
Multi-Policy Optimization in Decentralized Autonomic Systems

Ivana Dusparic

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

June 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any other

University, and that unless otherwise stated, it is entirely my own work. I agree that Trinity College

Library may lend or copy this thesis upon request.

Ivana Dusparic

Dated: May 26, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Ivana Dusparic

Dated: May 26, 2010

Acknowledgements

First and foremost I’d like to thank my supervisor, Prof. Vinny Cahill, for his guidance, expertise,

encouragement, and endless patience during my Ph.D. studies.

The other main acknowledgement goes to As’ad Salkham for all his help throughout this process;

for providing RL libraries, for numerous fruitful discussions on RL and UTC, and for sharing both

joys and frustrations of traffic simulation. I’d also like to express my gratitude to Vinny Reynolds, the

author of Dublin traffic simulator, and everyone else who has worked on extending it over the years:

Raymond Cunningham, Anurag Garg, Sylvain Cabrol and Mikhail Volkov. A big thank you to Mark

Gleeson and Andrew Jackson for the help with computing resources.

Thanks to all past and present members of DSG for making it such a great group to work in and

for setting great examples for me to follow.

Thanks to Lero, the Irish Software Engineering Research Centre, for sponsoring my research.

I’d also like to thank all of my friends for encouraging me, each in their own way, from close and

afar. A special thank you to John for putting up with me over the past few months, and to Elizabeth

Daly for her feedback on this thesis.

And finally, thank you to my family, for all their support, for never questioning me and for always

being there.

Ivana Dusparic

University of Dublin, Trinity College

June 2010

iv

Abstract

Autonomic computing systems are those that are capable of managing themselves based only on high-

level objectives given by humans. In such systems the details of how to meet their objectives, even in

the face of changing operating conditions, are left to the systems themselves. Therefore, autonomic

systems are required to be able to self-optimize, self-heal, self-protect, and self-configure. Enabling

autonomic behaviour is particularly challenging in decentralized autonomic systems, where central

control is not tractable or even possible, due to the large number and geographical dispersion of the

entities involved. In such systems, entities only have local views of their immediate environments and

no global view of the system exists. Decentralized autonomic systems can be implemented as multi-

agent systems, in which each entity is modelled as an intelligent agent. These agents can self-organize

based only on local actions and interactions, so that the global behaviour of the system, required to

meet its objectives, emerges from the agents’ local behaviours.

This thesis addresses self-optimization in decentralized autonomic systems. Examples of techniques

used to self-optimize autonomic systems include ant-colony optimization, evolutionary algorithms,

neural networks, and reinforcement learning (RL). RL is considered particularly suitable for use in

large-scale autonomic systems, as it does not require a predefined model of the environment. How-

ever, most applications of RL in decentralized autonomic computing address systems that optimize

their behaviours towards only a single policy, while in reality management of most autonomic systems

requires optimization towards multiple, often conflicting policies. These policies can be heterogeneous

(i.e., implemented on different sets of agents, be active at different times and have different levels of

priority), leading to the heterogeneity of the agents of which the system is composed. The cooperation

required for self-optimization is particularly challenging in such heterogeneous multi-agent environ-

ments, as agents might not be aware of other agents’ policies and their relative priority for the system.

Additionally, since agents operate in the same shared environment, dependencies can arise between

their performance and therefore between policy implementations as well.

To address self-optimization in such decentralized autonomic systems in the presence of agent

v

heterogeneity, policy dependency and lack of global knowledge, this thesis proposes Distributed W-

Learning (DWL). DWL is an RL-based algorithm for agent-based self-optimization that enables col-

laboration between heterogeneous agents in order to simultaneously satisfy multiple heterogeneous

system policies. DWL learns and exploits the dependencies between neighbouring agents and be-

tween policies to improve performance while respecting the relative priorities of the policies. Instead

of always executing the locally-best action, DWL agents take into account how their actions affect

their immediate neighbours; if a neighbouring agent has a very strong preference on an agent’s local

action, that agent will defer to it and execute the action nominated by that neighbour. In particu-

lar, suggestions by neighbouring agents will be executed if their importance exceeds the importance

of the local action when scaled using a cooperation coefficient, which can be predefined, or can be

learnt to maximize the reward received in the immediate neighbourhood. By selecting actions in this

manner, DWL does not require central control or a global view, as it relies solely on local actions and

interactions with one-hop neighbours.

We have evaluated the DWL algorithm in a simulation of an urban traffic control (UTC) system,

a canonical example of the class of decentralized autonomic systems that we are addressing. We show

that DWL is a suitable technique for optimization in UTC, as it outperforms the currently most-

widely deployed fixed-time and simple adaptive controllers in our simulation. Collaborative DWL

scenarios can outperform non-collaborative scenarios, depending on the level of collaboration, when

the cooperation coefficient is fixed. When DWL agents learn the level of cooperation individually,

the learnt scenarios outperform all non-collaborative scenarios and either outperform or perform as

well as with predefined collaboration coefficients. We also show that addressing two policies simul-

taneously using DWL can, based on policy dependencies, improve the performance of both policies

over corresponding single-policy implementations. These results hold for a variety of traffic loads and

patterns and therefore show DWL’s wide applicability in UTC, as well as suggesting that DWL might

be suitable for optimization in other large-scale autonomic systems with similar characteristics.

vi

Publications Related to this Ph.D.

• Ivana Dusparic and Vinny Cahill. Research issues in multiple policy optimization using collab-

orative reinforcement learning. In SEAMS ’07: Proceedings of the 2007 International Workshop

on Software Engineering for Adaptive and Self-Managing Systems, Washington, DC, USA, May

2007. IEEE Computer Society.

• Ivana Dusparic and Vinny Cahill. Autonomic management of large-scale critical infrastructures.

In HotAC III: 3rd Workshop on Hot Topics in Autonomic Computing, in conjunction with the

IEEE International Conference on Autonomic Computing ICAC ’08, Chicago, IL, USA, June

2008.

• Ivana Dusparic and Vinny Cahill. Multi-policy optimization in decentralized autonomic systems

(Extended abstract). In Decker, Sichman, Sierra, Castelfranchi, editors, Proceedings of the

8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09),

Budapest, Hungary, May 2009.

• Ivana Dusparic and Vinny Cahill. Distributed W-Learning: an algorithm for multi-policy opti-

mization in decentralized autonomic systems (Poster). In Proceedings of the 6th IEEE Interna-

tional Conference on Autonomic Computing (ICAC ’09), Barcelona, Spain, June 2009.

• Ivana Dusparic and Vinny Cahill. Using reinforcement learning for multi-policy optimization

in decentralized autonomic systems - an experimental evaluation. In Proceedings of the 6th

International Conference on Autonomic and Trusted Computing (ATC ’09), Brisbane, Australia,

July 2009. Lecture Notes In Computer Science,. Springer-Verlag, Berlin, Heidelberg.

• Ivana Dusparic and Vinny Cahill. Distributed W-Learning: Multi-Policy Optimization in Self-

Organizing Systems. In Proceedings of the 3rd IEEE International Conference on Self-Adaptive

and Self-Organizing Systems (SASO ’09), San Francisco, California, September 2009.

vii

Contents

Acknowledgements iv

Abstract iv

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Autonomic Systems . 1

1.2 Policies, Goals, Objectives and Criteria . 3

1.3 Issues in Multi-Policy Multi-Agent Self-Optimization 4

1.3.1 Policy Heterogeneity . 4

1.3.2 Agent Dependency . 5

1.3.3 Agent Heterogeneity . 6

1.3.4 Policy Dependency . 7

1.3.5 Cooperation in Heterogeneous Environments 7

1.3.6 Summary . 8

1.4 Thesis Aims and Objectives . 8

1.5 Distributed W-Learning . 9

1.6 Urban Traffic Control . 10

1.7 Thesis Assumptions . 11

1.8 Thesis Contribution . 12

1.9 Roadmap . 13

viii

Chapter 2 Autonomic Computing 14

2.1 Introduction to Autonomic Computing . 14

2.2 Engineering Decentralized Autonomic Computing Systems 15

2.2.1 Multi-Agent Systems . 17

2.2.2 Emergence and Self-Organization in Multi-Agent Systems 18

2.2.2.1 Ant Colony Optimization . 19

2.2.2.2 Evolutionary Algorithms . 21

2.2.2.3 Particle Swarm Optimization . 22

2.2.2.4 Artificial Neural Networks . 23

2.2.3 Multi-Agent Systems Summary and Conclusions 24

2.3 Reinforcement Learning . 24

2.3.1 Introduction to Reinforcement Learning . 24

2.3.1.1 Q-Learning . 27

2.3.2 Multi-policy RL . 28

2.3.2.1 Combined State Spaces . 29

2.3.2.2 Arbitration-based Approaches . 30

2.3.2.3 Pareto-Based vs. Non-Pareto Approaches 34

2.3.3 Multi-Agent RL . 34

2.3.3.1 Collaborative Reinforcement Learning 35

2.3.3.2 Coordination Graphs . 36

2.3.3.3 Distributed Value Functions . 38

2.3.3.4 POMDP-based Approaches . 38

2.3.3.5 Learning to Cooperate . 39

2.3.4 Reinforcement Learning in Autonomic Computing 40

2.3.4.1 Online Resource Allocation . 40

2.3.4.2 Load Balancing . 41

2.3.4.3 Routing in Ad-Hoc Networks . 41

2.3.4.4 Autonomic Network Repair . 41

2.3.4.5 Grid Scheduling . 42

2.3.4.6 Summary of RL Applications in Autonomic Computing 42

2.3.5 RL Summary and Conclusions . 42

2.4 Urban Traffic Control . 44

2.4.1 Glossary of UTC Terms . 44

ix

2.4.2 Commercial UTC Systems . 46

2.4.2.1 Fixed-Time Plans . 46

2.4.2.2 SCATS . 46

2.4.2.3 SCOOT . 47

2.4.2.4 RHODES . 47

2.4.2.5 Selected Vehicle Priority . 48

2.4.2.6 Summary . 49

2.4.3 Agent-based Decentralized UTC Systems . 49

2.4.3.1 Reinforcement Learning . 49

2.4.3.2 Other Agent-Based Approaches . 52

2.4.3.3 Vehicle Priority in Agent-Based UTC Systems 53

2.4.3.4 Summary . 54

2.5 Summary and Conclusion . 54

Chapter 3 Non-Collaborative Multi-Policy Optimization in Autonomic System 56

3.1 Case Study Objectives . 57

3.2 UTC Simulation Platform . 58

3.3 Policies and Agent Implementation . 59

3.3.1 Baselines . 60

3.3.2 Single-Policy deployments . 60

3.3.3 Non-Collaborative Multi-Policy Deployments 61

3.3.4 Implementation Remarks . 62

3.4 Evaluation . 63

3.4.1 Simulation Setup . 63

3.4.2 Experiment Parameters . 64

3.4.3 Metrics . 65

3.5 Results . 66

3.5.1 Multi-Policy RL vs. Baselines . 66

3.5.2 Single-Policy vs. Multi-policy RL . 70

3.5.3 Combined State Space vs. W-Learning . 71

3.6 Conclusions . 71

Chapter 4 Distributed W-Learning 73

4.1 Requirements for a Collaborative Multi-Policy Optimization Technique 73

x

4.2 DWL Design . 75

4.2.1 DWL as an Extension of W-Learning . 75

4.2.2 Collaboration in DWL . 76

4.2.2.1 Purpose of Collaboration . 76

4.2.2.2 Collaboration in Heterogeneous Environments 76

4.2.2.3 Collaboration in DWL . 79

4.2.2.4 Degree of Cooperation . 83

4.2.2.5 Learning the Degree of Cooperation 84

4.2.2.6 Collaboration Summary . 84

4.2.3 Decentralized Control . 85

4.3 Definition of DWL . 85

4.4 DWL Elements . 86

4.4.1 Remote Policies . 86

4.4.2 Cooperation Coefficient C . 87

4.4.3 Learning Values of C . 87

4.5 DWL Initialization and Learning Process . 90

4.5.1 DWL Initialization . 90

4.5.2 DWL Learning Process . 93

4.5.3 DWL Action Selection . 95

4.6 DWL and the Requirements for a Multi-Policy Collaborative Optimization Technique 97

4.7 DWL Assumptions and Scope . 99

4.8 Summary . 99

Chapter 5 DWL Implementation and Simulation Environment 100

5.1 CRL Framework . 101

5.2 UTC RL Agent Implementation . 103

5.3 UTC DWL Agent Implementation . 106

5.3.1 DWL Agent Generation . 106

5.3.1.1 DWL_AgentGenerator . 106

5.3.1.2 DWL_RLAgent . 108

5.3.1.3 DWL_MDP . 109

5.3.1.4 DWLCoop_MDP . 110

5.3.1.5 Initial Agent Wake-up . 110

5.3.2 DWL Action Selection Implementation . 110

xi

5.3.3 DWL Agent Summary . 113

5.4 Summary . 113

Chapter 6 DWL Evaluation 114

6.1 Evaluation Objectives . 114

6.2 Evaluation Metrics . 116

6.3 Evaluation Scenarios . 117

6.3.1 UTC Policies . 117

6.3.1.1 Baselines . 117

6.3.1.2 Single-Policy Deployments . 117

6.3.1.3 Multi-Policy Deployments . 118

6.3.2 Simulation Setup . 118

6.3.3 Simulation Parameters . 119

6.3.4 List of Evaluation Scenarios . 122

6.3.4.1 Scenario 1: Multi-Policy Optimization of Uniformly Distributed Traffic

Under Different Traffic Loads . 122

6.3.4.2 Scenario 2: Multi-Policy Optimization of Non-Uniformly Distributed

Traffic (3:1 pattern) . 124

6.3.4.3 Scenario 3: Multi-Policy Optimization with Conflicting Traffic 125

6.3.4.4 Scenario 4: Optimization of Multiple Policies with Different Spatial

Scope and Priority Relationships . 126

6.3.4.5 Scenario 5: Multi-Policy Optimization in Time-Constrained Scenarios 127

6.3.4.6 Summary of Evaluation Scenarios . 127

6.4 Results and Analysis . 127

6.4.1 DWL vs. Baselines . 128

6.4.2 Collaborative vs. Non-Collaborative Deployments: Impact of Collaboration . . 131

6.4.2.1 Collaborative vs. Non-Collaborative Deployments 132

6.4.2.2 Collaboration Using Predefined vs. Learnt Values of C 133

6.4.3 DWL for Single-Policy Optimization . 138

6.4.4 Single-Policy vs. Multi-Policy DWL Deployments 141

6.4.4.1 PTO vs. GW-PT . 141

6.4.4.2 GWO vs. GW-PT . 143

6.4.4.3 Single-Policy vs. Multi-Policy Summary 144

6.4.5 DWL in the Presence of Conflicting Policies 145

xii

6.4.6 Policy Priority in DWL . 148

6.4.7 DWL Learning Times . 149

6.4.8 Policy and Agent Dependencies in DWL . 150

6.4.8.1 Policy Dependency . 151

6.4.8.2 Agent Dependency . 152

6.4.9 Additional Observations: Number of Vehicle Stops 153

6.5 Evaluation Summary . 155

Chapter 7 Conclusions and Future Work 157

7.1 Thesis Contribution . 157

7.2 Open Research Issues . 160

Bibliography 162

xiii

List of Tables

2.1 RL optimization techniques summary . 44

3.1 Average density per traffic load (percentage) . 67

4.1 Requirements vs. DWL features . 98

6.1 Summary of DWL evaluation scenarios . 128

6.2 DWL vs. baselines: Maximum waiting time improvement 128

6.3 Waiting time improvement in collaborative scenarios over non-collaborative scenarios 135

6.4 Maximum waiting time improvement of DWL with predefined C over learnt C 135

6.5 Average vehicle waiting time: Difference between GW-PT and GWO 143

6.6 DWL with varying reward values: Difference between car and bus average waiting time 149

xiv

List of Figures

1.1 Policy spatial scope . 4

1.2 Policy relationships . 5

1.3 Agent and policy heterogeneity . 5

1.4 DWL action selection on a single agent . 10

2.1 Autonomic element (IBM, 2005) . 16

2.2 An ant searching for the shortest path (Dorigo & Di Caro, 1999) 19

2.3 Particle swarm optimization (Kennedy & Russell, 2001) 22

2.4 Neural network (Weijters & Hoppenbrouwers, 1995) 23

2.5 State transition diagram (Suton & Barto, 1998) . 25

2.6 Reinforcement learning process (Suton & Barto, 1998) 25

2.7 W-Learning action selection (Humphrys, 1996a) . 33

2.8 Collaborative reinforcement learning (Dowling, 2005) 36

2.9 Coordination graphs (Guestrin et al., 2001, 2002; Kok et al., 2005) 37

2.10 Phases, phase length, signal cycle, and cycle time (Papageorgiou et al., 2003) 45

3.1 Experiment map in Dublin UTC simulator . 59

3.2 Number of vehicles served per agent type per load . 66

3.3 Non-collaborative multi-policy optimization waiting time results 67

3.4 EVO density during low load . 68

3.5 Traffic light phases available to agent F . 69

4.1 DWL action selection: local vs remote policies . 88

4.2 Example of DWL agent network . 90

4.3 Agents A1 and A2 before and after DWL initialization 91

xv

4.4 Example of DWL agent network after DWL initialization 92

4.5 Exchange between agents during each DWL learning step 95

4.6 DWL action nomination . 96

5.1 CRL Framework (Salkham et al., 2008) . 101

5.2 Generation of multiple GWO RL agents . 104

5.3 DWL agent generation . 107

5.4 DWL action selection sequence diagram . 112

6.1 DWL evaluation map . 119

6.2 Vehicle route start/end junctions . 120

6.3 DWL vs. baselines: Vehicle waiting time . 129

6.4 DWL vs. baselines: Number of vehicles served . 129

6.5 DWL vs. baselines: Traffic density . 130

6.6 Collaborative vs. non-collaborative scenarios: Vehicle waiting time 133

6.7 Collaborative vs. non-collaborative scenarios: Number of vehicles served 133

6.8 Collaborative vs. non-collaborative scenarios: Density 134

6.9 Predefined C vs. learnt C: Vehicle waiting time . 135

6.10 Predefined C vs. learnt C: Number of vehicles served 135

6.11 Predefined C vs. learnt C: Traffic density . 137

6.12 Single policy DWL: Vehicle waiting time and number of vehicles served 139

6.13 Single policy DWL: Traffic density . 140

6.14 Single-policy vs. multi-policy DWL: Number of vehicles served 141

6.15 Single-policy vs. multi-policy DWL: Traffic density 142

6.16 Single-policy vs. multi-policy DWL: Vehicle waiting time 143

6.17 DWL for conflicting policies: Vehicle waiting time . 147

6.18 DWL for conflicting policies: Number of vehicles served 147

6.19 DWL for conflicting policies: Traffic density . 147

6.20 DWL for conflicting policies: Impact of collaboration 148

6.21 DWL with varying reward values: Car and bus waiting time 149

6.22 DWL performance vs. duration of exploration period 150

6.23 Compatible vs. conflicting scenarios: Policy dependency 151

6.24 Compatible/complementary vs. conflicting scenarios: DWL W-values for multiple poli-

cies on a single agent . 152

xvi

6.25 Compatible/complementary vs. conflicting scenarios: Agent dependency 152

6.26 Compatible vs. conflicting scenarios: W-values for remote policies 153

6.27 Average number of vehicle stops per vehicle type: DWL and baselines 154

xvii

Chapter 1

Introduction

“When it is obvious that the goals cannot be reached,

don’t adjust the goals, adjust the action steps.”

- Confucius

This thesis addresses multi-policy self-optimization in large-scale heterogeneous autonomic sys-

tems. It proposes Distributed W-Learning (DWL), an algorithm based on Reinforcement Learning

(RL) that enables simultaneous self-optimization of autonomic system behaviour towards multiple

policies. DWL learns and exploits the dependencies between multiple policies and between neighbour-

ing agents comprising an autonomic system to select optimal actions, while respecting relative priority

of policies. DWL does not require global knowledge or centralized system control as all actions and

interactions are performed locally at the agent-level, so that global system behaviour emerges from

these interactions. We evaluate DWL in a simulation of an urban traffic control (UTC) system, a

canonical example of large-scale decentralized autonomic systems. This chapter motivates the work,

introduces multi-policy multi-agent optimization and DWL, outlines the main contributions of this

work, and presents a roadmap for the remainder of the thesis1.

1.1 Autonomic Systems

Autonomic computing systems are systems that are capable of managing themselves based only on

high-level goals given by humans (Kephart & Chess, 2003). In such systems the details of how to

1Parts of this chapter are based on material appearing in (Dusparic & Cahill, 2009a,b)

1

1.1. Autonomic Systems

meet their goals, even in the face of changing operating conditions, are left to the systems themselves.

Therefore, autonomic systems are required to be able to self-optimize, self-heal, self-protect, and self-

configure in order to meet the goals. Enabling autonomic behaviour is particularly challenging in

decentralized autonomic systems (Wolf & Holvoet, 2007), where central control is not tractable, due

to the large number and geographical dispersion of the entities involved. Important examples of such

systems that could benefit from autonomic management include large-scale critical infrastructures

(transportation networks, electricity, gas, and water supply), as well as numerous other applications

that involve, for example, scheduling, task allocation, routing, or load balancing, such as global

supply chains (OLeary, 2008). A decentralized autonomic system can be implemented as a group

of agents (Tesauro et al., 2004), or so-called autonomic elements (Kephart & Chess, 2003). These

agents can self-organize based only on local actions and interactions, so that the global behaviour

of the system, required to meet its goals, emerges from the agents’ local behaviours. A number of

techniques that support self-organization and emergence have been used to implement autonomic

characteristics. Examples include ant-colony optimization in load balancing (Montresor et al., 2002),

particle swarm optimization in wireless network routing (Kadrovach & Lamont, 2002) and digital

evolution in autonomous robot navigation (Goldsby et al., 2008). RL is considered particularly suitable

for self-optimization in large-scale heterogeneous environments, as it does not require a model of

the environment, which, due to the scale and complexity of such systems, is time-consuming and

complex to construct (Abdulhai et al., 2003; Tesauro, 2007). Additionally, RL is capable of taking

into account the long-term consequences of the actions selected, enabling the system to learn not only

the immediate payoffs of its actions, but also the best actions for the long-term performance of the

system (Tesauro, 2007). RL has already been successfully used in self-organizing autonomic systems

(e.g., for load balancing (Dowling, 2005) and resource allocation (Tesauro et al., 2006)), however, these

implementations focus mostly on a single system policy (or multiple policies expressed using a single

learning process and a single reward signal), while most multi-policy RL techniques have so far been

implemented only on a single agent (e.g., (Cuayahuitl et al., 2006; Humphrys, 1996a)). In this thesis

we argue that, in order to be more widely utilized as a technique for self-optimization of heterogeneous

decentralized autonomic systems, RL needs to be capable of addressing optimization in environments

where both multiple policies and multiple agents coexist simultaneously. Such environments pose

a number of challenges that multi-policy multi-agent technique needs to address. We outline these

challenges in section 1.3.

2

Chapter 1. Introduction

1.2 Policies, Goals, Objectives and Criteria

Before we move onto issues associated with multi-policy optimization in autonomic system, we need

to define the term “policy” as it will be used in this thesis. As autonomic systems need to self-optimize

their behaviour towards high-level goals, a means of expressing those high-level goals is required. This

is achieved by the use of policies (White et al., 2004). In policy-based management, a policy has

been defined as “a representation, in a standard external form, of desired behaviors or constraints on

behavior” (White et al., 2004) or as “a definite goal, course or method of action to guide and determine

present and future decisions” (Westerinen et al., 2001). In this thesis, we adopt a broader, more lax

definition of a policy used in autonomic computing, as defined in (Kephart & Walsh, 2004):

“a policy is any type of formal behavioural guide”.

This definition is sufficient for the purposes of this thesis, as we do not address issues related to policy

specification (Ganek & Corbi, 2003), but focus on balancing multiple goals expressed as policies.

Therefore, a policy is a formal expression of a system goal, while we use the word “goal ” more

informally to denote “an aim or desired result” (Oxford, 2000) of some system’s behaviour.

Examples of policies that we use in the evaluation of DWL in UTC and that satisfy the above

definition are “optimize global vehicle waiting time” and “prioritize public transport vehicles”.

However, as this thesis uses RL on an agent-level to learn how to meet the high-level goals of

autonomic systems, we will also need to refer to an agent’s policy Π as defined in RL (Suton & Barto,

1998), i.e.,

“a mapping from the states to probabilities of selecting each possible action”.

Therefore, the meaning of the word “policy” in this thesis is two-fold, and refers to both a formal

expression of a high-level system goal, and to an agent’s local state-action mappings used to meet

that high-level goal on an agent level, depending on the context.

In Chapter 2, when discussing work related to this thesis, we retain the terminology that the

original work uses and therefore also use terms multi-objective (as used in, e.g., (Angus & Woodward,

2009; Tan et al., 2005)), multi-goal (as used in, e.g., (Cuayahuitl et al., 2006; Gadanho & Hallam, 2001;

Karlsson, 1997)), and multi-criteria optimization (as used in, e.g., (Hiraoka et al., 2008; Natarajan &

Tadepalli, 2005)) to refer to the problem of meeting multiple system goals.

3

1.3. Issues in Multi-Policy Multi-Agent Self-Optimization

1.3 Issues in Multi-Policy Multi-Agent Self-Optimization

In this section we introduce and analyze properties of policies that could be present in autonomic

systems. We also investigate the impact that different policy characteristics and different environ-

ment characteristics can have on agents comprising an autonomic system. Specifically, we discuss

issues of policy and agent heterogeneity, policy and agent dependency, as well as consequences that

heterogeneity and dependency might have on agent collaboration.

1.3.1 Policy Heterogeneity

The policies that large-scale decentralized systems are required to implement can have different char-

acteristics. For example, policies can be deployed on different sets of agents (i.e., have different spatial

scope), can be active at different times (i.e., have different temporal scope), and can have different

levels of importance to the system (i.e., have different priorities). In terms of spatial scope, policies

can be local (deployed on a single agent), regional (deployed on only a subset of the agents in the

system) or global (deployed on all of the agents in the system), as illustrated in Figure 1.1.

������

�����

���	�
��

���
�

���	��������

Fig. 1.1: Policy spatial scope

In terms of their temporal scope policies can be sporadic (i.e., active only at certain times during

the system operation) or continuous (i.e., active during the whole system operation). Their priority can

range from low to high, where the hierarchy of priorities might not be known to agents implementing

the policies, and can change over time. For example, in UTC, a public transport vehicle could be

given a higher priority than usual if it is running behind a schedule and if it is carrying a large number

of passengers.

Additionally, policies can have different relationships to one another even if their characteristics

are otherwise the same. For example, two policies might both be regional, continuous policies of the

4

Chapter 1. Introduction

same priority. However, due to their regional scope, the sets of agents on which they are deployed can

be the same, can overlap, or can be disjoint, as shown in Figure 1.2.

��

�� ��

��

��

��

�����

	
����
����
�

Fig. 1.2: Policy relationships

Heterogeneity of policies and their characteristics leads to heterogeneity of agents while different

policy relationships can lead to different levels of dependency between policies and between agents.

Therefore, multi-policy optimization techniques in multi-agent environments need to not only explicitly

address meeting multiple system policies, but also address the implications of the presence of multiple

policies, namely agent dependency and heterogeneity, as well as policy dependency. We discuss these

implications in the following sections.

1.3.2 Agent Dependency

The performance of an agent in a multi-agent system can be influenced, directly or indirectly, and

both positively and negatively, by other agents’ actions (Rosenschein & Zlotkin, 1994). For example,

in a UTC system, the performance of one junction can be affected by some or all of its upstream

and/or downstream neighbours.

Fig. 1.3: Agent and policy heterogeneity

5

1.3. Issues in Multi-Policy Multi-Agent Self-Optimization

For an example, consider Figure 1.3 which shows several linked junctions controlled by agents. If

the junction controlled by agent A2 is oversaturated, traffic can come to a standstill and queues at

that junction can spill over upstream to block the junction controlled by A3. No traffic will then be

able to go through this junction regardless of the actions of A3, as there will be no space available on

the downstream road. Likewise, the performance of A1, A3, and any agents at other junctions that

feed traffic to A2 can cause oversaturation at A2 if they are letting through more traffic than A2 is

clearing. The dependency can also extend to the agents further upstream from A2, such as A4, as

that agent influences the performance of A3, which in turn influences the performance of A2, causing

a potential dependency between non-neighbouring agents A2 and A4. As a result, there is a potential

dependency between all of the agents in a UTC system. Due to this dependency, agents that control

junctions should, when selecting an action to execute, consider not just their own direct benefit, but

also the influence of that action on other agents, particularly their immediate neighbours.

1.3.3 Agent Heterogeneity

It is particularly difficult for agents to take the needs of other agents into account when agents are

heterogeneous and implement different policies. The first source of heterogeneity is the difference in

the agents’ operating environment and capabilities. For example, in a UTC scenario, intersections

can have different layouts, i.e., the number of incoming and outgoing approaches and the allowed

traffic maneuvers can be different. In RL, this maps to agents having different state spaces and

different action sets, since the combinations of traffic signal settings (i.e., traffic-light phases) available

to agents controlling junctions of different layout differ. This results in agents not having a common

interpretation of the meaning of particular states or actions.

Another source of heterogeneity is a result of different policies being deployed in the system.

For example, agents in a UTC system might be required to optimize global traffic flow, but also to

prioritize emergency vehicles and public transport, or to deal with pedestrian crossing requests. Due

to the different spatial and temporal scope of these policies, agents in the system may be required to

implement different sets of policies at a given point in time. For example, consider again Figure 1.

Agent A2 is required to implement policies p1 and p2, while one of its neighbours, agent A1, is only

implementing p1, and the other neighbouring, agent A3, only p2. The further downstream neighbour

A4, implements only its own local policy p3. Therefore, agents can be heterogeneous both in terms of

their capabilities, and in terms of policies they implement, but they should nevertheless consider the

influence of their actions on their neighbours, regardless of neighbours’ capabilities or policies they

implement.

6

Chapter 1. Introduction

1.3.4 Policy Dependency

Agent dependency and agent heterogeneity, as discussed in previous sections, can cause dependencies

between policies as well. For example, we discussed how in Figure 1 the actions of A3 can influence the

performance of agents A2 and A4. This implies that the implementation of the policy p2 (implemented

by A3) can influence the performance of policies p3 (implemented by A4) and p1 (implemented by

A2). Therefore, when an agent makes an action selection, it should not only consider actions that

are optimal for the implementation of its own policies, but also the effect of those actions not only

on other agents, but also on other policies, particularly on those that its immediate neighbours are

implementing.

1.3.5 Cooperation in Heterogeneous Environments

Due to policy and agent dependency in large-scale agent-based systems, optimal performance of the

system as a whole might not be as simple as optimizing the performance of all entities individually,

but agents might be required to cooperate with each other. Dependencies between agents need to

be properly managed to avoid harmful interactions and account for non-local effects of local agent’s

actions (Sycara, 1998). It has been established that various forms of cooperation between agents are

able to improve the performance of the overall system over performance of independent agents (Tan,

1993; Vlassis, 2007).

However, in order to implement cooperation, a way to motivate an agent to cooperate is needed,

as, in terms of local reward received, it might be better for an agent to act selfishly. This is particularly

challenging if agents implement different policies; we need to motivate an agent to sacrifice its local

reward and sacrifice performance towards its own policies, to help other agents meet their policies. It is

particularly important for an agent to be willing to engage in cooperative behaviour when other agents’

policies have a higher priority for the system than the policies that the local agent is implementing.

Even when agents are motivated to engage in cooperation with their neighbours, we need to address

the issue of how they should cooperate, i.e., what information should agents exchange and how will

that information be interpreted. Heterogeneity of environments and policies makes this particularly

difficult. For example, if agents only exchange their latest rewards (Tan, 1993), a receiving agent

might not know why a sending agent received that reward, for which policy on which agent was it

received, for which particular state, or for which action taken. Heterogeneous agents are not able to

exchange learnt experiences either, as their state spaces and actions differ, so the knowledge acquired

at one agent is not applicable to other agents with different state-action pairs.

Once an agent is motivated to cooperate, and has a means to do so, it needs to determine with

7

1.4. Thesis Aims and Objectives

whom to cooperate. For example, it might need to cooperate only with other agents implementing

the same policies as its local ones, or with all agents regardless of their policies. However, if agents

only have local views they might not be aware of which other agents, if any, are implementing the

same policies as they are. Additionally, agents implementing a low-priority policy might need to help

agents that implement higher-priority policies. Due to the lack of a global view, agents might not know

the relative priorities of their local policies and other agents’ policies. As the levels of dependency

between agents might differ, an agent might only need to collaborate with other agents whose actions it

is influenced by, and agents that are influenced by its local actions. Also, once agents know which other

agents to collaborate with, they need to determine the extent and frequency of that collaboration;

for example, should they always collaborate or only in certain situations, and should they collaborate

fully, honoring all the collaboration requests, or only those that satisfy certain criteria.

1.3.6 Summary

In this section we have analyzed the characteristics of policies that large-scale multi-agent systems

might be required to implement, as well as characteristics of the environment that agents are situated

in. We conclude that, due to the shared policy deployment environment and shared agent operat-

ing environment, techniques for multi-policy multi-agent optimization need to enable collaboration

between policies as well as between agents, as the performance of one policy/agent can affect perfor-

mance of other policies/agents. Due to different policy and environment characteristics, both policies

and agents within the system can be heterogeneous. Therefore, the required collaboration needs to

be enabled not just between homogeneous policies and agents, but between all policies and agents

regardless of policy characteristics or agent capabilities. We expand on these observations in Chapter

3 and Chapter 4 and use them to motivate the design of DWL.

1.4 Thesis Aims and Objectives

The general objective of the thesis is to address the gap in RL-based self-optimization techniques,

whereby existing techniques address either multiple policies on a single agent, or address collaborative

optimization in multi-agent systems, but towards only a single policy. We believe that, if RL-based

techniques are to be fully utilized as self-organizing techniques for optimization in decentralized au-

tonomic systems, they need to be capable of optimizing towards multiple heterogeneous policies on

multiple heterogeneous agents simultaneously. Such an approach could improve the performance of

the overall system towards all of its policies, as policies can learn in each other’s presence and learn

8

Chapter 1. Introduction

the impact that they have one on another, i.e., the dependencies between them. Additionally, such

a technique needs to enable collaboration between heterogeneous agents, as heterogeneous policies of

different scope introduce agent heterogeneity. This thesis argues that RL is a suitable basis for such

a technique, due its ability to learn suitable behaviours without requiring a model of the environ-

ment, and ability to incorporate long-term effects of actions selected into its learning process. This

thesis analyzes requirements for such an RL-based multi-agent multi-policy technique for optimiza-

tion in large-scale heterogeneous environments, presents the design and implementation of a suitable

technique, and evaluates it in the simulation of UTC.

1.5 Distributed W-Learning

This thesis introduces Distributed W-Learning (DWL), an RL-based multi-policy optimization tech-

nique that enables collaboration between heterogeneous agents to meet system-wide policies. DWL

uses W-learning, a technique for multi-policy action selection on a single agent (Humphrys, 1996b).

In W-learning, each policy is implemented as a separate Q-Learning (Watkins & Dayan, 1992) process

with its own state space. Agents learn Q-values (Watkins & Dayan, 1992) for state-action pairs for

each policy and, at every time step, each policy nominates an action based on these Q-values. Using

W-Learning, agents also learn, for each of the states of each of their policies, what happens, in terms of

reward received, if the action nominated by that policy is not obeyed. This is expressed as a W-value

(Humphrys, 1996b).

In DWL, as well as Q-values and W-values for all of their local policies, all agents also learn

Q-values and W-values for all of the policies that their immediate neighbours implement (so-called

remote policies), i.e., they learn how their local actions affect their neighbours’ states. At each time

step, each agent considers the W-values for the current state of each of its local and remote policies, as

shown in Figure 1.4. If any of the immediate neighbours’ policies has a higher W-value than the agent’s

local W-values, the action suggested by that neighbour can be executed. Neighbours’ W-values can be

multiplied by a cooperation coefficient C, to enable a local agent to give a varying degree of importance

to the neighbours’ action suggestions. C can range from a fully non-cooperative value, C=0, where an

agent does not consider neighbours’ suggestions at all, to a fully cooperative, C=1, where neighbours’

suggestions matter as much as local ones. C can be predefined or can be learnt at runtime, so as

to maximize the rewards received on all agent’s local and remote policies. In this way DWL enables

collaboration (by enabling action suggestions by neighbours’ policies) between heterogeneous agents

regardless of the policies that they implement. It is decentralized and self-organizing as it requires

9

1.6. Urban Traffic Control

��������	
�
�

����	
�
�

��������	
�
�

����	
�
�

���

��������	
�
�

����	
�
�

��������	
�
�

����	
�
�

����

����
����������

�����
���

�
��

�����

������

���

������������������� ���� ��������������������� ����

�����

�����

�����

������

������

������

Fig. 1.4: DWL action selection on a single agent

only local actions and interactions with immediate neighbours, and as such is, we believe, suitable for

implementation in large-scale decentralized autonomic systems.

1.6 Urban Traffic Control

We have evaluated the performance of DWL in a simulation of a decentralized autonomic UTC system.

Existing centralized UTC optimization techniques are failing to deal with the pressure of high traffic

loads and new decentralized adaptive learning techniques are being investigated to deal with increasing

traffic congestion and the resulting cost and pollution (Salkham et al., 2008). UTC systems are

large-scale (i.e., consisting of hundreds of traffic lights), highly dynamic (i.e., traffic conditions can

unexpectedly change due to accidents, road closures, traffic light failures), need to operate under

variety of contexts (i.e., peak hour traffic, surge of traffic from/to particular areas due to major events

etc) and are heterogeneous (i.e., traffic lights control junctions of different layouts with different traffic-

control signal settings available to them based on those layouts). We believe UTC systems can be

improved by being implemented as decentralized autonomic systems, with traffic lights, or groups of

traffic lights controlling a single junction, represented as autonomic elements. A traffic light should be

able to observe its environment using sensors (e.g., traffic cameras, inductive loops, GPS information,

and car-to-car and car-to-vehicle communication), analyze the traffic conditions, and learn, select and

execute the most appropriate action (i.e., traffic-signal setting) for the given environmental conditions.

UTC also makes a suitable domain for the evaluation of multi-policy optimization techniques,

as UTC systems need to meet multiple, heterogeneous, and often conflicting, policies during their

operation. For example, UTC systems need to optimize general traffic flow, while also prioritizing

10

Chapter 1. Introduction

public transport and emergency vehicles. These policies are heterogeneous in that they have different

levels of priority (i.e., emergency vehicles have higher priority than private vehicles), different temporal

scope (i.e., they occur with different frequencies, with emergency vehicles being present in the system

less often than private vehicles), and different spatial scope (i.e., they are present in different parts of

the system, with public transport vehicles being present only on certain routes, while private vehicles

are spread throughout the system). However, existing research on decentralized learning techniques

in UTC focuses primarily on improving general traffic flow, without accommodating simultaneous

learning for other policies, such as those required by pedestrians, emergency vehicles, and public

transport vehicles (see Chapter 2 for more details). We believe that implementing UTC systems using

multi-policy multi-agent RL-based technique, i.e., addressing requirements of all traffic participants

simultaneously, can improve the performance and adaptivity of UTC systems.

1.7 Thesis Assumptions

In designing and evaluating DWL, this thesis makes a number of assumptions about the environment

in which DWL is to be deployed. DWL design assumptions limit the scope of the thesis by limiting

the number of issues that DWL addresses, while the evaluation environment assumptions are imposed

by the capabilities and limitations of the UTC simulation testbed used.

In this thesis, agents are assumed to be stationary, i.e., their locations are fixed and they do not

move through the environment. This is the case in our evaluation area, as agents are associated with

traffic lights, which are stationary. Agents are also assumed to be failure-free, and hence issues arising

from agents not being able to contact their neighbours, or agents receiving incomplete or inaccurate

information are not addressed. In the simulations in this thesis, all agents are bootstrapped with

a list of their one-hop neighbours, which remains constant throughout the experiment as agents are

stationary and failure-free. This thesis, therefore, does not address neighbour-discovery mechanisms.

System time on all agents in the system is synchronized, and the agents are assumed to make

decisions simultaneously at fixed time intervals (or multiples of a minimum set interval). This thesis

does not investigate how asynchronous decision making would impact on the design and performance

of DWL.

Rewards received by all of the evaluated policies are assumed to be comparable and reflect their

priority. If the rewards were not comparable, DWL would need to be extended with mechanisms to

scale the received rewards in a manner that reflects their relative priorities.

In the simulations performed in this thesis, the behaviour of traffic lights is determined by the

11

1.8. Thesis Contribution

simulated control mechanism (DWL or the baselines), while the behaviour of cars, i.e., their starting

position, route, and destination, are predefined. A consequence of this characteristic of the simulation

environment is that, if there is no available road space for cars to join the simulation at the junction

specified as their starting position, they are not inserted into the simulation. This behaviour is

discussed further in Chapter 3 and Chapter 6 when discussing evaluation metrics.

1.8 Thesis Contribution

This thesis identifies and motivates the need for an RL-based multi-agent multi-policy self-optimization

technique. It presents the challenges of multi-policy optimization, and based on them proposes the

requirements for such a technique. The main contribution of the thesis is the design, implementation

and evaluation of DWL, an algorithm for multi-policy multi-agent self-optimization in large-scale de-

centralized autonomic systems, that satisfies these requirements. Unlike existing RL-based techniques,

DWL enables simultaneous optimization towards the multiple policies that a system is required to

implement. This is crucial for wider adoption of RL-based techniques for self-optimization in auto-

nomic systems, as most of such systems have multiple performance goals and policies. DWL enables

collaboration between agents regardless of the policies they implement, enabling optimization in het-

erogeneous environments. DWL learns and takes advantage of the dependencies between policies,

to improve their performance, while respecting policy priorities. DWL enables agents to engage in

different levels of collaboration, where that level can be predefined or learnt to maximize the rewards

received by a group of agents engaging in collaboration. Furthermore, DWL requires only local actions

and interactions with immediate agent neighbours, enabling decentralized self-optimization in large-

scale systems without a global view, central control, or predefined environment model. This thesis

evaluates DWL in the simulation of UTC. The evaluation shows that DWL is suitable for application in

UTC, as it outperforms existing UTC techniques. DWL is suitable for collaboration in heterogeneous

multi-policy environments, as collaborative deployments using a predefined value of C can outperform

non-collaborative ones (depending on the value of C), and DWL collaborative deployments that learn

suitable values of C can outperform non-collaborative deployments, as well as outperform, or perform

as well as, deployments with predefined values of C. Addressing multiple policies simultaneously us-

ing DWL improves the overall performance of the system, by either improving the performance of

both policies when compared to their corresponding single-policy deployments, or by having a small

negative effect on one policy to ensure that the performance of the other policy is not neglected. We

also show that, even though it is primarily designed for multi-policy optimization, DWL can also be

12

Chapter 1. Introduction

applied in single-policy systems to improve their performance by enabling collaboration between the

agents.

1.9 Roadmap

The structure of the remainder of the thesis is as follows. Chapter 2 presents background material and

related research in the field. It introduces autonomic computing systems and existing self-organizing

techniques utilized in their implementation. It focuses on RL-based algorithms, providing background

on the techniques and a survey of multi-agent and multi-policy techniques. It introduces our eval-

uation domain, UTC, providing a glossary of the UTC terminology used in the evaluation, as well

as reviews of existing UTC techniques. Chapter 3 presents a case-study on non-collaborative multi-

policy optimization using existing RL-based multi-policy techniques, based on which we have derived

requirements for DWL. Chapter 4 motivates and describes the design of DWL. Chapter 5 presents the

implementation of DWL as an extension of an existing RL-based optimization framework. Chapter

6 describes the evaluation of DWL as a multi-agent multi-policy self-optimization technique in het-

erogeneous large-scale autonomic environments and analyzes the findings. Chapter 7 concludes this

thesis with the summary of the work and outlines the issues that remain open for future work.

13

Chapter 2

Autonomic Computing

"Everything that can be invented has been invented."

- falsely attributed to Charles H. Duell,

United States Patent and Trademark Office Commissioner (1899)

In this chapter we introduce the autonomic computing domain and its characteristics. We focus on

decentralized autonomic systems and some of the techniques used to implement them, in particular

focusing on multi-agent systems and self-organizing algorithms. We discuss reinforcement learning

(RL) in detail, in order to provide the necessary background for understanding Distributed W-Learning

(DWL), the multi-agent multi-policy RL-based optimization algorithm that this thesis proposes, as

well as to position DWL in relation to existing work. Finally, we discuss the use of RL in our evaluation

domain, urban traffic control (UTC).

2.1 Introduction to Autonomic Computing

The management of computing systems is becoming increasingly difficult due to their size, geographic

dispersion, heterogeneity, and inter-connectivity (Kephart & Chess, 2003). To address installation,

configuration, optimization and maintenance of such complex large-scale systems, IBM has proposed

the concept of autonomic computing (Kephart & Chess, 2003). In autonomic systems, the need for

human intervention is removed, as such systems have the capability to self-manage and adapt their

behaviour according to high-level goals, even in dynamic environments (IBM, 2005). The concept

of autonomic computing is modelled on the human autonomic nervous system, which governs body

14

Chapter 2. Autonomic Computing

temperature, breathing, and heart rate, therefore freeing the conscious brain from dealing with those

low-level functions. Analogously, autonomic computing systems only require the specification of high-

level goals from their users and administrators, while the details of how to accomplish those goals are

left to the systems themselves (Kephart, 2005).

The ability of an autonomic system to self-manage is based on several so-called self-* (self-star)

properties: self-optimization, self-configuration, self-healing, and self-protection (Ganek & Corbi,

2003). The property of autonomic systems on which this thesis focuses is self-optimization. Au-

tonomic systems may need to continually self-optimize towards some high-level goals and learn the

optimal behaviours that meet those goals for any given set of operating conditions. Self-configuration

refers to a capability of autonomic systems to configure themselves, including installation and con-

figuration of new components, automatically. Self-healing refers to autonomic systems being able to

detect, diagnose and repair any operating problems, and self-protection to the ability of autonomic sys-

tems to protect themselves from malicious attacks or cascading failures uncorrected by the self-healing

measures (Kephart & Chess, 2003).

Autonomic systems can be controlled in a centralized or decentralized manner. The decentralized

approach is increasingly being utilized due to the large-scale and geographical dispersion of elements of

autonomic systems rendering traditional centralized or hierarchical management arhictectures infea-

sible and intractable (Tesauro et al., 2004). Decentralized autonomic systems are defined as systems

constructed as a group of locally interacting autonomous entities that cooperate to maintain de-

sired system-wide behaviour and properties without central control (Wolf & Holvoet, 2007). Such

autonomous entities are called autonomic elements (IBM, 2005). Autonomic elements consist of a

managed element and an autonomic manager (see Figure 2.1). The autonomic manager has four main

functions: monitor the environment, analyze the current performance of the managed element as well

as the current environmental conditions and predict future system behaviours, plan actions required

to meet the goals given the current conditions, and execute those actions. By performing these actions

in an automated way, an autonomic element forms an intelligent control loop (IBM, 2005).

In the next section we discuss the techniques and algorithms that are used to implement autonomic

elements and to build decentralized autonomic computing systems.

2.2 Engineering Decentralized Autonomic Computing Systems

In order to enable the implementation of self-* behaviours, the autonomic computing field draws on

and extends research and technology from multiple scientific disciplines such as artificial intelligence,

15

2.2. Engineering Decentralized Autonomic Computing Systems

���������	�
���

��
�	����

�
���
� �������

���	��� �	��

���
�

����������

���
�

����	�
���

Fig. 2.1: Autonomic element (IBM, 2005)

distributed systems, network management, fault-tolerant computing, requirements engineering, sta-

tistical modelling, trusted computing and others (Bustard & Sterritt, 2007; McCann & Huebscher,

2004; Sterritt, 2005; Sterritt et al., 2005). In particular, concepts from control theory (Abdelwahed

& Kandasamy, 2007) and multi-agent systems (MAS) (Tesauro et al., 2004) have been used in the

design of autonomic elements and the interaction between them.

Modelling an autonomic manager as a closed control loop is inspired by control theory (Diao et al.,

2005), where a controller observes the performance of the entity that it is controlling and determines

control signals that optimize a given performance criterion (Kirk, 2004). Often, performance needs

to be optimized for multiple criteria, requiring the use of multi-objective optimization techniques.

Traditionally, multi-objective optimization techniques in control theory include vector optimization,

nonlinear multi-objective programming, goal programming, fuzzy multi-objective linear programming,

and evolutionary algorithms (Ehrgott & Gandibleux, 2002).

However, use of control theory relies on the existence of precise and correct models of a system

and accurate estimates of the effects of its operating environment (Abdelwahed & Kandasamy, 2007),

which are complex and time-consuming to develop (Tesauro, 2007). To overcome this difficulty,

techniques and ideas developed in the MAS community, which do not rely on complex models for

their performance, such as self-organization and emergent behaviour, multi-agent learning, and agent

coordination, are being utilized in the engineering of decentralized autonomic systems (Tesauro et al.,

2004).

In the remainder of this section we introduce MAS and outline some of their characteristics so that

we can position our multi-agent approach to multi-policy optimization using DWL. We also discuss

several self-organizing MAS techniques that have been used to implement self-optimization capabilities

16

Chapter 2. Autonomic Computing

and as such can be applied in autonomic computing.

2.2.1 Multi-Agent Systems

A MAS is defined as “a loosely coupled network of agents that interact to solve problems that are

beyond the individual capabilities or knowledge of each agent” (Sycara, 1998), where an agent, the

main building block of a MAS, is defined as “a computational entity that is perceiving and acting

upon its environment, and that is autonomous in that its behaviour, at least partially, depends on

its own experience” (Weiss, 1999). An intelligent agent is such an agent that acts towards pursing its

goals (Weiss, 1999). Additionally, agents can have the capability to learn how to achieve their goals,

i.e., they can be learning agents (Russell & Norvig, 2003). The learning process carried out by an

agent refers to all activities executed with the intention of meeting the particular goal (Sen & Weiss,

1999). As part of this process, agents can learn from other agents, or learn about other agents, if that

information can be used to enable better local decision making (Sen & Weiss, 1999).

Various aspects of MAS have been the subject of extensive research in artificial intelligence, in

particular distributed artificial intelligence (Vlassis, 2007) and game theory (Parsons & Wooldridge,

2002). MAS can differ in a number of characteristics that influence the techniques used to implement

them. Agents can be cooperative (i.e., work towards a common goal) or self-interested (i.e., work only

towards meeting their own individual goals) (Vlassis, 2007). Agents in a MAS can learn independently

or interactively (Sen & Weiss, 1999), and interactive agents can differ in the type of information they

exchange (Tan, 1993). The purpose of interaction could be to ensure locally optimal behaviours

are also globally good (e.g., in (Dowling, 2005)) or to improve the quality or speed of the local

learning process (e.g., in (Tan, 1993)). Information exchanged between learning agents can include

current environment sensations, the result of individual learning episodes, or full learnt experiences

(Tan, 1993). Agents in a MAS can be homogeneous (i.e., identical in their abilities and goals) or

heterogeneous (i.e., have different goals, have different actions available to them, and have different

environment models) (Stone & Veloso, 2000). If agents are heterogeneous with respect to their goals,

those goals can have one of a number of relationships to each other. Goals can be compatible (i.e.,

completion of one does not prevent completion of the other), complementary (i.e., completion of one

contributes towards completion of the other) or conflicting (i.e., completion of one prevents the full

completion of the other) (Weiss, 1999). Goals can also have “side effects”, where those side effects can

be positive (i.e., an agent can unintentionally achieve another agent’s goals) or negative (i.e., an agent,

by meeting its own goal, can prevent other agents from meeting theirs) for other agents (Rosenschein

& Zlotkin, 1994). Moreover, an agent might depend on some other agent to meet its goal, leading to

17

2.2. Engineering Decentralized Autonomic Computing Systems

different levels of dependence between the agents (Wooldridge, 2002). Dependence between agents can

be unilateral (i.e., one agent depends on another for meeting its goal but not vice versa), reciprocal

(i.e., agents depend on one another but not necessarily with respect to the same goal), mutual (i.e.,

agents depend on one another with respect to the same goal), or agents can be independent.

One of the main characteristics of MAS-based techniques in which we are particularly interested

is that they can exhibit self-organizing behaviour, i.e., MAS do not require a central management

component or a global view of the system. All learning, actions and interactions can be performed

locally by the agents, while global behaviour emerges from these actions and interactions. We discuss

the concepts of self-organization and emergence in more detail in the next section.

2.2.2 Emergence and Self-Organization in Multi-Agent Systems

Emergence and self-organization are the phenomena that occur in complex adaptive systems (Flake,

2000) and can be engineered into decentralized MAS and autonomic systems. However, depending on

the literature, their definitions and the distinctions given between them differ. The following does not

aim to provide a new definition of emergence and self-organization, but present working definitions of

both for the purposes of this thesis.

In (Wolf & Holvoet, 2004), emergence and self-organization are rigorously defined as clearly distinct

phenomena, with the authors acknowledging that they frequently occur together, but also arguing

that they can occur separately. The main distinction between this work and others is that here

self-organization is not defined as a result of local agent interactions, but refers to any occurrence

of system behaviour and structure arising without external control. Emergence, however, is defined

as a result of local interactions, as a process where global behaviour or structure arises from local

interactions, and where global behaviour is novel with respect to the individual agents’ behaviours

(Wolf & Holvoet, 2004). In (Serugendo et al., 2003), emergence is used as a part of the description

of self-organizing behaviour, without discussing one occurring without the other. In (Flake, 2000;

Gershenson & Heylighen, 2003), self-organization is defined as a process where global order is created

from local interactions, giving it characteristics associated with emergence in (Wolf & Holvoet, 2004).

(Anthony et al., 2007) distinguishes between different levels of emergence, i.e., first-order and second-

order emergence. First-order emergence refers to the form of emergent behaviour considered in other

literature, while second-order emergence refers to the ability of an emergent system to evolve through

learning.

For the purposes of this thesis, we will refer to self-organization as a property of the system that

allows it to function without external control, and emergence as a property of the system that enables

18

Chapter 2. Autonomic Computing

� ��

� ��

��	
��

���

Fig. 2.2: An ant searching for the shortest path (Dorigo & Di Caro, 1999)

global behaviour to arise from purely local actions and interactions. These definitions are the closest

to the views on self-organization and emergence expressed by (Wolf & Holvoet, 2004). It is important

to note that, defined like this, emergence can be seen as one way for self-organizing behaviour to

arise, but that self-organizing behaviour can also be engineered into the system rather than be a

result of local actions and interactions. This view is shared by Babaoglu et al. (2005), who argue that

autonomic systems can be implemented using self-organization which is a result of emergence, rather

than explicitly programmed behaviours.

In the following sections we review some of the most commonly-used algorithms that exhibit self-

organizing and/or emergent behaviours: ant colony optimization, evolutionary algorithms, particle

swarms and neural networks.

2.2.2.1 Ant Colony Optimization

Ant Colony Optimization (ACO) refers to a family of optimization algorithms inspired by the be-

haviour of ants in an ant colony. When searching for a food source, ants in a colony converge to

moving over the shortest path, among different available paths, when moving between their nest and

the food source (see Figure 2.2).

This behaviour is enabled by stigmergy, a form of indirect communication between ants through

the environment, realized by depositing a substance called a pheromone on the path. Trips over shorter

paths get completed more quickly, causing more trips to be made on those routes and therefore more

pheromone to be deposited on them. Stronger pheromone trails attract more ants, further increasing

the number of ants following the route and increasing the amount of pheromone deposited on it (Dorigo

& Di Caro, 1999; Maniezzo et al., 2004). Figure 2.2 illustrates this process. Ants following route A→

E → F will make a round trip start→ destination→ start quicker than ants following A→ B→ C→ F

route, therefore biasing the path selection of further ants leaving the starting position, by depositing

pheromone on the route more quickly than ants that are taking a longer trip.

19

2.2. Engineering Decentralized Autonomic Computing Systems

In agent-based systems ants are mapped to individual agents searching for the solution to an

optimization problem. Agents leave feedback about the effectiveness of their solution for other agents

similar to a pheromone trail, where the amount of pheromone deposited is proportional to the quality

of the solution.

ACO can also be applied to multi-objective optimization problems (Angus & Woodward, 2009). In

Multi-Objective ACO (MOACO), multiple objectives are assigned different weights, either a priori, or

dynamically during the search, and solutions are constructed using the specified weightings. MOACO

algorithms can use a single colony of ants with a single matrix storing pheromone values, or can

use a separate colony of ants for each objective and update multiple pheromone matrices. A single

pheromone matrix is generally used if the relative weights of the objectives can be specified a priori, as

that weighting is used to combine the quality of the solution towards multiple objectives into a single

pheromone value to be stored. If the relative weights of solutions change dynamically, a separate colony

of ants is assigned to each objective, and separate pheromone matrices are maintained. Information

from the matrices is combined at solution construction time using the objective weightings at that

particular time. If separate ant colonies are used for each objective, each colony will find the optimal

solution for its own objective, leaving compromise solutions undiscovered. To address this issue, “spy”

ants can be introduced (Doerner et al., 2003), that occasionally combine information gathered by all

of the colonies to find trade-off solutions.

The most common applications of ACO today in autonomic systems are primarily in systems that

need to converge towards the shortest (lowest cost) path and have terminating states (i.e., arriving

at the food source). Examples of the use of single-policy ACO include routing in wired (Di Caro &

Dorigo, 1998) and wireless networks (Di Caro et al., 2005), vehicle routing (Hoar et al., 2002), file

sharing (Babaoglu et al., 2002) and load balancing applications (Montresor et al., 2002). Multi-policy

ACO has been applied in vehicle routing to minimize the number of vehicles involved in delivery, total

travel time, and total delivery time (Gambardella et al., 1999; Baran & Schaerer, 2003) and in goods

transportation to minimize the cost of operation of pick up and delivery fleets (Doerner et al., 2003).

ACO implementations are fully distributed, as no central agent dictates or knows the behavior of all

ants, are adaptive to changes (as pheromones fade with time, allowing for new routes to emerge), and

robust against individual agent failures. ACO implementations allow for combining exploitation of

existing paths with new path sampling, i.e., exploration. This ensures that ants do not converge to a

suboptimal path but to the shortest path, and can discover new paths should a shorter one become

available.

20

Chapter 2. Autonomic Computing

2.2.2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) (Eiben & Smith, 2003) are a family of optimization algorithms inspired

by biological evolution. The initial population of solutions is created randomly, and through the

evolutionary processes of selection, crossover and mutation, the most suitable solutions are found

after a number of generations. A fitness function is used to quantify the quality of the solution

against the required optimization objective, and to select high-quality solutions that should pass on

their genetic material to the next generation. Selected solutions crossover to create offspring, which

contains the genetic material of both parents. Additionally, mutations, or random changes to the

genetic material, also occasionally happen, to generate solutions that differ from any other solution

currently present in the population. If the new mutation is beneficial, it will survive through selection

and crossover, otherwise it will die out.

By mimicking the biological evolutionary process, EAs are able to self-adapt, i.e., they can evolve

and tune their own parameters, suggesting their suitability for the implementation of self-organizing

and autonomic systems (Eiben, 2005).

Applications of EAs in such multi-agent systems include robot soccer, where the actions of each

player are optimized using EAs (Lekavy, 2005), large-scale multi-server web services, where an EA are

used to optimize session handling strategies (Eiben, 2005), and traffic control, where EAs are used to

tune the time sequences for traffic signals (Hoar et al., 2002).

EAs are also extensively used in multi-objective optimization (Tan et al., 2005), due to their ability

to find multiple solutions representing multiple trade-off points (Van Veldhuizen & Lamont, 2000) in a

single run (Coello, 1999). EAs make use of a number of approaches to combine multiple objectives to

be optimized. A weighted sum approach combines the objectives into a single function, using weighting

coefficients that reflect the importance of the objectives. A goal programming approach requires a

designer to specify target goals for each of the objectives, and an EA is used to minimize the absolute

deviations from the targets specified. Using the ε-Constraint method, a single objective optimization

is carried out for the most important objective, while other objective functions are considered as

constraints bound by an allowable levels ε (where values of ε specify values of the objective functions

which should not be exceeded) (Coello, 1999).

Evolutionary optimization is also often used in combination with other optimization techniques to

select the most suitable combinations of input parameters. For example, in applications of W-learning

(Humphrys, 1996b) (further discussed in Section 2.3.2.2), EA was used to find optimal combinations

of RL parameters.

21

2.2. Engineering Decentralized Autonomic Computing Systems

� ����

���� ���� ����

Fig. 2.3: Particle swarm optimization (Kennedy & Russell, 2001)

2.2.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Kennedy & Russell, 2001) is a self-organizing optimization

technique inspired by the flocking behaviour of birds. Each particle (a bird) in a swarm (a flock or a

population) represents a potential solution, and moves through the multidimensional problem search

space (possible set of solutions) seeking an optimal solution. Solutions are evaluated against a fitness

function that represents the optimization objective. Particles broadcast their current position (i.e.,

the quality of their current solution) to their neighbours. Each particle then accelerates its movement

towards a function of the best position it has found so far and the best position found by its neighbours

(Blum & Merkle, 2008). For example, consider Figure 2.3, depicting a five-particle PSO population.

During the optimization process, particle 3 receives broadcasts from its neighbours 2 and 4. As particle

2 currently has the best position in 3’s neighbourhood, 3 will accelerate towards a function of its own

previous best position and 2’s current position. As the swarm iterates, the fitness of the solutions

increases, and particles focus on the area of the search space with high-quality solutions. Therefore,

optimal solutions to the optimization problem arise in an emergent self-organizing way, where each

particle only needs to communicate with its neighbours.

The existing applications of PSO-based optimization techniques include self-organizing document

clustering, where PSO has been used to minimize the intra-cluster distances and maximize the distance

between clusters by using swarm particles to represent possible solutions and evaluating them against

a similarity metric (Cui et al., 2005), self-organizing networked sensor systems, where PSO has been

used to optimize connectivity and minimize sensor overlap (Kadrovach & Lamont, 2002) and robotic

learning, where PSO has been used for unsupervised learning of obstacle avoidance (Pugh et al., 2005).

PSO can also be applied to multi-objective optimization problems, by combining all objectives into

a single weighted function (Parsopoulos & Vrahatis, 2002), by using importance ordering of objectives

specified by users, by assigning a population of swarms to each objective and recombining solutions,

or by considering particle’s performance towards multiple objectives when selecting a leader towards

which to accelerate (Reyes-Sierra & Coello, 2006).

22

Chapter 2. Autonomic Computing

����� ������	
���
 ������

Fig. 2.4: Neural network (Weijters & Hoppenbrouwers, 1995)

2.2.2.4 Artificial Neural Networks

Artificial neural networks (ANNs) are adaptive learning systems based on biological neural networks.

They consist of an interconnected group of artificial neurons whose structure changes during the

learning process. An ANN is provided with a set of inputs, which, through a series of hidden layers,

lead to one of the outputs, as shown in Figure 2.4. Each of the circles in Figure 2.4 represents a neuron,

while lines connecting them represent connections with associated weights. During the training phase,

connections between neurons strengthen each time a set of inputs generates a given output. In such

a way, an ANN learns to, based on a given input, select the output that has the highest probability

(connection strength) of being an optimal solution based on experience so far, i.e., it learns how to

map an input vector to an output. Due to the number of connections between neurons and multiple

hidden layers, ANNs can produce complex global behaviours, that emerge from the simple processing

capabilities of neurons and the connections between them.

Examples of ANN application areas include traffic signal control, where traffic conditions are given

as input and traffic signal controller settings were output (Srinivasan et al., 2006) and in the simulation

of autonomous robots, where neural networks were used for trajectory planning by robot manipulators

(Ramdane-Cherif, 2007).

ANNs are also often used in combination with other self-organizing and learning techniques. For

example, ANNs have been used in combination with RL to map RL states to actions (Tesauro, 1999),

or in combination with PSO, where PSO has been used to evolve neural network weights (Kennedy

& Russell, 2001).

23

2.3. Reinforcement Learning

2.2.3 Multi-Agent Systems Summary and Conclusions

In this section we have introduced MAS as an engineering technique for building decentralized au-

tonomic systems. We believe the capability of MAS to self-organize based only on local actions and

interactions make them particularly suitable for the implementation of self-* properties of autonomic

systems. Moreover, the characteristics of an intelligent agent, i.e., its ability to observe and act upon

its environment, map to desired capabilities of an autonomic element, enabling utilization of agent

techniques in the implementation of autonomic elements. After introducing agents and MAS charac-

teristics, we have described some of the most commonly used self-organizing MAS algorithms, e.g.,

ACO, PSO, EAs, and ANNs. Based on the different characteristics of these algorithms, they could

be utilized in implementation of different self-* properties in autonomic systems. For example, ANNs

could be applied in diagnostics problems due to their ability to map vectors of input data (symptoms)

to an output (cause of the problem) and as such can be used in the engineering of self-healing be-

haviours. The ACO family of algorithms is most commonly used in the type of optimization problems

that involve finding the shortest/most optimal path between two points (e.g., routing), while PSO

and EAs are used for problems that require parameter tuning to find optimal their combinations, and

as such could be used for self-optimization.

In the next section we introduce RL, a learning algorithm which, even though it is not self-

organizing in its original form, is widely used in self-organizing multi-agent systems and autonomic

computing.

2.3 Reinforcement Learning

In this section we introduce the basics of reinforcement learning (RL) required for an understanding of

DWL, review existing RL-based algorithms for multi-policy and multi-agent optimization, and present

existing applications of RL in autonomic computing.

2.3.1 Introduction to Reinforcement Learning

RL (Suton & Barto, 1998) is a learning technique based on trial and error that has been researched

and applied in control theory, machine learning and artificial intelligence problems, as well as non-

computer science domains such as psychology. RL is a single-agent, unsupervised learning technique,

whereby an agent learns how to maximize the rewards received for its actions, based on its interaction

with the environment. However, an agent does not only need to learn from immediate rewards, but

also from delayed reinforcements. An agent might need to take a sequence of low-reward actions to

24

Chapter 2. Autonomic Computing

S1 S2
a1

p11, r11

p12, r12

a2p21, r21

p22, r22

Fig. 2.5: State transition diagram (Suton & Barto, 1998)

Agent

Environment

Action at

Reward rt+1

State s t+1

Fig. 2.6: Reinforcement learning process (Suton & Barto, 1998)

reach a state with a high reward value.

Such delayed-reinforcement learning problems are often modelled as Markov Decision Processes

(MDPs). An MDP consists of:

• a set of states S = {s1, s2, ..., sn}

• a set of actions A = {a1, a2, ..., am}

• a reward function R: S x A→ R, where R (st, st+1, at) is the expected numerical value of the

next reward, received after taking an action at in state st, and transitioning to state st+1

• state transition function T : S x A → P, where P (st, st+1, at) is the probability of an agent

transitioning to state st+1 after taking an action at in state st.

For example, consider Figure 2.5, showing a state transition graph for an agent with two states, S =

{s1, s2} and two actions, A = {a1, a2}. The large open circles represent states, and the small solid

circles represent actions. If an agent is in state s1, and executes an action a1, it will stay in state s1

with probability p11 and receive reward r11, or it will transition to state s2, with probability p12 and

receive reward r12. Analogously, if an agent is in state s2, and executes an action a2, it will stay in

state s2 with probability p22 and receive reward r22, or it will transition to state s1, with probability

p21 and receive reward r21.

An RL agent’s interaction with the environment (where environment is modelled as an MDP) is

depicted in Figure 2.6 and consists of the following steps:

• the agent observes the current state of the environment st ∈ S

25

2.3. Reinforcement Learning

• the agent takes an action at ∈ A

• the agent observes the subsequent state st+1 ∈ S

• the agent receives the reward rt+1 for the action at taken in st from the environment based on

the desirability of the next state, st+1. If the reward has a negative value, it is often referred to

as a cost, or penalty.

An agent’s task is to, based on the rewards received, estimate value functions for its state-action pairs.

A value function describes how good it is, in terms of future expected return, for an agent to perform

a given action in a given state. When estimating a value function, an agent does not only take into

account immediate reward, but also takes into account the long-term desirability of the states, taking

into account states that are likely to follow, and the rewards available in those states.

Based on experience (i.e., interaction with the environment as described above), at each time step

an agent updates its policy, Π. Π provides a mapping from each state, s ∈ S, and action, a ∈ A, to the

probability Π(s, a) of taking action a when in state s. The optimal policy is the one that maximizes

the total discounted expected reward of an agent.

There are three major assumptions that must hold in order to enable modelling an environment

as an MDP:

1. The state transitions of an MDP must possess the Markov property. Given that the state of

the MDP at time t is known, transition probabilities to the state at time t + 1 are independent

of all previous states or actions, and depend only on the state and action at t . Therefore, the

current state is assumed to hold all relevant information from past experiences. However, even

if the environment is non-Markov, the use of MDPs is possible if the state space is constructed

so that the Markov property holds as nearly as possible (Suton & Barto, 1998).

2. MDPs assume full environment observability, i.e., the state is known at the time when an action

is to be taken. If this is not the case, the environment can be modelled as a Partially Observable

MDP (POMDP), where at each time step, each state is associated with the probability of the

environment currently being in that state (Kaelbling et al., 1996).

3. MDPs assume that the environment is stationary, i.e., the probabilities of state transitions or

of receiving a specific reward do not change over time. If the environment is slow-changing,

RL algorithms can still be applied as older experiences are discounted when new experiences

are gathered. Non-stationary environments can also be modelled as multiple distinctive MDPs

(Choi et al., 2002), one for each set of environment conditions.

26

Chapter 2. Autonomic Computing

Problems modelled as MDPs can be solved using model-free or model-based RL strategies, where a

model of the environment consists of a state transition function and a reward function (Kaelbling

et al., 1996). Model-free strategies do not require a model of the environment and update the value

function and policy directly based on the experience. Model-based strategies first learn the model of

the environment by exploring the environment and maintaining statistics about the results of each

action, and then use the learnt model to calculate the optimal policy. The applicability of model-

free and model-based strategies depends on the environment characteristics. Model-free approaches

perform better in situations that require complex, potentially multiple, models of the environment

that need to account for a variety of environment conditions (e.g., UTC (Abdulhai et al., 2003)).

Model-based approaches have slower execution times and greater storage costs, as they need to store

a model, but are suitable in situations where acquiring real-world experience is expensive as they can

benefit more from the experience they do acquire (Dowling, 2005).

In this review, we particularly focus on Q-learning, a popular model-free RL algorithm, as it is the

basis of DWL.

2.3.1.1 Q-Learning

Q-learning (Watkins & Dayan, 1992) is a model-free algorithm that learns from delayed reinforcement.

Using Q-learning, an agent learns to associate actions with the expected long-term reward of taking

that action in a particular state, represented by a Q-value. Q-values for state-action pairs, Q(s, a),

are updated using the Formula 2.1:

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′)) (2.1)

where:

• s is the current state, s’ is the possible next state, ai is the current action, and ai’ is the possible

next action

• α is a learning rate, 0 ≤ α ≤ 1, which determines the weight that new experiences have in the

Q-value calculation

• γ is a discount rate, 0 ≤ γ ≤ 1, which determines the rate at which expected future experiences

are discounted in the Q-value calculation

• r is the reward an agent receives for transitioning to, or remaining in, the state s ′.

27

2.3. Reinforcement Learning

Based on Q-values, an agent selects which action to execute in each given state. When selecting an

action, RL-based agents face a trade-off between exploration and exploitation. An agent’s goal is to

maximize its long-term reward, and in order to do that it has to take actions known to yield high

rewards (i.e., exploit current knowledge). However, in order to discover all such actions, it needs

to sample new actions, that potentially might not yield high rewards (i.e., it needs to explore). A

number of action-selection strategies exist that address this problem. Instead of acting in a purely

greedy fashion, i.e., always exploiting to maximize immediate reward (by always selecting an action

with the highest Q-value), agents can use ε-greedy action selection, that selects the action with the

highest reward most of the time, but occasionally, with a small probability ε, selects an action at

random. One drawback of ε-greedy action selection is that, when it explores, it chooses equally

among all actions, therefore also selecting ones that can result in large negative payoffs. Softmax

action selection strategies do not assign the same probability to all actions, but base the probability of

an action being selected on its Q-value, so the actions with higher Q-values have higher probability of

being selected. One of the most common softmax action selection strategies is Boltzmann. Boltzmann

uses a parameter called the temperature (τ) to balance exploration and exploitation; high temperatures

cause all of the actions to be nearly equiprobable, while at τ → 0 selection is mostly exploitative, i.e.,

mostly selecting actions with high payoffs. Generally, at the start of the learning process, temperatures

are high to enable exploration in order to experience all states and actions, while in later stages, when

suitable actions have been identified, the temperature is decreased.

From the elements of Q-learning described here we can observe that the outcome of the learning

process depends on a number of RL elements, such as the state space design, the learning rate, the

discount rate and the action selection strategy. Particular care should be taken when designing the

reward function, as Q-learning aims to maximize the long-term reward received but receiving the

maximum reward might not, in fact, mean meeting the original goal if the state space and reward

model are not designed correctly.

2.3.2 Multi-policy RL

RL, as described in Section 2.3.1, is a single-agent, single-policy learning technique. However, an

agent might be required to simultaneously optimize towards a number of policies. Therefore, multiple

extensions to RL-based techniques have been developed to enable RL to solve single-agent multi-

policy optimization problems. Some of the research described in this section refers to this type of

problem as a multi-agent problem rather than a multi-policy problem, however, in such work multiple

software agents are assumed to control a single set of actuators for which actions must be determined

28

Chapter 2. Autonomic Computing

(Humphrys, 1996b). In our work, each agent has exactly one set of actuators, and each set of actuators

belongs to exactly one agent, and it is the multiple policies present on that agent, or the multiple

goals that an agent has, that are competing for use of the actuators.

The techniques described in this section are not only motivated by the need for agents to optimize

towards multiple goals, but also by the need to decompose large complex goals into multiple simpler

goals, turning a complex single-goal problem into a multi-goal problem (Tham & Prager, 1994).

These multiple goals can be required to be met in sequence, where the completion of one task is

a prerequisite for initiating the completion of another task (Singh, 1992), or can be required to be

completed in parallel. This thesis, and therefore this section, focuses on multiple goals that are to be

implemented in parallel.

We identify two major approaches to dealing with multiple policies in RL: addressing multiple

policies within a single learning process, or using an arbitrated approach where a dedicated learning

process is created for each policy, and an arbitrating agent or an action selection method decides,

based on some criteria, which of those policies should receive control over the actuators at each time

step. We present these approaches in the following two sections.

2.3.2.1 Combined State Spaces

Multiple policies on an agent can be combined into a single learning process, where the state space of

the joint learning process is a cross product of the state spaces of individual policies. Each resulting

state has an associated payoff, which is a combination of payoffs of all the policies. In order to evaluate

each state an agent can have a vector of weights representing the importance of each of its policies

(Barrett & Narayanan, 2008). For example, assume that, in the two-policy case, a state A has an

associated reward of 1 for one of the policies, and a reward of 5 for the other. If the agent’s vector of

weights assigns a weight of 0.6 to the first policy, and of 0.4 to the other, the total payoff an agent

will receive for being in state A is (0.6 × 1) + (0.4 × 5) = 2.6.

Assigning the weight vectors is not trivial as there might not be a clear hierarchy of goals, and

the weights, or the importance of a goal for an agent, can change over time. Gábor et al. (1998)

addresses a problem with fixed goal weights that do not change over time, while Hiraoka et al. (2008)

and Natarajan & Tadepalli (2005) address goals with changing relative weights. Hiraoka et al. (2008)

consider calculating optimal actions for all combinations of policy weights, however this approach is

prone to state explosion. Instead, they use an approximation approach with adaptive error margins,

starting off with a large margin to learn in a smaller state set, and reducing the margin at the later

stages to increase accuracy of the results. In (Natarajan & Tadepalli, 2005), goals’ weights, i.e., their

29

2.3. Reinforcement Learning

relative importance, can change over time. Upon change of a goal’s weight, agents learn the optimal

actions for the current weights, by reusing the best policy learnt so far and adjusting it to current

weights rather than starting from scratch. These approaches assume that the rewards received from

the environment for different goals are comparable and reflect their relative priority. Shelton (2000)

considers the case where rewards are received from multiple incomparable sources, and provides an

algorithm for scaling the rewards so that policies of equal importance get equal weight.

The use of combined state space approaches is feasible when the number of objectives and the size

of their state spaces are relatively small, however for situations with a large number of objectives with

large state spaces this approach can be computationally expensive, policies can take a long time to

converge to optimal results, and the addition of new policies leads to exponential growth of the state

space (Cuayahuitl et al., 2006). As such, for larger and more complex problems, combining state spaces

is not a scalable approach and is of limited use in multi-policy optimization. To address this problem,

a combined state space approach can be utilized in combination with various algorithms used to

reduce the state-space size or number of state-action combinations. For example, one way to improve

the performance and scalability of the combined state space approach is presented in (Cuayahuitl

et al., 2006), where an algorithm is proposed to reduce the state-action space (of 3.3 million state-

action combinations in the authors’ example) in order to achieve more feasible convergence times,

memory requirements, and improved performance. The algorithm eliminates invalid actions per state

and invalid states, as specified by domain-specific constraints. For example, in the dialogue system

considered, all conversation slots needed to be confirmed, apart from slots filled with “yes” or “no”,

limiting the number of actions that can follow unconfirmed slots. However, this approach is limited to

application domains where eliminating an invalid state-action pair will lead to a significant reduction

in search space size. Paquet et al. (2004) also use a state-reduction algorithm, in which, instead of

eliminating invalid state-action combinations, an agent starts off by perceiving only a single state

and learns to split it into multiple states, distinguishing only between the states that need to be

distinguished.

2.3.2.2 Arbitration-based Approaches

In arbitration-based approaches, multiple policies suggest actions to an arbitrator, which selects an

action for execution based on some criteria. Arbitration-based approaches primarily differ in the

way in which a winning action is chosen, and in whether a winning action is nominated by one of

the policies explicitly, or is a compromise action. Some of the early work in this area includes the

subsumption architecture by Brooks (1986, 1991). Multiple goals in a subsumption architecture are

30

Chapter 2. Autonomic Computing

met by separate layers arranged in a hierarchy, where higher layers in the hierarchy always win when

they compete with lower-level ones. In (Gadanho & Hallam, 2001), the strength of a number of so-

called “emotions” (perceptions of the state of the world) currently “felt” is used to decide on behaviour

switching (i.e., to decide which RL process will gain control over the agent). In (Raicevic, 2006), a

gating function is used to assign varying weights to action suggestions by individual policies. Instead

of a single learning process being assigned to each goal/sub-goal, Mariano & Morales (2000) use a

family of independent agents for the implementation of each goal, but similarly, results are reported

to a negotiation mechanism that selects the action to be executed. It attempts to find an action that

satisfies all of the objectives, and failing that, selects a random action from the proposed set.

Some approaches enable a compromise action to be selected, rather than give full control to only

one policy. For example, in (Rosenblatt, 2000), policies calculate utilities for each of the outcome

states; an arbitrator combines those utilities, and selects the action with the highest combined utility.

Similarly, in (Russell & Zimdars, 2003), (Karlsson, 1997) and (Sprague & Ballard, 2003), policies

report Q-values for each of the actions, and arbitrator selects the action with the highest cumulative

Q-value.

The W-learning (Humphrys, 1996b) approach suggests making an action selection based on relative

policy weights, where weights, instead of being predefined or assigned by an arbitrator, are learnt

specific to the particular state in which the policy is currently. Our DWL algorithm is inspired by

this approach, so we cover W-learning in more detail.

W-Learning W-learning (Humphrys, 1996b) is an action-selection technique in which each policy

is implemented as a separate Q-Learning process with its own state space. An agent learns Q-values

for state-action pairs for each policy and, at every time step, each policy nominates an action based on

these Q-values. Using W-Learning, an agent also learns, for each of the states of each of its policies,

what happens, in terms of the reward received, if the action nominated by that policy is not obeyed.

Note that a policy does not need to know what action was actually executed, or which other policy

suggested that action; it only needs to observe the effect of its nominated action not being executed.

We consider this particularly suitable for multi-agent heterogeneous environments, where one agent

might not know what actions are executed by other agents, or might not share the same action sets as

other agents. The effect of one policy’s nominated action being executed can be positive or negative

for other policies. For example, an action nominated by one policy can also be a good action, or

even the optimal action, for another policy, meaning that the policy receives a reward close to what it

would have received if its own nominated action had been executed. However, one policy’s nominated

31

2.3. Reinforcement Learning

action being executed can also have a negative impact on other policies, i.e., other policies might

receive zero or negative rewards after that action’s execution. W-learning captures this effect as a

measure of the weight of the nominated action in that particular state s, called a W-value, W(s).

W-values reflect the importance of the nominated action to the policy. For example, a policy might

be in a state where the next action to be executed holds no importance, or it might be in a state

where it is crucial for the action that it had nominated to be executed. It is important to note that

this weight is not absolute, but is learnt relative to the other policies simultaneously deployed, i.e., to

the actions those policies nominate, and to the particular policy state. For example, the weight can

be low not just because a policy does not care what action is executed next, but also if the policy

learns that the actions suggested by some other policy are as suitable as the action it nominates itself.

Therefore, W(s) for a particular state, can be different depending on the other policy (or policies) that

are deployed on an agent simultaneously and whether those policies are compatible, complimentary

or conflicting. W(s) is updated after an action selection according to Formula 2.2, where ri is the

immediate reward received, s is the current state of the policy, s’ is the next possible state, ai is the

current action, and ai’ is the possible next action for policy i.

Wi(s) = (1− α)Wi(s) + α(Qi(s, ai)− (ri + γmaxQi(s′, a′i))) (2.2)

Action selection based on the W-values is performed as follows. At each learning step, multiple

policies on a single agent nominate their actions, together with associated W-values for their current

states. The winning policy can be selected in several ways based on the nominated W-values. These

methods are divided into individual and group methods. Individual methods select a winning action

so that it satisfies some criteria related to a single policy, for example, the one that can potentially

be worse off than any other policy in the next step, while group methods take into account all of

the policies, for example, select an action that satisfies the largest number of policies. We consider

the “minimize the worst unhappiness” (Humphrys, 1996a) action selection particularly suitable to our

multi-agent multi-policy domain. In this approach, an agent A selects the policy with the highest

nominated individual W-value, or effectively, the policy which is going to suffer a higher loss if its

nominated action is not executed, than any other policy will suffer if A’s nominated action is executed.

This method ensures that performance of all policies is addressed, while group methods satisfy a large

number of policies, but the performance of a small number of policies, which are in conflict with

the others, could be neglected. Neglecting a policy would be particularly detrimental to the agent’s

performance, if the neglected policy is of a higher priory than the policies addressed by the group

method.

In Figure 2.7 we show an example of W-learning action selection. The figure represents an agent

32

Chapter 2. Autonomic Computing

Action A1

Execute
action A1

W=10

policy A

policy B

State A1

Action B1
W=7

State B1

Action A2

Execute
Action B2

W=2
State A2

Action B2
W=11

State B2

policy B

policy A

(a)

(b)

Fig. 2.7: W-Learning action selection (Humphrys, 1996a)

that has two policies, A and B. In state A1, the policy A has a higher W-value than policy B has

in its state B1, so the action suggested by A is executed, i.e., action 1. When A is in state A2, and

policy B in B2, B has a higher W-value, and action B2 is executed.

The relative priority of the policies should be built into the design of the rewards that policies can

receive, i.e., an agent should receive a higher reward for a policy with a higher priority. As rewards

received are used in calculation of a W-value, the size of the rewards is reflected in higher W-values

for higher priority policies, which will therefore have a higher chance of winning the competition at

action-selection time. Note, however, that this does not prevent a lower priority policy from winning

at action-selection time when it is in a state of high importance or when a higher priority policy is in

a low-importance state.

To ensure that all policies get a chance to execute suitable actions and that no policy gets neglected

for extended periods of time, W-values are updated only for policies that did not win at the last action

selection step. After action selection, the W-value of the winner stays the same, while the W-values

of other policies are updated and therefore can potentially increase giving them a chance to catch up

with the winner and win in the next action-selection step. Therefore, W-values are not learnt once

and then remain unchanged, but change during the agent’s operation. Actions nominated by agents

will stay the same, as determined by converged Q-values and action-selection strategy, but at different

times will be nominated with a different strength, based on their relative current importance.

W-learning has been shown to be a suitable approach for multi-policy optimization for a simple

33

2.3. Reinforcement Learning

ant world example, where an ant needs to balance a search for food with avoiding a predator, as well

as in a more complex case of a house robot, which has 8 different policies for which to optimize, e.g.,

clean the house, put out fires, detect strangers.

2.3.2.3 Pareto-Based vs. Non-Pareto Approaches

Multi-objective optimization techniques can be categorized into Pareto-based and non-Pareto ap-

proaches, based on the characteristics of the solution(s) they generate.

In multi-objective optimization, a Pareto-optimal solution is a solution in which no improvements

can be made to one objective without making other objective(s) worse off (Vamplew et al., 2008). For

a multi-objective problem, generally a number of solutions exist (Jin & Sendhoff, 2008). Pareto-based

optimization methods return a set of such solutions, representing different trade-off points between the

solutions (Vamplew et al., 2008). A single solution is selected from the set based on user preferences or

objective weights. Non-Pareto approaches incorporate the user preferences and/or objective weights

into the optimization problem at the start, and return a single solution that is optimal for a given

combination of weights (Jin & Sendhoff, 2008).

The RL approaches discussed in this section use non-Pareto techniques. In a multi-objective

learning process using a single combined state space, the relative priority of objectives is specified

through their rewards, the weight of user preferences can be given by a vector, while the RL solution

aims to maximize the reward given these weights. In action selection problems, in which each separate

learning process suggests an action for execution, an arbitrator selects only a single solution, i.e., an

action for execution, based on some specified criteria, where that criteria can, for example, depend on

relative policy priorities or user preferences.

2.3.3 Multi-Agent RL

In the previous section, we discussed RL-based systems for optimization towards multiple goals (poli-

cies) on a single agent. This section covers the optimization of the behaviours of multiple agents, that

are cooperating in order to meet some global system goal. Note that we do not consider the case of

competing agents as such systems are outside the scope of this thesis. We do not aim to provide a

comprehensive overview of RL in multi-agent systems, but review a few representative examples that

would allow us to discuss issues related to our research into multi-agent multi-policy RL. For a more

comprehensive overview of multi-agent systems and multi-agent learning, please refer to (Busoniu

et al., 2005) and (Vlassis, 2007).

In single-agent RL, an agent learns the actions with the highest payoffs for each of its states. In the

34

Chapter 2. Autonomic Computing

multi-agent case, a global state is a combination of all local states, and a global action is a combination

of all local actions, leading to exponential growth of the state-action space (Guestrin et al., 2002). In

order to determine jointly optimal actions without explicitly considering all possible combinations of

local actions, a number of approaches have been proposed to break down the global problem into a

group of local optimization problems. These approaches can be divided into two groups: those where

each agent acts independently towards optimizing its local performance and ignores the presence of

other agents, so called independent learners (IL), and approaches where agents cooperate with other

agents, most commonly their immediate neighbours, in order to ensure that locally good actions are

also globally good, so called joint action learners (JAL) (Vlassis, 2007).

IL approaches using RL are not justified theoretically, as the underlying assumption of a Q-learning

environment being stationary does not hold, due to the influence of other agents in the system (Vlassis,

2007). However, experiments show that the IL approach still has practical use (Tan, 1993; Claus &

Boutilier, 1998), although it achieves poorer performance when compared to communicating agents

(Tan, 1993; Schneider et al., 1999), as communication is often required to ensure locally-good actions

are also good for the system globally (Claus & Boutilier, 1998; Dowling & Haridi, 2008). As we also

believe that cooperation is required to manage agent dependencies, as discussed in Chapter 1, in this

review we discuss only JAL-based approaches.

Multi-agent RL techniques can also be categorized based on the observability of the environment in

which they are applied, i.e., problems they aim to solve can be modelled as either MDPs or POMDPs.

We primarily focus on techniques using MDPs (Sections 2.3.3.1, 2.3.3.2, and 2.3.3.3), as in our work

presented in this thesis we assume full observability, however we also briefly introduce POMDP-based

systems as an example of alternative approaches that can be used in partially observable environments

(in Section 2.3.3.4).

2.3.3.1 Collaborative Reinforcement Learning

Collaborative Reinforcement Learning (CRL) (Dowling, 2005) enables global system optimization

based on cooperation between RL agents. Each agent has its own state space, action space, value

function, and only a local view of the environment, while an estimate of the global view of the system

is achieved by agents periodically exchanging their value functions. Global optimization of system

behaviour arises from optimizing the process of solving smaller tasks introduced locally, represented

as Discrete Optimization Problems (DOPs). DOPs are defined as “the selection of minimal cost

alternatives from among a finite set of feasible solutions, as defined by an objective function” (Dowling

et al., 2006) and are modelled on agents as absorbing MDPs, i.e., MDPs that will enter a terminal

35

2.3. Reinforcement Learning

Fig. 2.8: Collaborative reinforcement learning (Dowling, 2005)

state after a finite amount of time. DOPs can be introduced in the system on any of the agents,

and an agent needs to minimize the cost of solving them by either making an action towards solving

it locally, or delegating it to one of its neighbours to solve or delegate further. Delegation incurs

the cost of transferring the DOP as well as the cost of estimating whether any of the neighbours

can solve it at a lower cost or can find another agent that can do so. Agents periodically advertise

their estimated costs of solving DOPs to their neighbours, as this information can change dynamically

during system operation (if agents are, for example, solving other DOPs). This process is depicted

in Figure 2.8. Each agent executes its own RL process, i.e., performs actions in the environment and

receives rewards for those actions, which it uses to update its value function, i.e., learn the solution

to a problem. Periodically, that solution is advertised to its neighbours.

CRL is suited for multi-agent optimization problems where agents delegate actions to each other in

order to solve a goal. For example, CRL has been successfully applied in simulations of load balancing

(Dowling, 2005) and ad-hoc network routing (Dowling et al., 2006), where agents can delegate jobs for

processing or packets for delivery to their neighbours. We discuss these application further in Sections

2.3.4.2 and 2.3.4.3, respectively, as examples of applications of RL in autonomic computing.

2.3.3.2 Coordination Graphs

Coordination graphs are used to coordinate the actions of multiple agents cooperating to control a

single large MDP. The action space of the MDP is a joint action space of the entire set of agents,

and grows exponentially with an increase in the number of agents in the system. To reduce the

number of combinations that need to be taken into account when computing a joint action, Guestrin

et al. (2001, 2002) propose factoring the problem space into smaller more manageable tasks using

coordination graphs. They argue that any given agent does not need to coordinate its actions with

36

Chapter 2. Autonomic Computing

A1

A2 A3

A4

A1

A2 A3

A4

f1(A1,A2,A3)

f2(A1,A2)

f4(A3,A4)

f3(A1,A3,A4) f1(A1,A2) f2(A1,A3)

f3(A3,A4)

(a) agent-based decomposition (b) edge-based decomposition

Fig. 2.9: Coordination graphs (Guestrin et al., 2001, 2002; Kok et al., 2005)

all of the other agents, but only with a small number of the agents in its proximity. To facilitate this,

a global value function is approximated as a linear combination of local value functions, where each

of the local value functions addresses only a small part of the system controlled by a small number

of agents. Using these local value functions, an agent coordinates its action with its neighbours,

which in turn coordinate their actions with their neighbours and so on, in order to optimize the

behaviour towards a global function. A global MDP is represented as a coordination graph, where

agents need to coordinate only with the neighbours with which they are connected in the graph.

Local value functions can be modelled on a single agent and the set of its one-hop neighbours (so

called agent-based decomposition (Guestrin et al., 2001, 2002)), or on two agents connected by an

edge (edge-based decomposition (Kok et al., 2005)). The two approaches are depicted in Figure 2.9(a)

and Figure 2.9(b), that show a graph consisting of four agents with three edges connecting them. In

agent-based decomposition, the global function is broken down into four local functions, f1, f2, f3, f4,

one per agent, while in edge-based decomposition, it consists of three functions, one per edge, f1, f2,

and f3. In agent-based decomposition, as presented in (Guestrin et al., 2001, 2002), it is assumed

that dependencies between nodes (i.e., graph connections) are known up-front, while Kok et al. (2005)

in their edge-based approach provide a means for dependencies to be learnt and reinforced during

problem solving.

Coordination graphs with agent-based decomposition have been successfully applied in a simulation

of a load-balancing application (Guestrin et al., 2002). The test system consists of a number of

interconnected machines, whose status can be good, faulty or dead, and can change stochastically.

The presence of a dead machine increases the probability that its neighbours will become faulty and

37

2.3. Reinforcement Learning

die. A machine in any state can perform a reboot action that results in the machine’s status switching

to good, however the current job executing on that machine is lost. The goal of the system is to

maximize the number of jobs completed in the system. Therefore, each machine needs to coordinate

with its neighbours, whose number of jobs completed could be influenced by the machine switching

to a status of dead, but also needs to complete its local jobs.

Coordination graphs with edge-based decomposition have been successfully applied in a distributed

sensor network problem (Kok & Vlassis, 2006). A number of sensors need to coordinate in order to

“hit” the targets. The target is hit if at least three sensors are focused on it. Each focus action has an

associated cost, however hitting a target has an associated high reward. If more than three sensors

focus on a target, the target is still hit, but only three sensors receive a reward. Therefore, sensors

need to coordinate with their neighbours in order to maximize the rewards received by hitting a target,

but minimize the cost incurred by focus actions that do not result in hitting the target.

2.3.3.3 Distributed Value Functions

Schneider et al. (1999) propose an approach to implementing distributed RL on multiple agents by

using shared value functions. Each agent learns its local value function based on its individual actions

and rewards received, but it also incorporates the value functions of its neighbours into the local value

function updates. In order to do this, each agent needs to have a weight function specifying how much

the value functions of other agents contribute to its value function, with the weight of non-neighbours’

value functions being zero. In such a way, each agent learns a value function that is an estimate of

a weighted sum of its own expected rewards and those of its neighbours (whose value function is in

turn a weighted sum of their own and that of their neighbours and so on), and can therefore select

actions that are good not just locally but also for the other agents in the system. The distributed

value function approach has been successfully applied in a simulation of power grid management,

where it was used to coordinate the performance of a number of interconnected power distributors

(that are also connected to a number of providers and a number of customers), in order to maximize

the rewards received by providing the desired level of service to their customers.

2.3.3.4 POMDP-based Approaches

In the work covered in previous sections, agents’ environments are represented as MDPs, however in

the case where agents might only have partial, noisy, or probabilistic observations of their state space

and limited communication with their neighbours, the environment can be modelled as a POMDP.

Examples of such approaches are presented in (Goldman & Zilberstein, 2003, 2004), (Peshkin et al.,

38

Chapter 2. Autonomic Computing

2000), and (Yagan & Tham, 2007). Solving POMDP-based problems requires a different set of learning

techniques than those used to solve MDPs. While MDPs are in general solved using value-search

techniques (i.e., methods based on learning the value function, such as Q-learning), policy-search

techniques, which learn optimal policies without learning a value function (Baird & Moore, 1999), are

considered more suitable for solving POMDPs (Peshkin et al., 2000). In the work presented in this

thesis we assume that agents have full observability of the environment, while the potential application

of our proposed approach in partially observable environments is a subject for future work.

2.3.3.5 Learning to Cooperate

In the previous section we have presented a number of cooperative multi-agent systems, however, in

most of those systems agents cooperate with a fixed set of neighbours (e.g., one-hop neighbours in a

graph, as presented in 2.3.3.2), where those neighbours’ inputs have a fixed weight (e.g., as determined

by a weight function, as presented in 2.3.3.3). A much smaller body of work is concerned with agents

in multi-agent systems learning with which other agents to cooperate, and in which situations. We

present such work in this section.

Kok et al. (2005) extend the coordination-graph approach discussed in Section 2.3.3.2 to learn

the dependencies between the agents, i.e., the strengths of the graph connections, rather than using

predefined ones. The dependency graph (i.e., coordination graph) starts off with either no edges, or

random edges, and based on the outcome of the cooperation (joint action decisions made) those edges

either get weaker and disappear or grow stronger.

In (Melo & Veloso, 2009), agents do not learn whom to cooperate with, but when (i.e., in which

states) to cooperate. This work considers only a two-agent case, but nevertheless proposes an inter-

esting approach to learning when to cooperate with other agents. For each agent’s state, a fictitious

action “coordinate” is added. If this action is selected, an agent senses the other agent’s state and

bases its local action decision on the combination of the other agent’s state and its own state, rather

than only on its own local state. The Q-learning process proceeds as usual and learns Q-values for

all of the state-action pairs, where one of the actions executed can be “coordinate” with the other

agent. In this way, an agent learns in which states is it useful to coordinate with the other agent.

For example, Melo & Veloso (2009) test this approach using two robots that need to coordinate their

behaviour whilst attempting to pass through a narrow doorway. Agents learn that that coordination

action is mostly appropriate when they are positioned in the vicinity of a doorway, as that is when

they need to make sure not to collide with the other agent that is also trying to pass through the

doorway.

39

2.3. Reinforcement Learning

Neither (Kok et al., 2005) or (Melo & Veloso, 2009) consider agents implementing multiple heteroge-

neous policies, and therefore do not investigate the potential impact of agent and policy heterogeneity

on when and with whom to cooperate.

2.3.4 Reinforcement Learning in Autonomic Computing

RL is increasingly being used for the implementation of self-adaptive behaviour in autonomic systems.

RL’s ability to learn optimal behaviours without requiring domain knowledge (i.e., without requiring a

model of the system or the environment) is removing the need to develop accurate models of autonomic

systems, which is often a complex and time consuming task (Tesauro, 2007). Additionally, MDP-based

RL is based on an underlying sequential decision theory that includes the possibility of a current

decision having delayed consequences in the future, and is therefore able to account for the dynamic

behaviour of autonomic environments (Tesauro et al., 2004). In this section we describe several

applications of RL in autonomic computing systems, specifically in autonomic resource allocation,

load balancing, ad-hoc network routing, and autonomic network repair.

2.3.4.1 Online Resource Allocation

RL algorithms have been applied for online resource allocation in a distributed prototype data centre in

(Das et al., 2005; Tesauro, 2005; Tesauro et al., 2005). The system consists of a number of application

environments where applications are deployed, and a resource arbiter, whose task is to dynamically

assign resources to applications. The goal of a resource arbiter is to maximize the sum of resource

utilities, i.e., maximize the long-term expected value of the allocation of a number of servers to given

application(s). Each application has its own utility function that expresses the value that a particular

application brings to the data center by delivering services to its customers at a particular service

level, i.e., the value of being assigned a given number of servers. This work discusses a number of

challenges faced when applying RL in complex distributed systems, e.g., state-space representation,

which is potentially required to incorporate a large number of variables in order to accurately describe

the system state, the duration of training time RL requires in live systems, and a lack of convergence

guarantees in distributed RL. However, empirical results in a distributed prototype data centre show

feasible training times, and the quality of the solution is comparable to solutions obtained using

complex queue-theoretic system performance models that require detailed understanding of system

design and user behaviour.

40

Chapter 2. Autonomic Computing

2.3.4.2 Load Balancing

CRL, a multi-agent collaborative RL technique discussed in 2.3.3.1, has been applied for load balancing

in a simulation of a decentralized file storage system (Dowling, 2005; Dowling & Haridi, 2008). The

system consists of ≈50 agents and several server agents, whose storage capacity is ten-fold that of

other agents. The goal of the system is to store all inserted loads in as short a time as possible. Loads

are entered into the system through the agent at position 0. Each agent has actions available to it

that allows it to store the load itself, or forward it to one of the 10 neighbours to which each agent

has a connection. Unsuccessful store actions result in an agent receiving a high negative reward, and

successful ones a reward that is a function of the storage space available on an agent. The system was

able to successfully store all loads 15 times faster than a random policy, was able to self-adapt to the

addition of a new server in the system, and self-heal when connections between agents were broken.

2.3.4.3 Routing in Ad-Hoc Networks

CRL (as described in 2.3.3.1) has also been used to implement autonomic properties in ad-hoc network

routing (Dowling et al., 2006). The network consists of a number of fixed and mobile agents whose

goal is to optimize system routing performance. Each agent can deliver a packet to its destination (and

receive a reward), deliver it to an existing neighbour (at an associated cost), or perform a discovery

action to find a new neighbour (at an associated cost). The goal of each agent is to minimize the cost,

i.e., either deliver a packet or forward it to the lowest cost neighbour. In order to do this, each agent

learns and maintains a statistical model of its network links to estimate the cost of a given route, and

exchanges the information on route costs with its neighbours. Using this approach agents learn to

favour stable routes (consisting of fixed nodes) and re-route the traffic around congested areas of the

network.

2.3.4.4 Autonomic Network Repair

In (Littman et al., 2004), RL has been used to learn how to efficiently restore network connectivity

after a failure. A single agent, called a decision maker, is charged with repairing the network. An

agent can perform a number of test actions, used to narrow down the source of a fault, and a number

of repair actions, used to repair the fault. Each action is associated with a cost (time required for its

execution), and the decision maker’s goal is to minimize the cost of restoring the system to proper

functioning. It is assumed that the decision maker does not have a complete set of information about

faults, and therefore the learning problem is modelled as a POMDP. This approach was implemented

in a live network, with a separate program injecting faults, and a decision maker successfully learnt

41

2.3. Reinforcement Learning

to attempt cheaper repair actions first.

2.3.4.5 Grid Scheduling

(Perez et al., 2008) use a combination of RL and ANNs to enable autonomic job scheduling on a

resource grid. Users submit processing jobs to the grid, and a grid scheduler, implemented as an RL

agent, is charged with selecting jobs for execution. The goal of the scheduler is to maximize user

satisfaction (which decreases as a function of time that it takes to complete the job) and fairness

(which is expressed as the difference between actual resources allocated and an externally-defined

resource share that should be given to that user). A number of common issues with RL needed to be

addressed in this work, i.e., the algorithm was initially trained offline, to overcome bad performance

of RL during the training phase, and its convergence is only checked empirically, due to lack of

theoretical guarantees. The approach is simulated using real traces of an existing grid workload

with 100 processors and 5000 user jobs, over a period of 7 days. In the authors’ simulation, after

poor initial performance due to the exploration period has been overcome, this approach consistently

outperformed the job scheduler currently used in the live system.

2.3.4.6 Summary of RL Applications in Autonomic Computing

In this section we have reviewed some of the existing applications of RL in autonomic computing.

Applications range from single-agent single-policy problems (Section 2.3.4.4), cooperative multi-agent

single explicit policy problems (Sections 2.3.4.2 and 2.3.4.3) to centralized or single-agent multi-policy

problems (Sections 2.3.4.1 and 2.3.4.5), however, we are not aware of any existing decentralized coop-

erative multi-agent multi-policy applications. Applications presented encounter a number of common

problems that arise in RL-based optimization, namely long training periods and poor performance

during the same, no theoretical guarantees of convergence in multi-agent cases, and the problem of

designing a feasible state-space representation in decentralized problems due to the large number of

variables that influence the environment state. Nevertheless, all of the above applications show promis-

ing results in outperforming, or at least matching the performance of, existing model-based approaches

that are time-consuming and require extensive knowledge of system structure to construct.

2.3.5 RL Summary and Conclusions

In this section we have introduced RL and the basic RL concepts required for an understanding of

DWL. We have reviewed existing multi-policy RL optimization approaches, existing multi-agent RL

optimization approaches, and applications of RL in autonomic systems.

42

Chapter 2. Autonomic Computing

RL-based techniques have been shown to be suitable for use in autonomic systems due to their

ability to learn desired behaviours without requiring domain knowledge. However, for their wider

application in autonomic systems, we believe RL techniques need to be able to be simultaneously

implemented on a number of cooperative heterogeneous agents comprising an autonomic system,

as well as be able to simultaneously address multiple, potentially conflicting, policies with different

characteristics that autonomic systems might be required to implement.

Existing techniques, as summarized in Table 2.1, either address multi-policies on a single agent,

or are multi-agent techniques but optimize only towards a single explicit system goal.

If we were to apply one of the multi-policy techniques in a multi-agent environment, there would

be a number of issues that remain open. For example, we could address policies simultaneously on a

single agent using W-learning or combined state spaces, however we do not have a means to take into

account the performance of policies implemented on other agents, how other agents’ policies affect the

local agent, or how the local agent’s actions affect other agents and their policies.

Similarly, if we were to use the reviewed multi-agent optimization techniques in multi-policy en-

vironments, e.g., CRL or coordination graphs, we would lack the means to combine multiple policies

on those agents into a single optimization problem.

If we combined the existing multi-policy and multi-agent techniques, e.g., implemented one of

the multi-agent algorithms globally and one of the multi-policy algorithms locally, we believe that

heterogeneity of policies and heterogeneity of agents that implement them would give rise to a number

of additional issues not present in either multi-agent or multi-policy cases individually. For example,

we would need to decide if an agent should collaborate only with other agents that implement the

same policies or with all agents in the system, should we, and how, make agents aware of each other’s

policies, and how will the priority of multiple policies be maintained if agents implementing lower

priority policies are not aware of a higher priority policy being deployed on other agents.

Therefore, we believe that an algorithm that simultaneously addresses learning and optimiza-

tion towards multiple-policies in multi-agent systems should draw on techniques from multi-policy

optimization (e.g., it needs to balance the action preferences of multiple policies), techniques from

multi-agent optimization (e.g., it needs to ensure that actions executed locally by an agent do not

negatively affect another agent, or the system as a whole), as well as address additional issues that

arise in multi-agent multi-policy environments.

To provide a basis for our research into such an algorithm we first evaluate several existing multi-

policy RL-based optimization techniques on independent agents in Chapter 3, and based on the

observations we design and present our proposed optimization algorithm, DWL, in Chapter 4. With

43

2.4. Urban Traffic Control

RL single-policy multi-policy
single-agent e.g., Q-learning e.g., combined state spaces,

arbitration-based approaches
multi-agent non-collab e.g., ILs in (Tan, 1993) and (Claus

& Boutilier, 1998)
W-learning and combined state
spaces case study (Chapter 3)

multi-agent collab e.g., CRL, distributed value
function, coordination graphs

DWL (Chapter 4)

Table 2.1: RL optimization techniques summary

this we complete the Table 2.1, providing a case study on use of ILs in multi-agent multi-policy

scenario, and an algorithm for collaborative multi-agent multi-policy optimization, DWL.

2.4 Urban Traffic Control

In this section we present UTC, the application domain in which we have evaluated DWL. As we

already argued in Chapter 1, we believe decentralized agent-based UTC is a suitable application area

for DWL, as it consists of multiple heterogeneous agents (i.e., junctions with different layouts and

traffic light settings) and needs to optimize towards multiple policies (i.e., address different vehicle

types). Furthermore, there are potential dependencies present between agents and between policies,

due to a shared operating environment (i.e., road network).

In the remainder of this section we first provide the UTC-related background necessary for a

discussion of UTC techniques. We then review existing UTC approaches, and the latest research

into agent-based optimization in UTC in order to position DWL’s potential application in UTC

optimization.

2.4.1 Glossary of UTC Terms

We first provide a glossary of terms that are frequently used in UTC and are necessary for an under-

standing of the UTC domain and UTC optimization techniques discussed in this section, as well as

for an understanding of our simulation environment and evaluation scenarios presented later in this

thesis.

Definitions in this section were taken from (Papageorgiou et al., 2003) unless otherwise stated.

• A junction (intersection) consists of a collection of approaches and a crossing area.

• An approach consists of one or more lanes with the same traffic direction.

44

Chapter 2. Autonomic Computing

phase length

cycle time

Phase 1 Phase 2 Phase 3

Fig. 2.10: Phases, phase length, signal cycle, and cycle time (Papageorgiou et al., 2003)

• A signal cycle is one repetition of the basic series of signal combinations at an intersection. The

duration of a signal cycle is called the cycle time.

• A stage (phase) is a part of the signal cycle, during which one set of compatible streams of traffic

have right of way. The duration of a phase is called the phase length. Figure 2.10 shows an

example of a cycle that consists of three phases, and shows phase length as a part of the cycle

time.

• A phase scheme (staging) refers to grouping of signal lights into phases and determining the

order in which the corresponding phases will be deployed (Richter, 2006).

• A split is the relative duration of green time of a phase as a proportion of the cycle time.

• An offset is a phase difference between cycles for neighbouring intersections, that may give rise

to a green wave.

• Delay is defined as the amount of time that is added to a journey time due to a vehicle being

stopped at traffic lights (Pierre-Luc Gregoire & Chaib-draa, 2007).

• Traffic density is defined as the number of vehicles present on a road segment of a given length,

and is expressed in vehicles per kilometer (veh/km). Density can also be expressed in percentage

terms, as a ratio of vehicles present on a given road segment versus maximum number of vehicles

that the road segment can accommodate.

• Traffic volume (flow, throughput) is defined as the number of vehicles crossing a given location

during some time period, and is expressed in vehicles per hour (veh/hr).

• Traffic demand is defined as the number of cars that want to enter the road network at a given

point in time or over a certain period of time (Richter, 2006).

45

2.4. Urban Traffic Control

• Saturation flow rate is the maximum number of vehicles from an approach that would pass

through an intersection in one hour under current traffic conditions if that approach were given

a continuous green signal for that hour (Kutz, 2003). A related measure is the degree of saturation

(DS), defined as a ratio of the effectively used green time to the total green time given (Lowrie,

1982), and calculated as

DS = [available green− unused green]/available green (2.3)

In the next section we review currently-deployed UTC systems and explain how they adapt traffic

control parameters to optimize delay and throughput.

2.4.2 Commercial UTC Systems

In this section we review the currently most-widely deployed UTC systems, namely fixed-time plans,

SCATS and SCOOT (Chowdhury & Sadek, 2003). We also review RHODES, a real-time traffic

control system, which is not yet commercially available, but is currently undergoing field trials and is

predicted to outperform current deployments of SCATS and SCOOT (Chowdhury & Sadek, 2003).

2.4.2.1 Fixed-Time Plans

The most basic UTC systems deploy fixed-time plans, where signal settings are fixed in that green

periods and offsets do not vary from cycle to cycle. A set of phases, their order, and their length is

preselected, and the traffic-light controller cycles through them in a round robin-like manner. Fixed

time plans were originally designed manually by traffic engineers and in later deployments assisted

by programs such as TRANSYT (Robertson & Bretherton, 1991), and are based on historical traffic

data on a given intersection (Papageorgiou et al., 2003). Such UTC systems usually consist of several

different fixed time plans designed for morning peak, midday, afternoon peak, and evening/nighttime

conditions. In addition, special plans may be produced, for example for reoccurring major music or

sporting events. The major disadvantages of fixed-time plans are that they are rarely kept up to date

due to the complexity and duration of the design process for new plans and that they are not able to

deal well with random fluctuations in traffic patterns (Robertson & Bretherton, 1991).

2.4.2.2 SCATS

SCATS (Sydney Coordinated Adaptive Traffic System) (Lowrie, 1982) was developed in the late

1970s by the Roads and Traffic Authority of New South Wales in Australia (Traffic Authority of New

South Wales Australia, 2009) and is currently deployed in over 80 cities around the world, including

46

Chapter 2. Autonomic Computing

Dublin, Sydney and Hong Kong. SCATS obtains traffic counts and the distance between vehicles

from traffic loops at lane stop lines and adjusts the cycle time and phase duration based on the degree

of saturation at the approaches of a junction. SCATS aims to keep the junction saturation as close

to a target percentage as possible, by shortening or lengthening the phase duration (Richter, 2006).

Signals are grouped into subsystems, within which one critical junction decides on the sub-system’s

parameters. e.g., the cycle time and offset (Fellendort, 1997). Even though SCATS provides online

adaptation in terms of the duration of a cycle and its phases, it still requires manual design of regional

groups and selection of phases. Also, as SCATS is designed to equalize the saturation of conflicting

approaches on a junction, it can fail to minimize delays on major roads (Chowdhury & Sadek, 2003).

2.4.2.3 SCOOT

SCOOT (Split Cycle Offset Optimization Technique) (Peek Traffic Limited, Siemens Traffic Controls,

TRL Limited, 2009) has been developed in the early 1970s by the Transport and Road Research Labo-

ratory in the United Kingdom, and is under continuous development with Siemens Traffic Control and

Peek Traffic as industrial partners. SCOOT is currently deployed in over 200 cities worldwide includ-

ing Cork, London, Madrid, Beijing and Toronto. SCOOT uses vehicle detectors positioned between

100 and 300 meters upstream from the stop line to count vehicles in the queue and anticipate traffic

flows. Controllers communicate this information to a central computer that returns new signal timings

by increasing or decreasing the offset or cycle time (McGuire & O’Keeffe, 2003). A disadvantage of

SCOOT is that its traffic prediction models might not be accurate in traffic conditions where queues

extend beyond the upstream detectors, i.e., oversaturated conditions (Abdulhai & Pringle, 2003).

2.4.2.4 RHODES

RHODES (Real Time Hierarchical Optimized Distributed Effective System) (Mirchandani & Head,

2001) was developed in the late 1990s by the University of Arizona. It uses a peer-to-peer communi-

cations approach to communicate traffic volumes from one intersection to another in real-time, based

on counts obtained from both upstream and stop-line detectors. It recalculates phase timings every

five seconds to take into account the most recent information based on three levels of estimation gran-

ularity - vehicles per hour, vehicle platoons, and individual vehicles (Mirchandani & Head, 2001). In

the initial field trials, RHODES has been shown to outperform manually optimized plans, however,

it is thought that currently its main applicability is limited to under-saturated traffic conditions and

main traffic arteries (Curtis, 2003).

47

2.4. Urban Traffic Control

2.4.2.5 Selected Vehicle Priority

Existing UTC systems incorporate the possibility of giving priority at an intersections to certain

vehicle types. In order of priority, from high to low, the vehicle types that need to be given priority

are: emergency vehicles, trams/trolleys (i.e., vehicles constrained in their movement by tracks or

overhead wires), and buses (S Jones & Fox, 1998).

Selected vehicle priority can be incorporated in UTC systems using so-called interventionist and

non-interventionist strategies (S Jones & Fox, 1998). Non-interventionist strategies simply give more

predefined green time to routes that, based on historical data, have a higher average flow of priority

vehicles. Such strategies are generally applied within fixed-time plans, due to their inability to dynam-

ically adapt when vehicles that should be prioritized are approaching. Interventionist strategies use

green light extensions and recalls (i.e., either extend the green time to accommodate a priority vehicle

or prematurely terminate a red signal), and stage skipping (i.e., violating the usual sequence of phases

at the intersection by skipping to the phase that serves the vehicle that should be prioritized). SCATS

and SCOOT use such interventionist strategies to incorporate public transport priority (S Jones &

Fox, 1998), while RHODES provides an additional option of assigning public vehicles different levels

of priority, where the priority increases with higher passenger numbers and when vehicles are behind

schedule (Pitu et al., 2000).

Public-transport vehicle priority is generally not absolute, i.e., the impact of its prioritization on

general congestion is evaluated, and vehicles are given priority only if the prediction of the resulting

congestion is within set thresholds. On the other hand, emergency vehicles need to be given absolute

priority, which is generally realized through use of green-waves, i.e., by setting the signal to green at

all the intersections through which a vehicle is due to travel, at times that the vehicle is expected to

reach them. The green wave can be triggered manually by a push button at the origin (e.g., a fire

station) or by a vehicle detector at exit from the fire station (S Jones & Fox, 1998). This approach

could be enhanced by the use of vehicle detectors along the route, in order to use the current vehicle

position to readjust vehicle’s estimated time of arrival at a particular location.

From the techniques currently used for selected vehicle priority as described above, we conclude

that incorporating such vehicle priority into a UTC system is far from trivial. It requires a means of

detecting vehicles that should be prioritized, deciding on the level of priority they should be given,

evaluating the impact that prioritizing the vehicle could have on remaining traffic, evaluating the best

approach to give priority to the vehicle (e.g., green wave, extension, recall, stage skipping), executing

the signal change, and potentially compensating for the resulting congestion after the priority has been

given (S Jones & Fox, 1998). Therefore, we believe selected vehicle priority needs to be integrated into

48

Chapter 2. Autonomic Computing

the design and development of a UTC system. However, as we will see in Section 2.4.3, this is often

not the case, as the majority of RL-based UTC techniques currently address only personal vehicles

and concentrate only on addressing overall traffic congestion.

2.4.2.6 Summary

Even though adaptive UTC systems (e.g., SCATS and SCOOT) show significant improvements when

compared to fixed-time approaches, we believe that there is potential for further improvement in

UTC through the application of decentralized agent-based learning techniques. Current adaptive

systems require manual pre-configuration and phase selection (staging). Using learning techniques,

UTC systems could learn the most suitable phases from a full set of possible phases, rather than only

adapt the duration of phases in a pregiven set.

Both vehicle priority and general traffic flow could be additionally improved by learning the impact

of one vehicle type on another by addressing all vehicle types simultaneously. For example, improve-

ments could be obtained by clearing the bus or emergency vehicle routes prior to a vehicle arriving at

a junction, and by learning to apply phases that serve the approach with the priority vehicle together

with other non-conflicting approaches with the highest congestion. Additional improvements in the

response time of controllers could result from the full decentralization of traffic light control.

In the next section we describe current research on decentralized agent-based UTC systems and

the self-organizing learning algorithms used to implement them.

2.4.3 Agent-based Decentralized UTC Systems

Agent-based approaches to the management of UTC systems use a number of different self-organizing

algorithms, e.g., RL, EAs, and ACO. We review examples of these implementations in this section

with particular focus on RL-based techniques.

2.4.3.1 Reinforcement Learning

RL algorithms have been widely applied in the optimization of UTC systems (Abdulhai et al., 2003).

Various RL-based approaches to UTC differ in whether the agents on which RL is deployed collaborate

with each other or not, whether the reward that the agents obtain is calculated locally or globally, and

on the scale at which the approaches were evaluated. Additionally, they can be categorized based on

whether it is cars that implement learning agents (car-centric approach) or traffic lights (traffic-light

(TL)-centric approach) or both.

49

2.4. Urban Traffic Control

Abdulhai et al. (2003) use a Q-learning agent to control a traffic light controller in order to minimize

delay on a single, isolated junction. The state space encodes information about the queue length on

all junction approaches, and the actions available to an agent enable it to either continue with the

current phase or switch to the next one. Reward is inversely proportional to vehicle delay on all of

the junction’s approaches. Even though it is a very simple scenario and does not address any of the

issues associated with the presence of multiple policies or multiple agents in the system, this work

nevertheless contributes to assessing the suitability of RL to conditions in a UTC domain. Under

uniformly distributed traffic conditions, this approach performs on a par with an existing pre-timed

controller, while under variable traffic conditions it performs significantly better, due to its ability to

learn behaviours suitable to varying traffic circumstances.

Camponogara & Kraus (2003) also use a TL-centric approach to UTC optimization, and implement

Q-learning on two non-communicating junctions. The state space encodes information about queue

lengths, actions are represented as TL phases, and the reward is inversely proportional to the number

of vehicles waiting at an intersection. Simulations were performed with either just one or both of

the junctions being controlled by an RL-agent. Not surprisingly, the largest improvements in vehicle

waiting time were gained when both junctions implemented an RL process. This work shows that

UTC can benefit from RL-based optimization even when junctions are modelled as independent agents

and ignore the presence of other agents. However, this approach might not be suitable if policies on

junctions are conflicting and we therefore believe that further improvements can be obtained by

enabling cooperation between junctions.

In (Wiering et al., 2004a,b), both car-centric and TL-centric approaches were combined to minimize

the average waiting time for vehicles. At each TL stop, cars estimate their waiting times for their

total trip until they reach the destination (calculating estimates for both red and green lights at each

intersection), and communicate this information to TLs. Based on this information, TLs, controlled

by RL agents, learn to set the green signal for the TL configuration that minimizes the total estimated

car waiting time. TL agents do not communicate with each other but base their decisions only on

local information received from cars waiting on their approaches. This technique was evaluated on

a relatively large scale, using 15 junctions, where it outperformed hand-designed algorithms used as

baselines. However, we believe that, due to a lack of collaboration between agents, this approach might

not be able to adequately address scenarios where dependencies between agents exist, particularly in

the presence of multiple heterogeneous conflicting policies.

Even though it is primarily concerned with highway vehicle flow rather than UTC, we mention the

work presented in (Pendrith, 2000) as an example of a car-centric approach to traffic flow optimization.

50

Chapter 2. Autonomic Computing

Each vehicle implements RL locally with the goal to optimize a global metric, i.e., optimize highway

utilization. Each agent is assumed to be able to observe vehicles in 8 positions surrounding it (ahead

left, ahead current, ahead right, clear left, clear right, behind left, behind current, behind right) and

based on that information learn whether to stay in the current lane or change to the lane immediately

left or immediately right of its current lane. We do not believe this approach is directly applicable to

UTC, as in UTC scenarios the lane that the vehicle is in is often determined by its destination, i.e.,

desired direction at the next intersection.

Most closely related to our approach to UTC optimization using DWL is work by Richter (2006)

and Salkham et al. (2008), due to their use of collaborative multi-agent RL optimization techniques.

Richter (2006) use the natural-actor critic RL algorithm (Peters et al., 2005) to optimize average

vehicle travel time. Each intersection’s environment is modelled as an MDP and each intersection

implements an RL process to solve that MDP which receives a reward based on the number of vehicles

it allows to proceed. TL agents communicate with their immediate neighbours, in order to use

neighbours’ traffic counts to anticipate their own traffic flows. The algorithm was evaluated for a

number of different traffic patterns and on a large-scale involving up to 100 junctions, where it showed

improvements over the simple saturation balancing algorithm SAT, which is based on SCATS (see

Section 2.4.2). In a large-scale simulation, this approach required 3 days of real world experience to

achieve performance equivalent to SAT.

Salkham et al. (2008) use a technique based on CRL (see Section 2.3.3.1) to implement a traffic-

control technique called Adaptive Round Robin (ARR-CRL). On each agent, ARR cycles through

phases available to a junction, and it either skips the phase or sets it with one out of a set of predefined

durations, based on congestion levels on the approaches served by that phase. An agent is rewarded

proportionally to the number of cars that pass through an intersection during the phase, and inversely

proportional to the number of cars still waiting at an intersection. Agents periodically exchange

information on their performance (their accumulated rewards) with their immediate neighbours and

incorporate the information received from neighbours into their own reward. Agents, therefore, receive

rewards for the good performance of their neighbours, ensuring cooperation between them. ARR-CRL

was evaluated in large-scale (60+ agents) simulations and shows significant improvements over a simple

saturation balancing algorithm based on SCATS (see Section 2.4.2) and fixed-time controllers.

Neither (Richter, 2006) nor (Salkham et al., 2008) address different vehicle types, but only aim to

optimize general traffic flow. The collaboration approach in (Richter, 2006), where agents exchange

their traffic flow information with their neighbours, could be utilized in multi-policy approaches to

inform neighbouring junctions of a higher-priority vehicle approaching them. However, we do not

51

2.4. Urban Traffic Control

consider the overall approach suitable due to long training times required for large-scale applications.

The collaboration approach in (Salkham et al., 2008) consists of exchanging rewards, and therefore

we believe is not suitable to multi-policy optimization, at least not in its current form. In a multi-

policy approach, exchanged rewards would need to be associated with information such as policies

that neighbours’ are optimizing for and their relative priorities.

2.4.3.2 Other Agent-Based Approaches

In the previous section we have reviewed RL-based approaches to UTC optimization. In this section

we review examples of other self-organizing algorithms applied in UTC, specifically EAs and ACO.

EAs are commonly used in UTC in combination with other techniques, where they are utilized

to find the optimal combinations of a set of parameters. For example, in (Mikami & Kakazu, 1994)

and (Yang et al., 2005), RL is deployed locally on individual traffic light agents, but globally EAs

are used to find optimal combinations of parameters for the local RL processes. In (Prothmann

et al., 2008), EAs are used in combination with Learning Classifier Systems (LCS) (Bull, 2004).

EAs evolve traffic light parameters for a specific traffic situation and evaluate them in an offline

simulation. Determined parameters are, together with corresponding traffic conditions, stored in the

LCS’s rule-base. Based on observed traffic conditions, a traffic light selects one of the pre-determined

sets of parameters from the rule-set. In (Bazzan, 2005), evolutionary game theory is used to model

individual traffic controllers as agents that are capable of sensing their local environment and learning

optimal parameters for continually changing traffic patterns. Agents receive both local reinforcement

from their local detectors, and global reinforcement based on global traffic conditions. For example, if

the majority of traffic travels westbound, agents receive higher payoffs for giving longer green signals

to that direction. However, in this approach global matrices of payoffs need to be specified by the

designer of the system for each set of traffic conditions (Bazzan, 2009), and as such require domain

knowledge to construct.

ACO algorithms can be used in UTC when optimization is car-centric, i.e., to provide routing

information to vehicles rather than to control traffic signals. For example, Hoar et al. (2002) combine

car-centric ACO-based optimization with EA-based TL-centric optimization. Vehicles act indepen-

dently to reach their destination and deposit information about their route in the form of a pheromone

equivalent for potential use by other cars. In addition, each car that is stopped at a traffic light casts

a vote on their status that is transmitted to that traffic light. Traffic lights then use EAs to, based

on the votes received, adapt phase timing and sequence to improve the overall waiting time.

52

Chapter 2. Autonomic Computing

2.4.3.3 Vehicle Priority in Agent-Based UTC Systems

All of the approaches to multi-agent optimization in UTC reviewed above are concerned only with

a single traffic policy of optimizing global traffic flow, by maximizing the throughput or minimizing

travel/waiting time. There is significantly less research implementing multi-agent approaches to opti-

mization towards other possible goals of a traffic management system, such as prioritizing emergency

vehicles or public transport vehicles. We review such research in this section.

Oliveira & Duarte (2005) incorporate emergency vehicle priority into their traffic simulation. Each

traffic light agent observes its local traffic conditions and, if an emergency vehicle is observed, sets the

signal on the lane on which the vehicle is present to green. Additionally, an agent can communicate this

event to downstream junctions, to inform them of the possibility of an emergency vehicle approaching.

Even though this approach incorporates optimization for multiple vehicle types simultaneously, the

prioritization of emergency vehicles is rule-based rather than based on learning. We believe this

approach has the potential for further improvement by learning the most suitable phase setting for an

approaching emergency vehicle, based on its previous experiences of routes that emergency vehicles

take. Using this method, the relevance of the information sent to the downstream junctions can also

be improved, as only the junction that is on the ambulance route need be informed, rather than all

of the downstream junctions.

Febbraro et al. (2004) use Petri nets (Murata, 1989) to model each junction in a simulation of

a UTC system, representing vehicle flows entering the junction, leaving the junction, and a traffic

light controller. The TL control system consists of a local controller and a priority controller on

each junction, and a global supervisor. Each local controller aims to minimize the traffic queues

and equalize queue lengths across a junction’s approaches. When an emergency vehicle enters the

system, it notifies the global controller, which calculates the shortest path (in terms of waiting time)

for an emergency vehicle to take. It then notifies all of the local junction controllers on the path of

the time at which an emergency vehicle is estimated to reach them. Based on this information, the

local priority controller can either extend the current green signal or shorten future red signals, to

ensure an approach with an emergency vehicle receives a green light. Bus priority is implemented

only by local priority controllers once they detect the bus on a junction’s approach, and does not

involve the global controller. The authors evaluate this approach in terms of emergency-vehicle and

public-transport-vehicle waiting time, which show improvements over fixed-time controllers, however

they do not evaluate the impact of such priority implementation on the remaining traffic, i.e., do

not evaluate the impact of policy dependency. Traffic light controllers act independently and do not

cooperate with their neighbours, therefore not accounting for potential agent dependencies either.

53

2.5. Summary and Conclusion

2.4.3.4 Summary

RL-based approaches to decentralized UTC management show significant improvements when com-

pared to hand designed fixed-time controllers and simple adaptive techniques based on the systems

currently in use. However, the existing approaches learn appropriate actions only for a single traffic

policy (optimizing global flow) and either do not take into account other policies at all, or address

them using rule-based priority systems, without addressing the impact that such priority has on the

remaining traffic.

We believe that there is potential for further improvement in the performance of policies by ad-

dressing all vehicle types and policies simultaneously. Due to the shared road network, there are

potential dependencies between different policies, i.e., between the performance of different vehicle

types, and addressing only one at a time can have a negative impact on all policies deployed. The

impact of agent-based optimization towards one policy on another needs to be investigated, as what

are thought to be optimal actions for one policy in isolation, might not be optimal actions for that

policy once other policies are simultaneously deployed.

Therefore, we believe that the implementation of UTC systems using DWL could improve their

performance as it enables them to simultaneously optimize for multiple policies, and to learn and

address dependencies between different vehicle types and between junctions, in order to improve the

performance of all vehicle types and of the overall system.

2.5 Summary and Conclusion

This chapter introduced autonomic computing, focusing in particular on decentralized autonomic

systems. We have argued that self-organizing multi-agent systems are a suitable technique for the

engineering of such decentralized autonomic systems. We have focused on the engineering of self-

optimizing behaviour in these systems, using self-organizing techniques such as ACO, EA and in

particular RL. We argued that RL is particularly suitable for the implementation of decentralized

autonomic systems, and have reviewed a number of RL techniques currently used in multi-agent

and autonomic systems. We concluded that the techniques reviewed enable either self-optimization

towards multiple policies on a single agent, or self-optimization of multi-agent systems towards only

a single policy, identifying a gap for a multi-agent multi-policy RL-based optimization technique.

Later in this thesis we propose such a self-optimization technique, DWL. In this chapter we have also

introduced UTC, the domain in which we evaluate DWL. We have reviewed currently deployed UTC

systems, as well as RL-based techniques for UTC optimization, concluding that UTC can benefit

54

Chapter 2. Autonomic Computing

from a DWL-style optimization approach, which addresses multiple traffic policies and vehicle types

simultaneously.

55

Chapter 3

Non-Collaborative Multi-Policy

Optimization in Autonomic System

“Before software should be reusable, it should be usable.”

– Ralph Johnson

In the previous chapter we presented a review of the existing multi-policy single-agent RL-based

optimization techniques. In this chapter we present a case study in which we evaluate some of

these techniques in a multi-agent scenario, in order to identify a suitable basis for designing a multi-

policy multi-agent optimization technique. We implement multi-policy techniques simultaneously on

multiple agents, to observe how they behave in multi-agent scenarios, and identify requirements for

a collaborative multi-policy technique. Note, in particular, that the experiments presented in this

chapter are implemented on independent non-communicating agents (i.e., independent learners), as

existing techniques provide only for single-agent implementations. We first present our simulation

environment, which is also used for the evaluation of DWL in later chapters. We then describe the

policies and deployment scenarios we have evaluated in this case study, present the results, and draw

the conclusions which motivate the design of DWL1.

1Parts of the case study presented in this chapter have been published in (Dusparic & Cahill, 2009c) and (Dusparic
& Cahill, 2009d)

56

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

3.1 Case Study Objectives

The case study presented in this chapter was designed to assess the suitability of existing multi-

policy RL-based techniques for optimization in multi-agent autonomic systems and their potential to

serve as the basis of a multi-policy multi-agent optimization technique. In order to do so, we have

implemented and evaluated several single and multi-policy UTC scenarios. We use currently deployed

UTC techniques as baselines for assessing the suitability of multi-policy RL-based approaches for

optimization in UTC. We use single-policy scenarios to evaluate the impact that policies targeted at

one vehicle type have on other vehicle types, as well as to serve as baselines for the evaluation of

multi-policy scenarios.

As policy heterogeneity is a central issue, for the initial evaluation we selected two policies that

differ in all three of our policy classification criteria: priority, temporal scope, and spatial scope. The

single-policy scenarios we implemented are as follows:

1. Global Waiting Time Only (GWO) - a policy that aims to optimize waiting time for all the

vehicles in the system.

• Spatial scope: global (it addresses all of the vehicles in the system, and therefore is imple-

mented by all of the junctions in the system).

• Temporal scope: continuous (it is active for the entire duration of system operation, as

there are vehicles always present in the system).

• Priority: standard (it treats all vehicles with the same standard priority).

2. Emergency Vehicles Only (EVO) - a policy that aims to prioritize emergency vehicles only.

• Spatial scope: regional (implemented only by the junctions through which an emergency

vehicle travels).

• Temporal scope: sporadic (active only when an emergency vehicle is present in the system).

• Priority: high (emergency vehicles need to be given a priority over other vehicles in the

system).

We combined the policies above using two single-agent multi-policy techniques to implement the

following multi-policy scenarios:

1. Combined state space (GWEV-c), where GWO and EVO are combined into a single learning

process over a single state space.

57

3.2. UTC Simulation Platform

2. W-Learning (GWEV-w), where GWO and EVO learn the best actions separately as two separate

Q-learning processes, but W-learning is used to determine which action is to be executed.

We have selected the multi-policy scenarios above to represent the two main types of approaches

in which RL-based methods address multiple policies: combined learning and arbitration-based ap-

proaches (see Chapter 2). We implemented a combined state space approach as it enables the precise

description of the state space in terms of both vehicle types that both policies are addressing, and

aims to learn the most suitable action for all possible combinations of individual policy states. We

implemented an arbitration-based approach, as, even though it is less precise in terms of state space

description for a combination of policies, it is expected to be less computationally expensive and more

scalable. In particular, we selected W-learning as, unlike most other arbitration-based approaches

discussed in Chapter 2, it does not use the absolute priority of policies in order to select an action for

execution, but enables policies to learn their own importance specific to the particular state and to

the other policies deployed simultaneously. Also, W-learning implementations have an option of either

selecting a compromise action to be executed, or giving control to a single policy. Giving control over

action selection to a single policy is of crucial importance when one of the policies has a high prior-

ity, as executing a compromise action might lead to meeting the requirements of several low-priority

policies instead of the policy with the highest priority.

3.2 UTC Simulation Platform

For the evaluation of the scenarios described in the previous section, and for the evaluation of DWL

as described later in this thesis, we use an urban traffic simulator developed in Trinity College Dublin

(Reynolds, Cahill, & Senart, 2006). The simulator uses a microscopic traffic simulation approach (i.e.,

it simulates vehicles on an individual level), and can simulate traffic over any road network defined by

a map described in a specific XML format. The simulator can distinguish between multiple vehicle

types, such as cars, public transport vehicles, and emergency vehicles. Vehicles implement different

behaviors based on their type. Emergency vehicles are capable of driving above the allowed speed

limit, as well as driving through red lights if it is safe to do so. Public transport vehicles (buses) are

larger in size and stop at designated bus stops.

The map we used for the initial experiments presented in this chapter is shown in Figure 3.1. The

map is based on road layout details provided by Dublin City Council and corresponds to one of the

highest profile areas of Dublin’s road network, O’Connell Street (Dublin’s main street) and several side

roads that feed traffic onto this road. Using a map based on real road network provides a more realistic

58

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

Fig. 3.1: Experiment map in Dublin UTC simulator

simulation; many of the simulations used for the evaluation of multi-agent systems in UTC covered in

Chapter 2 use either a single junction, or multiple junctions and road links that have similar layouts,

while the map that we use includes junctions of various layouts (e.g., junctions with two, three, and

four approaches and exits), roads of differing width (e.g., roads with two, three, and four lanes), as

well as one-way and two-way roads. The map covers 8 junctions, 5 of which are signalized junctions

(junctions A, B, D, E and F in Figure 3.1) and are controlled by the agents described in the following

section. Each agent has a set of available phases, generated based on intersection layout and allowed

traffic directions. Each phase is mapped to an action that the agent is able to execute. This leads to

RL-based agents having different action sets. For example, due to differences in road layout, the size

of the action set for junction D (which has three approaches and two exits) is 3, while the size of the

action set for junction F (which has four approaches and three exits) is 9.

3.3 Policies and Agent Implementation

In this section we describe the design of agents that implement our policies as well as the design of

agents that simulate the performance of existing UTC optimization techniques, which we have used

as a basis for comparison.

59

3.3. Policies and Agent Implementation

3.3.1 Baselines

As baselines for the evaluation of performance of RL agents we have used a round robin controller

and a controller implementing a simple adaptive technique.

Round robin Round Robin (RR) junction controller, at each junction, continuously cycles through

all of the available phases at that junction, setting them for a fixed duration in a fixed order.

SAT Simple adaptive technique (SAT) is a simple SCATS-like traffic-responsive UTC technique, as

defined by Richter (Richter, 2006), that adjusts phase duration based on the degree of saturation at

a junction. The degree of saturation is defined as a ratio of the effectively used green time to the

total available green time. At each junction, SAT, in a similar manner to SCATS, aims to keep the

junction saturation as close to 90% as possible, by shortening or lengthening the phase duration. A

SAT implementation depends on three parameters: the minimum duration of each phase, the phase

increment (the length by which a phase duration can increase or decrease in a single step), and a

maximum cycle length factor (the maximum duration of a cycle is determined by multiplying the

number of phases at a particular junction by the minimum phase duration and a cycle length factor).

3.3.2 Single-Policy deployments

The single-policy deployments we have implemented are global, continuous, standard priority policy

GWO, and regional, sporadic, high priority policy EVO. We present their implementation details

below.

GWO - Optimizing global waiting time The first policy we implemented, optimizing Global

Waiting Time Only (GWO), optimizes waiting time for all vehicles in the whole system. Since global

waiting time is a sum of waiting times for all cars at all junctions in the system, and we assume no

collaboration between agents, we aim to minimize the waiting times at each individual junction.

Each agent is capable of sensing the number of vehicles at each of its approaches, and maps that

to a state space that orders approaches according to their level of congestion. For example, on a

junction with two approaches, a1 and a2, a state can be “Congestion order: a1, a2”, meaning that

approach a1 has more traffic waiting than a2, or “Congestion order: a2, a1”, meaning that approach

a2 has more traffic waiting than a1. The state space does not encode how many vehicles are waiting

at which approach as the numbers are relative to overall congestion in the system (e.g., knowing that

there are 9 vehicles waiting at an approach would not tell us whether that is a high or low number

60

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

relative to the current traffic conditions). It also contains information about whether the total number

of vehicles waiting at the junction is more or less than at the previous phase change (e.g., a state can

be “Congestion order: a1, a2, less vehicles than before” or “Congestion order: a1, a2, more vehicles

than before”). Note that arrival rates are uniform in this set of experiments, so a change in the

number of vehicles waiting is caused by an agent’s action, rather than a drop in demand, and as such

is a reflection on an agent’s performance. We designed the state space in this manner to facilitate

rewarding an agent (100 points in this set of experiments) for being in a state with less traffic waiting

than at the previous decision point, i.e., to motivate it to execute actions that clear more traffic than

arrives at the junction during the action execution. Agents receive no reward for being in a state where

there are more vehicles waiting at an approach than at the previous time step. This enables agents

to learn how to reduce the number of vehicles waiting at the junction’s approaches, thus reducing

global waiting time for the system. Note that, since junctions have different layouts, the size of the

state space designed in the way described depends on the number of approaches, and is calculated as

NumberOfApproaches! × 2 (The factorial of the number of approaches allows for all combinations

of congestion order that approaches can be in, and is multiplied by two to allow for each state to be

split into a “less vehicles than before” and “more vehicles than before” states).

EVO - Prioritizing emergency vehicles The other single policy that we implemented minimizes

waiting times for Emergency Vehicles Only (EVO). An agent’s state space encodes information about

which approach(es), if any, have emergency vehicles present on them (e.g. “Ambulance present on a1”).

The size of the state space depends on the layout of junction, i.e., on the number of approaches on the

junction. Emergency vehicles can be present on all of the approaches, on none of the approaches, on

only one approach at a time, or on various combinations of two or three approaches at a time. Agents

are rewarded (200 points in this set of experiments) for being in a state where there is no emergency

vehicle present at any of the approaches. This motivates the agents to, as soon as possible, return

to the state with no emergency vehicle present, by enabling emergency vehicles to travel through the

junction. This policy does not address any other vehicle types and only takes emergency vehicles into

account when making action decisions.

3.3.3 Non-Collaborative Multi-Policy Deployments

The multi-policy deployments we have implemented are GWEV-c and GWEV-w, which combine

GWO and EVO using combined state spaces and W-learning, respectively. We present the details of

these deployments below.

61

3.3. Policies and Agent Implementation

GWEV-c: Merging RL processes One way to combine multiple policies on a single agent is to

encode all the information relevant for all the policies into a single state space and a single learning

process. We use this approach to combine GWO and EVO into a single policy, GWEV-combined

(GWEV-c). The state space of GWEV-c consists of the cross product of the state spaces for GWO

and EVO. Therefore, the size of the state space is a product of the sizes of the state spaces for

individual policies leading to a quite large state space (e.g., for four-approach junction, the size of the

GWO state space is 32, and for EVO it is 15, so the size of GWEV-c state space is 32 ×15 =465).

An agent receives a reward of 100 points for being in any of the states with less traffic than in the

previous phases (i.e., states for which GWO receives a reward), a 200-points reward for any of the

states with no emergency vehicles present (i.e., states for which EVO receives a reward), and the sum

of both rewards for being in a state that satisfies both criteria. We acknowledge that the size of the

state space in GWEV-c is not only large for the policies we are evaluating in this scenario, but also,

as the number of policies to be combined increases, will not be scalable due to state-space explosion,

however, our purpose was to compare its performance to other techniques in order to provide insight

into how to deal with multiple policies.

GWEV-w: W-learning In the other multi-policy deployment that we implemented, GWEV-w,

both policies are addressed using W-learning action selection (see Chapter 2). GWO and EVO are

first deployed separately, to learn Q-values, and then deployed simultaneously to learn W-values. At

every time step, on each agent, both policies nominate an action, based on their Q-values, together

with an associated W-value for the states in which they are currently. The action proposed by the

policy with the higher W-value is executed. In our experiments, since EVO is a sporadic policy, we

deem it inactive when there are no emergency vehicles present, and set the weight of the action that

the EVO policy nominates in such a state to zero. As W-learning is deployed on top of existing

single-policy approaches, there is no increase in state-space size for the policies in GWEV-w, but the

duration of the learning process is increased, as after Q-values are learnt, W-learning requires learning

of W-values as well.

3.3.4 Implementation Remarks

A major distinction between the performances of RR, SAT, and our RL-based approaches is the way

in which they adapt to the traffic demand. RR does not provide any adaptivity and cycles through

the same set of phases of the same duration regardless of the demand. SAT also cycles through the

same set of phases in all traffic conditions, but can shorten or lengthen the duration of each phase to

62

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

respond to the demand. In our RL-based approach, agents start the exploration process with a full

set of phases that are possible based on the intersection layout and allowed traffic maneuvers. During

the learning phase, an agent learns the most suitable phases to set for each state, based on traffic

demand and direction, so only a smaller subset of those phases is used in the exploitation phase. This

approach ensures that the best phases are selected from the full available set and removes the need for

manually selecting the phase set at design time by traffic engineers, as required by currently deployed

UTC systems.

The design of state spaces and reward models for both single- and multi-policy scenarios have been

influenced by the decentralization of the system, lack of global view or control, and the decision to

implement non-communicating agents in this set of experiments. Therefore, agents can measure only

their own local performance, based on their local environment conditions, and are not aware of the

performance or rewards received by other agents in the system or system as a whole.

3.4 Evaluation

This section presents the details of the experimental parameters used in the evaluation of the existing

RL-based techniques for multi-policy optimization. It presents the vehicle paths and vehicle numbers

used in the evaluation, the RL parameters, and the metrics used for comparison of the performance

of our evaluation scenarios.

3.4.1 Simulation Setup

In our simulation, cars enter the road network at four different points (marked A, B, C, D in Figure

3.1) and exit the system at two different points (A, B), following 1 of 4 paths: A to B, B to A, C to

A, and D to B. Emergency vehicles tend to use major routes wherever possible, so in our simulation

they only travel on paths A to B, and B to A. Therefore, the EVO policy is only deployed on agents

A, B, E, and F. All vehicles follow the shortest path from source to destination. Vehicle routes are

the same for all of the experiments we ran.

Agent performance is tested under three different traffic loads to simulate different traffic condi-

tions. The loads are as follows:

• low load - a total of 28,140 vehicles are inserted over 2000 minutes (7,000 cars on each of the

car routes and 70 ambulances on each of the emergency vehicle routes) corresponding to a flow

of ∼850 vehicles per hour.

63

3.4. Evaluation

• medium load - a total of 56,280 vehicles are inserted over 2000 minutes (14,000 cars on each of

the car routes and 140 ambulances on each of the emergency vehicle routes) corresponding to a

flow of ∼1700 vehicles per hour.

• high load - a total of 100,500 vehicles are inserted over 2000 minutes (25,000 cars on each of the

car routes and 250 ambulances on each of the emergency vehicle routes) corresponding to a flow

of ∼3000 vehicles per hour.

According to traffic counts from February 2009 (Ghosh, 2009), O’Connell street (the area which we

have simulated in this experiment) has an average hourly flow during peak time (7am-9am) of ∼1700

vehicles. We have chosen to use that figure to represent our medium load, and use low load to simulate

off-peak traffic, and high load to simulate extremely congested conditions, for example, during major

sporting events.

Each signalized junction in the simulation has a different set of available phases, generated at

simulation start-up based on junction layout. Junctions can cycle through their available phases using

RR, or can be controlled by SAT or one of the RL agents described in the previous section. For this

set of experiments, the duration of each phase in RR and RL-based approaches is set to 20 seconds,

while in SAT 20 seconds is used as a minimum phase duration (as SAT has the ability to adapt phase

duration).

3.4.2 Experiment Parameters

The single-policy RL experiments presented here ran in two parts: 2010 simulation minutes of ex-

ploration, and 2010 minutes of exploitation. GWEV-w, the W-learning based experiment, was run

for an additional 2010 minutes between the exploration and exploitation phase, to enable W-value

exploration after Q-values have been learnt. The duration of 2000 minutes enables Q-learning and

W-Learning to execute 6000 learning steps (as our actions are of 20 seconds duration each) which, we

found sufficient for agents to learn the Q-values for their state-action pairs. An additional 10 minutes

were added to allow an opportunity for the last inserted vehicles to leave the system. GWEV-c has

a much larger state space than the other policies and therefore was given a longer exploration phase

of 20,000 minutes to enable a larger portion of the state space to be visited a sufficient number of

times. In all scenarios actions are selected for execution (or per policy nomination in the case of

W-learning) using Boltzmann action-selection (see Section 2.3.1), with the temperature starting at

10000 and cooling down uniformly for the duration of the exploration period. The exploitation period

is initialized using Q-values and W-values learnt during the exploration phase, and the Boltzmann

64

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

temperature is set to 1 for the duration of exploitation phase.

Prior to the experiments presented here, each RL process has been run multiple times to determine

the best combination of α and γ (refer to Section 2.3.1 for the meaning of these parameters). The final

combinations used are, for GWO: α = 0.1 and γ = 0.3, for EVO: α = 0.9 and γ = 0.1, for GWEV-c:

α = 0.1 and γ = 0.1 and for GWEV-w: α = 0.1 and γ = 0.7. The best parameters determined for

SAT performance with a minimum action duration of 20 seconds are 10 for the phase increment, and

1.2 for the maximum duration of the cycle factor. Each experiment is repeated three times, and the

average results from the exploitation phase only are presented. We performed two-tailed t-tests on

sample data to compare the performance of various algorithm and policy combinations, and define a

statistically-significant difference in performance to be one where a test resulted in a p value of p >

0.05.

3.4.3 Metrics

We compared the performance of the RL agents based on the following metrics:

• Traffic density - Traffic demand is the same for all of the experiments described in this chapter.

Traffic density can, therefore, be used as a measure of an agent’s performance, as the differences

in the number of vehicles present on the road will be determined by how quickly vehicles arrive at

their destination and are cleared out of the system. Higher density therefore means poorer agent

performance, since traffic that is not successfully cleared and is still in the system is causing an

increase in density.

• Vehicle waiting time - Average waiting time per vehicle for the duration of the experiment. We

separate waiting times per vehicle type, so we can measure performance of each of the individual

policies that address different vehicle types.

• Number of vehicles served - The number of vehicles attempting to join the system and travel to

their destination is the same for all experiments performed for a certain traffic load. However,

not all vehicles are served, as for them to join the system, there needs to be available road space.

If traffic light agents are not successfully clearing the traffic, the density increases, there is less

available road space, and more vehicles get turned away. Lower number of vehicles served during

the whole experiment, therefore, means poorer agent performance.

Even though the goal of single-agent single-policy RL-based learning is to optimize the long term

reward received, we have not used total reward obtained in the system as a metric for this set of

65

3.5. Results

Fig. 3.2: Number of vehicles served per agent type per load

experiments, as maximizing the total reward is not the goal of all of our agents. GWEV-w, which

is W-learning based, does not aim to maximize the reward obtained, but to minimize the worst

unhappiness (as discussed in Section 2.3.2.2), i.e., to prioritize the policy that has more to lose, which

is generally a higher priority policy. Also, GWO and EVO optimize only for a single policy and

can receive rewards only in relation to a single policy, while GWEV-w and GWEV-c address two

policies so can receive rewards from both policies, making their total reward incomparable to total

reward received by single-policy approaches. Also, RR and SAT baselines do not use RL (i.e., they

do not receive rewards for their performance), so total reward of RL-based approaches would not

provide insight into how these approaches compare to our baselines. Consequently, we have decided

to use UTC-related performance metrics, namely density, vehicle waiting time, and number of vehicles

served, as described above.

3.5 Results

Figure 3.2 shows the number of vehicles served during each experiment, Figure 3.3 presents average

waiting times for cars and emergency vehicles for the experiments performed, and Table 3.1 shows

traffic density, all separated by traffic load. We have analyzed the results with respect to the case

study objectives outlined in Section 3.1. We assess the suitability of multi-policy RL-based methods

to UTC by comparing them to RR and SAT, compare single-policy deployments with multi-policy

deployments, and compare the two multi-policy deployments to one another.

3.5.1 Multi-Policy RL vs. Baselines

In this section we compare the performance of RL-based agents with the performance of the baselines,

RR and SAT.

66

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

Fig. 3.3: Non-collaborative multi-policy optimization waiting time results

RR SAT GWO EVO GWEV-c GWEV-w
Low 2.96 2.76 1.66 12.30 1.60 1.49

Medium 5.60 5.20 3.31 11.37 3.47 3.09
High 11.04 9.50 5.84 15.85 6.03 5.06

Table 3.1: Average density per traffic load (percentage)

67

3.5. Results

Fig. 3.4: EVO density during low load

Before we present a detailed analysis of the results, we need to address the performance of EVO in

our experiments. As shown in Figure 3.2 (which shows number of vehicles served during the operation

of each algorithm), we observe that the number of vehicles served by EVO is less than half of the

vehicles served by any other algorithm, for all traffic loads. Figure 3.4 and Table 3.1 showing traffic

density for EVO shed more light on this; density during the performance of EVO increases to the

point of maximum saturation about 45 minutes into the simulation, and is kept at the maximum from

that point on, due to EVO’s inefficiency in clearing traffic.

We believe that this inefficiency is due to the fact that EVO addresses only emergency vehicles,

which make up only 0.5% of the traffic in our simulation. Cars, which make up a remaining 99.5% of

the traffic, are not addressed, and create a backlog in the system. The system fills up with the traffic

that is not adequately addressed by the policy, creating high density and preventing new vehicles from

joining the system. This results in EVO being able to serve only 30,000 vehicles at high load, while

other algorithms serve between 72,000 and 80,000. For this reason, EVO waiting time results are

not comparable to other results and we exclude them from the graphs showing waiting time results

for other algorithms, as presented in Figure 3.3. We believe that the poor performance of EVO in

our experiments highlights policy dependency in multi-policy systems where policies exist in a shared

environment. If only one policy is addressed, performance of other policies can degrade to the point

where it negatively affects the performance of the policy being addressed as well. In this case, cars that

were not addressed by EVO, saturate the system and negatively affect the performance of ambulances,

which then cannot be served due to the lack of available road space.

Apart from EVO, all of the other RL-based approaches that we have implemented perfom statisti-

cally significantly better than the RR and SAT techniques, with t-tests returning values of p ranging

between 1×10−6 and 5×10−6, depending on the scenario and algorithm. RL-based techniques reduce

68

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

1 2 3

C

E

B

D

Fig. 3.5: Traffic light phases available to agent F

vehicle waiting time by 42-92% compared to their waiting time in RR, and by 3-93% compared to

their waiting time in SAT, depending on the vehicle type, traffic load, and specific RL approach.

The density and number of vehicles served results also confirm these findings. RL-based approaches

have a lower density at all three loads than both SAT and RR, and serve between 3000-9000 more

vehicles at high load than RR/SAT. These results indicate that RL-based approaches are suitable for

optimization in UTC systems, as they outperform currently deployed UTC control techniques in these

experiments.

Superior performance of RL-based approaches over our baselines is a result of RL agents learning

which phases to use in order to release the most congested approach, rather than cycling through all

phases regardless of the traffic conditions. Additionally, as several different phases can serve a single

approach (enabling different travel directions, i.e., left, straight, right), an agent also learns which of

those phases results in receiving a reward, therefore learning to use the phase that corresponds to

the desired travel direction of majority of traffic on that approach. For example, consider Figure 3.5,

representing a subset of phases of agent F. All three phases shown serve an approach C, however, if

the highest amount of traffic that is waiting on the approach C is travelling towards B, junction F

learns to prefer phases 1 and 2, rather than phase 3, as if it learns that traffic from that direction

tends to turn left (following D to B route in our experiments).

It is also interesting to observe the performance of our baselines, SAT and RR, in relation to each

other. At low load, in terms of waiting time, RR performs better than SAT, shortening vehicle waiting

times by 12% for cars and 8% for ambulances. However, at medium and high load, SAT performs

better than RR, where SAT vehicle waiting times are 19-24% shorter for cars and 59% shorter for

ambulances than those in RR. This indicates that when the loads in the system are very low, running

an adaptive algorithm such as SAT, might have adverse effects on traffic performance, potentially

due to extending phase times to longer than is required and creating larger backlogs. However, these

results also emphasize the importance of adaptation at higher loads, which increases as the load in

69

3.5. Results

the system increases (indicated by the difference between the performance of RR and SAT being more

significant during high load than during medium load).

3.5.2 Single-Policy vs. Multi-policy RL

In this section we compare the performance of single-policy GWO to multi-policy GWEV-c and

GWEV-w. The performance of other single-policy approach, EVO, has already been discussed in the

previous section.

Addressing only cars using a single-policy GWO is shown to result in the lowest average car

waiting time in this set of experiments. GWEV-w, however, results in lower traffic density than

GWO, indicating that the introduction of the second policy that multi-policy GWEV-w is addressing

does not have a significant negative impact on car performance (as cars make up 99.5% of the traffic

and density, therefore, reflects mostly the performance of cars). The difference in resulting average

waiting time of cars under GWO and under GWEV-w is statistically significant under low load, while

it is not statistically significant under medium and high load. GWO also results in lowest average

ambulance waiting time at low and high load (even though it does not explicitly prioritize them

but treats them in the same manner as other vehicles), and follows GWEV-w closely as the second

best approach for ambulances at medium load. The difference in resulting average waiting time of

ambulances under GWO and under GWEV-w is statistically significant under high load, while it is

not statistically significant under low and medium load. This set of results therefore suggests very

similar peformance of GWO and GWEV-w, where their relative suitability depends on the load and

vehicle type. The similar performance of single-policy GWO and multi-policy GWEV-w suggests a

high dependency between the performance of different vehicle types, i.e., the performance of different

policies. It emphasizes the importance of clearing general traffic, as GWO does, to free up the road

space for emergency vehicles so they can freely proceed once they enter the system, and suggests a

high dependency between a policy that addresses emergency vehicles and one that addresses private

vehicles.

The other multi-policy approach GWEV-c is outperformed by single-policy GWO in terms of

average vehicle waiting time for all vehicle types and loads. The difference in average vehicle waiting

time is statistically significant under low load for both vehicle types (p = 0.0001 for cars and p = 0.01

for ambulances), and is not statistically significant under medium and high load (p ranging between

0.08 and 0.6 depending on the load and vehicle type). We discuss GWEV-c performance in more

detail in the next section and compare it to the other multi-policy approach that we implemented,

GWEV-w.

70

Chapter 3. Non-Collaborative Multi-Policy Optimization in Autonomic System

3.5.3 Combined State Space vs. W-Learning

GWEV-w outperforms GWEV-c in terms of emergency vehicle average waiting time at all loads, re-

ducing it by 20-60% when compared to their waiting time in GWEV-c. This difference in average

waiting time is statistically significant under low traffic load (p=0.009) and is not statistically signifi-

cant under medium and high load (p = 0.4 and p = 0.7, respectively). In terms of car waiting time,

at low load GWEV-c outperforms GWEV-w by 2%, however, GWEV-w reduces car waiting time by

10-13% when compared to GWEV-c at medium and high load. The difference is not statistically

significant under any of the traffic loads tested.

GWEV-c and GWEV-w serve a similar number of vehicles at low and medium loads, however

during high load, GWEV-w serves 3000 vehicles more than GWEV-c. Also, GWEV-w has a lower

average density at all loads than GWEV-c.

From these results we conclude that GWEV-w performs as well as, or better, than GWEV-c,

under all traffic loads tested with respect to both vehicle types. Due to its scalability and smaller

state space requirements, without any adverse effects on the performance when compared to GWEV-c,

we conclude that GWEV-w is a more suitable technique for multi-policy optimization than GWEV-c

in our experiments. GWEV-c had to be given a training period ten times longer than GWEV-w, to

enable it to learn suitable actions for all states (training period of 20,000 minutes of traffic or ∼14

days). We do not rule out the possibility that GWEV-c might have performed better if given an even

longer training period, however extending it even further would render it unfeasible for applications

in real systems. These results suggest that GWEV-c, even though it outperforms SAT and RR, is not

effective even for combinations of only two policies and would not be scalable to the addition of any

further policies.

3.6 Conclusions

From the case study on non-collaborative multi-policy optimization described in this chapter we have

made the following main observations.

Both RL-based techniques, GWEV-w and GWEV-c, outperform our baselines, both in terms of

emergency vehicle and car waiting times, showing that RL-based techniques are promising approaches

to multi-policy optimization in autonomic systems.

GWEV-w performs better than GWEV-c in terms of density and number of vehicles, and although

the improvement in average vehicle waiting time under certain traffic conditions was not statistically

significant, GWEV-w can additionally benefit from scalability, as well as shorter training times due

71

3.6. Conclusions

to smaller state spaces. The results, therefore, indicate that the W-learning-based approach is a

more suitable approach for multi-policy optimization than combining learning processes into a single

learning process.

We also observe a high dependency between the policies reflected in their performance, which

emphasizes the importance of simultaneous optimization towards all policies present in the system.

The dependency is reflected in the policy that addresses only emergency vehicles (EVO) generating a

backlog of other vehicles, and as a result performing very badly both in terms of car and emergency-

vehicle waiting times. Also, GWO, which addresses only cars, performs well in terms of emergency

vehicle waiting times, which it does not explicitly address, as clearing cars clears the congestion on

the roads and enables emergency vehicles to proceed. Our results also show that the importance of

the optimization increases with the traffic load, where the gap between the performance of adaptive

techniques (e.g., SAT) and non-adaptive techniques (e.g., RR) grows larger. In the next chapter we

discuss how these observations have motivated the design of our proposed multi-policy multi-agent

collaborative optimization technique, DWL.

72

Chapter 4

Distributed W-Learning

“There is no selfish good deed, sorry !”

- Joey, TV show Friends

In Chapter 3 we analyzed the performance of non-collaborative multi-policy RL-based optimiza-

tion techniques and presented our observations. We first use those observations and the analysis of

decentralized autonomic environments presented in Chapter 1, to derive a set of requirements for a

collaborative multi-agent multi-policy optimization technique for such environments. We then present

the design of Distributed W-learning (DWL), an algorithm for multi-policy optimization in large-scale

heterogeneous agent-based autonomic systems, as motivated by these requirements.

4.1 Requirements for a Collaborative Multi-Policy Optimiza-

tion Technique

In the case study on non-collaborative multi-policy optimization presented in the previous chapter we

observe a high dependency between the multiple policies for which the system is optimizing, principally

due to the shared deployment environment. Policy dependency can also cause agent dependency,

as different policies might be deployed on different agents, due to different regional and temporal

policy scopes. This dependency between agents could also potentially be increased due to the shared

environment in which agents are situated, as discussed in Chapter 1. If this is the case, agents, and the

system as a whole, could benefit from agents cooperating to select actions that are not only suitable

for their own policies, but for the other agents’ policies as well. However, designing an algorithm for

73

4.1. Requirements for a Collaborative Multi-Policy Optimization Technique

cooperative problem solving raises numerous issues related to cooperation, such as with whom, when,

how much, and how to cooperate. Collaboration needs to be enabled between heterogeneous agents,

as agents in the system can have different state-space representations and different action sets, and

between heterogeneous policies, as policies can vary in their temporal and regional scope and priority.

Additionally, as dictated by the large-scale of the autonomic systems considered, an algorithm needs

to be decentralized and not rely on a global view of the system. Suitable optimization actions should

be learnt rather than predefined at design time, as predefining all behaviours for all combinations of

conditions is not possible due to the large and dynamic operating environment.

Based on these observations we derive a list of requirements for a multi-agent multi-policy opti-

mization technique in large-scale autonomic systems:

1. Decentralized control

2. Learning-based optimization

3. Support for simultaneous deployment of multiple policies

4. Support for cooperation between agents (even when cooperation means sacrificing own perfor-

mance)

5. Support for cooperation between policies (even when cooperation means sacrificing own perfor-

mance)

6. Respect of policy priorities

7. Support for optimization and collaboration in heterogeneous environments, where the source of

heterogeneity can be:

(a) agents - in terms of their state spaces or action spaces

(b) policies - in terms of their different spatial scope, temporal scope, or priority

8. Enable agents to determine cooperation criteria such as:

(a) the other agents with which to cooperate

(b) the situations in which to cooperate, i.e., in which states (or combinations of states)

(c) how much to cooperate, i.e., how to weight other agents’ action preferences vs. their own

preferences

In the remainder of this chapter we present DWL and analyze how its design addresses the above

specified requirements.

74

Chapter 4. Distributed W-Learning

4.2 DWL Design

In this section we use the requirements specified above to derive the design of DWL. We consider

a number of alternatives, evaluate them against the requirements, and assess their suitability to the

multi-agent multi-policy decentralized environments.

The design of a multi-agent multi-policy optimization technique can be broken down into two main

components: a means of addressing multiple heterogeneous policies on a single agent, and a means of

addressing collaboration between multiple heterogeneous agents. We consider these two components

below.

4.2.1 DWL as an Extension of W-Learning

As a result of the evaluation of existing multi-policy RL-based techniques in non-collaborative multi-

agent scenarios presented in the previous chapter, we have found that W-learning is a promising

technique for multi-policy optimization in autonomic systems. As already discussed in Chapter 2,

the advantage of W-learning over other multi-policy arbitration-based RL optimization techniques is

the unique way in which it learns the relative importance of policies specific to the current state in

which they are (using W-values) rather than imposing a strict hierarchy of policies. By learning how

one policy’s actions affect the rewards received by another policy, W-learning learns the dependencies

between policies, and exploits them to avoid executing actions that are particularly harmful for a

policy in a given state, or to execute actions that are particularly suitable for a policy in a given state.

W-learning respects policy priorities, as higher-priority policies can receive higher rewards, which are

reflected in higher W-values for important states of the higher-priority policy, and W-learning selects

the actions associated with higher W-values for execution. W-learning also enables optimization

towards multiple policies regardless of their characteristics, i.e., it is suitable for heterogeneous policies,

as the action selection process relies only on W-values, and does not depend on the policy’s state-action

space. Based on these characteristics of W-learning, we have made the decision to use W-learning

as a basis for DWL. In DWL, each policy on each individual agent in the system is implemented as

a Q-learning process, which learns the values associated with executing particular actions in each of

its states, as well as a W-learning process, which learns the importance of its preferred action being

executed when the policy is in a given state. Through use of W-learning as the basis for DWL, we

address requirements 2 and 3 as specified in Section 4.1, i.e., we use RL to learn optimal actions

rather than use predefined rules and we use W-learning to enable optimization towards heterogeneous

policies. We also partially satisfy requirements 5 and 6, i.e., we ensure cooperation between policies

75

4.2. DWL Design

and ensure that policy priority is respected on individual agents, but do not address these requirements

for a multi-agent scenario. W-learning only enables optimization towards multiple policies on a single

agent, however, we also need to enable optimization towards multiple policies deployed on multiple

agents, while also enabling collaboration between those agents. We discuss collaboration-related issues

in the next section.

4.2.2 Collaboration in DWL

We have argued in Chapter 1 and Chapter 2 that collaborative agents in a MAS can achieve globally

superior performance when compared to a group of independent agents. However, collaboration is

useful only if its implementation is suitable to the agents’ circumstances. Tan (1993) shows that

“collaboration done intelligently” improves the performance of all agents, however, he also shows an

example where collaborative agents are outperformed by a group of independent agents due to collab-

orative agents exchanging insufficient or irrelevant information. Therefore, designing a collaborative

mechanism, deciding on the type of information to be exchanged, and deciding how that information

will be used by a receiving agent, are crucial to achieving performance improvements by agents in a

collaborative MAS. We address these issues in the following sections.

4.2.2.1 Purpose of Collaboration

The first major step in the implementation of a collaboration mechanism is deciding on the purpose of

collaboration. Agents can collaborate in order to improve the quality or speed of their local learning,

or to improve global performance of the system by ensuring that the actions they consider locally

good are also beneficial for overall system performance. In DWL, both types of cooperation could be

useful. It would be beneficial to the system if agents could learn from each other in order to shorten

the duration of the learning phase, however, more crucially, due to agent dependency, agents need

to cooperate to make sure the actions they execute locally are not detrimental to their neighbouring

agents and to the system as a whole. Therefore, we focus on implementing collaboration with the

purpose of ensuring that one agent’s actions do not have negative effects (and can potentially give rise

to positive effects) on the performance of other agents.

4.2.2.2 Collaboration in Heterogeneous Environments

The second major step when designing a collaboration mechanism is to identify the type of information

that would be beneficial for agents to exchange and to identify how that information can be used by

a receiving agent. When considering potential information from which DWL agents can benefit, we

76

Chapter 4. Distributed W-Learning

analyze the collaboration mechanisms of RL-based MAS reviewed in Chapter 2, as well as analyze

other elements of an RL process that could potentially be exchanged, and evaluate their suitability to

DWL. The collaboration mechanisms we have identified are as follows:

1. Action coordination, i.e., make joint action decisions, as done in, e.g., (Guestrin et al., 2002;

Kok et al., 2005) and discussed in 2.3.3.2

2. Exchange accumulated rewards, i.e., exchange the sum of a number of the latest rewards received,

as done in, e.g., (Salkham et al., 2008) and discussed in 2.4.3

3. Exchange value functions or Q-values, as done in, e.g., (Dowling et al., 2006; Schneider et al.,

1999) and discussed in 2.3.3.1 and 2.3.3.3.

4. Exchange immediate sensations, e.g., state, reward, as done in (Tan, 1993).

All of these collaboration implementations result in performance improvements in the domains in

which they were applied (see Chapter 2 for more details), however we need to assess their suitability

for our domain, particularly as determined by the presence of multiple heterogeneous policies and

agents.

Action coordination In an action coordination approach (e.g., coordination graphs, see Section

2.3.3.2), agents in a neighbourhood, instead of making local action decisions and maximizing their

own reward, make joint action decisions that maximize the value function for the neighbourhood.

Effectively, the learning processes on the agents and in the neighbourhood are combined into a single

optimization function. In DWL case, this would require merging all of the policies on all of the

agents in a neighbourhood into a single learning process. We have discarded this option for even the

single agent case, as it is prone to state-space explosion in the presence of numerous policies and its

performance was inferior to the performance of W-learning in our case study presented in Chapter 3.

Exchanging accumulated rewards RL agents can also exchange their accumulated rewards, to

inform each other of how good has their overall performance been in a number of previous time steps.

A receiving agent can incorporate this information into its own local reward, receiving a higher reward

if its neighbours have been performing well. Therefore, an agent is motivated to help its neighbours in

their performance, as it is aiming to maximize its overall reward received which includes neighbours’

rewards. This collaboration approach is suitable for a single-policy scenario, however, a number of

issues arise in considering its applications in multi-policy scenarios.

77

4.2. DWL Design

Firstly, in the presence of multiple heterogeneous policies, we need to decided should an agent’s

primary task still be to maximize its overall reward, or should it be to respect the priority of policies and

aim to satisfy higher priority policies first. Policy priority can be incorporated into rewards, however,

in the presence of multiple policies and multiple agents, meeting several lower priority policies could

result in a higher reward than meeting a single high-priority policy. We argue that an agent’s task is

to respect policy priorities, and aim to maximize its reward only when policy priorities are maintained.

Therefore, simply exchanging accumulated rewards might result in agents satisfying a number of

lower-priority policies (or a single lower-priority policy on several neighbouring agents) instead of a

higher-priority policy. To maintain relative policy priorities, accumulated rewards would need to be

grouped by the policy by which they are received, in order to give an accurate reflection of an agent’s

performance towards its individual policies. Analogously, on the receiving agent, neighbours’ rewards

should be incorporated into the local rewards of the matching policies only. However, due to agent

and policy heterogeneity, neighbours might not be implementing the same sets of policies. Arguably,

agents should then have different sets of neighbours for different policies, collaborating only with

neighbours that implement the same policies (if there are any), however, this again could result in

agents not respecting overall policy priorities. If a single agent is implementing a policy that has a high

priority for the overall system, surrounding agents need to ensure not to interfere, and to possibly help

its performance, regardless of the fact that they might not be implementing the policy themselves.

Due to the numerous issues that arise when applying this approach to multiple policies, as discussed

in this section, it is not clear if, and how, this approach could be applied in multi-policy heterogeneous

environments.

Exchanging value functions Instead of exchanging accumulated rewards, agents can also exchange

estimates of their expected long-term rewards per state-action pair, i.e., Q-values. Receiving agents

can then scale the Q-values according to some weight function and incorporate them into their own

Q-values. In this way agents learn to take actions which are beneficial in the long-term not just for

themselves but also for their neighbours. Exchanging Q-values in multi-policy environments raises

the same issues related to policy heterogeneity as exchanging accumulated rewards, i.e., how to use

the Q-values at a receiving agent if the sending agents do not implement the same policies as the

local agent. Q-values are learnt specific to state-action pairs, and if a receiving agent does not have

matching state-action pairs, received Q-values cannot be incorporated locally. In fact, this approach

is not directly applicable even in single-policy environments where agents are heterogeneous in terms

of their state-action spaces due to different layouts of the environments in which they are situated

78

Chapter 4. Distributed W-Learning

(as is the case in our UTC application). Since agents do not share a state-space representation and

action sets, Q-values for a given neighbour’s state-action pairs can not be integrated into the receiving

agent’s Q-values, as it does not have the corresponding state-action pairs.

Exchanging immediate sensations Agents can, as part of collaboration, exchange information

about immediate sensations, e.g., latest state, latest reward received, or latest action executed. This

form of information offers more flexibility in the manner in which it can be used by a receiving agent,

as it is not tied to fixed state-action pairs (unlike exchanging Q-values), and it can still maintain

the information about the policy to which it corresponds (unlike exchanging accumulated rewards).

However, the onus is on the receiving agent to find a meaningful way to use this information in order

to enable useful collaboration. In the next section we discuss several ways in which the immediate

sensations exchanged between agents can be interpreted and used in the design of a collaboration

mechanism for a multi-agent multi-policy optimization technique.

4.2.2.3 Collaboration in DWL

The central reasons for not being able to apply the collaboration mechanisms discussed in the previous

section to collaboration in DWL were related to the heterogeneity of agents and policies. Q-values

are tied to a specific state-action pair and as such cannot be exchanged between heterogeneous agents

and policies, while exchanging accumulated rewards may be difficult to incorporate while maintaining

relative policy priorities. Therefore, any form of collaboration to be used in DWL cannot be state-space

or action-set specific, and must support the retention of relative policy priorities.

The underlying assumption in all of the collaboration mechanisms discussed is that an agent’s

performance is influenced by a combination of its local actions and the actions of its neighbours;

an agent is, therefore, learning to execute actions that are suitable for itself and for its neighbours.

Potentially, an agent’s performance is influenced by the actions of all other agents in the system,

however, as considering the influence of all agents on each other is not feasible, most approaches

consider only immediate neighbours (e.g., (Guestrin et al., 2002), (Salkham et al., 2008)), whose

actions are more likely to have the strongest influence. In DWL, we also adopt this approach, and

have made a design decision that the collaboration mechanism will be implemented only between

neighbouring agents. However, we aim to design the collaboration mechanism such that collaboration

can be implemented between any two agents, so long as a communication link between them exists.

From the analysis of collaboration mechanisms in the previous section we have concluded that

there are no obstacles (at least not as imposed by the heterogeneity of agents and policies) to agents

79

4.2. DWL Design

exchanging immediate sensations. In order to design a collaboration mechanism in DWL, we need

to consider which immediate sensations agents should exchange, and how they can use them to learn

about the performance of other agents, and to ensure their own actions do not negatively influence

other agents. We considered two approaches: using immediate sensations to learn how other agents’

actions affect a local agent’s performance, and using immediate sensations to learn how a local agent’s

actions affect other agents’ performance.

Learning the influence of other agents on local states If each agent knew how other agents’

actions affected it, it could make action suggestions to those agents, especially if any of the actions

that the other agents execute have a particularly positive or a particularly negative effect on an agent.

In order for an agent to learn the influence of other agents’ actions on its local states, each agent could

implement a Q-learning process using its own state space and a neighbouring agent’s action set. Since

actions can have different impacts on different local policies, an agent would need to implement such a

Q-learning process for each of its policies. In order to do this, an agent needs to get information from

its neighbour about its action set. The neighbours’ actions do need to be interpretable on the local

agent or match the local agent’s actions, but an agent only needs a representation of those actions so

that it can generate state-action pairs to be updated. After each learning step, an agent could request

information about the last action executed from its neighbour, and update the Q-value for the local

state - neighbours’ action pair using its local rewards received. At action selection time, each of the

policies on an agent would have an action it can suggest to the neighbour, which it has learnt to be

the most suitable for the particular state in which it is currently. However, after receiving those action

suggestions, a neighbouring agent also needs the means to decide which of the action suggestions to

execute; each agent will have action suggestions from its local policies, but also one or more suggestions

from each of its neighbours. More crucially, an agent does not have a motivation to execute any of the

neighbours’ suggestions, as, in terms of its local reward, it could be better off executing an action that

will result in the highest reward locally. Note that collaboration approaches where agents exchange

accumulated rewards or Q-values do not suffer from this drawback, as a local agent incorporates

neighbours’ rewards/Q-values into its local rewards/Q-values, and therefore is motivated by receiving

a reward for a neighbours’ good performance. In the next section we consider a collaboration approach

that addresses the agent motivation issue.

Learning the influence of local actions on other agents’ states RL agents learn which actions

to execute so as to maximize rewards received in the long-term, i.e., they are motivated by receiving

rewards. In order to motivate an agent to help its neighbours’ performance, we need to reward an

80

Chapter 4. Distributed W-Learning

agent for the good performance of its neighbours. Instead of each agent learning how other agents’

actions influence its local performance, as suggested in the previous section, we can enable each agent

to learn how its actions influence its neighbours’ policies. Each agent needs to implement a Q-learning

process for each of the policies that each of its neighbours implement. In order to do this, each agent

needs to obtain information from each of its neighbours on the full state space of each of its policies.

An agent then, at each time step, updates Q-values for each of the neighbours’ policy’s states and its

local action, using the reward neighbours’ policies received at that time step, and receiving the same

reward locally as the neigbours’ policies have received. Using this approach, an agent both learns how

its actions affect the policies on its neighbours and receives rewards for those policies performing well.

Note that an agent does not need to implement the same policies as its neighbours, or even know

which policies the neighbours implement, and it does not need to be able to interpret the meaning of

the neighbours’ policies’ states; it only needs to have a representation of those state spaces in order

to create the neighbours’ state - local action pairs. This approach, therefore, enables collaboration

between heterogeneous agents implementing heterogeneous policies. At action selection time, an agent

receives, from each of its neighbours, information on the current state of each of their policies, and

identifies a suitable action for each of those policies based on neighbours’ state - local action Q-values.

It also needs to know the reward that each of the policies on each of its neighbours has received for

the previous action executed, in order to update those Q-values.

Using this collaboration mechanism we both motivate an agent to help its neighbours and enable

it to do so even in the presence of policy and agent heterogeneity. However, the issue relating to how

an agent should choose between the actions nominated by its local policies and its mappings of the

neighbours’ policies remains open. We focus on this issue next.

Action Selection At each time step, a local agent has a set of action suggestions that are suitable

for its local policies and a set of action suggestions that are suitable for each of its neighbours’ policies.

An agent needs a mechanism to decide which of these to execute, so as to maximize its own reward,

help neighbours maximize their rewards, and respect the relative priority of policies. However, the

agent does not have information about relative policy priorities; the only information it has available

when making an action selection are action nominations and their associated Q-values. If we were to

enable agents to know the relative priorities of their local policies and neighbours’ policies, we would

require a global hierarchy of policy priorities in the system, i.e., we would require a global view of the

system. Also, an agent needs a way of distinguishing how important the actions are to the policies

that are suggesting them; only one action can be executed so it should be one that is really crucial

81

4.2. DWL Design

for good performance of a policy that is suggesting it at that particular time-step.

When implemented as outlined above, the problem of action selection within a one-hop neighbour-

hood resembles the problem of action-selection on a single agent implementing multiple policies, as

discussed in Section 2.3.2.2. The agent has a number of action nominations to select from and needs

to pick one of them based on some criteria. As in a single-agent case, the action selected for execution

can be based on a group criterion, so that it satisfies the largest number of policies, or can be an

action nominated by the policy to which the next action is the most important. We believe it should

be the latter, since if we were to use group selection methods, the priority of policies might not be

respected - we could end up addressing several lower-priority policies instead of one high-priority one.

However, an agent still needs a way to learn relative policy weights, both in terms of their absolute

priority and their current importance. This is exactly the type of problem for which we found the use

of W-learning suitable on an agent locally, when selecting an action amongst the action suggestions of

its local policies. We propose extending the use of W-learning from action selection on a single agent

to action selection between agent’s local policies and action suggestions from its one-hop neighbours.

Use of such an action selection mechanism, distributed within the neighbourhood, was the rationale

for naming our algorithm Distributed W-Learning.

Action selection in a neighbourhood using W-Learning In DWL’s approach to collaboration,

as described above, each agent has a set of value functions for its local policies and for policies of each

of its one-hop neighbours. At each time step, each of the local and neighbours’ policies has an action

suggestion based on learnt Q-values. In order to learn the importance of these action suggestions

relative to the state the policies are in currently, each agent also implements a W-learning process for

each of its neighbours’ policies, i.e., learns W-values relative to neighbours’ policies’ states. An agent

receives all the information required for this process during the Q-learning process; in order to learn

W-values an agent only needs to know neighbours’ policies’ current states and the rewards received,

which are also required by the Q-learning process. By using a combination of Q-learning and W-

learning, an agent not only learns the suitability of its actions for neighbours’ policies, but also learns

how not executing those actions can affect the neighbours’ policies. If the neighbour’s policy receives

a high reward regardless of the local agent executing its preferred action or not, the weight associated

with that particular state of the neighbour’s policy will be low, as the dependency between the local

action and neighbour’s policy performance is either low (as an action executed locally does not affect

the neighbour’s reward) or the policies are complementary and one policy’s action is also good for the

other policy. Conversely, if the neighbour’s policy receives a high reward when its action suggestion is

82

Chapter 4. Distributed W-Learning

executed, but it does not otherwise, the weight associated with that particular state of the neighbour’s

policy will be high, as the dependency between the local action and neighbour’s policy performance

is high (as an action executed locally significantly affects the neighbour’s reward) and policies are

conflicting (i.e., actions suitable for one policy are not suitable for the other). We argue that, in this

manner, W-learning enables an agent to learn the dependencies, in terms of reward, between its local

actions and neighbours’ policies’ performance, i.e., it learns the dependencies between agents.

In Section 4.4.1 we formalize this mechanism of enabling an agent to learn how and to what extent

its actions influence its neighbours by using a concept of “remote policy”.

4.2.2.4 Degree of Cooperation

By using Q-learning andW-Learning, each agent, at each time step, has a set of action suggestions with

associated weights from both its local policies and all of its neighbours’ policies. We have already

argued that action selection should be informed by policy priority and current policy importance.

However, another factor that should be considered at action selection time is whether an agent should

take into account all action suggestions as nominated by local and neighbours’ policies, or should

weight its local suggestions more, as, potentially, its local actions can have a larger influence on its

immediate operating environment than its neighbours’ actions. We expect a suitable weight ratio to be

dependent on an application area and a set of environment conditions, so the design of DWL should

remain flexible in regards to the weight ratio. We should enable an agent to give equal weight to

neighbours’ policies as to its own, i.e., be fully cooperative, as well as to completely ignore neighbours’

policies, and be fully non-cooperative. We also need to enable a range of cooperation levels in between

the two extremes; for example, an agent might want to rate its own policies higher, but still be willing

to defer to its neighbours if the next action is really important to them, i.e., their W-values exceed

some threshold. In order to specify this threshold, we introduce a cooperation coefficient C, which

a local agent uses to scale the weight of neighbours’ action preferences at action selection time. C

can have a value 0 ≤ C ≤ 1, where C=0 denotes a selfish non-collaborative agent, and C=1 a fully

cooperative agent that weights its neighbours’ policies’ suggestions as much as its own. C can be

externally defined by the designer, similar to (Dowling et al., 2006) and (Schneider et al., 1999),

where neighbours’ value functions are incorporated locally using predefined coefficients. However, we

also investigate the possibility of an agent learning a suitable value for C itself.

83

4.2. DWL Design

4.2.2.5 Learning the Degree of Cooperation

The cooperation coefficient, as described in the previous section, can be set as a predefined DWL

parameter to be the same across all agents during both learning and exploitation. There are a number

of limitations to this approach. The best performing C for a given set of agents in a given set of

circumstances can only be determined by trial-and-error by running simulations with varying values

of C, requiring an extensive training period. Additionally, a single value of C might not be appropriate

for all agents in the system. For example, a very important agent in the system whose performance

has a major impact on overall system performance, might need to have a low value of C, in order to

act more selfishly, as its performance is more important to the system than the performance of its

neighbours. Conversely, an agent whose local contribution to overall system performance is smaller

than that of its neighbours might require a high value of C, i.e., it should have a lower threshold

for deferring to its more important neighbours. Therefore, DWL needs to allow for the possibility of

agents having different values of C rather than having the same value across the whole system. In

order to make this feasible, we extend DWL with the capability of each agent to learn its local optimal

C, rather than use the same predefined value of C across all agents. Each agent has a range of C

values available, and implements a Q-learning process to learn the most suitable local C with which

to scale all neighbours’ suggestions, such as to maximize the reward received in the neighbourhood.

Note, however, that agent is not learning which action, out of all available actions, is maximizing the

reward in the neighbourhood, but only learns the value of C that maximizes the reward by executing

one of the actions nominated, and as such, we argue, is still respecting policy priorities. We show this

is the case later in this chapter (in Section 4.4.3), after we have introduced all of the necessary DWL

concepts.

4.2.2.6 Collaboration Summary

In this section we have given the rationale for the design of a collaboration mechanism for a multi-agent

multi-policy optimization technique. The main issues addressed are the purpose of collaboration,

how to motivate agents to collaborate, how to enable collaboration between heterogeneous agents

implementing heterogeneous policies, and how to ensure that the relative priorities of policies are

maintained. We have adopted a “remote policy” approach, where each agent learns how its actions

affect all policies that all of its one-hop neighbours are implementing, and at each time step enables

each of those policies to make an action suggestion. Agents are motivated to collaborate by receiving

rewards for their remote policies when their neighbours receive rewards. Using remote policies as a

collaboration mechanism does not depend on state space or action sets of the policies. Using W-

84

Chapter 4. Distributed W-Learning

learning, DWL also learns the weights (W-values) of these action suggestions relative to the current

policy state and policy priority. DWL scales the W-values of neighbours’ policies using either a

predefined cooperation coefficient C, or a learnt value of C that maximizes the overall reward in

the neighbourhood, and executes the action with the highest weighted W-value. Our collaboration

mechanism satisfies requirements 3, 4, 5, 6, and 7 through use of remote policies, and requirement 8

through use of cooperation coefficient C and an ability of each agent to learn it locally.

4.2.3 Decentralized Control

DWL has been designed so that each agent optimizes towards its policies locally, and collaborates with

its one-hop neighbours to help their performance when feasible. The only communication required

in DWL is between neighbouring agents, and no global information, central or external control is

required. Therefore, DWL is designed to be decentralized and self-organizing, meeting requirement 1.

As the goal of DWL is to optimize global system behaviour, we are foreseeing that globally good be-

haviours will emerge from agents’ local optimization and optimization within neighbourhoods. We do

not foresee radically new behaviours emerging, but we do expect a better quality of global behaviours

than we obtain when each agent optimizes for its own local policies only. We expect the performance

of all policies to be improved through cooperation, with policy priority being respected and higher

priority policies being given preference in the system, even on agents that do not directly implement

them. We will return to this point in Chapter 6, when evaluating and analyzing the performance of

DWL.

4.3 Definition of DWL

In the previous section we have motivated the design of the elements of DWL and discussed how they

address the requirements. In this section we formalize the definition of DWL elements.

A DWL-based system consists of the following:

• A set of agents A = {A1, ..., An}, where each agent controls a set of actuators.

• Each agent Ai has a set of neighbours Ni = {Ni1, ..., Nim} consisting of all agents Aj ∈ A that

are one-hop neighbours of the agent Ai.

• A set of policies LPi = {Pi1, ..., Pip} are deployed at each Ai. We refer to these policies as local

policies of Ai. Local policies can be active or inactive at each time step, based on their temporal

scope.

85

4.4. DWL Elements

• Each agent Ai has a set of policies RPi = {RPij1, ..., RPijr} whose goal is to contribute to the

implementation of each local policy LPjk deployed at each Aj ∈ Ni. We refer to these policies

as remote policies of Ai. A remote policy can be active or inactive at each time step, based on

the temporal scope of the corresponding local policy of neighbour Aj , i.e., whether that policy

is currently active or not.

• Each policy, both local and remote, on each agent is implemented as a combination of a Q-

learning and a W-learning process. It has Q-values associated with each of its state-action pairs

and W-values associated with each of its states. An agent’s current action is denoted as ai and

its previous action ai−1. A policy’s current state is denoted as si and its previous state si−1.

• Cooperation coefficient C, which is used to scale the importance of action suggestions by remote

policies. C can be predefined to the same value for all agents in A, or can be learnt individually

by each Ai ∈ A .

We further focus on the details of these elements in the next section.

4.4 DWL Elements

In the previous section we defined the elements that a DWL-based optimization system consists of.

In this section we focus on three main concepts in DWL that enable it to meet the requirements for

multi-agent multi-policy optimization technique. These are: remote policies, cooperation coefficient

C, and agents’ ability to learn values of C.

4.4.1 Remote Policies

To enable collaboration between agents, as well as between policies deployed on different agents,

DWL agents not only learn to select actions that are suitable for their local policies, but also learn

how their local actions affect their immediate neighbours. To motivate an agent to take into account its

neighbours’ action preferences (i.e., to collaborate), each agent, as well as its own policies, implements

a “remote” policy “help neighbour Ni to implement its policy Pik ” for each of the policies deployed on

each of its immediate neighbours. This policy receives a reward each time policy Pik receives a reward

on neighbour Ni, therefore motivating an agent to select actions suitable for this policy. By using

remote policies, DWL enables cooperation between heterogeneous agents, i.e., agents that implement

different policies, and have different state space and action sets. Each remote policy on each agent is

implemented using a Q-learning and a W-learning process. The Q-learning process uses the remote

86

Chapter 4. Distributed W-Learning

agent’s policy’s states and the local agent’s actions to learn how local actions affect a remote policy.

The W-learning process learns how important it is for a remote policy, in each of its particular states,

that its preferred local agent’s action is executed.

4.4.2 Cooperation Coefficient C

At each time step, both local and remote agent’s policies, suggest their preferred action based on

their current state, together with an associated weight (W-value) for that state. An agent uses these

W-values to select the next action for execution.

By introducing a cooperation coefficient C, local policy action nominations are taken into account

with their full W-values, while remote policy nominations are multiplied by C, where 0 ≤ C ≤ 1, to

enable an agent to give varying weight to its neighbours’ action preferences. C=0 means that the

local agent is non-cooperative, i.e., it does not consider its neighbours’ performance when selecting

an action, while C=1 means that a local agent is fully cooperative, i.e., it cares about its neighbours

performance as much as it cares about its own. A value of C between 0 and 1 enables a local agent

to specify the relative importance of its local preferences and its neighbours’ preferences. The local

agent is still selfish to a degree, i.e., its local policies still have a higher relative importance, but it

does defer to its neighbours’ action suggestions when their importance exceeds the relative threshold

as set by C. For example, if C=0.2, the strength of a neighbour’s suggestion, i.e., its W-value, needs

to be more than five times greater in order for an agent to defer to one of its neighbours.

4.4.3 Learning Values of C

In DWL, agents also have an ability to learn their own suitable values of C, rather than use a predefined

one. Each agent can learn a value of C such as to maximize the overall reward received in the

neighbourhood, i.e., by all of its local and remote policies.

In order to explain choosing an overall neighbourhood reward as criteria for learning C, we need

to analyze the DWL action selection process. Consider Figure 4.1. Each local and remote policy

suggests a single action for execution. Therefore, DWL’s action selection is not from the full action

set of actions available on an agent, but from the set of actions suggested by the policies. For example,

in Figure 4.1 only actions belonging to the set {a11, a12, a121, a122, a131} are considered for execution.

Action selection also depends on the W-values associated with each nominated action. Action a11

has an associated W-value W11, action a12 has an associated W-value W12 and so on. The action for

execution is picked in three ways depending on the value of C, as follows:

87

4.4. DWL Elements

P12

RP121

RP122

DWL action
selection

DWL on Agent A 1

action a11

W-value W11

P11

Local policies: P11,P12
Remote policies:
RP121,RP122,RP131

action a122

action a121

action a12

W-value W12 W-value W122

W-value W121

W-value W131action a131

RP131

Fig. 4.1: DWL action selection: local vs remote policies

• for C=0, the action selected for execution, denoted as amax, is an action associated with the

W-value Wmax= max (Wi1, ..., Wip) where Wi1, ..., Wip are the W-values for the current states

of agent’s Ai’s local policies Pi1,..., Pip (i.e., amax is the action associated with the maximum

local W-value).

• for C=1, amax is an action associated with the W-value Wmax= max (Wi1, ..., Wip, Wi11, ...,

Wijk) = max (max (Wi1, ..., Wip), max (Wi11, ..., Wijk)) where Wi1, ..., Wip are the W-values

for the current states of agent’s Ai’s local policies Pi1,..., Pip and Wi11, ..., Wijk are the W-values

for the current states of agent’s Ai’s remote policies RPi11,..., RPijk (i.e., amax is the action

associated with either maximum local W-value or maximum remote W-value).

• for 0 < C < 1, amax is an action associated with W-value Wmax= max (Wi1, ..., Wip, C ×Wi11,

..., C ×Wijk) = max (max (Wi1, ..., Wip), C × max (Wi11, ..., Wijk)) where Wi1, ..., Wip

are the W-values for the current states of agent’s Ai’s local policies Pi1,..., Pip and Wi11, ...,

Wijk are the W-values for the current states of agent’s Ai’s remote policies RPi11,..., RPijk (i.e.,

amax is the action associated with the maximum local W-value or an action associated with the

maximum remote W-value).

Therefore, an action selected for execution, for all values of C, can either be an action associated

with the maximum W-value on the agent’s local policies, or an action associated with the maximum

W-value on the agents remote policies, i.e., it has to belong to a set {al−max, ar−max}, where al−max

is associated with Wl−max = max (Wi1, ..., Wip) , and ar−max is associated with Wr−max = max

(Wi11, ..., Wijk). The value of C, together with the W-values themselves, will determine which of the

two actions will get selected for execution. We argue that neither always selecting local maximum

88

Chapter 4. Distributed W-Learning

(C=0) nor always selecting overall maximum (C=1) are optimal approaches as the local agent needs

to prioritize its own performance, but still needs to defer to its neighbours when the importance of

their action nominations exceeds some threshold. However, we need a criteria on which to select that

threshold rather than set an arbitrary C or determine it experimentally. We believe that a suitable

criteria for choosing between local and remote maxima is to assess how those actions affect other

agents and policies. Therefore, an agent should learn how both al−max and ar−max affect other agents

and policies in the immediate neighbourhood, apart from those by which they are nominated, and

select the one that has the most desired effect. Therefore, an optimal C is the one that enables an

action that receives a higher sum of rewards on all local and remote policies to be selected., i.e., an

action that has a higher value of (ri1+ ... + rip+ ri11+ ... + rijk) where ri1 ... rip are the rewards

received by local policies after execution of the selected action amax and ri11 ... rijk are the rewards

received by remote policies after execution of the selected action amax .

Note that, in this case, the agent is not actually learning a specific action to execute, as the al−max

and ar−max that are nominated differ based on the states in which their local and remote policies

are; an agent is learning whether, in general, selecting its nominated local or remote action results in

higher reward, regardless of the specific actions nominated. Basically, an agent is learning how selfish

or how cooperative it should be overall, by learning the degree of cooperation (cooperation coefficient)

such that it maximizes the reward received locally and by its immediate neighbours, regardless of the

specific actions nominated at that time step.

Also note that, the agent is not learning to select an action that maximizes the sum of rewards

on all of the agent’s local and remote policies (i.e., maximizes the sum of rewards on an agent and its

immediate neighbourhood) out of the full action set. The agent is only learning which C enables it

to select an action, out of the nominated two actions (ones with local maximum W-value and remote

maximum W-value), that generates a higher reward. The difference between the two approaches is

that if an agent was to learn an action that maximizes the sum of rewards on local and remote actions,

it might not necessarily respect priorities, e.g., meeting a lower priority policy on several agents would

generate a higher total reward than meeting a high priority policy on a single agent. By using DWL

to first select a subset of actions nominated based on the current state importance, we ensure that

policy priorities are respected, and that only actions with a high current importance to the local and

remote policies are nominated (where the higher priority is expressed using a higher reward, therefore

resulting in higher W-values).

Learning C, as it is reward-based, is also implemented as a Q-learning process, one on each agent.

An action set consists of various values of C, where 0 ≤ C ≤ 1. In our implementation we use A

89

4.5. DWL Initialization and Learning Process

A1

A2

A4

A3

A5

A6

P11, P12

P21,P22 P31

P42,P43

P51,P53

P61

Fig. 4.2: Example of DWL agent network

= {C=0, C=0.1, C=0.2, C=0.3, C=0.4, C=0.5, C=0.6, C=0.7, C=0.8, C=0.9, C=1}, however the

granularity of actions can be finer or coarser to provide for more precise learning, or for faster learning

times. The state space of the Q-learning process used to learn C consists of only a single state, i.e., is

stateless, as C is learnt regardless of the current state of an agent’s local/remote policies and regardless

of specific actions nominated for selection. Arguably, learning C specific to the particular state each

policy is in might provide more precise results, however, the system would have to learn C for each

combination of local and remote states, rendering the learning intractable and prone to state explosion.

Learning C only requires the sum of rewards on local and remote policies for updating its Q-values,

and as receiving reward information from neighbours is already required for learning Q-values and

W-values for remote policies, learning C does not introduce any additional communication overhead.

Now that we have introduced all of the DWL elements, we move on to explain the processes of

DWL initialization, learning and action selection.

4.5 DWL Initialization and Learning Process

In this section we explain the process required to initialize DWL-based optimization systems and

explain the DWL learning and the action selection processes which are executed by each agent at each

time step.

4.5.1 DWL Initialization

Consider a network of agents depicted in Figure 4.2. The network consists of a set of agents A =

{A1,..., A6}. Each agent has a set of neighbours it is connected to by the edges of the graph. For

90

Chapter 4. Distributed W-Learning

A1

P11: (S11, A1)
P12: (S12, A1)

A2

P21: (S21, A2)
P22: (S22, A2)

S11,S12

S21,S22

A1

P11: (S11, A1)
P12: (S12, A1)

RP121: (S21, A1)
RP122: (S22, A1)

A2

P21: (S21, A2)
P22: (S22, A2)

RP211: (S11, A2)
RP212: (S12, A2)

(a) Agents Before DWL Initialization

(b) Agents After DWL Initialization

Fig. 4.3: Agents A1 and A2 before and after DWL initialization

example, Agent A1 has a set of neighbours N1= {A2, A3, A4}. Each agent also has a set of local

policies it implements, e.g., agent A1 has a set of local policies LP1= {P11, P12} .

During the initialization of DWL optimization process, each DWL agent initializes a Q-learning

and a W-learning process for each of its local policies. Q-learning processes for local policies are

initialized using a local policy state space and local actions (as they are used to learn how an agent’s

actions affect the state of the local agent’s policies and to learn optimal actions for each of the local

policies’ states). W-learning processes for local policies are initialized using a local policy state space

(as they are used to learn how important it is, for each of the local policy states that an action

nominated by that policy is executed on the local agent).

After local initialization, each DWL agent exchanges state-space representations for each of its

policies with each of its immediate neighbours. For example, consider Figure 4.3(a). Agent A1 has

two policies: P11 which provides mapping from its set of states S11 to set of actions of A1, and P12

which provides mapping from its set of states S12 to set of actions of A1. Agent A2 also has two

policies: P21 which provides mapping from its set of states S21 to set of actions of A2, and P22 which

provides mapping from its set of states S22 to set of actions of A2. During the initialization, agent A1

sends state representation for both of its policies, S11 and S12 to A2 , and A2 sends state representation

for both of its policies, S21 and S22 to A1.

This state-space information is used to initialize Q-learning and W-learning for remote policies.

Q-learning processes for remote policies are initialized using a remote policy state space and local

actions (as they are used to learn how an agent’s local actions affect the state of the remote agent’s

91

4.5. DWL Initialization and Learning Process

A1

A2

A4

A3

A5

A6

P11, P12

P21, P22

P31

P42, P43

P51, P53

P61

RP121, RP122, RP131, RP142, RP143

RP211, RP212, RP242,
RP243, RP251, RP253 RP311, RP312, RP342,

RP343, RP361

RP631

RP521, RP522, RP542, RP543

RP411, RP412, RP421, RP422,
RP431, RP451, RP453

Fig. 4.4: Example of DWL agent network after DWL initialization

policies and to learn optimal local actions for each of the remote policies’ states). W-learning processes

for remote policies are initialized using a remote policy state space (as they are used to learn how

important it is, for each of the remote policy states that an action nominated by that policy is executed

on the local agent).

For example, consider Figure 4.3 (b). Agent A1 now also has two remote policies: RP121 which

provides a mapping from a set of states S21 (which is a set of states received from A2’s policy P21) to

a set of actions of A1, and RP122 which provides a mapping from a set of states S22 (which is a set

of states received from A2’s policy P22) to a set of actions of A1. Agent A2 also has two new remote

policies: RP211 which provides a mapping from a set of states S11 (which is a set of states received

from A1’s policy P11) to a set of actions of A2, and RP212 which provides a mapping from a set of

states S12 (which is a set of states received from A1’s policy P12) to a set of actions of A2.

Note that both local and remote policies have the same set of actions, which represent the set of

capabilities of the local agent. Policies therefore learn which of the available local actions are most

optimal for the local agent’s performance as well as for the performance of the agent’s immediate

neighbours.

Figure 4.4 shows the updated sets of policies after DWL has been deployed and initialized on a

network of agents represented in 4.2. Agent A1 now, as well as a set of local policies LP1, also has

a set of remote policies RP1= {RP121, RP122, RP131, RP142, RP143,}. Remote policies RP121 and

RP122 correspond to local policies P21 and P22 on agent A2, remote policy RP131 corresponds to a

local policy P31 on agent A3, and remote policies RP142 and RP143 correspond to local policies P42

and P43 on agent A4.

92

Chapter 4. Distributed W-Learning

The DWL initialization process is summarized in Algorithm 1.

Initialization steps outlined here need to be performed on each DWL agent at system start up,

or on an agent and its neighbours when it joins the system. Some initialization steps (i.e., relating

to a single policy only) need to be performed when a new policy is deployed, i.e., a new policy

needs to be initialized locally, its state space information exchanged with an agent’s neighbours, and

remote policies on all neighbours initialized. If an agent leaves the system, initialization steps relating

to remote policies need to be performed on agents that become neighbours as a result of an agent

leaving.

Algorithm 1: DWL Initialization on an Agent Ai

/* Initialize local policies */

foreach Pil in LPi do

/* Initialize Q-learning */

InitQLearning(Pil states, Ai actions);

/* Initialize W-learning */

InitWLearning(LPil states);

end

/* Create remote policies */

foreach Aj in Ni do

foreach LPjk in LPj do
Add corresponding RPijk to RPi;

end

end

/* Initialize remote policies */

foreach RPijk in RPi do

/* Initialize Q-learning */

InitQLearning(RPijk states, Ai actions);

/* Initialize W-learning */

InitWLearning(RPijk states);

end

4.5.2 DWL Learning Process

After initialization, the DWL learning process is repeated on each agent, at each time step, for the

duration of the DWL-based system’s operation, and consists of the steps described in Algorithm 2.

93

4.5. DWL Initialization and Learning Process

Algorithm 2: DWL one learning step on an Agent Ai

/* Get action nominations by local policies */

foreach Pil in LPi do
determine Pil’s state sil;

get reward ril from Ai’s environment;

/* Update Q-values */

update Q(sil−1, ai−1) with ril;

/* Update W-values */

update W(sil−1) with ril;

nominate action ail based on Q-values for sil;

get W(sil);

end

/* Get action nominations by remote policies */

foreach RPijk in RPi do
get RPijk’s state sijk from Aj ;

get reward rijk from for sijk from Aj ;

/* Update Q-values */

update Q(sijk−1, ai−1) with rijk;

/* Update W-values */

update W(sijk−1) with rijk;

nominate action aijk based on Q-values for sijk;

get W(sijk);

end

/* Select and execute action */

pick winning action ai according to Formula 4.1

Each agent, using Q-learning and W-learning, learns Q-values for its local-state/local-action pairs

and W-values for its local states. To do this, at each time step, each policy needs to sense the

conditions in the environment, map them to its local state representation, and obtain a reward for

being in that state. Based on the reward, each policy updates its local Q-values and W-values.

Additionally, each agent learns Q-values for its remote-policy-state/local-action pairs and W-values

for its remote policies’ states. To do this, at each time step, an agent needs to receive information

about its neighbours’ current states for each of its policies and the rewards that they have received.

Based on the rewards received, an agent updates Q-values and W-values for its remote policies. For

94

Chapter 4. Distributed W-Learning

A1

P11: (S11, A1)
P12: (S12, A1)

RP121: (S21, A1)
RP122: (S22, A1)

state, rewardstate, reward
state, reward

state, reward

A2

P21: (S21, A2)
P22: (S22, A2)

RP211: (S11, A2)
RP212: (S12, A2)

Fig. 4.5: Exchange between agents during each DWL learning step

example, consider Figure 4.5. In order for agent A1 to update its remote policy RP121, it needs to

receive from agent A2 current state of A2’s policy P21, as well as the value of the reward that P21

has received in this time step. Note from Algorithm 2 that the action used to update Q-values for all

local and all remote policies is the one that is last executed on the agent locally, i.e. ai−1.

4.5.3 DWL Action Selection

At each time step, after Q-values and W-values for local and remote policies have been updated, an

action needs to be selected for an execution by each agent based on action nominations by local and

remote policies. Each policy, both local and remote, nominates an action, based on learnt Q values for

state-action pairs, together with an associated learnt W-value. For example, in Figure 4.6, agent A1

has four policies, two local and two remote, and at each time step receives four action nominations.

Note that, as described in Chapter 2, the W-value is specific to the agent’s current state, rather than

specific to a nominated action. W-values of inactive policies are set to 0, as nominations of sporadic

policies are not taken into account during their inactive periods. An action with the highest associated

W-value is selected, to prioritize the policy that currently has the most to lose (or “to minimize greatest

unhappiness” as discussed in Chapter 2). Using this method of action selection, actions nominated

by local policies have the same importance as actions nominated by remote policies, i.e., by remote

agents. To allow agents to give a higher priority to their own local preferences (i.e., to their own

locally nominated actions), we can use a cooperation coefficient C.

The action that is executed on an agent, i.e., the one that wins the competition between policies

at a given time step, is the one with the highest W-value (Wwin), after remote W-values have been

scaled by the cooperation coefficient C:

Wwin = max(Wil, C ×Wijk) (4.1)

where Wil are W-values associated with actions nominated by local policies of Ai and Wijk are W-

values associated with actions nominated by remote policies of Ai. In the event of a tie, where Wil

95

4.5. DWL Initialization and Learning Process

LP1Q-learning

W-learning

LP1Q-learning

W-learning

LP1Q-learning

W-learning

LP1Q-learning

W-learning

RP121

RP122

Execute a
with Wmax

DWL on Agent A 1

action

W-value

Local policies: P11,P12 Remote policies: RP121,RP122

action

action

action

W-value W-value

W-value

Fig. 4.6: DWL action nomination

and C ×Wijk have the same value, preference is given to a local action suggestion.

Algorithm 3: DWL action selection: learning values of C

/* Sum up total reward received on local and remote policies */

int totalReward=0;

/* Get rewards obtained on local policies and add to total reward */

foreach Pil in LPi do
totalReward+=ril;

end

/* Get rewards obtained on remote policies and add to total reward */

foreach RPijk in RPi do
totalReward+=rijk;

end

/* Use total reward to update Q-value for previous C used */

Update Q(si, Ci−1);

/* Select next value of C based on Q-values */

select C;

/* Multiply W-values of all remote policies by C */

foreach RPijk in RPi do
W(sijk)x= C;

end

/* Execute an action with max W-value across all local and remote policies */

Wmax = max (W(sil), W(sijk));

execute amax;

In the case of agents learning their individual values of C rather than using a predefined one,

Q-values for the process of learning C need to be updated at this point as well. In that case, instead

96

Chapter 4. Distributed W-Learning

of simply selecting the highest W-value according to Formula 4.1, an agent needs to execute the steps

presented in Algorithm 3. An agent needs to calculate the sume of the rewards received on all of its

local and remote policies, i.e., the rewards received in the neighbourhood, and use the sum to update

the Q-value for previously used C. In this way, an agent learns which values of C result in the highest

long-term rewards received in the neighbourhood.

The learning process and action selection steps are repeated on each agent until the agent leaves the

system or until the operation of the system is terminated externally, as individual learning processes

on agents have no terminating states.

4.6 DWL and the Requirements for a Multi-Policy Collabora-

tive Optimization Technique

In DWL, each agent implements a Q-learning process for each of its local and remote policies, a W-

learning process for each of its local and remote policies, and a single Q-learning process for learning

the cooperation coefficient. At each time step, on each agent, each policy, both local and remote,

suggests an action based on the outcome of the Q-learning process; that action is associated with a

W-value for the current policy state, based on the outcome of the W-learning process. In this way,

action selection is narrowed down to two actions, the action nominated with the highest W-value

amongst local policies, and the action nominated with the highest W-value amongst remote policies.

Selection between the two is done by selecting the maximum W-value, after the remote W-value is

multiplied by C. C can be predefined or learnt individually by each agent such as to maximizes the

sum of rewards received on all of the agent’s local and remote policies.

Through a combination of local policies (that use Q-learning and W-learning to learn optimal

local behaviours as well as to learn dependencies and enable collaboration between policies on a

single agent), remote policies (that use Q-learning and W-learning to learn optimal behaviours for

neighbouring agents and to learn dependencies and enable collaboration between policies on neigh-

bouring agents), and cooperation coefficient and ability to learn its value, DWL addresses all of the

requirements for multi-agent multi-policy optimization technique outlined in Section 4.1.

Table 4.1 summarizes which features address which specific requirement. DWL is a self-organizing

decentralized algorithm (Req. #1) and hence suitable for optimization in environments with no central

control or environments where using a centralized optimization approach is intractable. DWL does

not require a global system view; and optimization of the overall system behaviour is designed to

emerge from local optimization and agent cooperation. In DWL, action selection on each agent is

97

4.6. DWL and the Requirements for a Multi-Policy Collaborative Optimization Technique

Req # Requirements DWL feature
1. Decentralized Local learning processes for each policy
2. Learning-based Q-Learning and W-Learning
3. Simultaneous multiple policies W-Learning
4. Collaboration between agents Remote Policies
5. Collaboration between policies Remote Policies
6. Respect policy priorities Remote Policies, W-Learning
7. Suitable for heterogeneous policies/agents Remote policies
8. Know with who/when/how much to cooperate W-Learning, Cooperation Coefficient

Table 4.1: Requirements vs. DWL features

based on learning (Req. #2) the optimal action for all of its own policies, as well as for all of the

policies on its immediate neighbours (Req. #3, 4, 5). Collaboration is enabled between heterogeneous

agents and heterogeneous policies, regardless of whether the source of heterogeneity are different state

space representations, different action sets (i.e., different agent capabilities) or different policies (or

policy characteristics) (Req. #7). DWL agents exchange their state space representations during

initialization, and rewards received during the optimization process. Aside from this, agents do not

need to know anything about other agent’s action sets, policies, policy priority, or if they match their

own policies, state spaces, or action sets.

Agents are motivated to cooperate by introducing remote policies for which they receive rewards.

Agents learn with which other agents they share the highest dependencies by learning the Q-values

and W-values for the pairs of remote agent’s states and their local actions. The relative priority of

policies is specified by different rewards received for different policies, which is reflected in the Q-values

and W-values. A higher reward results in higher W-values, and higher W-values gain control over

action selection, respecting policy priority (Req. #6). Therefore, agents learn to cooperate with the

neighbours who implement policies with higher relative W-values, where those values are scaled using

cooperation coefficient C, selected to maximize a payoff in the immediate neighbourhood. Hence,

through a combination of W-learning and learning C, DWL can determine if and to which policy on

which neighbour to defer to and which deferral threshold to use (Req. #8).

DWL is primarily designed for multi-policy optimization, however, due to its approach to coop-

eration and action selection it can also be used to improve single-policy optimization by exploiting

collaboration capabilities. Even though all agents implement the same policy, and there is no higher

priority policy in the system to be deferred to, agents can still learn how their actions affect their

neighbours, and defer to neighbours’ action suggestions in the case of high dependencies between

them.

98

Chapter 4. Distributed W-Learning

4.7 DWL Assumptions and Scope

DWL is designed to optimize global behaviours of multi-agent autonomic systems. Due to the scale

and complexity of autonomic systems, rather than adopting a top-down approach, which models

the whole system as an MDP that individual agents are contributing to solve, we adopt a bottom-

up approach, where we model each agent’s immediate environment as an MDP. Agents optimize

their local behaviours and the behaviours of agents in their immediate neighbourhood, while global

behaviour is expected to arise from local and neighbourhood behaviours. In order to achieve globally

optimal behaviours, agents need to be cooperative, as selfish local behaviours might negatively affect

the global system behaviour rather than optimize it (Dowling & Haridi, 2008). Therefore, DWL does

not aim to optimize the individual behaviours of self-interested non-cooperative agents, but optimizes

global system behaviour by enabling local agent cooperation.

By using Q-learning and modelling each agent’s local environment as an MDP, DWL makes a

number of assumptions that might not strictly hold in dynamic multi-agent systems (Tesauro, 2007).

Namely, environments might not be fully observable, might be non-stationary, and might be history

dependent.

In multi-agent systems, the environment of an agent might not be affected only by its own actions,

but also the actions of its neighbours, making an agent’s local learning environment no longer Marko-

vian (Busoniu et al., 2005). When the Markovian property is violated, the theoretical guarantee of

convergence of Q-learning on a single-agent no longer holds (Busoniu et al., 2005). However, even

though there are no theoretical guarantees, empirical results show that RL based on MDPs is still

widely applicable in multi-agent systems (Busoniu et al., 2005; Dowling & Haridi, 2008).

Additionally, as DWL relies on sensors to obtain information about the environment, this infor-

mation may be noisy or incomplete, violating the full observability assumption of an MDP. However,

we assume these violations will not be severe enough to affect the learning agent to the point where

it would require modelling as a POMDP, and can be safely ignored (Busoniu et al., 2005).

4.8 Summary

In this chapter we presented the requirements for a multi-agent multi-policy cooperative optimization

algorithm for large-scale autonomic systems. Based on these requirements, we have developed such an

algorithm, DWL, presented its design, and discussed how it addresses the requirements specified. In

the next chapter we present the implementation of a DWL-based optimization system, and in Chapter

6 we evaluate the suitability of DWL in a collaborative multi-agent multi-policy simulation of UTC.

99

Chapter 5

DWL Implementation and Simulation

Environment

“When one has finished building one’s house, one suddenly realizes

that in the process one has learned something that one really needed to know in the worst way

–before one began.”

- Friedrich Nietzsche

This chapter describes the implementation of DWL agents and the UTC simulation environment.

We introduce the Collaborative Reinforcement Learning (CRL) framework (Salkham et al., 2008) that

we used to implement RL agents. We detail the extensions to the framework that we implemented

in order to facilitate development of RL agents with W-learning capabilities (referred to as RL-W

agents in this chapter). We then describe the implementation of DWL agents, relationships between

RL agents, RL-W agents and DWL agents, and communication between agents and the simulation

environment. We identify the methods that RL-W agents need to implement in order to be compatible

with DWL, as DWL is implemented as an additional hierarchical layer on top of W-learning agents. We

also describe the interface between agents and the simulation environment, which acts as a collection

of sensors and actuators, to collect data from the environment that agents require and to affect the

environment through execution of agents’ actions.

100

Chapter 5. DWL Implementation and Simulation Environment

�������

���	
�������	
�

�����

��
����
���

��������

�����	����������

������	�� ����� ������	��

��� �
��� ��
���

����� ���	
� ����
���

�����

�
������� ������

�������

��	�
!����	��
!�

��"���	��������������

Fig. 5.1: CRL Framework (Salkham et al., 2008)

5.1 CRL Framework

For the development of our agents we use Salkham’s CRL Framework (Salkham et al., 2008), a C++

library that provides components required for building single-policy collaborative RL agents (where

collaboration is implemented as described in Section 2.4.3.1).

In order to enable multi-policy implementations, we have extended the CRL framework to support

multi-policy RL-W, by including WModel and Wlearning classes. Classes that are a part of our

extension are denoted in red in the Figure 5.1.

WModel

WModel extends the Model class provided by the CRL framework. An instance of Model holds infor-

mation about learnt Q-values for <state, action> pairs for a given agent, and an instance of WModel

101

5.1. CRL Framework

holds information about learnt W-values for the states of a given agent.

The methods provided by the WModel class are as follows:

• void writeWModel (string location, int agentID), which is used to save W-values that

were learnt during exploration.

• void readWModel (string location, int agentID), which is used only at the start of the

exploitation, to read W-values learnt during exploration.

• void setWValue (StateValuePair svp), where StateValuePair is defined by

typedef pair <State*,double> StateValuePair

and is used to update the W-value for a given state.

• double getWValue (State*), which is used to retrieve the current W-value for a given state.

A Model instance is contained with an instance of MDP associated with an RL agent. Instances of MDP

associated with RL-W agents contain instances of both Model and WModel (see Figure 5.1).

WLearning

The WLearning class implements the W-learning process, by enabling update of W-values associated

with agents’ states. The update is performed using the W-learning formula presented in Chapter 2,

and requires the following values:

• learning rate α

• discount rate γ

• reward received at the last time step r

• current value of W for the state being updated, W (s), where the state being updated is the

agent’s state at the previous time step (as update is performed just before the next action is

take at the next time step, after the reward has been received for the effects of the previously

selected action).

• Q-value for the previous state, and action executed in the previous state Q(s, a)

• maximum Q-value available to an agent in the next state, max Q(s′, a′).

102

Chapter 5. DWL Implementation and Simulation Environment

α and γ are set as W-learning parameters at the start of the experiment, a reward is received from the

environment at each time step, and Q-values and W-values are contained within instances of Model

and WModel, which in turn are contained within an instance of MDP associated with the agent for

which we are performing an update. The MDP object also keeps track of the current and previous state

and the current and previous action that an agent was/is in, as required for Q-value and W-value

updates.

The W-learning class implements and exposes the following methods:

• void setAlpha (double alpha), which is used to set the value of α

• void setGamma (double gamma), which is used to set the value of γ

• void update (MDP* mdp, int rwd), which is used to update a W-value, by providing the

reward received, as well as a pointer to an MDP object associated with the agent fow which the

update is being performed. Access to the MDP is required to provide access to the Q-values and

W-values required for the update.

The CRL framework, as provided by (Salkham et al., 2008), enables implementation of single-policy RL

agents. After the addition of WModel and W-Learning, we can use the CRL framework to implement

multi-policy RL-W agents. In the next section we describe specific RL-W agents that we use to

implement UTC policies, as well as the agent generator, which enables us to generate multiple agents

that implement the same system policy, but with different state spaces and action sets, according to

the environment layout.

5.2 UTC RL Agent Implementation

As we have evaluated DWL in a simulation of UTC, the operating environment of the agents is

represented as a road network, where each group of traffic lights at a single intersection is controlled

by a DWL agent. RL actions represent traffic-light phases available to an agent, and the state-space

representation is specific to each policy that an agent implements. Policies are first implemented as

non-collaborative RL-W agents, and then a DWL layer is added for the creation of remote policies and

the implementation of the DWL action-selection mechanism. We first describe the implementation of

non-collaborative RL-W agents.

In order to implement specific UTC policies, we need to instantiate the CRL framework with

policy-specific implementations of RLAgent, MDP, Action, and Reward. In order for agents to com-

municate with the environment, i.e., sense the traffic conditions and execute actions, we provide an

103

5.2. UTC RL Agent Implementation

��������	����
�	�
 ����
�����	
��������������	�

������

�������
��������������������

�����

������

�������������������

�

�

������	���

�

�����
���	�����

�����
����

�����
����
����
���
� �����������

��	�

��	�

��	�

�

�����

�

�

����� �����

��	�

��	�

� �

�����

�����

��	�

� �

��	�

������������������

�����

�

Fig. 5.2: Generation of multiple GWO RL agents

interface for communication between the UTC simulator and agents, Sim_Env. We also implement

AgentsGenerator, a class that instantiates agents for all junctions in the road network, with states

and actions specific to the layout of that particular junction.

To provide these agents with W-Learning capabilities, i.e., to extend them from single-policy RL

agents to multi-policy RL-W agents, we need to instantiate a WModel object that will store W-values

for specific policy states, and associate it with the instance of MDP associated with each instance of

RLAgent. We also need to set WLearning as action nomination strategy of each instance of RLAgent.

An example of this process for the implementation of the GWO policy which we discussed in

Chapter 3 is presented in Figure 5.2. GWO_RLAgent, GWO_MDP, GWO_Reward, and GWO_Action extend

RLAgent, MDP, Reward, and Action, respectively, overloading the methods that use generic state,

action, and reward representations to use states that describe congestion levels as described in Chapter

3, actions that represent traffic-light phases available at the specific junction, and a 100-point reward

for being in the states specified for receiving rewards, i.e., the states where congestion is lower than at

the previous time-step. GWO_AgentGenerator instantiates a GWO_RLAgent for each traffic light junction

together with a corresponding GWO_MDP, GWO_Reward, and GWO_Action. In order for a GWO_RLAgent

to determine the environment state and execute actions (i.e., set phases on the group of traffic lights

that it controls) it needs to communicate with the environment using GWO_Sim_Env. GWO_Sim_Env

provides the following methods to enable that interaction:

104

Chapter 5. DWL Implementation and Simulation Environment

• void (int junctionID, int& vehicleCount) simulates a sensor at the junction with iden-

tifier junctionID, returning the total number of vehicles on all of the junction’s incoming

approaches.

• Map* getMap() provides access to the full environment layout, i.e., all of the junctions with as-

sociated incoming and outgoing junctions (neighbours), access to links and lanes that constitute

the approaches, and all of the vehicles present on all of the lanes.

• bool switchPhase(int Junction_ID, int Phase_ID) simulates an actuator at the junction

with identifier junctionID, setting the phase at that junction to the phase with identifier

Phase_ID.

As it contains details of the full junction layout and can provide access to vehicle objects through

junction objects, GWO_Sim_Env is also used to gather various statistics on simulation and agent per-

formance, e.g., waiting times for all vehicles in the system, the number of stops for all vehicles in the

system, the total number of vehicles per vehicle type and/or per junction.

In order to have a W-learning capability a GWO_RLAgent needs to have W-learning assigned as its

action selection strategy using the following method:

void setNominationStrategy(LearningStrategy*);

where LearningStrategy is an instance of WLearning:

WLearning* nominationStrategy = new WLearning();

Agents implementing other UTC policies are implemented in a similar manner. EVO, a policy that

optimizes the travel time of emergency vehicles, which we discussed in Chapter 3, is implemented using

EVO_RLAgent, EVO_MDP, EVO_Reward, and EVO_Action, while EVO_Sim_Env provides an interface for

communication with the simulation environment. Instead of a method that counts all vehicles on the

junction approach that GWO_Sim_Env implements, EVO_Sim_Env enables an agent to sense if there are

any (and if so, how many) emergency vehicles present in its local environment, using a method:

• void getAmbsCount(int junctionID, int& ambCount).

An additional policy that we implemented for DWL evaluation, that we have not used in non-

collaborative experiments, is a regional, sporadic policy that optimizes Public Transport vehicles Only

(PTO). We implemented this policy using PTO_RLAgent, PTO_MDP, PTO_Reward, and PTO_Action.

We implemented PTO_Sim_Env for communication between the simulator and PTO agents, which

105

5.3. UTC DWL Agent Implementation

PTO_Reward uses to determine the current policy state, by sensing if there are any (and if so, how

many) public transport vehicles present on any of the agent’s approaches, using a method:

• void getBusCount(int junctionID, int& busCount).

EVO_RLAgent, PTO_RLAgent and GWO_RLAgent have full agent capabilities, i.e., can be deployed on

their own for non-collaborative optimization for single policies they are implementing. When the DWL

layer is added, EVO_RLAgent, PTO_RLAgent and GWO_RLAgent retain all of their agent capabilities

(e.g., sensing the environment and learning) apart from executing actions in the environment directly,

as all of them are controlling the same set of actuators. Control over action selection is transferred to

a DWL_RLAgent, to avoid interference between action executions by different RL agents implementing

different policies. Once a DWL_RLAgent has selected an optimal action, it initiates action execution by

one of the agents. We outline the implementation of this action selection process in the next section.

5.3 UTC DWL Agent Implementation

In this section we present the implementation of DWL agents, the steps required for generation and

initialization of DWL agents at the start of the simulation, as well as the sequence of steps required

for action selection using DWL.

5.3.1 DWL Agent Generation

In order to implement multi-policy collaborative UTC agents using DWL agents, we have developed

the following classes: DWL_AgentGenerator, DWL_RLAgent, DWL_MDP, and DWLCoop_MDP. We discuss

the use of each below.

5.3.1.1 DWL_AgentGenerator

DWL agents are generated using an instance of DWL_AgentGenerator that instantiates DWL agents

for all of the junctions in the road network. DWL_AgentGenerator also instantiates agent generators

for all policies that are to be deployed in the system, which in turn generate an agent for each policy

on each agent at which the policy is to be deployed (see Figure 5.3). Note that due to the potentially

different spatial scope of policies, not all policies will be implemented on all of the agents. DWL

agents are generated for each agent on the network, while DWL_AgentGenerator reads the list of

other policies that are to be deployed, together with the corresponding agents at which they are to

be deployed, from the AgentTypes configuration file. Each policy in the system is assigned a unique

106

Chapter 5. DWL Implementation and Simulation Environment

DWL_AgentsGenerator

EVO_AgentsGenerator

GWO_AgentsGenerator

EVO_RLAgent

GWO_RLAgent

DWL_RLAgent

DWL_MDP

<<instantiates>> 1

1

<<instantiates>> 1

1

<<instantiates>> 1 … n
1

<<instantiates>> 1 … n

1

1 <<instantiates>> 1 … n

1 <<instantiates>> 1 … n

1

0...n

1
1

0...1

0...1

DWLCoop_MDP

1

1

1

<<instantiates>> 1 … n

DWLCoop_Action1

1 … n

Fig. 5.3: DWL agent generation

107

5.3. UTC DWL Agent Implementation

identifier, which is used in AgentTypes to identify it and used by DWL_AgentGenerator to instantiate

the correct agent generators. Single-policy collaborative DWL optimization is implemented by only

listing a single policy identifier in AgentTypes.

5.3.1.2 DWL_RLAgent

DWL_RLAgent, even though it also extends RLAgent, differs in implementation from other RL agents

that implement single policies, as they are charged with different tasks. DWL_RLAgent does not imple-

ment a specific policy itself, so it does not have an MDP or actions associated with it. DWL_RLAgent is

in charge of action selection on a single junction, where the actions considered for selection are received

from all local policies (implemented as RL-W agents, e.g., EVO_RLAgent, GWO_RLAgent, PTO_RLAgent)

and all remote policies, implemented as instances of the DWL_MDP class. Therefore, a DWL_RLAgent

contains the following members:

• a map of pointers to all local agents, map <int, RLAgent*> allagents, where int is the iden-

tifier of the policy type that RLAgent* implements.

• a map of pointers to MDPs for the remote policies grouped by the neighbour with which they

are associated

map <int, NeighborMDPs> remotePolicies where int is the junction identifier of a neighbour,

and NeighborMDPs is defined as

map <int, DWL_MDP*> NeighborMDPs where int is the identifier of the policy type DWL_MDP*

is implementing.

During the initialization process, all local policies are instantiated and associated with their corre-

sponding DWL_RLAgent instances. After this is done, each DWL_RLAgent obtains the list of its one-hop

neighbours from the environment (i.e., vectors of all the first upstream and downstream traffic-light

junctions), obtains from the DWL_RLAgent on each of its neighbouring junctions the list of all policies

(i.e., the list of local RL agents stored in allagents) that the neighbour implements, and instantiates

a DWL_MDP object for each of those policies.

In order to be able to engage in different levels of cooperation, each DWL_RLAgent needs to either

have a variable which stores a predefined cooperation coefficient, or an instance of DWLCoop_MDP to

store the Q-values associated with each available cooperation coefficient. In order to update these Q-

values, a DWL_RLAgent needs to be associated with an instance of Q-learning as a learning strategy

for learning values of C, as follows:

108

Chapter 5. DWL Implementation and Simulation Environment

QLearning* coopLearningStratetgy = new QLearning();

DWLagent→setCoopLearningStrategy(coopLearningStrategy);

where DWLagent is an instance of DWL_RLAgent.

In order to select a C based on these Q-values for use at each action selection step a DWL_RLAgent

also needs to have an associated ActionSelection instance, as follows:

Boltzmann* coopActionSelectionStrategy = new Boltzmann();

DWLagent→setCoopActionSelectionStrategy(coopActionSelectionStrategy);

where DWLagent is an instance of DWL_RLAgent.

5.3.1.3 DWL_MDP

DWL_MDP is extended from the MDP class, and therefore contains Model and WModel instances, which

store Q-values and W-values for the remote policies. Model is built using local actions and neigh-

bour’s policy’s states, and WModel is built using neighbours’ policy states. Therefore, in order for

DWL_AgentGenerator to be able to get access to the actions and states required to build Model and

WModel for DWL_MDP, RL-W agents need to provide access to the list of their actions and states through

providing access to their MDP. E.g.:

std::map<string,GWO_Action*>localActions=GRLLocal→getMDP()→getActions();

where GRLLocal is an instance of GWO_RLAgent and

std::map<string,State*>remoteStates=PRLRemote→getMDP()→getStates();

where PRLRemote is an instance of PTO_RLAgent.

The above two methods are the only methods that RL-W agent and its corresponding MDP need

to implement to facilitate the initialization of DWL remote policies. From the obtained map of remote

policy states and local agent actions, a new DWL_MDP is created for each remote policy as follows:

DWL_MDP* dwlmdp = new DWL_MDP (ID, remoteStates, localActions);

As already noted, local policies are implemented as fully functioning RL agents, however, remote

policies do not have full agent capabilities, but are only implemented as an MDP, without the capability

to sense the environment or execute actions. The reason for this is that remote policies, in fact, are

never required to sense the environment, as they receive state information from the corresponding

local policy on a corresponding neighbour, and never need to execute actions in the environment, as

they only provide action suggestions to the DWL_RLAgent which then instructs one of the local agents

which action to execute.

109

5.3. UTC DWL Agent Implementation

5.3.1.4 DWLCoop_MDP

Each DWL_RLAgent also contains an MDP associated with a process for learning a cooperation co-

efficient C, DWLCoop_MDP. DWLCoop_MDP extends MDP and contains a Model that stores Q-values for

cooperation actions. Cooperation actions are implemented as instances of DWLCoop_Action. Note

that all Q-values are associated with a single default state, as we do not distinguish between policy

states when learning C.

5.3.1.5 Initial Agent Wake-up

After all of the agents have been instantiated, the simulator schedules their first wake up, to execute

the first round of actions. Further wake ups are scheduled based on the duration of actions that agents

execute. In our simulation, action duration is set to 20 seconds, so all of the agents are woken up

every 20 seconds. However, if actions (i.e., in our simulation, traffic light phases) were to have varying

duration, the wake up time for each agent can be scheduled separately in order to enable asynchronous

wake-ups. At each wake up, on each traffic light-controlled junction in the network, one step of DWL

action selection is performed. We describe the implementation of DWL action selection in the next

section.

5.3.2 DWL Action Selection Implementation

The process of action selection performed at each learning step at each of the DWL_RLAgent objects

is depicted in Figure 5.4. The simulator wakes up DWL_RLAgent on each of the traffic-light junctions.

DWL_RLAgent, in turn, wakes up all RL-W agents implementing local policies. Local policies sense the

environment and map the conditions to their local state representation. Based on the reward received

for being in that state, each local policy updates its Q-value for the previous state and previous action

executed, and the W-value for the previous state. Based on the current state, each local policy, upon

request, sends an action suggestion to DWL_RLAgent. Action suggestions are stored in the vector of

suggestions, together with the W-values for the state that the policy is currently in, and the identifier

of the agent and policy suggesting it, as shown below.

vector <suggestion> actions;

where class suggestion is specified as:

class suggestion{

string action_id;

110

Chapter 5. DWL Implementation and Simulation Environment

double w_value;

string agentID_policyID;

};

After suggestions from all of the local policies have been received, DWL_RLAgent wakes up all of its

associated remote policies, i.e., the DWL_MDP objects implementing them. Remote policies request

from the corresponding local policies on the corresponding neighbour the current policy state and the

reward received for being in that state. These are the only two messages that need to be exchanged

between an agent and each of its neighbours’ policies at each action selection step. Based on the

reward received, each remote policy updates its Q-value for the previous state and previous action

executed and W-value for the previous state. Based on the current state, each remote policy, upon

request, sends an action suggestion to DWL_RLAgent, together with an associated W-value. W-values

are multipled by a cooperation coefficient C. Either a predefined value of C is used, or in the case of

a DWL deployment that learns C, a value is selected using an instance of ActionSelection set as a

coopActionSelectionStrategy in DWL_RLAgent. In the case of a DWL deployment that learns C,

prior to selection of C for the current action-selection step, a DWL_RLAgent updates the Q-value for

C used in the previous step using the sum of the rewards received on all local and remote policies for

their current states.

Finally, after W-values of remote policies have been multipled by C, a DWL_RLAgent identifies the

maximum W-value, and selects the associated action for execution. It notifies all local and remote

policies of the action selected, so they can use it in the next action selection step to update their

Q-values, and instructs one of the local RL-W agents to execute the action. An RL-W agent executes

an action, i.e., it changes the phase of the traffic lights controlled by an agent to a phase selected in

the action selection process.

In order for DWL_RLAgent to execute an action selection as described above, underlying RL-W

agents do not need to implement any additional methods, but only need to ensure they provide

DWL_RLAgent with access to some of the methods they already implement for single-policy or multi-

policy non-collaborative implementations. Each RL-W agent needs to provide access to its associated

Reward and MDP, and MDP, in turn, needs to provide access to the associated Model and WModel, as

well as the current/previous state and current/previous action. DWL_RLAgent also needs access to an

instance of ActionSelection, in order to select the next action for a given MDP, and an instance of

W-Learning, in order to update W-values in a given MDP using the latest reward.

Each RL-W agent has a wakeup() method, which is used to wake the agent up at set intervals

during the simulation and executes one algorithm learning step. One learning step consists of sensing

111

5.3. UTC DWL Agent Implementation

DWL_RLAgent

Sim_Env
Local policy

RLAgent
DWL_RLAgent
action selection

Remote policy
DWL_MDP

Neighbour’s
local policy

State s

getState()

wakeup()

wakeup()

update Q-value for previous step

update W-value for previous step

calculate reward for s

getActionSuggestion and W -value

action, W-value

wakeup()

getState()

State s

getReward()

reward r

update Q-value for previous step

update W-value for previous step

getActionSuggestion and W -value

action, W-value

select C

select highest W /action winner

notifyOfWinningAction ()
notifyOfWinningAction ()

execute(winningAction)

update Q-value for previous C

Fig. 5.4: DWL action selection sequence diagram

112

Chapter 5. DWL Implementation and Simulation Environment

the environment conditions, mapping the conditions to one of the policy states, getting a reward for

being in that state, updating Q-values for the previous state-action pair and W-values for the previous

state, selecting an action to execute in the current state, and finally executing that action. In order

for an RL-W agent to be compatible with DWL, action execution needs to be called from outside the

wakeup() method, so an agent can still perform the full learning process, but enable a DWL_RLAgent

to take control over action selection and intercede just before action execution. DWL_RLAgent, after

it has selected an action for execution based on all local and remote policy suggestions, changes the

current action of all RL-W agents to the one that it has selected.

5.3.3 DWL Agent Summary

The implementation of DWL presented in this section follows the DWL requirements outlined in the

previous chapter. DWL is decentralized and uses only local actions and interactions, i.e., agents use

only local information (vehicle types and vehicle counts only on their approaches) and communicate

only with their one-hop neighbours (first upstream and downstream traffic light junctions). DWL

enables collaboration between heterogeneous agents and policies, as action suggestions received from

local policies and remote policies have the same format and are received in the same manner regardless

of policy type, scope, or agent layout.

5.4 Summary

In this chapter we have presented the implementation of DWL agents as defined by the algorithm

design in Chapter 4. We have presented the CRL framework that we used to implement single-policy

RL agents. We have presented extensions to the framework we have implemented in order to enable

the development of multi-policy W-learning agents. We have then presented the implementation of

DWL agents, which are added as an action-selection layer on top of W-learning agents, to implement

multi-policy collaborative agents. This layered implementation approach enables an easy comparison

between the performance of single-policy, non-collaborative multi-policy, and collaborative multi-agent

multi-policy implementations, while also enabling the easy addition of further policies.

113

Chapter 6

DWL Evaluation

“An optimist is a person who sees a green light everywhere,

while a pessimist sees only the red stoplight

. . . The truly wise person is colorblind.”

Albert Schweitzer

In this section we present an evaluation of DWL as a technique for multi-agent multi-policy opti-

mization in decentralized autonomic systems. We present the objectives of the evaluation, along with

the metrics that we used to measure the performance of DWL. We describe the experiments we used

for the evaluation, and present and analyze their outcomes.

6.1 Evaluation Objectives

The goal of the evaluation of DWL presented in this chapter is to establish how well DWL addresses

the requirements specified in Chapter 4. The main objective of the design of DWL was to provide a

decentralized, self-organizing, multi-policy, multi-agent, optimization technique that improves system

performance by enabling simultaneous deployment of heterogeneous policies and collaboration between

heterogeneous agents. In Chapter 4 we outlined how the design of DWL addresses these requirements,

however, the success of DWL as a technique for multi-agent multi-policy optimization depends on its

performance in a variety of evaluation scenarios.

DWL can be said to have succeeded in addressing our requirements for a multi-agent multi-policy

optimization technique if it satisfies the following performance requirements:

114

Chapter 6. DWL Evaluation

1. DWL outperforms existing UTC optimization techniques. As we evaluate DWL in a simulation

of UTC, to be deemed a success, DWL would need to outperform existing techniques used for

optimization in that domain. Note that we only consider stationary traffic conditions, as, once a

suitable behaviour for that set of conditions has been learnt, DWL does not have the ability to

adapt to a change in traffic pattern. Pattern change detection and adaptation to new patterns

is a subject for future work (see Chapter 7).

2. DWL outperforms non-collaborative multi-policy deployments using existing RL-based tech-

niques. As a representative of a non-collaborative multi-policy deployment we use independent

agents implementing W-learning. W-learning has been shown to be a suitable technique for

non-collaborative multi-policy optimization in UTC as presented in Chapter 3.

3. The ability to learn the optimal levels of collaboration improves the performance of DWL over

using predefined collaboration coefficients.

4. DWL is suitable for single-policy collaborative deployments, i.e., it outperforms single-policy

non-collaborative deployments. If a system needs to optimize its behaviour towards only a

single policy, DWL can improve the performance of the system towards that policy by utilizing

agent collaboration.

5. DWL respects policy priorities. When multiple system policies are addressed using DWL, the

priority of those policies is respected; the performance of a lower priority policy might be sac-

rificed to some extent for an increase in the performance of the higher priority policy but not

vice versa.

6. DWL multi-policy deployments improve the performance of at least one vehicle type when com-

pared to single-policy DWL deployments, if multiple vehicle types are present in the system.

For example, if both cars and buses are present in the system, we expect a single-policy deploy-

ment addressing only cars to achieve good performance with respect to cars, while buses might

be neglected resulting in their poor performance. If a policy that addresses buses is added to

the system, we expect a multi-policy DWL deployment to improve the performance of buses,

while potentially having small negative effects on cars, as cars would not be the only vehicle

type whose performance is being addressed. While single-policy deployments, in the presence of

multiple vehicle types, neglect the performance of the vehicle type that they are not addressing,

multi-policy deployments ensure that both vehicle types are addressed simultaneously and no

vehicle type is neglected. Therefore, we consider this to be a performance improvement, as nei-

115

6.2. Evaluation Metrics

ther of the vehicle types are neglected, even though one vehicle type might suffer small adverse

effects in order for performance of the other vehicle type to be improved.

7. DWL improves the performance of system policies under a variety of environmental conditions

(e.g., traffic load, traffic patterns) and policy characteristics (e.g., scope, priority).

8. DWL does not require prohibitively long training times to learn performance-improving be-

haviours.

As part of this evaluation we also investigate the impact of policy relationships on the W-values of

local and remote policies deployed on DWL agents, as DWL is designed to learn W-values that reflect

the dependencies between agents and between policies, and to take advantage of those dependencies

to improve performance.

In the next section we present the metrics we use to assess the performance of DWL.

6.2 Evaluation Metrics

To evaluate the performance of DWL we use a number of metrics relevant to our application area,

UTC. These metrics are as follows:

1. Average vehicle waiting time, per vehicle type.

2. Number of vehicles served.

3. Traffic density.

4. Average number of stops per vehicle, per vehicle type.

The metrics 1-3 used in the evaluation scenarios presented here are the same ones used for the evalu-

ation of single-agent, multi-policy techniques presented in Chapter 3. Please refer to that chapter for

an explanation of the metrics, and the rationale for their use and suitability.

In the evaluation scenarios in this chapter we have also measured the average number of vehicle

stops, per vehicle type for the duration of the experiment. We introduce this as an additional metric

to help us assess the suitability of DWL for optimization in UTC, as it reflects traffic congestion and

traffic flow (Klein, 2001). As we believe this metric is related to vehicle waiting time (i.e., the less

stops the vehicle makes, the lower its total waiting time will be), we do not analyze it in as much

detail as other metrics, but only analyze its consistency with other metrics.

116

Chapter 6. DWL Evaluation

6.3 Evaluation Scenarios

In this section we describe the scenarios that we used to evaluate the suitability of DWL for multi-policy

optimization in large-scale decentralized autonomic systems. We first introduce the UTC policies we

used for evaluation, present the simulation environment and parameters, and then describe the specific

details of each scenario used.

6.3.1 UTC Policies

As part of the evaluation, we have implemented UTC baselines, single-policy deployments of DWL,

and multi-policy deployments of DWL, as described below.

6.3.1.1 Baselines

As baselines with which to compare DWL’s performance, we use the same baselines that we used in

our case study on non-collaborative multi-policy optimization, namely RR and SAT. For more details

on these please refer to Chapter 3.

6.3.1.2 Single-Policy Deployments

As DWL has been designed to support multi-policy optimization in heterogeneous environments, the

policies we have selected for evaluation differ in their regional and temporal scope, and in their priority.

Different scopes and priority, i.e., heterogeneity of policies, also causes heterogeneity of agents with

respect to the policies that they are implementing. The policies we implemented are presented below.

GWO - Optimize global vehicle waiting time GWO has already been introduced in Chapter

3, as it was used in our preliminary case study. For details of the state space and reward function for

this policy please refer to that chapter. However, in Chapter 3, GWO had only been implemented in a

non-collaborative single-policy deployment using Q-learning, and in combination with EVO in a non-

collaborative multi-policy deployment using W-learning. In the evaluation scenarios that we describe

in this chapter, we have implemented GWO using DWL with a range of predefined collaboration

coefficients and in a DWL deployment where C is learnt rather than predefined.

PTO - Prioritize public transport vehicles PTO is a regional, sporadic policy that prioritizes

public transport vehicles over other traffic. An agent’s state space encodes information about which

approach(es), if any, have public transport vehicles (in our simulation buses) waiting (e.g., “Bus

present on a1”). The size of the state space depends on the layout of the junction, i.e., on the number

117

6.3. Evaluation Scenarios

of approaches on the junction. Bus(es) can be present on all of the approaches, on none of the

approaches, on only one approach at a time, or on various combinations of two or three approaches at

a time. Agents are rewarded (120 points in this set of experiments) for being in a state where there is

no bus present at any of the approaches. This motivates the agents to, as soon as possible, return to a

state with no buses present, by enabling buses to pass. This policy does not address any other vehicle

type and only takes buses into account when making action selections. PTO has been implemented

using DWL with a range of predefined collaboration coefficients and in a DWL deployment where C

is learnt rather than predefined.

The implementation of PTO is similar to the implementation of EVO introduced in Chapter 3

and used in our case study on existing single-agent multi-policy approaches. As EVO addressed only

emergency vehicles that accounted for only 0.5% of the overall traffic, in this set of experiments we

use PTO, which addresses public transport vehicles that make up a larger proportion of overall traffic.

As public transport vehicles have a higher priority than cars, but a lower priority that emergency

vehicles, we use 120 points as a reward in PTO, whereas EVO used a 200-point reward.

6.3.1.3 Multi-Policy Deployments

GW-PT Both GWO and PTO are addressed simultaneously using a multi-policy DWL deployment,

GW-PT. GW-PT has been implemented using a range of predefined collaboration coefficients, as well

as in a DWL deployment where C is learnt rather than predefined.

When comparing GW-PT to other non-DWL approaches in this section, we refer to it as “DWL”.

6.3.2 Simulation Setup

Evaluation of DWL was performed in the same traffic simulator as our case study presented in Chapter

3. The map we used for evaluation is shown in Figure 6.1.

The map corresponds to Dublin’s city center, and consists of 270 junctions, 62 of which are con-

trolled by traffic lights. The traffic-light junctions are marked on the map by a circle, and correspond

to junctions which are currently controlled by Dublin’s traffic control system. As the policies that we

use for evaluation address cars and public transport vehicles, we use both of these vehicle types in our

simulation.

Personal vehicles (i.e., cars) enter the system through 14 junctions on the edge of the map (repre-

senting the junctions where traffic enters the city centre area) and 3 junctions in the center of the map

(representing the city centre parking lots), as shown in Figure 6.2 using black dots, and travel along

260 different routes, to exit the system through one of the 17 entry junctions that also serve as vehicle

118

Chapter 6. DWL Evaluation

Fig. 6.1: DWL evaluation map

finishing points. Vehicles follow the shortest route between their start and end junctions. Such a large

variety of routes ensures that each traffic-light junction in the system has traffic travelling through it,

but also that this traffic flow is not spread evenly across the map, as some junctions will be visited by

a larger number of vehicles on their routes.

Buses join and exit the system only through a subset of the entry/exit junctions, and travel only

along 20 designated bus routes. Each bus route has at least one bus stop where each bus makes a

mandatory 20-second stop. Due to an overlap of routes, some buses stop at 2 or more bus stops during

the simulation. 47 out of the 62 traffic-light junctions are positioned on bus routes. PTO is deployed

only at these junctions, and is therefore of regional spatial scope, implemented by ∼75% of agents

in the system. Buses make up 5% of the overall traffic in the simulation, reflecting PTO’s sporadic

temporal scope.

6.3.3 Simulation Parameters

The simulation of baselines, RR and SAT, was run for a duration of 750 minutes of simulation time.

Traffic was joining the simulation for the first 720 minutes (12 hours), while the final 30 minutes

were added to allow all of the vehicles to arrive to their destinations and exit the system. The action

duration for RR was fixed to 20 seconds, and SAT parameters used were those determined to yield

the best performance; the minimum action duration was set to 20 seconds, the phase increment to 10

seconds, and the maximum duration of the cycle factor was set to 1.2. Please refer to Chapter 3 for

119

6.3. Evaluation Scenarios

Fig. 6.2: Vehicle route start/end junctions

more details on these parameters.

Simulations for both single- and multi-policy DWL deployments were run in five separate stages1,

each lasting 750 minutes of simulation time (unless otherwise stated when describing individual sce-

narios), to allow the exploration of actions and the learning of Q-values and W-values, as well as

learning the optimal cooperation coefficients. Deployments of DWL with predefined cooperation coef-

ficient need to include only stages 1-3, while deployments of DWL that learn C need to include stages

1-5. The five stages are as follows:

1. Learning Q-values for all local and remote policies. At the start of this stage all Q-values for all

local and remote policies are initialized to 0. The action selection strategy used is Boltzmann

with temperature parameter set to 10000 at the start of the stage. Temperature cools down

uniformly to reach 1 at the end of this stage. The task of this stage is to explore the outcomes

of all the actions that local and remote policies can take. The cooperation coefficient is set to a

predefined value 0 < C < 1 during this stage.

2. Learning W-values for all local and remote policies. This stage is initialized using the Q-values

learnt in stage 1, which are also updated during this stage. W-values are initialized to 0 at the

start and are learnt during this stage. The action selection strategy used is Boltzmann with
1Stages 1-5 were executed separately in order to clear leftover traffic from the previous stage before starting a new

one, i.e., to make sure that congestion that may have occurred during the exploration stages does not have negative
effects on the performance in exploitation stages.

120

Chapter 6. DWL Evaluation

temperature parameter set to 1, i.e., Q-values are mostly exploited, allowing local and remote

policies to learn W-values relative to the actions that are most likely to be selected during the

exploitation stage. The cooperation coefficient is fixed, meaning that Q-values and W-values

are learnt given a predefined value of C.

3. Exploiting Q-values and W-values. This stage is initialized using the Q-values and W-values as

learnt during stages 1 and 2. The action selection strategy used is Boltzmann with temperature

parameter set to 1, so both Q-values and W-values are exploited, but also updated during this

stage. The cooperation coefficient is fixed to a predefined value during this stage. Therefore,

the performance during this stage is the best that DWL can achieve given a certain fixed value

of C.

4. Learning optimal values of C per agent while exploiting Q-values and W-values. This stage is

initialized using Q-values and W-values saved after execution of stage 3. The action selection

strategy used is Boltzmann with temperature parameter set to 1, so both Q-values and W-values

are exploited, but also updated during this stage. However, unlike stage 3 where C is predefined,

in this stage Q-values associated with values of C are learnt. The action selection strategy used

for this process is also Boltzmann but the temperature parameter is set to 10000, and cools down

uniformly during this stage to reach 1 at the end. This enables exploration of various values of

C.

5. Exploiting learnt Q-values, W-values and values of C. This stage is initialized using Q-values

and W-values returned as output of stage 4, and Q-values for various values of C, also learnt in

stage 4. This stage is mostly exploitative and the temperature for all action selection processes

is set to 1. Therefore, performance during this stage is the optimum that DWL can achieve and

it takes full advantage of all of DWL’s features, i.e., remote policies, the cooperation coefficient,

and the ability to learn cooperation coefficient.

α and γ for all Q-learning and W-learning processes in the evaluation scenarios presented in this

chapter are in all stages set to 0.1 and 0.3, respectively, which are values experimentally determined

to result in best performance in our scenarios. The duration of each action selected in any of the

stages is fixed to 20 seconds. There are no restrictions on repeating actions so an approach can be

given a green signal for longer than 20 seconds if traffic demand requires it.

The results presented in this chapter represent performance measured during exploitation stages,

namely, stage 3 for deployments of DWL with predefined values of C, and stage 5 for deployments of

DWL where C is learnt by agents. Each stage for each deployment is executed five times, and the

121

6.3. Evaluation Scenarios

average values across the five executions are presented. Two-tailed t-tests were performed to investigate

the statistical significance of the differences in performance of different algorithms deployed. Where

t-tests return values of p < 0.05, results are considered statistically significant.

We evaluated the performance of DWL in five different traffic scenarios. Within a single scenario,

all five executions ran with the same vehicle input files, i.e., vehicles’ join times, their origins, routes

and final destinations were constant. Vehicle join times were generated randomly, by specifying

only the total number of vehicles to join at a given location during the simulation (e.g., during 12

hours, 3500 vehicles should enter the simulation at junction X). Varying the input files, especially

at higher loads, would not create significant changes in traffic patterns, due to the high frequency

of vehicle join times, and the high density of vehicles present in the system. Instead, differences in

traffic conditions were created due to the RL-based scenarios selecting actions stochastically at each

time step. Different traffic lights’ actions result in different traffic conditions, i.e., even if vehicles

join the simulation across all five executions at the same time, they arrive at different junctions on

their route and their destinations at different times and their waiting time at those junctions varies,

as determined by traffic-light signal settings. More significant differences in traffic conditions were

simulated by generating five different vehicle input files for five different evaluation scenarios, reflecting

different traffic patterns that might occur.

In the next section we describe the specific evaluation scenarios that we implemented, outline their

objectives and present additional scenario-specific details relating to traffic load and vehicle routes.

6.3.4 List of Evaluation Scenarios

In this section we present details of the scenarios that we implemented, in terms of the number of

junctions, traffic load, traffic patterns, vehicle types, and vehicle routes, as well as the rationale behind

evaluation of DWL performance using a given scenario.

6.3.4.1 Scenario 1: Multi-Policy Optimization of Uniformly Distributed Traffic Under

Different Traffic Loads

This scenario was implemented to evaluate the performance of DWL in uniform traffic conditions

under different traffic loads. We consider a uniform traffic pattern to be a set of traffic conditions

where an approximately equal number of vehicles travel through the map area in opposing directions,

i.e., the number of vehicles travelling North to South is similar to the number of vehicles travelling

South to North, and the number of vehicles travelling East to West is similar to the number of vehicles

travelling West to East.

122

Chapter 6. DWL Evaluation

The scenario was implemented using the Dublin city center map, as shown in Figure 6.1. Cars

travel along 260 routes, with an equal number of vehicles on each route, and buses travel along 20

routes, where those routes are a subset of the 260 car routes, and each route has an equal number of

buses. However, note that these routes overlap, so even though the demand at the start of the routes

is the same, demand on various roads and junctions in the inner parts of the map might vary. For

example, major four-way junctions are situated on more routes than smaller two-approach junctions

and will therefore have a higher number of vehicles travelling through them. The length of the vehicle

routes also differs; the shortest vehicle route spans across 4 junctions, the longest route spans 37

junctions, and the average route length is 19 junctions. Buses represent 5% of total traffic.

This scenario has been implemented for two traffic loads:

• low load: ∼35,000 vehicles are inserted in the system over 12 hours, or the equivalent of ∼3000

vehicles per hour.

• high load: ∼60,000 vehicles are inserted in the system over 12 hours, or the equivalent of ∼5000

vehicles per hour.

The loads are based on traffic-flow data reported by the Dublin Transportation Office (DTO, 2006).

During the morning rush hour, between 7:30 and 9:30, on average 12,000 vehicles per hour enter the

inner-city area, consisting of approximately 250 junctions. Our map corresponds to approximately

one quarter of that area, or ∼60 junctions, indicating an estimated figure of one quarter of the traffic

flow, or 3000 vehicles per hour. We take that figure to represent the lower end of our estimate, i.e.,

low load. For the high load, we use a figure of 5000 vehicles per hour, taking into account that our

map represents the heart of the city including Dublin’s main street, O’Connell street, so one quarter

of the area might attract more than one quarter of the traffic, in this case an estimated 40% of the

total traffic entering the inner city.

As part of this scenario we ran simulations with the following policy deployments:

• RR and SAT

• GWO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GWO using DWL with learnt values of C

• PTO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• PTO using DWL with learnt values of C

• GW-PT using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

123

6.3. Evaluation Scenarios

• GW-PT using DWL with learnt values of C.

This set of deployments enables us to compare the performance of DWL with the performance of the

baselines, to compare the performance of single-policy deployments to multi-policy deployments in

the presence of multiple vehicle types, to compare non-collaborative (C=0) deployments with collab-

orative DWL deployments, and to compare DWL deployments with predefined values of C to DWL

deployments with learnt values of C, all under uniform traffic conditions for both low and high traffic

loads.

6.3.4.2 Scenario 2: Multi-Policy Optimization of Non-Uniformly Distributed Traffic

(3:1 pattern)

This scenario was implemented to evaluate the performance of DWL for optimization of non-uniformly

distributed traffic. We consider a non-uniform traffic pattern to be a set of traffic conditions where

the numbers of vehicles travelling in opposing directions on the map are not equal. In this scenario

the number of vehicles travelling from the North side of the map to the South side of the map is three

times larger than the number of vehicles travelling from the South side to the North side. Therefore

we call this traffic pattern the 3:1 pattern. This set of conditions is designed to simulate morning or

evening rush hour traffic, when most of the traffic tends to move towards the city centre or is leaving

the city center. The rest of the simulation conditions, in terms of the simulation map, number of

junctions, routes and vehicle type ratios are identical to the conditions in Scenario 1 described in the

previous section.

As part of this scenario we ran simulations with the following policy deployments:

• RR and SAT

• GWO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GWO using DWL with learnt values of C

• PTO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• PTO using DWL with learnt values of C

• GW-PT using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GW-PT using DWL with learnt values of C.

This set of deployments enables us to compare the performance of DWL with the performance of the

baselines, to compare the performance of single-policy deployments to multi-policy deployments in

124

Chapter 6. DWL Evaluation

the presence of multiple vehicle types, to compare non-collaborative (C=0) deployments with collab-

orative DWL deployments, and to compare DWL deployments with predefined values of C to DWL

deployments with learnt values of C, under non-uniform traffic conditions.

6.3.4.3 Scenario 3: Multi-Policy Optimization with Conflicting Traffic

This scenario was implemented to evaluate the performance of DWL for optimization of conflicting

traffic, i.e., conflicting policies. We consider a conflicting traffic pattern to be a set of traffic conditions

where vehicles of one type, addressed by one policy, travel in different directions from the vehicles of

the other type, addressed by the other policy.

In terms of the map used, number of junctions, and vehicle routes, the traffic conditions in this

scenario are the same as in Scenarios 1 and 2. However, in previous scenarios, the 20 bus routes were

a subset of the overall 260 routes, while in this scenario car traffic was removed from the 20 routes

used by buses, and is present only on the remaining 240 routes. Buses, therefore, use different routes

from cars, and are more likely to approach a junction from a different approach than cars, and proceed

in a different direction to cars. We believe this scenario is not a realistic scenario in UTC, as most

major routes are used by both private and public vehicles, however, we implemented the scenario

to evaluate DWL’s performance in conflicting situations (i.e., where buses and cars are travelling on

different routes), should they occur in UTC, or in any other potential application areas for DWL. This

experiment was performed for a single traffic load of ∼3000 vehicles per hour.

As part of this scenario we ran simulations with the following policy deployments:

• RR and SAT

• GWO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GWO using DWL with learnt values of C

• PTO using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• PTO using DWL with learnt values of C

• GW-PT using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GW-PT using DWL with learnt values of C.

This set of deployments enables us to compare the performance of DWL with the performance of the

baselines, to compare the performance of single-policy deployments to multi-policy deployments, to

compare non-collaborative (C=0) deployments with collaborative DWL deployments, and to compare

125

6.3. Evaluation Scenarios

DWL deployments with predefined values of C to DWL deployments with learnt values of C, under

conflicting traffic conditions.

6.3.4.4 Scenario 4: Optimization of Multiple Policies with Different Spatial Scope and

Priority Relationships

This scenario has been designed to investigate the relationship between policy spatial scope and policy

priority, and verify that performance improvements in DWL arise from a higher policy priority rather

than from a policy’s spatial scope, i.e., that DWL respects policy priorities regardless of other policy

characteristics.

The set of traffic conditions in this experiment is the same as in Scenario 1, apart from the value

of rewards obtained by individual policies. Instead of using the default rewards for PTO and GWO in

the DWL deployment, we varied their rewards and the relationship between the rewards, to simulate

varying relationships between policy priorities and their spatial scopes. In all of the previous scenarios

the regional policy (PTO) had higher priority than the global policy (GWO). In this scenario, we

evaluate DWL in a set of traffic conditions where a regional policy has the same priority as a global

policy, and in a set of traffic conditions where a global policy has a higher priority than a regional

policy. This experiment was run for only one traffic load of ∼3000 vehicles per hour.

The combinations of PTO and GWO rewards for which this set of experiments was performed

were as follows:

1. PTO r = 120 and GWO r = 100, i.e., a scenario where the regional policy PTO has a higher

priority than the global policy GWO. This is a default priority relationship used in our other

scenarios, so this set of experiments was not repeated, instead, results from Scenario 1 were

reused.

2. PTO r = 100 and GWO r = 100, i.e., a scenario where the global and regional policy are of the

same priority.

3. PTO r = 100 and GWO r = 120, i.e., a scenario where the global policy GWO has a higher

priority than the regional policy PTO.

As part of this scenario we ran simulations with the following policy deployments:

• GW-PT using DWL with a predefined value of C = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}

• GW-PT using DWL with learnt values of C

126

Chapter 6. DWL Evaluation

for all three combinations of PTO and GWO rewards listed above. This set of deployments enables

us to evaluate if DWL respects relative policy priorities under variety of priority and regional scope

relationships, both when deployed with predefined values of C and with learnt values of C.

6.3.4.5 Scenario 5: Multi-Policy Optimization in Time-Constrained Scenarios

This scenario was designed to evaluate the feasibility of the training time required by DWL. The set

of traffic conditions in this scenario is identical to the conditions in Scenario 1. The experiment was

run for only a single traffic load, of ∼3000 vehicles per hour. However, instead of running each of the

stages for 750 minutes, the duration of the training stages in this scenario was gradually reduced in

order to identify the minimum training time required for DWL to start outperforming the baselines.

For simplicity, this set of experiments was only run with GW-PT with predefined C=0.2, which

was experimentally determined to be the best-performing predefined C during the low traffic load as

presented in Scenario 1. We ran only phases 1-3, i.e., we did not run DWL for the further two stages

in which agents learn C, as we were not aiming to achieve the best overall performance of DWL, but

identify the point at which DWL starts to outperform the baselines. The duration of training phases

1 and 2 was set to 50 minutes, 100 minutes, 200 minutes, 300 minutes, 400 minutes, 500 minutes,

600 minutes, 700 minutes and 750 minutes. The exploitation phase 3 was of 750 minutes duration

regardless of the duration of the training phase, so that vehicle waiting times remain comparable.

6.3.4.6 Summary of Evaluation Scenarios

In this section we presented the details of the scenarios that we used to evaluate the performance of

DWL. For ease of reference we summarize these scenarios in Table 6.1. In the next section we analyze

the experimental results obtained from these scenarios to address the evaluation objectives outlined

in Section 6.1.

6.4 Results and Analysis

In this section we analyze the performance of DWL with respect to the evaluation objectives out-

lined in Section 6.1. We evaluate the performance of DWL when compared to the performance of

baselines, we compare the performance of single-policy deployments to multi-policy deployments in

the presence of multiple vehicle types, compare non-collaborative (C=0) deployments to collaborative

DWL deployments, DWL deployments with predefined values of C to DWL deployments with learnt

values of C, we evaluate DWL performance for conflicting policies, assess DWL’s ability to respect

127

6.4. Results and Analysis

Scenario
number

Name Description

1 Uniform traffic Uniform vehicle insertion rates at all points on the map
Two loads: low (35k vehicles), high (60k vehicles)

2 3:1 traffic pattern Ratio of traffic travelling N → S to S → N is 3:1
Single traffic load: 60k vehicles

3 Conflicting traffic Buses do not travel on same routes as cars
Single traffic load: 35k vehicles

4 Reversed priority 3 deployments: buses have a higher priority than cars,
both vehicle types have same priority, and cars have a

higher priority than buses
5 Measure learning time 9 deployments: learning (exploration) duration of 50,

100, 200, 300, 400, 500, 600, 700, 750 minutes

Table 6.1: Summary of DWL evaluation scenarios

Uniform Low Load Uniform High Load 3:1 Traffic

Car Bus Car Bus Car Bus

RR 77.38% 80.22% 86.36% 84.91% 76.42% 81.88%

SAT 83.11% 85.00% 87.20% 87.89% 73.00% 79.34%

Table 6.2: DWL vs. baselines: Maximum waiting time improvement

policy priorities, evaluate the feasibility of the training duration required by DWL, and analyze the

ability of DWL to learn policy and agent dependencies. As our analysis draws on multiple scenarios,

in each section we state which scenarios contribute to the results presented in that section, describe

the results, and discuss how they relate to the evaluation objectives.

6.4.1 DWL vs. Baselines

In this section we compare the performance of DWL against the UTC baselines, RR and SAT. DWL

results presented in this section are the results obtained from DWL deployments with learnt C, as they

were the best performing deployments of DWL. We present results for three sets of traffic conditions:

the uniform traffic pattern at low and high loads, and the 3:1 traffic pattern, i.e., Scenarios 1 and 2.

Figure 6.3 shows average waiting time per vehicle type per experiment, for DWL and both baselines.

We see from both graphs that DWL clearly outperforms both baselines in terms of average vehicle

waiting time under all tested traffic conditions.

To emphasize the extent of improvement, in Table 6.2 we show how much shorter, in percentage

128

Chapter 6. DWL Evaluation

Average Car Waiting Time

0

100

200

300

400

500

600

Uniform Low Uniform High 3:1

Traffic load

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

RR

SAT

Best DWL

Average Bus Waiting Time

0

100

200

300

400

500

600

Uniform Low Uniform High 3:1

Traffic load

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

RR

SAT

Best DWL

Fig. 6.3: DWL vs. baselines: Vehicle waiting time

Total Number of Vehicles Served

0

10000

20000

30000
40000

50000

60000

70000

Uniform Low Uniform High 3:1

Traffic load

N
um

be
r

of
 v

eh
ic

le
s

se
rv

ed

RR
SAT
Best DWL

Fig. 6.4: DWL vs. baselines: Number of vehicles served

terms, are average vehicle waiting times in DWL when compared to RR and SAT. The improvements

range from ∼73% (which is how much average car waiting time is shortened compared to SAT under

3:1 traffic conditions), to ∼88% (which is the improvement of average bus waiting time compared

to SAT during high uniform traffic load). These improvements are statisticallty significant with all

p-values being lower than 9×10−14.

We also compare DWL to baselines in terms of the total number of vehicles served and the traffic

density. Note that these two metrics are not measured per vehicle type, but for the system as a

whole, and as such mostly reflect the performance of cars, as they make up 95% of the traffic in our

simulation setup.

In terms of the total number of vehicles served (see Figure 6.4), under uniform high traffic load,

DWL serves ∼14% more vehicles that SAT and ∼13% more vehicles than RR, however, under uniform

low load it serves ∼7% and ∼8% less vehicles than SAT and RR, respectively, and under the 3:1

traffic pattern ∼7% and ∼6% less vehicles than SAT and RR, respectively. We believe that the drop

in number of vehicles served by DWL under certain traffic conditions is caused by DWL prioritizing

buses resulting in a small negative effect on other vehicles joining the system. Note that vehicles

attempting to join the system are not placed in a queue for joining at a later time, but are discarded

if they cannot join the system at the time and at the junction at which they are scheduled. If an

129

6.4. Results and Analysis

Traffic Density Per Algorithm: Uniform High Traffic Load

0

2

4

6

8

10

12

14

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

61
0

65
0

69
0

Experiment time (minutes)

D
en

si
ty

 (%
)

RR
SAT

DWL

Traffic Density Per Algorithm: 3:1 Traffic Pattern

0
1
2
3
4
5
6
7
8
9

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

61
0

65
0

69
0

Experiment time (minutes)

D
en

si
ty

 (%
)

RR
SAT
DWL

Traffic Density Per Algorithm: Uniform Low Traffic Load

0
0.5
1

1.5
2

2.5
3

3.5
4

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

61
0

65
0

69
0

Experiment time (minutes)

D
en

si
ty

 (%
)

RR
SAT
DWL

Fig. 6.5: DWL vs. baselines: Traffic density

130

Chapter 6. DWL Evaluation

approach is congested at that particular time, due to DWL serving other approaches with higher

priority vehicles, i.e., buses, the vehicles cannot join the system at that approach, resulting in a lower

number of vehicles being served. We confirm this when analyzing the performance of DWL in systems

with a single policy only (in Section 6.4.3), where a single-policy DWL deployment that addresses only

cars serves 3% - 20% more vehicles than baselines under all traffic scenarios, as there is no negative

effect of bus prioritization.

In terms of overall traffic density (as shown in Figure 6.5), under uniform low load SAT results in

traffic density that is ∼13% lower than that of DWL, however, under all other traffic conditions DWL

has a lower density than both of the baselines, with the largest improvement observed under uniform

high load, where DWL density is ∼53% lower than in SAT, and ∼56% lower than in RR.

Although it was not our primary goal when performing this set of experiments, it is also interesting

to observe the relative performance of the baselines to each other. In terms of vehicle waiting time,

SAT performs worse than RR during uniform low load and uniform high load for both vehicle types,

but outperforms RR in terms of waiting time for both vehicle types under the 3:1 traffic pattern. SAT

results in lower density during all three sets of traffic conditions and serves more vehicles than RR

during the 3:1 traffic pattern, while RR serves more vehicles during uniform traffic loads. We therefore

observe that SAT performs better than RR in terms of all three metrics used under the 3:1 traffic

pattern, emphasizing the need for adaptive control strategies under non-uniform traffic conditions.

Overall, we conclude that DWL is a suitable approach to optimization in UTC, with improvements

over the baselines in terms of vehicle waiting time reaching nearly 90%. DWL shortens both bus and

car waiting times, under different traffic loads, and under different traffic patterns.

6.4.2 Collaborative vs. Non-Collaborative Deployments: Impact of Col-

laboration

In this section we evaluate the impact of collaboration, as implemented in DWL, on multi-policy opti-

mization. We draw on the results from evaluation Scenarios 1 and 2, addressing DWL’s performance

under uniform low load, uniform high load, and the 3:1 traffic pattern.

We evaluate the impact of DWL’s capability to enable collaboration, i.e., the impact of remote

policies, by comparing collaborative scenarios to non-collaborative (C=0) scenarios, which use the

equivalent of basic W-learning as presented in Chapter 2. We also evaluate the impact of DWL’s

ability to allow agents to engage in different levels of collaboration (0 < C < 1) rather than necessarily

being fully collaborative (C=1), i.e., the impact of the presence of collaboration coefficient C, by

comparing the results obtained with the best performing C (where 0 < C < 1) with those obtained

131

6.4. Results and Analysis

when C=1. Finally, we evaluate the impact of DWL’s capability to learn C per agent, by comparing

the performance of DWL with learnt C, with the performance of DWL with the best performing

predefined value of C.

The best performing predefined value of C was determined experimentally by running the simula-

tion of DWL with C = {0, 0.2, 0.4, 0.6, 0.8, 1} for each set of traffic conditions. Under uniform low

load the best performing predefined C was determined to be C=0.2, for uniform high load C=0.2, and

for 3:1 traffic pattern C=0.4.

6.4.2.1 Collaborative vs. Non-Collaborative Deployments

Figure 6.6 shows average vehicle waiting time per vehicle type for DWL with C=0, C=1, and with

the best performing value of C (in graphs: “Best DWL”). It is clear that DWL deployments result in

by far the best performance under all tested traffic conditions, for both cars and buses. Therefore,

we observe that agents can benefit from engaging in cooperation to a degree (i.e., that C should not

be 0), but that collaboration should not result in agents taking into account their neighbours’ action

suggestions with as much weight as their own (i.e., that C should not be 1) as that can have negative

effects on performance. In Table 6.3 we summarize the improvements in average vehicle waiting time

gained by the addition of collaboration over the performance of non-collaborative deployments, and

observe that collaboration can shorten the average vehicle waiting time by up to ∼90%, depending

on the vehicle type and the traffic scenario. The improvements are statistically significant, with all

p-values smaller than 2 ×10−11.

Results in terms of the number of vehicles served (as shown in Figure 6.7) and traffic density (as

shown in Figure 6.8) confirm this observation. DWL deployed with the best performing value of C

serves more vehicles than DWL deployed with either C=0 and C=1, and has lower average density

for all three sets of traffic conditions.

When considering the density results, it is also interesting to compare traffic density when C=0

with collaborative DWL. We see that in all three graphs shown in Figure 6.8, the density of the non-

collaborative deployment has multiple peaks, i.e., periods of high density, during system operation. We

believe that, as when C=0 all agents act independently and do not help each other, poor performance

of individual junctions, which is not corrected with help from neighbours, has negative effects on the

performance of the whole system, temporarily increasing congestion in the neighbouring areas until it

clears its local congestion. We see that both fully collaborative deployments and those using the best

performing value of C result in a much smoother and more uniform traffic density during the whole

simulation period.

132

Chapter 6. DWL Evaluation

Average Car Waiting Time
Non-Collaborative vs. Collaborative Scenarios

0

100

200

300

400

500

Uniform Low Uniform High 3:1

Traffic load

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

C=0
C=1
Best DWL

Average Bus Waiting Time
Non-Collaborative vs. Collaborative Scenarios

0

100

200

300

400

500

Uniform Low Uniform High 3:1

Traffic load

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

C=0
C=1
Best DWL

Fig. 6.6: Collaborative vs. non-collaborative scenarios: Vehicle waiting time

Total Number of Vehicles Served
Non-Collaborative vs. Collaborative Scenarios

0
10000
20000
30000
40000
50000
60000
70000

Uniform Low Uniform High 3:1

Traffic load

N
um

be
r

of
 v

eh
ic

le
s

C=0
C=1
Best DWL

Fig. 6.7: Collaborative vs. non-collaborative scenarios: Number of vehicles served

From the results above we conclude that DWL’s ability to enable collaboration between agents

using remote policies improves system performance, however that collaboration should not be full,

i.e., C=1, but scaled to a degree using a cooperation coefficient C.

6.4.2.2 Collaboration Using Predefined vs. Learnt Values of C

We now consider how DWL’s ability to learn C per agent, rather than using a predefined value of C

for the whole system, affects system performance. In terms of average vehicle waiting time (shown in

Figure 6.9), DWL with learnt value of C can outperform the DWL deployment with the best predefined

value of C under all traffic conditions for both vehicle types, apart from car waiting time under the

3:1 traffic pattern. A summary of the differences is shown in Table 6.4 where we see that learning C

achieves as high as ∼60% improvement over the best predefined value of C. These improvements are

statistically significant for both vehicle types under high load (p = 0.02) and for buses under low load

(p = 0.01), but not statistically significant for cars under low load (p = 0.1). In the 3:1 traffic pattern

133

6.4. Results and Analysis

Non-Collaborative vs. Collaborative Optimization Using
DWL: Uniform Low Load

0

2

4

6

8

10

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

Experiment time (minutes)

D
en

si
ty

 (%
)

 C=0
C=1
Best DWL

Non-Collaborative vs. Collaborative Optimization Using
DWL: Uniform High Load

0

5

10

15

20

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

Experiment time (minutes)

D
en

si
ty

 (%
)

 C=0
C=1
Best DWL

Non-Collaborative vs. Collaborative Optimization Using
DWL: 3:1 Load

0
2
4
6
8

10
12
14
16

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

Experiment time (minutes)

D
en

si
ty

 (%
)

 C=0
C=1
Best DWL

Fig. 6.8: Collaborative vs. non-collaborative scenarios: Density

134

Chapter 6. DWL Evaluation

Car Bus

Uniform Low 90.62% 90.38%

Uniform High 63.73% 66.21%

3:1 Load 56.45% 62.69%

Table 6.3: Waiting time improvement in collaborative scenarios over non-collaborative scenarios

Average Car Waiting Time
Predefined C vs. Learnt C

0

20

40

60

80

100

Uniform Low Uniform High 3:1

Traffic load

Av
er

ag
e

w
ai

tin
g

tim
e

(s
) Best predefined C

Learnt C

Average Bus Waiting Time Predefined C vs.
Learnt C

0

20

40

60

80

100

Uniform Low Uniform High 3:1

Traffic load

Av
er

ag
e

w
ai

tin
g

tim
e

(s
) Best predefined C

Learnt C

Fig. 6.9: Predefined C vs. learnt C: Vehicle waiting time

Total Number of Vehicles Served
Predefined C vs. Learnt C

0
10000
20000
30000
40000
50000
60000
70000

Uniform Low Uniform High 3:1

Traffic load

To
ta

l v
eh

ic
le

s
se

rv
ed

Learnt C
Best predefined C

Fig. 6.10: Predefined C vs. learnt C: Number of vehicles served

Car Bus

Uniform Low 10.77% 6.82%

Uniform High 44.25% 61.49%

3:1 Load −6.64% 2.77%

Table 6.4: Maximum waiting time improvement of DWL with predefined C over learnt C

135

6.4. Results and Analysis

average car waiting time is ∼7% worse when C is learnt rather than when C is predefined, while bus

waiting time is simultaneously improved by ∼3%. However, neither of these differences is statistically

significant (p = 0.6 for cars and p = 0.8 for buses).

In terms of the total number of vehicles served, both DWL with the best performing predefined C

and learnt C have very similar performance (as shown in Figure 6.10), showing no major advantage

or disadvantage of learning C over using a predefined C.

We also compare the performance of deployments using the best predefined C to those using learnt

C in terms of density. Figure 6.11 shows density with the best predefined C under uniform low load

(C=0.2) when compared to learnt C, density with the best predefined C under uniform high load

(C=0.2) when compared to learnt C, and density for the best predefined C for 3:1 pattern (C=0.4)

when compared to learnt C. Densities are similar in terms of their average values, but we observe

that the performance of the DWL deployment with a predefined C shows peaks in traffic density,

similar to the behaviour we observed in the C=0 deployment. These peaks are much less extreme

than the peaks observed when C=0; peaks in C=0 deployment correspond to up to a 10-12% increase

in density, while those observed with predefined C result in only up to a 4% increase. Nevertheless, we

observe that learnt C results in the steadiest traffic density throughout the experiments, with density

fluctuations from minimum to maximum being only ∼2%.

From the vehicle waiting time and density results presented above, we conclude that DWL’s ability

to learn values of C per agent results in as good as or significantly improved performance comparing

to using the best predefined value of C. An additional advantage of learning C over using a predefined

C is that the best performing predefined C can only be determined experimentally, by performing

simulations with various values of C, while in DWL with learnt C agents can learn suitable individual

values themselves during a single run. This can significantly shorten DWL training time, by removing

the need to evaluate DWL performance with numerous values of C in order to identify the best

performing value.

Overall, based on the results presented in this section, we see a significant improvement in global

behaviour emerging from agent collaboration, as performance of the policies is improved by up to

∼90% when compared to each agent only optimizing its local performance towards its local policies.

The improvements are a result of DWL’s use of remote policies as a means of collaboration and DWL’s

ability to engage in variable levels of collaboration, where the appropriate levels of collaboration can

be learnt by agents themselves.

136

Chapter 6. DWL Evaluation

Predefined vs. Learnt C:
Density Under Uniform Low Load

0

2

4

6

8

10
10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

Experiment time (minutes)

De
ns

ity
 (%

)

Best predefined C=0.2
Learnt C

Predefined vs. Learnt C:
Density Under 3:1 Load

0

2

4

6

8

10

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

Experiment time (minutes)

D
en

si
ty

 (%
)

Best predefined C=0.4
Learnt C

Predefined vs. Learnt C:
Density Under Uniform High Load

0
2
4
6
8

10
12
14

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

73
0

Experiment time (minutes)

D
en

si
ty

 (%
)

Best predefined C=0.2
Learnt C

Fig. 6.11: Predefined C vs. learnt C: Traffic density

137

6.4. Results and Analysis

6.4.3 DWL for Single-Policy Optimization

In this section we evaluate the performance of DWL for single-policy optimization. DWL is primarily

designed to improve system performance in the presence of multiple policies, however, we verify that

DWL can be used even in circumstances where only a single policy is present in the system, by taking

advantage of DWL’s agent collaboration capabilities. We compare the performance of single-policy

DWL with baselines and compare collaborative scenarios with non-collaborative scenarios. Results

presented in this section are obtained from single-policy GWO deployments as part of Scenarios 1 and

2, i.e., under uniform low traffic load, uniform high load, and 3:1 traffic pattern.

Figure 6.12 shows the average vehicle waiting time and total number of vehicles served for RR,

SAT, single-policy DWL with C=0 (equivalent to basic W-learning), fully collaborative single-policy

DWL with C=1, and collaborative single-policy DWL with a learnt value of C, for all three sets of

traffic conditions. In terms of waiting time we see that single-policy DWL with a learnt value of C

outperforms both baselines, and both fully collaborative and non-collaborative deployments, for all

sets of traffic conditions evaluated. These improvements are statistically significant, with all values of

p < 0.02, apart from the difference between the performance of learnt C and C=0 under low traffic

load, which is not statistically significant, with p = 0.2. In terms of the number of vehicles served,

single-policy DWL outperforms the baselines and non-collaborative deployment, as well as the C=0

and C=1 deployment under high uniform load and 3:1 traffic pattern, while under uniform low load

the C=1 deployment serves slightly more vehicles (<0.5%) than DWL with a learnt value of C.

When we have compared the total number of vehicles served by multi-policy DWL and the baselines

(in Section 6.4.1), we observed that under certain traffic conditions multi-policy DWL served less

vehicles than the baselines, and concluded that this is caused by bus priority having negative effects

on throughput of cars. Our observations on single-policy DWL presented here confirm this, as GWO

outperforms both baselines in terms of total number of vehicles served, as it addresses only cars and

there is no negative effect of bus priority observed.

In terms of density, as shown in Figure 6.13, the best performing DWL, which is DWL with a

learnt value of C, has a lower density than both baselines, under all three sets of traffic conditions.

Deployments with C=0 and C=1 result in a similar average density to the best performing DWL,

however, as also observed in the previous section, the C=0 deployment results in periods of very high

density during the system operation, as represented by peaks in the graph. Introducing collaboration

eliminates those peaks, and results in more even density throughout.

From the results above we conclude that DWL’s collaboration capabilities, as implemented by the

use of remote policies, and learning of the cooperation coefficient, can be used to improve performance

138

Chapter 6. DWL Evaluation

Average Vehicle Waiting Time: Single-Policy
DWL Under Low Uniform Load

0

50

100

150

200

250

SAT RR

DWL C=0

DWL C=1

Best D
WL

Algorithm

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

Number of Vehicles Served: Single-Policy DWL
Under Low Uniform Load

33500

34000

34500

35000

35500

36000

36500

SAT RR

DWL C=0

DWL C=1

Best D
WL

Algorithm

N
um

be
r o

f v
eh

ic
le

s
se

rv
ed

Average Vehicle Waiting Time: Single-Policy
DWL Under High Uniform Load

0

100

200

300

400

500

600

SAT RR DWL C=0 DWL C=1 Best DWL

Algorithm

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

Number of Vehicles Served: Single-Policy DWL
Under High Uniform Load

0

10000

20000

30000

40000

50000

60000

70000

SAT RR DWL C=0 DWL C=1 Best DWL

Algorithm

N
um

be
r o

f v
eh

ic
le

s
se

rv
ed

Average Vehicle Waiting Time: Single-Policy
DWL Under 3:1 Load

0

50

100

150

200

250

300

350

SAT RR DWL C=0 DWL C=1 Best DWL

Algorithm

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

Number of Vehicles Served: Single-Policy DWL
Under 3:1 Load

0

10000

20000

30000

40000

50000

60000

70000

SAT RR DWL C=0 DWL C=1 Best DWL

Algorithm

N
um

be
r o

f v
eh

ic
le

s
se

rv
ed

Fig. 6.12: Single policy DWL: Vehicle waiting time and number of vehicles served

139

6.4. Results and Analysis

Single-Policy DWL: Density Under Uniform Low
Load

0
0.5

1
1.5

2
2.5

3
3.5

4

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

Experiment time (minutes)

D
en

si
ty

 (%
) RR

SAT
C=0
C=1
Best DWL

Single-Policy DWL: Density Under Uniform High
Load

0
2
4
6
8

10
12
14
16

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

Experiment time (minutes)

D
en

si
ty

 (%
) RR

SAT
C=0
c=1
Best DWL

Single-Policy DWL: Density Under 3:1 Load

0

2

4

6

8

10

12

10 70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

Experiment time (minutes)

D
en

si
ty

 (%
) RR

SAT
C=0
C=1
Best DWL

Fig. 6.13: Single policy DWL: Traffic density

140

Chapter 6. DWL Evaluation

Total Number of Vehicles Served

0

10000

20000

30000
40000

50000

60000

70000

Uniform Low Uniform High 3:1

Traffic load

N
um

be
r

of
 v

eh
ic

le
s

GWO
GW-PT
PTO

Fig. 6.14: Single-policy vs. multi-policy DWL: Number of vehicles served

of single-policy systems, and not only multi-policy systems as already shown in Section 6.4.2.

6.4.4 Single-Policy vs. Multi-Policy DWL Deployments

In this section we evaluate how the performance of a single policy deployed in the system is affected

when another policy, addressing a different vehicle type, is added. For this analysis we draw on Sce-

narios 1 and 2, using single-policy GWO and PTO deployments, as well as a multi-policy deployment

that addresses both of these policies simultaneously, GW-PT.

6.4.4.1 PTO vs. GW-PT

We first analyze the performance of PTO, the policy that addresses only buses, and compare it to the

performance of GW-PT, i.e., analyze how buses are affected when an additional policy that addresses

cars is added.

Figure 6.14 shows the total number of vehicles served by PTO, GWO and GW-PT deployments

using DWL. We can observe that PTO, under all three sets of traffic conditions serves only a small

fraction of the vehicles served by GW-PT.

Density results for GWO, PTO, and GW-PT (as shown in Figure 6.15), are consistent with the

number of vehicles served. PTO, under all three sets of traffic conditions, has much larger density

than GW-PT, which starts to increase early in the experiment, eventually over-saturating the system.

Over-saturation prevents new vehicles joining the system, resulting in very small numbers of vehicles

served.

This behaviour of PTO is similar to the behaviour of single-policy EVO as discussed in our pre-

liminary case study in Chapter 3. PTO prioritizes public transport vehicles, which represent only 5%

141

6.4. Results and Analysis

Single vs. Multi Policy Density: Uniform Low Load

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Time (x10 minutes)

D
en

si
ty

 (%
)

GWO
GW-PT
PTO

Single vs. Multi Policy Density: Uniform High Load

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Time (x10) minutes

D
en

si
ty

 (%
)

GWO
GW-PT
PTO

Single vs. Multi Policy Density: 3:1 Traffic Pattern

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Time (x10) minutes

D
en

si
ty

 (%
)

GWO
GW-PT
PTO

Fig. 6.15: Single-policy vs. multi-policy DWL: Traffic density

142

Chapter 6. DWL Evaluation

Average Car Waiting Time per Traffic Load

0

50

100

150

200

Uniform Low Uniform High 3:1

Traffic load

Av
er

ag
e

w
ai

tin
g

tim
e

(s
)

GWO
GW-PT

Average Bus Waiting Time per Traffic Load

0

50

100

150

200

Uniform Low Uniform High 3:1

Traffic load

Av
er

ag
e

w
ai

tin
g

tim
e

(s
)

GWO
GW-PT

Fig. 6.16: Single-policy vs. multi-policy DWL: Vehicle waiting time

Car Bus

Uniform Low −33.06% −64.12%

Uniform High −50.57% −72.36%

3:1 Load +16.03% −28.55

Table 6.5: Average vehicle waiting time: Difference between GW-PT and GWO

of total traffic, so attempting to optimize only their performance negatively affects the performance

of the other 95% of vehicles. Other vehicles that are not adequately addressed then create a backlog

in the system, in turn affecting the performance of public transport vehicles themselves, as, given

the shared infrastructure, there is no available road space for them to proceed, or road space for new

vehicles to join. Due to the very low numbers of vehicles served by PTO, its waiting time results are

not comparable to waiting time results of GWO and GW-PT, and we therefore do not address them

in this section.

We conclude that optimizing for only a single policy with a very small temporal scope and regional

scope that addresses a very small percentage of vehicles, such as PTO, is not feasible due to the shared

infrastructure and operating environment creating policy dependencies. In such situations, adding an

additional policy that addresses the remaining vehicles is beneficial for both policies, i.e, for the system

overall, as confirmed by GW-PT serving significantly more vehicles than PTO and resulting in much

lower traffic density.

6.4.4.2 GWO vs. GW-PT

We now compare the performance of GWO, the policy that addresses only cars, to the performance of

GW-PT, i.e., analyze how are cars affected when an additional policy that addresses buses is added.

143

6.4. Results and Analysis

Figure 6.16 compares average vehicle waiting times, per vehicle type, per set of traffic conditions,

for GWO and GW-PT. The differences, in percentage terms, between the average vehicle waiting times

achieved in GWO and in GW-PT are listed in Table 6.5. We observe that GW-PT outperforms GWO

under all sets of traffic conditions in terms of bus waiting time. This result is expected as GW-PT

prioritizes public transport vehicles, while GWO treats all vehicles the same. However, under two sets

of traffic conditions (uniform low and uniform high load), GW-PT also outperforms GWO in terms of

car waiting time. When a new policy is added to the system (PTO), we expected the performance of

the original policy (GWO) to slightly deteriorate, as the new policy prioritizes a different vehicle type

from the one addressed by GWO. However, there was no significant deterioration of performance of

either of the vehicle types under any of the traffic conditions (all p-values were greater than 0.8), while

the average waiting time of buses has been significantly improved under low traffic load (p = 0.02). We

believe this is a result of policy dependency, where the two policies are complementary and contribute

towards the performance of each other. Therefore, optimizing for both policies simultaneously results

in as good as (or under certain traffic conditions) improved average vehicle waiting time for both

vehicle types, when compared to optimizing for a single policy only.

In terms of total number of vehicles served (as shown in Figure 6.14) and traffic density (as shown

in Figure 6.15) however, we observe slight negative effects for all three sets of traffic conditions of

addition of a second policy. GW-PT serves less vehicles than GWO, and results in larger traffic

density than GWO, under both low and high uniform load, and under 3:1 traffic pattern.

6.4.4.3 Single-Policy vs. Multi-Policy Summary

Overall, from the results presented in this section, we conclude that the addition of a second policy

to the system, in the presence of multiple vehicle types, can result in either a positive impact on

the performance of both the newly added and the original policy, or result in no deterioration to the

performance of the original policy with the improvement to the performance of the vehicle type that

newly added policy is addressing.

We expected that addition of a second policy would have a small negative impact on the perfor-

mance of the original policy, due to the system having to address the new policy as well. However,

under certain circumstances, the addition of the second policy, due to policy dependency, resulted not

just in improvements to the performance of the vehicle type addressed by the new policy, but also in

improvements in the performance of the original policy. This improvement was most evident when

comparing the performance of PTO and GW-PT, where PTO performed very badly as it addressed

only 5% of vehicles, and the introduction of a second policy that addresses the remaining 95% of

144

Chapter 6. DWL Evaluation

vehicles significantly improved the performance of both vehicle types. Additionally, we have observed

small improvements in the car waiting time in GW-PT when compared to single-policy GWO under

certain sets of traffic conditions, when prioritization of buses also helped improve the waiting time of

cars.

In terms of the performance of the system as a whole, if there are two vehicle types present in the

system, addressing both simultaneously using DWL results in the best overall system performance.

Single-policy deployments either perform well for one vehicle type, but neglect the other vehicle type

that they are not addressing (e.g., GWO), or perform poorly for both vehicle types, as neglecting one

vehicle type causes negative effects on the performance of the other vehicle type (e.g., PTO). Multi-

policy deployments either improve the performance of both vehicle types over corresponding single-

policy deployments (e.g., GWO vs. GW-PT under uniform patterns), or improve the performance of

one vehicle type with smaller negative effects on the other (e.g., GWO vs. GW-PT under 3:1 pattern).

6.4.5 DWL in the Presence of Conflicting Policies

In this section we assess the ability of DWL to address conflicting policies by analyzing the results

from the evaluation Scenario 3. We assess the performance of DWL in this conflicting-policy scenario

when compared to baselines, evaluate the impact of the addition of a second policy (i.e., compare

single-policy to multi-policy DWL deployments), and compare non-collaborative with collaborative

DWL deployments.

From Figure 6.17, showing average waiting time for both vehicle types, for RR, SAT, GWO, and

DWL, we see that DWL outperforms both baselines, with decreases in waiting time in the range of

∼75-83%. The differences in performance are statistically significant with all p-values under 8 ×10−9.

GW-PT outperforms single-policy GWO in terms of bus waiting time by ∼126% (a statistically-

significant improvement with p = 0.008), with ∼0.2% increase in car waiting time (a not statistically-

significant increase with p = 0.4). We have observed this behaviour in the 3:1 traffic pattern as well;

when the second policy was added to the system, car waiting time was slightly increased in order to

allow a significant improvement in bus waiting time.

In terms of total number of vehicles served, as shown in Figure 6.18, single-policy GWO serves

the highest number of vehicles, followed by the baselines, and followed by multi-policy GW-PT. PTO

serves only a small fraction of vehicles served by the other deployments. This is consistent with

observations on total number of vehicles served in Scenarios 1 and 2, and observations on the poor

performance of PTO when deployed as a single-policy approach, due to creating a backlog of cars.

Density graphs for a conflicting scenario are consistent with the observations on total number of

145

6.4. Results and Analysis

vehicles served. Figure 6.19 shows traffic density, first for all deployments (RR, SAT, GWO, PTO,

and DWL), and then the graph with PTO removed to allow for closer inspection of density for other

deployments. GWO has the lowest density, being the most efficient in clearing the general traffic as

it does not prioritize buses, followed by GW-PT, and the baselines. PTO, again, has by far the worst

performance, due to the backlog of cars created in the system.

Therefore, multi-policy DWL (GW-PT) outperforms baselines under the conflicting-traffic scenario

as well, and outperforms corresponding single-policy deployments in the presence of both vehicle types.

When only GWO is present in the system and PTO is added, cars suffer a very small decrease in

performance, but the performance of buses is significantly improved. When only PTO is present in

the system and GWO is added, the performance of both vehicle types is significantly improved, as all

vehicles in the system are addressed and there is no congestion created by the neglected vehicles.

We now compare the performance of non-collaborative multi-policy deployments to collaborative

DWL deployments under conflicting traffic conditions. Figure 6.20 graphs vehicle waiting times for

non-collaborative deployments, for fully collaborative deployments, for DWL deployed with the best

predefined value of C, and DWL deployment with learnt value of C. We observe that C with a value

between 0 and 1 results in shorter average waiting times than both fully collaborative and fully non-

collaborative scenarios, as was also observed for other traffic patterns. Learning the value of C provides

a small improvement in bus waiting time (∼2%), while increasing car waiting time by ∼4%, however,

neither of the differences in performance are statistically significant (p = 0.6 and p = 0.2, respectively).

Nevertheless, we conclude that learning values of C is a preferred approach, as it performs on a par

with the best predefined value of C, without requiring extensive training periods to establish the most

suitable values of C. A similar relationship between the predefined and learnt values of C was also

observed under the 3:1 traffic pattern, where learning C slightly improved the performance of buses

with slight negative effects on the performance of cars, as buses have a higher priority in the system.

From the similar performance of DWL in a conflicting scenario and in the 3:1 traffic scenario, we

observe that both scenarios create similar levels of conflict within the system. In the conflicting-policy

Scenario 3, buses use different routes than cars, so they approach junctions from different directions

than cars, while in the 3:1 traffic pattern (Scenario 2), 75% of the overall traffic approaches junctions

from different directions than the remaining 25% of traffic. As observed, in such conflicting scenarios,

DWL can make trade-offs in the performance of different vehicle types that respect policy priorities.

146

Chapter 6. DWL Evaluation

DWL for Conflicting Policies:
Average Vehicle Waiting Time

0

50

100

150

200

250

300

SAT RR GWO GW-PT

Av
er

ag
e

w
ai

tin
g

tim
e

(s
)

Car waiting time
Bus waiting time

Fig. 6.17: DWL for conflicting policies: Vehicle waiting time

DWL for Conflicting Policies:
Total Number of Vehicles Served

0

5000

10000

15000

20000

25000

30000

35000

SAT RR GWO GW-PT PTO

Number of vehicles served

A
lg

or
ith

m

Fig. 6.18: DWL for conflicting policies: Number of vehicles served

DWL for Conflicting Policies: Density

0

5

10

15

20

25

30

10 60 11
0
16
0
21
0
26
0
31
0
36
0
41
0
46
0
51
0
56
0
61
0
66
0
71
0

Experim ent tim e (m inutes)

D
en

si
ty

 (%
)

RR

SAT

GW-PT

PTO

GWO

DWL for Conflicting Policies: Density

0

0.5

1

1.5

2

2.5

3

3.5

4

10 60 11
0
16
0
21
0
26
0
31
0
36
0
41
0
46
0
51
0
56
0
61
0
66
0
71
0

Experim ent tim e (m inutes)

D
en

si
ty

 (%
) RR

SAT

GW-PT

GWO

Fig. 6.19: DWL for conflicting policies: Traffic density

147

6.4. Results and Analysis

Conflicting Policies: Average Vehicle
Waiting Time per value of C

0
5

10
15
20
25
30
35
40
45

best fixed C best learnt C

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

car
bus

Conflicting Policies: Vehicle Waiting Time
per Level of Collaboration

0

20
40

60
80

100
120

140

car bus

A
ve

ra
ge

 w
ai

tin
g

tim
e

(s
)

C=0
C=1
Best DWL

Fig. 6.20: DWL for conflicting policies: Impact of collaboration

6.4.6 Policy Priority in DWL

In this section we focus on the ability of DWL to respect policy priorities. From the analysis of

DWL performance when compared to baselines (Section 6.4.1) and to non-collaborative multi-policy

deployments (Section 6.4.2), as well as the comparison of DWL deployments with predefined values of

C and learnt values of C (Section 6.4.2.2), we observe that in most of these cases DWL improves the

performance of both policies, i.e., even of the policy with a lower priority. We observe two situations in

which sacrifices in the performance of one policy had to be made in order to improve the performance

of the other policy: when comparing deployments with a predefined value of C against deployments

with a learnt value of C under the 3:1 traffic load and in presence of conflicting policies. In these

two scenarios, the waiting time of cars, which are addressed by a lower priority policy, was slightly

increased in order to shorten the waiting time of buses, which are addressed by a higher priority policy.

Under no traffic conditions and under no DWL deployment in this set of experiments were sacrifices

made in the performance of a higher priority policy.

For the analysis of policy priority in DWL we also use experimental results obtained from Scenario

4, where we vary the relative priority of policies and observe their performance. As described in

Section 6.3.4.4, experiments were performed with three combinations of rewards: GWO 100/PTO 120

(i.e., buses are given a higher priority), GWO 100/PTO 100 (i.e., cars and buses have equal priority),

and GWO120/PTO 100 (i.e., cars are given a higher priority). The results in terms of waiting time

for DWL with the best performing predefined C and DWL with learnt C are shown in Figure 6.21.

From the graphs we can observe that, as the relationships between car and bus priority changes

from buses having a higher priority, to both vehicles having the same priority, to cars having a higher

priority, the waiting time of buses increases and that of cars decreases. We note that buses still have

smaller waiting times even when cars have a higher priority. However, as the average lengths of routes

for different vehicle types differ, we cannot compare the absolute values of vehicle waiting times, but

148

Chapter 6. DWL Evaluation

Average Waiting Time per Reward Value:
DWL with Learnt Value of C

33
34
35
36
37
38
39
40

100/120 100/100 120/100

GWO reward/PTO reward

Av
er

ag
e

w
ai

tin
g

tim
e

(s
)

Car waiting time
Bus waiting time

Average Waiting Time per Reward Value:
DWL with Best Predefined Value of C

34

36

38

40

42

44

46

100/120 100/100 120/100

GWO reward/PTO reward

Av
er

ag
e

w
ai

tin
g

tim
e

(s
)

Car waiting time
Bus waiting time

Fig. 6.21: DWL with varying reward values: Car and bus waiting time

Best predefined C Learnt C

Car Bus Difference Car Bus Difference

GWO 100/PTO 120 43.60s 37.82s −15.26% 39.36s 35.41s −11.15%

GWO 100/PTO 100 43.14s 39.50s −9.24% 38.25s 35.86s −6.69%

GWO 120/PTO 100 41.73s 40.44s −3.18% 37.91s 36.31s −4.40%

Table 6.6: DWL with varying reward values: Difference between car and bus average waiting time

we compare the relative difference between their values at different relative priorities. We can observe

that the gap between the waiting times of cars and buses is largest when cars have a lower priority,

decreases when cars and buses are given the same priority, and decreases further when cars are given

a higher priority than buses. The ratio of these differences is shown in Table 6.6. When both vehicle

types have the same priority, bus waiting time is shorter by ∼7-9%. This increases to ∼11-15%, when

buses are given higher priority, and decreases to ∼3-4%, when cars are given higher priority. Therefore,

we observe that in DWL the relative improvements in policy performance are directly related to their

relative priorities.

From this set of experiments we conclude that DWL respects relative policy priorities and improves

vehicle waiting times accordingly, both when deployed with predefined values of C and when DWL

agents learn their own individual values of C.

6.4.7 DWL Learning Times

In this section we present the results of Scenario 5, as described in Section 6.3.4.5. In all of the other

experiments, we ran the experiment in 5 stages for 750 minutes, allowing what we considered sufficient

time for DWL agents to learn Q-values and W-values for their local and remote policies and Q-values

149

6.4. Results and Analysis

Vehicle Waiting Time Per Exploration Duration

0
50

100
150
200
250
300
350
400

750 700 600 500 400 300 200 100 50 rr sat

Exploration time per stage (minutes)

Av
er

ag
e

ve
hi

cl
e

w
ai

tin
g

tim
e car waiting time

bus waiting time

Fig. 6.22: DWL performance vs. duration of exploration period

for the process of learning C. This set of experiments was designed to determine the minimum duration

of training time that DWL requires to show benefits over our baselines. The results are graphed in

Figure 6.22, which shows average waiting times per vehicle type for RR, SAT, and DWL with a variety

of lengths of training period. From the graph we observe that the minimum training time required

for DWL to start outperforming the baselines is 100 minutes per experiment stage, i.e, 100 minutes

to learn Q-values (stage 1) and 100 minutes to learn W-values (stage 2). As we already noted when

describing this Scenario, we do not run stages 4 and 5 for this set of experiments, as we only aim to

identify the minimum training time for DWL to start showing benefits over the baselines, rather than

to achieve the best possible performance of DWL.

This shows that DWL has very feasible training times, of 200 minutes, or just under 3.5 hours per

set of conditions in this set of experiments. For example, in order to train DWL for morning rush

hour conditions, this would only require data to be gathered over two days, taking into account that

morning rush hour generally has similar traffic conditions for 2 hours, 7:30-9:30am.

6.4.8 Policy and Agent Dependencies in DWL

In this section we examine DWL’s ability to learn the dependencies between policies and between

agents, as captured by the W-values of local and remote policies of an agent. We believe that DWL’s

ability to improve the performance of multiple policies is based on its ability to learn these dependencies

and exploit them, by learning the situations (states) in which, some policy (or some agent, through

the use of remote policies) should gain control over the selection of the next action. We first show

that W-learning on a single agent with two policies can learn dependencies between policies, where

policy compatibility is reflected in low or negative W-values (as policies do not need to compete for

control over actuators, since the actions of one policy also suit the other policy), and policy conflict

150

Chapter 6. DWL Evaluation

COMPATIBLE/
COMPLEMENTARY

cars buses

cars buses
CONFLICTING

Fig. 6.23: Compatible vs. conflicting scenarios: Policy dependency

is reflected in high W-values, higher for the policy of higher priority, as it is more important for that

policy to take over control over actuators. Analogously, we then show that DWL can learn these

dependencies between agents, by examining the W-values of remote policies, that reflect the level of

compatibility between a local agent’s actions and a remote agent’s performance.

6.4.8.1 Policy Dependency

To examine policy dependency on a single agent, we performed experiments on a single four-approach

junction using single-policy GWO and single-policy PTO combined using W-learning. We implement

two traffic scenarios: where two policies are at least compatible (and possibly even complementary),

and a conflicting traffic scenario. These scenarios are shown in Figure 6.23. In the compatible scenario,

cars approach the junction from two directions, that can both be served using the same phase, and

buses approach the junction from one of the directions from which cars also approach. Therefore, the

policies are compatible or complementary as both cars and buses can be served by the same phase.

In the conflicting scenario, buses approach the junction from a direction orthogonal to approaching

cars, and cannot be served using the same phase as cars.

We show the W-values for GWO and PTO for both the compatible and conflicting traffic scenarios

in Figure 6.24. We observe that for the compatible scenario, the W-values for both GWO and PTO

all have negative or a very low positive values, averaging −5 for GWO and −14 for PTO. For the

151

6.4. Results and Analysis

GWO W-values

-50
-40
-30
-20
-10

0
10
20
30
40

1 2 3 4 5

Experiment number

A
ve

ra
ge

 W
-v

al
ue

compatible polices
conflicting policies

PTO W-values

-50
-40
-30
-20
-10

0
10
20
30
40

1 2 3 4 5

Experiment number

W
-v

al
ue compatible policies

conflicting policies

Fig. 6.24: Compatible/complementary vs. conflicting scenarios: DWL W-values for multiple policies
on a single agent

A

B

A

B

CONFLICTINGCOMPATIBLE/
COMPLEMENTARY

Fig. 6.25: Compatible/complementary vs. conflicting scenarios: Agent dependency

conflicting scenario, however, all W-values for both GWO and PTO have positive values, averaging to

8 for GWO and 18 for PTO. Therefore, in a conflicting scenario policies need to suggest their actions

with higher W-values to increase the chance of having the highest W-value and gaining control over

actuators. PTO has a higher priority, which is reflected in a higher average of its W-values.

6.4.8.2 Agent Dependency

To analyze agent dependency, and how it is reflected in the W-values of remote policies, we examined

W-values for PTO from Scenario 1, which we consider a compatible/complementary scenario, and

Scenario 3, which we consider a conflicting scenario. We selected two junctions in the centre of the

simulation map, on O’Connell Street, and examined the traffic behaviour on its approaches. Observed

traffic behaviours are shown in Figure 6.25.

In a compatible/complementary scenario, both junctions A and B have buses approach from the

same directions, where both directions can be served using the same phase. In a conflicting scenario,

junction B has buses approaching from the junction A, and from another direction orthogonal to it,

152

Chapter 6. DWL Evaluation

Average W-value for PTO

-40

-30

-20

-10

0

10

20

1 2 3

Experiment number

W
-v

al
ue compatible

conflicting

Fig. 6.26: Compatible vs. conflicting scenarios: W-values for remote policies

i.e., from two directions that cannot be served using the same phase. We examine the W-values for a

remote policy on A, which learns how A’s actions reflect on B’s performance towards its PTO policy,

i.e., learns the dependency between A and B towards PTO. Observed W-values are shown in Figure

6.26. For the compatible/complementary scenario, all W-values are large-negative values, averaging

−23, while for the conflicting scenario they are either positive or low negative value, averaging 1.

The above results show that DWL successfully extends W-learning’s capability to learn the de-

pendencies between policies on a single agent, by implementing the capability to learn dependency

between agents by using remote policies.

6.4.9 Additional Observations: Number of Vehicle Stops

In our simulations we have also measured the average number of vehicle stops per vehicle type for

all experiments performed. We did not analyze these results in detail when analyzing other metrics

as they are mostly consistent with the average vehicle waiting time and as such would not provide

any additional insight. In this section we present these results, and focus only on the instances where

average number of stops is not consistent with other metrics presented.

Figure 6.27 shows the average number of stops per vehicle type for the traffic conditions from

Scenario 1 and Scenario 2, i.e., uniform low load, uniform high load, and the 3:1 traffic pattern. We

show the results for baselines RR and SAT, for non-collaborative multi-policy deployments (C=0),

for fully collaborative DWL deployments (C=1), for DWL deployments with an experimentally de-

termined to be the best-performing predefined value of C for the respective traffic conditions, and for

DWL deployments with learnt values of C. We see that all DWL deployments outperform (i.e., result

in a lower average number of vehicle stops) the baselines, collaborative deployments outperform the

153

6.4. Results and Analysis

Average Number of Vehicle Stops:
Low Uniform Load

0
5

10
15
20
25
30
35
40

RR SAT C=0 C=1 Fixed C Learnt C

Algorithm

A
ve

ra
ge

 n
um

be
r o

f
st

op
s cars

buses

Average Number of Vehicle Stops:
High Uniform Load

0

20

40

60

80

100

120

RR SAT C=0 C=1 Fixed C Learnt C

Algorithm

Av
er

ag
e

nu
m

be
r

of

st
op

s cars
buses

Average Number of Vehicle Stops:
3:1 Traffic Pattern

0

20

40

60

80

100

RR SAT C=0 C=1 Fixed C Learnt C

Algorithm

A
ve

ra
ge

 n
um

be
r o

f
st

op
s cars

buses

Fig. 6.27: Average number of vehicle stops per vehicle type: DWL and baselines

154

Chapter 6. DWL Evaluation

non-collaborative ones, and deployments that learn values of C outperform or perform as well as those

that use predefined values.

This is the same behaviour we observed when analyzing average vehicle waiting time. However,

there are two instances where the relationship between the performance of deployments in terms of

average number of stops presented here is not consistent with the relationship between their perfor-

mances in terms of average vehicle waiting time. Under the 3:1 traffic pattern, the C=0 deployment

has a lower number of stops than the C=1 deployment, although when we compared the average

vehicle waiting times between these two deployments in Section 6.4.2, C=0 resulted in a higher aver-

age vehicle waiting time. Also, under uniform high load, SAT outperforms RR in terms of number of

stops, as shown on the graph, however it has worse vehicle waiting times, as discussed in Section 6.4.1.

Therefore, in these two instances, vehicles make fewer stops, but the stops they do make are longer.

In the SAT vs. RR case, we can attribute this to the ability of SAT to extend the phase duration, so

that when vehicles are stopped at a traffic light they might need to wait longer than they do in RR

which uses a fixed 20s phase duration. In the C=0 vs. C=1 case, the vehicle stops might be longer

when C=0 due to a lack of collaboration, e.g., vehicles might need to wait at a junction even when

their signal is set to green, because the backlog of vehicles created by a downstream junction might

be preventing them from proceeding.

Overall, the results in terms of average number of vehicle stops confirm suitability of DWL to

collaborative multi-policy optimization, as collaborative DWL deployments, and deployments where

DWL learns suitable values of C, outperform the baselines by lowering the average number of vehicle

stops by ∼62-92%.

6.5 Evaluation Summary

In this chapter we presented details of the evaluation of DWL as a multi-agent multi-policy optimiza-

tion technique for decentralized autonomic environments. We have presented the evaluation objectives,

described the evaluation scenarios, and presented and analyzed the results.

From the analysis of the results we conclude that DWL is a suitable algorithm for multi-agent

multi-policy optimization in our application area, UTC, and as such could be a promising approach

to optimization in other large-scale decentralized autonomic systems with similar characteristics.

DWL outperforms both existing UTC algorithms that we have used as baselines, with improve-

ments in average vehicle waiting time ranging from ∼73% to ∼88%, depending on the specific baseline

used, the evaluation scenario, and the vehicle type (Objective #1, as listed in Section 6.1). Collab-

155

6.5. Evaluation Summary

orative DWL deployments outperform non-collaborative multi-policy techniques, with improvements

in average vehicle waiting time ranging from ∼56% to ∼90%, depending on the evaluation scenario

and the vehicle type (Objective #2). Learning C rather than using a predefined value of C can also

improve the performance of the system, by, depending on the evaluation scenario, either improv-

ing the performance of both policies (by up to ∼61% depending on the evaluation scenario and the

vehicle type), or performing as well as the best predefined value of C while removing the need for

extensive testing to determine the most suitable values of predefined C (Objective #3). DWL, even

though it has primarily been designed to enable simultaneous optimization towards multiple policies,

can also be deployed in single-policy systems to improve their performance by enabling collaboration

between agents. Single-policy collaborative deployments of DWL that learn values of C outperform

the baselines, non-collaborative scenarios, and either outperform or perform as well as deployments

with a predefined value of C (Objective #4). DWL respects policy priorities (Objective #5), as it

either improves the performance of both policies, or, when trade-offs are required, it improves the

performance of the higher priority policy. Additionally, we observe that in DWL the relative im-

provements in policy performance are directly related to their relative priorities. We have also shown

that addressing both policies simultaneously using DWL, in the presence of multiple vehicle types,

improves the performance of the system when compared to single-policy deployments (Objective #6).

If there are multiple vehicle types in the system (e.g., buses and cars), single-policy deployments either

perform well for the vehicle type they are addressing and neglect other vehicles, or perform poorly

for both vehicle types due to policy dependency. Multi-policy DWL deployments can improve the

overall system performance by either improving the performance of both vehicle types or improving

the performance of one vehicle type with smaller negative effects on the other. DWL showed perfor-

mance improvements under all four sets of traffic conditions evaluated (uniform low load, uniform high

load, non-uniform 3:1 traffic pattern, and a conflicting scenario) and under different policy priority

and scope relationships, showing its suitability for a variety of environmental conditions and policy

characteristics (Objective #7). Finally, we have shown that DWL requires only 3.5 hours of traffic

data, under the evaluated set of traffic conditions, to start outperforming the UTC baselines used

(Objective #8).

156

Chapter 7

Conclusions and Future Work

"The duty of helping one’s self in the highest sense involves the helping of one’s neighbors."

- Samuel Smiles

In this chapter we summarize the thesis and review its most significant achievements. We then

conclude with a discussion of the remaining open research issues related to this work.

7.1 Thesis Contribution

The work in this thesis addresses multi-policy optimization in decentralized autonomic systems.

Chapter 1 motivated the work by outlining issues in multi-policy optimization in decentralized

autonomic systems implemented using multi-agent technologies. We argued that the main challenges

in multi-policy optimization in such systems arise from the heterogeneity of agents and the hetero-

geneity of the policies that they implement, and dependencies between agents and policies caused by

shared operating environments. Due to these dependencies, we concluded that cooperation between

agents could be beneficial, however, we have identified that collaboration introduces further issues,

for example, how to motivate agents to cooperate, with what other agents should they cooperate, to

what degree should they cooperate and when.

We then, in Chapter 2, analyzed the autonomic computing domain in more detail, focusing on

multi-agent systems and existing self-organizing techniques used for optimization in large-scale de-

centralized systems. We reviewed existing work in multi-policy RL and multi-agent RL, identifying a

gap for an RL-based multi-agent collaborative optimization technique capable of addressing multiple

157

7.1. Thesis Contribution

policies simulatenously. We also introduced UTC, as an example of a decentralized autonomic system,

in which we have evaluated DWL.

In Chapter 3 we presented a case study in which we evaluated two existing single-agent multi-

policy RL techniques in a non-cooperative multi-agent simulation of UTC in order to establish a

baseline for our research into collaboratieve multi-policy optimization techniques. We found W-

learning to be a suitable technique for non-collaborative multi-agent multi-policy optimization. In our

simulations W-learning outperformed the baselines that we used for comparison, RR and SAT, which

are based on techniques currently used for optimization in UTC. W-learning also either outperformed

or performed as well as the other single-agent multi-policy RL-based optimization technique that we

evaluated, which combined multiple learning processes into a single learning process with a single

state space. The results of the experiments in this preliminary case study also highlighted policy and

agent dependency, confirming our belief that cooperation could be beneficial for system performance.

In Chapter 4 we derived a set of requirements for a collaborative multi-agent multi-policy opti-

mization technique in decentralized autonomic systems. We argued that such a technique needs to be

self-organizing, i.e., not require external control; needs to be decentralized, i.e., not require a global

system view; needs to be capable of learning suitable behaviours rather than using predefined rules;

needs to be capable of addressing heterogeneous system policies simultaneously while respecting their

relative priorities; and needs to enable collaboration between heterogeneous agents, as well as enable

agents to learn the levels of cooperation in which to engage.

We then presented DWL, the main contribution of this thesis, and outlined how it meets the

requirements specified. DWL is an RL-based multi-agent multi-policy optimization technique which

enables simultaneous optimization towards multiple policies, regardless of their scopes or relative

priorities, and enables collaboration between heterogenous agents, i.e., agents whose state-space rep-

resentations and action-sets differ. In DWL, each agent uses Q-learning to learn suitable actions

for its local policies, and W-learning to learn the relative weights of the actions nominated by local

policies in given states. In DWL, each agent also has a set of so-called “remote policies”, that use

Q-learning to learn how the agent’s local actions affect its one-hop neighbours’ policies (i.e., it learns

the dependencies between agents), and uses W-learning to learn the weights of the actions nominated

by remote policies in given states. At each time step, each agent executes the action with the highest

associated W-values across all local and remote policies, after the W-values of remote policies have

been scaled using a cooperation coefficient C. C determines the level of cooperativness of an agent,

and ranges from C=0, where agents are fully non-collaborative, to C=1, where agents are fully col-

laborative, i.e., take their neighbours’ action suggestions into account with the same relative weight

158

Chapter 7. Conclusions and Future Work

as their own. C can be predefined to the same value on all agents, or can be learnt by each agent

individually so as to maximize the rewards received by its local and remote policies, while respecting

relative policy priorities. Designed in such a way DWL can be used to implement fully self-organizing

systems, i.e., it does not require external control, central control or a global system view. All actions

and interactions are performed locally within the one-hop neighbourhood of an agent, while global

optimization towards system policies emerges from those local actions and interactions.

In Chapter 5 we presented details of the implementation of DWL and how it is applied to generate

traffic-light agents implementing multiple traffic optimization policies in a simulation of UTC.

In Chapter 6 we evaluated DWL as a multi-policy optimization technique for collaborative multi-

agent autonomic systems in a simulation of UTC. We evaluated DWL’s performance in a variety of

traffic conditions, addressing compatible as well as conflicting policies, different policy spatial scopes

and their relative priorities, and different lengths of training time.

Our experiments show that DWL is suitable for optimization in UTC, as it outperforms our

baselines, RR and SAT, under all tested scenarios, with improvements in average vehicle waiting time

ranging from 73% to 88%, depending on the evaluation scenario and vehicle type. DWL also improves

the performance of both policies over non-collaborative deployments, through the use of remote policies

and the cooperation coefficient C. The best performing DWL deployments with a predefined value of C

outperform non-collaborative multi-policy deployments under all tested scenarios, with improvements

in average vehicle waiting time ranging from 56% to 90%, depending on the evaluation scenario and

vehicle type. We also show that the performance of both policies can be further improved under

some traffic conditions by enabling agents to learn suitable values of C rather than using predefined

values. We have also investigated the impact of the addition of a second policy to the system on the

original policy, in the presence of multiple vehicle types. Addressing both policies simultaneously using

DWL improves the performance of both policies over their corresponding single-policy deployments (if

policies are compatible or complementary), or the performance of one vehicle type is slightly degraded

for improvements in the performance of the other vehicle type (if policies are conflicting) but no vehicle

type is neglected, as it might be the case in single-policy deployments. Additionally, even though it

is primarily aimed at multi-policy environments, we show that DWL’s collaboration approach can

also improve the performance of the system in the presence of a single policy only. Finally, we

show that DWL has feasible training times, as it requires only 3.5 hours worth of exploration to

start outperforming the baselines in the traffic scenario tested. All of the above results hold for

a variety of traffic conditions, showing DWL is a suitable technique for collaborative multi-policy

optimization in a simulation of UTC, and suggesting its wider applicability in other heterogenous

159

7.2. Open Research Issues

large-scale decentralized autonomic systems.

7.2 Open Research Issues

When designing and evaluating DWL, we have identified several areas where DWL’s performance and

applicability could be extended and identified a number of areas for potential future research. We

outline these areas and discuss the remaining open research issues below.

As DWL is based on RL, several issues inherent in RL should be addressed before DWL is applied

in live systems. First, DWL could be extended to the optimization of multiple policies in non-

stationary environments. Learning processes can be extended with mechanisms that detect significant

changes in the environment and either reinitiate the learning process, or switch to another previously

learnt set of behaviours for a given set of environment conditions. Due to the presence of multiple

policies in the system, the main challenge with this approach would be detecting whether a change in

environmental conditions affect one or more policies, and whether it changes the dependencies between

policies and dependencies between agents, and adapting accordingly. Secondly, as Q-learning and W-

learning require exploration periods while learning optimal actions and weights, the use of DWL with

batch reinforcement learning algorithms (Kalyanakrishnan & Stone, 2007) could be investigated and

applied in environments where online learning is not feasible. Additionally, applicability of DWL for

multi-policy optimization in partially observable environments could be addressed.

In terms of the features of DWL, an implementation of learning the most suitable cooperation

coefficient per pair of agents rather than for the whole agent’s neighbourhood could be considered.

This would enable agents to give a higher priority to action suggestions from the neighbours whose

behaviours a more significant effect on global system behaviour than other neighbours. Additionally,

mechanisms to detect the levels of compatibility between policies (based onW-values and performance)

could be implemented. In the case of conflicting policies, where trade-offs between performance of the

policies is needed, a desired (e.g., a minimum or maximum) value of performance metrics for policies

could be specified, and recommendations on relative values of policy rewards made.

One of the main open research issues related to DWL is providing formal guarantees on its per-

formance. Convergence and optimality guarantees associated with single-agent Q-learning do not

extend to our multi-agent multi-policy case. The problem of exactly solving a multi-agent problem

has been shown to be intractable as it has a non-deterministic explonential time complexity (Bernstein

et al., 2000), and therefore, most multi-agent learning algorithms (Dowling & Haridi, 2008), includ-

ing DWL, use approximation techniques, and cannot provide convergence and optimality guarantees.

160

Chapter 7. Conclusions and Future Work

Even though empirical results show DWL is a promising approach to multi-policy optimization in de-

centralized autonomic systems, some application areas might require stronger behavioural guarantees,

for example, providing at least performance boundaries for system behaviour.

161

Bibliography

Abdelwahed, S., & Kandasamy, N. (2007). Autonomic Computing: Concepts, Infrastructure, and Ap-

plications, chap. A Control-Based Approach to Autonomic Performance Management in Computing

Systems. CRC Press.

Abdulhai, B., & Pringle, R. (2003). Autonomous reinforcement learning - 5 GC urban traffic control.

Tech. rep., Transportation Research Board Annual Meeting.

Abdulhai, B., Pringle, R., & Karakoulas, G. (2003). Reinforcement learning for the true adaptive

traffic signal control. Journal of Transportation Engineering , 129 (3), 278–285.

Angus, D., & Woodward, C. (2009). Multiple objective ant colony optimisation. Swarm Intelligence,

3 (1), 69–85.

Anthony, R., Butler, A., & Ibrahim, M. (2007). Autonomic Computing: Concepts, Infrastructure,

and Applications, chap. Exploiting Emergence in Autonomic Systems. CRC Press.

Babaoglu, O., Jelasity, M., & Montresor, A. (2005). Unconventional programming paradigms, chap.

Grassroots Approach to Self-management in Large-Scale Distributed Systems. Springer Berlin /

Heidelberg.

Babaoglu, O., Meling, H., & Montresor, A. (2002). Anthill: A framework for the development of

agent-based peer-to-peer systems. International Conference on Distributed Computing Systems.

Baird, L., & Moore, A. (1999). Gradient descent for general reinforcement learning. In Advances in

Neural Information Processing Systems 11 , (pp. 968–974). MIT Press.

Baran, B., & Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem

with time windows. In Proceedings of IASTED International Conference on Applied Informatics.

Barrett, L., & Narayanan, S. (2008). Learning all optimal policies with multiple criteria. In ICML

’08: Proceedings of the 25th international conference on Machine learning , (pp. 41–47).

162

Bibliography

Bazzan, A. L. (2005). A distributed approach for coordination of traffic signal agents. Autonomous

Agents and Multi-Agent Systems, 10 (1), 131–164.

Bazzan, A. L. C. (2009). Opportunities for multiagent systems and multiagent reinforcement learning

in traffic control. Autonomous Agents and Multi-Agent Systems, 18 (3), 342–375.

Bernstein, D. S., Zilberstein, S., & Immerman, N. (2000). The complexity of decentralized control

of markov decision processes. In Mathematics of Operations Research.

Blum, C., & Merkle, D. (Eds.) (2008). Swarm Intelligence: Introduction and Applications. Natural

Computing Series. Springer.

Brooks, R. (1986). Achieving artificial intelligence through building robots. Tech. rep., Cambridge,

MA, USA.

Brooks, R. A. (1991). How to build complete creatures rather than isolated cognitive simulators. In

Architectures for Intelligence, (pp. 225–239). Erlbaum.

Bull, L. (2004). Learning classifier systems: A brief introduction. In Applications of Learning

Classifier Systems. Springer.

Busoniu, L., Schutter, B. D., & Babuska, R. (2005). Learning and coordination in dynamic multiagent

systems. Tech. Rep. 05-019, Delft Center for Systems and Control, Delft University of Technology,

Delft, The Netherlands.

Bustard, D. W., & Sterritt, R. (2007). Autonomic Computing: Concepts, Infrastructure, and Appli-

cations, chap. A Requirements Engineering Perspective on Autonomic Systems Development. CRC

Press.

Camponogara, E., & Kraus, W. (2003). Distributed learning agents in urban traffic control. In

Portuguese Conference on Artificial Intelligence (EPIA), (pp. 324–335).

Choi, S. P., Yeung, D. Y., & Zhang, N. L. (2002). Multi-model approach to non-stationary reinforce-

ment learning. In Proceedings of Artificial Intelligence and Soft Computing .

Chowdhury, M. A., & Sadek, A. W. (2003). Fundamentals of Intelligent Transportation Systems

Planning . Artech House Publishers.

Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multiagent

systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, (pp. 746–752).

AAAI Press.

163

Bibliography

Coello, C. A. C. (1999). A comprehensive survey of evolutionary-based multiobjective optimization

techniques. Knowledge and Information Systems, 1 , 269–308.

Cuayahuitl, H., Renals, S., Lemon, O., & Shimodaira, H. (2006). Learning multi-goal dialogue

strategies using reinforcement learning with reduced state-action spaces. In International Journal of

Game Theory , (pp. 547–565).

Cui, X., Potok, T., & Palathingal, P. (2005). Document clustering using particle swarm optimization.

In Swarm Intelligence Symposium.

Curtis, D. (2003). Adaptive control software. Tech. rep., U.S. Department of Transportation, Federal

Highway Administration.

Das, R., Tesauro, G. J., &Walsh, W. E. (2005). Model-based and model-free approaches to autonomic

resource allocation. Tech. rep., IBM.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed Stigmergetic Control for Communication

Networks. Journal of Artificial Intelligence Research, 9 , 317–365.

Di Caro, G., Ducatelle, F., & Gambardella, L. M. (2005). AntHocNet: An adaptive nature-inspired

algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications,

Special Issue on Self-organization in Mobile Networking , 16 , 443–455.

Diao, Y., Hellerstein, J. L., Parekh, S., Griffith, R., Kaiser, G., & Phung, D. (2005). Self-managing

systems: A control theory foundation. In ECBS ’05: Proceedings of the 12th IEEE International

Conference and Workshops on Engineering of Computer-Based Systems, (pp. 441–448). Washington,

DC, USA: IEEE Computer Society.

Doerner, K., Hartl, R., & Reimann, M. (2003). Are COMPETants more competent for problem

solving? - the case of full truckload transportation. Central European Journal of Operations Research,

11 (2), 115–141.

Dorigo, M., & Di Caro, G. D. (1999). The Ant Colony Optimization Meta-Heuristic, (pp. 11–32).

London: McGraw-Hill.

Dowling, J. (2005). The Decentralised Coordination of Self-Adaptive Components for Autonomic

Distributed Systems. Ph.D. thesis, Trinity College Dublin.

Dowling, J., Cunningham, R., Curran, E., & Cahill, V. (2006). Building autonomic systems using

collaborative reinforcement learning. Knowledge Engineering Review , 21 (3), 231–238.

164

Bibliography

Dowling, J., & Haridi, S. (2008). Reinforcement Learning , chap. Decentralized Reinforcement Learn-

ing for the Online Optimization of Distributed Systems. I-Tech Education and Publishing.

DTO (2006). Road user monitoring report. Tech. rep., Dublin Transportation Office.

Dusparic, I., & Cahill, V. (2009a). Distributed W-Learning: An algorithm for multi-policy optimiza-

tion in decentralized autonomic systems (poster). In Proceedings of the 6th International Conference

on Autonomic Computing and Communications.

Dusparic, I., & Cahill, V. (2009b). Distributed W-Learning: Multi-policy optimization in self-

organizing systems. In Third IEEE International Conference on Self-Adaptive and Self-Organizing

Systems.

Dusparic, I., & Cahill, V. (2009c). Multi-policy optimization in decentralized autonomic systems

(extended abstract). In J. S. S. Carles Sierra, Keith S. Decker, & C. Castelfranchi (Eds.) Proceedings

of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09),

(pp. 1203–1204).

Dusparic, I., & Cahill, V. (2009d). Using reinforcement learning for multi-policy optimization in

decentralized autonomic systems - an experimental evaluation. In W. Reif, G. Wang, & J. Indulska

(Eds.) Proceedings of the 6th International Conference on Autonomic and Trusted Computing , vol.

5586 of Lecture Notes in Computer Science, (pp. 105–119).

Ehrgott, M., & Gandibleux, X. (2002). Multiple Criteria Optimization. State of the art annotated

bibliographic surveys. Kluwer Academic, Dordrecht.

Eiben, A., & Smith, J. (2003). Introduction to Evolutionary Computing . Springer, Natural Comput-

ing Series.

Eiben, A. E. (2005). Evolutionary computing and autonomic computing: Shared problems, shared

solutions?. In O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. P. A. van Moorsel,

& M. van Steen (Eds.) Self-star Properties in Complex Information Systems, vol. 3460 of Lecture

Notes in Computer Science, (pp. 36–48). Springer.

Febbraro, A. D., Giglio, D., & Sacco, N. (2004). Urban traffic control structure based on hybrid petri

nets. IEEE Transactions on Intelligent Transportation Systems, 5 (4), 224–237.

Fellendort, M. (1997). Public transport priority within SCATS - a simulation case study in dublin.

Tech. rep., PTV.

165

Bibliography

Flake, G. W. (2000). The Computational Beauty of Nature: Computer Explorations of Fractals,

Chaos, Complex Systems, and Adaptation. The MIT Press.

Gábor, Z., Kalmár, Z., & Szepesvári, C. (1998). Multi-criteria reinforcement learning. In ICML

’98: Proceedings of the Fifteenth International Conference on Machine Learning , (pp. 197–205). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Gadanho, S. C., & Hallam, J. (2001). Robot learning driven by emotions. Adaptive Behaviour , 9 (1),

42–64.

Gambardella, L. M., Taillard, E., & Agazzi, G. (1999). MACS-VRPTW: a multiple ant colony system

for vehicle routing problems with time windows. (pp. 63–76).

Ganek, A. G., & Corbi, T. A. (2003). The dawning of the autonomic computing era. IBM Systems

Journal , 42 (1), 5–18.

Gershenson, C., & Heylighen, F. (2003). When can we call a system self-organizing? In W. Banzhaf,

T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.) Advances in Artificial Life, 7th European

Conference, ECAL, (pp. 606–614).

Ghosh, B. (2009). Applied transportation analysis - short-term traffic forecasting. Presentation.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative multi-

agent systems. In AAMAS ’03: Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems, (pp. 137–144). New York, NY, USA: ACM.

Goldman, C. V., & Zilberstein, S. (2004). Decentralized control of cooperative systems: Categoriza-

tion and complexity analysis. Journal of Artificial Intelligence Research (JAIR), 22 , 143–174.

Goldsby, H. J., Cheng, B. H. C., McKinley, P. K., Knoester, D. B., & Ofria, C. A. (2008). Digital

evolution of behavioral models for autonomic systems. In International Conference on Autonomic

Computing , (pp. 87–96). IEEE Computer Society.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent planning with factored MDPs. In 14th Neural

Information Processing Systems (NIPS-14), (pp. 1523–1530). Vancouver, Canada.

Guestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordinated reinforcement learning. In Proceedings

of the ICML-2002 The Nineteenth International Conference on Machine Learning , (pp. 227–234).

Hiraoka, K., Yoshida, M., & Mishima, T. (2008). Parallel reinforcement learning for weighted multi-

criteria model with adaptive margin. (pp. 487–496). Berlin, Heidelberg: Springer-Verlag.

166

Bibliography

Hoar, R., Penner, J., & Jacob, C. (2002). Evolutionary swarm traffic: if ant roads had traffic lights.

In CEC ’02: Proceedings of the Evolutionary Computation on 2002. CEC ’02. Proceedings of the

2002 Congress, (pp. 1910–1915). Washington, DC, USA: IEEE Computer Society.

Humphrys, M. (1996a). Action selection methods using reinforcement learning. In Proceedings of the

Fourth International Conference on Simulation of Adaptive Behavior , (pp. 135–144). MIT Press.

Humphrys, M. (1996b). Action Selection methods using Reinforcement Learning . Ph.D. thesis,

University of Cambridge.

IBM (2005). An architectural blueprint for autonomic computing. Tech. rep., IBM.

Jin, Y., & Sendhoff, B. (2008). Pareto-based multiobjective machine learning: An overview and case

studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C , 38 (3), 397–415.

Kadrovach, B. A., & Lamont, G. B. (2002). A particle swarm model for swarm-based networked

sensor systems. In SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing , (pp.

918–924). New York, NY, USA: ACM.

Kaelbling, L. P., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey. Journal of

Artificial Intelligence Research, 4 , 237–285.

Kalyanakrishnan, S., & Stone, P. (2007). Batch reinforcement learning in a complex domain. In The

Sixth International Joint Conference on Autonomous Agents and Multiagent Systems, (pp. 650–657).

New York, NY, USA: ACM.

Karlsson, J. (1997). Learning to solve multiple goals. Ph.D. thesis, Rochester, NY, USA.

Kennedy, J., & Russell, E. C. (2001). Swarm Intelligence (The Morgan Kaufmann Series in Artificial

Intelligence). Morgan Kaufmann.

Kephart, J. O. (2005). Research challenges of autonomic computing. In ICSE ’05: Proceedings of

the 27th international conference on Software engineering , (pp. 15–22). New York, NY, USA: ACM

Press.

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer , 36 (1),

41–50.

Kephart, J. O., & Walsh, W. E. (2004). An artificial intelligence perspective on autonomic computing

policies. Policies for Distributed Systems and Networks, IEEE International Workshop on.

167

Bibliography

Kirk, D. E. (2004). Optimal Control Theory: An Introduction. Dover Publications.

Klein, L. A. (2001). Sensor technologies and data requirements for ITS . Artech House.

Kok, J. R., ’t Hoen, P. J., Bakker, B., & Vlassis, N. (2005). Utile coordination: learning interde-

pendencies among cooperative agents. In Proceedings of the IEEE Symposium on Computational

Intelligence and Games (CIG), (pp. 29–36). Colchester, United Kingdom.

Kok, J. R., & Vlassis, N. (2006). Collaborative multiagent reinforcement learning by payoff propa-

gation. Journal of Machine Learning Research, 7 , 1789–1828.

Kutz, M. (2003). Handbook of Transportation Engineering . McGraw-Hill Professional.

Lekavy, M. (2005). Optimising Multi-agent Cooperation using Evolutionary Algorithm. In

M. Bielikova (Ed.) Proceedings of IIT.SRC 2005: Student Research Conference in Informatics and

Information Technologies, Bratislava, (pp. 49–56). Faculty of Informatics and Information Technolo-

gies, Slovak University of Technology in Bratislava.

Littman, M. L., Ravi, N., Fenson, E., & Howard, R. (2004). Reinforcement learning for autonomic

network repair. In ICAC ’04: Proceedings of the First International Conference on Autonomic

Computing , (pp. 284–285). Washington, DC, USA: IEEE Computer Society.

Lowrie, P. (1982). SCATS: The sydney co-ordinated adaptive traffic system - principles, methodology,

algorithms. In Proceedings of the IEE International Conference on Road Traffic Signalling .

Maniezzo, V., Gambardella, L. M., & Luigi, F. D. (2004). New Optimization Techniques in Engi-

neering , chap. Ant Colony Optimization. Springer-Verlag Berlin Heidelberg.

Mariano, C., & Morales, E. F. (2000). A new distributed reinforcement learning algorithm for multiple

objective optimization problems. In IBERAMIA-SBIA ’00: Proceedings of the International Joint

Conference, 7th Ibero-American Conference on AI , (pp. 290–299). London, UK: Springer-Verlag.

McCann, J. A., & Huebscher, M. C. (2004). Evaluation issues in autonomic computing. In Grid and

Cooperative Computing Workshops, (pp. 597–608).

McGuire, J., & O’Keeffe, D. (2003). The limerick adaptive urban traffic control system project. Tech.

rep., Limerick City Council and Arup Consulting Engineers.

Melo, F., & Veloso, M. (2009). Learning of coordination: Exploiting sparse interactions in multiagent

systems. In Proceedings of the 8th International Conference on Autonomous Agents and Multi-Agent

Systems.

168

Bibliography

Mikami, S., & Kakazu, Y. (1994). Genetic reinforcement learning for cooperative traffic signal control.

In International Conference on Evolutionary Computation, (pp. 223–228).

Mirchandani, P., & Head, L. (2001). RHODES: a real-time traffic signal control system: Architecture,

algorithms, and analysis. Tech. rep., The University of Arizona and Gardner Transportation Systems.

Montresor, A., Meling, H., & Babaoglu, O. (2002). Messor : Load-balancing through a swarm of

autonomous agents. Tech. Rep. UBLCS-02-08, Departement of Computer Science, University of

Bologna, Bologna, Italy.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE , 77 (4),

541–580.

Natarajan, S., & Tadepalli, P. (2005). Dynamic preferences in multi-criteria reinforcement learning.

In ICML ’05: Proceedings of the 22nd international conference on Machine learning , (pp. 601–608).

New York, NY, USA: ACM.

OLeary, D. (2008). Supporting decisions in real-time enterprises: autonomic supply chain systems.

Information Systems and E-Business Management , 6 (3), 239–255.

Oliveira, E., & Duarte, N. (2005). Making way for emergency vehicles. In Proceedings of the 2005

European Simulation and Modelling Conference, (pp. 128–135).

Oxford (2000). The Oxford English Dictionary . Oxford University Press.

Papageorgiou, M., Diakaki, C., DInopoulou, V., Kotsialos, A., & Wang, Y. (2003). Review of road

traffic strategies. In Proceedings of the IEEE , vol. 91.

Paquet, S., Bernier, N., & Chaib-draa, B. (2004). Multi-attribute decision making in a complex mul-

tiagent environment using reinforcement learning with selective perception. In Canadian Conference

on AI , (pp. 416–421).

Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 5 (3), 243–254.

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective

problems. In SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing , (pp. 603–

607). New York, NY, USA: ACM.

Peek Traffic Limited, Siemens Traffic Controls, TRL Limited (2009). SCOOT. http://www.scoot-

utc.com/.

169

Bibliography

Pendrith, M. D. (2000). Distributed reinforcement learning for a traffic engineering application.

In AGENTS ’00: Proceedings of the fourth international conference on Autonomous agents, (pp.

404–411). New York, NY, USA: ACM Press.

Perez, J., Germain-Renaud, C., Kegl, B., & Loomis, C. (2008). Grid differentiated services: A

reinforcement learning approach. In CCGRID ’08: Proceedings of the 2008 Eighth IEEE Interna-

tional Symposium on Cluster Computing and the Grid , (pp. 287–294). Washington, DC, USA: IEEE

Computer Society.

Peshkin, L., eung Kim, K., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate via

policy search. In Proceedings of the 16th Annual Conference on Uncertainty in Artificial Intelligence

(UAI-00), (pp. 489–496). Morgan Kaufmann.

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural actor-critic. In European Conference on

Machine Learning , (pp. 280–291).

Pierre-Luc Gregoire, J. L., Charles Desjardins, & Chaib-draa, B. (2007). Urban traffic control based

on learning agents. In Proceedings of the 10th International Conference on Intelligent Transportation

Systems (ITSC’07).

Pitu, M., Anna, K., Larry, H., & Wu, W. (2000). An approach towards the integration of bus priority,

traffic adaptive signal control, and bus information/scheduling systems. In S. Vos, & J. Daduna (Eds.)

International conference on computer-aided scheduling of public transport (CAPST), (pp. 319–334).

Springer-Verlag.

Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C., & Schmeck, H. (2008).

Organic control of traffic lights. In ATC ’08: Proceedings of the 5th international conference on

Autonomic and Trusted Computing , (pp. 219–233). Berlin, Heidelberg: Springer-Verlag.

Pugh, J., Zhang, Y., & Martinoli, A. (2005). Particle swarm optimization for unsupervised robotic

learning. In Swarm Intelligence Symposium, (pp. 92–99).

Raicevic, P. (2006). Parallel reinforcement learning using multiple reward signals. Neurocomputing ,

69 (16-18), 2171–2179.

Ramdane-Cherif, A. (2007). Toward autonomic computing: Adaptive neural network for trajectory

planning. International Journal of Cognitive Informatics and Natural Intelligence, 1 (2), 16–33.

Reyes-Sierra, M., & Coello, C. A. C. (2006). Multi-objective particle swarm optimizers: A survey of

the state-of-the-art. International Journal of Computational Intelligence Research, 2 (3), 287–308.

170

Bibliography

Reynolds, V., Cahill, V., & Senart, A. (2006). Requirements for an ubiquitous computing simulation

and emulation environment. In InterSense ’06 . NY, USA: ACM.

Richter, S. (2006). Learning traffic control - towards practical traffic control using policy gradients.

Tech. rep., Albert-Ludwigs-Universitat Freiburg.

Robertson, D. I., & Bretherton, R. D. (1991). Optimizing networks of traffic signals in real time -

the SCOOT method. IEEE Transactions on Vehicular Technology .

Rosenblatt, J. K. (2000). Optimal selection of uncertain actions by maximizing expected utility.

Autonomous Robots, 9 (1), 17–25.

Rosenschein, J. S., & Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for Automated

Negotiation Among Computers. Cambridge, Massachusetts: MIT Press.

Russell, S., & Norvig, P. (2003). Aritifical Intelligence - A Modern Approach. Prentice Hall.

Russell, S. J., & Zimdars, A. (2003). Q-decomposition for reinforcement learning agents. In

T. Fawcett, & N. Mishra (Eds.) International Conference on Machine Learning , (pp. 656–663).

AAAI Press.

S Jones, M. H., & Fox, K. (1998). State of the art and user needs for selected vehicle priority. Tech.

rep., UK Department of Transport.

Salkham, A., Cunningham, R., Garg, A., & Cahill, V. (2008). A collaborative reinforcement learning

approach to urban traffic control optimization. In IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 2, (pp. 560–566).

Schneider, J., Wong, W.-K., Moore, A., & Riedmiller, M. (1999). Distributed value functions. In

Proceedings of the Sixteenth International Conference on Machine Learning , (pp. 371–378). Morgan

Kaufmann.

Sen, S., & Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, chap. Learning in Multiagent Systems, (pp. 259–298). Cambridge, MA, USA: MIT

Press.

Serugendo, G. D. M., Foukia, N., Hassas, S., Karageorgos, A., Mostefaoui, S., Ulieru, O. R. M.,

Valckenaers, P., & Aart, C. V. (2003). Self-organization: Paradigms and applications. In Proceedings

of The International Workshop on Engineering Self-Organizing Applications.

171

Bibliography

Shelton, C. R. (2000). Balancing multiple sources of reward in reinforcement learning. In Neural

Information Processing Systems, (pp. 1082–1088).

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequential tasks. In

Machine Learning , (pp. 323–339).

Sprague, N., & Ballard, D. (2003). Multiple-goal reinforcement learning with modular Sarsa(0). In

International Joint Conference on Artificial Intelligence.

Srinivasan, D., Choy, M. C., & Cheu, R. L. (2006). Neural networks for real-time traffic signal

control. IEEE Transactions on Intelligent Transportation Systems, 7 (3), 261–272.

Sterritt, R. (2005). Autonomic computing. Innovations in Systems and Software Engineering , (pp.

79–88).

Sterritt, R., Parashar, M., Tianfield, H., & Unland, R. (2005). Autonomic computing. Advanced

Engineering Informatics, 19 (3), 181–187.

Stone, P., & Veloso, M. M. (2000). Multiagent systems: A survey from a machine learning perspective.

Autonomous Robots, 8 (3), 345–383.

Suton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, Mas-

sachusetts: A Bradford Book. The MIT Press.

Sycara, K. (1998). Multiagent systems. AI Magazine, 19 (2).

Tan, K. C., Khor, E. F., Lee, & Heng, T. (2005). Multiobjective Evolutionary Algorithms and

Applications (Advanced Information and Knowledge Processing). Secaucus, NJ, USA: Springer-

Verlag New York, Inc.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-

ings of the Tenth International Conference on Machine Learning , (pp. 330–337). Morgan Kaufmann.

Tesauro, G. (1999). Pricing in agent economies using neural networks and multi-agent Q-learning.

In Proceedings of Workshop ABS-3: Learning About, From and With other Agents.

Tesauro, G. (2005). Online resource allocation using decompositional reinforcement learning. Tech.

rep., IBM.

Tesauro, G. (2007). Reinforcement learning in autonomic computing: A manifesto and case studies.

IEEE Internet Computing , 11 (1), 22–30.

172

Bibliography

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., Kephart, J. O., & White,

S. R. (2004). A multi-agent systems approach to autonomic computing. International Joint Confer-

ence on Autonomous Agents and Multiagent Systems, (pp. 464–471).

Tesauro, G., Das, R., Walsh, W. E., & Kephart, J. O. (2005). Utility-function-driven resource

allocation in autonomic systems. International Conference on Autonomic Computing , (pp. 342–

343).

Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2006). A hybrid reinforcement learning

approach to autonomic resource allocation. In ICAC ’06: Proceedings of the 2006 IEEE International

Conference on Autonomic Computing , (pp. 65–73). Washington, DC, USA: IEEE Computer Society.

Tham, C. K., & Prager, R. W. (1994). A modular Q-learning architecture for manipulator task de-

composition. In Proceedings of the Eleventh International Conference on Machine Learning . Morgan

Kaufmann.

Traffic Authority of New South Wales Australia, R. (2009). www.rta.nsw.gov.au/.

Vamplew, P., Yearwood, J., Dazeley, R., & Berry, A. (2008). On the limitations of scalarisation

for multi-objective reinforcement learning of pareto fronts. In AI ’08: Proceedings of the 21st Aus-

tralasian Joint Conference on Artificial Intelligence, (pp. 372–378). Berlin, Heidelberg: Springer-

Verlag.

Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing

the state-of-the-art. Evolutionary Computation, 8 (2), 125–147.

Vlassis, N. (2007). A Concise Introduction to Multiagent Systems and Distributed Artificial Intelli-

gence. Morgan and Claypool publishers.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning , 8 (3),

279–292.

Weijters, A. J. M. M., & Hoppenbrouwers, G. A. J. (1995). Backpropagation networks for grapheme-

phoneme conversion: a non-technical introduction. In Artificial Neural Networks: An Introduction

to ANN Theory and Practice, (pp. 11–36). London, UK: Springer-Verlag.

Weiss, G. (Ed.) (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence. The MIT Press.

173

Bibliography

Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S., Huynh, A., Carlson,

M., Perry, J., & Waldbusser, S. (2001). Rfc 3198: Terminology for policy-based management. Tech.

rep., The Internet Society.

White, S. R., Hanson, J. E., Whalley, I., Chess, D. M., & Kephart, J. O. (2004). An architectural

approach to autonomic computing. Autonomic Computing, International Conference on, (pp. 2–9).

Wiering, M., van Veenen, J., Vreeken, J., & Koopman, A. (2004a). Intelligent traffic light control.

Tech. rep., Institute of Information and Computing Sciences, Utrecht University.

Wiering, M., Vreeken, J., Van Veenen, J., & Koopman, A. (2004b). Simulation and optimization of

traffic in a city. In IEEE Intelligent Vehicles Symposium (IV’04). IEEE.

Wolf, T. D., & Holvoet, T. (2004). Emergence and self-organisation: a statement of similarities and

differences. In Lecture Notes in Artificial Intelligence, (pp. 96–110). Springer Verlag.

Wolf, T. D., & Holvoet, T. (2007). Autonomic Computing: Concepts, Infrastructure, and Applica-

tions, chap. A Taxonomy for Self-* Properties in Decentralized Autonomic Computing. CRC Press.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. Wiley.

Yagan, D., & Tham, C.-K. (2007). Coordinated reinforcement learning for decentralized optimal con-

trol. In IEEE International Symposium on Approximate Dynamic Programming and Reinforcement

Learning .

Yang, Z., Chen, X., Tang, Y., & Sun, J. (2005). Intelligent cooperation control of urban traffic

networks. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics,

(pp. 1482 – 1486).

174

