing

analysis of the dependencies. The approach supports the evolution process by

providing global dependency views that allow the user to focus in on areas of high

dependence initially and then to progressively drill down to the detail to understand the

impact of each computed dependency. The dependency model is novel since it

automatically computes the dependency relationships. The automation is achieved

through the instrumental usage of ontological reasoning over different forms of

dependency relation (e.g. transitive, symmetric). This approach requires coding only to

invoke the ontological reasoner. To the authors knowledge, an ontology-based

dependency metamodel has not been published before that has support for both

behavioural and descriptive attributes and that can enable reasoning over the

dependency relationships in the model to enable automatic computation of

dependencies.

The dependency modelling approach makes the dependencies that exist in the system

explicit thus making analysis of dependencies and mapping evolution easier.

The approach does not require instrumentation of the integration system and thus does

not impact the processing of the integration system while the dependency analysis is

taking place. The ontology-based dependency model (OBDM) was case studied against

industrial data from real systems from the Alcatel-Lucent supply chain that provided a

challenging set of requirements for the system. The results of the experiments indicate

how the ontology-based dependency model and tool enable the integration specialist to

quickly identify all the impacts of a complex set of changes to the data sources. By

providing progressive detail of the dependencies, the integration specialist can quickly

focus and assess what needs to be changed in the system. The results show that

dependencies found can also be used to develop targeted regression testing after the

integration system has been updated. This analysis is useful for integration systems

developers who wish to understand the complexity involved in the evolution of

mappings in an industrial context.

A minor contribution is the ontology-based dependency metamodel from which the

domain specific dependency model was created. The ontology-based dependency

metamodel could be beneficial to management systems (e.g. service and fault

194

management) which need to model dependencies between parts of the system as

described in the state of the art review of dependency (Section 2.3.1). The genericity of

the metamodel has been tested across two large industrial datasets that originated from

a dynamic industrial environment with multiple IT systems and multiple processes. A

corroborative study was carried out to demonstrate the application of the metamodel in

an entirely different domain (i.e. dependency analysis in a domestic electrical circuit).

The compact nature of the metamodel facilitates design flexibility, behaviour reuse and

scalability. Design flexibility is achieved since the metamodel enables domain specific

models to select those features of the metamodel it wishes to realise. Reuse is achieved

because the domain specific models inherit the important formal semantics associated

with dependency relations (e.g. transitivity). The metamodel and domain specific

model can be independently evolved with care. A process has been defined that

describes the steps required to create domain specific models from the dependency

metamodel. This ensures that the system is extensible because the technique and model

to manage mapping evolution can be adapted to cater for other mapping formats by

simply decomposing the mapping format into the core architectural entities. The

decomposition process requires the model creator to encode only the first level of

dependency for each node thus reducing the breadth of domain knowledge any single

model creator requires.

Peer review publications

The design of the generalised ontology-based integration test system and the setup,

results and conclusions of experiment one were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Case Study of an

Ontology-Driven Dynamic Data Integration in a Telecommunications Supply

Chain. Proceedings of the Workshop on the First Industrial Results of Semantic

Technologies (FIRST2007) at ISWC/ASWC2007, Busan, South Korea, 2007.

The design of the ontology-based dependency model and the result of experiment two

were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, Managing Ontology Based

Integration Systems using Dependencies. Proceedings of the Workshop on the

Managing of Ubiquitous Communications and Services Workshop (MUCS) at

PerCom 2010, Mannheim,Germany , 2010.

195

The design of the ontology-based dependency metamodel, model and toolset was

published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Dependency Modelling

Approach for the Management of Ontology Based Integration systems.

Network Operations and Management Symposium (NOMS), Osaka, Japan,

2010.

It is planned to submit the ontology-based dependency modelling approach using

dependency metamodel to selected journals in the service and data management areas.

5.3 Future Work

The experiments that were carried out in this research highlighted a number of

limitations as discussed at the end of each experiment. These limitations afford the

opportunity for further research. This further research is classified here according to

whether they impact the performance or the functionality of the dependency modelling

approach.

5.3.1 Future work related to the performance of the dependency
model

This section describes future work that could be undertaken to improve or further

verify the performance of the dependency modelling approach.

Runtime Performance of Ontology-Based Integration Approaches

The THALIA benchmark provided a simple measure (i.e. a score out of twelve) of the

ability of the system to perform integrations across the twelve types of heterogeneity.

A more comprehensive suite of performance measurements (e.g. runtime performance)

would be needed to confirm the integration systems suitability for industrial

deployment. These aspects of performance were not tested in this research as the focus

was to investigate the complexity of the mappings.

The THALIA benchmark system does not provide quantitative data on how much

effort is needed to run each test. This is important because, while a THALIA

integration test may pass, it may require costly manual intervention (e.g. mapping

updates) that would impact the scalability of the system. To address this in experiment

one an effort classification was developed and used that provides qualitative estimation

196

of the effort needed for each test in THALIA. Further research could be undertaken to

develop a more sophisticated quantitative measure of the effort for each THALIA test.

Mapping Formats

Only one mapping format (INRIA [Euzenat 2004]) was tested as part of the

experiments. Other mappings formats could cause dependencies between different

parts of the integration system that were not tested in this experiment. However, the

approach taken in the design of the dependency metamodel and model creation process

means that irrespective of the mapping format, once the mapping decomposition

process is carried out, the dependency model will be able to support other mapping

formats. Further research could be undertaken to verify the performance of the

dependency modelling approach using other mapping formats.

5.3.2 Future work related to the functionality of the dependency
model

This section describes future work that could be undertaken to improve the

functionality of the dependency modelling approach.

TomE Tool Implementation

The current implementation of the visualisation of the dependency chain in TomE does

not display a graphical representation of the function associated with each mapping

point. This could be improved by updating the dependency factory code in TomE to

add appropriate GraphML nodes for functions.

In the current implementation of the TomE tool, the function names need to be

manually extracted from the function descriptions in the generalised ontology-based

integration system. While the TomE tool loads the function descriptions automatically

from a user specified file (Section 3.2.6), the file has to be prepared manually by

examining the mapping file and the code for each mapping function. Further work

could be carried out here to automate the collection of the function names and the

parameter names.

Rule Enhancement for the Dependency Model

The OBDM currently does not support the automatic classification of the dependency

types found. The addition of a rule capability to the domain specific model would

197

provide the dependency modeller with the ability to define rules to support this

classification. This could be achieved by research into the application of Semantic Web

Rule Language [SWRL] to the dependency model.

The Role of Dependency Analysis in the Mapping Evolution Process

The industrial data used in the experiment four came from the logistics based use case

and focused on updating mappings rather than the creation of new mappings or the

deletion of existing mappings. A process was defined to describe the usage of the

TomE tool for the update case. A detailed process for the usage of the TomE tool for

all cases (update, new, delete mapping) should be defined that will cover the sequence

of tasks needed to carry out the dependency analysis and will define how the

dependency analysis interacts with the mapping evolution process.

Application of Dependency Model to other domains

The dependency modelling approach and dependency metamodel is proposed to be

used in a number of other application areas. The FAME Strategic Research Cluster

[FAME] in Ireland will use the dependency modelling approach as part of the strategy

to manage ontology mappings for the FAME architecture. Within a research project in

Bell Labs, the ontology-based dependency metamodel is under investigation to support

the management of dependencies between web service invocations. The dependency

model may be included in a larger data management ontology which includes concepts

to represent provenance of the data sources which are represented by the domain

ontology.

198

5.4 Final Remarks

The explosion of information that is available in the internet and the enterprise has

created the need for dynamic data integration technologies that can evolve as the

information evolves. The emerging approaches to data integration that use ontologies

and mappings promise to make data integration systems more flexible in the face of

evolving data sources.

The author believes that the ontology-based dependency model described in this

research provides a framework that can be used in data integration toolsets to support

the data integration industry as it takes the first steps towards full mapping

management.

199

6 Bibliography

Abels et al. 2008 Sven Abels, Stuart Campbell and Hamzeh Sheikhhasan. Stasis

- Creating an Eclipse Based Semantic Mapping Platform. In

eChallenges 2008.

An and Topaloglou 2007 Yuan An and Thodoros Topaloglou. Maintaining Semantic

Mappings between Database Schemas and Ontologies. In the

Proceedings of the Joint ODBIS and SWDB Workshop on

Semantic Web, Ontologies, Databases 2007 in conjunction

with VLDB07, Vienna, Austria.

Beneventano et al. 2003 Domenico Beneventano, Sonia Bergamaschi, Francesco

Guerra and Maurizio Vincini. Synthesizing an Integrated

Ontology. IEEE Internet Computing 7(5):42–51, 2003.

Beneventano et al. 2009 Domenico Beneventano, Mirko Orsini, Laura Po, Antonio

Sala and Serena Sorrentino. "An Ontology-Based Data

Integration System for Data and Multimedia Sources". pp.

606-611. 2009 IEEE International Conference on Semantic

Computing, 2009.

Bernstein and Melnik 2007 Philip A. Bernstein and Sergey Melnik. Model

Management 2.0: Manipulating Richer Mappings.

International Conference on Management of Data.

Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data.

Bernstein and Haas 2008 Philip A. Bernstein and Laura M. Haas 2008. Information

Integration in the Enterprise. Communications of the ACM.

Volume 51, Issue 9 72-79. (September 2008). DOI=

http://doi.acm.org/10.1145/1378727.1378745

200

Biffl et al. 2010 Stefan Biffl, Wikan Danar Sunindyo and Thomas Moser.

"Semantic Integration of Heterogeneous Data Sources for

Monitoring Frequent-Release Software Projects". pp. 360-

367. 2010 International Conference on Complex, Intelligent

and Software Intensive Systems, 2010.

Böhm et al 2008 Matthias Böhm, Dirk Habich, Wolfgang Lehner and Uwe

Wloka. "DIPBench: An Independent Benchmark for Data-

Intensive Integration Processes". Data Engineering Workshop,

2008. ICDEW 2008. IEEE 24th International Conference.

Vol., No. pp.214-221, 7-12 April 2008. DOI:

10.1109/ICDEW.2008.4498321.

Böhme and Rahm 2001 Timo Böhme and Erhard Rahm.“Xmach-1: A

Benchmark for XML Data Management.” in BTW,

2001, pp. 264–273.

Borner and Paech 2009 Lars Borner and Barbara Paech. "Using Dependency

Information to Select the Test Focus in the

Integration Testing Process". Practice and Research

Techniques, Testing: Academic and Industrial

Conference pp. 135-143, 2009 Testing: Academic and

Industrial Conference - Practice and Research

Techniques, 2009.

Brown et al. 2001 Aaron Brown, Guatam Kar, Alexander Keller. An Active

Approach to Characterizing Dynamic Dependencies for

Problem Determination in a Distributed Environment.

Proc 7th IFIP/IEEE International Symposium on Integrated

Network Management (IM VII), Seattle, WA, May 2001.

Calvanese et al. 2001 Diego Calvanese, Guiseppe De Giacomo and Maurizio

Lenzerini. Ontology of Integration and Integration of

Ontologies. In Description Logic Workshop (DL 2001),

pages 10–19, 2001.

201

Choi et al. 2006 Namyoun Choi, Il-Yeol Song and Hyoil Han. A Survey on

Ontology Mapping, ACM SIGMOD Record, Volume 35

Number 3, pp.34-41, September 2006.

Cleve and Hainaut 2006 Anthony Cleve and Jean Luc Hainaut. Co-

Transformations in Database Applications Evolution.

Generative and Transformational Techniques in Software

Engineering, pages 409–421, 2006.

Corcho and Gomez-Perez 2000 Oscar Corcho and Asuncion Gomez-Perez.

Evaluating Knowledge Representation and Reasoning

Capabilities of Ontology Specification Languages. In

Proceedings of the ECAI 2000 Workshop on Applications of

Ontologies and Problem-Solving Methods, Berlin, 2000.

Cox et al. 2001 Lisa Cox, Dr. David Skipper and Dr. Harry S. Delugach.

Dependency Analysis Using Conceptual Graphs. In

Proceedings of the 9th International Conference on

Conceptual Structures, ICCS 2001.

Crubezy and Musen 2003 Monica Crubezy and Mark A. Musen. Ontologies in

Support of Problem Solving. S. Staab and R. Studer

(eds). Handbook on Ontologies. Pages 321– 342.

Springer, 2003.

Cruz and Xiao 2005 Isabel F. Cruz and Huiyong Xiao. “The Role of Ontologies in

Data Integration”. Journal of Engineering Intelligent Systems,

Vol. 13 (4), pp. 245- 252, 2005.

Cruz et al. 2004 Isabel F. Cruz, Huiyong Xiao and Feihong Hsu. "An

Ontology-Based Framework for XML Semantic Integration".

pp. 217-226. International Database Engineering and

Applications Symposium (IDEAS'04) 2004.

Curino et al. 2008 Carlo A. Curino, Hyun J. Moon and Carlo Zaniolo. Graceful

Database Schema Evolution: The PRISM Workbench. Proc.

VLDB Endow. 1, 1 (Aug. 2008) 761-772. DOI=

http://doi.acm.org/10.1145/1453856.1453939

202

Deng et al. 2004 Yu Deng, Harumi Kuno and Kevin Smathers. Managing the

Evolution of Simple and Complex Mappings between

Loosely-Coupled Systems.

http://www.hpl.hp.com/techreports/2004/HPL-2004-68.html

Doan and Halevy 2005 AnHai Doan and Alon Y. Halevy. Semantic Integration

Research in the Database Community, A Brief Survey.

A.I. Magazine, Volume 26, Issue 1 (March 2005). Special

issue on Semantic Integration. Pages: 83 – 94. Year of

Publication: 2005.

Dong and Linpeng 2008 Li Dong and Huang Linpeng. "A Framework for

Ontology-Based Data Integration" pp. 207-214. 2008

International Conference on Internet Computing in Science

and Engineering.

Dou et al. 2003 Dejing Dou, Drew McDermott and Peishin Qi. Ontology

Translation on the Semantic Web. In the International

Conference on Ontologies, Databases and Applications of

Semantics 2003.

Drabble et al. 2009 Brian Drabble, Tim Black, Chris Kinzig and Gary Whitted.

"Ontology Based Dependency Analysis: Understanding the

Impacts of Decisions in a Collaborative Environment".

International Symposium on Collaborative Technologies and

Systems, 2009. pp. 10-17.

Dreo Rodosek and Lewis 2001 Gabi Dreo Rodosek and Lundy Lewis. Dynamic

Service Provisioning: A User- Centric

Approach. O. Festor and A. Pras (eds.), In

Proceedings of the 12th IFIP/IEEE

International Workshop on Distributed Systems:

Operations and Management (DSOM

2001) INRIA Press, Nancy, France. pp. 37–48,

October 2001.

203

D2RQ API D2RQ API. http://sites.wiwiss.fuberlin.de/suhl/bizer/D2RQ/

Eclipse Eclipse. Integrated Development Environment.

http://www.eclipse.org/

Ensel 2001 Christian Ensel. A Scalable Approach to Automated Service

Dependency Modeling in Heterogeneous Environments. In

the 5th International Enterprise Distributed Object

Computing Conference (EDOC 2001). IEEE Publishing,

IEEE, Seattle, USA, September, 2001.

Ensel and Keller 2002 Christian Ensel and Alexander Keller. An Approach for

Managing Service Dependencies with XML and the

Resource Description Framework. Journal of Network

Systems Management. Volume 10 Issue 2 (June 2002) Pages:

147- 170.DOI= http://dx.doi.org/10.1023/A:1015902715532

Euzenat 2004 Jérôme Euzenat. INRIA, A Format for Ontology Alignment.

An API for Ontology Alignment. The 3rd Conference on

International Semantic Web Conference (ISWC), Hiroshima

(Japan) 2004. Lecture notes in Computer Science 3298:698-

712, 2004. http://alignapi.gforge.inria.fr/format.html

FAME Federated, Autonomic Management of End-to-End

Communications Services (FAME). Strategic Research

Cluster (SRC). http://www.fame.ie

Fisher 2004 Dr. Robert J. Fisher. What is Action Research? An

Introduction to Action Research for Community Development.

Paper prepared for Working Party Meeting on Action

Research for Integrated Community Development, 5-8 April

2004, Tehran, Islamic Republic of Iran.

Fraissé 1986 Roland Fraissé. Theory of Relations, First Edition, 1986.

North-Holland. ISBN 988044 4505422 044 4505423

204

Fu et al. 2008 Kui Fu, Guihua Nie, Donglin Chen and Huimin Wang. "A

Semantic Integration Framework for E-Business and Logistics

Systems". pp. 394-397. 2008 International Conference on

Computer Science and Software Engineering.

Gilliland 2002 Michael Gilliland. Is Forecasting a Waste of Time? Supply

Chain Management Review, July/August 2002.

GMF Eclipse Graphical Modeling Framework.

http://www.eclipse.org/gmf/

Gomez-Perez 1998 Asunción Gomez-Perez. Knowledge Sharing and Reuse. The

Handbook on Applied Expert Systems. ED CRC Press

1998.

GraphML GraphML, An XML format for Graphs.

http://graphml.graphdrawing.org/

Gruber 1993 Thomas R. Gruber. A Translation Approach to Portable

Ontology Specifications. Knowledge Acquisition. Volume

5, Issue 2 (Jun. 1993) Pages 199-220. DOI=

http://dx.doi.org/10.1006/knac.1993.1008

Gruschke 1998 Boris Gruschke. Integrated Event Management: Event

Correlation Using Dependency Graphs. International

Workshop on Distributed Systems: Operations and

Management 1998 (DSOM 98).

Halevy 2001 Alon Y. Halevy. “Answering Queries Using Views: A

Survey,” The VLDB Journal, Vol. 10 (4), pp. 270-294,

2001.

Halevy 2005 Alon Y. Halevy. Why Your Data Won't Mix. Queue 3, 8

(October 2005), 50- 58. DOI=

http://doi.acm.org/10.1145/1103822.1103836

205

Halevy et al. 2005 Alon Y. Halevy, N. Ashish, D. Bitton, M. Carey , D. Draper, J.

Pollock, A. Rosenthal and V. Sikka. Enterprise Information

Integration: Successes, Challenges and Controversies,

ACM SIGMOD International Conference on Management of

Data. A.C.M., Baltimore, 2005. pp. IIS-ISI. ISBN:1-59593-

060-4

Halevy et al. 2006 A.Y. Halevy, A. Rajaraman and J. Ordille 2006. Data

Integration: The Teenage Years. In Proceedings of

the 32nd International Conference on Very Large Data

Bases (Seoul, Korea, September 12 - 15, 2006). U. Dayal, K.

Whang, D. Lomet, G. Alonso, G. Lohman, M. Kersten, S. K.

Cha, and Y. Kim, Eds. Very Large Data Bases. VLDB

Endowment, 9-16.

Harth et al. 2004 F. Martin-Recuerda Harth, A. Harth et al. D2.1 Report on

Requirements Analysis and State of the Art (WP2-Ontology

Management Version 1.00), FP6 DIP Project, FP-507483.

http://dip.semanticweb.org/deliverables.html August 31st,

2004

Haas 2007 Laura M. Haas. Beauty and The Beast: The Theory and

Practice of Information Integration. International Conference

on Database Theory. Barcelona, Spain, January 2007. 28–43.

Hendrik et al 2009 Hendrik Thomas, Declan O'Sullivan and Rob Brennan ,

Ontology Mapping Representations: a Pragmatic Evaluation ,

International Conference on Software Engineering and

Knowledge Engineering, Boston, USA, July 1-3, 2009,

Knowledge Systems Institute Graduate School, 2009, pp228-

232

Hepp et al. 2008 M. Hepp, P. Leenheer, A. Moor and Y. Sure (Eds.). Ontology

Management Semantic Web, Semantic Web Services and

Business Applications. Springer Books 2008.

Huynh et al. 2007 David Huynh, Robert Miller and David Karger. Potluck: Data

Mash-Up Tool for Casual Users. ISWC 2007-11.

206

IBM 2004 IBM Business Consulting Services: Your Turn. The Global

CEO Study 2004. Available from

http://www.bitpipe.com/detail/RES/1129048329_469.html

ITU-T TMN ITU-T TMN. Telecommunication Management Network

Standardisation. http://www.itu.int/ITU-T/

Jena Jena Semantic Web Framework. http://jena.sourceforge.net/

Kar et al. 2000 Guatam Kar, Alexander Keller and S. Calo. Managing

Application Services over Service Provider Networks:

Architecture and Dependency Analysis. Proceedings of the

 Seventh IEEE/IFIP Network Operations and

 Management Symposium (NOMS 2000), Honolulu,

HI, 2000.

Kalfoglou and Schorlemmer 2003 Y. Kalfoglou and M. Schorlemmer. Ontology

Mapping: The State of the Art. The Knowledge

Engineering Review, 18(1):1–31, 2003.

Katker and Paterok 1997 S. Katker and M. Paterok. Fault Isolation and Event

Correlation for Integrated Fault Management. A.A.

Lazar, R. Saracco and R. Stadler (eds.) In Proceedings of

the 5th IFIP/IEEE International Symposium on

Integrated Network Management, Chapman and Hall,

San Diego, California. pp. 583–596, May 1997.

KAON KAON. The Karlsruhe Ontology and Semantic Web

Tool Suite. An open-source ontology management

infrastructure from the University of Karlsruhe.

http://kaon.semanticweb.org/

207

Keller et al. 2000 Alexander Keller, U. Blumenthal and Guatam Kar.

Classification and Computation of Dependencies for

Distributed Management. In Proceedings of the 5th

IEEE Symposium on Computers and Communications

(ISCC 2000) (July 04 - 06, 2000). ISCC. IEEE

Computer Society, Washington, DC, 78.

Kondylakis et al. 2009 H. Kondylakis, G. Flouris and D. Plexousakis. Ontology and

Schema Evolution in Data Integration: Review and

Assessment. In Proceedings of the Confederated International

Conferences, Coopis, Doa, Is, and ODBASE 2009. On the

Move to Meaningful Internet Systems: Part II (Vilamoura,

Portugal, November 01 - 06, 2009). R. Meersman, T. Dillon,

and P. Herrero, Eds. Lecture Notes in Computer Science, Vol.

5871. Springer-Verlag, Berlin, Heidelberg, 932-947. DOI=

http://dx.doi.org/10.1007/978-3-642-05151-7_14

Kwak and Yong 2008 Jung-Ae Kwak and Hwan-Seung Yong. "An Approach to

Ontology-Based Semantic Integration for PLM Object". pp.

19-26. 2008 IEEE International Workshop on Semantic

Computing and Applications.

Lenzerini 2002 Maurizio Lenzerini. Data Integration: A Theoretical

Perspective. In Proceedings of the 21st ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database

Systems (Madison, Wisconsin, June 03 - 05, 2002). PODS

2002. ACM, New York, NY, 233-246. DOI=

http://doi.acm.org/10.1145/543613.543644

Luo and Diao 2009 Daizhong Luo and Shanhui Diao. "Feature Dependency

Modeling for Software Product Line". International

Conference on Computer Engineering and Technology, 2009.

pp. 256-260.

208

Lowell Database Report 2003 Lowell Database Report. Attendees at the Lowell

Workshop were: Serge Abiteboul, Rakesh

Agrawal, Phil Bernstein, Mike Carey, Stefano

Ceri, Bruce Croft, David DeWitt, Mike Franklin,

Hector Garcia Molina, Dieter Gawlick, Jim Gray,

Laura Haas, Alon Halevy, Joe Hellerstein, Yannis

Ioannidis, Martin Kersten, Michael Pazzani,

Mike Lesk, David Maier, Jeff Naughton, Hans

Schek, Timos Sellis, Avi Silberschatz, Mike

Stonebraker, Rick Snodgrass, Jeff Ullman,

Gerhard Weikum, Jennifer Widom, and Stan

Zdonik. Slides and some detailed notes from the

event are at

http://research.microsoft.com/~gray/lowell/.

Maddox and Shin 2009 Jeffrey Maddox and Dong-Guk Shin. "Applying

Relational Dependency Discovery Framework to Geo-

spatial Data Mining". International Conference on

Information and Multimedia Technology, 2009. pp. 10-

14.

Maedche et al. 2002 A. Maedche, B. Motik, N. Silva and R. Volz. MAFRA - A

Mapping Framework for Distributed Ontologies. In the

13th European Conference on Knowledge Engineering

and Knowledge Management EKAW, Madrid, Spain, 2002.

Miller et al. 2001 R.J. Miller, M.A. Hernández, L.M. Haas, L. Yan, C.T. Howard

Ho, R. Fagin, and L. Popa. 2001. The Clio Project: Managing

Heterogeneity. SIGMOD Rec. 30, 1 (Mar. 2001), 78-83.

DOI= http://doi.acm.org/10.1145/373626.373713

MySQL MySQL. Open source database. http://www.mysql.com/

209

NeOn 2005 NeOn Project. NeOn is a project involving 14 European

Partners and co- funded by the European Commission’s

Sixth Framework Programme under grant number IST-

2005-027595. http://www.neon-project.org

Noy and Klein 2002 N.F. Noy and M. Klein. Ontology Evolution: Not the Same as

Schema Evolution. Smi-2002-0926, University of Stanford,

Stanford Medical Informatics, USA, 2002.

Noy 2004 N.F. Noy. “Semantic Integration: A Survey of Ontology Based

Approaches” SIGMOD Record, Vol. 33 (4), December 2004.

Noy and Musen 2000 F. Noy and M.A. Musen. PROMPT: Algorithm and Tool for

Automated Ontology Merging and Alignment. In Proceedings

of the 17th National Conference on Artificial Intelligence and

12th Conference on Innovative Applications of Artificial

Intelligence (AAAI/IAAI 2000). Pages 450–455, 2000.

O'Brien R. 2001 R. O'Brien 2001. Um Exame da Abordagem Metodológica da

Pesquisa Ação. [An Overview of the Methodological

Approach of Action Research]. In Roberto Richardson

(Ed.), Teoria e Prática da Pesquisa Ação [Theory and Practice

of Action Research]. João Pessoa, Brazil: Universidade

Federal da Paraíba. (English version) Available:

http://www.web.ca/~robrien/papers/arfinal.html (Accessed

20/1/2002)

O’Sullivan D. 2005 Declan O’Sullivan. PhD Thesis. The OISIN Framework:

Ontology Interoperability in Support of Semantic

Interoperability. Trinity College Dublin. December 2005.

OSI GRM OSI General Relationship Model ISO/IEC CD 10165-7,

Information Technology - Open Systems Interconnection -

Structure of Management Information - Part 7: General

Relationship Model.

210

Othayoth and Poess 2006 R. Othayoth and M. Poess. “The Making of tpc-ds” in

VLDB 2006, pp. 1049–1058.

OWL Web Ontology Language. http://www.w3.org/TR/owl-ref/

W3C Recommendation 10 February 2004

OWL-QL OWL-QL. http://www-ksl.stanford.edu/projects/owl-ql/

Pellet Pellet OWL Reasoner. http://clarkparsia.com/pellet

Pollock 2002 J. Pollock. Integration’s Dirty Little Secret: It’s a Matter of

Semantics” Whitepaper. Modulant, The Interoperability

Company; February 2002.

Prefuse Prefuse. Java based visualization toolkit. http://prefuse.org/

Protégé Protégé Ontology Editor and Knowledge-base

Framework.http://protege.stanford.edu/

R The R project for Statisical Computing. http://www.r-

project.org/

Ra 2005 Young-Gook Ra. Relational Schema Evolution for Program

Independency. Intelligent Information Technology, pages

273–281, 2005.

Rahm and Bernstein 2006 E. Rahm and P.A. Bernstein. An Online Bibliography on

Schema Evolution. SIGMOD Rec. 35, 4 (Dec. 2006),30-

31. DOI=http://doi.acm.org/10.1145/1228268.1228273

RDF Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation 10 February 2004

http://www.w3.org/TR/rdf-concepts/

Sangal et al. 2005 Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson.

Using Dependency Models to Manage Complex Software

Architecture. 20th Annual ACM SIGPLAN Conference on

Object-Oriented Programming Systems (OOPSLA 2005).

SAX The Simple API for XML. http://www.saxproject.org/

211

Seidenberg and Rector 2006 Julian Seidenberg and Alan Rector. Representing

Transitive Propagation in OWL. 25th International

Conference on Conceptual Modeling, Tuscon, AZ, USA.

November 2006. Pages 255-266.

Sheth et al 1999 A.P. Sheth. Changing Focus on Interoperability in Information

Systems: From System, Syntax, Structure to Semantics. M.F.

Goodchild, M.J. Egenhofer, R. Fegeas, and C.A. Kottman

(eds.). KLUWER INTERNATIONAL SERIES IN

ENGINEERING AND COMPUTER SCIENCE. 1999, ISSUE

495, pages 5-30

Sjoberg 1993 D. Sjoberg. Quantifying Schema Evolution, Information and

Software Technology Journal, Volume 35, Number 1, pp.

35–54, 1993.

SPARQL SPARQL Query Language for RDF W3C Recommendation

15 January 2008. http://www.w3.org/TR/rdf-sparql-query/

Stonebraker 2005 M. Stonebraker. THALIA - Integration Benchmark.

Presentation at ICDE 2005, April 6, 2005.

http://www.cise.ufl.edu/research/dbintegrate/thalia/

Stojanovic 2002 L. Stojanovic, A. Maedche, B. Motik and N. Stojanovic.

User-driven Ontology Evolution Management. In

Proceedings of the 13th European Conference on Knowledge

Engineering and Knowledge Management EKAW, Volume

2473 of Lecture Notes in Computer Science, pages 285 – 300,

Siguenza, Spain, October 1-4 2002.

SWRL SWRL : A Semantic Web Rule Language Combining OWL

and RuleML. W3C Member Submission 21 May 2004.

http://www.w3.org/Submission/SWRL/

Topic Maps Topic Maps. A Standard for the Representation and

Interchange of Knowledge.

http://www.isotopicmaps.org/tmrm/

212

UML The Unified Modeling Language (UML).

http://www.uml.org/

Uschold and Gruniger 2004 M. Uschold and M. Gruniger. Ontologies and

Semantics for Seamless Connectivity. SIGMOD

Record, Vol 33, No. 4, December 2004.

Varol and Bayrak 2010 Cihan Varol and Coskun Bayrak, "Business Process

Automation Based on Dependencies," Information,

Process, and Knowledge Management, International

Conference on, pp. 17-22, 2010 Second International

Conference on Information, Process, and Knowledge

Management, 2010.

Velegrakis et al. 2003 Yannis Velegrakis, Renee Miller and Lucian Popa. Mapping

Adaptation Under Evolving Schemas. Proceedings of the 29th

International Conference on Very Large Data Bases - Volume

29, 2003.

Wache et al. 2001 H. Wache et al. Ontology-Based Integration of Information –

A Survey of Existing Approaches. In Proceedings of the

IJCAI-01 Workshop on Ontologies and Information Sharing,

2001.

Wang and Capretz 2009 Shuying Wang and Miriam A.M. Capretz. "A

Dependency Impact Analysis Model for Web

Services Evolution". Web Services. 2009 IEEE

International Conference on Web Services, 2009. pp.

359-365.

WSML Web Service Modelling Language (WSML).

 http://www.wsmo.org/wsml/wsml-syntax.

WSMT Web Service Modelling Toolkit (WSMT). A

development environment for

213

Wu et al. 2006 Z. Wu, H. Chen, H. Wang, Y. Wang, Y. Mao, J. Tang and C.

Zhou. Dartgrid: A Semantic Web Toolkit for Integrating

Heterogeneous Relational Databases. In Semantic Web

Challenge at 4th International Semantic Web Conference,

Athens, USA, November 2006.

XML Path Language XML Path Language (XPath) 2.0 W3C Recommendation 23

January 2007. http://www.w3.org/TR/xpath20/

Yu and Popa 2005 C. Yu and L. Popa. Semantic Adaptation of Schema

Mappings when Schemas Evolve. In Proceedings of the 31st

International Conference on Very Large Data Bases

(Trondheim, Norway, August 30- September 02, 2005). Very

Large Data Bases. VLDB Endowment, 1006-1017.

Zablith 2009 F. Zablith. Evolva: A Comprehensive Approach to Ontology

Evolution.2009 European Semantic Web Conference (ESWC)

PhD Symposium, Crete, Greece. Proceedings of the 6th

European Semantic Web Conference, LNCS 5554, (eds.) L.

Aroyo et al., pp. 944-948, Springer-Verlag, Berlin, Heidelberg.

Zhou and Wang 2006 Jingtao Zhou and Mingwei Wang 2006. Semantic Integration

of Enterprise Information: Challenges and Basic Principles.

Lecture Notes in Computer Science. Springer Berlin /

Heidelberg ISBN978-3-540-38329-1 Pages 219-233.

September 01, 2006.

Zhou et al. 2006 Zhou, Jingtao, Wang, Mingwei, Zhao, Han, 2006, in

International Federation for Information Processing (IFIP),

Volume 207, Knowledge Enterprise: Intelligent Strategies In

Product Design, Manufacturing, and Management, eds. K.

Wang, Kovacs G., Wozny M., Fang M., (Boston: Springer),

pp. 847-852.

214

APPENDICES

The appendices present support information for the thesis.

• Appendix I provides the OWL code for the ontology-based dependency

metamodel and the ontology-based dependency model (OBDM)

• Appendix II provides the data associated with the experiments carried out in

this thesis.

• Appendix III provides a simple worked example of the inputs and outputs for

the TomE tool.

• Appendix IV provides the overview of the directory structure for the code for

HotFusion and TomE tools that is supplied on DVD with this thesis.

215

APPENDIX I

This appendix contains the OWL code for the ontology-based dependency metamodel

and ontology-based dependency model that was created during this research.

Ontology-Based Dependency Metamodel

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1270901584.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1270901584.owl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="ArchitecturalEntities"/>

 <owl:Class rdf:ID="Cause">

 <rdfs:subClassOf

rdf:resource="#DescriptiveDependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="cause_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cause_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cause_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:Class rdf:ID="DependencyGraph"/>

 <owl:ObjectProperty rdf:ID="DependencyRelation"/>

 <owl:Class rdf:ID="DescriptiveDependencyAtrributes"/>

 <owl:DatatypeProperty rdf:ID="domainname">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="functional_dependency_relation">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="graphname">

216

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#DependencyGraph"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="graphtype">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#DependencyGraph"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="hascauseattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Cause"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasimpactattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Impact"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasstrenghtattribute">

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="#Strength"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Impact">

 <rdfs:subClassOf

rdf:resource="#DescriptiveDependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="impact_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="impact_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="impact_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="inverse_function_dependency_relation">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="lvl_dst"/>

 <owl:DatatypeProperty rdf:ID="lvl_level"/>

 <owl:DatatypeProperty rdf:ID="lvl_src"/>

 <owl:Class rdf:ID="Strength">

 <rdfs:subClassOf

rdf:resource="#DescriptiveDependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="strength_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="strength_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

217

 <owl:DatatypeProperty rdf:ID="strength_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="symmetric_dependency_relation">

 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

 <owl:inverseOf rdf:resource="#symmetric_dependency_relation"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="transitive_dependency_relation">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="transitive_symmetric_dependency_relation">

 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <owl:inverseOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="type">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#ArchitecturalEntities"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="version">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#DependencyGraph"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

</rdf:RDF>

218

Ontology-Based Dependency Model (OBDM)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <!ENTITY protégé

"http://protege.stanford.edu/plugins/owl/protege#" >

 <!ENTITY p1 "http://www.owl-ontologies.com/Ontology1270901584.owl#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1275558355.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1275558355.owl"

 xmlns:p1="http://www.owl-ontologies.com/Ontology1270901584.owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://www.owl-

ontologies.com/Ontology1270901584.owl"/>

 </owl:Ontology>

 <owl:ObjectProperty rdf:ID="executes">

 <rdfs:domain rdf:resource="#MP"/>

 <rdfs:range rdf:resource="#FN"/>

 <rdfs:subPropertyOf rdf:resource="&p1;DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="FN">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:Class rdf:ID="GE">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasinputparams">

 <rdfs:domain rdf:resource="#FN"/>

 <rdfs:range rdf:resource="#IP"/>

 <rdfs:subPropertyOf rdf:resource="&p1;DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="haslocalparams">

 <rdfs:domain rdf:resource="#FN"/>

 <rdfs:range rdf:resource="#LP"/>

 <rdfs:subPropertyOf rdf:resource="&p1;DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasoutputparams">

 <rdfs:domain rdf:resource="#FN"/>

 <rdfs:range rdf:resource="#OP"/>

 <rdfs:subPropertyOf rdf:resource="&p1;DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_11">

 <rdfs:domain rdf:resource="#MP"/>

 <rdfs:range rdf:resource="#UE"/>

 <owl:inverseOf rdf:resource="#ue2mp"/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_13">

219

 <rdfs:domain rdf:resource="#LE"/>

 <rdfs:range rdf:resource="#MP"/>

 <owl:inverseOf rdf:resource="#mp2le"/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_14">

 <rdfs:domain rdf:resource="#GE"/>

 <rdfs:range rdf:resource="#LE"/>

 <owl:inverseOf rdf:resource="#le2ge"/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="IP">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:Class rdf:ID="LE">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="le2ge">

 <rdfs:domain rdf:resource="#LE"/>

 <rdfs:range rdf:resource="#GE"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_14"

/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="LP">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:Class rdf:ID="MP">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="mp2le">

 <rdfs:domain rdf:resource="#MP"/>

 <rdfs:range rdf:resource="#LE"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_13"

/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="OP">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <rdf:Description rdf:about="&p1;ArchitecturalEntities"/>

 <owl:Class rdf:ID="UE">

 <rdfs:subClassOf rdf:resource="&p1;ArchitecturalEntities"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="ue2mp">

 <rdfs:domain rdf:resource="#UE"/>

 <rdfs:range rdf:resource="#MP"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_11"

/>

 <rdfs:subPropertyOf

rdf:resource="&p1;transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

</rdf:RDF>

220

APPENDIX II

This appendix contains the data associated with each of the experiments in this

research.

Experimental Data for Experiment One

Upper Ontology
<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns="http://www.owl-ontologies.com/Ontology1172143263.owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1172143263.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="sales_item">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasforecastitems2"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="forecasted_item"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="sales_rev"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="haveSalesRev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#forecasted_item"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasforecastitems"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="products"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="products_sales_names"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

221

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="products_sales_id"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="revenue"/>

 <owl:Class rdf:ID="opportunity">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:TransitiveProperty rdf:ID="hasProducts"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#products"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="customers"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:TransitiveProperty rdf:ID="hasCustomer"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#haveSalesRev"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#sales_rev"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="forecast_rev"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="haveForecastRev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="opportunity_id"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

222

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="opportunity_name"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#customers">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_region"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_name"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_id"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_accountexec"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_tier1support"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

223

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="customers_tier2support"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#products">

 <rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="products_type"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#sales_rev">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="sales_rev_sales_q4_rev"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="sales_rev_sales_q3_rev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="sales_rev_sales_q2_rev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="sales_rev_sales_q1_rev"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:Restriction>

 </rdfs:subClassOf>

224

 <rdfs:subClassOf rdf:resource="#revenue"/>

 </owl:Class>

 <owl:Class rdf:about="#forecast_rev">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="forecast_rev_q4_rev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="forecast_rev_q3_rev"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="forecast_rev_q2_rev"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="forecast_rev_q1_rev"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#revenue"/>

 </owl:Class>

 <owl:Class rdf:about="#forecasted_item">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#forecast_rev"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#haveForecastRev"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#sales_item"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasparentsalesitem"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#products"/>

 <rdfs:subClassOf>

 <owl:Restriction>

225

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="products_fi_name"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="products_fi_id"/>

 </owl:onProperty>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#hasforecastitems">

 <rdfs:range rdf:resource="#forecasted_item"/>

 <rdfs:domain rdf:resource="#sales_item"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasparentsalesitem">

 <rdfs:domain rdf:resource="#forecasted_item"/>

 <rdfs:range rdf:resource="#sales_item"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasforecastitems2">

 <rdfs:domain rdf:resource="#sales_item"/>

 <rdfs:range>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#products_fi_id"/>

 <owl:someValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:range>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#haveSalesRev">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#opportunity"/>

 <owl:Class rdf:about="#sales_item"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="#sales_rev"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#haveForecastRev">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#opportunity"/>

 <owl:Class rdf:about="#forecasted_item"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="#forecast_rev"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:about="#opportunity_id">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_tier2support">

226

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#customers"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_accountexec">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#customers"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_region">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_name">

 <rdfs:domain rdf:resource="#customers"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#products_sales_names">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#opportunity_name">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#products_type">

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf rdf:parseType="Resource">

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >SALES</rdf:first>

 <rdf:rest rdf:parseType="Resource">

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FORECAST</rdf:first>

 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-

syntax-ns#nil"/>

 </rdf:rest>

 </owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#products_sales_id">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_id">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#customers_tier1support">

 <rdfs:domain rdf:resource="#customers"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:TransitiveProperty rdf:about="#hasCustomer">

 <rdfs:range rdf:resource="#customers"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#opportunity"/>

 </owl:TransitiveProperty>

227

 <owl:TransitiveProperty rdf:about="#hasProducts">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:range rdf:resource="#products"/>

 <rdfs:domain rdf:resource="#opportunity"/>

 </owl:TransitiveProperty>

 <customers rdf:ID="test">

 <customers_id rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</customers_id>

 <customers_region

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >emea</customers_region>

 <customers_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></customers_name>

 </customers>

 <sales_rev rdf:ID="sales_rev_8">

 <sales_rev_sales_q3_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></sales_rev_sales_q3_rev>

 <sales_rev_sales_q4_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >4</sales_rev_sales_q4_rev>

 <sales_rev_sales_q2_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></sales_rev_sales_q2_rev>

 <sales_rev_sales_q1_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></sales_rev_sales_q1_rev>

 </sales_rev>

 <forecast_rev rdf:ID="forecast_rev_10">

 <forecast_rev_q2_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></forecast_rev_q2_rev>

 <forecast_rev_q1_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></forecast_rev_q1_rev>

 <forecast_rev_q3_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></forecast_rev_q3_rev>

 <forecast_rev_q4_rev

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >4</forecast_rev_q4_rev>

 </forecast_rev>

 <sales_item rdf:ID="sales_item_7">

 <haveSalesRev rdf:resource="#sales_rev_8"/>

 <products_sales_id

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</products_sales_id>

 <products_sales_names

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></products_sales_names>

 <hasforecastitems>

 <forecasted_item rdf:ID="forecasted_item_9">

 <products_type

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FORECAST</products_type>

 <products_fi_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >prod1name</products_fi_name>

 <hasparentsalesitem rdf:resource="#sales_item_7"/>

228

 <products_fi_id

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></products_fi_id>

 <haveForecastRev rdf:resource="#forecast_rev_10"/>

 </forecasted_item>

 </hasforecastitems>

 <products_type

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >SALES</products_type>

 </sales_item>

 <opportunity rdf:ID="opp2">

 <hasCustomer rdf:resource="#test"/>

 <opportunity_id

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</opportunity_id>

 <hasProducts rdf:resource="#sales_item_7"/>

 <opportunity_name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 ></opportunity_name>

 <haveSalesRev rdf:resource="#sales_rev_8"/>

 <haveForecastRev rdf:resource="#forecast_rev_10"/>

 </opportunity>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.2, Build 355)

http://protege.stanford.edu -->

229

Mapping file
<?xml version="1.0" encoding="UTF-8"?>

<Mappings>

 <mapping>

 <mapping_number>3</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_id</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>id</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>4</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_id</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>id</dest_prop_name>

 <dest_table_name>customers</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>5</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>customer_id</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>String</dest_pkey_type>

 <source_expansion_db>db1</source_expansion_db>

 <source_expansion_class>customers</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>6</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_name</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>name</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

230

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>7</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_name</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>name</dest_prop_name>

 <dest_table_name>customers</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>8</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_region</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>region</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

<dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>9</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_region</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>region</dest_prop_name>

 <dest_table_name>customers</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>9.1</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_accountexec</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>accountexec</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

231

 </mapping>

 <mapping>

 <mapping_number>9.2</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_tier1support</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>tier1support</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>9.3</mapping_number>

 <source_type>p</source_type>

 <source_name>customers_tier2support</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>tier2support</dest_prop_name>

 <dest_table_name>custs</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>12</mapping_number>

 <source_type>p</source_type>

 <source_name>products_fi_name</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>longcode</dest_prop_name>

 <dest_table_name>prods</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>13</mapping_number>

 <source_type>p</source_type>

 <source_name>products_sales_name</source_name>

 <source_expansion>s</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>name</dest_prop_name>

 <dest_table_name>products</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

232

 <mapping>

 <mapping_number>14</mapping_number>

 <source_type>p</source_type>

 <source_name>products_fi_id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>prodid</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>prodid</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>db2</source_expansion_db>

 <source_expansion_class>prods</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>15</mapping_number>

 <source_type>p</source_type>

 <source_name>products_sales_id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>id</dest_prop_name>

 <dest_table_name>products</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>16</mapping_number>

 <source_type>p</source_type>

 <source_name>sales_rev_sales_q1_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revq1</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>17</mapping_number>

 <source_type>p</source_type>

 <source_name>sales_rev_sales_q2_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revq2</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

233

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>18</mapping_number>

 <source_type>p</source_type>

 <source_name>sales_rev_sales_q3_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revq3</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>19</mapping_number>

 <source_type>p</source_type>

 <source_name>sales_rev_sales_q4_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revq4</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>20</mapping_number>

 <source_type>p</source_type>

 <source_name>forecast_rev_q1_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revm1</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>opp</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>21</mapping_number>

 <source_type>p</source_type>

 <source_name>forecast_rev_q2_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revm4</dest_prop_name>

 <dest_pkey>opp</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <dest_table_name>forecasted_items</dest_table_name>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

234

 </mapping>

<mapping>

 <mapping_number>22</mapping_number>

 <source_type>p</source_type>

 <source_name>forecast_rev_q3_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revm7</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>opp</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>23</mapping_number>

 <source_type>p</source_type>

 <source_name>forecast_rev_q4_rev</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>revm10</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>opp</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>24</mapping_number>

 <source_type>p</source_type>

 <source_name>opportunity_name</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>oppname</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>string</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>25</mapping_number>

 <source_type>p</source_type>

 <source_name>product_fi_id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>prodid</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>prodcat</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

235

 </mapping>

<mapping>

 <mapping_number>26</mapping_number>

 <source_type>link</source_type>

 <source_name>db1,customers,id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>oppid</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>int</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

<source_expansion_class>customer_id</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>27</mapping_number>

 <source_type>link</source_type>

 <source_name>db1,customers,id</source_name>

<source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>oppname</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>null</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>28</mapping_number>

 <source_type>link</source_type>

 <source_name>db1,customers,id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>productid</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>null</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>null</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>29</mapping_number>

 <source_type>link</source_type>

 <source_name>db1,products,id</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>oppid</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>productid</source_expansion_class>

 </mapping>

236

<mapping>

 <mapping_number>30</mapping_number>

 <source_type>link</source_type>

 <source_name>db2,forecasted_items,prodcat</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>id</dest_prop_name>

 <dest_table_name>products</dest_table_name>

 <dest_pkey>id</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>productid</source_expansion_class>

 </mapping>

<mapping>

 <mapping_number>31</mapping_number>

 <source_type>link</source_type>

 <source_name>db1,opps,oppid</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db1</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>oppid</dest_prop_name>

 <dest_table_name>opps</dest_table_name>

 <dest_pkey>oppid</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>oppid</source_expansion_class>

 </mapping>

 <mapping>

 <mapping_number>32</mapping_number>

 <source_type>link</source_type>

 <source_name>db2,forecasted_items,revm1</source_name>

 <source_expansion>p</source_expansion>

 <dest_db>db2</dest_db>

 <dest_type>p</dest_type>

 <dest_prop_name>opp</dest_prop_name>

 <dest_table_name>forecasted_items</dest_table_name>

 <dest_pkey>opp</dest_pkey>

 <dest_pkey_type>null</dest_pkey_type>

 <source_expansion_db>null</source_expansion_db>

 <source_expansion_class>opp</source_expansion_class>

 </mapping>

</Mappings>

237

Experimental Data for Experiment Two

Upper Ontology for Experiment two (Logistics).
<?xml version="1.0"?>

<rdf:RDF

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.owl-ontologies.com/Ontology1225382715.owl#"

 xmlns:assert="http://www.owl-ontologies.com/assert.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1225382715.owl">

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://www.owl-

ontologies.com/assert.owl"/>

 </owl:Ontology>

 <owl:Class rdf:ID="duties"/>

 <owl:Class rdf:ID="exportduties">

 <rdfs:subClassOf rdf:resource="#duties"/>

 </owl:Class>

 <owl:Class rdf:ID="lot"/>

 <owl:Class rdf:ID="shipmentinformation"/>

 <owl:Class rdf:ID="services"/>

 <owl:Class rdf:ID="ratesheets">

 <rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="haveratecosts"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="weightcosts"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="surcharges"/>

 <owl:Class rdf:ID="packages"/>

 <owl:Class rdf:ID="importduties">

 <rdfs:subClassOf rdf:resource="#duties"/>

 </owl:Class>

 <owl:Class rdf:ID="carriers"/>

 <owl:Class rdf:ID="zone">

 <owl:disjointWith>

 <owl:Class rdf:ID="origin"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:ID="lane"/>

 <owl:Class rdf:ID="irc">

 <rdfs:subClassOf rdf:resource="#surcharges"/>

 </owl:Class>

 <owl:Class rdf:ID="route">

 <owl:equivalentClass>

238

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="containlots"/>

 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#lot"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:allValuesFrom rdf:resource="#lot"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#containlots"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="fuel">

 <rdfs:subClassOf rdf:resource="#surcharges"/>

 </owl:Class>

 <owl:Class rdf:about="#origin">

 <owl:disjointWith rdf:resource="#zone"/>

 </owl:Class>

 <owl:Class rdf:ID="destination"/>

 <owl:Class rdf:ID="weight_types"/>

 <owl:ObjectProperty rdf:ID="hasZone">

 <rdfs:range rdf:resource="#zone"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="usespackages">

 <rdfs:range rdf:resource="#packages"/>

 <rdfs:domain rdf:resource="#services"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="havesurcharges">

 <rdfs:range rdf:resource="#surcharges"/>

 <rdfs:domain rdf:resource="#services"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="startAt">

 <rdfs:domain rdf:resource="#route"/>

 <rdfs:range rdf:resource="#origin"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="sell">

 <rdfs:domain rdf:resource="#carriers"/>

 <rdfs:range rdf:resource="#services"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="endAt">

 <rdfs:domain rdf:resource="#route"/>

 <rdfs:range>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#destination"/>

 <owl:Class rdf:about="#zone"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="haveratecostsin">

 <rdfs:domain rdf:resource="#services"/>

 <rdfs:range rdf:resource="#ratesheets"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasCountry"/>

239

 <owl:ObjectProperty rdf:ID="operate">

 <rdfs:range rdf:resource="#route"/>

 <rdfs:domain rdf:resource="#carriers"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#haveratecosts">

 <rdfs:domain rdf:resource="#ratesheets"/>

 <rdfs:range rdf:resource="#weightcosts"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasAirport"/>

 <owl:ObjectProperty rdf:ID="containslanes">

 <rdfs:range rdf:resource="#lane"/>

 <rdfs:domain rdf:resource="#route"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="haveduties">

 <rdfs:domain rdf:resource="#services"/>

 <rdfs:range rdf:resource="#duties"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="logsshipmentinfo">

 <rdfs:range rdf:resource="#shipmentinformation"/>

 <rdfs:domain rdf:resource="#services"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#containlots">

 <rdfs:domain rdf:resource="#lane"/>

 <rdfs:range rdf:resource="#lot"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasCity"/>

 <owl:DatatypeProperty rdf:ID="ratestructure">

 <rdfs:domain rdf:resource="#carriers"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_othercharges">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lotid">

 <rdfs:domain rdf:resource="#lot"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="p_materialdescription">

 <rdfs:domain rdf:resource="#packages"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="irc_pkg">

 <rdfs:domain rdf:resource="#irc"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="irc_type">

 <rdfs:domain rdf:resource="#irc"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_ta_min">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="laneid">

 <rdfs:domain rdf:resource="#lane"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="isocode">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_handlingperkg">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

240

 <owl:DatatypeProperty rdf:ID="d_countryname">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="averageweight">

 <rdfs:domain rdf:resource="#shipmentinformation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ws_value"/>

 <owl:DatatypeProperty rdf:ID="lang">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lanedescription">

 <rdfs:domain rdf:resource="#lane"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="p_packtype">

 <rdfs:domain rdf:resource="#packages"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="airportcode"/>

 <owl:DatatypeProperty rdf:ID="id_ic5_pos">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_securityperkg">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="range_identifier"/>

 <owl:DatatypeProperty rdf:ID="fuel_min">

 <rdfs:domain rdf:resource="#fuel"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="service_name">

 <rdfs:domain rdf:resource="#ratesheets"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="weighttype">

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="endweight">

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="transit_time_max">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_tlcurrency">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="weightunit">

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="multiplier">

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="symbol">

 <rdfs:domain rdf:resource="#weight_types"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_leadtime">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="d_zone"/>

 <owl:DatatypeProperty rdf:ID="fsc_type">

241

 <rdfs:domain rdf:resource="#fuel"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="startweight">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="servicename">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lotname">

 <rdfs:domain rdf:resource="#lot"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="transit_time_min">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_ta_perkg">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lotdescription">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#lot"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_tlairport">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="d_ctylang">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_TI_max">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_thurs">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_T1fee">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="occode">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="servicesummary">

 <rdfs:domain rdf:resource="#carriers"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_exportcustdoc">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="region">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_sun">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ws_end"/>

 <owl:DatatypeProperty rdf:ID="id_hc_max">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

242

 <owl:DatatypeProperty rdf:ID="ed_leadtime">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="point_identifier">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_handlingmax">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_icaddpos">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="yearlyshipments">

 <rdfs:domain rdf:resource="#shipmentinformation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_TI_min">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_securitymax">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="rs_type"/>

 <owl:DatatypeProperty rdf:ID="fuel_max">

 <rdfs:domain rdf:resource="#fuel"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="consolidation_airport">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="o_countryname">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_wed">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="irc_max">

 <rdfs:domain rdf:resource="#irc"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_atlasfee">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="packtype">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cost">

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="DatatypeProperty_3"/>

 <owl:DatatypeProperty rdf:ID="id_storageperaddday">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="o_cityname">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="currency">

 <rdfs:domain rdf:resource="#ratesheets"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="d_airportcode">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

243

 <owl:DatatypeProperty rdf:ID="zoneid">

 <rdfs:domain rdf:resource="#zone"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="routename">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#route"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="o_ctycode">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_hc_perkg">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="yearlyweight">

 <rdfs:domain rdf:resource="#shipmentinformation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="d_ctyisocode">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_sat">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="costset">

 <rdfs:domain rdf:resource="#ratesheets"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="irc_min">

 <rdfs:domain rdf:resource="#irc"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_TI_perkg">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="o_ctyisocode">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="transit_time">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="unit">

 <rdfs:domain rdf:resource="#weight_types"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_ta_max">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_securitymin">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="name">

 <rdfs:domain rdf:resource="#carriers"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="rs_start"/>

 <owl:DatatypeProperty rdf:ID="o_ctylang">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="airportname"/>

 <owl:DatatypeProperty rdf:ID="id_hc_min">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="transfer_airport">

244

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="direct_flight">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="o_airportcode">

 <rdfs:domain rdf:resource="#origin"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lanename">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#lane"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="fuel_pkg">

 <rdfs:domain rdf:resource="#fuel"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="weight">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#weightcosts"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ed_handlingmin">

 <rdfs:domain rdf:resource="#exportduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_tues">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="value">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="d_ctycode">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="df_fri">

 <rdfs:domain rdf:resource="#services"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="countryname"/>

 <owl:DatatypeProperty rdf:ID="p_dims">

 <rdfs:domain rdf:resource="#packages"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_othercharges">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cityname"/>

 <owl:DatatypeProperty rdf:ID="d_cityname">

 <rdfs:domain rdf:resource="#destination"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="id_handoverfee">

 <rdfs:domain rdf:resource="#importduties"/>

 </owl:DatatypeProperty>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.2, Build 355)

http://protege.stanford.edu -->

245

Mapping file for experiment two (Excerpt from full mapping on DVD)
<?xml version="1.0" encoding="UTF-8"?>

<Mappings>

<mapping>

<mapping_number>c1</mapping_number>

<mapping_type>ps</mapping_type>

<source_type>p</source_type>

<source_name>carriers:name</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test:exp_test_db2</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>Awards:Awards</dest_prop_name>

<dest_table_name>logistics:logistics</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>c1:null</function>

</mapping>

<mapping>

<mapping_number>s1</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>Need complex func to extract service names from these

dest fields</mapping_desc>

<source_type>p</source_type>

<source_name>services:servicename</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test:exp2_test:exp2_test:exp2_test_db2</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>ALDS_1_44:BLDS_1_44:UDS_1_44:Service</dest_prop_name>

<dest_table_name>rates:rates:rates:rates</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>s1:S1_1:s1_2:null</function>

</mapping>

<mapping>

<mapping_number>s3</mapping_number>

<mapping_type>pp</mapping_type>

<mapping_desc>simple point to point </mapping_desc>

<source_type>p</source_type>

<source_name>services:packtype</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test_db2</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>PackType</dest_prop_name>

<dest_table_name>logistics</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>null</function>

</mapping>

<mapping>

<mapping_number>s4</mapping_number>

246

<mapping_type>pp</mapping_type>

<mapping_desc>simple point to point </mapping_desc>

<source_type>p</source_type>

<source_name>services:commodity</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test_db2</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>commodity</dest_prop_name>

<dest_table_name>rates</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>null</function>

</mapping>

<mapping>

<mapping_number>s5</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>simple point to point </mapping_desc>

<source_type>p</source_type>

<source_name>services:transittime</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test_db2:exp2_test:exp2_test:exp2_test</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>transit_time:alds_transit_time:blds_transit_time:uds_t

ransmit_time</dest_prop_name>

<dest_table_name>servicedescriptions:servicedescriptions:servicedescri

ptions:servicedescriptions</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>s5:s5:s5:s5</function>

</mapping>

<mapping>

<mapping_number>s6</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>simple point to point </mapping_desc>

<source_type>p</source_type>

<source_name>services:transittimemax</source_name>

<source_expansion>null</source_expansion>

<dest_db>exp2_test_db2:exp2_test:exp2_test:exp2_test</dest_db>

<dest_type>p</dest_type>

<dest_prop_name>transit_time_max:alds_transit_time_max:blds_transit_ti

me_max:uds_transmit_time_max</dest_prop_name>

<dest_table_name>servicedescriptions:servicedescriptions:servicedescri

ptions:servicedescriptions</dest_table_name>

<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>

<source_expansion_db>null</source_expansion_db>

<source_expansion_class>null</source_expansion_class>

<function>s6:s6:s6:s6</function>

</mapping>

.

.

.

</Mappings>

247

Experimental Data for Experiment Three

The runtime performance and accuracy of the OBDM was verified in experiment three.

To demonstrate the difficulty of mapping evolution without tool support, experiment

three measured the performance and accuracy of a manual approach to dependency

analysis and compared this to the OBDM.

Manual Process Definition

Evaluation of Mapping Dependency Discovery

Overview: This evaluation has been setup to measure the performance of a new

technique to discover the dependencies that arise in data integration systems. A

dependency is a simple relation between two things that are dependent (e.g. A depends

on B)

The exercises in this evaluation are based on three samples of data which are provided

in three spreadsheets. Each spreadsheet contains columns of data which represents

some internal aspects of the integration system. From these spreadsheets, a view of the

items that are dependent on each other can be built up (using the process described

later). In general, each row in any given spreadsheet represents elements that depend

on each other. If two different rows share the same element then the elements in each

row can be dependent also. The process below provides a failsafe way to find out the

dependencies that exist.

There are 4 questions to be answered on each spreadsheet and must be completed in

20 minutes giving a total time of 1 hour for 12 questions. Each question simply

requires the user to run the process below.

In the spreadsheets, the integration system has been divided up into parts as follows:

UPPER ENTITY (UE)

MAPPING (MP)

LOWER ENTITY (LE)

FUNCTION (F)

Each spreadsheet has 6 columns.

COLUMN A = Is the name of the UPPER ENTITY

COLUMN B = Is the name of the MAPPING (MP)

COLUMN C, D, E = Is the name of the LOWER ENTITIES (LE). NB. These

columns are colon separated lists of Lower Entities

COLUMN F - Is the name of another UPPER ENTITY that this MAPPING

uses.

248

A row in the excel spreadsheet defines what the UPPER ENTITY on that row depends

on.

Process:

For each question below please carry out the following process.

1. OPEN THE APPROPRIATE DATASET (SMALL, MEDIUM OR
LARGE).

2. NOTE THE START TIME

3. FIND THE ROW WHERE THE UE OR LE SPECIFIED IN THE

QUESTION OCCURS AND WRITE DOWN THE MAPPING POINT

NAME

4. CHECK IF ANY OF THE LE(S) FROM THE ROWS NOTED IN STEP 3

OCCUR IN OTHER ROWS (COLUMN C,D,E). WHERE MATCHES

ARE FOUND NOTE DOWN THE MAPPING POINT NAME OF THAT

ROW

5. FOR EACH MP NAME FOUND SO FAR, CHECK IF A FUNCTION IS

SPECIFIED (COLUMN F).

a) IF A FUNCTION IS SPECIFIED THEN FIND THE ROW

WHERE THAT FUNCTION NAME APPEARS AS A UE

(COLUMN A) OR A FUNCTION (COLUMN F) AND NOTE

DOWN THE MP NAME

b) REPEAT STEP 4 FOR ANY ROWS FOUND

6. NOTE THE END TIME

7. WRITE DOWN DURATION IN THE “TIME TAKEN TO COMPLETE

(IN SECONDS)” FIELD

249

User Questionnaire.

Evaluation of Mapping Dependency Discovery
NAME:

………………………………………………………………………………………

A) DATA SET 1 – first.xls

1. Find DEPENDENTS OF: (LE) “db1:rates:ALDS_500_999”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

250

2. Find DEPENDENTS OF (LE) “db1:fcs_irc:fcs_min”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

251

3. Find DEPENDENTS OF (LE) “db2:rates:commodity”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

252

4. Find DEPENDENTS OF (LE) “ls1:sdescs:uds_transit_time_min”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

253

B) DATA SET 2 – SECOND.XLS

5. Find DEPENDENTS OF (LE) ds2:logisticdescriptions:PackType
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

254

6. Find DEPENDENTS OF (LE) ds1:sdescs:uds_transit_time_min
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

255

7. Find DEPENDENTS OF (LE) ds2:sdescs:transit_time
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

256

8. Find DEPENDENTS OF (LE) ls1:servdescriptions:uds_transit_time_min
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

257

C) DATA SET 3 –THIRD.XLS

9. Find DEPENDENTS OF (LE) “db1:rates:ALDS_1_44”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

258

10. Find DEPENDENTS OF (LE) “db1:fcs_irc:irc_pkg”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

259

11. Find DEPENDENTS OF (LE) “db1:lotdescriptions:LotNumber”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

260

12. Find DEPENDENTS OF (LE) “ls1:sdescs:uds_transit_time_min”
START TIME []

END TIME []

DEPENDENT ELEMENTS:

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

261

A.) Please add further observations about the difficulty of the task

� Did you find the task ?

Easy Hard Very Hard Impossible

[] [] [] []

� Which part of the process was the hardest

STEP3 STEP4 STEP5

[] [] []

� Rate the easiest and hardest dataset by writing “HARD” and “EASY” in the

selection below.

ONE TWO THREE

[] [] []

� Rate the easiest and hardest question

Hardest QUESTION NO []

Easiest QUESTION NO []

� How confident are you that your answers are correct (i.e. you have no errors)

Not Confident Confident Very Confident

[] [] []

� Any other comments

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

262

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

……………………………………………………………………………………………

……

The results of this survey will be used for the PhD project of Aidan Boran only and will

be made available for the participant on request.

263

First Mapping File (MS-Excel Format)

264

Second Mapping File (MS-Excel Format)

265

Third Mapping File (MS-Excel Format)

266

Output from R Statistical Package.

[Descriptive Statistics]

descriptive.table(DSall [c("TIME","ACCURACY")] ,

func.names =c("Mean","St. Deviation","Valid

N","Minimum","Maximum","Median"))

-- End Command --

$`strata: all cases `

 Mean St. Deviation Valid N Minimum Maximum Median

TIME 265.54444 171.34571 90 60 900 234.0000

ACCURACY 61.27976 29.22844 90 0 100 57.7381

[Accuracy Correlations]

corr.mat<-cor.matrix(variables=c(ACCURACY),

 with.variables=c(NODES,LEVELS,OVERLAPS,FUNCTIONS),

 data=DSall,

 test=cor.test,

 method='pearson',

 alternative="two.sided")

print(corr.mat)

qscatter_array(c(ACCURACY),

 c(NODES,LEVELS,OVERLAPS,FUNCTIONS),

 data=RS1g123456correctedremovedcgg61) +

geom_smooth(method="lm")

rm('corr.mat')

-- End Command --

 Pearson's product-moment correlation

 ACCURACY

 NODES cor -0.5667

 N 90

 CI* (-0.6925,-0.4074)

 stat** -6.452 (88)

 p-value 0.0000

 LEVELS cor -0.6688

 N 90

 CI* (-0.7693,-0.5359)

 stat** -8.438 (88)

 p-value 0.0000

 OVERLAPS cor -0.2936

 N 90

 CI* (-0.472,-0.09212)

 stat** -2.881 (88)

 p-value 0.0050

FUNCTIONS cor -0.6452

 N 90

 CI* (-0.7518,-0.5057)

 stat** -7.922 (88)

 p-value 0.0000

 ** t (df)

 * 95% percent interval

267

 HA: two.sided

Figure Appendix II-1: ACCURACY correlation scatter plot26

26

 Note: The darker points on the plot are where multiple answers overlapped.

268

[Time Correlation]

corr.mat<-cor.matrix(variables=c(TIME),

 with.variables=c(NODES,LEVELS,OVERLAPS,FUNCTIONS),

 data=DSall,

 test=cor.test,

 method='pearson',

 alternative="two.sided")

print(corr.mat)

qscatter_array(c(TIME),

 c(NODES,LEVELS,OVERLAPS,FUNCTIONS),

 data=RS1g123456correctedremovedcgg61) +

geom_smooth(method="lm")

rm('corr.mat')

-- End Command --

 Pearson's product-moment correlation

 TIME

 NODES cor 0.3691

 N 90

 CI* (0.1754,0.5353)

 stat** 3.725 (88)

 p-value 3e-04

 LEVELS cor 0.3610

 N 90

 CI* (0.1664,0.5286)

 stat** 3.632 (88)

 p-value 5e-04

 OVERLAPS cor 0.2941

 N 90

 CI* (0.09269,0.4724)

 stat** 2.887 (88)

 p-value 0.0049

FUNCTIONS cor 0.2251

 N 90

 CI* (0.01885,0.4129)

 stat** 2.167 (88)

 p-value 0.0329

 ** t (df)

 * 95% percent interval

 HA: two.sided

269

Figure Appendix II-2:: TIME - Correlation scatter plot

270

Experimental Data for Experiment Four

The mappings and ontologies files from experiment two were reused in experiment

two

271

Experimental Data for Experiment Five

Ontology-Based Dependency Model (domestic electrical domain)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1270901584.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1270901584.owl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="AE"/>

 <owl:ObjectProperty rdf:ID="app2controlunit">

 <rdfs:domain rdf:resource="#APPLIANCE"/>

 <rdfs:range rdf:resource="#CONTROLUNIT"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_9"/

>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="app2socket">

 <rdfs:domain rdf:resource="#APPLIANCE"/>

 <rdfs:range rdf:resource="#SOCKET"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_15"

/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="APPLIANCE">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <owl:Class rdf:ID="Cause">

 <rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="cause_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cause_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="cause_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Cause"/>

 <rdfs:range rdf:resource="&xsd;string"/>

272

 </owl:DatatypeProperty>

 <owl:Class rdf:ID="CONTROLUNIT">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="controlunit2swfuse">

 <rdfs:domain rdf:resource="#CONTROLUNIT"/>

 <rdfs:range rdf:resource="#SWFUSE"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_10"

/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="COOKER">

 <rdfs:subClassOf rdf:resource="#APPLIANCE"/>

 </owl:Class>

 <APPLIANCE rdf:ID="COOKER1">

 <app2controlunit rdf:resource="#CU1"/>

 </APPLIANCE>

 <CONTROLUNIT rdf:ID="CU1">

 <controlunit2swfuse rdf:resource="#SWFUSE1_CT1"/>

 <inverse_of_transitive_symmetric_dependency_relation_9

rdf:resource="#COOKER1"/>

 </CONTROLUNIT>

 <owl:Class rdf:ID="DependencyAtrributes"/>

 <owl:ObjectProperty rdf:ID="DependencyRelation"/>

 <owl:Class rdf:ID="DI_APP_COOKER">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#COOKER1"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_APP_LIGHT1">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#LIGHT1"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_APP_LIGHT2">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#LIGHT2"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_APP_TV1">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#TV1"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_FUSE1">

 <owl:equivalentClass>

 <owl:Restriction>

273

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#SWFUSE1_CT1"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_FUSE2">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#SWFUSE2_CT2"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="DI_FUSE3">

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#DependencyRelation"/>

 <owl:hasValue rdf:resource="#SWFUSE3_CT3"/>

 </owl:Restriction>

 </owl:equivalentClass>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="funtional_dependency_relation">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hascauseattribute">

 <rdfs:domain rdf:resource="#AE"/>

 <rdfs:range rdf:resource="#Cause"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasimpactattribute">

 <rdfs:domain rdf:resource="#AE"/>

 <rdfs:range rdf:resource="#Impact"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasstrenghtattribute">

 <rdfs:domain rdf:resource="#AE"/>

 <rdfs:range rdf:resource="#Strength"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Impact">

 <rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="impact_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="impact_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="impact_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Impact"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="inverse_functional_relations">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="inverse_of_junction2junction">

 <rdfs:domain rdf:resource="#JUNCTION"/>

274

 <rdfs:range rdf:resource="#JUNCTION"/>

 <owl:inverseOf rdf:resource="#junction2junction"/>

 <rdfs:subPropertyOf

rdf:resource="#symmetic_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="inverse_of_junction2swfuse">

 <rdfs:domain rdf:resource="#SWFUSE"/>

 <rdfs:range rdf:resource="#JUNCTION"/>

 <owl:inverseOf rdf:resource="#junction2swfuse"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_10">

 <rdfs:domain rdf:resource="#SWFUSE"/>

 <rdfs:range rdf:resource="#CONTROLUNIT"/>

 <owl:inverseOf rdf:resource="#controlunit2swfuse"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_15">

 <rdfs:domain rdf:resource="#SOCKET"/>

 <rdfs:range rdf:resource="#APPLIANCE"/>

 <owl:inverseOf rdf:resource="#app2socket"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_16">

 <rdfs:domain rdf:resource="#SWFUSE"/>

 <rdfs:range rdf:resource="#SOCKET"/>

 <owl:inverseOf rdf:resource="#socket2swfuse"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_17">

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_2">

 <rdfs:domain rdf:resource="#SWITCH"/>

 <rdfs:range rdf:resource="#LIGHT"/>

 <owl:inverseOf rdf:resource="#light2switch"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_3">

 <rdfs:domain rdf:resource="#JUNCTION"/>

 <rdfs:range rdf:resource="#SWITCH"/>

 <owl:inverseOf rdf:resource="#switch2junction"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="inverse_of_transitive_symmetric_dependency_relation_9">

 <rdfs:domain rdf:resource="#CONTROLUNIT"/>

 <rdfs:range rdf:resource="#APPLIANCE"/>

275

 <owl:inverseOf rdf:resource="#app2controlunit"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="JUNCTION">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <JUNCTION rdf:ID="JUNCTION1">

 <inverse_of_junction2junction rdf:resource="#JUNCTION2"/>

 <inverse_of_transitive_symmetric_dependency_relation_3

rdf:resource="#SWITCH1"/>

 <junction2swfuse rdf:resource="#SWFUSE2_CT2"/>

 </JUNCTION>

 <JUNCTION rdf:ID="JUNCTION2">

 <junction2junction rdf:resource="#JUNCTION1"/>

 <inverse_of_transitive_symmetric_dependency_relation_3

rdf:resource="#SWITCH2"/>

 </JUNCTION>

 <owl:ObjectProperty rdf:ID="junction2junction">

 <rdfs:domain rdf:resource="#JUNCTION"/>

 <rdfs:range rdf:resource="#JUNCTION"/>

 <owl:inverseOf rdf:resource="#inverse_of_junction2junction"/>

 <rdfs:subPropertyOf

rdf:resource="#symmetic_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="junction2swfuse">

 <rdfs:domain rdf:resource="#JUNCTION"/>

 <rdfs:range rdf:resource="#SWFUSE"/>

 <owl:inverseOf rdf:resource="#inverse_of_junction2swfuse"/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <APPLIANCE rdf:ID="LAMP1">

 <app2socket rdf:resource="#SOCKET_2"/>

 </APPLIANCE>

 <owl:Class rdf:ID="LIGHT">

 <rdfs:subClassOf rdf:resource="#APPLIANCE"/>

 </owl:Class>

 <LIGHT rdf:ID="LIGHT1">

 <light2switch rdf:resource="#SWITCH1"/>

 </LIGHT>

 <LIGHT rdf:ID="LIGHT2">

 <light2switch rdf:resource="#SWITCH2"/>

 </LIGHT>

 <owl:ObjectProperty rdf:ID="light2switch">

 <rdfs:domain rdf:resource="#LIGHT"/>

 <rdfs:range rdf:resource="#SWITCH"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_2"/

>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="lvl_dst"/>

 <owl:DatatypeProperty rdf:ID="lvl_level"/>

 <owl:DatatypeProperty rdf:ID="lvl_src"/>

 <owl:Class rdf:ID="SOCKET">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="socket2swfuse">

 <rdfs:domain rdf:resource="#SOCKET"/>

276

 <rdfs:range rdf:resource="#SWFUSE"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_16"

/>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <SOCKET rdf:ID="SOCKET_1">

 <inverse_of_transitive_symmetric_dependency_relation_15

rdf:resource="#TV1"/>

 <socket2swfuse rdf:resource="#SWFUSE3_CT3"/>

 </SOCKET>

 <SOCKET rdf:ID="SOCKET_2">

 <inverse_of_transitive_symmetric_dependency_relation_15

rdf:resource="#LAMP1"/>

 <socket2swfuse rdf:resource="#SWFUSE3_CT3"/>

 </SOCKET>

 <owl:Class rdf:ID="Strength">

 <rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="strength_dst">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="strength_src">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="strength_value">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Strength"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:Class rdf:ID="SWFUSE">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <SWFUSE rdf:ID="SWFUSE1_CT1">

 <inverse_of_transitive_symmetric_dependency_relation_10

rdf:resource="#CU1"/>

 </SWFUSE>

 <SWFUSE rdf:ID="SWFUSE2_CT2">

 <inverse_of_junction2swfuse rdf:resource="#JUNCTION1"/>

 </SWFUSE>

 <SWFUSE rdf:ID="SWFUSE3_CT3">

 <inverse_of_transitive_symmetric_dependency_relation_16

rdf:resource="#SOCKET_1"/>

 <inverse_of_transitive_symmetric_dependency_relation_16

rdf:resource="#SOCKET_2"/>

 </SWFUSE>

 <owl:Class rdf:ID="SWITCH">

 <rdfs:subClassOf rdf:resource="#AE"/>

 </owl:Class>

 <SWITCH rdf:ID="SWITCH1">

 <switch2junction rdf:resource="#JUNCTION1"/>

 <inverse_of_transitive_symmetric_dependency_relation_2

rdf:resource="#LIGHT1"/>

 </SWITCH>

 <SWITCH rdf:ID="SWITCH2">

 <switch2junction rdf:resource="#JUNCTION2"/>

277

 <inverse_of_transitive_symmetric_dependency_relation_2

rdf:resource="#LIGHT2"/>

 </SWITCH>

 <owl:ObjectProperty rdf:ID="switch2junction">

 <rdfs:domain rdf:resource="#SWITCH"/>

 <rdfs:range rdf:resource="#JUNCTION"/>

 <owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_3"/

>

 <rdfs:subPropertyOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="symmetic_dependency_relation">

 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

 <owl:inverseOf rdf:resource="#symmetic_dependency_relation"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="transitive_dependency_relation">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty

rdf:ID="transitive_symmetric_dependency_relation">

 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <owl:inverseOf

rdf:resource="#transitive_symmetric_dependency_relation"/>

 <rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="TV">

 <rdfs:subClassOf rdf:resource="#APPLIANCE"/>

 </owl:Class>

 <APPLIANCE rdf:ID="TV1">

 <app2socket rdf:resource="#SOCKET_1"/>

 </APPLIANCE>

</rdf:RDF>

278

APPENDIX III

This appendix describes a simple worked example to illustrate the outputs of the TomE

tool. It assumes the existence of a mapping file based on a simplification of the

mappings using in the generalised ontology-based integration system designed for

experiment one.

Simplifying Assumptions Made.

Assumption 1: Assume that the domain under study has three architectural elements

called UE, MP and GE that represents the output of the decomposition step in the

process described in Figure 3-4. Figure III-1 below, shows the architectural elements

for “GE”, “UE” and “MP” as subclasses for the ontology-based metamodel concept

“ArchitecturalEntities”.

These architectural elements are made dependent by adding specialised concepts for

the dependent relations (ue2mp and mp2ge) as shown in Figure III-1.

Figure III-1: Dependency Model Classes and Dependency Relations

Assumption 2: Assume a mapping file from an ontology integration system that has

the following dependencies in its mappings:

Mapping 1: UE1->MP1->GE1

 ->GE2

Mapping 2: UE2->MP2->GE2

 ->GE3

279

Mapping 3: UE3->MP3->GE3

Mapping 4: UE4->MP4->GE4 [F{UE4}]

Mapping 5: UE5->MP5->GE5

Assumption 3: Assume that these mappings can be interpreted as follows:

An ontological concept called UE1 has a mapping called MP1. The mapping MP1

collects information from data source resources identified as GE1 and GE2.

Mappings MP1 and MP2 share a common database resource (GE2).

The mapping for UE4 is called MP4. Mapping MP4 has a function specified, called

“F” that requires access to ontological concept UE4.

In the case of this simple mappings file, we can see that MP1 and MP2 have a

dependency relation due to GE2. Mappings MP4 and MP5 also have a dependency

relation due to the function F that accesses UE4.

TomE tool output

The output of the TomE for this mapping file produces the graphical views shown in

the figures below.

The full graph of dependencies (Figure III-2) shows that there is a dependency

relationship between MP1 and MP2 and another dependency relationship between

MP4 and MP5.

This is the view of all dependencies provided by the TomE system.

280

Figure III-2: Full Dependency Graph

Figure III-2 shows the all the dependencies chain that have been computed.

The “root” node represents the metadata for the graph itself and contains the type and

version information. Nodes of different types have different colours to aid viewing.

The “root” node can be populated using the information (e.g. name, version) from the

“Dependency Graph” concept from the OBDM.

The name of each node is a concatenation of the node type and node instance name

(e.g., UE-UE1 indicated a node of type UE with instance UE1).

The dependency view for UE1 is shown in Figure III-3 below.

Figure III-3: Single Dependency Graph

This view can be selected either by clicking on the required node on the main graph

view or by loading it directly using the “file->load” option in the menu bar in the

TomE tool.

The dependency view with levels and types for UE1 is shown in Figure III-4 below.

281

Figure III-4: Dependency View with Levels

282

APPENDIX IV

This appendix describes the directory structure of the DVD which contains the Java

code for generalised ontology-based integration test bed (HotFusion) and TomE tools.

The following directory structure and contents are provided on DVD

root/HotFusion/src Java source classes files for the generalised ontology

based integration test bed

root/HotFusion/config Eclipse project classes files for the generalised ontology

based integration test bed

root/HotFusion/docs Readme file

root/TomE /src Java source classes files for TomE tool

root/TomE/config Eclipse project files for TomE tool

root/TomE/docs Readme file

root/ontologies OWL files for the dependency metamodel and OBDM.

root/mappings Mapping files used in this thesis.

