A Dependency Modelling Approach for the
Management of Ontology-Based Integration
Systems

A thesis submitted to the
University of Dublin, Trinity College
for the degree of
Doctor of Philosophy

Aidan Boran
Alcatel-Lucent,
Blanchardstown Industrial Park,
Blanchardstown,

Dublin 15.

2010

Declaration

I, the undersigned, declare that this work has not been previously submitted as an
exercise for a degree at this or any other University, and that, unless otherwise stated, it
is entirely my own work.

Aidan Boran
September 2010

Permission to lend or copy

I, the undersigned, agree that the Trinity College Library may lend or copy this thesis
upon request.

Aidan Boran
September 2010

i1

ACKNOWLEDGEMENTS

"In the high country of the mind one has to become adjusted to the thinner air of
uncertainty...”
— Robert M. Pirsig

I would like to thank my supervisors Declan O’Sullivan and Vincent Wade for
agreeing to supervise my research, for their unflagging support and insightful

contributions.

I would also like to thank Lou Manzione, Lawrence Cowsar, Sam Samuel, Ben Lowe
and Julie Byrne from the wonderful Bell Labs, for their oversight, financial and

technical support during this research.
My thanks to all in the KDEG research group for the great collaboration and friendship.

A special word of thanks to my wife, Audrey, for her unconditional support, her
confidence and belief. I could not repay everything you have done for me. When we
were getting married, she thought she was getting “Mr. Dependable” — in fact it turned

out she got “Mr. Dependency’’!

Finally, thanks are due to my son and daughter, Tom and Aimee, for keeping my feet

on the ground and keeping me up to date with the football scores.

This thesis is dedicated to the memory of my father and mother, Gerry and Noreen

Boran.

11

ABSTRACT

Ontology-based approaches that formally represent the meaning of information in a
system, offer the hope of dealing with semantic heterogeneity when integrating
heterogeneous data sources [Halevy 2001, Noy 2004, Wache et al. 2001, Doan and
Halevy 2005, Pollock 2002]. While these ontology-based approaches offer significant
advantages [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001, Halevy 2005] over
traditional approaches (e.g. ETL"), they tend to require semantic mappings to create
loose coupling of systems to enable integration. The mappings may serve to relate
ontologies to other ontologies (inter-ontology mappings) or to relate ontologies to
underlying information sources (e.g. a database). However, when such semantic
systems are scaled up, the semantic mappings also need to grow and evolve [Bernstein
and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, Halevy et al. 2005, An
and Topaloglou 2007]. Failure to provide methods to manage and evolve the semantic

mappings can make the integration systems brittle.

There is currently little research to help identify, manage and evolve semantic
mappings when the integration system is evolving [Bernstein and Melnik 2007, Haas
2007, Doan and Halevy 2005, Kondylakis et al. 2009]. The first part of the evolution
problem, identifying and managing the mappings that need to evolve, is addressed by
the dependency model in this thesis. The dependency model is important in the context
of ontology-based data integration because it promises to enhance the scalability of
integration systems by allowing them to find which elements of the integration system

are impacted when a data source or ontology changes.

This thesis has developed an ontology-based domain specific dependency model, a
more general dependency metamodel and a tool that can represent and analyse
dependencies that occur between mappings, ontologies and databases in an ontology-

based integration system.

The approach has been developed and evaluated using two industrial datasets.

! Extract, Transform and Load.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS......cccceeeunnunnnissnecsancsansssnnssnccssesssassanes i
1 INTRODUCTION...uuuerruecnecsnecsanessnnsnnssnnessecssssssassssessancnne 11

1.1
1.2
1.3
1.3.1
1.4
1.5

IMOTIVALION ..ttt sttt e 11
Research QUESHIONcooeiciiiriiieee et 13
Research MethodolOgycoovvieeiiiieiiiecieeceece e 15

Summary of Industrial Use Cases and Data Sets...............ccccueeeunnn. 18
CONIIDULION ...ttt 19
OVerview Of theSiScccueiiiiiiiiiiiiiieee e 21

2 STATE OF THE ARTuieirrennnsensnesnnsnesnssaccsnssancsnessns 23

2.1
2.1.1
2.1.2
2.1.3
2.14

22

2.3
2.3.1
232

2.4
24.1
2.4.2

2.5
2.5.1
2.5.2
2.5.3
254

2.6

2.7
2.7.1

INErOdUCTIONeeiiiiiiieiicetc e 23
Overview of Information Integration Approachescc......... 23
State of the Art in Dependency Modelling and Dependency Analysis 23
State of the Art in Usage of Mappings in Schema &Ontology Evolution 24
State of the Art in Ontology-based Integration...............ccceeeveveueens 24

Overview of the Information Integration Approaches 24

State of the Art - Dependencycccveerieeerieeeniieeeniee e eeee e 28
Application of Dependencies and Dependency Analysis 28
Models Of DePEndencyc..uucvveeeeeeeceeeeiiieeiieescieeeeieeeseeesereessaeenes 33

State of the Art - Mapping Usage in Schema and Ontology Evolution 37
Database Schema EVOIULIONccccoveeiveiiiiniiiniiiiiiiieieeeeen 37
Ontology and Mapping Management................ccueeeveveecreeecreeescveenennens 41

State of the Art - Ontology-based Integration Approaches............... 45
Use of Ontologies in Integration SYSTEMLScceecvuverveeecveescreeseeeanns 46
Ontology Representations in Integration SyStemsccceueeeeunen. 49
Mapping Usage in Integration SYSTEMSccceeeeueerceeesueenseenieeanns 51
Implementations of Ontology-based integration Systems 54

SuMMAry AnalySiS......eeeiiieeriiieniieeiee e 58

Background Design ChoiCesc.ceevveeeiiieeiiiieeiieeciee e 59

Measuring “Integration Quality”: THALIA Integration Benchmark.59

2.7.2

Supporting Technology CROICEScueeeeeeeeeeeeeiieeiieecieeesiieeeneenes 61

3 DESIGN AND IMPLEMENTATION......ccccceeeureuecnecsaeeeees.04

3.1

3.2
3.2.1
3.2.2
3.2.3
324
3.2.5
3.2.6

33
3.3.1
3.3.2
3.3.3
334

34

INErOAUCTIONeeiiiiiiiiiiciccc e 64
Dependency Model Designcccueeevveeeiiieeiiiieniieeciee e 65
Design considerations for Dependency Analysis.............ccccoeeveeeunnn. 65
Dependency Abstractions used in the metamodel............................... 67
Dependency Metamodel DesSign...............ccueeeeeeeecueererieeiinencrieeeeeenns 71
Domain Specific Dependency Model Creation Process 77
A Domain Specific Ontology-Based Dependency Model (OBDM).....79
Dependency Analysis Tool (TomE) Implementation........................... 85

Generalised Ontology-Based Integration Test System (HotFusion) . 99

DesSign ReGUITEMENLSc.c.coevueieviiiiiiiiiiiiiiiieceeieceiec e 99
SYSTEI OVEFVIEWeeevveeeevieeiieesreeeeteesveesteeesseesseeeseseessseessseesnsees 100
Functional Architecture & DesSign............ccueeeeveeeeeenciiencieeeeeeennenn 105
HotFusion Implementation.................cccccceeveueeecieeenueeniieesseeeneeenieenn 107
SUIMIMATY ...ieeeeiiitee ettt e e et e e s e abaeeeesaaeeeaens 109

4 EVALUATION.....intrrninsnensnnnsnssnssasssassssesssssssssssasssssssanes 1 10

4.1

4.2
4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7
4.2.8

43

4.4
44.1
4.4.2
4.4.3
444
44.5
4.4.6
4.4.7

Overview of EXPeriments.........ccovveerrieeriiieeniieenieeeniee e 110

Experiment One — Measurement of “Integration Quality” Metric.. 113

OVEFVIEW ..ttt ettt ettt et et sttt et et 113
Objectives & HYPOINESESuoovcueieeiiiniiiieiiieieeeite et 113
Use Case Background.................cccoeceevecrvuiniiriieseenecnieneeeeeeaeen 114
Experimental APPrOGCHcccuueeeeieeciieeieeeecie e see e 115
EXperimental SEtUpcocceeeeeeeieiiiiiiiieieieeee ettt 115
Experimental Results (based on THALIA)cooeeeeveeeeecveeeennen. 120
Discussion of Experimental ReSUILScccoueeeveeevceenceeeeeeennennn 122
Summary of Conclusions, Open Issues and Limitations 124
Next Steps in Action Methodologyccccueeviiieriiieeniieeeiieeieenns 125
Experiment Two — Mapping Complexity AnalysiS.......ccccceervuveennne 125
OVETVIEW ..eoeeeiieeee ettt ettt ettt e st e st e bt e s bt e e abeesbaeesanes 125
Objectives & HYPOINESESuueeeveeecieeeciieeeieeeieeeiie e esree e 126
Use Case BaACkGroUnd...............ccoueeeuvevcuveeciieciiieecieesiieeeeieeenveesnees 126
Experimental APPrOGCHccccoevviiiviiiiiiiieiiieiieeeeeee e 127
EXperimental SEtUPcocceeveeeieiiiiiiiieiieeee ettt 129
EXperimental RESUILS............c.ooeecveeeeiieeiieeeiee e eee et see e 132
Discussion of Experimental ReSUILSc.ccccoevevvecvceinccnseenneeennen. 137

5

4.4.8 Summary of Conclusions, Open Issues and Limitations 138
4.5 Next Steps in Action Methodologyccccveeviiiieniiieeniieeeiieeieenns 140
4.6 Experiment Three — OBDM Performance..........ccccccooveervveennneenne 140

4.6.1 OVEIVIEW .o eie ettt stteeete s te sttt et e bt e saeesatesasesaseebeeseenseennes 140

4.6.2 Objectives & HYPOINESESccueeveueeeiieiiieiiiesiieniieeieeie e esreesiee s 141

4.6.3 Experimental APPIOGCHcccoueeeeeeeiieeciieeecie e 141

4.6.4 EXperimental SEtUpcccvveeeeeeeeiieeiieeiee et eee et eaee e 143

4.6.5 EXperimental RESUILS..........ccccceovveeiviiiiniiieiiieeeeete et 147

4.6.6 Discussion of Experimental ReSUILScccoueeeveeevceencieeeieeenennn 155

4.6.7 Summary of Conclusions, Open Issues & Limitations...................... 157
4.7 Next Steps in Action Methodologyccccveevciiieniieeniieecniieeieens 159
4.8 Experiment Four — OBDM Performanceccocceevveeniiiennieen. 159

4.8.1 OVETVIEW ..ottt ettt ettt ettt et sttt e st e sbte e teesbaeesans 159

4.8.2 Objectives & HYPOINESESuooecueeeeiiiniiiiaiiieiieeeiieeeieeeee e 160

4.8.3 Use Case BaACkGroUnd...............ccueeeeveeeuveeeieeeiieecieesiieeecieeesveesnees 160

4.84 Experimental APPrOGCHcccceevceiiniiiiiiieiieeiieeieeeee e 160

4.8.5 EXperimental SEtUpcoceieeeeieiiiiiiiieieceeee ettt 161

4.8.6 EXperimental RESUILS............c.oveeeueeeeiieeiieeeiie e eee e evee e 162

4.8.7 Discussion of Experimental ReSUILScccoueeeveeevceencieeeieennnnnn 168

4.8.8 Summary of Conclusions, Open Issues and Limitations 169
4.9 Next Steps in Action Methodologyccceeeviiiiiiiiiniiiniieenieee 170
4.10 Corroborative Study — Genericity of the Dependency Metamodel . 170

4.10.1 OVEFVIEW ..ttt ettt ettt sttt e 170

4.10.2 Objectives & HYPOINESESuueeeveeeeiieeciieeeiieeeieeeiieesveesree e 170

4.10.3 Experimental APPrOGCHccccoevciiiniiiiiiiiiiieiieeseeeee e 171

4.10.4 EXperimental SEtUPcccccueeeeueieiiiiiiiieieceeee ettt 172

4.10.5 EXperimental RESUILS............c.uueeeueeeeiieeiieeiie e eeee e see e 174

4.10.6 Discussion of Experimental ReSUILScccoueeeveeevceencieeiieennennn 181

4.10.7 Summary of Conclusions, Open Issues and Limitations 181
4.11 Summary of Evaluation...........cccceoiiiiiiiiiiniiiiiniieeieceecceeeeeeee 183

CONCLUSIONS . ..ccccctiecnresssnissssessasesssssssssssssssessssessasssssssssnses L 83
5.1 Objectives & AChIEVEMENLSceeeereveeeriiieeiieeriee e 185

5.1.1 Objective One - State of the Art ReVieW............ccoueeeeveecreeecreeecveennnes 185

5.1.2 Objective Two - Design of Ontology-Based Dependency Model...... 190

5.1.3 Objective Three - Design of Dependency Model Tool (TomE)......... 191

5.14 Objective Four - Evaluation of Dependency Modelling Approach... 191
5.2 CoNtrIDULION.eiiiiiiiiiiieecee et 192

5.3 Future Work........oooiiii e 195
5.3.1 Future work related to the performance of the dependency model... 195
5.3.2 Future work related to the functionality of the dependency model... 196

54 Final Remarks........cooiiiiiiiiiiiiieeeeee e 198
6 Bibliography......ccciicncrcnsninsnissnncssnncsssncssssessssessssssssssesassene 199
PN 3d 3 DIAV] D 2 .G R 215
Ontology-Based Dependency Metamodel...........cccceeeuveeriieenieeenieeeieeenee. 215
Ontology-Based Dependency Model (OBDM)........ccccoovviiiiiiiiiniienieennee. 218
PN id 1 DI D 2 .G 220
Experimental Data for Experiment Onecccoecveeviiveenieeenieeeieeeieeene 220
UPPEE ONEOLOZYeeeveeeeeeee et eete e ee e sve et ve e s aaesaaaessaaessseeennee s 220
MAPPIAG JIlO...veeaeiieieeeee ettt te et e st e e ae s taesaaeesateesssaeessaesnsees 229
Experimental Data for Experiment TWOccccoeeiiiriieenciieeniieeiee e 237
Upper Ontology for Experiment two (LOGISEICS). ...c..cceveeeereeecieeniieeeieeeeieesneens 237
Mapping file for experiment two (Excerpt from full mapping on DVD) 245
Experimental Data for Experiment Threeccccceevvveeviiieenieeerieeeieene 247
Manual Process DefilitioN..............cccueeeueeeeieeserieeeieesieeseieeseseesseesseeesssesssees 247
USer QUESTIONIAITE.cccecuveeeeeerieeeeerireeeeirieeeessaeeessseeesessseeesssseeeesssseesssssens 249
First Mapping File (MS-EXCEl FOTIAL)coovuuiiniiiniiieiiieniieenieeeee e 263
Second Mapping File (MS-Excel FOIMAL)............cccoueeeueeeeeeeeinescriescieeesieesneens 264
Third Mapping File (MS-EXCel FOIMAL)ccccoeeviueimiiiiniiieiieenieeeeeeieeeeees 265

265
Output from R Statistical Package.cccceovveeievininieieieeieeee, 266
Experimental Data for Experiment FOUrccccovviiiieniieiniieeieeceee 270
Experimental Data for Experiment Five...........cccoooiiiniiiiiiiiniiiiiceceee 271
Ontology-Based Dependency Model (domestic electrical domain) 271
PN 3d i DI\ D.J .G 1 R 278
Worked Example of TOmE t0o]ccccoeiiiiiiiiiiiieieceeceeeeeeee e 280
PN id i DIAVE D2 G 282
Overview of contents of DVD ... 284

LIST OF FIGURES

Figure 1-1: Overview of Research Methodology.ccccvieriiieniieiniieeniee e 16
Figure 2-1: Keller’s Multidimensional space of dependencies.ccceeevvveerveeenuveennns 34
Figure 2-2: Ontology Management Infrastructures [Hepp et al. 2008]..........ccc.cceueenee 41
Figure 2-3: Three Ontology Approaches from [Wache et al. 2001]cccceeveeenennee 47
Figure 3-1: Illustration of Graph, Dependency and Dependency Chain....................... 69
Figure 3-2: Dependency Relations in the metamodelcccoeeeiieeriieeniiieiiiieeeieens 73
Figure 3-3: Descriptive Dependency Attributes supported in the metamodel. 74
Figure 3-4: Process for domain model Creation.............eoovueeereeeinieeiniieenieeeieeseeeeae 7
Figure 3-5: Domain Specific Dependency Model..........cccceeviiieniieeniiieeniieciee e 81
Figure 3-6: Illustration of Dependency Relationscccceeevieeeriiieeniieenieeeiee e 83
Figure 3-7: Functional Architecture TOmE ToOl...........ccoooiiiiiiiiiiiiieeee 86
Figure 3-8: Class diagram for mapping factoryc.ccceevviiiniiiiniiieiniieiieeeiee e 87
Figure 3-9: In memory Dependency..........cccueecuieriiieniiieeniieeeieeesieeenveeesveeeneeeareeenns 89
Figure 3-10: Class diagram for model factorycccccuveeiiiiiiiiieeniiieeriie e 89
Figure 3-11: Sample Dependency Graph for a UE called “UE1”ccccccocieiinnennnn 90
Figure 3-12: Sample Dependency Graph with levels and types..........cccceeveeviieennnennns 91
Figure 3-13: Call Sequence Diagram for TOmE..........c.cccccoiiiiiiiiniiiiiiieceeeeeeees 91
Figure 3-14: TomE Level & Types AIOrithm..........ccccvveeiiieniiiieriieeiieciee e 94
Figure 3-15: AP USAZE ...ccuvtiiiiiiiiiieeiieeee ettt ettt ettt e 95
Figure 3-16: TomE Control Panelccooiiiiiiiiiiiiiiiicccee e 96
Figure 3-17: TomE Ontology COontrol..........ccccuieriiiieriiieeiiieeeiee et evee e 96
Figure 3-18: TOME VisualiSationc.ccccvuieeiiiieriiiieeiieeeieeeeieeesieeesveeesveeeneeeareeenns 97
Figure 3-19 Integration Test Bed OVErview..........cccceviiieniiiiniieiniieeieeeiceeiee e 101
Figure 3-20: Integration System Functional Architecture (HotFusion) 105
Figure 3-21: Integration PrOCESScccuieeiiiiiiiiieiiieeciie ettt eeiee e e e e 106
Figure 3-22: Class Diagram Mapping Factory.........cccccveviieeriiieeniieeiie e 108
Figure 3-23: Class Diagrams for Model Factoriesccocceeeviieiniiinnieenniienieeceee 108
Figure 3-24: Integration System Control Panel (HotFusion)c..cccoceeviiniiineennnen. 109
Figure 4-1: Relationship between Experiments and Objectives..........cccceeeveeeruveeennnenn. 110
Figure 4-2: Excerpt from Upper Ontologyeeecueieriieeriieeriieerieeeereeeivee e 116
Figure 4-3: Integrated REPOTItc.eeiiiiiiiiiiiiiiiieicete et 118
Figure 4-4: Logistics Rates Integration and Optimisation Applications. 127

Figure 4-5: Dependency Visualization in TomE.........c.cccccovvviiiiiiniiiiniieciieeieeeee 129

Figure 4-6: LOgiStiCS REPOTT......uiiiiiiieiiieeiiieeiieeciee ettt e e e e an 130
Figure 4-7: Concept overview from Logistics Ontology..........cccevveeevieennieennieennnnenn. 131
Figure 4-8: Non-overlapping Dependencycccceeevvieeniieiniieiniieeieeeiee e 134
Figure 4-9: Overlapping Dependencyccecvieeciieeriiieniieeeiee e e eveeeevee e 135
Figure 4-10: Function Based Dependencycccccveecuiieriieeniieeniieeiee e 136
Figure 4-11: Excerpt from Excel mapping file.........cccceeviiiiiiinniiiiniiiiiieeiceceee 145
Figure 4-12: Collated sUrvey datacoocveeiiiieniiiieniieeeeeeee e 148
Figure 4-13: Accuracy & Time MeEanS.......c.ceecuvieriiiieriieeniieeeieeesreeenreeeveeeeveeeeneens 150
Figure 4-14: Accuracy Means by Dataset SIZ€cceevveerireeriieeniieeniieerieeeiee e 150
Figure 4-15: Accuracy Correlationseoevueeeriiieeniieeniieeeiee et 151
Figure 4-16: Time COrrelationscoouveeeriiieriiiieniieeniie ettt st e et e s 152
Figure 4-17: Group ANalysiS (ACCUTACY) ..uuveeerureeriureenireenireenieeenreeessreesssseessssesensneens 153
Figure 4-18: Group Analysis (TimMe)cccvuieeruiieriiieiiieeniee et esree e e 153
Figure 4-19: Control Group Accuracy and Timecccoecueeeriiieiniieiniiennieenieeeeeene 153
Figure 4-20: Automatic Approach Processing Time...........ccccceeeviieiniiennieennieennneen. 154
Figure 4-21: Simple Mapping Dependencyccceeecuveeriieeniieeniieenieeerieeeivee e 163
Figure 4-22: Services Dependency.........ccccuieeruiieriiieeniieenieeeeieeesreeesreeeseseeesaveesnneens 164
Figure 4-23: Level and TYPES VIEW ...ccueeiriiiiiiiiiiiieeniieesite ettt et 165
Figure 4-24: Very Complex Dependency...........coocveeriiieniieiniieiniieiieeeieeeiiee e 166
Figure 4-25: Levels and Types Dependencycccceccveeeiieeniieenieeenieeeieeeiee e 167
Figure 4-26: Scoped Domestic CIICUIL.........eeeiurieriiieeniieeeieeeeieeeeieeereeeveeeivee e 174
Figure 4-27: Excerpt from the Domain Specific Model...........ccccccoveeniiriiininneennen. 175
Figure 4-28: Domain Specific Models for each Circuit.........ccceeevveernieennieennieennnenn. 177

10

1 INTRODUCTION

1.1 Motivation

Today, large enterprises have deployed many information and database systems across
distinct functional areas of the enterprise (e.g. logistics, sales, production, finance,
human resources). The widespread adoption of these systems has created the problem
of islands of heterogeneous and distributed information [Bernstein and Haas 2008,
Haas 2007, Lowell Database Report 2003]. These islands make the development of
integrated processes and applications difficult [Bernstein and Haas 2008, Haas 2007].

Within large enterprises, there is a business need for enterprise applications that can
operate across functional areas. These applications must facilitate automated
integration to allow business professionals to make informed decisions [Haas 2007,
Lowell Database Report, IBM 2004, Halevy et al. 2005]. The “distribution” of
information sources makes integration difficult because the databases and information
models tend to be managed and evolved separately [Halevy 2005]. Similarly, the
“heterogeneity” of the information sources makes integration difficult as it manifests
itself on three levels namely syntactic, schematic and semantic levels [Cruz and Xiao

2005, Sheth et al 1999].

Such data integration problems have meant that enterprises spend a great deal of time
and money on attempting to combine information from different sources into a unified
format. Frequently cited as the biggest and most expensive challenge that information-
technology organisations face, information integration is thought to consume about

40% of their IT budget [Bernstein and Haas 2008].

Existing data integration solutions (e.g. consolidation, federation and replication
systems) are capable of resolving syntactic and schematic heterogeneities in the
underlying sources but they are not capable of semantic integration [Cruz and Xiao
2005, Halevy 2005]. Since syntactic approaches do not encode meaning in the data or
messages passed through the integration systems, it becomes necessary to hardcode
this meaning in the applications themselves. Such hard coding leads to integration

systems that are difficult to maintain [Halevy et al. 2005, Zhou et al. 2006].

Other approaches, that formally represent the meaning of data in a system, offer the
hope of dealing with semantic heterogeneities. While these semantic (ontology) based

approaches offer significant advantages, they tend to require semantic mappings to

11

create relationships between the ontologies and data sources of the systems to enable
integration [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001]. However, as the
semantic systems are scaled up, semantic mappings also need to grow and evolve
[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, Halevy et al.
2005, An and Topaloglou 2007].

In spite of decades of research into data integration, recent surveys indicate that a
number of important challenges persist [Bernstein and Haas 2008, Haas 2007, Lowell
Database Report 2003, IBM 2004, Halevy et al. 2005, Zhou et al. 2006]. Bernstein
[Bernstein and Melnik 2007] described “data programmability” as the goal of making
access to large shared data sources easier. However, he noted that the data
programmability problem remains today due to the need for complex mappings
between different representations of data. Despite decades of research into databases
and data management, coping with heterogeneity remains one of the most time-
consuming data management problems. Bernstein [Bernstein and Melnik 2007]
indicates that anecdotal evidence suggests that it accounts for 40% of the work carried
out by enterprise IT departments. Bernstein has proposed an extensive model
management approach that seeks to provide lifecycle support for the mappings that are
central to the resolution of the data programmability problem. As noted by Bernstein,
many data integration approaches that are used in enterprise integration make use of
mappings (e.g. Extract, Transform and Load and message mapping tools). Despite the
broad usage of mappings across these approaches, there is little commonality in the
approach to the management of the mappings [Bernstein and Melnik 2007, Doan and
Halevy 2005, Halevy et al. 2005].

In [Halevy et al. 2005], scalability and metadata management are identified as two of
the key challenges facing enterprise information integration. In [Zhou et al. 2006], it is
pointed out that from a technical viewpoint the scalability of current integration
toolsets rely on specialists having a deep understanding of the data, the underlying

schema and the relationships across the various data sources.

This work has developed a model and tool to represent the dependencies that arise
within ontology-based integration systems due to the use of mappings. The model of
the mapping dependencies addresses the first step of mapping evolution i.e.
understanding what parts of the integration system are affected by a proposed change

in the data sources. The approach enables a deep understanding to be developed of the

12

dependency relations across the key parts of the integration system. The author of this
thesis believes that this is a key step that will allow the integration system to evolve

gracefully when the underlying data sources change.

1.2 Research Question

An important aspect for the deployment of any integration system in an industrial
context is its ability to adapt to changes in the underlying data sources. In ontology-
based integration systems, changes to the data sources can also impact the ontologies
and mappings that comprise the integration system [Bernstein and Melnik 2007,

Velegrakis et al. 2003, Yu and Popa 2005].

Thus, to ensure that the system can evolve when changes occur in the underlying data
sources, it 1s critical to be able to identify and evolve those parts of the ontology and
mappings that are impacted. This thesis asserts that a model of the dependencies that
arise between the ontologies, mappings and data sources provides a potential solution

to this evolution problem. The research question for this thesis is defined as:

How and to what extent can a dependency model enhance integration performance by
allowing for the identification of and support for the management of the semantic

mapping dependencies of an integration system?

In the context of the research in this these, a semantic mapping is defined a
correspondence between elements of different schema. Schema mappings are typically
used to support query rewriting and/or data transformations in data integration systems

[Halevy et al. 2006, Lenzerini 2002].

Many factors influence the integration performance such as the throughput, capacity or
speed (e.g. response time) of the system. The importance of a unified approach to the
measurement of integration performance has been regularly identified [Lowell
Database Report 2003, Halevy et al. 2005]. However, only a few unified benchmarks
exist [Bohm et al 2008, Othayoth and Poess 2006, Bohme and Rahm 2001]. These
approaches focus on processing performance of the integration system [Bohm et al
2008, Othayoth and Poess 2006]. The research in this thesis required a measurement of
the ability of the integration system to integrate heterogeneous data source rather than a
measurement of processing performance. This was required to measure how well a
new approach to integration coped with semantic heterogeneity. In particular, this

research has focused on the ability of ontology-based approaches for integration to

13

cope with semantic heterogeneity. In the industrial context, a key requirement for
integration systems is the ability to cope with changes to the underlying data sources
[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005]. To measure
these aspects of integration performance, this thesis has defined two integration
performance metrics called “Integration Quality” and “Dependency Identification

Performance”.
“Integration Quality” is defined as:

¢ A measure of the ability of the system to carry out integrations across a range

of different types of data heterogeneity.

This metric provides a qualitative measurement of the ability of the integration system
to cope with different types of heterogeneity. The THALIA integration benchmark
[Stonebraker 2005] provides an ideal framework to measure this aspect of integration
performance since it provides a set of tests to execute based on a systematic

classification of different types of syntactic and semantic heterogeneity.
“Dependency Identification Performance” is defined as:

* A measure of the ability of the system to accurately and quickly identify the

mapping dependencies.

This second aspect of integration performance is focused on the ability of the
integration system to evolve its mappings when new data sources are added.
Dependency identification performance is important to understand because the first
step of mapping evolution is to identify which mappings are impacted by the proposed
change. In this thesis, dependencies are used to support the evolution of mappings and
“Dependency Identification Performance” is calculated by measuring the accuracy of

the dependencies found and the time taken to find the dependencies.
Four objectives were derived in order to address the research question:

1) Perform a state of the art review of approaches for semantically linking local’

schema and aggregate or global schema”.

* Local schema refers to a schema that represents the local sources to be integrated.
? Global schema refers to a common view of sources to be integrated.

14

2) Research and develop a model to define the dependencies that arise when creating
semantic links between schemas to support an ontology-based integration approach

between local schemas and global schemas.

3) Research and develop a prototype tool capable of supporting this dependency

modelling approach.

4) Evaluate the dependency model and tool using industrial use cases.

1.3 Research Methodology

This research has been carried out in an iterative manner using the four step process

from the action-based research methodology [Fisher 2004, O'Brien R. 2001].

The action based methodology was selected because it provided an adaptive, flexible
and participatory approach to research. The approach involves an iterative inquiry
process that leads to a refinement of the research question. Each iteration involves
“plan”, “action”, “observe” and “refine” steps. The iterative inquiry process afforded
the flexibility needed to conduct research in an environment that is subject to regular
process, management and personnel changes such as the supply chains of large
enterprises where the use cases in this research originated. The participatory nature of
action based research was also important because it allowed business professionals

from Alcatel-Lucent to influence the research by supporting use case development, to

provide real industrial data sets and to participate in case studies.

The action-based research process was conducted using a series of iterations as shown
in Figure 1-1. The “observe” and “reflect” steps in the action-based methodology were
combined into a single step during the running of the experiments that were conducted

in this research.

15

Methodology Steps
¥ v v v
o Y N N N
State of the art Iteration 1 Iteration 2 Iteration 3 Iteration 4
review review review review review
Action
Design Design OBDM, Prepare OBDM |i| Prepare OBDM Build
Integration | Use Case Two Performance Performance Dependency
Test Bed, Measurement Measurement Model in new
Observe| Experiment Experiment Experiment Experiment Corroborative
& One: Two: Three: Four: Study:
Reflect “hgjglrfarﬂ;’on Aﬁgf;;:;g “0BDM “OBDM “Metamodel
_ g VAN & _/ \Performance” / i\ Performance”) _Genericity” /
Voo o R V.. ...
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Figure 1-1: Overview of Research Methodology.

The first iteration of the action based methodology began with an analysis of an
industrial use case from the Alcatel-Lucent Product Line Management supply chain.
The use case required the integration of multiple data sources that contained both
semantic and structural heterogeneity. To understand the best approach to tackle this
problem, a review of the state of the art in information integration was undertaken.
Using the outputs of this review, a generalised ontology-based integration test bed was
created to support the integration use case. An experiment was then designed to apply
the test bed to investigate the key issues when deploying ontology-based integration
systems using the industrial use case. The integration performance of the test bed was
verified by measuring its “Integration Quality” metric as defined earlier in Section 1.2.
By analysing the issues that arose during the experiment it was hypothesised that the
mappings that are part of the generalised ontology-based integration test bed create
complex couplings between different parts of the integration system and that these
couplings make the mappings difficult to evolve. This research iteration is described in

detail in experiment one (Section 4.2).

The next research iteration was designed to analyse the complex coupling of the
mappings in the integration system. A model of the mapping dependencies was used to
show the dependency relationships that exist between mappings from the generalised

ontology-based integration system. The model was developed in OWL [OWL] to

16

enable an ontological reasoner to automatically compute the dependencies. This is
called the ontology-based dependency model (OBDM). A tool called TomE (Towards
Ontology Mapping Evolution) was developed to instantiate the OBDM and to support
the analysis of dependencies in the ontology-based integration system. An experiment
was then developed to analyse the dependencies between the mappings from the
generalised ontology-based test bed. The mappings arose from a second industrial use
case from the Alcatel-Lucent logistics supply chain. Analysis of the dependencies
found using the OBDM showed that approximately 30% of the mappings exhibit
complex dependencies with other parts of the integration system. From the results of
this experiment, a hypothesis was developed that these mapping dependencies would
be difficult to identify without tool support. This research iteration is described in

detail in experiment two (Section 4.4).

The next research iteration was developed to demonstrate the difficulty of mapping
dependency analysis without tool support. To achieve this, a manual approach to
dependency analysis was developed with the help of integration and logistics
specialists. A manual approach was needed because current integration approaches
provide very limited support for mapping maintenance as noted in the state of the art
review [Bernstein and Melnik 2007, Haas 2007, Doan and Halevy 2005, Kondylakis et
al. 2009]. The performance and accuracy of a manual approach to dependency analysis
and OBDM were compared using the “Dependency Identification Performance” metric
as discussed earlier (Section 1.2). To achieve this, a group of 18 users were provided
with three sets of theoretical semantic mappings. The group was asked to carry out a
number of timed dependency analysis tasks. The semantic mappings used in the tasks
were designed to contain mappings of different complexities and represent a theoretical
set of mapping evolution needs. This research iteration is described in experiment three

(Sections 4.6).

The next research iteration was run to evaluate the performance of the OBDM and
TomE tool when used to support the evolution of the mappings when performing a real
mapping evolution task. These evolution tasks arose when a new logistics data source
needed to be added to the use case described in experiment two. The new data set
required both the update of existing mappings and the addition of new mappings. The
OBDM and TomE tool were used to analyse which mappings were impacted by the

17

addition of the new logistics data. This research iteration is described in experiment

four (Sections 4.8).

The final iteration carried out a corroborative study to provide an indication of the
genericity of the dependency metamodel that was used to build the ontology-based
dependency model. This study was carried out to assess the ability of the metamodel to
be applied in other domains. The study involved the development of a dependency
model to localise faults in a domestic electrical circuit. A domestic electrical circuit
was selected as the application domain because it provided a different set of
dependencies from the ontology-based integration system where the metamodel was
previously applied. A domain expert on electrical engineering was coached through an
eight-step process to build a dependency model, using the metamodel, of an electrical
circuit and to carry out a dependency analysis exercise using the model. This iteration

is described in the evaluation chapter (Section 4.10).

1.3.1 Summary of Industrial Use Cases and Data Sets
Throughout this work, two real integration problems and data sets from the Alcatel-

Lucent supply chain were used. The integration problems and datasets provided
excellent test data since they originate from multiple IT systems, multiple processes

and in the case of Alcatel-Lucent multiple companies.

The first integration problem required the generation of a report that integrated
financial information from the Sales, Product Lifecycle Management (PLM) and
Forecasting domains. To mitigate any risk associated with lack of consistency between
sales and forecasting views of the PLM, organisations attempt to balance forecasting
and sales opportunities [Gilliland 2002]. In Alcatel-Lucent’s supply chain, these risks
are managed using a manual integration of financial information from each system.
The report that is produced by this manual integration supplements the financial
information with an integrated view of the customers and products. This process
involves many manual steps to export data from the distributed databases and rework

within a spreadsheet where the various heterogeneities are resolved manually.

The second integration problem came from Alcatel-Lucent’s Reverse Logistics process.

This process used a manual process to select the lowest cost shipping option. To

18

simplify this process, a software application (ALTO") was developed to automatically
generate simple routing instructions called routing guides. To simplify the database
update process of this application, the ontology-based integration platform was
deployed to integrate the different logistics supplier rate formats into a single common
model of logistics. From the central model, the scripts to load the ALTO database

could be automatically generated.

1.4 Contribution

The major contribution of this thesis is the ontology-based dependency model (OBDM)
that can represent the dependencies that occur between mappings, ontologies and
databases in an ontology-based integration system. The ontology-based dependency
model will be beneficial to system integrators when developing approaches to improve
the ability of the enterprise integration systems to evolve their mappings when data

sources change.

The approach supports mapping evolution by providing three levels of the dependency
graphs that enable the system integrators to manage and evolve the mappings in the
integration system. This is achieved by providing dependency views that allow the
user to focus in on areas of high dependence initially and then to progressively drill
down to the detail to understand the impact of each dependency. The OBDM is novel
because it automatically computes the dependency relationships. The automation is
achieved through its instrumental usage of ontological reasoning that requires coding
only to invoke the ontological reasoner. This contribution addresses, in part, the gap in
the state of the art regarding the lack of tools and techniques to support the
management of mappings [Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and
Popa 2005, Doan and Halevy 2005, Halevy et al. 2005] because it supports the first
step of mapping evolution i.e. how to identify which mappings are impacted when a
data source changes. The approach of using a dependency model of mappings could be
used to supplement the ontology-based integration frameworks and tools described in

the state of the art review (Section 2.5.4).

The ontology-based dependency model (OBDM) was tested using industrial data from

real systems from the Alcatel-Lucent supply chain. This provided a challenging set of

* Alcatel-Lucent Transport Optimization (ALTO) is deployed in the reverse logistics supply chain.

19

heterogeneous data sources for the system. The results of the evaluation of the OBDM
show how the approach enables the integration specialist to quickly identify all the
impacts of a complex set of changes to the data sources. By providing progressive
detail of the dependencies, the integration specialist can quickly focus and assess what
needs to be changed in the system. The results show that dependencies found can also
be used to develop regression tests after the integration system has been updated. This
analysis is useful for developers of integration systems who wish to understand the

complexity involved in evolution of mappings in an industrial context.

The design of the generalised ontology-based integration test system and the setup,

results and conclusions of experiment one were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Case Study of an
Ontology-Driven Dynamic Data Integration in a Telecommunications Supply
Chain. Proceedings of the Workshop on the First Industrial Results of Semantic
Technologies (FIRST2007) at ISWC/ASWC2007, Busan, South Korea, 2007.

The design of the ontology-based dependency model and the result of experiment two

were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, Managing Ontology Based
Integration Systems using Dependencies. Proceedings of the Workshop on the
Managing Ubiquitous Communications and Services Workshop (MUCS) at
PerCom 2010, Mannheim, Germany, 2010.

A minor contribution is the ontology-based dependency metamodel from which the
domain specific dependency model was created. The ontology-based dependency
metamodel could be beneficial to other management systems (e.g. service and fault
management) which need to model dependencies between parts of the system. The
genericity of the metamodel has been tested across two large industrial datasets that
originated from a dynamic industrial environment with multiple IT systems and
multiple processes. A corroborative study was carried out to demonstrate the
application of the metamodel in an entirely different domain (i.e. dependency analysis
in a domestic electrical circuit). The compact nature of the metamodel facilitates

design flexibility, behaviour reuse and scalability. This enabled a simple process to be

20

defined, in Section 3.2.4, to create domain specific models from the dependency
metamodel. To the authors knowledge, an ontology-based dependency metamodel has
not been published before that has support for both behavioural and descriptive
attributes and that can enable reasoning over the dependency relationships in the model

to enable automatic computation of dependencies.

The design of the ontology-based dependency metamodel, model and toolset was

published in a short paper at Network Operations and Management Symposium 2010:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Dependency Modelling
Approach for the Management of Ontology Based Integration systems.
Network Operations and Management Symposium (NOMS), Osaka, Japan,
2010.

1.5 Overview of thesis

The remainder of the thesis is structured as described below.

Chapter 2 contains a review of the state of the art in ontology-based integration system
and dependency modelling. The chapter gives a brief overview of the data integration
space, a detailed description of the ontology-based integration research, mapping

management and dependency analysis.

Chapter 3 describes the design of the dependency metamodel, a dependency model
derived from the metamodel that is specialised to the ontology-based integration
domain and a tool called TomE that was created to instantiate and reason over the
dependency model. The chapter concludes with a worked example of the dependency

model as applied to ontology-based integration systems.

Chapter 4 describes the four experiments and a corroborative study that were
conducted to evaluate the metamodelling approach. The first experiment created an
environment in which the performance of a generalised ontology-based integration
system was measured using data from product line management systems in an
industrial context. The second experiment developed the theoretic basis to allow the
evolution of mappings in an ontology-based integration system. The third experiment
evaluated the performance of the dependency modelling approach by measuring the

accuracy of and time taken to complete a dependency analysis exercise using the

21

OBDM and a manual approach to dependency analysis. The fourth experiment
demonstrated the utility of the dependency modelling approach when it is applied to an
ontology-based integration system that needed to incorporate a new dataset into its
integration. The corroborative study applied the ontology-based dependency
metamodel in a new domain to test the genericity of the metamodel when applied in

other domains.
Chapter 5 describes the conclusion, contributions and future work of this research.

Appendix I provides the OWL code for the ontology-based dependency metamodel
and the ontology-based dependency model (OBDM). Appendix II provides the data
associated with the experiments carried out in this thesis. Appendix III provides a
simple worked example of the inputs and outputs for the TomE tool. Appendix IV
provides the overview of the directory structure for the code for HotFusion and TomE

tools that is supplied on DVD with this thesis.

22

2 STATE OF THE ART

2.1 Introduction

This chapter reviews the state of the art in dependency modelling and analysis, schema
and ontology evolution and ontology-based approaches to information integration. The
reasons for selecting these areas are outlined below in Sections 2.1.1, 2.1.2, 2.1.3 and

2.1.4.

Before reviewing the state of the art in these three areas, this chapter begins with a
review of the background and context for other (non ontology-based) approaches to
information integration in Section 2.2. This is important because it describes the
current approaches to information integration and provides context for the review and
comparison of dependency modelling approach for the maintenance of mappings taken
in this research. The chapter concludes (Section 2.7) with a description of the choices
made for the background technologies used to support the ontology-based dependency

modelling approach taken in this thesis.

The state of art is provided in four parts as described below.

2.1.1 Overview of Information Integration Approaches
Section 2.2 provides an overview of the approaches and technologies used to support

information integration. Information integration is a complex space with many fields of
endeavour spanning both the business and research communities [Bernstein and Haas
2008, Halevy et al. 2005, Zhou et al. 2006]. The review presented here provides the
overall context for the ontology-based approaches discussed in detail later in this

chapter.

2.1.2 State of the Art in Dependency Modelling and Dependency Analysis
Section 2.3 provides a review of the prior art in dependency modelling and dependency

analysis (Section 2.3). Approaches to dependency modelling are important to consider
because experiment one, in this thesis, developed the hypothesis that the complex
nature of the mappings makes it difficult to quickly and accurately find the mappings
that are impacted when a data source changes. Experiment two evaluated the
hypothesis that this difficultly in managing changes to the data sources and mappings

could be improved by modelling the dependencies that exist between the parts of the

23

ontology-based integration system. This review compares the dependency modelling

approach taken in this research with the prior art.

2.1.3 State of the Art in the Usage of Mappings in Schema and Ontology
Evolution

Mappings are a fundamental part of the approaches taken to schema and ontology
evolution [Velegrakis et al. 2003, Noy and Klein 2002]. In the context of information
integration systems, the evolution of schemas is important to allow the integration
system to evolve as the schemas change. There are similarities between the usage of
schema mappings and ontology mappings i.e. in the context of information integration
the mappings are used to provide transformations between schemas or representation
of data sources [Kondylakis et al. 2009, Lenzerini 2002]. Therefore, the state of art
continues in Section 2.4 with a review of the prior art in schema and ontology
evolution to understand the relevance of the techniques in the ontology integration
domain. The approaches to schema and ontology mapping management are discussed
in the context of the ontology-based mapping dependency management approach taken
in this thesis. Note that, while there are similarities between these areas, there are also
many differences between the areas as noted in [Kondylakis et al. 2009, Noy and Klein

2002].

2.1.4 State of the Art in Ontology-based Integration
Section 2.5 reviews the state of the art on approaches to information integration that

use ontologies (ontology-based approaches). The research in this thesis developed a
generalised ontology-based integration test bed. A number of integration systems that
use ontology are described and compared to the approach used to create the test bed in

this thesis.

2.2 Overview of the Information Integration Approaches
In [Bernstein and Haas 2008], Bernstein describes five architectural approaches for

information integration that are summarised below:

e Data Warehouses: A data warehouse is a database that consolidates data from
multiple sources and integrates it into a single source. This requires the creation of
a single database schema for the warehouse and the loading of individual data

sources into the warehouse. Regular synchronisation between the data warehouse

24

and the data sources is required to ensure that the information in the warehouse is

up to date.

e Extract, Transform and Load (ETL): ETL approaches are typically used to
simplify the loading of data into data warehouses. ETL technologies are realised as
tool suites that provide loading, cleansing and querying functionality for the data

warehouse.

¢ Virtual Data Integration (VDI): Data warehouses materialise the individual data
sources in an integrated database. Virtual data integration offers users a mediated
database schema to support the execution of queries. Queries are run against the
mediated schema and the VDI software transforms the user query to queries over
the individual data sources. (VDI is often called data federation. Data federation
provides a single virtual view of one or more data sources. Typically, queries are
issued against these virtual views and the federation system resolves these queries

using either global-as-view or local-as-view approaches to access the data sources.)

e Message Mapping: Independently developed applications can be integrated using
message oriented middleware that perform information integration functions for the
enterprise. The integration functions can occur at the protocol level or at the data

level (e.g. transform a sales order from one format to another).

¢ Object-to-Relational Mappers: This type of technology is used to mediate
between the relational database schema and the object-oriented design approaches
taken when designing software applications. Many development environments (e.g.
NetBeans *) provide automated support to create Java classes for a relational

schema using this technology.

Bernstein concludes the review of architectural approaches to integration with a
discussion on “Document” and ‘“Portal” management approaches. Today, enterprises
tend to store a wide variety of information in document formats that can be easily
accessed and distributed to the desktop of users. In this context, integration is focused
on providing a single document store with indexing to enable search over the document

store.

Bernstein described the enabling technologies that lie at the heart of these tools as:

> NetBeans is an integrated development environment (IDE) for developing a wide variety of
applications.

25

¢ Extensible Markup Language (XML): XML is a mark up language which is used
to mark up with user defined tags the content in a document. XML supports

information integration by providing a common representation of the data.

¢ Schema Standards: In the review by Bernstein, schema standards are discussed at
the most general level and include database, XML and ontologies. Schema
standards support integration because data is easier to integrate if the data sources

use the same schema.

e Schema Mapping & Matching: Bernstein describes schema mapping and
matching as fundamental technologies for integration in the review. Schema
mapping tools enable transformations (mappings) to be created between individual
data sources and a mediated schema. Because large schemas can have many
thousands of schema elements, schema matching algorithms have been an
important research area. A schema matching algorithm uses a variety of techniques
(e.g. heuristics or machine learning) to find candidate matches between schema

elements and thus support the user in schema management.

In [Zhou et al. 2006], data integration was classified into two categories, application

centric integration (ACI) and data centric integration (DCI).

ACI approaches refer to enterprise application integration (EAI) techniques that
integrate applications through the use of message brokers. EAI is defined as
approaches (software and architectures) to integrate a set of computer applications.
Two basic EAI patterns exist, the mediation pattern where the EAI system acts as a
broker between communication systems and the Federation pattern where the EAI

system acts as a global proxy for all incoming requests.

DCI approaches refer to both data warehousing and data federation approaches as
discussed earlier. DCI includes Enterprise Information Integration (EII) that is a more
recent term and is defined as the integration of data from multiple systems into a
unified and consistent view for the end user. It is closely related to data federation
because EII is focused toward the end user and not an application as in EAIL. EII
requires the use of an information model to represent the domain of interest whereas

federation tends to use a global schema.

26

As noted in [Zhou and Wang 2006], most current enterprise information integration
approaches are based on principles of loosely coupled federated systems (e.g. IBM

Information Integrat0r6, BEA Liquid Data7).

In [Halevy et al. 2005], Halevy et al. noted the inability of these information
integration approaches to cope with semantic heterogeneity. Ontology-based
approaches provide expressive description languages (e.g. OWL [OWL]) that can
potentially support the resolution of semantic heterogeneity between schemas and
enable automated reasoning over the schema. The expressivity of the semantic
description languages offers considerable advantages over XML or relational schema
when creating conceptualisation of the information in any enterprise (e.g. OWL
supports of classes, subsumption and object properties). OWL also enabled format
reasoning over the model. This is a significant advantage that arises from the formal

semantics of the OWL language.

The scalability of current EII approaches is also discussed in [Halevy et al. 2005,
Zhou and Wang 2006], where it is noted that efficient scaling of the approaches is
complex due to the difficulty in constructing and maintaining a shared schema for a

large number of evolving data sources.

In this thesis, an ontology-based approach was taken to construct a generalised
integration test bed that used the expressive power and reasoning capability of OWL to
support the development of domain and data source ontologies. The domain and data
source ontologies are analogous to the mediated and local schema used in non-
semantic approaches. The ontology-based test bed was used in experiments one and
two to resolve semantic heterogeneities in a selection of data sources from the Alcatel-

Lucent supply chain.

® IBM Information Integration Suite. http://www-01.ibm.com/software/data/integration/
" BEA LiquidData Suite. http://download.oracle.com/docs/cd/E13190_01/liquiddata/docs81/index.html

27

2.3 State of the Art - Dependency

Models of dependency of varying formalism and complexity have been used widely
across a range of application areas. This state of the art review of dependency has
focused on the applications of dependency and formalisms used in those applications.
These areas were selected to enable an understanding of the breadth of application
opportunity for dependencies and the approaches in these applications to formalise

dependencies.

The first section reviews research on the applications of dependencies and dependency
analysis across several areas of application (e.g. service management, software

configuration management).

The second section reviews research on efforts to describe and classify dependencies.

2.3.1 Application of Dependencies and Dependency Analysis
This section reviews several applications which use dependencies to carry out a range

of management functions (e.g. service management, fault analysis). For each
application both the role that dependency analysis plays and the types of analysis that
are carried out are discussed. This review enables us to develop an understanding of
the importance and breadth of dependency analysis. The review starts by looking at
how dependencies are used in service management [Ensel and Keller 2002, Keller et al.
2000, Cox et al. 2001, Wang and Capretz 2009, Ensel 2001], continues with a review
of the application of dependency to test management [Borner and Paech 2009],
workflow analysis [Varol and Bayrak 2010], software dependency management [Luo
and Diao 2009, Sangal et al. 2005] and concludes with a review of application in

network management [Gruschke 1998, Kar et al. 2000, Brown et al. 2001].

Keller and Ensel address the role of dependencies in distributed service management
[Ensel and Keller 2002, Keller et al. 2000]. Keller notes the importance of dependency
analysis in today’s networked environment where applications and services depend on
many other supporting services. Dependencies are formed between various
components of a distributed system. The dependency relationship exists between
components if one component requires another component to carry out its tasks. Two
models of the dependencies in the service management domain were created. One
model, called the Functional model by Keller, defined generic service dependencies

(e.g. name service, database service). The other model, called the Structural model by

28

Keller, contains detailed descriptions of the dependencies between the components that

realise the broad services defined in the Functional model.

In [Cox et al. 2001], Cox and Delugach apply a more formal dependency model to two
simple examples. One example defines twelve unidirectional dependencies between
components of a computer system (i.e. Browser, Email, Network, and Word
Processing Package). Another example defines six dependencies between departments
(i.e. Contracts, Proposal and Engineering Departments) in an enterprise. The
importance of the type attributes are discussed in the context of the second example
where it is noted that adding attributes to the dependency relationship enabled different

types of dependency relationship to be distinguished.

Wang and Capretz [Wang and Capretz 2009] propose a model of service dependencies
to support the evolution of web services. Four types of service dependency are
identified that are needed to describe the types of relationships that exist between
services. The semantics of each dependency relation are clearly defined however the
relationships are specific to the domain. Collections of dependencies are represented as
directed graphs. Service dependency matrices can be constructed from the graphs to

support impact analysis.

Ensel presents an approach to automatic discovery of dependencies [Ensel 2001].
Dependencies between IT services in a heterogeneous network are constructed using a
neural network and data collected during specially prepared data collection agents
distributed in the network. The dependency model contains a simple ‘depends on’
relationship between two services and the work is predominately focused on the

collection and automatic detection of the simple dependencies.

A model of dependencies is used by Borner and Paech to support the selection of test
cases for the integration test process [Borner and Paech 2009]. The approach taken is
domain specific and applies a simple domain specific dependency model in that
domain. A dependency is defined as a simple unidirectional relationship between two
components in a software system. Dependency attributes are defined to represent the
important characteristics of the domain (e.g., dependencies exist because of class
inheritance). A bespoke tool is used to analyse source code files and extract
information that is loaded into an SQL database. Once the dependencies in the system

have been defined, statistical correlations between the dependent components and the

29

errors found (as reported in a software bug tracking system) were identified. These
correlations enabled the identification of the dependencies that had a higher probability
of containing errors (in the underlying components) and thus provides input to the

selection of integration test cases.

Varol and Bayrak [Varol and Bayrak 2010] use a simple notion of dependency
between operators of a workflow is used to generate workflows. The dependency
relations are used to support an algorithm that selects the best placement of operators
in a workflow. The approach is focused mainly on the workflow generation and thus

makes little comment on the dependency graphs illustrated in the work.

Luo and Diao define four types of feature dependencies (global, local, operational and
impact dependencies) in [Luo and Diao 2009] that are used to build a domain
dependency model of the features in a software product. The semantics of each
dependency relation is defined clearly but the relationships are specific to the domain.
This approach proposes to investigate feature transitivity and deduction from the

transitivity in the future.

Dependency models have also been used for some time for modelling of complex
software architectures [Sangal et al. 2005]. In this approach, dependencies are
extracted from the code by a conventional static analysis and shown in a tabular form
known as the ‘Dependency Structure Matrix” (DSM). A variety of algorithms are
available to help organise the matrix in a form that reflects the architecture and

highlights patterns and problematic dependencies.

An ontology-based approach is taken to the analysis of dependencies by Drabble et al
in [Drabble et al. 2009]. Node and Event/Action ontologies are defined. The approach
used Protégé to build the ontologies, however it is not clear what ontology language is
used (e.g. OWL-DL). A node that exhibits a dependency is represented by a
“Dependency” Class and “dependentUpon” and “hasDependency” relations. The
event/action ontology provides an interesting and valuable addition to the domain
model because it appears to enable a bridge between events occurring in the domain
and the description of the dependencies in the domain. The architecture mentions the
use of reasoning over dependency relationships (e.g. transitivity) using a reasoning tool
called “Athena”; however no details on the reasoning carried out are given. The

authors claim that the approach enabled an information bridging service that allowed

30

information from different and disparate sources to be brought together based on the

dependencies implicit in the system.

In [Maddox and Shin 2009], Maddox and Shin propose a computational framework in
which dependencies between geo-spatial referencing variables are automatically
examined. The framework proceeds in four steps. The first and second steps are
responsible for the gathering and reformatting of the geo-spatial data into a common
relational database format. The third and fourth steps define and use the concepts of
homogeneity, selectivity and exclusivity between elements of the relational database
table. A set of heuristics rules are then applied to identify potential dependencies in the
data. While the notion of dependency is secondary in this work to the definition of the
data mining approaches taken, the value that the dependency analysis provides in

helping end users understand the data dependencies is noted by the authors.

In [Deng et al. 2004], Deng et al describe an approach to managing both simple and
complex mappings between ontologies representing loosely coupled domains. OWL is
extended to allow the specification of virtual properties whose values are derived
functionally and not stored. These virtual properties can be used to express complex

mappings between ontology terms.

In network management, dependency models have been used to support the correlation
of events and alarms to an underlying root cause [Gruschke 1998, Kar et al. 2000,
Brown et al. 2001]. In [Brown et al. 2001], a dynamic method to collect dependencies
in a distributed system is described. The method requires active perturbation of the
system and as such requires significant preparation to construct the dependency model.
In [Kar et al. 2000], an approach for managing application services is described that
enhanced existing network management infrastructure to cater for application service
management. In this case a simple list of dependent resources is maintained. In each of
the cases above, the dependency models, while simple, provide useful information to
localise faults. Because the dependency models are now explicitly represented in a
modelling language (but are part of management infrastructure), the potential for

reasoning over and transformation of the model is reduced.

2.3.1.1 Analysis
From the review above, it can be seen that dependencies play an important role across

a wide range of application domains. While each domain application above makes

31

specific use of dependencies, a number of common features appear with respect to
what dependency is used for, how they are visualised and what level of formalism is

used to represent the dependency model and relationships.
Usage of dependencies

The most common usage of dependency is to represent simple antecedent/dependant
relationship between elements in a domain under study [Sangal et al. 2005, Ensel
2001]. In [Wang and Capretz 2009], it is proposed to reason over the ontology-based
transitive dependencies relations. In [Deng et al. 2004, Bernstein and Melnik 2007],
chains of dependent elements are constructed. The creation of chains of dependencies
is also hinted at by Keller [Keller et al. 2000] as an advantage of the dependency
analysis approach but the model does not provide ability to automatically build using

chains other than using bespoke coding.

In [Drabble et al. 2009], the Event/Action concepts enable an innovative link between
the dependency relationships of the domain and the event/actions that trigger those

dependencies.
Visualisation of dependencies

A number of different forms are used to visualise dependencies. Dependencies are
often represented in tabular form as seen in [Sangal et al. 2005, Borner and Paech 2009,
Varol and Bayrak 2010, Wang and Capretz 2009, Maddox and Shin 2009]. Graphs are
a common presentation format for dependency as seen in [Ensel 2001, Gruschke 1998,
Ensel and Keller 2002, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al.
2009, Wang and Capretz 2009].

Formalisms

The formalisms used to represent dependencies vary greatly. Most approaches provide
only simple representations for the dependency relationship [Sangal et al. 2005, Ensel
2001, Borner and Paech 2009, Varol and Bayrak 2010]. In most cases, especially [Luo
and Diao 2009, Wang and Capretz 2009, Maddox and Shin 2009], the representation of
dependency is very domain specific and it is difficult to see how it could be applied in

the domain under study.

In [Ensel and Keller 2002], an RDF description of a simple dependency is described
and uses the XML path language, XPath [XML Path Language], to carry out query on

32

the RDF documents. In [Drabble et al. 2009] an OWL model is provided to represent
the domain and dependency model. These approaches provide the potential to carry
out reasoning over the dependency relationships however this is only hinted at in this

work and not discussed in detail.

In [Deng et al. 2004], the approach appears to support only dependency chains between
properties of classes in the context of ontology to ontology mappings. It does this at the
expense of adding extra semantics to the source ontologies and thus couples the

dependency model and domain explication in one source.

The approach taken in this thesis provides an ontology-based dependency metamodel
that provides formal semantics in OWL for the constructs related to dependency. The
dependencies in the ontology-based dependency model in this work are used to model
the dependency relationships between mappings, ontologies and data sources in an
integration system. The dependency model is used to carry out an impact analysis of
the mappings affected by a changing data source. The dependencies are represented
using three graphical views that allow the user to examine increasing detail of the
dependencies by navigating between the three views. The separation of the dependency
metamodel from the domain model enables independent evolution of the metamodel
and domain models. The compact nature of the metamodel and process (Design
Chapter, Section 3.2.4) for building domain specific models enables its application in
other domains. The ontological basis of the metamodel provides the formal semantic
for the dependency relationships over which automated reasoning can be carried out

(using ontological reasoners).

2.3.2 Models of Dependency
Keller [Keller et al. 2000] and Cox [Cox et al. 2001] attempt to define the fundamental

parts of dependency so that they are not tied to any specific domain.

In [Keller et al. 2000], dependencies are formed between various components of a
distributed system. The dependency relationship exists between components if one

component requires another component to carry out its tasks.

To support the model of dependencies in this domain, a multidimensional space of
dependency attributes were defined. As shown in Figure 2-1, six dimensions are
defined by Keller that represent the characteristics of dependencies between

components in the distributed system under analysis.

33

space/locality/domain

inter-domain o
)) dependency criticality
intra-domain

inter-system .
prerequisite

intra-system

corequisite
intra-package .
exrequisite
dependency
. none low high formalization
optional
mandatory hardware passive
dependency logical entity active
strength software
component type component activity

Figure 2-1: Keller’s Multidimensional space of dependencies.

Using these attributes of dependency, two models of the dependencies in the service
management domain were created. One model, called the Functional model by Keller,
defined generic service dependencies (e.g. name service, database service). The other
model, called the Structural model by Keller, contains detailed descriptions of the
dependencies between the components that realise the broad services defined in the

Functional model.

A technical realisation of the model, for example in UML or ontology-based is not

provided.

In [Cox et al. 2001], Cox et al. attempt to formalise the definition and characterisation
of dependencies in a unified approach. The approach taken is to identify and
characterise the dependencies that exist between entities in a model of any domain. A
dependency relation is defined by Cox and Delugach as a relation between a number of
entities in the domain model, where it can be said that change to one of the entities
implies a potential change to the other. Bidirectional and unidirectional dependency
relations are defined. Cox and Delugach defined six dependencies attributes, selecting
only two of the attributes defined by Keller, noting that six of the Keller dependency

attributes are more suited as attributes of the system and not the dependency relation.

While Cox et al. illustrate their dependency model using two simple examples, it is
clear again that a technical realisation of the model has not been created in any formal

modelling language.

34

In [Drabble et al. 2009], an ontology-based approach is taken to the analysis of
dependencies. A Node and Event/Action ontologies are defined. While the approach
defined the ontologies in OWL, they are domain specific and focus on the domain

description rather than the dependency description.

A number of high level description languages have been standardised in the IT systems
management domain. The OSI General Relationship Model (GRM) [OSI GRM] offers
a model for reasoning about, representing, managing and developing re-usable
specifications for relationships between resources. While GRM defines a powerful
generic model for defining relationships between managed objects and provides a
mechanism for qualifying these relationships by means of attributes, it is tightly
coupled with the OSI Structure of Management Information and CMISE and, thus, has
not been used outside of TMN [ITU-T TMN] environments.

2.3.2.1 Analysis
The models proposed in [Keller et al. 2000] and [Cox et al. 2001] provide useful

insight into the attributes and formalisation of dependency that are useful in the service
management domain. The models have the advantages, as noted by Keller [Keller et al.
2000], that no modification of the application is needed if existing system

configuration data can be used to populate the dependency model.

While both approaches provide a description of the dependency attributes, the core
behaviour of the dependency relationship is not described and represents simple
unidirectional or bidirectional relationships between antecedents and dependent
elements. The creation of chains of dependencies is hinted at by Keller as an advantage
of the dependency analysis approach but neither model provides ability to

automatically build using chains other than using bespoke coding.

The ontology-based dependency modelling approach presented in this thesis (Section
3.2, Chapter 3), describes two different aspects of dependency attributes — i.e.
behavioural attributes and descriptive attributes. While the descriptive attributes of the
model are important, it is the behavioural attributes that enable the automatic reasoning
over the ontology-based dependency model and thus provide the dependency analysis

with the capability to automatically build chains of dependencies.

In [Drabble et al. 2009] a dependency analysis approach is described that uses SWRL

rules [SWRL] to support “the mapping and additional deduction of information” in

35

collaborative environments. This is an interesting and useful addition to support the
design of models of dependency, however it is unclear where and how the SWRL rules

are applied.

In the approaches discussed above, the process to acquire instances to populate the
dependency model is not explicitly specified and the approaches use bespoke coded
solutions to acquire the instance data [Ensel and Keller 2002, Keller et al. 2000, Borner
and Paech 2009, Drabble et al. 2009]. This makes any generalisation of the approaches
difficult.

Derived Requirements

Based on the state of the review of dependency, the following requirements were
derived for the design of a dependency model that could model and analyse

dependency across more than one domain:

e Selection of the appropriate abstraction level to cater for a range of
dependencies that might exist in different domains (e.g. inter system, inter

domain and intra system).

e Selection of the method to support computation of dependencies (e.g. the
ability to traverse the dependencies to the deepest level to enable full root cause

analysis that is important for service management).

e Approach for extracting the domain or system knowledge about dependencies

to inject into the dependency model.

36

2.4 State of the Art — Mapping Usage in Schema and Ontology
Evolution

Schema mappings are used to support query rewriting and/or data transformations in
data integration systems [Halevy et al. 2006, Lenzerini 2002]. Mappings also are a
fundamental part of the approaches taken to schema and ontology evolution
[Kondylakis et al. 2009, Noy and Klein 2002]. Therefore, it is important to understand
if mappings management approaches taken in schema and ontology evolution are

useful in the context of managing mapping dependencies.

In the context of information integration systems, there are similarities between the
usage of schema mappings and ontology mappings, i.e. the mappings are used to
support data transformations and/or query rewriting between schema or ontology

representation of data sources [Kondylakis et al. 2009].

The approaches to schema and ontology mapping management are discussed in the
context of the ontology-based mapping dependency management approach taken in
this thesis. Note that, while there are similarities between schema and ontology
evolution, there are also differences between the areas as noted in [Kondylakis et al.
2009, Noy and Klein 2002].As described by [Noy & Klein 2000] the differences arise
from different usage paradigms and the presence of explicit semantics in ontologies.
For example, because ontologies can be used as controlled vocabularies the results of a
query over an ontology could include elements of the ontology itself (e.g. subclasses or

super classes).

The first section reviews research on the management and evolution of database

schema mappings (Section 2.4.1).

The second section reviews research on the management of ontologies and ontology

mappings (alignments) (Section 2.4.2).

Each section starts with some basic definitions and a summary of the approaches to

schema and ontology evolution.

2.4.1 Database Schema Evolution
Rahm and Berstein [Rahm and Bernstein 2006] define schema evolution as “the ability

to change deployed schema, i.e. metadata structures formally describing complex

artefacts such as databases, messages, application programs or workflows”. Schema

37

mappings are used in the evolution process to “describe relationships between data

sources” [Yu and Popa 2005].

Kondylakis et al [Kondylakis et al. 2009] present a detailed review of the schema and
ontology evolution. Schema evolution techniques can be classified as approaches based
on mapping composition and approaches based on mapping adaptation. Approaches
that use mapping composition attempt to evolve schema by composing successive
schema mappings. Approaches that use mapping adaptation attempt to evolve schema
by updating schema mappings every time a primitive change operation occurs to the
schema. They cite a number of differences between changes in schema and ontologies
that mean that the approaches used for schema evolution are not appropriate for

ontology evolution.

From [Curino et al. 2008, Kondylakis et al. 2009], the most relevant current

approaches to schema evolution are outlined briefly below:

e In [Ra 2005], the Program Independency Schema Evolution (PISE)
methodology is described. The PISE methodology uses multiple views over
the sample data to ensure that as new applications are added, existing and
older applications can continue to access the older views without program

modification.

¢ In [Cleve and Hainaut 2006], an approach to maintain consistency between
the software applications and the database schema they access is proposed.
The approach requires the propagation of three types of schema
transformation (adding a schema entity, removing a schema entity,
transformation database key types) to the applications that access the
schema. Only the third transformation type allowed automatic update of the
software application. The first and second transformation types are used to
help the database programmer locate relevant program sections using
pattern searching or dependency graphs. The dependency graph approach is

not elaborated upon in this work.

¢ In [Bernstein and Melnik 2007], Bernstein proposed an extensive model
management approach that seeks to provide lifecycle support for the
mappings that are central to the resolution of the data programmability

problem. The model management approach defines the semantics behind a

38

range of operators (compose, difference, merge and inverse) that can be
applied to models such as database schema and schema mappings. This can

be classified as a mapping composition approach.

¢ In [Noy and Klein 2002], a mapping evolution technique that uses mapping
adaptation approach is described. This approach focuses on incrementally
adapting mappings as the schemas evolve. The approach has developed a
model for representation of the schema changes and an algorithm to rewrite

the mappings based on the model of the schema changes.

Two the recent tools to support schema evolution are PRISM and Clio. These were
selected because provide a comprehensive set of features for schema evolution based

on the current state of the art.

The PRISM workbench [Curino et al. 2008] represents the evolution step in terms of
Schema Modification Operators (SMO), an operational language that naturally
captures the atomic operations used to evolve an existing schema. The SMO operators

represent a detailed set of the “create”, “update” and “delete” operations on schema

elements (e.g. table, column).

An earlier project, called The Clio project [Miller et al. 2001], is a system for
managing and facilitating the complex tasks of heterogeneous data transformation and
integration. Clio consists of three components, the schema engine, the correspondence
engine and the mapping engine. The schema engine is responsible for loading and
verifying schemas. Given a pair of schemas, the correspondence engine generates and
manages a set of candidate correspondences between the two schemas. The generated
correspondences can be augmented, changed or rejected by a user using a graphical
user interface through which users can draw value correspondences between attributes.
The mapping engine supports the creation, evolution and maintenance of mappings
between pairs of schemas. In Clio, a mapping is a set of queries from a source schema
to a target schema that will translate source data into the form of the target schema.
The mapping creation process is inherently interactive and incremental. Clio stores the
current mapping within its knowledge base and allows users to extend and refine

mappings one step at a time.

39

2.4.1.1 Analysis
While mappings play key roles in the approaches to schema evolution described above,

however the management approaches taken for the maintenance of mappings is not
dealt with. Furthermore, there are also the fundamental reasons why the approaches are
not easily transferable to ontology evolution as described in Noy [Noy and Klein 2002]
Among these fundamental differences is that ontologies themselves are data that can be
reasoned over in a way that schemas cannot (e.g. a query on a database schema will
usually result in a set of instance data, while a query on an ontology can result in both
instance data and elements of the ontologies itself). Furthermore ontologies themselves
incorporate explicit semantics of a domain which in the case of schema based system

tend to be incorporated into the application itself.

In the context of ontology-based integration systems, these approaches to evolution
may not be directly applicable due to the differences in both the usage and nature of
mappings in the ontology domain. The expressive nature of ontology languages
compared to the relational model makes it unclear if the SMO operators defined in
[Curino et al. 2008] are relevant to the ontology domain. The process to ensure the
consistency of the evolved ontology is also more complex due to the higher expressive

nature of ontologies.

The process for schema mappings and schema evolution tends to be coupled and the
lifecycle of each is not identified or managed separately. Given the open nature of
usage of ontologies on the World Wide Web, the ontology mappings may well find
reuse outside the original application domain and therefore would benefit from a

defined management approach.

The formal semantics of ontology-based languages allow for the use of reasoning that
can be used for consistency checking of evolved ontologies that is not possible without

bespoke coding in the case of schemas.

The author of this thesis believes that, based on the evidence in [Noy and Klein 2002,
Lenzerini 2002], the mappings in the ontology-based integrations systems are
sufficiently different from the schema approaches that the mappings would benefit
from an independent management approach. The ontology-based dependency
modelling approach proposed in this thesis provides an approach for the management

of mappings in the ontology-based integration domain that see the mappings as

40

fundamental parts of the integration system that need to be evolved when the data

sources change.

2.4.2 Ontology and Mapping Management
Ongoing maintenance of the ontologies is also of critical importance for any industrial

deployment of an ontology-based integration solution as noted in [Wache et al. 2001,

Uschold and Gruniger 2004, Hepp et al. 2008].

Work by Doan and Halevy [Doan and Halevy 2005], also identified the maintenance

problem but concede that “it has received relatively little attention”.

Much research work has been carried out on process and tools to support the
development, evolution and alignment of ontologies [Harth et al. 2004, NeOn 2005,
Zablith 2009].

A comprehensive review of the state of the art in ontology management is presented in
[Hepp et al. 2008]. The review covers ontology management tools, ontology evolution

and ontology alignment in detail.

The following important ontology management infrastructures are discussed across a

range of functionality as shown in Figure 2-2.

Comparison Ontology development tools
Protégé Semantic TopBraid
OWL Works Composer™ JODT SWOOP OntoStudio®
Primary OWL OWL OWL OWL OWL F-Logic
Ontology
Language] :
View Form Form Form (UML- Browser- Forms
Text Text Text like) like
Graph (UML-like) Graph
Graph
Platform Java NET Eclipse Eclipse Browser Eclipse
+
Java
Supported ViaDIG None Pellet, RACER, Pellet OntoBroker
Reasoner (built-in) Pellet
Via DIG
Repository Files, Files Files, RDFon Files Files, RDBMS
RDBMS RDBMS RDBMS

Figure 2-2: Ontology Management Infrastructures [Hepp et al. 2008]

In [Hepp et al. 2008], it is noted that the current tools available for ontology

management are “limited with respect to (i) lifecycle support (ii) collaborative

41

development of semantic applications (iii) Web integration and (iv) the cost-effective

integration of heterogeneous components in large applications”.

Lifecycle support is important in the context of the research in this thesis as the
dependency modelling approach proposed here can support such dynamic lifecycles by

providing insight into the dependencies in data integration systems.

The NeOn project [NeOn 2005] attempts to address these limitations. NeOn is a large
European Research project developing an infrastructure and tools for large-scale
semantic applications in distributed organisations. Within NeOn, a reference
architecture of ontology management is under development that is capable of coping

with dynamic and evolving environments.

The NeOn project has created an Eclipse [Eclipse] based ontology development and
management toolkit — also called NeOn. The NeOn toolkit supports the addition of

plug-ins through the Eclipse plug-in infrastructure.

The Evolva [Zablith 2009] methodology for ontology evolution proposes to support the
evolution of ontologies covering both change management and adaptation of the
ontology. An initial version of Evolva is available as a plug-in for the NeOn toolkit. In
its current early implementation, the Evolva plug-in provides support for the evolution

of the ontologies and not the mappings that may exist in the system.

In [Hepp et al. 2008], a lifecycle for ontology mapping (alignments) is described. The
lifecycle notes that once an ontology changes, the alignments also need to change. It is

noted that to date very few tools offer support for mapping management.

In the Data Information and Process Integration with Semantic Web Services Project,
DIP [Harth et al. 2004], a review of ontology management was undertaken that
comprised of ontology specification languages, ontology storage and retrieval, change
management for support of evolving ontologies and devices for enabling access to
ontology repositories. It is important to note that this work covers change management
and versioning related to ontologies only and does not deal with the management and

evolution of mappings.

KAON [KAON] is an ontology and semantic web tool suite from the University of
Karlsruhe. KAON provides both ontology development and management functionality.
In KAON the user is provided with capabilities to customise and control the process of

ontology evolution as detailed in [Stojanovic 2002].

42

In [An and Topaloglou 2007], the challenges associated with the maintenance of

mappings are described as:

¢ The maintenance of the consistency of mapping when the database or ontology

changes.

e Application of changes in the ontologies and schema after updating the
semantic mappings (i.e. if the mappings are updated, then the schema or

ontologies may also need to be changed — this is sometimes referred to as round
tripping).
e Systematic maintenance process.

An approach to maintenance of semantic mappings is proposed that defines the
semantic mappings as conjunctive formulas that encode a sub-tree of the ontology. The
mapping is essentially a formula that defines parts of the ontology (in terms of a graph)
that are mappings to a schema element. The approach proposed is capable of updating
the semantic mappings in the local-as-view examples presented. The approach does not
provide any maintenance information to support the analysis of mappings that already
use the ontology property or database table attribute that is subject to change and as
such assumes the existence of a tool that will process and select the mappings that need

to change.

2.4.2.1 Analysis
The development of an ontology is a complex process that spans much more than just

the ontology development tools [O’Sullivan D. 2005, An and Topaloglou 2007, KAON,
NeOn 2005, Hepp et al. 2008].

Much fruitful research has been carried out [Hepp et al. 2008] and excellent tools

developed [NeOn].

The ongoing maintenance of the ontologies is also of critical importance for any
industrial deployment of an ontology-based integration solution as noted in [Wache et
al. 2001, Uschold and Gruniger 2004, Hepp et al. 2008]. The NeOn project [Hepp et al.
2008] provides an excellent, extensible framework for the development and

management of ontologies.

The evolution of semantic mappings is still in its early stages as noted by [Hepp et al.

2008] because of the difficulty of the task as noted by [An and Topaloglou 2007].

43

The ontology-based dependency modelling approach proposed in this thesis can
support the ontology alignment lifecycle proposed in [Hepp et al. 2008] by
automatically providing the candidate mappings that are dependent on the part of the

ontology that is evolving.

44

2.5 State of the Art - Ontology-based Integration Approaches

This section covers information integration approaches that use ontologies. In
experiment one and two, a generalised ontology-based integration test bed was created
to support the integration of heterogeneous data sources. This section describes how

ontologies can be used in ontology-based integration systems.

Ontological approaches to integration are defined as approaches that use ontologies to
formally define a shared domain and use mappings to create semantic links between
these ontologies [Cruz and Xiao 2005, Noy 2004, Wache et al. 2001]. As noted in
Section 2.4, mappings were also used to support schema and ontology evolution. In
contrast, this section focuses on why and how ontologies are used in integration
systems. Part of this analysis focuses on the usage of mappings to support integration.
The three headings used by Wache et al [Wache et al. 2001], are used here to discuss

how and why ontologies are used in integration systems. The headings are:
e Use of ontologies in Integration Systems.
* Ontology representation in Integration Systems.
e Use of mappings in Integration Systems.

These three headings provide suitable criteria to discuss the generalised ontology-
based integration test bed used in this thesis because the integration test bed was
designed based on these principles. A discussion of the generalised ontology-based
integration test bed against these headings is contained in the respective analysis

sections below.

(Note that Wache discussed a fourth heading, Ontology Engineering. This is not
discussed in this research as the focus was on data integration approaches and not how
the integration ontologies can be created. In this thesis, the Protégé ontology
development tool [Protégé] has been used to create the integration ontologies used

through out the experiments.)

Recent ontology-based integration systems [Wu et al. 2006, Zhou and Wang 2006 ,
Biffl et al. 2010, Beneventano et al. 2009, Kwak and Yong 2008, Fu et al. 2008, Cruz
et al. 2004, Dong and Linpeng 2008] are discussed in Section 2.5.4 against these three

headings. These were selected because they make instrumental usage of ontologies and

45

thus can be compared to the state of the art and to the generalised ontology-based

integration test bed created in this research.

2.5.1 Use of Ontologies in Integration Systems
Nearly all integration systems that use ontologies employ them for the explicit

description of information that is in the information sources managed by the
integration systems. The most common definition of an ontology, from Gruber [Gruber
1993], is that an ontology represents a formal and explicit specification of shared
conceptualisation. In [Noy 2004], Noy defined an ontology as a formal description of a

domain of discourse.

In the integration context, the key usage of the ontology is to enable sharing of
information across application domains by leveraging an ontologies ability to perform

reasoning.

In [Cruz and Xiao 2005], Cruz and Xiao identify five uses of ontologies in data

integration:

e Metadata Representation. Metadata (i.e. source schemas) in each data source

can be explicitly represented by a local ontology, using a single language.

¢ Global Conceptualisation. The global ontology provides a conceptual view

over the schematically heterogeneous source schemas.

¢ Support for High-level Queries. Given a high-level view of the sources, as
provided by a global ontology, the user can formulate a query without specific
knowledge of the different data sources. The query is then rewritten into
queries over the sources, based on the semantic mappings between the global

and local ontologies.

¢ Declarative Mediation. Query processing in a hybrid peer-to-peer system uses

the global ontology as a declarative mediator for query rewriting between peers.

e Mapping Support. A thesaurus, formalised in terms of an ontology, can be

used for the mapping process to facilitate its automation.

From [Wache et al. 2001, Cruz and Xiao 2005], three types of architecture have been
identified for making use of ontologies a) single ontology approaches where a single
global ontology represents all of the semantic of the underlying data sources, b)

multiple ontology approaches where each data source is described by its own ontology

46

and c) hybrid ontology approaches where global and local sources ontologies are

arranged in a hierarchy.

global lecal local lecal
eztology amtology ontalogy eztology

A B o

singls ootclogy approach eatiphs cotology approzch

]
sharad vocabelary

|

local | lecal | local
catelogy cxfolegy oofelegy

| \ | \f’_} | \ '_'\

bybrid eerclogy appraach

Figure 2-3: Three Ontology Approaches from [Wache et al. 2001]

Single Ontology Approach. All source schemas are directly related to a shared global
ontology that provides a uniform interface to the user. However, this approach requires
that all sources have nearly the same view on a domain, with the same level of

granularity.

Multiple Ontology Approach. Each data source is described by its own (local)
ontology separately. Instead of using a common ontology, local ontologies are mapped
to each other. For this purpose, additional representation formalism is necessary for

defining the inter-ontology mappings.

Hybrid Ontology Approach. A combination of the two preceding approaches is used.
First, a local ontology is built for each source schema that is not mapped to other local
ontologies, but to a global shared ontology. New sources can be easily added with no

need to modify existing mappings between the data sources.

In [Uschold and Gruniger 2004], Uschold and Gruniger define “Common Access to

Information” as one of the four main categories to apply ontologies. In this context, the

47

ontology avoids the need to create and maintain many translators while making it
easier to introduce new systems and formats to the system. This is important because
Bernstein [Bernstein and Melnik 2007, Bernstein and Haas 2008] indicates that
significant costs, resulting from ongoing maintenance of the integration systems, can

be encountered in enterprise integration projects.

2.5.1.1 Analysis
The hybrid ontology approach (Figure 2-3) provides some benefits over the other

approaches. New data sources can be added by creating new source ontologies. The
addition of new source ontologies is easier for the hybrid approach when the local
ontology can adopt the Local-As-View approach. Local-As-View represents local
schema in terms of the global schema. This makes the hybrid ontology approach more
appropriate for building integration systems that provide a global or central

representation of data.

However, in the hybrid approach, impedance mismatches between the data source
ontologies and the shared ontology can arise. Impedance mismatches between
ontologies can occur if the representation format or modelling granularity is different.

These impedance mismatches can make mapping creation more difficult.

It is also worth noting that in integration systems the shared ontology may need to
represent integration semantics as well as representing the shared domain. Integration
semantics are formal definitions of knowledge that are used to support the integration
process (e.g. integration goal, ontology versioning). These integration semantics may

or may not sit within the main shared ontology.

The generalised ontology-based test bed in this thesis uses the hybrid ontology
approach, when the global schema is used to represent the domain of interest. The local
ontologies provided a common data model to represent the data sources. This approach
is taken by several ontology-based systems that are discussed later in Section 2.5.4. In
the case of the integration test bed in this thesis, the hybrid ontology approach also
enabled a functional separation of the domain ontologies, mappings and lower
ontologies. This was appropriate for the test bed because the domain ontologies for
different domains could be easily swapped in because the integration test bed was
developed so that the functional separation was maintained as shown in the design

chapter (Section 3.3).

48

2.5.2 Ontology Representations in Integration Systems
Description logics supplemented by rules languages are now the popular approach for

representing ontologies. However, some integration systems use frame based systems.
A full treatment of the expressive power of these representation types is described in

[Corcho and Gomez-Perez 2000] by Corcho and Gomez-Perez.
In [Cruz and Xiao 2005], Cruz and Xiao discuss the following ontology languages:

e XML Schema. Strictly speaking, XML Schema is a semantic mark-up
language for Web data. The database-compatible data types supported by XML
Schema provide a way to specify a hierarchical model. However, there are no
explicit constructs for defining classes and properties in XML Schema,
therefore ambiguities may arise when mapping an XML-based data model to a

semantic model.

e RDF and RDFS. RDF (Resource Description Framework) is a data model
developed by the W3C® for describing web resources. RDF allows for the
specification of the semantics of data in a standardised, interoperable manner.
In RDF, a pair of resources (nodes) connected by a property (edge) forms a
statement: (resource, property, value). RDFS (RDF Schema)’ is a language for
describing vocabularies of RDF data in terms of primitives e.g. rdfs:Class,
rdfs:Property, rdfs:domain and rdfs:range. Therefore, RDFS is used to define

the semantic relationships between properties and resources.

e DAML+OIL. DAML+OIL (DARPA Agent Markup Language Ontology
Interface Language) is a fully-fledged Web-based ontology language developed
on top of RDFS. It features an XML-based syntax and a layered architecture.
DAML+OIL provides modelling primitives commonly used in frame-based
approaches to ontology engineering and formal semantics and reasoning
support found in description logic approaches. It also integrates XML Schema

data types for semantic interoperability in XML.

e OWL. OWL (Web Ontology Language) is a semantic mark up language for
publishing and sharing ontologies on the Web. It is developed as a vocabulary

extension of RDF and is derived from DAML+OIL.

$ W3C. The World Wide Web Consortium is the standards organisation for web technologies.
° RDF Schema - http://www.w3.org/TR/rdf-schema/

49

A comprehensive review of the state of the art in ontology representation formalisms is
presented reported in [Harth et al. 2004]. This additionally adds Topic Maps [Topic
Maps] and the Unified Modelling Language (UML) [UML]. An ontology evaluation

schema is developed and each ontology language discussed in that context.

e Topic Maps. A topic map consists of a collection of topics, each of which
represents some concept. Topics are related to each other by associations,
which are typed n-ary combinations of topics. A topic may also be related to

any number of resources by its occurrences.

¢ Unified Modelling Language (UML) is a standardised specification language
for object modelling that includes a graphical notation used to create an abstract

model of a system, referred to as a UML model.

2.5.2.1 Analysis
For data integration systems, ontology languages provide two main advantages over

schema based approaches. Ontologies provide significantly more expressive power
than simpler XML schema. Additionally the formal semantics of the ontology

representation has enabled many reasoning tools to be developed.

As OWL provides three variants (Full, Lite and DL), OWL’s expressive flexibility is
useful when describing both domain (e.g. supply chain information) and integration
specific semantics (e.g. integration process). This is important because one
representation language can model different aspects and thus reduce the impedance

mismatch problem.

It is also important that the ontology language has a supporting query language to
enable the integration application to extract knowledge from the ontology. SPARQL
[SPARQL] is the predominant query language for ontologies. SPARQL is designed for
querying RDF and adopts a triple format to match ontology instances. However, it
does not have a natural ability to query basic ontology constructs (e.g. OWL object
properties). OWL-QL [OWL-QL] supports query-answering dialogues in which the
answering agent may use automated reasoning methods to derive answers to queries.
OWL-QL is a candidate standard language and protocol for query-answering dialogues

among Semantic Web computational agents using knowledge represented in OWL.

50

Ontologies were used in two places in the generalised ontology-based integration test
bed used in the experiments in this thesis. A shared domain vocabulary (called the
upper ontology in design chapter (Section 3.3.2)) was implemented in OWL-DL using
the Protégé ontology development environment. The ontology provides a domain
description in experiment one and two for the product line management and logistics
domains respectively. The data sources in experiment one and two were represented as
RDF descriptions — these are called the lower ontologies in the design chapter (Section
3.3.2). SPARQL was used as the query language, rather than OWL-QL, as SPARQL
was fully integrated with the Jena OWL API [Jena]. The usage of OWL and SPARQL
provided benefits for the generalised ontology-based integration test bed because OWL
reasoning (using the Pellet reasoner [Pellet]) could be used to verify the correctness of

the domain ontology created and SPARQL could be used to query both ontologies.

2.5.3 Mapping Usage in Integration Systems
In section 2.4, the usage of mappings to support ontology and schema evolution was

discussed. This section focuses on how mappings are used within ontology-based

integration system to support integration.

Mappings may serve to relate ontologies to other ontologies (inter-ontology mappings)
or to relate ontologies to underlying information sources (e.g. a database) [Wache et al.
2001]. For integration systems, both types of mappings are needed. For ontology to
information source mappings, there are a number of general approaches to mappings

from [Wache et al. 2001]:

e Structure Resemblance: This approach simply converts the data source

structure into the ontology language.

e Definition of Terms: This approach adds more semantics to the ontology that

are not explicitly represented in the data source.

e Structure Enrichment: A combination of the two previously mentioned

approaches.

e Meta-Annotation: This approach requires the addition of semantic information

to the data source.

For ontology to ontology mappings, the general approaches from [Wache et al. 2001]

are:

51

® Defined Mappings: Simple point to point and complex mappings can be

defined by a user.

e Lexical Relations: A defined set of linguistic relationships can be applied to

ontologies.

e Top-Level Grounding: Ontologies can map to a single top level ontology using

common super classes.

Noy [Noy 2004] describes two major architectures for mapping discovery, the shared
ontology approach and heuristics and machine learning based approaches. Using a
shared global ontology facilitates easier mapping creation because the domain specific
ontologies extend the global ontology and are thus grounded in a common vocabulary.
Heuristics and machine learning based approaches typically allow for semi-automatic
discovery of mappings by using features of the ontology such as class hierarchy or
property definitions. Kalfoglou and Schorlemmer [Kalfoglou and Schorlemmer 2003]

provide a comprehensive review of mapping techniques.

Once discovered, mappings themselves need to be represented and stored. Mappings
are typically stored either within the ontology itself using its description language or
externally using a defined mapping language. Noy [Noy 2004] describes several
mapping representations such as bridging axioms [Dou et al. 2003] in first-order logic
to represent transformations, using views [Calvanese et al. 2001] to describe mappings
from a global ontology to local ontologies and mappings that are represented as

instances of an ontology of mappings [Maedche et al. 2002].

Once mappings are created, they can be used to perform various integration tasks such
as data transformation or query answering. Reasoning is used to perform these tasks
and can be run over the ontology and/or the mappings. The OntoMerge [Dou et al.
2003] system uses reasoning over the ontology to perform several ontology translation
tasks. Other tools [Crubezy and Musen 2003] process instances of the mappings to

perform integration tasks.

Several approaches exist to automatically generate ontologies and mappings from
databases. The D2RQ [D2RQ API] APl is a declarative language to describe mappings
between relational database schemata and OWL/RDFS ontologies. The D2RQ
platform uses these mappings to enable applications to access an RDF view on a non-

RDF database.

52

2.5.3.1 Analysis
Most ontology mappings (and matching) frameworks are semi-automatic because they

require human and manual intervention to support the mapping process. This is
especially true where complex conversions between structures are needed (e.g.
converting quarterly revenue to monthly revenue). These complex mappings tend not
to be discoverable in an automatic way. Thus, mapping generation requires strong tool

sets to support both the creation and the evolution of mappings.

Another issue with the mapping approach is that the mappings themselves tend to
create bindings (or dependencies) in the system from top level ontologies to bottom
level data sources. This is especially true when the hybrid ontology approach is applied
because there are multiple layers of dependency from the top level ontological concept
through the mapping to the lowest level data source item. Furthermore, these
dependencies can become more complex if there are multiple levels in the hierarchy of

ontologies.

Tools and processes that support the evolution of mappings after development is
finished are limited. In [Seidenberg and Rector 2006] methodologies for maintaining
both simple and semantically complex mappings are presented. However, the
maintenance model covers only ontology to ontology mappings and does not deal with

dependencies as they manifest themselves in an ontology-based integration system.

Mappings were used in two places in the generalised ontology-based integration test
bed used in the experiments in this thesis. The upper and lower ontologies of the
generalised ontology-based test bed (Section 3.3.2) are connected using mappings
based on the INRIA [Euzenat 2004] mapping format. These represent ontology to
ontology mappings and are used to support rewriting of the queries against the upper
ontology. These mappings were created manually because the mapping creation
process requires in depth knowledge of the domain ontology and the data source to

ensure the appropriate mappings are created.

The lower ontologies of the generalised ontology-based test bed are connected to the
data sources using mappings provided by the D2RQ API [D2RQ API]. These represent
ontology to data source type mappings and are also used to support rewriting of
SPARQL queries to SQL queries on the data sources. These mappings were created

automatically by the D2RQ API from the data sources.

53

2.5.4 Implementations of Ontology-based integration Systems
This section reviews recent implementations of ontology-based integration systems

based on their architecture, usage of ontologies and mappings. The approaches were
selected because they make instrumental use of ontologies to enable integration and are
this likely to take advantage of latest research on ontology-based integration. These
approaches are compared to the generalised ontology-based test bed created in this

research in the analysis Section 2.5.4.1.

In [Zhou and Wang 2006], Zhou and Wang propose a semantic grid architecture for
enterprise information integration. The authors state that the architecture requires the
"convergence of peer-to-peer, grid and semantic computing”. The information
integration system proposed is comprised of Data Peers (DP), Semantic Peers (SP) and
Applications Peers (AP). Each peer has a schema describing the data held by that peer
and a set of mappings that specify relationships with the data exported by other peers.
The approach does not clearly fit into the three architectures defined by Wache in
[Wache et al. 2001] but could be considered a hybrid approach given semantic
descriptions at different levels in the system. The approach does not have a global or

mediated schema.

The approach makes use of four kinds of mapping (i.e. DP-SP, SP-SP, AP-AP, SP-AP).
The mappings are used to support query rewriting against queries that can be issued at
the DP, SP or AP. The mappings and schema representations for the data peers are
encoded using WSML [WSML]. The mappings are created at design time using the
WSMT [WSMT] tool.

The DartGrid system [Wu et al. 2006], proposed by Wu et al., provides a framework
for integrating heterogeneous relational databases. The framework includes tools for
mapping creation, ontology query and search. DartGrid follows the single ontology
approach because it contains a global ontology, in RDF, and mappings to ontology
representations of the relational data sources. The mappings are used to define
relationships between the global ontology and relational schemas. The mappings are
used to support rewriting of queries issued in SPARQL [SPARQL] against the global
ontology to SQL queries against the data sources. The representation of mappings is
not discussed but the mappings contain information about which database tables and
properties are mapped to which RDF class in the global ontology. A tool is provided to

support the development of the mappings at design time. The approaches taken to

54

support the management and evolution of the system (including the mappings) are not

discussed.

Biffl et al [Biffl et al. 2010] introduce a framework for the semantic integration of data
sources related to the management of the software development lifecycle (e.g. bug
tracking systems). The framework adopts the single ontology approach because it
provides a single domain conceptualisation that represents three data sources (bug
tracker, code management and a mailing list). The domain ontology is created in OWL
using Protégé. The framework is implemented as a Java application that uses the Jena
API to load and process the domain ontology. The system does not have a formal
mapping approach but uses bespoke coded adaptors to extract data from the underlying
data sources and populate the ontology instances. In this framework, the mappings are
used to support the populating of the ontology instances. As this system is at an early
stage of development, the approaches taken to support the management and evolution

of the system (including the mappings) are not discussed.

The MOMIN-STASIS system, described by Beneventano et al [Beneventano et al.
2009], is an ontology-based integration system (called MOMIS-STASIS) that
combines the two previous works - MOMIS [Beneventano et al. 2003] and STASIS
[Abels et al. 2008]. The MOMIS data integration system uses a single ontology
approach where WordNet is used as the shared vocabulary for the specification of the
semantics of the data sources. The STASIS system is a general framework to simplify
the mapping creation process between different schemas. The combined output of the
MOMIS-STASIS system is a global schema and a set of mappings that relate the
global schema to the data sources. The advantages of this approach are that global
schema can be generated automatically. To support this approach, the local sources
need to be annotated using simple name matching techniques. The mapping format in
the system supports simple and complex relationships (e.g. equivalence, more general,
less general and disjointness). The mappings are used to support the generation of the

global schema.

The approach taken for semantic integration in [Kwak and Yong 2008] describes how
a global ontology is used to integrate data sources from the automotive parts industry.
The domain ontology is mapped to the data source using three types of mapping
(equivalence, subclass/superclass, and disjointness). Although there are several

ontologies defined to represent automotive parts, the approach represents the single

55

ontology approach as the ontologies are essentially a single domain description. The
ontologies are represented in OWL. The mappings in the system are used to convert
instances of the data sources to instance of the ontology; however the mappings are
limited to 1-1 relationships between the data sources and global ontology. The authors

cite the management of the mappings as future work.

In [Fu et al. 2008], the hybrid ontology approach is adopted to provide an integration
framework for E-business and Logistics systems. The global ontology represents a
conceptualisation of the domain that relies on the usage of lexicons (e.g. ebXML'?,
WordNet'") and upper ontologies (e.g. BULO'?). The data sources are described using
local ontologies. The local ontologies are generated using a set of rules to convert
aspects of the data sources into ontologies in OWL (e.g. database attributes are mapped
to OWL datatype properties). Mappings are also used to establish relationships
between the local ontologies and global ontologies. The mappings are used to support
the translations of SPARQL queries on the global ontology to SQL queries on the data
sources. The format of the mappings used to relate the global schema to local schema

is not discussed.

Cruz et al describes an approach to the integration of XML schema using ontologies in
[Cruz et al. 2004]. The approach adopts the hybrid ontology approach where a global
ontology is created in RDF that is created by merging RDF representations (the local
ontologies) of the data sources. The RDF vocabulary was extended by the addition of a
“contains” property to support the representation of nesting structure of XML
documents. During the merging process, mappings are used relate the global and local
ontologies. The mappings are used to support translation of queries directed at the
global ontology to queries over the local ontologies and are maintained in a mapping
table by integration system for use later when performing query translation. Mappings

are generated at design time using the PROMPT [Noy and Musen 2000] system.

A similar approach is proposed, by Dong and Linpeng [Dong and Linpeng 2008], to
integrate XML schemas. This work defined thirteen heuristic rules to enable the
conversion of the XML schemas to the RDF local ontologies. A further heuristic eight

rules are defined to create a global ontology (in OWL) from the local ontologies. Again,

' Electronic Business using XML, ebXML. http://www.ebxml.org/
" WordNet. A lexical database for English. http://wordnet.princeton.edu/
'2 Base Upper Level Ontology. http://proton.semanticweb.org/

56

the system maintains a mapping table that is used populate data instances in the global
ontologies. This differs from other approaches that do not store the data at the global

ontology layer.

2.5.4.1 Analysis
The ontology-based integration systems described demonstrate the broad range

applications areas. The approaches follow both the single and hybrid ontology
approach described in the state of the art (section 2.5.1). Mappings are also used
widely in the approaches to provide query rewriting [Wu et al. 2006, Cruz et al. 2004,
Fu et al. 2008]. Many different and bespoke mapping representations (e.g. XML,
MOMIS-STATIS [Abels et al. 2008]) are used and therefore there is little consensus
on the best mapping representations. This lack of standardisation for mappings was

also noted in [Hendrik et al 2009].

It is also clear that while each approach has focused on the delivering an ontology-
based solution, the “integration quality” of the systems is not measured. Similarly the

approaches taken to manage the mappings in the integration systems are not described.

The generalised ontology-based integration test bed that was used in this thesis adopts
the hybrid ontology approach. The approach created a functional decomposition of the
domain conceptualisation, mappings and local ontologies. This approach was selected
as the most appropriate for the development of the test bed because different local data
sources from entirely different domains (e.g. sales in experiment one and logistics in
experiment two) was tested with system. The global ontology was developed in OWL
because the expressivity of OWL ensured that a wide range of domains can be
represented. The mappings used in test bed provide extra functionality that is not
present in any of the systems described above. The transformations function can be
assigned to each mapping to carry out instance level transformation. This was a
requirement for the use cases used in the experiments in this thesis — because simple
integrated views (without transformation) of heterogeneous data would need further

development work by the application consuming the views to transform the data.

It is important to note that the test system is not a fully featured integration system as
discussed in Section 3.3. In spite of this, the architecture of the test bed mirrors many

of the design approaches taken in the systems described above.

57

2.6 Summary Analysis
In this review, it was identified how and why ontologies can be used in integration
systems. It was shown that there are several options for ontology representation and

that OWL [OWL] is a suitable candidate due to its flexible and formal semantics.

While mappings are a fundamental part of non ontology-based integration systems, the
approaches taken for the evolution of schemas and mappings are different enough to
make them difficult to apply in the ontology-based integration domain [Kondylakis et
al. 2009, Noy and Klein 2002].

The lack of support for maintenance of the schemas and mappings after deployment
was identified as a fundamental weakness of all integration systems that use mappings
to create semantic links between entities in the systems [Bernstein and Melnik 2007,
Haas 2007, Kondylakis et al. 2009]. In [Doan and Halevy 2005], Doan and Halevy
identify the maintenance problem but concede that “it has received relatively little

attention”.

The author of this thesis believes that the maintenance of mappings is at least as

important as their initial construction in any industrial context.

The ontology-based dependency modelling approach proposed in this thesis provides
the framework to support the independent management of semantic mappings by
modelling the dependencies they exhibit. The author believes that this is a key first step
in the management and evolution of the mappings in ontology-based integration
systems. While some of the current implementations of ontology-based integrations
systems recognise this problem, most have not developed approaches towards a

resolution of the problem.

Dependencies and dependency analysis has been used across many domains [Borner
and Paech 2009, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al. 2009,
Wang and Capretz 2009, Maddox and Shin 2009]. Only a few approaches provide
formal representation of dependency that can be used to reason about. Most
representations of dependency are based on simple notions of dependency without any

behaviour aspects modelled as in the approach taken in this thesis.

This work distinguishes itself by modelling, and thus making explicit, the
dependencies that occur in the generalised ontology-based integration system between

the mappings ontologies and data sources. This explication of dependencies

58

compliments existing ontology integration techniques because it enables more flexible
approaches to the maintenance and scalability of the key knowledge assets of the

integration system (i.e. mappings and ontologies).

The compact ontology-based dependency metamodel provided an excellent basis to
construct the domain specific model. The formal semantics associated with the
dependency model enabled the automation of the computation of chains of dependent

elements.

2.7 Background Design Choices
This section describes the choices taken for the tools and technologies that were used
to implement and test the ontology-based dependency management approach proposed

in this thesis.

2.7.1 Measuring “Integration Quality”: THALIA Integration
Benchmark

The research question for this thesis required the measurement of the ability of the
ontology-based test bed to carry out integration over heterogeneous data sources. This
has been defined as the “Integration Quality” metric in the introduction (Section 1.2)
and was measured using the THALIA (Test Harness for the Assessment of Legacy

information Integration Approaches) integration benchmark.

THALIA is a publicly available and independently developed test bed and benchmark
for testing and evaluating integration technologies [Stonebraker 2005]. The system
provides researchers and practitioners with downloadable data sources that provide a
rich source of syntactic and semantic heterogeneities. In addition, the system provides
a set of twelve benchmark queries for ranking the ability of an integration system to

carry out integrations across a wide range of heterogeneities.

A score out of twelve can be assigned to an integration system based on how many of

the 12 THALIA tests the system can integrate successfully.

The 12 tests are summarised below:

Table 2-1 THALIA Tests
Test No. Name Description

Test 1 Synonyms Attributes with different names that
convey the same meaning

59

Test 2 Simple Mapping Related attributes in different schemas
differ by a mathematical transformation
of their values. (E.g. Euros to Dollars)

Test 3 Union Types Attributes in different schemas use
different data types to represent the
same information.

Test 4 Complex Mapping Related attributes differ by a complex
transformation of their values.

Test 5 Language Expression = Names or values of identical attributes
are expressed in different languages.

Test 6 Nulls The attribute value does not exist in one
schema but exists in the other

Test 7 Virtual Columns Information that explicitly provided in
one schema is only implicitly available
in the other schema.

Test 8 Semantic A real-world concept that is modelled

Incompatibility by an attribute does not exist in the other
schema

Test 9 Same Attributes exist The same or related attributes may be

in different structures located in different position in different
schemas.

Test 10 Handling Sets A set of values is represented using a
single, set-valued attribute in one
schema vs. a collection of single-valued
hierarchical attributes in another schema

Test 11 Attribute name does The name does not adequately describe

not reflect semantics the meaning of the value that is stored.

Test 12 Attribute composition The same information can be

represented either by a single attribute
or by a set of attributes

As THALIA provided only a score out of twelve, for this research the THALIA system
was extended by introducing an effort classification system so that each query result in

THALIA could be assigned an effort estimate based on how automatic the solution is.
Efforts are categorised as follows:
¢ Fully automatic: no code, mapping or ontology changes needed.
e Automatic: Automatic regeneration of ontology or other configuration artefact.
¢ Semi Automatic: A mapping needs to be changed manually.

e Manual: Non core code artefact needs to be updated or added manually. (e.g. a

function associated with a mapping)

60

e Fail: core code changes needed. (e.g. core test bed code needs to be changed)

These effort classifications are specific to the ontology-based integration test bed

defined earlier in this chapter.

The THALIA system also provides dataset that can be used to provide test integration
systems. In this thesis, a comprehensive industrial data set was used because it already
contained nine of the twelve test data. To allow the full THALIA suite to be run, the
databases were supplemented by additional complexity in three areas (language
expression and virtual columns, nulls — see Table 2-1, Chapter 3). This was achieved

by adding specific data items to databases to cover these tests.

2.7.2 Supporting Technology Choices
This section provides a brief summary of the supporting technologies that were used in

the construction of the metamodel, domain specific model and implementations of the
TomE (Ontology-based dependency modelling tool, Section 3.2.6) and HotFusion
(Generalised Ontology-based integration test bed, Section 3.3) tools.

2.7.2.1 Ontology Representation
The Web Ontology Language (OWL) was chosen as the ontology language to

represent the ontology-based dependency metamodel and dependency model. OWL is
a family of knowledge representation languages for authoring ontologies, and is
endorsed by the World Wide Web Consortium. In this research OWL was used
extensively to create the dependency model, metamodel and integration ontologies.
The formal semantics that underpin OWL enable the reasoning over the ontologies
using OWL reasoners such as Pellet. The OWL-DL subset was used throughout this
research from the W3C Recommendation 10 February 2004.

2.7.2.2 Ontology Development APIs
The Jena API [Jena] was chosen as the development API to support the development

of OWL based ontologies in the dependency model. Jena (from Hewlett Packard) is a
Java framework for building Semantic Web applications. It provides a programmatic
environment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference
engine. Jena was used in the generalised ontology-based integration system and the

dependency modelling tools. In both these tools, Jena provided instantiation and query

61

operation and reasoning over the integration and dependency ontologies respectively.

Version 2.0 of Jena was used in this research.

The D2RQ API [D2RQ API] was chosen to lift the relational data to the ontological
level. D2RQ is a declarative language to describe mappings between relational
database schemata and OWL/RDFS ontologies. This allows for automatic generation
of the ontologies from the databases and once instantiated in a JENA model, the
ontologies can be queried using SPARQL. The D2RQ API automatically converts the
SPARQL queries to SQL and returns a set of triples to the caller. The API is used in
the generalised ontology-based integration system. Version 0.5 of D2RQ was used in

this research.

2.7.2.3 Ontology Reasoning
Pellet [Pellet] was selected as the ontological reasoner for this work. Pellet provides

reasoning services for OWL ontologies. Pellet has been used to provide reasoning of
the dependency model both programmatically using the Jena toolkit and also using the

DIG interface from Protégé. Version 2.0.0-rc4 of Pellet was used in this research.

2.7.2.4 Ontology Editor

Protégé [Protégé] was chosen as the development environment for building ontologies.
Protégé is a free, open source ontology editor. Protégé was used extensively to develop
and test both the integration ontologies and the dependency models. Version 3.2 of

Protege was used in this research.

2.7.2.5 Dependency Graph Visualisation
GraphML [GraphML] was chosen to provide serialisation of dependency graphs.

GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a
language core to describe the structural properties of a graph and a flexible extension
mechanism to add application-specific data. The GraphML format is used to represent
the dependency graphs that are generated by the dependency model. Version 1.0 of

GraphML was used in this research.

Prefuse is a set of software tools for creating rich interactive data visualisations. The
original Prefuse toolkit provides a visualisation framework for the Java programming
language. The Prefuse Flare toolkit provides visualisation and animation tools for

ActionScript and the Adobe Flash Player. The Prefuse Java API was used to build the

62

visualisation of the dependency graphs in the TomE tool. Version 2007.10.21 of

Prefuse was used in this research.

2.7.2.6 User Interface Development
CloudGarden's Jigloo GUI Builder was chosen as the user interface design tool. It

provides a plug-in for the Eclipse Java IDE and WebSphere Studio that enables the
building and management of both Swing and SWT GUI classes. This API is used to
render and manage the user interface for both the generalised ontology-based
integration system and the dependency modelling tool. Version 4.2.0 of Jigloo was

used in this research.

2.7.2.7 XML Processing API (for mapping files)
SAX (Simple API for XML) [SAX] was chosen as the serial access parser API for

XML. SAX provides a mechanism for reading data from an XML document. The SAX
API is used for reading and processing the XML mappings in the generalised ontology-

based integration system and the dependency modelling tool in this research.

2.7.2.8 Statistical Analysis Package
R [R] was chosen the statistical package to carry out statistical analysis of the data for

Experiment Three (The performance of the ontology-based dependency model). R is a
language and environment for statistical computing and graphics. It is a GNU project
that is similar to the S language and environment that was developed at Bell
Laboratories (formerly AT&T, then Lucent Technologies, now Alcatel-Lucent) by
John Chambers and colleagues. R provides a wide variety of statistical and graphical

techniques. R was used in Experiment Three.

2.8 Summary

This chapter has reviewed the state of the art dependency modelling and analysis,
schema and ontology evolution and ontology-based approaches to information
integration. It also provided background information for the tools and APIs used to
design and implement the dependency models and tools which are implemented in

Chapter 3.

63

3 DESIGN AND IMPLEMENTATION

3.1 Introduction

This chapter describes the design and implementation of the models, tools and test
beds that were created to support the dependency modelling approach taken in this
research. The dependency modelling approach enabled the analysis of the

dependencies in a generalised ontology-based integration system.

A compact ontology-based dependency metamodel was designed to support the

construction of a domain specific ontology-based dependency model (OBDM).

The OBDM was applied to the mappings from a generalised ontology-based
integration test bed. The OBDM was implemented in a tool, called TomE (Towards
Ontology Mapping Evolution), which uses ontological reasoning over the OBDM to
build views of the dependencies in the system. The reasoning uses the Pellet OWL

reasoner [Pellet].

The rest of this chapter is organised as described below. The design considerations for
dependency analysis and the dependency metamodel are described in Sections 3.2.1,
3.2.2 and 3.2.3. The domain specific ontology-based dependency model (OBDM) is
described in Section 3.2.5. The TomE tool that was created to support the OBDM is
described in Section 0. Section 3.3 describes the generalised ontology-based

integration test bed that was used in Experiment one.

64

3.2 Dependency Model Design

3.2.1 Design considerations for Dependency Analysis
It is important to consider the identification and analysis of dependencies in the design

of enterprise systems as they become more logically integrated but physically

distributed [Keller et al. 2000, Cox et al. 2001].

Systems can be logically integrated using such technologies as data federation,
distributed query or ontology-based approaches with the underlying data and systems

remaining physically separate.

Dependency analysis approaches have been used to support fault and event
management [Gruschke 1998, Katker and Paterok 1997], service management [Dreo
Rodosek and Lewis 2001, Varol and Bayrak 2010] and software configuration
management [Luo and Diao 2009, Borner and Paech 2009]. Dependency analysis
provides utility in each of these areas of application. However, the dependencies that
exist between these domains and within these domains tend to be defined implicitly as
noted by Keller in [Keller et al. 2000]. Furthermore, the analysis of dependencies in

these areas has generally focused on inter-system dependencies.

In the context of ontology-based integration systems, the author of this thesis believes
that dependencies between components of a single system are also useful to understand
as they can support analysis and evolution of the system. If the dependencies are
explicitly defined, then they can be reasoned over to provide useful insight in the
evolution of the system. This was the approach taken in the dependency analysis tool
(called TomE) that was built to support dependency analysis of the mappings in the
generalised ontology-based integration domain that was used in experiments one and

two.

While the dependency model proposed in this work focuses on dependencies within a
single system of interest (i.e. ontology-based integration system), the approach can be

applied in other domains as shown in experiment five.

Following a the literature review of the application and usage of dependencies (Section
2.3) in the service management, fault isolation and software configuration domains, the
key requirements for the design of a more general dependency analysis system were

summarised as:

65

Selection of the appropriate abstraction level to cater for a range of
dependencies that might exist in different domains (e.g. inter system, inter

domain and intra system). [Requirement 1]

Selection of the method to support computation of dependencies (e.g. the
ability to traverse the dependencies to the deepest level to enable full root cause
analysis that is important for service management [Keller et al. 2000].)

[Requirement 2]

Approach for extracting the domain or system knowledge about dependencies

to inject into the dependency model. [Requirement 3]

The approach taken in this thesis for requirement 1 and 2 was to define a compact

ontology-based metamodel for representing dependencies and a process to construct

domain specific models from the metamodel. A metamodel provides an extensible set

of concepts to enable the creation of domain specific models. The dependency

metamodel in this research provides the basic building blocks needed to simplify the

computation of dependencies (Requirement 2).

A compact metamodel has the following advantages:

Domain specific models can be constructed using all or part of the metamodel

affording design flexibility.

Domain specific models can inherit key behaviours from the metamodel (e.g.

transitive relations) enabling reuse of key metamodel features.
Metamodel and domain model can be evolved independently.

The approach is non-intrusive as the system under test does not require code

updates because the dependency metamodel is external to the system under test.

A number of disadvantages for the metamodelling approach are:

Difficultly in selected the appropriate abstraction level. (E.g. a very abstract
metamodel can be difficult for domain modellers to understand while low

abstraction level may not properly model all domains.

A maintenance process to ensure controlled evolution for updates to the

metamodel and domain specific model may be required.

66

The approach taken for requirement 3 required the definition of a domain
decomposition process to enable the domain and system knowledge to be represented

in the dependency model, and this process is described in section 3.2.4.

3.2.2 Dependency Abstractions used in the metamodel

Based on the state of the art review in Section 2.3.2, the abstractions for the
dependency model in this work are based upon the following key ideas: dependent
relations, dependent elements, simple dependencies, dependency chains and
dependency graphs. This classification was selected following the state of the art
review of the usage of dependency models and the previous attempts to formalise

dependency relations (Section 0.)

These abstractions were designed to address the first and second design requirements

and are described below.
Dependent Relations & Dependent Elements

The central concept of the model is the dependency relation. The dependency relations
are classical binary relations [Fraissé 1986] between dependent elements. Dependency
elements are representations of the entities in the domain under study that exhibit
dependency relationships. Dependent elements can be derived from domain
descriptions such as functional or design specifications or from experts in the domain
(e.g. in experiment two on ontology-based integration systems presented later,
dependent elements are derived from the descriptions of the systems semantic
mappings.) In its most general sense, a dependent relation D is defined as an ordered
triple (Sl, SZ, G) where:

D: Binary relation (“depends on”)

S': Set of domain elements

S%: Set of codomain elements
G: Subset of Cartesian product of S'and S

Behavioural & Descriptive Attributes of dependencies

Dependency relations can be defined with different attributes that describes the
behaviour of the dependency relation (called behavioural attributes) or some
descriptive information (called descriptive attributes) about the dependency relation.

Behaviour attributes are used to represent the behaviour of the dependency relation

67

such as transitivity, symmetry or functional as described later in the ontology-based

dependency metamodel.

Dependencies may also have descriptive attributes associated with them. Keller [Keller
et al. 2000] defines a classification of dependencies based upon six descriptive
attributes that are informed by the context of dependency analysis in enterprise service
management. Descriptive attributes are used to describe some information aspect
related to the dependency relation such as the importance or strength of the

dependency as described later in the ontology-based dependency metamodel.

Simple Dependencies & Dependency Chains

In this work, a simple dependency is defined as a pair wise dependent relation between
two nodes resulting from the decomposition process. A dependency chain can be
created by traversing the dependency relations to join multiple dependencies together

by following a single relation type appropriately (e.g. transitive relation).

For example, assume element (O) depends on an element (M) via the dependent

relation R and the element (M) depends on element (D) via dependent relation R’:
O = M (via R that is transitive)
M - D (via R’ that is transitive)

If the dependent relations (R and R’) are transitive, then the dependency model can be

traversed to build the full dependency chain:
O->M->D

The depth of the dependency chain (i.e. the number of elements in the chain) can be
computed by simply iterating a counter for each dependency relation found and
assigning it to that relation. This introduces a quantitative measure of direct and
indirect dependency relations. This is represented by a “Strength” attribute discussed

later.

The type of dependency can also be handled in a similar way. The type of dependency
can be seen as identification of the cause of the dependency relation (later in the
evaluation chapter we will see overlapping and function-based dependency types). This

is represented by a “Cause” attribute discussed later.

68

Dependency Graphs

Dependency graphs are used to visualise the dependency chains as illustrated in Figure
3-1. The nodes (vertices) of the graph represent the instances of the sets of elements in
the domain of the system under analysis. The edges represent the dependency relations
as described earlier. The graph represents the full dependency analysis of the domain
of interest and is computed by following the behaviour attributes of the dependency
relations. The graph is labelled with appropriate metadata to provide a description of

the domain, graph type and version.

All of the concepts described above are visualised in Figure 3-1. The figure shows two
dependency chains. The first dependency chain is for a UE (Upper Entity) called “UE-
carriers-names”. This dependency chain has a MP (Mapping Point) called “MP-c1”
and GEs (Ground Entities) called “GE-exp_test_db2-logistics-Awards” and GE-
exp_test_db2-Logistics-Awards”. The UEs represent entities in the domain ontology of
the integration system, the MPs represent mappings in the domain ontology and the

GEs represented the datasources entities which are accessed by the integration system.

Dependency
GE-axp_test_db2-logistics-Awards
Chain
- MP-c1
S mp le GE-exp2_test-logistics-Awards
Dependency
UE-carmers-name
oot
GE-pxp2_test-rates: ALDS_1_44 Depe nd ency
UE-semices-senvicename <
Relation
Gk teskiaesung i@ !
GE-axp2_test_db2-rates-Semice
GE-exp2_test-rates-BLDS_1_44 \ G I’aph

Figure 3-1: Illustration of Graph, Dependency and Dependency Chain

69

Benefits of the abstraction level selected

The dependency abstractions selected in this research are domain independent and
general enough to be easily described to prospective users of the system. This enables
them to be applied in a variety of domains. The compact nature of the abstractions
facilitates easy adoption of the approach because the learning curve to understand the
abstractions is small. The approach of supporting the dependency relations with
formal semantics means that the domain dependency modeller can use the formal
semantics to automate the computation of dependency chains using ontological
reasoning as shown in Section 3.2.3 where chains of dependency elements are

automatically created using the dependency model and the Pellet reasoner [Pellet].

70

3.2.3 Dependency Metamodel Design

This section describes the dependency metamodel that was created using the

abstractions described in section 3.2.2.

The dependency metamodel provides an extensible set of concepts related to modelling
of dependencies. This extensible set of concepts enables the creation of a wide variety
of domain specific dependency models. For example, the metamodel can be used to
represent dependencies between software components by describing abstraction
representations of the components and the relationships between components. The
metamodel provides a palette of attributes for dependency relationships (e.g.

symmetric, transitive) that can be customised to the domain of interest.

The metamodel was realised in OWL-DL [OWL]. OWL-DL was selected because it is
a dialect of OWL which provides maximum expressiveness without losing
computational completeness. In the context of the dependency metamodel, OWL-DL
provides the formal semantics for the dependency relations over which reasoning can
occur using ontological reasoning. This removes the need to carry out some complex
programming tasks to compute chains of dependent items — this task is passed to the
reasoner and inferred from the semantics of the model. The metamodel was designed

using the Protégé ontology design tool [Protégé].

The metamodelling approach provides a compact solution because the metamodel
needs only to focus on the core aspects of dependency and not domain specific items.
The compact nature of the metamodel allows easier creation of domain dependency
models because the learning curve to understanding the abstractions is small. The
metamodelling approach also enables the domain specific model to remain decoupled
from the metamodel and thus allows additions to the metamodel to be made without

affecting the domain specific model.

The key concepts of the metamodel, based on general conceptualisation of the

dependency abstractions that was described in Section 3.2.2, are described below:

Architectural Entity: The concept is used to represent the dependent elements
described in Section 3.2.2. An Architectural Entity is a concept that represents the

nodes or elements in the system under study that exhibit dependencies. The domain

71

under study is composed of these architectural entities. The process of selection of the

architectural entities for any given domain is carried out only when the domain specific

model needs to be created. In the ontology-based metamodel, this concept is encoded

as an OWL class with the following datatype properties:

Id [Mandatory]: This is a property to represent the name of the entity. This

is represented in the metamodel as an “rdf:ID” when the concept is created.

<owl:Class rdf:ID="UE">
<rdfs:subClassOf rdf:resource="#ArchitecturalEntities"/>
</owl:Class>

Code 1: Architectural Entity for a concept called UE with instance called “UE1”

Type [Optional]: This property is used to represent the type of the entity.
This is encoded in the metamodel as a datatype property of type “String”. In
the metamodel, the value range for this property is unrestricted (i.e. it can
take any string value). The Type attribute can be used to specify any
domain specific grouping or information that could be used to distinguish

between forms of architectural entities.

Dependency Relation Attributes: These concepts are used to represent the

dependency relations that are supported by the metamodel. A set of dependency

relations are provided by the metamodel that represent transitive, symmetric and

functional dependant relations between architectural entities. These represent the

behavioural attributes described in Section 3.2.2 and illustrated in Figure 3-2. The

definition of each relation is given below:

Transitive relation [Optional]: A transitive relation implies that if X has a
transitive relation with Y and Y has a transitive relation with Z, then X and

Z also have the transitive relation.

Symmetric relation [Optional]: A symmetric relation implies that if X has

a symmetric relation with Y, then Y also has the relationship with X.

72

¢ Functional relation [Optional]: A functional relation implies that if X has
a functional relation with Y and X has a functional relation with Z, then Y

and Z must be the same.

¢ TransitiveSymmetric relation [Optional]: A transitive and symmetric

relation provides the combined behaviour of the transitivity and symmetry.

¢ InverseFunctional relation [Optional]: An inverse functional relation

provides the inverse of the behaviour provided by the functional relation.

In the ontology-based metamodel, these dependency relations are represented as OWL
object properties with the appropriate behavioural attributes set (e.g. transitive) using
the relevant OWL object property attribute. The behavioural attributes are set when the
metamodel is created using the Protégé ontology development environment. They are
subclasses of a general dependency relation object property called

“DependencyRelation” as shown in Figure 3-2 below.

[Object properties mi R &
= DependencyRelation

> ----- l- kransitive_dependency_relation |

----- [functional_dependency_relation

. [inverse_Functional_relations
Figure 3-2: Dependency Relations in the metamodel

The metamodel also defined the following descriptive properties for the dependency
relationships. These attributes play an important role in supporting the users

understanding of the origin and importance of any computed dependency.

In the ontology-based metamodel, the descriptive attributes are defined as an OWL
class to represent the each of the dependency attributes. The attributes can be

associated with any dependency relation using OWL object properties.

73

|‘:'| Dependencydtrributes
> ----- Cause
, Impack
- akrength

Figure 3-3: Descriptive Dependency Attributes supported in the metamodel.

The descriptive dependency attributes are optional because they provide supplementary
information for the dependency model and as such do not need to be in the
computation of the dependencies chains. However, the usage of “Strength” attribute

enabled more detailed dependency analysis as shown in Section 3.2.6.4.

The descriptive dependency attributes, shown in Figure 3-3, are described below:

Strength (Level) [Optional]: This attribute is a measure of the frequency of the need
or the importance of this dependency from any architectural entities viewpoint. In the
context of ontology-based integration systems, this can be interpreted as the level at
which the dependency occurs. For example, if element A depends on element B and
element B depends on element C then the second dependency relationship is at the

second level from the viewpoint of element A.

In the ontology-based metamodel, this is represented as the “Strength” concept that can
be associated with a dependency relation using the “hasstrenghtattribute” object
relation. This is a property (integer) to represent the level at which the dependency
occurs. In the metamodel, the value range for this property is unrestricted (i.e. it can

take any integer value).

Impact [Optional]: This attribute is used to define a measure of how the entity’s
function is affected by compromise or failure at this particular dependency. This can be
interpreted as the extent to which the elements, that are part of the dependency, are
critical to the operation of the integration system. For example, if the elements that
comprise the dependency relation are used in all (or many) integration use cases then

the failure to evolve the mapping would have a high impact on the integration system.

In the ontology-based metamodel, this is represented as the “Impact” concept that can

be associated with a dependency relation using the “hasimpactattribute” object relation.

74

This is represented as a datatype property of type String. In the metamodel, the value

range for this property is unrestricted (i.e. it can take any string value).

Cause [Optional]: This attribute provides a definition of the underlying cause of the
dependency relationship. As will be seen later in the case studies, in ontology-based
integration systems, we see dependencies occurring between mappings due to
overlapping of data elements (called overlapping dependency) or overlapping of the

functions specified for a mapping (called function-based dependency).

In the ontology-based metamodel, this is represented as the “Cause” concept that can
be associated with a dependency relation using the “hascauseattribute” object relation.
This is represented as a datatype property of type String to represent the underlying
reason for the dependency. In the metamodel, the value range for this property is

unrestricted (i.e. it can take any string value).

The OWL code for these relationships is shown the figure below (Code 2).

<owl:0ObjectProperty rdf:ID="hascauseattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Cause"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="hasimpactattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Impact"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="hasstrenghtattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Strength"/>
</owl:0bjectProperty>

Code 2: Metamodel Descriptive Attributes

Dependency Graph: This concept represents the domain that is under study and, as
seen later, is represented by the root node in the graph visualisations. The graph

concept supports the following attributes:

e Type [Optional]: A property of type String to represent the graph type (e.g.
cyclic, acyclic, direct, undirected). This can be used to support the

automatic rendering of the graph in the visualisation factory code seen later.

75

In the metamodel, the value range for this property is unrestricted (i.e. it can

take any string value).

e Name [Optional]: A property of type String to provide a name for the
graph. In the metamodel, the value range for this property is unrestricted

(i.e. it can take any string value).

¢ Version [Optional]: A property of type String to represent version number
of the graph. In the metamodel, the value range for this property is

unrestricted (i.e. it can take any string value).

The OWL code for the metamodel is provided in full in the Appendix. L.

76

3.24 Domain Specific Dependency Model Creation Process
The dependency metamodel can be used to create domain specific dependency models

using the process defined in (Figure 3-4). This process was developed during
experiment two by analysing the steps needed to build the domain specific model for
the generalised ontology-based integration test system. The steps were then generalised

to the process shown below:

!

[Domain Decomposition <

)

==(atastore==

mapping file

r
Dependency Relation Creation
“]
[==fatastore==
Model Creation e e
“ !
s \
Relationship Creation
L J
<=(fatastora== (A
mapping file Instance population
. A

Figure 3-4: Process for domain model creation

Step 1 - Domain Decomposition: This step is responsible for the decomposition of the
domain into abstract entities that represent the architectural parts of the domain. This
process step is required to create the abstract elements that participate in dependency

relationships. The purpose of decomposition is to identify the key elements in the

7

system under study. Once these key elements have been identified, appropriate
abstractions of these elements can be created and represented as Architectural entities

from the metamodel.

Step 2 - Dependency Relation Creation: This step is responsible for the design of the
dependency relations that exist between the architectural elements defined in the
previous step. This step is required to understand the relationships between the
elements in the domain under study. Input from domain experts is needed to support
the development of the relations. The experts need to select which types of relationship
exist between the elements in the domain from the available relationship types
supported by the metamodel. This step creates the input needed to describe the

behavioural and descriptive attributes of the dependency metamodel.

Step 3 - Model Creation: This step creates subclasses of the metamodel architectural
entities for all entities designed in step 1. These subclasses are domain specific and

form the parts of the system that participate in the dependency relationships.

Step 4 - Relation Creation: This step creates child object properties of the metamodel
dependency relations for all relations designed in step 2. These properties are domain
specific and are formed between the domain specific architectural elements from the
model creation step. Once this step is complete, the domain specific dependency model

has been created. The final step is to populate the model with data instances.

Step 5 - Instance Population: This step creates and populates instances of the
architectural elements into the domain specific model. Data from the system under test
is required to carry out this step. The data sources must identify instances of the
architectural entities and the first dependency of that architectural entity. In the context
of the dependency model that was created for generalised ontology-based integration

system in this thesis, the mapping file provided the source of this data.

78

3.2.5 A Domain Specific Ontology-Based Dependency Model
(OBDM)

This section describes the ontology-based dependency model that was created using
the process from Figure 3-4 (Section 3.2.4) and the ontology-based metamodel from

Section 3.2.3.

This dependency model was created to support the evolution of mappings in a

generalised ontology-based integration system that is described in detail in Section 3.3.

The generalised ontology-based integration test system was deployed to resolve the
heterogeneity in the logistics data in experiment two. The mapping file from the
integration system was used to support the development of the ontology-based

dependency model.

This section discusses steps one to four from the process (Figure 3-4) to create the
ontology-based dependency model from the mapping file for such an integration
system. The remaining step for the process is described in Section 3.2.6 where are tool

(called Towards Ontology Mapping Evolution) was developed to support step five.

Domain Decomposition

The decomposition step enabled the creation of sets of architectural abstractions (called

architectural entities) that represented key features of the integration system.

The mapping file was analysed to identify the major integration system components
referenced in the mapping file. The analysis was carried out by drawing out each
mapping using a simple graphical form where nodes represented ontology classes, data
properties and mappings and arrows represented a dependency relationship. Using this
analysis the ontology integration system was decomposed into its core architectural
elements. This yielded a list of the key elements that form the architectural elements of
the ontology-based dependency model. The architectural elements were represented in
OWL classes and are subclasses of the metamodel architectural elements and thus

inherit the metamodel behaviour.

79

Dependency Relation Creation

This step required the creation of pair wise dependency relations between each of these
sets of architectural elements already identified. The relations between the architectural
elements form the dependency relations between any two elements in the system. The
relations were created based on expert understanding of the architecture of the
integration system. Each relation created in this process step is added to the model as a

sub relation of the metamodel dependency relationships.

In the case of generalised ontology-based integration system, the dependency relations
were derived from the analysis of the mapping file and how the mapping file is used

(executed) by the integration system.

The sequence of execution of the generalised ontology-based integration system
indicates that the concepts in integration ontologies depend on the mapping
specification and the mapping specification depends on the lower ontology concepts

that in turn depend on the data sources.

Model Creation

The previous steps had identified the architectural elements and dependency relations
between them. The model creation step used the Protégé ontology development tool
[Protégé] to create a dependency model in OWL [OWL]. This step required that the
dependency metamodel is imported into Protégé. The architectural elements were
created as sub concepts of the metamodel “Architectural Entity” concept. The
dependency relations were created as sub properties of the metamodel “Dependency

relations”.

The resulting domain specific ontology-based dependency model is shown in Figure

3-5.

80

E=IUE

J}ue?mp

hasinputparams

|§| MP BXRCUtES |§| EN

asoutputparams

=P

mp2le

EILE

le2ge

haslocalparams

== =] OP

EiLP

Figure 3-5: Domain Specific Dependency Model

The model consists of the following parts:

Architectural Elements

The fundamental parts of the integration system are represented by the following

abstracted elements.

e Upper Entity (UE): Represents an ontology class or property from the
integration ontology of the generalised ontology-based integration system. Each

upper entity has a dependent object relationship with a mapping using the

“ue2mp” dependency relationship.

e Mapping (MP): Represents an ontology mapping from the generalised
ontology-based integration system. Each mapping has a dependant object
relationship with a lower entity using the “mp2le” dependency relationship.

Each mapping has a function (FN) associated with it using the “executes”

dependency relationship.

81

¢ Lower Entity (LE): Represents an ontology property from the lower ontology.
This represents a URI'" (that has been created automatically using the D2RQ
API [D2RQ API]. Each lower entity has a dependant object relationship with a
grounded entity (GE, discussed next).

¢ Grounded Entity (GE): Represents a database property from the data sources

used by the generalised ontology-based integration system.

¢ Function (FN): This concept represents the executable function that is used to
transform the data sources elements into the ontology class. These functions are

referenced by the mappings in generalised ontology-based integration system.

¢ Input Parameters (IP): The input parameters of the mapping function (i.e.
names of the UE, MP, LE or GE elements that are used in the input parameters

of a mapping function).

¢ Output Parameters (OP): The names of the UE, MP, LE or GE that are used

in the output parameters of a mapping function.

e Local Parameters (LP): The names of the UE, MP, LE or GE that are used in

the local code of a mapping function.

The following object relations form the dependency relationships between the

architectural elements in the model.

e UE2MP: Transitive and symmetric object property with domain UE and range
MP.

e MP2LE: Transitive and symmetric object property with domain MP and range
LE.

e LE2GE: Transitive and symmetric object property with domain LE and range
GE.

e EXECUTES: An object property with domain MP and range FN.
e HASINPUTPARAMS: An object property with domain FN and range IP.

e HASOUTPUTPARAMS: An object property with domain FN and range OP.

13' A Universal Resource Identifier.

82

e HASLOCALPARAMS: An object property with domain FN and range LP.

The dependent relations (ue2mp, mp2le, le2ge and executes) are sub properties of the
appropriate metamodel relations (e.g. transitive_symmentic_dependency_relation™)
that is in turn a sub property of the general “DependencyRelation” object property
from the metamodel. This allows transitive propagation to occur at the more general
“DependencyRelation” relation level, enabling chains of dependencies to be built using

an OWL reasoner.

Figure 3-6 provides an example of the dependency relations (ue2mp, mp2le and le2ge)
described above. This figure was generated using the TomE tool described in Section
3.2.6 and the logistics data described in Experiments two and four (Section 4.4 and
4.8). A dependency chain for a UE (Upper entity) called “UE-carriers-names” is shown
in the figure below. This dependency chain has a MP (Mapping Point) called “MP-c1”
LEs called “LE-exp_test_db2-logistics-Awards” and “LE-exp_test db2-Logistics-
Awards” amd GEs (Ground Entities) called “GE-exp_test_db2-logistics-Awards” and
“GE-exp_test_db2-Logistics-Awards”.

GE-exp2_test-logistics-Awards

[Dependency Relation: LE2GE

[Dependency Relation: MP2LE |

LE-exp2_test-logistics-Awards

[Dependency Relation: UE2MP |

MP-c1 /

UE-carriers-name

LE-exp_test_db2-logistics-Awards

S

root

GE-exp_test_db2-logistics-Awards
Figure 3-6: Illustration of Dependency Relations

83

The UE represents a concept in the domain ontology of the integration system, the MP
represents the mapping between the domain ontology and datasources and the LEs and
GEs represented the datasources entities which are accessed by the integration system.
[Note that the TomE tool does not provide a view of the functions specified for this

mapping — this limitation is discussed in Future work in Section 5.3.2]

84

3.2.6 Dependency Analysis Tool (TomE) Implementation
The ontology-based dependency metamodel and process for domain model creation

(Figure 3-4) was used to create an ontology-based dependency model in OWL as

described earlier.

A tool called TomE (Towards Ontology Mapping Evolution) was developed to provide
software support for the last step in the process (that is, instance population described
in section 3.2.4), and in addition to enable analysis and visualisation of the

dependencies in the generalised ontology-based integration system.

The TomE tool was used in experiments three and four to support the analysis of the
dependencies in the mappings in an ontology-based integration system from

experiment one.

3.2.6.1 TomkE Functional Architecture & Design
The TomE tool takes a mapping file from the generalised ontology-based integration

system as input and produces visualisations of the dependencies between the
architectural elements based on the dependency relations described in the ontology-

based dependency mode.
The functional architecture of the TomE tool is shown in Figure 3-7 below.

The architecture is composed of four functional areas. Each functional area follows a
factory design pattern where each functional area consumes data from the previous
area, processes it and passes it to the next area. This approach provided functional

segregation of code.

The “Mapping Factory” is responsible for loading the mapping file and generating
dependency model instances. The ‘“Model Factory” is responsible for loading and
reasoning over the ontology-based dependency model. The “Dependency Factory” is
responsible for generating dependency graphs using the ontology-based dependency
model. The “Visualisation factory” is responsible for generating visualisations of the

dependency graphs.

The design of each functional area is described below.

85

Model Factory Dependency Factory Visualization

Figure 3-7: Functional Architecture TomE Tool

Mapping factory: The mapping factory is a set of classes that provide access and
deserialisation functionality of mappings. Mappings are decomposed by this subsystem
into Java classes that represent each of the architectural elements in the domain model.
In the current implementation of the tool, a bespoke adapter class is needed to convert
the elements of the mappings into architectural elements as described in section 1 of
the process above. The final step is to generate ontological concepts for the

architectural entities. This is the role of the instance generation functionality.

The class diagram for the access and deserialisation is shown in Figure 3-8.

86

E mappings_factory
Attributes

package Document dom

Cpemtions
package mappings_factory()
package void display_mappings()

= mappingfunctionslist private void parseXmiFile()
Athibutes private void parseDocument()
private mapping getmapping(Element empEl)

Operstions private String getTextValue(Element ele, String taghlame)

ki functionslist|
packege meppingfinctionsisly) private int getint\/alue{ Element ele, String tagMame)
package void load(String filename) g 4 g
public void gen_model_instances()

MFlist 0.*

= mappingfunctions
Attributes

public String mappingname
public String functionname
public String inputparam
public String outputparam
public String localparam

Qperations
package mappingfunctions({ String mname, String name, String ip, String op, String Ip)

mappings

= mapping
Attibutes

package String mapping_no

package String mapping_type
package String source_type

package String source_name
package String source_expansion
package String source_expansion_cdb
package String source_expansion_class
package String dest_dh

package String dest_type

package String dest_prop_name
package String dest_table_name
package String function

Cpemtions
package mapping(String mit, String mno, String st, String sn, String se, String dd, String ct, String dtn, String dpn, String dpk, String dpt, String db, String table, String fn)

Figure 3-8: Class diagram for mapping factory

With reference to Figure 3-8, mappings are loaded from an XML file using Java SAX
API [SAX] and stored in a temporary DOM document object. This is handled by the
mapping_factory methods. The mapping document is parsed element by element to
extract the mappings fields into a Java list of mapping objects. In the current
implementation of the adaptor, a “mappingfunctionslist” class processes the mapping
functions separately as the function names need to be manually extracted from the
function descriptions in the generalised ontology-based integration system. The
“mappingfunctionslist” class is responsible for loading the function names associated

with each mapping.

The gen_model_instance() method of the mappings_factory class creates OWL model
instances of architectural entities from the runtime list of mappings. In the current
implementation, the adaptor is hand coded to decompose the mappings list to the
appropriate OWL instances and relationships that have been designed in the domain
specific model. The OWL instances are also saved to file to allow offline analysis and

debug (in Protégé for example).

87

An example OWL instance is shown below:

<UE rdf:ID="UE-UE1l ">
<ue2mp rdf:resource="#MP-MP1"/>
</UE>

Code 3: Instance (UE-UE1) of an Architectural Entity called a UE.

The resource type UE-UEI represents the architectural entities of type “UE”. In this
case, it has one property called “ue2mp”. This property is an object relation that is

defined in the domain specific model.

Model factory: The ontology-based dependency model (OBDM) was created using
Protégé [Protégé] and realised in OWL-DL as described earlier. The model factory is
responsible for creation of the in memory ontology model from the dependent model,
preparation and validation of the model. The model is created in memory using the

Jena API [Jena] as follows:

DM_model =
ModelFactory.createOntologyModel (PelletReasonerFactory.THE_S
PEC);

DM_model.read(ont);

DM_model .validate () ;

Code 4: OWL model creation in Jena.

These steps create the dependency model, bind it to the Pellet reasoner [Pellet] and
perform a validation of the model. Validation is used to verify the correctness of the
ontology elements created (architectural entities) in previous steps. Dependency
reasoning is to compute the dependent elements on any specified architectural element.
A containment reasoning method (builddependencies) invokes reasoning over the
model to compute the containment of any specified resource. The TomE tool computes
the containment for every upper entity (UE) in its model. Each containment
computation yields a list of the elements that depend on that UE. In the current
implementation of TomE, these elements are stored in a global list structure using a

Java array list type. The list structure is a simple representation of the dependencies

88

related to the ontology-based integration system domain that contains fields for upper

entity (UE), mapping (MP), lower entity (LE) and ground entity (GE).

In the context of ontology-based integration system mappings, the in-memory

dependency structure has the following form based on Java array lists (Figure 3-9).

java.util.arraylist

Element data

ol | Kl
’ ¥
Dependency UE1 Dependency : UEn
UE: UEn
MP
| I Lt ofLE- .| |
[F-—tistof-GE-——] [btistof GE-] |

Figure 3-9: In memory Dependency

From these list structures, either the full dependency graph (all UEs) or individual
dependency graphs (single UE) can be created. While this may not be the most
optimum storage method, the array list is well supported for search in Java using Java
Iterators and Collections class. This strategy made programming of the list data simple

for the prototype.

The class diagram for the model factory is shown in Figure 3-10.

Elupper_model_factory

Attributes
public OnthModel OWLIModel

Operations
package upper_model factory()

package void test query()
package void dospargl{)

public void load()}

public void wvalidate{)

public void builddependencies()
public void impodinstances()

Figure 3-10: Class diagram for model factory

Dependency factory: The dependency factory is responsible for constructing the

dependency graphs from the in-memory dependency lists. In the current

89

implementation of the tool, the dependency graphs for all architectural elements are
pre-computed because the computation time is fast (minutes) even for the large

datasets used with hundreds of architectural elements.

The dependency factory creates GraphML [GraphML] output format from the
computed dependency graphs from the model factory. The transformation from
dependency model to GraphML is straightforward because the dependency model
Architectural Element is transformed to GraphML “node” and dependency model

dependency relationship is transformed to GraphML “edge”.

To simplify implementation and aid debugging, the TomE tool creates individual
GraphML files for the views described in the visualisation section. GraphML also
supported labels on edges of a graph. This is used in the prototype to assign levels and
types to the dependency relationships.

Visualisation: The visualisation subsystem is responsible for displaying the computed
graphs. The subsystem provides functionality for search, node expansion and zooming

features on each of the three types of graphical views.
The three graphical views are:

¢ Full dependency graph: provides the graphical view of the computed

dependency for each upper element in the dependency model.

¢ Individual node dependency graph: provides the graphical view of any
user selected upper entity. This allows the user to drill down to a localised

part of the dependency graph. (Figure 3-11).

SE-DB1-GFE1-EA1

rAF-RAF A1
SE-DDB1-GEZ-SER

rAF-hAF= UE-1LE A1

root

Figure 3-11: Sample Dependency Graph for a UE called “UE1”

Note that the dependency graph for individual nodes (Figure 3-11) does not

display the function associated with the mapping point. However the TomE

90

system does include functions in the computation of dependencies. This is

discussed in the Future Work 5.3.2.

¢ Individual node dependency graph with levels and types: provides the
view of any user-selected node with the level and dependency types
displayed (Figure 3-12). In the current implementation of the TomE tool,
this view is fully automatic, as the user must update the tool with a list of
UEs to compute this view because it is unlikely to be required for every

upper entity.

MP-RAP 1
o T LE-UE1

rMP-MF 2

root

Figure 3-12: Sample Dependency Graph with levels and types.

3.2.62 TomkE Call Sequence
The process to create and view dependencies is managed by the user who follows a

number of screens in the TomE tool. The sequence of method invocation between the

user interface screens and factory classes is shown in Figure 3-13.

Ul Control Mapping Factory Model Factory Dep. Factory

I
I
Call Load Mappings |
)

Call Loadfunctions

|
|
|
Lﬁ_&lite Ul Jtree }
|
|
|
|
|
|

Call Generate mode linstances
>
I

< | doas

I
Load Dependency Model

|
Load mode | instances into model
|

Update Ul Jtable }
|
|
I

I
Vrlida:g mode |
|

_H.uilq.dsn.e.udsncies

Write dependencies to file

—

<s dais < 7 d=as

Figure 3-13: Call Sequence Diagram for TomE

91

The mappings which the integration system uses have already been created before the
dependency management using the TomE tool can begin. For the work in this thesis,
mappings were created manually using the help of domain experts as described in

experimental setup (Section 4.2.5).

Dependency management using TomE has three steps. The first step involves calls to
the mapping factory to load and process the mapping file. The mapping factory

consumes mapping files and produces model instances.

The second step involves calls to the model factory. The model factory consumes the
dependency model, dependency model instances (from step 1), run ontological
reasoning over the OBDM and produces in memory representations (Java lists) of the

dependencies.

The final step involves calls to the dependency factory. The dependency factory
consumes the in memory representations of dependencies and produces GraphML

representations that are ready for visualisation.

3.2.6.3 TomkE Ontological Reasoning Operations
Reasoning over the OBDM is carried out in the model factory (3.2.6.1) as described

below. The TomE tool performs ontological reasoning over the dependency model to
automatically carry out some critical functions related to the creation of dependencies
as described below. The reasoning is carried out by the Pellet reasoner bound to the

Jena model that instantiates the ontology-based dependency model.

The first type of automated reasoning that TomE tool used is the model validation.
This ensures that the instances of the dependency model that have been constructed in

the mapping decomposition process are correct.

The TomE tool also uses reasoning over the model to pre-compute the dependencies
for each UE defined in the model. This is the longest computation task that the tool

needs to carry out. The OWL axiom for each UE takes the form shown below:

92

<owl:Class rdf:ID="InferDepsOf_UE1l">
<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#UE1"/>
</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Code 5: OWL Axiom to infer dependency chain for any UE

This pre-computation approach might be a cause for concern if there were large
(thousands) of UEs in the model. In the samples with approximately 100 UEs from the
logistics domain used in experiment two, the computation still finishes in less than 4

minutes on a lower end machine.

A simple solution to this potential problem would be to compute the dependencies on

demand based on the particular UE the user is interested in working on.

3.2.6.4 TomE Dependency Types and Levels Processing
The TomE tool also computes the levels and types of dependency relations so that

these can be rendered in the graphical visualisation. In the current implementation of
the tool, this view of the data is not pre-computed. A second invocation of the TomE
because the tool is needed to compute and record the level and type for each
relationship as it built the chain of dependencies. The second invocation is needed to

allow the user to specify which entities to compute the types and levels for.

The level and types were computed using the procedure shown in Figure 3-14 below.

93

STEP 1. Specify Starting Node.

a) User specifies which UE instance to generate levels and types for.

STEP 2. Get first level MP

a) With the specified UE, find the direct dependents using the “ue2mp” relations.

Note down the MP(s) instances names

[=> Set Level to X and Tvpe to overlanping tvpe.]

b) If MP from step 2(a) has functions specified, find the associated UE and MP

using the function parameters. Note down the MP(s) instances names.

[=> Set Level to X and Tvpe to function based tvpe.]

STEP 3. Get first level GE

a) Find GE(s) which directly depend on the MP in step 2(a) using the “mp2ge”
relation. This yields a list of GE(s).

STEP 4. Get other levels

a) Find other MP(s) that have mp2ge relations with the GE(s) in step 3. Note the

MP instances names.

[=> Set Level to X+1 and Tvpe to overlanppnine tvpoe.]

b) If the MP from step 4(a) has functions specified, find the associated UE and

MP using the function parameters. Note down the MP(s) instances names.

[=> Set Level to X+1 and Tvpe to function based tvpoe.]

STEP 5. Repeat

Repeat step 4 until no more GE(s) remain to process.

Figure 3-14: TomE Levels & Types Algorithm

The procedure is implemented in Java and does not make use of Pellet reasoning. This
would have required the creation of OWL axioms to support the various search and
find operations of the procedure. This java based approach was taken for the first
implementation of the Types and Levels algorithm but should be implemented in

future versions of TomE by adding the axioms to the domain specific model and

94

updating the TomE tool to enable the axiom to be processed. This would reduce the
code complexity of the TomE tool by allowing reasoner to carry out parts of the

algorithm.

The current implementation created a GraphML output file for the user specified UEs.
The GraphML file can then be loaded in the TomE tool. The output file used dedicated
tags to label the levels and types as shown in the GraphML snippet below:

<key id="type" for="edge" attr.name="type" attr.type="string"/>
<key id="level" for="edge" attr.name="level" attr.type="string"/>

<edge source="MP1l" target="MP2">
<data key="level">2</data>

<data key="type">2</data>
</edge>

Code 6: GraphML code snippet

3.2.6.5 Technical Implementation
The TomE tool was implemented as a Java Desktop application using the Eclipse

development environment [Eclipse]. The user interface provides a set of tabbed panes
(Figure 3-16 and Figure 3-17) that map to the functional areas described above. The
process to generate the graphical views can be controlled by user interface to allow

inspection of the output at the end of each point in the process.

The third party libraries used by TomE are shown in Figure 3-15:

Component Task Library

Mapping factory = XML processing SAX

Model factory Ontology Management Jena 2.0

Model factory Ontology Reasoning Pellet2.0.0rc4

Model factory Ontology Query ARQ

Visualisation GMF, GraphML Eclipse GMF, Java
GraphML

Figure 3-15: API Usage

To carry out dependency analysis using the tool, the user needs to navigate through the

TomE tool as described in the following three steps.

95

Step 1 — Load and Decompose Mappings
The first tabbed pane (Figure 3-16) of the TomE tool provides control over the

mapping factory classes. This pane loads the mapping file and generates the instances

of the dependency model from the mapping file.

i TomE: Toward Ontology Mapping Evolution, Dependency Modelling Tool P =]
File Edit

Mappings Control | Ontology Cortrol | Visualisation | Dependency Search |

__| srejmappingsy3_small_test.xml

(=[] Mappings
Load ing Fil i & | mapping I A
oad Mapping File IW = _]rﬁ;;ing { Load Mappings I
| mapping
Generate Dependency Model Instances
|
Entity [Humber . Decompose
LEs o | Mapping file
MPs 0 | LLIRS
GEs o

Figure 3-16: TomE Control Panel

Step 2 — Dependency Model Control and Dependency Generation
The second pane (Figure 3-17) of the tool provides user control over the ontology

model factory. Using this pane, the user can load the model, run dependency inferences

and create the GraphML outputs.

£ TomE: Toward Ontology Mapping Evolution, Dependency Modelling Tool ;IQILI
File Edit

|| visuskisation | Dependency Search |

Load Ontology Mode| & Validate | <ffmeemmmmmmmmmapmpemmemmeesy Load Ii)“epder;dency
ode
Compute Dependencies | *"ﬂ‘f [hurnber .
jin]
Vert Deps P Generate
Horiz Deps 0 | .
FuncDep o De_pendenaes

Generate Visualisation Files h——

Prepare
Visualisation

Figure 3-17: TomE Ontology Control

96

Step 3 — Run Visualisation
The final step is to load the visualisation of dependencies. The third pane (Figure 3-18)

runs the visualisation. The visualisation provides four main areas of functionality.

Dependency visualisations are loaded using the File menu.

Once loaded, the dependencies can be expanded, collapsed, zoomed and repositioned
using the main dependency-viewing pane (Area 1 below). The behaviour of main
viewing pane can be controlled using the graph control pane (Area 2 below) using the

standard functions provided by the GraphML viewer.

I 1. Main dependency viewing pane I 2. Graph control
B8 10Me (Towards Ontology Mapping Evolution) Aleatel-Lucent () 2009 P =181 %]
- T D -
; I NilodyFerce 4
v S0 . -} 1,200
Distance s
BanasitThety —————————— | 0%
DragFone
Dragtoeifident = 0,009
vl Speigforce
GE-exp2_test-logistics-Awards Pl Srmgoeoan = o e
. DefakSprmlength ——— |——— 800
E i Coremetivty Fiter
1 T 5 | PO me—
LT T T LU CET TR LT P ERO R o
5 : soch =3 [|
LE-exp2_test-logistics-Awards P3| oependences Found
E H Hame: | Type d [+
MP-c1
UE-carriers-name
: 3. Node search
LE-exp_test_db2-logistics-Awards
root
| GE-exp_test_db2logistics-Awards 0 ..
4. overview

Figure 3-18: TomE Visualisation

Using the Node Search (Area 3 in Figure 3-18), any individual node can be searched
for. The overview panel (Area 4 in Figure 3-18) provides an overview panel of the

entire graph that is useful when looking at very large graphs.

97

3.2.6.6 Worked Example of TomE Usage
A worked example of the usage of the TomE tool is provided in Appendix II. It

illustrates the input and outputs of the TomE tool. It assumes the existence of a
mapping file based on a simplification of the mappings using in the generalised

ontology-based integration system designed for experiment one.

98

3.3 Generalised Ontology-Based Integration Test System (HotFusion)
This section describes the design of the generalised ontology-based integration test
system. The test system was used in experiments one and two to support the integration

of the heterogeneous data sources based on the use cases described in the experiments.

Note that a fully functional ontology-based integration system was not needed, rather
the test system focused on the specific requirements arising from the aims of
experiment one. The requirements for the ontology-based integration test system are

discussed in Section 3.3.1.

The test system was implemented in a tool created by the author of this thesis that was

called HotFusion.

3.3.1 Design Requirements
The requirements for the ontology-based integration system arose from the aims of

experiment one. The aim of experiment one was stated as “Discovery of key issues
related to integration performance when applying an ontology-based integration

approach in an industrial context.”

Following a state of the art review of approaches to ontology-based integration, the
hybrid ontology approach [Wache et al. 2001, Cruz and Xiao 2005] was adopted to
create the generalised ontology-based test system. The hybrid approach offers
improvements in implementation effort, support for semantic heterogeneities, adding,
and removing of source over the single or multiple ontology approaches [Wache et al.

2001].

The key requirements for the design of a test system based on the hybrid approach

WEre:

¢ Integration system to provide a general integration engine (code) that would

operate the same way across different integration domain. (Requirement 1)

e (lear separation of the domain ontology, mappings and data sources.

(Requirement 2)

e User interface to enable step-by-step analysis of the integration.

(Requirement 3)

Requirement 1 was created to ensure that as different integration use cases were tested

with the system, the basic integration engine (or code) did not have to change.

99

The system that was designed was tested using the THALIA integration benchmark

[Stonebraker 2005] to ensure it provided adequate integration capability.

Requirement 2 was created to ensure that relationships between the major components
of the system had well defined interfaces and that the minimum level of dependency
existed between the major parts of the system. A factory design approach was used that
divided the system into functional areas that consume an input, process it and pass it on

to the next functional area.

Requirement 3 was created to ensure that as integration use case was running, the
outputs of each step could be verified. To realise this, the generalised ontology-based
integration system has a graphical user interface that provides control over the

execution of the integration use case.

These specific requirements, defined above, for the generalised ontology-based
integration system meant that a full functional ontology-based integration was not

developed and was considered beyond the scope of this research.

In particular, the test system here does not provide functionality in a number of areas
where a fully functional system would need. For example, a full functional integration
system would provide user interface support of the creation of ontologies, mapping

creation and integrated view creation and reporting.

3.3.2 System Overview
The generalised ontology-based integration test system consists of an upper ontology,

that contains a high level definition of the business concepts used in the integration
domain and lower ontologies that lift the database schema to a resource description
framework (RDF) format [RDF]. The upper and lower ontologies are connected using
mappings based on the INRIA [Euzenat 2004] mapping format. The lower ontologies
are connected to the data sources using the D2RQ API [D2RQ API].

100

Integration Application ||
Upper Ontology
II IImappings
Lower Ontology 1 Lower Ontology n
I I
] K &
database 1 database n

Figure 3-19 Integration Test Bed Overview

Upper Ontology

The upper ontology can be developed by gathering information about each domain
from domain professionals. The approach taken in experiment one and two was to have
each professional summarise their domain understanding in a short précis. These

descriptions were used to create a common view of the domain.

By extracting the concepts and relations described in the précis, an ontology can be

developed in OWL [OWL] using the Protégé development kit [Protégé].

Ontologies are instantiated in the integration application using the Jena API [Jena].

Lower Ontologies

The lower ontologies lift the basic database schema information into RDF using D2RQ
API [D2RQ API]. This allows for automatic generation of the ontologies from the
databases and once instantiated in a JENA model, the lower ontologies can be queried
using SPARQL. The D2RQ API automatically converts the SPARQL queries to SQL

and returns a set of triples to the caller.

The lower ontologies contains classes and properties for each of the underlying
database schema items and are accessed through a set of mapping files automatically

created by the D2RQ APIL.

101

Mappings

A bespoke mapping implementation was created by the author of this thesis that is
based on the INRIA format but additionally allows a Java function to be called to

execute a complex mapping.

The mappings used in this prototype support simple equivalence mappings (class to
class, property to property), union type mappings (property A is the union of property
B and property C) and complex conversion mappings (property A can be converted to
property B using relation AB). In this prototype, relations are encoded as standalone

Java functions.

A complex mapping (to sum three revenue fields into one) with a function specified

looks like:

Entity1=http://someUrl/upperontology/#forecast_reveneue_ql

Entity2=http://someUrl/lowerontology/#forecast_revenue_ml,
http://someUrl/lowerontology/#forecast_revenue_m?2,
http://someUrl/lowerontology/#forecast_revenue_m3,

Relation=function
FunctionHandle=sum_revenues

Code 7: Mapping Specification

This mapping method was realised using an XML format. The integration system

executes the mappings in a predefined way as shown later in this chapter.

The XML realisation of this mapping scheme requires that each mapping has the

following tags:
e Source ontology property name
e Destination ontology name
e Destination properties name
e Destination instance access information (Optional)

Some properties require “instance access” information. For example, to access a
customer name, we need to know its customer id. This link information is also with the

mappings (but raises some database schema knowledge into the mappings).

102

A simple example of a mapping in XML follows:

<mapping>
<mapping_number>9</mapping_number>
<source_type>p</source_type>
<source_name>customers_region</source_name>
<dest_ont>sales</dest_ont>
<dest_type>p</dest_type>
<dest_prop_name>region</dest_prop_name>
<dest_class_name>customers</dest_class_name>
<dest_pkey>id</dest_pkey>

</mapping>

Code 8: XML Mapping snippet

This mapping means that the “Customers_region” property from the upper ontology is
mapped to the “region” property in the ontology “sales” and to access a region you

need to have a “customers id”.

A complex mapping is show below:

<mapping>
<mapping_number>19</mapping_number>
<source_type>p</source_type>
<source_name>sales_revql</source_name>
<dest_ont>forecasts</dest_ont>
<dest_type>p</dest_type>
<dest_prop_name>revml,revim2,revin3</dest_prop_name>
<dest_class_name>forecasted_items</dest_class_name>
<dest_pkey>oppid</dest_pkey>
<function>sum_revenue</function>

</mapping>

Code 9: XML mapping snippet

This mapping means that the “sales_rev_ql” property from the upper ontology is
mapped to the “revml, revm2, revm3” properties in the ontology “forecasts” and to

access it requires an “oppid” and execute the “sum_revenue” function.

Functions are implemented using Java dynamic class loading and an interface class as

shown below.

103

public interface mappingif {
public String convert(..);

}

Code 10: Java Code snippet - Dynamic Class Loading

For each complex mapping in the mapping file, a class must be created that

implements the “convert” method from the interface class.

Mapping functions are dynamically loaded and executed by the integration system as

follows:

URLClassLoader loader = null;

loader = new URLClassLoader (new URL[] {file.toURL() });
Class c loader.loadClass (funcname) ;
Mappingif var = (mappingif) c.newlInstance();

var.convert(...);

Code 11: Java Code snippet - Dynamic Class loading

The “funcname” is loaded from the mappings XML description.

This method of dynamic loading and mapping function naming is very flexible because
the existing mapping functions can be updated without interfering with the mappings
file or the main integration system code. New mapping functions can be added to the

system by updating the mapping file.

Ontology and Database Query

Ontologies are instantiated in the integration application using JENA API [Jena]. The
ARQ (SPARQL) API [SPARQL] is used to generate queries on the upper and lower

ontologies.

104

3.3.3 Functional Architecture & Design
The functional architecture for generalised ontology-based integration system, called

HotFusion, is shown in

Figure 3-20.

Integration Execution Engine

Model Factory

HotFusion

Figure 3-20: Integration System Functional Architecture (HotFusion)

To fulfill design requirement 2 from Section 3.3.1, the system was divided into the

following functional areas:

Mapping Factory: The mapping factory is responsible for loading and
processing the mapping file for the integration system. The classes in this
functional area convert the XML mapping file into an internal Java list
structure to enable fast searching over the mappings. This class is very similar
to the mapping factory class used in the TomE tool described earlier with
respect to the loading of XML mappings. The main difference between
implementations is that the search functions have different functionality based

on different needs of the TomE tool and integration test bed.

105

® Model Factory: The model factory is responsible for loading, verifying and
querying the upper ontology. It provides functionality to the Integration

Execution Engine that is described next.

¢ Integration Execution Engine: The integration execution engine executes a
series of steps that are described in Figure 3-21. This provides the functionality

need to fulfil design requirement 1 from Section 3.3.1.

e User Interface: A tabbed graphical user interface is provided by this functional
area. This provides control over the execution of the integration use case by
allowing the user to execute the integration in a series of steps using buttons on

the user interfaces.

The integration engine carries out the integration using the steps defined in Figure 3-21.

Q@

[Integration Goal Speciﬁcation]

<<atastare=>

[Discovery]/ Integration Ontalogy

<<datastore>>

Mapping jé// mapping file

(
[SPARQL Query Generation]
[

\L <<fatastore=>

SQL Query Execution Databases

8

Figure 3-21: Integration Process

¢ Integration Goal Specification: The user or application specifies an
integration goal. In the test system, the goal is hard coded into the application.
The integration goal specifies what the users or applications wish to integrate
and contains the concepts to integrate and the data needed to select the

information (the key information).

106

3.34

Concept Discovery: Using a SPARQL query [SPARQL] on the upper
ontology, each concept in the goal is supplemented with the properties
available for that concept. (e.g. customer_info concept ‘becomes’

customer_name, customer_id, customer_region etc...)

Mapping Execution: The mappings are now applied to the concept and
property names. This step then generates SPARQL queries on the lower

ontologies.

Lower Ontology Query: Output from the mappings step is a sequence of
SPARQL queries that are run against the lower ontology. These queries are in

turn converted to SQL queries by the D2RQ API [D2RQ API |

Presentation of Results: Each requested property and the properties value is
returned to the application. In our test system, we have no semantics to help us
construct a formatted report so a simple list of attribute names and values are

returned.

HotFusion Implementation

This section describes the implementation details of the mapping factory, model

factory and user interface implementation.

3.3.4.1 Mapping factory

The mapping factory consists of a set of classes that provide access and manipulation

of the mappings that have been described earlier. The component provides methods to

load mappings from a specified file. Mappings are stored in memory during the

integration process in a Java array list structure. The class diagram for the mapping

factory is shown in Figure 3-22.

The class UCTest3Panel is the user interface class that is used to orchestrate the

integration steps as shown earlier (Figure 3-21).

107

ElucTest3Panel

af

=|mappings_factory
Abtributes
package Document dom

Cperations
package void mappings_factory_test])
package mappings_factory)
package void display_mappings{ }
private woid parseXmlFile])

=imapping
Aitributes
package String mapping_no
package String mapping_type
appings| package String source_type

private woid parseDocument])

private mapping getmapping Element empEl)

private String getTextWalue{ Element ele, String tagName
private int getintWalue Element ele, String tagMame)

0.% package String source_name

package String source_expansion
package String source_expansion_db
package String source_expansion_class
package String dest_db

maps_founc | package String dest_type

= match .7 | package String dest_prop_name

Attribies package String dest_table_name
public int number_of_mapping package String dest_phkey

Operations package String dest_pkey_type
package match{) package String function

Figure 3-22: Class Diagram Mapping Factory

3.3.42 Model Factory
The model factory consists of a set of classes that provide methods for loading,

verifying and querying integration ontology (upper ontology).

The class diagram for the model factory is shown in Figure 3-23

- lupper_model factory . llower _model factory

Attributes Attributes

private OntModel IntModel private ModelD2RQ dsMadel
Operations Operations

public upper_model_factory() public lower_model_factory()

public OntModel getintModel() public ModelD2RQ getDsModel()

public void setintModel{ OntModel val) public void setDsModel(ModelD2RQ val)

public ResultSetQuery SQUERY() public ResultSetQuery SQUERY()

Figure 3-23: Class Diagrams for Model Factories

The model factory loads the integration ontologies using Jena API [Jena]. The

integration is stored in memory as a Jena OntModel Object.

The model factory also provides classes to load the lower ontologies. Each of the lower

ontologies are loaded as D2RQ objects “ModelD2RQ” from the D2RQ API [D2RQ

108

API]. Note that the integration code will need to load one lower ontology model for

each data source that is included in the integration system.

In the current implementation of the HotFusion, these object references are managed in

user interface code.

3.3.4.3 User Interface
The user interface (Figure 3-24) classes provides a set of Java tabbed panes to allow

independent setup, execution and monitoring of the different use cases (e.g. logistics

for experiment three).

In the current implementation of HotFusion, the orchestration of the use case needs to

be manually coded in the button action handler of the appropriate tabbed pane.

This approach was taken to simplify coding and ensure focus on what the integration
steps are and not how they might be automatically orchestrated (e.g. using some

orchestration or workflow approach).

£ HotFusion by Bell Labs =10]x]|

| Use Case 1: Alpha Version | Use Case 1: Beta Version | Development Version | Logistics Integration
Use Case 1: Get a logistic rates for a given origin/destination/weight. Logistics Integration

Enter OriginDestinationA¥eight: |USA Chicago France,Paris 200

hitp:/iwwww.owl-ontologies.comiOntology 12253827 15.0wltduties = | Clear |
http:/iwww.owl-ontologies.com/Ontology 12253827 15.0wl#carriers =
hitp:/fwww.owl-ontologies.com/Ontelogy 1225382715 owl#irc Trace ou tput
http:/iwww.owl-ontologies.comiOntology 12253827 15.0wl#weight_types

-24e26cd:12738019167:- Tlec

-21e26cd:127 38010167 719

http:/www.owl-ontologies.com/Ontology 12253827 15.0wl#destination
http:/iwewew.owl-ontologies.com/Ontology 122538271 5.0wl#shipmentinformation

hitp:/www.owl-ontologies.com/Ontology 122538271 5.owl¥ratesheets .
http:/weww.owl-ontologies.com/Ontology 12253827 15.0wl¥city ! Copy |
http:/Aeww.owl-ontologies.com/Ontology 12253827 15.0wl#normal
http:/fwww.owl-ontologies.com/Ontology1225382715.0wl¥exportduties
hittp:/hevew.owl.ontologies.comOntology 1225382715 owlE#minweight
http:/ievew.owl-ontologies.com/Ontology 122538271 5.owléweightcosts
hittp:/sweww.owl-ontologies.com/Ontology 12253827 15.0wl¥importduties
http:/fwww.owl-ontologies.com/Ontology 12253827 15.0wlFenvelope
http:/iwwew.owl-ontologies.com/Ontology 122538271 5.owl¥greaterthanweight
http:/www.owl-ontologies.comiOntology 122538271 5.0wlilot

Model Query

[4] [I [¥]

Run |ntegration

DataProps l Drill Down Test

ObjectProps l Display Upper Ontology Classes -> Display Opportunity Id Info

Run Use Case 1

Figure 3-24: Integration System Control Panel (HotFusion)

3.4 Summary

This chapter described the design and implementation of the models, tools and test
beds that were created to support the dependency modelling approach taken in this
research. Chapter 4 describes how these models, tools and test beds were used to

support the evaluation of the research question.

109

4 EVALUATION

4.1 Overview of Experiments

Four experiments and one corroborative study were conducted in keeping with the
action-based research methodology of this research. Each experiment supports the
analysis and evolution of the research question. The four experiments deal with the
development and evaluation of an approach to support the evolution of mappings in an
ontology-based integration system. The corroborative study provides an indication of
the genericity of the ontology-based dependency metamodel by applying the

metamodel in another domain.

Figure 4-1 provides an overview of the five experiments and the measurement

approaches applied to them.

-\

[Ubjeclivet State of the [
S

Objective?: Design Objective 3: Design
COntology-based

Dependency Model

J [] [Objective4: Evaluate OBDM

]

OBDM Tool

Experiment 1:

[

Integration Quality

Experiment 2:

[

Mapping Complexity

Experiment 3:

OBDM Performance

Experiment 4:

OBDM Performance

I

Corroborative Study:

Metamodel Genericity]

measured h_a

measured h_\)

measured b)i

measured h_)j

measured b_\)

“Integration Quality ™

“Mo. of Mapping

“Dep. ldentification

“Dep. ldentification

User Feedback

[
|

Metric Performance ™ Metric Performance™ Metric

IJ'SGS)

THALIA Integration

Dependencies”

| (Z) =2

Figure 4-1: Relationship between Experiments and Objectives.

nses {ises

Tests

The first experiment developed an understanding of the integration performance and
issues associated with ontology-based integration systems. The experiment created an
environment to measure the performance of a generalised ontology-based integration
system. To achieve this, a generalised ontology-based integration system test bed was
created. The integration test bed used data from product line management systems
from the Alcatel-Lucent supply chain. The “integration quality” metric, as defined in
Section 1.2, of the system was measured using the THALIA [Stonebraker 2005]

integration benchmark. In summary, experiment one showed that advantages are

110

gained by using the ontology approach because the solution can cope with semantic
heterogeneity using mappings. However the analysis of the results of experiment one
also showed that the mappings themselves create complex couplings between the
components of the integration system. Experiment one led to the hypothesis that the
complex nature of the mappings makes it difficult to quickly and accurately find the
mappings that are impacted when a data source changes. Experiment two evaluated
the hypothesis that this difficultly in managing changes to the data sources and
mappings could be alleviated by modelling the dependencies that exist between the

components of the ontology-based integration system.

The second experiment developed and evaluated an ontology-based dependency model
(OBDM) that would support understanding of the complex coupled nature of mappings.
The second experiment used mappings which resulted from the application of the
generalised ontology-based integration test bed. The generalised ontology-based
integration test bed was used to resolve the heterogeneities associated with data from
the Alcatel-Lucent logistics supply chain. This experiment confirmed the hypothesis
arising from experiment one regarding the complex nature of mappings by showing the
complex dependent relationships they exhibit with other parts of the system. From
analysis of the results of experiment two, the hypothesis was developed that the
mapping dependency relationships are difficult to identify without tool support. This

hypothesis is confirmed in experiment three.

The third experiment evaluated the performance of the dependency modelling
approach in terms of the accuracy and time taken to find answers in comparison to a
manual process oriented approach that does not have tool support. The manual
approach represents the key steps needed to find dependencies in semantic mappings.
The manual process was developed the author of this thesis by interviewing integration
and logistics experts to identify the key processes required to find the dependencies
within a theoretical set of mappings based on logistics data. A group of 18 users were
given an exercise to find predefined dependencies between sample mappings using the
manual process. A theoretical set of mappings was used during the experiment to
ensure an even distribution of the complexity of the answers across the exercises.
Metrics were collected during the exercises to enable statistical analysis of the time

taken and accuracy of users as they executed the process. The results of the evaluation

111

show that the ontology-based dependency model significantly outperforms the manual

process in both accuracy and time.

In experiment four the ontology-based dependency model and tool was used to support
the evolution of the mappings when performing a real evolution based on an industrial
dataset. For this experiment, a new logistics carrier was introduced that provides
transportation services by sea. This required the analysis and updating of the mappings
used in experiment two. A case study was carried out that identified the dependencies
that arise when the new logistics data source was added to the integration system from
experiment two. The results of experiment four demonstrate how the ontology-based
dependency model can support mapping evolution by showing the dependencies that

exist thus allowing the user to examine the dependency relationships in detail.

Finally, to provide an indication of the genericity of the ontology-based metamodel, a
corroborative study was carried out to test the ability of the metamodel to be applied
outside the ontology-based integration system. A scoped electrical circuit from a
domestic setting was selected as the domain and an electrical engineer was instructed
on the process to create a domain model from the metamodel. A sample dependency
analysis was run on the model based on the requirements of the electrical engineer. The
dependency analysis supported the identification of faults in the circuits based on the

analysis of dependent components in the circuit.

112

4.2 Experiment One — Measurement of “Integration Quality” Metric

4.2.1 Overview
During this experiment the technical environment to measure the performance of a

generalised ontology-based integration system was created. The technical environment
consisted of the generalised ontology-based integration system test bed and the
THALIA [Stonebraker 2005] integration benchmark. The integration test bed was
populated with data from product line management systems based on a use case from
the Alcatel-Lucent supply chain. The THALIA integration benchmark was used to
measure the “Integration Quality” metric of integration system performance as defined

in the introduction (Section 1.2).

In summary, experiment one showed that while advantages are gained by using the
ontology approach because the solution can cope with semantic heterogeneity using
mappings. However, as a result of experiment one a hypothesis was developed that
suggested that the complex nature of the mappings makes it difficult to quickly and

accurately find which mappings are impacted when a data source changes

Section 4.2.2 describes the objectives of the experiment in the context of the research

question.

Section 4.2.3 provides the background to the supply chain based use case that was used

for this experiment.
Section 4.2.5 describes in the detail the approach taken for this experiment.

Section 4.2.6 and 4.2.7 describe the results and conclusions of this experiment.

4.2.2 Obijectives & Hypotheses
In the Introduction chapter, the first objective that was derived to evaluate the research

question was stated as “Perform a state of the art review of approaches for semantically
linking local'* schema and aggregate or global schema'””. To address this, experiment

one derived the following sub-objectives:

1) Identify the generalised ontology-based integration approach using a literature

review to identify the different approaches to support integration.

' Local schema refers to a schema that represents the local sources to be integrated.
'* Global schema refers to a common view of sources to be integrated.

113

ii) Assess the integration performance of this approach using the generalised

ontology-based test bed and THALIA integration benchmark.
1ii) Identify the issues that would affect upon an industrial deployment.
Hypotheses

From the state of the art review, the hypothesis was developed that ontology-based
integration approaches can support the semantic integration of heterogeneous data
sources. This experiment tests how well this hypothesis holds when using an industrial

use case and data set.

4.2.3 Use Case Background
Supply chains of large companies are typically comprised of many IT systems that

have developed over time to support various supply chain functions (e.g. Customer
Relationship Management, Demand Forecasting, Production, and Logistics). Each
stage of a product’s life is managed by one or more IT systems. While these systems
have introduced many productivity improvements in their individual areas, they have

also contributed to the creation of separate islands of data in the enterprise.

An important part of many supply chains is Product Lifecycle Management (PLM).
PLM is a supply chain process that manages enterprises’ products through all stages of
their life from initial sales opportunity, demand forecasting, product realisation,
manufacturing, delivery to customer and support to end of life. It is within this area of
the supply chain that data consistency and visibility issues were identified between the
systems that manage the Sales and Forecasting part of the product lifecycle. Lack of

consistency can lead to failure to deliver on time or result in excess of inventory.

To mitigate any risk associated with lack of consistency between sales and forecasting
views of the PLM, organisations attempt to balance forecasting and sales opportunities
[Gilliland 2002]. In the Alcatel-Lucent supply chain, these risks are managed using a
manual integration of financial information from each system. The report that is
produced by this manual integration supplements the financial information with an
integrated view of the customers and products. This involves many manual steps to
export data from the databases and rework with a spreadsheet where the various

heterogeneities are resolved manually.

114

4.24 Experimental Approach
Resulting from objective (i) for this experiment (as described above), a state of the art

review of approaches to ontology-based integration systems was undertaken. The
hybrid approach was selected, as discussed in the state of art review, because it offers
potential improvements in implementation effort, support for semantic heterogeneities,
adding, and removing of source over the single or multiple ontology approaches

[Wache et al. 2001].

Resulting from objectives (ii) and (iii) for this experiment, a generalised ontology-
based integration test bed was created, as described in the design chapter. The
generalised ontology-based integration test bed was populated with data based on the
use case from the Alcatel-Lucent supply chain as described in section 4.2.3. The
THALIA integration benchmark [Stonebraker 2005] provided an ideal framework to
measure the “Integration Quality” measurement. In the Introduction chapter, the

“Integration Quality” measurement was defined as:

¢ A measure of the ability of the system to carry out integrations across a range

of different types of data heterogeneity.

The THALIA benchmark system and tests specify 12 types of heterogeneity that can
be used to test performance of integration systems. The approach taken to run the

benchmark involved the following steps:

e Assess which THALIA tests are covered by the PLM data and manually add

data for any tests not covered. (Section 4.2.5)

e Set up the integration test bed to carry out the integrations based on the 12

THALIA tests (Section 4.2.5)

¢ Run the integration test bed to generate the integrated report. (Section 4.2.6)

4.2.5 Experimental Setup
This generalised ontology-based integration test bed required the creation of the upper

ontology, mappings and lower ontologies for this domain. The approaches adopted for

these tasks are described below.

115

Integration (Upper) Ontology

The upper ontology (Figure 4-2) was developed by gathering information about each
domain from three supply chain professionals, one working on forecasting, one
working on sales and one working on the current manual integration of the systems.
Each professional summarised his or her understanding of the domain in a short précis.
These descriptions were used to create a common view of the sales and forecasting
area. By extracting the concepts and relations described in the précis, an ontology was
developed by the author of this thesis in OWL [OWL] using the Protégé development
kit [Protege]. Ontologies are instantiated in the integration application using the Jena

API [Jena]. The ontology contained 8 classes, 20 data type properties and 5 object

properties.
—
A o
| sales_rev)
Ny T
S iga—"
5 .-.H"!-..:r--- —
| revenue L jog 0 -
e | forecast_rev)
K apRetunity) —

\ owl:Thing | | sales_item)
e - N ———e [@ = ~
e ..‘-‘:'-.'I'-\,_. ____'.__. d E. __}__ ¥ e

.y | products |)
qﬁiﬂ |:| A —iga —————
™ e a . ",
h“'-a_h_ | forecasted_item
'.-:_.- - '-.__. "-_._-- fiEE --___.-'
'_f customers
Figure 4-2: Excerpt from Upper Ontology
Creation of Mappings

The mapping format was described in the design chapter (Section 3.3). For this
experiment, the relationships between the ontology concepts and database fields were
identified during the ontology design process with the help of the domain experts. The
mappings were then encoded manually into the mapping format. Thirty-one mappings

were needed to implement the use case. The mappings are listed in full in Appendix II.

116

Ten mappings required complex conversion functions to cater for conversions of
different product code formats, quarterly and monthly revenue figures, currency and
date conversions. In experiment one; these are referred to as complex mappings as they
contain a bespoke conversion functions coded in Java. The remaining 21 mappings did
not require conversion functions as they lift the data from the databases without

conversion.
Lower Ontologies

The lower ontologies were created automatically from the databases (described in the
next section) using the D2RQ API [D2RQ API] as noted in the design chapter. The
lower ontologies lift the basic database schema information into RDF (using D2RQ
APIL) This allows for automatic generation of the ontologies from the databases and
once instantiated in a JENA model [Jena], the lower ontologies can be queried using

SPARQL [SPARQL].
Database Setup

Two databases from the Alcatel-Lucent supply chain were chosen based on the use
case requirements. The first is an Oracle based system that manages sales opportunities.
It contains high level product and financial information and detailed customer
information. This system has 58 tables and over 1200 attributes. The second system is
a Sybase based system that manages product forecasting. It contains high level
customer information but detailed product and financial information. This system has

50 tables with over 1500 attributes.

As these systems were very large and in active daily use, each database schema was
examined to extract the tables and data that were relevant to the integration use case
and this reduced data set was recreated in two MySQL databases. The integration use
case enabled reduction of the original dataset (tables and properties) to only that data
used in the use case. For example, one database also contains multiple levels of
customer contact detail that is not relevant to the integration use case. This reduced the
data sizes to 8 tables for each database. All schema and real data from the original
databases were preserved in the MySQL versions. To allow the full THALIA
benchmark to be run, the databases needed to be supplemented by additional

complexity in three areas (language expression and virtual columns, nulls — see Table

117

2-1, Section 2.7.1). This was achieved by adding specific data items to databases to

cover these tests.

The integration scenario involved the integration of financial information from each
database, ordered by sales opportunity and supplemented with financial information
with an integrated view of the customers and products. Real instance data from the
Alcatel-Lucent supply chain systems was loaded into the MySQL database to run the

use case.

The integrated report could be represented as shown in Figure 4-3

oF T Dippontunity e | a*t Customer "t Sales Prodist, | Sales Rew Forecasted Irems | Forecast Rev
. lid [Wame {1, Hame Region+ [name i Jgt g2 g3 gl id Name gl .o"=wa2 qi ol
ToPT N8 | 5 e {Equp bt ? S 3 O GOOrMy, s 5. 15 B G
: Fegut® BER = 5o 15 15 15
} 17 1594 - 15 & 15 15 154
@i rY% B 16 18 18]

Figure 4-3: Integrated Report

Sales Opportunity (Opportunity) and Customer information (Customer) need to be
expanded from high level concepts to contain more detailed information such as
customer id and geographical region. This involves integrating information from both

databases (identified as 1 in Figure 4-3).

The Sales view of a product needs to be expanded from a single high level item (Equip
Install) to a collection of items (with ids 15, 16, 17, 18) in the Forecasted view

(identified as 2 in Figure 4-3).

Sales and Forecasted revenue needs to be converted from monthly to quarterly views

(identified as 3 in Figure 4-3).

The key heterogeneities that exist in the underlying data:

* Structural — Simple conversions

Example 1: currency units in one schema need to be converted to a

different unit in the second schema.

e Structural — Relations

118

A single product (high level description) in one schema is represented
by a list of parts (low level description) in the second schema. For
example, a product at the sales database is defined as “ADSL Access
Platform”, in the forecasting database this is broken down into many

parts (frames, cards, cabinets)

e Structural - complex conversions

Example 1: Revenue figures in one schema are stored monthly
compared with quarterly revenue in other schema. The upper ontology
deals with quarterly revenue and a conversion (summing) of monthly to

quarterly revenue needs to occur.

Example 2: “Long codes” used in one schema are comprised of three

subfields in the second schema.

* Semantic - Different class and property names conveying same information

Example 1: Upper ontology has a class called “customers” with

properties “name”, “id” and “region”. Lower ontologies have classes

29 46

“custs”, “account” and properties “name”, “id” and “FTS-Tier”

* Semantic - Same property name conveys different information

Example: product_id is used in both the lower schemas but conveys

different information with different granularity

119

4.2.6 Experimental Results (based on THALIA)
This section contains the results related to the objective to measure the performance of

our approach based on the THALIA integration benchmark (objective ii).

With respect to the THALIA integration benchmark, using the generalised approach,
50% automated integration (6/12 tests passed) was achieved. A test was deemed to
have passed if the integration test bed could perform the integration in at least a semi-

automatic way. Table 4-1 below shows the detailed results:

Test Result Effort

1. Synonyms PASS Semi Automatic
2. Simple Mapping FAIL Manual

3. Union Types PASS Semi Automatic
4. Complex Mapping FAIL Manual

5. Language Expression PASS Semi Automatic
6. Nulls PASS Fully Automatic
7. Virtual Columns FAIL Manual

8. Semantic Incompatibility PASS Semi Automatic
9. Same Attribute in different Structure FAIL Manual

10. Handling Sets FAIL Fail

11. Attribute names does not define PASS Semi Automatic
semantics

12. Attribute Composition FAIL Manual

Table 4-1: THALIA Integration Benchmark Results

Efforts are categorised as follows:

Fully automatic: no code, mapping or ontology changes needed.
e Automatic: Automatic regeneration of ontology or other configuration artefact.
e Semi Automatic: A mapping needs to be changed manually.

e Manual: Non core code artefact needs to be changed or added manually. (e.g. a

function associated with a mapping)
e Fail: core code changes needed. (e.g. core test bed code needs to be changed)

(Note: this is an extended method of classification that is not part of the core THALIA

system)

120

In total, 31 mappings were needed to implement the use case. Of these, 21 mappings
were simple (e.g. point to point relations) between ontologies and the remaining 10

were complex mappings requiring supporting ‘function code’ to be written.

As Table 4-1 indicates, tests 2,4,7,9 and 12 fail. This was because they required
conversions to be constructed, that in turn required some mapping code to be produced.

Examples of these are:

e In one schema, product id is encoded in a longer representation called

“longcode” and the product-id needs to be extracted (test 7).

Tests 1,3,5,8 and 11 require a mapping to be created that does not require any mapping

conversion function to be written.

Examples of these are:
e customer_name in one ontology is mapped to cust_name in another (test 1)

e product_description in the upper ontology is the union of product information

in the lower ontologies (test 3).

e customer_region in one ontology is mapped to ‘“client” (test 5)

Test 10 fails outright because the mapping format used did not support such “set type”
constructs. To support this would require changes to the integration system code itself
in the way its handles the mappings (i.e. the semantics of the mappings would need to

change).

121

4.2.7 Discussion of Experimental Results
The goal of experiment one was to discover the key issues when applying the

ontology-based integration approach using the THALIA benchmark. The integration

performance and issues found are discussed below.
Integration Performance

The results of applying the THALIA benchmark show the complexity of carrying out
integration of heterogeneity data sources. The score achieved of 50% automated

integration reflects the variety of challenges that the THALIA tests provides.

Extra support could be provided during the mapping process to simplify the effort
needed for test 2 (simple mapping), test 4 (complex mapping) and test 9 (Same
Attributes exist in different structures). This could be achieved by providing the user
with a set of well-known conversions for important (or often used) data types. To
incorporate these conversions in the integration system would require update to both
the mapping structure (to identify which canned conversion to use and specify how to
apply it) and to the integration test system to enable execution of the appropriate

conversions.

To improve the performance of the system for test 7 (Virtual Columns), the ontology
design process could be improved to explicitly identify data of this type in the data

sources and then to make the relationships explicit in the ontology.

It is difficult to envisage how the current integration test bed could be improved for test

10 and 12 without additional coding of new functionality for the integration test bed.

While every data integration use case may not contain each type of heterogeneity
specified by THALIA, as the new integration use cases are added, new heterogeneities

can be expected due to different data designs implemented in the underlying databases.

The goal of the integration test bed was only to provide insight into the integration
system and mapping complexity and thus the improvements proposed above have not

been subsequently implemented.

Mappings create tight coupling.

A third of the mappings used to resolve the heterogeneities in our database were of the

complex type (tests 2, 4, 7, 9, 12). Unfortunately, these mappings create a tighter

122

coupling between the upper and lower ontologies than is desirable because the
conversion functions that need to be written tend to require information from both the
upper and lower ontologies. For example, a non trivial conversion function is needed to
sum the revenue for three months from the lower ontology into a quarterly value for
the upper ontology; however, the function specification for this summation needs to

know from which lower ontology resource to obtain the monthly value.

Furthermore, the number of mappings required will grow as different integration use
cases are implemented because different data properties may need to be mapped
between the lower and upper ontologies. This is problematic because it will require the
user to remember which mappings have already been implemented and what complex
conversions the mappings use. If the integration use case requires a specialisation or
generalisation of an existing concept in the domain ontology then as new mappings are
created they may well refer to some of the database properties used by existing
mappings. This is also problematic because it will require the user to develop an

understanding of the relationships between mappings, the data source and ontologies.

The abstraction level of the upper and lower ontologies also negatively impacts the
coupling. At the lower ontology, there is a low abstraction (few semantics) ontology
and at the upper ontology there is a high abstraction (domain conceptualisation). This
forced some aspects of the integration to be resolved in the application and not in the
ontologies or mappings. For example, there are a number of cases where a property
could be used to find other properties (“opportunity id” allows us to find a “customer
id” and that allows a customer name to be found). However, given the “opportunity id”,

this linkage is not encoded currently in the ontology or in the mappings.

Reasoning in the upper ontology

The integration test bed was designed to support integration by traversing the ontology
(via its OWL object properties) and use the associated mappings to build integrations
of the data that the ontology represents. While this represents reasoning over the
ontology, it did not use a separate ontology reasoner (e.g. the Pellet reasoner [Pellet])
to carry out this functionality since it requires also query functionality over the
ontology. This is implemented in the integration test bed by a piece of Java code and

used the SPARQL API to query the domain ontology. This approach means that the

123

code is reusable over any other domain ontology. The Pellet reasoner was used to carry
out validation of the integration ontology during both the ontology design process and

when the ontology is instanced in the integration system using the JENA API [Jena].

4.2.8 Summary of Conclusions, Open Issues and Limitations
Experiment one measured the performance of the ontology-based integration test bed

using an industrial use case and data set and the THALIA benchmark system. The
integration system achieved 50% automated integration. This score reflects the variety

of challenges that the THALIA tests provides.

From analysis of the results of this experiment, a hypothesis was developed that
mappings exhibit complex dependency relationships with the data sources and
ontologies. Furthermore support for understanding the mapping dependencies would

bring benefits to the integration system when the mappings need to be changed.

While the THALIA score could be improved by further development of the ontology-
based integration test system, a more important issue for an industrial deployment was
identified concerning how the mappings can be evolved as new integration use cases

are added to the system.

The THALIA benchmark provides a simple measure (i.e. a score out of twelve) of the
ability of the system to perform integrations across the twelve types of heterogeneity.
A more comprehensive suite of performance measurements (e.g. runtime performance)
would be needed to confirm the integration systems suitability for industrial
deployment. These aspects of performance were not tested in this research as the focus

here was to investigate the complexity of the mappings.

The THALIA benchmark system does not provide quantitative data on how much
effort is needed to run each test. This is important because, while a test may pass, it
may require costly manual intervention (e.g. mappings updates) that would impact the
scalability of the system. To address this in experiment one an effort classification was
developed and used that provides qualitative estimation of the effort needed for each

test in THALIA.

124

4.3 Next Steps in Action Methodology

From analysis of the results of experiment one, the hypothesis was developed that the
mappings exhibit complex dependency relationships with the data sources and
ontologies. Furthermore support for understanding the mapping dependencies would

bring benefits to the integration system when the mappings need to be changed

The next iteration in the action-based methodology was to create the ontology-based
dependency model to develop an understanding of the dependencies between mappings,

data sources and ontologies to confirm this hypothesis.

4.4 Experiment Two — Mapping Complexity Analysis

4.4.1 Overview

This experiment created the technical environment to support the analysis of the
complexity of the mappings in the generalised ontology-based integration system. This
was achieved by modelling the dependencies that existed between the mappings in the
generalised ontology-based integration system developed as part of experiment one. A
model of dependencies in the ontology-based integration systems was developed in
OWL [OWL]. This model was called the ontology-based dependency model (OBDM)
as described in the design chapter. A tool called TomE (Towards Ontology Mapping
Evolution) was created to load the OBDM and support the analysis of the dependencies.

The mappings used in the generalised ontology-based integration system for this
experiment came from a second use case from the logistics domain of the Alcatel-
Lucent supply chain. The new use case for this experiment required the creation by the
author of this thesis of a new integration ontology for the logistics domain, mappings
and lower ontologies. These were created using the same approaches as described

experiment one.

From the analysis of the mappings in this experiment, it was found that 30% of the
mappings exhibit complex dependency relationships with other mappings. It was
hypothesised that these complex relationships are difficult to identify without tool

support and thus makes the first step of mapping evolution difficult for integrators.

Section 4.4.2 describes in the objectives of the experiment in the context of the

research question.

125

Section 4.3.3 provides the background to the supply chain based use case that was used

for this experiment.
Section 4.4.4 describes in the detail the approach taken for this experiment.

Section 4.4.6 and 4.3.7 describe the results and conclusions of this experiment.

4.4.2 Obijectives & Hypotheses
In the Introduction chapter, the second and third objectives that were derived to

evaluate the research question were stated as:

e “Research and develop a model to define the dependencies that arise when
creating semantic links between schemas to support an ontology-based

integration approach between local schemas to global schemas.”

e “Research and develop a prototype tool capable of supporting this dependency

modelling approach.”
To address these objectives, experiment two derived the following sub-objectives:

i) Develop and evaluate an ontology-based dependency model (OBDM) that

would support understanding of the complex coupled nature of mappings.

i1) Confirm the hypothesis from experiment one that the mappings exhibit

complex dependencies relationships with the data sources and ontologies.
Hypothesis

The hypothesis for experiment two was that the complex nature of the mappings in the
generalised ontology-based integration makes it difficult to quickly and accurately find

which mappings are impacted when a data source changes.

4.4.3 Use Case Background
For this experiment, the ontology-based integration systems from experiment one was

tested with a new dataset from the Alcatel-Lucent reverse logistics supply chain'®. The
ontology-based integration system was used to replace a manual database update
process for a logistics optimization tool developed in Alcatel-Lucent called ALTO".
ALTO is an enterprise system that generates simple cost optimized routing instructions

called routing guides. These routing guides specify the lowest cost logistics company

'® Reverse Logistics is responsible to repair and return of faulty equipment to customers.
' Alcatel-Lucent Transport Optimization (ALTO) is deployed in reverse logistics supply chain.

126

and service to use for any user specified origin/destination/weight. ALTO stores the
rates for all logistics carriers in a relational database that was created using ETL'®
techniques. New logistics carriers and rate updates for existing carriers need to be
incorporated into the ALTO database regularly. To simplify the database update
process (Figure 4-4), the generalised ontology-based integration platform was tested
against this logistics use case to integrate the heterogeneous carrier rates formats into a
single common model of logistics. From the central model, the scripts to load the

ALTO database could be automatically generated.

Logistics Carrier 1
— ALTO database
Routing ALY Ontology :
< » Integration
Guides ___H Sygs tomm -
— Load Logistics Carrier 6
Logistics database
RDB
- '\ J o\ y)
Y Y Y
Optimization Application Ontology-based Integration Data Sources

Figure 4-4: Logistics Rates Integration and Optimisation Applications.

444 Experimental Approach
To achieve objective (i) for this experiment (as described above), a domain specific

model in OWL [OWL] to represent the dependencies in the system was developed.
This is called the ontology-based dependency model (OBDM). The ontology-based
dependency model was created using a metamodelling approach as described in the

design chapter.

A tool called TomE (Towards Ontology Mapping Evolution) was developed to
instantiate the OBDM and to support the analysis of dependencies in the ontology-

based integration system.

Resulting from objective (ii) for this experiment, the ontology-based dependency
model was used to carry out analysis of the inter-relationships that the mappings

exhibit in the logistics based use case presented in Section 4.4.3

Experiment two required the following steps to be carried out:

18 Extract, Transform and Load

127

e Setup the generalised ontology-based integration system to carry out

integrations based on the logistics based use case. (Section 4.4.5)

e (Carry out an analysis of the mapping dependencies using the ontology-based

dependency model (OBDM) (Section 4.4.4.1)

4.4.4.1 Dependency Analysis Approach using the OBDM

The TomE tool provides tool support for the analysis of dependencies in the
generalised ontology-based integration system. To carry out analysis of the
dependencies the user must navigate a set of graphical tabbed panes in TomE. The
tabbed panes are called “Mapping Control”, “Ontology Control” and “Visualisation™ as
shown in the design chapter (Chapter 3, Figure 3-16: TomE Control Panel). This

sequence of steps taken to analyse the dependencies is described below.

Step 1 - Use “Mapping Control” tab to Load mapping file

Using the “mapping control” tab, the user can select and load the mapping file.
Step 2 - Use “Ontology Control” tab to generate dependencies.

Using the “ontology control” tab, the user loads the dependency model and model
instances (that are generated from the mapping file). The system tend computes the
dependencies for each elements in the system and generates GraphML data for the

dependencies.
Step 2 - Use “Visualisation” tab to launch visualisation

Using the “Visualisation” tab (Figure 4-5) the user can launch the three types of

graphical views of the dependencies as described in the design chapter.

128

B 10 (1awards Ontology Mapging Evahition 7] Alcatel-Lucent (€} 2009 =IEE]|

=

""".'.'.I-----otot.oooooooooooooooooooooooooooooo.CC—CC—CC—COC‘rg-.:ﬁC—OC—OOO.
.

:E | 2. Graph-contrel— -

TR TS

Cragrorcs

Craguosfficens +_f—

SprrgForce

SprnCosfficent _f—

et SpringLength —_|——
-

Connectivity Fiter

-

[

)

4

= 2
(AR R N]

| 4. overview

- .[1. Main dependency " Viewi

Figure 4-5: Dependency Visualization in TomE

4.4.5 Experimental Setup
To create the mappings to load into the TomE tool, the generalised ontology-based

integration test bed needed to be updated with new upper ontology, mappings and
lower ontologies for this logistics based use case. The approaches adopted for these

tasks are the same to those adopted for experiment one and are described briefly below.

Database Setup
Although the ALTO system incorporates logistics rates from six databases, each

database represents the data from logistics providers that are either door-to-door (DTD)
services or airport-to-airport (ATA) services. In the ALTO system, four logistics
companies provide ATA services and two provide DTD services. The schema for each
the four ATA databases and two DTD databases were very similar. To avoid the
creation of 6 similar databases for the generalised ontology-based integration system, it
was decided to use one ATA and one DTD database. By selecting one ATA and one
DTD type dataset, all of the key heterogeneity was preserved. This step reduced the
number of databases in the ontology-based integration system from six to two for this
experiment. For this logistics dataset, the integration system needed to setup semantic

mappings between the integration ontology and the data sources to resolve the

129

heterogeneities in the data sources. A sample of the heterogeneity in the databases is

given below:

Service definition: Services exhibit generalization conflicts.

Destination country specification: Some logistics groups use zones to

represent a group of destination countries.

Weight specification: Conflicts between unit specifications, single and range

weight specifications.

Import/Export Charges: Semantic conflicts between the definitions of terms

with the same names.

The ontology-based integration system produces data integrations shown in MS-Excel

format below. (Note: All costs are normalised to USD based on a hand coded exchange

rate.)
LotlLane Origin Destination Senice Cost |Weight | Surcharges
Country City ~ Aiport |County City Airport name fescription ~~ piype commodiy| fuel iic e i
M Frame Pais €06 USA Chizago ORD Caer Bioress Fackage Duty [R A i
Camer] A0S Fackage Duty 001N
Figure 4-6: Logistics Report
Integration Ontology

The domain (upper ontology) for this case is described below (Figure 4-7). This

ontology was constructed to enable the collection of rates information from each

logistics carrier for any weight and is not designed to be full domain ontology for

logistics. The ontology was developed by interviewing four experts from the logistics

domain in Alcatel-Lucent.

130

impart export

pe—— Cpamins

; ey
ot Iane s i fuel

rtadas
“Ataan onsist 0 “Artadas =
1 re—
= [r— AT

carriers surcharges /
o1
contains
Opel

po—

e bt
- eirie

e - kg have?

e

e

services
route priyide
Wit & . - i
fr—— &
0. 5

7.{;{ endfﬁ(

dest|1nat|0n

il

ratesheets

rateset

ez
havergtes startwescht -
| Daverstes |

T

pe——

origin

etntar it

p—— Fr—

cur}lins

courtry

airport Aitntatar

et e

pr———

Figure 4-7: Concept overview from Logistics Ontology
The main classes in the logistics ontology are summarised below:
e C(Carriers: A class to represent the details of the logistics provider.

e Services: A class represent the details of the services provided by the logistics

provider

e Ratessheets: A class to represent the rates information provides by the logistics’

provider.

e Surcharges: Classes to represent the various surcharges associated with

logistics (e.g. fuel surcharge, import and export duties).

e Routes: Classes to represent the origin and destination of the logistics routes.

Creation of Mappings
The mapping format was described in the design chapter (Section 3.3). For this

experiment, the relationships between the ontology concepts and database fields were
identified during the ontology design process with the help of the domain experts. The
mappings were then encoded manually into the format was described in the design

chapter (Section 3.3). For this logistics dataset, the integration system needed 92

131

mappings to perform the integrations across 2 databases containing a total of 19

database tables and 234 database fields.

Lower Ontology
The lower ontologies were created automatically from the databases (described in the

next section) using the D2ZRQ API [D2RQ API] as noted in the design chapter.

4.4.6 Experimental Results
The TomE tool was used to develop an understanding of the complexity of the

mappings from the reverse logistics application use case by carrying out an analysis of

the inter-relationships between the mappings in the system.

The mapping file contained 92 mappings that were decomposed into 92 upper entities
(UE), 92 mappings (MP) and 149 lower and ground entities (LE and GE). This section
describes the dependencies that were found, how they were formed and what impact

they have on the complexity of the mappings.

4.4.6.1 Definition of Dependency Types and Views
In the design chapter, a dependency chain was defined as the set of dependent elements

created by joining simple dependencies together to form a chain. A simple dependency
was defined as a dependent relationship between a pair of architectural elements from

the model (e.g. UE->MP).

The TomE tool creates three different views of dependency based on how dependency
relationships in the model are processed. These types of dependency chain can be

viewed individually using the tool.

The first type of dependency chain created represents a view of the full graph of
dependencies for all UE in the system. This is the default view loaded when the system

starts and can be used to navigate to the other views described below.

The second type of dependency chains created represent views of the dependent
elements within a single UE. These are inferred using its “ue2mp” and “mp2ge”

dependent relations from the OBDM.

The third type of dependency chains created represent views of how dependencies for a

single UE extend across other mappings in the systems. These chains are inferred using

132

the general “depends” relationships from the OBDM. As shown below, this type of

dependency chain can arise for two reasons:
¢ When some mappings (MP) that refer to a GE used in another mapping

e When some mappings using functions that refer to either UE used in another

mapping

4.4.6.2 Analysis of Dependency Types

The TomE tool created a total of 92 dependencies chains by inferring chains of
dependencies for each UE in the system using OWL axioms defined by the TomE for
each UE in the system as described in the design chapter (Section 3.2.6.3).

An analysis of the dependencies in the system using the different views provided by
the TomE tool shows that there different types of dependency exhibited as detailed

below:

¢ Non-Overlapping Dependency: This is the simplest dependency type and

occurs when the GE specified in the mapping do not overlap with any other
mapping.

¢ Overlapping Dependency: This type of dependency occur when mappings
share a GE concept. These are called overlapping dependencies in the analysis

below. (GE concepts represent entities in the data sources).

¢ Function-Based Dependency: This type of dependency occurs where a
function refers to a UE that is part of another dependency. These are called

function-based dependencies in the analysis below.

A description of each of these types is given below.

Non-Overlapping Dependency.

These dependencies occur when a chain of dependent elements exist as shown here.

UE->MP->LE->GE

133

This is the simplest dependency type. It is a chain of dependent elements as shown in
Figure 4-8. This type of dependency arises from the mapping shown in XML snippet

below.

<mapping>

<mapping_number>cl</mapping_number>
<mapping_type>ps</mapping_type>
<source_name>carriers:name</source_name>
<dest_ont>logl:log2 </dest_ont>
<dest_prop_name>Awards:cname </dest_prop_name>
<dest_uri_name>logistics:rates</dest_uri_name>
<function>null:null</function>

</mapping>

Code 12: Mapping Example

This mapping simply states that the ontology property (name) in class (carriers) is
composed of the set (mapping type) of properties found in lower ontologies as
specified by “logl/logistics/awards” and “log2/rates/cname”. This is modelled using
the following chain of architectural elements and can be “typed” as a non-overlapping

dependency. There were 92 dependencies of this type.

Integration Ontology (UE) @ carriers:name

Mapping (MP) @ cl

log1/logistics/awards

rover Etoloey (L @ @ log2/rates/cname
log1/logistics/award

Data Source (GE) @ @ og1/logistics/awards
log2/rates/cname

Figure 4-8: Non-overlapping Dependency

Overlapping Dependency

When two mappings share the same lower or ground entity (e.g. GE2 is shared below),

the dependency chain that is inferred includes the elements from both mappings. For

134

example, in Figure 4-9, UE2 will be inferred to be dependent on MP2, MP3, LE1, LE2,
LE3, GEI1, GE2 and GE3. This effectively means the mapping h1 and mapping h2 are
dependent. There were nine dependencies of this type identified in the analysis. This
type of dependency occurs when two concepts in the integration ontology use have
different abstraction levels for a concept and overlap partially. In this example, the
“carriers” concept (UE2) has a lightweight representation of service but the “services”

concept (UE3) has a detailed representation.

carriers:service services:servicename @

®
@ " @

log2 /rates/service log?/rates/service

@ log1/servdescriptions/type = logl/rates/ LowerDeckServs

@ @ log2/rates/service log2/rates/service @ GE3)

log1/servdescriptions/type

LE3

log1/rates/LowerDeckServs

Figure 4-9: Overlapping Dependency
Function-Based Dependency

Function-based dependencies occur when a function (part of a mapping) references an
architectural element (a UE, LE or GE) that is part of another dependency. In the
ontology-based dependency model, each mapping (MP) concept has a function
associated with it. The function concept supports the definition of input, output and
local parameters. In Figure 4-10, function F1 requires access to concept UE2
(ratestructure) in its local parameters. The ‘“ratestructure” concept allows access to
information in the database tables that allows transit times (among other things) to be

interpreted as either door-to-door or airport-to-airport.

135

-services:transittime @ @ carners:ratestructure

$5 ,@ @ ,@ m201
log2/servdescriptions /tt @ @ @ @ @ @

log1/rates/uds_tt log1/logistics/routetype
log1/rates/ads_tt @ @ @ @ @ @ log2 /awards/ratestruct
log1 /rates/bds_tt

Figure 4-10: Function Based Dependency

20 function-based dependencies were found. The function class of the ontology-based
dependency model requires the specification of input, output and local parameters.
Currently these inputs need to be prepared manually by analyzing each function
implementation (i.e. Java code) and selecting the local, input and local parameter used.
In future, the mapping functions could be automatically parsed to create the input,

output and local parameters.

Mixing Overlapping and Function-Based Dependencies

Mappings can also exhibit combinations of overlapping and function-based

dependencies. This is a composition of the other basic types already presented.

In 11 (of the 20 function based) cases, function based dependencies span multiple

dependencies.

Performance Measurements Taken for the TomE tool.

The dependency analysis was run on a low-end machine with 3G RAM, 2 GHz Dual

Core Processor running Windows XP Professional.

The performance of the TomE tool was measured by noting the time taken to execute

the computation associated with the dependency analysis. The time taken to run the

136

TomE tool up to the point when the tool is invoked to where the visualisations are
ready for the user to load was measured over a sample of five iterations. This time
measurement includes the time taken to load the mappings, run the ontological
reasoning over the 92 ontological axioms and time taken by the user to navigate from
screen to screen in the TomE tool. The average time taken to process the 92 mappings

in the mapping file was 201 seconds.

The dependencies that were created by the TomE tool were desk checked for accuracy

and the system achieved 100% accuracy.

4.4.7 Discussion of Experimental Results
This experiment developed an ontology-based dependency model (OBDM) and tool

(TomE) to support the analysis of mappings arising from the logistics based use case

that was applied to the generalised ontology-based integration system.

The ontology-based dependency model and tool provided a very fast method,
averaging 201 seconds, to represent the dependencies that occurred in the logistics data
set. The tool created 92 dependency chains. Further analysis of the dependency chains,
using the TomE tool, shows the existence of 9 overlapping and 20 function-based

dependencies.

This represents approximately 30% of the mappings. This significant proportion of the
mappings that exhibit these “overlapping” and “function-based” dependencies provides

clear evidence of the complex interconnections that the mappings exhibit.

The overlapping and function-based dependencies are particularly difficult to
recognize manually. This difficulty is due to the number of mappings that would need
to be manually viewed and correlated and the terse nature of data source names. In
TomE, search and visualization features allows impacted elements to be quickly
identified and provides much faster understanding of the complexity of the mappings
in the system. It is hypothesised that these complex mapping relationships are difficult
to identify without tool support and thus makes the first step of mapping evolution,
finding which mappings are impacted by a change, difficult for integrators. This

hypothesis is tested in experiment three.

In the current implementation of TomE, the mapping functions need to be manually
reviewed to understand what other entities in the system they access. While not

completely automatic in the current implementation of TomE, the automatic generation

137

of function derived dependencies is important because it is these functions that are

likely to be subject to change as mappings are evolved.

The system is extensible in a number of ways. The technique of using an ontology-
based dependency model to manage mapping evolution can be adapted to cater for
other mapping formats by simply decomposing the mapping format into the core
architectural entities. The other mapping formats were not tested explicitly in this
thesis. However, in experiment five the ontology-based metamodel was used to build a

dependency model for another domain.

4.4.8 Summary of Conclusions, Open Issues and Limitations
Experiment two has shown that approximately 30% of the mappings in the test system

exhibit complex dependency relationships with other parts of the integration system.
Each mapping exhibits a simple dependency with the ontology and data sources but
also may exhibit more complicated dependencies due to concept specialisation and
generalisation in the domain ontology and reuse of data source or ontology concepts in

the mapping functions.

The classification of types of dependencies (simple, overlapping, function-based)
presented in this experiment may not be exhaustive. However, the ontology-based
dependency model is not prescriptive about “typing” dependencies. The model will
compute all dependencies (irrespective of their type) based on the dependency
relationships that have been setup by the dependency model designer. As noted in the
future work section, an enhancement to the dependency model could use rules to
classify each dependency chain into a type based on the requirements of the

dependency model designer.

The data sources and ontologies have been selected from the industrial use case and
represent a difficult integration use case. The data exhibits all types of heterogeneity
specified in the THALIA tests except the “language expression” and “‘virtual columns”,

“nulls” tests as defined in Table 2-1, Section 2.7.1.

Only one mapping format (INRIA [Euzenat 2004]) was tested as part of this
experiment. Other mappings formats could cause dependencies between different parts
of the integration system not tested in this experiment. However, the approach taken in

the design of the dependency metamodel and model creation process means that

138

irrespective of the mapping format, once the mapping decomposition process is carried

out, the dependency model will be able to support other mapping formats.

Following analysis of the results of experiment two, a hypothesis was developed that
the mapping relationships are difficult to identify without tool support and thus makes
the first step of mapping evolution, finding which mappings are impacted by a change,

difficult for integrators.

139

4.5 Next Steps in Action Methodology
The next iteration of the action based research focused on the performance of the

ontology-based dependency model.

The hypothesis that was developed as a consequence of experiment two results
analysis, which stated “that complex mapping relationships are difficult to identify
without tool support and thus makes the first step of mapping evolution, finding which

mappings are impacted by a change, difficult for integrators”, now needed to be tested.

To achieve this, the performance and accuracy of a manual approach to dependency
analysis and the OBDM were compared using the “Dependency Identification

Performance” metric.

4.6 Experiment Three — OBDM Performance

4.6.1 Overview

This experiment aimed to demonstrate the difficulty associated with the identification
of the dependencies between mappings within an ontology-based integration system
without tool support. To measure the performance of dependency analysis without tool
support, a manual process for dependency analysis was defined. The process was
created by the author of this thesis following interviews with logistics and data
integration specialists. The interviews enabled the definition of the basic steps of the

process that is fully described in appendix II.

The manual process for dependency analysis was then provided to a group of 18
integration or logistics specialists. Using the process, this group was asked to carry out
a series of dependency analyses using the process. The “Dependency Identification
Performance” metric (Section 1.2) was used to measure the performance of the manual
approach, i.e. the ability of the system to accurately and quickly identify the mapping
dependencies. To measure the performance of the approach, metrics related to time and

accuracy were collected during these exercises.

The results of experiment three shows that with the theoretical set of evolution needs
as exemplified the mappings in the exercises, the dependency analysis is a very
difficult process to carry out without tool support. Furthermore, the results show that

the ontology-based dependency model (OBDM) provides fast, accurate and automatic

140

support of the first step of mapping evolution, i.e. to understand which parts of the

system are impacted by the change.

Section 4.4.2 describes in the objectives of the experiment in the context of the

research question.
Section 4.4.4 describes in detail the approach taken for this experiment.

Section 4.4.6 and 4.6.5.5 describe the results and conclusions of this experiment.

4.6.2 Obijectives & Hypotheses
In the Introduction chapter, the fourth objective that was derived to evaluate the

research question was stated as:
e Evaluate the dependency model and tool using a concrete industrial use case.

This objective was addressed by experiments 3 and 4. Experiment three evaluates the
performance of the ontology-based dependency model using a theoretical set of
mappings. (Experiment four used the ontology-based dependency model to carry out a

real set of evolutions based on data from the Alcatel-Lucent logistics supply chain.)

Experiment three confirms the hypothesis derived from the results of experiment two.
This states that complex mapping relationships are difficult to identify without tool
support and thus makes the first step of mapping evolution, finding which mappings

are impacted by a change, difficult for integrators.
The objectives of the third experiment were:

1) To demonstrate the difficulty of the first step of mapping evolution (i.e.
identification of the dependencies in the system) by measuring the accuracy and
speed of a manual process oriented approach when presented with a set of

theoretical data source evolutions.

ii) To confirm the accuracy and runtime performance of the ontology-based

dependency model given the same set of theoretical data source evolutions.

4.6.3 Experimental Approach

Objective (1) for this experiment required the development of the manual dependency

analysis process, setup of the dependency analysis exercises, setup of statistical

141

framework to measure accuracy and time metrics. The approach taken for each of these

tasks is summarised next.
Manual dependency analysis process

A manual dependency analysis process was developed by interviewing integration and
logistics experts to identify the key processes required to find the dependencies within
a theoretical set of mappings based on logistics data. The process is described in detail

in Section 4.6.4.1.
Dependency analysis exercises

A set of 12 dependency analysis questions was designed by the author of this thesis
based on a set of theoretical mappings. The mappings were divided into small, medium
and large mappings data files. Each dataset has 4 questions associated with it. The 12
questions were created with predefined complexity, based on the type and depth of the
dependency. The type of dependency was simple, overlapping or function-based
(Section 4.4.6.1). The depth of the dependency was a measure of depth of the
dependency chain that needed to be found in the exercises. The questions were
designed to ensure an even distribution in the complexity of the answers across the

exercises

A group of 18 users (described in detail in section 4.6.4.5) were given the datasets and
questions and were asked to find the predefined dependencies between sample

mappings using the manual process.
Statistical framework

Metrics were collected during the exercises to enable statistical analysis of the time
taken and accuracy of users as they executed the process. These metrics were used to
calculate accuracy and time of each exercise, and thus the dependency identification
performance. The statistical analysis was carried out using the R statistical package

(see section 3.5.10).

To achieve objective (ii) for this experiment, the TomE tool was used to compute the
answers to the same questions used in the exercises. The time taken to run the tests for

each data set was measured. The accuracy of the answers was also desk checked.

142

4.6.4 Experimental Setup
This section describes in detail the approach taken for creating the mapping data, the

manual process, for selecting the user groups and the process to run the exercises.

4.6.4.1 Manual Process Definition

The manual process was created by interviewing three integration and logistics experts
who have direct knowledge of the data (i.e. work in logistics) or are knowledge
engineering experts with more than 5 years experience. The interview process enabled
the identification of the important parts of the process to identify dependencies in

mappings.

It is difficult to generalise the process created using this approach to other dependency
analysis problems because the outputs of the interviews are relevant only to the
particular case of a generalised ontology-based integration system with logistics data.
This manual approach was taken because as noted in [Bernstein and Melnik 2007],
there are very few industrial scale integration systems that use ontologies. Furthermore,
the cost of non-ontology-based integration systems put them outside the scope of this
work. Dependency analysis approaches used in other domains, as discussed in the state

of the art, do not port easily to the data integration domain.

The key process steps defined by the interview process are summarised in Table 4-2.

Step Description Record Item
1 Identify the first row in the spreadsheet that Row Name
matches the data property defined in the
question.
2 Find other rows that depend on the first row Row Names
due to the overlap in elements of the GE
columns.
3 Iterate step 2 for every new row found Row Names
4 For each row name recorded already, find Row Names

other rows that depend on them due to the
function column
Table 4-2: Key Process Steps from interviews

Using these key steps, a detailed process was developed for the exercise and this is
described in Appendix II. The detailed process added more navigation detail to help

the users understand which columns and data items are referenced. The detailed

143

process also added some house keeping details regarding the time taken for each

question, users name and clear identification of the dataset in use.

4.6.4.2 Theoretical Mapping Data Setup
Three theoretical mapping data sets were prepared. The datasets were derived from

Alcatel-Lucent logistics data used in experiment two. The small dataset contained 51
mappings (small data set), the medium contained 71 mappings (medium dataset) and
the large contained 102 mappings (large dataset). The different dataset sizes were
designed to provide an indication as to how both manual and tool-based approaches

scale with respect to time and accuracy as the number of mappings increases.

Within each data set, one question could be resolved by finding a simple dependency,
one question could be resolved by finding an overlapping dependency and two
questions by finding overlapping and function based dependencies. Each dataset was
setup to contain the same level of complexity in terms of the type (simple, overlapping

and function based) and depth of the dependencies.

The data properties names in the dataset were derived from the Logistics data. This
provided the opportunity to understand if knowledge of the underlying data would
improve the performance of dependency analysis. A control group of 3 users from the
Alcatel-Lucent logistics team was asked to carry out the exercise. This group had day-
to-day exposure to the logistics terminology that was used in naming the data

properties in the mapping files.

4.6.4.3 Evaluation Process
Each user was given a tutorial before the survey that covered in detail the steps of the

manual process that needed to be carried out. Each respondent was given 20 minutes to
work through the four questions associated with each dataset. The following materials

were provided:

Mapping files: The mapping file for each data set was provided electronically in
MS-Excel format. The MS-Excel mapping file provided a simple view of the
actually mappings from the logistics domain. A sample is shown below (Figure
4-11). All XML tags were removed and each mapping was represented on a single
row in the spreadsheet. Column A represents the Upper Entity (UE), Column B
represents the mapping (MP), Column’s C, D, E represent the lower entities (LE)

and column F represent the function identifier (F).

144

A B 1 C 1] I E [F

1 \UPPERENTITY MWAPPING LOWER ENTITY ADDRESS 1 LOWER ENTITY ADDRESS 2 LOWER ENTITY ADDRESS 3 FUNCTION

2 |UE:UE mpl dsl.ds2.ds2 field -feld50:field1 00 tabled -table10:able20

3 [VEVE2 fiifid s figld2 table2 UE LES

Figure 4-11: Excerpt from Excel mapping file

The mapping file for each data set is provided in Appendix II.

Question & Answer book: A booklet was provided to each user that contained the
questions for each data set and answer space to note the dependencies found. A

sample answer book is provided in Appendix II.

Dependency Analysis Process Description: The process to be used was the same
for each question. The process was demonstrated using an animated PowerPoint
presentation (using dummy data) to ensure each user understood the steps and
could ask questions about the process. Each user received a hardcopy of process

descriptions and slide ware. In summary, the process contained the following steps:
e Step 1: Note start time
e Step 2: Check data set name

e Step 3: Find the first row where the entity provided in the question

occurs and note this row down in the answer space

¢ Step 4: Find other occurrences of the columns C, D, E in the rest of the

rows of the spreadsheet and note these rows down in the answer space.

e Step 5: Check if any matched row found so far, has a function specified.
If the row has a function specified, check in other rows for this

identifier and note down these rows in the answer space.
e Step 6: Note end time.

The full process description is provided in Appendix II.

4.6.4.4 Performance Metrics
Using the measurements collected during the evaluation, the following statistical

measures were used to understand the performance of the manual process.

145

Central tendency: this statistic was used to determine whether there is a central
tendency for the automatic approach to outperform the manual approach with respect

to time and accuracy.

Dispersion: this statistic was used to determine the dispersion in the measured data
with respect to the time and accuracy. This was calculated using the standard deviation

and range of the time and accuracy data.
Correlation: this statistic was used to determine:

1) The association between the manual approach, complexity of dataset with

respect to time and accuracy.

2) The association between the automation approach complexity of dataset

with respect to time and accuracy.

3) The association between accuracy with respect to type user group

(integration versus logistics experts)

The following measurements were collected either during the evaluation or computed

before the evaluation as noted below.

Time
Time to complete each question. (Collected from user)
Time to complete each dataset. (Collected from user)
Time to complete compete exercise. (Calculated)
Accuracy
Number of Valid Dependencies found (Calculated from user answer)
Number of Invalid Dependencies found (Calculated from user answer)
Number Dependencies not found. (Calculated from user answer)
Answer Complexity (Calculated)
No. Nodes: No of nodes in the dependency graph for each mapping.

No. Levels: Depth of computed dependency graph for each mapping.

146

4.6.4.5 Selection of Groups
The primary users of the ontology-based integration system will be integration system

specialists and supply chain specialists. The population used for this evaluation has
been selected to represent these two constituencies. From this population, a sample of
representative users was randomly selected. The sample was divided into three groups.
The first (main) group comes from engineering, computer science backgrounds who
work on the research and development of the ontology-based information systems.
They are expert in database, and ontology techniques. The second group comes from
the professionals from the Supply Chain organisation within Alcatel-Lucent and are
expert on the data content (i.e. logistics). A third control group were provided with a
simpler manual process to carry out. The users in this third group had the same

background as the first group (i.e. integration specialists).

4.6.4.6 Post Exercise Interviews
Each user was interviewed after the exercise to collect qualitative data on the user’s

perception of the exercises. This interview was divided into two parts. The user was
asked to fill in a questionnaire which was attached to the back of the question and

answer booklet (Appendix II).

The first three questions of the questionnaire relate to the users perception of the
difficultly of the dependency analysis task (e.g. rate difficult of task, rate hardest
question). After filling out the questionnaire the user was asked to comment on their
perception of the exercise — using the first three questions as a common reference for

comment for each user.

4.6.5 Experimental Results
The evaluation ran over a period of four weeks in November and December 2009.

4.6.5.1 Data Summary

Three groups of respondents participated in the exercise. The first group represents the
integration specialists who have expertise either in enterprise or research database or
data integration technologies (including ontologies). The second group of respondents
is a smaller control group that consisted of logistics professionals from the Alcatel-

Lucent supply chain. These respondents have a deep understanding the logistics data

147

but are not integration specialists. The third and final group consisted of a smaller
group of integration specialists that were given a simplified MS-EXCEL format
mapping file. By comparing the results of this group to the main group an
understanding of the influence of the MS-EXCEL mapping format on the accuracy and

timeliness of answers could be gained.

Group No. of Users Demographic Mapping Format
Groupl 12 Integration Specialists ~ Normal
Group2 3 Logistics Specialists Normal
Group3 3 Integration Specialists ~ Simple

Table 4-3: Group Overview

Smaller groups sizes were used for Group two and Group three. The size of the
logistics group (Group two) was limited by the availability of logistics experts at the
local site to carry out the dependency exercise. The size of Group three was limited to
three people as the analysis is used only access the effect of a new simpler MS-Excel

format for mappings.

The results from each group were collected and collated for each user and was entered
into a excel table of data. Figure 4-12 shows a sample of the collated answer data for a
single user (labelled ul in the figure). Each row represents the results that the user (e.g.
user 1) gave to single answer (e.g. row 3 is the answer to Question 1 in the exercise).
Each row in the spreadsheet contained a Group identifier(GROUP), the computer
equipment type used (PC), the data set the question refers to (DSSIZ), the question
identifier (QUESTION), the correct answers data (NODES, LEVELS, OVERLAPS,
FUNCTIONS, MULTI, SINGLE), user identifiers(User, User Name), the actual
answer performance (TIME, ACCURACY).

2 (GROUFTPC [0S 517 QuestiNODES LEVELS JOVERLAPFUNCTIONMULTI — SINGLE [User UsernalTIME — ACCURACY
| 3 |KDEG |MAC M G 9 3 1 1 a o 1ul 720 100
| 4 |[KDEG |MAC W G2 4 3 iy 2 a o 1ul 255 a
| 5 |[KDEG |MAC W G3 4 3 a 1 a T 1ul 105 P
| 6 |[KDEG |MAC M G4 12 B a 3 2 o 1ul 120 a
| 7 |KDEG MACIS G5 2 2 1 I a 0 1ul 7 100
|8 |[KDEG MACIS G 7 5 2) a 0 1ul 90 255714286
| 9 |KDEG MACIS OF 7 4 1 1 1 T 1ul 1500 57.1428571
|10 KDEG MAC IS 8 12 B a 3 a 0 1ul 165 16.8665667
|11 KDEG MAC |L a9 Pl g 4) 1 0 1ul 70 3.5461538
|12 |KDEG MAC |L Q10 Pl 7 2 3 a T 1ul 170) 7.69230769
131KDEG MAC JL a1 4 3 1 1 a 0 1ul 75 75

Figure 4-12: Collated survey data

148

The answer accuracy was measured using a simple percentage of the number of correct
nodes found. The full data set contained 216 samples. The data set was processed as

follows:

Invalid Nodes: Answers that had invalid nodes were removed because the time users
spent following chains of invalid nodes would impact on the time and accuracy. This

step removed 45 samples from the dataset.

Out of time: Answers where the user noted “out of time” were removed as the
question was not completed correctly and was deeded invalid. This step removed 55

samples from the dataset.

Missing Data: Answers where the user forgot to note timings or answer data was not
intelligible were removed as the question was not completed correctly and was deeded

invalid. This step removed 3 samples from the dataset.
Following these data processing steps, the data contained 120 samples.

It was noted during the evaluation that during the first dataset, some questions were
asked about the process. This provides some concern that the process was still bedding
in during the first few questions. To cater for this effect, correlation statistics are

presented below that have the first two questions from the first data set removed.
Following these data processing steps, the data contained 90 samples.

The impact of removing these samples from the dataset is discussed in the conclusions

(section 4.6.7).

The statistical analysis was carried out using the R statistics package. R is a language

and environment for statistical computing and graphics.

4.6.5.2 Descriptive Statistics
The averages (mean) for accuracy and time to complete across the entire sample is

61.27% and 265 seconds, respectively. In the context of ensuring the evolution of
mappings is correct, the goal for accuracy needs to be as close to 100% as possible to
ensure correct functioning of the integration system. An error in mapping evolution

could lead in the worst case to erroneous data integration.

The standard deviation of the total data set for both accuracy and time indicates that the

spread of samples from the mean is wide. This wide spread reflects the difficulty of the

149

in attempting to carry out dependency analysis manually. In the post exercise
interviews, most respondents cited fatigue due to the repetitive nature of the task as a

significant factor that affected the performance.

Mean St Min Max Median
Dev
Accuracy 61.27 29.2 0 100 57.73
Time 265 171 60 900 234

Figure 4-13: Accuracy & Time Means

Breaking the data down by dataset size, it can be seen that the mean accuracy shows
only a moderate swing due to dataset size. This is important because it indicates that in
spite of the number of mappings in the dataset to be analysed, the accuracy is broadly
constant across the datasets. (The small data set had 51 mappings, the medium had 71

mappings and the large had 102 mappings.)

Accuracy Mean St. Deviation
Large 50.01858 24.04875
Medium 64.44444 33.07189
Small 63.31845 27.57551

Figure 4-14: Accuracy Means by Dataset size

4.6.5.3 Correlations
The correlations presented below are for the user population that were given the same

mapping format (i.e. Group 1 and Group 2 from Table 4-3). Group 3 was excluded

since they were given a simpler mapping format.

Each correlation is broken down by the number of functions, overlaps, nodes and
levels in the answer. Each of these measurements represented a different aspect of the

complexity of the answer to each question in the exercise.

Accuracy Correlations
The data in Figure 4-15 demonstrate a moderately strong negative correlation between

accuracy and various measures of answer complexity. This indicates that as the
complexity of the answer increases, the accuracy of the answer reduces. This
correlation also holds true across the small dataset and so indicates that in spite of a

smaller number of mappings in the mappings file, the accuracy still suffers.

150

Referring to Figure 4-15, the correlation for the “Levels” metric is stronger than the
“Node” metric. The “Levels” metric is a measure of the depth (number of levels) in the
dependency. The “Nodes” metric is a simple count of the number of nodes in the
answer. The stronger correlation for levels indicates that it is the depth of the answer
that impacts accuracy more than the number of nodes in the answer. This is important
because it indicates that a small mapping set with complex dependencies can still be

difficult to evolve.

The correlation for the “Functions” metric is stronger than the correlation for
“Overlaps” metric. The “Functions” metric is a simple count of the number of
dependencies that arise due to functions in the answer. The “Overlaps” metric is a
simple count of the number of dependencies that arise due to “overlapping” nodes in
the answer. This indicates that the dependencies that arise due to function overlap are
more difficult for the manual process to detect accurately. As function overlaps were
processed as the last step in the manual process, this may impact this accuracy of this
measurement due to the combined of effects of the “answer review” and “fatigue”
problems pointed out by most users. These effects are discussed in the conclusions

section of this experiment.

Accuracy Correlations

Dataset ALL Small Large Small+Large ALL"
Size

Nodes -0.56 -0.71 -0.83 -0.68 -0.66
Levels -0.66 -0.75 -0.85 -0.80 -0.78
Overlaps -0.29 -0.08 -0.61 -0.36 -0.36
Function -0.64 -0.73 -0.81 -0.77 -0.73

Figure 4-15: Accuracy Correlations

The statistical significance (p-value) for the all the accuracy correlations was less than
0.001.

Time Correlations
The data in Figure 4-16 demonstrate a moderately strong positive correlation between

time taken to answer each questions and various measures of answer complexity. This
indicates that as the complexity of the answer increased, the time taken to find the

dependencies also increased.

" Data associated with question 1 and question 2 removed as noted in data summary.

151

The correlation figures for each of the different measures of complexity (levels, nodes
etc) indicate no definite correlation preference. Therefore, from a time perspective it
appears that there is no advantage in having mappings that have fewer levels - as is the
case for accuracy correlations. The post exercise interviews provide evidence towards
the cause for this behaviour. Most respondents indicated that they needed to “redo”
certain steps in the process as they were inclined to lose track of what nodes in the
spreadsheet had been checked already. This behaviour would effectively add more

time to the answer for each question but would not necessarily improve the accuracy.

Time Correlations

Dataset ALL Small Large Small+Large ALL*
Size

Nodes 0.36 0.388 0.66 0.40 0.42
Levels 0.36 0.4 0.68 0.47 0.49
Overlaps 0.29 0.03 0.67 0.31 0.31
Function 0.22 0.38 0.46 0.35 0.38

Figure 4-16: Time Correlations

The statistical significance (p-value) for the all the time correlations was less than
0.001.

4.6.5.4 Impact Logistics Expertise and Simplified Mapping Format
Three groups of users were tested during this experiment. The second group (Group 2

from Table 4-3) was comprised of logistics experts who work within the Alcatel-
Lucent supply chain. They work day to day with the logistics data using in the
mapping exercise and thus are domain experts. The third group (Group 3 from Table
4-3) consists of integration specialists who were given a simplified mapping file format.
This mapping file format simplified the search required to find matches on any given

row by joining three columns of data together into one column.
Logistics User Group

Breaking down by experience level, Figure 4-17 shows that the mean accuracy for the
entire group, logistics and integration professionals. Logistics professions performed
better than the full population as indicated by mean answer accuracy of 77% for the

logistics user group.

% Data associated with question 1 and question 2 removed as noted in data summary

152

Accuracy Mean St. Deviation

Full Sample 61.3 29.2
Logistics Professionals 77.18254 19.63985
Integration Professionals 56.20316 28.66833

Figure 4-17: Group Analysis (Accuracy)

In the post exercise interviews with the logistics professional, most of this user group
indicated that while they recognised most data terms in the spreadsheets, they felt it did
not help them complete the task any better. It is also noted that two of the logistics
respondents used the advanced excel feature of column colouring, auto filtering and
Vlookup21 feature. This could have been a contributing factor for the improved

accuracy.

The analysis for the mean time to complete the answers is less clear (Figure 4-18). The
Logistics professionals show a marginally smaller mean time. However, because the
standard deviation is large, it is difficult to draw conclusive result in relation to time
for this user group. This behaviour may be a function of the “answer review” and

“fatigue” problems that most respondents highlighted in their post exercise interviews.

Time Mean St. Deviation
Full Sample 265 171
Logistics Professionals 218 111

Figure 4-18: Group Analysis (Time)
Simplified Mapping File User Group

The mean accuracy for this control group was 63%. This indicated that there is very
little difference in accuracy between this group and the larger population. The post
exercise interview provides a hint to understanding this behaviour because most

respondents felt the exercise was very difficult.

Mean St. Deviation
Accuracy 63 35
Time 338 215

Figure 4-19: Control Group Accuracy and Time

*! Vlookup is an advanced lookup feature of Microsoft Excel Spreadsheet

153

4.6.5.5 Performance of the automatic approach
In the current implementation of the TomE tool, all dependencies are pre-computed as

described in the design and implementation chapter. Once the processing stage is
complete, the time to search and query using the functionality of the tool is bound only

by the speed of the user.

Figure 4-20 shows the processing time for each mapping file used in the evaluation.

No of Mappings Processing time (Seconds)
51 127s
71 160s
102 205s

Figure 4-20: Automatic Approach Processing Time

The tests were run on a low end machine with 3 GB RAM, 2 GHz Dual Core Processor

running Windows XP Professional.

The answers from the automated approach were desk checked for accuracy and the

system achieved 100% accuracy.

The runtime performance of the every user interface function was not tested, however
the user interface performance of the test platform described above was adequate.
Node expansion and collapse was of the order of 1-2 second response time. The initial
loading of the full dependency graph took in the order of 3-4 seconds for the largest
mapping file with 102 mappings.

4.6.5.6 Collation of Post Exercise Interviews
This section contains a summary of the answers to the user questionnaires which was

attached to the question and answer book (Appendix). After the dependency analysis
exercise, each user was asked to complete the questionnaire. The answers given to each

question are described below.

Q1: “How do you find the task?”

7 users rated the task as Hard, 8 users rated the task as Very Hard and 3 users rated the

task as impossible,

Q2: “Which part of the process was the hardest?”

154

9 users rated Step 4 of the process as the hardest while 9 users rated step 5 as the

hardest.
Q3: “Rate the hardest and easiest dataset?”

Dataset 3 (largest) was rated as the most difficult. Dataset 2(Smallest) was rated as the

easiest.
Q4: ““Rate the hardest and easiest question?”’

Question 9 was rated as the most difficult question. Questions 2, 3 and 5 were rated as

among the easiest to answer.
Summary of findings from the Interviews.

These four questions were used as the context for a general discussion with each user
to gather more detailed information about the issues encountered while carrying out the
task. Two main themes emerged from the interviews. The first and biggest issue that
users encountered was described as the confusion the user experienced in remembering
which step of the process they were executing. This was described by some as “excel
overload” or “snow blindness”. To resolve this confusion, some parts of the process
were repeated or rechecked by the users. This was called the “Answer Review”
problem and is discussed in Section 4.6.6. The second issue that was highlighted by
half of the respondents was that “fatigue” set in during the exercise. The exercise lasted
60 minutes that was deemed to be “intensive”, “busy”, “heavy going” by respondents.
Some respondents noted that the fatigue was more prevalent in complex questions and

became more progressive as the exercise progressed. This was called the “Answer

Fatigue” problem and is also discussed in Section 4.6.6.

4.6.6 Discussion of Experimental Results
The statistical analysis above allows some conclusions to be drawn from the data.

These are summarised below.

4.6.6.1 Performance of Manual Approach

Accuracy
The strongest negative correlation is between answer complexity and accuracy. In

particular, the number of levels in the answer is the dominant correlation. This finding

155

has an interesting impact on the evolution of mappings in ontology-based integration
system. Even integration systems with small number of mappings can still prove a

challenging to evolve the mappings.

This finding could be further analysed to develop some design patterns for the creation
of mappings and ontological concepts to minimize the number of overlapping
mappings. One way that this can be achieved is to limit the number of
generalization/specialization concepts in the integration ontology (as they lead to

overlapping dependencies).

Time

The correlation picture for time is less clear. While a positive correlation exists in the
data between time and the answer complexity measures, the data does not allow for a
clear distinction to be made. The positive correlation indicates that more complex
answers will take longer to complex. The correlation is weaker than for accuracy. It is
clear from the post exercise interview and that fact that no respondent completed all
questions that the task is time consuming and performance is likely worsen the longer

the task is persisted.

Impact of Logistics Expertise and Simplified Mapping format.

A deep knowledge of the domain data (as was the case for the logistics control group)
allows for a small improvement in answer accuracy but does not improve the time to
complete. Providing a simple data format for the mappings did not influence the

accuracy of the answers (63% for the control group, 61% for the full group).

The ““answer review”’ problem.

During the post exercise interview, many (12 of 18) users described the biggest issue
that they encountered as the confusion, described by some as ‘“excel overload” or
“snow blindness”, as to which step of the process they were currently working on. To
resolve this confusion, some parts of the process were repeated or rechecked by the

users.

The ““answer fatigue” problem.

156

Half of the respondents noted that “fatigue” set in during the exercise. The exercise
lasted 60 minutes that was deemed to be “intensive”, “busy”, “heavy going” by
respondents. Some respondents noted that the fatigue was more prevalent in complex

questions and became more progressive as the exercise progressed.

4.6.6.2 Performance of Automatic Approach
An exhaustive runtime performance test was run performed for the TomE tool.

However the discussion in this section provided an indication of the overall runtime

performance of the system and the main processing functions.

The answers from the automated system achieved 100% accuracy and completed the

exercises in 127, 160 and 205 seconds respectively.

As described in the design chapter (Figure 3-7), the TomE tool has four functional
areas (Mapping Factory, Model Factory, Dependency Factory, Visualisation). The
majority of the processing time is spent in the Model and Dependency Factories. The
model factory is responsible for the creation of the in memory ontology model (using
the Jena API [Jena]) and validating of the instances of the model using the Pellet
reasoner. Model validation is carried out twice to enable easier debug of the model
should an error occur — once after the dependency model instances are added and once
after dependency axioms are added. Finally, for each dependency axiom, the reasoner
is invoked to compute the dependencies associated with the axiom. These functions

account for approximately 70% of the processing time.

The dependency factory is responsible for creating the dependency graphs. In the
current TomE implementation both in memory and GraphML file dependency graphs

are maintained. These functions account for approximately 30% of the processing time.

These performance results cleared demonstrate the performance and accuracy

advantages of the automatic approach.

4.6.7 Summary of Conclusions, Open Issues & Limitations
As expected the results of this experiment show that the ontology-based dependency

model significantly outperforms the manual process for both accuracy and time
measurements. More significant from the experiment however is the clear indication of
the complexity involved in a manual processes and the difficulty in identification of

dependencies in ontology-based integration systems without tool support. With the

157

theoretical set of evolution needs, the ontology-based dependency model provides fast,

accurate and automatic support of the first step of mapping evolution.

This experiment used a group of ontology and information systems specialists to
represent the system integrators who would be the final users of a dependency analysis
system (within an integration system). However, the technical background of the group
that was selected would be very similar to database and system integrators. They might
also be reasonably expected to work in that field and thus represent an excellent proxy

for the system integrators.

While a large sample of data was collected in the experiment (i.e. 216 samples), the
data collected was noisy. In particular, 55 samples were removed because the user ran
out of time while answering the question. Note that all users were given explicit
direction at the beginning of each session to move the next question if more than 10
minutes was spent on any given question. 45 samples were removed as they users
answer contained both valid and invalid nodes. Both these effects are representative of

the complex and time consuming nature of the exercise.

By removing the invalid, out of time and missing data the remaining samples
represented the absolute best case performance of the manual approach and as such
provide a very conservative basis with which to compare to the automatic approach.
An alternative approach would be to use a precision and recall calculation rather than

simple accuracy; however this is likely to lower the accuracy levels of the exercise.

As noted in the state of the art review, most current data integration frameworks tend
not to provide mapping management functionality. Therefore the OBDM was
compared with a manual dependency analysis approach that was designed as part of
this experiment. To mitigate any risk that the manual approach is not representative,
the data used in the experiment is based on real industrial data and the manual process
was designed using the expertise of the integration and logistics specialists.
Furthermore two different mapping formats were tested to ensure that the format of the

mapping file did not impact the results.

158

4.7 Next Steps in Action Methodology

At this point in the action based research process, the dependencies that mappings
exhibit has been identified as the focus point for this research, an ontology-based test
system and ontology-based dependency model has been designed. The performance of

the OBDM has been verified using a comprehensive but synthetic set of mappings.

The next iteration focused on testing the ontology-based dependency model as a new
data source was introduced into an existing dataset and examined how the resultant set

of evolution needs were coped with.

4.8 Experiment Four - OBDM Performance

4.8.1 Overview

Experiment three demonstrated the performance of the dependency modelling
approach using a synthetic set of mappings. This experiment was designed to
demonstrate the capability of the ontology-based dependency model when presented

with a set of non-synthetic evolution needs.

A new data source that represented a new logistics service provider was added to the
ontology-based integration system used in experiment two. The ontology-based
dependency model and TomE tool was used to support the identification of which

mappings were impacted by the introduction of the new data source.

The experiment shows that the ontology-based dependency model and TomE tool
enables the integration/ontology designer to quickly locate the impacted areas and
allow analysis of the changes to process in an ordered fashion. The approach supports
the mapping evolution process by providing global dependency views of the mappings
that allow the user to focus in on areas of high dependence initially and then to drill
down progressively to the detail to understand what impact of each computed
dependency. As noted in [Halevy et al. 2005, Zhou et al. 2006], this is one of the key

challenges facing enterprise integration systems.

Section 4.2.2 describes in the objectives of the experiment in the context of the

research question.

Section 4.2.3 provides the background to the supply chain based use case that was used

for this experiment.

159

Section 4.2.5 describes in the detail the approach taken for this experiment.

Section 4.2.6 and 4.2.7 describe the results and conclusions of this experiment.

4.8.2 Obijectives & Hypotheses
In the Introduction chapter, the fourth objective that was derived to evaluate the

research question was stated as:
e “Evaluate the dependency model and tool using a concrete industrial use case.”
To address this objective, experiment four derived the following sub-objective:

i) To demonstrate the capability and relevance of the ontology-based

dependency model when presented with a set of non-synthetic evolution needs.

Hypothesis

Evolution of the mappings in an ontology-based integration system is difficult to
identify without tool support due to the difficultly in finding which mappings are

impacted when the data sources are updated.

4.8.3 Use Case Background
For this experiment, a new logistics carrier was introduced that provides transportation

services by sea and thus providing a new dataset for the ontology-based integration
system. The generalised ontology-based integration system was populated with the
logistics domain ontology, mappings and data sources from experiment two (Section

4.4.4).

The existing data sources came from logistics carriers that provide air transportation
services. For some forward logistics business where fast delivery time is not required,

sea transportation can provide very much reduced costs.

The main areas of difference in the data between air and sea logistics services originate
from the descriptions of services, surcharges associated with the services and the

package types.

4.8.4 Experimental Approach
The ontology-based dependency model and TomE tool were used to carry out an

evolution of the mappings of the generalised ontology-based integration system used in

160

experiment two. The TomE supported the evolution (in step 2 below) by identifying

which mappings were impacted for each ontological concept in the integration system.

This analysis provided by the TomE tool developed an understanding of which

mappings needed to be changed and what new mappings were required.
This following approach was used to apply the TomE tool to this task:
¢ Step 1: Load the new logistics data set.

The new logistics data set was loaded and the lower ontologies for this data source

was generated as described in the design chapter (Section 3.3).

¢ Step 2: Run Dependency Analysis on existing mappings.

The TomE tool was run using the current mapping file to identify which data items
and mappings are used for each concept in the logistics domain ontology. This step
provided detailed graphs of the dependencies for each ontological concept

including the mappings and data sources elements.

¢ Step 3: Identify candidate mapping updates from the new data sources.

Using the output from step (2), for each concept in the logistics ontology (e.g.
service name), identify similar data items in the new data sources. The TomE tool
provides the view of the current data sources that are mapped to this concept and

this can be used to find similar items in the new data sources.
e Step 4: Identify Missing Ontological Concepts.

Identify any data source items that are not modelled by the logistics domain
ontology that would require new mappings to be created. This enabled the
identification of new mappings that need to be added. This step enables the

identification of new mappings that need to be added.

4.8.5 Experimental Setup
This experiment was conducted by the author of the thesis and required the setup of the

new logistics data sources and execution of the TomE tool.
Database setup

The new logistics database represented sea transportation rates. The logistics company

for the sea rates also provided air transportation rates for experiment two and thus the

161

database schema was very similar to the air transportation data source. The key
differences in the database schema occurred in the service descriptions, rates and

surcharges tables. The key differences are described below:

¢ Service descriptions: The descriptions of services for sea transportation added
new concepts related to containers types that needed to be incorporated into the

existing logistics ontology.

e Rates: The descriptions of rates for sea transportation added new concepts
related to the fact that rates are based on a per container basis that needed to be

incorporated into the existing logistics ontology.

¢ Surcharges: The descriptions of surcharges for sea transportation added new
concepts related to the fact that rates are based on a per container basis that
needed to be added to the surcharges descriptions currently handled by logistics

ontology.
TomE Dependency Analysis Execution

The mapping file for experiment two was loaded into the TomE tool and the
dependency graph generation was carried out using the steps as described in the design

chapter (Section 3.2.6).

4.8.6 Experimental Results
For this experiment, a new logistics carrier was introduced that provides transportation

services by sea. This requires the analysis and update of the semantic mappings used in

experiment two.

Of the 92 mappings in the original integration system, it was found that 23 mappings
needed to be updated and 17 new mappings needed to be added (for the surcharges

concepts related to sea transportation).

4.8.6.1 Analysis of new mappings
The new logistics data represents costs associated with sea transportation. The existing

data sources all represent air transportation. The new data source required some
updates to the logistics ontology to incorporate new concepts related to the surcharges

associated with sea (for example port charges) that are not present in air transportation.

162

These new mappings were simple and exhibited no overlapping or function-based

dependencies.

4.8.6.2 Analysis of updated mappings
23 mappings were updated. These mappings cover the core concepts in the logistics

ontology that represent the logistics carrier information, rate information, basic service

information.

Using the TomE tool, it was found that 13 (of 23) mappings exhibited simple
dependencies that simply required the update of the lower entity part. 10 mappings
exhibited complex dependencies that require further analysis to ensure updates are
applied correctly. The following sections describe a sample of the simple and complex
dependencies that were found by the dependency management tool.

Simple Dependencies

The example in Figure 4-21 shows the dependency graph for the ‘“carriers-name”
concept from the integration ontology. This concept has a mapping that needs to
collect the logistics carrier name from the databases and is dependent from two
database elements (GE). The update required to this mapping can be achieved by
adding the new GE reference to the existing GE references in the mapping. This is a
relatively simple and self-contained update because the mapping does not have a
function associated with it and does not overlap with other mappings. Therefore, the

impact of the change is localised to this mapping.

LE-carriers-name

MP-C 1

GE-exp? test-logistics-Awards
GE-exp test dbZ-logistics-Awards

Figure 4-21: Simple Mapping Dependency

163

Complex Dependencies
10 mappings exhibited complex dependencies because they either overlapped with

other dependencies or have functions associated with them or overlapped and had

function associated. A representative selection of these mappings is discussed below.

The example in Figure 4-22 shows the dependency graph for the ‘“services-
commodity” concept from the integration ontology. This concept has a mapping (MP-
s4) that collects the commodity description (name) from the databases and has

dependent relations with three other mappings.

MP-5700
MP-5701

MP-5301
UE-services-commodity

root
WP-54

Figure 4-22: Services Dependency

Figure 4-22 isolates the concept under investigation and show the hierarchy of
mappings impacted. On first view, there appears to be a complex set of dependencies
coming appearing. The Dependency Management tool provides the level view of the

dependencies to support the user in the mapping update decision making process.

The levels view, in Figure 4-23, shows the dependency levels and types. In this view
the edge highlighted in green is the direct dependency and is assigned level 1. The

dependency type and level are identified using the following syntax:

¢ Overlapping dependencies are identified by “o0”.

¢ Function-based dependencies are identified by “f”.

164

e Levelis identified by the number that preceded the dependency type (e.g. 2:0).

The graph shows that at level 2, there is an overlapping dependency with MP-s301 and
a function based dependency with MP-s700. Finally, MP-s700 has a function-based
dependency on MP-s701.

Armed with this additional information, the user can check the other mappings to see if
updates are needed to these also. In this case only updates to MP-s4 are required as
MP-S301 is a mapping that is used as part of the specification of packages concept that
requires access to commodity data also. MP-s700 and MP-s701 are mappings that are
used by the commodity concept. The commodity concept is a standalone concept used
to describe different types of commodity and there unique reference number that
describes various commodity types (e.g. dutiable or non-dutiable) and rules associated

with the types.

root

UE-services-commodity

hP-54
240 W f

el MP-5700

i
MP-5701

Figure 4-23: Level and Types view
Very complex dependencies
One mapping exhibited very complex set of dependencies. Figure 4-24 below indicates
that 32 other mappings exhibit some dependency relationship with “UE-services-
servicename”. This indicates that the change to this concept could have far reaching
impacts. The discussion below shows how these dependencies developed and thus

gives the ontology designer useful insight in the underlying database design.

165

Mp-MP-PP27 SSyp_ms
root MP-pp20
MP-pp4 MP-pp25
MP-pp6 MP-m2
MP-pp20 MP-m7
MP-pp3 MP-m4
ple UE-services-servicename MP-s7
MP-s6
MP-pp5
MP-m9 MP-s5
MP-s1 MP-pp21
MP-pp19 MP-s11
MP-m1 MP-ipp38
MP-pp? . “'_‘[V]mp‘;m201
MP-IP"MP-y MP-pp2

Figure 4-24: Very Complex Dependency

The integration ontology concept “services-servicename” provides a simple abstraction
of the service names that are used by different logistics carriers (e.g. Express, Express
Saver, and Expedited). Unfortunately one of the underlying logistics databases uses the
poor database design practice of encoding both service name and weight category in
the schema (i.e. in a column names of tables. The ontological mapping in this case
needs to access each column name to extract the service name. The actual column
(instance data) for these columns contains the rates information but the service and
weight category is encoded in the column name. This creates overlapping

dependencies with other ontological concepts for weight, cost and service.

The dependency levels are shown in Figure 4-25.

166

hP-mi201

MP-m3 root
aif
Xf d
MP-m2 "
|JE-services-servicename

2020 g
540 - MP-m3
Hf WPzl MP-pn25
WS 2 50 MR e
: MP-m3 £ '
i e A0 w4
r £ wp. . Ha
MP-ipp3d 5if MP-pps < fMpomT MEE e sy
4:f4.f d4uf 4.' MP-300
T L

MR- MP-md
MP-ppd

4if
47 MPppta
4if

MP-pp?
MR-z

MP-p03 P2 MP-ppErfﬂP 21‘4F'-s?
-p

5if

MP-ipp3s

Figure 4-25: Levels and Types Dependency

In the case of the update to “service-name” concept, only the first level dependencies
are impacted by the change and the deeper level dependencies do not require update.
The mapping associated with “service-name” (MP-sl) does not have a function
associated with it and therefore there is no function based dependency identified at

level 2 in the graph.

This example highlights a potential issue with the aggression of the dependency
algorithm when, as currently implemented, it is tasked with computing all dependent
elements. In the conclusions section, a user driven throttling mechanism for the

algorithm is discussed.

167

4.8.7 Discussion of Experimental Results
The ontology-based dependency model and TomE tool provided important advantages

to the evolution process carried out in this experiment.

The flexible visualisation capability of the computed dependencies allowed three views
of the systems dependencies. This provided quick and accurate computation and

visualization of the full impact of the dependencies in the integration system.
This output from the TomE tool supported the evolution of mappings by:
¢ Identifying which mappings are impacted by changes (Step 2, Section 4.8.4).

¢ Helping to identify which parts of the new data sources to look at to update the

mappings (Step 3, Section 4.8.4).

The TomE tool enabled the integration/ontology designer to quickly localise the
impacted areas and allow analysis of the changes to proceed in an ordered fashion. The
approach supports the mapping evolution process by providing global dependency
views that allow the user to focus in on areas of high dependence initially and then to
progressively drill down to the detail to understand what impact of each computed

dependency.

This case study has shown that for the update case, the direct (first level) dependencies
are the most critical to understand and evolve. This is a feature of this particular use
case that focused on the addition of new data source that required mainly updates of
existing mappings. However, it can be expected that full range of CRUD?* operations
will come into play when other data sources changes are made. In particular the
deletion of some fields from the data sources (perhaps to enable a cleanup or evolution
to a more complex schema) will require close study of the indirect (deeper level)
dependencies because a delete operation will remove the GE which other indirect

mappings depend on and thus break the integration.

Finally, the dependency modelling approach provides could be used to support of
verification and testing of the updated system as noted in the state of the art review for

dependency (Section 2.3.1). This can be achieved using the full dependency graph for

** Create, Request, Update and Delete

168

any given change because it provides a set of candidate areas to verify or regression

test.

4.8.8 Summary of Conclusions, Open Issues and Limitations
This experiment shows that the ontology-based dependency model and TomE tool

enables the integration/ontology designer to quickly localise the impacted areas and
allow analysis of the changes to process in an ordered fashion. The approach supports
the mapping evolution process by providing global dependency views that allow the
user to focus in on areas of high dependence initially and then to progressively drill
down to the detail to understand the impact of each computed dependency. As noted in
[Halevy et al. 2005, Zhou et al. 2006], this is one of the key challenges facing

enterprise integration systems.

The data used in the experiment came from the logistics based use case from
experiment two. While this data set may not be representative of every mapping
evolution task because this experiment focused on updating mappings (and not creating
new mappings or deleting existing mappings), the process that would be used to carry
out dependency analysis in the delete and new mappings cases is the same. This means
once the dependency model can accurately find all the dependencies then the delete
and new mappings cases can be accommodated by adding or deleting mappings and
rerunning the dependency analysis. A detailed process for the usage of the TomE tool
for these cases has not been defined but has been included in the future work (Section

5.3).

The aggression of the dependency algorithm could be throttled by changing the
dependency relations that are used to compute dependency graphs. For example, the
algorithm could be limited to look only for overlapping type dependencies or to
compute to a certain depth. Note that this adjustment capability is not available in the
TomE tool and would require changes to the dependency factory code of the TomE

tool. This update to TomE has been added to the future work (Section 5.3).

169

4.9 Next Steps in Action Methodology
The final iteration of the action based research carried out a corroborative study into
the genericity of the dependency metamodel that was used to build the ontology-based

dependency model (OBDM).

4.10 Corroborative Study — Genericity of the Dependency Metamodel

4.10.1 Overview
This corroborative study applied the dependency metamodel from the design chapter

(Section 3.2.3) in a new domain. This provided an extra indication of the genericity of

the ontology-based metamodel

The dependency metamodel has already been applied to datasets from both a Product
Line Management (Experiment one) and Logistics domains (Experiment two). In these
domains, the dependency metamodel was used to support the management of
dependencies between mappings in an integration system. In this study, the
dependency metamodel is not used to support mappings — rather it is used to support

the dependencies that might arise in a domestic electrical circuit.

In this study, a domestic electrical circuit was selected as the application domain
because it provided a different set of dependencies from the ontology-based integration
system where the metamodel was previously applied. In this domain, the dependency

model was used to localise faults in an electrical circuit.

A domain expert on electrical engineering was coached through an eight-step process
to build a dependency model, using the metamodel, of an electrical circuit and to carry
out a dependency analysis exercise using the model. The eight-step process used
Protégé [Protégé] and Pellet [Pellet] to support the dependency model development
and the dependency analysis exercise. The dependency analysis exercise was carried

out using the model based on the requirements of the electrical engineer.
After the eight-step process was completed, the engineer was interviewed to document

the issues that were encountered during the experiment.

4.10.2 Objectives & Hypotheses
This research has developed an approach for the management and evolution of

mappings in an ontology-based integration system. The approach taken to achieve this

170

developed an ontology-based dependency metamodel that defined the basic building

blocks of dependencies that can be applied in any domain.

The dependency metamodel has already been applied to the management and evolution
of mappings in ontology-based integration in Experiments two and four (Section 4.4
and Section 4.8). This experiment tested the application of the dependency metamodel
in a new domain. The metamodel is used in here to describe the dependencies between
electrical components in a scoped electrical circuit. The usage of the metamodel in this

new domain provides an indication of the genericity of the dependency metamodel.
The aims of the fifth experiment were:

i) To apply ontology-based dependency metamodel developed as part of this
research, in another domain to study the ability of the metamodel to be used in
other domains.

ii) To discover the issues when applying the metamodel in a second domain.

iii) To provide an indication of the genericity of the metamodel.

4.10.3 Experimental Approach
An eight-step process was defined to support the electrical engineer on the steps

required to create a dependency model for an electrical circuit using the ontology-
based dependency metamodel. The Protégé Ontology development tool [Protégé] was
used instead of using the TomE tool as the TomE tool would have required updating of
the mapping factory code. As only a small number of instances would be loaded into
the model and visualisations of the dependencies were not required, the Protégé tool

was used.

Protégé was used to import the metamodel, to build the ontology-based dependency

model for this domain and to run the dependency analysis using the Pellet reasoner.

The electrical engineer was supported on the usage of Protégé by the thesis author.
This involved the thesis author carrying out one example of each step in the process

and then allowing the electrical engineer to complete the step.

Any errors made while inputting data into Protégé by the electrical engineer were
corrected while the data was being input. For example, if an invalid instance was

entered (Section 4.10.4 step 7) then this was corrected before moving to the step 8.

171

After the exercise, an interview was conducted to understand the key issues in carrying

out the steps in the process.

4.10.4 Experimental Setup
The following eight-step process was used to setup the experiment. The process was

executed over the course of three meetings that were held with the electrical engineer

as described below.

Step 1 — Development of electrical circuit domain
The electrical engineer was asked to draw an electrical circuit that represents the main

circuits used in a domestic setting based on his expert understanding of the domain. To
support the electrical engineer in this task, a meeting (30 minutes duration) was held to
present an overview of dependency analysis. The general approach to dependency
analysis was described to the electrical engineer using simple examples based on
family relations (i.e. Son depends on Father) and automotive engine (i.e. Engine

depends on Fuel Supply and Ignition System).

The electrical engineer was asked to draw a domestic electrical circuit that would cover
the basic elements of each type of circuit in the home. The electrical engineer was

asked to focus on the different types of circuit rather than the different appliances.

The electrical engineer without input from the thesis author created the domestic

circuit diagram over a two-day period.

Step 2 — Creation of main circuit components
Using the output of step 1, the electrical engineer was asked to select the major

component of the circuit he wished to model from the diagram. These components
form the architectural entities of the dependency model for this domain. To support the
electrical engineer in this task, a second meeting (90 minutes duration) was held to
define which elements of the circuit diagram were to be modelled. These elements
were selected based on the requirements of the electrical engineer, who wished to carry
out a dependency analysis of each circuit to compute which components were in each

circuit and which components depended on each switchboard fuse.

172

Step 3 — Dependency relation creation
With the output of step 2, the electrical engineer was asked to define the major

dependencies between the components. This step was completed during the second

meeting.

Step 4 — Generate graph
The output of steps 2 and 3 were used to create a scoped electrical diagram. This step

creates the basic dependency model (on paper) for this domain. This step was

completed during the second meeting.

Step 5 — Define dependency attributes
The electrical engineer was asked to specify the attributes (transitivity, symmetry etc.)

of each dependency relation. The engineer was coached on the meaning of each

dependency attribute. This step was completed during the second meeting.

Step 6 — Dependency Model input to Protégé
The author demonstrated the addition of one architectural entity (component) and one

dependency relation using Protégé. The electrical engineer was asked to enter the rest

of the architectural entities. This step was completed during the second meeting.

Step 7 — Instance input to Protégé
For each circuit type identified by the electrical engineer in step 1, instance data was

entered into Protégé. The author demonstrated the addition of one instance of an
architectural entity (component) and one dependency relation using Protégé. The
electrical engineer was asked to enter the rest of the instance data. This step was

completed during the second meeting.

Step 8 — Dependency Analysis
A dependency analysis was run for each circuit using the Protégé and Pellet tools. The

author of the thesis ran this step in conjunction with the electrical engineer during the

third and final meeting (duration 45 minutes).

173

4.10.5 Experimental Results
The outputs of each step in the eight-step process are described below.

4.10.5.1 Process Outputs

Output of Step 1
The first step of the process created a scoped domestic electrical circuit with the

following components: “Main Switch Board”, “Switch”, “Light” and ‘“Consumer
Device”. The electrical circuit created by the electrical engineer for step 1 is shown in
Figure 4-26 below. Figure 4-26 contains three circuits (ring, lighting and single

appliance) that represent the major circuits in a domestic environment.

ESB Unit v Lamp
Meter [X] .li r.. .;
Switch Board
I
I _Light Light
Eﬂ |
&
KEY
Cooker))
- switch [IT]
Control Unit E

Figure 4-26: Scoped Domestic Circuit

Output of Steps 2, 3,4,5,6
The dependency model created using the process had the following architectural
entities:
e Appliance: This architectural entity was created as a container concept for the
different types of electrical appliances in the home. It has “Light”, “Cooker”
and “TV” subclasses in this experiment. In Figure 4-26, “Light” and “Lamp”

were deemed to be the same by the electrical engineer.

174

Socket: This architectural entity was created to represent the electrical sockets

that are part of the standard domestic ring circuit.

SWFUSE: This architectural entity was created to represent the main fuse
board in the home. This represents a simple abstraction of Supplier Unit, Meter
and SwitchBoard entities in Figure 4-26. Each “SWFUSE” entity serves a

single circuit.
Switch: This represents a switch of any kind on a circuit (e.g. a light switch).

Junction: This represents electrical junctions that are typically used in lighting

circuits.

ControlUnit: This represents a control unit that are typically connected to

domestic appliances that draw heavy electrical load (e.g. cooker).

Figure 4-27 below shows the concepts that were created in Protégé

ol Thing ‘
L0 ——— |3 m0de| Concept
- MRLAICE \
LGt
CO0KER
!

CONTROLLNT > Qs J0Ma1n Specific Concepts

JUNCTION

SOCKET

SWFLSE

SwTcH /
DependencyAlrributes

Cause

Inpat > —\etamodel Concept

Strength

Figure 4-27: Excerpt from the Domain Specific Model (from Protege).

175

The dependency model created using the process had the following dependency
relations:

e Light2switch: This dependency relation was created between the “Light” and
the “Switch” architectural entities. This relation had the transitive and
symmetric attribute set.

e Switch2junction: This dependency relation was created between the “Switch”
and the “Junction” architectural entities. This relation had the transitive and
symmetric attribute set.

¢ Junction2swfuse: This dependency relation was created between the
“Junction” and the SwitchBoardFuse” architectural entities. This relation had
the transitive and symmetric attribute set.

¢ Junc2junc: This dependency relation was created between the “Junction”
architectural entities. This relation had the symmetric attribute set.

e App2socket: This dependency relation was created between the “Appliance”
and “Socket” architectural entities. This relation had the transitive and
symmetric attribute set.

¢ (Cu2swfuse: This dependency relation was created between the “Control Unit”
and “SWFUSE” architectural entities. This relation had the transitive and
symmetric attribute set.

® Socket2swfuse: This dependency relation was created between the “Socket”
and “SWFUSE” architectural entities. This relation had the transitive and
symmetric attribute set.

e App2cu: This dependency relation was created between the “Appliance” and
“Control Unit” architectural entities. This relation had the transitive and
symmetric attribute set.

The dependency attributes (Cause, Impact and Strength) were not applied in this model
as the electrical engineer felt that they were not required for the analysis of this scoped
domestic circuits because the dependency analysis exercise was to focus on the

elements in each circuit and not the attributes of the dependencies between them.

Domain specific models were created to represent each circuit as shown Figure 4-28.

176

Circuit 1: Single Appliance

Circuit 2: Lighting

Circuit 3: Ring

Appliance Light Appliance
Light2switch app2socket
app2cn | |
Control Unit Switch Socket
an2swiuse r Switch2Junc F socket2swfuse
SWFUSE Junction Qu”cgj;m,_- SWFUSE
Junc2swfuse
SWFUSE
Figure 4-28: Domain Specific Models for each circuit
Output of Steps 7

Based on the electrical components in Figure 4-26, the following instances were

created in Protégé to populate the model (Table 4-4: Domain Specific Model Instances

).

Instance Name Model

SWFUSEI1
SWFUSE2
SWFUSE3
Socket 1
Socket 2
TV1
Lampl
Junctionl
Junction 2
Switch 1
Switch 2
Light 1

Concept
SWFUSE
SWFUSE
SWFUSE
Socket
Socket
Appliance
Appliance
Junction
Junction
Switch
Switch
Light

177

Circuit #

Circuit 1
Circuit 2
Circuit 3
Circuit 2
Circuit 2
Circuit 2
Circuit 2
Circuit 3
Circuit 3
Circuit 3
Circuit 3
Circuit 3

Light 2 Light Circuit 3
CU1 ControlUnit Circuit 1

Cookerl Appliance Circuit 1
Table 4-4: Domain Specific Model Instances

During this process step, the electrical engineer was asked to enter the data into
Protégé. While the data was being entered, two types of error were corrected as

described below:

e Associating the wrong instance name with a Model concept. This error
occurred due to the instance creation panel in Protégé that must have the correct

concept name highlighted before the create instance operation is selected.

¢ C(Creating dependency relations between the wrong instances. This error
occurred because of the Electrical Engineers lack of familiarity with the names
used to identify the dependency relations (app2cu, app2socket) and instances
(light 1, CU1). The domain model constraints will not allow the wrong type of
concept to be entered but will allow any instance name to be entered, even if a

dependency relation does not exist in reality between those elements.

4.10.5.2 Outputs of Dependency Analysis Exercise
The Electrical engineer wished to test the system by requesting which elements were

dependent on each “SWFUSE” element specified in the system because this would

effectively find all elements in each circuit.

To achieve this, the thesis author created an OWL axiom for each “SWFUSE” element
and entered it into Protégé as shown in Table 4-5. The Pellet reasoner [Pellet] was used
to infer the dependency elements in each circuit by computing the dependency

elements for each “SWFUSE” instances.

Circuit # Axiom Result

1 <owl:Class rdf:ID="Axiom FUSE1"> COOKERI
<owl:equivalentClass>
<owl:Restriction> CU1
<owl:onProperty rdf:resource="#DependencyRelation"/> S\A[FIJSIEl (:1?1

<owl:hasValue rdf:resource="#SWFUSE1l_CT1"/>
</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

2 <owl:Class rdf:ID="Axiom FUSE2"> LJ(}}{Tl
<owl:equivalentClass>
<owl:Restriction> SWITCHI
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#SWFUSE2_CT2"/> SWFUSE2_CT2
</owl:Restriction> LIGHT?2

178

</owl:equivalentClass> SWITCH2

</owl:Class>

JUNCTION1
JUNCTION2
3 <owl:Class rdf:ID="Axiom FUSE3"> TWJI
<owl:equivalentClass>
<owl:Restriction> SWFUSE3_CT3
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#SWFUSE3_CT3"/> LJ\B&PI
</owl:Restriction> SOCKET1
</owl:equivalentClass> SOCKET2

</owl:Class>
Table 4-5: Reasoning Axioms for the domestic electrical circuits.

Given that the number of instances in the dependency model is small, the inferences

above executed in 1-2 seconds for each case.

The electrical engineer checked the output of each inference and agreed that it was

consistent with what he would expect.

4.10.5.3 Discussion of results
The issues that were identified during the process of applying the dependency

metamodel to this new domain are discussed below.
Instance Data Entry

The data entry of instances into the model was identified as an issue by the electrical
engineer. The process selected for this experiment used the Protégé tool to load

instance data. Two distinct problems are discussed below.

The first problem concerned the instance-loading screen in Protégé. The user interface
in Protégé provides all the available relationships for any defined concept (e.g.
dependency attribute of level, strength, impact). It is not clear when using Protégé
which attributes are mandatory and which are optional. During the exercise, the thesis

author needed to instruct the electrical engineer on the meanings of each attribute.

The second problem concerned the time taken to load instances. Even with a small
number of instances in this exercise, considerable time was spent on this step to ensure
correct and consistent data entry. A number of errors in the data entry needed to be

corrected as discussed earlier.
Separation of the Ontological Construct from the Model

The electrical engineer felt that the Protégé tool was not the most appropriate way to
present the domain specific model as it contained many non-essential features that are

related to building ontologies rather than the electrical domain.

179

The key issue was in the separation between the domain level (i.e. electrical domain)
that the electrical engineer wishes to work at and the low level modelling constructs

that are visible in Protégé.
Application of Dependency Attributes.
Two aspects of the application of the dependencies attributes were discussed.

The first aspect related to the dependency attributes for “Level”, “Strength” and
“Impact”. The electrical engineer who wished to focus on the fault isolation in the
scoped example did not use these attributes. It was noted that this information tends not
to be formally represented in circuit diagrams and would be the subjective view of the

circuit designer.

The second aspect related to dependency attributes concerns the usage of the
“junc2junc” dependency relationship. Circuit three (Lighting circuit) contains
symmetric and transitive/symmetric dependency relations. The “junc2junc”
dependency relationship is not transitive so the dependencies will not propagate across
this relationship. This means that a dependency analysis axiom for “LIGHT2” will

yield the dependent elements LIGHT2, JUNCTION2, SWITCH2.

<owl:Class rdf:ID="Axiom LIGHT2">
<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#LIGHT2 "/>
</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Code 13: Axiom for “LIGHT2”

The axiom for “LIGHT1” will yield the dependent elements “LIGHT1”, “SWITCH1”,
“JUNCTION1” and “SWFUSE2_CT?2”.

In the electrical circuit domain, this behaviour is correct and as required by the
electrical engineer because a failure on the LIGHTI is unlikely to be caused by

components associated with LIGHT?2.
Multiple Domain Models

In this experiment, the metamodel was used to represent three types of circuit as shown
in Figure 4-28. This approach was taken to limit the time spent by the electrical

engineer during the exercise. The dependency metamodel provided sufficient

180

flexibility to design these three models. An alternative approach would be to create a

single overall model to represent a more generalised model of an electrical circuit.

4.10.6 Discussion of Experimental Results
The ontology-based dependency metamodel enabled an electrical engineer to quickly

create three domain specific models for a scoped domestic electrical circuit.

The automatic inference provided fast and accurate insight in the dependencies for any
point in the electrical circuit. This information is useful when both attempting to isolate

faults in the circuit as well as when adding new components to the circuit.

This study has highlighted the importance of tool support for the loading of instance
data. However, this tool support requires access to a structured information store from
where to load the instance data. In the case of the ontology-based information
integration system, the mapping file provided an excellent structured source. In other
domains, especially outside of the information technology space, this information may

not be easily available.

4.10.7 Summary of Conclusions, Open Issues and Limitations

The dependency metamodel was used, under supervision, by an electrical engineer to
carry out a dependency analysis of a scoped electrical circuit. The study showed that
the metamodel can be applied in a relatively short time (2-3 hours). The study showed

how different electrical circuit types can be supported by the metamodel.

The dependency axioms that were constructed to infer dependencies were similar to
other use cases tested in this research. This is due to the abstract nature of the
dependency metamodel that provides for dependency reasoning over architectural
entities (AE). In this domain, the Architectural Entities represent points in the circuit

from where a dependency analysis can be carried out.
Three areas of improvement have been identified as discussed below.

e More instructional information should have been provided on which concepts
and attributes of the dependency metamodel are mandatory and which are
optional. It was initially assumed by the electrical engineer that all concepts and

attributes were mandatory.

181

The metamodel could be enhanced to include more support for representing the
different types of models. In this experiment, three models were created.
Currently the metamodel only supports the concept of a graph, that has name

and type attributes.

The construction of axioms to infer dependencies is left to the domain specific
model. The process to construct the domain specific models could be enhanced
to provide a framework to support the creation of inferences related to the

dependencies.

182

4.11 Summary of Evaluation

This research has been carried out in an iterative manner using an action-based
methodology. Action based research involves an iterative inquiry process that leads to
a refinement of the research question. The inquiry process was conducted using a

series of experiments.

The aim of the first experiment was to discover the key issues related to integration
performance when applying an ontology-based integration approach in an industrial
context. The results of experiment one showed that while there is advantage to be
gained by using the ontology-based approach, because the solution can cope with
semantic heterogeneity using mappings, it is not easy to identify which mappings need
to change when one of the underlying data sources changes. This was due to the
complex nature of some of the mappings and the complex coupling between different
parts of the integration system that the mappings create. Experiment one noted that
approximately 33% of the mappings contained complex mappings functions.
Following analysis of the results from experiment one, a hypothesis was developed that
suggested that the complexity and coupling of the mappings would make the mappings
difficult to evolve and that support for understanding the complexity and couplings

would bring benefits to the integration system.

When a data source changes, the first step in evolving the mappings is to understand
which parts of the system are impacted. Experiment two evaluates the hypothesis that
this can be achieved by modelling the dependencies that exist between the parts of the

ontology-based integration system.

The second experiment developed and evaluated an ontology-based dependency model
(OBDM) that would support understanding of the complex coupled nature of mappings.
The results of this experiment showed that a significant proportion, approximately 30%,
of the mappings exhibit complicated dependency relationships. It was hypothesised
that these mapping relationships are difficult to identify without tool support and thus

makes the first step of mapping evolution difficult for integrators.

Experiment three confirmed the hypothesis by demonstrating the time consuming and
error prone nature of this first step of mapping evolution (i.e. identification of mapping
dependencies) through the use of a synthetic set of evolution needs. This was achieved

by comparing the performance of the OBDM with a manual dependency analysis

183

process that was carried out by 18 users. The results of the experiment show that the
ontology-based dependency model significantly outperforms the manual process in
both accuracy and time. With the synthetic set of evolution needs, the ontology-based
dependency model provides fast, accurate and automatic support for the first step of

mapping evolution.

The fourth experiment tested the ontology-based dependency model as a new data
source was introduced into an existing dataset and examined how the resultant set of
evolution needs were coped with. The set of evolution needs arising was more
unpredictable in comparison to the synthetic set designed for use in experiment three as
the data set was taken from an industrial context. The experiment shows that the
ontology-based dependency model and toolset enables the integration/ontology
designer to quickly localise the impacted areas and allows analysis of the changes to
proceed in an ordered fashion. The approach supports the mapping evolution process
by providing global dependency views that allow the user to focus in on areas of high
dependence initially and then to progressively drill down to the detail to understand the
impact of each computed dependency. As noted in [Halevy et al. 2005, Zhou et al.

2006], this is one of the key challenges facing enterprise integration systems.

A corroborative study applied the ontology-based dependency metamodel that was
created as part of experiment two, to build a dependency model for a domestic
electrical circuit. The key ideas concerning dependency analysis and dependency
models were presented to an electrical engineer who was asked to create a dependency
model for an electrical circuit from a domestic setting. A domain model was created by
the electrical engineer for the electrical circuit that contained four elements (Main
Switch Board, Switch, Light and Consumer Device). The engineer was asked to build a
model on paper using the dependency metamodel and domain elements. The engineer
was coached by the thesis author during this process to ensure that the experiment
focused on the metamodelling constructs and not on the Protégé [Protégé] or Pellet

[Pellet] toolset.

184

5 CONCLUSIONS

This chapter describes how well the objectives of the thesis were achieved (Section
5.1), summarises the contributions made (Section 5.2), describes work that may be
undertaken in the future (Section 5.3) and concludes with some final remarks (Section

5.4).

5.1 Objectives & Achievements

The research question in this thesis was defined in Chapter 1 as “How and to what
extent can a dependency model enhance integration performance by allowing for the
identification of and support for the management of the mapping dependencies of an

integration system?”
Four objectives were derived to address the research question:

1) Perform a state of the art review of approaches for semantically linking local®

schema and aggregate or global schema®*.

2) Research and develop a model to define the dependencies that arise when creating
semantic links between schemas to support an ontology-based integration approach

between local schemas and global schemas.

3) Research and develop a prototype tool capable of supporting this dependency

modelling approach.
4) Evaluate the dependency model and tool using industrial use cases.

Each of these objectives and associated achievements are discussed in the following

sections.

5.1.1 Obijective One - State of the Art Review
The state of the art chapter was divided into three sections. Before the state of the art a

background review of current information integration approaches and technologies was

undertaken.

The first part of the state of the art reviewed the prior art in dependency and

dependency analysis. The second part looked at approaches to schema and ontology

* Local schema refers to a schema that represents the local sources to be integrated.
** Global schema refers to a common view of sources to be integrated.

185

mapping management as they apply to management of semantic mappings. The third

part reviewed the state of the art in ontology-based integration systems.
Review of Information Integration

The background review into information integration illustrated that research has been
ongoing for at least 30 years in various forms but is as relevant today as ever. The
detailed state of the art for integration focused on ontology-based approaches to data
integration by providing a review of the fundamental ways to apply ontologies to the
integration problem and then reviewing several recent ontology-based integration

frameworks against these fundamentals.

The review showed how information integration is often cited as the biggest and most
expensive challenge that information-technology organisations face and how
information integration is thought to consume about 40% of their budget [Bernstein
and Haas 2008]. In spite of many successes in information integration (e.g. relational
databases, ETL 25techniques, data federation techniques), the state of the art review
illustrates the relevance of research in data integration today [Bernstein and Melnik
2007, Lowell Database Report 2003, IBM 2004, Halevy et al. 2005, and Zhou et al.
2006].

The role that ontologies play in supporting the resolution of semantic heterogeneity
[Pollock 2002, Cruz and Xiao 2005, Calvanese et al. 2001, Noy 2004 and Wache et al.
2001] and how semantic mappings are used to create relationships between the
ontologies and data sources of the systems to enable integration [Cruz and Xiao 2005,
Noy 2004, Wache et al. 2001] was described. The review showed that as the ontology-
based systems are scaled up, semantic mappings also need to grow and evolve
[Bernstein and Melnik 2007, Velegrakis et al. 2003, Yu and Popa 2005, and Halevy et
al. 2005]. Despite the broad usage of mappings across these approaches, it was found
that there is little commonality in the approach to the management of the mappings

[Bernstein and Melnik 2007, Doan and Halevy 2005, Halevy et al. 2005].

To investigate this management gap in the state of the art, experiment one (Section 4.2)
was developed to discover the key issues related to integration performance when
applying an ontology-based integration approach in an industrial context. This led to a

number of important achievements that are described below.

» Extract, Transform and Load (ETL) is a data integration technique.

186

A test bed that represented a generalised ontology-based integration system using the
hybrid ontology approach was developed as described in the design chapter. The test
bed enabled the exploration of the semantic mappings that are at the heart of the
ontology-based system in experiment one. The “Integration Quality” metric of the
system was measured using the THALIA integration benchmark [Stonebraker 2005].
From the analysis of the results of the experiment a hypothesis was developed
concerning the complex nature of the mappings and the complex coupling between
different parts of the integration system that the mappings create. The test bed that was
created in this thesis adhered to the fundamental approaches for using ontologies for

integration as described in the state of the art review.
Mappings in Schema and Ontology Evolution

The state of the art in the management of schema and ontology mapping was reviewed
by first looking at mapping usage in schema evolution and then reviewing the state of

the art in ontology evolution.

While the mappings play a key role in the approaches to schema evolution, there are
fundamental reasons why the approaches are not easily transferable [Kondylakis et al.

2009, Noy and Klein 2002].

Among these fundamental differences is that ontologies themselves are data that can be
reasoned over to an extent that schemas cannot (e.g. a query on a database schema will
usually result in a set of instance data, while a query on an ontology can result in both
instance data and elements of the ontologies itself). Furthermore ontologies themselves
incorporate explicit semantics of a domain that in the case of schema based systems
tend to be incorporated into the application itself. The extra expressivity of the
ontological domain descriptions means the mappings in the ontological domain contain
semantic information themselves as illustrated by the fact that mappings are sometimes

represented using ontological languages.

The author of this thesis believes that, based on the evidence from the state of the art
review that the mappings in the ontology-based integrations systems are sufficiently
different from the schema approaches that the mappings would benefit from an
independent management approach. The ontology-based dependency modelling
approach proposed in this thesis provides an approach for the management of

mappings in the ontology-based integration domain in which the mappings are seen as

187

fundamental parts of the integration system that needs to be evolved when the data

sources change.

The review showed described two of the most recent tools (PRISM workbench [Curino

et al. 2008], Clio project [Miller et al. 2001]) to support schema evolution.

In the context of ontology-based integration systems, it was noted that these
approaches, while relevant, may not be directly applicable due to the differences in
both the usage and nature of mappings in the ontology-based integration domain. A

number of differences were noted as follows:

e The more expressive nature of the ontology languages made it unclear if the
approaches that use schema matching operators defined in [Curino et al. 2008]

are relevant to the ontology domain.

e The process for schema mappings and schema evolution tends to be coupled

and the lifecycle of each is not identified or managed separately.

e The formal semantics of ontology-based languages allow for the use of

reasoning that can be used for consistency checking of evolved ontologies.

The ontology-based dependency modelling approach proposed in this thesis provides a
new approach for the management of mappings in the ontology-based integration

domain that is not covered by the state of the art.

The state of art review noted that the development of ontology is a complex process
and recently much fruitful research has been carried out [Hepp et al. 2008] and is

beginning to be realised in excellent tools such as the NeOn project [NeOn].

The review highlighted that the ongoing maintenance and evolution of the ontologies is
also of critical importance for any industrial deployment of an ontology-based
integration solution as noted in [Wache et al. 2001, Uschold and Gruniger 2004, Hepp
et al. 2008]. The NeOn project [Hepp et al. 2008] provides an excellent, extensible

framework for the development and management of ontologies.

The complex nature of mapping evolution was described [An and Topaloglou 2007]
and the review revealed that the evolution of semantic mappings is still in its early
stages [Hepp et al. 2008]. This was further confirmed by the review of current

frameworks that use ontologies to support integration.

188

The ontology-based dependency modelling approach proposed in this thesis can
support the ontology alignment lifecycle proposed in [Hepp et al. 2008] by
automatically providing the candidate mappings that are dependent on the part of the

ontology that is evolving.
Dependency

In the state of the art review on dependency, it was shown that dependencies and
dependency analysis has been used across many domains such as distributed service
management, fault management and software configuration management [Borner and
Paech 2009, Varol and Bayrak 2010, Luo and Diao 2009, Drabble et al. 2009, Wang
and Capretz 2009 and Maddox and Shin 2009]. The approach enabled valuable
insight into the management of their respective systems by providing impact analysis

caused by changes (e.g. faults or data updates) in the underlying systems.

Very few approaches presented in the state of the art provide formal representations of
dependency that can be used to reason about dependencies. Most representations of
dependency are based on simple notions of dependency without any behaviour aspects
modelled as in the approach taken in this thesis. The models proposed in [Keller et al.
2000] and [Cox et al. 2001] provide useful insight into the descriptive attributes of

dependency that are useful in the service management domain.

The ontology-based dependency modelling approach presented in this thesis describes
two different types of dependency attribute i.e. behavioural attributes and descriptive
attributes. While the descriptive attributes of the model are important, it is the
behavioural attributes that enable the automatic reasoning over the ontology-based
dependency model and thus provide the dependency analysis with the capability to

automatically build chains of dependencies.

It was noted in the review that the processes to acquire instances to populate the
dependency model are not explicitly specified and tend to use bespoke coded solutions
to acquire the instance data [Ensel and Keller 2002, Keller et al. 2000, Borner and
Paech 2009 and Drabble et al. 2009]. This makes any generalisation of the approaches
difficult.

Summary

From the discussion above, the state of the art review identified the different

approaches that can be taken to use ontologies to support semantic integrations. These

189

fundamental approaches were applied in the construction of the generalised ontology-

based integration test bed used in experiment one and two.

The review highlights the hypothesis that semantic mappings can pose problems in
ontology-based data integration systems due to the difficulty in evolving them when
data sources change. This problem is exacerbated by the lack of mapping management

approaches.

The review showed the value of dependency analysis as it has been applied in other
domains but noted that the approaches are tightly coupled to the domain under test.
This thesis has developed a dependency modelling approach to support the
management of mappings in ontology-based integration systems as the data sources

evolve.

5.1.2 Objective Two - Design of Ontology-Based Dependency
Model

Following analysis of the results of experiment one, a hypothesis was developed that
stated that the complexity and coupling of the mappings would make the mappings
difficult to evolve. Furthermore support for understanding the mapping complexity and
coupling would bring benefits to the integration system when the mappings need to be

updated.

This thesis has demonstrated the complexity associated with mappings in the ontology-
based integration systems in experiment two. This was achieved by using a model of
dependencies to explicitly show the relationships between mappings and the rest of the

integration system.

This was achieved by the development of a domain specific model in OWL [OWL] to
represent the dependencies in the ontology-based integration system. This is called the

ontology-based dependency model (OBDM).

The ontology-based dependency model was created using a metamodelling approach.
The dependency metamodel that was created provided an extensible set of concepts
related to modelling of dependencies and can be reused to build other dependency
models. The dependency metamodel moved past the state of the art in dependency
modelling due to its support for dependency attributes (behavioural and descriptive)

and in its ability to enable reasoning about dependencies. The compact nature of the

190

metamodel enabled its application in a new domain as shown in the corroborative

study in the evaluation chapter.

The selection of OWL to create the ontology-based dependency model and metamodel
enabled automated reasoning about dependencies based on the formal semantics of the
OWL constructs used in the dependency metamodel and model. This automated
reasoning approach was used in the TomE tool described in Section 3.2.6.3 of the

design chapter.

5.1.3 Objective Three - Design of Ontology-Based Dependency
Model Tool (TomE)

A tool called TomE (Towards Ontology Mapping Evolution) was developed to
instantiate the OBDM and to support the analysis of dependencies in the ontology-

based integration system.

The TomE tool automatically computes the dependencies arising from the semantic
mappings in the ontology-based integration test system. The tool was used to support

experiment two, three and four.

The tool provides strong visualisation of the automatically computed dependencies by
providing three separate graphical representations of the dependencies. The tool
automatically populates the dependency model by reading the semantic mapping file

from the ontology-based integration system.

The tool is an important achievement because it abstracts the ontological aspects of the
dependency model from the user. This thesis has shown how the tool ensured fast and
accurate computation of the dependencies across a range of different semantic

mappings files in experiment two, three and four.

5.1.4 Objective Four - Evaluation of Dependency Modelling
Approach

The performance of the dependency modelling approach that uses an ontology-based

metamodel was measured in experiment two, three and four.

Experiment two demonstrated the three different types (non-overlapping, overlapping,

function-based) of dependencies that can arise when semantic mappings are used in the

191

generalised ontology-based system. The existence of different types of dependencies
supports the hypothesis that mappings are difficult to evolve because they exhibit

complex dependency relations with other parts of the system.

Experiment three demonstrated that the automated dependency approach will
significantly outperform manual process based approaches. Furthermore, the results of
experiment three show that even the dependencies in a small number of mappings can
present considerable difficulty in the absence of tool support. Knowledge of the
underlying data set did not significantly improve the performance of the manual

approach.

Experiment four demonstrated how the dependency modelling approach and the TomE
tool can be used to support the evolution of mappings when a data source changes. The
dependency modelling approach and TomE tool enabled the fast and accurate
identification of the mappings that were impacted by the introduction of a new data

source in the generalised ontology-based integration system.

The corroborative study provided an indication of the genericity of the dependency
metamodel by applying the ontology-based metamodel in a different domain. The
study showed that an electrical engineer could create a dependency model and carry
out dependency analysis using the metamodel. This is important because it provides
evidence of the straight forward approach that can be taken to apply the metamodel in

a new domain.

5.2 Contribution

The major contribution of this work is the ontology-based dependency model (OBDM)
that can represent the dependencies that occur between mappings, ontologies and
databases in an ontology-based integration system. The ontology-based dependency
model will be beneficial to system integrators when developing approaches to improve

the ability of the enterprise integration systems to evolve when data sources change.

In the context of the generalised ontology-based integration system, the dependency
modelling approach is automatic since it can decompose the mapping file, compute and
visualise dependencies without human intervention. As shown in experiment three, it
significantly outperforms manual process oriented approaches for both accuracy and
time measurements. The approach provides useful insight into the mapping evolution

in a fast and reliable way by providing three levels of dependency analysis, complete

192

with visualisation and navigation of the dependency graphs. A case study (experiment
four) that introduced a new data source to the integration system demonstrated the
relevance of the dependency model and toolset to the evolution problem by providing
analysis of the dependencies. The approach supports the evolution process by
providing global dependency views that allow the user to focus in on areas of high
dependence initially and then to progressively drill down to the detail to understand the
impact of each computed dependency. The dependency model is novel since it
automatically computes the dependency relationships. The automation is achieved
through the instrumental usage of ontological reasoning over different forms of
dependency relation (e.g. transitive, symmetric). This approach requires coding only to
invoke the ontological reasoner. To the authors knowledge, an ontology-based
dependency metamodel has not been published before that has support for both
behavioural and descriptive attributes and that can enable reasoning over the
dependency relationships in the model to enable automatic computation of

dependencies.

The dependency modelling approach makes the dependencies that exist in the system

explicit thus making analysis of dependencies and mapping evolution easier.

The approach does not require instrumentation of the integration system and thus does
not impact the processing of the integration system while the dependency analysis is
taking place. The ontology-based dependency model (OBDM) was case studied against
industrial data from real systems from the Alcatel-Lucent supply chain that provided a
challenging set of requirements for the system. The results of the experiments indicate
how the ontology-based dependency model and tool enable the integration specialist to
quickly identify all the impacts of a complex set of changes to the data sources. By
providing progressive detail of the dependencies, the integration specialist can quickly
focus and assess what needs to be changed in the system. The results show that
dependencies found can also be used to develop targeted regression testing after the
integration system has been updated. This analysis is useful for integration systems
developers who wish to understand the complexity involved in the evolution of

mappings in an industrial context.

A minor contribution is the ontology-based dependency metamodel from which the
domain specific dependency model was created. The ontology-based dependency

metamodel could be beneficial to management systems (e.g. service and fault

193

management) which need to model dependencies between parts of the system as
described in the state of the art review of dependency (Section 2.3.1). The genericity of
the metamodel has been tested across two large industrial datasets that originated from
a dynamic industrial environment with multiple IT systems and multiple processes. A
corroborative study was carried out to demonstrate the application of the metamodel in
an entirely different domain (i.e. dependency analysis in a domestic electrical circuit).
The compact nature of the metamodel facilitates design flexibility, behaviour reuse and
scalability. Design flexibility is achieved since the metamodel enables domain specific
models to select those features of the metamodel it wishes to realise. Reuse is achieved
because the domain specific models inherit the important formal semantics associated
with dependency relations (e.g. transitivity). The metamodel and domain specific
model can be independently evolved with care. A process has been defined that
describes the steps required to create domain specific models from the dependency
metamodel. This ensures that the system is extensible because the technique and model
to manage mapping evolution can be adapted to cater for other mapping formats by
simply decomposing the mapping format into the core architectural entities. The
decomposition process requires the model creator to encode only the first level of
dependency for each node thus reducing the breadth of domain knowledge any single

model creator requires.
Peer review publications

The design of the generalised ontology-based integration test system and the setup,

results and conclusions of experiment one were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Case Study of an
Ontology-Driven Dynamic Data Integration in a Telecommunications Supply
Chain. Proceedings of the Workshop on the First Industrial Results of Semantic
Technologies (FIRST2007) at ISWC/ASWC2007, Busan, South Korea, 2007.

The design of the ontology-based dependency model and the result of experiment two

were published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, Managing Ontology Based
Integration Systems using Dependencies. Proceedings of the Workshop on the
Managing of Ubiquitous Communications and Services Workshop (MUCS) at
PerCom 2010, Mannheim,Germany , 2010.

194

The design of the ontology-based dependency metamodel, model and toolset was

published in:

Aidan Boran, Declan O'Sullivan and Vincent Wade, A Dependency Modelling
Approach for the Management of Ontology Based Integration systems.
Network Operations and Management Symposium (NOMS), Osaka, Japan,
2010.

It is planned to submit the ontology-based dependency modelling approach using

dependency metamodel to selected journals in the service and data management areas.

5.3 Future Work

The experiments that were carried out in this research highlighted a number of
limitations as discussed at the end of each experiment. These limitations afford the
opportunity for further research. This further research is classified here according to
whether they impact the performance or the functionality of the dependency modelling

approach.

5.3.1 Future work related to the performance of the dependency
model

This section describes future work that could be undertaken to improve or further

verify the performance of the dependency modelling approach.
Runtime Performance of Ontology-Based Integration Approaches

The THALIA benchmark provided a simple measure (i.e. a score out of twelve) of the
ability of the system to perform integrations across the twelve types of heterogeneity.
A more comprehensive suite of performance measurements (e.g. runtime performance)
would be needed to confirm the integration systems suitability for industrial
deployment. These aspects of performance were not tested in this research as the focus

was to investigate the complexity of the mappings.

The THALIA benchmark system does not provide quantitative data on how much
effort is needed to run each test. This is important because, while a THALIA
integration test may pass, it may require costly manual intervention (e.g. mapping
updates) that would impact the scalability of the system. To address this in experiment

one an effort classification was developed and used that provides qualitative estimation

195

of the effort needed for each test in THALIA. Further research could be undertaken to

develop a more sophisticated quantitative measure of the effort for each THALIA test.
Mapping Formats

Only one mapping format (INRIA [Euzenat 2004]) was tested as part of the
experiments. Other mappings formats could cause dependencies between different
parts of the integration system that were not tested in this experiment. However, the
approach taken in the design of the dependency metamodel and model creation process
means that irrespective of the mapping format, once the mapping decomposition
process is carried out, the dependency model will be able to support other mapping
formats. Further research could be undertaken to verify the performance of the

dependency modelling approach using other mapping formats.

5.3.2 Future work related to the functionality of the dependency
model

This section describes future work that could be undertaken to improve the

functionality of the dependency modelling approach.
TomE Tool Implementation

The current implementation of the visualisation of the dependency chain in TomE does
not display a graphical representation of the function associated with each mapping
point. This could be improved by updating the dependency factory code in TomE to

add appropriate GraphML nodes for functions.

In the current implementation of the TomE tool, the function names need to be
manually extracted from the function descriptions in the generalised ontology-based
integration system. While the TomE tool loads the function descriptions automatically
from a user specified file (Section 3.2.6), the file has to be prepared manually by
examining the mapping file and the code for each mapping function. Further work
could be carried out here to automate the collection of the function names and the

parameter names.
Rule Enhancement for the Dependency Model

The OBDM currently does not support the automatic classification of the dependency

types found. The addition of a rule capability to the domain specific model would

196

provide the dependency modeller with the ability to define rules to support this
classification. This could be achieved by research into the application of Semantic Web

Rule Language [SWRL] to the dependency model.
The Role of Dependency Analysis in the Mapping Evolution Process

The industrial data used in the experiment four came from the logistics based use case
and focused on updating mappings rather than the creation of new mappings or the
deletion of existing mappings. A process was defined to describe the usage of the
TomE tool for the update case. A detailed process for the usage of the TomE tool for
all cases (update, new, delete mapping) should be defined that will cover the sequence
of tasks needed to carry out the dependency analysis and will define how the

dependency analysis interacts with the mapping evolution process.
Application of Dependency Model to other domains

The dependency modelling approach and dependency metamodel is proposed to be
used in a number of other application areas. The FAME Strategic Research Cluster
[FAME] in Ireland will use the dependency modelling approach as part of the strategy
to manage ontology mappings for the FAME architecture. Within a research project in
Bell Labs, the ontology-based dependency metamodel is under investigation to support
the management of dependencies between web service invocations. The dependency
model may be included in a larger data management ontology which includes concepts
to represent provenance of the data sources which are represented by the domain

ontology.

197

5.4 Final Remarks

The explosion of information that is available in the internet and the enterprise has
created the need for dynamic data integration technologies that can evolve as the
information evolves. The emerging approaches to data integration that use ontologies
and mappings promise to make data integration systems more flexible in the face of

evolving data sources.

The author believes that the ontology-based dependency model described in this
research provides a framework that can be used in data integration toolsets to support
the data integration industry as it takes the first steps towards full mapping

management.

198

6 Bibliography

Abels et al. 2008 Sven Abels, Stuart Campbell and Hamzeh Sheikhhasan. Stasis
- Creating an Eclipse Based Semantic Mapping Platform. In
eChallenges 2008.

An and Topaloglou 2007 Yuan An and Thodoros Topaloglou. Maintaining Semantic
Mappings between Database Schemas and Ontologies. In the
Proceedings of the Joint ODBIS and SWDB Workshop on
Semantic Web, Ontologies, Databases 2007 in conjunction

with VLDBO7, Vienna, Austria.

Beneventano et al. 2003 Domenico Beneventano, Sonia Bergamaschi, Francesco
Guerra and Maurizio Vincini. Synthesizing an Integrated

Ontology. IEEE Internet Computing 7(5):42-51, 2003.

Beneventano et al. 2009 Domenico Beneventano, Mirko Orsini, Laura Po, Antonio
Sala and Serena Sorrentino. "An Ontology-Based Data
Integration System for Data and Multimedia Sources". pp.
606-611. 2009 IEEE International Conference on Semantic
Computing, 2009.

Bernstein and Melnik 2007 Philip A. Bernstein and Sergey Melnik. Model
Management 2.0: Manipulating Richer Mappings.
International ~Conference on Management of Data.
Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data.

Bernstein and Haas 2008 Philip A. Bernstein and Laura M. Haas 2008. Information
Integration in the Enterprise. Communications of the ACM.
Volume 51, Issue 9 72-79. (September 2008). DOI=
http://doi.acm.org/10.1145/1378727.1378745

199

Biffl et al. 2010

Bohm et al 2008

Bohme and Rahm 2001

Stefan Biffl, Wikan Danar Sunindyo and Thomas Moser.
"Semantic Integration of Heterogeneous Data Sources for
Monitoring Frequent-Release Software Projects". pp. 360-
367. 2010 International Conference on Complex, Intelligent

and Software Intensive Systems, 2010.

Matthias Bohm, Dirk Habich, Wolfgang Lehner and Uwe
Wiloka. "DIPBench: An Independent Benchmark for Data-
Intensive Integration Processes". Data Engineering Workshop,
2008. ICDEW 2008. IEEE 24th International Conference.
Vol., No. pp-214-221, 7-12 April 2008. DOLI:
10.1109/ICDEW.2008.4498321.

Timo Bohme and FErhard Rahm.“Xmach-1: A
Benchmark for XML Data Management.” in BTW,
2001, pp. 264-273.

Borner and Paech 2009 Lars Borner and Barbara Paech. "Using Dependency

Brown et al. 2001

Calvanese et al. 2001

Information to Select the Test Focus in the
Integration Testing Process". Practice and Research
Techniques, Testing: Academic and Industrial
Conference pp. 135-143, 2009 Testing: Academic and
Industrial Conference - Practice and Research

Techniques, 2009.

Aaron Brown, Guatam Kar, Alexander Keller. An Active

Approach to Characterizing Dynamic Dependencies for

Problem Determination in a Distributed Environment.

Proc 7th IFIP/IEEE International Symposium on Integrated

Network Management (IM VII), Seattle, WA, May 2001.
Diego Calvanese, Guiseppe De Giacomo and Maurizio
Lenzerini. Ontology of Integration and Integration of
Ontologies. In Description Logic Workshop (DL 2001),
pages 10-19, 2001.

200

Choi et al. 2006 Namyoun Choi, II-Yeol Song and Hyoil Han. A Survey on
Ontology Mapping, ACM SIGMOD Record, Volume 35
Number 3, pp.34-41, September 2006.

Cleve and Hainaut 2006 Anthony Cleve and Jean Luc Hainaut. Co-
Transformations in Database Applications Evolution.
Generative and Transformational Techniques in Software

Engineering, pages 409—421, 2006.

Corcho and Gomez-Perez 2000 Oscar Corcho and Asuncion Gomez-Perez.
Evaluating Knowledge Representation and Reasoning
Capabilities of Ontology Specification Languages. In
Proceedings of the ECAI 2000 Workshop on Applications of
Ontologies and Problem-Solving Methods, Berlin, 2000.

Cox et al. 2001 Lisa Cox, Dr. David Skipper and Dr. Harry S. Delugach.
Dependency Analysis Using Conceptual Graphs. In
Proceedings of the 9th International Conference on

Conceptual Structures, ICCS 2001.

Crubezy and Musen 2003 Monica Crubezy and Mark A. Musen. Ontologies in
Support of Problem Solving. S. Staab and R. Studer
(eds). Handbook on Ontologies. Pages 321-342.
Springer, 2003.

Cruz and Xiao 2005 Isabel F. Cruz and Huiyong Xiao. “The Role of Ontologies in
Data Integration”. Journal of Engineering Intelligent Systems,

Vol. 13 (4), pp. 245- 252, 2005.

Cruz et al. 2004 Isabel F. Cruz, Huiyong Xiao and Feihong Hsu. "An
Ontology-Based Framework for XML Semantic Integration".

pp. 217-226. International Database Engineering and
Applications Symposium (IDEAS'04) 2004.

Curino et al. 2008 Carlo A. Curino, Hyun J. Moon and Carlo Zaniolo. Graceful
Database Schema Evolution: The PRISM Workbench. Proc.
VLDB Endow. I, 1 (Aug. 2008) 761-772. DOI=
http://doi.acm.org/10.1145/1453856.1453939

201

Deng et al. 2004 Yu Deng, Harumi Kuno and Kevin Smathers. Managing the
Evolution of Simple and Complex Mappings between
Loosely-Coupled Systems.
http://www.hpl.hp.com/techreports/2004/HPL-2004-68.html

Doan and Halevy 2005 AnHai Doan and Alon Y. Halevy. Semantic Integration
Research in the Database Community, A Brief Survey.
A.l. Magazine, Volume 26, Issue 1 (March 2005). Special
issue on Semantic Integration. Pages: 83 —94. Year of

Publication: 2005.

Dong and Linpeng 2008 Li Dong and Huang Linpeng. "A Framework for
Ontology-Based Data Integration" pp. 207-214. 2008
International Conference on Internet Computing in Science

and Engineering.

Dou et al. 2003 Dejing Dou, Drew McDermott and Peishin Qi. Ontology
Translation on the Semantic Web. In the International
Conference on Ontologies, Databases and Applications of

Semantics 2003.

Drabble et al. 2009 Brian Drabble, Tim Black, Chris Kinzig and Gary Whitted.
"Ontology Based Dependency Analysis: Understanding the
Impacts of Decisions in a Collaborative Environment".

International Symposium on Collaborative Technologies and

Systems, 2009. pp. 10-17.

Dreo Rodosek and Lewis 2001 Gabi Dreo Rodosek and Lundy Lewis. Dynamic
Service Provisioning: A User- Centric
Approach. O. Festor and A. Pras (eds.), In
Proceedings of the 12th IFIP/IEEE

International Workshop on Distributed Systems:

Operations and Management (DSOM
2001) INRIA Press, Nancy, France. pp. 3748,
October 2001.

202

D2RQ API

Eclipse

Ensel 2001

Ensel and Keller 2002

Euzenat 2004

FAME

Fisher 2004

Fraissé 1986

D2RQ API. http://sites.wiwiss.fuberlin.de/suhl/bizer/D2RQ/

Eclipse. Integrated Development Environment.

http://www.eclipse.org/

Christian Ensel. A Scalable Approach to Automated Service
Dependency Modeling in Heterogeneous Environments. In
the Sth International Enterprise ~ Distributed Object
Computing Conference (EDOC 2001). IEEE Publishing,
IEEE, Seattle, USA, September, 2001.

Christian Ensel and Alexander Keller. An Approach for
Managing Service Dependencies with XML and the
Resource Description Framework. Journal of Network
Systems Management. Volume 10 Issue 2 (June 2002) Pages:
147- 170.DOI= http://dx.doi.org/10.1023/A:1015902715532

Jérome Euzenat. INRIA, A Format for Ontology Alignment.
An API for Ontology Alignment. The 3rd Conference on
International Semantic Web Conference (ISWC), Hiroshima
(Japan) 2004. Lecture notes in Computer Science 3298:698-
712, 2004. http://alignapi.gforge.inria.fr/format.html

Federated, = Autonomic = Management of End-to-End
Communications Services (FAME). Strategic Research

Cluster (SRC). http://www.fame.ie

Dr. Robert J. Fisher. What is Action Research? An
Introduction to Action Research for Community Development.
Paper prepared for Working Party Meeting on Action
Research for Integrated Community Development, 5-8 April

2004, Tehran, Islamic Republic of Iran.

Roland Fraissé. Theory of Relations, First Edition, 1986.
North-Holland. ISBN 988044 4505422 044 4505423

203

Fu et al. 2008

Gilliland 2002

GMF

Gomez-Perez 1998

GraphML

Gruber 1993

Gruschke 1998

Halevy 2001

Halevy 2005

Kui Fu, Guihua Nie, Donglin Chen and Huimin Wang. "A
Semantic Integration Framework for E-Business and Logistics
Systems". pp. 394-397. 2008 International Conference on

Computer Science and Software Engineering.

Michael Gilliland. Is Forecasting a Waste of Time? Supply
Chain Management Review, July/August 2002.

Eclipse Graphical Modeling Framework.
http://www.eclipse.org/gmf/

Asunciéon Gomez-Perez. Knowledge Sharing and Reuse. The
Handbook on Applied Expert Systems. ED CRC Press
1998.

GraphML, An XML format for Graphs.
http://graphml.graphdrawing.org/

Thomas R. Gruber. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition. Volume
5, Issue 2 (Jun. 1993) Pages 199-220. DOI=
http://dx.doi.org/10.1006/knac.1993.1008

Boris Gruschke. Integrated Event Management: Event
Correlation Using Dependency Graphs. International
Workshop on Distributed Systems: Operations and
Management 1998 (DSOM 98).

Alon Y. Halevy. “Answering Queries Using Views: A
Survey,” The VLDB Journal, Vol. 10 (4), pp. 270-294,
2001.

Alon Y. Halevy. Why Your Data Won't Mix. Queue 3, 8
(October 2005), 50- 58. DOI=
http://doi.acm.org/10.1145/1103822.1103836

204

Halevy et al. 2005

Halevy et al. 2006

Harth et al. 2004

Haas 2007

Hendrik et al 2009

Hepp et al. 2008

Huynh et al. 2007

Alon Y. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J.
Pollock, A. Rosenthal and V. Sikka. Enterprise Information
Integration: Successes, Challenges and Controversies,
ACM SIGMOD International Conference on Management of
Data. A.C.M., Baltimore, 2005. pp. IIS-ISI. ISBN:1-59593-
060-4

A.Y. Halevy, A. Rajaraman and J. Ordille 2006. Data
Integration: The Teenage Years. In Proceedings of
the 32nd International Conference on Very Large Data
Bases (Seoul, Korea, September 12 - 15, 2006). U. Dayal, K.
Whang, D. Lomet, G. Alonso, G. Lohman, M. Kersten, S. K.
Cha, and Y. Kim, Eds. Very Large Data Bases. VLDB

Endowment, 9-16.

F. Martin-Recuerda Harth, A. Harth et al. D2.1 Report on
Requirements Analysis and State of the Art (WP2-Ontology
Management Version 1.00), FP6 DIP Project, FP-507483.
http://dip.semanticweb.org/deliverables.html ~ August 31st,
2004

Laura M. Haas. Beauty and The Beast: The Theory and
Practice of Information Integration. International Conference

on Database Theory. Barcelona, Spain, January 2007. 28-43.

Hendrik Thomas, Declan O'Sullivan and Rob Brennan ,
Ontology Mapping Representations: a Pragmatic Evaluation ,
International Conference on Software Engineering and
Knowledge Engineering, Boston, USA, July 1-3, 2009,
Knowledge Systems Institute Graduate School, 2009, pp228-
232

M. Hepp, P. Leenheer, A. Moor and Y. Sure (Eds.). Ontology
Management Semantic Web, Semantic Web Services and

Business Applications. Springer Books 2008.

David Huynh, Robert Miller and David Karger. Potluck: Data
Mash-Up Tool for Casual Users. ISWC 2007-11.

205

IBM 2004

ITU-T TMN

Jena

Kar et al. 2000

IBM Business Consulting Services: Your Turn. The Global
CEO Study 2004. Available from
http://www .bitpipe.com/detail/RES/1129048329_469.html

ITU-T TMN. Telecommunication Management Network
Standardisation. http://www.itu.int/TTU-T/

Jena Semantic Web Framework. http://jena.sourceforge.net/

Guatam Kar, Alexander Keller and S. Calo. Managing
Application Services over Service Provider Networks:
Architecture and Dependency Analysis. Proceedings of the
Seventh IEEE/IFIP Network Operations and
Management Symposium (NOMS 2000), Honolulu,
HI, 2000.

Kalfoglou and Schorlemmer 2003 Y. Kalfoglou and M. Schorlemmer. Ontology

Mapping: The State of the Art. The Knowledge
Engineering Review, 18(1):1-31, 2003.

Katker and Paterok 1997 S. Katker and M. Paterok. Fault Isolation and Event

KAON

Correlation for Integrated Fault Management. A.A.
Lazar, R. Saracco and R. Stadler (eds.) In Proceedings of
the 5Sth IFIP/IEEE International Symposium on
Integrated Network Management, Chapman and Hall,
San Diego, California. pp. 583-596, May 1997.

KAON. The Karlsruhe Ontology and Semantic Web
Tool Suite. An open-source ontology management
infrastructure from the University of Karlsruhe.

http://kaon.semanticweb.org/

206

Keller et al. 2000

Kondylakis et al. 2009

Alexander Keller, U. Blumenthal and Guatam Kar.

Classification and Computation of Dependencies for

Distributed Management. In Proceedings of the S5th
IEEE Symposium on Computers and Communications
(ISCC 2000) (July 04 - 06, 2000). ISCC. IEEE

Computer Society, Washington, DC, 78.

H. Kondylakis, G. Flouris and D. Plexousakis. Ontology and
Schema Evolution in Data Integration: Review and
Assessment. In Proceedings of the Confederated International
Conferences, Coopis, Doa, Is, and ODBASE 2009. On the
Move to Meaningful Internet Systems: Part II (Vilamoura,
Portugal, November 01 - 06, 2009). R. Meersman, T. Dillon,
and P. Herrero, Eds. Lecture Notes in Computer Science, Vol.
5871. Springer-Verlag, Berlin, Heidelberg, 932-947. DOI=
http://dx.doi.org/10.1007/978-3-642-05151-7_14

Kwak and Yong 2008 Jung-Ae Kwak and Hwan-Seung Yong. "An Approach to

Lenzerini 2002

Luo and Diao 2009

Ontology-Based Semantic Integration for PLM Object". pp.
19-26. 2008 IEEE International Workshop on Semantic
Computing and Applications.

Maurizio Lenzerini. Data Integration: A Theoretical
Perspective. In Proceedings of the 21st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems (Madison, Wisconsin, June 03 - 05, 2002). PODS
2002. ACM, New York, NY, 233-246. DOI=
http://doi.acm.org/10.1145/543613.543644

Daizhong Luo and Shanhui Diao. "Feature Dependency
Modeling for Software Product Line". International
Conference on Computer Engineering and Technology, 2009.

pp- 256-260.

207

Lowell Database Report 2003

Lowell Database Report. Attendees at the Lowell
Workshop were: Serge Abiteboul, Rakesh
Agrawal, Phil Bernstein, Mike Carey, Stefano
Ceri, Bruce Croft, David DeWitt, Mike Franklin,
Hector Garcia Molina, Dieter Gawlick, Jim Gray,
Laura Haas, Alon Halevy, Joe Hellerstein, Yannis
JToannidis, Martin Kersten, Michael Pazzani,
Mike Lesk, David Maier, Jeff Naughton, Hans
Schek, Timos Sellis, Avi Silberschatz, Mike
Stonebraker, Rick Snodgrass, Jeff Ullman,
Gerhard Weikum, Jennifer Widom, and Stan
Zdonik. Slides and some detailed notes from the
event are at

http://research.microsoft.com/~gray/lowell/.

Maddox and Shin 2009 Jeffrey Maddox and Dong-Guk Shin. "Applying

Relational Dependency Discovery Framework to Geo-

spatial Data Mining". International Conference on

Information and Multimedia Technology, 2009. pp. 10-

14.

Maedche et al. 2002 A. Maedche, B. Motik, N. Silva and R. Volz. MAFRA - A

Mapping

Framework for Distributed Ontologies. In the

13th European Conference on Knowledge Engineering

and Knowledge Management EKAW, Madrid, Spain, 2002.

Miller et al. 2001 R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C.T. Howard
Ho, R. Fagin, and L. Popa. 2001. The Clio Project: Managing
Heterogeneity. SIGMOD Rec. 30, 1 (Mar. 2001), 78-83.
DOI= http://doi.acm.org/10.1145/373626.373713

MySQL MySQL. Open source database. http://www.mysql.com/

208

NeOn 2005

Noy and Klein 2002

Noy 2004

Noy and Musen 2000

O'Brien R. 2001

NeOn Project. NeOn is a project involving 14 European
Partners and co- funded by the European Commission’s
Sixth Framework Programme under grant number IST-

2005-027595. http://www.neon-project.org

N.F. Noy and M. Klein. Ontology Evolution: Not the Same as
Schema Evolution. Smi-2002-0926, University of Stanford,
Stanford Medical Informatics, USA, 2002.

N.F. Noy. “Semantic Integration: A Survey of Ontology Based
Approaches” SIGMOD Record, Vol. 33 (4), December 2004.

F. Noy and M.A. Musen. PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment. In Proceedings
of the 17th National Conference on Artificial Intelligence and

12th Conference on Innovative Applications of Artificial

Intelligence (AAAI/TAAI 2000). Pages 450-455, 2000.

R. O'Brien 2001. Um Exame da Abordagem Metodoldgica da
Pesquisa Ac¢do. [An Overview of the Methodological
Approach of Action Research]. In Roberto Richardson
(Ed.), Teoria e Prética da Pesquisa A¢do [Theory and Practice
of Action Research]. Joao Pessoa, Brazil: Universidade
Federal da Paraiba. (English version) Available:
http://www.web.ca/~robrien/papers/arfinal.html (Accessed

20/1/2002)

O’Sullivan D. 2005 Declan O’Sullivan. PhD Thesis. The OISIN Framework:

OSI GRM

Ontology Interoperability in Support of Semantic
Interoperability. Trinity College Dublin. December 2005.

OSI General Relationship Model ISO/IEC CD 10165-7,
Information Technology - Open Systems Interconnection -
Structure of Management Information - Part 7: General

Relationship Model.

209

Othayoth and Poess 2006 R. Othayoth and M. Poess. “The Making of tpc-ds” in

OWL

OWL-QL
Pellet

Pollock 2002

Prefuse

Protégé

Ra 2005

VLDB 2006, pp. 1049-1058.

Web Ontology Language. http://www.w3.org/TR/owl-ref/
W3C Recommendation 10 February 2004

OWL-QL. http://www-ksl.stanford.edu/projects/owl-ql/
Pellet OWL Reasoner. http://clarkparsia.com/pellet

J. Pollock. Integration’s Dirty Little Secret: It’s a Matter of
Semantics” Whitepaper. = Modulant, The Interoperability
Company; February 2002.

Prefuse. Java based visualization toolkit. http://prefuse.org/

Protégé Ontology Editor and Knowledge-base
Framework.http://protege.stanford.edu/

The R project for Statisical Computing. http://www.r-

project.org/

Young-Gook Ra. Relational Schema Evolution for Program
Independency. Intelligent Information Technology, pages

273-281, 2005.

Rahm and Bernstein 2006 E. Rahm and P.A. Bernstein. An Online Bibliography on

RDF

Sangal et al. 2005

SAX

Schema Evolution. SIGMOD Rec. 35, 4 (Dec. 2006),30-
31. DOI=http://doi.acm.org/10.1145/1228268.1228273

Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-concepts/

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson.
Using Dependency Models to Manage Complex Software
Architecture. 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems (OOPSLA 2005).

The Simple API for XML. http://www.saxproject.org/

210

Seidenberg and Rector 2006 Julian Seidenberg and Alan Rector. Representing

Sheth et al 1999

Sjoberg 1993

SPARQL

Stonebraker 2005

Stojanovic 2002

SWRL

Topic Maps

Transitive Propagation in OWL. 25th International
Conference on Conceptual Modeling, Tuscon, AZ, USA.
November 2006. Pages 255-266.

A.P. Sheth. Changing Focus on Interoperability in Information
Systems: From System, Syntax, Structure to Semantics. M.F.
Goodchild, M.J. Egenhofer, R. Fegeas, and C.A. Kottman
(eds.). KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE. 1999, ISSUE
495, pages 5-30

D. Sjoberg. Quantifying Schema Evolution, Information and
Software Technology Journal, Volume 35, Number 1, pp.
35-54, 1993.

SPARQL Query Language for RDF W3C Recommendation
15 January 2008. http://www.w3.org/TR/rdf-sparql-query/

M. Stonebraker. THALIA - Integration Benchmark.
Presentation at ICDE 2005, April 6, 2005.
http://www.cise.ufl.edu/research/dbintegrate/thalia/

L. Stojanovic, A. Maedche, B. Motik and N. Stojanovic.
User-driven Ontology Evolution = Management. In
Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management EKAW, Volume
2473 of Lecture Notes in Computer Science, pages 285 — 300,
Siguenza, Spain, October 1-4 2002.

SWRL : A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission 21 May 2004.
http://www.w3.org/Submission/SWRL/

Topic Maps. A Standard for the Representation and
Interchange of Knowledge.

http://www.isotopicmaps.org/tmrm/

211

UML The Unified Modeling Language (UML).
http://www.uml.org/
Uschold and Gruniger 2004 M. Uschold and M. Gruniger. Ontologies and

Semantics for Seamless Connectivity. SIGMOD
Record, Vol 33, No. 4, December 2004.

Varol and Bayrak 2010 Cihan Varol and Coskun Bayrak, "Business Process

Automation Based on Dependencies," Information,
Process, and Knowledge Management, International
Conference on, pp. 17-22, 2010 Second International
Conference on Information, Process, and Knowledge

Management, 2010.

Velegrakis et al. 2003 Yannis Velegrakis, Renee Miller and Lucian Popa. Mapping

Wache et al. 2001

Adaptation Under Evolving Schemas. Proceedings of the 29th
International Conference on Very Large Data Bases - Volume

29, 2003.

H. Wache et al. Ontology-Based Integration of Information —
A Survey of Existing Approaches. In Proceedings of the
IJCAI-01 Workshop on Ontologies and Information Sharing,
2001.

Wang and Capretz 2009 Shuying Wang and Miriam A.M. Capretz. "A

WSML

WSMT

Dependency Impact Analysis Model for Web
Services Evolution". Web Services. 2009 IEEE
International Conference on Web Services, 2009. pp.

359-365.

Web Service Modelling Language (WSML).

http://www.wsmo.org/wsml/wsml-syntax.

Web Service Modelling Toolkit (WSMT). A

development environment for

212

Wu et al. 2006

XML Path Language

Yu and Popa 2005

Zablith 2009

Z. Wu, H. Chen, H. Wang, Y. Wang, Y. Mao, J. Tang and C.
Zhou. Dartgrid: A Semantic Web Toolkit for Integrating
Heterogeneous Relational Databases. In Semantic Web

Challenge at 4th International Semantic Web Conference,

Athens, USA, November 2006.

XML Path Language (XPath) 2.0 W3C Recommendation 23
January 2007. http://www.w3.org/TR/xpath20/

C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. In Proceedings of the 31st
International Conference on Very Large Data Bases
(Trondheim, Norway, August 30- September 02, 2005). Very
Large Data Bases. VLDB Endowment, 1006-1017.

F. Zablith. Evolva: A Comprehensive Approach to Ontology
Evolution.2009 European Semantic Web Conference (ESWC)
PhD Symposium, Crete, Greece. Proceedings of the 6th
European Semantic Web Conference, LNCS 5554, (eds.) L.
Aroyo et al., pp. 944-948, Springer-Verlag, Berlin, Heidelberg.

Zhou and Wang 2006 Jingtao Zhou and Mingwei Wang 2006. Semantic Integration

Zhou et al. 2006

of Enterprise Information: Challenges and Basic Principles.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg = ISBN978-3-540-38329-1 Pages 219-233.
September 01, 2006.

Zhou, Jingtao, Wang, Mingwei, Zhao, Han, 2006, in
International Federation for Information Processing (IFIP),
Volume 207, Knowledge Enterprise: Intelligent Strategies In
Product Design, Manufacturing, and Management, eds. K.
Wang, Kovacs G., Wozny M., Fang M., (Boston: Springer),
pp. 847-852.

213

APPENDICES

The appendices present support information for the thesis.

Appendix I provides the OWL code for the ontology-based dependency
metamodel and the ontology-based dependency model (OBDM)

Appendix II provides the data associated with the experiments carried out in
this thesis.

Appendix III provides a simple worked example of the inputs and outputs for
the TomE tool.

Appendix IV provides the overview of the directory structure for the code for

HotFusion and TomE tools that is supplied on DVD with this thesis.

214

APPENDIX I

This appendix contains the OWL code for the ontology-based dependency metamodel

and ontology-based dependency model that was created during this research.

Ontology-Based Dependency Metamodel

<?xml version="1.0"7?>

<!DOCTYPE rdf:RDF [

1>

<!ENTITY owl "http://www.w3.0rg/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontologyl1270901584.owl#"

rdf:

xml :base="http://www.owl-ontologies.com/Ontologyl1270901584.0owl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/0owl#">
<owl:0Ontology rdf:about=""/>
<owl:Class rdf:ID="ArchitecturalEntities"/>
<owl:Class rdf:ID="Cause">
<rdfs:subClassOf
resource="#DescriptiveDependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="cause_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="cause_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="cause_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="DependencyGraph"/>
<owl:0ObjectProperty rdf:ID="DependencyRelation"/>
<owl:Class rdf:ID="DescriptiveDependencyAtrributes"/>
<owl:DatatypeProperty rdf:ID="domainname">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:0bjectProperty rdf:ID="functional_dependency_relation">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:DatatypeProperty rdf:ID="graphname">

215

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#DependencyGraph"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="graphtype">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#DependencyGraph"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:0bjectProperty rdf:ID="hascauseattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Cause"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasimpactattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Impact"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasstrenghtattribute">
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="#Strength"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="Impact">
<rdfs:subClassOf
rdf :resource="#DescriptiveDependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="impact_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="impact_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="impact_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:0ObjectProperty rdf:ID="inverse_function_dependency_relation">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:DatatypeProperty rdf:ID="1v1l_dst"/>
<owl:DatatypeProperty rdf:ID="1vl_level"/>
<owl:DatatypeProperty rdf:ID="1lvl_src"/>
<owl:Class rdf:ID="Strength">
<rdfs:subClassOf
rdf :resource="#DescriptiveDependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="strength_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="strength_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

216

<owl:DatatypeProperty rdf:ID="strength_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:0bjectProperty rdf:ID="symmetric_dependency_relation">
<rdf:type rdf:resource="&owl; SymmetricProperty"/>
<owl:inverseOf rdf:resource="#symmetric_dependency_relation"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="transitive_dependency_relation">
<rdf:type rdf:resource="&owl; TransitiveProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty
rdf:ID="transitive_symmetric_dependency_relation">
<rdf:type rdf:resource="&owl; SymmetricProperty"/>
<rdf:type rdf:resource="&owl; TransitiveProperty"/>
<owl:inverseOf
rdf:resource="#transitive_symmetric_dependency_relation"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:DatatypeProperty rdf:ID="type">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#ArchitecturalEntities"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="version">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#DependencyGraph"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
</rdf :RDF>

217

Ontology-Based Dependency Model (OBDM)

<?xml version="1.0"7?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >
<!ENTITY protégé
"http://protege.stanford.edu/plugins/owl/protege#" >
<!ENTITY pl "http://www.owl-ontologies.com/Ontologyl270901584.owl#" >
1>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontologyl275558355.0owl#"
xml :base="http://www.owl-ontologies.com/Ontologyl275558355.0owl"
xmlns:pl="http://www.owl-ontologies.com/Ontologyl1270901584.owl#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">
<owl:0Ontology rdf:about="">
<owl:imports rdf:resource="http://www.owl-
ontologies.com/Ontologyl1270901584.0owl"/>
</owl:0Ontology>
<owl:0ObjectProperty rdf:ID="executes">
<rdfs:domain rdf:resource="#MP"/>
<rdfs:range rdf:resource="#FN"/>
<rdfs:subPropertyOf rdf:resource="&pl;DependencyRelation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="FN">
<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:Class rdf:ID="GE">
<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="hasinputparams">
<rdfs:domain rdf:resource="#FN"/>
<rdfs:range rdf:resource="#IP"/>
<rdfs:subPropertyOf rdf:resource="&pl;DependencyRelation"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="haslocalparams">
<rdfs:domain rdf:resource="#FN"/>
<rdfs:range rdf:resource="#LP"/>
<rdfs:subPropertyOf rdf:resource="&pl;DependencyRelation"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="hasoutputparams">
<rdfs:domain rdf:resource="#FN"/>
<rdfs:range rdf:resource="#0P"/>
<rdfs:subPropertyOf rdf:resource="&pl;DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty
rdf:ID="inverse_of_transitive_symmetric_dependency_relation_11">
<rdfs:domain rdf:resource="#MP"/>
<rdfs:range rdf:resource="#UE"/>
<owl:inverseOf rdf:resource="#uel2mp"/>
<rdfs:subPropertyOf
rdf :resource="&pl;transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty
rdf:ID="inverse_of_transitive_symmetric_dependency_relation_13">

218

rdf:

rdf:

rdf

rdf:
/>

rdf:

<rdfs:domain rdf:resource="#LE"/>
<rdfs:range rdf:resource="#MP"/>
<owl:inverseOf rdf:resource="#mp2le"/>
<rdfs:subPropertyOf
resource="&pl;transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty
ID="inverse_of_ transitive_symmetric_dependency_relation_14">
<rdfs:domain rdf:resource="#GE"/>
<rdfs:range rdf:resource="#LE"/>
<owl:inverseOf rdf:resource="#le2ge"/>
<rdfs:subPropertyOf

:resource="g&pl;transitive_symmetric_dependency_relation"/>

</owl:0bjectProperty>
<owl:Class rdf:ID="IP">

<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:Class rdf:ID="LE">

<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:0bjectProperty rdf:ID="le2ge">

<rdfs:domain rdf:resource="#LE"/>

<rdfs:range rdf:resource="#GE"/>

<owl:inverseOf
resource="#inverse_of_transitive_symmetric_dependency_relation_14"

<rdfs:subPropertyOf
resource="&pl;transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="LP">

<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:Class rdf:ID="MP">

<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="mp2le">

<rdfs:domain rdf:resource="#MP"/>

<rdfs:range rdf:resource="#LE"/>

<owl:inverseOf

rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_13"
/>
<rdfs:subPropertyOf
rdf:resource="&pl;transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="OP">
<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<rdf:Description rdf:about="&pl;ArchitecturalEntities"/>
<owl:Class rdf:ID="UE">
<rdfs:subClassOf rdf:resource="&pl;ArchitecturalEntities"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="uel2mp">
<rdfs:domain rdf:resource="#UE"/>
<rdfs:range rdf:resource="#MP"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_11"
/>
<rdfs:subPropertyOf
rdf:resource="4&pl;transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
</rdf :RDF>

219

APPENDIX II

This appendix contains the data associated with each of the experiments in

research.

Experimental Data for Experiment One

Upper Ontology

<?xml version="1.0"7?>
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns="http://www.owl-ontologies.com/Ontologyl1172143263.owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://www.owl-ontologies.com/Ontologyl172143263.0owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="sales_item">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:ID="hasforecastitems2"/>
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:ID="forecasted_item"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:ID="sales_rev"/>
</owl:someValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="haveSalesRev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:about="#forecasted_item"/>
</owl:someValuesFrom>
<owl:onProperty>
<owl:0ObjectProperty rdf:ID="hasforecastitems"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:ID="products"/>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="products_sales_names"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>

220

this

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="products_sales_id"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="revenue"/>
<owl:Class rdf:ID="opportunity">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:TransitiveProperty rdf:ID="hasProducts"/>
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:about="#products"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:ID="customers"/>
</owl:someValuesFrom>
<owl:onProperty>
<owl:TransitiveProperty rdf:ID="hasCustomer"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#haveSalesRev"/>
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:about="#sales_rev"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:ID="forecast_rev"/>
</owl:someValuesFrom>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="haveForecastRev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="opportunity_id"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#int"/>

221

rdf:

rdf:

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="opportunity_name"/>
</owl:onProperty>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf
resource="http://www.w3.0rg/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:about="#customers">

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_region"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_name"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_id"/>
</owl:onProperty>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf
resource="http://www.w3.0rg/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_accountexec"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_tierlsupport"/>
</owl:onProperty>
<owl:someValuesFrom
resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>

222

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="customers_tier2support"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#products">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2002/07/0owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="products_type"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#sales_rev">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="sales_rev_sales_qg4_rev"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#int"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="sales_rev_sales_g3_rev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#int"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="sales_rev_sales_qg2_rev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="sales_rev_sales_gl_rev"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:Restriction>
</rdfs:subClassOf>

223

<rdfs:subClassOf rdf:resource="#revenue"/>
</owl:Class>
<owl:Class rdf:about="#forecast_rev">
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="forecast_rev_g4_rev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="forecast_rev_g3_rev"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="forecast_rev_g2_rev"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="forecast_rev_gl_rev"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#revenue"/>
</owl:Class>
<owl:Class rdf:about="#forecasted_item">
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="#forecast_rev"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#haveForecastRev"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="#sales_item"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:ID="hasparentsalesitem"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#products"/>
<rdfs:subClassOf>
<owl:Restriction>

224

<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="products_fi_name"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="products_fi_id"/>
</owl:onProperty>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:0ObjectProperty rdf:about="#hasforecastitems">
<rdfs:range rdf:resource="#forecasted_item"/>
<rdfs:domain rdf:resource="#sales_item"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#hasparentsalesitem">
<rdfs:domain rdf:resource="#forecasted_item"/>
<rdfs:range rdf:resource="#sales_item"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#hasforecastitems2">
<rdfs:domain rdf:resource="#sales_item"/>
<rdfs:range>
<owl:Restriction>
<owl:onProperty rdf:resource="#products_£fi_id"/>
<owl:someValuesFrom
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:range>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#haveSalesRev">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#opportunity"/>
<owl:Class rdf:about="#sales_item"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="#sales_rev"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#haveForecastRev">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#opportunity"/>
<owl:Class rdf:about="#forecasted_item"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="#forecast_rev"/>
</owl:0bjectProperty>
<owl:DatatypeProperty rdf:about="#opportunity_id">
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_tier2support">

225

<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#customers"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_accountexec">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#customers"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_region">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_name">
<rdfs:domain rdf:resource="#customers"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#products_sales_names">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#opportunity_name">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#products_type">
<rdfs:range>
<owl:DataRange>
<owl:oneOf rdf:parseType="Resource">
<rdf:first
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>SALES</rdf:first>
<rdf:rest rdf:parseType="Resource">
<rdf:first
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>FORECAST</rdf:first>
<rdf:rest rdf:resource="http://www.w3.0rg/1999/02/22-rdf-
syntax—-ns#nil"/>
</rdf:rest>
</owl:oneOf>
</owl:DataRange>
</rdfs:range>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#products_sales_id">
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_id">
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#customers_tierlsupport">
<rdfs:domain rdf:resource="#customers"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:TransitiveProperty rdf:about="#hasCustomer">
<rdfs:range rdf:resource="#customers"/>
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#0ObjectProperty"/>
<rdfs:domain rdf:resource="#opportunity"/>
</owl:TransitiveProperty>

226

<owl:TransitiveProperty rdf:about="#hasProducts">
<rdf:type
rdf :resource="http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:range rdf:resource="#products"/>
<rdfs:domain rdf:resource="#opportunity"/>
</owl:TransitiveProperty>
<customers rdf:ID="test">
<customers_id rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int"
>0</customers_id>
<customers_region
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>emea</customers_region>
<customers_name
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
></customers_name>
</customers>
<sales_rev rdf:ID="sales_rev_8">
<sales_rev_sales_qg3_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
></sales_rev_sales_qg3_rev>
<sales_rev_sales_qg4_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>4</sales_rev_sales_g4_rev>
<sales_rev_sales_g2_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
></sales_rev_sales_qg2_rev>
<sales_rev_sales_qgl_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
></sales_rev_sales_qgl_rev>
</sales_rev>
<forecast_rev rdf:ID="forecast_rev_10">
<forecast_rev_qg2_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
></forecast_rev_g2_rev>
<forecast_rev_qgl_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
></forecast_rev_qgl_rev>
<forecast_rev_qg3_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
></forecast_rev_qg3_rev>
<forecast_rev_qgé4_rev
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>4</forecast_rev_g4_rev>
</forecast_rev>
<sales_item rdf:ID="sales_item_7">
<haveSalesRev rdf:resource="#sales_rev_8"/>
<products_sales_id
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#int"
>0</products_sales_id>
<products_sales_names
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
></products_sales_names>
<hasforecastitems>
<forecasted_item rdf:ID="forecasted_item 9">
<products_type
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
>FORECAST</products_type>
<products_fi_name
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
>prodlname</products_fi_name>
<hasparentsalesitem rdf:resource="#sales_item_7"/>

227

<products_fi_id
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string"
></products_fi_id>
<haveForecastRev rdf:resource="#forecast_rev_10"/>
</forecasted_item>
</hasforecastitems>
<products_type
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
>SALES</products_type>
</sales_item>
<opportunity rdf:ID="opp2">
<hasCustomer rdf:resource="#test"/>
<opportunity_id
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#int"
>0</opportunity_id>
<hasProducts rdf:resource="#sales_item_7"/>
<opportunity_name
rdf :datatype="http://www.w3.0rg/2001/XMLSchemaf#string"
></opportunity_name>
<haveSalesRev rdf:resource="#sales_rev_8"/>
<haveForecastRev rdf:resource="#forecast_rev_10"/>
</opportunity>
</rdf :RDF>

<!—-— Created with Protege (with OWL Plugin 3.2, Build 355)
http://protege.stanford.edu ——>

228

Mapping file
<?xml version="1.0" encoding="UTF-8"7?>
<Mappings>
<mapping>
<mapping_number>3</mapping_number>
<source_type>p</source_type>
<source_name>customers_id</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>id</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
</mapping>
<mapping>
<mapping_number>4</mapping_number>
<source_type>p</source_type>
<source_name>customers_id</source_name>
<source_expansion>s</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>id</dest_prop_name>
<dest_table_name>customers</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
</mapping>

<mapping>
<mapping_number>5</mapping_number>
<source_type>p</source_type>
<source_name>customers_id</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>customer_id</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>String</dest_pkey_type>
<source_expansion_db>dbl</source_expansion_db>
<source_expansion_class>customers</source_expansion_class>

</mapping>

<mapping>
<mapping_number>6</mapping_number>
<source_type>p</source_type>
<source_name>customers_name</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>name</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>

229

<source_expansion_class>null</source_expansion_class>
</mapping>

<mapping>
<mapping_number>7</mapping_number>
<source_type>p</source_type>
<source_name>customers_name</source_name>
<source_expansion>s</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>name</dest_prop_name>
<dest_table_name>customers</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>

<mapping_number>8</mapping_number>
<source_type>p</source_type>
<source_name>customers_region</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>region</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>

<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>9</mapping_number>
<source_type>p</source_type>
<source_name>customers_region</source_name>
<source_expansion>s</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>region</dest_prop_name>
<dest_table_name>customers</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
</mapping>

<mapping>
<mapping_number>9.1</mapping_number>

<source_type>p</source_type>
<source_name>customers_accountexec</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>accountexec</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

230

</mapping>

<mapping>
<mapping_number>9.2</mapping_number>

<source_type>p</source_type>
<source_name>customers_tierlsupport</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>tierlsupport</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>9.3</mapping_number>

<source_type>p</source_type>
<source_name>customers_tier2support</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>tier2support</dest_prop_name>
<dest_table_name>custs</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>

<mapping_number>12</mapping_number>
<source_type>p</source_type>
<source_name>products_fi_name</source_name>
<source_expansion>s</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>longcode</dest_prop_name>
<dest_table_name>prods</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>

<mapping_number>13</mapping_number>
<source_type>p</source_type>
<source_name>products_sales_name</source_name>
<source_expansion>s</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>name</dest_prop_name>
<dest_table_name>products</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

231

<mapping>
<mapping_number>14</mapping_number>
<source_type>p</source_type>
<source_name>products_fi_id</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>prodid</dest_prop_name>
<dest_table name>forecasted_items</dest_table_name>
<dest_pkey>prodid</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>db2</source_expansion_db>
<source_expansion_class>prods</source_expansion_class>
</mapping>

<mapping>

<mapping_number>15</mapping_number>
<source_type>p</source_type>
<source_name>products_sales_id</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>id</dest_prop_name>
<dest_table_name>products</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>16</mapping_number>
<source_type>p</source_type>
<source_name>sales_rev_sales_qgl_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revgl</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>17</mapping_number>

<source_type>p</source_type>
<source_name>sales_rev_sales_g2_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revg2</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>

232

<source_expansion_class>null</source_expansion_class>
</mapping>

<mapping>
<mapping_number>18</mapping_number>
<source_type>p</source_type>
<source_name>sales_rev_sales_g3_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revg3</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>19</mapping_number>
<source_type>p</source_type>
<source_name>sales_rev_sales_g4_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revgi4</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
</mapping>

<mapping>
<mapping_number>20</mapping_number>
<source_type>p</source_type>
<source_name>forecast_rev_gl_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revml</dest_prop_name>
<dest_table name>forecasted_items</dest_table_name>
<dest_pkey>opp</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>21</mapping_number>

<source_type>p</source_type>
<source_name>forecast_rev_g2_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revmi4</dest_prop_name>
<dest_pkey>opp</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<dest_table_name>forecasted_items</dest_table_name>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

233

</mapping>

<mapping>
<mapping_number>22</mapping_number>
<source_type>p</source_type>
<source_name>forecast_rev_g3_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revm7/</dest_prop_name>
<dest_table name>forecasted_items</dest_table_name>
<dest_pkey>opp</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>23</mapping_number>
<source_type>p</source_type>
<source_name>forecast_rev_g4_rev</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>revml0</dest_prop_name>
<dest_table name>forecasted_items</dest_table_name>
<dest_pkey>opp</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>24</mapping_number>
<source_type>p</source_type>
<source_name>opportunity_name</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>oppname</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>string</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>25</mapping_number>
<source_type>p</source_type>
<source_name>product_fi_id</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>prodid</dest_prop_name>
<dest_table name>forecasted_items</dest_table_name>
<dest_pkey>prodcat</dest_pkey>
<dest_pkey_type>null</dest_pkey_ type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

234

</mapping>

<mapping>
<mapping_number>26</mapping_number>
<source_type>link</source_type>
<source_name>dbl, customers, id</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>oppid</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>int</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>

<source_expansion_class>customer_id</source_expansion_class>

</mapping>

<mapping>
<mapping_number>27</mapping_number>
<source_type>link</source_type>
<source_name>dbl, customers, id</source_name>

<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>oppname</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>null</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>28</mapping_number>
<source_type>link</source_type>
<source_name>dbl, customers, id</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>productid</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>null</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>

</mapping>

<mapping>
<mapping_number>29</mapping_number>
<source_type>link</source_type>
<source_name>dbl, products, id</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>oppid</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>productid</source_expansion_class>
</mapping>

235

<mapping>

<mapping_number>30</mapping_number>
<source_type>link</source_type>
<source_name>db2, forecasted_items, prodcat</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>id</dest_prop_name>
<dest_table_name>products</dest_table_name>
<dest_pkey>id</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>

<source_expansion_class>productid</source_expansion_class>

</mapping>

<mapping>
<mapping_number>31</mapping_number>
<source_type>link</source_type>
<source_name>dbl, opps, oppid</source_name>
<source_expansion>p</source_expansion>
<dest_db>dbl</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>oppid</dest_prop_name>
<dest_table_name>opps</dest_table_name>
<dest_pkey>oppid</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>oppid</source_expansion_class>

</mapping>

<mapping>

<mapping_number>32</mapping_number>
<source_type>link</source_type>
<source_name>db2, forecasted_items, revml</source_name>
<source_expansion>p</source_expansion>
<dest_db>db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>opp</dest_prop_name>
<dest_table_name>forecasted_items</dest_table_name>
<dest_pkey>opp</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>opp</source_expansion_class>

</mapping>

</Mappings>

236

Experimental Data for Experiment Two

Upper Ontology for Experiment two (Logistics).

<?xml version="1.0"7?>
<rdf :RDF
xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
xmlns:swrlb="http://www.w3.0rg/2003/11/swrlb#"
xmlns:swrl="http://www.w3.0rg/2003/11/swrl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns="http://www.owl-ontologies.com/Ontologyl1225382715.owl#"
xmlns:assert="http://www.owl-ontologies.com/assert.owl#"
xml:base="http://www.owl-ontologies.com/Ontologyl225382715.owl">
<owl:0Ontology rdf:about="">
<owl:imports rdf:resource="http://www.owl-
ontologies.com/assert.owl"/>
</owl:0Ontology>
<owl:Class rdf:ID="duties"/>
<owl:Class rdf:ID="exportduties">
<rdfs:subClassOf rdf:resource="#duties"/>
</owl:Class>
<owl:Class rdf:ID="lot"/>
<owl:Class rdf:ID="shipmentinformation"/>
<owl:Class rdf:ID="services"/>
<owl:Class rdf:ID="ratesheets">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2002/07/0owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="haveratecosts"/>
</owl:onProperty>
<owl:someValuesFrom>
<owl:Class rdf:ID="weightcosts"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="surcharges"/>
<owl:Class rdf:ID="packages"/>
<owl:Class rdf:ID="importduties">
<rdfs:subClassOf rdf:resource="#duties"/>
</owl:Class>
<owl:Class rdf:ID="carriers"/>
<owl:Class rdf:ID="zone">
<owl:disjointWith>
<owl:Class rdf:ID="origin"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:ID="lane"/>
<owl:Class rdf:ID="irc">
<rdfs:subClassOf rdf:resource="#surcharges"/>
</owl:Class>
<owl:Class rdf:ID="route">
<owl:equivalentClass>

237

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:ID="containlots"/>
</owl:onProperty>
<owl:someValuesFrom rdf:resource="#lot"/>
</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#lot"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#containlots"/>
</owl:onProperty>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="fuel">
<rdfs:subClassOf rdf:resource="#surcharges"/>
</owl:Class>
<owl:Class rdf:about="#origin">
<owl:disjointWith rdf:resource="#zone"/>
</owl:Class>
<owl:Class rdf:ID="destination"/>
<owl:Class rdf:ID="weight_types"/>
<owl:0bjectProperty rdf:ID="hasZone">
<rdfs:range rdf:resource="#zone"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="usespackages">
<rdfs:range rdf:resource="#packages"/>
<rdfs:domain rdf:resource="#services"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="havesurcharges">
<rdfs:range rdf:resource="#surcharges"/>
<rdfs:domain rdf:resource="#services"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="startAt">
<rdfs:domain rdf:resource="#route"/>
<rdfs:range rdf:resource="#origin"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="sell">
<rdfs:domain rdf:resource="#carriers"/>
<rdfs:range rdf:resource="#services"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="endAt">
<rdfs:domain rdf:resource="#route"/>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#destination"/>
<owl:Class rdf:about="#zone"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="haveratecostsin">
<rdfs:domain rdf:resource="#services"/>
<rdfs:range rdf:resource="#ratesheets"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasCountry"/>

238

<owl:0ObjectProperty rdf:ID="operate">
<rdfs:range rdf:resource="#route"/>
<rdfs:domain rdf:resource="#carriers"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#haveratecosts">
<rdfs:domain rdf:resource="#ratesheets"/>
<rdfs:range rdf:resource="#weightcosts"/>
</owl:0bjectProperty>
<owl:ObjectProperty rdf:ID="hasAirport"/>
<owl:0ObjectProperty rdf:ID="containslanes">
<rdfs:range rdf:resource="#lane"/>
<rdfs:domain rdf:resource="#route"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="haveduties">
<rdfs:domain rdf:resource="#services"/>
<rdfs:range rdf:resource="#duties"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="logsshipmentinfo">
<rdfs:range rdf:resource="#shipmentinformation"/>
<rdfs:domain rdf:resource="#services"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:about="#containlots">
<rdfs:domain rdf:resource="#lane"/>
<rdfs:range rdf:resource="#lot"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasCity"/>
<owl:DatatypeProperty rdf:ID="ratestructure">
<rdfs:domain rdf:resource="#carriers"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_othercharges">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lotid">
<rdfs:domain rdf:resource="#lot"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="p_materialdescription">
<rdfs:domain rdf:resource="#packages"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="irc_pkg">
<rdfs:domain rdf:resource="#irc"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="irc_type">
<rdfs:domain rdf:resource="#irc"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_ta_min">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="laneid">
<rdfs:domain rdf:resource="#lane"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="isocode">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_handlingperkg">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>

239

<owl:DatatypeProperty rdf:ID="d_countryname">
<rdfs:domain rdf:resource="#destination"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="averageweight">
<rdfs:domain rdf:resource="#shipmentinformation"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ws_value"/>
<owl:DatatypeProperty rdf:ID="lang">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lanedescription">
<rdfs:domain rdf:resource="#lane"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="p_packtype">
<rdfs:domain rdf:resource="#packages"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="airportcode"/>
<owl:DatatypeProperty rdf:ID="id_ic5_pos">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_securityperkg">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="range_identifier"/>
<owl:DatatypeProperty rdf:ID="fuel min">
<rdfs:domain rdf:resource="#fuel"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="service_name">
<rdfs:domain rdf:resource="#ratesheets"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="weighttype">
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="endweight">
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="transit_time_max">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_tlcurrency">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="weightunit">
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="multiplier">
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="symbol">
<rdfs:domain rdf:resource="#weight_types"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_leadtime">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="d_zone"/>
<owl:DatatypeProperty rdf:ID="fsc_type">

240

<rdfs:domain rdf:resource="#fuel"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="startweight">
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="servicename">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lotname">
<rdfs:domain rdf:resource="#lot"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="transit_time_min">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_ta_perkg">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lotdescription">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#lot"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_tlairport">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="d_ctylang">
<rdfs:domain rdf:resource="#destination"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_TI_max">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="df_thurs">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_Tlfee">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="occode">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="servicesummary">
<rdfs:domain rdf:resource="#carriers"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_exportcustdoc">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="region">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="df_sun">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ws_end"/>
<owl:DatatypeProperty rdf:ID="id_hc_max">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>

241

<owl:DatatypeProperty rdf:ID="ed_leadtime">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="point_identifier">
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ed_handlingmax">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id_icaddpos">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="yearlyshipments">
<rdfs:domain rdf:resource="#shipmentinformation"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ed_TI_min">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ed_securitymax">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="rs_type"/>

<owl:DatatypeProperty rdf:ID="fuel_max">
<rdfs:domain rdf:resource="#fuel"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="consolidation_airport">
<rdfs:domain rdf:resource="#services"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="o_countryname">
<rdfs:domain rdf:resource="#origin"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="df_wed">
<rdfs:domain rdf:resource="#services"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="irc_max">
<rdfs:domain rdf:resource="#irc"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id_atlasfee">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="packtype">
<rdfs:domain rdf:resource="#services"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="cost">
<rdfs:domain rdf:resource="#weightcosts"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="DatatypeProperty_3"/>

<owl:DatatypeProperty rdf:ID="id_storageperaddday">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="o_cityname">
<rdfs:domain rdf:resource="#origin"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="currency">
<rdfs:domain rdf:resource="#ratesheets"/>
<rdfs:range

rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="d_airportcode">
<rdfs:domain rdf:resource="#destination"/>

</owl:DatatypeProperty>

242

<owl:DatatypeProperty rdf:ID="zoneid">
<rdfs:domain rdf:resource="#zone"/>
<rdfs:range

rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="routename">
<rdfs:range

rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#route"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="o_ctycode">
<rdfs:domain rdf:resource="#origin"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id_hc_perkg">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="yearlyweight">
<rdfs:domain rdf:resource="#shipmentinformation"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="d_ctyisocode">
<rdfs:domain rdf:resource="#destination"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="df_sat">
<rdfs:domain rdf:resource="#services"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="costset">
<rdfs:domain rdf:resource="#ratesheets"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="irc_min">
<rdfs:domain rdf:resource="#irc"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ed_TI_perkg">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="o_ctyisocode">
<rdfs:domain rdf:resource="#origin"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="transit_time">
<rdfs:domain rdf:resource="#services"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="unit">
<rdfs:domain rdf:resource="#weight_types"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id_ta_max">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ed_securitymin">
<rdfs:domain rdf:resource="#exportduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#carriers"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="rs_start"/>

<owl:DatatypeProperty rdf:ID="o_ctylang">
<rdfs:domain rdf:resource="#origin"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="airportname"/>

<owl:DatatypeProperty rdf:ID="id_hc_min">
<rdfs:domain rdf:resource="#importduties"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="transfer_airport">

243

<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="direct_flight">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="o_airportcode">
<rdfs:domain rdf:resource="#origin"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lanename">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#lane"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="fuel_ pkg">
<rdfs:domain rdf:resource="#fuel"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="weight">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#weightcosts"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ed_handlingmin">
<rdfs:domain rdf:resource="#exportduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="df_tues">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="value">
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="d_ctycode">
<rdfs:domain rdf:resource="#destination"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="df_fri">
<rdfs:domain rdf:resource="#services"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="countryname"/>
<owl:DatatypeProperty rdf:ID="p_dims">
<rdfs:domain rdf:resource="#packages"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_othercharges">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="cityname"/>
<owl:DatatypeProperty rdf:ID="d_cityname">
<rdfs:domain rdf:resource="#destination"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="id_handoverfee">
<rdfs:domain rdf:resource="#importduties"/>
</owl:DatatypeProperty>
</rdf :RDF>

<!-— Created with Protege (with OWL Plugin 3.2, Build 355)
http://protege.stanford.edu ——>

244

Mapping file for experiment two (Excerpt from full mapping on DVD)

<?xml version="1.0" encoding="UTF-8"7?>

<Mappings>

<mapping>

<mapping_number>cl</mapping_number>
<mapping_type>ps</mapping_type>
<source_type>p</source_type>
<source_name>carriers:name</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test:exp_test_db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>Awards:Awards</dest_prop_name>
<dest_table_name>logistics:logistics</dest_table_name>
<dest_pkey>null</dest_pkey>
<dest_pkey_type>null</dest_pkey_ type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>cl:null</function>

</mapping>

<mapping>

<mapping_number>sl</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>Need complex func to extract service names from these
dest fields</mapping_desc>

<source_type>p</source_type>
<source_name>services:servicename</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test:exp2_test:exp2_test:exp2_test_db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>ALDS_1_44:BLDS_1_44:UDS_1_44:Service</dest_prop_name>
<dest_table name>rates:rates:rates:rates</dest_table_ name>
<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>sl:S1 1:s1 2:null</function>

</mapping>

<mapping>

<mapping_number>s3</mapping_number>
<mapping_type>pp</mapping_type>
<mapping_desc>simple point to point </mapping_desc>
<source_type>p</source_type>
<source_name>services:packtype</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test_db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>PackType</dest_prop_name>
<dest_table_name>logistics</dest_table_name>
<dest_pkey>null</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>null</function>

</mapping>

<mapping>
<mapping_number>s4</mapping_number>

245

<mapping_type>pp</mapping_type>
<mapping_desc>simple point to point </mapping_desc>
<source_type>p</source_type>
<source_name>services:commodity</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test_db2</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>commodity</dest_prop_name>
<dest_table_name>rates</dest_table_name>
<dest_pkey>null</dest_pkey>
<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>null</function>

</mapping>

<mapping>

<mapping_number>s5</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>simple point to point </mapping_desc>
<source_type>p</source_type>
<source_name>services:transittime</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test_db2:exp2_test:exp2_test:exp2_test</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>transit_time:alds_transit_time:blds_transit_time:uds_t
ransmit_time</dest_prop_name>
<dest_table_name>servicedescriptions:servicedescriptions:servicedescri
ptions:servicedescriptions</dest_table_name>
<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>s5:s5:s5:s5</function>

</mapping>

<mapping>

<mapping_number>s6</mapping_number>

<mapping_type>ps</mapping_type>

<mapping_desc>simple point to point </mapping_desc>
<source_type>p</source_type>
<source_name>services:transittimemax</source_name>
<source_expansion>null</source_expansion>
<dest_db>exp2_test_db2:exp2_test:exp2_test:exp2_test</dest_db>
<dest_type>p</dest_type>
<dest_prop_name>transit_time_max:alds_transit_time_max:blds_transit_ti
me_max:uds_transmit_time_max</dest_prop_name>
<dest_table_name>servicedescriptions:servicedescriptions:servicedescri
ptions:servicedescriptions</dest_table_name>
<dest_pkey>null</dest_pkey>

<dest_pkey_type>null</dest_pkey_type>
<source_expansion_db>null</source_expansion_db>
<source_expansion_class>null</source_expansion_class>
<function>s6:s6:s6:s6</function>

</mapping>

</Mappings>

246

Experimental Data for Experiment Three

The runtime performance and accuracy of the OBDM was verified in experiment three.
To demonstrate the difficulty of mapping evolution without tool support, experiment
three measured the performance and accuracy of a manual approach to dependency

analysis and compared this to the OBDM.

Manual Process Definition

Evaluation of Mapping Dependency Discovery

Overview: This evaluation has been setup to measure the performance of a new
technique to discover the dependencies that arise in data integration systems. A
dependency is a simple relation between two things that are dependent (e.g. A depends
on B)

The exercises in this evaluation are based on three samples of data which are provided
in three spreadsheets. Each spreadsheet contains columns of data which represents
some internal aspects of the integration system. From these spreadsheets, a view of the
items that are dependent on each other can be built up (using the process described
later). In general, each row in any given spreadsheet represents elements that depend
on each other. If two different rows share the same element then the elements in each
row can be dependent also. The process below provides a failsafe way to find out the
dependencies that exist.

There are 4 questions to be answered on each spreadsheet and must be completed in
20 minutes giving a total time of 1 hour for 12 questions. Each question simply
requires the user to run the process below.

In the spreadsheets, the integration system has been divided up into parts as follows:
UPPER ENTITY (UE)

MAPPING (MP)

LOWER ENTITY (LE)

FUNCTION (F)

Each spreadsheet has 6 columns.
COLUMN A = Is the name of the UPPER ENTITY

COLUMN B = Is the name of the MAPPING (MP)

COLUMN C, D, E = Is the name of the LOWER ENTITIES (LE). NB. These
columns are colon separated lists of Lower Entities

COLUMN F - Is the name of another UPPER ENTITY that this MAPPING
uses.

247

A row in the excel spreadsheet defines what the UPPER ENTITY on that row depends

on.

Process:

For each question below please carry out the following process.

1.

A

OPEN THE APPROPRIATE DATASET (SMALL, MEDIUM OR
LARGE).

NOTE THE START TIME
FIND THE ROW WHERE THE UE OR LE SPECIFIED IN THE

QUESTION OCCURS AND WRITE DOWN THE MAPPING POINT
NAME

CHECK IF ANY OF THE LE(S) FROM THE ROWS NOTED IN STEP 3
OCCUR IN OTHER ROWS (COLUMN C,D,E). WHERE MATCHES
ARE FOUND NOTE DOWN THE MAPPING POINT NAME OF THAT
ROW

FOR EACH MP NAME FOUND SO FAR, CHECK IF A FUNCTION IS
SPECIFIED (COLUMN F).

a) IF A FUNCTION IS SPECIFIED THEN FIND THE ROW
WHERE THAT FUNCTION NAME APPEARS AS A UE
(COLUMN A) OR A FUNCTION (COLUMN F) AND NOTE
DOWN THE MP NAME

b) REPEAT STEP 4 FOR ANY ROWS FOUND

NOTE THE END TIME
WRITE DOWN DURATION IN THE “TIME TAKEN TO COMPLETE
(IN SECONDS)” FIELD

248

User Questionnaire.

Evaluation of Mapping Dependency Discovery
NAME:

A) DATA SET 1 - first.xls

1. Find DEPENDENTS OF: (LE) “dbl:rates:ALDS_500_999”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

249

2. Find DEPENDENTS OF (LE) ¢“db1l:fcs_irc:fcs_min”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

250

3. Find DEPENDENTS OF (LE) “db2:rates:commodity”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

251

4. Find DEPENDENTS OF (LE) ¢“Is1:sdescs:uds_transit_time_min”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

252

B) DATA SET 2 - SECOND.XLS

5. Find DEPENDENTS OF (LE) ds2:logisticdescriptions:PackType

START TIME []
END TIME []
DEPENDENT ELEMENTS:

253

6. Find DEPENDENTS OF (LE) dsl:sdescs:uds_transit_time_min

START TIME []
END TIME []
DEPENDENT ELEMENTS:

254

7. Find DEPENDENTS OF (LE) ds2:sdescs:transit_time

START TIME []
END TIME []
DEPENDENT ELEMENTS:

255

8. Find DEPENDENTS OF (LE) Is1:servdescriptions:uds_transit_time_min

START TIME []
END TIME []
DEPENDENT ELEMENTS:

256

C) DATA SET 3 -THIRD.XLS

9. Find DEPENDENTS OF (LE) “dbl:rates:tALDS_1_44”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

257

10. Find DEPENDENTS OF (LE) “db1l:fcs_irc:irc_pkg”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

258

11. Find DEPENDENTS OF (LE) “db1:lotdescriptions: LotNumber”’

START TIME []
END TIME []
DEPENDENT ELEMENTS:

259

12. Find DEPENDENTS OF (LE) “Isl:sdescs:uds_transit_time_min”

START TIME []
END TIME []
DEPENDENT ELEMENTS:

260

A.) Please add further observations about the difficulty of the task

* Did you find the task ?

Easy Hard Very Hard Impossible
[] [1] [1] []

= Which part of the process was the hardest

STEP3 STEP4 STEP5
[] [] []

= Rate the easiest and hardest dataset by writing “HARD” and “EASY” in the
selection below.

ONE TWO THREE
[] [] [1]

= Rate the easiest and hardest question
Hardest QUESTION NO []
Easiest QUESTION NO []

= How confident are you that your answers are correct (i.e. you have no errors)

Not Confident Confident Very Confident
[] [] []

= Any other comments

261

The results of this survey will be used for the PhD project of Aidan Boran only and will
be made available for the participant on request.

262

First Mapping File (MS-Excel Format)

joquids Aauauna T SOy rF | SO 2U0Zisod zisalel salel

kauanna:siaaysalel

oorad O wRina

fyd =y

HEU 52}

]!
AUOZUONEUISA]

|oquiAs Jyfiaas un

[aquiAs|oquids

LRDENER R TEE
pun:saddy Biesa o SO VIRF | SOy yBiem el sl sale);

oF SOTEE L SO ybiemersaelsale
pun:sadAy yhiam

SF SQTRY | ST uAlem 2 sale) sale.
pun:saddy iy Biam

SF SQTRY | ST uAlem 2 sale) sale.

"SOTYIEERT 0001 SO1v0666 005 SATwARF 057 SATWEr 001 SOTWER SF SATvrr | SO Twiybiam:isejersalel.

8BS Py L SANYF L S019%F | 50T

U5y

2157

U5y

a|qelaunz
sadd] B spun
Aauaunazdausuna
sansifio)sansifof

salelsalelsalel sagel

podie ysuely spnipodie Jsuel) spig HodiieT IsuR] Sple 3apaaaas sUojduosapa Ies
vodie uoieposuod spnipodiie UoIEpIOSU0D SP|q:HodIE T UOIEPOSU0Y SpleSapalas sunduIsapalas
WhI 1oanp spriwy iy 1oaap spig By 1aanp T spje sapaamas sunijduasapaamas

UNE P SPRIUNS P~ SP|g:UNS Jp SP|E38paaMas suojduIsapaames
[eSJp SPRIES Jp SPITIES I Spiesapaamas suoijduasapaamas
WP SPRCIE R SPIqi P SPlE 3apaaas suoljduosaps mes
NYY Jp SPRENYT JP SPIT:NYT I Splesapanas suojduasapaas
pam Jp SPN:pam Jp SpIqpam Jp Splesapalmas sunduasapaias
S8NJ Jp SPNISan Jp- sp|q:sany Jp spiesapadas suoduisapaiues
UOL P SPRIUOW Jp SPIQUOW P Splesapalas sunjduasapalias

aleu:AjpouwwoD

Alpowiwog
adf | yaed

8BS PY L SANYF L S019%F | 50T

SPIEAY SPIEAY

UILLTBWIY HSUEIT SPRCUILLT LWL ISUEIT SPIGUILLT 8LUIT NSUEI] SPIEUILT 8L ISUBIISAPaaas sUnjduaSapaalas
KEL ALY ISUE] SPRXew sl JISUEI SP|qXEW AW ISUBIL SPIEXEW 8WI] ISUE/]38PaaAas sU0jduosaps ames
APOTALIY PSUEN SPRUEWIL NSUBI] SPIq:aLI] HSUB) SPieawl] IsUel)sapaiE s suniduasapa auas

sajel
52138160
sajelsalelisalel salel
sansifo)sansfo)

NOILINNG £ SSIHAAY ALLINT HIMOTZ SSIHAAV ALLLNT HIMO1

Lap

Lap

Lap
Zap
Lap-cap
Lap-cap
LaR=zap

SajelSaIRLSAIRI LGP LOp-LOP- LUP-LOR-LqP- L YP-cap

SaleLSaleLs AR QR LUp: QR - L0P: QR LqR: 1 qp-2qp

SajelSaIRLSAIRI LGP LOp-LOP- LUP-LOR-LqP- L YP-cap

SaleliSalelsale gL qpe L ap: LR L AR L qp: L ap-Zap

Sajelsalelisalel LqpiLap: Lap-Lap;LaR: LRl apizap
sajedsalel Sael | qP: Lgp: AP Lap; g

qp-19p-2ap
ap-1ap:Lap
qp-19R-1ap
ap-1ap:Lap
LAp:14p-Lap
LAP-14p-Lap
LAp:19p:Lap
LAP-14p-Lap
AP 19p-Lap
LAp:19p:Lap
b
L
L
b
L

ZUp:

qp-19R-1ap
ap-1ap:Lap
qp-1ap-zap
qp-19p-2ap
ap-1ap-zap
cap

Zap
CUR-LAR:LEpeLap
Zqp-1ap

Lap:
Lap-
Lap:Lup:

dd

cdd

zdd
1dd

L
|us
0z=
615
gls
218
ql8
5=
FiE
£ls
ClE
LS

18

gz

g5

s

£s

I
1

I $S3HAAY ALLLNT HIMOTONIddYI

Bydjany|any

HEL |ang|an

I janyg|any
plaunz:aunz
nun:sad Ay yHiam
|aquiks:Aauana
faualna:sieaysalel
Wbiam:s1sooyEiam

js0a:sis0ayufiEm

Jadiynui:sisoayyfiem
WBiampua:sisodyfiam

Whiampels:sisoayhiamn
adApyfiam:sisooybiam
alleu ad1mas slaaysalel
LodileJ8jsuUeI} saa1Mas

yodiie” uoIEpI oS0 58 2IMAS

WBI 10anp sadMAs
Uns JpiSalas

s Jpisanas

W Ipisanmas
SINYLIpIsadas

pa JRISaaIas

sany Jpsanas
TR
UL SUBI}SA0IMAS
KELIBLUINISUEI] SAIIAAS
EINETER=ERINE
AUpoWWoD 580l as
adApaed:sanmas
ALIELAIINES 5A0MBS
ALLELSIBLIED

ALILNT H3ddn

(p)
()

(g
o

E|

d

J

[3

7

263

Second Mapping File (MS-Excel Format)

apoa0s! Sap02hIUnNo 15p ordde apoaosIflaTpuoieunsap| zx |
aluep Moo Ea awey Aunonise] epansibopsuoiduasapansifo| TERILER Jrddel aweulnunospiuoneunsap| 1y |
apoauodinglsa apoguodinglsa] sepansifo) suniduasapansifo| 7SRILEp grdde apoouodie piuoneunsap| O |
alep ANIsa] AW ANlsa] sapansifio) suonduasapansifio| R crdde aweuina puoneunsap| ge |
fiue sapoaAunoa [rrdde Bue o.wbuo| ge |
8p0a330 sapodfiunod [T crdde apoahia oubuo| 2E |
apoaons| sapoaiiunoa [zrdde apoansidla” o:ubuo | gg |
awepAunoguibu g awep Aunoguiiug sapansifio) suoiduasapansiio| 7EPILSp |zdde aleutiunod o:wfilo| gg |
aponuodirguibiugaposuodirguiBun saponsifo) suoiduasapansifio) R ordde apoayodieT o wfilo| ¢ |
BAMAS Y | SANFR L SO79%F | ST RV RN Y E=E YR Y R HEH] Juse aleU 8amas slaaysalel| oL |
yodiie ysuey spriyodie nsuely spqiuodie NSUBIT SR|E $I58PE SISAPE SISAPS [ELHEHE orse vodie T apsuepsaaas| 7¢ |
Modie LoepoEUed SpRCHOdE uoeposuoD SpigHodiE uolepIosUDD SRe $I58PE SISAPE SISAPS [ELHEHE 15 podie uoleposUndsadmas| |C |
8INJONIISBILISIALIED ISUBIY SPRIUIL AL NSUEI] SPq:UIL 8L PSUBI] SpleiuIL 8w} JSUBl} S8PS SI58PS 50585 SISapPS RN /5E MEM N ENIRCRINEEI RS
8INJONIISaILISIALIED UEI] SPRCXEW Sy ISURI] SP|0:XEW 8w} JSUE] SPlEiXEW 8w} JSUBI} IS8PS SI58PS 50585 5I58PS R AL gse KELBLNISURILSaMES| BT |
8INJONIISBILISIALIED | BPODIALIIY JSUES] SPNISWI) HSUBI] SP|q:aWl} JSUB) SPlE:awI} JSUBl} S8PS SI58PS 50585 SISaPS LSP:1SPILSP:SPIESP GsE alysUel}sa0as| OF |
aliEl A JpoLUILIOD Appoliiod sajel 7sp fsE Aypowoaisaowas| /7 |
adh|yoed suniyduasapansibol Zsp cse adhpoed:saduas| oz |
FIMAS Y | SANFY L SO19FF | SO sajel sajel 5ajel 5l R HEH |sE aleuadMas 5adMas| g7 |
spJeaty SpIEAy 38paNs1Ho sunduasapansifo| 75pILsp |3E ALLELSIBILED| §7 |
apoa 2apod 2 SAR0D JIEEP0D | 1578 FO0GEWM 8p07|Ed0| 2 saas SW| CF |
BP0I(EI0| 2:SA0MESE SW apoal qiapoad g SAR0D JIEEP0D | 15178] CODGSW | apodelowial qisadmas sw| 7z |
ap0lalowal qisaduas sw apoa| q:apoa) q S8R0 JI5ap0d 4| |5):78] Z00gsw 8poojEn0| qsanmas s |7 |
8p02(e0| q:SAMES SW apol eEpoa e $8p0dJ|Isapod | L517S] LODGSW | apoaslowal eisadmas sw| gz |
8poaaj0Lal BIsadMEs S 8pod| eapoa| B $8p0J 58P0)| 151728l ooogsw 8p0ajEdD| E:SAa0IMas swW| g |
BINJONIISAIELSIBIIED SWIUEI] SPNCXEW B} ISUBIY SPIO:EW 8] JSUel] splecxew awny ysuelinduasapuss suonduasapuas LB LSILSI7S] gSESW | MEwawisuel;sadas sw| g) |
BINJONIISBIELSIBIUED SW BP0IBWIY HSUEBS) SPRialI] Jsuel} Splg:awly Jsuel] spleawy psuedjpduasapaas suojduasapaas EHERE R RS I EEED alysUBI SadMas W 2] |
FIMAS Y | SANFY L SO19FF | SO sajel sajel 5ajel 5l ZSILSIL51LE] LSBSW| alweuadwassadmas swi gj |
aNMES FY | SONFF L SO19FF L S0 R CIR=E CIR-EICIRE) Y 7SI LS LS5l JUSESW BlUBU adlwas sjasysajel s g |
BCrE L SONFE L SOTA I L SO ewWI ISUB T SpRiaLII ISUET SPq Al ISUeR Spje aInianSaley Wasepaas suoduasapansBol | ZE 7S L5 L5018 LS LS LS LSl OnSseswW | AEWIWNSadMe s siatied” s | |
aINlanISalEY aINlangaled spansifio)suonduasapansibol LS:Z8| | OFWESLW alnjandisalelsiauies sw| g |
AINIINEAIELSIUED SWHEUEIT SPRIUILT SW] JSUE] SRIGUILT 8L ISUB] SpieulW Wl suesaduasapaas suojduasapuas LS| LELEITS] f5ESW) uwawnysuel sadas sw| 7| |
pI Apowing |5p VS prAupowwoa|) |
prAYNpOWWIOD el Appoliwog 15p 0n¢se awew hypowwoal gy |
laquinpaueTagquiny o Jonduosapaue|suolduasapio| EREL Ongse aweuanolanol| g5 |
By L SONEr L S079FF L Sy AWl USUB SpNIAWI HSUBLY SP|QiaWLIl HSUBI) SPIEiRINIongaley 15:5058ps suniduasapansifo| Tsp: L SpLSPI L8R LSPILSP L SR:LSP ongse hewinsaawas siaues) o |
Aypoliwog sa)ed Zsp LEse nduasapedalew” d:sabeyaed| 7 |
pi:adh) yoed sabeyoed:suniduasapansibo) 7EPIESp Onese adhpoed d:sabeyaed| g |
ainjoniisaley ainfansale sspansiiio:suonduasapansibo| ISPIZSP LO7WME ananiisagessieeal g |
adAy 20 TR 15p pedde adf | 1 |
adiy as) RITEEN 15p godde adh ospeny £ |
HEW | yodwi”puEl 15p Tidde Kew el prsannpyuodu| 7 |

zo_._.uz_._“__ € $53400V ALILNT xmgo.__w $5344407 ALLLNI xmzs.u.__ } SSIHAAY ALILNT HIMOT ONIddVIA ALILNG d3ddn| |

4 3 d 3 g i

264

Third Mapping File (MS-Excel Format)

aelAypowwong

PIIAHpOWLLIOD

NOLLDNNA

Alpowwioo

adi]qoeg

aMES Y | SANFF | sal1gairr | salv
SPAEMY S Pl EMy

prapoa

1

SLUEL

AINAMISale SIalled nial] HSUell Spqiawl ISUel] Spleawnl HSuellsapadias suoduiosapadiias

seled
sa13s1b0|

salel salelsalelisalel
sonsibosas o)
SAp0J}Sap0IaLlIsSUEe]
Aupowwog

Alpowwod

Jaquunpauedaquinpio donduasapauesuonduasapio)

Appowwoo

pradi] {oey
SINIMIISaley laInjonilSaley
adh1 aa

adhiy os)
AouaunoTy
nodig]

Bxaad|]

CILIN

HELL |

Gxaadiyinaas

Ui AjInoas
®xELWAIINDISS
safleyaiayo
aupes|
Bxladsabieyabulpuey
unusabieyafulpuey
®ewsabieyabunpuey
JOpSJaLlolSnapodKa
Bxaad gyl

UL L

HELL %

asill
Aepppeladafielols
sabieyuayio
aulpes|

sodppe™g)

sodg Q|

Bxiad o

Lo

HEW O
aapasopuey
SRSEy

salel
sabeyoed:sansiBo)
sansifopsasiGo)
2417 504

2417 50)
uodxza pueu
nodxa pueul
Hodxa pue|un
uodxa pueu
Hodxa pueu
uodxza pueu
nodxa pueul
Hodxa pue|un
nodxa pueul
Hodxa pueu
uodxa pueu
Hodxa pue|u
Hodxa pueun
nodxa pueul
Hodwi pue|u
Hodwi pue|u
Hodwii™ pue|un
uodwi pueu
Hodul puEul
Hodwii™ pue|un
nodull puEul
Hodwi pue|un
Hodwi pueu
Hodwii™ pue|un
Hodwii™ pue|un
Hodul puEul
Hodwi pue|un
Hodwi pue|u

Lap-Lqp:Lgp

CHp: LGP

SLap-zgqp
cHp

Zqp
SLap:Lgp
Zap-Lap
cdp-1L9p
Lap

Lap
LAp:1Lap

NFE LT SATERE LSO Ty S HSUBTSpRawy T HSUEl T Sp|q el HSUeBI] SpelaInomSaley s sunnduasapaaliss isa)siBo| |pLap: Lap:Lgp:Lap: Lap

cHip
ZipZap
Lap-zqp
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap
Lap

[=t3
s
s
15

[k}
aoe=
LOLS
aoss
aog9s
aonss
Loes
aoes
Loz
gedd
gedd
Aoedd
godd
godd
trodd
eodd
Zodd
Lsdd
osdd
mdd
add
Add
g
Gl
tridd
cdd
Zrddaap
Zdd
L dd
o
Gedd
gedd
Aedd
gedd
Gedd
tedd
cedd
zedd
Ledd

£ 5SS3HAAY ALILLNT H3IMOTZ SSIHAAVY ALILNT H3aMmOoT14040v ALLLNT H3MO0T DNIddYIN

SLUISUEISaIMas
AlpOWLIODSa0as
adioedisadas
EDTEDERIEE-EEI R
ENTEDRSIEIDER]
SEP0JSapo0dawisuel]
prALpOWLWIOD

aLlEU AlpowLwod
EPTEPE LY GTT
Alelnsaddas sialled
nduosapeuaew” disabexyaed
adiyoed disabexyaed
aInjarilsalel sialued

ad A1 2uon

ECESE=EINENLT

Aousuna)y paisannpuodxa
nodie|y paisapnpuodxa
Gxaad™| | pasannpupodxa

Uil || pasannpuodxs

HEeL || paisannpuodxa
dxadiinaas pasannpuodxa
wiAINoas paisannpuodxa
xeLwAunoas” pasannpuodxa
safleyadayo paisannpuodxa
awnlpea| pasannpuodxa
idadBunpuey pa:sennpuodxa
puey pa:sannpuodxa

wewbBulpuey” pasannpuodxa
oplsnadodya paisapnpuodya
Bxaad el piisannppodun

Ui el prrsanprodun

HELW Bl plisannpuodo

aall] plsanpnpuodogg
apedadafielols” prsanpuodu
sabieyoiaylo” prissnnpuodun
awipeal” prisannpuodu
sodppea piisanprodun

sod o prsannpuodun
Braad oy piisannpuodun
uiLu” oy~ piisanppodun

Hew oy prsannppodor
aapasopUey” prsannpuodun
ga)sE1e” prsannpuodun
ALILNT H3ddn

-+
-+

m
=

]
-t

-
=t

o
=

m
)

jun]
M

[
m

jix]
O]

L0
)

-
u}

M
m

]
m

-
m

o
i

om
]

fun]
(]

[y
o™

[ix]
™

L0
]

=
o™

M
(]

o
o™

-
™

o]
]

m
pui

fua]
_

[
i

@
—

L0
i

=
—

m
—

o™
—

-
—

o
o

o

—| D M) =| 0| W0 ~ O

a9] 4 _

E|

]

o]

=]

[w

265

Output from R Statistical Package.

[Descriptive Statistics]
descriptive.table(DSall [c("TIME","ACCURACY")] ,
func.names =c("Mean","St. Deviation", "Valid
N", "Minimum", "Maximum", "Median"))
—— End Command ——
$*strata: all cases
Mean St. Deviation Valid N Minimum Maximum Median
TIME 265.54444 171.34571 90 60 900 234.0000
ACCURACY 61.27976 29.22844 90 0 100 57.7381

[Accuracy Correlations]

corr.mat<-cor.matrix (variables=c (ACCURACY),
with.variables=c (NODES, LEVELS, OVERLAPS, FUNCTIONS),
data=DSall,
test=cor.test,
method="'pearson',
alternative="two.sided")
print (corr.mat)
gscatter_array (c (ACCURACY),
c (NODES, LEVELS, OVERLAPS, FUNCTIONS),
data=RS1gl23456correctedremovedcggbl) +
geom_smooth (method="1m")
rm('corr.mat"')
-— End Command ——

Pearson's product-moment correlation

ACCURACY
NODES cor -0.5667
N 90
CI* (-0.6925,-0.4074)
stat** -6.452 (88)
p-value 0.0000
LEVELS cor -0.6688
N 90
CI* (-0.7693,-0.5359)
stat** -8.438 (88)
p-value 0.0000
OVERLAPS cor -0.2936
N 90
CI* (-0.472,-0.09212)
stat** -2.881 (88)
p-value 0.0050
FUNCTIONS cor —-0.6452
N 90
CI* (-0.7518,-0.5057)
stat** -7.922 (88)
p-value 0.0000
** t (df)
* 95% percent interval

266

HA: two.sided

MNumber of Functions, Levels, Nodes, Overlaps

Answer Accuracy (%)

S300N §73Aa SHOILINNG

SdeH3IA0

Figure Appendix II-1: ACCURACY correlation scatter plot™

*® Note: The darker points on the plot are where multiple answers overlapped.

267

[Time Correlation]

corr.mat<-cor.matrix (variables=c (TIME),
with.variables=c (NODES, LEVELS, OVERLAPS, FUNCTIONS),
data=DSall,
test=cor.test,
method="'pearson',
alternative="two.sided")
print (corr.mat)
gscatter_array (c(TIME),
c (NODES, LEVELS, OVERLAPS, FUNCTIONS),
data=RS1gl23456correctedremovedcggbl) +

geom_smooth (method="1m")

rm('corr.mat"')
—-— End Command

Pearson's product-moment correlation

NODES

CIx*
stat**
p-value

**t

(df)

TIME

0.3691

90
(0.1754,0.5353)
3.725 (88)
3e-04

0.3610

90
(0.1664,0.5286)
3.632 (88)
5e-04

0.2941

90
(0.09269,0.4724)
2.887 (88)
0.0049

0.2251

90
(0.01885,0.4129)
2.167 (88)
0.0329

* 95% percent interval

HA: two.sided

268

Number of Functions, Levels, Nodes, Overlaps

3o-= - . 2 @ L]] e @ 2

25

20 = same 922 = = @ [] = 2 -] A L
1.5 =

1.0 = f EEae ec ‘e L] a8 & o]
05—

0.0 = 0 [] o mWe . -

[B

=

4

5=

o

30 =

25 =

20 ™

15 =

10 =

5=

4= 2 ®
5 =

2= e L e & @0 ® ¢ P

1= 8 recu.ms & Ty ¥ o 8 e
o= e secEmom ©° 8 2 L] e . 0 L

I I |
200 400 aoo

Time to complete answer (seconds)

E00

53J0N S13A30 SNOILINMA

S4VIHIAO

Figure Appendix II-2:: TIME - Correlation scatter plot

269

Experimental Data for Experiment Four

The mappings and ontologies files from experiment two were reused in experiment
two

270

Experimental Data for Experiment Five

Ontology-Based Dependency Model (domestic electrical domain)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >
1>

<rdf :RDF xmlns="http://www.owl-ontologies.com/Ontologyl270901584.0owl#"
xml :base="http://www.owl-ontologies.com/Ontologyl1270901584.0owl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">
<owl:0Ontology rdf:about=""/>
<owl:Class rdf:ID="AE"/>
<owl:0bjectProperty rdf:ID="app2controlunit">
<rdfs:domain rdf:resource="#APPLIANCE"/>
<rdfs:range rdf:resource="#CONTROLUNIT"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_9"/

<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="app2socket">
<rdfs:domain rdf:resource="#APPLIANCE"/>
<rdfs:range rdf:resource="#SOCKET"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_15"
/>
<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="APPLIANCE">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<owl:Class rdf:ID="Cause">
<rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="cause_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="cause_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="cause_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="&xsd;string"/>

271

</owl:DatatypeProperty>
<owl:Class rdf:ID="CONTROLUNIT">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="controlunit2swfuse">
<rdfs:domain rdf:resource="#CONTROLUNIT"/>
<rdfs:range rdf:resource="#SWFUSE"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_10"
/>
<rdfs:subPropertyOf
rdf:resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="COOKER">
<rdfs:subClassOf rdf:resource="#APPLIANCE"/>
</owl:Class>
<APPLIANCE rdf:ID="COOKER1">
<app2controlunit rdf:resource="#CU1"/>
</APPLIANCE>
<CONTROLUNIT rdf:ID="CU1">
<controlunit2swfuse rdf:resource="#SWFUSE1l CT1"/>
<inverse_of_transitive_symmetric_dependency_relation_9
rdf:resource="#COOKER1" />
</CONTROLUNIT>
<owl:Class rdf:ID="DependencyAtrributes"/>
<owl:0ObjectProperty rdf:ID="DependencyRelation"/>
<owl:Class rdf:ID="DI_APP_COOKER">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#COOKER1"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_APP_LIGHT1">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#LIGHT1"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_APP_LIGHT2">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#LIGHT2"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_APP_TV1">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#TV1"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_FUSE1">
<owl:equivalentClass>
<owl:Restriction>

272

<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#SWFUSE1_CT1"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_FUSE2">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#SWFUSE2_CT2"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="DI_FUSE3">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#DependencyRelation"/>
<owl:hasValue rdf:resource="#SWFUSE3_CT3"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
<owl:0ObjectProperty rdf:ID="funtional_dependency_relation">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hascauseattribute">
<rdfs:domain rdf:resource="#AE"/>
<rdfs:range rdf:resource="#Cause"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasimpactattribute">
<rdfs:domain rdf:resource="#AE"/>
<rdfs:range rdf:resource="#Impact"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasstrenghtattribute">
<rdfs:domain rdf:resource="#AE"/>
<rdfs:range rdf:resource="#Strength"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="Impact">
<rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="impact_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="impact_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="impact_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Impact"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:0ObjectProperty rdf:ID="inverse_functional_relations">
<rdf:type rdf:resource="&owl; InverseFunctionalProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="inverse_of_junction2junction">
<rdfs:domain rdf:resource="#JUNCTION"/>

273

rdf:

rdf

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

rdf:

<rdfs:range rdf:resource="#JUNCTION"/>
<owl:inverseOf rdf:resource="#junction2junction"/>
<rdfs:subPropertyOf
resource="#symmetic_dependency_relation"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="inverse_of_junction2swfuse">
<rdfs:domain rdf:resource="#SWFUSE"/>
<rdfs:range rdf:resource="#JUNCTION"/>
<owl:inverseOf rdf:resource="#junction2swfuse"/>
<rdfs:subPropertyOf

:resource="#transitive_symmetric_dependency_relation"/>

</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_10">

<rdfs:domain rdf:resource="#SWFUSE" />
<rdfs:range rdf:resource="#CONTROLUNIT"/>
<owl:inverseOf rdf:resource="#controlunit2swfuse"/>
<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_15">

<rdfs:domain rdf:resource="#SOCKET"/>
<rdfs:range rdf:resource="#APPLIANCE"/>
<owl:inverseOf rdf:resource="#app2socket"/>
<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_16">

<rdfs:domain rdf:resource="#SWFUSE"/>
<rdfs:range rdf:resource="#SOCKET"/>
<owl:inverseOf rdf:resource="#socket2swfuse"/>
<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_17">

<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_2">

<rdfs:domain rdf:resource="#SWITCH"/>

<rdfs:range rdf:resource="#LIGHT"/>

<owl:inverseOf rdf:resource="#light2switch"/>

<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_transitive_symmetric_dependency_relation_3">

<rdfs:domain rdf:resource="#JUNCTION"/>
<rdfs:range rdf:resource="#SWITCH"/>
<owl:inverseOf rdf:resource="#switch2junction"/>
<rdfs:subPropertyOf
resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty

ID="inverse_of_ transitive_symmetric_dependency_relation_9">

<rdfs:domain rdf:resource="#CONTROLUNIT"/>
<rdfs:range rdf:resource="#APPLIANCE"/>

274

<owl:inverseOf rdf:resource="#app2controlunit"/>
<rdfs:subPropertyOf
rdf:resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="JUNCTION">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<JUNCTION rdf:ID="JUNCTION1">
<inverse_of_junction2junction rdf:resource="#JUNCTION2"/>
<inverse_of_transitive_symmetric_dependency_relation_3
rdf:resource="#SWITCH1" />
<junction2swfuse rdf:resource="#SWFUSE2_CT2"/>
</JUNCTION>
<JUNCTION rdf:ID="JUNCTION2">
<junction2junction rdf:resource="#JUNCTION1"/>
<inverse_of_transitive_symmetric_dependency_relation_3
rdf:resource="#SWITCH2" />
</JUNCTION>
<owl:0ObjectProperty rdf:ID="junction2junction">
<rdfs:domain rdf:resource="#JUNCTION"/>
<rdfs:range rdf:resource="#JUNCTION"/>
<owl:inverseOf rdf:resource="#inverse_of_junction2junction"/>
<rdfs:subPropertyOf
rdf:resource="#symmetic_dependency_relation"/>
</owl:0bjectProperty>
<owl:0bjectProperty rdf:ID="junction2swfuse">
<rdfs:domain rdf:resource="#JUNCTION"/>
<rdfs:range rdf:resource="#SWFUSE"/>
<owl:inverseOf rdf:resource="#inverse_of_junction2swfuse"/>
<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<APPLIANCE rdf:ID="LAMP1">
<app2socket rdf:resource="#SOCKET_2"/>
</APPLIANCE>
<owl:Class rdf:ID="LIGHT">
<rdfs:subClassOf rdf:resource="#APPLIANCE"/>
</owl:Class>
<LIGHT rdf:ID="LIGHT1">
<light2switch rdf:resource="#SWITCH1"/>
</LIGHT>
<LIGHT rdf:ID="LIGHT2">
<light2switch rdf:resource="#SWITCH2"/>
</LIGHT>
<owl:0ObjectProperty rdf:ID="1light2switch">
<rdfs:domain rdf:resource="#LIGHT"/>
<rdfs:range rdf:resource="#SWITCH"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_2"/

<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:DatatypeProperty rdf:ID="1v1l_dst"/>
<owl:DatatypeProperty rdf:ID="1vl_level"/>
<owl:DatatypeProperty rdf:ID="1lvl_src"/>
<owl:Class rdf:ID="SOCKET">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="socket2swfuse">
<rdfs:domain rdf:resource="#SOCKET"/>

275

<rdfs:range rdf:resource="#SWFUSE"/>
<owl:inverseOf
rdf:resource="#inverse_of_transitive_symmetric_dependency_relation_16"
/>
<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<SOCKET rdf:ID="SOCKET_1">
<inverse_of_transitive_symmetric_dependency_relation_15
rdf:resource="#TV1"/>
<socket2swfuse rdf:resource="#SWFUSE3_CT3"/>
</SOCKET>
<SOCKET rdf:ID="SOCKET_2">
<inverse_of_transitive_symmetric_dependency_relation_15
rdf:resource="#LAMP1" />
<socket2swfuse rdf:resource="#SWFUSE3_CT3"/>
</SOCKET>
<owl:Class rdf:ID="Strength">
<rdfs:subClassOf rdf:resource="#DependencyAtrributes"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="strength_dst">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="strength_src">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="strength_value">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Strength"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="SWFUSE">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<SWFUSE rdf:ID="SWFUSE1l_CT1">
<inverse_of_transitive_symmetric_dependency_relation_10
rdf:resource="#CU1" />
</SWFUSE>
<SWFUSE rdf:ID="SWFUSE2_CT2">
<inverse_of_junction2swfuse rdf:resource="#JUNCTIONL1"/>
</SWFUSE>
<SWFUSE rdf:ID="SWFUSE3_CT3">
<inverse_of_transitive_symmetric_dependency_relation_16
rdf :resource="#SOCKET_1"/>
<inverse_of_transitive_symmetric_dependency_relation_16
rdf :resource="#SOCKET_2"/>
</SWFUSE>
<owl:Class rdf:ID="SWITCH">
<rdfs:subClassOf rdf:resource="#AE"/>
</owl:Class>
<SWITCH rdf:ID="SWITCH1">
<switch2junction rdf:resource="#JUNCTION1"/>
<inverse_of_transitive_symmetric_dependency_relation_2
rdf :resource="#LIGHT1"/>
</SWITCH>
<SWITCH rdf:ID="SWITCH2">
<switch2junction rdf:resource="#JUNCTION2"/>

276

<inverse_of_transitive_symmetric_dependency_relation_2
rdf :resource="#LIGHT2"/>
</SWITCH>
<owl:0ObjectProperty rdf:ID="switch2junction">
<rdfs:domain rdf:resource="#SWITCH"/>
<rdfs:range rdf:resource="#JUNCTION"/>
<owl:inverseOf
rdf :resource="#inverse_of_transitive_symmetric_dependency_relation_3"/

<rdfs:subPropertyOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="symmetic_dependency_relation">
<rdf:type rdf:resource="&owl; SymmetricProperty"/>
<owl:inverseOf rdf:resource="#symmetic_dependency_relation"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="transitive_dependency_relation">
<rdf:type rdf:resource="&owl; TransitiveProperty"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:0ObjectProperty
rdf:ID="transitive_symmetric_dependency_relation">
<rdf:type rdf:resource="&owl; SymmetricProperty"/>
<rdf:type rdf:resource="&owl; TransitiveProperty"/>
<owl:inverseOf
rdf :resource="#transitive_symmetric_dependency_relation"/>
<rdfs:subPropertyOf rdf:resource="#DependencyRelation"/>
</owl:0bjectProperty>
<owl:Class rdf:ID="TV">
<rdfs:subClassOf rdf:resource="#APPLIANCE"/>
</owl:Class>
<APPLIANCE rdf:ID="TV1">
<app2socket rdf:resource="#SOCKET_1"/>
</APPLIANCE>
</rdf :RDF>

277

APPENDIX III

This appendix describes a simple worked example to illustrate the outputs of the TomE
tool. It assumes the existence of a mapping file based on a simplification of the
mappings using in the generalised ontology-based integration system designed for

experiment one.

Simplifying Assumptions Made.

Assumption 1: Assume that the domain under study has three architectural elements
called UE, MP and GE that represents the output of the decomposition step in the
process described in Figure 3-4. Figure III-1 below, shows the architectural elements
for “GE”, “UE” and “MP” as subclasses for the ontology-based metamodel concept

“ArchitecturalEntities”.

These architectural elements are made dependent by adding specialised concepts for

the dependent relations (ue2mp and mp2ge) as shown in Figure III-1.

ol Thing [Obiect properties m
['—j j.-D:ArchitecturalEntities o[. DehisAES
..... GE []D j,0:DependencyRelation
..... MP :D j 0ifranskive,_dependency relfion
_____ LE DD j.Detransiive_symmentic_dependency relation < . 0ibransiive_symmentic |

>|| Uelmp e verse_of ransitive _symmentic_dependency reliton 7

B j.0:DependencyGraph :
g | mverse_of ranstive_synmentic_dependency relation 7 - Lelmp

[‘—j j.0racyclic :
g i~ [mp2ge = verse_of frangive_symmentic_dependency relsion_11

- DI :
. i [l inverse_of transitive_synmentic_dependency relation 11 - mpZe
""" s :'H: I i [j.Disymmetic_dependancy relatian - j.:symmetic_dependency relgtion
----- j.0:direcke

] j0sfunctional_dependency_relation

..... i0undirecked

[Diinwersz functional_relations
""" jod:rook] ihsront

Figure I1I-1: Dependency Model Classes and Dependency Relations

Assumption 2: Assume a mapping file from an ontology integration system that has

the following dependencies in its mappings:

Mapping 1: UE1->MP1->GE1
->GE2
Mapping 2: UE2->MP2->GE2
->GE3

278

Mapping 3: UE3->MP3->GE3
Mapping 4: UE4->MP4->GE4 [F{UE4}]
Mapping 5: UE5->MP5->GES5
Assumption 3: Assume that these mappings can be interpreted as follows:

An ontological concept called UE1 has a mapping called MP1. The mapping MP1

collects information from data source resources identified as GE1 and GE2.
Mappings MP1 and MP2 share a common database resource (GE2).

The mapping for UE4 is called MP4. Mapping MP4 has a function specified, called

“F” that requires access to ontological concept UE4.

In the case of this simple mappings file, we can see that MP1 and MP2 have a
dependency relation due to GE2. Mappings MP4 and MP5 also have a dependency

relation due to the function F that accesses UE4.

TomkE tool output

The output of the TomE for this mapping file produces the graphical views shown in

the figures below.

The full graph of dependencies (Figure III-2) shows that there is a dependency
relationship between MP1 and MP2 and another dependency relationship between

MP4 and MP5.

This is the view of all dependencies provided by the TomE system.

279

GE-DB1-=E4-GE4
GE-DB1-%ES-GES
FE-D'B1-GE3-GE3 MP-h P}
MP-MPS
MP-MFP2 LUE-LES
UE-UE=2 LUE-LUES
root
LE-UEA1
UE-UEZ
b P- A P2
MF-hiF

GE-DB1-ZE1-GE1

GE-DB1-ZEZ-GEZ

Figure I1I-2: Full Dependency Graph

Figure I1I-2 shows the all the dependencies chain that have been computed.

The “root” node represents the metadata for the graph itself and contains the type and
version information. Nodes of different types have different colours to aid viewing.
The “root” node can be populated using the information (e.g. name, version) from the

“Dependency Graph” concept from the OBDM.

The name of each node is a concatenation of the node type and node instance name

(e.g., UE-UEI indicated a node of type UE with instance UE1).

The dependency view for UE1 is shown in Figure I1I-3 below.

EE-DBRA-GE1-SE1

rAFE-RAFE -1
SE-DBRA-GEZ- S E=

I F-RAaF= I == (L0 =]

Figure I1I-3: Single Dependency Graph

This view can be selected either by clicking on the required node on the main graph
view or by loading it directly using the “file->load” option in the menu bar in the

TomeE tool.

The dependency view with levels and types for UE1 is shown in Figure I11-4 below.

280

rMP-MF 2

FAP-RAF 1

LIE-LIE1

root

Figure I11-4: Dependency View with Levels

281

APPENDIX IV

This appendix describes the directory structure of the DVD which contains the Java

code for generalised ontology-based integration test bed (HotFusion) and TomE tools.

The following directory structure and contents are provided on DVD
root/HotFusion/src Java source classes files for the generalised ontology
based integration test bed

root/HotFusion/config Eclipse project classes files for the generalised ontology
based integration test bed

root/HotFusion/docs Readme file

root/TomE /src Java source classes files for TomE tool
root/TomE/config Eclipse project files for TomE tool

root/TomE/docs Readme file

root/ontologies OWL files for the dependency metamodel and OBDM.
root/mappings Mapping files used in this thesis.

282

