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Summary

This thesis is about the automatic extraction of metaphors as they appear in English text. This

task is important to research in information retrieval, corpus linguistics and computational linguis-

tics. The work was motivated by theories of metaphor comprehension and statistical semantics

and contributes to areas of natural language processing (NLP) and information extraction where

figurative language continues to present a challenge. Chapter 2 reviews related psychological and

computational work and provides a foundation for a method described in chapter 3. Chapter 4

describes my implementation of this method – a system called MetID. Chapter 5 evaluates MetID

on three increasingly difficult tasks: identification, interpretation and extraction of figurative lan-

guage. The final chapter describes the contribution of this research, contextualising it in light of

the research goals and concludes with a discussion of future work.

Methods and techniques of the project were inspired by research on how people comprehend

metaphors, by linguistic research in how metaphor is used in text, and by NLP techniques for

extracting particular types of metaphor. The goal was to build and test a system for automati-

cally finding and providing interpretations of figurative language. A central task is representing

word associations that account for the semantics of figurative language. Specifically, three types

of lexical models were evaluated: WordNet, distributional semantic models and co-occurrence

likelihood estimation. The method also uses a number of heuristics that typically mark linguis-

tic metaphor, such as selectional violation and predication. The system can be used to analyse

individual phrases, a corpus (which can simultaneously be used to build the lexical model) or a

collection using pre-built models. The output is a ranked list of candidate metaphors by which

to interpret a statement. For example, analysing “my heart is on fire” produces the interpretation

AFFECTION AS WARMTH. The system attempts to account for two common forms: noun- and

verb-based metaphors. Evaluation results suggest that the method performs significantly above

chance on noun-based statements but not for verb-based. The choice of lexical model has a signif-

icant effect when analysing noun-based statements, but not verbs. The results on an interpretation

task, which were validated with participant ratings, found that 1) noun-based statements were more

easily interpreted, 2) the system was better at interpreting figurative statements than literal state-

ments and 3) in some configurations, the system’s scores correlate strongly to participant ratings.

Additionally, an interesting interaction was found: the literal / non-literal distinction mediated the

role of a statement’s grammatical form when considering the quality of interpretation. Last, a case

study was used to aid a corpus-based terminological analysis of the word contagion in finance and

economics where it has been adopted with a number of figurative features.
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Chapter 1

Introduction

1.1 Motivation: Computation, Language & Metaphor

The systematic analysis of language has been around long before the availability of automatic,

computational methods. Some of the earliest computational analysis of communication examined

patterns, habits and trends in language use. The advent of the internet and growth in computing

resources – retrieval, storage and processing power – have enabled large-scale analyses of text.

The wealth of available data has encouraged increasingly advanced techniques to automatically

find and extract meaning from text. Despite advances in automated text analysis, one continued

difficulty is in analysing certain types of figurative language.

Figurative communication is important to the way people converse with one another and un-

derstand the world around them. Many observed metaphors are common across languages, cul-

tures and types of communication. The genesis of many words often points to a literal sense

being re-applied in a figurative way to a new domain or idea. Certain words like “rise” and “fall”

are consistently used without any reference or analogues to changes in height. Other concepts,

like temperature, movement and weight, are commonly used to describe feelings, quantities and

complexity. The work presented in this thesis explores strategies for automatically identifying and

interpreting certain forms of figurative language. This work combines three areas of research: cog-

nitive linguistics, computational semantics and natural language processing (NLP). It is an attempt

to address technical questions about linguistic phenomena and seeks to extend the state of the art

to better account for certain types of metaphor. This thesis will motivate and present a method

for finding metaphors in text, using corpus-based semantic models in combination with legacy

resources and NLP techniques. The key question is this: can computational semantic models be

combined with NLP tools and techniques, to accurately find and interpret figurative statements?

Early views on the role of metaphor in communication and thought held that they were po-

etic decoration of otherwise literal language. Such a view does not address questions about how

metaphors are created and processed. Modern theories propose that metaphor is integrated with

human experience and thought – an integration that beckons further inquiry [92, 132, 171]. Why

do people apply some metaphors so consistently? What accounts for systematic relationships

among metaphors? How do people identify and make sense of metaphor in discourse? How are

5



6 CHAPTER 1. INTRODUCTION

metaphors used in explanations of new, complicated or abstract concepts? What are the lexical

properties of metaphor and do they relate to discourse in a way that they might be automatically

extracted and interpreted? Some of these questions have been addressed in psychological and lin-

guistic research [75, 80, 235]. The current work is motivated by linguistic inquiry, grounded in

experimental theories, and seeks to extend the fields of NLP, information extraction and statistical

semantics to better address the semantics and pragmatics of figurative language.

Metaphor research attempts to help application-driven fields like text summarisation, doc-

ument retrieval and information extraction. These fields have begun to focus on a number of

questions in lexical semantics, often implementing analogues to mental procedures for extracting

and processing meaning in text. For finding meaning in text, there are two commonly manifested

problems: sparse or incomplete data, and assessing the contribution of extra-textual information

like context or outside knowledge. The sparsity problem has lead to proposed solutions ranging

from reformalisations of similarity and relatedness, to statistical normalisation and approximation

[139, 144, 164]. The problem of contextual knowledge, on the other hand, is somewhat of an

open question in lexical semantics. While there are other approaches, the current research takes

a text-centric view to semantics. That is, while an ontological structure to meaning, with which

to inform semantics in language, may be proposed, it would be of little use to computers until

it is built and verified. Instead, building a semantic understanding from the text, in a ground-up

fashion, provides methods that are tractable, empirical and language independent.

The project described in this thesis is one in NLP, but it deviates from the increasingly common

hybrid of NLP + machine learning work-flow of data gathering, feature selection and classification

to fit a model with observed data. Instead, testing representations will allow the method itself to be

tested rather than the features or learning algorithms. This goal stems from the motivations of the

research: to test corpus semantic models against figurative language. Thus, the theoretical question

is this: can NLP techniques be combined with general purpose semantic models to accurately find

and interpret figurative language.

1.2 Goals

There are two goals of my research reported here. First, with regards to figurative language, a

number of researchers have shown that what is commonly called metaphor is more accurately de-

fined as a range of phenomena – linguistic and conceptual [76, 80, 134, 135]. Linguistic metaphor

(metaphors expressed in language) has many forms and appears not to be entirely distinct from

other linguistic phenomena such as analogy, ellipsis and metonymy [10, 46]. Ostensibly, these

forms of figurative communication are defined by different features. Exploring these differences,

in particular with respect to lexical features, is the over-arching aim of this research. To the extent

that figurative language is available to lexical analysis, doing so systematically will help provide

a data-driven foundation of metaphor use. Second, this work contributes to computing and NLP.

Though the project is inspired in-part by psycholinguistics and statistical semantics, a number of

a NLP tasks have been explored, implemented and evaluated to produce a system designed to

identify and interpret the use of metaphor in raw text.
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Figurative Language

The first main goal is to explore the boundaries of various types of figurative language. The

hallmark of a metaphor is the mapping of one concept onto or by another [92, 128, 132, 133].

Different research describes this in different ways, but the common element is that in a metaphor, a

concept is being made sense of by another, the relationship being in some way figurative. However,

to differentiate figurative and literal statements, more information is needed – both linguistic and

conceptual. There is more than one way to classify linguistic metaphors; Walter Kintsch offers

four types of metaphor [122]:

1. Simple metaphors (Noun1-is-Noun2). My lawyer is a shark.

2. Simple analogy-based metaphors. She blew up at me.

3. Complex analogy-based metaphors. The universe is a computer.

4. Literary metaphors. We are the eyelids of defeated caves.

These types of metaphor help narrow the scope of the proposed metaphor identification system.

The fourth type, literary metaphors, is perhaps inviable without operationalising people’s intuitions

about the of symbolism, metaphysics and identity in interpretations of language. The third type,

which Kintsch calls ”complex analogies”, also may require extensive background knowledge to

interpret accurately. In the example above, people need to know what it is that computers do

and how it could be used to relate them to the universe. Complex analogies like the example

are thought to a rely on a set of features (functional, associative, semantic, etc.) that can be

aligned to make sense of one concept (computers) in terms of another (the universe). The first two

types of metaphor can indeed be complex in ways similar to the third type, but Kintsch proposes

that their semantics are less reliant on non-lexical features. Given the surface similarity (evident

between examples 1 and 3) it would be difficult to categorise an observed metaphor in the way

Kintsch proposes. Instead, the current project attempts to address two surface forms of figurative

language: noun- and verb-based metaphors. It is likely, however, that types 1 and 2 listed above

are more easily detected and interpreted computationally, regardless of their surface similarities to

more difficult kinds of figurative language.

Taking the first two types of metaphor above, their differences can be further specified. The

first is typical of noun-based metaphors where one thing is compared by asserting it is another.

The example above uses the stereotypically predatory nature of sharks to exaggerate an analo-

gous aspect of being a lawyer. The second example, simple analogy-based metaphors, is a verb-

based statement in which “blew up” implies something like “got very angry”. These two types of

metaphor appear to be available to a lexical analysis, and as such, they are the focus of this thesis.
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NLP

In addition to exploring the use of figurative language, this project is equally concerned with the

technical task of automating its identification and interpretation in text. A defining feature is that

figurative language tends to evade interpretation with brittle accounts of lexical semantics in which

words have a meaning and their relationships are instantiated by connections dictated by the words

themselves [197, 230]. This conception of semantics has been helpful and productive in areas like

semantic networks, the semantic web and lexical semantic modeling [48, 53, 167]. However, the

range of figurative language is unlikely to be captured in its entirety with such a model.

Given the success of computational models in NLP, and corpus-based semantic models in

particular, this project attempts to push the boundaries of existing work in computation metaphor

processing. To that end, much of this work is a comparative exercise between various types of

semantic models. This research will look specifically at WordNet, a semantic network produced

by lexicographic research, distributional semantic space models such as latent semantic analysis

(LSA), and purely statistical models based on term co-occurrence likelihood estimation. Three

types offer a spectrum of approaches. Precisely which models perform best and why will be

addressed in the last two chapters but, preliminarily, the computational task has three potential

outcomes:

1. The models fail to detect or accurately interpret figurative language in text.

2. The models capture the presence of figurative language in text and provide accurate

interpretations.

3. The models detect some kinds of figurative language with variable accuracy of

interpretations.

Though the third outcome is the most likely, considering the literature on semantic models,

the first two are possibilities. Should the first outcome be the case, a new goal would be set for

semantic models: to accurately represent figurative meaning. Should the second be the case, it

would further support the models against critiques. In the third case, more particular conclusions

will be in order. Which configurations succeed or fail, in what circumstance, in what way and

why? What properties of figurative language contribute to metaphor evading a computational

analysis? Are these models inherently flawed, or can they be revised to better account for the

breadth of such language? Answers to these questions may be technical in nature and will perhaps

precipitate new strategies in computational models of meaning.

1.3 Relationship to Other Work

This section reviews some of areas related to this project. A more in-depth review of the literature

will be presented in the next chapter, but below is a review of the potential contributions to corpus

linguistics, computational semantics, NLP and information extraction.
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Corpus Linguistics

Corpus linguistics is the sub-field of linguistics that adopts a language-as-data approach to re-

searching language use, change and theory [59, 129]. Corpus linguistics differs from the Chom-

skyan or “internalist” approach of analysing constraints placed on language by formal syntactic

structures [20, 21, 36]. Instead, corpus linguistics utilises language use as data in which to find

patterns, consistencies and changes. Corpus linguistics has been enabled by advances in com-

putational analysis as well as data access, retrieval and storage. Though dictionary makers and

lexicographers inspired the field, Kucera and Francis’ Computational Analysis of Present-Day

American English [129] is often cited as a one of the first corpus linguistics publications. Kucera

and Francis present a computer-assisted analysis of what is now known as the Brown Corpus [59],

and it exemplifies two central tasks: corpus construction and systematic analysis.

Corpus construction is about developing a sample of language, which is in some way repre-

sentative of language use. Corpora are often built for specific genres, domains, publication types

or readership levels to investigate language use in specific contexts [29, 129, 152]. An important

kind of corpus is a diachronic collection, where texts are organised over time, usually with some

uniformity from one period to another. Diachronic corpora are a relatively recent advancement

which has inspired the idea of a “monitor corpus”: a corpus that can track changes in language use

over time [43].

Corpus analysis starts with frequency observations at different levels of linguistic description

(words, word forms, stems, lemmas, phrases, etc.) and may employ NLP techniques such as

dependency parsing and part-of-speech tagging. During the course of the current project, a number

of corpora were used to build and compare semantic space models and provide various statistical

information such as common predications and selectional preferences. From one perspective,

this project is a computational branch of corpus linguistics, seeking to combine its data-driven

approach to language with cognitive linguistic theory and NLP techniques.

Computational Semantics

At the centre of the method employed in this project is a set of lexical models which will be used

to relate observed words with a set of seed terms derived from corpus linguistic research. For

this work, a semantic model has a single purpose: to associate words. The crucial part, which

is addressed in different ways by different models, is that word association can mean something

different depending on morphological, grammatical, lexical and sentential context. The oldest,

and perhaps most simple semantic model is a dictionary, often in which multiple senses of a word

can be found (for example “river bank” vs. “investment bank”). Respecting this contextually

dependent aspect of natural language is non-trivial for computers.
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The first corpus-based semantic models, like Salton’s vector space model, did not delineate

word senses, separate phrases or compose multi-word terms [192]. Nonetheless, these prototypical

models provided foundational methods which have been adopted almost uniformly in models that

build a “semantic space” from frequency observations1. Exploring specifically what features a

model must represent to accurately find and interpret linguistic metaphor is a central goal of this

project. In pursuing this, improved strategies for computational modeling may be proposed.

NLP & Information Extraction

NLP and information extraction are, tasked with automatically making sense of naturally occur-

ring text. This project is concerned with semantic modeling as it relates to non-literal statements,

but many of the tools and techniques used and developed here are enabled by and contribute

to work in NLP. Not only is this work aided by advances in parsing and POS-tagging, it also

implements a number of NLP-style solutions to problems like selectional preference induction,

analysing predications and word clustering. Three types of models will be used for building clus-

ters and associating words: an explicit model, semantic space models and a statistical method of

co-occurrence likelihood estimation. However, the system is designed to be neutral with respect to

what models are used. This addresses an important experimental goal of testing different strategies

to address the analysis of figurative language.

1.4 Structure of the Thesis

This thesis presents the motivation, design, implementation and evaluation of a computational sys-

tem for processing figurative language. Chapter 2 reviews the foundations of figurative language in

terms of use and understanding of metaphor, and its properties evident in language. This includes

relationships among types of figurative language and how the linguistic properties of metaphor can

aid its automatic identification and interpretation. An overview of existing computing and NLP

work addressing figurative language is reviewed placing the proposed method in a unique position

to 1) combine metaphor identification and interpretation tasks and 2) analyse both noun- and verb-

based metaphors in a unified manner. The third chapter describes the overall method the imple-

mentation of which is in chapter 4. The method’s design combines the use of legacy resources and

linguistic findings with computational / NLP tools and techniques. Chapter 4 describes the system,

called MetID, that was built to allow a comparison of different semantic models’ ability to pro-

cess figurative language using a word-clustering strategy [199, 200]. The system’s modular design

consists of a structural module, a word-clustering module (achieved using a range of corpus-based

semantic models) and a series of post-hoc, conditional heuristics. Chapter 5 contains an evalua-

tion of MetID. Because a number of valid configurations are possible, the first section evaluates

word-clusters built with different text collections, semantic models and their variants. For the first

evaluation of language, a subset of the valid configurations are used to address an idealised iden-

tification task in which MetID is used to pick figurative statements from a set of literal-figurative
1For example, the proposal to use log-entropy normalisation to improve the performance of TF-IDF is ubiquitous

among distributional semantic space models.
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pairs. The best performing configurations (which perform at about 73% accuracy) are used in a

subsequent interpretation task where the system’s output is evaluated against the results of an on-

line user-study. The third and final evaluation is based on a case-study [71] that used MetID to aid

a terminological analysis of contagion as it is used figuratively in finance and politics. The final

chapter discusses the findings of this research as they relate to the synthesis of linguistic metaphor

theory, statistical semantics and NLP. This includes technical alternatives to MetID’s architecture

that could yield gains in performance, how grammatical structure and conceptual representations

impact metaphor processing, the role of non-lexical information in metaphor interpretation and

areas of future work.

1.5 Key Contributions & Findings

The main contribution of this work is the MetID system, which implements a number of NLP

techniques and represents a unique combination of work in figurative language (cf. Goatly; [92])

and statistical NLP (distributional semantic models). The novelty of the system is a cluster-based

approach that can use interchangeable lexical models (WordNet, distributional models and co-

occurrence likelihood estimation). MetID extends the clustering approach to metaphor identifica-

tion in two important ways. First, the word association method (a lexical model) is interchange-

able, allowing comparative analysis. Secondly, the system augments word association information

with clusters’ intrinsic quality metrics, allowing it to better know when results are sub-optimal.

The system also implements measures of selectional violation [182, 200, 230] and predication

[15, 158]. Additionally, instead of choosing a best answer (or interpretation) the system uses a

rank-based algorithm allowing a number of possible interpretations for a single statement. More-

over, performance with certain lexical models show the system operationalises two dominant the-

ories of metaphor comprehension: feature mapping and category matching. That is, often, the

word associations given by the lexical models represent featural and categorical information about

concepts.

The goal of this project is to operationalise the identification and interpretation of metaphor

in a unified manner. However, these tasks are not strictly defined and there are no gold standards

to measure a method’s success. Instead, the system is first evaluated on idealised identification

and interpretation tasks. The first is designed to test the system’s ability to differentiate literal

and non-literal statements with respect to the grammatical form, the lexical model and the corpus

used to train the model. Results on this task suggest that noun-based statements are considerably

easier to process and that the choice of lexical model is significant. The results show that WordNet

and a distributional model (called COALS) performed relatively well, at about 73% accuracy. In

the second task, automatically generated interpretations were rated by participants in a sensibility

and paraphrasing task. The results show that noun-based, figurative statements were the most

accurately interpretable. Additionally, in figurative statements, the grammatical form plays a larger

role than when analysing literal statements. Lastly, the lexical model was again important to the

system’s performance, the best of which were about 38% above chance. In some configurations,

scores from the system correlate strongly with participants’ ratings, implying that when using
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some lexical models, the system’s interpretations are tempered by their respective scores. A third

evaluation is a case study, applying MetID to terminological analysis [71]. In a corpus-driven

project, the system was used to provide an overview of common figurative concepts related to the

term contagion as it is used in finance and economics. The contagion case-study exemplifies the

role of computational methods in corpus analysis, especially in language change and figurative

terminology.

Figurative language presents a challenge because it involves a range of contextual and stereo-

typical knowledge, making it a difficult task for statistical models of meaning. The current work

adapts and extends NLP techniques to better address figurative language. While this work is not

a comprehensive solution for the myriad forms of metaphor, it embodies a novel combination of

existing resources and state-of-the art computational techniques.

1.6 Previous Publications

Below are abstracts and brief annotations of my publications to-date. These seven papers represent

the results of my current research and a previous degree in cognitive science that were published

during this PhD.

Gerow, Aaron and Keane, Mark T. (2011) Mining the Web for the “Voice of the Herd” to Track

Stock Market Bubbles. In Proceedings of the 22nd International Joint Conference on Artificial

Intelligence (IJCAI ’11), Barcelona, Spain, 16-22 July, 2011.

We show that power-law analyses of financial commentaries from newspaper web-

sites can be used to identify stock market bubbles, supplementing traditional volatility

analyses. Using a four-year corpus of 17,713 online, finance-related articles (10M+

words) from the Financial Times, the New York Times, and the BBC, we show that

week-to-week changes in power-law distributions reflect market movements of the

Dow Jones Industrial Average (DJI), the FTSE-100, and the NIKKEI-225. Notably,

the statistical regularities in language track the 2007 stock market bubble, showing

emerging structure in the language of commentators, as progressively greater agree-

ment arose in their positive perceptions of the market. Furthermore, during the bubble

period, a marked divergence in positive language occurs as revealed by a Kullback-

Leibler analysis.

This paper was the product of empirical findings during the first phase of research for a mas-

ter’s degree. In developing and examining a corpus of financial texts, we found that power-laws

were a helpful way of characterising the diversity of word-usage over time. Fluctuations in these

power-laws initially appeared quite non-random, but when we inspected changes within POS dis-

tributions, we found a distinct correlation with the markets from 2006 to 2010. Heartened by

this, we extended the work to a sentiment analysis of the same words and phrases comprising the

power-law analysis [67].
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Gerow, Aaron and Keane, Mark T. (2011) Identifying Metaphor Hierarchies in a Corpus Analysis

of Finance Articles. In Proceedings of the 33rd Annual Meeting of the Cognitive Science

Society (Cogsci ’11), Boston, MA, USA, 20-23 July, 2011.

Using a corpus of over 17,000 financial news reports (involving over 10M words),

we perform an analysis of the argument-distributions of the UP- and DOWN-verbs

used to describe movements of indices, stocks, and shares. Using measures of the

overlap in the argument distributions of these verbs and k-means clustering of their

distributions, we advance evidence for the proposal that the metaphors referred to by

these verbs are organised into hierarchical structures of super-ordinate and subordi-

nate groups.

Here, we explored how clusters of UP- and DOWN-verbs can reveal similarities in metaphor-

ical instances of those words. The key finding was that the words “up” and “down” often stand

alone, and that spatial instances like “rise”, “fall”, “lift” and “drop” clustered together while more

dramatic instances like “soar” and “plummet” form a third cluster. This phenomenon was shown

to be more or less symmetric for both UP- and DOWN-verbs. The work was a bifurcation of my

master’s thesis in cognitive science [68].

Gerow, Aaron and Keane, Mark T. (2011) Identifying Metaphoric Antonyms in a Corpus Analysis

of Finance Articles. In Proceedings of the 33rd Annual Meeting of the Cognitive Science

Society (CogSci ’11), Boston, MA, USA, 20-23 July, 2011.

Using a corpus of 17,000+ financial news reports (involving over 10M words), we

perform an analysis of the argument-distributions of the UP and DOWN verbs used

to describe movements of indices, stocks and shares. In Study 1 participants identi-

fied antonyms of these verbs in a free-response task and a matching task from which

the most commonly identified antonyms were compiled. In Study 2, we determined

whether the argument-distributions for the verbs in these antonym-pairs were suffi-

ciently similar to predict the most frequently-identified antonym. Cosine similarity

correlates moderately with the proportions of antonym-pairs identified by people (r =

0.31). More impressively, 87% of the time the most frequently-identified antonym is

either the first- or second-most similar pair in the set of alternatives. The implications

of these results for distributional approaches to determining metaphoric knowledge

are discussed.

This paper used the results of a human experiment in which people paired antonyms for UP-

and DOWN-verbs and showed that a distributional representation, measured by cosine similarity,

tended to correctly pick human responses. This finding is interesting with regard to cognitive lin-

guistic theories of metaphor, which propose systematicity between metaphorical words. This study

showed that this systematicity, which is used by humans to generate antonyms, is also realised in

the distributional structure of such words [69].
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Gerow, Aaron and Ahmad, Khurshid. (2012) Diachronic Variation in Grammatical Relations. In

Proceedings of the 24th International Conference on Computational Linguistics (COLING

2012), Mumbai, India, 10-14th December, 2012.

We present a method of finding and analyzing shifts in grammatical relations found

in diachronic corpora. Inspired by the econometric technique of measuring return

and volatility instead of relative frequencies, we propose them as a way to better

characterize changes in grammatical patterns like nominalization, modification and

comparison. We examine a corpus of NIPS papers and report a number of trends

which manifest at the token, part-of-speech and grammatical levels. Building on fre-

quency observations, we show that shifts in lexical tokens overlook deeper trends in

language, even when part-of-speech information is included. Examining token, POS

and grammatical levels of variation enables a summary view of diachronic text as a

whole. We conclude with a discussion about how these methods can inform intuitions

about specialist domains as well as changes in language use as a whole.

This paper introduced the use of two second-order statistical methods for the analysis of di-

achronic corpora: return and volatility. There has been significant work in tracking various forms

of linguistic data through diachronic corpora, but it often uses first-order analyses of frequency

data, averages and standard deviation. But using return and volatility, this paper shows how ex-

amining the changes in time-series data can help make observations about trends in language use.

We examined grammatical relationships of five key terms and present a summary analysis of noun

keywords in the NIPS corpus [70].

Gerow, Aaron; Ahmad, Khurshid, and Glucksberg, Sam. (2013) The Concept of Contagion in

Finance: A Computational Corpus-based Approach. In Proceedings of the 19th European

Symposium on Languages for Special Purposes (LSP 2013), Vienna, Austria, 7-10 July, 2013.

In everyday communication, figurative language is used to express emotions, value

judgments and beliefs as well as to blend and create new concepts. In finance,

metaphors often present messages of alarm in a soothing tone to overlook the cause

of a problem and focus, instead, on a solution. The concept of contagion has recently

entered discourse on international systems of regulation, finance and economics. We

trace the emergence and successive use of the term in medicine and biology, to the

social sciences and into the language of finance. We examine the use of contagion

at word and grammatical levels and show how various patterns are used to elaborate

particular features and diminish others. First, to look at the onset of the term, we track

its use in Annual Reviews articles and journals of finance. We then present a corpus-

based analysis of 38 US Congress documents and compare them to medical reports

from the World Health Organization and the Center for Disease Control. The results

show that some lexical-pragmatic properties are carried over from the biomedical con-

text while others are not, which has implications to the special purpose language of
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finance and politics. In another analysis, we present a computational method based

on word-clustering in WordNet, to analyze how the context of contagion signals var-

ious metaphors (or root analogies) in the congressional corpus (Goatly, 2011). The

results of this newly developed method show patterns in the metaphorical domains

which contagion makes use of in figurative contexts. We conclude that the nature

of contagion’s use in finance and politics is more complex than term-borrowing as it

establishes a range of lexical, pragmatic and metaphorical properties.

The paper is the result of preliminary computational explorations using MetID, the system

implemented in this thesis to investigate the use of contagion in financial texts. The findings,

which are presented in chapter 5 of this thesis, exemplify the computational corpus linguistic

approach enabled by MetID. The study shows how the system can be used to address questions

about concept and category creation in the lexicon. Additionally it provides a good introduction

to the methodological relevance of a computational corpus-based approach to language change in

the lexicon and in language use [71].

Keane, Mark T. and Gerow, Aaron (2014) It’s Distributions All The Way Down!. To appear in

Behavioral and Brain Sciences, 37 (1), 2014.

The textual, big-data literature misses Bentley, O’Brien, & Brock’s (Bentley et al.’s)

message on distributions; it largely examines the first-order effects of how a single,

signature distribution can predict population behaviour, neglecting second-order ef-

fects involving distributional shifts, either between signature distributions or within a

given signature distribution. Indeed, Bentley et al. themselves under-emphasise the

potential richness of the latter, within-distribution effects.

This paper is a peer-reviewed commentary on an article by Bentley, O’Brien and Brock [18].

The target article describes how four distributions of decision-making habits can be used to char-

acterise various strategies groups adopt. Our commentary underscores the subtlety and novelty of

distributional movements, both as first-order changes between distributions as well as movement

within a distribution. Our earlier paper, [67], is an example of this type of analysis, and exempli-

fies methods that have only recently been enabled by data and intuitions regarding population-level

behavior.

Gerow, Aaron; Ahmad, Khurshid, and Glucksberg, Sam. (2014; under review) Contagion in

Finance: A Computational Corpus-based Approach. Fachsprache / The International Journal

of Specialized Communication, under review.
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In everyday communication, figurative language is used to express emotions, value

judgments and beliefs as well as to blend and create new concepts. In finance,

metaphors often present messages of alarm in a soothing tone to overlook the cause

of a problem and focus, instead, on a solution. The concept of contagion has recently

entered discourse on international systems of regulation, finance and economics. We

trace the emergence and successive use of the term in medicine and biology, to the

social sciences and into the language of finance. We examine the use of contagion

at word and grammatical levels and show how various patterns are used to elaborate

particular features and diminish others. First, to look at the onset of the term, we

track its use in Annual Reviews articles and journals of finance. We then present a

corpus-based analysis of US congressional documents and compare them to medical

reports from the World Health Organization and the Center for Disease Control. The

results show that some lexical-pragmatic properties are carried over from the biomed-

ical context while others are not, which has implications for the specialist language

of finance and politics. In another analysis, we present a computational method based

on word clustering in WordNet, in order to analyse how the context of contagion sig-

nals various metaphors in the congressional corpus [92]. The results show patterns

in the metaphorical domains that contagion makes use of in figurative contexts. We

conclude that the nature of contagion’s use in finance and politics is more complex

than term-borrowing as it establishes a range of lexical, pragmatic and metaphorical

properties.

The paper is an elaboration of the computational, corpus-analysis of contagion in finance

and economics and is currently under review. The findings are based on those presented in the

LSP 2013 paper above, [71], but with more explanation of the related literature, methods and

implications. This paper is the first to explain and use the system presented in this thesis, MetID,

and exemplifies its role in corpus-based analysis.



Chapter 2

Background & Related Work

2.1 Introduction

This research explores computational methods for automatically identifying, extracting and inter-

preting the use of figurative language in text. Automation requires clearly articulated methods

and procedures, which can be implemented using properly curated data. The goal is to apply

and extend current techniques in information extraction to better address figurative language. The

inspiration for this work is in psycholinguistics and experimental psychology on one hand, and

corpus linguistics and statistical semantics on the other. The combination of corpus and cogni-

tive linguistics, computational semantics and natural language processing will be evidenced in the

methods and implementation chapters. Here, I review the foundations of metaphor use and com-

prehension, previous computational work in the area and models of lexical semantics which may

be helpful in designing a system for identifying and interpreting metaphor1.

This section will review corpus linguistic work on metaphor, which provides a starting point

for computational work. Section 2.2 provides a catalog of different kinds of figurative language

and common classifications. I then turn to metaphor in language, its meaning and structure which

will lead to an introduction of theories of metaphor use and comprehension. Computational work

relating to metaphor will be reviewed in section 2.5 which will motivate the use of corpus-based

semantic models, to be reviewed in the concluding section.

2.1.1 Corpus-Based Approaches to Metaphor

Some metaphor research has adopted corpus linguistic methodology [30, 34, 35, 45, 46]. Corpus

linguistics is a field historically undertaken by lexicographers tasked with developing dictionaries

and thesauri. It primarily consists of systematically sampling discourse to find patterns and habits

of language users, and to track changes in lexica. In the last three decades, corpus-based techniques

have become more widely available with increased access to literally endless text on the internet.

1Here, the term semantics refers to meaning in the lexicon (tokens of language use) [40], as opposed to truth
indication or truth marking [36]. Though conceiving of semantics in these terms may be controversial, discussion at
this level informs increasingly comprehensive theories of communication, memory and cognition – without regard to
internalist considerations. For more on this idea and debate, see [20, 21, 37, 38].

17
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The accessibility of data, combined with growing computational power, has enabled other research

to adopt corpus-based methods for studying language.

Corpus-driven approaches to figurative language have also become increasingly popular [45,

46, 88]. Recent work has explored proposals that metaphors structure knowledge and thought

by providing mappings between concepts – a theory which can be tested with corpus linguistic

methods. This includes examining the “super-structure” of figurative language evident in linguis-

tic instantiations of metaphor [45]. Other research has shown that properties of metaphors exhibit

constraining relationships to their linguistic instances [93, 128]. For example, subject domains

often show preference for certain metaphors – using organisms as companies, economies and

countries [46, 168]. Another example is how metaphors of quantity-change tend to be realised as

single verbs like rise and fall [69]. The latent structure of linguistic metaphors may also be avail-

able to corpus analysis: “collocating” metaphors may offer a measure of systematicity [45, p.219],

a property proposed to define links between metaphors [133], but which appears less common in

some domains [45, p.260]. The corpus approach is ostensibly well poised to address such discon-

tinuities by tracking the development of linguistic metaphors and their conceptual counterparts.

Corpora are the first piece in developing a systematic analysis of language. The second is a

method that exploits the availability of text from which to extract meaning and information and

is capable of mitigating the effects of noise, sparsity and incompleteness of the data. A central

question is: how can we most effectively represent meaning in text so that it can be analysed in

large quantities over large collections? Here we find a sub-field known as statistical semantics,

which is concerned with modeling lexical meaning using co-occurrence observations. The sta-

tistical (or “distributional”) approach has made contributions, both theoretical and functional, to

cognitive psychology, corpus linguistics and NLP (see [217] for a survey, [184] for a compara-

tive case-study and [20] for an internalist critique). Broadly stated, distributional semantics is the

analysis of lexical patterns as they relate to one-another in a series of documents or a stream of

text, to construct a representation of lexical semantics. The typical unit of analysis is a word, and

the typical data-structure is a matrix built from colligates and various contextual features (lexical,

morphological, grammatical, etc.). Work in the field will be reviewed in more depth in section 2.6.

2.2 Catalog of Metaphors

Recall the four types of metaphor: noun-based, verb-based, analogical and complex. There are

indeed more (and more useful) ways to delineate metaphor. This section reviews some ways to

organise metaphor in relation to its linguistic instantiations and figurative language in general.

2.2.1 Noun- & Verb-based Metaphors

The distinction between noun- and verb-based metaphors is useful for automatic interpretation

because it offers a surface-level distinction based on part-of-speech (POS). Metaphor is perhaps

most simply explained using noun-based metaphors because the conceptual structure is evident in

the linguistic instantiation. However, verb-based metaphors are perhaps the most common type
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and come in a range of forms [133, 122, 212]. Typically, the defining feature of a verb-based

metaphor is that an object is doing something which it cannot literally do. Verb-based metaphors

take a feature from a verb and apply it to an object. Take (i) for example:

(i) The boy got on his bike and flew home.

Here, flew could be lexically translated to quickly went, the metaphor being one in which fast move-

ment is made sense of as flying. Because it is cumbersome to explain concept combinations apart

from the instantiations, metaphors are denoted as TOPIC = VEHICLE or TOPIC AS VEHICLE, where

the TOPIC is the object of interpretation and VEHICLE is the means by which it is interpreted. The

example in (i), is said to “instantiate” the metaphor FAST = FLYING. Verb-based metaphors have

been analysed in cognitive psychology [212] and computational linguistics [15, 69, 158, 201]. In

computational research it has been proposed that verb-based metaphors constitute a violation of

selectional preference [41, 199, 200, 230], which can intuitively be defined as an object’s prefer-

ence for selecting certain actions. (i) is a good example of such a violation, because boys (and

bikes) tend not to fly. Selectional preference and violation will be expanded on later.

2.2.2 Metonymy & Metaphor

There is an interesting and complex distinction between instances of linguistic metaphor and

metonymy. Metonymy is a semantic relationship between a thing and a referent where the ref-

erent is itself related to, but not exactly or entirely, the thing itself. Metonymy is best illustrated

by example:

(ii) The White House is in talks with the Kremlin. (Meronymic metonymy)

(iii) We need a few more hands for this job. (Synecdoche)

(iv) The ham sandwich is waiting for their bill. (Ellipsis / synecdoche)

(v) Lend me your ear. (Partial functional metonymy)

Sentences (ii-v) are four kinds of metonymy (the metonymic referent is italicised). The common

feature is that they each refer to something other than the actual referent. In (ii) The White House

and the Kremlin are meronyms, presumably for representatives of America and Russia respec-

tively. (iii) is a type of metonymy called synecdoche, which is defined by Kenneth Burke as a

piece, or sub-part of something is used to refer to the whole [28]. In this example, hands refers to

people, as in “helping hands”. Like (iii), (iv) is also a form of synecdoche in which ham sandwich

refers to a patron who, presumably, ordered a ham sandwich. Instead of a part of a person, the

synecdoche is made by choosing a sub-aspect or sub-feature of a person, here as the food they

ordered, to refer to them. The last example, (v), is similar to (iii) and (iv), but is perhaps closer to

a typical metaphor. Here, ear cannot refer to a person, as hands do in (iii); the intended interpre-

tation is more likely a request for attention – the function of ears. The metonymy, then, is between

part and function: ear and listening. These forms of figurative language range from clear forms

of metaphor to forms of figurative language that are not easily understood in the topic / vehicle

structure of metaphor.
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Metonymy can often function like metaphor, especially when the metonymic relationship

crosses a conceptual boundary. Given the multitude of forms in which metaphor can occur, one

could conclude that metonymy is a sub-set of metaphor. However, some counter-examples show

that this is not always the case:

(vi) Please pass the mustard.

(vii) Can we hail a taxi?

Consider (vi) in which mustard likely refers to a container of mustard instead of the mustard

itself. This form of metonymy is so common that it is nearly unavoidable in daily communication.

Likewise, in (vii), people literally hail the driver of a taxi, not the taxi itself. These subtle figurative

references seem to beckon redefining the meaning of common terms. For instance, defining a taxi

to include a person, not just a car, would make it literal to hail one. Such an argument is beside

the point: neither (vi) nor (vii) are metaphorical, because neither uses one concept to make sense

of another, but they are clear instances of metonymy. The fact that some cases of metonymy

appear to be straight-forward metaphors, like (iii) and (iv), while others are nearly literal, has lead

researchers to propose a cline between metaphor to metonymy [10, 45, 46]. Still, many metaphors

are not forms of metonymy and it is these types that will be explored in the current research.

2.2.3 Sense-based, Complex & Other Metaphors

Peter Stockwell proposes nine types of metaphor commonly found in literature (table 2.1) [206].

Stockwell offers categories of multi-word metaphors which are distinct from one another. While

some are lexically instantiated, like pre-modification or paritive2 / genitive3 statements, others are

grammatical metaphors such nominalisation of verbs and verb pre-modification. Also note com-

pounds and blends are examples of morphological metaphors like “mind-scape” or “techno-babel”.

This set of metaphors exemplifies the breadth and diversity available to figurative language.

The proposed research on identifying and interpreting figurative language in text will focus

on two specific types: lexically instantiated noun- and verb-based metaphors. While this decision

is motivated by its viability, it is also inspired by a generalisation of metaphor: that metaphor

consists of mapping one concept onto another. Even when a linguistic metaphor is complex,

subtle or metonymic, at some level it combines two concepts. Because noun and verb metaphors

make this mapping more explicit (noun metaphors to a greater extent) they are a good place to

start. Though this may seem like a simplistic starting point, computational literature has tended

to separate noun-based metaphors from verb-based, examining one or the other (compare [15] to

[200]). The current project explores a unified, lexical approach for both noun- and verb-based

metaphors.

2[DP DET + of + [DP DET + N*]] in English.
3The syntactic case marking a possessive relationship between nouns.
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Type Part of Speech Example
Simile, analogy and extended
metaphor

Noun The brain is like a city.

It’s oldest parts are surrounded by developments in its
later evolution.

Copula constructions Noun The brain is a city.
Apposition and other paral-
lelisms

Adjective The brain, that teeming city...

Into my mind, into my mental cityscape...
Paritive and genitive expres-
sions

Noun Paris is the city of my mind.

In the streets and on the corners of my mind...
Pre-modification Adjective The urban brain

Verb A thinking city
Compounds and lexical blends Morph Mind-scape

Morph Metromind
Grammatical metaphor Verb The city considered the problem.

Verb The city sleeps.
Sentence metaphor (including
negation)

Noun This is the nerve-centre of the body.

Fiction and allegory (A narrative in which psychoanlytical archetypes are fig-
ured as city land-marks and inhabitants.)

Table 2.1: Peter Stockwell’s types of metaphor [206], examples of CITY AS MIND and MIND AS

CITY.

2.3 Language & Metaphor

Ostensibly, metaphors are artefacts of language, akin to similes and poetic imagery, where a con-

cept is expressed in terms of another. For example, one could say “my heart is on fire” to express

intense feelings. Many metaphors are used to exaggerate, hide, highlight, broaden or otherwise

change meaning in ideas. This intuition is what lead Locke to denounce the use of figurative lan-

guage, stating that, “all the artificial and figurative application of words eloquence hath invented,

are for nothing else but to insinuate wrong ideas [...]”4. However, there appear to be many concepts

which cannot help but be described with metaphor – not the least are vague, abstract or fleeting

concepts like emotions and dreams. Concepts like quantities, position, movement and tempera-

ture are expressed metaphorically more often than not [92, 128]. Additionally, there are systematic

correspondences between different metaphors, such as feeling “up”, “warming up to” or “boiling

with rage”. What makes these metaphors similar and how do people use this similarity? Are there

mental, linguistic or communicative constraints on the process of interpreting metaphors? And are

these processes informed by learning to communicate in a given language or a particular culture?

Contemporary theories of metaphor seek to answer these fundamental questions.

One of the first cognitivist theories to address the question of metaphor comprehension was

substitution theory which proposed that metaphors are understood by substituting figurative terms

with literal counterparts, rendering a normative interpretation [92]. However, substitution theory

fails to account for a number of properties of metaphor, such as the use of metonymy, the lack

of distinct or sometimes any literal counterparts, peoples’ speed of comprehension, cross-cultural

4Essay concerning Human Understanding, Book 3, chapter 10, page 105.
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correspondences and systematic relationships among metaphors. Interaction theory was offered

to address the weaknesses of substitution theory [17, 19]. Interaction theory introduced the idea

that metaphors have a topic concept, analogous to the subject of a sentence, and a vehicle concept

by which the topic is understood. It has been argued that the metaphorical nature of an utterance is

marked by an interaction between the topic and vehicle, where they are likened to one-another by

attribution or analogy [92]. The tensional theory holds that metaphor is marked by an emotional

or logical tension between the vehicle and topic concepts. This tension is resolved by a language

user’s higher-level cognition. Another proposal is the comparison theory, which holds that topics

and vehicles undergo a process of comparison [168], lexical and conceptual, after which a mapping

or transference process projects aspects of the vehicle onto the topic, hilighting and hiding certain

other features. None of these theories, however, addressed the systematicity between metaphors,

nor did they address why (or how) so many metaphors are grounded in embodied cognition.

One influential theory of metaphor is conceptual metaphor theory (CMT) [132, 133]. CMT be-

gins with the premise that metaphor is not purely linguistic. Instead, there is considerable evidence

that metaphors have a conceptual super-structure (the elements of which are so-called conceptual

metaphors) that accounts for the abundance and relatedness of metaphors in language. CMT ap-

pears to account for systematicity and polarity in metaphors across concepts, domain, language,

culture and even modality [24]. It also defines metaphor as a concept-mapping, unrelated to lin-

guistic instantiation. CMT is particularly helpful to the current research because it makes testable

claims about the relationships between conceptual and linguistic metaphors. Further, because

CMT proposes the existence of supra-metaphors, it provides a good foundation for an identifica-

tion task. That is, CMT describes what exactly it is that would be identified in an identification

task: a conceptual metaphor. CMT attempts to explain metaphor comprehension by proposing a

set of mental objects (conceptual metaphors) that are called on to interpret linguistic metaphors.

This model of metaphor processing leaves some open questions about how conceptual metaphors

are constructed, related and put to use. One symptom of this weaknesses is CMT’s lack of sup-

port for the results of experimental studies; it is not clear what mental processes or constraints

are supplied by the structure of conceptual metaphors [81]. Cognitive psychologists, such as Sam

Glucksberg, Dedre Gentner and others have carried out studies relating metaphor processing, use

and development [24, 75, 76, 82, 118, 211, 235]. These enquiries have resulted in two dominant

views of metaphor comprehension: category matching (cf. Glucksberg) and analogical reasoning

(cf. Gentner), which will be compared in section 2.4.

2.3.1 Meaning in Metaphor

The key feature of linguistic metaphors is that they challenge a literal semantic interpretation. Take

this example:

(viii) My butcher is a surgeon.

which is intended to be interpreted as “My butcher is very good” [171]. The sentence elicits an

equation between surgeon and very good. The resulting interpretation is based on prior conceptual
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knowledge – namely about what butchers do, what surgeons do, and the expectation that they are

different. Now note how transposing the nouns does not simply reverse the interpretation:

(ix) My surgeon is a butcher.

(ix) lends a different interpretation than (viii) – that the surgeon is bad at her job. The fact that

butchers are not necessarily bad precludes a metonymic interpretation. Instead, a valid interpreta-

tion must commit to a metaphorical relationship between butchers, surgeons and features of their

respective occupations. In this way, (viii) and (ix) use the same background information, but to

different ends.

While (viii) and (ix) are relatively easy to interpret, some metaphors are more complicated.

Consider (x):

(x) It will take a lot of patience to finish this [thesis].

At first glance (x) may not seem like a metaphor at all, but note the quantising of emotion. Lakoff

and Johnson propose that this is an example of an ontological metaphor, more precisely referred to

as a quantifying metaphor [133]. Ontological metaphors make normative claims about concepts,

which in this example is EMOTION AS QUANTITY. Other examples from [133] include (xi) and

(xii):

(xi) There is so much hatred in the world.

(xii) You have too much compassion for them.

As noted in the previous section, metaphors can use specific semantic relationships. For ex-

ample, antonymy appears to be consistent in spatial metaphors of quantity and change [69]. These

instances of spatial metaphor have also been shown to cluster in ways that correlate with the

structure implied by CMT [68]. An important feature of linguistic metaphors is that their inter-

pretation is not always available to a lexically constructed semantics. The semantics of metaphor

often draw on syntagmatic, phrasal and circumstantial cues to guide an interpretation [92]. Mak-

ing use of contextual and abstract information is a non-trivial computational task, but researchers

have begun to address the interplay between symbolic theories of lexical semantics and embod-

ied representations [146, 147, 149, 180]. The aim of such research is to explore ways to account

for meaning in text. Linguistic metaphor offers a unique phenomenon with a complex, and some-

times under-defined semantics, that is tightly connected to non-linguistic conceptual thought. This

makes metaphor a rather difficult phenomenon to address computationally, but one that is unique

and interesting.

Contributing to a growing body of work on statistical models of lexical semantics, the current

research seeks to combine such models with NLP techniques to test the bounds of computational

metaphor processing (see [201], for an example). To lay the foundations for this computational

undertaking, the next section will describe the structure of metaphor as it is instantiated in language

and communication.
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2.3.2 Structure of Metaphor

A metaphor consists of two pieces: a topic and a vehicle. In CMT these are concepts, instantiated

as terms in linguistic metaphor. Consider (xiii):

(xiii) My lawyer is a shark. [81]

Here, lawyer is the topic and shark is the vehicle. The defining feature of metaphor is that a topic

concept is being figuratively understood by using the vehicle concept. In (xiii), the interpretation

is to understand a lawyer as if they were a shark – presumably having features of aggression and

predation. Because topics are the objects of understanding, there appear to be few constraints

on what they may be [92, 128]. Common topics include emotion (“she was deeply moved”),

morality (“he’s a straight shooter”) and economy (“growth of the economy”). Unlike topics,

vehicles tend to be constrained by how well they work with a topic, how often they are used and

how specifically they can be applied. Common vehicles include anatomy (“the eye of the storm”),

plants and animals (“the fruits of our labour”) and economics (“spend your time wisely”) [128].

Lakoff and Johnson [133] survey metaphors used to convey things like numbers “rising”, in-

stitutions “growing”, emotions “flowing” and lovers “moving forward.” In the same work, the au-

thors develop a theory of entailment between conceptual metaphors. Entailments are constraints

and implications that extend from the use of a particular metaphor, such as EMOTION AS LIQUID,

that activate or require other metaphors like EMOTIONS ARE OBJECTS or perhaps FEELING AS

TEMPERATURE. The organisation of metaphors, which is not unique to CMT or Lakoff’s work,

implies a network of interrelated metaphors. Consider the metaphors ANGER IS HEAT and EMO-

TION IS LIQUID. Combining them, the metaphor ANGER IS HOT LIQUID can be derived, which

makes interpreting the following metaphor reliant on both:

(xiv) I was boiling with rage.

Lakoff’s Master Metaphor List and Andrew Goatly’s Map or Root Analogies are two resources

which interrelate metaphors by entailments.

Goatly’s theory of root analogies5 proposes that there are irreducibly primitive metaphors on

which most others rely [92]. The map is organised in two sets of target (topic) and source (vehicle)

domains (table 2.2). Stressing that linguistic instances of are not chosen arbitrarily, Goatly shows

that many metaphors draw on root analogies like HUMAN = PLANT, SPACE = TIME and SIMILAR-

ITY = PROXIMITY. Table 2.3 shows different kinds of linguistic metaphor and their defining ele-

ments as they affect potential methods of interpretation (which will be discussed in the following

section). Figure 2.1 is one of Goatly’s examples that shows the relationships between root analo-

gies used to interpret ANGER = HOT FLUID IN CONTAINER [93]. Note that some relationships are

not bi-directional. Goatly argues that the instantiation of a metaphor in language is constrained by

conceptual features as well as concerns about linguistic processing and communicative efficacy.

In other words, it is not enough to provide a taxonomy of linguistic-conceptual mappings, instead

research should also be guided by linguistic constraints like grammar, convention and morphology.
5An interactive “map of root analogies” is available at http://www.ln.edu.hk/lle/cwd/project01/web/rootanalogy.html;

11 January, 2013.
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Source Domains (Vehicles) Target Domains (Topics)
1. Activity & Movement A. Things & Substances
2. Human, Sense & Society B. Human / Animal Body & Sense
3. (Living) Things & Substances C. Activity & Movement
4. Values, Qualities & Quantities D. Space & Place
5. Emotion, Experience & Relationships
6. Thinking, Communication

Table 2.2: Top level source (vehicle) and target (topic) domains which organise the map of root
analogies. Each sector on the map corresponds to an intersection of a source and target domain,
where a number of constituent metaphors are found.

Example Unconventional
Elements

Interpretive Elements

Vehicle Topic Actual
referent

Actual ref-
erent

Similarity /
Analogy

He put his back
against the suitcase

Reference suitcase rock Similarity

The building was a
barn

Reference barn =cathedral cathedral Similarity

the sardine tin of life Reference
Colligation

sardine tin =life life Similarity &
Analogy

John is a pig Reference
Colligation

pig greedy John Similarity

the naked shingles
(of the world)

Reference
Colligation

naked uncovered shingles body Analogy

the air was thick Reference
Colligation

thick ? air solid/liquid Analogy

her son had been
damaged in a crash

Colligation son object Similarity

Table 2.3: Various types of metaphor with topics underlined, vehicles in bold-face and their defin-
ing feature(s): unconventional colligation or reference. The topic and vehicle are listed, some of
which are implied outside the context, producing differences between the actual and implied con-
cept. The last column, based on the preceding features, is the expectation of how such a metaphor
is processed (see section 2.4). Adapted from [92].
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Figure 2.1: Root analogies, in the four corners, used to interpret ANGER = FLUID IN CONTAINER

as the metaphors in the middle. Adapted from [93].

2.4 Theories of Metaphor Comprehension

Though both CMT and root analogies account for the ubiquity, interrelatedness and systematicity

of common metaphors, neither explicitly address experimental evidence about how people create,

use and comprehend metaphor [132, 133]. Some lexicalised or so-called “dead” metaphors may

be understood colloquially as idioms while novel metaphors rely on more complex processes. Two

theories have emerged addressing comprehension – the analogical process of structure-mapping

(cf. Gentner) and category matching (cf. Glucksberg). As we will see, different metaphors appear

to be processed in different ways, which has lead to hybrid theories.

2.4.1 Structure Mapping

In a model developed by Dedre Gentner and colleagues, known as structure-mapping, metaphors

are interpreted by a process of featural comparison and projection. The structure-mapping model,

which is based on analogical modeling, holds that analogies are made sense of by structurally

aligning features [25, 76, 77, 235]. To process a metaphor, the structure of mappings and entail-

ments are aligned between the topic and the vehicle, after which those left over are projected onto

the topic, re-representing it in terms of the vehicle. This process of alignment proposes discrete

systematic mappings (similar to CMT’s systematicity assumptions [132]) which may be abstracted

to compensate for differences (similar to French and Hofstadter’s “conceptual slippage” [61]). The

result of the alignment process is a structure with some elements apparent in the vehicle concept

but not the topic. These remaining elements are projected to create potential interpretations of the

topic, the more systematic and apt of which are kept.
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CMT and parts of Goatly’s theory of root analogies, claim that metaphor comprehension is

an embodied process, reliant on abstract conceptual metaphors. Structure-mapping appears to be

a good candidate for explaining how conceptual metaphors are compared. Also supporting the

theory are results from analogy making and comprehension, which have found the a structure-

mapping process accurately models results from controlled experiments [25, 76, 77, 211]. How-

ever, structure-mapping fails to account for cases where a topic is indirectly implied or obscured,

which is common in some linguistic metaphors [81].

2.4.2 Category Matching

Sam Glucksberg and colleagues developed a theory of metaphor comprehension that involves cat-

egory decisions as opposed to similarity judgements [80, 81, 82]. Instead of using the predicate-

structure, arguments and entailments of metaphors, the category matching theory holds that metaphors

are understood by category decisions for the topic and vehicles. The previously mentioned metaphor

(xv) My lawyer is a shark.

is understood by attributing concepts from the vehicle shark to the topic lawyer. Generally, the

categorisation process is the attribution of the vehicle’s super-ordinate category features to the

topic. Here, a shark is a member of the predator category, a category “lawyer” is made a part of,

thus making sense of the metaphor LAWYER = PREDATOR. In the process of matching a category,

both the topic and vehicle provide constraints: the vehicle offers a set of categories, some of which

are ruled out by the topic, based on relevance and systematicity. A category matching process has

been shown to accurately predict how “is-a” metaphors, like (xv), are interpreted [81].

Category decisions have been found to invoke different cognitive processes than similarity

decisions – especially in semantics [81, 98]. Though category matching fits well with experimental

findings, systematicity and embodied coherence are not entirely accounted for [24]. Category

matching has also been criticised for downplaying the role of the topic [25], despite offering a

more explicit means by which new features are projected onto to the topic.

2.4.3 Hybrid Theories

Because there is experimental evidence for both structure mapping and category matching proce-

dures in metaphor comprehension, it is apparent that some combination of the two processes must

be involved in metaphor comprehension. Three views have been proposed to reconcile the two

dominant theories: the conventionality view, the aptness view and the interpretive diversity view.

Conventionality View. The conventionality view [25], proposes that the conventionality of the

vehicle mediates the comprehension mechanism: categorisation or comparison. This view claims

that metaphors are initially processed by comparison (structure mapping) but metaphors with more

conventional vehicles are processed by category matching. Conventionality refers to how well as-

sociated the metaphor’s figurative meaning is to its vehicle [25, 110, 112]. The metaphor (xiii) is

conventional because shark provides a salient property to lawyer. Alternatively,
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(xvi) A fisherman is a spider.

is novel because it requires a comparative process to attribute aspects of spiders to fishermen.

This view stresses the repetitious, figurative use of vehicle terms. The defining feature of a novel

metaphor is a creative vehicle, one which is not often used figuratively. While the conventionality

view offers a resolution to conflicting support for structure-mapping and category matching, it has

been criticised for relying too heavily on features of the vehicle, and ignoring other aspects of the

metaphor [83].

Aptness View. Glucksberg and Haught [83, 84] offered the aptness view, which holds that the

aptness of a metaphor mediates its comprehension; apt metaphors are processed by categorisation

while less apt metaphors resort to a comparison process like structure-mapping. Aptness is defined

as the vehicle’s ability to invoke metaphoric categories that capture salient features of the topic.

For example, the metaphor

(xvii) The model is a rail.

is apt, and therefore processed by categorisation, because the salient feature of a rail (being thin)

is aptly applicable to the stereotypically slender body of a model. In less apt metaphors the com-

parison process is invoked by a failure to quickly6 find a salient category for the vehicle. The

metaphor in (xvi) is not apt because spider offers relatively few applicable features to fishermen,

thus, a comparison process is used to provide its interpretation, perhaps about how fishermen catch

fish in nets like spiders catch insects [222].

Interpretive Diversity View. Akira Utsumi offers a third view to reconcile category matching and

structure-mapping [220, 221]. The interpretive diversity view states that the richness of metaphoric

categories invoked for the topic will mediate the comprehension process. Without appealing to

lexical conventionality or the aptness of a vehicle, this view claims that the diversity of potential

interpretations will mediate the comprehension process; diversely interpretable metaphors will be

processed by categorisation while less diverse metaphors will be processed by comparison. Diver-

sity of a metaphor refers to its semantic breadth: the quantity and uniformity of features invoked

by the vehicle. Take the following metaphor as an example:

(xviii) My memories are money.

While (xviii) may appear neither conventional nor apt, requiring an attribute to mediate the com-

prehension process, in the interpretive diversity view, this phrase will be processed by categori-

sation. This is because money applies a relatively large number of properties to the concept of

memories. Conversely, (xvi) is less diversely interpretable because spider invokes a relatively

small number of properties.

6There is actually some evidence that both procedures, category matching and structure-mapping, may be activated
in parallel, the winner being the process that finishes first [25, 84].
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While this conception of a diversely interpretable metaphor being one in which different pro-

cessing is required is intuitively plausible – it may be subsumed by the idea of aptness. While

the original research into the aptness view did not use the term “interpretive diversity” it could

certainly be argued that if a metaphor is diversely interpretable, then it is not apt. Utsumi makes

an example-based distinction between the two ideas (compare (e) with (f) in table 2.4). In his

examples, which are designed to highlight the different between interpretive diversity and aptness,

it is still not entirely clear on what grounds (e) is apt. More generally, because the two views

make similar claims about the default processing mechanism (category matching) if interpretive

diversity and aptness are not unique, then interpretive diversity appears to be a special case of

aptness.

Conventionality View Aptness View Interp. Diversity View
Example Metaphor Conventional Process Aptness Process Diversity Process
(a) My job is a jail Yes Categ Yes Categ Yes Categ
(b) A gene is a blueprint Yes Categ Yes Categ No Comp
(c) My memories are money Yes Categ No Comp Yes Categ
(d) Birds are airplanes Yes Categ No Comp No Comp
(e) A goalie is a spider No Comp Yes Categ Yes Categ
(f) The supermodel is a rail No Comp Yes Categ No Comp
(g) A child is a snowflake No Comp No Comp Yes Categ
(h) A fisherman is a spider No Comp No Comp No Comp

Table 2.4: Example metaphors, with defining features as proposed by the three hybrid views of
metaphor comprehension. Adapted from [222].

2.5 Identification & Interpretation

There have been a number of computational explorations of metaphor ranging from analogy-

making [61, 75, 235], to solving analogies [215, 225], finding idioms and stereotypes [22, 95],

answering metaphorical questions [55, 156, 157], modeling categorical and analogical compre-

hension [121, 122, 222], finding conceptual metaphors in text [15, 158] and finding verb-based

metaphors [199, 200, 201]. The breadth of research on metaphor is, in part, due to different goals,

strategies and theoretical foundations. For example, Robert French and Douglas Hofstadter offer

the Tabletop model of analogy-making [61], which they present as a cognitive model of creativity.

In artificial intelligence, John Barnden’s ATT-Meta project seeks to model metaphor understand-

ing using contextualised reasoning and formal logic [7, 9]. Because NLP tasks are often concerned

with making sense of naturally occurring text, many projects begin with identifying figurative lan-

guage [15, 22, 41, 158, 182, 201, 218]. It is this strand of research the current project seeks to

contribute to.
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2.5.1 Strategies

There are three main strategies that address metaphor identification: sense-tagging, interpretation

resolution and mapping. These three strategies loosely correlate to three tasks, respectively: word-

sense disambiguation, semantic parsing and word clustering. While the work presented here draws

on tools and techniques from each strategy, it is most similar to mapping / clustering strategy.

Sense Tagging

Sense-tagging, which consists of annotating a text with word-sense information, is one strategy

used to identify figurative language. Here, the unit of analysis is a word, stem or lemma. Sense

tagging exploits advances in word-sense disambiguation [119, 237] and co-reference resolution

[141, 142, 179]. The goal of the task is to resolve which sense of a word is being used, given the

context in which it occurs. Take the example, “That’s a horse you can bank on.” Here, the word

bank is being used figuratively to mean something like “assuredly bet on”. Firstly, this bank is a

verb, which gives some indication of its sense. Additionally, horse is the indirect object of the verb

bank – which signals an unusual sense of the word. With this, and perhaps other information, the

sense implied by this instance of bank may be judged to be figurative, where banking is likened to

investing as a bet.

Sense tagging usually relies on a pre-existing set of word-sense options, like entries in a dic-

tionary [56, 172]. As we will see, a number of metaphors can be identified by inferring the correct

sense of a word in context. This type of identification has been adopted by NLP projects [22, 218],

however, the strategy will overlook metaphors spanning multiple words, phrases or sentences. The

strategy may also overlook novel metaphors – those which are not common enough to have a spe-

cific word-sense. Take for example (xv), “My lawyer is a shark.” Here, neither lawyer nor shark

are likely to have a figurative sense in a dictionary, which makes the sense-tagging approach un-

helpful.

Interpretation Resolution

A second strategy is to assume that something is a metaphor and try to resolve its interpreta-

tion. For example the lawyer/shark metaphor would not resolve correctly without making use of

some mechanism for getting aspects of sharks and correctly applying them to lawyers. A resolu-

tion strategy has pedagogical advantages because the strategy itself has to implement a procedure

for interpreting a metaphor as such. This strategy has been adopted by some NLP projects in

question-answering systems [55, 156, 157, 215] as well as models comparing metaphor compre-

hension mechanisms [221, 222]. They have also helped validate theories of how people com-

prehend metaphors and have been used to analyse the use of metaphor in various kinds of text

[15, 158].

However, without an adequate set of tests for both metaphorical and literal statements, a de-

cision about if (and how) to correctly resolve a statement may be under-informed. Compared to

sense-tagging, the strength of resolution-based systems is that they are inherently geared to find-

ing and interpreting novel metaphors. Moreover, if the goal is to test a computational method of
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comprehending metaphors, adopting an interpretation resolution strategy will be fruitful, whereas

if the goal is first to classify statements as literal or figurative, it may not be.

Mapping

A third approach to identifying metaphors in text is to find concepts which are lexically or gram-

matically related, and attempt to project their comparison onto a set of a mappings like conceptual

metaphors or root analogies. This type of work uses linguistic research on how metaphors are

instantiated in language [92, 128] as well as how metaphors comprise a set of a fundamental

supra-metaphors [92, 132, 133]. The technique here is to maximise the likeness of a pairing found

in text to a known metaphorical pairing. The degree, then, of similarity is a measure of how

likely the text is an instance of the given metaphor. This technique can make use of a syntactic,

grammatical and lexical patterns in the text, as well as semantic information, such as selectional

preferences, pre-modifications and category assertions. The strength of the mapping approach is

that it does not rely on a database of word-senses, nor on the assumption that a given statement

is figurative. Also, the unit of analysis can be a pair of words, a relational triple, a phrase or a

sentence.

The mapping approach requires some pre-existing knowledge about how metaphors com-

monly map topic and vehicle domains. In the literature, Lakoff’s Master Metaphor List has been

used [158], while others have either built their own [198] or used more general resources to indi-

rectly represent the desired information [22, 218]. In addition to the set on which to map linguistic

metaphors, this approach relies on solving an important sub-problem: word-word associations.

To map a textual occurrence (presumably lexical) to a metaphorical concept, an association must

be made between the observed lexica and the metaphorical terminology. This can be done in a

number of ways, ranging from using a structured resource like WordNet [145], to using a database

of word associations [124, 232], or using vector-space models [201, 209, 217].

2.5.2 Models of Metaphor Interpretation

MIDAS

One of the first computational models to address metaphor interpretation was James Martin’s

Metaphor Interpretation, Denotation, and Acquisition System, “MIDAS” [156, 157]. MIDAS

assumes that metaphor is inherent in language use and is not anomalous. MIDAS uses a network

of semantic and syntactic information about words and a hierarchy of conceptual mappings. Using

these two resources, the system interprets a metaphor by building a local path of reasoning about

words found in certain constructions. Because the model uses a structured set of metaphors, it

is capable of determining if one is conventional or novel. In addition to interpreting observed

metaphors, MIDAS can strengthen the paths it uses in the network to prioritise them for later

use. In this way, given enough training, MIDAS has the potential to extend the set of metaphorical

mappings and get better over time. One weakness is that it relies heavily on hand-coded knowledge

in the semantic network. Arguably, MIDAS is more of semantic network that can learn to derive

“correct” interpretations for metaphorical sentences than a model of interpretation.
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Met*

Met*, which later became Met5, is a system to differentiate literal, metaphorical, metonymic and

anomalous language [55]. Building on Daniel Fass’ theory of collative semantics [54] and Yorick

Wilks’ preference semantics [230], met* uses a database of interrelated verbal and nominal “sense

frames”, that contains semantic information. These frames are used as a reference to determine

if a grammatical argument is a metonymic reference, a metaphorical comparison or an anomaly.

The use of semantic frames also assumes a lexical semantics can be adequately modeled as mental

objects. Also, it does not appear people use a back-off or “default” mechanism to process figurative

statements in the way met* does [81, 82]. From a computational perspective, the strategy is

intractable with large amounts of data because it requires that word information be hand-coded

in the semantic frames. This makes an approach like met* inadequate to meet our goals of the

corpus-based approach.

ATT-Meta

John Barnden’s ATT-Meta (ATTitudes and Metaphor-based reasoning) is a reasoning system for

interpreting non-literal statements [8, 9]. ATT-Meta’s strategy incorporates the idea of a “metaphor-

ical view”, which is a framework from which a statement can be accurately understood. By em-

ploying what the developers call common-sense logic in the form of graded-truth propositions,

ATT-Meta assumes a statement is true, and by applying or changing the frame, it adjudicates a

solution for processing a given statement. The logical changes the system makes to accommodate

a statement constitutes its interpretation. ATT-Meta also implements a system of graded-reasoning

which allows propositions to be held with a variable degree of certainty. The system represents a

different strategy than MIDAS and met* because instead of using a semantic network, in which

to explore figurative paths, ATT-Meta simulates metaphorical reasoning. The metaphor-ness is

neither in the input or output, instead, it is represented by the logical steps and changes needed to

resolve the statement. ATT-Meta relies on some hand-coded knowledge in the form of predicate

and proposition logic and does not have a built-in system for learning new metaphors. However,

it appears to be the only metaphor processing system which can reason in a metaphorical sense.

LSA-Based Simulations

A simulation by Walter Kintsch, based on latent semantic analysis (LSA) [121, 122], addresses

some of the questions left open in MIDAS and met*. Kintsch constructs a semantic space using

LSA and models the spreading activation between words to extract class-inclusion relationships

for noun-based metaphors7. WordNet is then mined for possible semantic relations between topic-

vehicle pairs that are ranked by prominence in the spreading activation network. Word-order

constraints, which are known to have an effect on metaphor comprehension [82], are accounted

for by using Kintsch’s Constructive Integration model which adds a steaming, word-order com-

ponent to LSA [122, 123]. The strength of this simulation is that LSA encodes multiple word-

7Kintsch notes that this simulation only addresses metaphors involving nominal topic and vehicle concepts.
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senses as single entries in a semantic space, making a representation-level, unified distinction

between figurative and literal language – one that is more plausible than sense interpretations in a

knowledge-base of examples.

In an effort to test three theories of metaphor processing, the conventionality, aptness and

interpretive diversity views, Akira Utsumi presents two models based on LSA [222]. The two

models are meant to simulate category matching and structure mapping respectively. The first,

Categ, which implements a category matching procedure similar to Kintsch’s model described

above, computes LSA vectors for the neighbors of the topic-term. From these, the closest words

to the vehicle-term are used to build a centroid vector, which is used as the category. Note that

this category may not be an actual word, but instead an abstract representation comparable to

other vectors in the semantic space. The second algorithm, Compa, simulates structure mapping.

Compa builds a set of intersecting topic and a vehicle neighbors: the set of overlapping neighbours

for each word. Then the centroid vector is calculated between the topic and all vectors from the

first step. After showing these two algorithms predict experimental findings for categorisation and

comparison, Utsumi integrates them to implement the conventionality, aptness and interpretive

diversity procedures. Using stimuli from other experiments [25, 83, 221], he finds that the aptness

and interpretive diversity views are plausible.

Because Utsumi’s models were built to validate cognitive theories, and not to actually find

and interpret metaphors, they differ from other computational metaphor systems. The simulations

only use novel, noun-based metaphors [222, p.274] despite reporting a spectrum of stimuli from

novel to conventional [222, p.281]. The work does, however, exemplify the role of computational

modeling in testing and verifying experimentally grounded theories. To this end, LSA shows a

particular strength as a tool for similar research.

2.5.3 Models of Identification

Given the different ways to identify metaphor in text, there have been a number of computational

projects addressing the task. Some current projects seek to bring automatic metaphor processing

to a wider user-base, at a production level. This section surveys a few projects and publications

which exemplify the diversity of techniques in metaphor identification.

MIP

The metaphor identification procedure (MIP) was developed to help language learners identify

figurative language [177]. MIP proposes the following steps:

1. Read the entire document.

2. Determine the lexical units used in the document (open class words).

3. For every lexical unit, determine how it applies to an entity, relation or attribute

evoked by the context of the word.

4. Determine if the unit has a more basic interpretation (more concrete or precise,

historically older or related to bodily activity).
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5. Given its relations, (3), if the unit has a more basic interpretation elsewhere, (4),

then mark it as metaphorical.

Because MIP is geared toward informing a reader, not a computer, it is vague with respect to

its operationalisation. For instance, the first step is important, because it gives a reader a sense

of the discourse-level pragmatics, which can affect what kinds of linguistic metaphors are used

[92, 128, 206]. It is not entirely clear if the intention of MIP is to be a step toward an automated

procedure, but it provides a systematic way for people to detect figurative words. MIP is slightly

more complex than a sense-tagging strategy, because it incorporates a degree of etymology and

domain-specific knowledge. However, this makes it harder to operationalise for exactly the reasons

it helps language learners.

MIP is important to the current project because it highlights the differences and similarities

between a procedure for people to understand figurative language and one for computers. In doing

so, it provides a touchstone for automation. For example, step 1 of MIP is to read the entirety of

a document to get a “sense” of how words are used. This step is similar to building a semantic

space for a corpus. The second step is relatively straight-forward for a computer. Steps 3 and 4

are perhaps the hardest to automate, making use of contextual knowledge, but as we will see, they

have been addressed to varying degrees in computational projects.

TroFi

TroFi (Trope Finder) is a feature-based NLP model that can classify the use of verbs as literal or

figurative – an example of the sense-tagging approach [22]. TroFi builds clusters around a seed

set of nouns and verbs using an unsupervised algorithm. Then, TroFi uses features like proximate

words, POS-tags and SuperTags8 to train word-sense classifiers that “vote” on new senses. The

authors report an average F-score of 64%, which is significantly higher than a baseline of about

25%. Though the results have room for improvement, TroFi exemplifies the NLP and sense-

tagging approach to finding figurative words. In addition to the results, the authors have made their

seed clusters available as the TroFi Example Base9, which has been used in other sense-tagging

approaches to metaphor identification [218]. TroFi takes a strictly NLP approach to figurative

language, which makes the project attractive for tasks in information extraction and search engine

design, but it departs from cognitivist theories of metaphor processing with its use of classifiers as

opposed to semantic representations.

8SuperTags are a kind of high-level semantic tag in a structure similar to a localised parse-tree [5].
9http://www2.cs.sfu.ca/˜anoop/students/jbirke/; 22 January, 2013.
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CorMet & CMI

Zachary Mason’s CorMet is a system that calculates systematicity between noun-terms occurring

in certain grammatical relations [158]. The relations provide a list of potential metaphors, the

terminology of which is expanded using search engine queries. The expanded list is pruned by

selectional preference, association and polarity and compared against Lakoff’s master metaphor

list [134]. Mason reports 72% precision in identifying correct conceptual metaphors, but does

not report recall or F-score. CorMet’s biggest limitation is the restriction to noun-terms in cer-

tain grammatical relations which overlook common lexicalised metaphors like “falling stocks” or

“rising tensions”.

A similar model is computational metaphor identification (CMI) [15]. CMI identifies compu-

tational metaphors by calculating asymmetric information transfer among synonyms from Word-

Net. The candidate metaphors are pruned by grammatical heuristics and systematicity calcula-

tions, similar to those used in CorMet. CMI uses WordNet again to calculate the closest super-

ordinate categories and to pick a conceptual metaphor that most likely underlies the linguistic

instance. CMI’s developers note that the method is slightly intractable, taking a long time to

generate results, as well as requiring a directed search for topic and vehicle domains.

Noun and Verb Clustering

A recently proposed technique for identifying metaphor is based on noun and verb clustering

[199, 200]. Drawing on Wilks’ theory of preference semantics [230], which implies that violations

of semantic preference hallmark figurative language, the clustering technique operationalises the

search for such violations. A seed set of topic and vehicle terms are first extracted from a subset

of the British National Corpus (BNC) [198]. Then, using a spectral clustering algorithm, the seeds

are expanded from their original set in subject- and object-verb relations to include similar words

found in a given corpus. This set is used to determine the metaphor in phrases containing any

of the terms mapping one cluster to another. The authors report significantly higher F-score in

finding metaphors than a WordNet baseline.

The current project is most similar to this clustering approach, but with two important exten-

sions. The first is the use of distributional and corpus-based semantic models for the word cluster-

ing operations. Second, seeds will be used from previous linguistic research into how metaphors

are created and used [92], as opposed to the less structured set taken from the BNC.

2.5.4 Metaphor Processing in Real-World Systems

The projects described above address aspects of finding, extracting or simulating the interpre-

tation of metaphors. Recently, a new task has emerged in the fields of computational creativ-

ity and natural language generation: metaphor as a service. By operationalising the creation

of metaphor, researchers have built web-services that can mine concepts from text and create

metaphors [226], provide figurative mapping using stereotypical knowledge [225] and generate
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idioms using the Google n-gram corpus10 [165]. These systems build up conceptual knowledge

using semi-structured text to extract typical lexical and semantic relationships among target words.

Using statistical analysis of relationships found between topic and vehicle domains, the system

Metaphor Eyes11 can construct new, creative combinations with conventional knowledge. While

computational creativity has been a field on the edge of artificial intelligence for some time, the use

of NLP and data-mining techniques to generate concept combinations is a new and exciting field.

These systems are available online as web-services, effectively providing on-demand creativity in

the form figurative language.

Two large-scale metaphor processing projects have recently received investment from the

American Intelligence Advanced Research Projects Association (IARPA): METAL [231]12 13 and

MetaNet14 15. These projects both seek to accurately and flexibly automate the processing of

metaphor for text-analysis systems. Because linguistic metaphor uses a plethora of contextual and

cultural cues to produce new and novel interpretations, from a linguistic viewpoint, it can often

obscure, complicate or highlight a language user’s intention. These projects seek to build reposito-

ries and techniques to allow a system to extract metaphors from unannotated, naturally occurring

text in English, Persian, Russian and Chinese. Detecting the use of metaphor and providing im-

mediate interpretations is a big task and the METAL and MetaNet projects represent a long-term

commitment to that goal. These projects exemplify what could become the first production-level

metaphor processing systems, as they could be used for intelligence gathering and analysis, not

just for academic research.

2.6 Lexical Semantic Models

A central task in identifying figurative language is modeling relationships between words. This

task is the core of the word-clustering strategy adopted by the current project, described above. In

terms of a computer system, a way to relate words to one another is required – namely between ob-

served words in input text and terms from a set of seeds. There are a number of ways to accomplish

this, ranging from purely statistical methods, to semantic-space models and information-theoretic

formalisations of similarity. This section reviews three strategies for relating words: ontology-

based resources, co-occurrence likelihood estimation and semantic space construction.

When defining word-word relations, people often appeal to definitional similarity, citing sim-

ilar entries in a dictionary or shared synonyms in a thesaurus [187]. This assumption is not un-

warranted, but it is only one way words can be related. Words can also share associations, featural

similarity, function, grammaticality or specific semantic relations like synonymy, antonymy, hy-

ponymy, etc. Dictionaries are a common source of structured information about words and offer

10http://ngrams.ucd.ie/idiom-savant/; 6 August, 2013.
11http://ngrams.ucd.ie/metaphor-eye/; 6 August, 2013.
12http://www.theatlantic.com/technology/archive/2011/05/why-are-spy-researchers-building-a-metaphor-

program/239402/; 6 August, 2013.
13http://www.ihmc.us/news/20120529.php; 6 August, 2013.
14http://www.icsi.berkeley.edu/icsi/gazette/2012/05/metanet-project; 6 August, 2013.
15https://metanet.icsi.berkeley.edu/metanet/; 6 August, 2103.
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one way to address word-similarity. However, using a dictionary, which usually contains defini-

tions as well as grammatical and semantic information, relies on the research of lexicographers

that can be outdated, under-informed, incomplete and in some cases, simply incorrect. Dictionar-

ies and thesauri can be a good resource for a computational project, but usually lack consistent,

formal and reliable structure.

To address inconsistencies and the lack of computer interoperability with dictionaries and

thesauri, George Miller and associates developed WordNet [167]. Described as “a lexical database

for English”, WordNet is a semantic network of lexical entries with information about word-

sense, part-of-speech, semantic type, frequency information, semantic relationships16 and brief

definitions. In essence, WordNet is a well-organised, strictly formatted dictionary which can be

integrated with computer systems. WordNet version 3.1 will be used as one semantic model with

which to help identify and interpret figurative language in text.

From a computational perspective, it is often desirable to reduce outside requirements and

build word information from the ground up. One such strategy is to estimate the probability that

words will co-occur, based on patterns observed in a set of documents. One of the first methods to

operationalise this concept of “statistical semantics” is called term-frequency inverse document-

frequency or TF-IDF. Intuitively, TF-IDF ranks a document’s relatedness to a given word if the

word occurs with disproportionate frequency in the document than it does in the whole collection

[109]. Building on TF-IDF is a metric of word association called point-wise mutual information

(MI) [39]. MI measures the proportion of two words co-occurring verses them occurring inde-

pendently. As we will see, MI is a formalisation that can be used to associate words without

appeal to an external lexicon. Recent, work in information extraction has developed new tech-

niques which are faster, more accurate and more scalable than MI at estimating term co-occurrence

[104, 105, 139, 164]. These co-occurrence estimation methods will be used as a statistical model

of word association to help identify metaphor in natural text.

2.6.1 Distributional Semantic Models

The distributional approach, known variously as vector space or semantic space modeling, was

first envisioned by Zellig Harris when he noted that words that occur near one-another often share a

degree of similarity. Distributional models begin by using word frequencies to build a distribution

vector. These distributions are combined to build a matrix of context-word frequencies, which

can then be transformed and analysed to metricate relationships among words. One strength of the

distributional approach is that it is ground-up and avoids the problems of a lexicon-based approach.

For this reason, distributional semantic models are ostensibly better suited to addressing tasks of

a subtle, vague or nuanced nature – problems such as figurative language.

Distributional semantic models have had success in simulating cognitive processes. LSA was

initially introduced as a model of associative memory [136], but has also been used to model

similarity in Shakespearean prose [148], conventionality in metaphor [147] and in information

extraction [214]. Other models, such as the hyperspace analogue to language (HAL), have been

16WordNet 3.1 encodes relationships for synonymy, hyponymy, troponymy, meronymy and pertainymy.
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used to cluster words based on conceptual and functional categories [149] as well as semantic

categories [216]. More recently [184] showed that distributional models can cluster noun-concepts

as effectively as feature-based models built with human responses. Using grammatical rules, the

Strudel model can extract property-based concept descriptions from raw text [14] and appears

to generalise to a range of tasks [12]. Specific to metaphor, Walter Kintsch and Akira Utsumi

showed that LSA can simulate different mechanisms and strategies of metaphor comprehension

[122, 222].

Models of distributional semantics differ in motivation, techniques, and of course, results, but

they all share two traits. First, they use words as the unit of analysis. Second, they realise some

degree of context (see [217]) which can be a number of things: a sliding window of adjacent

words, a document, a sentence or phrase, a syntagmatic or syntactic relation, or an increment of

text. Different models implement different strategies with regards to context – to be reviewed

below.

Document-based Models

Document-based distributional models use a corpus of documents to contextualise a word’s fea-

ture vector. Documents can be the results of web search queries, paragraphs of a larger text, or

articles in a journal or news publication. Document-based models are popular because they exploit

a naturally authoritative segmentation – realised in the choice of documents. That is, documents,

paragraphs or sentences are all definitively related by the author and come with an inherent coher-

ence. Because decisions about how best to segment text are not easy to make, they are sometimes

left to the researcher. Prominent examples of document-based distributional models are LSA

[136], explicit semantic analysis (ESA) [65] and Salton’s vector space model [192]17.

Co-occurrence Models

Co-occurrence models define feature-vectors within the local context of a target word. This can

be a sliding window, part-of-speech templates or dependency structure. Co-occurrence models

have progressed, in part, due to advances in probabilistic parsers and machine learning algorithms

[160]. The theory remains that words in similar context are similar themselves – co-occurrence

models simply advance the notion of context. HAL [27] and the correlated occurrence analogue

to lexical semantics (COALS) [188] are examples of co-occurrence models, both of which will be

used in the current project.

17The term “vector space model” was originally used to describe Salton’s particular model, but is often used more
generally to describe semantic models which use feature vectors to represent words.
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Approximation Models

Approximation models are an extension of co-occurrence models where, instead of explicitly

tracking context, it is statistically approximated. Approximating co-occurrence can reduce compu-

tational complexity and increase the scalability of co-occurrence models [115], but the methods are

numerous and diverse. Bound encoding of the aggregate language environment (BEAGLE) [111],

a model which has seen success in recent research [184], incremental semantic analysis (ISA) [12]

and random indexing [191] are representative examples of approximation models. Chapter 4 will

describe implementations in greater detail.

2.7 Summary

This chapter introduced the complexities associated with a computational analysis of figurative

language. Building on corpus-linguistic and psychological work concerning the meaning and

comprehension of metaphors, the current project will combine and extend existing computational

techniques of identifying and interpreting non-literal statements in text. The project adopts the

strategy of mapping terms found in text to paired seed clusters constituting root analogies. This

approach combines the CorMet and CMI methods described above [15, 158], which look for

conceptual metaphors, with the clustering method of associating observed words with a set of

metaphorical terms [199, 200]. This will involve addressing a number of NLP tasks, perhaps most

importantly is to use a lexical model to build clusters around the terminology of root analogies.

This task is one that may be best addressed using corpus-based semantic models. In addition

to testing various models, the project also uses other techniques like dependency parsing, POS-

tagging and selectional preference induction. This combination of corpus-based models and state

of the art NLP tools will provide a testable system for addressing figurative language in naturally

occurring text.

The remainder of this thesis will describe the methods, implementation, evaluation and con-

tribution of a system called MetID. MetID attempts to identify and interpret both noun- and verb-

based metaphor in raw text. The requirements are informed by the overlapping areas of research

reviewed in this chapter, prioritising corpus-based techniques and considerations of computational

feasibility.
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Chapter 3

Methods

3.1 Introduction

This chapter outlines methods and resources required to identify, extract and interpret non-literal

statements in raw text. These methods have been implemented in a system called MetID, which is

described in the next chapter. The method is designed to operate on a stream of text drawn from

any source: textbooks, magazines, newspapers, blogs and so on. The text will be pre-processed to

normalise its format and remove non-linguistic markers (section 3.3). The resulting cleaned text

can be used for two purposes: to build corpus-based semantic models and as the input to analyse

for figurative statements. For the semantic models, the text is processed according to each model’s

specification. For the analysis, the text’s morpho-syntactic frequencies and lower-level features

(lemmas, parts-of-speech, grammatical relations, etc.) constitute the items to be analysed.

This approach to finding figurative statements uses word-clusters to rank potential interpre-

tations. These clusters are built with statistical evidence provided by the various lexical models.

Three types of model will be used, but the method is neutral with regard to what model is used,

so long as it provides a score of relatedness between words. The first type of model is a lexico-

graphic, database called WordNet. WordNet is more structured than general purpose dictionaries

and provides a base-line to compare corpus-based models. The second type are the semantic

space models, where co-occurrence distributions are used to construct high-dimensional spaces in

which entries are related by a vector similarity measure (see section 2.6.1). The last type of model

is based on estimating co-occurrence likelihood where the likelihood of two words co-occurring

is a probability over prior observations in a set of documents (see section 4.4.5).

The method identifies potential metaphors by ranking how likely it is a given statement is an

instance of a root analogy. A high-scoring statement, constitutes its identification and its corre-

sponding root analogy is the interpretation – thus combining the identification and interpretation

tasks. Potentially figurative word pairs are extracted and matched with entries in an external the-

saurus of figurative concepts. Figure 3.1 shows the structure of the proposed method described

in the rest of this chapter. The external resource provides two pieces of information: figurative

terminology and mappings between topic and vehicle concepts. This information will allow the

system to build clusters around the terminology and to pair those clusters using the mappings.

41
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Input
Unstructured Text

External 
Resources

MetID System

Output
(Annotated Text)

Structural Processing
(Cleaning, Tagging, 

Parsing, etc.)

Semantic Processing
(Word similarity / 

Relatedness)

Analysis

Figure 3.1: The three main components of the proposed method are structural text processing,
semantic processing and analysis modules. Structural processing examines the input and yields
items to analyse for figurative content. The semantic processing module can be any lexical model
that relates words observed in the input to entries in the external thesaurus. The analysis compo-
nent combines the output of the structural and semantic modules to search for pairs of words that
may comprise a metaphor.
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After reviewing assumptions undergirding the proposed method, an overview of the architec-

ture will be presented in the following section. The text processing sub-system will be introduced

in section 3.3. Third, the three types of lexical model used in the semantic module will be re-

viewed. Last, the analysis will be explained with a focus on how the semantic and text processing

modules are used in the paired search algorithm. The last section will also review some heuris-

tics that augment the core analysis, along with their motivation and application. This chapter will

conclude with a summary of how the proposed system will be implemented and evaluated.

3.1.1 Assumptions

The clustering approach makes two general assumptions about modeling language and meaning.

First, that word meaning (ie. lexical semantics) can be modeled by corpus data without appealing

to authoritative resources like dictionaries. The second assumption, which is the central proposal

of conceptual metaphor theory, is that there are fundamental, extra-linguistic metaphors used to

understand metaphor in text.

Corpus-based semantic models assume that text is evidence of meaning. This assumption

has been supported by cognitive linguistic research [121, 146, 147, 180], but is also motivated

by concerns of operationalising an algorithm in a computer system. The more independent the

semantic model is from the intuitions of lexicographers and from a conception of “representative

language”, the more independent the method will be from the data. This method was developed

with the assumption that metaphors are fundamental to conceptualisation and cognition – and that

language, as with any concept, is a common way of instantiating them. It does not assert any

theoretical claim about how these fundamental metaphors are created or processed – something

conceptual metaphor theory attempts.

3.2 Architecture

The core algorithm focusses on using word-clusters to relate observed terms in the input to candi-

date metaphors (topic-vehicle pairs). Figure 3.2 shows this procedure where the topic and vehicle

seed terms are used to build clusters of related words. The extent to which a pair of observed

words is included in a pair of clusters, is proportional to the likelihood the observed terms are an

instance of that root analogy. Inclusion in a cluster is measured as the inverse distance from the

nucleus to a clustered word, which varies between models. This formulation affords two com-

putational advantages: it produces a measurement of likelihood and it allows a pair of observed

terms to instantiate more than one metaphor. Those it requires an exhaustive search of candidate

metaphors, the results can be qualified by both their rank-order as well as individual scores for

different candidate metaphors. This will allow two methods of testing the output: in terms of the

score, and in terms of the top-scoring candidates. The initial seed terminology will be provided by

a figurative thesaurus, Metalude, described in section 3.5.
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Figure 3.2: The core algorithm ranks candidate metaphors based on the distances D1 and D2,
which correspond to the distance from a pair of identified topic and vehicle terms, to the their
respective nuclei, T and V . The best candidate minimises the average of these distances. Note
that the nuclei-pairing will be given by a database called Metalude and constitutes a root analogy
[92]. The clusters for each nucleus, however, are built using an interchangeable lexical model.
The score for a given input is the average of D1 and D2.

The word clustering task is different from some other word clustering tasks. Instead of using

co-occurrence observations to find the best clusters, the system builds lists of the most related

words or “nearest neighbours” to the nuclei. This task has been addressed in corpus- and non-

corpus-based lexical models such as WordNet, LSA and others [3, 22, 184, 199]. To prioritise

corpus-based models and to account for the variable relation between a clustered word and its seed,

distributional semantic models (DSMs) appear to be a good option. In addition to being corpus-

based, distributional models like LSA are known to represent associations beyond lexical semantic

relations [12, 27, 111, 113, 136, 150, 188, 217]. It may be the case that DSMs are categorically

the wrong strategy to account for metaphor. For this reason the method was designed to use any

model that provides a measure of word relatedness. In addition to the DSMs, two other models

will be explored: WordNet [167] and a purely statistical model based on co-occurrence likelihood

estimation [104, 105]. These models are detailed in section 4.4.

The cluster generation and paired search are combined with a set of heuristics and comprises

the semantic and analysis modules. The other piece of the system is concerned with extracting

meaningful units of analysis from the input text. These items can be sentences, phrases, relational

triples (as parsed dependencies) or just a pair of words. One goal of the system is to allow a phrase

to instantiate more than one metaphor, which is in part addressed by the ranking approach instead

of choice-based procedure. Additionally, by deriving multiple items to analyse from a given input,

the method will not only look for every possible root analogy in Metalude, but it will look for them

in different places. This means that a sentence can instantiate multiple metaphors in more that one
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way: by a term-pair providing more than one high-ranking candidate metaphor and by different

items of analysis in the same input. These items are the result of a structural processing module

that is outlined in the next section.

3.3 Text Processing

Before raw text can be analysed or used in a lexical model, it must undergo a series of processing

steps. The first step is pre-processing and commonly involves removing control sequences (such

as HTML mark-up), normalising the format, stripping punctuation, lexicalising symbols and dis-

carding non-words. Pre-processing can be done quickly and efficiently using a series of scripts

that perform each operation in sequence, resulting in a cleaned version of the input.

The second phase in text processing is to isolate separate sentences. This process, known as

sentence chunking, will allow dependency parsing and POS tagging. The accuracy of sentence

chunkers is about 95% and the best open-source tools can process thousands of words per second

[142]. After chunking, the text-processing procedure bifurcates into two work-flows: one for us-

ing the text in the semantic models (see section 3.4) and one for analysing the text for candidate

metaphors. For use in a corpus-semantic model, stop-words are removed. This consists of discard-

ing words with little or no semantic information such as determiners, pronouns and connectives

and has been shown to increase accuracy on a number of tasks [113, 137, 150, 188]. To prepare

the input for analysis, instead of removing stop-words, the system annotates the text with POS

information and parses each sentence into dependency trees [64]. This will allow some of the

heuristics to operate on grammatical information.

3.4 Semantic Processing

The goal of the semantic analysis is to operationalise word relatedness. Computational semantic

models will be used to build clusters around a set of seed terminology given by the figurative

thesaurus Metalude. As discussed above, the system uses three types of model: a structured

thesaurus-like database (WordNet), semantic space models (LSA and others) and a co-occurrence

estimation model. Note the lexical model is arbitrary with respect to the overall method: it does

not rely on a specific model. With the exception of WordNet, which will be used as a database,

the models will produce persistent clusters for use during analysis. In addition to programmatic

concerns about speed and storage, this will allow models’ clusters to be independently tested

and compared across different corpora, models and similarity measures. We wish to preserve

each model’s conception of relatedness as much as possible because relatedness means something

different in, for example WordNet, than it does in LSA. This will allow each model to be qualified

as it was designed to be used. This also means that clusters built with different models may

be different in terms of the semantics they embody, thus affecting the performance of the whole

system when using different lexical models.
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3.5 Analysis

The central component of the analysis is matching the results of text processing with the paired

clusters from the semantic processing. Because the clusters represent topic-vehicle mappings

given by the figurative thesaurus, this search is slightly more complicated than for single words.

Figure 3.2 shows the paired cluster search for an arbitrary input. This procedure will compute

a score for each possible mapping in the thesaurus: namely the average of distances D1 and D2.

Note that the input for this search need not be a sentence: it could also be parse tree, a relational

triple or a pair of words. Figure 3.3 shows an example of the paired search for the input “My heart

is on fire.” This analysis operationalises a semantic decision: the degree to which an observed

word is included in a cluster. This decision is analogous to how close an observed topic is to a

known topic concept (and likewise for vehicles). The intuition is that if the system sees two terms

that might be a topic and vehicle respectively, then the degree to which they are included in a pair

of clusters is how likely it is they instantiate that particular root analogy.

Figure 3.3: A candidate metaphor for the sentence “My heart is on fire” in which the metaphor’s
topic, T , is AFFECTION and its vehicle, V , is WARMTH. The result for analysing a sentence,
phrase or relational triple, is a list of candidate metaphors. Here the top-ranked candidate is
AFFECTION = WARMTH because it minimises two distances: D1 (heart → AFFECTION) and D2
(fire→ WARMTH).
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Metalude

The analysis combines the outputs from the text and semantic processing components as well as a

set of paired topic-vehicle concepts from a figurative thesaurus. The system will use Metalude1,

which consists of common mappings Andrew Goatly calls root analogies[92, 93]. Metalude or-

ganises metaphors in the map of root analogies and is based on so-called conceptual transfers (for

example EMOTION = LIQUID 7→ thinking & communication are things & substances) [92, p.48].

Because Goatly’s findings include a number of linguistic properties governing the creation, use

and comprehension of metaphors, using Metalude will allow an analysis of linguistic metaphor.

Figure 3.4 shows Metalude’s layout – the map of root analogies.

Figure 3.4: Metalude’s map of root analogies [92], that proposes most linguistic metaphors are
organised by these topic and vehicle concepts. In each cell are found a number of root analo-
gies corresponding to the broader organisation given by the organising topic and vehicle concepts
(columns and rows, respectively).

Heuristics

After the candidate metaphors have been ranked by how close an observed term-pair is to each pair

of topic-vehicle clusters, a series of heuristics is applied. These heuristics will operate on the score,

which up to this point, is only informed by the paired cluster search. Because every candidate

metaphor will receive a score, no matter how low, the heuristics will account for various properties

of figurative language without disregarding its defining feature: mapping a vehicle concept onto a

topic.

The method uses three types of heuristics: lexical, grammatical and cluster-based. The lexical

heuristics look for word patterns thought to mark, highlight or predict the use of a metaphor in

text [92]. There is also a lexical heuristic which will penalise copula-style “is-a” metaphors if the

predicate is a literal synonym or hyponym of the object (ie. the statement of a categorical fact as

1http://www.ln.edu.hk/lle/cwd/project01/web/rootanalogy.html; 1 February, 2013.
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opposed to a figurative assertion). The grammatical heuristics account for syntagmatic features

of linguistic metaphor. These include using a corpus-based measurement of selectional violation

and predication strength to promote statements that violate statistical norms of observed text [182,

229, 230]. The last type of heuristic concerns the clusters with which the candidate metaphor was

identified. If a statement fits closely to a topic-vehicle cluster pair (built with the semantic model)

it will come with a high score. However, the clusters themselves can be independently qualified,

the results of which will either promote a candidate metaphor (if the clusters are relatively good)

or penalise it (if the clusters are relatively poor). Qualifying clusters will be described in section

4.4.6.

3.6 Summary

The proposed method consists of three main components. The first is a sequence of structural

operations to extract meaningful items of analysis from unstructured text, as well as prepare it for

use in a lexical model. The second piece is the lexical model, which is arbitrary as long as it offers

a measure of word-word relatedness. This module will take seed terms from an external thesaurus

and build clusters of nearest neighbors. The figurative thesaurus, Metalude, will provide two main

pieces of information: the seed set of figurative terms and mappings between them. Together, the

information from Metalude constitutes a set of root analogies [92] and will be used as the candidate

metaphors. The final component is the analysis, where the paired clusters from the lexical model

are ranked by how close a pair of observed terms are to a pair of nuclei. This paired cluster search

will be run on each item of analysis (from the structural component) and produces a score for each

candidate metaphor. This score is proportional to how well the observed terms fit each candidate

metaphor. At this point, the semantic model has provided the only the input for the scores, which

is the average distance between the observed topic to the candidate topic, and the observed vehicle

to the candidate vehicle (figures 3.2 and 3.3). The last step is to apply a series of heuristics that

use lexical, grammatical and cluster information to augment the scores.

This method addresses the goals of the current project. First, it allows testing of different lex-

ical models (structured, semantic spaces, statistical, etc.). Second, and perhaps more importantly,

the method allows a sentence, phrase or pair of words to instantiate more than one metaphor. In

fact, the method forces this to happen because it will rank candidate interpretations by score. This

score will be augmented with heuristics that either promote or penalise the likelihood that the given

input is indeed figurative. As we will see in the next chapter, which describes an implementation

of this method, the heuristics provide a significant amount of information to resulting interpreta-

tions. After describing the implemented system, MetID, its performance will be evaluated on two

tasks of metaphor identification and interpretation, after which a case-study applying the method

to terminological research will be presented.



Chapter 4

Implementation: The MetID System

4.1 Introduction

MetID is an implementation of the method describe in chapter 3 and consists of three main com-

ponents: a structural module, a semantic module and a module for analysis. This chapter de-

scribes the design and development of MetID and will explain each module in detail. The sys-

tem is implemented as a set of Ruby scripts that interact with a relational database. The main

script, which performs the analysis, accepts a series of statements and will provide a spreadsheet-

like text file containing the results. These results (described in the appendix B) can be perused

manually, or analysed by other scripts. MetID and its MySQL database are available online at

www.scss.tcd.ie/˜gerowa/metid.

Figure 4.2 elaborates on the method introduced in the previous chapter, and will frame dis-

cussion throughout this chapter. The structural processing, word clustering and metaphor iden-

tification components are implementations of the text processing, semantic processing and anal-

ysis modules (figure 3.1). The chapter will begin by introducing the work-flow from the input’s

perspective which includes a description of the structural module. Next, text-processing for the

semantic and analysis modules will be described (section 4.3). The semantic module will be ex-

plained in general (section 4.4), and each lexical model will be discussed in section 4.4.6. Last,

the implementation of the lexical, grammatical and cluster-based heuristics will be explained in

section 4.5.

49
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4.2 Work-flow

MetID consists of three main components: structural, semantic and analysis sub-systems. The

structural module is used to extract items of analysis to relate to the semantic analysis. This process

consists of extracting words, parts-of-speech and grammatical relations. Take, for example, the

following sentence:

(xix) My heart is a fire that burns with love.

(xix) instantiates the metaphor FEELING AS TEMPERATURE and more specifically PASSION AS

HEAT. Before MetID can look for associations between heart and FEELING or fire and TEMPER-

ATURE, it must decompose the sentence into more primitive structures. To do this, the system

applies a series of structural operations1.

POS Tagging. The first thing the system does with a sentence or phrase, is tag it with part-of-

speech (POS) information. MetID uses the Stanford Tagger2. After tagging (xix), the nouns heart,

fire and love are identified, as well as the verb burns. POS information is used in the heuristics.

Dependency Parsing. In addition to POS-tagging, MetID parses a sentence into collapsed depen-

dency relations using the Stanford Parser3 [33]. These dependencies are organised as a parse-tree

that realises recursive linguistic structures like phrasal verbs, prepositional phrases, embedded

clauses and so on. MetID will use this dependency structure to inform the grammatical heuristics.

Stemming. Where appropriate, word stems are used in place of words’ observed forms. MetID

uses a Ruby implementation of the Porter stemming algorithm [176]4. Stemming the input allows

the system to relate observed words to any of their forms in the lexical models.

At this stage of analysing (xix), the system has a set of items to analyse for potentially figurative

content. These include the sentence as a whole, a predication between heart and fire (extracted

using the POS-tags) and a set of dependencies from the parser. This list is then pruned to include

only open-class words and dependencies that relate two open-class words5. Lastly, all root-nodes,

determiners, anaphora, pronouns, quantifiers, relative modifiers and coordinations are removed.

Next, MetID analyses each item using the paired cluster search and the heuristics. In our example,

the set of open-class words in the full statement is the first item to be analysed. Table 4.1 lists each

item to be analysed and from which operation the information was retrieved.

For each potential topic-vehicle pair, MetID searches the candidate topic-vehicle clusters from

Metalude, minimising the average distance between the identified term and its candidate nucleus

(D1 and D2 in figures 3.2 and 3.3). In this example, the system first looks for cluster-pairs which

1“Structural” means without respect to semantics.
2http://nlp.stanford.edu/software/tagger.shtml; 10 February, 2013.
3http://nlp.stanford.edu/software/lex-parser.shtml; 20 February, 2013
4https://github.com/aurelian/ruby-stemmer; 10 February, 2013.
5The list of closed-class words is available at https://www.scss.tcd.ie/˜gerowa/metid/stopwords.txt.
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Corpus-based Analysis

Metaphor Identification

Structural
Processing

Word Clustering
With Semantic Models

Input
Unstructured

Text Input

Preprocessing / 
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Sentence Chunking

POS Tagging & 
Dependency Parsing

Units of Analysis
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(Root Analogies)

Distributional 
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Figure 4.1: Architecture of the MetID system. The two sub-systems for structural and word clus-
tering are done within the confines of the text itself, unless WordNet is used as the lexical model.
The structural analysis (left side) extracts syntactic and lexical information. The word clustering
sub-system uses an interchangeable lexical model to build clusters around seed terminology from
the figurative thesaurus Metalude. The last piece is the analysis module (bottom), which performs
the paired cluster search and applies a set of heuristics. The output is a list of candidate metaphors
ranked by scores from the metaphor identification sub-system.
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Item Potential Topic Potential Vehicle Relationship Source
1a heart fire NA Stemmed sentence
1b heart burn NA Stemmed sentence
1c heart love NA Stemmed sentence
1d fire heart NA Stemmed sentence
1e fire burn NA Stemmed sentence
1 f fire love NA Stemmed sentence
1g burn heart NA Stemmed sentence
1h burn fire NA Stemmed sentence
1i burn love NA Stemmed sentence
1 j love heart NA Stemmed sentence
1k love fire NA Stemmed sentence
1l love burn NA Stemmed sentence
2 heart fire Predication POS-tagged sentence
3 fire heart Nominal subject Dependency parse
4 burns fire Nominal subject Dependency parse
5 burns love Preposition (with) Dependency parse

Table 4.1: Items to analyse in sentence (xix). Each item contains a potential topic, a potential
vehicle and in some cases, the relationship in which they were observed.

contain heart and fire respectively in item 1a. The algorithm is an exhaustive search which means

the system calculates the distances for every item for every candidate pair, and sorts the results.

This is done for every ordered-pair of words, however, some of them (and potentially all) may not

yield any candidate metaphors. This occurs, for example with item 1a, when there are no paired

clusters where heart is in the topic cluster and fire is in the vehicle cluster. If this happens, MetID

will allow unpaired clusters for topic-vehicle mappings but will apply a penalty to the resulting

score (see section 4.5).

Now MetID has a list of candidate metaphors for item 1 – the sentence – in descending order

by the average of the topic-term / topic-nucleus and vehicle-term / vehicle-nucleus distances6. A

candidate metaphor consists of a candidate topic and vehicle, expressed as TOPIC = VEHICLE. The

items of analysis, in this case the cleaned sentence, are made up of identified topics and vehicles.

The clusters, then, constitute the relationship between an identified topic and the candidate topic

(the nucleus) and the identified vehicle and candidate vehicle.

After the current item is used to build the list of candidate metaphors, heuristics are applied.

Some of the heuristics are not relevant because the item is the set of all word-pairs in a sentence,

not a relational triple like items 2 - 5. The ones that may apply in this case include a bonus if the

stem of the identified topic matches that of the candidate topic and/or if the identified vehicle stem

matches the candidate vehicle. After the heuristics are applied, the results are sorted by their new

scores and written to the output file7, and MetID moves to the next item.

6Distancing in the semantic models is defined from 0 (completely dissimilar) to 1 (completely similar). Methods
for measuring distance will be covered in section 4.4.4.

7This second sort is a technical vestige of an earlier version of the system that did not implement any heuristics. It
does, however, allow a threshold to be set by which to prune low-scoring candidates coming out of the core module
to skip the heuristics module for candidates that are unlikely to end in a high score. This feature was implemented in
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The second item is pred(heart,fire) refers the predication of fire and heart. The pro-

cess for each item is similar, except that with relational triples, the first step is simplified because

there is only one ordered pair of words. MetID ranks the candidate metaphors by the best topic-

vehicle pair that minimises the within-cluster distance for heart and fire. Again, if no paired

clusters are found, it will allow unpaired matches with a penalty to resulting score. After the

initial list is created, the heuristics are applied. In addition to the those mentioned for item 1,

two more heuristics may apply to predications: the predication strength bonus and the hypernym

penalty (described in section 4.5.2). The predication strength heuristic uses a set of predications,

extracted from two large corpora8, to assess how unlikely the observed predication is. The second

heuristic, specific to predications, is the direct hypernym penalty. In this case, if the predicate fire

is a hypernym of heart, the system would apply a penalty to the score. MetID uses WordNet for its

hypernym database, regardless of which lexical model is configured. In this instance, fire is not a

hypernym of heart, so no penalty is applied. If, for example, this item had been pred(lawyer,

professional), this heuristic would have applied a penalty to account for the fact that there

is nothing figurative about saying a lawyer is type of professional.

The remaining three items are the relational triples from the dependency parse: nsubj(fire,

heart), nsubj(burns,fire) and prep with(burns,love). Each of these are pro-

cessed like the first two items, except that a heuristic for selectional preference violation may be

applied. Selectional preference is a measure of how likely an argument is for a root in a given

relation. Although this association has been traditionally used in noun-verb relations, MetID im-

plements a generalised version that includes subject-verb, object-verb, adjective modification and

noun modification. This heuristic is described in section 4.5.2, but in this example, nsubj(fire,heart),

would constitute a selectional violation because hearts do not tend to be fires. This heuristic is a

weighted bonus, similar to predication, and is proportionally applied relative to the degree of vio-

lation.

MetID was designed to allow grammatically unrelated word-pairs to constitute a metaphor, a

decision motivated by theoretical and technical considerations. To take the proposal of contempo-

rary theories, that metaphors are not just superfluous linguistic flourishes, then were MetID to rely

exclusively on linguistic structure to identify potential metaphors, it would risk precluding a vari-

ety of metaphors. Also, there are more relations that signal figurative language than those extracted

from a grammatical analysis, such as semantic and pragmatic relations. Thus, expanding the scope

of analysis to include such signals, will result in broader coverage of potential metaphors. Unfor-

tunately, state-of-the-art semantic parsers (not to mention an almost complete lack of pragmatic

or discoursive parsers) are not yet reliably accurate. Syntactic parsers, like those used in MetID,

offer a first step toward exploiting relational structure in language to identify metaphor. In future

work, were semantic parsers more robust, one can imagine discarding the bag of words analysis

in favour of a set of higher-level relations.

MetID but not used in reporting results.
8The BNC and enTenTen collections.
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After each item is analysed and subjected to the relevant heuristics, the results are written to

the output file. By default, each item of is recorded with its 20 top-scoring candidate metaphors.

This verbosity addresses the goal of allowing a statement to instantiate multiple metaphors. How-

ever, a user may choose to disregard the item-wise distinction and reorder the output to get the

highest scoring candidates without regard for which item instantiated the metaphor. At the end of

execution, a user is left with a file containing the data mentioned thus far, as well as a transcript of

the execution. Appendix B provides a detailed example run of MetID.

4.3 Text Pre-Processing

Texts are pre-processed to prepare them for use in the semantic models and in the structural mod-

ule. The pre-processing routines ensure a degree of normalisation and help reduce various kinds of

noise, such as non-semantic variation (punctuation, regional or genre conventions, etc.). Keeping

with recent literature in distributional semantic models, MetID adopts the steps used in COALS

[188, p.9]:

1. Remove non-text characters (HTML tags, images, table lines, etc.)

2. Remove non-standard punctuation and separate other punctuation from adjacent words.

3. Remove words over 20 characters9.

4. Split words joined by certain punctuation and remove other punctuation from within words.

5. Convert to upper case.

6. Lexicalise symbols.10

7. Lexicalise special patterns.11

8. Discard documents with fewer than 80% valid words to assure the text is in English.

9. Discard duplicate articles with a hashing algorithm.

10. Split hyphenated words that are not in a dictionary but whose components are.

11. Remove a common set of stop-words.

9[188] finds that this helps mitigate made-up or mis-spelled words.
10For example, @ becomes <AT> and % becomes <PERCENT>.
11For example, http://www.example.com becomes <URL> and nobody@nowhere.com becomes

<EMAIL ADDRESS>.
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For this excerpt of the TASA corpus, the input (top) results in the normalised output (bottom):

Who were the first Americans? Many, many years ago, perhaps 35,000 years

ago, life was very different than it is today. At that time, the earth was in the

grip of the last ice age. There were few people anywhere in the world, and none

lived in the Americas. People did live in Asia, however. And some of them

wandered into north America. The firstcomers did not know they had found a

new continent.

⇓
AMERICANS ?
, YEARS AGO , 35 , 000 YEARS AGO , LIFE VERY DIFFERENT TODAY .
TIME , EARTH GRIP ICE AGE .
PEOPLE WORLD , LIVED AMERICAS .
PEOPLE LIVE ASIA , .
WANDERED NORTH AMERICA .
KNOW NEW CONTINENT .

4.4 Word Clustering

Building clusters around Metalude’s terminology is the core of MetID’s approach to identifying

figurative language. These clusters embody the models with which they were created. That is, the

lexical models are built, used to create the clusters and discarded12. The models used for building

clusters fall into three categories: WordNet, distributional semantic models (DSMs) and a co-

occurrence likelihood estimation (COLE) model. The DSM and COLE models are corpus-based,

in that they build word associations by analysing collections of text. This means that corpus-

based models will produce different associations depending on what corpus is used and how it is

structured.

4.4.1 Seed Terminology

After obtaining access from Andrew Goatly, the data from Metalude was scraped from its web-

site13. A total of 594 root analogies were extracted, and saved in a relational database. Topic and

vehicle terms were separated from each mapping and those consisting of multi-word terms were

condensed to single words. The resulting set contained 582 topic-vehicle pairs, consisting of 487

unique terms and 479 unique stems. These terms, which are listed in appendix C, table C.1, make

up the words around which clusters were built.

12Saved semantic space files for each model are available at https://scss.tcd.ie/˜gerowa/metid/.
13http://www.ln.edu.hk/lle/cwd/project01/web/internal/database.html; 2 February, 2013.
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4.4.2 Hold-out Procedure

MetID can be used to look for figurative language in the same corpus it uses to build a semantic

model. Because the clusters are built using a corpus, they can potentially become representative of

a metaphor as if it were a literal relationship. For example, the term contagion is strongly related

to the concept of DISEASE, which is part of the motivation for using it to describe problematic

relations in finance and economics. However, this figurative use of contagion would be obscured

in a corpus in which it was only used in this way. For this reason – which is analogous to model

over-fitting in classification tasks – requires a hold-out procedure to separate a corpus for building

a model (training) and analysing it (testing).

Each of the text collections are made up of documents, which allows for a simple hold-

procedure following the customary 7-to-10 ratio commonly used in machine learning tasks [102,

233]. To train a “held-out” model, a random 70% of a collection’s documents were selected and

the remaining 30% were used for analysis. Henceforth, a “held-out” model is one built on 70%

of the documents in the collection. To examine whether this hold-out procedure was helpful or

necessary, both held-out and full-corpus clusters were built. The procedure is the same for both

types, and they were stored in the same way. Note that this hold-out procedure is not applicable to

the WordNet model, because clusters are not built from a corpus.

4.4.3 Building Clusters: WordNet

WordNet is a structured lexicon of English words made available as a computer database [56, 167].

The current release, version 3.1, contains entries for approximately 155 thousand open-class

nouns, verbs, adjectives and adverbs. It encodes different word-senses (including multi-word

terms) with small definitions called glosses. For nouns and verbs, WordNet contains the fol-

lowing semantic relations: hypernymy / hyponymy, synonymy, antonymy, polysemy, meronymy,

holonymy and troponymy. WordNet has additional information for entailment, pertainment, verb

frames, attributes, morphological forms, coordinate terms and familiarity. Nouns are organised

in a hyponym tree and verbs in a troponym tree (see figure 4.2). Table 4.2 reviews WordNet’s

coverage.

risk-[noun#1] risk-[verb#1]
hazard, jeopardy, peril, risk, endangerment risk, put on the line, lay on the line
→ danger → try, seek, attempt, essay, assay
→ causal agent, cause, causal agency → act, move
→ physical entity
→ entity

Figure 4.2: Examples of the hypernym tree for the first sense of risk-[noun] (left) and the troponym
tree for the first verb-sense of the same word (right). Observe the multi-word terms, as well as the
increasing abstractness at the top-levels of the ontology.
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WordNet was initially chosen to provide a kind of baseline to the other models because it

explicitly represents word-senses and semantic relationships. This is important in relation to dis-

tributional semantic models where word-sense information is encoded abstractly in a semantic

space. WordNet is maintained by lexicographers who decide what word senses to include and

how they interrelate. WordNet was included to provide an explicit semantic alternative to the

corpus-based, distributional methods in other models, some of which have been shown to outper-

form WordNet [136, 184, 199, 200]. As we will see, however, in the tasks used to evaluate MetID,

WordNet performs comparably well to the best DSMs and provides consistently good coverage.

POS
Unique
Entries Synsets

Total Word-
Sense Pairs

Monosemous
Words & Senses

Polysymous
Words

Polysemous
Senses

Noun 117,798 82,115 146,312 101,863 15,935 44,449

Verb 11,529 13,767 25,047 6,277 5,252 18,770

Adjective 21,479 18,156 30,002 16,503 4,976 14,399

Adverb 4,481 3,621 5,580 3,748 733 1,832

TOTAL 155,287 117,659 206,941 128,391 26,896 79,450

Table 4.2: Coverage in WordNet 3.1.

Similarity & Relatedness in WordNet

Similarity and relatedness are not inherent properties of WordNet, which relates entries by sense,

part-of-speech, short definitions and specific semantic links. To address word relatedness in Word-

Net, researchers have developed measures that use its structure and information (see [173] for a

review). There are two types of association measures for WordNet: similarity and relatedness.

Similarity measures metricate the information content of the least common subsumer (LCS) be-

tween two words14. That is, similarity between two words is informed by their shared semantic

information evident in the hierarchical structure. Alternatively, relatedness measures associate

entries in a less strict sense – often using sense, gloss and frequency information. Table 4.3 sum-

marises common measures of word association in WordNet.

Perhaps the most commonly used similarity measure in WordNet is Lin similarity [143, 144,

145, 173, 200, 201]. Lin similarity is similar to Resnik and Jiang & Conrath measures in that it

uses the hypernym tree to find the information content of the LCS between two words, A and B.

The measure scales the sum contribution of the LCS by the independent information from each

word. Lin defines this similarity in a generalised form as:

SimilarityIT−Lin(w1,w2) =
2× I(F(wi)∩F(w2))

I(F(w1))+ I(F(w2))
(4.1)

where I(x) is the information content of x, and F(x) is the “feature vector” for x. To metricate the

information-theoretic Eq. 4.1 in WordNet, it is defined as:

14An LCS is the nearest, more general term shared by two entries in the hyponym or troponym tree.
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Measure Definition Description

Gloss Vectors [172] cos(TA∗,TB∗) {T} is a co-occurrence table of glosses A∪B. Effectively
measure gloss overlap between two entries.

Path Traversal Distance A→ B Common baseline measure using only hyponym / hypernym
links.

Wu & Palmer [236] 2·depth(LCS)
depth(A)+depth(B) Combines path-length and LCS contributions.

Resnik [182] − log p(LCS) p(x) is the relative frequency of observing x.

Jiang & Conrath [108] p(LCS)2

p(A)p(B) Extends Resnik’s measure to accommodate mutual co-
occurrence.

Hirst & St-Onge [101] Directed distance A→ B Follows any semantic link, but with respect to its direction.

Leacock & Chodorow
[140]

− log dist(A,B)
2D D is the depth of the entire hypernym tree, and dist is the

path distance in the same tree.

Lin [143] log p(LCS)2

log(p(A)p(B)) Information-theoretic version adapted to WordNet.

Lesk [4] w1(A∩B)+w2(〈A′〉∩ 〈B′〉) Weighted sum of the gloss overlap between A and B as well
as their neighbors A′ and B′

Table 4.3: Association measures used in WordNet, ordered chronologically by their publication.
In the definitions, A and B refer to entries and LCS refers to the least common subsumer.

SimilarityWN−Lin(A,B) =
log p(LCS)2

log(p(A)p(B))
(4.2)

Lin’s formulation attempts to apply generally to any feature-based representation. With WordNet,

the feature vector is an entry’s synset. To illustrate this metric, Lin uses the example of associating

hill and coast, shown in figure 4.3. Each word shares some information with the others, but does

so depending on the words’ location in the hypernym tree.

Given the success of Lin similarity, both in WordNet [143, 144] and other areas like the se-

mantic web and formal ontologies [48, 173, 186], MetID uses this measure for relatedness in

WordNet15. Because it requires the compared words to share POS-class, the system uses a type

of reverse-stemming where a word is stemmed after which the best16 of all its possible forms is

chosen as the closest neighbour. The WordNet::Similarity Perl module17 was used with WordNet

version 3.1 for Unix and the abstract hypernym root-nodes in WordNet::Similarity were enabled

to allow comparison of entries that do not share a top-level hypernym [173].

When configured to use WordNet, MetID’s work-flow is different than for the corpus-based

semantic models: instead of searching a set of saved clusters generated by the models, MetID

will calculate the pair-wise similarity between every word in the item of analysis and the seed

terms from Metalude. For each of the 479 unique seed terms, an exhaustive pair-wise comparison

in WordNet typically takes less than 30 seconds, which is comparable to the database queries

required for the corpus-based models.

15MetID can be configured to use any similarity metric available in the WordNet::Similarity module.
16The “best” choice maximises the resulting similarity.
17http://wn-similarity.sourceforge.net/; 5 February, 2013.



4.4. WORD CLUSTERING 59

Figure 4.3: Lin’s example of the similarity between hill-[noun] and coast-[noun] in WordNet.
The numbers correspond to the probability (as of WordNet 2.0) that a randomly selected word
is subsumed by that class. These probabilities are used to calculate shared information across
sub-classes. Taken from [144].

4.4.4 Building Clusters: Distributional Semantic Models

The distributional semantic models (DSMs) implemented in MetID were picked to exemplify a

range of strategies. Four models were chosen: LSA, HAL, BEAGLE and COALS. Each of the

models will be reviewed in this section and an example from [137] is presented in appendix D.

MetID uses each DSM in the same way: to create clusters of nearest-neighbours around the seed

terminology given by Metalude. The clusters are stored in a database, which allows a user to select

which model to use at execution-time.

Model Context Default Associa-
tion Method

Notes

Context Region
LSA Document Cosine Uses SVD

Context Word
HAL Ramped window Euclidean
COALS Ramped window Correlation SVD optional

Incremental
BEAGLE Sentence Cosine

Table 4.4: DSMs used in MetID.

Context Region Model: LSA

Latent semantic analysis (LSA) was developed by psychologists working on semantic memory

[136]. In LSA, words are encoded as high-dimensional vectors representing their usage in doc-

uments or paragraphs of a corpus. The word-document co-occurrence matrix is first normalised

by the log-entropy of each row. Next, it is decomposed to a lower-dimensional representation

using singular value decomposition (SVD). The resulting n-dimensional semantic space allows

word-pair comparison as well as word-document and document-document comparison.
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LSA has been successful in modelling a variety of psycholinguistic findings and has been

used in search engine design, document comparison and summarisation (see [138, 207, 214] for

reviews). However, it has been criticised in cognitive modeling for employing implausible algo-

rithms, like cosine similarity and SVD [180]. Another critique of LSA is that the arbitrary choice

of dimensionality (often set empirically to 300) can have a large effect on accuracy for specific

tasks [184]. Moreover, one number of dimensions often works well for one task but not for another

(compare [214] with [121]).

Context Word Models: HAL & COALS

The hyperspace analogue to language (HAL) is a model that represents word-meaning as a word-

word co-occurrence matrix [27]. HAL builds this matrix using a ramped window to construct a

140,000 dimension semantic space (see figure 4.4). HAL does not reduce the dimensionality of

this space, instead, it is limited to the 70,000 most relevant entries determined by the column’s

log-entropy. Tabulating this matrix yields the 70,000 × 70,000 element space in which each word

is a point. In this hyper-dimensional space, a word’s distance from another is analogous to their

semantic relatedness and is usually measured using a Minkowski distance such as Euclidean. HAL

is partly motivated to address concerns of cognitive plausibility, avoiding algorithms like SVD. In

fact, the only technical decisions HAL requires are the co-occurrence window-size, its weighting

and the choice of how many words to represent (70,000 by default). HAL does not uses word-

order information or sentence boundaries, only the windowed co-occurrence observations and the

developers of HAL do not say how grammatical boundaries may impact performance. However,

HAL and LSA are perhaps the two most cited distributional models in terms of correlation to

experimental data [147, 162, 184].

The correlated occurrence analogue to lexical semantics (COALS) is inspired by HAL and

LSA and implements a number of refinements [188]. COALS is a word co-occurrence model

in which meaning is built using a windowed co-occurrence matrix. Unlike LSA, COALS does

not rely on segmented text to build these vectors. After building this matrix, all but the top n

most frequent words (14,000 by default) are discarded. The matrix is then normalised by com-

puting pair-wise correlations, after which negative correlations are discarded and the remaining

are square-rooted. Optionally, the space’s dimensionality can be reduced with SVD. Using the

resulting matrix, similarity between words is computed as the correlation between their vectors.

It is interesting that the COALS developers found that correlation, not cosine or a Minkowski

distance, was the best performing measure for vector similarity. Some recent work comparing

distributional models has shown that COALS is more accurate on a number of tasks than other

models [184, 188].
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Figure 4.4: An example 4-word, ramped window. In HAL and COALS, context is defined around
a target word, t, becoming decreasingly relevant the farther away a co-occurring word is found.

Incremental Model: BEAGLE

Bound encoding of the aggregate language environment (BEAGLE) seeks to account for word-

order by learning both surface and latent structure in n-gram and transition data [111, 113]. The

BEAGLE developers propose four signals available in an input stream: co-occurrence (contextual

preference as n-gram frequencies), transition (incremental observations of word-order), indirect

or “latent” co-occurrence (reduced dimensionality vectors of n-gram frequencies) and latent tran-

sition information (approximated word-order information). BEAGLE learns both co-occurrence

and sequential information and builds on the approach of HAL. BEAGLE uses a process called

as circular convolution to encode each form of information in a single matrix. BEAGLE repre-

sents the best-of-breed model in terms of cognitive plausibility because it encodes the two surface

signals, co-occurrence and order information, as well as their latent counterparts. Interestingly,

BEAGLE does not perform as well as COALS and HAL on some clustering tasks [184].

Matrix Preprocessing

Before an initial co-occurrence matrix is transformed for use as a representation, it is common

to normalise it by some criterion [109, 136, 192]. Two common criteria are row-length and log-

entropy, which are used in LSA, HAL and COALS. The intuition behind normalisation is that

models should compensate for documents’ propensity for co-occurrence patterns which do not

reflect topical or semantic information. For example, the past tense form of say is abundant in news

reports, but does not reflect a given report being about “saying things”. The developers of LSA

note, that though stop-words are usually removed, entropy normalisation can help compensate for

closed-class words’ contribution to a semantic space. Log-entropy normalisation has also become

common in document retrieval algorithms like TF-IDF and Okapi BM25 [109, 185]18. Table 4.5

lists normalisations commonly applied to DSMs’ initial co-occurrence matrix.

Measuring Similarity in Semantic Spaces

The goals of DSMs is to construct word representations which embody meaning in a unified data

structure. Interacting with these representations usually involves comparing words to one another

– ie. comparing vectors. Five measures of vector similarity are given in table 4.6: Euclidean

distance, cosine similarity, the extended Jaccard coefficient, Pearson’s correlation coefficient and

Spearman’s rank coefficient. Some models specify the intended function to be used, while others

18There is some mystique surrounding matrix preprocessing – especially log-entropy normalisation. Karen Spärck
Jones was quoted in her obituary to admit she “didn’t really know” why the process helped TF-IDF rankings.
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Criterion Normalisation Equation Notes
Row / Column sum: Xa,b

∑Xa, j
or Xa,b

∑Xi,b
Based on row representations.

Row / Column length: Xa,b√
∑X2

a, j

or Xa,b√
∑X2

i,b

Based on row representations.

Correlation: (∑∑Xi, j)Xa,b−∑Xa, j ·∑Xi,b√
∑Xa, j ·((∑∑Xi, j)−∑a, j)·∑Xi,b·((∑∑Xi, j)−∑Xi,b)

Matricised Pearson’s correlation.

Row-Entropy: log(Xa,b+1)

−∑
Xa,b

∑Xa, j
log(

Xa,b
∑Xa, j

)
Used in TF-IDF.

Table 4.5: Various normalisations commonly applied to a co-occurrence matrix. Each equation
applies to a matrix {X} of rows a∈ X∗,b and columns b∈ Xa,∗. All sums operate on row or column
indices, i and j, respectively.

specify a class of functions. For example, LSA is designed to be used with cosine similarity

whereas HAL can be used with any Minkowski distance, defined as:

(
n

∑
i=1
|qi− pi|λ )1/λ (4.3)

where λ ≥ 1 to satisfy triangle inequality, assuring the distance is a metric.

Function Notes
Euclidean distance:√

n
∑

i=1
|qi− pi|2

Distance measure in which higher is less sim-
ilar (farther away). A common Minkowski
distance (Eq. 4.3 with λ = 2).

Cosine similarity:

p·q
‖p‖‖q‖

Compares direction of two vectors regardless
of magnitude: 1 is identical, -1 is completely
different.

Extended Jaccard coefficient:

p·q
‖p‖2+‖q‖2−p·q

Ratio between bit-wise union and intersec-
tion where higher is more similar [107].

Pearson’s correlation:

n∑ piqi−∑ pi ∑qi√
n∑ p2

i −(∑ pi)2
√

n∑q2
i −(∑qi)2

1 is completely linear, -1 is completely non-
linear.

Spearman’s rank:

∑
i
(pi−p̄)(qi−q̄)√

∑
i
(pi−p̄)2 ∑

i
(qi−q̄)2

Monotonic version of Pearson’s correlation:
1 is complete related by a monotonic func-
tion and -1 is completely unrelated.

Table 4.6: Functions commonly used to compare vectors in a semantic space. In the equations, p
and q are discrete frequency distributions.
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DSM Variants

Table 4.7 shows the variants of distributional models used in MetID. Note that not every model

is compatible with every similarity function. Also, keep in mind that more models and variants

can be included – MetID is neutral with respect to how the clusters were created. This will allow

a comparative analysis of lexical models, independent of the overall method. It also means that

different lexical models can be used in different situations. For example, WordNet will later be

used in a case-study of financial language because it provides relatively good coverage when using

a smaller corpus.

Model Compatible Similarity
Functions

Notes

LSA-100 cos pear euc spear Reduce to 100 dimensions
LSA-300 cos pear euc spear Reduce to 300 dimensions
LSA-400 cos pear euc spear Reduce to 400 dimensions
LSA-500 cos pear euc spear Reduce to 500 dimensions
HAL cos pear euc jac Compare all dimensions
HAL-400 cos pear euc jac Compare the 400 best dimensions
HAL-1400 cos pear euc jac Compare the 1,400 best dimensions
COALS-SVD 100 cos pear euc spear Reduce to 100 dimensions
COALS-SVD 200 cos pear euc spear Reduce to 200 dimensions
COALS-SVD 800 cos pear euc spear Reduce to 800 dimensions
COALS-800 cos pear euc jac Retain the 800 most frequent words
COALS-14000 cos pear euc jac Retain the 14,000 most frequent words
BEAGLE-128 cos pear euc spear 128 permutations
BEAGLE-256 cos pear euc spear 256 permutations
BEAGLE-512 cos pear euc spear 512 permutations
BEAGLE-1024 cos pear euc spear 1024 permutations

Table 4.7: The distributional semantic models used to create clusters in MetID. All compatible
similarity functions were used for each model. Bold-face denotes the default (published) configu-
ration for each model.

4.4.5 Building Clusters: Co-occurrence Likelihood Estimation

Co-occurrence likelihood estimation (COLE) refers to the task where, given a set of documents,

we wish to predict how likely it is terms will co-occur in an unseen document. COLE-based

models offer a statistical approach to building word clusters without a representation scheme (like

a semantic space). Three COLE models were explored for use in MetID [105]. The first is based

on mutual information (MI) and the second two are based on language models (LMs) [153] The

language model methods are the result of ongoing work with Dr. Hua Huo, who was a visiting

scholar at Trinity under the supervision of Prof. Khurshid Ahmad. Using the models for word-

clustering is the result of my adaptation of the document-indexing system developed by Dr. Huo.

The LM-based models, however, did not generate viable clusters and were not tested in MetID

(see appendix A section A.1.1 for further explanation). The next section introduces the MI-based

method, the likelihood estimations which MetID uses as the relatedness between two words.
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Mutual Information (COLE-AMI)

Mutual information (MI) is a statistic for computing the interdependence between two terms, t1
and t2, that has been used to extract collocations in text [202]. Intuitively, MI measures how much

more often than chance two terms co-occur, or how much information they “mutually contribute”

[39]. MI assumes that each term occurs with independently random probability and was first

defined as

MI(t1, t2) = log2
p(t1, t2)

p(t1)p(t2)
(4.4)

where 4.4 p(t1) and p(t2) are each term’s independent prior probability of occurrence and p(t1, t2)

is their co-occurrence prior [39].

Using MI to estimate term co-occurrence has some drawbacks. The first is the unilateral co-

occurrence problem: it ignores the case where only one term is present in a sequence. The second

relates to rare occurrences: when p(t1, t2) and p(t1) or p(t2) are very small, MI(t1, t2) can still

be relatively large, despite the posterior likelihood of the sequence. This will result in infrequent

words, that occur in only a few isolated places, receiving an over-estimated relevance. Further, the

original formulation only works for two terms. To generalise MI for multi-term co-occurrence,

Zhang and Yoshida proposed augmented mutual information (AMI) [241]. AMI is defined as:

AMI(t1, t2, ..., tn) = log2
p

(p1− p)(p2− p)...(pn− p)
(4.5)

where (t1, t2, ..., tn) is an n-term sequence and pn is short-hand for the probability p(tn).

One strength of AMI is that it is formulated as a product of probabilities, which can be es-

timated without exhaustive observation. This makes the method computationally tractable over

large collections. Using maximum likelihood estimation, AMI can be defined for n terms’ fre-

quency observations in a document, D:

AMI(t1, t2, ..., tn) = (n−1) log2 |D|+ log2 f −
n

∑
t=1

log2 ( fi− f ) (4.6)

where |D| is the size of the document, f is the frequency of the sequence (t1, t2, ..., tn) ∈ D, and fi

is the frequency of the ith term. log2 |D| measures how much AMI will increase when a term is

added to the sequence. Because log2 |D| can dominate the equation, it is often scaled by a constant

α ∝ n. Because fi may equal f , a correction constant, β , is added. This results in multi-term

co-occurrence statistic using AMI defined as Eq. 4.7:

AMI(t1, t2, ..., tn) = (n−1)α log2 |D|+ log2 f −
n

∑
t=1

log2 ( fi− f )+(n−m)β (4.7)

where m is the number of terms which are less frequent than the whole sequence and β is a

constant by which to scale the frequency of terms that occur as many times as the sequence in

which they occur [105]. β is used to diminish the impact of low frequency terms found in equally

low frequency sequences such as multi-term proper nouns.
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4.4.6 Testing Clusters

The intention of using clusters instead of raw similarity scores to associate words, is to account for

some of the inherent underlying semantic and conceptual properties of individual words. Abstract

words, such as “thing”, “way” or “item”, are vague and tend to elicit diverse associations [124].

By building sets of associated words around the seed terms from Metalude, the clusters can be

intrinsically qualified to account for words’ abstractness using their similarity distributions. That

is, words that are proximate to predominately high-frequency words, can be thought of as less

well-defined compared to words that are proximate to words that range in frequency. To measure

this quality, the associative neighbourhood of a word needs to be bounded. To achieve this, MetID

adopts a nearest-neighbours approach where the 200 closest words are computed for a seed term,

using their relative frequencies to calculate two cluster-based quality metrics: purity and entropy.

Word clustering is an NLP task that has been addressed using both linguistic and non-linguistic

strategies [3, 116, 182, 199, 201, 208]. A common task in this regard is to find the best solution

– finding a partition that maximise an objective function of the resulting clusters. In agglomera-

tive and spectral clustering, potential solutions are measured by extrinsic scores like F-measure or

Rand measure [240], which use an external gold-standard to compare class-cluster ratios19. Clus-

ters can also be qualified in terms of their internal composition, without an external reference. Two

commonly used intrinsic measures of cluster quality are purity and entropy [116, 240]. Purity and

entropy measurements use the ratio of relative frequency to class frequency. Purity is a measure of

how much of a cluster consists of the most common class. Entropy, on the other hand, measures

how evenly the items are dispersed among classes.

Purity for a cluster, C with a vocabulary VC, is defined:

Purity =
1
|C|

max(nw ∈VC) (4.8)

where nw is the frequency of word w. As currently implemented, MetID sets |C| to be 200.

Entropy, or normalised Shannon entropy, measures the diversity of classes in a cluster and

is inversely proportional to a cluster’s quality [116, 184]. If a model predicts word w has a set

of neighbours, T̂ , then the entropy of T̂ will be high when the relative frequencies of t ∈ T̂ are

uniform. Conversely, if the frequencies of clustered words are consolidated in a few classes, the

cluster’s entropy will be low. Entropy for cluster, C, is defined over each word in its vocabulary,

w ∈VC:

Entropy =− 1
log |VC| ∑

w∈VC

nw

|C|
log

nw

|C|
(4.9)

where nw is the frequency of w and nw
|C| is the relative frequency for w in the cluster.

19For our purposes, classes are words, the number of which is set to 200, and the frequencies are relative word fre-
quencies. The 200-word cluster size was chosen because it is large enough to be inclusive of a spectrum of associations
but is still below the minimum frequency threshold for all model configurations.
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Figure 4.5 shows three example clusters with their respective purity and entropy calculations.

Note that high purity is a positive attribute, indicating a good cluster, while high entropy is nega-

tive. Purity is naturally normalised from 0 to 1 and the normalised version of Shannon entropy is

used, which is also defined from 0 to 1.

Figure 4.5: Three example clusters, each with five classes A, B, C, D and E. Clockwise from the
top-left: the first has high purity and low entropy because it is made up of 96% one class (A)
while the rest are uniformly distributed. The second (top right) has low purity because all classes
make up one fifth of the total, while the entropy is high because the contributing classes evenly
distributed. The last cluster (bottom) has moderate purity because class A makes up 50%, but has
relatively high entropy given the dispersion of frequencies over the remaining classes. Note that
MetID uses relative frequencies for all classes.
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4.5 Implementation of Heuristics

In addition to the paired cluster search algorithm, which uses a lexical model to match figurative

terms from Metalude with items found in the input, MetID also implements a set of heuristics (see

table 4.8). The heuristics are applied as a series of conditional bonuses and penalties corresponding

to various lexical, grammatical and cluster-based cues. The lexical heuristics pertain to the words

constituting or found near a potential metaphor. The grammatical heuristics make use of known

properties of figurative language, such as predication and violations of selectional preference. The

cluster metrics are designed to account for the intrinsic quality of clusters built by the semantic

module. Lastly, there are two heuristics that are procedural in nature, and account for a model’s

coverage: a penalty for words not found and a penalty if MetID fails to find a candidate with a

mapping given by Metalude. Throughout this section, the terms in table 4.9 are used to refer to

the various pieces of analysis.

Heuristic Type Description
Non-word Penalty The identified topic or vehicle, are not valid words.
WN Synonyms Bonus The identified topic or vehicle is a synonym of the candidate

counter-part.
Marker Bonus The sentence contains a co-text cue or marker.
Unpaired Metaphor Large Penalty Could not find a metaphor with a pairing given by Metalude.
Predication Large Bonus∗ If the unit is a predication, and the identified vehicle predi-

cates the topic.
Selectional Violation Large Bonus∗ If the identified topic and vehicle are in a relationship which

violates the selectional association of the root word.
Hypernym Penalty If the identified vehicle and topic are nouns, and the vehicle

is a hypernym of the the topic.

Table 4.8: Heuristics implemented in MetID.
∗The predication and selectional violation bonuses are scaled proportional to scores calculated over a reference corpus

(see section 4.5.2.

Each heuristic is either a bonus or a penalty applied to the initial score from the paired cluster

search (see section 3.5). Because the scores are normalised from 0 to 1, bonuses and penalties

shift the score either a quarter or half-way from its original value to 1 (bonus) or to 0 (penalty). A

bonus is defined as

score := score+
1− score

2
+ c

1− score
4

(4.10)

where c is either 0 or 1 for a regular bonus (bringing the score half way to 1.0) or large bonus

(bringing the score three-fourths of the way to 1.0, respectively. A penalty is defined as:

score :=
score

c
(4.11)

where c is either 2 or 4 for a regular penalty or a large penalty respectively.
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Term Description Example(s)

Unit (of analysis) The extracted piece of input which is being, or
going to be analysed.

“Our hearts are on fire.”
pred(heart,fire)

Identified topic The stem of the unit that may be the topic term
of a metaphor.

heart

Identified vehicle The stem of the unit that may be the vehicle term
of a metaphor.

fire

Candidate topic A topic from Metalude. AFFECTION

Candidate vehicle A vehicle from Metalude. WARMTH

Candidate metaphor The topic-vehicle pair from Metalude. AFFECTION AS WARMTH

Topic cluster The cluster of words (built by the lexical model)
around the candidate topic.

Neighbours of AFFECTION

Vehicle cluster The cluster of words (built by the lexical model)
around the candidate vehicle.

Neighbours of WARMTH

Relational triple Two words in a grammatical relation. nsubj(are,hearts)

Stem The canonical root of a given word. hearts⇒ heart

Lemma The canonical root of a given word with respect
to its POS.

hearts⇒ heart-[noun]

Table 4.9: Terms used in the explanation of MetID’s analysis sub-system. The examples refer to
the input sentence “Our hearts are on fire.” and its metaphor AFFECTION AS WARMTH.

4.5.1 Lexical Heuristics

The lexical heuristics are concerned with identifying markers that signal a potential metaphor.

They account for properties of the identified topic- and vehicle-terms as well. Though a key

feature of metaphor is that it is not purely lexical, these heuristics prioritise “marked” metaphors

[92]. Lexical heuristics are defined as such because they deal directly with observed words as

opposed to relationships, constructions or the properties of the word clusters.

Direct Matches, Non-Words & Synonyms

If an identified topic matches the candidate topic or the identified vehicle matches the candidate

vehicle, a normal bonus is applied. If both identified terms match the candidates, a large bonus is

applied. This is to assure that more obvious metaphors are promoted above less obvious ones. For

example, if MetID is analysing the statement “time is money”, the interpretation TIME AS MONEY

should be promoted over the less precise, albeit correct TIME AS COMMODITY. Though direct

matches are not common, especially for novel metaphors, this heuristic assures more accurate

ranking of obvious mappings. Table 4.10 contains some examples of direct matches.

There are two edge-cases in comparing identified terms with their candidate’s counterparts: the

identified word may not be represented in the semantic model or the two words may be synonyms.

The first case is covered by a heuristic that applies a normal penalty if an identified topic or

vehicle term is not found in the lexical model (ie. it is not found in any cluster). This penalty is
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Input Text Topic Vehicle Candidate Metaphor Bonus
Time is money time money TIME AS MONEY Large
Love is a journey love journey LOVE AS MOVEMENT Regular
Love is a journey love journey AFFECTION AS JOURNEY Regular
My car drinks gasoline car drink DRINKING AS CONSUMING Regular
Angry words are weapons word weapon COMMUNICATING AS VIOLENCE None
She exploded at me she explode ANGER AS EXPLOSION None

Table 4.10: Examples of how the direct match heuristic is applied to various input.

only applied once for each identified topic and vehicle. However, if neither term is in the semantic

model, no candidate metaphors will be produced, regardless of what heuristics are applied.

The second edge-case occurs when an identified term is synonymous with the candidate’s.

MetID respects a notion of synonymy dictated by the lexical model. Because the similarity scores

for every model are normalised from 0 to 1, the system simply applies a regular bonus if the

similarity between the identified topic and candidate topic is 1, or the same is true for the vehicles.

In the distributional models, synonymy is nearly impossible to achieve given the sensitivity of

vector similarity measures. As implemented, WordNet is the only model that can make effective

use of this heuristic. However, the direct match heuristic operates on stems, which was partly

motivated to help compensate for the rarity of synonymy in the DSMs20. To avoid redundancy,

this heuristic is not applied if the direct match heuristic was applied.

Hypernymy

A defining feature of metaphorical category assertions, which are commonly found in noun-noun

copula constructions, is that they propose a figurative hypernymic relationship. The example, “my

lawyer is a shark” assigns shark as a hypernym of lawyer, a figurative relationship. To discourage

MetID from scoring literal class-inclusion statements as figurative, it applies a large penalty if the

identified topic and vehicle terms are both nouns and the vehicle-term is a hypernym of the topic.

To do this, regardless of which lexical model is configured, WordNet is used as the hypernym

database. Because the top levels of WordNet’s hypernym tree are relatively abstract, containing

entries like “entity”, “agent” and “living being”, the top two levels are not considered when MetID

looks for hypernyms.

There are some cases where literal hyponymy can be found in a genuinely figurative statement.

For example ”Boys1 will be boys2”, though idiomatic, is a metaphor eliciting specific features of

boys1 and applying to the set of boys2. Examples like this, however, are likely very infrequent,

yielding fewer false positives for this heuristic than legitimate applications. In practice, the hyper-

nym penalty assists ruling out expressions of literal category relations.

20Alternatively, one could imagine setting a threshold for similarity above which synonymy was assumed. Setting
this threshold, however, would be an empirical matter and specific to each model and similarity measure.
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Lexical Cues

Two kinds of contextual cues are included as heuristics, both from Andrew Goatly’s The Language

of Metaphors [92]. Goatly finds that a number of cues commonly mark the use of metaphor. The

first are a set of strings that often signal metaphor. These strings, listed in table 4.11, tend to

exaggerate, diminish, locate or hide the use of an upcoming metaphor. If one of these strings is

found in the sentence or phrase being analysed a large bonus is applied. The second kind of lexical

cue, which Goatly calls co-text markers, often signal the use of figurative language, but sometimes

to diminish its novelty, highlight an aspect or to motivate the reader to process it in a particular

way. If one these strings, shown in table 4.12, is found, a normal bonus is applied. In both cases,

the heuristic is applied only once, even if more than one marker is found.

String Common Function
metaphorically speaking Mark a metaphor
figuratively Diminish a previous metaphor
utterly Exaggerate an upcoming metaphor
completely Exaggerate an upcoming metaphor
so to speak Mark a previous metaphor
as it were Mark a previous metaphor

Table 4.11: Strings Goatly identifies as marking the use of a metaphor.

String
metaphor* figurativ* trope
literal* really actually
in fact simpl* fairly
just absolut* fully
complete* quite thorough*
utterly veritabl* regular*
in a way in one way a bit of
half-* practically almost
not exactly not so much * as * if not *
in both senses meaning in more than one sense
import* symbol* sign
type token instance
example a (sort | kind) of (curious | strange | odd | peculiar | special) * (sort | kind) of
like (a | the) as a * the * of (a | the)
the * equivalent of as if (seemed | sounded | looked | felt | tasted) (as (though | if))
as though ! (could | might) say
delusion* illusion if * (could | would | might | imagine | suppose)
hallucinat* mirage phantom
fantas* unreal

Table 4.12: Lexical markers that often signal the use of metaphor [92]. For presentation purposes,
these are not regular expressions, but the * and | symbols are analogous to POSIX globs.
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4.5.2 Grammatical Heuristics

Grammar plays a significant role in how metaphors are used in language and research suggests

some constructions signal the presence of figurative relationships [92, 128, 133, 206]. Some NLP

projects have used grammatical analyses to help detect the use of metaphor, particularly in verb-

based metaphors [22, 182, 200, 201]. For example, the selectional violation heuristic described

here is based on an approach that seeks to find figuratively applied verbs. The predication heuristic

is inspired by the selectional violation strategy, but with respect to noun-noun predications.

Selectional Violation

Selectional preference violation is a measurable effect based on Yorick Wilks’ theory of preference

semantics [229, 230]. Wilks proposed that a property of lexical semantics is the emergence of

certain preferences that constrain the use of words in certain relationships. Intuitively, this can be

described as subjects “preferring” to verb, or that objects prefer to be verbed. For example, cars

tend to drive, people tend to say and doors tend to open and close. Measuring the strength of these

preferences is known as selectional preference induction [41, 52, 182, 199, 200]. The selectional

strength of a word can be measured as the uniformity of its arguments in a given relationship. With

a pair of words, their selectional association can be measured in a particular relationship using a

mutual information approach: by the ratio of observing two terms outside a relationship to that of

the them occurring in the relationship [39, 153]. MetID measures selectional association as

s assoc(w1,w2,r) = log
frel(w1,w2,r)

frel(w1,∗,r) frel(∗,w2,r)
(4.12)

where frel is the relative frequency of w1 and w2, and r is a grammatical relationship. This al-

lows selectional association between any pair of words that occur in any relationship to be mea-

sured. MetID only uses scores for subject-verb, object-verb, noun-modification and adjective-

modification as these relationships are known to be semantically productive [230]. To compensate

for variation in relative frequencies, the scores are expert normalised21 from 0 to 1.

Because selectional association is based on observable data, the choice of corpus has an impact

on the scores. As such, scores were computed for every corpus (those listed in table 5.1) as well for

all corpora combined22. Generally speaking, the bigger the corpus, the more smoothly distributed

the scores will be, hence also computing scores for all corpora together23. Table 4.13 shows the

selectional association scores for the word person as a subject, extracted from the TASA corpus.

The selectional violation heuristic is implemented as a scaled bonus. For an observed word-

word-relation triple, the heuristic accumulates points for the selectional association score being

below the median, mean, 1 SD + mean or unobserved for the given root24. Intuitively, this is simi-

lar asking, on a scale from 0 to 4, how “interesting” is this particular association, given previously

21Expert normalisation divides all values in a set by the maximum value.
22Note that inter-corpus scores are not comparable, due to the within-corpus normalisation.
23MetID allows the user to configure a “selectional corpus” at execution time but where not otherwise noted, the

TASA corpus was used for this heuristic.
24The root word refers to w1, however, its position changes depending on the relationship.
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Word 1 (w1) Word 2 (w2) frel(w1,w2,nsubj)×10−5 frel(w2)×10−5 s assoc(w1,w2,nsubj)
person overweight 1.2 5.1 4.75
person citizen 2.9 2.5 4.70
person unconscious 0.8 4.0 4.58
person misuse 0.6 3.2 4.53
person immune 0.6 3.8 4.35
person sue 1.4 0.0 4.24
person interview 0.6 4.9 4.10
person faint 0.6 4.9 4.10
person injure 0.8 7.0 4.03
person deaf 0.6 5.3 4.02
person drink 4.4 0.5 3.94
person drown 0.8 8.5 3.84
person alcohol 0.6 6.6 3.80
person ill 1.7 9.4 3.71
person alert 0.6 8.5 3.55
person swallow 1.0 4.9 3.50
person mature 1.0 5.1 3.49
person smoke 1.7 6.2 3.41
person react 3.8 9.7 3.40
person consume 1.0 7.5 3.34

Table 4.13: The 20 most strongly associated arguments for the nominal subject person ( fraw =
2,732; frel = 0.005831%) in the TASA corpus, measured by Eq. 4.12 prior to normalisation.
Intuitively, the score is a measure of how likely it is that the argument (w2) is “person”. Similar
scores were computed for dobj, nmod and amod relationships.

observed cases? This heuristic is applied to a given triple 〈w1,w2,r〉, t, and set of scores S for

s assoc(w1,∗,r) as follows:

0 if s assoc(t)≥ SD(S)+mean(S)

1 if mean(S)≤ s assoc(t)< SD(S)+mean(S)

2 if median(S)≤ s assoc(t)< mean(S)

3 if s assoc(t)< median(S)

4 if t has never been observed

times one-forth of a large bonus. That is, if 4 is the case, a full large bonus is applied, whereas

if 0 is the case, the score remains unchanged. Note that the selectional association scores are

distributed as an unbounded ascending power-law, which means that the median is consistently

below the mean25.

25This distribution was observed in all instances of a random sample of 25 high-frequency words.
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Predication

Predication is the affirmation, assertion or assignment of one thing about another. A prominent

linguistic example is the ontic is-a declaration, as in the example “my lawyer is a shark.” Theoret-

ically, such a declaration can take any form, but in English, the copular construction is a defining

feature of linguistic predications (see table 4.14 for examples). Predications are a common way

of instantiating noun-based metaphors such as the lawyer / shark example [92, 128, 133]. Making

use of predications as a heuristic for identifying figurative assertions consists of finding common

instances with which to compare input. To address this, a score of predicative strength was de-

veloped, similar to selectional strength described in the previous section. This score, predication

strength, will be used to rank a word’s predicates by how common they are, which in turn will be

used apply bonuses to novel predications.

predicate predicate of
... the rest are local people. ... great people who are a pleasure to ...
... million people are poor people like Gole. ... people were hysterical.
The players are people who are not out to ... ... and the people who are carriers ...
My older kids are fantastic people. ... descriptions of people are shorthand ...
The emotions are so high, people have to ... ... scare off some people who are activists ...
... planet Earth is about 1 billion people. ... overpowered by 6 people is a little rash.
... cottages are most peoples’ idea of ... People are Afghans first ...
Intimacy is the way people find happiness. ... people who are victims of tyranny.
Those academics were people who could ... ... add people who are not members ...

Table 4.14: People-[noun] in a sample of predicate relations in the BNC. The root word is shown
in bold-face for each relation (this is the predicate in the left column and the predicate of another
word in the right).

Predication strength was calculated similarly to selectional association. Two sets of predica-

tions were extracted, using two reference corpora: the enTenTen web corpus (described in section

5.2) and the British National Corpus (BNC) [29, 120]. These collections were chosen because

they both contain a number of predicate relations, are freely available (enTenTen) or have been

used for similar tasks (BNC). The method of identifying and scoring predicate relations was the

same for each corpus. First, Sketch Engine [120] was used to extract the top 5,000 most common

nouns in the corpus. Then, for each noun, all predicate and predicate of relations were

extracted with their constituent arguments and frequencies. These relations are defined by regu-

lar expression templates over POS-tagged versions of each collection26. This resulted in a list of

word-predicate pairs, a sample of which are shown in table 4.15. Note that any word can predicate

or be the predicate of a given noun, not just the 5,000 most common nouns. After this list was

constructed, the predication strength of the root was calculated based on a measure similar to MI

[39, 153, 202]. For a given word-predicate pair, (w, p), p strength is defined as
26In BNC notation, predicate and predicate of are defined as this POS template: any noun rel start?

adv aux string not be copular adv string long np and in TreeTagger format, predicate and
predicate of are defined over the POS template: "NN.?.?" [tag="WP"|tag="PNQ"|tag="CJT"]?
[tag="RB.?"|tag="RB"|tag="VM"]0,5 [lemma="be" & tag="V.*"] "RB.?"0,2
[tag="DT.?"|tag="PP$"]0,1 "CD"0,2 [tag="JJ.?"|tag="RB.?"|word=","]0,3
"NN.?.?"0,2 2:"NN.?.?" [tag!="NN.?.?"] [120, 195, 196].
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p strength(w, p) =
fn

fu ∗ ft
(4.13)

where fn is the number of times p predicates w, fu is the number of unique words predicated by

p and ft is the total number of times w is predicated. This formulation discourages pairs in which

the predicate is common throughout the corpus. The intuition, similar to MI, is that if an event

is observed which occurs more often than expected, it should be scored high. A unique aspect of

predication, however, is that a predicate may be widely applicable, or conversely, a noun may be

widely predicated – two conditions that are accounted for in this formalisation.

Root Word Predicate Frequency
person member 22
person party 16
person solicitor 10
person employee 9
person director 7
person victim 7
person friend 5
person resident 5
person subject 5
person chairman 4

Table 4.15: Word-predicate pairs for person-[noun] ( fraw = 28,705; frel = 0.000299%) in the BNC.

Predications from the enTenTen and BNC corpora were scored using the p strength function

above. Further, the scores were normalised for each root word to avoid biases from root or pred-

icate frequency. Table 4.16 shows sample scores for people-[noun]. Three levels of increasing

interest were assessed based on the normalised scores: if it was below the median, the mean or 1

SD + mean of all the scores for that root. This approach was necessary because raw p strength

score are not comparable across roots as they may not be normally distributed.

This heuristic is applied only if the unit of analysis is a predication. Like selectional violation,

MetID uses a scaled bonus. For a given predication, points are accumulated if the normalised

p strength is less than the median, mean, 1 SD + mean or unobserved for the given root. The large

bonus is scaled as follows for a root word, t, with p strength scores S:

0 if p strength(t)≥ SD(S)+mean(S)

1 if mean(S)≤ p strength(t)< SD(S)+mean(S)

2 if median(S)≤ p strength(t)< mean(S)

3 if p strength(t)< median(S)

4 if t has never been observed

That is, if 4 is the case, a large bonus will be applied, and if 0 is the case, no bonus is applied. Like

the selectional association scores, predication strength is distributed along an unbounded power-

law curve in which the median is consistently below the mean. This heuristic operationalises a

similar intuition to selection preference violation, here taking into account words’ inherent like-
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Root Word Predicate fn fu ft

p strength
×10−4

Normalised
p strength

person member 22 464 461 1.03 0.137
person party 16 152 461 2.28 0.312
person solicitor 10 56 461 3.87 0.533
person employee 9 77 461 2.54 0.347
person director 7 114 461 1.33 0.179
person victim 7 242 461 0.63 0.081
person friend 5 195 461 0.56 0.071
person resident 5 63 461 1.72 0.233
person subject 5 682 461 0.16 0.016
person chairman 4 84 461 1.03 0.138
person christian 4 47 461 1.85 0.251
person customer 4 93 461 0.93 0.124
person man 4 537 461 0.16 0.016
person partner 4 114 461 0.76 0.100
person tenant 4 55 461 1.58 0.213
person year 4 646 461 0.13 0.013
person client 3 70 461 0.93 0.123
person driver 3 56 461 1.16 0.156
person female 3 38 461 1.71 0.232
person officer 3 77 461 0.85 0.111

Table 4.16: Word-predicate pairs for person-[noun] in the BNC. fn is the number of times the root
word is predicated by the predicate, fu is the number of unique words the predicate predicates and
ft is the number of times the root word is predicated.

lihood to be predicated in general. However, because predications are considerably less frequent

than any of the grammatical relationships measured in selectional violation, this heuristic often

applies in the case where a predication has never been observed (case 4 above). The sparsity of

previously observed predications could be reduced by using a larger reference corpus such those

of the WaC collection27, the use of which was computationally prohibitive in MetID.

4.5.3 Cluster Quality Heuristics

The quality of the clusters can have an effect on the associative quality between the clustered

words and the seed nuclei. This can occur when a seed word is relatively infrequent in the lexical

model. Two heuristics that account for cluster quality are applied in all circumstances (to all units,

candidate metaphors, identified terms, etc.) unless MetID is configured to use WordNet as the

lexical model. This is because when WordNet is configured, MetID measures word-similarity at

execution time instead of using clusters. The system applies a weighted bonus for purity and a

weighted penalty for entropy. Purity is applied as one-fifth of a normal bonus, times the geometric

mean of the purity of the candidate topic and the candidate vehicle:

score := score+
(1− score)

10
√

ptopic pvehicle (4.14)

where p is a cluster’s purity. Entropy, because it is a negative indicator, is implemented as a

27http://wacky.sslmit.unibo.it/doku.php?id=corpora; 16 January, 2014.
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penalty. Again, the geometric mean of the topic and vehicle entropies is used to weight one-fifth

of a normal penalty:

score := score/
1+√etopicevehicle

10
(4.15)

where e is a cluster’s entropy.

4.5.4 Coverage Heuristics

There are two heuristics that are not lexical or grammatical in nature. The first is a normal penalty

if an identified topic or vehicle is not found in the lexical model, which can be the case for uncom-

mon words. In practice, if this heuristic fires, the results will be dubious at best because the system

has effectively been used to find a metaphor without a topic or vehicle. However, there are cases

where a topic or vehicle is so well matched to a candidate metaphor and other bonus heuristics

have been applied, that the absence of an identified term in the model can be overcome.

The last heuristic attempts to compensate for coverage in the lexical models. When an identi-

fied topic and vehicle pair are found, their average distance to each term in the candidate metaphor

is minimised, providing the best score. But if either term is not found in any of the respective topic

/ vehicle clusters, the result is that no metaphor is found. When this is the case, MetID will re-run

the same analysis without enforcing the pairing from Metalude. That is, the topics and vehicles

are used as a single list, from which the best two are chosen as the candidate topic and vehicle.

This effectively allows metaphors not given by Metalude. But without the imposed structure of

the pairings, it allows spurious pairings like MAMMAL AS ANIMAL or THOUGHT AS IDEA. Thus,

when this occurs, a large penalty is applied.

4.5.5 Reversing Heuristics

Because the heuristics sub-system applies bonuses and penalties to the score from the cluster

search module, they can be reversed. MetID’s output lists which heuristics fired and to what

degree, so that users can reverse their effect on individual candidate’s score. For example, the

statement “My heart is a fire that burns with love” produces a candidate metaphor AFFECTION =

WARMTH for the predication of heart and fire with a score of 0.92. In this example, two heuristics

were applied: the full predication strength bonus (a large bonus) and the WordNet synonym bonus

for fire and WARMTH (a normal bonus). To retrieve the initial score, first, the predication bonus

can be reversed by solving Eq. 4.10 with c = 1:

0.92 = x+
1− x

2
+1

1− x
4

(4.16)

which yields x = 0.68. Next, to remove the synonym bonus, Eq. 4.10 can be solved with c = 0:

0.68 = x+
1− x

2
(4.17)
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which gives x = 0.36, the score for this candidate without any heuristics applied. Though the

bonus / penalty system is a simplistic approach to accounting for metaphorical signals in text, its

effects are easily analysed and can be removed altogether. The evaluations in the following chapter

were performed using scores subjected to all the heuristics described above.

4.6 Summary

This chapter described how MetID was implemented. For a more technical description of the

system, refer to appendix B, where the core algorithms are analysed and the architectural and

design principles are described in more depth. As a rule, the aspects of MetID that relate to

finding and interpreting metaphor were included in this chapter, whereas appendix B contains

programmatic and computational considerations.

The system uses a number of NLP tools, like taggers and parsers, but implements a number

of its own techniques, such as the text pre-processor, the cluster creation, the predication and

the selectional association system. Each of these components were developed with respect to

the goals of the overall project. Wherever possible, existing open-source solutions were used to

address problems that are more or less solved (stemming and tagging) or beyond the scope of this

research (parsing). There are two main components that comprise the core of MetID’s behaviour:

Metalude and the lexical models. Metalude provides the seed terms around which the clusters

are built, as well as the mapping between topic and vehicle concepts. The lexical models, most

of which are corpus-based, provide a means of associating observed words in the input with the

terms in Metalude.

To test the various lexical models, they are designed to be interchangeable which, as we will

see in the next chapter, offers a way to compare them to one another. Methodologically, the

system’s evaluation attempts to address the initial combinatoric complexity of corpus × model ×
distance function × input by broadly defining simple tasks with which to constrain configurations

for more difficult tasks. The first results presented will be the quality of the clusters built with

each configuration. Configurations that produced viable, broad-coverage clusters will be used in

a binary decision task, where MetID is used to “pick the metaphor” from a set of statements.

The models that perform best on the decision task will be used to validate the candidate metaphors

using participant ratings. Finally, the method will be used in a corpus-analysis of how the metaphor

of contagion has been adopted in finance, economics and politics.
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Chapter 5

Evaluation & Results

5.1 Introduction

This chapter presents four evaluations of MetID: the results from the clustering task, two controlled

experiments of the system’s performance on the detection and interpretation of figurative language

and a summary of a corpus-analysis case study. Because a number of variables contribute to the

system’s performance, each evaluation will motivate simplification of successive configurations1.

The first evaluation reviews the clusters built with the lexical models, providing assurance that they

are reliable and viable. The following three experiments evaluate MetID in increasingly complex

situations and will each be presented with introduction, method, results and analysis sections. The

first will test the system’s ability to pick the more figurative of two sentences and will examine

noun-based and verb-based statements. The second experiment is a human evaluation of the auto-

matically generated interpretations (candidate metaphors). The last experiment reviews MetID’s

contribution to a terminological investigation of a contagion metaphor in finance, economics and

politics.

5.2 Text Collections

Corpus construction is important for a number of NLP tasks [209, 214, 216] and in MetID, corpora

provide the data with which to build the clusters2. In general, it has been found that larger corpora

yield better results on many tasks, often compensating for sparsity and noise in smaller data-sets.

The collections used and developed for MetID include different types, some of which were used in

previous linguistic research (ANC and enTenTen), computational work (TASA, NIPS and BBY-

FT-NYT) or were custom-built for this research (LexisNexis Finance). Table 5.1 summarises

the collections referred to throughout in this chapter. Appendix C contains brief excerpts and

descriptions of each corpus.

1A configuration is a choice of corpus, lexical model and similarity function.
2The role of corpora in semantic space modeling has been reviewed elsewhere and will not be covered here [14,

120, 136, 147, 149].
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Corpus Tokens Documents
Open-Class

Words Sentences Vocabulary
Size

on Disk
ANC (MASC 1 & 2) 214,917 130 100,177 12,581 14,756 1.2MB
LexisNexis Finance 3,859,136 60 2,208,349 167,127 28,100 25MB
NIPS 5,280,609 1,738 2,703,695 258,236 30,133 35MB
TASA 10,766,809 38,972 5,199,253 687,736 70,089 154MB
BBC-FT-NYT 10,829,827 211 6,067,015 495,376 40,503 63MB
Partial enTenTen 72,146,944 92,327 31,225,288 3,122,227 69,745 365MB

Table 5.1: Text collections used in the development and testing of MetID. Tokens include all
character sequences (numerals, names, punctuation, etc.). Open-class words are the valid English
words after pre-processing. The vocabulary is the number of unique, open-class words. The two fi-
nance collections, LexisNexis and BBC-FT-NYT were developed specifically for the development
of MetID and other preliminary research [67, 68, 69]. The remaining collections have been used
in other computational and linguistic research (ANC [152], NIPS [189], TASA [136], enTenTen
[120]).

5.3 Experiment 0: Cluster Evaluation

Because building word-clusters is a central task, every configuration of MetID was tested. There

are three types of lexical models: WordNet, distributional semantic models (DSMs) and the co-

occurrence likelihood estimation (COLE) model. A slightly different method was used to build

clusters for each type. In WordNet, clusters are not stored but are instead computed during exe-

cution. This is because interacting with WordNet is relatively fast, and because it is not a corpus-

based model, the clusters will were the same for every configuration. For DSMs, a semantic space

was built using one of the similarity functions, the 200 nearest neighbours were retrieved and

stored for later use (see section 4.4.4)3. The relative frequencies of each clustered word in the

configured corpus were used to compute the cluster’s purity and entropy (Eqs. 4.8 and 4.9). In the

COLE-AMI model, the co-occurrence likelihood was computed between the seed terms and each

word in a collection’s vocabulary. Like the DSM clusters, COLE-AMI clusters were saved in a

database with their purity and entropy. There was no difference in clustering topic-terms versus

vehicle-terms and the cluster-pairing given by Metalude is not realised in the saved data.

5.3.1 Method 1: WordNet

As noted above, when configured to use WordNet, MetID computes word relatedness online in-

stead of using pre-built clusters. By default, the system uses the Lin similarity [144] (see in

section 4.4.3) but can be configured to use any relatedness measure available in the Perl Word-

Net::Similarity module [173]4. During execution, the system computes every pair-wise distance

between unique words in the current unit of analysis and every Metalude seed. Because noun and

verb hierarchies lack a common root in WordNet, the abstract root-nodes were enabled in Word-

Net::Similarity to allow comparison between any entry. And because MetID does not perform

word-sense disambiguation, the system chooses the best (ie. most similar) entry for each word in

3The resulting semantic spaces are available at http://www.scss.tcd.ie/˜gerowa/semantic spaces/.
4http://wn-similarity.sourceforge.net/; 28 February, 2013.



5.3. EXPERIMENT 0: CLUSTER EVALUATION 81

a pair5. Using WordNet provided a baseline for non-corpus-based semantic models and it will be

used throughout the experiments regardless of its performance.

5.3.2 Method 2: Distributional Semantic Models

The distributional semantic models (DSMs) make up the majority of those evaluated in MetID.

These include variants of LSA, HAL, BEAGLE and COALS. BEAGLE, COALS and HAL were

run using their reference implementation in the S-Space6 package and LSA was implemented

in Ruby using an interface to SVDLIBC7. When building clusters with the DSMs, a semantic

space was constructed from the configured corpus, after which each of the unique seeds from

Metalude were used to build 200-word clusters. The relative frequency of each neighbor was used

to calculate the cluster’s purity and entropy8.

Not every DSM is compatible with every corpus and not all similarity functions work with

every model, which constrains valid configurations. Tables 5.2 and 5.3 show valid configurations

corpus × model and model × similarity function respectively. The main constraint for corpus ×
model is that the number of documents in the corpus must be greater than the target representa-

tion’s dimensionality. Each valid configuration were used to generate word clusters.

ANC LexisNexis BBC-FT-NYT NIPS TASA enTenTen
LSA-100 3 7 3 3 3 3
LSA-300 7 7 7 3 3 3
LSA-400 7 7 7 3 3 3
LSA-500 7 7 7 3 3 3

HAL 3 3 3 3 3 3
HAL-400 7 3 3 3 3 3

HAL-1400 7 3 3 3 3 3

BEAGLE-128 3 3 3 3 3 3
BEAGLE-256 3 3 3 3 3 3
BEAGLE-512 3 3 3 3 3 3

BEAGLE-1024 3 3 3 3 3 3

COALS-800 7 3 3 3 3 3
COALS-14k 7 3 3 3 3 3

COALS-SVD-100 7 7 3 3 3 3
COALS-SVD-200 7 7 3 3 3 3
COALS-SVD-800 7 7 3 3 3 3

Table 5.2: Compatible distributional models for each text collection.

5If MetID were to perform word-sense disambiguation, it could be counter-productive to the goal of testing its
strategy to finding metaphor in text, because the disambiguation task might subsume the identification task.

6https://code.google.com/p/airhead-research/; 9 August, 2013.
7http://tedlab.mit.edu/˜dr/SVDLIBC/; 6 March, 2013.
8This strategy avoids the need for an empirical cut-off for distance from the nucleus.



82 CHAPTER 5. EVALUATION & RESULTS

Cosine Correlation Euclidean Spearman Jaccard
LSA-100 3 3 3 3 7
LSA-300 3 3 3 3 7
LSA-400 3 3 3 3 7
LSA-500 3 3 3 3 7

HAL 3 7 3 7 3
HAL-400 3 7 3 7 3

HAL-1400 3 7 3 7 3

BEAGLE-128 3 3 3 3 7
BEAGLE-256 3 3 3 3 7
BEAGLE-512 3 3 3 3 7

BEAGLE-1024 3 3 3 3 7

COALS-800 3 3 3 7 3
COALS-14k 3 3 3 7 3

COALS-SVD-100 3 3 3 3 7
COALS-SVD-200 3 3 3 3 7
COALS-SVD-800 3 3 3 3 7

Table 5.3: Compatible distributional models for each similarity function.

DSM Results

There are four variables that contribute to the clusters’ composition: corpus, model, similarity

function and the full / held-out distinction. This section briefly reviews the contribution of each

variable with respect to purity and entropy. The full results, some of which are referred to here,

can be found in appendix A.

Each of the collections in table 5.2 were used build clusters. The ANC and NIPS collections

tended to have moderately higher purity and lower entropy than other collections. Between BBC-

FT-NYT and LexisNexis Finance, which are both made-up of news texts, the former tended to have

higher purity and lower entropy. The TASA collection, commonly used in semantic modeling

applications, exhibited slightly lower purity and higher entropy than NIPS, BBC-FT-NYT and

LexisNexis Finance. This may be due to the diversity of topics in TASA, not apparent in the others.

The largest corpus, enTenTen, had scores similar to TASA, but usually with greater variance.

This is perhaps because while enTenTen is topically diverse like TASA, it contains less formal

documents from websites, blogs, news and social media outlets. Overall, no single corpus was a

consistent outlier across model or similarity function.

Purity and entropy were used to ensure models provided consistent, viable clusters with each

corpus and similarity function. Overall, BEAGLE clusters had higher purity and lower entropy

than other models. However, HAL and COALS produced better clusters on the smaller corpora

(ANC, LexisNexis and NIPS) than BEAGLE and LSA. This may be due to the frequency cut-

offs employed by HAL and COALS. Also, HAL is designed to use Euclidean distance which

tended to produce more variable scores than other functions. This is because Minkowski distances

are unbounded which will inherently allow more outliers than a bounded metric like cosine and

correlation.
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LSA and COALS-SVD variants reduce the dimensionality of their representations using sin-

gular value decomposition (SVD). Across variants of LSA and COALS-SVD, the cluster qualities

do not differ significantly, which points to SVD’s preservation of the seed terms’ influence on

the resulting clusters. The non-SVD COALS variants use a frequency cut-off instead of dimen-

sion reduction, and in general, COALS-14k showed higher purity than COALS-800. On the other

hand, BEAGLE variants, which refine word representations by permuting the co-occurrence ma-

trix, show a drop in purity and a rise in entropy as the number of permutations is increased. The

HAL models are relatively consistent across variant, though Euclidean distance (HAL’s default

similarity function) produces more variable scores than other functions.

Across similarity function, cosine and correlation yield similar results in each configuration.

This appears to hold regardless of corpus, model and variant. Where compatible, the Spearman

rank coefficient behaves similarly to cosine and correlation, except in LSA. This may be due

to the row-entropy normalisation employed in pre-processing co-occurrence matrices for LSA.

The Jaccard index, which is only compatible with HAL and non-SVD variants of COALS, is

comparable to Euclidean scores, though it exhibits more variance in HAL than COALS. Excluding

the Jaccard index, which is only applicable to five configurations, table 5.4 shows correlations for

each function in LSA across all corpora.

Correlation Strength Sig.
Cosine × Correlation r =0.999 p <0.0001
Cosine × Euclidean r =0.835 p <0.0001
Cosine × Spearman r =0.547 p <0.01
Correlation × Euclidean r =0.830 p <0.0001
Correlation × Spearman r =0.563 p <0.01
Euclidean × Spearman r =0.182 p =0.3942

Table 5.4: Correlations of average similarity in LSA variants using different similarity functions.

The average purity and entropy should be similar for full and held-out corpora unless the

held-out version was significantly different from the full corpus. Recall the hold-out procedure

helps avoid representing predominantly figurative relations as if they were literal, when using a

corpus-semantic model to analyse text from the same corpus. The only configuration in which the

held-out clusters were significantly different from the full-corpus was with NIPS, using COALS-

14k and Euclidean distance. All other scores between full and held-out clusters were within 1 SD

of one-another.

5.3.3 Method 3: Co-occurrence Likelihood Estimation

The co-occurrence likelihood estimation (COLE) model, described in section 4.4.5, was based on

document-ranking systems. COLE-AMI is a modified version of previous work with a visiting

scholar, Dr. Hua Huo and Prof. Khurshid Ahmad [103, 104, 105]. For clustering, instead of

ranking documents based on estimates of terms’ co-occurrence likelihood, the algorithm computes

every pair-wise estimation between a collection’s vocabulary and the seed terms. The resulting

score measures how likely two words are to be found near one-another and was used as a measure
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of their relatedness. COLE-AMI offers a corpus-based, statistical alternative to semantic space

representations. For computational reasons, the enTenTen corpus could not be used in COLE-AMI

model because it consists of a prohibitively large number of documents (92,327) which made the

computation-time requirements intractable9.

Table A.1 contains the average similarity, purity and entropy of the clusters built using the

COLE-AMI model. Two other COLE-based models were explored, but COLE-AMI was the only

one found to produce usable clusters. The other two, based respectively on multinomial and

Bernoulli distribution language models, are described in appendix A, section A.1.1. In the COLE-

AMI scores, TASA has the highest variance in similarity, as well as the highest average purity.

The ANC and NIPS collections exhibit purities and entropies comparable to the DSMs reported

above. Overall, the BBC-FT-NYT and LexisNexis collections have the largest variation for purity

and entropy, whereas TASA has the most in terms of similarity. None of the held-out collections

have significantly different quality scores than the full-corpus versions.

5.3.4 Summary of Cluster Evaluation

With the exception of WordNet, the word clusters constitute the lexical models used to associate

observed words, MetID’s input, with the figurative seeds from Metalude. Allowing a degree of

elasticity in what constitutes relatedness among words is important. As we saw in the second

chapter, the semantics of figurative language are complex and often include different lexical, se-

mantic and pragmatic relationships. WordNet restricts the possible lexical-semantic relationships

to those it explicitly encodes (done by experts). Alternatively, using the corpus-based models,

word-word relations can 1) be separated from specific relationships like synonymy and antonymy

and 2) allow a corpus to “dictate” its own associations. The experiment in the next section will test

the models with their referenced similarity functions. For example, cosine similarity will be used

for LSA and BEAGLE, Euclidean distance for HAL and the correlation function for COALS.

The following experiments are three increasingly difficult tasks: identification, interpretation

and analysis. Each evaluation will motivate simplifying the design of the next by discarding poorly

performing configurations. The first experiment is a “pick the figurative statement” task in which

MetID will be used to examine pairs of literal / figurative statements. The best-performing models

on that task will be tested further for their ability to generate interpretations for literal and non-

literal statements – the results of which are evaluated by human participants. The final experiment

will use MetID in a corpus-analysis of figurative terminology in financial and political texts.

9The TASA corpus, which could only processed using the hold-out method, took 90,579 CPU-hours.
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Figure 5.1: Average similarity (left), purity (Eq. 4.8; middle) and entropy (Eq. 4.9; right) of clusters built with COLE-AMI for the full-corpus (in blue)
and 30% held-out versions (in red) and the TASA, ANC, NIPS, BBC-FT-NYT and LexisNexis collections. Errors bars are 1 SD of the mean.
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5.4 Experiment 1: A Literal / Non-literal Choice Task

5.4.1 Introduction

This experiment was designed to test MetID’s ability to discern literal from non-literal statements.

To do this, two sets of test materials were used, both from previous in studies on metaphor com-

prehension [80, 212]. The design of the experiment is a binary decision task where two statements

are submitted for analysis by MetID: a literal statement and a similar figurative statement. If it

performs as intended, the system will score figurative statements higher than the literal counter-

parts as they should produce higher-scoring candidate metaphors. The results will be used to refine

top-performing configurations for further evaluation on an interpretation task (section 5.5). This

experiment exemplifies a strength of MetID: that by framing metaphor identification analogous to

estimation across possible metaphors, the system can score statements on a cline of metaphoricity.

This evaluation does not use the candidate metaphors produced by MetID, it only uses the highest

score as an indication of how well-suited the best candidate metaphor is for a given statement.

In the best case, MetID will score all non-literal statements higher than literal statements –

effectively “winning” each choice. Conversely, the worst case would be if MetID were to choose

the more literal statement in each pair. As we will see, some models perform better on different

kinds of statements. To reduce the experimental complexity, this experiment tested configurations

with the TASA and enTenTen corpora given their large size (enTenTen) and their use in other NLP

tasks (TASA) [122, 138, 184, 204, 214].

5.4.2 Method

Materials

The materials consisted of 75 literal / non-literal sentence pairs (tables 5.5 and 5.6). Of the 75

pairs, 30 were noun-based statements in canonical copular form and were based on the materials

from a 1997 paper that explored how metaphors are processed [80]. For each metaphor in the

original set, a literal statement was created that shared the same determiner and subject or object.

The set of verb-based statements was a subset of materials used in another study examining the

comprehension of such metaphors [212]. A subset of the materials in [212] contain statements

with a particular verb used in alternatingly literal and non-literal statements. Each verb-based

statement was in subject-noun or object-noun constructions (consistent for each pair). For DSMs,

coverage in the corpus can cause MetID to overlook words, therefore, statement pairs from [80]

and [212] were discarded if every open-class did not occur at least 40 times in the TASA corpus

in any form. The final sets of noun- and verb-based statements are shown in tables 5.5 and 5.6

respectively.
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Literal Non-literal
Crime is a problem. Crime is a disease.
A dancer is a person. Dancers are butterflies.
Some surgeons are professionals. Some surgeons are butchers.
A beggar is a person. Beggars are parasites.
A brain is an organ. The brain is a computer.
Ideas are thoughts. Some ideas are diamonds.
A smile is a feature. A smile is a magnet.
Experience is memory. Experience is a fountain.
Beauty is a trait. Beauty is a ticket.
Love is an emotion. Love is a journey.
Malls are places. Some malls are jungles.
Jobs are occupations. Some jobs are prisons.
An education is a process. An education is a doorway.
Angry words are communication. Angry words are knives.
Faith is a belief. Faith is a fortress.
Smallpox is a disease. Crime is a disease.
Aspirin is a medicine. A vacation is medicine.
Some performances are operas. His life is an opera.
Some people are butchers. Some surgeons are butchers.
Flees are parasites. Beggars are parasites.
A calculator is a computer. The mind is a computer.
Some rocks are diamonds. Some ideas are diamonds.
Some monuments are fountains. Experience is a fountain.
A trip is a journey. Love is a journey.
Polio is a virus. Rumors are viruses.
The Amazon is a jungle. Some malls are jungles.
Some buildings are prisons. Some jobs are prisons.
A castle is a fortress. Faith is a fortress.
A gun is a weapon. Humor is a weapon.
A novel is a book. Some professors are books.

Table 5.5: Noun-based statement pairs used in experiment 1.
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Literal Non-literal
He restrained his tongue. He bolstered his tongue.
He fastened a bandage. He buckled a bandage.
He decorated the hero. He garnished the hero.
He maneuvered his dance partner. He piloted his dance partner.
She saved her money. She filed her money.
She consumed the material. She devoured the material.
He opened his old wound. He unlocked his old wound.
She opened the gate. She uncorked the gate.
She confined the spill. She bridled the spill.
She delivered a message. She shot a message.
The doctor mended the cut. The doctor darned the cut.
The student stretched his string. The student craned his string.
The man shot the cannonball. The man evicted the cannonball.
The woman rejected the proposal. The woman killed the proposal.
The woman repaired his suit. The woman sutured his suit.
The man stole their solution. The man kidnapped their solution.
They ended the alliance. They melted the alliance.
They dropped the candy into the bag. They parachuted the candy into the bag.
They withdrew the invitation. They retreated the invitation.
They released the prisoner. They unleashed the prisoner.
We excised the scene. We amputated the scene.
The engine wore out. The engine frayed out.
Confetti fell on the arena. Confetti rained on the arena.
His waistline grew no matter what. His waistline inflated no matter what.
She was trying to provide for her children. She was floundering to provide for her children.
The ancient car fell apart. The ancient car unravelled apart.
The trial displaced all other stories. The trial pushed all other stories.
The station wagon travelled back home. The station wagon limped back home.
The boats moved along shore. The boats danced along shore.
The boy grabbed his bike and went home. The boy grabbed his bike and flew home.
The building shook from the earthquake. The building shivered from the earthquake.
The bulldozer travelled towards town. The bulldozer lumbered towards town.
The child expressed his need for attention. The child howled for attention.
The clouds gathered on the horizon. The clouds swarmed on the horizon.
The garbage truck ate the debris. The garbage truck consumed the debris.
The runners ran through the streets. The runners streamed through the streets.
The bike moved along the trail. The tiptoed along the trail.
The plants adapted to the constraints. The plants obeyed the constraints.
The poster hung over the desk. The poster hovered over the desk.
The van was idling on the road. The van was slumbering on the road.
The truck climbed up the slope. The truck crawled up the slope.
The bread rose to perfection The bread climbed to perfection.
The waste contaminated the workers. The waste infected the workers.
The troops forced their way through the defenses. The troops stormed their way through the defenses.
The house decayed over time. The house wilted over time.

Table 5.6: Verb-based pairs used in experiment 1.
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Procedure

MetID was run in decision mode on each of the statement pairs. The higher scoring statement in

each pair is the one for which MetID found a better candidate metaphor – implying it was more

figurative than the alternative. This computation was done according to the procedure outlined

in section B.4. For each input pair, the result is the difference between the non-literal score and

the literal score. If MetID correctly judged the literal to be less figurative than the non-literal, the

difference is positive.

Of the 135 possible configurations of model × corpus × similarity function, the 18 listed in

table 5.7 were used with the TASA and enTenTen collections, yielding a total of 36 configurations.

Two sets of results will be presented: those run with the TASA corpus and those with enTenTen

corpus. Recall the TASA collection was developed to represent general knowledge among Amer-

ican, college-educated students, while the enTenTen corpus is an accumulation of web-based text

with no restrictions on type, genre, topic or domain. In all cases, the clusters built with the held-out

collections were used (see section 4.4.2).

Model Variables Similarity Notes
WordNet Lin Similarity [144] v3.1; Not corpus-based [167]
HAL Euclidean Reference implementation [150]
HAL Keep 400 Euclidean
HAL Keep 1400 Euclidean
COALS Keep 800 Correlation
COALS Keep 14000 Correlation Reference implementation [188]
COALS SVD-100 Correlation Dimensionally reduced
COALS SVD-200 Correlation Dimensionally reduced
COALS SVD-800 Correlation Dimensionally reduced
BEAGLE 128 permutations Cosine
BEAGLE 256 permutations Cosine
BEAGLE 512 permutations Cosine Reference implementation [113]
BEAGLE 1024 permutations Cosine
LSA 100 Cosine
LSA 300 Cosine Reference implementation [136]
LSA 400 Cosine
LSA 500 Cosine
COLE Augmented Mutual Information

Table 5.7: Lexical models tested in experiment 1. This selection provides a cross-section of various
types (WordNet, DSMs and COLE-AMI) and variants (dimensionality, frequency cut-offs, etc.).
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5.4.3 Results

Results will be presented for the TASA corpus first and then for the enTenTen collection, after

which a discussion will briefly compare performance across corpora. In each case, the effect of

the model and the grammatical type (noun- or verb-based) will be examined. The scores will be

used to rank the performance of each configuration, but the results will also be subjected to a

two-way ANOVA to explore the contribution of each variable on the system’s performance. While

the ANOVA explores differences in the group-wise means and tests for interactions effects, the

ranking results will be used to examine what configurations perform best.

TASA

To establish the role of model configuration and grammatical type, the scores were analysed with

a two-way ANOVA. Statement-pairs that were not computable, or resulted in a tie (the same score

for both statements) were not included. Intuitively, this test addresses the variables (lexical model

and grammatical type) that influence the identification of non-literal statements. Keep in mind that

ties and “misfires” usually occur when a potential topic and / or vehicle term were identified, but

could not be found in the lexical model. Coverage is an important aspect affected by the corpus

and lexical model, but it is not necessarily indicative of MetID’s design.

The analysis of variance found that the grammatical type had a significant effect on the scores

(F1,675 = 146.42, p < 0.0001) and accounted for 17.8% of the variance (partial η2). This effect is

shown in figure 5.2 (bottom right). Taken alone, the lexical model did not have a significant effect

on the scores (p = 0.356) (figure 5.2; upper right). However, there was a significant interaction

between model and grammatical type (F17,675 = 3.55, p < 0.0001) that accounted for 8.2% of the

variance (partial η2). This interaction is simply that the choice of model made a significant differ-

ence for noun-based statements but not for verbs. In fact, none of the models perform significantly

above chance (0) on the verb statements, whereas as all but one model (HAL-400) scored above

chance on the noun statements. Not considering coverage, LSA-400 and LSA-500 are the two

top-performing models for noun-based statements.

Knowing the grammatical form of a statement plays a significant role in MetID’s performance

is important, however, a simple question remains: which model is best? Table 5.8 shows the raw

results for each model tested. For noun statements, LSA-500, COLE-AMI and COALS-800 all

had zero losses but a large number of misfires. Looking at the ratio of wins to losses over misfires

and ties ( Wins/Losses
Mis f ires+Ties+1), WordNet and COALS-SVD-200 are the best. This ranking accounts for

coverage concerns. For nouns, WordNet and COALS-SVD-200 – both of which achieved full

coverage – perform the best10. The ANOVA found that WordNet performed about 20% above

chance and COALS-SVD-200 about 15% though their coverage was relatively high. For verbs,

the best configuration is again WordNet, however, recall that none of the configurations performed

significantly above chance in this case.

10Note the scores for this ranking have no interpretable analogue.
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Figure 5.2: Comparison of mean scores in experiment 1 across model and grammatical type us-
ing the TASA corpus. The scores are the difference between MetID’s scores for the non-literal
statement and the literal statement (0 is the 50% chance baseline). These scores measures how
much better a given configuration performed when trying to choose the more figurative statement
from a pair. Shown here are the full analysis (left) and group-wise means for model (top right) and
grammatical type (bottom right). Error-bars are symmetric confidence intervals measured using
Tukey’s HSD (α = 0.05). Note that in the noun case, COALS-800 was only able to produce results
for three pairs, and therefore did not meet the minimum statistical criteria for inclusion.
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Model Type Misfires Ties Wins Losses Wins−Losses Wins/Losses Wins/Losses
Mis f ires+Ties+1

WordNet Noun 0 0 23 7 16 3.29 3.29
COALS-SVD-200 Noun 0 1 22 7 15 3.14 1.57
BEAGLE-128 Noun 7 3 18 2 16 9 0.82
COALS-14k Noun 5 3 19 3 16 6.33 0.70
COALS-SVD-800 Noun 3 4 19 4 15 4.75 0.59
COALS-SVD-100 Noun 2 2 18 8 10 2.25 0.45
HAL Noun 11 0 16 3 13 5.33 0.44
BEAGLE-512 Noun 10 2 15 3 12 5 0.38
LSA-300 Noun 20 1 8 1 7 8 0.36
BEAGLE-1024 Noun 14 2 12 2 10 6 0.35
HAL-400 Noun 9 0 16 5 11 3.2 0.32
HAL-1400 Noun 12 2 12 4 8 3 0.20
BEAGLE-256 Noun 10 2 13 5 8 2.6 0.20
LSA-400 Noun 23 1 5 1 4 5 0.20
LSA-100 Noun 16 1 10 3 7 3.33 0.19
LSA-500 Noun 20 1 9 0 9 NaN 0.00
COLE-AMI Noun 25 1 4 0 4 NaN 0.00
COALS-800 Noun 27 0 3 0 3 NaN 0.00
WordNet Verb 0 5 15 25 -10 0.60 0.10
COLE-AMI Verb 37 0 6 2 4 3.00 0.08
COALS-SVD-200 Verb 14 5 15 11 4 1.36 0.07
HAL-1400 Verb 10 7 15 13 2 1.15 0.06
HAL-400 Verb 10 7 15 13 2 1.15 0.06
COALS-SVD-100 Verb 14 7 14 10 4 1.4 0.06
HAL Verb 13 3 15 14 1 1.07 0.06
COALS-SVD-800 Verb 13 6 14 12 2 1.17 0.06
COALS-14k Verb 16 8 12 9 3 1.33 0.05
LSA-500 Verb 20 5 10 10 0 1 0.04
BEAGLE-128 Verb 4 8 11 22 -11 0.5 0.04
COALS-800 Verb 34 6 3 2 1 1.5 0.04
BEAGLE-256 Verb 10 7 10 18 -8 0.56 0.03
LSA-400 Verb 25 4 6 10 -4 0.6 0.02
LSA-100 Verb 15 8 7 15 -8 0.47 0.02
LSA-300 Verb 22 6 6 11 -5 0.55 0.02
BEAGLE-512 Verb 16 7 6 16 -10 0.38 0.02
BEAGLE-1024 Verb 20 7 5 13 -8 0.38 0.01

Table 5.8: Results on experiment 1 using the TASA corpus, ordered by the win-loss ratio over the
number of misfires and ties (last column). Misfires imply that an identified term was not found in
the lexical model. Note that disregarding coverage issues will provide a different ranking.
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enTenTen

The results using the enTenTen collection were similar to the TASA results. Because WordNet is

not a corpus-based lexical model, the scores are the same as they were for TASA; it is included here

for comparison purposes. The analysis of variance (two-way ANOVA) showed that grammatical

type contributed significantly to the variance in scores (F1,604 = 109.72, p < 0.0001) with an

effect size of of 8.2% (partial η2). As a main-effect, the choice of model did not contribute

significantly (p = 0.5624). There was a significant interaction between model and grammatical

type (F16,604 = 2.525, p < 0.001) with partial η2 = 0.063. This interaction was the same as that

found for the TASA corpus: in the noun case, the model made a significant difference, but in the

verb case, it did not. Figure 5.3 shows the means comparisons.

Figure 5.3: Comparison of means (two-way ANOVA) across model and grammatical type for
the enTenTen corpus. Shown here are the full analysis (left) and group-wise means for model
(top right) and grammatical type (bottom right). Error-bars are symmetric confidence intervals
measured using Tukey’s HSD (α = 0.05). COALS-800 did not produce any results and was not
included in the ANOVA.
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The ANOVA provides a comparison of group-wise means, but again, considering coverage,

a different picture emerges of the best-performing models. Table 5.9 ranks the configurations,

taking into account their coverage. For nouns, WordNet scored the highest, while COALS-14k

and two COALS-SVD rank second, third and fourth. Note that the COALS models are the best-

performing DSMs in the noun cases which is similar to the results for the TASA corpus. The

best-performing models for verb-based statements are WordNet and HAL-400 – neither of which

performed significantly above chance in the ANOVA.

Model Type Misfires Ties Wins Losses Wins−Losses Wins/Losses Wins/Losses
Mis f ires+Ties+1

WordNet Noun 0 0 23 7 16 3.29 3.29
COALS-14k Noun 9 2 17 2 15 8.5 0.71
COALS-SVD-100 Noun 2 1 19 8 11 2.375 0.59
COALS-SVD-800 Noun 9 4 15 2 13 7.5 0.54
BEAGLE-1024 Noun 16 3 10 1 9 10 0.50
COALS-SVD-200 Noun 5 1 18 6 12 3 0.43
HAL-1400 Noun 9 1 16 4 12 4 0.36
LSA-400 Noun 10 0 16 4 12 4 0.36
BEAGLE-128 Noun 12 1 14 3 11 4.67 0.33
BEAGLE-512 Noun 16 1 11 2 9 5.5 0.31
HAL Noun 16 1 11 2 9 5.5 0.31
LSA-500 Noun 21 2 6 1 5 6 0.25
BEAGLE-256 Noun 12 2 12 4 8 3 0.20
HAL-400 Noun 9 1 13 7 6 1.86 0.17
LSA-300 Noun 17 1 9 3 6 3 0.16
LSA-100 Noun 13 1 10 6 4 1.67 0.11
COALS-800 Noun 28 1 1 0 1 NaN 0.00
WordNet Verb 0 5 15 25 -10 0.6 0.10
HAL-400 Verb 9 7 18 11 7 1.64 0.10
COALS-800 Verb 17 10 13 5 8 2.6 0.09
COALS-SVD-800 Verb 15 7 14 9 5 1.56 0.07
HAL-1400 Verb 9 8 15 13 2 1.15 0.06
LSA-400 Verb 11 4 14 16 -2 0.88 0.05
COALS-SVD-100 Verb 15 10 11 9 -2 1.22 0.05
COALS-14k Verb 15 10 11 9 2 1.22 0.05
HAL Verb 14 10 11 10 1 1.1 0.04
LSA-300 Verb 26 7 7 5 2 1.4 0.04
BEAGLE-256 Verb 16 6 10 13 -3 0.77 0.03
COALS-SVD-200 Verb 14 8 10 13 -3 0.77 0.03
LSA-100 Verb 17 8 9 11 -2 0.82 0.03
BEAGLE-128 Verb 17 7 9 12 -3 0.75 0.03
BEAGLE-512 Verb 19 7 8 11 -3 0.73 0.03
LSA-500 Verb 26 7 5 7 -2 0.71 0.02
BEAGLE-1024 Verb 25 5 5 10 -5 0.5 0.02

Table 5.9: Results for experiment 1 using the enTenTen corpus with each model for each gram-
matical type, ordered by the win / loss ratio over the number of misfires and ties.
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Figure 5.4: Means comparison for the three-way ANOVA between corpus, model and grammatical
type for experiment 1. In-set comparisons are for the group-wise means for corpus (TASA vs. en-
TenTen; top) and grammatical type × corpus (bottom). All error-bars are symmetric confidence
intervals measured using Tukey’s HSD test (α = 0.05).
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Summary

To verify the choice of corpus did not play a significant role in this experiment, a three-way

ANOVA was run on model × grammatical type × corpus. The results were similar to those

found using the collections individually. There was a main-effect of grammatical type (F1,1269 =

248.26, p < 0.0001, partial η2 = 0.164) and an interaction between grammatical type and model

(F16,1269 = 5.7, p < 0.0001, partial η2 = 0.067). Including the corpus, there were no other signif-

icant main, two- or three-way effects (all p > 0.05). The full comparison of means is shown in

figure 5.4.

The analyses of variance for the individual corpora as well as the three-way analysis above,

confirmed two pieces of information. First, that the grammatical type has an influence on MetID’s

performance. Second, that in the noun-case, the lexical model plays a significant role in how

well the system performs. Regardless of corpus or lexical model, the grammatical type accounted

for more variance than the other variables. This result, which will be explored more in the next

experiment, is perhaps predicted by the motivations of the method implemented in MetID.

5.4.4 Analysis & Discussion

The results of this experiment provide evidence for two observations about MetID: that it is more

attenuated to identifying noun-based metaphors and that when processing such metaphors the lex-

ical model is important. This experiment was designed as a kind of easiest possible task; choosing

the more figurative of two statements means a null model will achieve 50% accuracy – defined as

the number of wins over the total number of trials. None of the configurations performed signif-

icantly better than the null model for verbs. For nouns, on the other hand, some configurations

achieved nearly 75% accuracy – a compelling reason to further explore performance with these

configurations.

Consider the noun / verb distinction. Recall our review in chapter 2 of the various types

of metaphor and how they relate to conceptual theory of metaphor (CMT) and two theories of

comprehension: category matching and structure mapping [80, 133, 235]. Both comprehension

theories, as well as CMT, are grounded in the idea that a metaphor consists of one concept (a

topic) in terms of another (a vehicle). By instantiating a metaphor as a verb-based statement, the

grammatical structure can obscure the topic-vehicle structure. Take (xx), which was used in this

experiment:

(xx) She devoured the material.

MetID will identify devour and material as potential topic and vehicle terms. Additionally, there

is likely a degree of selectional violation for the relation dobj(devour,material). How-

ever, matching devour to a term in Metalude will likely require overlooking (or at least proceed-

ing without) an explicit lexical semantic relationship, because the seed terms consist mostly of

noun-concepts. This requires the lexical model to explicitly associate a Metalude noun-concept

to the observed verb-concept. Unfortunately, the more common (and more frequently explicated)

relationships among nouns are likely to override their verb relationships. For (xx) in the best
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case, MetID would relate devour to EATING, FOOD or perhaps CONSUMING and material to IN-

FORMATION or KNOWLEDGE. These associations would produce metaphors such as FOOD AS

KNOWLEDGE or CONSUMING AS KNOWING. However, the results show that relating terms from

the verb-based statements is considerably harder than from noun-based statements – so much so

that the choice of model does not make a significant difference. This implies that the core strat-

egy of MetID is better suited to noun-based analysis, a theme that will be discussed more in the

following chapter.

In noun cases, performance varies between different lexical models. WordNet performs rela-

tively well and is the best in terms of coverage (all statements were processed). However, Word-

Net’s win / loss ratio is lower than some other models, the two best being BEAGLE-128 (18 wins,

2 losses) and COALS-14k (19 wins, 3 losses) for the TASA corpus. Using the enTenTen col-

lection, BEAGLE-1024 is the best at 10 wins, 1 loss, seconded by COALS-14k (17 wins and 2

losses). Looking at the top five corpus-based models in the noun-case for both corpora, it turns out

that variants of COALS comprise 8 of the top 10 and variants of BEAGLE are the remaining two.

This ostensibly speaks to COALS being better at representing figurative associations between ob-

served words and the Metalude terms. Further, the LSA variants are all in the bottom five DSMs.

This is interesting because LSA-500 scored relatively high on the ANOVA, which implies that

when LSA gets it right, it does so with a large margin of error (ie. the non-literal statement score

much higher than the literal). Generally, the newer models (COALS and BEAGLE) perform better

than the older ones (LSA and HAL).

This experiment showed that MetID is able to identify non-literal noun-based metaphors with

about 75% accuracy when they are framed in a binary choice format. Identification is the first goal

of the system, the second being interpretation. It could be the case that configurations that per-

formed poorly here are nonetheless able to provide accurate interpretations for known metaphors.

This is the topic of the next experiment. The results here were used to narrow the range of config-

urations tested in the next experiment. WordNet is included again, as it provided good coverage

and performed comparably to the DSMs. COLE-AMI performed uniformly low and will not

be tested further. Because identification is somewhat independent of the interpretation task, the

best performing variants of each DSM will be included in the next task. Specifically, we will

look at LSA-400 and LSA-500, the best of the HAL variants (HAL), the best COALS model

(COALS-14k; taking coverage into account) and the two best BEAGLE variants (BEAGLE-128

and BEAGLE-1024).
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5.5 Experiment 2: Interpreting Non-literal Statements

5.5.1 Introduction

The first experiment was a relatively simple task which tested MetID’s ability to choose a figura-

tive statement from pairs of literal / figurative sentences. The system’s performance was signif-

icantly affected by the grammatical form of the statement, and the choice of lexical model was

important when processing noun-based statements. The first experiment only used the score of

the top candidate metaphor to rate how likely it was that a statement was a metaphor in general.

The current experiment evaluates the actual metaphors MetID generates as interpretations to the

input statements. Because the lexical model is perhaps the most interesting variable, this experi-

ment continues to test the performance of different configurations across models. Only the TASA

collection is used because it has been used in similar research and was shown in the previous ex-

periment to perform comparably well to the enTenTen collection. The configurations evaluated are

listed in table 5.10. Because this experiment explores MetID’s ability to generate interpretations

for figurative language, the system was also tested on literal statements. Conceivably, some candi-

date metaphors will be accurate interpretations for literal statements, but in general, MetID should

provide better interpretations to figurative language. Thus, the experiment tests the contribution of

three variables: the lexical model, the grammatical form of a statement and statements’ literalness.

Model Distance Metric Corpus Notes
WordNet Lin Similarity [144] N/A Version 3.1 [167]
COALS-14k Correlation TASA Reference implementation [188]
BEAGLE-1024 Cosine TASA Uses 1024 permutations
BEAGLE-128 Cosine TASA Uses 128 permutations
HAL Euclidean TASA Reference implementation [150]
LSA-400 Cosine TASA Uses 400 dimensions
LSA-500 Cosine TASA Uses 500 dimensions

Table 5.10: Configurations of MetID tested in experiment 2.

The procedure for this experiment is based on [83, 198, 212] and uses human participants to

qualify sentences and their potentially metaphorical paraphrases. The crux of the experiment is

that instead of asking participants to generate the “correct” metaphor for a given sentence, the

task is instead framed as a paraphrasing exercise. By allowing participants to rate the quality of

a short paraphrase – irrespective of a literal / figurative distinction – the task remains consistent

across materials. Further, it does not rely on peoples’ intuition about figurative language, which

as we have seen, can be deceptively complex. An online survey was used to gather ratings for

the sensibility of sentences and the quality of related paraphrases – ie. the top-ranked candidate

metaphor processed by MetID.

This experiment evaluates the interpretation function of MetID. While the first experiment

used aggregate scores across the best candidate metaphors to build a score of “metaphoricity”, here

the candidate metaphors themselves are used as potential interpretations. In the best case, MetID
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would produce uniformly correct interpretations for all literal and non-literal sentences, but the

literal interpretations would have lower scores than the non-literal (indicating their metaphoricity).

Additionally, in the best case, verb-based statements would be interpreted as accurately as noun-

based. In the worst outcome, not only would no configuration produce good interpretations, but

they would do so without regard to the lexical model, the literal / non-literal distinction or the

grammatical form of the statements. As we will see, the lexical model, grammatical form and the

literal / non-literal distinction all contribute significantly to MetID’s performance. The results also

point to an interaction between grammatical form and literalness.

5.5.2 Method

Participants

A total of 291 people participated in the user-study. An initial group of 31 acquaintances were

recruited by email, whom, upon completion, were asked to share the study via email, Facebook,

Google+ and Twitter. The initial group was made up of 17 women, 14 men and consisted primarily

of friends and colleagues in the Dublin area. There was no incentive to participate, nor any penalty

for not completing the survey. Participants were briefed with an information page about how

their data would be gathered, stored, analysed and potentially published after which the rating

tasks were explained with two examples. Of the 291 participants who were presented with the

instruction page (those who clicked “Continue” after informed consent), 147 were excluded from

analysis for the following reasons:

• The participant did not complete the survey or opted not to submit their results upon com-

pletion. (98 participants)

• The participant failed two or more of six planted questions – implying they misunderstood

the task, or were not completing the survey mindfully. (39 participants)

• The participant reported being under 18 years old. (5 participants)

• The participant reported not being fluent in English. (4 participants)

• There was evidence of technical problems. (1 participant)

This resulted in 144 participants, whom reported being fluent in English and over 18 years old (M

= 34.4, SD = 14.1).

Materials

Sentences. 80 literal and non-literal sentences from the first experiment were used in this study.

The statements’ literal to non-literal pairings were discarded; they were processed individually.

The sentences are listed in appendix C and consisted of 20 literal noun-based statements, 20 non-

literal noun-based, 20 literal verb-based and 20 non-literal verb-based statements.
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Paraphrases. Each sentence was processed by every configuration in table 5.10. The best can-

didate metaphor was taken by ranking all the candidates, produced by the given configuration, for

a given input. Not every sentence could be processed by every configuration, given the require-

ment that the open-class words be represented in the lexical model. What would have been a total

of 560 sentences (80 × 7) became 432, that were included in the survey. The full set of materials

is shown in appendix C, table C.4.

The paraphrases are grammaticalised versions of the candidate metaphors from MetID. Gram-

maticalisation refers to making the resulting metaphor a valid phrase; if the candidate metaphor

was LOVE = WARMTH, the paraphrase became “LOVE IS WARMTH”. Grammaticalisation was

done manually for each of the 432 instances, a sample of which is shown below in table 5.11.

The scores for each of the top-ranked candidate metaphors were not used in the survey, but will

be used in analysing the results. Following similar studies’ method, participants were not told

the paraphrases were potentially metaphorical [198]. This reduced participants’ tendency to over-

think figurative interpretations, and to instead rely on validating the synoptic accuracy of the para-

phrases.

Model Type Figurative? Score Sentence Candidate Metaphor / Paraphrase
WordNet noun yes 0.97 His life is an opera ACTIVITY IS MUSIC
WordNet noun yes 0.90 Crime is a disease A PROBLEM IS A DISEASE
WordNet noun yes 0.78 A vacation is medicine MONEY IS FOOD
WordNet noun yes 0.75 Dancers are butterflies A HUMAN IS AN INSECT
WordNet noun yes 0.54 Some surgeons are butchers STEALING IS HITTING
WordNet noun no 0.89 Crime is a problem A PROBLEM IS A DISEASE
WordNet noun no 0.87 Some urban schools are crowded CONTROLLING IS PUSHING
WordNet noun no 0.81 That lost painting is a portrait AN OPINION IS A VIEW
WordNet noun no 0.80 A snail is a pest A HUMAN IS A PIG
WordNet noun no 0.61 A lion is an animal AN ANIMAL IS A HUMAN
WordNet noun no 0.61 That creature in the net is a crab AN ANIMAL IS A HUMAN
WordNet noun no 0.59 Some ideas are great AN IDEA IS A COMMODITY
WordNet noun no 0.59 Some jobs are constraining A JOB IS A POSITION
WordNet noun no 0.59 Some lectures are boring SPEECH IS A GAME
WordNet noun no 0.54 My brother is a butcher STEALING IS HITTING
WordNet noun no 0.51 A salmon is a fish A HUMAN IS A FISH
WordNet noun no 0.50 Cereal is a food A HUMAN IS FOOD
WordNet noun no 0.23 The Earth is a planet A BODY IS THE EARTH
WordNet noun no 0.11 Sharks have sharp teeth A HUMAN IS A FISH

Table 5.11: Sample materials for the user study generated using the WordNet model with Lin
similarity. Similar materials were derived using the other configurations listed in table 5.10. The
type may be noun or verb, depending on the form of the statement. The score refers to MetID’s
top-scoring candidate metaphor, which is presented in a valid grammatical form as a paraphrase
of the sentence.
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Procedure

The survey was administered anonymously as a web-based questionnaire. Full instructions and

example screen-shots can be found in appendix C. Participants were asked for two ratings: first

for the sensibility of a sentence (“How sensible is:”) and then for the quality of a related summary

(“How well is it summarized by:”). Each rating was on a seven-point semantic differential Likert

scale from bad to excellent. Paraphrases were presented in block caps to distinguish them from

sentences, and each pair was grouped with alternating white and grey backgrounds to distinguish

them visually. Each survey contained a total of 60 questions (sentence-paraphrase pairs) in six

blocks of ten per page. After completing the final block, participants were allowed to exit without

submitting their results. Six of the questions (one per page; 10%) were planted questions designed

to verify participants’ understanding and mindfulness in completing the task.

Each participant answered 60 random question-pairs, of which 54 were the results of three-

variable configurations: model (7 levels; see table 5.10) × grammatical type (2 levels; noun or

verb) × literalness (2 levels; literal or non-literal). This yields a 7 × 2 × 2 design. Sensibility

ratings (which pertain to a sentence independent of its paraphrase) were used to disqualify 24

sentences that elicited a mean rating below 4, across all participants11. The remaining sentences

had the following mean sensibility ratings: 6.73 (SD=0.44) for literal nouns, 5.569 (SD=0.6) for

non-literal nouns, 6.67 (SD=0.27) for literal verbs and 5.13 (SD=0.73) for literal verbs.

A small pilot study was conducted with five colleagues familiar with experimental design,

from whom feedback was solicited. The feedback prompted minor changes to the layout of the

questionnaire as well correcting two mistyped paraphrases. The results of the pilot study were

not included in the analysis. Ethical approval was granted by the School of Computer Science &

Statistics, Trinity College Dublin on 17 April, 2013.

5.5.3 Results

Ratings for sensibility and paraphrase quality were combined by weighting the paraphrase scores

attenuated by the sensibility scores. The score for a given sentence-paraphrase pair was calculated

as the product of the paraphrase rating and the sensibility rating divided by 7 (because the rating

was on a seven-point scale). Henceforth, a ”score” for an input pair refers to this calculation,

which ranges from 0.14 to 7. The scores for every question were averaged over all responses, in

which there were more than 10 in every case. The rationale for scaling the quality scores down

by the sensibility ratings was to avoid reporting false positives. While there is no reason to trust

bad quality ratings over good ones if they both received lower sensibility ratings, this situation

would result in falsely reporting the successful interpretation of a given input pair. Thus, the

reported results have a conservative slant toward the negative. An alternative analysis, which was

not performed, would be to simply not scale the quality scores by the sensibility ratings – a topic

discussed more in the following section.

11These sentences are listed in appendix C, table C.3 with their mean sensibility rating.
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Figure 5.5: Comparison of mean scores for all combinations of model, grammatical type and
literalness. Points represent within-group means and error-bars are symmetric confidence intervals
calculated using Tukey’s HSD test (α = 0.05).
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A three-way ANOVA was used to compare the effects of model, grammatical type and literal-

ness. Model (7 levels) and grammatical type (2 levels) contributed significantly to variation in the

scores (model F6,378 = 4.52, p < 0.001; grammatical type F1,378 = 27.75, p < 0.001). The effect-

size (as partial η2) show that choice of model accounted for 7% of the variance and grammatical

type accounted for 8%. As a main effect, literalness did not contribute significantly. Figure 5.5

compares the means across all groups.

Figure 5.6: Interaction diagrams for the effect of literalness on scores for noun- and verb-based
statements (left) and the same interaction for the effect of grammatical type on literal and non-
literal statements (right). The vertical error-bars are 2 times the standard deviation of the within-
group mean.

There was also a significant interaction: a two-way effect between grammatical type and lit-

eralness (F1,378 = 7.14, p < 0.01). The interaction is that for non-literal statements, grammatical

type had significantly larger effect on scores than it did for literal statements (see figure 5.6; left).

Paired samples t-tests for each case found significant differences with respect to literalness for

nouns (t202 =2.771, p < 0.01; two-tailed) and verbs (t200 =2.669, p < 0.01; two-tailed). This

means not only did literalness mediate the relevance of grammatical type, it did so differently

for nouns and verbs: nouns achieve higher scores in non-literal statements while verbs are lower.

The interaction can also be interpreted as grammatical type mediating the contribution of liter-

alness. This interaction (figure 5.6; right) is significant across literalness in both cases: literal

(t234 =2.701, p < 0.01; two-tailed) and non-literal (t168 =4.885; p < 0.0001; two-tailed). Inter-

preted this way, the scores were generally worse for verb-based statements compared to nouns,

but the decrease was more pronounced for non-literal statements than literal. All other two- and

three-way interactions were non-significant (all p > 0.05).

Variance in the mean scores is one way to examine which models perform well in different

situations, but it disregards some important information from MetID – namely the score of the can-

didate metaphor. Because no configuration performed well enough to be considered an outright

success in terms of its paraphrase ratings, which configurations provided good correlations be-

tween model scores and participants’ ratings was also explored. This is important because though

MetID will always generate a “best” interpretation, it may not be very good – a property evident
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in the resulting score. Optimally, a low score from MetID would be matched by low participant

ratings; if people rate the paraphrase low, MetID’s interpretation should also have a low score.

Thus, a high correlation between the ratings and model scores would indicate that MetID was able

to account for the relative quality of its interpretations. Table 5.12 shows correlations for each

configuration of MetID between the model scores and the ratings from participants.

In table 5.12, first note that WordNet provides the strongest correlation overall, at 0.254. Look-

ing at literalness and grammatical type, note that neither case produced particularly strong corre-

lations, though nouns were generally stronger than verbs and non-literal statements stronger than

literal. Over the individual models, WordNet performs best on literal statements overall, as well as

on verb-based literal statements. A corpus-based model, however, outperforms WordNet in non-

literal cases as well as for statements irrespective of literalness. LSA-500 is the best-performing

model for non-literals, nouns and for verb non-literals (which perform relatively well at 0.585).

These correlations are not indicative of the interpretations’ quality, but instead point to the circum-

stances in which MetID’s scores align with the quality of its output – an aspect of the system that

will be discussed in the next section.

Model All Literal Non-literal Noun Verb Noun
literal

Noun
non-literal

Verb
literal

Verb
non-literal

Overall 0.117 0.020 0.102 0.314 -0.041 0.259 -0.044 0.137 0.187
WN 0.254 0.283 0.274 0.398 0.085 0.475 -0.003 0.456 0.064
BEAGLE-128 0.223 0.161 0.209 0.230 0.186 0.103 0.231 0.188 0.475
LSA-500 0.210 -0.238 0.327 0.424 -0.057 0.563 -0.068 0.141 0.585
LSA-400 0.102 0.077 0.055 0.373 0.096 -0.480 0.286 -0.148 0.560
COALS-14k 0.088 0.05 -0.223 0.152 -0.239 -0.023 -0.214 -0.148 -0.059
HAL 0.001 0.043 -0.167 0.195 -0.17 0.61 -0.239 0.12 -0.396
BEAGLE-1024 -0.117 -0.238 0.241 0.424 -0.188 -0.563 -0.299 0.348 0.080

Table 5.12: Correlations between MetID’s top-ranked candidate metaphor scores and those elicited
by participants in the paraphrase rating task. The top row is the overall correlation without regard
to the lexical model, the remaining are ordered by their overall performance. The best model
in each situation (column) is shown in bold and the better of each variable (vertical delimiters) is
underlined. Non-significant results are shown in italics (p> 0.01) whereas all others are significant
(p < 0.01) and N = 406 in all cases.

5.5.4 Analysis & Discussion

This experiment evaluated the quality of interpretations for literal and figurative statements gener-

ated by MetID. In the absence of a gold-standard for metaphor interpretation tasks (see [198] and

[197]), participant ratings were used to measure the accuracy of the system. Two sets of results

were presented: the participant scores for MetID’s interpretations and correlations between partic-

ipant ratings and scores from the system. The correlations highlight a strength unique to MetID:

that the candidate metaphors are generated with a degree of confidence. As we saw, some lexical

models produced scores that correlate well to participants’ ratings. Taken with the first experi-

ment, these data point the system’s ability to identify certain types of figurative language – namely

noun-based metaphors. The results show that the noun / verb distinction plays a significant role in
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performance. Literalness, on the other hand, is important when processing noun-based statements

but not verbs. In fact, verb-based statements are uniformly hard for MetID to interpret accurately.

Similar to the first experiment, the choice of lexical model contributed significantly to the system’s

accuracy of interpretation as well as the correlations between model and participant scores. Over-

all, this evaluation supports MetID’s role as a useful way to analyse noun-based metaphors, but in

other circumstances it has considerable limitations.

The means analysis (figure 5.5) explored the contribution of three factors in MetID’s perfor-

mance: grammatical type, literalness and the choice of lexical model. The best performing situ-

ation is interpreting figurative, noun-based statements with the COALS-14k model. Here, MetID

achieves a score near 2.012, which is not particularly strong. Intuitively, this means MetID does

well about 38% of the time. However, in the group-wise means it was found that noun-based

statements were significantly easier than verbs to accurately interpret. Literalness alone, on the

other hand, had little effect on performance, but appears to mediate the contribution of the noun

/ verb distinction. This interaction is a new finding, though as will be discussed, is perhaps due

to theoretical underpinnings of the method. A second finding is that the choice of lexical model

contributed significantly to variance in the scores, especially when analysing noun statements.

The interaction between grammatical type and literalness can be described in two ways: that

grammaticality mediates the contribution of literalness, or that literalness mediates the contribu-

tion of the grammaticality (see figure 5.6). The interaction shows that the method is better suited to

interpreting figurative language as it occurs in noun-based constructions, rather than verb-based.

This points to a fundamental aspect of MetID that is perhaps grounded in the foundations of Met-

alude. Metalude encodes most of its figurative relations with noun-based, nominal concepts, which

means depending on the metaphor, MetID’s cluster analysis must usually relate observed terms to

the nominal concepts. The dominant theories of metaphor comprehension (reviewed in chapter 2)

are formulated as noun-concept processing procedures – that a topic concept is understood “as”

or “using” a vehicle concept. These theories require a lexical transition from action concepts to

nominal analogues, and it has been proposed that they address an idealised noun-based conception

of metaphor [121, 122, 206]. While the nominalisation of concepts and procedures for explana-

tion and theory-building is not rare, with metaphor, communicative efficacy may also play a role

in lexicalisation. Take the example (xxi):

(xxi) She devoured the material.

The metaphors implied by (xxi), IDEAS ARE MATERIAL and perhaps IDEAS ARE FOOD, can also

be used to instantiate noun-based metaphor:

(xxii) The new material is food for thought.

Note how the copular construction in (xxii) used to equate material to food. In the noun-based

example, the underlying metaphor is hard to avoid because it is made apparent in the surface

structure of the statement. On the other hand, interpreting (xxi) requires more outside knowledge:

12Recall scores range from 0 to 7.
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that people eat or devour and that we do not generally refer to what people eat as “material”.

These additional steps beckon the figurative interpretation of (abstract) material as something

edible. While MetID attempts to make use of this kind of information with selectional preference

violations, this technique is either too weak or too narrowly defined to interpret (xxi). Conversely,

(xxii) makes the topic-vehicle mapping lexically clear, as nouns, reducing the system’s need for

stereotypical knowledge.

The interaction between grammatical type and the literal / figurative distinction does not ac-

count for all the variance in scores; the lexical model also makes a significant difference. Over-

all, WordNet performs best, but in many circumstances the DSMs produce comparable results.

For example, the highest scoring configuration (though not significantly higher than WordNet) is

COALS-14k on figurative, noun-based statements. In the same case, BEAGLE-1024 and HAL

also produce comparable scores. WordNet was used on this task to provide a baseline alterna-

tive to the corpus-based semantic models. Because WordNet is developed by lexicographic and

psycholinguistic research, it represents generally applicable lexical semantic relationships. Its

structure and granularity (especially with nouns) means that word-relatedness can be measured

with techniques that use explicit semantics and information content (the hyponym tree, synsets,

glosses, etc.). In contrast, the DSMs rely on a semantic space representation in which word vec-

tors realise their semantics as a statistical combination of co-occurrence patters. Observing that

COALS-14k performs comparably to WordNet on noun-based non-literal interpretations supports

COALS’ ability to represent semantics similar to WordNet. However, the question of exactly

how a COALS word vector equates to an explicit model like WordNet is essentially unanswer-

able [97, 136, 137, 217]. The semantics of DSM representations are abstract and only emerge

with the use of vector similarity measurements. Entries in a semantic space are effectively points

in a hyper-space where the dimensions themselves do not represent anything. DSMs are helpful

in computational tasks, not only because they reduce reliance on external resources, but also be-

cause they provide unified representations. This allows the construction and re-use of a single data

structure to use on a number of tasks, such as interpreting figurative statements in text.

The scores for DSMs’ within-group means show some stratification in the non-literal cases

(figure 5.5, left-middle). In literal statements, the only significant difference is that WordNet,

outperforms HAL and BEAGLE-128. This is true overall and for literal verb-based statements.

Alternatively, the noun-cases have a number of significant differences among the lexical models.

Here, LSA performs relatively poorly compared to WordNet, COALS-14k and BEAGLE-1024.

Given that COALS and BEAGLE were developed, in part, to address weaknesses in earlier, less

linguistically informed models like LSA, it is perhaps not surprising that they perform better.

The differences in the non-literal noun case, support the overall MetID approach as one that is

tuned to figurative language, rather than literal. Further, the lack of significant variation in the

verb-cases (both literal and non-literal) among the DSMs mimics WordNet’s findings: none of the

DSMs compensate for WordNet’s inability to interpret verb-based statements. In short, MetID as

a whole fails to interpret verb-based statements – a failure of the method overall, not individual

lexical models. Potential strategies to accurately identify and interpret verb-based metaphors will

be discussed in the final chapter.
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It is important to remember that scores on this experiment are ratings from people, and as

such, may include any number of outside factors. Perhaps the most confounding of these is the

fact that if a sentence was itself rated less than perfectly sensible (7 on the sensibility scale), it will

diminish the paraphrase’s score, no matter how high. This means that sentence sensibility ratings

never raised the score of the paraphrases, forcing the scores to err on the low side13. That being

the case, the best models only performed at about 38% of optimum (2 in a range from 0 to 7). If

this is a conservative estimate, the best configurations may in fact be generating interpretations at

about 50% accuracy. However, 38% (or 50%) do not imply that MetID “got it right” 38 times out

of 100, instead, it means that on average, the paraphrase were rated near the mid-point between

“bad” and “excellent”.

The way sensibility scores were used to scale down the quality ratings is perhaps too conser-

vative. The rationale was that trusting a falsely positive judgement would yield falsely positive

results. However, the opposite is equally true: the analysis should also avoid trusting negative re-

sults. This experiment is effectively slanted toward a negative result. A less stringent design would

be to use the sensibility scores to discard sentences below a threshold and consider all quality rat-

ings. Given the average sensibility scores, we can guess that, on average, the scores for literal

sentences would go up slightly in this regard, while the scores for non-literal statements (which

had significantly lower sensibility ratings) would be moderately higher than reported. Future work

on MetID could adjust evaluation to compensate for the conservative nature of the results reported

here.

The correlation analysis showed a slightly different picture than the ANOVA (table 5.12). Sim-

ilar to the means, the noun statements score higher overall, as do non-literal statements, showing

that MetID is better in these cases. However, the interaction between grammatical type and lit-

eralness does not appear in the overall correlations. In fact, it does not manifest in any of the

individual models. Instead, note the success for verb-based figurative language in BEAGLE-128

and the LSA variants. Keep in the mind that good correlations here do not mean MetID generated

good interpretations. Instead, it shows that the system “knew” it was doing as poorly as people

judged it to. For verbs, this confirms that the model scores were generally lower – inline with

participant ratings (hence the stronger correlation). For literal noun-statements, HAL does rela-

tively well at 0.61. For non-literal statements, the best two models, LSA-400 and BEAGLE-128,

achieve 0.286 and 0.231 respectively. While these findings underscore how MetID enables testing

and refinement, without looking at results for individual statements, the system’s success remains

unclear. To explore how, when and why MetID succeeded and failed, the next section examines

individual examples from this experiment.

13For example, if a sentence was rated at 4 out of 7 for sensibility, and its paraphrase was a 7 out of 7, the resulting
score will be 4.0.
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Types of Success & Failure

This section reviews some specific ways the system commonly succeeds and fails; table 5.13

shows five such cases. In addition to these situations, an outstanding source of noise is peoples’

intuitions. In the absence of a gold-standard for a metaphor interpretation task, this experiment

used ratings elicited from people. This strategy obscures the fact that the metaphors are often

idealised abstractions, and sometimes not independently interpretable. One example of this is that

when interpreting “The runners streamed through the street.” with the WordNet model, MetID

produced the metaphor CROWD AS LIQUID. In terms of root analogies it is hard to think of a more

accurate metaphor. However, its average quality was rated at only 2.2. This low score is likely

because the sentence is not obviously figurative, obfuscating the relationship between the verb

streaming and the concept LIQUID. Such examples are perhaps discouraging for this evaluation,

but inevitable.

Example
Type Sentence Candidate Metaphor

1. Unpaired Root Analogy The truck soared down the slope. ROAD AS RISE

2. Misidentified Term(s) He piloted his dance partner. RELATIONSHIP AS MUSIC

3. Lexical Semantic Failure A vacation is medicine. ELEMENTARY AS DISEASE

4. Category or Feature Mapped The mind is a computer. THINKING AS CALCULATING

5. Selectional Violation He piloted his dance partner. CONTROLLING AS LEADING

Table 5.13: Six examples of common mistaken and successful interpretations.

1. Unpaired Root Analogies. After MetID identifies two terms in a statement as a possible topic-

vehicle pair, it tries to find the best pair in Metalude by minimising within-cluster distances be-

tween topics and vehicles. It is possible, especially when using lower dimension semantic space

models, that no topic or vehicle is found in any of the clusters. In this case, MetID will “decou-

ple” Metalude’s pairs and use them as a bag words (applying a large penalty). This allows new

metaphors not given by Metalude to be identified, which is conceivably a good idea. However, it

often results in uninterpretable candidate metaphors such as ROAD AS RISE, ENGINE AS WHITE

or PASTA AS STAGNATION14. Because MetID applies a large penalty in this situation, this type of

failure seldom has an adverse effect on identification tasks, but it often means that the best inter-

pretation is wildly inaccurate.

2. Misidentified Terms. By looking for candidate topic and vehicle terms separately, MetID oper-

ationalises a nominal view of metaphor: that metaphors consist of two objects. As we will discuss

in the next chapter, this strategy influences the system’s ability to interpret verb-based statements.

It can also fail in other ways. Because the system ranks candidate metaphors that may have differ-

ent observed topic and vehicle terms, the “correct” interpretation may have been found, but scored

lower than others. Take (xxiii):

14Perhaps this could be a metaphor for a chef’s culinary skills, but surely not for the statement for which it was
generated: That creature in the net is a crab.
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(xxiii) The runners streamed through the streets.

For (xxiii), MetID (with LSA-500) provided the interpretation A BODY IS A LANDSCAPE. In that

case the system identified runners as the topic and streets as the vehicle, which minimised the

respective distances to BODY and LANDSCAPE. Cases like this are precisely the motivation for

not only analysing a sentence as a whole, but also certain sub-units like dependencies and predi-

cations. Analysing these constituent units allows for multiple metaphors per sentence and enables

well-suited topics and vehicles to score higher in a figurative relation than they might outside a

relation. This separation is only as good as the difference between top-scoring candidates for the

sentence and sub-units. In (xxiii), runners→BODY and streets→LANDSCAPE are mutually closer

than any other pairings, however, the fourth-best candidate was indeed CROWD AS LIQUID. This

situation raises the question of how many better interpretations exists near the top of MetID’s

rankings – a question that will be discussed in the next chapter.

3. Lexical Semantic Failures. The focus of this experiment and the previous one, was to test

MetID on identification and interpretation respectively, as well as narrow the list of good lexical

models. By testing the models on the same materials, with the same configuration for the heuris-

tics, these evaluations found significant differences in performance from one model to another.

These differences are defined by the models providing good or bad associations between observed

terms and the seeds from Metalude. However, this association can simply be wrong, making it

unlikely for MetID to generate an accurate interpretation. Take (xxiv) for example:

(xxiv) The boy grabbed his bike and flew home.

Using LSA-500, MetID found the best candidate to be ORGANISATION AS SHIP. This metaphor

might make sense when a government “steers the course” or a CEO “weathers the storm”, but

these are not the case for (xxiv). What happened here is that LSA wrongfully associated bike with

ORGANISATION, and flew with SHIP (which is more reasonable). Nonetheless, MetID relies cen-

trally on the lexical model to provide associations that account for the figurative use of observed

terms. In this example, the failure is the misassociation of bike with ORGANISATION.

4. Category Matching & Feature Mapping. One situation in which MetID succeeds as it was

designed to, is when the candidate terms match their observed counterparts via a categorical or

featural association. In the first case, matching an observed term to its super-ordinate category as

a Metalude term, is analogous to category matching (cf. Glucksberg) which has been simulated

in WordNet [122] as well as DSMs [121, 184, 215, 221]. In the other case, feature mapping (cf.

Gentner) occurs when the lexical model associates terms by salient features of the observed term

to those of the nucleus. This has also been simulated computationally and using DSMs [76, 222].

In this experiment, the interpretations generated for (xxv) and (xxvi) exemplify MetID’s use of

categorical and featural information respectively.

(xxv) The mind is a computer. =⇒ ORGAN AS MACHINE

(xxvi) An education is a doorway. =⇒ OPPORTUNITY AS PATH
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The underlying success in these situations rests on the lexical model making associations along

categorical or featural relations. For the corpus-based models (ie. not WordNet), this is done using

word-vectors – representations without explicit relations. This abstract relation between a seman-

tic space representation and actual categories or features, makes it impossible to elaborate on how,

or precisely what properties were used / represented leading to the association [137, 147, 149].

The strengths and weaknesses of this strategies will be explored further in the concluding chapter,

but it is worth noting that WordNet, an explicitly coded model, performs comparably to the best-

performing distributional models.

5. Selectional Violation. Another situation where MetID performs well is when it uses selectional

preferences to find violations in object / subject-verb constructions. One example is the sentence

“He piloted his dance partner” for which WordNet produced the interpretation CONTROLLING

AS LEADING. In this case, MetID’s selectional strength heuristic applied a large bonus, having

observed that dobj(piloted,partner) constituted a high degree of selectional preference

violation. That is, “partners” are seldom observed to be “piloted”. Because the heuristics are

applied individually to each candidate interpretation, such cases still rely on the lexical model to

associate the topic and vehicle terms. Thus, while the heuristics promote interpretations that ex-

hibit certain properties, such as selectional preference violation, the interpretations themselves are

still the product of the lexical model.

5.5.5 Summary

The goal of this experiment was to evaluate MetID’s ability to generate interpretations to non-

literal statements. Overall, it was found that MetID performed better on non-literal statements than

literal – a fundamental goal. It was also found that noun-based statements were considerably easier

for the system to interpret than verb-based statements. Moreover, MetID can use interchangeable

lexical models, the choice of which significantly affects performance on noun-based statements.

While the best configurations do significantly better than chance in terms of human ratings, this is

only the case for noun statements. This finding is supported by other research about how figurative

statements are identified and processed [25, 82, 121, 212] and it supports the lexical models’ ability

to adequately represent noun-based concepts. An interaction was also found, in which the noun /

verb distinction significantly mediated the effect of the literal / figurative distinction.

These evaluations highlight a strength of MetID’s design with regard to providing scored rank-

orders of candidate metaphors, as opposed to a single result. This design enabled a correlation

analysis between the system’s scores and people’s ratings, which explored significant differences

among models’ ability to “know” how well they were doing. Interestingly, WordNet is among

the top-performing models for both evaluations (ratings and correlations). It remains to be seen if

MetID can be used to aid the simultaneous identification and interpretation of figurative language.

To explore this idea, the next experiment uses MetID with WordNet to examine the term contagion

as it came to be used figuratively in finance and economics.
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5.6 Experiment 3: Using MetID in Terminological Research

The third experiment is a case-study involving a corpus-based analysis of the term contagion

as it is used figuratively in finance and politics. The first two experiments addressed metaphor

identification and interpretation, while this evaluation tests MetID’s usefulness in broader research

setting. The results presented here are part of a more comprehensive analysis in [71] and are

presented with permission of my co-authors. This study uses MetID to find potential metaphors

instantiated by the term contagion in a corpus of US congressional documents. The full study was

presented at the European Symposium on Language for Specific Purposes, in July of 2013 [71].

5.6.1 Background

The term contagion, which was initially used in a religious context to describe something as

morally defiling15, is used in biology and medicine to refer to diseases that are passed among

organisms. Recently, it has come into use in finance and politics where it refers to adverse fi-

nancial phenomena that propagate between institutions (see Figure 5.7). Although the semantic

features of contagion that account for movement and contraction make it apropos to describing

spreading financial problems, many semantic features from its literal use in biology are not found

in the new domain. Additionally, other feature are highlighted and exaggerated in finance that are

found relatively infrequently medicine and biology. Indeed, a coherent definition of contagion in

finance remains illusive [71].

Figure 5.7: Types of Annual Reviews articles in which contagion occurred. Derived from
www.annualreviews.org; adapted here from [71].

15Oxford English Dictionary: www.oed.com.
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Contagion is used to talk about institutional behaviours that spread between institutions. The

mechanism of this movement, the conditions for contraction and even the symptoms themselves,

are a complex apparatus of financial policies, circumstances and behaviours [49, 50, 131]. Thus, as

a term, contagion fills a gap in economic vocabulary, allowing news outlets, financial executives,

researchers and politicians to simplify complex (and necessarily negative) financial workings. In

[71], we undertake an historical, lexical, semantic and conceptual analysis of the term. MetID

was used in the conceptual analysis, to find root analogies that undergird the figurative term’s

behaviour at this level. By using MetID in this capacity, the research serves a kind of case-study

from which we can glean some of MetID’s strengths and weaknesses in an applied setting.

5.6.2 Data, Methods & Results

The data used in [71] for the conceptual analysis of contagion consisted of a set of documents

from the US congress: hearings, testimonies, reports and press releases. Hearings and testimonies

usually constitute legal commitments on the part of the authors and are made up of deliberate, for-

mal language. Reports and press releases are typically commissioned research and public relations

announcements, respectively. The documents analysed ranged from 2001 to 2012 and were down-

loaded from www.senate.gov and www.congress.gov. The collection contained a total of 267,256

tokens in which contagion was found 96 times in 87 different sentences. The term was found only

in the singular noun form; contagious, contagiousness and contagions were not present. Moreover,

every use of the term referred to finance and economics, never biology or medicine.

Though the metaphor of contagion in finance – that spreading economic problems are like

diseases – the word contagion may not always be a vehicle, despite the underlying metaphor us-

ing it as such. For example, in the phrase “to defended against contagion”, contagion is actually

the topic of the metaphor DISEASE AS WAR. To take such cases into account, we examined both

metaphors where the term was found as a topic term and those where it was a vehicle. Although

MetID performed only moderately above chance in the first two experiments, in this study the out-

put was analysed manually. Specifically, we reviewed candidate interpretations that were not just

the top-scoring metaphors. MetID was run in rank mode, using WordNet as the semantic model,

to provide the 20 best-scoring candidate interpretations for every sentence containing contagion.

After this, all interpretations that did not use contagion as a topic or vehicle term were discarded16.

Table 5.14 shows some example interpretations generated by MetID.

Though the concept of contagion in finance instantiates a metaphor of PROBLEM AS DIS-

EASE, the term itself has more diverse uses. The sample results in Table 5.14 exemplify some

of this diversity. These samples also highlight an important weakness of MetID. Take the first

two sentences where MetID provided the interpretation DISEASE AS INVASION, which is perhaps

plausible looking at the identified topic and vehicle terms. However, in the first sentence, MetID

selected contagion as the topic and entering as the vehicle. Without examining the sentence, this

is certainly a reasonable pair of words for which to provide an interpretation, but in the sentence

16Though these metaphors might be interesting to a broader analysis of financial and political language, the goal of
this experiment was to analyse the term contagion specifically.
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Sentence
Candidate
Metaphor

Topic
Term

Vehicle
Term Score

[...] entering a critical phase as policy
initiatives undertaken so far have not
prevented systemic contagion.

DISEASE AS INVASION contagion entering 0.88

[...] contagion may spread further in
the very short term.

DISEASE AS INVASION contagion spread 0.74

[...] a material impact in addressing
market contagion.

DISEASE AS WAR contagion impact 0.71

The contagion is driven primarily by
what other securities are owned [...]

DISEASE AS WAR contagion need 0.60

[...] has come a new strain of global
contagion [...]

DISEASE AS IDEA contagion strain 0.83

[...] as part of its operations can ex-
tend the contagion risk [...]

DISEASE AS IDEA contagion part 0.79

Banks have solvency regulation to
protect depositors and to defend the
banking system from contagion risk.

DISEASE AS IDEA contagion regulation 0.71

Anticipating future sources of conta-
gion is difficult [...]

DISEASE AS IDEA contagion source 0.70

[...] a real contagion risk to the finan-
cial system [...]

DISEASE AS IDEA contagion system 0.70

General investor panic is the final rea-
son for contagion.

DISEASE AS EMOTION contagion panic 0.78

The contagion is driven primarily by
what other securities are owned [...]

DISEASE AS EMOTION contagion security 0.69

Financial contagion to the US from
further deterioration [...]

DISEASE AS EMOTION contagion deterioration 0.59

Contagion from the Greek debt cri-
sis and [...], which too have solvency
problems.

PREVENTION AS OBSTACLE contagion problem 0.82

[...] Fueled Contagion Ultimately:
private-label mortgage securitization
turned out to be an edifice [...]

PREVENTION AS OBSTACLE contagion edifice 0.65

[...] as part of its operations can ex-
tend the contagion risk [...]

FAILURE AS DIVISION contagion part 0.84

Table 5.14: A sample set of sentences from the congressional texts analysed with MetID; adapted
from [71].
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itself, they are completely unrelated. This is not the case in the second sentence where MetID

identified contagion and spread, which are directly (grammatically) related. This problem appears

considerably more often in natural language, like the congressional documents analysed here, than

in the materials for the first two experiments. Also, consider the five sentences which produced

the metaphor DISEASE AS IDEA in table 5.14 for which there is range of vehicle terms. Here, it is

not clear why WordNet related the vehicle concept IDEA to the terms strain, part and source.

The candidate metaphors MetID generated were grouped into their root analogies to provide

a high-level analysis of contagion’s conceptual behaviour (see Table 5.15). The root analogies

are categorised into the topic and vehicle concepts on the map of root analogies [92]. For exam-

ple, the metaphor DISEASE AS INVASION occurs in the sector relating the topic concept Human,

Senses, & Society to the vehicle concept Space & Place. In the corpus, metaphors instantiated

with the term contagion were most commonly found relating Human, Senses, & Society to Hu-

man / Animal, Body & Senses, which serve personify institutions, equating them to human senses.

This use of contagion likely owes to the term’s biological and medical origins. Other common

kinds of metaphors found are those that relate Living Things & Substances to Human / Animal,

Body & Senses as well as those relating Values, Qualities & Quantities to Activity & Movement

and Space & Place. These are metaphors where changes in quantities and qualities are thought

of as movement and other material changes such as “boiling” or “solidifying”. These metaphors

help imbue the concept of contagion with its abilities to move, spread and grow, as seen in the

example ”a disturbing level of contagion has already been evident around the hemisphere.” Here,

contagion is thought of as a quantity, using metaphors like CHANGE IN QUANTITY AS CHANGE

IN ELEVATION.

Topic

Vehicle
Activity &
Movement

Human,
Senses, &

Society

(Living)
Things &

Substances

Value,
Qualities, &
Quantities

Emotions,
Experiences &,
Relationships

Thinking &
Communications

Things &
Substances 15 (10, 5) 39 (27, 12) 7 (5, 2) 0 (0, 0) 3 (2, 1) 9 (0, 9)
Human /
Animal
Body, &
Senses

13 (6, 7) 208 (93, 115) 155 (58, 97) 69 (8, 61) 12 (6, 6) 5 (2, 3)

Activity &
Movement 41 (22, 21) 11 (2, 9) 7 (5, 2) 99 (41, 58) 0 (0, 0) 9 (0, 9)

Space &
Place 16 (8, 8) 23 (21, 2) 46 (31, 15) 98 (67, 31) 45 (39, 6) 0 (0, 0)

Table 5.15: Root analogies found in the congressional corpus; adapted from [71]. The total is
given and in parentheses are the number of times contagion was selected as a topic term and as a
vehicle term, respectively.
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Looking at the use of contagion specifically as a topic term in the metaphors provided by

MetID, we find there is more uniformity in the range of topic concepts of the root analogies (see

Table 5.15; left numbers in parentheses). Note that when contagion is found as a topic, it is more

apparent in root analogies relating to Values, Qualities, & Quantities and Emotions, Experience,

& Relationships than anywhere else. This implies that contagion is not restricted to figurative use

as a disease, but that it can be measured in a technical (ie. financial) sense. These features are

new to finance, as they were not found in the biological domain [71]. On the other hand, instances

where contagion is observed as a vehicle term are where it is used to make sense of another

concept. In these cases, common root analogies range from rather general vehicle concepts like

SPACE, TIME and MOVEMENT to more specific ones, like WAR, BUSINESS and OBSTACLE (see

Table 5.15; right numbers in parentheses). Metaphors relating to Human / Animal, Body, & Senses

liken institutions (banks, markets, countries, etc.) to living beings, presumably to enable them to

have problems like diseases – that is, to contract and spread contagion. Contagion instantiates a

range of metaphors that relate the term’s literal meaning in biology to the complex mechanics of

international economics. Metaphors about movement, space and place are particularly apt because

they provide financial problems the ability to move – a defining feature of disease.

5.6.3 Discussion

The motivation for this experiment was to assess how MetID can aid terminological research. As

mentioned above, the results reviewed here are part of a larger analysis carried out in [71], that

examined the semantic, grammatical and conceptual behaviour of contagion in financial discourse.

In this study, MetID proved to be useful and helped to augment an otherwise manual corpus-based

analysis. Unlike the first two experiments, which used only the top-scoring interpretation produced

by MetID, in this evaluation, a wider range of output was analysed (the 20 top-scoring candidates

for each sentence). While this placed more importance on the researchers’ intuition, similar to

traditional corpus-studies [34, 35, 219, 234], it resulted in a more qualitative analysis of language.

This experiment also highlights a crucial weaknesses of MetID that did not arise in previous

experiments: the system will sometimes select distant topic and vehicle terms that are unrelated.

Because the first item MetID analyses for a given input is the sentence as a bag of words (all

possible word-pairs), it can produce a number of candidate interpretations that fit well with a pair

of terms, despite them having no relationship. There are three ways MetID could be changed

to help avoid providing spurious interpretations resulting from poorly chosen term-pairs. First, a

heuristic could be added to penalise candidate interpretations that were generated for distant or

grammatically unrelated terms. Alternatively, the system could apply a bonus to selected terms

if they occur in a relationship. Thirdly, and perhaps the most robust solution, would be to use

semantic parsing techniques to retrieve higher-level relationships [42, 57]. These relationships

would add to the existing grammatical relations from the dependency parses – perhaps rendering

the bag of words analysis superfluous altogether. The first two alterations would not be difficult to

add to MetID with its current architecture, but the third would require augmenting the structural

processing component to include semantic parsers.
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Looking generally at the onset of the use of contagion in financial texts provided what may be

a typical case of metaphorical term-borrowing from one domain to another. The idea of contagion,

long since borrowed from ethics, is used extensively in biology and medicine. In the 20th century,

it was increasingly used in other domains and was recently adopted in finance and economics.

Perhaps this adoption was enabled by the increasing interconnectedness of global finance where

the term is an apt description of new and complex problems. Adapting the concept came with some

constraints, intentional or not. Though there appear to be different types of financial contagion,

little attention is given to what a contagion is, the circumstances in which it can emerge, or what

contracts it. These aspects are addressed readily in biology and medicine, where the focus is

usually on something else – that is, contagion is typically a property of other objects. This is

evident in how the term is commonly used as an adjective in biology and medicine, whereas it is

only used as a noun in finance and politics.

5.7 Summary of Results

The results of the word clustering task, which is central to the method, showed that across most

lexical models, the method produced viable clusters. The identification task (the first experi-

ment) used the reference implementations for the DSMs, WordNet with Lin similarity and the

COLE-AMI model. Metaphor identification was tested by analysing pairs of literal / figurative

statements and observing how often MetID ranked the figurative higher than the literal. Overall,

noun-based statements were easier than verb-based statements and the lexical model made a sig-

nificant difference but the choice of corpus did not. Without taking coverage into account, the best

configurations (LSA-400 and LSA-500) performed at about 75% accuracy (50% baseline), but

WordNet and COALS-SVD-200 were the top when considering coverage. The best-performing

configurations on the identification task were used to evaluate MetID’s ability to generate accurate

interpretations to figurative statements (second experiment). In this task, participants rated can-

didate interpretations of figurative and literal statements. In the best case (figurative, noun-based

statements) the top models were COALS-14k and WordNet, at about 38% accuracy (0% base-

line). However, correlating MetID’s scores with people’s ratings, produced different results (table

5.12). The interpretation experiment also found an interaction where grammaticality mediated the

contribution of metaphoricity on the system’s performance, which is further discussed in the next

chapter. The final experiment was a case study from previously published work [71] where MetID

was used to aid a lexicographic analysis of contagion in biomedical and financial texts. The sys-

tem was used to extract a number of potential metaphors instantiated by the term. The case study

highlighted the role of computational techniques, and specifically MetID, in corpus analysis and

terminological research.
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5.7.1 Role of Grammatical Structure in MetID

One thing not tested in the first two experiments, and glossed over in the third, is MetID’s ability

to process long sentences. Looking for topic and vehicle terms in a statement means that unrelated

words from a particularly long sentence may be found for a candidate metaphor. Take (xxvii),

from the congressional corpus discussed in the third experiment:

(xxvii) The European crisis is entering a critical phase as policy initiatives undertaken

so far have not prevented systemic contagion.

MetID will analyse 8 items for (xxvii):

1. Full Sentence (all unique ordered word pairs)

2. amod(european,crisis)

3. predication: crisis-phase

4. nsubj(crisis,entering)

5. dobj(phase,entering)

6. nn(policy,initiatives)

7. nsubj(initiatives,prevented)

8. dobj(contagion,prevented)

9. amod(contagion,systemic)

In (xxvii), the top-scoring candidate involving contagion is extracted from the first item (the bag-

of-words analysis). MetID isolates contagion and entering as instantiating the metaphor DISEASE

= INVASION (score≈ 0.88), which is a plausible interpretation: that disease invades living beings

similarly to how economic contagion enters a geo-political region. However, examining the de-

pendency structure of (xxvii) (figure 5.7.1) we see that entering does not refer to contagion, but

instead to a phaseDOBJ of the European crisisNSUBJ . This example typifies a situation that arises,

particularly when analysing longer sentences, where MetID produces interpretable output, but is

not informed enough by grammatical structure to point to a linguistic metaphor. That is, though it

may underly the spirit of (xxvii), the metaphor DISEASE = INVASION is not directly instantiated.

Figure 5.8: Dependency structure of (xxvii), from which a number of relations are extracted for
analysis by MetID. Parsed using the Stanford Parser and visualised with CoreNLP.
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The third experiment, unlike the first two, explored real-world text: a corpus of US congres-

sional documents. Note that in (xxvii), seven out of nine items of analysis are dependencies,

however, given the targeted analysis of contagion, only items 1, 8 and 9 were analysed. Indeed,

neither 8 nor 9 are figurative – the top candidate between both scoring 0.55. The bag-of-words

analysis (item 1) allows any pair of words to instantiate a candidate metaphor, which provides the

largest range of analysis.

As exemplified in the third experiment, MetID provides a systematic way of analysing poten-

tial metaphors in language. Specifically, the system was used to extract commonly co-occurring

topic and vehicle concepts. Particularly in a targeted analysis, like the contagion case study, MetID

can provide a synoptic analysis of commonly co-observed topic and vehicle domains. In the con-

tagion analysis, we analysed sentences, but that input could be pared down to individual clauses or

phrases. This could be helpful, because when analysing long sentences, further inspection is often

needed to find metaphors. This process, however, highlights the strength of MetID as a tool to aid

terminological analysis, but it also points to a limitation: grammatical structure does not always

inform the extraction of paired topic and vehicle concepts. There are some ways MetID could be

changed to better accommodate long sentences.

One option to reduce spurious results on long sentences is to penalise distant pairings. In

(xxvii) the surface-level, linear distance between entering and contagion (used to generate the

top-scoring candidate metaphor) is 14. Penalising long-distance pairs could be done using linear

distance in the surface structure (which is known to be proportionally minimal to parse complexity

[32]) or by using distance in the dependency structure. This would discourage distant and / or unre-

lated words from constituting a term-pair for which to generate candidate interpretations. An alter-

native to the distance penalty would be to increase the scope of grammatical analysis. Currently,

the system only looks for nsubj, dobj, nn and amod relations to analyse, because subject-

/object-verb and modification relations were originally proposed to evince selectional preference.

Conceivably, any dependency could be used in the spirit of selectional association or colligation

analysis. A third option to mitigate the distant-term problem is to perform some kind of seman-

tic parsing [5, 42, 79]. Similar to semantic-level selectional preference induction [41, 52, 183],

semantic parsing could annotate a statement with information such as lexical semantic operators

(negation, combination, juxtaposition), frame-based information (roles, agentising, abstraction) or

even pragmatic information (intent, polarity, affect). Such semantic information could be used

similarly to the dependency structures in promoting semantically related pairs and penalising un-

related pairs. In the absence of an implemented solution to the long-sentence problem, MetID was

used as a means to detect topic and vehicle domains that commonly co-occur. When the sentence

is short, like those analysed in the first two experiments, this often results in extracting an instan-

tiated metaphor, but in long sentences, the extraction is often implicit or even accidental. All the

same, this use of MetID is unique in lexicographic and terminological research and can provide

insight into figurative concepts apparent in naturally occurring text [71, 73].



5.7. SUMMARY OF RESULTS 119

The concluding chapter will further discuss the results presented here and show how they relate

to the technical and theoretical motivations presented in chapters 2 and 3. It will also discuss

how MetID fits into a larger theme of research in statistical semantics, NLP and figurative lan-

guage. The system’s limitations will be more thoroughly explored in light of the research goals

and MetID’s design.
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Chapter 6

Discussion

This project explored the use of linguistic resources and computational techniques in an effort

to address a complex NLP task: automatically identify and interpret certain kinds of figurative

language. The goal was to extend existing NLP methods by combining statistical semantic models

and linguistic resources to address noun- and verb-based metaphors in a unified way. The goal

was to help examine the efficacy of statistical semantic models, existing NLP tools and linguistic

resources to help identify metaphor in naturally occurring text. By comparing three types of lexical

models (WordNet, semantic spaces and co-occurrence likelihood estimation) it was found that the

choice of model is responsible for significant portion of the system’s performance. Below is a

discussion of the findings presented in the previous chapter, their implications and a review of

ideas for future work.

In metaphor, there are two key theories of comprehension: category matching and feature

mapping (cf. Glucksberg and Gentner, respectively). These theories provide a backdrop against

which to analyse if and how computational models can represent the necessary lexical and concep-

tual information required to process metaphor. Metaphor theory provides a guide to the structural

and semantic requirements of the system and help in its evaluation. By exploring the performance

of MetID, both technical and fundamental weaknesses became apparent. One weakness, for ex-

ample, is the need to represent both categorical and featural properties to process a broader range

of linguistic metaphor. Linguistic research has produced resources that provide a starting point

for metaphor processing [10, 92, 133]. While the information in Metalude is central to MetID,

the only functional requirement is a list of mapped topic-vehicle terms. Metalude fits this require-

ment, but there are other options, such as Lakoff’s Master Metaphor List. There are also two

new projects on automated metaphor analysis – the METAL1 [231] and MetaNet2 – that may yield

more resources for systems like MetID. These resources could code more detailed information

such as relationships between metaphors, translations from verb-based expressions or annotations

for different types of figurative language like metonymy, ellipsis and synecdoche.

1http://www.theatlantic.com/technology/archive/2011/05/why-are-spy-researchers-building-a-metaphor-
program/239402/; 6 August, 2013.

2https://metanet.icsi.berkeley.edu/metanet/; 6 August, 2103.
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The choice of semantic model is the other central component and was the primary focus in

the system’s evaluation. The design of MetID allows any model that provides relatedness scores

between words to be used. WordNet takes a lexicographic approach where experts are tasked

with coding entries and relationships [167]. Alternatively, corpus-based semantic models are per-

haps better suited to information extraction tasks as they reduce reliance on outside resources.

Such models (LSA, for example) require a corpus to construct a semantic space in which word

relatedness is measured as proximity. The third type of model explored in MetID was the use

of co-occurrence likelihood estimation as an analogue to word relatedness. The results suggest

that some semantic space models perform comparably well to WordNet, but that WordNet usually

provides better coverage (see sections 5.4 and 5.5). This highlights the strength of resources like

WordNet while underscoring some of the advances in corpus-based semantics. The remainder of

this chapter reviews the implications of the findings in chapter 5, including the architecture of

MetID, the semantic models and the heuristics. Linguistic implications will also be discussed,

particularly how the findings relate to metaphor theory, meaning in language and the effects of

grammatical structure on metaphor processing.

6.1 Computational Implications

MetID combined a word-clustering strategy [199, 201] with three additional features: a series of

heuristics, intrinsic cluster-quality measurements and an interchangeable lexical semantic model.

The architecture places the search for root analogies at the center of metaphor identification and

interpretation, combining them into a single task. By ranking potential interpretations (root analo-

gies), identification is addressed by calculating scores over all possible interpretations. This places

the database of root analogies (Metalude) at the core of metaphor processing, though, it can be re-

placed by any similarly structured resource. The heuristics are auxiliary to the main algorithm and

operate on the score of individual candidate interpretations. These include violations of selectional

preference, predications, cluster quality and lexical cues. The synthesis of these methods is unique

to MetID and, the implications are discussed here as they relate to computational aspects of the

research.

MetID uses the cluster-quality heuristic to compensate for intrinsic abstractness and vagueness

in natural language represented in the corpus-based semantic models. No matter how technically

sound these models may be, word meaning is produced by patterns of use in the text. Building

clusters allows MetID to temper word associations with a cluster’s purity and entropy (Eqs. 4.8

and 4.9). Using these measures attempts to address a fundamental aspect of meaning in language:

words often represent ambiguous concepts. For example, if the word true is associated in a cluster

PASSION, the association should be weaker if PASSION is disparately defined (an entropic cluster)

and should be stronger if it is uniformly defined (a pure cluster). This means the clusters serve two

purposes: to relate words to the seeds and to qualify the seeds themselves.
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Perhaps the biggest finding from the development and testing of MetID is that the selectional

preference violation heuristic is not enough to account for verb-based metaphors. By using a

database of paired topic and vehicle terms, MetID operationalises a mostly nominal conception of

metaphor – apparent in Goatly’s theory of root analogies as well as conceptual metaphor theory.

The selectional violation heuristic is designed to raise the score of observed word-pairs found in

relationships that violate normative argument classes (cf. Wilks). That is, when a noun selects a

verb from an abnormal class, MetID applies a bonus to the score proportional to how abnormal

the class is, given pre-calculated observations from the BNC and enTenTen collections. How-

ever, candidate interpretations (the root analogies) are themselves not informed by the selectional

violations. Instead, the word-pairs are matched like any other metaphor, whether or not they vio-

lates selectional preferences, using the paired-cluster search algorithm. This does not mean that a

verb-based metaphor cannot, in theory, be correctly identified. The lexical models can associate

observed verbs with topics or vehicles as they would any other word, regardless of POS-class.

Associating verbs is more complicated because they usually have to cross POS-class to the pre-

dominantly nominal set of seeds in Metalude.

The heuristics are designed to augment the core algorithm. The results suggest some of these

heuristics are actually more important than was assumed in designing MetID. Perhaps the most

important is selectional preference violation, which has been reported to accurately account for a

range of novel, verb-based metaphors as Ekaterina Shutova, et al. suggest [201]. In this context,

selectional preference induction is done at the semantic level, making judgments on the semantic

type of word selected by a root-word, as opposed to the lexical-level implementation in MetID,

where words simply select words. However, it is not clear to me how selectional preferences can

be used to provide candidate interpretations the way the cluster-search algorithm does [230]. That

is, selectional violations may constitute linguistic metaphor, but it remains to be seen how they

could provide interpretations. On the other hand, the lexical heuristics presented by Goatly may

not be as accurate as originally proposed [92]. Relying exclusively on these lexical cues was tested

by Shutova, et al. in [200] where the authors found the cues often do not signal a metaphor (table

6.1). Unlike selectional violation, which should be more central to the system, the lexical cues are

good heuristics to apply conditionally to augment the score.

In evaluating MetID it was apparent that some heuristics were less relevant than predicted.

For example, the bonus applied when synonymy is detected between an identified topic or vehicle

and its candidate metaphor’s counterpart almost never occurs unless using WordNet as the lexical

model. This is because in the distributional models synonymy is defined as vector similarity being

1.0. For this to occur, not only must words share frequency distribution vectors, but they have to

share the same relative frequency. On the other hand, when MetID uses WordNet, it chooses the

senses of a pair of words that maximises their Lin similarity, which means all synonymous senses

will yield a score of 1.0, thus applying the synonym bonus. This heuristic could be changed to

allow any score above a threshold to be considered a synonym. Alternatively, the heuristic could

be applied more fluidly as a scaled bonus, relative to how ”much” synonymy is detected between

a pair of words (ie. how close their similarity score is 1.0).
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Cue Sample Metaphors Precision
metaphorically speaking 7 5 0.71
so to speak 49 35 0.71
utterly 50 16 0.32
literally 50 13 0.26
completely 50 13 0.26
figurative 50 9 0.18

Table 6.1: Precision of using Goatly’s cues to identify metaphors in the BNC. Adapted from [200].

Though MetID seeks to combine metaphor identification and interpretation into one task, a

subtle distinctions persists. The interpretation of a statement is generated by the cluster search

algorithm and the identification task is effectively a judgment based on the resulting scores. That

is, the cluster search finds potential metaphors, attributing them a score based on the strength of the

within-cluster associations. The score is then augmented with a series of conditional bonuses and

penalties applied by each heuristic. Separating the identification task from interpretation could be

helpful from a functional point of view – especially if the identification task generated typed output

that designated the interpretation method (see figure 6.2). This architecture would allow different

interpretation mechanisms determined by the type of metaphor, allowing a selectional preference-

based analysis to take precedent for verb-based metaphors, or a sense-tagging approach to process

single-word metaphors. While such a system might simplify (or at least modularise) metaphor

processing, it would be a departure from metaphor theory [75, 80, 133].

Figure 6.1: An alternative architecture for metaphor processing in which the method of interpre-
tation is dictated by the output from the identification task. The interpretation’s output depends on
what type of metaphor was processed.

Using an external set of possible interpretations is a strength and weakness in MetID: if a state-

ment fits a candidate metaphor, the statement 1) is identified as a metaphor and 2) is interpretable
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by that candidate. This design provides a helpful separation between linguistic work, exploring

the conceptual structure of metaphor, and computational research on the machinery of process-

ing metaphor. However, the biggest weakness of this design is that metaphors not provided by

Metalude will not be identified. Two systems, CorMet and CMI, attempt to address this issue by

finding classes of common mappings, using them to identify new or novel mappings [15, 158]. The

classes in CorMet and CMI are analogous to MetID’s use of topic and vehicle terminology from

Metalude, but are built from text analysis. While this strategy can potentially find new metaphors,

it will overlook many that have become lexicalised – especially verb-based phrases like “rising

stocks” and “falling crime” [69].

Another way in which a bifurcated processing architecture could accommodate a wider range

of metaphors is by taking into account theories of competing processing metaphors [25, 84]. For

example, were a system to implement category matching and feature mapping procedures specif-

ically, different kinds of linguistic metaphors could be processed in accordance to different pro-

cesses (see table 2.2. As it is currently implemented, MetID is better suited to addressing cate-

gorical metaphors given the strictly lexical modelling of similarity. This is because categorical

information (especially in WordNet) can be encoded more succinctly than featural information

[147]. That is, category memberships require less information than unbounded sets of features

needed to implement feature mapping.

6.1.1 Role of Lexical Models & Corpora

MetID was designed, in part, to evaluate the ability of semantic space models to help process

metaphor. WordNet was included to provide a kind of base-line: an explicitly coded model as an

alternative to vector-space models. In the evaluation, WordNet was consistently among the best-

performing in almost all circumstances (see sections 5.4 and 5.5). Disregarding coverage, which

as noted previously is mostly an issue of frequency as opposed to method, LSA-500 and COALS-

14k performed comparably well to WordNet on identification and interpretation tasks respectively,

though scores from LSA-400 were more strongly correlated with participant data (experiment

2). This can be interpreted as a success for these models, as they were able to (automatically)

construct a semantic model comparable to the hand-built WordNet. One goal of corpus-based

models is to rely exclusively on text to build viable representations without appeal to an external

source or authority. Using text alone allows a corpus to define words by their use and association

with other words. WordNet, on the other hand, which is primarily coded by psycholinguists and

lexicographers, is like a highly-structured thesaurus or dictionary. So what makes WordNet a

consistently good model for metaphor processing?

Figurative language can be defined as a transfer between two concepts that disregards literal as-

pects of one to make sense of another. The complex part is that making sense of figurative relations

requires knowledge about the topic and vehicle. This knowledge is largely conceptual, though

there appear to be linguistic constraints on how the relationships are instantiated [68, 69, 92, 212].

For example, while it is lexically normative (and common) to say that numbers rise, it is not liter-

ally true: rising is a concept that relates to elevation and numbers are abstract representations of
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quantity. This kind of conceptual information is precisely what gives metaphor its communicative

efficacy and explanatory power [71]. The results of testing WordNet against the corpus-based,

semantic space models points to the importance of the information in WordNet. That is, there is

conceptual knowledge in WordNet that has been used to develop entries and relations. In metaphor

processing, the information coded in distributional models’ vectors is analogous to the explicit in-

formation coded in WordNet. Though WordNet can be limited, its explicit representation of this

type of knowledge enables it to perform competitively with the best corpus-based models.

The choice of corpora has a significant effect on the performance of semantic space models

[13, 184, 217]. A number of collections were used in MetID to build word clusters with the

distributional models (see section 5.2), but only the two largest (TASA and enTenTen) were used

to evaluate the system. This was mainly due to coverage considerations: a number of seed words

were not frequent enough in the smaller corpora to be represented in some models. Even the

enTenTen corpus, which has the largest vocabulary at 69,745 words, exhibited coverage problems

in certain models like COALS-800. With some models, this is due to dimensional reduction

thresholds (LSA and COALS-SVD) or to minimum frequency thresholds (HAL and COALS).

These constraints are designed to assure better representations and the simplest way to compensate

for this is to use larger collections. Another way to compensate for this would be to enlarge the

clusters beyond 200-words. Doing so would increase the inclusiveness of the seeds, but would

lower the average quality of clusters but was beyond the scope of this thesis.

6.2 Linguistic Implications

6.2.1 Effects of Grammatical Structure & Literalness on Metaphor Processing

In the second experiment, an interaction was found between the grammatical structure and the

literal / non-literal distinction of a statement. The results show that the grammatical structure has

significantly more effect on MetID’s ability to process figurative statements than literal statements

(section 5.5; figure 5.6). The effect underscores the role of linguistic structure on metaphor pro-

cessing more generally: for figurative statements, the grammatical structure plays a stronger role

than for literal statements. This interaction was found in the interpretation task, where MetID’s

interpretations were rated by people. Participants’ ratings indicate that MetID was better at in-

terpreting figurative statements than literal – which is perhaps a product of the root analogy ap-

proach. However, the interaction shows that literal verb-statements are more accurately interpreted

than non-literal verb-statements, without considering the grammatical structure. These findings

indicate that grammatical structure has a unique (or at least exaggerated) role in mediating the

interpretation of figurative language specifically.

It could also be that verb-based metaphors are harder for people to interpret. In a post-hoc

analysis of participant data from the second experiment, it was found that the average sensibility

score3 for figurative statements was generally lower than for literal statements (figure 6.2). Be-

cause the sensibility ratings were used to down-weight the paraphrase ratings, figurative statements

3The rating for the statement, not of the interpretation / paraphrase produced by MetID.
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Figure 6.2: Average sensibility from 1 (bad) to 7 (excellent) for the four classes of sentences
in experiment 2 (section 5.5). Recall that the sensibility scores were used to down-weight the
paraphrase ratings – any score less than 7 will lower the score of the corresponding paraphrase
rating. Error-bars are 1 SD of the mean and N varies in each class due to exclusion criteria.

tended to be lower than literal statements, on average. Taken with the interaction effect described

above, this implies there is something uniquely difficult about figurative verb statements; the ab-

sence of an interaction in the sensibility scores implies that verb metaphors are different from noun

metaphors.

6.3 Conclusions & Future Work

MetID underscores how linguistic theory and description can help define computational problems.

Linguistic metaphor is a complex and broadly defined phenomenon closely related to reasoning

about concepts. The system operationalises a view of how metaphors appear in text: a related

pair of words associated with a set of paired concepts. This conception neglects some of the

creativity inherent in the use of language and reduces the range of metaphorical expression to

those represented in Metalude. Assuming that a linguistic metaphor is a paired association to

one or more root analogies limits the observable phenomena, but it provides constraints under

which to approach the problem computationally. On one hand, MetID’s strategy has programmatic

advantages because it provides a clear goal for identification and a mechanism for interpretation.

On the other hand, the list of potential interpretations may be incomplete, redundant or wrong.

MetID attempts to alleviate this potential problem by ranking candidate metaphors, instead of

choosing a single metaphor for a statement. Ranking the results lets users examine the results for

potentially helpful interpretations, a process highlighted by the contagion case-study (section 5.6).

One of the problems in the evaluated models, was that the corpus-based models tended not to

encode all the information necessary to process metaphors, whereas the explicitly coded model,

WordNet, performed consistently and was best in terms of coverage. This implies that WordNet
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codes some of conceptual knowledge needed to address metaphor. Optimally, a metaphor pro-

cessing system could extract word associations and conceptual information from a corpus of text.

Though semantic space models offer an approach to conceptual representation, these models ap-

pear not to adequately capture it to the extent needed to process figurative language. Some of the

corpus-based models do indeed appear to represent information like features and categories (see

section 5.5.4), but none of them are a comprehensive solution to word-concept associations.

MetID was designed to capture the fact that metaphor is firstly a conceptual phenomenon

(the within-cluster search) and secondly, a linguistic phenomenon signalled by various surface

and statistical cues (the heuristics) [92, 182, 230]. Previous metaphor processing systems did

not preserve this separation. For example, figurative sense-tagging only marks an instance of a

single word, providing no analogue to the topic-vehicle structure apparent at the conceptual level

[22, 218]. Other systems use selectional preference violations, where deviations from normative

subject- / object-verb constructions constitutes metaphor [199, 200]. There are, however, two

systems that attempt to address the conceptual structure: Mason’s CorMet and Baumer’s CMI.

Both of these methods find word-pairs in certain relations signalling concept mappings that were

not commonly found elsewhere [15, 158]. MetID embodies a kind of hybrid strategy, combining

the identification and interpretation tasks into a single problem. The system effectively measures

the likelihood that an observed statement is an instance of every possible root analogy. This

preserves a cline of metaphoricity [46] and allows the system to use other cues like co-text markers,

selectional violations and predication. MetID also attempts to preserve the conceptual structure

that is fundamental to metaphor: the relationship between topic and vehicle concepts. While it

does not perform well enough to be considered an outright solution, its architecture is unique and

exemplifies a step toward comprehensive metaphor processing.

To better address verb metaphors, selectional preference violations should be more central to

the algorithm. Instead of the core algorithm looking for term-pairs that maximise paired associ-

ations with the root analogies, it could instead use selectional violations to select and prioritise

observed word-pairs. Further, by conditionally applying a feature-selection process to extract

nominal-like concepts from verbs in the input, a system could “translate” verb-statements to a

nominal form, making them more compatible with the representations in Metalude. In addition

to promoting the use of selectional preferences violation, and addressing the nominal and action

concept disconnect, there are some specific areas for future work. The first is further research

on metaphor in language, with the aim of developing more particular definitions of how linguis-

tic metaphor relates to conceptual structure. The second is in computational semantics, where a

number of new approaches have been proposed as alternatives to the semantic space models. Last,

work in NLP, which has grown considerably with the adoption of machine learning techniques,

can offer new insights into the automation and validation of linguistic and conceptual processes.

Metaphor in Language

The method presented in chapter 3 relies on a structured definition of metaphors – namely using a

vehicle to make sense of a topic concept. This definition is apparent in many linguistic metaphors
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but is perhaps most easily observed in the structure of noun-noun predications. Alternatively, for

action metaphors, the conceptual structure is not necessarily evident in the linguistic structure.

Take (xxviii), for example:

(xxviii) The boy got on his bike and flew home.

Here, the verb flew selects an exemplary or prototypical feature, perhaps FAST, SPEED or EXPE-

DIENCE, yielding an interpretation FLYING = FAST MOVEMENT. In (xxviii), the structure of the

metaphor is a verb (flew) as a nominal concept (FAST MOVEMENT). Because action metaphors

are more common than noun-based metaphors [133], it is important for the structure to afford

equivalent expressions. One way to do this is, instead of asserting a figurative equality, to assert an

aspect of the verb as in FLYING AS SPEED. The conceptual structure of verb-based metaphors is

similar to the topic-vehicle structure typical of root analogies, but it emphasises the selective role

the topic has on the vehicle. For example, in (xxviii), the vehicle concept FAST is selected by the

topic concept BOY ON BIKE. Developing verb-based representations like FLY = MOVE QUICKLY

is one way to better address verb-based metaphors in the style of root analogies. It is likely, how-

ever, that noun-concepts are easier and more simple to deal with because they provide stronger

prototype and exemplar information [74] and may have finer resolution on scales like imageability

and concreteness [181]. Overcoming these obstacles is a matter of tenacity for corpus-linguistic

research as these concerns are not likely to be fatal in developing structures of equations like those

relating noun-concepts.

Much of the literature in metaphor research relies on somewhat intuitive concept derivations

([19] and [135], for example). Even corpus-driven analyses tend to triangulate common categories,

types or domains of concepts in figurative language [34, 35, 45, 128]. Though a number of internal

and contextual properties of linguistic metaphors have been shown to bare on metaphors’ inter-

pretation, it is not clear how a verb provides a property for use with the topic [92]. This selection

process has been studied for noun metaphors, where features and categories are more clear [135]

in which topics place constraints on vehicles [212]. It could be that this process is quite different

for nouns and verbs [47], perhaps due to more articulated differences among nouns [53]. Indeed,

nominal concepts behave differently than action concepts [74] and are more readily accessed as

prototypes than verbs [232], perhaps making them better suited to define metaphor.

The distinction between noun- and verb-based metaphors is one of many in figurative lan-

guage. This research attempted to address noun and verb metaphors in a unified way, but generally

failed in the verb case. While this may be due to predominantly nominal definitions of metaphor, it

could also be due to less frequent explication of verbs. Though text often evinces the properties of

nominal concepts (ie. talking about things), verbs are often more contextual, abstract, vague and

implicit. Other types of metaphor may prove similarly difficult. For example, adjective metaphors

like “the urban brain” or “a hot temper” are perhaps more similar to action metaphors given their

use of vehicle properties. Systems like MetID could benefit from further analysis of how words

relate, at the lexical, grammatical and semantic levels, to the concepts they employ.
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Computational Semantics

The metaphor interpretation task relies centrally on word associations provided by a lexical model.

Statistical methods of associating words have made considerable progress over the last two decades.

Many of the semantic space models used in this research were designed to provide analogues to

mental representations and cognitive processes [111, 146, 149]. Three new approaches have be-

come popular focal points for cognitive and computational research: probabilistic, tensor and

graph-based models. Each of these strategies attempt to address some cognitive phenomena like

semantic growth, memory and priming, as well as computational tasks like word association and

clustering. Because some of MetID’s weaknesses are due to the semantic models mis-associating

words, these new approaches could provide better alternatives to semantic space models.

Probabilistic, non-parametric models have emerged as a way to model lexical semantics [23,

60, 63, 90, 204]. Probabilistic models begin by assuming a prior-probability distribution over

possible observations and a set of latent variables that contribute to posterior observations. Using

Bayes’ theorem and a sampling procedure, the latent variables are tuned to develop the posterior

into the observed distribution. In statistical semantics, the Bayesian approach has two main advan-

tages over semantic space representations. First, it can account for unseen and unknown variables,

such as authorship, topic and domain [89, 189, 204]. Second, and perhaps more importantly, prob-

abilistic models relax assumptions of completeness in the input, allowing structure to be gleaned

from low-density data. MetID could use probabilistic semantic models to allow less complete and

noisier text collections to develop word representations. The Bayesian paradigm has strengths

independent of individual model results, like rule-learning from sparse data [51, 60, 210] and it

could potentially provide more accurate word associations than the models tested in MetID.

So-called tensor models are an extension to semantic space models like LSA [13, 41, 127].

Instead of using high-dimensional matrices to represent words, two or more such representations

are combined to form an n-way tensor. Tensor-based representations have been built to combine

word-document, word-word, word-POS and word-dependency matrices into one structure. In

distributional memory, a three-way tensor is constructed from POS, windowed co-occurrence and

dependency matrices and performs comparably well to best-in-task semantic space models on a

range of tasks [13]. The strength of the tensor-based models is not necessarily that they perform

better than semantic space models, but that they offer a unified representation for different tasks.

Tensor models embody a largely mathematical advancement in statistical semantic models, and in

applications like MetID, they could combine different semantic space representations.

Graph-based semantic models were proposed in linguistics long before they were implemented

computationally. The theory of a mental semantic network accounts for memory, recall, priming

and association tasks [11, 56]. Implementations of semantic networks have also been around for

some time, WordNet being perhaps the most iconic [167]. Recently, empirical findings in the

emergent structure of naturally occurring networks have sparked renewed interest in their appli-

cation to linguistics and cognitive science [6, 11, 166]. Computational, graph-based models can

be used to construct directed networks using word-context, word-document or dependency in-

formation. These models capitalise on long-standing graph-theoretic procedures, using them to
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simulate semantic operations. For example, word-word associations can be drawn by minimising

path- or node-traversals from one entry to another [31, 100]. Concepts can be extracted by finding

clusters of highly connected nodes [205] and such connectivity mimics the development of lexica

in children [204]. Unlike semantic space models, graph-based representations can be annotated

with explicit relations (word class, dependency or co-occurring distance information). In systems

like MetID, graph-based methods could provide concept extraction, word associations and explicit

representations, all of which would contribute to addressing a wider range of figurative language.

NLP & Machine Learning

Significant progress has been made in NLP by applying machine learning methods to outstanding

problems. The decision to avoid machine learning methods in MetID was motivated by three

considerations. First, machine learning algorithms tend to rely on structured, curated data-sets

[125, 209]. Because figurative language is ubiquitous and diverse in communication, finding or

creating viable training data has proved difficult [198]4. Second, machine learning techniques

can obfuscate the relationship between a trained model, the representations used to create it and

those it is used to analyse. For example, in connectionist systems where nodes in a network are

connected with weighted paths such that the weights correctly map training inputs to outputs, there

is effectively no representational analogue to what the weights mean, despite the fact that they

constitute the solution. In representational algorithms like WordNet, LSA and MetID as a whole,

there is an answer to how or “why” the system produced the output – even in vector-space models

where the vectors themselves represent “meaningless” dimensions. Though machine learning

is uniquely positioned to build scalable systems for complex data-mining and pattern-matching

tasks, such techniques would shed little light on how metaphors are used, identified or interpreted.

Finally, machine learning algorithms typically employ a feature selection process where a set of

features are chosen (sometimes automatically) and validated by a ranking process [242]. This

means that features chosen to establish a model may have no principled connection to the task or

the data. In this work, given the amount of experimental and linguistic research on the properties

of metaphor, feature selection would risk discarding established features of metaphor use, in turn,

making it difficult to relate the system’s performance and theories of metaphor comprehension.

This research is situated half-way between representationalism and non-representationalism:

the distributional models (and some of the heuristics) adopt a corpus-centric / use-based concep-

tion of lexical semantics. One problem with this approach is that concepts are represented as words

themselves. There are some models that extract categories, frames and other kinds of conceptual

information using co-occurrence patterns [12, 14, 57, 184]. Similar representational methods in

NLP could be used to augment or replace resources like Metalude in MetID.

In addition to the lexical models, MetID also implemented some corpus-based heuristics for

measuring selectional preference violation and predicative strength (see section 4.5). These two

heuristics, the first of which has been introduced elsewhere [182, 199, 200], rely on a simplifi-

cation of figurative language: that it violates otherwise “normal” language. The conception that

4Personal communication with E. Shutova; 29 March, 2012.
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figurative language is in some way abnormal, or violates normative structures, is not supported

by cognitive linguistic findings [24, 85, 133, 211]. One example is how the noun stock selects

verbs like rise, fall, crash and climb [69], all of which are figurative. What selectional violation

and predication strength actually measure is a degree of deviation from typical language. Selec-

tional violation appears to be a viable way to address novel, verb-based metaphors [200, 201],

but lexicalised metaphors, like rising prices or falling temperatures, require extrinsic conceptual

knowledge about quantities and movement. For this reason, NLP techniques may continue to need

outside knowledge to make sense of that which is seldom explained in text.

6.4 Concluding Remarks

Metaphor processing continues to present a unique challenge for computational fields. It is per-

haps one of the most complex and creative conceptual phenomena evident in language and there

is seemingly limitless potential in the use of metaphor as an expository device. Though many

become lexicalised over time, metaphors engender creativity that is both common and complex

which is precisely what imbues it with such communicative efficacy. Building on cognitive and

linguistic theories of metaphor comprehension and use, this thesis contributes to a paradigm that

uses computational modeling to explore, express and test such theories. Designing and imple-

menting MetID allowed various aspects of how metaphors are used in natural language to be op-

erationalised and tested. The results highlight the need for better definitions of figurative language

and improved technical apparatus for relating textual information to conceptual information. Fur-

ther, the dominant theories of metaphor are largely nominal in nature and have an important role

in shaping systems to automatically identify and interpret metaphor. Data-driven approaches, such

as corpus-based semantic models, can help address metaphor processing tasks like those explored

in this research. Though the breadth of figurative language may never be fully accounted for with

data-driven strategies, computer science and NLP can leverage existing resources and theories in

the cognitive sciences, to build more accurate and flexible metaphor processing systems. Systems

like MetID contribute to an increasingly comprehensive understanding of language and commu-

nication, and the processes that make them such powerful carriers of knowledge and meaning.
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Appendix A

Additional Results

A.1 Cluster Quality

The cluster analysis presented in section 5.3 summarised the findings without reference to the

specific (or exhaustive) scores. Here, the clusters are reviewed in more detail and all scores are

presented for each of configuration. The COLE-AMI model was presented in chapter 4, however,

two more COLE models, based on language models, are described and evaluated here. Because

neither of these COLE variants produced viable clusters (see section A.1.1), they were not evalu-

ated in MetID. This section also contains a review of the clusters from each of the DSMs (LSA,

COALS, BEAGLE and HAL), with each corpus (section 5.2) and each similarity (section 4.4.4).

A.1.1 COLE-based Language Models

Method

Language modeling is technique used in NLP for language generation and simulation tasks. The

most basic example of a language model (LM) is called a unigram model where the relative fre-

quency of every observed word is used to construct a probability distribution for all words. Using

this distribution, language can be “modeled” by sampling from the distribution. This will generate

a randomly selected sequence of words with a similar distribution to the observed text. A unigram

LM will generate unintelligible strings because it does not account for phrasal, grammatical or

morphological constraints. A more advanced LM is an n-gram model, where the proceeding n

words, (w1,w2, ...,wn−1), are used to calculate the conditional probability p(wn|w1,w2, ...,wn−1)

with which the next word will occur. The intuition with n-gram models is that given a preceding

n words, what is the most likely next word? By making use of punctuation and capitalisation in-

formation, a 5-gram model can generate nearly intelligible sentences which are considerably more

sensible than a unigram model [153]. By constructing probability distributions over observed

words, language models are a powerful tool for the analysis and generation of natural language

and are ostensibly well suited to estimate co-occurrence [139, 164].
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A good language model, however, will have to account for never-before-seen observations.

Statistically, the intuition for this requirement is that some probability mass must be preserved

for unobserved so the model can generate new terms in a sequence. One option is to assume that

every word has been observed precisely once, which works in-practice, but will exaggerate the

probability of low-frequency words. Other ways of addressing this have been proposed, such as

Laplace smoothing [114], Good-Turing smoothing [66] and Kneser-Ney smoothing [125]. These

smoothing techniques use the observed prior distribution to preserve some probability mass for

new and low-frequency words. In recent literature, Dirichlet smoothing has been found to be an

efficient, accurate method of local smoothing for n-gram models [139, 164].

The methods described here are based on [105], an extension of previous work, [103, 104,

139, 164], which use smoothed language models to estimate co-occurrence likelihood. Here,

two models based on multinomial and Bernoulli distributions are introduced which are presented

together to highlight their similarities. In the multinomial model, the sequence (t1, t2, ..., tn) is

treated as a sequence of independent events occurring with independently random priors. The

n-length sequence consists of as many random variables making probability of its observation

obtainable by taking the product of probabilities for each term. This probability is generated by

model M of document by D by multiplying each term’s probability:

p(t1, t2, ..., tn|MD)) =
n

∏
i=1

p(ti|MD) (A.1)

In the Bernoulli model, the sequence is represented as a vector of binary attributes for each

term in the vocabulary, V , indicating its presence in the sequence [164]. The terms are again

assumed to occur with independent randomness. The likelihood p(t1, t2, ..., tn|MD) of the sequence

is the product of two probabilities with respect to MD: that of producing the sequence and that of

not producing another:

p(t1, t2, ..., tn|MD)) = ∏
ti∈seq

p(ti|MD) ∏
ti /∈seq

1− p(ti|MD) (A.2)

Both models are built by observations of document D, comprised of a vocabulary, V , where

each term t1, t2, ..., tn occurs with frequencies f1, f2, ..., f|V |. The model for each document is pa-

rameterised by the vector MD = 〈M f1 ,M f2 , ...,M f|V |〉 ∈ [0,1]V , which indicates the probability of

omission or inclusion of t ∈ V , where M fi = p(ti|MD) and the model frequencies, M f , sum to 1.

The length of a document, |D|, is defined as the sum of its terms’ frequencies fi that are used to

compute the MLE of Eq. A.3.

p(MD|D)≈ p(D|MD)p(MD) (A.3)

Which gives

M̂D ≈ argmaxMD p(D|MD)p(MD) (A.4)
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where p(D|MD) is the likelihood of the document under MD and p(MD) is the prior of the model

itself.

The multinomial model samples a multinomial distribution for each word in MD, hence its

name. When MD parameterises the distribution and the model prior is a Dirichlet distribution, the

conjugate prior, is defined as

M̂D ≈ argmaxMD

Γ(|D|+∑
|V |
i=1 αi)

∏
|V |
i=1 Γ( fi +αi)∏

|V |
i=1(M fi)

fi+αi+1
(A.5)

where Γ is s = (s−1)! and αi is the hyper-parameter characterising the Dirichlet distribution. Eq.

A.5 can be solved by expectation maximisation, which yields:

M̂ fi =
fi +αi−1

|D|+∑
|V |
i=1 αi−|V |

(A.6)

One choice of hyper-parameters αi is to attribute equal probability to all terms t ∈ seq. How-

ever, this allows zero probabilities if the collection is small or sparse (ie. |V ||C| is low). Extending

previous work to improve individual document models, a corpus-wide model is used to inform the

smoothing of each document. Specifically, αi = µ
fci
|C|+1 which provides Dirichlet smoothing will

be used [139]. Here, µ is a smoothing factor, fci is the ith term’s frequency in collection C. The

probability of observing ti given M̂D is

p(ti|M̂D) =
fi +µ

fci
|C|

|D|+∑
|V |
i=1 µ

fci
|C|

(A.7)

Sampling t in MD from a Bernoulli distribution gives

M̂D ≈ argmaxMD

|V |

∏
i=1

Γ(αi +βi)

Γ(αi)+Γ(βi)
(M fi)

fi+αi+1(1−M fi)
|D|− fi+βi−1 (A.8)

to which the solution by expectation maximisation is

M̂ f =
fi +αi−1

|D|+αi +βi−2
(A.9)

In the Bernoulli model, setting αi =
µ fci
|C| +1; βi =

|C|
fci
+µ(1− fci

|C|)−1 yields the form of Dirichlet

smoothing used in the multinomial model, leading to term probability defined as

p(ti|M̂D) =
fi +µ

fci
|C|

|D|+ |C|fci
+µ−2

(A.10)

To summarise, for the multinomial and Bernoulli models respectively, how likely it is a se-

quence of terms will co-occur in a document can be calculated by equations A.11 and A.12 re-

spectively:



154 APPENDIX A. ADDITIONAL RESULTS

pmultinomial(t1, t2, ..., tn|D) =
n

∏
i=1

fi +µ
fci
|C|

|D|
+
|V |

∑
i=1

µ
fci

|C|
(A.11)

pBernoulli(t1, t2, ..., tn|D) = ∏
ti∈seq

fi +µ
fci
|C|

|D|+ |C|fci
+µ−2

∏
ti /∈seq

fi +µ
fci
|C|

|D|+ |C|fci
+µ−2

(A.12)

COLE-based Clusters

The language model methods appear to have generated nearly uniform clusters, evidenced in the

low variances in each measure. The language models perform more accurately than AMI when

ranking documents [105], but when using the same scores to cluster words, the estimations are

too uniform to differentiate related words. AMI, on the other hand, is more affected by word-

document frequency, which perhaps provides word-pairs the “space” to be re-ordered, yielding

less uniform clusters. Recall that similarity, purity and entropy are computed using the 200 closest

words to a given nucleus. This means that low variances across all clusters implies that the top-200

closest words change very little from one nucleus to another. Looking at purity and entropy, aside

from the implications of the low variance, the language model clusters have and low purities very

high entropies for every corpus. Without regard to how the word-ranking occurred, these clusters

are of particularly low quality, especially compared to the DSM clusters. These results show that

AMI is the only viable method with which to use the COLE models in MetID.
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Figure A.1: Average similarity (top), purity (Eq. 4.8; middle) and entropy (Eq. 4.9; bottom) of clusters built with COLE models with each method (AMI,
multinomial language models and Bernoulli language models) for the full-corpus (in blue) and 30% held-out versions (in red) and the TASA, ANC, NIPS,
BBC-FT-NYT and LexisNexis collections. Errors bars are 1 SD of the mean.
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A.1.2 Distributional Semantic Models

LSA

LSA generates reduced dimensionality semantic spaces (100, 300, 400 and 500) from log-entropy

normalised document-word co-occurrence matrices. LSA is designed to work with cosine simi-

larity, but its vectors are compatible with correlation, Euclidean and Spearman functions. When

analysing LSA spaces, lower dimensional representations effectively “force” words into more effi-

cient representations. Intuitively, this leads to a loss of granularity with a gain in latent contextual

relations. Lower-dimension spaces are likely to generate more uniform clusters with respect to

average distance, purity and entropy. Also, it is expected that higher average similarity in smaller

spaces, where a feature-vector has less opportunity to encode distance. Lastly, spaces built with

larger collections (higher document-vocabulary ratio) will likely be less pure and more entropic,

given the range of observations for a single word.

First consider the average distance among words for LSA shown in table A.1. The scores

confirm of our intuitions about dimensional reduction and corpus size – namely that smaller spaces

produce more uniform clusters, and that larger corpora (enTenTen and TASA) yield higher average

similarity. This holds between collections, where the smallest (BBC-NYT-FT1) shows the lowest

average similarity. It also holds between full-corpus and held-out versions. Looking at specific

collections, note NIPS is consistently lower in each variant. This may be because NIPS is made

up of specialist language, as opposed to the other corpora which contain news (BBC-NYT-FT,

LexisNexis) or general language (TASA, ANC and enTenTen). The fact that words in the NIPS

collections exhibit lower mean similarity points to 1) the use of more specialised, terms and 2) a

higher document / vocabulary ratio. Conversely, note that enTenTen is usually the highest, which

may be due to the less structured text.

Looking at the average similarity in the clusters shows similarities between the methods

(model variant, corpus, similarity function, etc.) but it does not necessarily a measure the overall

quality. The cluster purities of the LSA variants (table A.2) give an impression of cluster quality

in each configuration. Here note that cosine and correlation functions provide similar scores and

that Euclidean and Spearman see increases of a little more than half for every corpus / model con-

figuration. Over the corpora, note that TASA and enTenTen score lower than the other collections

in general. This is likely due to the size of the vocabulary and the diversity of topics apparent in

those collections. Also note that ANC (in LSA-100) has the highest purity, which may be because

of the corpus’ relatively small size. Unlike average similarity, purity does not appear to be corre-

lated with the dimensionality of the semantic spaces. Last, the variance across full and held-out

versions of each corpus is never more than 1 SD apart for any configuration (not shown in table

A.2). This supports the role of average purity as a reliable quality measure for corpora of varying

size.

For the average entropy in LSA clusters, note the variance from full to held-out versions are all

still within 1 SD of one another. Also, TASA and enTenTen are the highest, which further supports

their diversity of vocabulary and topics, especially when compared to the specialist language in the

1In terms of documents.
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Model Full Corpus 30% Held-out

Corpus Cosine Correlation Euclidean Spearman Cosine Correlation Euclidean Spearman
LSA-100:

ANC 0.71 0.71 0.43 0.67 0.71 0.71 0.44 0.56
BBC-NYC-FT 0.75 0.75 0.47 0.41 0.76 0.76 0.49 0.51

NIPS 0.64 0.64 0.48 0.37 0.62 0.62 0.46 0.40
TASA 0.80 0.80 0.61 0.35 0.76 0.76 0.61 0.34

enTenTen 0.90 0.90 0.57 0.78 0.86 0.88 0.57 0.76
LSA-300:

NIPS 0.44 0.44 0.30 0.31 0.43 0.43 0.30 0.31
TASA 0.65 0.65 0.50 0.20 0.60 0.60 0.50 0.20

enTenTen 0.81 0.81 0.45 0.62 0.78 0.79 0.45 0.57
LSA-400:

NIPS 0.41 0.40 0.28 0.28 0.39 0.40 0.28 0.28
TASA 0.60 0.60 0.47 0.17 0.56 0.55 0.47 0.17

enTenTen 0.78 0.78 0.42 0.56 0.51 0.51 0.18 0.34
LSA-500:

NIPS 0.38 0.38 0.27 0.26 0.37 0.37 0.26 0.26
TASA 0.56 0.56 0.45 0.16 0.51 0.51 0.45 0.16

enTenTen 0.76 0.76 0.40 0.52 0.72 0.72 0.40 0.47

Table A.1: Average similarity (inverse distance; see section 4.4.4) of words in clusters built with
LSA for each similarity function, for both the full-corpus (in blue) and 30% held-out versions (in
red). The standard error for each sample was less than 0.001 (N ≈ 95,800). In each case, the
similarity ranges from 0 (completely dissimilar) to 1 (completely similar), even for unbounded
functions like Euclidean, which are expert-normalised within each space.

Model Full Corpus 30% Held-out

Corpus Cosine Correlation Euclidean Spearman Cosine Correlation Euclidean Spearman
LSA-100:

ANC 0.27 0.27 0.30 0.24 0.23 0.24 0.27 0.31
BBC-NYC-FT 0.22 0.22 0.27 0.34 0.25 0.26 0.25 0.36

NIPS 0.23 0.24 023 0.39 0.22 0.22 0.28 0.34
TASA 0.13 0.14 0.23 0.33 0.15 0.15 0.25 0.33

enTenTen 0.15 0.15 0.22 0.17 0.15 0.14 0.27 0.16
LSA-300:

NIPS 0.26 0.26 0.30 0.37 0.26 0.26 0.31 0.35
TASA 0.15 0.15 0.27 0.33 0.14 0.14 0.30 0.35

enTenTen 0.12 0.11 0.21 0.13 0.12 0.12 0.23 0.14
LSA-400:

NIPS 0.26 0.26 0.31 0.37 0.25 0.25 0.32 0.35
TASA 0.14 0.14 0.27 0.33 0.14 0.14 0.28 0.35

enTenTen 0.12 0.12 0.23 0.14 0.19 0.19 0.25 0.34
LSA-500:

NIPS 0.27 0.27 0.32 0.37 0.26 0.26 0.31 0.35
TASA 0.12 0.12 0.29 0.32 0.13 0.13 0.32 0.34

enTenTen 0.11 0.11 0.22 0.13 0.12 0.11 0.23 0.14

Table A.2: Average purity (Eq. 4.8) of clusters built with LSA with each similarity function for
both the full-corpus (in blue) and 30% held-out versions (in red). Note Cosine similarity is the
function for the reference implementation of LSA.
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NIPS corpus. Again, cosine and correlation scores are similar, whereas Euclidean and Spearman

scores are less consistent across corpora and configuration of dimensionality.

Model Full Corpus 30% Held-out

Corpus Cosine Correlation Euclidean Spearman Cosine Correlation Euclidean Spearman
LSA-100:

ANC 0.65 0.65 0.65 0.67 0.70 0.69 0.67 0.62
BBC-NYC-FT 0.71 0.70 0.72 0.46 0.70 0.70 0.70 0.59

NIPS 0.66 0.66 0.55 0.49 0.65 0.65 0.54 0.49
TASA 0.84 0.84 0.75 0.52 0.82 0.82 0.72 0.51

enTenTen 0.82 0.82 0.76 0.79 0.82 0.82 0.70 0.79
LSA-300:

NIPS 0.60 0.60 0.49 0.47 0.60 0.59 0.48 0.48
TASA 0.84 0.84 0.69 0.50 0.83 0.83 0.66 0.49

enTenTen 0.85 0.85 0.77 0.83 0.85 0.85 0.74 0.81
LSA-400:

NIPS 0.60 0.60 0.49 0.46 0.60 0.60 0.48 0.48
TASA 0.84 0.84 0.67 0.51 0.83 0.83 0.65 0.50

enTenTen 0.82 0.82 0.76 0.79 0.71 0.70 0.68 0.49
LSA-500:

NIPS 0.60 0.60 0.47 0.46 0.60 0.60 0.47 0.47
TASA 0.85 0.85 0.65 0.51 0.84 0.84 0.62 0.50

enTenTen 0.85 0.85 0.75 0.82 0.85 0.85 0.73 0.81

Table A.3: Average entropy (Eq. 4.9) of clusters built with LSA with each similarity function for
both the full-corpus (in blue) and 30% held-out versions (in red). Note Cosine similarity is the
function for the reference implementation of LSA.

COALS

The next DSM reviewed is COALS, with five variants: 800, 14k, SVD-100, SVD-200 and SVD-

400. The first two, COALS-800 and COALS-14k, use the most frequent 800 and 14,000 words to

build the semantic space. The SVD variants use all observed words and reduce the resulting space

to the configured dimensionality using singular value decomposition. In the COALS models,

correlation is designed to be used for similarity measurements, though cosine, Euclidean and

Spearman functions can also be used. Because average similarity is less indicative of a cluster

sets’ quality than relative purity and entropy, in the following models, only purity and entropy are

reported.

Figures A.2 and A.3 show the average relative purity and entropy for clusters built with the

COALS-SVD variants for each compatible corpus / similarity function configuration. Looking at

the purities, cosine and correlation again provide similar results and both variances are similar.

The Spearman scores are also relatively similar to the cosine and correlation. On the other hand,

the scores using Euclidean distance (which is unbounded) have generally higher purity and greater

variance. Recall that purity is a measure of uniformity among a cluster’s contributing types, which

implies Euclidean distance generally chose more uniform members for a given nucleus, whereas

the correlation function tended to choose more varied constituents. Looking across SVD variants

(100, 200 and 800) there does not appear to be a general trend. This supports SVD’s ability

to preserve the cluster make-up across dimensionalities. Looking at each corpus, note the higher

scores for the NIPS and BBC-FT-NYT collection compared to enTenTen and TASA. This supports
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the intuition that the topically diverse texts in the TASA and enTenTen collections beget slightly

lower purities. Last of all, note that all the full corpora are within the 1 SD of the scores for their

held-out counter-parts.

The entropies for the COALS-SVD variants (figure A.3) point to similar findings as the purities

with one notable exception: the average entropies exhibit less variance. It remains that entropy

scores under the Euclidean function show more variation, especially compared to correlation. Also

note that NIPS and BBS-FT-NYT have slightly lower entropy than other collections. Again, the

variation between SVD variants and full / held-out versions is negligible in most cases.
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Figure A.2: Average purity (Eq. 4.8) of clusters built with the COALS-SVD variants (100, 200
and 800) with each similarity function for both the full-corpus (in blue) and 30% held-out versions
(in red) of the TASA, ANC, NIPS and BBC-FT-NYT and enTenTen collections. Errors bars are 1
SD of the mean.
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Figure A.3: Average entropy (Eq. 4.9) of clusters built with the COALS-SVD variants (100, 200
and 800) with each similarity function for both the full-corpus (in blue) and 30% held-out versions
(in red) of the TASA, ANC, NIPS and BBC-FT-NYT and enTenTen collections. Errors bars are 1
SD of the mean.
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Figure A.4: Average purity (Eq. 4.8) of clusters built with the COALS variants (800 and 14000) with each similarity function for both the full-corpus (in
blue) and 30% held-out versions (in red) of the TASA, NIPS, BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars are 1 SD of the mean.
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Figure A.5: Average entropy (Eq. 4.9) of clusters built with the COALS variants (800 and 14000) with each similarity function for both the full-corpus (in
blue) and 30% held-out versions (in red) of the TASA, NIPS, BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars are 1 SD of the mean.
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The second group of COALS models are the variants that do not reduce the dimensionality of

the semantic space, but instead only represent the 800 or 14,000 most frequent words. The purities

for the 800 and 14k variants are shown in figures A.4 and A.5 respectively. Note that in each, the

variances with COALS-14k are generally larger than COALS-800. This may be due to increased

contribution of less frequent words, which are less likely to be found in consistent contexts. Again

note how Euclidean distance yields scores with greater variation across collections, as well as

across 800 / 14k variants. This also seems to have an affect on the variance, which is greater in

most of the COALS-14k scores than COALS-800. Lastly, note the differences between variants

when measured with the Jaccard function. Overall, the average purities here are lower than the

clusters built with the COALS-SVD models.

The average purities are generally higher than the COALS-SVD variants. They also tend to

be slightly lower for COALS-14k than COALS-800. Again, the differences for Euclidean and

Jaccard scores across variants are more pronounced than correlation or cosine functions. TASA is

the most similar across variant and is actually not significantly different for cosine or correlation

functions. For the correlation scores (the default similarity function for COALS), none of the full

collection scores are significantly different than their held-out version – which is not the case with

Euclidean or Jaccard functions.

BEAGLE

BEAGLE is designed to use cosine similarity to measure the distance between word-vectors.

There is no size restriction on applicable corpora – not for vocabulary, documents or document-

vocabulary ratio. Unlike SVD-based models like LSA and some of the COALS variants, BEA-

GLE does not implement dimensional reduction. Instead, the permutation process is a kind of

re-encoding routine that gradually refines a word’s contextual information into a representation.

Looking at the purities, there is a downward trend as the number of permutations increases (from

128 to 1024). Variance in the scores also appears to have a concomitant decrease with the number

of permutations. However, these trends are almost non-existent with clusters built using Euclidean

distance, where the variance in purity is greatest.

The entropy scores generally increase with the number of permutations BEAGLE applies,

again with the exception of those using Euclidean distance. The BBC-FT-NYT and LexisNexis

collections have the highest overall entropy with the cosine function (BEAGLE’s default similarity

metric). This is perhaps due to their lower document-vocabulary ratios, especially compared to

TASA and enTenTen. Alternatively, TASA has the highest entropies, which may be a reflection of

its topical diversity.
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Figure A.6: Average purity (Eq. 4.8) of clusters built with the four BEAGLE variants (128, 256, 512 and 1024) with each similarity function for both the
full-corpus (in blue) and 30% held-out versions (in red) of the TASA, ANC, NIPS and BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars
are 1 SD of the mean.
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Figure A.7: Average entropy (Eq. 4.9) of clusters built with the four BEAGLE variants (128, 256, 512 and 1024) with each similarity function for both the
full-corpus (in blue) and 30% held-out versions (in red) of the TASA, ANC, NIPS, BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars are 1
SD of the mean.
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HAL

The clusters built with HAL, which is designed to use Euclidean distance and does not use SVD,

are similar to the previous DSMs. There are three variants of HAL in which all words are rep-

resented or the top 400 or 1400 are kept. The TASA and enTenTen clusters have slightly lower

purities than the other collections, especially under cosine similarity. Euclidean distance, again,

exhibits higher variance than the cosine or correlation functions. Model-wise, there are not signif-

icant differences between the variants. Moreover, none of the configurations produce significantly

different purities between full and held-out versions of the collections. The average scores for

entropy in TASA and enTenTen are comparable and cosine produces relatively stable scores com-

pared to Euclidean and Jaccard functions – a finding mirrored by the other DSMs.
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Figure A.8: Average purity (Eq. 4.8) of clusters built with HAL variants (HAL, HAL-400, HAL-1400) with each similarity function for both the full-corpus
and 30% held-out versions of the TASA, ANC, NIPS, BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars are 1 SD of the mean.
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Figure A.9: Average entropy (Eq. 4.9) of clusters built with HAL variants (HAL, HAL-400, HAL-1400) with each similarity function for both the
full-corpus and 30% held-out versions of the TASA, ANC, NIPS, BBC-FT-NYT, LexisNexis and enTenTen collections. Errors bars are 1 SD of the mean.



Appendix B

MetID Technical Overview

MetID was designed, developed and tested with a constant integration model. The system consists

of a series of independent scripts for interacting with a transactional database. Input and output are

typically semi-structured, text-files like CSVs. While the specification was modular, the design

deviated from this to accommodate agility in the testing phase, as well as non-threaded paral-

lelisation and syncronisation of tasks (ie. more than one instance of the same script working on

different data). The result was a database, containing most of the required elements for analysing

instances of figurative language. Interaction with the system usually amounts to interacting with

the database is some manifold way. This appendix first outlines the design principles which lead

to the implementation of the method specified in chapter 3. Second, I review the system as im-

plemented, discussing various technicalities as they relate to methods and algorithms discussed in

chapter 4. Third, the database design is discussed in detail, as it affords the system with most of

its extensibility and evaluative potential. The concluding section presents a short computation and

time analysis of the two central algorithms – word clustering and metaphor identification.

MetID is available online1, as is the software for the COLE-based models discussed in section

4.4.52. The former is a Java application with an interface for typical users. MetID, on the other

hand, is a series of scripts, with some embedded documentation and pointers to their respective

use. However, the MetID database (MySQL 6) embodies a lot of the system’s functionality. As

such, MetID is not in a state to be run by typical users. The following sections explain various

parts of the system, including the design of the database.

B.1 Design & Development Principals

From the start of the research phase for this project, the design principles were dictated by two

on-going necessities: pace and agility. To address the research goals, three initial decisions were

made with regard to the process of implementing MetID: 1) use of central persistent data-store,

2) the use of scripts, rather than an application and 3) the pipe-lining of various development and

use-cases. While each of these decisions potentially detracts from the system’s maintainability

1http://www.scss.tcd.ie/˜gerowa/metid
2http://www.scss.tcd.ie/˜gerowa/co-occurrence
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and interoperability, they enabled agility in exploring aspects of the project to better address the

research goals.

The central data-store is a relational SQL database, implemented in MySQL 6.0 on Debian

GNU/Linux. This allowed the development of scripts and programs in multiple languages (Ruby,

Perl and Java) with common access to authoritative data. The database contains metaphor exam-

ples (from Metalude), the text collections and the word clusters (the result of the corpus-based

semantic models). The database is available online3 and is SQL-compliant with any foreign-key

capable engine4.

There was not a uniform approach to developing scripts to interact with data. However, a

general paradigm of development employed Unix-like principles with heavy use of file-structure

and the data-store, minimising in-memory operations. While this detracted from the speed and

agility of some development tasks (such as cleaning and parsing corpora) it allowed longer-term

flexibility in developing various experimental tasks, such as those presented in chapter 5. One

example was the extraction of selectional preferences using the BNC and TASA text collections.

This involved determining representative grammatical relations from Sketch Engine [120]5 with

its Python API, piping that output with POSIX I/O redirection through a series of Perl scripts to

parse and clean the output, and finally to a Ruby script which calculated the selectional metrics in

relation to those already present in the database. This process typified the development and reuse

of scripts, like the Perl scripts implementing the text cleaning pipeline, which was also used to

clean and parse the corpora and examples from Metalude.

B.2 Modules

Programmatically, MetID is organised into sub-systems correlating to the those in figure 4.2.

These sub-systems consist of a text stream, semantic stream, database and analysis. The im-

plementation presented in chapter 4 can be viewed as a procedural organisation of how the various

tasks are related, as opposed to the technical specifications presented.

B.2.1 Scaffolding & Text Stream

Some prerequisite tasks had to be addressed before MetID’s modular development began. These

included scraping various resources, like Metalude, the BNC n-gram frequencies and predications,

as well as creating custom corpora. The web-scrapers were written in Ruby and used of HTTP

requests to pull content directly from the web after which it was cleaned and stored. In constructing

the custom corpora (BBC-FT-NYT and LexisNexis collections), Perl scripts were used to clean

and parse the raw text from the web.

3http://www.scss.tcd.ie/˜gerowa/metid
4InnoDB was used by default.
5http://www.sketchengine.co.uk/; 11 March, 2013
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In the absence of an ideal text pre-processing tool, a series of independent Perl scripts were

developed. These scripts can be piped together to perform various cleaning tasks. For those tasks

listed in section 4.3, and for cleaning other resources like Metalude, the same series of scripts was

used. Table B.1 shows the chain of Perl scripts used to clean text prior to parsing and storage. In

addition to the Perl standard functions, a number of Unix tools were used such as sed, grep, tr,

and uniq, making these scripts dependent on a Unix-like environment.

Step Script Role
1 delete duplicate docs.pl Removes duplicate text files.
2 delete non english docs.pl Removes documents which contain less than 80% valid English words.
3 chunk sentences.pl Separates sentences, leaving one per line.
4 expand contractions.pl Expands contractions to separate words.
5 lexicalise patterns.pl Patterns like URLs are converted to tokens like <URL>.
6 remove weird punctuation.pl Removes typographic punctuation and special characters.
7 separate punctuation.pl Wraps all punctuation in spaces.
8 split invalid hyphenations.pl Those hyphenated words not in a dictionary are split into separate words.
9 lexicalise symbols.pl Symbols like $ are replaced with tokens like <DOLLAR>.

10 embed postags.pl Appends every word with its POS tag (eg. ’risk|VB’).
11 remove long words.pl Removes long words.
12 remove stopwords.pl Removes common closed-class words.
13 remove nonwords.pl Removes any word not found in an English dictionary.
14 convert to uppercase.pl Converts all characters to uppercase.

Table B.1: Scripts used in the text pre-processing sub-system. Each script is technically optional,
however, the order in which they operate is fixed. Some steps rely on previous steps, such as
separating punctuation before removing non-words. Steps 10 and 11 are particularly optional and
were not used in preparing corpora for use in the lexical models. Step 3 uses the OpenNLP Toolkit
and step 10 uses TreeTagger.

The text stream takes the output from the pre-processing routines, to persist useful data in the

database. This module centered around the use-case where a user wants to prepare a corpus for

use with a corpus-based model such as LSA. The main script takes a cleaned corpus (a directory of

pre-processed plain-text files, representing documents) and inserts them into the database. During

the insertion, the texts are parsed with the Stanford Parser [33, 155]6. Within-sentence phrases

were also separated by traversing the resulting parse-trees and nouns (single- and multi-word) are

also stored.

This module includes some maintenance routines. The first of which was for stemming all

words in the database. Though stemming a single word is comparable in processing time to a

database lookup, various implementations differ across languages and libraries. To assure that

stemming was consistent when using different programming platforms, a single Java program

was written to extract, stem and save all unique word-stem pairs in the database. This table later

replaces the actual stemmer in subsequent routines. Another set of scripts provided some one-

off reporting tools, which informed a summary comparison of the text collections. By writing

scripts to report various aspects like size, vocabulary, average document length, the database, later

analysis was simplified.

6http://nlp.stanford.edu/software/lex-parser.shtml; 3 March, 2013.
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Output 1: Candidate Assertions

The output of the text stream, described in section B.4, is a set of candidate assertions. Technically

these are relational triples of the form 〈w1,w2,gramel〉. However, gramel may be null, though

that will exclude the application of some of the grammatical heuristics mentioned above, like

predication or selectional preference violation. This output is unordered, but preserves a trace to

the text collection, document, sentence and optionally, the embedded phrase in which it was found.

Each layer of this trace, which is stored in the database, can be used in the other modules of the

system: the semantic stream and metaphor identification. These candidates are then passed to the

semantic stream where each item will undergo the cluster analysis.

B.2.2 Semantic Stream

The semantic stream is responsible for building a model with which to associate words, and to

use the model to build clusters around terms from Metalude. There are two types of corpus-based

models – DSMs and COLE models. The corpus-based models are described in section 4.4.4. This

section describes how each class of model was implemented to build and persist word-clusters.

The DSMs were implemented using the S-Space package7 (see section 4.4.4), with the ex-

ception of LSA, which was implemented in Ruby. S-Space provides binary Java programs which

take a corpus as input and produce a semantic space as a MATLAB sparse matrix, compatible

with the same package’s Semantic Space Explorer. The binaries for HAL, COALS and BEAGLE

were used to generate the semantic spaces for each combination of model × similarity function ×
corpus combination, which resulted in 172 spaces in total8.

The COLE models were implemented in a Java program based on one by Dr. Hua Huo de-

scribed and tested in [105]. There were two modifications to the original application. First, it was

made headless – that is the GUI was converted to non-interactive CLI, so that it could be called by

other scripts. The second change was the implementation of threading. Given a single estimation

in the TASA corpus takes about 2 seconds and the search must exhaust |V ×R|, for the corpus’

vocabulary V and the Metalude terms R, which for TASA was a total of 17,657,876 pairs. Java’s

variable thread-pool system was used to create new threads at runtime as they become available

given system load. Ad-hoc tests showed a speed increase of approximately an order of magnitude.

The Java programs for COLE modeling are available online9.

The WordNet model used Lin similarity to get distances between term-pairs [144, 167]. Word-

Net 3.1 was used as was an implementation of Lin similarity in the Perl modules Lingua::WordNet

and WordNet::Similarity [173]. Because WordNet similarity calls are relatively inexpensive, an

exhaustive set of a clusters was not built (or saved) for this model. This results in slightly slower

execution in this configuration. Given that clusters were not built for the WordNet model, and that

WordNet is not corpus-based, the cluster quality metrics, purity and entropy, are not applicable in

this configuration.

7https://code.google.com/p/airhead-research/; 9 August, 2013.
8Available at http://www.scss.tcd.ie/˜gerowa/metid/.
9http://www.scss.tcd.ie/˜gerowa/co-occurrence
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S-Space

S-Space is an open-source software package which provides reference implementations for a num-

ber of distributional semantic models [115]. As of this writing S-Space includes implementations

of document-based models (LSA and Salton’s VSM), co-occurrence models (HAL and COALS)

and approximation models (random indexing, BEAGLE and ISA). It also provides libraries for

common tasks like vector comparison and matrix reduction. S-Space was used for the HAL,

COALS and BEAGLE models. LSA was re-implemented in Ruby, which proved faster, but S-

Space was used to interact with the sparse-matrices of the other DSMs.

Output 2: Word Clusters

After a model is constructed with a corpus, the result is a semantic space is a binary sparse matrix

file. The space is then loaded by S-Space’s Semantic Space Explorer to get the nearest neighbours

for each of seed word. The algorithm for creating the models and clusters is described in section

4.4.4. Each cluster consisted of the 200 nearest neighbors to the nucleus, which is a term in

Metalude. For each cluster, a number of similarity functions were used: cosine, Euclidean, Pearson

correlation, Jaccard coefficient and Spearman’s rank coefficient. The same method was used for

the COLE models, except that S-Space was not used, and the similarity function is dictated by the

COLE method. Here, a Ruby script was used to analyse the output of the COLE Java program,

to find the top 200 most likely co-occurring terms for each seed in Metalude. Clusters from the

DSMs and COLE models were stored in the database. The schema for this storage is given in

B.1 (rightward branch of the Collections table). The functional aspects of cluster verification are

described in 5.3. This analysis was done entirely with the database, without respect to the models

or the resulting spaces. The evaluation of the clusters used the purity and entropy calculations,

which were derived from the clustered words’ relative frequency in the configured corpus.

B.2.3 Core Module: Analysis / Metaphor Identification

The analysis module is responsible for taking relational triples or sentences from the text stream,

and using the word-clusters from semantic stream to derive a ranked list of candidate metaphors.

The algorithm is describe more formally later in this appendix, but the intuition behind it is that

if MetID observes two related words, which respectively cluster around a terms from Metalude,

then it may be an instance of that metaphor. This process is described in section 4.2. The analysis

module consists of Ruby script that takes arguments to set parameters for the model, similarity

function, corpus and of course, the text to analyse. This module is also where the heuristics are

implemented (see section 4.5). Some of these heuristics use information from the parsed sentence

(output from the text stream). The cluster quality heuristics also implemented here. This module

has options for special use-cases. These include forcing a choice of topic or vehicle term in a

sentence. This feature is specific useful in investigating a particular metaphor, for example the use

of the word contagion in financial texts. Another helpful feature is the ability to group candidate

metaphors into Goatly’s Map of Root Analogies [92] which allows a broad corpus analysis of

various patterns of metaphor-use.
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Output 3: Potential Metaphors

The final output from MetID is a rank-ordered list of candidate metaphors for the each item anal-

ysed from the text stream. The output is a CSV file, which is typically piped from the final script

and written iteratively. This output, given its format and size, is usually analysed further to present

the results like those in chapter 5. Often, the results were limited to the top-scoring candidate

metaphor10. In practice, the results were limited to the top 20 best candidates. An example of

these final results is given at the end of this appendix.

B.3 Database Design

The MetID database began as a persistence schema for various long-term data like the corpora

and Metalude examples. For technical considerations of time and efficiency, the database (and its

schema) grew to accommodate other data like the word clusters, stems, dependency parses and

phrases extracted from text. By using a central data-store, various development and use-cases

were able to be made parallel. For example, at a given point, a corpus could be being cleaned and

parsed while another was being used to build word clusters, while a third program could be using

the database for analysis. Figure B.1 contains the database schema.

With regard to figure B.1, there are two main trees descending from the Collections table:

Clusters and Documents. The Documents tree organises the text into collections, containing tables

for chunked sentences, phrases, parses and an unused table of extracted noun-terms. The Clusters

tree contains the word clusters generated from a given collection. Within the Clusters tree there

is a table of methods which corresponds to the lexical model (type, variant and full / held-out

distinction) as well as a table of all clustered words. Separate from the Collections table are

three resources, only one of which was used. In the top left of figure B.1 is a table containing

Shutova’s raw results [198]11, the veracity of which she expressed concern12. In the upper right is a

scraped copy of Lakoff’s Master Metaphor List [134]. This resource, while derived from Lakoff’s

extensive work on metaphor, is less structured and less internally consistent that Metalude. Lastly,

is a schema for Goatly’s Map of Root Analogies, which was scraped with permission from the

Metalude website13. The root table, Root Analogies, references a set of examples, which in turn

has a table of dependency parses, MetRelations.

10This score appears to follow a type-2 power-law with a Pareto distribution – the farther down the rank-order, the
less different the scores.

11Thanks to Ekaterina Shutova for making these results available in their raw form.
12Personal communication; 29 March, 2012. I, however, am not clear whether she is concerned with her reported

results or the reliability of her participants’ or perhaps both.
13http://www.ln.edu.hk/lle/cwd/project01/web/home.html; 12 February, 2013.
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Clustered_Words

clustered_word_id INT(11)

cluster_id INT(11)

string TEXT

distance DOUBLE

raw_freq_collection INT(11)

rel_freq_collection DOUBLE

Indexes

Clustering_Methods

clustering_method_id INT(11)

string TEXT

type TEXT

vars TEXT

Indexes

Clusters

cluster_id INT(11)

clustering_method_id INT(11)

collection_id INT(11)

nucleus TEXT

distance_metric VARCHAR(16)

relative_purity DOUBLE

relative_log_shannon_entropy DOUBLE

Indexes

Collections

collection_id INT(11)

string VARCHAR(32)

Indexes

Documents

document_id INT(11)

collection_id INT(11)

author VARCHAR(64)

publish_date DATE

event_date DATE

title TEXT

desc TEXT

Indexes

Master_Examples

master_example_id INT(11)

master_metaphor_id INT(11)

string TEXT

parse_tree TEXT

parse_relations TEXT

Indexes

Master_Metaphors

master_metaphor_id INT(11)

lakoff_string TEXT

target_term VARCHAR(32)

vehicle_term VARCHAR(32)

Indexes

MetRelations

met_relation_id INT(11)

metaphor_id INT(11)

relation VARCHAR(16)

arg_1 TEXT

arg_2 TEXT

arg_1_position INT(11)

arg_2_position INT(11)

Indexes

Metaphors

metaphor_id INT(11)

root_analogy_id INT(11)

lexical_string TEXT

literal_meaning TEXT

metaphorical_meaning TEXT

pos_construct TEXT

example TEXT

topic_example TEXT

vehicle_example TEXT

parse_tree TEXT

parse_relations TEXT

Indexes

Nouns

noun_id INT(11)

string TEXT

sentence_id INT(11)

type VARCHAR(16)

Indexes

Phrases

phrase_id INT(11)

sentence_id INT(11)

raw_text LONGTEXT

parsed_text LONGTEXT

cleaned_text TEXT

Indexes

Relations

relation_id INT(11)

sentence_id INT(11)

relation VARCHAR(16)

arg_1 TEXT

arg_2 TEXT

arg_1_position INT(11)

arg_2_position INT(11)

Indexes

Root_Analogies

root_analogy_id INT(11)

goatly_string TEXT

map TEXT

topic_term TEXT

vehicle_term TEXT

v_condensed_from TEXT

t_condensed_from TEXT

inverted VARCHAR(1)

Indexes

Sentences

sentence_id INT(11)

document_id INT(11)

raw_text LONGTEXT

cleaned_text TEXT

parse_relations TEXT

parse_tree TEXT

line_no INT(11)

extra_cleaned_text TEXT

Indexes

Shutova_Met_Mappings

shutova_met_mapping_id INT(11)

linguistic_text VARCHAR(32)

literal_mapping TEXT

type VARCHAR(32)

Indexes

Stems

word TEXT

stem TEXT

Indexes

Figure B.1: The MetID database entity / relation schema. At the final stages of development, the
database was 18GB on disk.
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B.4 Sample Run

MetID can be run in two modes: rank or decide. Rank mode generates an ordered list of can-

didate metaphors in the way described in section 4.2. The input for this mode is a text file of

line-delimited sentences in UTF-7/8 or ASCII encoding. The output, then, is an ASCII-encoded

CSV spreadsheet of the results. Each unit extracted from the input will have a list of 20 best

candidate metaphors, which can be combined manually or independently analysed. MetID runs at

the command line in a Unix-like environment. The output is written to STDOUT, which can be

redirected to an output file. STDERR is used for progress information, shown in table B.2, as well

as any run-time errors.

1 Loading candidate mapping...
2 Processing "My heart is a fire that burns with love.":
3 Parsing and cleaning sentence...
4 Looking for probable targets and vehicles...
5 Terms were guessed: (heart, fire)
6 Getting additional triples to analyse...
7 Building similarity calls...
8 sentence("heart love fire"): Finding best topic and vehicle terms...
9 sentence("heart love fire"): Applying bonus and penalty heuristics...
10 pred(heart,fire): Finding best topic and vehicle terms...
11 pred(heart,fire): Applying bonus and penalty heuristics...
12 nsubj(fire,burn): Finding best topic and vehicle terms...
13 nsubj(fire,burn): Applying bonus and penalty heuristics...
14 All done!

Table B.2: Sample progress output from MetID.

Rank-mode

If MetID is run in decide mode, it will try to choose the more figurative of a pair of sentences.

These sentences are input as a text file, with each pair on a line, separated by a bar |. Decide

mode works similarly to the rank mode, except that for each sentence the score is calculated as

the mean of maxima over all units of analysis. That is, the result is the sentence with the higher

average score across all of its extracted units. The output in decide mode includes the scores for

each sentence and their difference (figure B.2).

Crime is a problem.|Crime is a disease.
Dancers are people.|Dancers are butterflies.
The bike moved along the trail.|The bike tiptoed along the trail.

⇓
Sentence1 Score1 Sentence2 Score2 Score2-Score1
Crime is a problem 0.92 Crime is a disease 0.98 0.06
Dancers are people 0.59 Dancers are butterflies 0.87 0.28
The bike tiptoed along the trail 0.84 bike moved along the trail 0.90 0.06

Figure B.2: Example input and output data for MetID when run in decide mode.
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Decide Mode

In addition to the input files, options are passed at execution time to select the model-type (Word-

Net, DSM or COLE), the specific model (LSA-400, COALS-14000, etc.), the distance function

(cosine, Euclidean, Lin similarity, etc.) and corpus with which the seed-clusters were built. The

output is a plain-text CSV file with fields for the input, unit of analysis, identified topic term, dis-

tance from topic-term to the candidate topic, identified vehicle term, its distance to the candidate

vehicle, the location of the candidate metaphor on the map of root analogies, the topic cluster’s

purity and entropy, the vehicle cluster’s purity and entropy, a the list of heuristics applied and the

score. Table B.3 lists the heuristics referenced in the system’s output. Table B.4 contains out-

put from the sentence “My heart is on fire with love.” in rank mode using the WordNet model.

Because WordNet does not generate clusters, the for purity and entropy are omitted. Tables B.5

and B.6 show the results for the same sentence run with the LSA-500 and BEAGLE-512 models

respectively.

# Heuristic Type Description
1 Non-word Penalty The identified topic or vehicle, are not valid words.

2a WN Synonyms Bonus The identified topic is a synonym of the candidate topic.
2b WN Synonyms Bonus The identified vehicle is a synonym of the candidate vehicle.
3a Marker Bonus The sentence contains a strong marker.
3b Cue Bonus The sentence contains a marker.

4 Unpaired Metaphor Large Penalty Could not find a metaphor with a pairing given by Metalude.
5 Predication Large Bonus∗ If the unit is a predication, and the identified vehicle predi-

cates the topic.
6 Selectional Violation Large Bonus∗∗ If the identified topic and vehicle are in a relationship which

violates the selectional association of the root word.
7 Hypernym Penalty If the identified vehicle and topic are nouns, and the vehicle

is a hypernym of the the topic.

Table B.3: The heuristics described in section 4.5 as referenced in the example output in tables
B.4, B.5 and B.6.
∗The predication bonus is scaled by .25, .5, .75 or 1 depending on whether the observed predication strength is stronger

than the median, mean or 1 SD + mean of all other predications with the same root.
∗∗The selectional violation bonus is scaled similarly to the predication bonus, but with added respect to the grammatical

relationship.
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Unit Candidate Metaphor Topic Distt Vehicle Distv RA Sector Heuristics Score
sentence AFFECTION=WARMTH heart 1.0 love 0.80 2B 2a 0.97
sentence PASSION=HEAT love 1.0 fire 0.71 2B 2a 0.96
sentence LOVE=HEAT love 1.0 fire 0.71 2B 2a 0.96
sentence KNOWN=OPEN love 1.0 heart 0.59 3B B1 2a 0.94
sentence KNOW=SEE love 1.0 fire 0.50 3B 2a 0.93
sentence EMOTION=IMPRESSION love 0.82 heart 0.92 2B B3 0.93
sentence AFFECTION=WEALTH heart 1.0 love 0.36 2A 2a 0.92
sentence IMPROVEMENT=RAISE love 0.36 fire 1.0 1C D1 2b 0.92
sentence AFFECTION=MONEY heart 1.0 fire 0.32 2A 2a 0.91
sentence SUBSTANCE=HUMAN heart 1.0 love 0.21 6B 2a 0.90
sentence HUMAN=MEAT love 0.21 heart 1.0 5A 2b 0.90
sentence ACTIVITY=PLACE fire 0.84 heart 0.70 4D 0.88
sentence EMOTION=HEAT love 0.82 fire 0.71 2B 0.88
sentence INTEREST=PROXIMITY fire 0.83 heart 0.66 3D 0.87
sentence EMOTION=LIGHT love 0.82 heart 0.66 2B 0.87
sentence EFFECT=IMPRESSION fire 0.55 heart 0.92 2B 0.87
sentence QUANTITY=WATER heart 0.54 fire 0.93 1A 0.86
sentence CRITICISM=HEAT fire 0.87 heart 0.57 2B 0.86
sentence EXPERIENCE=IMPRESSION fire 0.52 heart 0.92 2B 0.86
sentence ACTIVITY=HEAT fire 0.84 heart 0.57 2B 0.85
pred(heart,fire) AFFECTION=WARMTH heart 1.0 fire 0.42 2B 2a 5 0.92
pred(heart,fire) IMPROVEMENT=RAISE heart 0.33 fire 1.0 1C D1 2b 5 0.91
pred(heart,fire) AFFECTION=WEALTH heart 1.0 fire 0.32 2A 2a 5 0.91
pred(heart,fire) AFFECTION=MONEY heart 1.0 fire 0.32 2A 2a 5 0.91
pred(heart,fire) SUBSTANCE=HUMAN heart 1.0 fire 0.15 6B 2a 5 0.89
pred(heart,fire) HUMAN=MEAT fire 0.15 heart 1.0 5A 2b 5 0.89
pred(heart,fire) ACTIVITY=PLACE fire 0.84 heart 0.70 4D 5 0.88
pred(heart,fire) PASSION=HEAT fire 0.95 heart 0.57 2B 5 0.88
pred(heart,fire) EMOTION=IMPRESSION fire 0.59 heart 0.92 2B B3 5 0.87
pred(heart,fire) INTEREST=PROXIMITY fire 0.83 heart 0.66 3D 5 0.87
pred(heart,fire) EFFECT=IMPRESSION fire 0.55 heart 0.92 2B 5 0.87
pred(heart,fire) QUANTITY=WATER heart 0.54 fire 0.93 1A 5 0.86
pred(heart,fire) CRITICISM=HEAT fire 0.87 heart 0.57 2B 5 0.86
pred(heart,fire) EXPERIENCE=IMPRESSION fire 0.52 heart 0.92 2B 5 0.86
pred(heart,fire) ACTIVITY=HEAT fire 0.84 heart 0.57 2B 5 0.85
pred(heart,fire) OPINION=CURRENT heart 0.92 fire 0.46 3A C3 5 0.84
pred(heart,fire) INTELLIGENCE=LIGHT fire 0.72 heart 0.66 3B 5 0.84
pred(heart,fire) FEELING=EATING heart 0.92 fire 0.46 2A 5 0.84
pred(heart,fire) ANGER=HEAT fire 0.79 heart 0.57 2B 5 0.84
pred(heart,fire) FEELING=CONTROL heart 0.92 fire 0.44 3B 5 0.84
nsubj(fire,burns) INTELLIGENCE=LIGHT fire 0.72 burn 0.98 3B 6 0.91
nsubj(fire,burns) IMPROVEMENT=RAISE burn 0.40 fire 1.00 1C D1 6 2b 0.91
nsubj(fire,burns) EMOTION=LIGHT fire 0.60 burn 0.98 2B 6 0.87
nsubj(fire,burns) ACTIVITY=SHOOTING fire 0.85 burn 0.67 4C 6 0.85
nsubj(fire,burns) ACTIVITY=SAILING fire 0.85 burn 0.67 4C 6 0.85
nsubj(fire,burns) ACTIVITY=PLACE fire 0.85 burn 0.67 4D 6 0.85
nsubj(fire,burns) ACTIVITY=SWIMMING fire 0.85 burn 0.67 4C 6 0.85
nsubj(fire,burns) HAPPINESS=LIGHT fire 0.51 burn 0.98 2B 6 0.84
nsubj(fire,burns) HOPE=LIGHT fire 0.49 burn 0.98 2B 6 0.84
nsubj(fire,burns) EXCITEMENT=LIGHT fire 0.49 burn 0.98 2B 6 0.83
nsubj(fire,burns) PASSION=HEAT fire 0.96 burn 0.49 2B 6 0.83
nsubj(fire,burns) LIGHT=LIQUID burn 0.98 fire 0.47 5A 6 0.83
nsubj(fire,burns) EMOTION=COLOUR fire 0.60 burn 0.80 2B 6 0.81
nsubj(fire,burns) DISEASE=INVASION burn 0.63 fire 0.76 5D C5 6 0.81
nsubj(fire,burns) CRITICISM=HEAT fire 0.87 burn 0.49 2B 6 0.80
nsubj(fire,burns) EMOTION=SOUND fire 0.60 burn 0.76 2B B3 6 0.80
nsubj(fire,burns) ACTIVITY=HEAT fire 0.85 burn 0.49 2B 6 0.79
nsubj(fire,burns) COMMUNICATION=CONTACT burn 0.80 fire 0.52 3D C3 6 0.79
nsubj(fire,burns) REPUTED=LIGHT fire 0.33 burn 0.98 1B 6 0.79
nsubj(fire,burns) IMPRESSIVE=LIGHT fire 0.33 burn 0.98 1B 6 0.79

Table B.4: Output from running MetID in rank mode on the single sentence “My heart is a fire
that burns with love.”, using WordNet as the lexical model. Note that three units are analysed: the
sentence as a whole, the predication (heart, fire) and the nominal subject (fire, burn). RA Sector
refers to the map of root analogies (figure 3.4). Referenced heuristics are listed in table B.3.
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Unit Candidate Metaphor Topic Distt Vehicle Distv RA Sector Purityt Entropyt Purityv Entropyt Heuristics Score
sentence AFFECTION=WARMTH love 0.41 fire 0.52 2B 0.17 0.81 0.07 0.91 0.72
sentence EMOTION=COLOUR heart 0.41 fire 0.30 2B 0.07 0.90 0.08 0.88 0.67
sentence AWARENESS=PROXIMITY heart 0.48 love 0.20 3D 0.07 0.90 0.04 0.85 0.66
sentence SADNESS=DISCOMFORT heart 0.35 burn 0.30 2B 0.09 0.87 0.08 0.88 0.65
sentence ARGUING=ATTACKING love 0.33 heart 0.30 3C 0.18 0.81 0.03 0.92 0.65
sentence ARGUING=WOUNDING love 0.33 fired 0.21 3C 0.18 0.81 0.12 0.64 0.64
pred(heart,fire) EMOTION=COLOUR heart 0.41 fire 0.30 2B 0.07 0.90 0.08 0.88 5 0.67
pred(heart,fire) SADNESS=DISCOMFORT heart 0.35 fire 0.28 2B 0.09 0.87 0.08 0.88 5 0.65
nsubj(fire,burn) DISCOMFORT=MEAT burn 0.30 fire 0.66 unpaired 0.08 0.88 0.06 0.92 4 6 0.51
nsubj(fire,burn) DISCOMFORT=SUBSTANCE burn 0.30 fire 0.63 unpaired 0.08 0.88 0.07 0.92 4 6 0.51
nsubj(fire,burn) DISCOMFORT=CROWD burn 0.30 fire 0.63 unpaired 0.08 0.88 0.08 0.89 4 6 0.51
nsubj(fire,burn) TYING=MEAT burn 0.25 fire 0.66 unpaired 0.10 0.84 0.06 0.92 4 6 0.51
nsubj(fire,burn) DISCOMFORT=SOLUTION burn 0.30 fire 0.61 unpaired 0.08 0.88 0.07 0.91 4 6 0.51
nsubj(fire,burn) DISCOMFORT=HAPPENING burn 0.30 fire 0.60 unpaired 0.08 0.88 0.07 0.92 4 6 0.51
nsubj(fire,burn) TYING=SUBSTANCE burn 0.25 fire 0.63 unpaired 0.10 0.84 0.07 0.92 4 6 0.50
nsubj(fire,burn) DISCOMFORT=COOKING burn 0.30 fire 0.58 unpaired 0.08 0.88 0.07 0.91 4 6 0.50
nsubj(fire,burn) UNCLEAR=MEAT burn 0.21 fire 0.66 unpaired 0.18 0.77 0.06 0.92 4 6 0.50
nsubj(fire,burn) TYING=CROWD burn 0.25 fire 0.63 unpaired 0.10 0.84 0.08 0.89 4 6 0.50
nsubj(fire,burn) RELINQUISH=MEAT burn 0.16 fire 0.66 unpaired 0.48 0.40 0.06 0.92 4 6 0.50
nsubj(fire,burn) TYING=SOLUTION burn 0.25 fire 0.61 unpaired 0.10 0.84 0.07 0.91 4 6 0.50
nsubj(fire,burn) UNCLEAR=SUBSTANCE burn 0.21 fire 0.63 unpaired 0.18 0.77 0.07 0.92 4 6 0.50
nsubj(fire,burn) DISCOMFORT=ANGER burn 0.30 fire 0.56 unpaired 0.08 0.88 0.07 0.91 4 6 0.50
nsubj(fire,burn) UNCLEAR=CROWD burn 0.21 fire 0.63 unpaired 0.18 0.77 0.08 0.89 4 6 0.50
nsubj(fire,burn) TYING=HAPPENING burn 0.25 fire 0.60 unpaired 0.10 0.84 0.07 0.92 4 6 0.50
nsubj(fire,burn) RELINQUISH=SUBSTANCE burn 0.16 fire 0.63 unpaired 0.48 0.40 0.07 0.92 4 6 0.50
nsubj(fire,burn) RELINQUISH=CROWD burn 0.16 fire 0.63 unpaired 0.48 0.40 0.08 0.89 4 6 0.50
nsubj(fire,burn) TYING=COOKING burn 0.25 fire 0.58 unpaired 0.10 0.84 0.07 0.91 4 6 0.50
nsubj(fire,burn) UNCLEAR=SOLUTION burn 0.21 fire 0.61 unpaired 0.18 0.77 0.07 0.91 4 6 0.50

Table B.5: Example run of MetID on the sentence “My heart is a fire that burns with love”, using the LSA-500 model.
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Unit Candidate Metaphor Topic Distt Vehicle Distv RA Sector Purityt Entropyt Purityv Entropyt Heuristics Score
sentence LOVE=HEAT love 0.62 burn 0.51 2B 0.12 0.83 0.07 0.83 2a 0.88
sentence GOOD=CLEAN love 0.66 fire 0.53 1B 0.21 0.75 0.12 0.85 0.78
sentence UNDERSTAND=HOLD love 0.58 fire 0.57 3B 0.10 0.87 0.10 0.88 0.77
sentence FEAR=COLD love 0.55 fire 0.57 2B 0.10 0.87 0.05 0.89 0.76
sentence IDEA=PLACE love 0.54 fire 0.56 3D 0.09 0.89 0.09 0.90 0.76
sentence TRAFFIC=BLOOD fire 0.39 heart 0.68 6A 0.10 0.87 0.13 0.73 0.75
sentence IDEA=CLOTHES love 0.54 fire 0.53 3A 0.09 0.89 0.11 0.85 0.75
sentence PLACE=BODY fire 0.56 heart 0.51 6B 0.09 0.90 0.04 0.89 0.75
sentence IDEA=SOUND love 0.54 fire 0.50 2B B3 0.09 0.89 0.11 0.87 0.74
sentence IDEA=DISEASE love 0.54 heart 0.49 3B 0.09 0.89 0.07 0.86 0.74
sentence DISEASE=IDEA heart 0.49 love 0.54 3B 0.07 0.86 0.09 0.89 0.74
sentence ANGER=HEAT love 0.51 burn 0.51 2B 0.11 0.86 0.07 0.83 0.74
sentence SIGHT=SOUND love 0.50 fire 0.50 5B 0.10 0.87 0.11 0.87 0.73
sentence SOUND=TOUCH fire 0.50 love 0.48 5B 0.11 0.87 0.11 0.85 0.73
sentence TOUCH=SOUND love 0.48 fire 0.50 5B 0.11 0.85 0.11 0.87 0.73
sentence EXCITEMENT=HEAT love 0.45 burn 0.51 2B 0.10 0.87 0.07 0.83 0.72
sentence EVIL=DARK love 0.38 fire 0.55 1B 0.13 0.80 0.11 0.85 0.72
sentence IDEA=SMELL love 0.54 fire 0.39 2B B3 0.09 0.89 0.11 0.86 0.72
sentence HAPPINESS=LIGHT love 0.46 fire 0.46 2B 0.12 0.87 0.13 0.81 0.72
sentence EXCITEMENT=LIGHT love 0.45 fire 0.46 2B 0.10 0.87 0.13 0.81 0.71
pred(heart,fire) TRAFFIC=BLOOD fire 0.39 heart 0.68 6A 0.10 0.87 0.13 0.73 5 0.75
pred(heart,fire) PLACE=BODY fire 0.56 heart 0.51 6B 0.09 0.90 0.04 0.89 5 0.75
pred(heart,fire) EMOTION=BODY fire 0.27 heart 0.51 3B 0.13 0.84 0.04 0.89 5 0.68
pred(heart,fire) DISEASE=EMOTION heart 0.49 fire 0.27 3B 0.07 0.86 0.13 0.84 5 0.68
pred(heart,fire) EMOTION=DISEASE fire 0.27 heart 0.49 3B 0.13 0.84 0.07 0.86 5 0.68
pred(heart,fire) INACTIVITY=SLOW heart 0.20 fire 0.51 4C 0.06 0.77 0.10 0.88 5 0.67
pred(heart,fire) EXTREMITY=FEAR heart 0.18 fire 0.45 1B 0.09 0.75 0.10 0.87 5 0.65
pred(heart,fire) EMOTION=FLUID fire 0.27 heart 0.29 3B 0.13 0.84 0.08 0.82 5 0.64
nsubj(fire,burn) PASSION=HEAT fire 0.28 burn 0.51 2B 0.11 0.84 0.07 0.83 6 0.61
nsubj(fire,burn) EMOTION=HEAT fire 0.27 burn 0.51 2B 0.13 0.84 0.07 0.83 6 0.61
nsubj(fire,burn) EMOTION=GAS fire 0.27 burn 0.42 2A 0.13 0.84 0.07 0.85 6 0.58
nsubj(fire,burn) EXTREMITY=FEAR burn 0.20 fire 0.45 1B 0.09 0.75 0.10 0.87 6 0.57
nsubj(fire,burn) EMOTION=ELECTRICITY fire 0.27 burn 0.34 2B 0.13 0.84 0.05 0.86 6 0.56

Table B.6: Example run of MetID on the sentence “My heart is a fire that burns with love”, using the BEAGLE-512 model.
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B.5 Analysis of Algorithms

There are two main algorithms at work in MetID: word clustering and metaphor identification.

This section will define these algorithms more formally and provide a brief complexity analysis.

The space requirements of each algorithm are not considered because neither appears to exhibit

abnormal behaviour in this regard. Because the text stream algorithms (cleaning, parsing, etc.)

are not unique to MetID, they are not reviewed here. Likewise, because the individual DSM

algorithms are explained and analysed in their respective literature, they are not covered here.

Word Clustering

The word clustering algorithm is responsible for the main output of the semantic stream described

above. The algorithm described here is exhaustive over collections, models and seed terms (from

Metalude). In the implementation of this procedure, the collection and model may be given indi-

vidually, instead of iterated through. Figure B.3 describes the algorithm.

1 in: Database of collections and clusters, DB.
in: Collection of document-segmented texts (corpus), C.
in: Set of target-vehicle pairs 〈target,vehicle〉, R.
in: Set of semantic models {WordNet,LSA300,LSA100,etc.}, M.

5 in: Set of vector distance functions {cosine,euclidean,etc.〉}, Φ.
in: Number of nearest neighbors with which to populate clusters, n.
set: Clusters = {∅ 7→ {∅}}
Dump all documents in C from DB for use in M.
for m ∈M:

10 if: m /∈ DBmethods
Insert m into DBmethods.

end if
Generate semantic space S using m.
for ϕ ∈Φ:

15 for Term t ∈ (Rtargets∪Rvehicles):
Clustert 7→ {∅}
for i ∈ 0...n:

push: ith nearest neighbour of t in S: Clustert 7→ {...,〈ti,ϕ(t, ti)〉}.
end for

20 for Neighbour w ∈Clustert :
Calculate relative frequency, f relw, and raw frequency, f raww, of w in C.
Insert 〈w, f relw, f raww〉 into DB.

end for
Calculate entropy, entropyCluster, and purity, purityCluster, using w ∈Cluster.

25 Amend Cluster in DB with entropyCluster and purityCluster.
end for

end for
Save S to disk.

end for

Figure B.3: The word clustering algorithm implemented in the semantic stream module. Note that
in practice, M and Φ may be specified (as m and ϕ) similar to how C is given.
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In the exhaustive case, the outer most loops (lines 9 and 14) contribute exponentially to the

complexity. In this case, the algorithm is in multi-polynomial space where complexity is MΦ2Rn

∈
O(nm) where m is factorial. However, if M and Φ are specified (as c and ϕ beginning at line 15)

it runs in regular polynomial space with 2Rn ∈ O(nm) where m is non-factorial. This puts time-

complexity for each cluster (of which there were 479 in every case) at |M| ∗ |Φ| ∗ |R| ∗ n which

for all DSMs is 16 ∗ 6 ∗ 2 ∗ n = 64n, plus the COLE models 1 ∗ 3 ∗ 2 ∗ n = 6n plus the WordNet-

based model 1 ∗ 1 ∗ 2 ∗ n = 2n resulting in a total of 72n ∗ 479 = 34488n. And because n was set

to 200, this resulted in a grand total of 6,897,600 operations. A clustering operation, however,

is not entirely atomic. For instance, Ruby implements a standard O(n) HASH INSERT algorithm

which is used in line 18, as well as a loop using Ruby’s O(logn) HASH READ. There are also

three calculations (lines 18 and 24) and two database insertions (lines 22 and 25) for each cluster.

Additionally, there is a conditional insert (line 11) and a persistence operation for each model (line

28).

Metaphor Identification

The metaphor identification algorithm is the last and perhaps most important procedure in MetID.

It takes a set of word-relation-word triples from the text stream and a set of word-clusters generated

by the semantic stream; it returns a rank-ordered list of candidate metaphors for each item in the

input. The algorithm presented here is in its exhaustive form, where it examines every triple with

every set of clusters. Another use-case, perhaps yielding more tractable results, is to examine a

given sentence using a particular set of clusters. For example, given the results of chapter 5, it

may be enticing to simply use the TASA clusters built using the COALS-14k model, to identify

metaphors in a single newspaper article. This use-case was typical of the evaluation of the system.

The algorithm begins with O(msr2

) for the control loops (lines 7-9), O(kn) for calculating the

heuristics, purity and entropy, O(2n) for normalising the results (line 26), and finally O(n logn) for

sorting them (line 27). This puts it in log-polynomial with n∗msr2

∗2n∗n logn∈O(nm logn) where

n is linear and m is factorial. Implemented, there was |M|= 64, |R|= 479, S is of varying size de-

pending on the use-case, but each element has 2 words. This makes our final number of operations

4608∗2|S| log |S|. Like the preceding section, this complexity analysis is not exhaustive.
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1 in: Set of relational triples 〈w1,w2,rel〉 or set of word-pairs 〈w1,w2,rel =∅〉, S.
in: Set of target-vehicle pairs 〈target,vehicle〉, R.
in: Set of semantic spaces (models) {WordNet-Lin,LSA300-cos,LSA300-euc,etc.}, M.
in: Number of results to return (ordered best to worst), n.

5 set: Ŝ = {∅} (to hold results).
for m ∈M:

for s ∈ S:
for r ∈ R:

for each word w ∈ s:
10 d1 := the distance from w to rtarget under m.

d2 := the distance from w to rvehicle under m.
Score := d1+d2

2 . (Score ∼ “s is in an instance of r”)
Apply grammatical bonuses for srel as Score += 1−Score

2 .
Apply grammatical penalties for srel as Score /= 2.

15 Apply lexical bonuses for sw1 and sw2 as Score += 1−Score
2 .

Apply lexical penalties for sw1 and sw2 as Score /= 2.
if: m 6=WordNet

Score /= mpurity.
Score *= mentropy.

20 end if
push: 〈s,rtarget ,rvehicle,Score〉 on to Ŝ.

end for
end for

end for
25 end for

Normalise ŜScore to range [0,1].
Sort Ŝ descending by Score.
Return: {Ŝ0...n}.

Figure B.4: The metaphor identification algorithm. M and S may by specified at execution time as
m and s (lines 6 and 7).
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Appendix C

Data, Text Collections & Test Materials

C.1 Metalude Seed Terminology

Table C.1 contains all the topic-vehicle pairs from Metalude. Topics and vehicles were manu-

ally lexicalised to condense multi-word terms into single words. Usually, this involved removing

adjective modifiers, resulting in more general, singular nouns.

Topic Original Topic Vehicle Original Vehicle Sector
ACCEPTANCE VITALITY 3B
ACHIEVEMENT HIGH 1D
ACTIVITY GAME BALL GAME 4C
ACTIVITY GAME BOARD GAME 4C
ACTIVITY TRAVEL BOAT TRAVEL 4C
ACTIVITY BUILDING 4C
ACTIVITY GAME CARD GAME 4C
ACTIVITY DANCING 4C
ACTIVITY FIGHTING 4C
ACTIVITY FISHING 4C
ACTIVITY HUNTING 4C
ACTIVITY GAME GAMBLING GAME 4C
ACTIVITY GAME 4C
ACTIVITY MUSIC 4C
ACTIVITY PERFORMANCE 4C
ACTIVITY PLACE 4D
ACTIVITY SAILING 4C
ACTIVITY SHOOTING 4C
ACTIVITY SWIMMING 4C
ACTIVITY THEATRE 4C
ACTIVITY RACE 4C
ACTIVITY PATH 4D
ACTIVITY WRITING 4C
ACTIVITY HIGH 4D
ACTIVITY ABOVE 4D
ACTIVITY BODY HUMAN BODY 4B
ACTIVITY LIVING 4B
ACTIVITY MOVEMENT MOVEMENT (FORWARD) 4C
ACTIVITY AGRICULTURE 4C
ACTIVITY LIQUID 2A
ACTIVITY EXCITED ACTIVITY ELECTRICITY 2B
ACTIVITY EXCITED ACTIVITY HEAT 2B

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
ACTIVITY INTENSE ACTIVITY SPEED 4C
AFFECTION WARMTH 2B
AFFECTION MONEY 2A
AFFECTION WEALTH 2A
AGREEMENT PROXIMITY 3D,D2
ANGER HEAT 2B
ANIMAL HUMAN 6B
ANNOYANCE FRICTION 2B
ANTAGONISM FRICTION 2B
ARGUING ATTACKING 3C
ARGUING FIGHTING 3C
ARGUING HITTING 3C
ARGUING PUNCHING 3C
ARGUING WOUNDING 3C
ARGUING CUTTING 3C
ARGUMENT BUILDING 3A
ARGUMENTS WEAPONS 3C
ARGUMENTS AMMUNITION 3C
AWARENESS HIGH 3D
AWARENESS OUT 3D,A2
AWARENESS FIXING 3D
AWARENESS CAPTURE 3D
AWARENESS PROXIMITY 3D
BAD LOW 1D
BAD SMELLY 2A,B2
BAD POOR 1A
BAD CHEAP 1A
BEGIN MOVEMENT START MOVING 4C
BELIEVING WALKING 3C
BELIEVING TRAVELLING 3C
BETTER RISE 1C,D1
BODY HUMAN 5B
BODY HUMAN BODY EARTH 5D,A5
BROKEN LOW 4D
BUILDING BODY 6B
CALM BALANCE 2D
CATEGORY SECTION DIVIDED AREA 3D
CAUSE FORCE 4C
CAUSE LOW 4D
CAUSE PATH 4C
CAUSE LINK 4C
CAUSE CONNECTION 4C
CEASE STOP 4C
CERTAINTY LOW 3D
CERTAINTY SOLIDITY 1C
CERTAINTY FIRMNESS 1C
CESSATION DEATH 4B
CHANGE MOVEMENT 4C,C1
CHANGE CHANGE BEHAVIOUR BEND 1C,C4
CHANGEABLE FLEXIBLE 1C,D3
CHANGEABLE SOFT 1C,D3
CHARACTER BODY BODY PART 3B
CHARACTER FLUID 3B
CHARACTER METAL 1A
CHOICE SPACE SPACE TO MOVE 4D,C4
CHOOSE SEPARATE 3D

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
COLOUR MINERAL 1A
COLOUR PLANT 1A
COMMUNICATION CONTACT 3D,C3
COMMUNICATING COOKING 3A,C3
COMMUNICATING SERVING 3A,C3
COMMUNICATION FLOW 3A,C3
COMMUNICATION MOVEMENT 3C
COMMUNICATION TRAVEL 3C
COMPETITION RACE 4C
COMPETITION WAR 4C
COMPETITION VIOLENCE 4C
COMPETITION COMPETITIVE EQUALITY SPEED EQUALITY OF SPEED 4C
COMPREHENSIBILITY LOW 3D
COMPREHENSIBILITY STRAIGHTNESS 3D
CONCEPTION CREATE AN IDEA CLOTH MAKE CLOTH 3A
CONCEPTION START OF AN IDEA BIRTH 3B
CONFLICT CONFLICTING PURPOSE DIRECTION OPPOSITE DIRECTION 4C,D4
CONSIDER LOOK 3B
CONSIDER TRAVEL TRAVEL OVER 3C,D3
CONSIDER INTO 3C,D3
CONSIDERING CALCULATING 3A
CONTINUATION DISTANCE 4C,D4
CONTINUE MOVEMENT GO ON 4C
CONTROL HANDLE 4B,C4
CONTROL OWN 4B,C4
CONTROL PUSH 1C,D1
CONTROL DOWNWARD PUT DOWN 1C,D1
CONTROL LEAD 4C
CONTROL GUIDE 4C
CONTROL ABOVE 1D
CONTROL HANDLING 4B,C4
CONTROL DESCEND 1C,D1
CONTROLLED BELOW 1D
CORRECTNESS POINT POSITION AT A POINT 3D
CORRECTNESS STRAIGHTNESS 3D
CRITICISING ATTACKING 3C
CRITICISING FIGHTING 3C
CRITICISING HITTING 3C
CRITICISING PUNCHING 3C
CRITICISING WOUNDING 3C
CRITICISING CUTTING 3C
CRITICISM HEAT 2B
CROWD LIQUID 5A
DEAD LOW 1D,D4
DECEIT DOUBLENESS 3B
DECREASE CONTRACT 1C,D1
DECREASE CUT 3B,E4
DECREASE FALL 1C,D1
DESIRE BENDING 2D
DESIRE ATTRACTION 2D
DESIRE APPETITE 2A
DETACHMENT NO RELATIONSHIP DISTANCE 2D
DETACHMENT NO RELATIONSHIP SEPARATION 2D
DETERIORATE FALL 1C,D1
DETERIORATE LOWER 1C,D1
DEVELOP GROW 4B

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
DEVELOPING MOVEMENT MOVING FORWARD 4B
DEVELOPMENT DEVELOPMENT OF AN IDEA GROWTH 3B
DIFFERENCE DISTANCE 3D
DIFFICULT SLOW 4C
DIFFICULTY HARDNESS 1B
DIFFICULTY MUD MUDDY GROUND 4C
DIFFICULTY OBSTACLE 4C
DIFFICULTY DISEASE 4B
DISEASE EMOTION 3B
DISEASE IDEA 3B
DISEASE WAR 5D,C5
DISEASE INVASION 5D,C5
DISINTEREST DISTANCE 3D
DISTRACTION MENTAL DISTURBANCE DIVISION 2D
DISTRACTION MENTAL DISTURBANCE INCOMPLETENESS 2D
EASE SPEED 4C
EFFECT COOKING FOOD PREPARATION 2A
EFFECT IMPACT 4C
EFFECT MARK 4C
EFFECT PRESSURE 4C
EFFECT IMPRESSION SENSE IMPRESSION 2B
ELECTRICITY LIQUID 5A
ELEMENTARY LOW 3D
EMOTE CAUSE BAD EMOTIONS HURT 2B,C2
EMOTE CAUSE BAD EMOTIONS INJURE 2B,C2
EMOTE CAUSE EMOTION STIR 2A,C2
EMOTION CURRENT 2A
EMOTION WAVE 2A
EMOTION EXPLOSION 2B
EMOTION FOOD 2A
EMOTION EATING 2A
EMOTION GAS 2A
EMOTION HEAT 2B
EMOTION HIGH 2D
EMOTION LIGHT 2B
EMOTION COLOUR 2B
EMOTION LIQUID 2A,D3
EMOTION MOVEMENT 2C,C4
EMOTION TOUCH 2B
EMOTION IMPACT 2B
EMOTION WEATHER 2B
EMOTION DISEASE 3B
EMOTION IMPRESSION SENSE IMPRESSION 2B,B3
EMOTION SMELL 2B,B3
EMOTION SOUND 2B,B3
EMOTION ANIMAL 3B
EMOTION HUMAN 3B
EMOTION CONTROL PERSON CONTROLLED 3B
EMOTION PLANT 3A
EMOTION MINERAL 3A
EMOTION ELECTRICITY 2B
EMOTION BODY BODY PART 3B
EMOTION FLUID 3B
EMPOWER GAIN POWER RISE 1C,D1
ENCOURAGE SUPPORT 4C,D4
ENGINE ANIMAL 6B

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
ENGINE HUMAN 6B
EVENT EVENTS IN TIME LINE 4D
EVENT EVENTS IN TIME ROW 4D
EVENT LIQUID 2A
EVIL DARK 1B
EVIL BLACK 1B
EVIL DIRT 1B
EVIL WASTE 1A
EXCITEMENT LIGHT 2B
EXCITEMENT COLOUR 2B
EXCITEMENT HEAT 2B
EXISTENCE PROXIMITY 3D,A3
EXISTENCE HIGH 1D,D4
EXPERIENCE IMPRESSION SENSE IMPRESSION 2B
EXPERIENCE EATING 2A
EXPERIENCE FOOD 2A
EXPERIENCE WEATHER 2B
EXPERIENCE RELATIONSHIP 3B
EXPERIENCE LIQUID 2A
EXPRESSION EMOTIONAL EXPRESSION OUTFLOW 2A,C2
EXPRESSION OUTFLOW 3A,C3
EXPRESSION HIGH 3D
EXPRESSION OUT 3D,A2
EXTREMITY FEAR 1B
FAILURE DIVISION 4D
FAILURE FALLING 1C,D1
FAILURE SHIPWRECK 4C
FAILURE SINKING 4C,D4
FAILURE BACKWARDS 4C
FAMOUS LIGHT 1B
FASHION CURRENT 3A,C3
FEAR COLD 2B
FEELING FEELING EMOTION EATING BEING EATEN 2A
FEELING CONTROL CONTROLLING PEOPLE 3B
FEW SMALL 1D
FOOD HUMAN 6B
FREEDOM RELEASE 4D,C4
FREEDOM SPACE SPACE TO MOVE 4D,C4
FUNDAMENTAL LOW 3D
FUTURE AHEAD 4D
FUTURE FORWARDS 4D
GOOD CLEAN 1B
GOOD WHITE 1B
GOOD FIRST 4C
GOODNESS PURITY 1A
GROUP SOCIAL ORGANISATION BODY 5B
GROUP SOCIAL ORGANISATION BUILDING 5D,A5
HAPPENING ARRIVING 4D,C4
HAPPENING TRAVELLING 4D,C4
HAPPINESS LIGHT 2B
HAPPY HIGH 2D
HEALTH HIGH 1D,D4
HELP SUPPORT 4C,D4
HONESTY STRAIGHTNESS 1D
HOPE LIGHT 2B
HOSTILITY EMOTIONALLY HOSTILE HARD 2B

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
HUMAN ANIMAL 5B
HUMAN ARMY 5B
HUMAN BIRD 5B
HUMAN BODY 5B
HUMAN BREAD 5A
HUMAN DOUGH 5A
HUMAN PASTA 5A
HUMAN BUILDING 5D,A5
HUMAN CAT 5B
HUMAN CHICKEN 5B
HUMAN CLOTH 5A
HUMAN MATERIAL 5A
HUMAN COW 5B
HUMAN DOG 5B
HUMAN FISH 5B
HUMAN FLOWER 5A
HUMAN FOOD 5A
HUMAN FRUIT 5A
HUMAN GRASS 5A
HUMAN CORN 5A
HUMAN HORSE 5B
HUMAN IMPLEMENT 5A
HUMAN UTENSIL 5A
HUMAN INSECT 5B
HUMAN MACHINE 5A
HUMAN APPLIANCE 5A
HUMAN MAMMAL 5B
HUMAN MEAT 5A
HUMAN MILK 5A
HUMAN MONKEY 5B
HUMAN PIG 5B
HUMAN PLANT 5A
HUMAN REPTILE 5B
HUMAN RODENT 5B
HUMAN SHEEP 5B
HUMAN SHIP 5A
HUMAN SUPERNATURAL 5B
HUMAN MYTH MYTHICAL BEING 5B
HUMAN SWEET 5A
HUMAN DESSERT 5A
HUMAN TREE 5A
HUMAN OBJECT VALUABLE OBJECT 5A
HUMAN COMMODITY 5A
HUMAN VEGETABLE 5A
HUMAN VEHICLE 5A
HUMAN WATERBIRD 5B
HUMAN SEABIRD 5B
HUMANS LIQUID 5A
IDEA DISEASE 3B
IDEA IMPRESSION SENSE IMPRESSION 2B,B3
IDEA SMELL 2B,B3
IDEA SOUND 2B,B3
IDEA ANIMAL 3B
IDEA HUMAN 3B
IDEA CONTROL PERSON CONTROLLED 3B
IDEA PLANT 3A

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
IDEA BUILDING 3A
IDEA COMMODITY 3A
IDEA PLACE 3D
IDEA POSITION 3D
IDEA CLOTH 3A
IDEA CLOTHES 3A
IGNORED INVISIBLE 3B,B1
IMITATE FOLLOW 4C
IMPOLITE ROUGH 2B
IMPORTANCE CENTRALITY 1D
IMPORTANCE HIGH 1D
IMPORTANCE WEIGHT 1C
IMPORTANT FIRST 4C
IMPORTANT BIG 1D
IMPRESSIVE LIGHT 1B
IMPROVEMENT IMPROVE STATUS RAISE 1C,D1
INACTIVE LOW 4D
INACTIVITY LESS ACTIVE SLOW 4C
INACTIVITY ABSENCE 4D
INACTIVITY IMMOBILITY 4C
INCOMPREHENSIBLE UNCLEAR NOT CLEAR 3B,B1
INCOMPREHENSIBLE CROOKED NOT STRAIGHT 3D
INCREASE RISE 1C,D1
INCREASE EXPAND 1C,D1
INFLUENCE MAGIC 4C
INFLUENCE PRESSURE 4C
INFLUENCE LEAD 4C
INFLUENCE GUIDE 4C
INFORMATION PREY 3A
INFORMATION MINERAL 3A
INFORMATION COMMODITY 3A
INTELLIGENCE LIGHT 3B
INTEREST FIXING 3D
INTEREST CAPTURE 3D
INTEREST PROXIMITY 3D
INVOLVEMENT PRESENCE 4D
IRRELEVANCE WANDERING 3C
JOB POSITION 4D
JUSTICE STRAIGHT 1D
KNOW SEE 3B
KNOWLEDGE VIEW 3B
KNOWLEDGE FLUID 3A
KNOWLEDGE FOOD FOOD AND DRINK 3A
KNOWN UNCOVERED 3B,B1
KNOWN OPEN 3B,B1
LANDSCAPE BODY 6B
LANGUAGE PLANT 3A
LANGUAGE HUMAN 3B
LANGUAGE LANGUAGE QUALITY TASTE 3A,A2
LAW STRAIGHT 1D
LESS LOW 1D
LESS SMALL 1D
LIFE DAY 4D
LIFE PATH 4D
LIFE WRITING 4C
LIFE HIGH 1D,D4

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
LIGHT LIQUID 5A
LIQUID CROWD 6B
LIQUID HUMANS 6B
LISTENING EATING 3A,C3
LISTENING DRINKING 3A,C3
LOUD HIGH 5D
LOVE HEAT 2B
MACHINE HUMAN 6B
MACHINE ANIMAL 6B
MEANS ROAD 4C,D4
MEANS TRACK 4C,D4
MEANS TRANSPORT 4C
MIND BUILDING 5D,A5
MIND CONTAINER 5D
MONEY FOOD 6A
MONEY LIQUID 6A
MONEY BLOOD 6A
MORALITY HIGH 1D
MORE HIGH 1D
MORE BIG 1D
NERVOUSNESS TENSION 2B
NORMALITY STRAIGHTNESS 2D
NUMEROUS BIG 1D
OBEY FOLLOW 4C
OBJECT HUMAN HUMAN ? 6B
OBVIOUS CLEAR 3B,B1
OCCURRENCE HIGH 1D,D4
OPERATION HIGH 4D
OPERATION ABOVE 4D
OPINION VIEW 3B
OPINION PERSPECTIVE 3B
OPINION ORIENTATION 3B
OPINION CURRENT 3A,C3
OPINION PLACE 3D
OPINION BEND 1C,C4
OPINION POSITION 3D
OPPORTUNITY TRANSPORT 4C
OPPORTUNITY OPENING 4C
ORGANISATION SHIP 4C,A5
ORGANISATION MACHINE 5A
ORGANISATION PLANT 5A,C4
ORGANISATION ORGANISATION PART BODY BODY PART 5B
PASSION HEAT 2B
PAST BEHIND 4D
PAST BACKWARDS 4D
PERIOD DAY 4D
PERIOD LENGTH 4D
PERIOD DISTANCE 4D
PERIOD SPACE 4D
PESSIMISM DARK 2B
PITCH SOUND FREQUENCY HEIGHT 5D
PLACE BODY 6B
PLANT HUMAN 6B
PLANT ANIMAL 6B
POINT POINT IN TIME POSITION 4D
POSSIBILITY OPENING 4C

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
POWER ABOVE 1D
POWER CENTRALITY 1D
POWERLESS BELOW 1D
PREVENTION OBSTACLE 4C
PROBABILITY PROXIMITY 4D
PROBLEM DISEASE 4B
PROBLEM WEIGHT 2B
PROCESS BODY HUMAN BODY 4B
PROCESS LIVING 4B
PROCESS MOVEMENT MOVEMENT (FORWARD) 4C
PURPOSE DIRECTION 4C,D4
PURPOSELESS DIRECTIONLESS 4C,D4
QUALITY MONEY 1A
QUALITY WEALTH 1A
QUALITY SHAPE 1D
QUALITY SIZE 1D
QUALITY TASTE 2A,A1
QUALITY TEXTURE 2A,A1
QUALITY HIGH 1D
QUANTITY LENGTH 1D
QUANTITY SIZE 1D
QUANTITY WATER 1A
RACE COLOUR 1B
RANK METAL 1A
READING EATING 3A,C3
READING DRINKING 3A,C3
REBUTTAL DEFENSE 3C
REDUCE REDUCE STATUS LOWER 1C,D1
RELATIONSHIP MONEY 2A
RELATIONSHIP WEALTH 2A
RELATIONSHIP MUSIC 2B
RELATIONSHIP PROXIMITY 2D
RELATIONSHIP COHESION 2D
RELIABILITY SOLIDITY 1C
RELIABILITY FIRMNESS 1C
RELINQUISH LOSE POWER DESCEND 1C,D1
RELINQUISH GIVING UP BACKWARDS 4C
REPRESSION NO FREEDOM ENCLOSURE 4D,C4
REPRESSION NO FREEDOM SPACE LIMIT TO SPACE 4D,C4
REPRESSION NO FREEDOM TYING 4D,C4
REPRESSION NO FREEDOM BINDING 4D,C4
REPURPOSE CHANGE PURPOSE DIRECTION CHANGE DIRECTION 4C,D4
REPUTED LIGHT 1B
RESPONSIBILITY WEIGHT 2B
REVEAL MAKE KNOWN DIG DIG UP 3B,C3
REVEAL MAKE KNOWN OPEN 3B,C3
REVEAL MAKE KNOWN SHOW 3B,C3
REVEAL MAKE KNOWN DRAW 3B,C3
REVEAL MAKE KNOWN UNCOVER 3B,C3
SAD LOW 2D
SADNESS DARK 2B
SADNESS UNPLEASANT EMOTION COLD 2B
SADNESS BAD EMOTION DISCOMFORT 2B
SADNESS BAD EMOTION PAIN 2B
SANITY STRAIGHTNESS 2D
SANITY BALANCE 2D

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
SERIOUSNESS DEPTH 3D,D1
SERIOUSNESS WEIGHT 1C
SEX VIOLENCE 4C
SHARE SHARE PURPOSE ALIGN 4C,D4
SIGHT SOUND 5B
SIMILARITY PROXIMITY 3D
SITUATION PLACE 4D
SITUATION WEATHER 2B
SOLUTION WAY WAY ROUND 4C
SOLUTION OVER 4C
SOLUTION THROUGH 4C
SOUND LIQUID 5A
SOUND TASTE 5B
SOUND TOUCH 5B
SPEECH VERBAL COMMUNICATION GAME (BALL)GAME 3C
SPEECH AWKWARD SPEECH WALKING AWKWARD WALKING 3C
SPEECH VERBAL COMMUNICATION TRAVEL 3C
SPEECH VERBAL COMMUNICATION MOVEMENT 3C
STAGNATION NO DEVELOPMENT IMMOBILITY 4C
STAGNATION NO DEVELOPMENT CIRCULARITY 4C
STATE PLACE 4D
STATUS STATE OF AN ORGANISATION HEALTH 5B
STATUS HIGH 1D
STEAL HIT 1C,D1
STEAL CUT 1C,D1
STEAL LIFT 4C,D4
SUBJECT PLACE 3D
SUBORDINATE LOW 1D
SUBSTANCE HUMAN HUMAN ? 6B
SUCCEEDING MOVEMENT MOVING FORWARD 4B
SUCCESS COMPETITIVE SUCCESS LEADING 4C
SUCCESS COMPETITIVE SUCCESS RACE WINNING A RACE 4C
SUCCESS DISTANCE 4C,D4
SUCCESS SPEED 4C
SUCCESS HIGH 1D
SUCCESS SUCCESS IN ARGUMENT VICTORY 3C
SUFFICIENCY BE GOOD ENOUGH RISE 1C,D1
SYSTEM MACHINE 5A
SYSTEM PLANT 5A,C4
TEXT CLOTH MAKE CLOTH 3A
TEXT BUILDING 3A
TEXT CONTAINER 3A
TEXT PATH 3C,D3
TEXT STRUCTURE 3A
TEXT CLOTH 3A
TEXT CLOTHES 3A
THINKING CALCULATING 3A
THINKING CONTROL CONTROLLING PEOPLE 3B
THINKING WALKING 3C
THINKING TRAVELLING 3C
THOUGHT RELATIONSHIP 3B
TIME MONEY 1A
TIME COMMODITY 1A
TIME SPACE 4B
TIME TIME ELAPSING TRAVEL 4D
TOPIC PLACE 3D

Continued on next page
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Table C.1 continued
Topic Original Topic Vehicle Original Vehicle Sector
TOUCH SOUND 5B
TRAFFIC LIQUID 6A
TRAFFIC BLOOD 6A
TRUTH STRAIGHTNESS 3D
UNAWARENESS DISTANCE 3D
UNAWARENESS LOW 3D
UNCERTAINTY INSTABILITY 1C
UNCHANGING HARD 1C,D3
UNCHANGING RIGID 1C,D3
UNCHANGING STATIC 1C,D3
UNCONSCIOUSNESS LOW 3D
UNDERSTAND SEE 3B
UNDERSTAND GRASP 3B
UNDERSTAND HOLD 3B
UNDERSTANDING EYESIGHT 3B
UNDERSTANDING PENETRATION 3B
UNDERSTANDING UNDERSTANDING PENETRATION PENETRATION 3B
UNDERSTANDING SHARPNESS 3B
UNEMOTIONAL COLD 2B
UNFEELING HARD 2B
UNFRIENDLY COLD 2B
UNHEALTHY LOW 1D,D4
UNIMPORTANCE PERIPHERY 1D
UNIMPORTANCE EDGE 1D
UNIMPORTANT LOW 1D
UNIMPORTANT POOR 1A
UNIMPORTANT CHEAP 1A
UNKNOWN COVERED 3B,B1
UNKNOWN INVISIBLE 3B,B1
UNPLEASANT ROUGH 2B
UNRELIABILITY INSTABILITY 1C
UNSUCCESSFUL SLOW 4C
VALIDITY IDEA’S VALIDITY VITALITY 3B
VALUE METAL 1A
VEHICLE ANIMAL 6B
VEHICLE HUMAN 6B
WEATHER ACTIVITY HUMAN ACTIVITY 4B
WEATHER QUALITY 4B
WORDS PREY 3A
WORDS FLUID 3A
WORDS FOOD FOOD AND DRINK 3A
WORDS HUMAN 3B
WORK AGRICULTURE 4C
WORRY WEIGHT 2B
WORTHLESS EMPTY 1D
WORTHLESSNESS WASTE 1A

Table C.1: All topic-vehicle pairs from Metalude. If a term was changed,
its original is listed. Sector refers to where on the map of root analogies
the entry is located (see figure 3.4.
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C.2 Text Collections

These collections represent a range of corpus types. The ANC and TASA corpora were developed

to be representative collections of general text [136, 152]. NIPS is a collection of peer-reviewed

academic papers, which was used in a previous publication on diachronic changes in grammatical

relations [70]. The two finance-related collections were purpose-built to explore how the language

of finance relates to outside financial metrics [67, 68, 69]. Lastly, the enTenTen corpus is large

collection built by automatically crawling portions of the internet.

American National Corpus

The American National Corpus (ANC) is a collection of American English texts and verbal tran-

scripts spanning genres comparable to the British National Corpus (BNC)1. The full ANC contains

a comparable number of words (100 million) to the BNC, but representative portions have been

annotated by hand. These “manually annotated sub-corpora” (MASC) are designed to be represen-

tative of the full ANC, but manageable for human annotation. In MetID, MASC 1 and 2 were used

as a whole. The vocabulary coverage of the combined MASC 1 and MASC 2 (130 documents) is

about 95% of the full ANC and the genre breakdown is similarly proportioned. The annotations

were not used in MetID because the pre-processing scheme was kept uniform across corpus. In-

stead, MASC 1 and 2 were used to pare the corpus down to a smaller size without relinquishing its

representativeness. A sample document (119CWL041) is given here, note the partially redacted

style:

March 29, 1999

Name Address City, ST Zip

Dear Name:

The 1999 Invest in Youth Campaign is in full swing. As a former board member, the

success of the YMCA is still important to me. We must be able to reach all youth and

families interested in values-based programs. The Invest in Youth campaign helps

insure this. New initiatives in the inner-city are taking hold. The Urban Mission

Branch is reaching out to middle school youth with programs based on caring, hon-

esty, respect and responsibility for themselves and others. For some, these are very

different messages from the ones heard in the street. They are learning to make pos-

itive choices concerning alcohol, tobacco and other drugs and to support each other

when those choices are challenged. You have shared in the vision and the leadership

of the YMCA of Greater Indianapolis. I now invite you to continue to support the

mission and the message that is so important to building strong kids, strong families

and strong communities. Please consider joining the Chairman’s Roundtable with a

gift of $1,000. I have enclosed a pledge card for your convenience. We would like to

announce the success of this year’s campaign at the Annual Meeting on April 27, so

please return you pledge or gift within the next 30 days.

1http://www.americannationalcorpus.org/; 11 February, 2013.
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Thank you.

Sincerely,

Richard H. Gilbert, Jr. Past Board Member YMCA of Greater

Indianapolis

LexisNexis Finance Articles

This purpose-built corpus was constructed using LexisNexis News2 to retrieve the top 100 finance-

related articles for every month from 2005 through 2009 were collected. Only English articles

from major world newspapers were collected. This resulted in 6,000 documents over 60 months

with an average of 64,319 tokens per month. Like the BBC, Financial Times, New York Times

fiance corpus, these articles typify ones found in newspapers. Also like the BBC-FT-NYT col-

lection, this corpus was diachronically organised, by month, making for 60 documents over the

five-year period. This offers the broadest temporal grouping among the corpora. The following is

an excerpt from one such article:

A top think-tank wants the central government to set up a body to develop fiscal pol-

icy.

It says the measure would accelerate the reform of decision-making on public finances

and improve the government’s ability to implement macroeconomic controls.

The proposed fiscal policy committee would complement the central bank’s Mone-

tary Policy Committee, said the Institute of Finance and Trade Economics under the

Chinese Academy of Social Sciences.

In its annual report on the nation’s financial policy, titled ”Scientific Development

Concept - New Thinking to Guide China’s Fiscal Policy”, the institute said it had be-

come vital for the government to consider setting up a fiscal policy body.

NIPS Proceedings

The NIPS corpus consists of papers from thirteen volumes of Neural Information Processing

Systems proceedings3. It contains about 5.2 million words in 1,738 documents published over

13 years from 1987 to 1999, with an average of 3,034 tokens per document. The corpus has

been used previously in work on diachronic analysis, topic modeling, and relevance scoring

[23, 70, 89, 189, 204]. The NIPS corpus has two unique features: it consists of advanced, academic

language and is uniformly diachronic. Academic language, and in particular research papers, can

2http://www.lexisnexis.com/; 17 February, 2013.
3http://www.cs.nyu.edu/˜roweis/data.html; 11 February, 2013
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be very technical and explanatory, and often gloss over defining terms that are common (and of-

ten unique) to the research community. One such example from the NIPS corpus is the term

“connectivity” which refers to the density of connections in connectionist networks – an abstract

machine which simulates undirected learning. The term is widely used, without definition, though

it refers to something specific and only loosely related to the non-technical notion of a connection.

Of course, there are a number of a other examples, including borrowed terms from mathematics,

cognitive psychology and neurology – terms like complexity, learning, and synapse. Below is an

excerpt from the first paper in the corpus; notice the neurological explanation of connectivity in

the first line of the abstract:

CONNECTIVITY VERSUS ENTROPY

Yaser S. Abu-Mostafa

California Institute of Technology

Pasadena, CA 91125

ABSTRACT

How does the connectivity of a neural network (number of synapses per neuron) relate

to the complexity of the problems it can handle (measured by the entropy)? Switch-

ing theory would suggest no relation at all, since all Boolean functions can be im-

plemented using a circuit with very low connectivity (e.g., using two-input NAND

gates). However, for a network that learns a problem from examples using a local

learning rule, we prove that the entropy of the problem becomes a lower bound for

the connectivity of the network.

TASA Corpus

The TASA corpus was created by Touchstone Applied Science Associates and used to develop

The Educator’s Word Frequency Guide [238]4. It was compiled to be a representative set of texts

to which typical American students would be exposed at varying stages of education. It contains

almost 39,000 documents (paragraphs) of American English text on the subjects of language arts,

health, home economics, industrial arts, science, social studies and business. An example docu-

ment (#1728) is given here:

A liquid is a strange substance. The principles that govern the behavior of solids and

gases are much better understood than those that govern the behavior of liquids. The

marvel is not that liquids behave as they do, but that they exist at all. In theory, it

might seem more reasonable for a crystalline solid to melt to a fluid having molecules

initially touching one another, and for further heating to cause the molecules to move

faster and farther apart until something like a gas is produced, without any sharp

transition in fluid properties along the way. This theoretical possibility is diagrammed

in Figure 17-1 in a plot of volume per mole against temperature. Real substances

4Thanks to Professor Thomas Landauer for making this resource available.
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actually do behave this way above what is called their critical pressure, PC, which is

218 atm for H2O and 72 atm for CO2. But at lower pressures their behavior is more

like that shown in Figure 17-2. The molar volume usually increases slightly upon

melting (point E to point D), and then makes a sudden jump at the boiling point, TB,

where the liquid changes to a gas (point B to point C).

The TASA corpus has been used in a variety of research applications. Particularly relevant

here is its use as the data on which LSA and other distributional semantic models were developed

[122, 136, 137, 188, 222]. TASA is a designed corpus, like the ANC, which gives us a degree of

assurance that models built on it are somewhat representative. However, the TASA corpus consists

of “documents” which are effectively paragraph from text-books, which while they may be helpful

in investigating language-use as it is learned by school students, it is not necessarily representative

of naturally occurring document segmentation like articles. TASA is perhaps the most widely used

of the collections reported on here.

BBC, Financial Times & New York Times Finance Articles

This custom-built collection was made using automated web searches to select articles related

to the Dow Jones, the FTSE 100 and the NIKKEI 225 from the New York Times (nyt.com),

the Financial Times (ft.com) and the British Broadcasting Corporation (bbc.co.uk/news). The

resulting corpus contained 17,713 articles with 10,418,266 tokens from 2006 to the beginning

of 2010, with an average of 2,604,567 tokens per year and 4,428 tokens per article. After they

were downloaded, the articles were stripped of HTML, converted to UTF-8 and their uniqueness

ensured by keying them on the first 50 characters. The articles in this corpus were grouped in

weekly documents. This collection was previously used to track changes in verb-distributions as

they relate to markets fluctuations [67] and served as the basis for two studies on the structure of

linguistic metaphors [68, 69]. The following paragraph is taken from a typical article:

THE first week of the year may begin with traders following their hearts and end with

them following their heads. John K. Lynch, the chief market analyst at Evergreen

Investments, predicted that the stock market would have a subdued start to the year

as traders react first to the inability of the Dow Jones industrial average to hang on

to a gain for 2005. The loss last week, resulting in a decline of 0.6 percent for the

Dow last year, “will affect sentiment going into the week,” Mr. Lynch said. But

come Friday, he added, the market is likely to be guided by sober analysis after the

release that morning of the December employment report. Mr. Lynch estimated that

180,000 net new jobs were created last month, below the 200,000 consensus forecast

in a Bloomberg News survey of economists but still greater than the monthly average

of the last couple of years.
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enTenTen Corpus

The TenTen corpora series, developed by Lexical Computing Ltd. for their Sketch Engine service5,

are large (1010 tokens) web-based corpora, crawled automatically from text-heavy portions of the

web [120]. Version 1.0 of the enTenTen corpus contained 3.3 billion tokens, of which the first

92 thousand tokens were used here. Web corpora have become increasingly popular, as access to

the internet becomes more widespread. Web corpora allow a large amount of data to be gathered

quickly and without regard to source, genre, register or authorship. The size of such corpora has

overcome some weaknesses of smaller, designed corpora in NLP tasks – particularly those which

adopt a machine learning approach [209, 239]. The following is an excerpt taken from a blog

about anthropology:

Snakeman and the Ancient Mayan Medicine by: Jean-Philippe Soule and Luke Shul-

lenberger.

Snakes evoke fear and repulsion in western cultures. Yet the same animal that repre-

sents the devil in the bible was the symbol of medicine in Ancient Greece and is still

found today on ambulances and pharmacies in many countries.

The Ancient Mayan people revered snakes.

Rattle snake representations and drawings have been found on numerous pieces of

pottery and murals and is the most prominent feature on the head dress of their god-

dess of the herbs Ix Chel. Like the Chinese, they believed in the healing properties of

certain species. The legacy they have left in Central America is a supposed cure-all

snake bone medicine called Cascabel which is still used by traditional healers.

5http://www.sketchengine.co.uk/; 14 February, 2013.
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C.3 Experiment 2: Materials

The user-based evaluation presented in the second experiment (see section 5.5) consisted of an

online survey. Consenting participants were introduced and presented with the survey on web-

pages, of which figures C.1, C.2 and C.3 are screen-shots.

The design of theses materials was based on similar studies in metaphor and sensibility [83,

198, 212]. However, one concern was brought to light about these materials: using the term

”sensible” is a bit vague with regards to what the sensibility ratings were used to. In experiment 2,

these ratings were used to down-weight quality rating for the interpretations produced by MetID.

That is, ”sensibility” is being used as a proxy for ease of understanding. There are certainly some

sentences that are sensible but not easy to understand, or vice versa.

Figure C.1: After informed consent, this introductory page was shown. Participants were asked to
submit their age and fluency in English.
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Figure C.2: Instructions explaining the rating task with two demonstrative examples. Neither
example appears in the actual survey.
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Figure C.3: Example set of five sentence-paraphrase pairs as they were presented to participants.
There were ten pairs per page and 60 in total.
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Table C.2 lists the six planted questions used to verify participants’ understanding and mind-

fulness in completing the survey. Each configuration listed in table 5.10 was used to generate in-

terpretations for the statements in tables 5.5 and 5.6. This resulted in the 432 sentence-paraphrase

pairs listed in table C.4. Recall that not every sentence could be processed by every model. Ta-

ble C.3 lists those sentences that elicited a mean sensibility rating less than 4, and were thus not

included in the analysis of their paraphrases.

Sentence Paraphrase Intended Rating
A desk is a kind of furniture DESKS ARE FURNITURE 7
The team paraded across the field PARADING IS MOVEMENT 7
He hurried to the bus stop HURRYING IS MOVEMENT 7
A donkey is a flying door DONKEYS ARE DOORS 0
The wall blazed the iron BLAZING IS IRON 0
Melissa unbooked her pencils BOOKING IS WRITING 0

Table C.2: Planted questions that all participants received to verify they were completing the
survey correctly.

Sentence Mean Sensibility
The van was sleeping on the road 2.11
They melted the alliance 2.13
The van was sleeping on the road 2.36
He buckled a bandage 2.6
The van was sleeping on the road 2.82
The van was sleeping on the road 2.85
The man kidnapped their solution 3.14
The engine frayed out 3.17
He buckled a bandage 3.18
He unlocked her old wound 3.23
The man kidnapped their solution 3.29
The engine frayed out 3.5
The plants obeyed the constraints 3.39
He unlocked his old wound 3.41
The van was sleeping on the road 3.44
The man kidnapped their solution 3.45
Beauty is a ticket 3.53
The plants obeyed the constraints 3.53
He unlocked his old wound 3.56
The engine frayed out 3.68
He unlocked her old wound 3.71
He unlocked her old wound 3.8
The man kidnapped their solution 3.8
He unlocked her old wound 3.87
He unlocked his old wound 3.93

Table C.3: Sentences in experiment 2 that elicited a mean sensibility rating less than 4, excluding
them from analysis.
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Model Type Fig? Score Sentence Candidate Metaphor / Paraphrase
WordNet noun no 0.61 A lion is an animal AN ANIMAL IS A HUMAN
WordNet noun no 0.54 My brother is a butcher STEALING IS HITTING
WordNet noun no 0.80 A snail is a pest A HUMAN IS A PIG
WordNet noun no 0.51 A salmon is a fish A HUMAN IS A FISH
WordNet noun no 0.11 Sharks have sharp teeth A HUMAN IS A FISH
WordNet noun no 0.50 Cereal is a food A HUMAN IS FOOD
WordNet noun no 0.61 That creature in the net is a crab AN ANIMAL IS A HUMAN
WordNet noun no 0.81 That lost painting is a portrait AN OPINION IS A VIEW
WordNet noun no 0.89 Crime is a problem A PROBLEM IS A DISEASE
WordNet noun no 0.23 The Earth is a planet A BODY IS THE EARTH
WordNet noun no 0.87 Some urban schools are crowded CONTROLING IS PUSHING
WordNet noun no 1.00 Some computer programs are complex A SYSTEM IS A PLANT
WordNet noun no 0.59 Some ideas are great AN IDEA IS A COMMODITY
WordNet noun no 0.59 Some jobs are constraining A JOB IS A POSITION
WordNet noun no 0.59 Some lectures are boring SPEECH IS A GAME
WordNet noun yes 0.90 Crime is a disease A PROBLEM IS A DISEASE
WordNet noun yes 0.78 A vacation is medicine MONEY IS FOOD
WordNet noun yes 0.75 Dancers are butterflies A HUMAN IS AN INSECT
WordNet noun yes 0.97 His life is an opera ACTIVITY IS MUSIC
WordNet noun yes 0.54 Some surgeons are butchers STEALING IS HITTING
WordNet noun yes 0.61 Beggars are parasites A HUMAN IS AN ANIMAL
WordNet noun yes 0.90 The mind is a computer A MIND IS A BUILDING
WordNet noun yes 0.91 Some ideas are diamonds AN IDEA IS A COMMODITY
WordNet noun yes 0.89 A smile is a magnet DESIRE IS ATTRACTION
WordNet noun yes 0.88 Experience is a fountain AN EXPERIENCE IS A LIQUID
WordNet noun yes 0.92 Beauty is a ticket AN EFFECT IS A MARK
WordNet noun yes 0.93 Love is a journey AN EMOTION IS MOVEMENT
WordNet noun yes 0.71 Rumors are viruses SPEECH IS A GAME
WordNet noun yes 0.53 Some malls are jungles A BUILDING IS A BODY
WordNet noun yes 0.92 Some jobs are prisons A JOB IS A POSITION
WordNet noun yes 0.82 Alcohol is a crutch A SOLUTION IS A WAY
WordNet noun yes 0.82 An education is a doorway A POSSIBILITY IS AN OPENING
WordNet noun yes 0.92 Angry words are knives ARGUMENTS ARE WEAPONS
WordNet noun yes 0.80 Faith is a fortress A MIND IS A BUILDING
WordNet noun yes 0.91 Humor is a weapon ARGUMENTS ARE WEAPONS
WordNet verbs no 0.77 The engine wore out TO DETERIORATE IS TO FALL
WordNet verbs no 0.59 The ancient car fell apart A MACHINE IS A HUMAN
WordNet verbs no 0.83 The boats moved along shore ACTIVITY IS TRAVELLING
WordNet verbs no 0.74 The boy grabbed his bike and went home A HUMAN IS A FISH
WordNet verbs no 0.59 The building shook from the earthquake AN ARGUMENT IS A BUILDING
WordNet verbs no 0.80 The clouds gathered on the horizon A LIQUID IS A CROWD
WordNet verbs no 0.90 The runners ran through the streets COMPETITION IS SPEED
WordNet verbs no 0.80 The bike moved along the trail ACTIVITY IS TRAVELLING
WordNet verbs no 0.91 The poster hung over the desk COMMUNICATION IS FLOW
WordNet verbs no 0.75 The van was idling on the road AN ORGANISATION IS A MACHINE
WordNet verbs no 0.90 The bread rose to perfection A HUMAN IS DOUGH
WordNet verbs no 0.82 The house decayed over time TO DETERIORATE IS TO FALL
WordNet verbs no 0.68 She opened the gate SUFFICIENCY IS RISING
WordNet verbs no 0.88 She cleaned up the spill DECREASING IS FALLING
WordNet verbs no 0.87 She delivered a message A CONCEPTION IS A BIRTH
WordNet verbs no 0.81 The doctor mended the cut MAKING BETTER IS RISING
WordNet verbs no 0.74 The woman rejected the proposal A MIND IS A BUILDING
WordNet verbs no 0.29 The man stole their solution A HUMAN IS MILK
WordNet verbs no 0.81 They withdrew the invitation SPEECH IS TRAVEL
WordNet verbs no 0.70 They released the prisoner A HUMAN IS A CAT
WordNet verbs yes 0.73 He buckled a bandage COLOUR IS A PLANT

Continued on next page



206 APPENDIX C. DATA, TEXT COLLECTIONS & TEST MATERIALS

Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
WordNet verbs yes 0.77 He piloted his dance partner CONTROLING IS LEADING
WordNet verbs yes 0.76 She devoured the new material LANGUAGE IS A TASTE
WordNet verbs yes 0.82 He unlocked his old wound FREEDOM IS A RELEASE
WordNet verbs yes 0.91 She shot him a message COMMUNICATION IS MOVEMENT
WordNet verbs yes 0.82 The woman killed the proposal OBVIOUS IS CLEAR
WordNet verbs yes 0.75 The man kidnapped their solution INTEREST IS CAPTURING
WordNet verbs yes 0.78 They melted the alliance DECEIT IS DOUBLENESS
WordNet verbs yes 0.74 The engine frayed out UNKNOWN IS COVERED
WordNet verbs yes 0.76 The boats danced on the shore A HUMAN IS A SHIP
WordNet verbs yes 0.37 The boy grabbed his bike and flew home COMPETITION IS SPEED
WordNet verbs yes 0.76 The clouds swarmed on the horizon A GROUP IS A BODY
WordNet verbs yes 0.76 The runners streamed through the streets A CROWD IS A LIQUID
WordNet verbs yes 0.69 The bike crawled along the trail CONTROLING IS PUSHING
WordNet verbs yes 0.93 The plants obeyed the constraints A SYSTEM IS A PLANT
WordNet verbs yes 0.75 The van was sleeping on the road A MACHINE IS AN ANIMAL
WordNet verbs yes 0.67 The truck soared down the slope COMPETITION IS SPEED
WordNet verbs yes 0.85 The house wilted over time AN IDEA IS A BUILDING
WordNet verbs yes 0.82 He unlocked her old wound FREEDOM IS A RELEASE
WordNet verbs yes 0.66 The poster hovered over the desk CHANGE IS MOVEMENT
BEAGLE-1024 noun no 0.12 A lion is an animal A HUMAN IS A CAT
BEAGLE-1024 noun no 0.09 A salmon is a fish A FISH IS FISHING
BEAGLE-1024 noun no 0.62 A smile is a attractive ANNOYANCE IS FRICTION
BEAGLE-1024 noun no 0.60 A snail is a pest A FISH IS AN INSECT
BEAGLE-1024 noun no 0.10 Cereal is a food BREAD IS FOOD
BEAGLE-1024 noun no 0.75 Crime is a problem AN EXPERIENCE IS A RELATIONSHIP
BEAGLE-1024 noun no 0.60 My brother is a butcher BEING BIG IS RELINQUISHING
BEAGLE-1024 noun no 0.79 Some apartments are big A MIND IS A BUILDING
BEAGLE-1024 noun no 0.73 Some computer programs are complex A SYSTEM IS A MACHINE
BEAGLE-1024 noun no 0.74 Some countries are unsafe DEVELOPMENT IS MOVEMENT
BEAGLE-1024 noun no 0.89 Some ideas are great AN IDEA IS A PLACE
BEAGLE-1024 noun no 0.78 Some jobs are constraining HELP IS A SUPPORT
BEAGLE-1024 noun no 0.45 Some urban schools are crowded STATUS IS HEIGHT
BEAGLE-1024 noun no 0.31 That lost painting is a portrait A FLOWER IS SERIOUSNESS
BEAGLE-1024 noun no 0.07 The Earth is a planet SPACE IS THE EARTH
BEAGLE-1024 noun yes 0.69 Crime is a disease A LAW IS A DISEASE
BEAGLE-1024 noun yes 0.65 The mind is a computer THINKING IS CALCULATING
BEAGLE-1024 noun yes 0.87 Some ideas are diamonds AN IDEA IS AN IMPRESSION
BEAGLE-1024 noun yes 0.64 A smile is a magnet THOUGHT IS ELECTRICITY
BEAGLE-1024 noun yes 0.71 Experience is a fountain LISTENING IS DRINKING
BEAGLE-1024 noun yes 0.61 Beauty is a ticket BEING BIG IS DISINTEREST
BEAGLE-1024 noun yes 0.69 Love is a journey BAD IS SMELLY
BEAGLE-1024 noun yes 0.77 Some jobs are prisons AN IDEA IS A BUILDING
BEAGLE-1024 noun yes 0.79 An education is a doorway UNKNOWN IS OPEN
BEAGLE-1024 noun yes 0.70 Angry words are knives AN EMOTION IS A SOUND
BEAGLE-1024 verb no 0.69 The engine wore out AN ENGINE IS WHITE
BEAGLE-1024 verb no 0.72 The ancient car fell apart STEALING IS HITTING
BEAGLE-1024 verb no 0.69 The boats moved along shore TIME IS TRAVEL
BEAGLE-1024 verb no 0.71 The boy grabbed his bike and went home THINKING IS WALKING
BEAGLE-1024 verb no 0.43 The clouds gathered on the horizon COLDNESS IS A CROWD
BEAGLE-1024 verb no 0.62 The runners ran through the streets BEING BIG IS BEING UNAWARE
BEAGLE-1024 verb no 0.64 The bike moved along the trail TIME IS TRAVEL
BEAGLE-1024 verb no 0.49 The poster hung over the desk CORRECTNESS IS HOLDING
BEAGLE-1024 verb no 0.63 The bread rose to perfection GOING THROUGH IS MILK
BEAGLE-1024 verb no 0.64 The house decayed over time A PLANT IS BIG
BEAGLE-1024 verb no 0.62 She opened the gate A ROAD IS AN OPENING
BEAGLE-1024 verb no 0.83 She cleaned up the spill GOOD IS CLEAN

Continued on next page
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
BEAGLE-1024 verb no 0.46 She delivered a message DETERIORATION IS COMMUNICATION
BEAGLE-1024 verb no 0.78 The doctor mended the cut GOOD IS WHITE
BEAGLE-1024 verb no 0.46 The woman rejected the proposal LAW IS REPRESSION
BEAGLE-1024 verb no 0.32 The man stole their solution UNCHANGING IS THINKING
BEAGLE-1024 verb no 0.58 They released the prisoner INJURY IS RELEASE
BEAGLE-1024 verb yes 0.55 He piloted his dance partner UNAWARENESS IS SHARPNESS
BEAGLE-1024 verb yes 0.76 She devoured the new material A PROCESS IS A BODY
BEAGLE-1024 verb yes 0.59 He unlocked his old wound AN OPENING IS PREY
BEAGLE-1024 verb yes 0.61 The woman killed the proposal DEAD IS UNSUCCESSFUL
BEAGLE-1024 verb yes 0.90 The man kidnapped their solution A SOLUTION IS A WAY
BEAGLE-1024 verb yes 0.68 The boats danced on the shore SADNESS IS DARK
BEAGLE-1024 verb yes 0.70 The boy grabbed his bike and flew home KNOWING IS SEEING
BEAGLE-1024 verb yes 0.81 The runners streamed through the streets MEANS ARE A ROAD
BEAGLE-1024 verb yes 0.66 The plants obeyed the constraints CALCULATING IS OBEYING
BEAGLE-1024 verb yes 0.66 The van was sleeping on the road INACTIVITY IS SLOWNESS
BEAGLE-1024 verb yes 0.84 The house wilted over time A LIFE IS A DAY
BEAGLE-1024 verb yes 0.59 He unlocked her old wound AN OPENING IS PREY
BEAGLE-128 noun no 0.56 A lion is an animal A HUMAN IS MEAT
BEAGLE-128 noun no 0.64 My brother is a butcher BEING BIG IS SWEETNESS
BEAGLE-128 noun no 0.61 A snail is a pest A FISH IS AN INSECT
BEAGLE-128 noun no 0.09 A salmon is a fish A FISH IS FISHING
BEAGLE-128 noun no 0.26 Sharks have sharp teeth POWERLESS IS TIME
BEAGLE-128 noun no 0.60 An earthquake is a disaster BALANCE IS A CATEGORY
BEAGLE-128 noun no 0.13 Cereal is a food A HUMAN IS BREAD
BEAGLE-128 noun no 0.53 That creature in the net is a crab ANTAGONISM IS A FISH
BEAGLE-128 noun no 0.70 That lost painting is a portrait REPRESSION IS A SPACE
BEAGLE-128 noun no 0.88 Crime is a problem A PROBLEM IS A DISEASE
BEAGLE-128 noun no 0.81 Some apartments are big A MIND IS A BUILDING
BEAGLE-128 noun no 0.47 The Earth is a planet A BODY IS THE EARTH
BEAGLE-128 noun no 0.77 Some countries are unsafe A STATE IS A PLACE
BEAGLE-128 noun no 0.52 Some urban schools are crowded QUALITY IS HIGH
BEAGLE-128 noun no 0.55 Some computer programs are complex A SYSTEM IS A MACHINE
BEAGLE-128 noun no 0.91 Some ideas are great AN IDEA IS A PLACE
BEAGLE-128 noun no 0.74 A smile is a attractive BAD IS SMELLY
BEAGLE-128 noun no 0.81 Some colleges are pretty HAPPINESS IS HIGH
BEAGLE-128 noun no 0.75 Some jobs are constraining A GROUP IS A BUILDING
BEAGLE-128 noun no 0.61 Some lectures are boring A FRUIT IS A SHOOTING
BEAGLE-128 noun yes 0.70 Crime is a disease AN EFFECT IS A DISEASE
BEAGLE-128 noun yes 0.60 A vacation is medicine PREVENTION IS COOKING
BEAGLE-128 noun yes 0.59 Dancers are butterflies A CONCEPTION IS A FLOWER
BEAGLE-128 noun yes 0.72 His life is an opera TO REDUCE IS TO LOWER
BEAGLE-128 noun yes 0.68 Beggars are parasites COLOUR IS A PLANT
BEAGLE-128 noun yes 0.70 The mind is a computer THINKING IS CALCULATING
BEAGLE-128 noun yes 0.88 Some ideas are diamonds AN IDEA IS AN IMPRESSION
BEAGLE-128 noun yes 0.71 A smile is a magnet AN EMOTION IS ELECTRICITY
BEAGLE-128 noun yes 0.89 Experience is a fountain AN EXPERIENCE IS A RELATIONSHIP
BEAGLE-128 noun yes 0.75 Beauty is a ticket SADNESS IS DARK
BEAGLE-128 noun yes 0.75 Love is a journey A LIFE IS A PATH
BEAGLE-128 noun yes 0.60 Some malls are jungles PREVENTION IS EXISTENCE
BEAGLE-128 noun yes 0.75 Some jobs are prisons A GROUP IS A BUILDING
BEAGLE-128 noun yes 0.61 Alcohol is a crutch DRINKING IS DISINTEREST
BEAGLE-128 noun yes 0.79 An education is a doorway KNOWLEDGE IS OPEN
BEAGLE-128 noun yes 0.69 Angry words are knives WORDS ARE CUTS
BEAGLE-128 noun yes 0.51 Humor is a weapon AN APPETITE IS A MACHINE
BEAGLE-128 verb no 0.69 The engine wore out WHITENESS IS AN ENGINE
BEAGLE-128 verb no 0.72 The ancient car fell apart SADNESS IS DARK
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
BEAGLE-128 verb no 0.69 The boats moved along shore TIME IS SPACE
BEAGLE-128 verb no 0.57 The boy grabbed his bike and went home AN OPENING IS BIG
BEAGLE-128 verb no 0.87 The building shook from the earthquake A TEXT IS A BUILDING
BEAGLE-128 verb no 0.60 The clouds gathered on the horizon INFORMATION IS A MINERAL
BEAGLE-128 verb no 0.62 The runners ran through the streets A ROAD IS A PITCH
BEAGLE-128 verb no 0.64 The bike moved along the trail TIME IS SPACE
BEAGLE-128 verb no 0.51 The poster hung over the desk HOLDING IS UNCOVERING
BEAGLE-128 verb no 0.65 The bread rose to perfection SEEING IS MILK
BEAGLE-128 verb no 0.64 The house decayed over time BIRTH IS BEING BIG
BEAGLE-128 verb no 0.65 She opened the gate AN EMOTION IS A TOUCH
BEAGLE-128 verb no 0.46 She cleaned up the spill CLEANLINESS IS MILK
BEAGLE-128 verb no 0.70 She delivered a message HELP IS A SUPPORT
BEAGLE-128 verb no 0.69 The doctor mended the cut EYESIGHT IS A CUT
BEAGLE-128 verb no 0.59 The woman rejected the proposal SADNESS IS DISCOMFORT
BEAGLE-128 verb no 0.46 The man stole their solution RACE IS A COLOUR
BEAGLE-128 verb no 0.60 They withdrew the invitation SADNESS IS AN EXPANSE
BEAGLE-128 verb no 0.70 They released the prisoner PASSION IS HEAT
BEAGLE-128 verb yes 0.58 He buckled a bandage PURITY IS CEASING
BEAGLE-128 verb yes 0.68 He piloted his dance partner FREEDOM IS A DANCE
BEAGLE-128 verb yes 0.76 She devoured the new material A PROCESS IS A BODY
BEAGLE-128 verb yes 0.64 He unlocked his old wound STRAIGHTNESS IS A THOUGHT
BEAGLE-128 verb yes 0.70 She shot him a message A TEXT IS A PATH
BEAGLE-128 verb yes 0.74 The woman killed the proposal EXISTENCE IS HEIGHT
BEAGLE-128 verb yes 0.63 The man kidnapped their solution HONESTY IS BIG
BEAGLE-128 verb yes 0.61 They melted the alliance BIRTH IS BEING HOT
BEAGLE-128 verb yes 0.69 The engine frayed out AN ORGANISATION IS AN ENGINE
BEAGLE-128 verb yes 0.70 The boats danced on the shore JUSTICE IS STRAIGHT
BEAGLE-128 verb yes 0.69 The boy grabbed his bike and flew home KNOWING IS SEEING
BEAGLE-128 verb yes 0.52 The clouds swarmed on the horizon A LIQUID IS A PERSPECTIVE
BEAGLE-128 verb yes 0.81 The runners streamed through the streets MEANS ARE A ROAD
BEAGLE-128 verb yes 0.60 The bike crawled along the trail SWEETNESS IS AN OPENING
BEAGLE-128 verb yes 0.67 The plants obeyed the constraints OBEYING IS ORIENTATION
BEAGLE-128 verb yes 0.80 The van was sleeping on the road THINKING IS WALKING
BEAGLE-128 verb yes 0.59 The truck soared down the slope FORWARDS IS UNRELIABLE
BEAGLE-128 verb yes 0.63 The house wilted over time A PLANT IS A PLACE
BEAGLE-128 verb yes 0.60 He unlocked her old wound DOUGH IS STRAIGHT
BEAGLE-128 verb yes 0.59 The poster hovered over the desk BEING UNCOVERED IS BEING PERIPHERAL
COALS-14000 noun no 0.17 A lion is an animal A PLANT IS AN ANIMAL
COALS-14000 noun no 0.57 A snail is a pest A FISH IS AN INSECT
COALS-14000 noun no 0.08 A salmon is a fish SWIMMING IS A FISH
COALS-14000 noun no 0.07 Sharks have sharp teeth CUTTING IS BELIEVING
COALS-14000 noun no 0.54 An earthquake is a disaster EARTH IS UNSUCCESSFUL
COALS-14000 noun no 0.09 Cereal is a food BREAD IS FOOD
COALS-14000 noun no 0.55 That creature in the net is a crab PREY IS A FISH
COALS-14000 noun no 0.27 That lost painting is a portrait CLOTHES ARE A LANDSCAPE
COALS-14000 noun no 0.59 Crime is a problem AN EXPERIENCE IS A RELATIONSHIP
COALS-14000 noun no 0.57 Some apartments are big ATTRACTION IS A DOG
COALS-14000 noun no 0.03 The Earth is a planet UNKNOWN IS INVISIBLE
COALS-14000 noun no 0.55 Some countries are unsafe DRINKING IS WAR
COALS-14000 noun no 0.19 Some urban schools are crowded WORK IS AGRICULTURE
COALS-14000 noun no 0.33 Some computer programs are complex A SYSTEM IS A MACHINE
COALS-14000 noun no 0.80 Some ideas are great AN IDEA IS AN IMPRESSION
COALS-14000 noun no 0.62 A smile is a attractive KNOWING IS SEEING
COALS-14000 noun no 0.60 Some colleges are pretty HAPPINESS IS HIGH
COALS-14000 noun no 0.55 Some lectures are boring A THEATRE IS A FEELING
COALS-14000 noun yes 0.57 Crime is a disease A HUMAN IS AN INSECT
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
COALS-14000 noun yes 0.55 A vacation is medicine A DAY IS HEALTH
COALS-14000 noun yes 0.55 Dancers are butterflies A DANCE IS AN INSECT
COALS-14000 noun yes 0.56 His life is an opera LIVING IS THEATRE
COALS-14000 noun yes 0.60 Beggars are parasites A PLANT IS AN ANIMAL
COALS-14000 noun yes 0.52 The mind is a computer A SYSTEM IS A MACHINE
COALS-14000 noun yes 0.80 Some ideas are diamonds AN IDEA IS AN IMPRESSION
COALS-14000 noun yes 0.62 A smile is a magnet KNOWING IS SEEING
COALS-14000 noun yes 0.80 Experience is a fountain AN EXPERIENCE IS AN IMPRESSION
COALS-14000 noun yes 0.55 Beauty is a ticket HAPPINESS IS PUNCHING
COALS-14000 noun yes 0.58 Love is a journey TIME IS TRAVEL
COALS-14000 noun yes 0.65 Some jobs are prisons A JOB IS DEATH
COALS-14000 noun yes 0.59 Alcohol is a crutch A PROBLEM IS A DISEASE
COALS-14000 noun yes 0.60 An education is a doorway AN OPPORTUNITY IS AN OPENING
COALS-14000 noun yes 0.57 Angry words are knives ARGUING IS CUTTING
COALS-14000 noun yes 0.54 Faith is a fortress TRUTH IS ATTACKING
COALS-14000 noun yes 0.65 Humor is a weapon AN EXPRESSION IS A WEAPON
COALS-14000 verb no 0.56 The engine wore out ELEMENTARY IS LOW
COALS-14000 verb no 0.57 The ancient car fell apart THE PAST IS BACKWARDS
COALS-14000 verb no 0.40 The boats moved along shore ELECTRICITY IS A LIQUID
COALS-14000 verb no 0.34 The boy grabbed his bike and went home KNOWING IS SEEING
COALS-14000 verb no 0.56 The building shook from the earthquake THE PAST IS BACKWARDS
COALS-14000 verb no 0.32 The clouds gathered on the horizon WATER IS HUNTING
COALS-14000 verb no 0.56 The runners ran through the streets BEING BIG IS A RACE
COALS-14000 verb no 0.30 The bike moved along the trail ELECTRICITY IS A LIQUID
COALS-14000 verb no 0.44 The poster hung over the desk BEING BIG IS THEATRE
COALS-14000 verb no 0.66 The bread rose to perfection BREAD IS FRUIT
COALS-14000 verb no 0.56 The house decayed over time GROWING IS BIG
COALS-14000 verb no 0.56 She opened the gate AN OPENING IS A HORSE
COALS-14000 verb no 0.38 She cleaned up the spill CLEANLINESS IS UNCOVERED
COALS-14000 verb no 0.55 The doctor mended the cut PREVENTION IS AN OBSTACLE
COALS-14000 verb no 0.43 The woman rejected the proposal A STATE IS A SUPPORT
COALS-14000 verb no 0.23 The man stole their solution STEALING IS THINKING
COALS-14000 verb no 0.56 They released the prisoner RELEASE IS DEATH
COALS-14000 verb yes 0.61 He piloted his dance partner A RELATIONSHIP IS MUSIC
COALS-14000 verb yes 0.61 She devoured the new material ELECTRICITY IS A LIQUID
COALS-14000 verb yes 0.55 He unlocked his old wound WORTHLESS IS EMPTINESS
COALS-14000 verb yes 0.54 He unlocked his old wound AN OPENING IS A CUT
COALS-14000 verb yes 0.59 She shot him a message SPEECH IS A GAME
COALS-14000 verb yes 0.55 The woman killed the proposal FIGHTING IS A STATE
COALS-14000 verb yes 0.62 The man kidnapped their solution A CROWD IS A LIQUID
COALS-14000 verb yes 0.56 They melted the alliance BEING BROKEN IS BEING LOW
COALS-14000 verb yes 0.56 The engine frayed out ELEMENTARY IS LOW
COALS-14000 verb yes 0.66 The boats danced on the shore A SHIP IS A DANCE
COALS-14000 verb yes 0.32 The boy grabbed his bike and flew home KNOWING IS SEEING
COALS-14000 verb yes 0.61 The runners streamed through the streets TRAFFIC IS BLOOD
COALS-14000 verb yes 0.54 The bike crawled along the trail A HORSE IS A REPTILE
COALS-14000 verb yes 0.58 The plants obeyed the constraints FREEDOM IS A RELEASE
COALS-14000 verb yes 0.60 The van was sleeping on the road THINKING IS WALKING
COALS-14000 verb yes 0.54 The truck soared down the slope A ROAD IS A RISE
COALS-14000 verb yes 0.54 He unlocked her old wound AN OPENING IS AMMUNITION
COALS-14000 verb yes 0.59 The house wilted over time THINKING IS WALKING
HAL noun no 0.01 A lion is an animal A HUMAN IS MEAT
HAL noun no 0.51 My brother is a butcher BEING BIG IS FLOWERING
HAL noun no 0.51 A snail is a pest SWIMMING IS AN INSECT
HAL noun no 0.07 A salmon is a fish MEAT IS A FISH
HAL noun no 0.53 An earthquake is a disaster HEIGHT IS A DEFENSE
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
HAL noun no 0.06 Cereal is a food BREAD IS FOOD
HAL noun no 0.50 That creature in the net is a crab AN INSECT IS MEAT
HAL noun no 0.23 That lost painting is a portrait MUSIC IS AN EXPRESSION
HAL noun no 0.51 Crime is a problem A GROUP IS A BODY
HAL noun no 0.51 Some apartments are big TIME IS SPACE
HAL noun no 0.01 The Earth is a planet TIME IS SPACE
HAL noun no 0.51 Some countries are unsafe TRANSPORTING IS THOUGHT
HAL noun no 0.02 Some urban schools are crowded TIME IS TRAVEL
HAL noun no 0.16 Some computer programs are complex CONTROL IS HANDLING
HAL noun no 0.52 Some ideas are great KNOWING IS SEEING
HAL noun no 0.52 A smile is a attractive THINKING IS WALKING
HAL noun no 0.51 Some colleges are pretty HAPPINESS IS HIGH
HAL noun no 0.51 Some jobs are constraining IMPORTANT IS BIG
HAL noun yes 0.51 A vacation is medicine ELEMENTARY IS A DISEASE
HAL noun yes 0.51 Dancers are butterflies A DANCE IS AN INSECT
HAL noun yes 0.52 Beggars are parasites A MONKEY IS AN INSECT
HAL noun yes 0.41 The mind is a computer THOUGHT IS TEXT
HAL noun yes 0.51 Some ideas are diamonds IMPORTANT IS BIG
HAL noun yes 0.55 A smile is a magnet THINKING IS CALCULATING
HAL noun yes 0.51 Experience is a fountain A PROCESS IS MOVEMENT
HAL noun yes 0.53 Beauty is a ticket BEING BIG IS INJURING
HAL noun yes 0.53 Love is a journey A POSSIBILITY IS AN OPENING
HAL noun yes 0.51 Some jobs are prisons IMPORTANT IS BIG
HAL noun yes 0.51 An education is a doorway ACTIVITY IS A PATH
HAL noun yes 0.63 Angry words are knives WORDS ARE WEAPONS
HAL noun yes 0.54 Humor is a weapon IMPRESSIONS ARE WEAPONS
HAL verb no 0.63 The engine wore out AN ENGINE IS CLOTHING
HAL verb no 0.51 The ancient car fell apart A HUMAN IS A FISH
HAL verb no 0.28 The boats moved along shore A SOUND IS A LIQUID
HAL verb no 0.16 The boy grabbed his bike and went home KNOWING IS SEEING
HAL verb no 0.28 The clouds gathered on the horizon A LIQUID IS HAPPINESS
HAL verb no 0.52 The runners ran through the streets KNOWING IS SEEING
HAL verb no 0.15 The bike moved along the trail IMPORTANT IS BIG
HAL verb no 0.53 The bread rose to perfection UNIMPORTANT IS LOW
HAL verb no 0.55 The house decayed over time NUMEROUS IS BIG
HAL verb no 0.54 She opened the gate AN OPENING IS A HORSE
HAL verb no 0.14 She cleaned up the spill A MIND IS A CONTAINER
HAL verb no 0.40 She delivered a message READING IS A FASHION
HAL verb no 0.52 The doctor mended the cut UNCHANGING IS HARD
HAL verb no 0.38 The woman rejected the proposal MAKING BETTER IS RISING
HAL verb no 0.17 The man stole their solution MAGIC IS GOODNESS
HAL verb no 0.55 They withdrew the invitation DEFENSE IS FASHION
HAL verb no 0.39 They released the prisoner CRITICISING IS FIGHTING
HAL verb yes 0.51 She devoured the new material A HUMAN IS A PLANT
HAL verb yes 0.51 He unlocked his old wound A CUT IS A DAY
HAL verb yes 0.21 The woman killed the proposal WEAPONS ARE A DESCENT
HAL verb yes 0.77 The man kidnapped their solution A SOLUTION IS A WAY
HAL verb yes 0.52 They melted the alliance METAL IS A DEFENSE
HAL verb yes 0.51 The boats danced on the shore LISTENING IS DRINKING
HAL verb yes 0.14 The boy grabbed his bike and flew home A LIFE IS A PATH
HAL verb yes 0.50 The clouds swarmed on the horizon A LIQUID IS AN INSECT
HAL verb yes 0.51 The runners streamed through the streets CURRENT IS FRICTION
HAL verb yes 0.63 The plants obeyed the constraints OBEYING IS GRASS
HAL verb yes 0.51 The van was sleeping on the road A MIND IS A BUILDING
HAL verb yes 0.53 The truck soared down the slope DOWNWARD IS FASHION
HAL verb yes 0.51 The house wilted over time A GROUP IS A BUILDING
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
LSA-400 noun no 0.18 A lion is an animal A HUMAN IS MEAT
LSA-400 noun no 0.28 Sharks have sharp teeth PERIPHERY IS A WAY
LSA-400 noun no 0.14 Cereal is a food UNHEALTHY IS LOW
LSA-400 noun no 0.52 That creature in the net is a crab PASTA IS STAGNATION
LSA-400 noun no 0.93 Crime is a problem A PROBLEM IS A DISEASE
LSA-400 noun no 0.79 Some apartments are big PASSION IS HEAT
LSA-400 noun no 0.13 The Earth is a planet CORRECTNESS IS POINTING
LSA-400 noun no 0.84 Some countries are unsafe DEVELOPMENT IS MOVEMENT
LSA-400 noun no 0.56 Some urban schools are crowded TO IMITATE IS TO FOLLOW
LSA-400 noun no 0.59 Some computer programs are complex UNSUCCESSFUL IS SIMILARITY
LSA-400 noun no 0.92 Some ideas are great TO UNDERSTAND IS TO SEE
LSA-400 noun no 0.58 A smile is a attractive FIXING IS CALCULATING
LSA-400 noun no 0.59 Some colleges are pretty SUPERNATURAL IS FIXING
LSA-400 noun no 0.65 Some jobs are constraining ARGUING IS PUNCHING
LSA-400 noun no 0.56 Some lectures are boring WORTHLESSNESS IS IMMOBILITY
LSA-400 noun yes 0.57 A vacation is medicine PROXIMITY IS NORMALITY
LSA-400 noun yes 0.55 The mind is a computer TIME IS SOLIDNESS
LSA-400 noun yes 0.85 Some ideas are diamonds A SUBSTANCE IS A HUMAN
LSA-400 noun yes 0.57 A smile is a magnet EYESIGHT IS REPRESSION
LSA-400 noun yes 0.65 Some jobs are prisons ARGUING IS PUNCHING
LSA-400 noun yes 0.64 An education is a doorway SIMILARITY IS PROXIMITY
LSA-400 noun yes 0.88 Angry words are knives LANGUAGE IS A PERSON
LSA-400 verb no 0.57 The engine wore out AMMUNITION IS A SHIPWRECK
LSA-400 verb no 0.65 The ancient car fell apart UNCHANGING IS STATIC
LSA-400 verb no 0.87 The boats moved along shore IMPORTANT IS BIG
LSA-400 verb no 0.54 The boy grabbed his bike and went home FIRMNESS IS A MIND
LSA-400 verb no 0.66 The building shook from the earthquake REPRESSION IS BINDING
LSA-400 verb no 0.38 The clouds gathered on the horizon A SHIPWRECK IS INVOLVEMENT
LSA-400 verb no 0.92 The runners ran through the streets IMPORTANT IS BIG
LSA-400 verb no 0.85 The bike moved along the trail IMPORTANT IS BIG
LSA-400 verb no 0.58 The bread rose to perfection DOUGH IS A TEXTURE
LSA-400 verb no 0.83 The house decayed over time AN ARGUMENT IS A BUILDING
LSA-400 verb no 0.83 She opened the gate AN EXPRESSION IS HIGH
LSA-400 verb no 0.70 She cleaned up the spill A HUMAN IS A VEGETABLE
LSA-400 verb no 0.47 She delivered a message REPRESSION IS PESSIMISM
LSA-400 verb no 0.62 The woman rejected the proposal PESSIMISM IS FAME
LSA-400 verb no 0.94 The man stole their solution A SOLUTION IS A WAY
LSA-400 verb yes 0.57 He piloted his dance partner PERIPHERY IS A SHIPWRECK
LSA-400 verb yes 0.95 She devoured the new material A HUMAN IS A MATERIAL
LSA-400 verb yes 0.65 He unlocked his old wound UNCERTAINTY IS INSTABILITY
LSA-400 verb yes 0.74 The woman killed the proposal EXCITEMENT IS A COLOUR
LSA-400 verb yes 0.94 The man kidnapped their solution A SOLUTION IS A WAY
LSA-400 verb yes 0.27 The boy grabbed his bike and flew home DETERIORATION IS MINDING
LSA-400 verb yes 0.88 The runners streamed through the streets THINKING IS WALKING
LSA-400 verb yes 0.55 The bike crawled along the trail INCOMPREHENSIBLE IS UNCONSCIOUSNESS
LSA-400 verb yes 0.69 The plants obeyed the constraints IMPOLITENESS IS A PLANT
LSA-400 verb yes 0.83 The house wilted over time AN ARGUMENT IS A BUILDING
LSA-400 verb yes 0.65 He unlocked her old wound UNCERTAINTY IS INSTABILITY
LSA-500 noun no 0.15 A lion is an animal ACTIVITY IS HUNTING
LSA-500 noun no 0.58 My brother is a butcher A PIG IS STAGNATION
LSA-500 noun no 0.24 Sharks have sharp teeth INCOMPREHENSIBLE IS UNCLEAR
LSA-500 noun no 0.17 Cereal is a food A HUMAN IS MEAT
LSA-500 noun no 0.35 That lost painting is a portrait STRAIGHTNESS IS CHANGEABLE
LSA-500 noun no 0.93 Crime is a problem A PROBLEM IS A WEIGHT
LSA-500 noun no 0.74 Some apartments are big DESIRE IS ATTRACTION
LSA-500 noun no 0.12 The Earth is a planet UNCONSCIOUSNESS IS LOW
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Table C.4 continued
Model Type Fig? Score Sentence Candidate Metaphor
LSA-500 noun no 0.83 Some countries are unsafe TO REDUCE IS TO LOWER
LSA-500 noun no 0.25 Some computer programs are complex HOSTILITY IS DETERIORATION
LSA-500 noun no 0.93 Some ideas are great KNOWING IS SEEING
LSA-500 noun no 0.80 Some jobs are constraining A CAUSE IS A CONNECTION
LSA-500 noun no 0.56 Some lectures are boring STAGNATION IS ALIGNMENT
LSA-500 noun no 0.62 Some urban schools are crowded ELEMENTARY IS LOW
LSA-500 noun yes 0.67 The mind is a computer TO DETERIORATE IS TO LOWER
LSA-500 noun yes 0.87 Some ideas are diamonds A LIFE IS WRITING
LSA-500 noun yes 0.58 Beauty is a ticket ARGUMENTS ARE INACTIVITY
LSA-500 noun yes 0.64 Love is a journey INCOMPREHENSIBLE IS CROOKED
LSA-500 noun yes 0.80 Some jobs are prisons A CAUSE IS A CONNECTION
LSA-500 noun yes 0.81 An education is a doorway ELEMENTARY IS LOW
LSA-500 noun yes 0.77 Angry words are knives A TEXT IS A STRUCTURE
LSA-500 verb no 0.68 The engine wore out AN ENGINE IS A CALCULATION
LSA-500 verb no 0.67 The ancient car fell apart A ROAD IS LOUDNESS
LSA-500 verb no 0.87 The boats moved along shore KNOWING IS SEEING
LSA-500 verb no 0.80 The boy grabbed his bike and went home GOOD IS CLEAN
LSA-500 verb no 0.69 The building shook from the earthquake ARGUMENTS ARE AMMUNITION
LSA-500 verb no 0.36 The clouds gathered on the horizon HARDNESS IS TRAVELLING
LSA-500 verb no 0.91 The runners ran through the streets IMPORTANT IS BIG
LSA-500 verb no 0.85 The bike moved along the trail KNOWING IS SEEING
LSA-500 verb no 0.57 The bread rose to perfection DOUGH IS A THEATRE
LSA-500 verb no 0.71 The house decayed over time DIFFICULTY IS HARDNESS
LSA-500 verb no 0.79 She opened the gate WORK IS AGRICULTURE
LSA-500 verb no 0.26 She cleaned up the spill GOODNESS IS IRRELEVANCE
LSA-500 verb no 0.48 She delivered a message CHANGEABLE IS UNIMPORTANCE
LSA-500 verb no 0.56 The woman rejected the proposal ARGUING IS PUNCHING
LSA-500 verb no 0.93 The man stole their solution A SOLUTION IS A WAY
LSA-500 verb no 0.45 They released the prisoner RELIABILITY IS REPRESSION
LSA-500 verb yes 0.56 He piloted his dance partner UNCLEAR IS COHESION
LSA-500 verb yes 0.88 She devoured the new material KNOWLEDGE IS FOOD
LSA-500 verb yes 0.71 He unlocked his old wound CRITICISING IS CUTTING
LSA-500 verb yes 0.63 The woman killed the proposal ARGUING IS WOUNDING
LSA-500 verb yes 0.93 The man kidnapped their solution A SOLUTION IS A WAY
LSA-500 verb yes 0.56 The boats danced on the shore SUCCESS IS COHESION
LSA-500 verb yes 0.44 The boy grabbed his bike and flew home AN ORGANISATION IS A SHIP
LSA-500 verb yes 0.81 The runners streamed through the streets A LANDSCAPE IS A BODY
LSA-500 verb yes 0.59 The plants obeyed the constraints REPUTE IS DIRT
LSA-500 verb yes 0.94 The house wilted over time KNOWING IS SEEING
LSA-500 verb yes 0.71 He unlocked her old wound CRITICISING IS CUTTING

Table C.4: Full set of materials used in experiment 2. Fig? denotes whether the sen-
tence is figurative or not and the score is MetID’s top-scoring candidate metaphor’s score,
which was presented in grammatical form as a paraphrase. Note that participants received
a random 54 questions from this list, with 6 questions being planted to verify participants’
understanding of the study.



Appendix D

LSA Example

All the DSMs are based on the distributional hypothesis, but as we have seen, a number of imple-

mentations exist. Most DSMs represent meaning as a multi-dimensional feature-vector built from

co-occurrences information. These models can be illustrated using an example for LSA [137].

Note that DSMs, are designed to work on large collections of texts, not on the small scale of this

example.

d1 d2 d3 d4 d5 d6 d7 d8 d9
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

Table D.1: Word-document co-occurrence frequencies, {X}, in the example set documents d1..9.
Each row lists the number of times the given word occurred in each document. This raw occurrence
matrix is the starting point for a number of DSMs, including LSA. Adapted from [137].
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LSA starts with a word-document occurrence matrix, {X}, shown in table D.1. After {X} is

created from a set of documents, each cell is incremented and its log is taken. Next, the entropy of

each row, −∑ p log p over all entries, is used to normalise the values. The third and defining step

in LSA, is to decompose {X} using singular value decomposition, which is a kind of principle

components analysis. SVD factors the matrix into three matrices such that {X} = {W}{δn}{S}1

where each value in this {W} and {S} is the linear combination of values in the number of desired

dimensions, n. By multiplying each value of the decomposed representation, an n-dimensional

matrix, {X̂}, can be re-constructed that represents the condensed semantic space, based on the

frequency data from table D.1. This resulting matrix is a set of word “features” which can be

analysed by comparing words’ vectors using their cosine values. Table D.2 shows the result of a

2-dimensional reconstruction of {X} into {X̂}. Notice that with this method, changing any value

in {X} will change the entire space of {X̂}. This is what the developers consider the “latent”

effect words have on a semantic space. Observe the resulting correlation between human and user

in {X̂} (r = .94), which was non-existent in the original co-occurrence matrix.

d1 d2 d3 d4 d5 d6 d7 d8 d9
human 0.16 0.47 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12
user 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.09 -0.15 -0.21 0.05
response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.27 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62

Table D.2: The 2-dimensional representation of the semantic space, {X̂}, resulting from the de-
composition of {X} (table D.1). Each row is the vector used to define the word, here in two
dimensions. Adapted from [137].)

After {X̂} is constructed, the result is what is referred to as the semantic space for the corpus C.

In this example, the resulting space is two-dimensional, making it easy to present (and visualise),

but more often it is a hyper-space of 100, 300, 500 or even 1,000 dimensions. The strength of

LSA and related models is that the initial representation is constructed entirely from frequency

observations across a collection of texts. Additionally, the statistical manipulations applied to the

data result in a representation that generalises definitions of words based on their use.

1δ denotes the identity matrix.
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