
Context-Aware Power Management

Colin Harris

A thesis submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

September 2006

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any other

University, and that unless otherwise stated, it is entirely my own work.

Colin Harris

Dated: 14th September 2006

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Colin Harris

Dated: 14th September 2006

Acknowledgements

I would like to sincerely thank my supervisor, Prof. Vinny Cahill, for all of his help, encouragement

and insights over the past four years. It has been an invaluable learning experience. I would also

like to thank the Irish Research Council for Science, Engineering and Technology who provided the

funding for this research.

To everyone who volunteered to take part in the user studies, I would like to say a huge thank

you for your openness and willingness to participate. I would particularly like to thank Dr. Myra

O’Regan for her help with the data analysis and Neil O’Connor for his assistance with the object-

range sensors. I would also like to thank the Department’s support staff for making everything run

so smoothly. In particular, Tom Kearney and the technicians for their help with the many hardware

issues.

A big thank you to all my colleagues in the Distributed Systems Group (DSG). It has been great

to be part of such a social group as DSG. I have fond memories of the canoe trips, the Chinese meals,

the coffee breaks and the friday football.

To my parents, brother and sisters, thank you for your support, love and friendship throughout

the years. Finally, thank you Helene for the love, patience and understanding you have shown during

the time it has taken to complete this research.

Colin Harris

University of Dublin, Trinity College

September 2006

iv

Abstract

With more and more computing devices being deployed in buildings there has been a steady rise in

buildings’ electricity consumption. These devices not only consume electricity but also produce heat,

which increases loading on ventilation systems, further increasing electricity consumption. At the

same time there is a pressing need to reduce overall building energy consumption. For example, the

European Union’s strategy for security of energy supply highlights energy saving in buildings as a

key target area. One approach to reducing energy consumption of devices in buildings is to improve

the effectiveness of their power management.

Current state-of-the-art computer power management is predominantly focused on extending bat-

tery life for mobile computing devices. The majority of policies are low-level and are used to manage

sub-components within the overall computing device. The key trade-off for these policies is device

performance versus increased battery life. In contrast, stationary computing devices do not have bat-

tery limitations and typically the most significant energy savings are achieved by switching the entire

device to standby. However, switching to a deep standby state can cause significant user annoyance

due to the relatively long resume time and possible false power downs. Consequently these energy

saving features are typically not enabled (or used with long timeouts). To increase enablement, poli-

cies for stationary devices need to operate in a near transparent fashion, i.e., operate automatically

and with little user-perceived performance degradation.

Context-aware pervasive computing describes a vision of computing everywhere that seamlessly

assists us in our daily tasks, i.e., many functions are intelligently automated. Information display,

computing, sensing and communication will be embedded in everyday objects and within the environ-

ment’s infrastructure. Seamless interaction with these devices will enable a person to focus on their

task at hand while the devices themselves vanish into the background. Realisation of this vision could

exacerbate the building energy problem as more stationary computing devices are deployed but it

could also provide a solution. Context information (e.g., user location information) likely to be avail-

able in such pervasive computing environments could enable highly effective power management for

v

many of a building’s electricity consuming devices. We term such power management techniques as

context-aware power management (CAPM), their principal objective being to minimise overall elec-

tricity consumption while maintaining user-perceived device performance. The current state of the

art in context-aware computing focuses on developing inference techniques for determining high-level

context from low-level, noisy, and incomplete sensor data. Possible approaches include rule-based

inference, Bayesian inference, fuzzy control, and hidden Markov models. Successful inference enables

the vision of computing services interfacing seamlessly and transparently with users’ daily tasks. One

such desirable, transparent service is context-aware power management.

We have identified several key requirements and designed a framework for CAPM. At the core

of the framework, a Bayesian inference technique is employed to infer relevant context from a given

range of sensors. We have identified the principal context required for effective CAPM as being (i)

when the user is not using and (ii) when the user is about to use a device. Accurately inferring

this user context is the most challenging part of CAPM. However, there is also a balance between

how much energy additional context can save and how much it will cost both monetarily and energy

wise. To date there has been some research in the area of CAPM but to our knowledge there has

been no detailed study as to what granularity of context is appropriate and what are the potential

energy savings.

We have conducted an extensive user study to empirically answer these questions for CAPM of

desktop PCs in an office environment. The sensors used are keyboard/mouse input, user presence

based on Bluetooth beaconing, near presence based on ultrasonic range detection, face detection, and

voice detection. Results from the study show that there is wide variability of usage patterns and

that there is a balance whereby adding more sensors actually increases the energy consumption. For

the desktop PC study, idle time, user presence, and near presence are sufficient for effective power

management coming within 6-9% of the theoretical optimal policy (on average). Beyond this face

detection and voice detection consumed more than they saved. The evaluation further demonstrates

the use of Bayesian inference as a viable technique for CAPM.

vi

Publications Related to this Ph.D.

[1] C. Harris and V. Cahill. Power Management for Stationary Machines in a Pervasive Com-

puting Environment. In 38th Annual Hawaii International Conference on System Sciences

(HICSS’2005). Hawaii Big Island, January 2005.

[2] C. Harris and V. Cahill. Exploiting User Behaviour for Context-Aware Power Management.

In International Conference On Wireless and Mobile Computing, Networking and Communica-

tions, Montreal, Canada, August 2005.

vii

Contents

Acknowledgements iv

Abstract iv

List of Tables xii

List of Figures xiii

List of Listings xvi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Dynamic Power Management . 7

1.3 Pervasive Computing . 8

1.4 Context-aware computing . 10

1.5 Context-aware Power Management . 10

1.6 Thesis contribution . 11

1.7 Road map . 12

Chapter 2 State of the Art 14

2.1 Dynamic power management . 14

2.1.1 The oracle and threshold policies . 17

2.2 Dynamic power management policies . 19

2.2.1 Device-driver-level policies . 20

2.2.2 Operating system-level policies . 22

2.2.3 Application-level policies . 24

2.2.4 User-level policies . 26

viii

2.2.5 Discussion . 27

2.3 Context-aware computing . 29

2.3.1 Context-aware computing model . 29

2.3.2 Properties of sensors and multi-sensory information 31

2.3.3 Granularity versus cost . 31

2.4 Context-aware power management review . 33

2.4.1 A context-aware approach to saving energy in wireless sensor networks 33

2.4.1.1 Analysis . 34

2.4.2 Location aware resource management in smart homes 34

2.4.2.1 Analysis . 35

2.4.3 Improving home automation by discovering regularly occurring device usage

patterns . 36

2.4.3.1 Analysis . 38

2.4.4 An adaptive fuzzy learning mechanism for intelligent agents in ubiquitous com-

puting environments . 38

2.4.4.1 Analysis . 40

2.4.5 Lessons from an Adaptive House . 41

2.4.5.1 Analysis . 43

2.5 User activity monitoring review . 44

2.5.1 Inferring Activities from Interactions with Objects 44

2.5.1.1 Analysis . 46

2.5.2 Discovery and Segmentation of Activities in Video 47

2.5.2.1 Analysis . 48

2.5.3 Layered Representations for Human Activity Recognition 49

2.5.3.1 Analysis . 52

2.6 Summary . 53

Chapter 3 CAPM Framework Design 55

3.1 Initial experimental results . 55

3.1.1 SOB policy energy performance . 57

3.1.2 SOB policy user-perceived performance . 58

3.1.3 SWOB policy energy performance . 59

3.1.4 SWOB user-perceived performance . 61

3.1.5 Conclusions . 62

ix

3.2 CAPM requirements . 63

3.3 CAPM framework design . 64

3.3.1 Data capture and feature extraction . 65

3.3.2 Context inference . 66

3.3.3 Decision . 66

3.4 Selection of inference technique . 66

3.5 Probability and Bayesian networks . 70

3.5.1 Bayesian networks . 73

3.5.2 Dynamic Bayesian networks . 76

3.6 Parameter learning for Bayesian networks . 77

3.6.1 Parameter learning for binary variables . 78

3.6.2 Learning multinomial variables . 80

3.7 Choice of sensors for CAPM . 81

3.8 Design of BNs for CAPM . 82

3.8.1 Initial models . 82

3.8.1.1 Not using . 82

3.8.1.2 About to use . 84

3.8.2 Final BN models . 84

3.8.2.1 Not using . 85

3.8.2.2 About to use . 88

3.8.3 DBN models . 89

3.8.3.1 Not using . 89

3.8.3.2 About to use . 91

3.9 Summary . 91

Chapter 4 Implementation 93

4.1 Sensors . 94

4.1.1 System idle time . 94

4.1.2 Bluetooth presence . 96

4.1.3 Face detection . 98

4.1.4 Voice activity detection . 100

4.1.5 Object range detection . 102

4.1.6 Sensor power consumption . 104

4.2 BN software selection . 106

x

4.2.1 Requirements . 106

4.2.2 Tool selection . 107

4.2.3 Netica . 108

4.3 Runtime (on-line) CAPM implementation . 109

4.4 Evaluation (off-line) CAPM implementation . 111

4.4.1 Data collection . 111

4.4.2 Simulation of policies . 112

4.5 Summary . 113

Chapter 5 Evaluation 114

5.1 Objectives . 114

5.2 Design of the CAPM user study . 115

5.3 Data collection and processing . 117

5.4 Simulation of policy traces . 118

5.5 Evaluation metrics . 122

5.6 Results . 122

5.6.1 Oracle, SWOB, Always On and Threshold policies 123

5.6.2 Potential extra energy from SWOB . 126

5.6.3 Energy consumption of sensors . 127

5.6.4 BN models for power management of the display 128

5.6.5 BN models for power management of the PC 134

5.6.6 DBN models for power management of the display 138

5.6.7 DBN models for power management of the PC 138

5.7 Evaluation of the affect of monitoring on users . 141

5.8 Evaluation of BNs for device power management . 143

5.9 Summary . 145

Chapter 6 Conclusions 147

6.1 Contribution . 147

6.2 Future work . 149

Appendix A Additional Evaluation Figures 150

Bibliography 154

xi

List of Tables

1.1 Internal heat gains [68] . 6

2.1 Power states, break-even and resume times . 17

2.2 Measured power consumption of DELL Optiplex GX270 27

2.3 Average Scenario Prediction Results [27] . 37

2.4 Activities of daily living [52] . 45

2.5 Average accuracies and computational costs for S-SEER [49] 51

2.6 Recognition accuracy [50] . 53

3.1 Joint probability table . 74

3.2 Example BN training cases . 87

3.3 Example training cases for the DBN model . 91

4.1 Comparison of BN tools . 107

5.1 Sample selection . 116

5.2 LightUse and HeavyUse users . 123

xii

List of Figures

1.1 Residential and commercial energy consumption [14] 2

1.2 Trinity College Dublin electricity consumption [15] . 3

1.3 Unit energy cost and total energy cost per device type for USA [33] 4

1.4 Percentage energy cost per sector and per power state [33] 5

1.5 Cooling potential of ventilation for given internal/external delta temperature and ven-

tilation rate[68] . 7

2.1 Usage periods and idle periods for a device . 15

2.2 Dynamically power managed device . 16

2.3 The theoretically optimal oracle policy . 18

2.4 Trade off power consumption versus performance . 18

2.5 Device-level power management . 20

2.6 Operating system-level power management . 23

2.7 Application-level power management . 25

2.8 User-level power management . 26

2.9 Sentient object model . 30

2.10 MavHome floor plan . 35

2.11 Five phases of AOFIS [19] . 39

2.12 Rule modifications [19] . 40

2.13 Adaptive House Architecture (ACHE)[43] . 42

2.14 Energy versus user discomfort [43] . 43

2.15 Several learned states in the trained HMM model. (a) entering room, (b) at com-

puter, (c) at white board, (d) sitting, (e) on telephone, (f) looking for a

key, (g) writing, and (h) swiveling right. [7] . 48

2.16 S-SEER dynamic Bayesian network [50] . 52

xiii

3.1 SOB energy consumption . 57

3.2 SOB user performance . 59

3.3 Standby period frequency . 59

3.4 SWOB energy consumption . 60

3.5 Auto-on-idle period frequency in seconds . 61

3.6 Standby period frequencies (minutes) . 63

3.7 CAPM framework . 65

3.8 Venn diagram showing conditional probability . 72

3.9 BN example . 73

3.10 Example BN for ubiquitous computing . 76

3.11 Example DBN rolled out to 3 time slices . 77

3.12 Augmented Bayesian network . 78

3.13 Beta distributions . 79

3.14 Updating the Beta distribution . 80

3.15 Initial not using model . 83

3.16 Initial about to use model . 84

3.17 Final BN not using model . 85

3.18 Final BN about to use model . 89

3.19 DBN not using model . 90

4.1 Software structure . 93

4.2 Idle time CPTs . 95

4.3 Inferred probability of not using . 95

4.4 Bluetooth CPTs . 97

4.5 Inferred probability of not using . 97

4.6 The Haar-like features . 99

4.7 Face detection . 100

4.8 Face detection CPTs . 101

4.9 Voice activity CPTs . 102

4.10 Typical using/not using object ranges . 103

4.11 Coinciding using/not using object ranges . 104

4.12 Object detection CPTs . 104

4.13 Energy consumption of sensors . 105

4.14 Evaluation software structure . 111

xiv

4.15 Device Model . 112

4.16 CAPM simluation . 113

5.1 Measured device usage . 118

5.2 Oracle versus Measured . 119

5.3 SWOB versus Measured . 120

5.4 Threshold 5 versus Measured . 120

5.5 BN IT-BT versus Measured . 121

5.6 SWOB total energy comparison . 125

5.7 False power downs per day . 126

5.8 Manual power ups . 126

5.9 Potential extra energy from SWOB . 127

5.10 Estimated sensor energy consumption per day . 128

5.11 Delta energy . 130

5.12 Delta energy including sensor energy . 131

5.13 False power downs . 132

5.14 Manual power ups . 132

5.15 Standby break-even periods . 133

5.16 Delta energy including sensor energy . 135

5.17 False power downs . 136

5.18 Manual power ups . 136

5.19 Standby break-evens . 137

5.20 DBN display delta energy including sensor energy . 139

5.21 DBN PC delta energy including sensor energy . 140

5.22 Example DBN policy trace . 141

5.23 Idle traces for 6 of the users . 142

5.24 Bluetooth parameters given the user is not using . 143

5.25 Variance in BT parameters for the 5 training days . 144

5.26 Variance in energy consumption per training day . 145

A.1 DBN display false power downs . 151

A.2 DBN display manual power ups . 151

A.3 DBN display standby break-evens . 152

A.4 DBN PC false power downs . 152

xv

A.5 DBN PC manual power ups . 153

A.6 DBN PC standby break-evens . 153

xvi

Listings

4.1 System idle time . 94

4.2 CAPM . 110

xvii

Chapter 1

Introduction

This thesis investigates the potential for context information (e.g., user location information), likely

to be available in future pervasive computing environments, to enable highly effective device power

management. The principal objective of such context-aware power management (CAPM) is to min-

imise the overall electricity consumption of an environment’s stationary devices, while maintaining

acceptable user-perceived device performance. Secondary benefits are reduced noise and heat gain.

The thesis focuses on a future pervasive computing office environment containing sensing devices

such as location tags, imaging, audio, object detection, and stationary devices such as video displays,

desktop PCs, printers, photocopiers, ventilation, and lighting.

1.1 Motivation

The European Union (EU) strategy for security of energy supply [13] highlights three main issues:

1. The EU will become increasingly dependent on external energy sources; enlargement will rein-

force this trend. Based on current forecasts, if measures are not taken, import dependence will

reach 70% of total energy consumption in 2030, compared to 50% today.

2. At present, greenhouse gas emissions in the EU are on the rise, making it difficult to respond to

the challenge of climate change and to meet the EU’s commitments under the Kyoto protocol

[45].

3. The EU has very limited scope to influence energy supply conditions. It is essentially on the

demand side that the EU can intervene, mainly by promoting energy savings in buildings and

in the transport sector.

1

Cooking
7%

Lighting & Appliances
11%

Water heating
25%

Space heating
57%

Cooking
5%

Lighting
14%

Water heating
9%

Space heating
52%

Cooling
4%

Other (mainly office
equipment)

16%

Figure 1.1: Residential and commercial energy consumption [14]

The EU’s demand for energy has been growing at a rate of between 1% and 2% a year since 1986.

While industrial demand has remained stable, households and the tertiary sector have increased their

demand for electricity, transport, and heat. In particular demand for electricity has grown much more

rapidly than any other type of energy and is predicted to track gross domestic product (GDP) growth

closely until 2020 [13]. The total energy consumption of the EU in 1997 was estimated at 10,815 Tera-

Watt hours (TWh). Of this total, 40% was used in the building sector and 32% in the transport

sector [14]. Within the building sector residential properties consume 70% and commercial buildings

consume 30%. Figure 1.1 shows the breakdown of how energy is consumed in both residential and

commercial buildings.

The charts show that commercial buildings consume slightly less energy for heating but signifi-

cantly more energy for lighting and other uses (mainly office equipment and building services’ pumps

and fans at about 8% each [47]). The current trend is that while buildings are gradually becoming

better insulated reducing heat demand, increasing demand for appliances and services often offset

heating efficiency gains. Furthermore, improved energy efficiency in electrical devices (e.g., energy

saving light bulbs, and flat-screen monitors) has been more than offset by growing demand.

We conducted an analysis of electrical energy consumption for all buildings within Trinity College

to compare with the estimates and trends above1. The stock of office equipment operating within

the university was estimated from asset registers, sales records and network addresses for the year

2003. Multiplying the number of devices by their corresponding unit energy cost (UEC) (see Figure

1.3 below) gives a total energy cost (TEC) of around 0.003 TWh for office equipment within the

university for 2003. This equates to 14.7% of the College’s total electricity consumption or around
1The analysis was conducted as part of an EU pilot action for procurement of energy-efficient office equipment [15].

2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

95-96 96-97 97-98 98-99 99-00 00-01

Electricity (MWh) Students Building area (10m2) Desktop PCs

Figure 1.2: Trinity College Dublin electricity consumption [15]

euro 190,000 in financial cost. Figure 1.2 shows electricity consumption, student numbers, building

area and number of desktop PCs from 1995 to 2001. Electricity consumption has increased by over

50% in this period outstripping the increase in students and building area. At the same time the

number of desktop PCs increased by 800%.

Part of this trend of increased electrical energy consumption in buildings is due to the increased

numbers of computing devices (office equipment) being deployed in buildings. The Lawerence Berkeley

National Laboratory (LBNL) provides detailed estimates of energy consumed by office and network

equipment in the United States as of 1999 [33]. The office equipment is divided into 11 types of

device and categorised into residential and non-residential sectors as usage varies between the sectors.

Figure 1.3 details the estimated unit energy cost and total energy cost for each device type over a

period of a year for both the residential and non-residential sectors. UEC is charted in kilo-Watt

hours per year (kWh/year) and the scale is logarithmic to include the minicomputer and mainframe

devices which consume 5,840 and 58,400 kWh/year respectively.

The UEC figures are multiplied by the estimated number of devices existing in the residential and

non-residential sectors to give the total energy cost for each device type in TWh/year. The charts

highlight that even though the unit energy cost of the minicomputer and mainframe far exceed other

office equipment, both the desktop computer and the desktop display unit have the two highest total

energy costs, due to the shear number of them (estimated 109,110 desktop computers and 109,180

displays in the USA in 1999 compared to 2,020 minicomputers and 107 mainframes). The total energy

3

1

10

100

1000

10000

100000

1000000

Por
ta

ble
 co

m
pu

te
r

Des
to

p c
om

put
er

Ser
ve

r

Mini
co

m
pu

te
r

Mainfra
m

e

Te
rm

ina
l

Disp
lay

La
se

r p
rin

te
r

Ink
je

t p
rin

te
r

Cop
ie

r
Fax

kW
h/

ye
ar

Residential

Non-residential

(a) Annual unit energy cost per device type (kWh/year)

0

2

4

6

8

10

12

14

Por
ta

ble
 co

m
pu

te
r

Des
to

p c
om

put
er

Ser
ve

r

Mini
co

m
pu

te
r

Mainfra
m

e

Te
rm

ina
l

Disp
lay

La
se

r p
rin

te
r

Ink
je

t p
rin

te
r

Cop
ie

r
Fax

TW
h/

ye
ar

Residential

Non-residential

(b) Annual total energy cost per device type (TWh/year)

Figure 1.3: Unit energy cost and total energy cost per device type for USA [33]

4

Soft-off
3.8% Low-power

standby
8.6%

Operating
86.3%

Printing or
copying
1.3%

Network
4.3%

Residential
11.7%

Non-residential
84.0%

Figure 1.4: Percentage energy cost per sector and per power state [33]

cost of network equipment is estimated to be 3.22 TWh/year, which includes routers, switches, access

devices and hubs for wide area and local area networks.

Breaking down the energy cost per sector shows clearly that non-residential is the main energy

consumer for office equipment and breaking down into device power states shows that the majority

of energy is consumed by devices during their operating state (see Figure 1.4). The study took

a simplified model of device power states assuming that each device has one operating state, one

low-power standby state, and a soft-off state (many electrical devices still consume energy when

physically switched off and still connected to the mains). The printing or copying state models the

power consumed by devices when they are printing or copying2. Furthermore, LBNL note that the

main potential for savings due to power management are in displays, desktop computers, and copiers,

which currently have low enablement of their power management features (estimated to be about

25% enabled).

Another reason for increased electrical energy consumption in buildings is the increased deploy-

ment of air conditioning and mechanical ventilation (fans) to cool building environments during the

summer months. The increasing numbers of computing devices adds to ventilation loading, which

further increases electricity consumption. Roughly speaking the heat energy dissipated from a device

is equivalent to its energy consumption. So, a 45 Watt (W) LCD display will dissipate about 45 W

of heat energy and a 60 W desktop computer will dissipate around 60 W of heat. An air conditioned

space with a 200% efficiency will consume 52.5 W to dissipate the heat from the one display and
2The power consumed when printing or copying is significantly higher than in the normal operating state.

5

desktop computer.

Natural ventilation is an alternative technique that maximises use of windows and natural airflows

to passively ventilate and cool the environment, significantly reducing energy consumption for cooling

and ventilation. Natural ventilation is particularly suited to temperate climates which have moderate

temperature variations throughout the year. Given a suitable climate, the principal factor in the

viability of natural ventilation is the heat gain in the space. The primary internal heat sources are

people, lighting, and small power devices (e.g., office equipment). Table 1.1 gives figures for typical

internal heat gains in an office environment for low, medium and high densities of the three factors.

Gains (W/m2) Low Medium High

People 5-8 8-11 11-15

Lights 3-5 6-9 10-14

Small power 0-6 6-12 12-20

Total 6-16 18-30 30-50

Table 1.1: Internal heat gains [68]

For overheating to be controlled by ventilation, there is a limit to the allowable heat gains within

the space. This is because the cooling energy coming from the cooler external air is not controllable

and the thermal mass of the building (which at night time stores the cooling energy) is limited. Figure

1.5 shows the cooling potential of ventilation for given internal/external temperature difference (Delta

T) and ventilation rates in litres per second per person (l/s/p). Typical high-density internal heat

gains from Table 1.1 range from 30 to 50 W/m2. The ECON19 benchmark [47] specifies a target

energy efficient mechanical ventilation rate for cooling of 40 l/s/p. From the figure it can be seen

that 30 W/m2 cooling would be just achievable for the night time 6 degree temperature difference

but no where near achievable for a typical day time 2 degree temperature difference.

In summary, we believe that effective device power management will provide several significant

benefits for both the operators and users of commercial buildings. It will contribute to significant

energy savings in lighting and appliances (22% of commercial building energy) and it will reduce the

need for air conditioned and mechanically ventilated spaces significantly reducing energy consumed

by ventilation and cooling (12% of commercial building energy). For the users, it will enable a

more pleasant working environment with more naturally ventilated spaces and reduced noise levels

through less need for mechanical fans and air-conditioning units and more computing devices in silent

standby modes. Many example building projects cite building users wanting a more user friendly

“open” building where they can open windows to control their environment as opposed to their sealed

6

0

10

20

30

40

50

60

10 20 30 40 50 60 70

Ventilation rate per person (l/s)

C
oo

lin
g

po
te

nt
ia

l (
W

/m
2)

Delta T = 6K

Delta T = 4K

Delta T = 2K

Figure 1.5: Cooling potential of ventilation for given internal/external delta temperature and ven-

tilation rate[68]

air-conditioned building [68].

1.2 Dynamic Power Management

Research into dynamic power management [2] dates back to the 1980s, the main driver being to extend

battery life in mobile computers. It is an effective technique that simply powers down a device (or

some of its sub-components) during idle periods that occur during its operation. The two fundamental

assumptions are that (i) idle periods will occur during the device’s operation and (ii) these periods

can be predicted with a degree of certainty. What makes dynamic power management difficult is

that typically power state transitions have a significant cost. Possible costs are (i) extra energy is

consumed, (ii) device performance is degraded, and (iii) device lifetime is reduced. Break-even time

is the minimum time a device must spend in a lower power state to justify the cost of transitioning

down to that state and back again. The resume time is the time taken for the device to resume to

the operating state.

The current state of the art is predominantly focused on developing policies for mobile computing

devices. The majority of mobile policies use low-level information and manage sub-components

within the computing device. For example, a policy may observe the pattern of hard disk requests

to predict when to power off the hard disk component [51]. The key trade-off for these policies is

7

device performance versus increased battery life. The hard disk may be aggressively power managed

to extend battery life but its performance will deteriorate as it will be slower to respond to user

requests. These low-level mobile policies can only predict short idle periods and are not able to

predict the time of the next user request, hence they incur a performance delay the next time the

user requests the device. Therefore, they are only suitable for managing devices or sub-components

which have relatively short break-even and resume times (order 10 and 1 seconds respectively [20]).

Typically, the most significant power savings for stationary devices are achieved by switching

the entire device to standby. However, switching to a deep standby state has two implications as the

device break-even and resume times are significantly longer. Firstly, since break-even times are longer,

policies need to accurately predict longer idle periods (order 1 to 10 minutes). Second, switching to

low-power standby states can cause significant user annoyance as resume times are longer (order 10

seconds) and there is the possibility of false power downs. Furthermore, stationary computing devices

do not have battery limitations so users expect little or no performance degradation. Therefore,

policies need to be near certain before powering down and they need to predict the time of the next

user request to avoid resume time delays.

Currently, the standard policy for power managing stationary devices is the threshold policy, which

simply waits a certain threshold period of idleness before powering down the device. It is neither able

to predict long idle periods nor the time of the next user request. As a result of these inadequacies

deeper standby energy saving features are typically not enabled (or set to a long timeout). To increase

enablement of these features, policies for stationary devices need to operate in a near transparent

fashion (i.e., operate automatically with little user-perceived performance degradation).

1.3 Pervasive Computing

Pervasive or ubiquitous computing is heralded as the next stage in the evolution of computing [66, 58].

Instead of today’s situation where people use dedicated computing devices (e.g., desktop computers)

to access information and perform their“computing”tasks, pervasive computing envisions information

display, computing, sensing, and communication existing all around, embedded in everyday objects

and the environment’s infrastructure3. The objective of this being to assist people with their everyday

tasks by providing information, computing, and services in an “intelligent”, seamless manner. This

seamless integration enables people to focus on their task at hand while the computers themselves

vanish into the background. They need not be explicitly aware of the computing devices involved
3We view smart spaces as a subset of pervasive computing which deals specifically with adding “intelligence” to

building environments.

8

in their daily tasks and so the computing becomes transparent. The vision relies on the availability

of cheap computing, communication, sensing, and display devices pervasively deployed within the

environment and the ability to “intelligently” integrate services with users’ everyday tasks.

We are already seeing the beginnings of the vision today with the almost saturated deployment

of mobile phones (many with significant computing capability) and many shops and public buildings

using large video displays to display information. There are also many embedded computing devices

in everyday objects such as home appliances, cars, and street furniture (e.g., bus stops). What still

has to be achieved is the seamless interaction of all these devices to provide users with useful services

in a transparent manner.

However, realisation of this pervasive computing vision could exacerbate the building energy

problem as more computing, communication, sensing, and display devices are deployed in buildings.

Weiser [66] considers the type of devices that might become common in a typical office environment.

He cites one issue of crucial importance being scale. Devices will come in different sizes, each suited

to a particular task. The devices he experimented with are tabs (post-it note size), pads (A4 paper

size), and boards (bulletin board size). He envisaged a typical office containing more than 100 tabs,

10 to 20 pads and one or two boards. The tabs and pads are battery powered requiring recharging

periodically while the boards are stationary. The boards can serve a number of functions such as

bulletin boards for displaying information, white boards for collaboration in a meeting and electronic

bookcases from which a user might download some information to their pad or tab. Satyanaraynan [58]

envisions public spaces augmented with“surrogate” servers to provide computing service for handheld

device users. Increasing numbers of these stationary devices are a real concern for increasing energy

consumption in buildings. Furthermore, Jain [31] cites energy consumption due to mobile devices

as a significant environmental concern for pervasive computing. “While mobile devices are becoming

more energy efficient, the overall energy consumption due to such devices continues to increase as

their total number increases rapidly.”

These are well-founded concerns for pervasive computing. However, on the other hand pervasive

computing could possibly provide a solution by enabling more“intelligent”device power management.

For example, user location information, likely to be available in pervasive computing environments

could enable highly effective power management for many of a building’s electricity consuming devices.

We have termed such techniques that make use of “context” as context-aware power management

(CAPM) [26]. It is enabled by research being carried out in the areas of dynamic power management

and context-aware computing.

9

1.4 Context-aware computing

Context-aware computing is one of the fundamental components in realising the pervasive computing

vision. Context describes the state of the environment in which an application operates and the state

of the user (or users). In general, context typically consists of location, identity, user activity, envi-

ronmental properties, and available resources [3]. Being context-aware can be defined as the ability

to sense and react to context, enabling autonomous, proactive operation by reducing or eliminating

the need for explicit user input to the application.

Satyanarayanan [58] describes a scenario for this proactive, seamless context-aware computing.

“Fred is preparing a presentation on his desktop PC. Being late for the meeting he grabs his handheld

PC and leaves the office. The presentation is automatically transferred to the handheld so he can

continue editing while walking across campus to the meeting. The system infers Fred is going to

the meeting from his calendar information and the location tracking service. Before entering the

meeting the presentation is downloaded to the projection PC and the projector is switched on to

warm up. During the presentation face detection cameras in the room detect unfamiliar people, the

system warns Fred not to present a slide which contains sensitive information.” The scenario shows

things being seamlessly/proactively automated for the user, downloading the presentation, switching

on the projector, warning Fred not to present a sensitive slide. They all require the system to be

context-aware, aware of the state of the environment and what the user is doing or going to do.

The current state of the art in context-aware computing focuses on developing inference techniques

for determining high-level contexts from low-level, noisy, and incomplete sensor data. Possible ap-

proaches include rule-based inference, Bayesian networks, fuzzy control, and hidden Markov models

[56]. Successful inference enables the vision of computing services interfacing seamlessly with users’

daily tasks. One such useful, transparent service is context-aware power management.

1.5 Context-aware Power Management

We define context-aware power management as a dynamic power management technique that employs

high-level user context to transparently power manage users’ devices. It is possible to apply CAPM

to manage users’ mobile devices but this thesis focuses on the management of stationary devices, the

principal objective being to minimise overall electricity consumption while maintaining user-perceived

device performance.

In imagining an ideal CAPM scenario, all electricity consuming devices are instantly switched to

very low-power standby states when not in use and these devices are restored to their operating states

10

just before the user requests their service again. To develop effective CAPM policies that approach

this ideal we need to obtain context from the user of the device. We identify the key context to infer

as (i) when the user is not using the device (for the break-even period) and (ii) when the user is

about to use the device (at least the resume time beforehand). Determining this user context is the

most challenging part of context-aware power management. However, there is also a balance between

how much energy additional context can save and how much it will cost both monetarily and energy

wise.

We state that it is necessary to investigate what granularity of context is appropriate for CAPM.

Intuitively, finer-grained context can be obtained by adding more and different types of sensor into

the space. Observing additional features enables detection of more distinct patterns/cues for finer-

grained context. Subsequently, this more precise information enables policies to make better and

more timely decisions. However, also intuitively, the more hardware sensors there are and the more

feature processing, the more energy will be consumed by the policies. In carrying out this research

we are trying to discover what types of sensor are useful for CAPM, what are the benefits of adding

the sensors and what are the costs. In particular, is there a linear relationship between granularity of

sensors and energy saving or are there “sweet spots” where certain types of sensor give near optimal

performance for little additional cost. It is possible to leverage some context already available in the

pervasive environment such as estimated user location from wireless connections, but in some cases

it is necessary to include CAPM-specific sensors to obtain optimal performance.

Finally, the ground work for CAPM is being laid by advances in power management functionality

for computing devices. The advanced configuration and power interface (ACPI) [28] is a de facto

standard aimed at enabling effective power management for computing devices. The designers of the

standard and PC manufacturers have worked successfully towards achieving very low-power standby

states and faster resume times for their computing products. Also, moving the power management

code from the BIOS4 into the operating system has dealt with a number of reliability issues making

power management more robust [34]. Work is still on going in achieving even lower power states,

faster resume times and more robust operation. This will further increase the potential of CAPM.

1.6 Thesis contribution

To date there has been some research in the area of context-aware power management but to our

knowledge there has been no detailed study as to what are the potential energy savings from CAPM
4The previous advanced power management (APM) standard was implemented in the BIOS.

11

and what granularity of context is appropriate. The main contribution of our research is to evaluate

the potential for context-aware power management within pervasive computing environments. In

particular we:

1. Identify requirements for CAPM and what context is useful for CAPM.

2. Design and implement a framework for CAPM.

3. Evaluate the potential of CAPM, in particular:

(a) What are the potential energy savings of using additional sensors?

(b) How good a cue are they for predicting the contexts not using and about to use?

(c) What is the estimated energy cost of the sensor hardware and data processing?

4. Evaluate Bayesian networks as a technique for implementing CAPM. In particular we evaluate

the performance of Bayesian networks with that of dynamic Bayesian networks.

5. Provide recommendations for a reasonable approach to CAPM.

We have conducted an extensive user study to empirically answer these questions for CAPM of desktop

PCs in an office environment. At the core of the CAPM framework, a Bayesian inference technique

is employed to infer relevant context from a range of sensors (user input, Bluetooth beaconing,

ultrasonic range detection, face detection, and voice detection). Results from the study show that

there is wide variability of usage patterns and that there is a balance whereby adding more sensors

actually increases energy consumption. For the desktop PC study, idle time, presence, and near

presence are sufficient for effective power management coming within 6-9% of the theoretical optimal

policy (on average). Beyond this, face detection and voice detection consumed more than they saved.

Finally, the evaluation showed that use dynamic Bayesian networks made no improvement over

the use of standard Bayesian networks.

1.7 Road map

Chapter 2 reviews the state of the art in dynamic power management and context-aware computing.

From this we identify the need for research into CAPM, in particular, what are the potential energy

savings and what granularity of context is appropriate for CAPM. Chapter 3 presents initial experi-

mental results from which, requirements for CAPM and the framework design are detailed. Included

in this chapter is a description of Bayesian inference. Chapter 4 describes the implementation of the

12

sensor hardware and software, selection of the Bayesian inference software and implementation of the

CAPM framework. The evaluation is presented in Chapter 5, which includes the design of the user

study, data collection, analysis and results. Finally, our conclusions and potential future work are

discussed in Chapter 6.

13

Chapter 2

State of the Art

The thesis spans two broad areas, those of dynamic power management and context-aware power

management. This chapter gives an introduction to both of these areas and reviews the current state

of the art in each.

2.1 Dynamic power management

There are three complementary steps possible to reduce the energy consumption of devices in a

building.

1. Reduce the number of devices. For example, a network computing solution may be more efficient

than everyone having their own desktop computer.

2. Reduce the power of the devices’ operating and standby states. For example, LCD displays

consume less power than CRT displays in both their operating and standby states (typically

35W, and 1.5W compared to 100W, and 20W for equivalent 17 inch displays).

3. Reduce the amount of time devices spend in higher power operating states. For example,

desktop computers that spend most of their time in their operating state when not being used

consume 60W when they could be in standby consuming 2.5W.

All three approaches are necessary to significantly reduce device energy consumption. This thesis

focuses on the third approach, which in computing research is termed dynamic power management

[2] as it power manages the device dynamically during its runtime operation. Even though this

research has been applied to power management of computing devices, the principles can equally be

14

applied to other electrical devices such as lighting and ventilation. We therefore use the term device

to generalise all electrically powered devices that provide some service or function to the user. So,

a device could be a computing device such as a display, desktop computer (we view the display and

computer as separate devices), a ceiling light, a ventilation unit, or a desktop fan. Furthermore, a

device could also be a sub-component of another device, for example, the hard disk in a desktop

computer or its network card. Research into dynamic power management dates back to the 1980s,

the main driver being to extend battery life in mobile computers.

Dynamic power management can significantly reduce device energy consumption by taking advan-

tage of the idle periods that occur during the operation of a device. For example, a device that spends

three quarters of its time idle could save up to 75% of the energy it consumes being left on all the time.

The two fundamental assumptions are that (i) idle periods will occur during the device’s operation

and (ii) these periods can be predicted with a degree of certainty [2]. Figure 2.1 shows a graph of

device usage for a device over time (the dashed line). The power management policy (thick grey line)

must decide whether to power down during the idle periods. Some power management policies also

attempt to power up the device just before the next user request. In general, the performance of a

particular policy will vary depending on the usage of the device. For example, a device that is used

continuously will have little scope for energy savings, whereas a device that is used infrequently will

have significant potential savings.

Device

Use

Usage period

Idle period

Power management policy

Not worth powering down Time

Figure 2.1: Usage periods and idle periods for a device

What makes it difficult to achieve the full potential savings is the fact that for most devices power

state transitions have a significant cost. Typically a power state transition may:

1. Consume extra energy. For example, a PC consumes extra energy in writing its state to hard

15

disk before powering down to the hibernate state and a hard disk consumes extra energy in

mechanically powering up its disks.

2. Reduce device performance. For example, a user may have to wait for their display to resume

and worse still is the possibility of falsely powering down the display, which can cause significant

user annoyance.

3. Reduce device lifetime. Some devices wear out faster when they are switched on and off fre-

quently. For example, hard disks incur mechanical wear in spinning up and down their disks

and fluorescent lighting incurs electrical wear when igniting the fluorescent gas.

Therefore not all idle periods are long enough to justify powering down the device. The primary task

of the power management policy is to predict whether the current idle period will be long enough to

justify the transition cost. Secondarily, if the policy can predict when the next user request will be,

it can reduce the time the user has to wait for the device to resume.

Power

Manager

UserDevice

information

request

down/up

Figure 2.2: Dynamically power managed device

Figure 2.2 shows a simple model of a dynamically power-managed device. The user generates

requests that must be serviced by the device while the power manager implements policies that

decide when the device should be powered down/up. Power management policies use information

they receive from the user of the device to make their decisions. This information can be either

observed or explicitly passed to the power manager by the user. The model can be viewed at different

levels. For instance, the device could be a low-level device such as a hard disk or a collection of

devices such as a desktop computer. Also, the user of the device can be viewed at different levels.

For example, the user could be viewed as a low-level device driver, the operating system, a software

application or the actual human user of the device.

All devices can be modelled by a number of power states (S0, S1, S2, S3, ...). In the highest power

state, S0, the device operates at full performance. Lower power states operate at reduced performance

16

levels. Either the device performance has been “throttled” and it operates more slowly or it is in a

standby state. For example, a central processing unit (CPU) can have a number of reduced power

operating states [67]. These are achieved by reducing the processor clock frequency, which enables the

voltage and hence the power to be dropped1. Each lower power state has an associated break-even

and resume time (see Table 2.1). The break-even time (Tbe) is the minimum time the component

must be in the lower power state to amortise the cost of the state transition. The resume time (Tr) is

the time taken to transition back to the S0 operating state. The deeper the power state, the lower the

power consumed but the greater the break-even and resume times. For devices that are composed

of a number of sub-devices, the power states are simply a combination of the power states of the

sub-devices themselves. For example, a desktop computer has a number of power states which map

to the power states of the CPU, hard disk, network card, peripherals, and motherboard.

Table 2.1: Power states, break-even and resume times

State Power Break-even time Resume time

S0 P0 - -

S1 P1 Tbe1 Tr1

S2 P2 Tbe2 Tr2

S3 P3 Tbe3 Tr3

...

2.1.1 The oracle and threshold policies

The oracle policy [60] is a theoretical optimal policy that has future knowledge of user requests for the

device. This policy will power down the device immediately after a request is serviced to the lowest

power state that has Tbe less than the idle period. If the idle period is not going to be greater than

Tbe for any of the power states, it leaves the device on for the period. If the device is powered down,

the policy powers it up to the operating state just before the next request (see Figure 2.3). Since

this policy powers up the device before the next request the break-even time only needs to consider

transition energy and device lifetime, not performance degradation. This optimal policy is a useful

baseline when comparing realisable policies.

The key trade-off in the design of most real-life policies is device energy consumption versus

device performance. Figure 2.4 shows a so-called threshold policy that waits a given time Tidle before

powering down in the idle period. It wastes energy waiting for the timeout and incurs a performance
1Significant savings can be made as power is proportional to the square of the voltage.

17

Device

Use

Usage period

Idle period

Oracle policyimmediate power down

Timepower up before next request

less than T
be1

Figure 2.3: The theoretically optimal oracle policy

delay at the next user request. The shorter Tidle the more energy saved but the device will power down

more often increasing the number of device response delays. There is also the added complexity that

for some devices the transitions consume significant extra energy and/or reduce the device lifetime.

Therefore an aggressive policy (with very short Tidle) could end up consuming more energy and/or

cause the device to fail prematurely. For more sophisticated policies, it is also necessary to take into

account the potential energy cost of implementing the policy. For example, extra energy may be

consumed in the processor execution of a policy [60] or external sensor hardware may be used, which

will consume extra energy.

Device

Use

Usage period

Idle period

Threshold policy
energy wasted

Timeperformance delay

Figure 2.4: Trade off power consumption versus performance

18

The following section reviews the current state-of-the-art dynamic power management policies.

They are predominantly focused on management of mobile devices. The discussion at the end of the

section highlights why mobile policies are often inappropriate for management of stationary devices.

2.2 Dynamic power management policies

In this review of dynamic power management policies for computing devices we have identified four

levels of policy, device-driver-level, operating system-level, application-level and user-level. A policy

is assigned to a level depending on where it gets its input data from. Dynamic power management

techniques which are not considered in this review are:

1. Techniques to optimise the behaviour of the user of the device so that it will arrange requests

to complement the power management policy. These include operating system optimisations

[69] and application optimisations [23] where the operating system or application is tuned to

complement the power management policy.

2. Techniques to reduce the performance of the user so that it will make fewer requests, e.g.,

application adaptation [24] or operating system adaptation [70]. Since the performance of the

application or operating system is degraded, it is only applicable for mobile devices where power

is critical and an extended battery life is desired. Users of stationary devices are typically not

prepared to accept this performance degradation. For example, it is unlikely a user would choose

to reduce the performance of their application because it will slightly reduce the building’s

energy consumption. They might however choose this policy if it means they can work on their

laptop for longer before the battery goes dead.

Device-driver-level policies are the lowest level policies. They are either implemented in the device

driver or the operating system and can make use of past device usage patterns to predict when next

to power down the device. At this level the user of the device is seen as the device driver. There

is no knowledge of the operating system, applications or human user that are indirectly causing

the requests. Operating system-level policies have knowledge of operating system data such as the

processes running on the machine and the size of caches and can make use of this extra information to

improve the power management policy. Application-level policies can make use of known application

patterns to predict future request arrival times and user-level policies can make use of information

about the human user to predict future device requests.

19

2.2.1 Device-driver-level policies

For device-driver-level policies, the power management policy observes information from the device

driver and uses this to make its down/up decisions. Most current power management policies are

device-driver-level including the ubiquitous threshold policy and a range of predictive and stochastic

(probabilistic) policies.

Power
Manager

User:
Device DriverDevice

down/up

request

information

Figure 2.5: Device-level power management

The threshold policy defines an idle period Tidleafter which the device is powered down to a lower

power state. The device powers up on the next user request. This is the simplest policy to implement

but has the drawback of consuming energy while waiting for Tidle to pass and it incurs performance

degradation as the subsequent request response time is increased by the resume time. The threshold

policy is based on the assumption that user requests are continuous and therefore the longer the

idle time the less chance there is of receiving a request in the near future. Douglis [20] compared a

threshold policy (with several Tidle values) to the optimal oracle policy using a four hour usage trace

of the hard disk for a machine that was running Microsoft Word and Eudora mail. The manufacturers

recommended Tidle before spinning the disk down was 5 minutes. The oracle policy could reduce the

hard disk power consumption by 48% of the 5 minute threshold policy and the best threshold policy

(with Tidle of 1 second) reduced power consumption by 45%. Equivalently, if we say the 5 minute

policy consumes an average power of 10W, then the optimum policy would consume 5.2W and the 1

second policy would consume 5.5W, which is within 6% of the optimum. However, the performance

degradation due to spin-up delays was very high. There was a total of 98 spin-up delays over the

four hour period of the trace, one every couple of minutes. He also notes that the performance of the

threshold policy varies significantly depending on the usage trace and the performance characteristics

of the hard disk. For example, desktop computer hard disks have much slower spin-up times than

those for laptops. So, the same policy on a desktop computer would incur even worse resume time

delays. In conclusion he states that ultimately a better approach may be predictive policies but that

20

these may remain elusive. The competitive algorithm (CA) is a special case of the threshold policy

with Tidle set equal to the break-even time of the device. Karlin [32] states that this setting achieves

a good balance between energy saving and performance.

More complex predictive policies use past request data to predict if the time to the next request

will be greater than the break-even time Tbe, if so the policy powers down the device immediately

thereby saving on the idle time. It powers up again on the next user request incurring a response-time

penalty. Predictive policies require more processing overhead than the threshold policy to determine

their action and one key concern is whether there are significant power saving gains to justify this

overhead. The main predictive policies are adaptive time-out, L-shape, exponential average (EA) and

adaptive learning tree [39].

The adaptive time-out policy adjusts the Tidle value by considering the ratio of the previous

actual idle period to the device resume time. When the ratio is small Tidle increases and when

it is large Tidle decreases. The L-shape policy works well when short busy periods are frequently

followed by a long idle period (i.e., their scatter plot forms an “L-shape”). The policy is formulated

so the device is powered down after such short busy periods. The exponential average method uses

the predicted and actual lengths of the previous idle periods to predict the length of the current idle

period. The previous lengths are weighted exponentially and averaged to determine the current idle

length. Finally, the adaptive learning tree algorithm stores each idle period as a discrete event in a

tree node. It uses finite-state machines to select a path that resembles previous idle periods.

Stochastic policies model the arrival of requests and device state changes as stochastic processes

[51, 60]. The stochastic process is optimised to give the optimal solution for the given request arrival

rate. There are several varieties of stochastic policies the most basic being the discrete-time Markov

decision process (MD). The algorithm assumes a stationary geometric distribution of request arrivals

and does not cope well with varying device usage. This algorithm is extended to handle non-stationary

request arrivals by using a sliding-window technique (SW). The main disadvantage of this discrete

time approach is that the power-down decision has to be reevaluated for each period even when

the device is in the sleeping state thus causing unnecessary energy consumption in the CPU. The

continuous-time Markov process (CM) is an improvement as it makes decisions only at the occurrence

of an event and therefore does not incur computational overhead when the device is already sleeping.

Both discrete and continuous-time approaches model request arrivals and power state transitions as

memoryless distributions. The time-indexed semi-Markov model (SM) improves on this by using a

Pareto distribution.

Lu et al. [39] have done a quantitative comparison of 11 different policies from the simple threshold

21

policy to the more advanced stochastic policies. These polices were implemented for the hard disk

of a desktop PC and compared against the optimal oracle policy and the worst case scenario of the

disk being always on. Two eleven-hour usage traces are used in the experiment, one from developing

C programs and the other from making presentation slides. The algorithms are compared on power

consumption, number of power downs, number of false power downs, average time sleeping and

average time before power down. The comparison showed that SM, SW and CA are the best in

terms of power consumption saving nearly 50% of power compared to the always-on case and coming

within 18% of the oracle policy. The three policies are similar in power consumption but SW has

less than half the number of false power downs at 28 compared to 76 for SM and 64 for CA. The

number of power downs that occurred in the eleven-hour trace for SW was 191, which corresponds

to one every three minutes. We believe that this number of power downs would severely degrade the

user-perceived performance of the hard disk.

All device-driver-level policies have no knowledge of the entities above causing the device requests

and therefore cannot imply future request patterns from knowledge of an entity’s behaviour. Typically

the future request predictions hold true only for the near future (order of seconds) so the policies only

suit transitions to device power states where the break-even time is small. Also, none of these policies

are effective in predicting future device power up so a response-time delay is always experienced with

these policies. For example, a policy of powering down the hard disk for every predicted idle period

of 10 seconds would significantly degrade its performance and would typically not suit the user of a

stationary device. In order to predict request arrivals in the far future, we believe that policies need

to observe higher-level information.

2.2.2 Operating system-level policies

Operating system-level policies observe the state of the operating system and use this information to

make decisions for powering down/up a device. Here the user of the device is viewed as the operating

system, which indirectly causes the device requests. A policy at this level can make use of higher-level

operating system information to make more intelligent power management decisions.

Lu’s [38] task-based power management (TBPM) policy uses the state of processes running in the

operating system to find idle periods more accurately. For each device in the system the policy keeps

a list of all processes using the device and their associated device utilisation. The device utilisation is

measured as the reciprocal of the average time between device requests. How soon the policy powers

the device down is a function of the total utilisation of the device. When a process terminates it

is deleted from the list and when there are no more processes using the device it is powered down

22

Power
Manager

User:
Operating SystemDevice request

information

down/up

Figure 2.6: Operating system-level power management

immediately. The policy includes a performance rule that ensures that no more than two consecutive

power downs are issued within time period Tw. Lu compares the TBPM policy with four device-

level policies, EA, SM, CA and threshold with Tidle of one and two minutes. The experiment was

conducted on real usage traces for a desktop computer hard disk. The results show that the average

power used for TBPM was 0.435 W, SM was 0.507 W and CA was 0.499 W. These are the policies

that perform best in terms of power consumption but the TBPM policy has far fewer power downs

due to the performance rule (181 compared to 477 for CA and 581 for SM). If we assume that the SM

and CA policies are within 18% of the oracle policy (see Section 2.2.1) then we can deduce that in this

case the TBPM policy is within 2%. Lu claims that the additional operating system-level information

enables the policy to find idle periods more accurately and hence can implement the performance rule

without reducing the power efficiency. However, the device performance degradation is still large, 181

power downs in the 10 hour usage period, on average one power down every 3 minutes.

The TBPM policy is a good example of using higher-level information to infer knowledge of

future user requests. For example, we know a priori that a process causes requests therefore when

the last process associated with a device terminates, this device can be powered down immediately.

It performs better than previous policies but still has a high performance penalty.

Steinbach’s [62] adaptive mid-level power management policy monitors application and transport

layer data from a network stack to optimise the power management of a wireless network card. He

states that the drawback of device-driver-level policies is that no extra knowledge of future requests

can be inferred from monitoring the device-driver-level packets. His technique monitors the packets

for each application protocol (e.g., SSH, HTTP) and uses a machine learning technique called rein-

forcement learning to learn an optimal policy for each application protocol. The policies are trained

from past trace data and he believes that these policies will out perform device-driver-level policies

by “learning” patterns in each of the application protocols to more accurately predict when to power

down. He states,

23

“We also note that our approach is supported by the end-to-end argument [57], which

holds that system functions such as power management, implemented at a low level, are

likely to be of little value in comparison to those same functions implemented at a higher

level.”

However, unfortunately this policy has not been compared experimentally to the other policies.

It is worth noting here the work of Ellis et al. [22] who have stated the case for moving power

management from the device-driver-level to the operating system. They have implemented an op-

erating system wide energy accounting framework which allocates energy tokens to tasks and then

charges the tasks for the energy they consume through use of the system devices. The initial ap-

plications of this framework have been to throttle the tasks (processes) when system energy is low

in order to extend the battery lifetime. Further work [69], has investigated using this framework

to implement “power management policies”. However, these are not power management policies but

rather techniques to optimise usage of the device. Examples are delaying disk access to create more

bursty patterns which will complement the disk power management policy and delaying writes to disk

when it is not spinning. They also use similar techniques to modify some of the operating system

tasks such as charging the disk-flush daemon extra for writing to the disk when it would require a

spin-up. So far, the framework does not help in making policy decisions as to when to power down

the device and hence is out of scope of the analysis in this paper.

Similarly Flinn [24] devised an operating system-level framework for monitoring system energy

and making up-calls to applications to reduce their “fidelity” (quality or performance) when system

energy is low. Again this work is out of scope of our analysis as the typical users of stationary devices

would not implement this application adaptation strategy.

2.2.3 Application-level policies

Application-level policies communicate with the applications running on a system and make use of

this information in making power down/up decisions.

Lu et al. [37] describe an application-level power management architecture. The power manager

provides an API for application programs to communicate their future device needs. The example

scenario is of a browser application that presents real-time news from the Internet. The application

requires use of the network card, graphics adapter, and hard disk, and communicates this information

to the power manager, which ensures that these devices will not be powered down for the browser’s

duration. Future request information from applications could also enable predictive power up of

devices eliminating the response time overhead associated with most power management policies.

24

Power
Manager

User:
ApplicationDevice request

information

down/up

Figure 2.7: Application-level power management

This predictive power up will not however work at the user-level as the application does not know

when or what the user will do next. Lu states that “accurate prediction is difficult for operating

systems because they do not have enough knowledge about the future behaviour of applications”. To

date these application-level policies have not been implemented so we have no real data in order to

compare their effectiveness against the previous policies.

The main drawback to this general approach is that applications have to be programmed to

take advantage of the power management API. This approach may be used for mobile devices but is

unlikely to be used for stationary devices. Another possible problem is how would the power manager

know when the user is finished viewing the browser application? The user could have left the office

with the application still running and the power manager still ensuring that the devices do not power

down.

Kravets et al. [36] have implemented a software power manager residing at the transport layer

of a network protocol stack to dynamically power manage the network card. Power management is

built into the network protocol as the mobile device communicates to the base station when it is

going to sleep and when it has woken up again. This enables the mobile device to save energy by

periodically switching off the network card. They cite the key problem to solve as the policy that

decides when is the best time to power down and up the mobile network card. Their first approach is

to use a simple threshold policy for detecting idle periods to power down. The second approach is for

the power manager to provide an API for applications to communicate their future communication

needs. Future work is stated as the development of an appropriate API that will cater for the needs

of all applications using the network card. Again no data was available for comparison purposes.

Flinn et al. [23] extended their power management middleware (Puppeteer) to manage the power

consumption of Windows component-based applications such as PowerPoint. The middleware can

access an external API allowing it to both query application data and modify application behaviour

25

without needing to modify the application’s source code. Again, the primary function of the middle-

ware is to reduce the application’s “fidelity” (quality) when system energy is running low in order to

extend battery life. However, another function of the middleware is to communicate relevant infor-

mation to the power manager about the application behaviour. The example used is the timing of the

auto-save function. The power management policy can use this information to (i) prevent untimely

power downs of the hard disk and (ii) to predict wake-up for the hard disk to eliminate response time

delays. Flinn estimates a saving of 4% in the energy consumption of the auto-save operation if the

power management policy knows when the auto-save occurs. There is not enough information in the

paper to derive how close this policy is to the oracle.

Puppeteer is a specific technique for closed source applications that have rich APIs enabling the

middleware to gain access to data relevant to the power management policies. More interesting work

could be to define a general power management API for applications to program to. This standard

power management API would enable applications to communicate information on their device usage

to the power manager.

2.2.4 User-level policies

In the area of dynamic power management there has been little research into user-level policies that

use information about the state of the user to make their power down/up decisions.

Power
Manager

User:
Human UserDevice request

information

down/up

Figure 2.8: User-level power management

Current user-level policies implemented are simple threshold policies that observe user activity

from the keyboard and mouse input devices. Reasoning about the user’s activity by monitoring

incoming keyboard and mouse events is very limited. The presence of events tells us that the user is

using the device, possibly editing a document or browsing the web but an absence of events does not

tell us that the user is not using the device. The user could be reading from the screen or presenting

a slide show to an audience. For this reason threshold policies are set to very long idle periods such

26

as 20 to 30 minutes to avoid false power down of the device. A user-level policy can control the

power state of any sub-devices such as the hard disk or display, but also the state of the entire device.

Relative to a sub-device, putting the entire device into standby has large power savings but also a

considerable performance penalty as typically the whole device response time is large. To date, in the

area of dynamic power management, we have not found research into more sophisticated user-level

policies where more context is known about the user’s activities. However, in the area of context-

aware computing there are several projects exploring user-level, context-aware power management,

which are described later in Section 2.4.

2.2.5 Discussion

Current state-of-the-art dynamic power management policies are suited to managing sub-devices

that have short break-even and resume times. Furthermore, they are aimed at management of mobile

devices where performance degradation is tolerated for increased battery life. In contrast, stationary

devices typically have power states with longer break-even and resume times, and since they have no

battery life problems, the user is unlikely to accept much device performance degradation.

Table 2.2 gives the measured power consumption, break-even time, and resume time for the power

states of a DELL Optiplex GX270 (desktop tower computer) running Windows XP. A power monitor

was used to measure the active power of the computer in its range of power states. To achieve an

accurate measurement of power, the power monitor is set to measure the energy consumption in Watt

hours over a several hour period. The power is then estimated as the total energy consumed divided

by the measurement time period in hours.

Power State Power Consumed Break-even time (energy) Resume time

onmax 120.5W - -

onidle 60.0W - -

hard disk off 54.0W 14.9s 2.5s

standby 2.8W 24.8s 7s

hibernate 1.5W 60s 23s

soft off 1.5W 60s 25s

Table 2.2: Measured power consumption of DELL Optiplex GX270

The table highlights the large difference in power consumption between onidle and onmax, which

is the power measured for the machine at maximum load (i.e., CPU 100% and reading from the hard

27

disk). The hard disk off state is just onidle with the hard disk powered down, whereas standby powers

off all sub-devices except the random access memory (RAM) and the network card. The state of the

system is stored in RAM so it can be resumed in a reasonable amount of time (˜7 seconds). Hibernate

is a slightly lower power state where the state is saved to hard disk and soft off is the state where the

PC is physically shut down, no system state is saved, but it is still connected to the mains. Both of

these states have very long resume times as the operating system needs to be rebooted, making them

impractical for dynamic power management.

Typically, a desktop computer will spend most of its operating time in the onidle state. Switching

the hard disk off gives a modest saving of 6W (10% of the base onidle consumption), whereas switching

the PC to standby gives a very significant saving of 57.2W (95% of the base onidle consumption).

Modern PCs are designed to achieve these very low power standby states by use of dual mode power

supplies, which provide trickle power when the PC is in standby, enough to power the network card

and refresh the RAM [34]. Making this state change to system standby has significant savings over

putting individual components into standby but also significant performance penalties. The system

standby state has a significantly longer resume time than the hard disk. Furthermore, putting the

system into standby affects the visible state of the system as the display will also be powered off.

As an example, using a threshold policy with Tidle of 10 seconds at the user-level to power the

system to standby is clearly unrealistic. It would cause unworkable performance degradation through

frequent false power downs and manual power ups. This being due to an inability to predict relatively

long idle periods and an inability to predict when next to power up the device. Thus, the limitations

of current dynamic policies for management of stationary devices are:

1. They are not capable of accurately and quickly predicting when the user will not be using the

device for a relatively long period of time (e.g., 1 minute, 5 minutes, 10 minutes).

2. They always incur some degree of performance degradation as they cannot predict when the

next user request may arrive.

To achieve the large savings of system standby and not incur large performance penalties we must

develop policies that can (a) accurately and quickly predict long idle periods (order of minutes)

and (b) predict when the user will make the next request. The first requirement brings us close to

the oracle policy in terms of power efficiency and the second requirement enables us to minimise

performance degradation. We believe that users of stationary devices will not tolerate significant

performance degradation as energy is not critical. Also, we believe a realistic solution will require a

relatively low cost of implementation. Finding a power management solution that is transparent to

28

the user with little additional overhead is key.

2.3 Context-aware computing

Dey [17] gives one of the most cited definitions for context and context-aware computing.

“Context is any information that can be used to characterise the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and application themselves.”

The definition is user-centered, focusing on users’ interactions with computing devices. In particular,

it envisions the main applications being for mobile devices where the users’ and applications’ context

may change often. While context can be used for power management of mobile devices, this research

only explores its application to stationary devices. Dey’s definition of context is still relevant to the

application of power management for stationary devices as a user’s context will change often with

respect to the stationary devices in the environment. Dey goes on to define the primary types of

context to be location, identity, activity and time2, and gives a general definition for a context-aware

system.

“A system is context-aware if it uses context to provide relevant information and/or ser-

vices to the user, where relevancy depends on the user’s task.”

An example model for context-aware computing suited to CAPM is detailed next.

2.3.1 Context-aware computing model

Biegel et al. [4] describe a context-aware computing middleware, based on the sentient object model,

to ease the development of context-aware applications. They state that the pervasive computing

function should necessarily be autonomous and proactive and give a definition of context that is less

centered in user interaction.

“Context is environmental information that an application may use to autonomously and

proactively fulfill its goals.”

At the core of the model is the sentient object abstraction (see Figure 2.9). The model uses an

event-based programming paradigm for communication between sentient objects. The solid arrows
2This can also be defined as the where, who, when and what (i.e., what is the user doing).

29

Consume Produce

Data
capture &

fusion
Context

hierarchy
Inference

engine

Sensor

Actuator

Sentient object

Software event

Real-world event

Figure 2.9: Sentient object model

show software events and the dashed arrows show physical events. The sentient object consumes

events from either physical sensors or other sentient objects, and produces events that are either

consumed by other sentient objects or actuators for control of the physical environment. A sentient

object provides support for data capture and fusion, a context hierarchy and an inference engine for

intelligent processing of sensor events.

The data capture and fusion component uses a filtering mechanism so that only relevant events

are passed to the sentient object and the fusion mechanism is based on an inference technique called

Bayesian networks, which uses probability to derive high-level contexts from noisy, low-level, multi-

modal sensor data. The context hierarchy is structured into three layers. The top-level mission

context defines inputs that are of interest to the sentient object and rules that are always valid;

several major contexts define distinct strategic objectives of the sentient object and, finally, sub-

contexts define operational actions carried out in fulfillment of a major context. The inference engine

uses a production rule-based system which fires actions when the object is in a particular context.

The rules provide a natural approach to representing knowledge within the system and the context

information derived from the sensor inputs is stored as facts in the rule engine.

The CAPM framework is loosely based on this sentient object model. For this thesis, the frame-

work implementation has focused on the core components of data capture, fusion and inference. To

enable more distributed operation it could be plugged into the sentient object middleware with each

30

power manager being implemented as a sentient object.

2.3.2 Properties of sensors and multi-sensory information

Gassmann et al. [25] state key properties of physical sensors are sensor accuracy, reliability and cost.

It is important to consider the accuracy of measurement required by an application. For example, is

location required to +/-5m or to +/-5cm. Secondly, the reliability of the sensor is important, i.e.,

how long will it last without maintenance and/or replacement. Finally, for practical applications, the

financial cost of the sensor needs to be considered.

The raw data from the physical sensors are combined/fused to provide multi-sensory information.

Luo [40] states that there are four fundamental properties of multi-sensory information: redundancy,

complementarity, timeliness and cost. Redundancy occurs when multiple sensors perceive the same

feature in the environment, which can reduce the overall uncertainty of the information. Complemen-

tary information from multiple sensors allows features in the environment to be perceived that are

impossible to perceive using just the information from each individual sensor operating separately.

Information may be more timely using multiple sensors by parallelising the information processing.

Information from multiple cheaper sensors may be less costly than using one more expensive sensor

to provide the same quality of information. For his analysis Luo defines cost in purely financial terms.

Other costs can be consumption of computing resources (e.g., CPU cycles) and consequently energy

consumption. Multiple cheap sensors might be less expensive to purchase but a multi-sensor system

may consume more computing resources and more energy.

Luo draws a distinction between multi-sensor fusion and integration. Multi-sensor integration

refers to the complementary use of information provided by multiple sensors, whereas multi-sensor

fusion is the actual combination of different sources of sensor information into one representational

format. Redundant information is usually fused at a lower level of representation compared to com-

plementary information, which is usually either fused at a higher level or provided directly to different

parts of the system without being fused. The advantage of more redundancy is increased certainty,

of more complementarity is increased number of perceived features, and of increased timeliness is

increased ability to react in time to a particular situation.

2.3.3 Granularity versus cost

Intuitively, finer-grained context can be obtained by adding more, different types, and more accurate

types of sensor into a space. Observing additional features enables detection of more distinct pat-

terns/cues for finer-grained context. This more certain, more accurate, complementary, and timely

31

information enables applications to make better and more timely decisions. However, also intuitively,

the more sensors there are and the more feature processing, the more the resource and energy cost

of the information.

For example, coarse-grained location/presence information can be a good cue for a person about

to use their PC, if for example, their behaviour is that they always check their email when they

re-enter the office. For other users it may not be a good cue, they may often pop in and out of their

office without checking their email and without using the PC3. Adding additional sensors to the scene

may help us do better. For example, knowing the time of day could help in determining whether

they are about to use their PC (e.g., they always check their email first thing in the morning, after

lunch and at the end of the day). Time of day is cheap to obtain but does depend on the user being

very regular in their behaviour. How well this works depends on the user’s usage pattern. Adding

other physical sensors could improve the situation, for example, to detect whether the user is alone

or with others, where the user is in the space, or whether the user is moving towards the PC. These

observations could possibly be made with additional sensors such as acoustic, video, object ranging,

and more accurate location, to try to establish finer-grained context. Example user context, from

coarse to finer grained, could include present, not present, alone, with others, taking a

break, reading, writing, talking, on telephone, in meeting, sleeping, using computer,

not using computer. Some activities can be interleaved and also, there can be dependencies

between activities. For example, if reading was detected we could infer not using computer,

although we would still be uncertain for how long the person will remain reading and not using the

PC.

As the primary objective of CAPM is to minimise overall energy consumption, there is a bound

on the granularity of context that is appropriate. Overstepping this bound and the system will start

consuming more sensor energy than the device energy it is saving due to the additional context. The

additional complicating factor is that user-perceived device performance must also be added to the

cost equation. To date we have not found any work that explores this boundary, i.e., the balance

between granularity of context and its cost (energy and device performance) for context-aware power

management.

The following section reviews the current state-of-the-art context-aware power management ap-

plications. The applications are loosely ordered by their increasing use of sensors and sophistication

in the techniques used to determine finer-grained user context.
3These users may check their email with a hand-held device.

32

2.4 Context-aware power management review

A few projects have explored context-aware power management. In the following sections we provide

an overview and analysis of these projects.

2.4.1 A context-aware approach to saving energy in wireless sensor net-

works

Chong et al. [11] present a framework for power management of sensors in a sensor network, the objec-

tive being to minimise the energy consumed by the sensors, which are battery powered4. They state

that current work in this area has focused on improving energy-efficiency of the hardware, tailoring

sensor designs to be efficient for specific applications, and improving the efficiency of communication

protocols. Their context-aware power management framework addresses power management at the

application level and is not application specific. The central idea is to use changes in the sensed

context to adapt the operating (power) states of the sensors, thereby saving energy when the sensors

are not being fully utilised by the particular application. An example they give is of a pig farm where

pig sties are monitored for temperature, light and sound. Detection of no (or minimal) sound for a

long period is a pattern in the data that relates to a context of pigs temporarily out of sty.

The application developer manually maps this context to a power management function that reduces

sensing frequency for the sensors in the sties. When the pigs come back the sensing frequency is

returned to normal.

The framework consists of three main components, context discovery, context trigger engine and

communication. These components correspond loosely to the sentient object model described in Sec-

tion 2.3.1. Context discovery is responsible for data capture and fusion of raw sensor data into context.

Currently this fusion of raw data is done by manually configured if-then rules. A future version will

use a data mining service to automatically discover new contexts (i.e., frequently occurring patterns

in the data). The context trigger engine maps sensed contexts to power management functions that

change the operating (power) states of the sensors. Again, these are manually configured rules, as in

the example above, if pigs temporarily out of sty then reduce sensing.

The evaluation of the framework is based on a twenty-minute simulation of the pig sty scenario.

They compare the energy consumption of their context-aware power managed network with a network

with no CAPM. The context-aware power manager modifies the sensing frequency of the sensor nodes

between 1-second, 10-second and 100-second sampling frequencies depending on what context the
4This reduces the frequency of battery replacement.

33

application is in. They report an estimated power saving of 33% compared to the control experiment,

which keeps the sensing interval fixed at 1 second.

2.4.1.1 Analysis

To summarise, the sensors used were temperature, light and sound to infer when pigs were not

present in their stie. The inference technique was a simple if-then rule-based approach. The work is

currently at quite a formative stage with few real results for proper evaluation. Data would need to

be collected from a real pig sty to properly evaluate the actual usage patterns and subsequently the

actual potential savings. Furthermore, they do not evaluate what impact the power management may

have on the performance of the pig sty monitoring application. For example, when the pigs re-enter

the sty, what effect does the delay in resuming the frequency from 100 seconds to 1 second have on

the monitoring application. Is there a loss of valuable data? Another point to evaluate would be the

time required by the operator to manually code the mappings from contexts to power management

functions.

Finally, the scenario is a simplified study of CAPM as the power management is based solely on

occupancy, which is detected using a simple acoustic sensor. The logic reduces to, when the pigs leave

the sty, reduce the sensing and when they return increase it again. The simulated scenario does not

give any real insight into the issues of CAPM. However, the paper does show that there is interest in

the area of context-aware power management.

2.4.2 Location aware resource management in smart homes

The MavHome project’s goal is the creation of an intelligent home environment [16]. Roy [55] focuses

on resource (power) management of the electrical devices in a home environment based solely on user

location and predicted future location. The MavHome floor plan (see Figure 2.10) is divided into 15

zones containing 11 RFID5 readers and 9 pressure mats. Zone connectivity is represented as a simple

graph with each edge of the graph being annotated with a list of the sensors a user would pass to get

from one zone to the next. These are termed paths and there may be more than one path between

zones.

Zones and sensors are labelled alphabetically. The user’s symbolic location is determined by

sampling the 20 sensors and user mobility is captured as a string of characters, for example, ajlloojh-

haajlloojaajlloojaajlm, signifying the user passed from sensor a to j to l to l and so on. The sensors
5Radio frequency identification.

34

RFID reader

pressure mat

main
bedroom dining

room

living
room

bedroombedroom

garage

w
a

s
h

ro
o

m

kitchen

b
a

th
ro

o
m

b
a

th
ro

o
m

Figure 2.10: MavHome floor plan

give room-level location granularity with the use of pressure mats to divide up the large open plan

kitchen, dining, and living rooms. There are two parts to the CAPM algorithm:

1. When the user leaves a zone, predict the path to the next zone based on their current zone and

the user’s mobility history.

2. Switch on all devices along the path. (Presumably all devices in the previous zone are switched

off after a short timeout period.)

Emphasis is given to the user mobility prediction part of the algorithm. The Lempel-Ziv text com-

pression scheme is used to compress user mobility strings, which are subsequently sent to a server and

stored in a search trie. The compression technique finds regularly occurring patterns in the data and

also reduces the cost of data acquisition as the data strings are compressed. The mobility prediction

scheme makes its decisions based solely on the history of the room-level user mobility patterns and

does not take into account other valuable data such as the time of day or day of week to aid its

prediction.

2.4.2.1 Analysis

To summarise, the sensors used were RFID readers and pressure mats to obtain room-granularity

location. A compression technique was used to discover user mobility patterns, which drove the

power management policy of switching devices on before the user reached the predicted next zone.

The policy to switch on all devices in the user’s predicted path from one zone to the next is naive.

35

First, they do not categorise the devices into continuous and intermittent devices. Continuous devices

experience no idle periods during their operation and typically they are devices that carry out a well-

defined task such as making coffee, cooking food, washing clothes etc. Only intermittent devices (i.e.,

devices that experience idle periods) are suitable for context-aware power management. Intermittent

devices include lighting, sound, video display, heating, cooling and ventilation. Second, a user will

typically not require all intermittent devices all the time. Switching on all of these devices all of the

time will potentially frustrate the user and waste energy.

User-perceived performance of power management algorithms is sensitive to even small delays in

response and subtle changes from the normal operation of the device. Mozer cites even a 700ms

delay in his system as enough to annoy the user [43]. Since the predictive policy was not actually

implemented in reality it is hard to estimate what the real user-perceived performance of the policy is.

Our first concern, however, is the delay in actuation caused by the compression approach withholding

sensor data from the policy. They also assume negligible transfer time from sensor to policy and back

to actuator, which is not the case. Second, the path prediction success is 85% meaning 15% of the

time the predictive policy will switch on the wrong set of devices and the user will be left to manually

switch these off and the desired ones on. For the system to be workable we believe the predictive

success has to be close to 100% to avoid user annoyance.

Finally, there is no evaluation of potential energy saved nor energy consumed by the system.

Probably the most fundamental flaw in the system is assuming that the user will want all devices

in their future path switched on. There is no mechanism for capturing the user’s preferences or

behaviour. A possible improvement to the system is reviewed next.

2.4.3 Improving home automation by discovering regularly occurring de-

vice usage patterns

Also part of the MavHome project, Heierman [27] developed a data mining technique, termed episode

discovery (ED), to discover significant patterns in a user’s device interactions to improve home au-

tomation. ED could be applied to Roy’s location-aware power management policy above to improve

its effectiveness by discovering which devices are used at given times of the day. So, a device would

only be switched on when the user enters its vicinity and they regularly switch this device on at this

time of the day. He states the main challenge in discovering regularly occurring device usage patterns

is the excessive noise in the data. For example, it would not be desirable to automate appliance

interactions for random and frequent trips to the kitchen to get a drink of water.

Their data mining technique, ED, is influenced by several characteristics of device usage, (i) there

36

is no explicit start and end points to sequences of device interactions (episodes), (ii) the ordering of

interactions within the pattern must be discovered, (iii) the discovery needs to balance frequency with

pattern length, and (iv) the dataset is of moderate size allowing use of techniques not suitable for

large datasets. The technique mines the device activity stream to discover episodes that are closely

related in time. This enables the algorithm to discover events that occur on a daily basis and weekly

basis. An example they give is the sequence of devices the user switches on and off after they get out

of bed in the morning {alarm on, alarm off, bedroom light on, coffee maker on, bathroom light on,

bathroom video on, shower on}. An example weekly event occurrence is the water sprinkler being

turned on and off.

The ED algorithm uses a 15 minute sliding window to generate a complete set of candidate

significant patterns. This is achieved by incrementally processing the event stream. Each window

of events is a maximal candidate pattern. Within each maximal pattern there are the possible set

of “child” sub-patterns, which are pruned to prevent exponential explosion of the candidate set. ED

evaluates each of the candidate patterns using the minimum description length (MDL) principle. The

fundamental idea behind the MDL principle [54] is to view pattern learning (finding regularity in the

data) as compression. The more the data can be compressed the more we have learned about the data.

The MDL compression technique balances the length of patterns with their frequency, which Heierman

states is a good property for finding significant device interactions. The amount of compression

equates to the pattern’s significance and because a high level of confidence is required, a minimum

compression level of 80% was chosen to determine device interactions that are worth automating.

The algorithm is used to (i) improve a prediction algorithm’s accuracy by removing noise from its

training data and (ii) recognise regularly occurring device interactions that should be automated. The

algorithm is evaluated using synthetic data for two prediction algorithms, Incremental Probabilistic

Action Modelling (IPAM) and a Back Propagation Neural Network (BPNN). IPAM is a frequency

based prediction algorithm that maintains a probability distribution for the next event given the

current state. The synthetic data contains 5 randomly generated scenarios that cover typical device

interactions over a 6 month period. There were 14 regularly occurring daily and weekly patterns and

68 noisy patterns. The results (see Table 2.3) show that the ED algorithm significantly improves the

performance of the prediction algorithms for the synthetic data sets.

Table 2.3: Average Scenario Prediction Results [27]

IPAM IPAM+ED BPNN BPNN+ED

41.0% 73.6% 63.6% 85.6%

37

As a final analysis, they collected one month of real device interaction data from 6 participants in

the MavHome environment laboratory. The dataset consists of 618 device interactions contained in

it patterns which occur once a week, multiple times a week and randomly. From this data, ED was

able to correctly identify the patterns of three of the six inhabitants as significant episodes that occur

weekly, it was unable to discover the patterns that occurred multiple times in a week. Heierman

stated that further work was needed to discover the weekly patterns.

2.4.3.1 Analysis

This is an interesting paper as it demonstrates the discovery and use of device interaction patterns

over time. The sensors used are “device interaction” sensors (i.e., power on switches), time of day, and

the day of week. The ED algorithm uses a compression technique to discover the device interaction

patterns. The results show that the algorithm performs well for smoothing synthetic data to be used

by prediction algorithms (IPAM, BPNN). However, the discovery of significant device usage patterns

from real usage data is poor, only discovering weekly patterns for three of the six users (i.e., 50%).

This suggests that possibly there is not much regularity in users’ actual device usage or there is more

work to be done to improve the algorithms.

The technique could be added to Roy’s system with little additional energy cost and potentially

improve the performance. Unfortunately, there is no evaluation of this.

2.4.4 An adaptive fuzzy learning mechanism for intelligent agents in ubiq-

uitous computing environments

The iDorm project [10] has instrumented a real student dormitory for use as a test bed for pervasive

computing experiments. Doctor et al. [19] present a novel system for learning and adapting fuzzy

logic controllers to automate a user’s devices within the single-bed dormitory room. Their adaptive

on-line fuzzy inference system (AOFIS) uses an unsupervised, one-pass algorithm to extract fuzzy

membership functions and fuzzy rules from the data. The learned rules are applied to a fuzzy logic

controller that models the user’s behaviour. The rules map the sensor inputs to actuator outputs,

which in turn control the environment. Figure 2.11 shows the five phases of their architecture.

The system was run for a five-day period, monitoring the user for the first three days and then

automating the system for the final two days. The sensors used were internal light level, external light

level, internal temperature, external temperature, chair pressure, bed pressure and time measured on

an hourly scale. The actuators controlled four spot lights, a bed lamp, a desk lamp, a window blind,

the heater and two PC applications, a word processing program and a media playing program.

38

User
action

Monitored change

Controller response

User

Capture data on user
interaction

Extract Fuzzy membership
functions from data.

Extract Fuzzy rules from
the data.

Agent control and online creation/
adaptation of Fuzzy rules.

Environment

Figure 2.11: Five phases of AOFIS [19]

In the initial monitoring phase the device usage data was captured. Whenever the user interacted

with a device a snapshot of the sensor readings and the actuator changes were recorded. This

generated a set of multi-input multi-output data pairs. In the next phase the data was categorised into

a set of fuzzy membership functions that map the raw sensor data into symbolic labels or predicates

(e.g., cold, warm, hot). These membership functions are extracted from the raw data using a statistical

clustering technique. An example membership function is ChairPressure{weight, noWeight}, which

categorises the chair pressure sensor readings into two categories weight and noWeight. Once the

membership functions are learned, they are fed to the fuzzy rule extraction phase.

The fuzzy rule extraction phase extracts multi-input multi-output rules to describe the rela-

tionship between the membership functions, and take the following form: if ChairPressure =

weight thenDeskLight = on6. Once the membership functions and set of rules are extracted from

the data, the fuzzy logic controller can start automating the device interactions on behalf of the user.

The agent is designed to continually learn new or modified rules, as the system may need to be tuned

and will need to adapt to the user’s behavioural changes. This is done by taking a snapshot of the

sensors, whenever the user makes a manual adjustment to the actuators.

Data captured in the three-day monitoring phase of the experiment was used to compare with

three other learning algorithms, genetic programming (GP), adaptive-neuro fuzzy inference system

(ANFIS), and a multi-layer perceptron neural network (MLP). The algorithms were trained on two

thirds of the data and tested on the other third. The AOFIS algorithm generated 155 rules from

the 272 training instances. Performance was based on the average scaled root mean squared error
6This is our example to illustrate the author’s system.

39

in the algorithms’ predictions (i.e., the difference between what device interaction was predicted by

the algorithm and what device interaction actually happened). The results show that AOFIS (0.12)

performed marginally worse than the GP algorithm (0.11) and marginally better than the ANFIS

(0.14) and MLP (0.16) algorithms.

2.4.4.1 Analysis

To summarise, the sensors used were light, temperature, and pressure sensors to infer whether the

user was about to use a device (lighting, heating, media application). The technique they used

was a fuzzy logic controller, which includes learning and updating of its rules from past device usage

data.

The evaluation was only done for one user of the system, therefore it is not possible to tell if the

results are significant or not. The results show only marginal differences between the algorithms’

performance suggesting that there may not be any difference. Having more users do the experiment

would begin to indicate what variance exists in the system for different types of user. The on-

line performance was evaluated by running the fuzzy logic controller for a further two days. Its

performance was measured by monitoring the total number of rule adaptations over time. The

controller started with 186 rules from the 3 days and learnt another 120 rules in the subsequent two

days.

Figure 2.12: Rule modifications [19]

Figure 2.12 shows the number of rule modifications the system undertook over the two-day control

period. This equates to the number of times the user had to manually adjust a device because the

40

fuzzy logic controller failed to adjust it or adjust it correctly. The graph shows that on average there

was one modification every five minutes. One possible reason for this poor performance could be the

sparse number and type of sensors used (7 sensors in total) to control the 10 devices. The authors

explain the levelling off of adaptation on the afternoon of the second day as the system suddenly

performing better. This might also be explained by the user either having fallen asleep or having left

the room for this period.

Again, there is no evaluation of energy saved by the system and the results suggest the user-

perceived performance is poor, with many manual adjustments being required.

2.4.5 Lessons from an Adaptive House

The Adaptive House project [42] has a similar floor plan to the MavHome project but has a more

sophisticated CAPM framework that has been developed from eight years of actual implementation

and experimentation. The real-life experience from this project highlights the subtle requirements

for effective power management. Here user mobility prediction is only one component of the CAPM

framework and it utilises dozens of environment and user context variables in making the power man-

agement decisions. Also, the project focuses only on home comfort devices, namely air temperature,

water temperature and lighting devices. These devices fall into the category of intermittent use.

The system is composed of 75 sensors monitoring room temperature, ambient light, motion, sound

level, door and window positions, and outside weather and insolation. Actuators control a central

heating furnace, electric space heaters, water heating, lighting and ventilation. [43] concentrates on

the issue of lighting control, the objective being to automate the setting of lighting levels within the

house to maximise inhabitant comfort and minimise energy consumption. The main challenges are:

1. There are several lights in each room, each with 16 settings. The user prefers different lighting

moods depending on the task s/he is doing.

2. Motion sensors have a time lag in detecting user occupancy and there is delay in the X10

communications of 700ms causing a delay in system response.

3. Motion sensors do not detect the presence of a person very well. For example, a person could

be present in a room and reading but not moving.

4. The policy must satisfy two often opposing constraints, user comfort and energy consumption.

The lighting control system architecture, ACHE, is shown in Figure 2.13 below.

41

occupancy
model

anticipator

natural light
estimator

event-triggering
mechanism

state
estimator

cost
evaluator

Q-learning
controller

light
switches

sensors

light
devices

Figure 2.13: Adaptive House Architecture (ACHE)[43]

It has two levels of abstraction that filter noisy sensors and provide higher-level information to the

Q-learning controller. This reinforcement learning technique models user discomfort and energy costs

and uses trial and error learning to minimise the total average cost. In classical decision theory, each

decision leads to a state s, which has a well defined reward R(s). There is a complete prior model of

the reward function, which can be used to learn an optimal policy. In reinforcement learning, there

is no prior knowledge of the reward function for each state and the algorithm attempts to learn an

optimal policy based on receiving infrequent reward signals. The ACHE Q-learning controller has a

partial model of the reward function. It can learn about other bad decisions in lighting level based

on the setting the user selects. If the decision was A and user corrected up to C, then any B lower

than A would also have been a bad decision.

The natural light estimator estimates natural daylight from raw sensors (as if the lighting was

turned off). The anticipator is a single-hidden-layer neural network that predicts if a zone will be

entered in the next 2 seconds. It runs every 250ms and its inputs are motion, door status, sound level,

zone occupancy and time of day. This component has been identified as not predicting sufficiently

accurately due to sparse sensor representation. This caused user annoyance when lights would go on

in an unoccupied zone. The occupancy model predicts whether a zone is occupied or not and the

inputs are motion sensed in zone, number of people in the house and motion in adjacent zones. The

state estimator forms a high-level state representation for decision-making with the most important

inputs being estimated user activity and natural light level. The user’s activity is estimated by zone

change frequency.

42

2.4.5.1 Analysis

The Q-learning policy costed energy ($0.072 per kWh) and user discomfort ($0.01 per manual ad-

justment, $0.01 per failed anticipation and $0.01 per false turn on) in dollar units and graphed these

costs over time. Figure 2.14 shows the energy cost per event dropped over time from 0.5 cent to 0.05

cent. However, it is not clear how this cost relates to the actual energy cost of the lighting.

Figure 2.14: Energy versus user discomfort [43]

The graph also shows the user discomfort cost starting at 0.1 cent per event rising to 0.8 and

decreasing again to 0.01 cent per event (after an error in the system code was fixed). These figures do

not really give a good idea of the actual user-perceived performance. The two main discomforts the

author experienced were the slow response of the system (due mainly to X10 communication delay)

and the occasional false anticipation of zone entry. This caused switching of lights on in unoccupied

zones. Surprisingly, there is no specific evaluation of the control of lighting level based on user activity

prediction. User activity is based only on recent user mobility patterns. For example, the user being

still for 5 minutes equating to the user reading and frequent zone change equating to cleaning

house. Mozer notes user activity classification as an interesting area for future research.

“ACHE, however, has no explicit representation of user activities, e.g., whether the inhab-

itants are preparing dinner, relaxing, studying, etc. Such an intermediate level represen-

tation could serve a valuable purpose, particularly in integrating sensor information over

time and increasing coherence of control decisions over time.”

Mozer states that the set of activities sufficient to characterise the typical behaviour of the inhabitants

is finite and could be inferred from sensor data. Being able to infer these activities could increase the

43

performance of the control decisions over time.

In summary, ACHE is the most advanced CAPM application that we know of, employing in total

75 sensors monitoring temperature, light, motion, sound, door and window positions, and weather to

infer not using and about to use of lighting devices. The techniques used are a neural network for

mobility prediction, and a reinforcement learning technique for the decision policy. However, there

is no evaluation of the potential energy savings of the system nor its energy cost. Adding further

“activity classification” context can potentially improve system performance but it will also add to

the energy cost.

The following section gives an overview and analysis of the current state of the art in user activity

monitoring. Some of these techniques could potentially be used to improve CAPM.

2.5 User activity monitoring review

This section presents an overview and analysis of several projects in user activity monitoring, which

highlights how finer-grained user activity may be obtained but also the significant potential energy

cost of obtaining this context. This provides clear evidence of the need to evaluate the balance

between energy saving and energy consumed by obtaining finer-grained context. For CAPM it is not

simply a solution to obtain more context to solve the power management problem.

2.5.1 Inferring Activities from Interactions with Objects

Philipose et al. [52] propose that the sequence of objects a person uses while performing an activity

robustly characterises the activity’s identity. Their Proact system is applied to the area of elder care

where it is necessary to monitor whether people with early-stage cognitive decline are performing their

activities of daily living (ADLs) and how well they are performing them. They state the key challenges

are that (i) users can perform ADLs in various ways, so models of activities and recognition software

must adapt to this variety, (ii) the underlying sensors must report the features required robustly

across varying environments (such as light levels, sound levels, and locations), and (iii) there are

a large number of ADLs (20-30 classes with 1000s of instances). They further state that a system

should model each activity with minimum human effort. A subset of example ADL classes that were

used in the experiment are listed in Table 2.4.

The Proact system consists of three components, RFID sensors to detect object interactions, a

probabilistic inference engine to infer activities given the sensor observations, and a model creator to

generate the probabilistic activity models. Objects of interest are tagged with postage stamp sized

44

Table 2.4: Activities of daily living [52]

ADL ADL

1 Personal appearance 8 Caring for clothes and linen

2 Oral hygiene 9 Preparing simple snack

3 Toileting 10 Preparing simple drink

4 Washing 11 Telephone use

5 Housework 12 Leisure activity

6 Use of appliance 13 Infant care

7 Heating control 14 Taking medication

RFID tags. The user must wear a glove, which has a small RFID reader attached, to sense when the

user touches a tagged object. The main advantages of this system are that it robustly reports data

at object-level granularity and it is modular allowing more tags to be added to objects if extra detail

is needed for a particular activity. They note that the RFID information could be augmented with

other sensor streams to fill in any information gaps, but for the experiment they just used RFID. The

reader samples the environment twice a second and broadcasts any detected objects to a wearable

iPaq that forwards this data wirelessly to a workstation running the inference engine. The glove’s

batteries last for two hours at this duty cycle.

Activities are modelled as linear sequences of activity stages. For example, making tea is a three-

stage activity of boiling water, steeping tea in water, and flavouring tea with lemon, sugar, or milk.

Each stage is annotated with the objects involved and the probability of their involvement. The

probability combines three sources of ambiguity: sensor error, model error and modelling generality

(an object is sufficient but not necessary). Each stage may optionally have a time to completion

modelled as a Gaussian probability distribution. The models are converted into dynamic Bayesian

networks (DBNs) where the sub-activity is the query variable and the set of objects seen and time

elapsed are observed variables. The network probabilistically estimates the sub-activities from the

sensor data. Activity models are generated from a pseudo English description of the activity similar

to that used in recipe books. Once the objects involved in the activity are specified, the involvement

probabilities are mined from the Internet using word counts via the Google API.

The experiment chose 14 ADLs for evaluation (see Table 2.4) and tested the system using 14

subjects performing the ADLs in the author’s instrumented house (108 objects were tagged within

a few hours). Each user spent on average 45 minutes in the house to perform the 14 ADLs. When

the user touched something they heard a beep to confirm it was recorded. Because the experiment

45

was not meant to test the efficacy of the glove, the users were asked to retouch the object if they

did not hear the beep. While performing the tasks the subjects wrote down on a sheet of paper

which task they were doing. After the experiments were completed the sensor data streams were fed

to the inference engine to predict the most probable ADL at any given time. This was compared

with the activity sequence the subjects previously wrote down. When Proact correctly claimed an

activity occurred it scored a True Positive (TP), an incorrect claim scored a False Positive (FP), and

no claim when the activity actually occurred scored a False Negative (FN). Proact correctly inferred

that an activity occurred 88% of the time and of the activity instances that actually happened, Proact

detected 73% correctly.

Issues included, (i) the RFID not performing well near water (e.g., washing hands), (ii) ADLs

with few observations such as adjusting the thermostat were not easily distinguishable from noise,

and (iii) overlapping activities with the same starting point were not possible to detect. For instance,

when Proact detects someone entering the bathroom, there are four possible activities that are equally

likely. If they then pick up their toothbrush, the system infers oral hygiene, however if they then

use the toilet the system misses this activity as there was no starting point of entering the bathroom.

They state that they need to reconsider their activity model to solve this issue. Another possible

improvement is to include unsupervised learning of model parameters, such as the duration of sub-

activities to improve model accuracy. In future work they want to integrate other sensors, particularly

location sensors. Where a person is located can be a good discriminator of performing a certain task.

They also want to integrate the time of day into their inference model as the time of day influences

the probability of performing a certain task. Key challenges include modelling overlapping activities,

multi person activities, and more complicated temporal models.

2.5.1.1 Analysis

To summarise, the sensors used are device-interaction sensors and the technique of dynamic Bayesian

networks is used to infer activity from the sensor data. This is interesting work that could in theory

be applied to an office environment. Possible objects that could be tagged are the telephone handle,

writing pen, and tea cups, which could be used to infer activities such as on telephone, writing,

taking a break. However, in an office environment there does not appear to be as many activities

that can be detected by object interaction as compared with the typical activities of a person in the

home. Furthermore, the practical barriers of needing to tag objects and getting users to wear RFID

readers makes the approach not viable for power management in an office environment.

46

2.5.2 Discovery and Segmentation of Activities in Video

Brand et al. [7] state that hidden Markov models (HMMs) are the standard technique employed

for visual event classification. They are used widely in spoken word and visual gesture recognition

but they fall down when applied to more complicated systems, as it becomes non-trivial to manually

construct and train the HMM. An example more complicated system is the classification of significant

user activities in a video stream for an office environment. They propose an unsupervised approach

whereby entropy minimisation of the HMM does away with the need for careful hand-crafting of the

model.

A HMM consists of a dataset X and a hidden-variable probabilistic model whose parameters and

structure are specified by the vector Θ. The normal method for training the model is that one guesses

the structure of Θ in advance and then re-estimates non-zero parameters to maximise the likelihood

P (X|Θ). This becomes very labour intensive for more complex models. They state that related

models such as dynamic Bayesian networks, also require careful hand-crafting. In entropic estimation

the size of Θ, its structure, and its parameter values are learned simultaneously in an unsupervised

manner. Minimising entropy is in practice similar to maximising the regularity of the data (i.e., its

compressibility). They state that their technique is similar to the MDL technique described in Section

2.4.3.

Their first example application is to learn a model of office activity. They state the main challenge

being that office activities have a range of time spans from just half a second to pick up a phone

to several hours for writing. The HMM represents the image as a set of ellipse parameters fitting

the single largest connected set of active pixels in the image. Active pixels are the pixels that move

in the scene, as distinct from the stationary background. A statistical model of the background is

acquired to separate the foreground active pixels from the background. The HMM was trained using

30 minutes of data acquired when the user was active in the office space. The unsupervised entropic

training yields a set of significant office activity states/patterns (see Figure 2.15) that occurred during

the 30 minutes of activity.

By comparing the learned states with the actual video frames, the states were manually labelled

as to what activity they represent. Once labelled, the HMM can annotate the video stream with

the current user activity. They have shown that by using entropy minimisation, the HMM can

learn observed activity into highly interpretable hidden states. The discovered hidden states are not

guaranteed to coincide with events that are of interest, but they state in their experience they have

always been interpretable and useful. The example application they give is of detecting anomalous

behaviour in the office, such as the user sleeping in their chair and the office being occupied by a

47

Figure 2.15: Several learned states in the trained HMM model. (a) entering room, (b) at

computer, (c) at white board, (d) sitting, (e) on telephone, (f) looking for a key, (g)

writing, and (h) swiveling right. [7]

worker with different habits.

2.5.2.1 Analysis

To summarise, the sensor used is a web camera positioned beside the user’s PC to infer user activities

in an office environment. They use an unsupervised entropy minimisation technique to learn the

set of distinct user activity patterns and these activities are manually labelled after training. This

technique of using video to infer user activity gets over the practical problems of object tagging and

wearable readers from the previous technique. However, it is difficult to get a sense of how well the

unsupervised learning of activities works as they do not test the trained model against a hand labelled

video sequence. They only show that the technique does discover significant patterns in the video

and that these patterns are manually interpretable. In particular, activities (b) at computer and

(f) looking for a key look visually very similar, and also (d) sitting and (h) swivelling right

appear quite similar.

It would be interesting to apply this system to the problem of CAPM to see empirically how well

the technique works. The next section reviews a more advanced system including more sensors for

activity recognition and gives evidence for the concern of resource/energy consumption.

48

2.5.3 Layered Representations for Human Activity Recognition

Oliver et al. [48] present a layered hidden Makov model technique for performing sensing, learning

and inferencing at multiple levels of temporal granularity. They apply the model to a system named

SEER that infers user activity from real-time streams of video, acoustic, and computer interactions

in an office environment. They state that much of the previous work on leveraging video and acoustic

information to recognise human activities has centered on identification of a specific type of activity

in a particular scenario, for example, hand gesture recognition [12]. This work applies to recognising

more complex patterns of specific human behaviour, extending over longer periods in time.

They developed a formulation of layered hidden Markov models (LHMMs) and explored the

challenge of fusing the readings from binaural microphones, a USB web camera, and a keyboard and

mouse, to infer the activities, phone conversation (PC), face to face conversation (FFC),

ongoing presentation (P), distant conversation (DC), nobody in the office (NP), and

user present engaged in some other activity (O). They initially experimented with a single-

layered HMM, which generated a large parameter space, requiring large amounts of training data

and resulting in low classification accuracies. They state that standard HMMs suffer from a lack

of structure, an excess of parameters, and an associated over fitting of data when they are applied

to reasoning about long and complex temporal sequences with limited training data. Also, when

the system moved to a new office, copious retraining was typically necessary to adapt the model to

the specifics of the signals and user in the new setting. The layered formulation of LHMMs makes

it feasible to decouple different levels of analysis for training and inference. The system employs

a two-layer HMM architecture. The raw sensor signals are processed within a time window of 100

milliseconds to obtain feature vectors for the first layer of HMMs. Example features for the video are

motion density, face density, foreground density, and skin colour density. Example audio features are

the signal energy, the mean and variance of the fundamental frequency over a time window, and the

source location of sound. A history of the last 1, 5, and 60 seconds of mouse and keyboard activities

is also used. The first layer of HMMs classify these features with a time granularity of 1 second and

in the final stage, the second layer of HMMs represents the typical office activities associated with a

time granularity of 5 to 10 seconds.

They tested SEER in multiple offices and collected data from a range of users and environments.

The high-level layer is relatively robust to changes in environment. Only some of the lower-layer

HMMs needed to be retrained to tune their parameters to new conditions such as different ambient

noise, background images and illumination. The number of parameters to estimate is much lower

than the single-layered HMM implementation. Encoding prior knowledge about the problem in the

49

structure of the models decomposes the problem into a set of simpler sub-problems and reduces the

dimensionality of the overall model. They trained and tested the performance of the single-layered

HMM and LHMMs on 60 minutes of recorded office activity data (10 minutes per activity, 6 activities

and 3 users). They used 5 minutes of data for training and the other 5 minutes for testing. The

average accuracies on the testing data were 72.68% (standard deviation (STD) 8.15%) with the single-

layered HMM and 99.7% (STD 0.95%) with LHMMs. In summary, the accuracy of the LHMMs is

significantly higher than the single-layered HMM for the same amount of training data and LHMMs

are more robust to changes in environment requiring retraining of only the higher layer.

A further paper [49] presents an extension to SEER, S-SEER, which attempts to address the sig-

nificant CPU usage of the feature vector extraction algorithms. They say that, although the methods

have performed well, a great deal of video and acoustic feature processing has been required by the

system, consuming most of the resources available in a PC. They develop an approach, expected

value of information (EVI), which uses the principle of maximum expected utility to determine dy-

namically which features to extract from the sensors in different contexts. The EVI of computing

a feature combination fk (e.g., motion density and face density and audio energy) is the difference

between the expected utility of the system’s best action when observing the features in fk and not

observing them, minus the cost of sensing and computing such features. If the net expected value

is positive then it is worth computing the features. The additional computational overhead to carry

out the EVI analysis is O(M ∗ F ∗N2 ∗ J), where M is the maximum cardinality of the features, F

is the number of feature combinations, N is the maximum number of states in the HMMs, and J is

the number of HMMs.

They performed a comparative evaluation of the S-SEER system when executing the EVI selective

perception policy against two baseline policies, random selection and rate-based. Random selection

is a simple policy that selects the features at random on a frame by frame basis. Rate-based is a

heuristic policy that defines an observational frequency and duty cycle (i.e., period during which the

feature is computed) for each feature f . The observation frequency and duty cycle are determined

by processing a validation set of real-time data. In the experiment the selection policies select any

combination of the four possible sensors, vision, audio, keyboard and mouse activities and sound

localisation. The results are shown in Table 2.5.

The results show that the EVI algorithm performs very well across the set of activities, reducing

the accuracy only slightly and manages to reduce the average computational cost from 54.3% to

33.4%, out performing the baseline policies. Further observations they make from the experiment

are that at times, the system does not use any features at all when it is confident enough about

50

Table 2.5: Average accuracies and computational costs for S-SEER [49]

Recognition Accuracy

No policy EVI Rate-based Random

PC 100 100 29.7 78

FFC 100 100 86.9 90.2

P 100 97.8 100 91.2

O 100 100 100 96.7

NP 100 98.9 100 100

DC 100 100 100 100

Average 100 99.5 86.1 92.7

Computational cost (% CPU time)

No policy EVI Rate-based Random

PC 61.22 44.5 37.7 47.5

FFC 67.07 56.5 38.5 53.4

P 49.8 20.88 35.9 53.3

O 59 19.6 37.8 48.9

NP 44.33 35.7 39.4 41.9

DC 44.54 23.27 33.9 46.1

Average 54.3 33.4 37.2 48.5

the situation but also that the system guided by EVI tends to have longer switching time (i.e., to

realise when a new activity is taking place) than when using all the features all the time. In most

of the experiments the sound localisation was never turned on due to its high cost and relatively low

informational value.

Finally, in [50] they compare use of a HMM at the highest level to the use of a dynamic Bayesian

network for inferring high-level user activities. HMMs can be viewed as a specific case of the more

general class of dynamic Bayesian models. They state that DBNs present several advantages to the

problem of user modelling from multi-modal sensory information, DBNs can handle incomplete data

as well as uncertainty, they are trainable, they encode causality in a natural way, algorithms exist

for learning the structure of the networks and doing predictive inference, they offer a framework

for combining prior knowledge and data, and finally, they are modular and parallelisable. One

disadvantage they state is that they cannot handle continuous data very well.

51

Figure 2.16 shows the DBN model for inferring the user activity from the video, audio, sound

location (SL), and keyboard/mouse (KM) sensors. The experiments compare the accuracy of HMMs

versus DBNs and evaluate any practical advantages and disadvantages. They collected 90 minutes

of activity data (15 minutes per activity). Table 2.6 shows the recognition accuracy for HMMs and

DBNs with and without the selective perception.

SL
T1

Video
T1

Audio
T1

KM
T1

Activity
T1

SL
T0

Video
T0

Audio
T0

KM
T0

Activity
T0

Figure 2.16: S-SEER dynamic Bayesian network [50]

The results show that DBNs have better recognition accuracy for this problem and employing the

EVI selective perception policy incurs less loss of accuracy for the DBN. They state an important dif-

ference for selective perception is that the HMMs marginalise over the unobserved variables, whereas

with the DBN the previous time slice (T0) influences inference about the unobserved variables, im-

proving the accuracy.

2.5.3.1 Analysis

This is possibly the closest work to our research in the sense it uses similar sensors (video, audio,

keyboard/mouse) in a similar office environment. They appear to achieve very good results for

activity recognition but at a very high computational cost. Even with their EVI sensor selection

52

Table 2.6: Recognition accuracy [50]

HMMs DBNs

PC 97/98 95/90

FCC 99/97 97/97

P 86/88 99/99

O 93/100 99/99

NP 100/100 100/99

DC 91/70 96/96

Average 94.3/92.2 97.7/96.7

policy their activity recognition algorithm consumes 33.4% of CPU time (on average). From the

figures for desktop PC power consumption given in Section 2.2.5, this equates to an average power

consumption of 20.2 W which is 33.6% more than CPU idle consumption. This gives clear evidence

that there is a boundary of granularity for context-aware power management. Another concern with

S-SEER is the need for retraining of the lower layer of HMMs for different environmental conditions.

In practice it would be desirable for the system to require no initial training stage. It would however

be interesting to see S-SEER applied to CAPM to evaluate how well it performs in terms of energy

saving and user-perceived performance.

2.6 Summary

This chapter has introduced the two areas of dynamic power management and context-aware com-

puting and reviewed the current state of the art in dynamic power management and CAPM. The

field of user activity monitoring was also reviewed.

The review shows that current state-of-the-art dynamic power management policies are not suit-

able for power management of stationary devices. There is a need to develop policies that can (i)

accurately and quickly predict long idle periods (order of minutes), and (ii) predict when the user

will make the next request (order of seconds beforehand). To achieve this we need to obtain context

from the user of the device. In particular, about when the user is not using and when the user is

about to use a device.

Current state-of-the-art CAPM has focused on developing inference techniques for inferring such

high-level context from low-level, noisy, and incomplete sensor data. There has been some work in

the area of CAPM that points towards the need for finer-grained context to do better.

53

At the same time, there has been work done in the area of user activity monitoring for fine-grained

activity recognition. A range of techniques have been developed, including discovering patterns of

device interactions, video processing, and acoustic processing. There has been reasonable success with

recognition of user activities, the main challenges left being recognition of interleaved/overlapping

activities and the cost (CPU/energy consumption) of recognition.

This review has provided evidence that there is a bound to the granularity of context appropriate

for CAPM. In particular there is a need to explore the potential energy savings and energy costs

of such CAPM systems. To our knowledge there has been no research into what are the potential

savings of context-aware power management and what granularity of context is appropriate.

54

Chapter 3

CAPM Framework Design

In this chapter we identify the key requirements for CAPM and present the design of the CAPM

framework. At the core of the framework is a Bayesian network, which performs the context inference.

We justify the selection of Bayesian networks for context inference and go on to give a detailed

explanation of Bayesian networks and parameter learning of the networks. Finally, we show the

evolution of the Bayesian models that were developed for the CAPM framework. We begin the

chapter by presenting initial experimental results, which give an insight into the main issues that

need to be addressed by a CAPM system.

3.1 Initial experimental results

To explore the requirements of context-aware power management and gain insight into user behaviour

patterns, we first examined in detail the the use of location as a key piece of context for power

management of users’ stationary desktop PCs in an office environment. The objective was to minimise

overall electricity consumption of the system while maintaining acceptable desktop PC performance.

We were interested in the relation between the user’s location and their user behaviour (i.e., whether

they were using the device or not when in it’s vicinity). We implemented two simple location-aware

policies and performed 6 user trials, each over a period of a week. The trace data collected from

the trials was analysed to gain insight into the energy consumption and user-perceived performance

of the location-aware policies. The office spaces included personal and shared spaces, and there was

only one user per desktop PC. The two simple location-aware policies use the location context derived

from detecting users’ Bluetooth-enabled mobile phones. The policies execute on each desktop PC

and continuously poll to discover the presence of their owner’s Bluetooth phone in the area. The two

55

location-aware policies were:

1. Standby On Bluetooth (SOB). When the PC is on, the policy polls for the user’s phone via

the Bluetooth discovery mechanism. If the phone is not found the PC powers down to standby.

The user manually wakes up the PC when s/he next needs to use it.

2. Standby/Wake-up On Bluetooth (SWOB). When the PC powers down to standby the policy

passes control to a nearby server. When the server detects the phone again it sends a wake up

message to the user’s PC. (We used a server to implement wake up because as yet we do not

know of a Bluetooth device that can wake up the PC from standby).

Using the Windows power management API we recorded all power state change events for the PC

during each user trial. This included recording when the PC was powered down to system standby,

when it resumed to the on state, both automatically and manually, and when the PC was on but

idle for the last minute. The on-idle time enables us to estimate how much energy the policy wasted

by the machine being on but (potentially) not being used. Knowing the idle times enables us to

generate the oracle policy trace (see Section 2.1) and the range of threshold policy traces (see Section

2.2.1). The range of the Bluetooth connection was 10 metres and its latency was approximately 10

seconds (i.e., it could take up to 10 seconds for the Bluetooth inquiry to find the phone). We also

noted during implementation that sometimes the inquiry would not find the phone even though it was

there. To overcome this source of error it was necessary to duplicate the number of inquiries. This

polling process took approximately 90 seconds to complete so there was a significant delay before the

machine was powered down. Policy traces were collected from 6 separate user trials, 4 of which used

the SOB policy and 2 of which used the SWOB policy. Software was written for analysing the traces

in terms of energy consumption and user-perceived performance (i.e., number of manual resumes and

short standby periods). For each trace collected, the oracle policy trace and a range of threshold

policy traces were generated. For the SWOB traces, corresponding SOB policy traces were generated

by removing the automated resume events of the SWOB policy. We estimated the mobile phone

consumed an extra 6 Wh of energy over the 4-day trial due to extra recharging necessary because the

Bluetooth discover mode was on all the time. The extra energy consumed on the PC by the power

manager was not measurable and we considered it negligible. Also, for the SWOB policy we did not

take into account the energy consumed by the wake-up server, as we assume this functionality would

eventually be provided within the USB Bluetooth adapter. The 6 Wh has been added to the energy

cost of the location-aware policies.

56

3.1.1 SOB policy energy performance

Figure 3.1 below graphs the energy consumption in Watt hours for each policy for each trace. The

SOB policy values are the actual estimated consumption from the real trace (except for A-SWOB

and D-SWOB) and the other values are calculated from the generated policy traces. The traces are

all for 4 days, Tuesday to Friday. Previous monitoring of traces and actual measurement of PC power

consumption show that, on average, the estimated power consumption (from a trace) correlates well

with the measured power consumption (within 7.2% over a period of a week).

Trace

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Oracle SOB 5 10 15 20 25 30

Policies

W
at

t h
ou

rs

A-SOB D-SOB B-SOB C-SOB A-SWOB D-SWOB

Figure 3.1: SOB energy consumption

Each user has different user behaviour, which affects the performance of the policies. From the

graph, it seems that there are two distinct user behaviour patterns emerging. The SOB policy

performs quite well for the A-SOB, A-SWOB and B-SOB traces (HeavyUsePattern). In these cases

the SOB policy is close to the oracle policy (approximately 8% from oracle) and similar in consumption

to the 5 minute threshold policy. The reason for the good performance is that A and B are heavy

users of their PC while in its vicinity (i.e., the usage traces have a relatively small amount of idle

time when the user is in the 10-metre vicinity). The SOB policy performs similarly badly for the C-

SOB, D-SOB, and D-SWOB traces (LightUsePattern). In these cases the SOB policy is far from the

oracle (> %50) and the traces have a significant amount of idle time when the user is in the 10-metre

vicinity. We can state as a general rule, the SOB policy will perform well for devices that are heavily

used when the user is in their vicinity. Another pattern to note within the traces is the slope of the

threshold policy graphs. The A-SOB, A-SWOB, B-SOB and C-SOB traces threshold slopes are very

57

similar (10.8, 9.3, 10.3, 10.5) (LowFrequencyUsePattern) compared to the slope of the D-SOB and

D-SWOB threshold consumptions (18.0, 21.6) (HighFrequencyUsePattern). This indicates another

distinct user behaviour pattern in the traces that affects the performance of the threshold policies.

Intuitively, the higher the frequency of idle periods the worse the threshold policy performs from

oracle as it consumes extra power waiting to timeout, each time there is an idle period. So while

the SOB policy performs badly for all three LightUse user traces, due to the large number of idle

periods, the threshold policies perform worse for D-SOB and D-SWOB than C-SOB as user D has a

high frequency of idle periods (41 and 47 periods) compared to user C (24).

3.1.2 SOB policy user-perceived performance

We evaluated the quantitative user-perceived performance of the SOB policy by counting the max-

imum number of times (over the 4-day trace) that the user had to resume the PC in a 10-minute,

30-minute, one-hour, four-hour and eight-hour period. Figure 3.2 graphs the performance values per

user trace for the eight-hour period (The other periods have a similar pattern but with less resume

events). The Threshold-5 policy shows the HeavyUse traces having (7, 8, 9) resumes in an eight-hour

period compared to the LightUse traces (11, 12, 14). As would be expected the performance improves

as the threshold increases, with 20 minutes appearing to reach saturation (i.e., after this threshold

there is little improvement in performance). What is interesting to note is that for the HeavyUse

traces, the SOB policy performs similarly to the Threshold-5 policy but for the LightUse traces, the

SOB performs considerably better (7, 7, 7 resumes compared to 11, 12, 14). This intuitively makes

sense, as the HeavyUse users do not allow the Threshold-5 policy to power down while in the of-

fice, whereas the LightUse users would. So, another general rule is that the SOB policy keeps the

user-perceived performance acceptable for LightUse users.

A qualitative survey of the users revealed that for 2 of the users the performance penalty of

resuming the PC every time they came back to their office would not stop them implementing the

SOB policy. The other 2 users thought it necessary that the PC would resume automatically to avoid

the performance penalty. Clearly user-perceived performance is subjective and there is a balance for

each user of how long the standby period should be to justify the subsequent performance penalty

(i.e., a performance break-even time). Figure 3.3 shows the standby period frequency in minutes for

the SOB and Threshold-5 policies for the D-SOB (LightUse) trace. The graph shows the Threshold-5

policy has many more short standby periods. Also, the total number of standbys for the SOB policy

is 24 compared to 52 for the Threshold-5 policy. Therefore, 28 of the Threshold-5 policy standbys

occurred when the user was in the vicinity. Clearly, these short standby periods when the user is in

58

0

2

4

6

8

10

12

14

16

SOB 5 10 15 20 25 30

Policies

N
o.

 o
f r

es
um

es

A-SOB 8 D-SOB 8 B-SOB 8 C-SOB 8 A-SWOB 8 D-SWOB 8Trace

Figure 3.2: SOB user performance

the vicinity would severely degrade the user-perceived performance, making the Threshold-5 policy

unlikely to be implemented by any user.

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Standby period (minutes)

N
o.

 s
ta

nd
by

s

SOB Threshold 5Trace

Figure 3.3: Standby period frequency

3.1.3 SWOB policy energy performance

The SWOB policy is an extension to the SOB policy where the PC powers up again when the mobile

phone is next detected in the 10-metre vicinity. For this reason we chose to evaluate the policy

59

with just two user trials. Figure 3.4 shows the policies’ energy consumptions for the A-SWOB and

D-SWOB traces. The graph compares the SWOB policy to the generated oracle, SOB and threshold

policy traces. Again, the two users have similar performance to their original traces with A-SWOB

performing well and D-SWOB performing badly compared to the oracle. Also, again the slope of the

threshold performances is similar to the original user traces. For A-SWOB the SWOB policy energy

performance is very similar to the SOB policy but for D-SWOB it is significantly worse. The increase

in energy consumption is caused by the SWOB policy automatically resuming the PC when the user

enters the vicinity. Hence, the PC can be on and idle before the user requests its use. The trace

distinguishes between when the PC is resumed automatically (i.e., over the network) and when the

user first pressed the keyboard after being in standby. So, we can measure the time from when the PC

is resumed automatically until when the user first uses the PC. We call this period the auto-on-idle

period. There are significantly more auto-on-idle periods for the D-SWOB trace (154 minutes in

total) than the A-SWOB trace (5 minutes in total). Also, there were 14 occurrences in the D-SWOB

trace where the PC was resumed and later went back to standby without being used by the user. In

interview after the experiment, user D stated that he would nearly always use the PC immediately

after entering the room. If this is true, it suggests that the PC was automatically resumed when the

user passed by the room.

0

200

400

600

800

1000

1200

1400

1600

Oracle SOB SWOB 5 10 15 20 25 30

Policies

W
at

t h
ou

rs

D-SWOB A-SWOBTrace

Figure 3.4: SWOB energy consumption

60

3.1.4 SWOB user-perceived performance

On average the Bluetooth discovery took approximately 10 seconds to discover the mobile phone and

the desktop PC takes approximately 7 seconds to fully resume from standby. Therefore, under the

SWOB policy it took approximately 17 seconds from the time the user enters the 10-metre vicinity

until the PC resumes fully, ready for use. To evaluate the user-perceived performance of the SWOB

policy we have to determine whether the PC was resumed in time for the user. Figure 3.5 shows the

graph of auto-on-idle period frequency in seconds for both traces.

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Auto-on period (seconds)

N
o.

 a
ut

o-
on

 p
er

io
ds

D-SWOB A-SWOBTrace

Figure 3.5: Auto-on-idle period frequency in seconds

The graph shows the D-SWOB trace to have few short periods (3 periods < 8 seconds) compared

to the number of longer periods (25 periods > 60 seconds). On the other hand the A-SWOB trace has

relatively many short idle periods (10 periods < 8 seconds) compared to number of periods greater

than 60 seconds. The auto-on-idle period is measured from when the PC starts to resume and it takes

approximately 7 seconds before it resumes fully and can be used. Therefore the data suggests that user

A experienced 10 delays in waiting for the PC to fully resume and user D experienced 3 delays. The

length of the delay is partly dependent on the geographical layout of the user’s return path and how

long it takes the user to return to their PC after they have entered the 10-metre vicinity. In general,

the current Bluetooth discovery time makes the auto wake up of the PC borderline functional and

very dependent on the user’s return path and their time to reach the PC. A more responsive sensor

could improve the SWOB policy’s user-perceived performance and be less dependent on geographical

layout.

61

3.1.5 Conclusions

The experimental user trials and subsequent policy trace analysis has highlighted several user be-

haviour patterns that affect the performance of the power management policies. The location aware

SOB and SWOB policies perform well energy-wise for HeavyUse users where the device is used a lot

when the user is in the 10-metre Bluetooth vicinity. For LightUse users they begin to deteriorate,

consuming energy when the user is in the vicinity but not using the device. For FrequentUse users

(i.e., the user uses the device many times during the day) the threshold policies deteriorate as energy

is wasted every time the policy waits for the timeout period. The SOB and SWOB policies are less

affected by this FrequentUse pattern, as the timeout period is less (90 seconds).

The user-perceived performance of the SOB policy appears to be acceptable to some users but

not others. The performance remains constant for both HeavyUse and LightUse users while the

Threshold-5 policy performance deteriorates significantly for LightUse users. The SWOB policy user-

perceived performance is dependent on the geographical layout of the users return path and how long

it takes for the user to return to their PC after entering the 10-metre Bluetooth vicinity. This makes

it suitable for only some cases. Furthermore, the SWOB policy comes at a price in increased energy

consumption, particularly in the case of LightUse users and unsuitable geographical layouts (e.g.,

where the user passes by the office within the 10-metre range).

A further concern of implementing these policies is that of device lifetime. For many devices,

switching them on and off affects their expected lifetime. We have estimated the break-even due to

lifetime for a desktop PC to be around 2 minutes. The estimate assumes that the hard disk is the

first component to fail in the PC and is based on the lifetime figures for a given Sea Gate 80Gb

Barracuda ATA V hard disk and a typical usage trace taken from the experiment. The reliable

lifetime is estimated to be 600,000 power-on hours and 50,000 start-stop cycles. The lifetime of the

disk is fixed at 10 years and we assume 250 working days in each year. For the given usage trace and

lifetime of 10 years, the number of the number of allowable start-stop cycles per day is 19 and the

power-on hours is 4. The next smallest idle period in the trace is 2 minutes, hence it is not worth

powering down for this 2 minute period. Other devices have longer lifetime break-even times such as

fluorescent lighting (5 to 10 minutes)[63]. Figure 3.6 shows the total number of standby periods for

all traces, of which there are a significant number of short standby periods occurring. Policies may

have to take device lifetime into consideration when making their power off decisions.

62

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Standby period (minutes)

N
o.

 s
ta

nd
by

s

A-SOB D-SOB B-SOB C-SOB A-SWOB D-SWOBTrace

Figure 3.6: Standby period frequencies (minutes)

3.2 CAPM requirements

From the experimental trials we have identified several requirements for CAPM.

• R1: Required context - CAPM requires the prediction of the context not using for at least

the given break-even period and about to use at least the resume time beforehand.

• R2: Context granularity - The most important result from the initial experiments is that

coarse-grained location alone is not sufficient to determine the detailed user behaviour necessary

for effective CAPM. Finer-grained context is needed to predict (i) the user in the vicinity but

not using the device and (ii) the user in the vicinity and about to use the device. Passing

by the device but not about to use it is a special case of scenario (i). The second scenario is

difficult to achieve, as one key advantage of coarse-grained location is that it is a distant sensing

device, i.e., it senses the user at a distance thereby enabling time for the device to resume before

the user requests its use. Saving energy by switching off devices in the near vicinity of the user

is difficult to achieve transparently.

• R3: Distant prediction - The second result is that there is a need for distant (time wise)

prediction to offset delay in sensor response and long device resume times. For example, some

form of mobility prediction might overcome the problem of the latent Bluetooth sensing.

• R4: Distributed sensing - The third result is that there is a need for distributed sensing

of users and possibly recognition of user plans to predict longer future idle periods (for cases

63

where the device break-even time is an order of minutes). For example, given the results it

would not be sensible to switch off fluorescent lighting every time the user leaves the room as

this would cause premature failure. We define distributed sensing as the ability for sensor data

to be communicated amongst distributed sensing devices. For example, a sensing node in the

office bathroom could communicate the user’s presence with the power manager of the user’s

desktop PC in the office.

• R5: Decision under uncertainty - The initial experimental location-aware polices used

a simple rule-based design where, observed sensor states are matched to power management

actions. There is no representation of uncertainty, which is required in most real-world decision

applications to account for incomplete and noisy data [35]. Given a level of certainty in whether

the user is not using or about to use the device, a decision can be made as to which power

management action to take.

• R6: Adaptation - The simple rule-based design has no learning of new rules based on usage.

This design would not scale well to accommodate more sensors, as the rules would become

increasingly complex making it successively harder to configure for each individual user. Some

form of learning technique is needed, which can continually learn from device usage history and

adapt to the user.

The CAPM framework addresses these requirements and its design is detailed next.

3.3 CAPM framework design

The design of the CAPM framework is loosely based on the sentient object model (see Section 2.3.1).

A sentient object encapsulates the CAPM power manager for a device. Each power manager can

execute a number of policies, one power-down policy for each device state and one power-up policy

for when the device is in a reduced power state. Communication is event-based, enabling sensing of

distant sensors (fulfilling R3 and R4). Filtering of sensors enables the power manager to consider

only information relevant to it. In our implementation, filtering is configured manually but some

“intelligent” mechanism could automate the selection of sensors most relevant to the device’s power

manager. Sensors can include any physical sensing devices, power state changes of other devices,

and “software sensors”, such as time of day, or day of week. The power manager controls the power-

down and power-up of the device through the device’s power management API. Currently power

management of computing devices is non-standard with each operating system having their own

64

API1. Development of a standard API would be advantageous for power management of heterogeneous

devices. Until this is achieved wrappers are needed for the various operating system APIs.

Consume
Power
management
API

Data
capture &

feature
extraction

Context
inference

Decision
making

Figure 3.7: CAPM framework

At the centre of the framework are the data capture and feature extraction, context inference, and

decision components. Our research has concentrated on the development, realisation, and evaluation

of these core components.

3.3.1 Data capture and feature extraction

This is the first layer of data processing. Raw sensor events are captured and in most cases prepro-

cessed to obtain relevant features. For example, a video signal could be captured and preprocessed

to obtain features such as density of foreground pixels, density of motion, density of face pixels, and

density of skin colour [48]. A Bluetooth detection event could be preprocessed using a counter to

count the number of times a Bluetooth tag has not been detected. This gives a history of when the

tag was last seen, for example, a count of 10 means the tag has not been detected in the last ten

polls. A value of 0 means the tag was detected in the previous poll. It is also possible that for some

sensors, their data can be passed onto the next layer unprocessed. For example, the prediction from

a mobility prediction service that a user is going to enter the room in the next 10 seconds.

Sensor events received via event messaging are more likely to be already preprocessed (to reduce

bandwidth), whereas events from sensors that are directly connected to the sentient object are more

likely to require preprocessing (feature extraction), e.g., a video signal from a web cam or an audio

signal from a microphone. The output from data capture and feature extraction is made available to

the context inference layer.
1The ACPI standard currently only defines interfaces between hardware devices and the operating system, not

applications and operating system.

65

3.3.2 Context inference

The context inference layer is responsible for inferring more certain, higher-level context from the

low-level sensor and feature data (inference can also be termed sensor fusion). The inference can

involve combining redundant data to achieve more certainty and multi-modal data to infer context

based on a combination of the multiple sensor modes. This is the most challenging part of the data

processing as it is trying to infer high-level notions from low-level, noisy, and incomplete sensor data

and/or their features. In the framework, probability theory is used to deal with this uncertainty in

the data (fulfillment R5). This gives a level of confidence in the proposition of a certain context being

true. This probabilistic inference of the contexts not using and about to use is carried out using

Bayesian networks (fulfillment of R1). This context is made available for use by the decision layer.

The Bayesian network is trained based on observation of the user using and not using the device

(fulfillment of R6).

3.3.3 Decision

The decision layer is responsible for taking the power-management actions. The possible actions

depend on the current state of the device. When the device is on the possible actions are either to

remain on or to power down to a lower-power state. When the device is in a lower-power state the

possible actions are either to remain in the lower-power state or to power up the device. For the

initial version of the CAPM framework the decision layer was designed as a simple threshold rule. If

the probability of not using exceeded the given threshold (80%) then the action to power down was

taken. Likewise, if the probability of about to use exceeded the given threshold (60%) the action

to power up was taken.

The design could be extended by the use of utility theory. Utility theory estimates the expected

utility of an action based on the level of certainty it has in the state of the world, the potential benefit

of the action and the potential cost. Given these inputs, the decision is then simply a matter of

choosing the action with the highest expected utility. Expected utilities can be implemented using

decision nodes, which are an extension to standard Bayesian networks. This extended Bayesian

network is called a Decision network.

3.4 Selection of inference technique

We have identified that the key challenge for CAPM is inferring the user’s context correctly, which

is carried out by the context inference component. The job of this component is to infer from low-

66

level data the contexts not using and about to use given uncertainty in the data, i.e., noisy and

incomplete sensor data. Korb et al. [35] state there are at least three distinct forms of uncertainty:

1. Ignorance. This refers to either a lack of information or a lack of understanding of how the

system fully operates. Ignorance relates to the incompleteness of sensor data. It may not be

practical to observe every possible event in the event space.

2. Physical randomness or indeterminism. Even if everything was known about the system, there

would still be some degree of randomness or indeterminism in the sensors that would cause

uncertainty. Indeterminism relates to noisy sensor data. Sometimes sensors report erroneous

values through either faulty hardware or indeterminate protocols. For example, the Bluetooth

discovery protocol’s frequency hopping sequence may fail to discover a device that is actually

in the vicinity.

3. Vagueness. Assertions are sometimes not clearly defined or vague. For example, it is often

unclear whether to classify a human as brave or not, or a dog as a spaniel or not. For CAPM,

it can be unclear as to when a person is not using a device. For example, some people might

like the television on in the dining area when they are preparing food in the kitchen and some

people might like their PC display on when they are reading at their desk, in case an email

comes in. The notion of not using is subjective to the individual.

We now briefly highlight some of the inference techniques employed by the state of the art in context-

aware computing and provide a justification for our use of Bayesian networks. A Bayesian network is

a graphical model that represents causal relationships between entities and models the uncertainty in

the state of a system. The technique is based on probability theory, which provides the foundation for

reasoning under uncertainty. The specification of dependencies between variables leads to an efficient,

tractable method for calculating the probabilities.

Chong et al. (see Section 2.4.1) use a rule-based approach to inference in the implementation of

their sensor fusion component. Russell and Norvig [56] give a good overview of rule-based inference

and the reasons why it is no longer used. They state that rule-based inference systems have three

desirable properties:

1. Locality. Given a rule of the form A ⇒ B (fact A implies proposition B), then B can be

concluded given fact A. It is not necessary to consider any other rules.

2. Detachment. Once a logical proof is found for a proposition B, the proposition can be used

regardless of how it was derived.

67

3. Truth-functionality. In logic, the truth of complex sentences can be computed from the truth

of the components.

There were several attempts to represent uncertainty in a rule-based inference system that retained

these desirable properties. The central idea was to attach degrees of belief (probability) to propositions

and rules and to devise purely local schemes for combining and propagating those degrees of belief.

The belief in the rule is assumed constant and specified by the knowledge engineer. For example,

A 7→0.9 B is read as fact A implies B with 90% probability. However, [56] states that the properties

of locality, detachment and truth-functionality are not appropriate for uncertain reasoning. Problems

begin to occur when rules interact. The example they give is

Rain 7→0.99 WetGrass

WetGrass 7→0.5 Rain

The two rules allow for both causal and diagnostic reasoning, i.e., given that it is raining the

probability of wet grass is 99% (causal), but also given that there is wet grass the probability that it

is raining is 50% (diagnostic). This forms an undesirable feedback loop, the belief in rain increases

the belief in wet grass, which in turn increases the belief in rain. Inter causal reasoning (explaining

away) is also difficult to model. Given two rules

Sprinkler 7→0.99 WetGrass

WetGrass 7→0.5 Rain

The fact that the sprinkler is on increases the belief that the grass is wet, which in turn increase

the belief that it is raining. This clearly does not make sense. This rule-based inference technique

was developed for the MYCIN medical diagnosis system [9]. The modelling involved extremely

careful engineering of the rules to avoid undesirable interactions. Most applications used either

causal reasoning or diagnostic reasoning and rule sets were carefully designed to avoid interactions.

Because of the difficulty in avoiding undesirable rule interactions, research into rule-based inference

under uncertainty has been discontinued.

Both Roy and Heierman employ pattern recognition techniques (see sections 2.4.2 and 2.4.3). Both

techniques are based on compression algorithms that compress a single mode event stream, location

in Roy’s case and device interaction in Heierman’s. The level of compression is the measure of how

significant a pattern is in the data. For example, Heierman uses a threshold of 80% compression

to determine significant device interaction patterns. Although important, these techniques only deal

with single mode streams and cannot infer context from multi-modal sensors.

68

The iDorm project (see Section 2.4.4) employs a fuzzy rule engine for inference and learning. Fuzzy

set theory introduces the notion of vagueness, or how well an object satisfies a vague categorisation.

The example that Russell [56] gives addresses the proposition of whether “Nate is tall”. Is this

proposition true if Nate is 5’ 10”? This is not a question of uncertainty in the world (we know

that Nate is 5’ 10”). The issue is that there are degrees of tallness. Fuzzy set theory treats tall

as a fuzzy predicate and says that the truth value of tall(Nate) is a number between 0 and 1,

rather than just being true or false. Fuzzy logic is the method for performing logical inference with

fuzzy member sets. For example, the complex sentence tall(Nate) ∧ heavy(Nate) is evaluated as

min(tall(Nate), heavy(Nate)) (The symbol ∧ is logical and2 and the symbol ∨ is logical or). Fuzzy

control is the method for constructing control systems in which the mapping between real-valued

input and output parameters is represented by fuzzy rules. Again this rule-based approach suffers

from the difficulty in avoiding undesirable rule interactions.

Brand (see Section 2.5.2) uses a Hidden Markov Model (HMM) for estimating user activities

from video streams. HMMs are a specialised form of dynamic Bayesian network. They model the

world as a set of states with transition probabilities between these states. The HMM models the

user’s activities as a set of states and the HMM transitions from state to state over time. Oliver [50]

demonstrates that dynamic Bayesian networks have several advantages over HMMs. They encode

causality in a natural way through the graphical modelling of relationships between variables. They

represent uncertainty through the use of probability theory. The networks can be trained and can

handle incomplete data (i.e., where the full set of variable values is unknown). There are algorithms

for learning the structure of the networks (i.e., the relationships between variables). The network can

be configured with prior knowledge and data before training. This can help the network make good

inferences from the start. Finally, they are modular and can be parallelised.

Both Philipose and Oliver employ the use of Bayesian networks (see sections 2.5.1 and 2.5.3).

Other researchers have also found Bayesian networks to be a good approach [41]. The sentient object

model, on which the CAPM framework is loosely based, uses Bayesian networks for its inference

(sensor fusion). From this evidence we selected Bayesian networks as the context inference component

for the CAPM framework.

At the time of making our choice the advantages of Bayesian networks for CAPM we perceived

were [26]:

1. The graphical programming model is simple to understand and modify by non-technical users.

2. The model naturally represents the causal modelling of the inferred data not using and about

2This can be easily remembered as the ∧ looks like the A of And.

69

to use.

3. The Decision network extension could be used to extend the decision component of the CAPM

design.

4. The model can be configured with prior probability distributions so it can make intelligent

(conservative) decisions from the start.

5. The learning process is relatively simple and should continually improve with more data.

6. Bayesian networks can solve up to 36 nodes with a tractable/lightweight algorithm.

We perceived one possible disadvantage of Bayesian networks being that if the prior distributions are

incorrect, they can adversely affect the learning of an optimal policy.

Section 3.8 describes the actual evolution of the Bayesian models for CAPM. It shows that a

significant amount of hand-crafting (trial and error) was needed in constructing the networks. Fur-

thermore, at the evaluation stage some issues arose with learning in the Bayesian networks. Chapter

5 gives an evaluation of Bayesian networks for implementing CAPM.

3.5 Probability and Bayesian networks

Probability calculus was invented in the 17th century by Pierre Fermat and Blaise Pascal to deal with

the problem of uncertainty in gambling. The basic element of the language is the random variable,

which represents some entity or event in the world. Each random variable has a set of states. The

type of a state can be either discrete3 or continuous and the set of states must be mutually exclusive

and exhaustive. An example of a discrete random variable is a coin C with states <heads, tails>.

The two states are mutually exclusive, i.e., the coin can only be in one of the states at a time, and

exhaustive, i.e., the set of states fully describe all possible events. We use the convention that names of

random variables are capitalised and states are given in lower case. A proposition is a statement that

a particular state will occur. For example, C = heads is the proposition that the coin will land heads

up. The probability of this proposition is P (C = heads). A probability of P (C = heads) = 0.5 states

either a belief or observed evidence that the coin will land heads up 50% of the time. Kolmogorov

showed how to build all of probability theory from three fundamental axioms [1].

1. All probabilities are between 1 and 0. For any proposition x,

0 ≤ P (x) ≤ 1
3Boolean is a special type of discrete variable.

70

2. Necessarily true propositions have probability 1, and necessarily false propositions have proba-

bility 0.

P (true) = 1 P (false) = 0

3. The final axiom enables us to compute the probability of combined events. If the random

variables are independent of each other then,

P (x ∨ y) = P (x) + P (y)

Another form of axiom 3 is that P (x ∧ y) = P (x) ∗ P (y), this is the joint probability of both X and

Y being true given that X and Y are independent. In the CAPM framework sensor observations are

considered as events and are represented as random variables in the probability calculus. Example

events might be the presence of a user in the vicinity of a device or of voice activity being detected

in its vicinity. Axiom 3 gives us the basis to reason or infer probabilities about the occurrence of

multiple events happening at the same time. Axiom 3 assumes that events are independent, which

means the occurrence of one does not affect the probability of the other event occurring, i.e., one

event does not cause or depend on the other event and vice versa. More formally, two events X and

Y are independent if conditioning on (setting the value of) one variable leaves the probability of the

other unchanged.

X ⊥ Y ⇒ P (X | Y) = P (X)

The previous equation reads as, if X and Y are independent, then the probability of X given the

value of Y (conditioned on Y) is equivalent to the probability of X. Two rolls of dice are normally

independent. Getting a 6 on the first roll does not influence the probability of getting a 6 again on

the second roll. Given a fair dice, the probability of rolling a 6 is 1/6. The probability of rolling two

6s in a row is 1/62. However, independence between variables is a strong assumption that is often

not the case. Consecutively picking 5 diamonds from a deck of cards is not simply (1/4)5 as the

probability of picking a second diamond is influenced by the fact there are less diamonds in the pack.

The extension of axiom 3 for events that are dependent on each other gives the following equation.

P (X ∨ Y) = P (X) + P (Y)− P (X ∧ Y)

This can be intuitively understood by considering the Venn diagram shown in Figure 3.8. P (X) is

equivalent to the area covered by the area of circle X and P (Y) is equivalent to the area of the

circle Y . P (X ∨ Y) can be visualised as the sum of both areas, P (X) + P (Y), minus the intersection

P (X ∧ Y) so it is not counted twice.

71

X Y

Figure 3.8: Venn diagram showing conditional probability

Conditional probability, P (X | Y), can be defined in terms of unconditional probabilities by the

following equation.

P (X | Y) =
P (X ∧ Y)

P (Y)

Again, this can be seen intuitively from the Venn diagram, the probability of x occurring given

that y has just occurred is the ratio of P (X∧Y) (the intersection) to the whole of P (Y). The product

rule is derived from this equation.

P (X ∧ Y) = P (X | Y)P (Y)

The product rule gives us the joint probability for variables that are dependent. A joint probability

distribution describes the probability of two or more events occurring. The full joint probability

distribution specifies the probability of every combination of events and is therefore a complete spec-

ification of the uncertainty in the system. A particular value in the joint distribution is given as

P (X1 = x1 ∧X2 = x2 ∧ ...Xn = xn), which can be more compactly written as P (x1, x2, ..., xn). From

the product rule, we can derive the chain rule, which allows us to express the full joint probability as

a product of conditional probabilities.

P (x1, x2, ..., xn) = P (x1) ∗ P (x2 | x1) ∗ P (x3 | x1, x2)..., ∗P (xn | x1, ..., xn−1)

=
∏

i

P (xi | x1, ..., xi−1)

However, this does not scale very well as the computation is exponential in the number of random

variables to be solved for. For a domain described by n random variables, the size of the input table

is O(2n) and the computation time is also O(2n).

72

3.5.1 Bayesian networks

Bayesian networks (BNs) are graphical models that represent the full joint probability distribution of

a set of random variables in a tractable way. Nodes in the BN represent random variables (discrete

or continuous) and arcs between nodes represent causal connections between variables, i.e., an arc

from X to Y represents X causing Y , so they are dependent on each other. For discrete variables the

strength of a causal dependence is modelled by a conditional probability table (CPT) associated with

each node. There is one constraint on the arcs in that there can be no directed cycles, i.e., you cannot

return to a node by following a sequence of directed arcs. Such graphs are called directed acyclic

graphs (DAGs). Modelling with BNs requires the assumption of the Markov property. That is all

direct dependencies (i.e., where one variable directly causes another) in the system must be explicitly

shown via arcs. However, it is not necessary that there is a dependency for every arc modelled, as

the CPT may be parametrised to nullify any dependency. This is done by setting all probabilities in

the CPT as equal, so setting the value of the parent node does not influence the probabilities of the

child node. A fully-connected BN can represent any joint probability distribution over the variables

being modelled, although not in a very efficient manner. Given the Markov property, the value of a

particular node is conditional only on its parent nodes, so the chain rule joint probability distribution

can be reduced to

P (x1, x2, ..., xn) =
∏

i

P (xi | Parents(Xi))

P(C=f) P(C=t)

0.5 0.5

Cloudy

WetGrass

RainSprinkler

C P(S=f) P(S=t)

t 0.9 0.1

f 0.5 0.5

C P(R=f) P(R=t)

t 0.2 0.8

f 0.8 0.2

S R P(W=f) P(W=t)

t t 0.01 0.99

t f 0.1 0.9

f t 0.1 0.9

f f 1.0 0.0

Figure 3.9: BN example

73

Table 3.1: Joint probability table

C S R W P (C) P (S | C) P (R | C) P (W | S ∧R) P (C ∧ S ∧R ∧W)

1 1 1 1 0.5 0.1 0.8 0.99 0.0396

1 1 1 0 0.5 0.1 0.8 0.01 0.0004

1 1 0 1 0.5 0.1 0.2 0.9 0.009

1 1 0 0 0.5 0.1 0.2 0.1 0.001

1 0 1 1 0.5 0.9 0.8 0.9 0.324

1 0 1 0 0.5 0.9 0.8 0.1 0.036

1 0 0 1 0.5 0.9 0.2 0 0

1 0 0 0 0.5 0.9 0.2 1 0.09

0 1 1 1 0.5 0.5 0.2 0.99 0.0495

0 1 1 0 0.5 0.5 0.2 0.01 0.0005

0 1 0 1 0.5 0.5 0.8 0.9 0.18

0 1 0 0 0.5 0.5 0.8 0.1 0.02

0 0 1 1 0.5 0.5 0.2 0.9 0.045

0 0 1 0 0.5 0.5 0.2 0.1 0.005

0 0 0 1 0.5 0.5 0.8 0 0

0 0 0 0 0.5 0.5 0.8 1 0.2

This offers a significant reduction in computing to work out the full joint probability, especially for

networks with few parents. An example BN is shown in Figure 3.9. It models four boolean random

variables Cloudy, Sprinkler, Rain and WetGrass. Cloudy causally affects the probability of both the

Sprinkler being on and it Raining, which in turn causally affects whether the grass is wet or not

(WetGrass). We can use the BN to reason both causally and diagnostically.

The joint probability table for the network is shown in Table 3.1. Each conditional probability

is simply read from the BN’s CPTs and the joint probability distributions are simply the product of

the conditional probabilities from the chain rule. It is interesting to note that the sum of the column

of joint probabilities is 1. This concurs with the fact that all states are mutually exclusive and the

sum of their probabilities is 1.

From the table we can derive the probability of any combination we are interested in. For example,

we could calculate the probability of the grass being wet, P (W = t) by simply summing all of the rows

where W = t. This gives P (W = t) = 0.647, i.e., given no evidence the probability of the grass being

74

wet is 64.7%. This is also known as the prior probability, as it is the probability before we observe

any evidence. The posterior probability is the probability calculated after we observe something.

We can reason causally, for example, by observing that the weather is cloudy (C = t). What

affect does this have on the probability of the grass being wet? We can use the table again to update

our belief in the grass being wet given the information that it is cloudy, P (W = t | C = t). This can

be calculated by summing the columns where C = t and W = t and dividing by the sum of columns

where C = t, P (W = t | C = t) = P (W=t∧C=t)
P (C=t) = 0.3726

0.5 = 0.745. Given that we know it is cloudy

the probability of wet grass has increased to 74.5%.

To reason diagnostically (in the other direction) we need to apply Baye’s rule, which can be

derived from the product rule. The product rule, P (X ∧ Y) = P (X | Y)P (Y) can also be written as

P (X ∧ Y) = P (Y | X)P (X). Equating both right hand sides and dividing byP (X) gives

P (Y | X) =
P (X | Y)P (Y)

P (X)

This is Baye’s rule and is used to calculate a conditional probability given the conditional prob-

ability in the other direction and two unconditional probabilities. For example, we may wish to

calculate the probability of Cloudy given the Sprinkler is on. Given Baye’s rule, P (C = t | S = t) =
P (S=t|C=t)∗P (C=t)

P (S=t) . We can calculate P (S = t | C = t) ∗ P (C = t) and the unconditional probability

P (S = t) from the tables. From the product rule P (S = t ∧ C = t) = P (S = t | C = t) ∗ P (C = t),

which is the sum of the columns where S = t and C = t (0.05), and P (S = t) is the sum of columns

where S = t (0.3). So, P (C = t | S = t) = 0.05
0.3 = 0.1666. So, the probability of it being cloudy

when the sprinkler is on is 16.7%. Hence, a Bayesian network can be used to efficiently calculate the

probability of any particular event occurring given the set of observations that are available.

In a ubiquitous computing scenario, the goal is to estimate the current context based on input

from the available set of sensors in the environment. The basic BN structure is shown in Figure 3.10,

where the context we want to infer is the parent node of the sensors. This is known as a “naive Bayes”

model and it assumes that the sensor variables are independent of each other given the context. This

independence is shown by the lack of arcs between the sensor nodes. The states of the context variable

is the list of all possible context values (e.g., using, not using). The reasoning is diagnostic whereby

the given context value is perceived to cause the current sensor values. For example, given that the

user is using the PC causes the Bluetooth sensor to detect the presence of the user’s Bluetooth tag.

To query the most probable current context, the physical sensors are sampled and the sensor node

values are set to the sampled values. Then an update of the probabilities for the context is performed

given the new sensor values.

75

Context

SensorB SensorCSensorA

Figure 3.10: Example BN for ubiquitous computing

3.5.2 Dynamic Bayesian networks

Bayesian networks model probabilistic relationships between a set of variables at a particular point in

time. They cannot explicitly model temporal relationships between a variable at different points in

time. The only way to do this would be to add another variable with a different name representing the

variable at a previous point in time. To model these temporal relationships, Bayesian networks can

be extended to dynamic Bayesian networks, which model probabilistic relationships between variables

that occur at different points in time [46].

Dynamic BNs assume that changes occur between discrete time points, indexed by non-negative

integers and up to some finite time T . Let {X1, X2, ..., Xn} be the set of random variables whose values

change over time and Xi[t] be a random variable representing the value of Xi at time t for 0 ≤ t ≤ T .

A simple dynamic Bayesian network is effectively a Bayesian network containing the variables that

constitute the T random vectors X[t] and which is determined by the following specifications:

1. An initial Bayesian network consisting of an initial DAG containing the variables X[0] and an

initial probability distribution for these variables.

2. A transition Bayesian network that is a template consisting of a transition DAG containing the

variables in X[t] and X[t+1], and a transition probability distribution that assigns a conditional

probability to every value in X[t + 1] given every value of X[t].

3. The dynamic Bayesian network containing the variables that constitute the T random vectors

consists of the DAG composed of the DAG G0 and for 0 ≤ t ≤ T − 1 the DAG G evaluated at

76

Context
0

SensorB
0

SensorC
0

SensorA
0

Context
1

SensorB
1

SensorC
1

SensorA
1

Context
2

SensorB
2

SensorC
2

SensorA
2

Context
3

SensorB
3

SensorC
3

SensorA
3

Figure 3.11: Example DBN rolled out to 3 time slices

t and the following joint probability distribution.

P (x[0], ..., x[T]) = P0(x[0])
T−1∏
t=0

P (x[t + 1] | x[t])

All the information needed to predict a world state at time t is contained in the description of the

world at time t− 1. No information about earlier times is needed. Owing to this, we say the process

has the Markov property.

So, in effect a DBN can be thought of as a BN that has been rolled out in time. An example is

shown in Figure 3.11, which is an extension of the ubiquitous computing BN in Figure 3.10. The

initial Bayesian network is the same structure as in Figure 3.10 but the nodes are subscripted with

t = 0. The transition Bayesian network is shown by the dashed arrows, which contain the transition

probability distributions for the nodes in one time step to the next time step. The DBN has been

rolled out to 3 time slices. If the time step between slices is 20 seconds, then by querying the Context3

variable, we are querying what will be the context 1 minute into the future. This could be useful

for CAPM as it is necessary to know what the context of the user will be a break-even time into the

future (i.e., will they be still not using the PC in one minute’s time).

3.6 Parameter learning for Bayesian networks

The values for the CPTs of a Bayesian network can either be set according to a domain expert’s

beliefs or they can be learned from past observed data. This learning of the network’s CPTs is called

parameter learning (i.e., learning the probability parameters of the CPT). The other type of learning,

structure learning, deals with learning the dependency arcs (structure) of the network and is not dealt

with here. Probabilities that are learned from data are termed relative frequencies. For a set of m

77

F

X

Figure 3.12: Augmented Bayesian network

identical repeatable experiments the relative frequency approaches a limit, which is the probability

of the outcome [65].

p = limm→∞
]outcomes

m

As an example, consider tossing a thumbtack. If we tossed the thumbtack 10,000 times and it

landed heads 3,373 times, the estimate for the probability of heads is about 0.3373.

3.6.1 Parameter learning for binary variables

We first consider learning the probability parameters for a single binary variable. Let X be a binary

random variable with possible values 1 and 2. The technique for learning is to use another random

variable F with values in the interval [0, 1] to model the belief in the probability of X. This technique

is called an augmented Bayesian network as it includes a node representing our belief about another

node’s probability distribution given evidence data (see Figure 3.12).

The probability distribution for F can be modelled as a Beta distribution (beta(f)) [46]. The

Beta distribution having parameters a, b, N = a + b, where a and b are real numbers > 0, is defined

in terms of the Gamma distribution Γ as

beta(f) =
Γ(N)

Γ(a)Γ(b)
fa−1(1− f)b−1 0 ≤ f ≤ 1

If F has a Beta distribution with parameters a, b, N = a+ b, then the expected value for F , E(F)

is given as

E(F) =
a

N

We can think of a and b as the counts for each outcome 1 and 2, and N is the total count of

both outcomes. As an example, we consider a coin toss C with two possible outcomes, heads and

tails. So, if we observe 6 heads from 10 coin tosses, then the expected value E(F) for the probability

78

P (C = heads) is a
N = 6

10 = 0.6. The Beta distribution not only gives us the expected value for the

probability P (C = heads), it represents the strength of belief in this probability given the number of

observations that have been made.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

f

be
ta

(f,
6,

4)

(a) Beta(6, 4)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

f

be
ta

(f,
49

98
,5

00
2)

(b) Beta(4998,5002)

Figure 3.13: Beta distributions

Figure 3.13 shows two Beta distributions, Figure (a) shows the belief in P (C = heads) = 0.6 after

10 observations and Figure (b) shows the belief in P (C = heads) = 0.4998 after 10,000 observations.

The distribution is much more strongly focused in Figure (b), representing a stronger belief in the

estimate. To continually learn from the observed data we simply need to keep updating F ’s Beta

distribution given the newly observed data d. Given a sample, the probability distribution of F

conditional on data d is called the updated density function of the parameters and is given by

beta(f | d) = beta(f ; a + s, b + t)

Figure 3.14 shows an example Beta distribution with 3 observations for heads and 3 observations

for tails. Subsequently, a further 8 observations for heads and 2 observations for tails are made. The

new updated distribution, beta(f ; 11, 5), has an estimated probability for P (C = heads) = 0.6875

and the belief has grown in strength.

The theory for learning the parameters of a single binary random variable can be simply extended

to all variables in a Bayesian network by generalising the augmented Bayesian network. From [46],

an augmented Bayesian network (G, F, ρ) is a Bayesian network determined by the following:

79

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

f

be
ta

(f)

Figure 3.14: Updating the Beta distribution

1. A DAG G = (V,E) where V = {X1, X2, ..., Xn} and each Xi is a random variable.

2. For every i, an auxiliary parent variable Fi of Xi and a Beta distribution betai of Fi. Each Fi

is a root and has no edge to any variable except Xi. The set of all Fis is denoted by F .

3. For every i, for all values pai of the parents PAi in V of Xi and all values fi of Fi, a probability

distribution of Xi conditional on pai and fi.

The nodes in F represent the beliefs concerning the unknown conditional probabilities (parameters)

needed for the DAG. Since the Fis are all root nodes, they are mutually independent, which simplifies

the calculation of their joint probability distribution.

3.6.2 Learning multinomial variables

The theory developed for binary variables can be easily extended to multinomial discrete variables by

use of the Dirichlet distribution, which generalises the Beta distribution. A multinomial variable is

a variable with more than two values. The Dirichlet distribution with parameters a1, a2, ..., ar, N =∑r
k=1 ak, where a1, a2, ..., ar are integers ≥ 1, is

dirichlet(f1, f2, ..., fr−1) =
Γ(N)

Γr
k=1Γ(ak)

fa1−1
1 , fa2−1

2 , ..., far−1
r 0 ≤ fk ≤ 1,

r∑
k=1

fk = 1

80

The random variables f1, f2, ..., fr−1 represent the probabilities for r values of the node in question.

The probability assessor’s experience is equivalent to having seen the kth value occur ak times in N

trials. We can think of ak as representing the count of outcomes for the kth value. The expected

value for any Fk is given by

E(Fk) =
ak

N

Learning for all multinomial variables in a Bayesian network can again be extended by the aug-

mented Bayesian network for multiple variables.

The Spiegelhalter Lauritzen algorithm [61] is a commonly used learning algorithm available in

many of the BN tools. It uses the augmented Bayesian network technique as described above. The two

main assumptions behind the algorithm are that all nodes are represented as Dirichlet distributions

and the parameters of the CPTs are mutually independent. Since the nodes are Dirichlet distributions,

the values of the nodes must be discrete. Therefore variables that are naturally continuous (such as

time) must be discretised and given finite limits. The simplification of assuming mutual independence

between the parameters only works well for networks with a significant amount of training data

compared to the number of parents in the network. This is less of a problem for networks with few

parents, such as in the case of the example ubiquitous computing BN.

3.7 Choice of sensors for CAPM

The sensors used in the initial experimental trial were user presence from the user’s Bluetooth phone

and idle time from the keyboard and mouse. For the final user study the Bluetooth phone was

replaced by dedicated Bluetooth tags as not enough users had Bluetooth-enabled phones to conduct

the study. The choice of additional sensors was motivated by the preference to use sensors that we

believe will be part of future pervasive/ubiquitous computing environments.

It is likely that a web camera and microphone will become integrated in the PC display as the

popularity of video communication applications increases. Therefore we chose to use both of these

sensors to capture finer-grained context. Oliver et al. (see Section 2.5.3) also uses a web camera

and microphone to infer user activities in an office environment. Their system, S-SEER, consumed a

significant proportion of the CPU resources (on average 33.4%), primarily due to the large amount of

video and acoustic feature processing. For our system we chose a standard face detection algorithm

as the single feature to extract from the video stream and a basic voice activity detection algorithm

for the acoustic stream. The face detection only detects a face that is looking straight at the camera

and the voice activity gives a measure from 0% to 100% of the level of voice activity detected in the

81

environment.

The final sensor chosen was an ultra-sonic object range sensor in order to detect near presence of

the user. We do not envisage this sensor as being part of a standard pervasive computing environment

and so it would need to be installed as part of a CAPM solution. The motivation for choosing it

was that it could possibly give good information at low energy cost, as there is no need for expensive

feature processing. Infra-red object range sensing could also have been used. A possible benefit of this

would be the additional sensing as to whether the object was warm or cold. We chose the ultra-sonic

sensor as the technology was already available within the research group.

3.8 Design of BNs for CAPM

We divided the problem into designing a distinct type of BN for each inference task, i.e., not using

for at least the break-even period and about to use at least the resume time beforehand. The

structure of both types of BN is similar but they use different sensors and different sensor models.

Development of the two types of BN was an iterative approach, starting with simple models and

evolving the models to cope with issues that occurred. The models were evaluated through actual

simulation on real usage traces. This section describes the evolution of the BN models, starting with

the initial BN we developed, then describing the final-stage BN and finally the dynamic BN model.

The learning of the BN models’ parameters is also described.

3.8.1 Initial models

The initial model is based on the naive Bayes structure, which is a standard approach for inference

of context based on a set of observed features [56].

3.8.1.1 Not using

Figure 3.15 details the initial BN for the not using (NU) context. The IsNotUsing node is the query

node, we are asking what is the probability that the user is not using the device for at least the

given break-even time. This node has causal connections to each of the sensor nodes. This represents

the fact that the user using (U) or not using the device is causing the observed sensor readings.

The initial model did not include the object range detection sensor and the CPTs were manually

estimated, i.e., not learnt from the data. To estimate the CPTs we must estimate what the sensor

values are likely to be given that the user is using and not using the device. For example, given

the user is using the device we estimated the probability of IdleTime=0-1 minute is 0.7, Bluetooth

82

P(U) P(NU)

0.5 0.5

Bluetooth
IdleTime

Face Voice

IsNotUsing

IT U NU

P(0) 0.7 0.03

P(1) 0.1 0.03

P(2) 0.1 0.03

...

...

P(30) 0.0 0.03

Face U NU

P(Detect) 0.8 0.1

P(NotDetect) 0.2 0.9

Voice U NU

P(Detect) 0.8 0.2

P(NotDetect) 0.2 0.8

Bluetooth U NU

P(Found) 0.8 0.2

P(NotFound) 0.2 0.8

Figure 3.15: Initial not using model

found is 0.8, Voice detected is 0.8, and Face detected is 0.8. Given the user is not using the device,

the probability of IdleTime=0-1 minute is 0.03, Bluetooth found is 0.2, Voice detected is 0.2, and

Face detected is 0.1. Given the full set of CPTs the model can reason diagnostically from the sensor

values to give the probability of the user not using the device. The power-down decision threshold

was set at a probability of not using greater than or equal to 0.8 (80%). This threshold figure was

derived from trial and error experimentation with the model.

The main drawback associated with the model was its absence of recent history for sensor readings.

For example, the Bluetooth node either recorded the Bluetooth tag as found or not found. There is

no representation of whether in the previous scan the tag was found or not. Given that making a

Bluetooth connection can be unreliable, i.e., the scan may not detect the tag even though it is there,

it was desirable to record the history of when the tag was last found. If it was found one scan ago, it

may be that the tag is still there and the scan just missed it. This would be much less likely if the tag

had not been found for the last 10 scans. The history was recorded by using a simple counter and is

explained in the next section. Again, the same problem was found for the Face detection node and a

counter was used to record its recent history. The initial Voice node was modelled as whether there

was voice detected in the last 5 second recording, i.e., whether the percentage of voice activity was

greater than 10%, or not. This did not work well as during a conversation voice can vary considerably

with significant silent periods. The IdleTime node was discretised into one minute intervals, 0 to < 1

83

minute, 1 to < 2 minutes, 2 to < 3 minutes, up to 30 minutes and greater. The 0 to 30 minute range

for the IdleTime node was found to be too long and was shortened for the final BN model.

3.8.1.2 About to use

The about to use model is similar in structure to the not using model but does not include the

IdleTime sensor as it is not a good indicator of when a user is about to use the device, (see Figure

3.16).

P(NU) P(ATU)

0.5 0.5

Bluetooth
Face

Voice

IsAboutTo

Use

Face NU ATU

P(Detect) 0.2 0.9

P(NotDetect) 0.8 0.1

Voice NU ATU

P(Detect) 0.6 0.4

P(NotDetect) 0.4 0.6

Bluetooth NU ATU

P(Found) 0.1 0.9

P(NotFound) 0.9 0.1

Figure 3.16: Initial about to use model

The CPTs for this model were set so that detecting either the Bluetooth tag or the Face would

increase the belief in about to use past the power-up threshold (60%) and hence power up the

device. The main issue with this model was that it did not handle the case where the device is

powered down and the user is still there. Because the Bluetooth tag is still being detected this model

causes the device to be powered back up again straight away. The final BN model provides a solution

to this issue.

3.8.2 Final BN models

The final BN models accounted for the issues that occurred in the initial models.

84

Bluetooth
IdleTime

Face Object

IT U NU

P(0) 0.06 0.06

P(1) 0.06 0.06

P(2) 0.06 0.06

...

...

P(15) 0.06 0.06

Face U NU

P(0) 0.03 0.03

P(1) 0.03 0.03

P(2) 0.03 0.03

...

...

P(30) 0.03 0.03

Bluetooth U NU

P(0) 0.25 0.25

P(1) 0.25 0.25

P(2) 0.25 0.25

P(3) 0.25 0.25

Object U NU

P(0) 0.03 0.03

P(1) 0.03 0.03

P(2) 0.03 0.03

...

...

P(30) 0.03 0.03

Voice U NU

P(0) 0.1 0.1

P(1) 0.1 0.1

P(2) 0.1 0.1

...

...

P(9) 0.1 0.1

Voice
IsNotUsing

IdleTime
Zero

ITZ P(U) P(NU)

Zero 1.0 0.0

NotZero 0.5 0.5

P(Zero) P(NotZero)

0.5 0.5

Figure 3.17: Final BN not using model

3.8.2.1 Not using

The Bluetooth node is modelled with four states, 0 to 3. A counter is used to count the number

of times the Bluetooth tag is not found. A value of 0 represents the tag found, 1 represents not

found once, 2 represents not found twice, etc. The value of three counts was chosen by analysing test

connection data for the Bluetooth tag; we did not observe the Bluetooth scan missing the tag more

than three times in a row, when it was actually in the vicinity. The Bluetooth scan occurs about

every 10 seconds so it takes approximately 30 seconds to reach a value of 3 (i.e., the tag is almost

definitely not in the vicinity).

The Face detection node is modelled with 31 states. The face counter counts from 0 to 30, with 0

representing the face detected, 1 represents not detected once, and so on. The sensor is sampled every

5 seconds, so the time it takes to reach the value 30 is about 2 1
2 minutes. We used this longer count

as not looking at the display is not as good a cue for not using as the person not being present.

This is because it takes longer for a person to return from not being present than for them to turn

around and face the display again.

The Object range node was also added to this network. The object range sensor reports the

distance of the nearest object in centimeters. In order to model this sensor in a similar way to the

85

Face detection node it is necessary to establish the range in centimeters where the user is using

and not using the device. For example, a user may use the device in the range 30cm to 90cm and

when they are not using the device the range sensor reports from 110cm to 150cm. The range values

whereby the user is using and not using the device are determined first by analysing the measured

usage of the device. Then, similar to the Face detection, a counter is used to count when the user

is detected in the not using range (e.g., 110cm to 150cm). A higher count means the sensor has

been detecting range values in the not using range for longer. The counter is reset to zero when

the user is detected in the using range or in neither of these ranges. Again, the Object range node

is modelled with 31 states for the same reason as the Face node.

Voice was recorded in 5 second samples and processed to extract the percentage of voice in

the 5 second sample. As conversations can have silent periods within them the voice recognition

percentage can fluctuate considerably throughout a conversation. To cope with this we averaged over

the 5 past values (about 25 seconds) to achieve a smoothed representation of the detection of voice

in the environment. Based on observed traces of voice activity, this seems of be a reasonable period,

smoothing out the voice prediction to take into account typical conversation. The Voice sensor is

modelled with 10 states representing 0% to < 10% voice activity, 10% to < 20% voice activity, up

to 100% voice activity. This more detailed resolution than the simple detected/not detected model

was chosen as the CPTs for the final BN are trained from the data. It was thought that potentially

different levels of voice activity would relate to using and not using cues.

We reduced the IdleTime node’s number of states from 31 to 16. The reason for this was the idle

time values for when the user was using the device rarely went past 15 minutes and so the values

past 15 minutes did not have sufficient data for proper training of the CPT.

Finally, the IdleTimeZero node is used to set the probability of using to 1 if the idle time is

between zero and one minute. It was necessary to implement this rule to avoid a large number of

false power downs caused by the not using threshold being reached too quickly.

The CPTs for all of the sensor nodes are initially set to an even distribution as they are learnt

from the measured usage trace collected for each user in the user study. Table 3.2 shows an example of

the supervised data (training cases) used as input to the Speigelhalter-Lauritzen learning algorithm.

The cases are sampled at 10 second intervals from the start to end of one day of the user study. Each

case contains the values of the observed sensor nodes and the measured context, using or not using.

Any short not using period, which is less than the device’s break-even time is also considered to be

a using training case. The set of cases shows a transition from using the PC to not using the PC.

The Bluetooth values go from 0 to 3 and the FaceDetect and ObjectRange values begin to increase.

86

Table 3.2: Example BN training cases

No. IdleTime Bluetooth FaceDetect VoiceActivity ObjectRange IsNotUsing

1 * 0 2 * 1 Using

2 * 0 1 * 0 Using

3 * 0 1 * 0 Using

4 * 0 1 * 0 Using

5 * 0 0 * 0 Using

6 * 0 2 * 2 Using

7 * 1 4 * 4 *

8 * 2 6 * 5 *

9 * 3 8 * 7 *

10 * 3 10 * 9 *

11 * 3 12 * 11 *

12 1 3 14 * 12 *

13 1 3 16 * 14 NotUsing

14 1 3 18 * 16 NotUsing

15 1 3 20 * 18 NotUsing

16 1 3 22 * 19 NotUsing

17 1 3 24 * 21 NotUsing

18 2 0 25 * 0 NotUsing

19 2 0 27 * 1 NotUsing

20 2 0 29 * 3 NotUsing

The asterisks (*) represent values that are not to be included in the learning. These include idle time

values less than one minute, voice activity values of 0% and any cases where the value of using/not

using is not known. Given this supervised training data the expected probabilities of the CPTs are

estimated.

To give a concrete example of the learning theory explained in Section 3.6, we consider learning of

the CPTs for the Bluetooth node based on the set of cases given in Table 3.2. The Bluetooth node is

a multinomial variable with four values 0, 1, 2 and 3. For each state of the parent node IsNotUsing,

there is a Dirichilet distribution, F , that represents the expected probability of each of the Bluetooth

values, given the parent state. For example, given the user is using the PC we expect the probability

87

of the Bluetooth value 0 (i.e., detected) to be high. The distribution has four parameters a1, a2, a3

and a4 to represent the number of times each Bluetooth value is observed in the given parent state,

and the parameter N , which keeps a total count of the number of cases observed. The expected

probability for any of the Bluetooth values is given as E(Fk) = ak

N . Initially the expected probability

for all values in the Bluetooth node’s CPTs are evenly distributed with value 1
4 . In the first training

case, the parent state is using and the Bluetooth value is 0. Therefore the expected probability for

Bluetooth value 0 given using rises to 2
5 and the expected probabilites for the other values reduce

to 1
5 . By the sixth case the expected probability for Bluetooth value 0 given using rises to 7

10 and

the probability for the other values reduce to 1
10 . For the following six cases, the state of IsNotUsing

is not known and hence these cases cannot be learnt. The thirteenth training case is the first case

where the parent state is not using. Therefore the expected probability for Bluetooth value 3 given

not using rises to 2
5 . By the seventeenth case, this probability has risen to 6

9 . In the eighteenth case

the Bluetooth tag is detected again (value 0) but the user is still not using the device. Therefore the

expected probability for Bluetooth value 0 given not using rises to 2
10 . By the final case the expected

probabilities for Bluetooth values 0, 1, 2, 3 given not using are 4
12 , 1

12 , 1
12 and 6

12 respectively.

This has given a concrete example of how the case data is used for learning the CPTs. Example

CPTs for each of the sensor nodes, which have been trained on a full day of case data are described

in Section 4.1.

3.8.2.2 About to use

In the initial about to use model the device is powered up anytime the Bluetooth tag is detected.

This causes a problem when the device is put into standby and the Bluetooth tag is still being

found in the vicinity. The model was extended by adding the InStandbyBTFound node to model

this InStandbyFound (ISF) state. When in the ISF state the influence of the Bluetooth tag being

found is nullified (the probability of Bluetooth being found is 0.5 for both the not using (NU) and

about to use (ATU) cases). This prevents the presence of the Bluetooth tag causing the device to

be immediately powered up again. Only when the device powers down to standby and the tag is not

found (ISNF), will the device power up due to the Bluetooth tag being found again.

The about to use model needs to power up the device as quickly as possibly to avoid the user

experiencing any resume-time delay. Therefore it is not necessary to extend the Bluetooth node to

record recent history as it needs to power up the first time the Bluetooth tag is detected. This

requirement to power up quickly causes a problem for the Face and Object range sensors, as they are

more prone to reporting false detections. When either of the sensors falsely detected a face or object,

88

P(NU) P(ATU)

0.5 0.5

Bluetooth

IsAboutTo
Use

InStandby
BTFound

P(ISF) P(NISF)

0.5 0.5

NU NU ATU ATU

Bluetooth ISF ISNF ISF ISNF

P(Found) 0.5 0.5 0.5 0.9

P(NotFound) 0.5 0.5 0.5 0.1

Figure 3.18: Final BN about to use model

the device was powered up. Therefore, in the final version of the about to use model the Face and

Object range sensors were not used as they caused too many false power ups. The Voice sensor was

not used either as it is not a good indicator of about to use. The CPTs for the about to use

model are fixed (i.e., not learnt from the data) as shown in Figure 3.18.

3.8.3 DBN models

Finally, a dynamic Bayesian model was designed to investigate if this technique could improve on the

performance of the final Bayesian model, in particular, for devices with relatively long break-even

times.

3.8.3.1 Not using

The DBN not using model is a simple extension of the final BN model to include a number of time

slices in the future. The structure of the nodes is the same within a time slice and the transition arcs

link a node in the previous time slice to the corresponding node in the next time slice (see Figure

3.19). This rolled out network is effectively a standard Bayesian network and the techniques for

89

inference updating and learning are the same. The IdleTimeZero node is only needed at the final

IsNotUsing6 node to implement the rule of using if the idle time is less than one minute. The size

of the time step between time slices is calculated as the break-even time of the device divided by

the number of time slices (6). Therefore, if the break-even time is one minute, the time step is 10

seconds; if the break-even is 6 minutes, the time step is one minute. This gives the prediction of the

not using probability for the IsNotUsing6 query node to be the break-even time in the future for

the device.

IdleTime
Zero

Bluetooth
1

IdleTime
1

Face
1

Object
1

Voice
1

IsNotUsing
1

Bluetooth
0

IdleTime
0

Face
0

Object
0

Voice
0

IsNotUsing
0

Bluetooth
6

IdleTime
6

Face
6

Object
6

Voice
6

IsNotUsing
6

Figure 3.19: DBN not using model

Again, as for the learning of the BN model, the CPTs for all sensor nodes are initially set to an

even distribution. The training cases are sampled at the given DBN time step (e.g., 10 seconds, 1

minute) from the start to end of one day of the user study. The training cases for the DBN are much

wider as a value is needed for each sensor node in the each of the time slices. Table 3.3 shows an

example set of training cases for the six time slices of the Bluetooth nodes and the IsNotUsing6 node.

A complete case would include all of the nodes in each of the time slices. The example set of cases

shows the Bluetooth nodes values changing from detected (0) to not detected (3) as the IsNotUsing6
node transitions from using to not using the PC. Training the DBN model with the complete case

data learns both the conditional probabilities of the nodes (e.g., the probable values of BT6 given the

IsNotUsing6 state) and the transition probabilities between nodes in the subsequent time slice (e.g.,

the probable values of BT6 given the value of BT5).

90

Table 3.3: Example training cases for the DBN model

BT0 BT1 BT2 BT3 BT4 BT5 BT6 INU6

0 0 0 0 0 0 0 Using

0 0 0 0 0 0 0 Using

0 0 0 0 0 0 0 *

0 0 0 0 0 0 1 *

0 0 0 0 0 1 2 *

0 0 0 0 1 2 3 *

0 0 0 1 2 3 3 *

0 0 1 2 3 3 3 *

0 1 2 3 3 3 3 NotUsing

1 2 3 3 3 3 3 NotUsing

3.8.3.2 About to use

It was decided to use the final BN about to use model for the power-up policy. This was because

the policy does not need to predict far into the future and needs to react quickly in order to power

up the device in time.

3.9 Summary

The initial experimental results for simple location-aware power management policies helped in iden-

tifying several key requirements for CAPM. These are the requirement for prediction of the contexts

not using and about to use, the need for finer-grained context other than coarse-grained location,

the need for distant prediction to overcome long resume times and delays in sensors, the need for

distributed sensing for prediction of longer idle periods, the need for a robust algorithm to cope with

decisions under uncertainty, and finally the need for adaptation to adjust power management to suit

the individual.

The design of the CAPM framework is loosely based on the sentient object model, which enables

distributed sensing and subsequently distant prediction such as mobility prediction. The main focus

was on the core parts of the framework, namely the data capture and feature extraction, context

inference and decision components. A number of inference techniques were considered and from these,

Bayesian networks were selected to implement the context inference component. Based on probability

91

theory, they enable inference based on uncertain data and provide mechanisms for learning to adapt

to users’ behaviours. The set of sensors selected for CAPM of desktop PCs were a Bluetooth tag,

web camera, microphone, ultra-sonic object range sensor and idle time from the mouse and keyboard

input events. The design of the networks involved substantial trial and error modelling until a final

BN model was settled on. The evolution of the design of the Bayesian networks is detailed. Finally, a

dynamic Bayesian model was also designed so its performance could be compared to the BN model’s

performance.

The next chapter details the implementation of the CAPM framework for power management of

desktop PCs and their displays.

92

Chapter 4

Implementation

This chapter describes the implementation of the CAPM framework for power management of desk-

top PCs and their display units in an office environment. Figure 4.1 shows the structure of the

implementation.

Consume
Power
management
API

Data
capture &

feature
extraction

Context
inference

Decision
making

Bluetooth

Video

Sound

Ultrasonic
range

Time of day

Figure 4.1: Software structure

We first describe the sensor hardware and software used for data capture and feature extraction.

Significant characteristics of each of the sensors are also highlighted. We then go on to describe the

choice of Bayesian software used for implementing the Bayesian inference and learning, which is the

core of the CAPM framework. The CAPM implementation is divided into two parts, (a) the runtime

(on-line) CAPM implementation, and (b) the off-line CAPM evaluation software. The runtime CAPM

software provides the actual implementation of the BN policies, whereas the off-line CAPM software

is used for the evaluation of the user study. It records the sensor data and user’s usage of the PC,

and subsequently simulates the range of BN policies for evaluation purposes. The runtime CAPM

93

implementation is first described, including the Windows power management functionality. Finally,

the CAPM evaluation software is described.

4.1 Sensors

The hardware and software implementation of the sensors is detailed in the following sections. The

development platform used was the Microsoft platform SDK, Windows server 2003 family, and the

code was compiled for Windows XP. The Bluetooth sensor required the use of service pack 2. As de-

scribed in Chapter 3 the sensors used in the CAPM implementation were system idle time, Bluetooth

presence, face detection, voice activity detection, and object range detection.

4.1.1 System idle time

System idle time is the amount of time since the user last caused an input event (e.g., moved the mouse

or touched the keyboard). The Windows GetTickCount() method returns the amount of time, in

milliseconds, that has passed since the last time the computer was started. This is called the tick count

of the computer and represents how long the computer has been running. The GetLastInputInfo()

method retrieves the tick count of the last input event into the LASTINPUTINFO structure. The

IdleTimeGetState() method simply subtracts this value from the current tick count to get the idle

time in seconds (see Listing 4.1). The tick count loops every 49.7 days, which is not an issue for this

experiment. The energy cost of this sensor information is not measurable and is assumed to be zero.

Listing 4.1: System idle time

1 int IdleTimeGetState () {

2 LASTINPUTINFO l p i ;

3 l p i . cbS ize = s izeof (l p i) ;

4 // Get the TickCount (time) o f the l a s t user input

5 GetLastInputInfo(& l p i) ;

6 // Return the curren t TickCount − l a s t user input TickCount

7 return (GetTickCount () − l p i . dwTime) / (1000) ;

8 }

In the designed Bayesian network, the idle time node represents the idle time in one minute bins

from 0 to 1 minute, up to 15 minutes and greater. Figure 4.2 shows an example of the learned

conditional probability tables (CPTs) for the idle time node. Figure (a) shows the probability of an

94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Idle time

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Idle time

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.2: Idle time CPTs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Idle Time

pr
ob

ab
ili

ty

Figure 4.3: Inferred probability of not using

idle time given the user is not using the device and Figure (b) gives the probability of an idle time

given the user is using the device. The 0 to 1 minute period has been excluded from the learning as

for this value the probability of using is explicitly set to one. (The IdleTimeZero node ensures that

using = 1 when the idle time is less than 1 minute.)

Figure 4.3 shows the inferred probability of not using for the given idle times. The probability of

not using rises sharply after the 1 to 2 minute period (from 0.06 to 0.44) and then stabilises around

0.5. It drops off again after the 9 to 10 minute period and finally rises sharply to 0.96 in the 15-

minute-and-greater period. The fluctuation of the probability is due to the lack of cases for learning

in the higher idle time periods and the sharp rise at the end is because the 15-minute-and-greater

period encompasses all cases greater than 15 minutes.

95

Sparsity of data for learning is a common issue for learning of parameters. Also, the discretisation

of continuous values (e.g., idle time) cause problems when upper bound limits are set. Applying a

smoothing function to the idle time CPTs could reduce the fluctuation in the graph of not using

probability versus idle time and may be more appropriate. For example, an exponential function

could possibly be used to ensure the idle time CPTs transition smoothly from the 0 to 1 minute to

the 15-minute-and-greater period. This would need to be explored further as future work.

4.1.2 Bluetooth presence

The initial experimental trials used Bluetooth-enabled mobile phones as location/presence tags. For

the larger user study we purchased dedicated Bluetooth tags as not enough of the population currently

have Bluetooth-enabled phones. The tags we choose were Bluelon BodyTags 002 [5], which have a

Class I (100mW) radio with a range of up to 100m. For the experiment, the power was tuned down

to 2.5mW (giving a range of 10m), which is the range of the Class II radios found in mobile phones.

All Bluetooth devices have a unique device address, and a clock to enable frequency hopping.

A network (piconet) of Bluetooth devices can be established with one device as the master and the

rest as slave devices. There are two possible methods of determining whether a Bluetooth device is

present, either by using device discovery to attempt to discover the device or, if the device’s address

is known, a faster direct attempt to connect to that device can be made. Both of these protocols are

implemented in the link controller layer. In an error-free environment the worst case time to discover

a device is around 10s [8]. Device discovery is the method we used in the initial experimental trial

for detecting the presence of the mobile phone.

We improved on this time by using the connection protocol to detect whether the device is present

or not. To initiate a connection the master device enters the paging mode, whereby it transmits the

slave device’s address on a 32 channel frequency hop sequence. This paging device hops at a fast

rate, one hop every 312.5µs. Meanwhile, the slave device should be in the page scan mode, listening

for connections. This scanning device hops over the same channels at a slow rate of one hop every

40ms. When the paging device catches up with the scanning device, the slave hears its address being

broadcast and then replies to the master. Once this handshaking has been achieved, the connection is

established. For the experiment, the desktop PC acts as the master device continually attempting to

connect to the PC owner’s slave Bluetooth tag. The Windows Winsock API was used to implement

the connection with the tag. The WSALookupServiceBegin function attempts to connect to the given

Bluetooth tag address. If the connection succeeds then we determine the Bluetooth tag is present.

If the connection fails then either the Bluetooth tag is not there or the connection protocol failed to

96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.4: Bluetooth CPTs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

Figure 4.5: Inferred probability of not using

connect to the tag, which sometimes happens.

A series of experiments were conducted for the Bluetooth connection. The average time to make a

new connection to a Bluetooth tag was measured to be between 1 and 2 seconds. When the Bluetooth

tag was not there the time it took for the connection to timeout was measured to be between 5 to

6 seconds. The connection error rate is the percentage of times the connection fails to connect with

the tag when the tag is present. This was measured by leaving a tag in close proximity (20cm) for a

4 hour period. The error rate for not detecting the tag once was 14.05%; not detecting twice in a row

was 0.73%; not detecting three times in a row was 0.17% and there were no cases of not detecting

four times in a row. Based on this connection error rate the Bluetooth node was modelled to have

three not detected states.

97

Figure 4.4 shows the Bluetooth CPTs for a typical user. When they are not using the PC (Figure

(a)), the tag is detected with probability 0.14 and not detected (value 3) with probability 0.85. When

they are using the PC (Figure (b)) the Bluetooth tag is nearly always detected (value 0). Figure

4.5 shows the inferred probability of not using rising as the Bluetooth count goes from 0 to 3.

All values of the Bluetooth count are well sampled and the smooth transition of the not using

probability models well the increasing certainty that the user is not there and therefore not using

the PC.

4.1.3 Face detection

A web camera (initially a Creative USB 2.0 camera) was used to capture video at 30 frames per second

(fps) and 640x480 resolution. The general-purpose face detection algorithm is a Haar-like training

classifier, which is implemented by the open computer vision library (OpenCV). This open source

library is a collection of algorithms for basic computer vision problems and was originally developed

by Intel [30].

Face detection is a relatively difficult object detection task due to the large variety of possible face

instances, e.g., faces may be slightly rotated or tilted, some people wear glasses, some have beards

or moustaches, and often part of the face may be in shadow. Statistical model-based training can

be used to cope with this large variety. The Haar-training classifier used by OpenCV was originally

developed by Viola and Jones [64] and is described in [6]. The method uses simple geometric features

(the features are computed in a similar way to coefficients in Haar wavelet transforms) and a cascade

of boosted tree classfiers as the statistical model. Face detection is done by sliding a fixed size window

across the image and classifying whether the candidate image in the window looks like a face or not.

To detect faces of different sizes, the image is scaled. In the algorithm, fourteen Haar-like features

are used (see Figure 4.6).

Each feature is described by its black and white template, its relative coordinate in the window,

and its size. For example, in many faces eyes are darker than the surrounding regions so feature 3 (a)

centered at one of the eyes and properly scaled will likely give a large feature value. The computed

feature value xi is fed into a very simple classfier fi =
{

+1, x≥t
−1, x<t , where t is a given threshold value, +1

means face detected, and -1 means not detected. A more robust “boosted” classifier is then built from

the set of “weak”classfiers as a weighted sum of the weak classifiers: F = sign(c1f1+c2f2+...+cnfn).

The more classifiers included in the sum the better the prediction of the boosted classifier. To manage

the computational complexity, Viola suggested using a set of boosted classifiers Fk with increasing

complexity. The image is then sequentially applied to the set of classifiers in increasing order. In

98

(a) (b) (c) (d)

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b)

1. Line features

2. Edge features

3. Center surround features

Figure 4.6: The Haar-like features

experiments, 70-80% of candidate images get rejected in the first two stages, leaving the final more

complex stages to handle candidate images that could be faces. The initial window size for detecting

faces was set to 100x100 pixels to avoid detecting small scale faces, (i.e., in the distance). A nice

property of this algorithm is that there is no need to train the classifier to a specific user’s face.

The positioning of the camera was either on top of the user’s monitor or below it, depending on

the monitor’s height. In one case the face detection did not work as the particular user had their head

very close to the monitor, so it was not possible to get a front on image of the face for recognition.

Figure 4.7 shows 4 sample images of the face detection (where a red box means the face is detected).

It shows that the face needs to be looking straight at the screen for it to be detected. Sometimes a

false detection of a face in the background can occur.

The CPU consumption of the Creative camera was very high for image capture, at around 30%

of the CPU. We found a cheaper Trust USB 2.0 camera, which consumed much fewer CPU resources

(8% CPU) to run the user trials. To estimate the potential error rate of the camera we conducted a

simple experiment, whereby a user constantly looked at the screen for an hour (i.e., their face position

was fixed for this period). From this, the error rate of the face detection was estimated to be 1.58%,

(i.e., the face was not detected once in every 63 samples). This error rate increases in circumstances

of poor lighting or when the camera positioning is not suited to the user’s position.

Figure 4.8 shows typical learned CPTs for the face detection node. Given the user is not using

the PC, the most probable face detection value is 30-and-greater (Figure (a)). If the user is using

the PC the most probable values are between 0 to 4 face detect counts (Figure (b)). This models the

99

Figure 4.7: Face detection

fact that the face is not always detected during the use of the PC.

4.1.4 Voice activity detection

A standard, cheap PC microphone (LabTec AM-22) and standard PC sound card were used for the

sound recording. The voice activity detection (speech detection) algorithm is a simple energy and

periodicity algorithm commonly used for end pointing in speech recognition algorithms [53]. End

pointing is used to seperate acoustic events of interest (i.e., speech) from the background signal.

Rabiner states there are three factors that make the task of speech detection difficult [53]. The first

is the extra sound made by a speaker such as lip smacks, heavy breathing, mouth clicks, and pops.

The second is due to difficult environmental conditions such as noisy backgrounds (e.g., due to fans,

machinery running), non-stationary environments (e.g., door slams, trains passing by, car horns), and

in hostile circumstances when the speaker is stressed (e.g., when navigating an airplane). Rabiner

states that some of these interfering signals produce as much speech like quality as the desired speech

signal itself, making accurate speech detection quite difficult. The final source of difficulty is the

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Face detect count

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Face detect count

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.8: Face detection CPTs

distortion introduced by the transmission medium itself. For signals with a stationary and low noise

background, a straight-forward energy-level algorithm produces reasonably good accuracy.

The algorithm we selected is from Intel’s integrated performance primitives (IPP) toolkit [29].

The toolkit provides a library of optimised functions for audio, video, speech, computer vision, image

and signal processing1. The approach involves measuring the short-time energy level of the sound

sample and the periodicity of the sample to filter unwanted noise in the background. Speech signals

are periodic in nature, which distinguishes them from the background noise.

The voice activity detection code records the sound from the microphone every 5 seconds as a pulse

code modulated (PCM) file. The PCM file is processed by the IPP speech detection algorithm and it

returns the percentage of active sample windows in the sound recording. This gives the percentage

of voice activity that occurred in the last 5 seconds of recording.

The voice activity detection was initially tested with a user speaking directly into the microphone.

For the experiment, the microphone was positioned hanging above the user’s work station. This

reduced the performance of the algorithm as the microphone was further from the speech. A possible

solution to this could have been to use better quality microphones, which are more sensitive.

Figure 4.9 shows typical CPTs for the voice activity. There is no significant difference between the

not using and using CPTs, which means that in both contexts the voice activity is quite similar.

This suggests that the voice activity information was not a good indicator for inferring the contexts

using and not using.
1Intel’s OpenCV library can use IPP for optimised performance.

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

Voice activity

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

Voice activity

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.9: Voice activity CPTs

4.1.5 Object range detection

An ultrasonic range-finding sensor was used to determine the distance to the nearest object in front

of the PC. The sensor works by transmitting a short burst of high-frequency (ultrasonic) sound into

the environment and measuring the time taken for the reflected echo to return to the receiver. The

distance is calculated by simply dividing the echo time by the speed of sound. The accuracy of an

ultrasonic sensor varies as the speed of sound changes depending on environmental factors such as

temperature, air pressure, humididty, and acoustic interference [59].

We used an SRF08 ultrasonic sensor, which has a range of about 6 metres. The sensor is connected

to an OOPIC-R micro-controller via an IC2 bus. The micro-controller sends the sensor a signal to

transmit, which causes the sensor to transmit the ultrasonic beam. The sensor then listens for an

echo for a period up to 65ms (i.e., corresponding to the maximum range of 6m). Once ranging is

complete, the measured range can be read from the sensor. The micro-controller then outputs this

range reading to its serial port, from which it can be read by the PC.

In the experiment the sensor was positioned at the top of the monitor and its beam angled to

pick up the head of the user when they were sitting at the PC and facing the monitor. This required

a certain amount of calibration and in some cases it was difficult to pick up the user’s head without

picking up the back of a high office chair when the user was not there. Another difficult case was when

the user was turned around 180 degrees talking to a colleague as the back of their head was being

picked up at a similar distance to when they were using the PC. A possible improvement could be to

use an infra-red sensor, which can also distinguish body heat. This would eliminate the more common

problem of picking up the back of a high chair. Infra-red sensors are not as accurate as ultrasonic

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

object range (cm)

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

Object range (cm)

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.10: Typical using/not using object ranges

ones, so a possibility might be to use both sensors [25]. The reliability of the range detection was

estimated by placing an object 6cm in front of the sensor and recording the measurements over an

hour. The measurements’ median and standard deviation were 5.88cm +/- 0.80cm for the 6cm object.

The sensor more commonly over-estimated the distance with the largest reading being 12cm.

The object range detection node was designed to count when the user was last detected in the

using object range. The using/not using ranges were different for each user and were determined

based on the object range values and the measured usage trace. Figure 4.10 shows typical object

range values given the user is not using (Figure (a)) and using (Figure (b)) the PC. The ranges

are well seperated with the using range from 30cm to 80cm and the not using range from 90cm to

160cm.

However, for some users the separation of ranges was not so clean and the using and not using

ranges coincided. Figure 4.11 shows the using range coinciding with the first part of the not using

range from 90cm to 120cm. In these cases where there is some overlap, the using range is given

precedence (e.g., 40cm to 120cm) and the not using range is reduced to exclude any overlap (e.g.,

130cm to 150cm). This means that in the overlap range it is not possible to classify whether the user

is in the using or not using range and the safest option is to assume they are using to avoid a false

prediction of not using the device.

Once the using/not using ranges are known the object range values can be converted into object

detection counts. The counter is incremented if the object range is in the not using range and reset

to 0 if it is in the using range. This gives a history of when an object was last detected in the using

range. Figure 4.12 shows typical CPTs for the object detection count. Given the user is not using

103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

Object range (cm)

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

Object range (cm)

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.11: Coinciding using/not using object ranges

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Object detect count

pr
ob

ab
ili

ty

(a) Probability given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Object detect count

pr
ob

ab
ili

ty

(b) Probability given Using

Figure 4.12: Object detection CPTs

the PC the most probable object detection count is 30-and-greater (Figure (a)). If the user is using

the PC the most probable object detection count is 0 (Figure (b)).

4.1.6 Sensor power consumption

The power consumption of each sensor was measured to be the difference between the power con-

sumption of the base PC and the power consumed when the individual sensor was operating. A power

monitor was used to accurately measure the energy consumption in Watt hours (Wh) over a 12 hour

period for the base PC and the PC with each of the individual sensors. The measurements were each

repeated 7 times to estimate the possible variance in the energy consumption. The base PC had a

freshly installed operating system with no applications or anti-virus software installed. It included a

104

Bluetooth radio, web camera, and microphone hardware as it is assumed this hardware will become

standard for a PC. Figure 4.13 shows the average power of each of the sensors (i.e., the difference of

power consumed when the sensor was operating and the power of the base PC).

Figure 4.13: Energy consumption of sensors

The average power of the Bluetooth presence detection is estimated at 0.41W +/- 0.19W. This

is based on a sample rate of attempting to connect once every 5 seconds and the tag being present

during normal office usage (i.e., for several periods during the day the tag was not present). It was

also necessary to estimate the energy consumed by recharging the Bluetooth tag. The power of the

charger is 1.03W and it was estimated that 3 hours of charging was necessary for the tag to last the

5 day trial period. Therefore the estimated energy consumption of recharging the Bluetooth tag is

0.62Wh per day, which is added to the energy cost of the Bluetooth presence detection.

The average power of the face detection was estimated at 2.47W +/- 0.22W above the base PC.

This is based on a sample rate of face detection once every 5 seconds. The power of the face detection

is significantly higher than the other sensors and is due to the large amount of processing needed to

perform the face detection algorithm. The average power of the voice activity detection is estimated

at 0.78W +/- 0.40 W. Again, the sample rate is once every 5 seconds but the data processing required

is less than the face detection.

The average power of the object range detection was divided into the power consumed by polling

105

the sensor for readings and the power consumed by the sensor itself. The measurements in Figure

4.13 show the power consumed by polling the sensor to be slightly less than that of the base PC,

which was unusual. We re-measured the base PC and found its power to be the same. We concluded

that the wall-powered OOPIC micro-controller might influence the base PC energy reading and that

the power consumed by reading the RS232 port once every 5 seconds is negligible. The average power

of the SRF08 sensor was measured by measuring the energy consumption of the power supply and

OOPIC micro-controller (over a one hour period) and comparing this with the energy consumption

when the SRF08 sensor was connected. The power difference was measured to be 0.10W +/- 0.03W

(i.e., from 0.07W to 0.13W) for the sensor. A technical specification of the sensor is given by Robot

Electronics [21]. Their measurements state the average current of the sensor in ranging is 12mA and

in standby is 3mA. The sensor ranges for 65ms and is in standby for 1s (the polling frequency was

set to 1s). These figures give the total average power to be 0.02W for the sensor. We took the figure

of 0.07W, which is at the lower end of the measured power, as the estimated average power of the

object range sensor.

4.2 BN software selection

This section defines the general requirements for a Bayesian network tool for CAPM. Most of the

information presented derives from Kevin Murphy’s web page [44] and Appendix B of [35].

4.2.1 Requirements

The general requirements were listed as:

Must

1. support continuous nodes (i.e., continuous-valued variables such as time).

2. support parameter learning (or allow it to be provided).

3. support dynamic BNs.

4. be executable on Windows, Unix, Mac OSX and also other non-standard embedded processors

(for CAPM of other office devices).

5. have an API.

6. support decision networks (or allow it to be provided).

106

Should

1. have good documentation.

2. have source code available and preferably in C, enabling pruning of code. This enables the code

base to be reduced in size for embedded platforms.

3. have a graphical interface for creating networks.

Could

1. support structure learning (i.e., the dependency arcs between nodes in a network).

The main driver behind this set of requirements was the need for a tool that could be used to build

a runtime CAPM implementation that could be executed on users’ PCs.

4.2.2 Tool selection

Based on the above requirements a set of seven possible tools was evaluated. Table 4.1 details the

name, authors, availability of source code, availability of an application programming interface, and

the set of execution environments supported (Windows, Unix, Macintosh, Embedded).

Table 4.1: Comparison of BN tools

Name Authors Source API Execution

Hugin Expert U. Aarhus None Yes Win

Netica Norsys None Yes Win, Unix, Mac, Embed

Genie (SMILE) U. Pittsburgh None Yes Win, Unix

Probabilistic Networks Library (PNL) Intel Research C++ Yes Win, Unix

Bayes Net Toolbox (BNT) Murphy Matlab, C Yes Win, Unix, Mac

Java Bayes Cozman (CMU) Java Yes Win, Unix, Mac

Bayesian Filtering Library (BFL) Klaas Gadeyne C++ Yes Win, Unix, Mac, Embed

The closed source tools Hugin Expert, Netica and Genie (SMILE), have a wide range of func-

tionality and comprehensive documentation. Hugin and Genie have the advantage of being closely

connected to BN research groups and implement more advanced inference algorithms. However, Ge-

nie (being non-commercial) has less functionality, for example, parameter learning is currently being

implemented, whereas, Hugin has structure learning. Genie can read both Hugin and Netica file

107

formats. Netica is a lighter weight implementation, which uses the standard junction tree inference

algorithm and a number of parameter learning algorithms. It is robust, capable of being embedded

(using only the standard C library) and provides for real-time requirements (i.e., all functions take

a predictable amount of time to complete). The open source tools PNL, BNT, Java Bayes and BFL

may lack finish, but make the source code available. Of these tools BFL is out of scope as it only

supports dynamic BNs and BNT is out of scope as it requires MatLab for execution. PNL has more

functionality than Java Bayes and is implemented in C++. We compared Netica and PNL by writing

a simple WaterSprinkler example for both. Netica has quite a simple well-documented API which was

easy to use but potentially less flexible. PNL development is a bit more complex but also possibly

more flexible. We decided to go with Netica and if further functionality was needed through access

to the code base, we could progress to PNL.

4.2.3 Netica

Netica is oriented towards commercial use. Versions of the Netica API are available for Microsoft

Windows (95/NT4 to XP), Linux, Sun Sparc, Macintosh (OS 6 to OS-X), Silicon Graphics and DOS.

Each of these has an identical interface, so code can be moved easily between platforms. They also

provide a service for building custom APIs to suit embedded platforms. There are two versions of

the API. The Java API gives the full functionality of Netica in an easy-to-program object-oriented

style. The C API is compact and fast, and is suitable for embedded systems. Each API comes with

good documentation including example programs and detailed descriptions of each function. The C

API does not require any library other than the Standard C library. The Java API does not require

any Java packages other than those that come with a standard Java 2 environment.

The network supports continuous nodes by allowing controlled discretisation. This is a simple

solution to handling continuous data (e.g., time) but does cause some modelling problems. For exam-

ple, a limit on the range of the data needs to be selected (see Section 4.1.1). The parameter learning

algorithms include the Spiegelhalter and Lauritzen parametrisation algorithm, and the expectation

maximization algorithm, which are sufficient for our current requirements. Structure learning is not

supported but this functionality could be provided by another tool dedicated to structure learning.

The latest version of Netica provides support for dynamic Bayesian networks through their “time-

delay” links. This allows the programmer to build a BN with time-delay links and then “roll out”

the network to include the required time slices. Decision networks are provided for and can support

multiple decision nodes. This enables multi-stage decision problems, where later decisions depend on

the outcomes of earlier ones.

108

The Netica inference engine has been optimised for speed for real-time performance. The network

is compiled into a junction tree of cliques for fast probabilistic reasoning. Programs that use the API

completely control the inference engine. They state that “no API function will ever take any action

until called. The API will not do any I/O unless requested to, and all functions take a predictable

amount of time before returning. Also, a limit may be set on the maximum amount of memory that

Netica will use.”

The graphical inteface is invaluable for making quick prototypes and experimenting with different

structures, learning and inference. The source code is not available as it is a commercial product. A

free version has the entire set of functionality as the licensed version but is limited in the size of net

that can be constructed.

4.3 Runtime (on-line) CAPM implementation

Two versions of the CAPM framework were implemented. The first runtime (on-line) implementation

was used for executing the CAPM policies during the runtime operation of a user’s PC. The second off-

line implementation was used for evaluation of the set of power management policies and is discussed

in Section 4.4.

The runtime version of CAPM was implemented as a background Windows service and uses

Netica’s C API to perform the inference using the Bayesian networks. This implementation was only

used for power management of the PC’s display as the power-up part of CAPM could not execute if

the PC itself was in standby. Additional hardware would be needed to implement automated power

up for the PC, or, as was the case with the SWOB policy, a remote server could be used.

The program sits in a loop continually polling the set of sensors for their current value. The

polling loop is divided into the two policies, power-down and power-up. If the PC’s display is on, the

power-down policy operates and the not using network is used to infer the probability of the user

not using the display. If the display is in standby, the power-up policy operates and the about to

use network is used to infer the probability of the user about to use the display. The Bayesian

networks use predefined CPTs and there is no on-line learning of the CPTs. On-line learning of the

CPTs is a possible area for future work. The decision making policy is a simple threshold decision. If

the probability of the given context is above the threshold then the appropriate power management

action (i.e., power down or power up) is performed.

We needed to determine whether the Bayesian inference consumed a significant amount of energy

or not. The energy consumption of the base PC was measured with the CAPM service executing

109

the full BN policy (i.e., Idle time, Bluetooth, Object range, Face detect, Voice activity). The actual

sensors were not polled for data so the service was just executing the inference of the Bayesian

network, once every 5 seconds. The energy consumption data was measured over a 12 hour period

and compared to the base PC consumption. The average power was estimated at -0.26W +/- 0.56W,

(0.30W, -0.82W), which is not significantly above zero. We therefore regard the energy consumption

of the CAPM inference to be negligible.

The Windows user interface API provides the functionality to switch the display to standby and

back on again. Listing 4.2 details the display (monitor) power management code. The SendMessage

function simply broadcasts a SC MONITORPOWER message to power off and on the display. The

function’s final parameter is set to 2 for powering off and -1 for powering on the display. The energy

consumption of transitioning the display is assumed to be negligible.

Listing 4.2: CAPM

1 void MonitorSuspend (void) {

2 SendMessage (HWND BROADCAST, WMSYSCOMMAND, (WPARAM)SC MONITORPOWER, 2) ;

3 }

4

5 void MonitorOn (void) {

6 SendMessage (HWND BROADCAST, WMSYSCOMMAND, (WPARAM)SC MONITORPOWER, −1) ;

7 }

The Windows power management API provides the means to switch the PC to standby. The

SetSystemPowerState function attempts to place the PC into the standby state. When the fForce

parameter is set to FALSE, the function broadcasts a PBT APMQUERYSUSPEND event to each

application to request permission to suspend operation. As long as no application denies the request

to suspend, the PC is put into standby.

The transition energy consumption Te of switching the PC to standby and back on was measured

by switching the PC to standby 10 times in a one hour period. The steady state on (Op) and

standby (Sp) power was measured independently and the on (Os) and standby state (Ss) times were

measured through the event API. The actual measured energy consumption of 22.78Wh is the sum

of the transition energy plus the energy consumed in the on state and the energy consumed in the

standby state (i.e., 22.78Wh = 10xTe + OpxOs + SpxSs). From this equation, the transition energy

was estimated at 0.19Wh per transition. This energy is added to the energy consumption of the

evaluation policies.

110

4.4 Evaluation (off-line) CAPM implementation

The evaluation of the CAPM policies required another set of software for the purpose of data collection

and off-line simulation of the set of policy traces. Figure 4.14 shows the structure of the evaluation

software.

Consume

Data
capture &

feature
extraction

Context
inference

Decision
making

Bluetooth

Video

Sound

Ultrasonic
range

Time of day

Analysis Results

Figure 4.14: Evaluation software structure

The physical sensor hardware and software providing the data capture and feature extraction is

the same as for the on-line implementation. The evaluation software is divided into the data-collection

stage, which collects all of the data during the running of the user trial, the simulation of the policies

based on the data collected, and finally, the analysis of the simulated policy traces.

4.4.1 Data collection

A set of Windows services were implemented for polling the sensors and writing the time-stamped

values to disk for subsequent processing. These services reused the sensor code from the CAPM

implementation above. The Bluetooth, FaceDetect, ObjectDetect and VoiceActivity services polled

their respective sensor once every 5 seconds and wrote the sensor value to disk. Furthermore, the

Bluetooth service displayed a warning message box to the user if they were detected using the PC

when the Bluetooth tag had not been found for 10 periods or more. This warning ensured that the

users had their Bluetooth tag with them and that it was switched on. The IdleTime service recorded

every idle period greater than 30 seconds to the Windows event log. The PowerEvent service reported

all power event changes (standby, resume, shut down, start up) to the event log.

Finally, in order to evaluate the policies it was necessary to determine when the user was actually

using and not using the PC, (i.e., the device usage). This was achieved by implementing the NotUsing

service that monitored the idle time and for any idle period greater than 60 seconds, it would display

111

a message box asking the user if they were still using the PC. If the user saw this message box and

determined they were still using the PC then they could simply move the mouse to make the box

disappear. If they were involved in some other activity and did not see the message box, then the

display was powered off, establishing that the user was not using the PC for this period. The display

off and display on events were recorded to the event log. This is a sensitive part of the evaluation

as the measurement has the potential to change the user’s normal behaviour. To further minimise

the potential for modifying the user behaviour, an additional rule was added, whereby if the face

was detected looking at the display the policy would not attempt to power off the display. This is

discussed further in Section 5.3.

4.4.2 Simulation of policies

A device model framework was designed and implemented to simulate the set of evaluation policies

based on the recorded set of sensor data and the recorded device usage. This framework was imple-

mented in Java and used Netica’s Java API to interact with the same Bayesian networks used for the

on-line CAPM. The code was divided into three packages, Device Model, Capm, and Capm Analysis.

The Device Model class structure is detailed in Figure 4.15.

DeviceFactory

UsageFactory

State

DataErrorExceptionDeviceDeviceUsage 11

Usage
11

StateTime

StateTimeList11

0..*0..*

Figure 4.15: Device Model

The Device class models the power states of a device and the Usage class contains the complete list

of power-state transitions for a particular usage trace. The DeviceUsage class combines a particular

device and usage trace together. The DeviceUsage is then used to provide information on the trace,

such as its energy consumption, the number of false power downs, and the number of manual power

112

ups. There are two types of trace. The measured usage trace is the measured record of when the user

was using and not using the PC. All other traces are policy traces which record when the device was

powered down and up by a particular policy.

The Capm classes are detailed in Figure 4.16. The Monitor class contains the measured usage

trace and reports to the particular Simulation class if the device can be powered down or not. The

Simulation classes use the Monitor and the recorded sensor data to run through the trace from start

to finish and generate the simulated policy trace. The InferenceEngine class provides the interface

to the Netica inference engine and the LearnCases class, implements the learning of the Bayesian

network CPTs based on the training cases. The SimulationEnv class generates these training cases

from the sensor data and the measured usage trace.

SimulationEnv

DBN_PowerDownUpSimulation

SWOBSimulation

ThresholdSimulation

PowerDownUpSimulation

InferenceEngine

LearnCases

Monitor

Figure 4.16: CAPM simluation

The Capm Analysis package processes the simulated policy traces. All of the required evaluation

metrics (e.g., energy consumption, false power downs) are queried from the DeviceUsage class and

printed to a .csv file. The .csv file format enables the results to be imported into a statistical package

for further analysis and presentation.

4.5 Summary

This chapter described the sensors used for CAPM of desktop PCs in an office environment. It

highlights the issues with each of the sensors and their estimated energy consumption. The selection

of the BN tool was then described and the implementation of the on-line CAPM and off-line CAPM

evaluation software were described. The next chapter describes the user study and presents the full

evaluation of the CAPM policies.

113

Chapter 5

Evaluation

This chapter begins by outlining the objectives of the CAPM user study, i.e., the research questions

we are trying to answer. We then describe how the user study was designed to ensure that the analysis

of its results answered the research questions. The data collection and processing of the measured

usage trace is then discussed and the simulation of the policies is described in detail. Finally, the

evaluation metrics are described and the results from the simulation are presented and evaluated.

5.1 Objectives

The first objective of the user study is to evaluate the potential of context-aware power management

for devices in an office environment. The initial experiments highlighted the failing of a simple

location-aware policy (SWOB) for LightUse users (see Section 3.1.5). Adding further types of sensor

can potentially do better but there is a limit as sensors themselves consume energy. The evaluation

objectives were to establish:

1. What is the potential extra energy that can be saved beyond the simple SWOB policy?

2. How much extra energy do policies with additional sensors save?

3. What is the estimated energy cost of operating the sensors?

4. What is the estimated user-perceived performance for each policy?

Overall, we are trying to establish what granularity and what types of context are appropriate for

CAPM of office devices. The sensors explored are user presence based on Bluetooth detection (BT),

near presence based on ultrasonic object range detection (OR), face detection (FD), and voice activity

114

detection (VA). The devices we consider are desktop PCs and their display units. These devices

account for a significant proportion of the energy consumed by office devices [33] and they are possible

to analyse within a single user study. Also, the break-even times of the devices (1 and 5 minutes)

enable evaluation of policy performance over a range of break-even times.

The second objective is to evaluate whether dynamic Bayesian networks are better for implement-

ing context-aware power management than standard Bayesian networks. Also, several general issues

regarding the use of Bayesian networks for CAPM are highlighted.

5.2 Design of the CAPM user study

In order to make some general statements about power management of devices in an office environment

we performed the study on a representative sample of the office population. We defined the population

of the study to be all workers in an office environment that use a desktop PC.

The initial experimental trial (see Section 3.1.5) highlighted the variability of usage patterns and

hence performance of the policies across a small sample of users (4 in total). From this four user

types were identified: HeavyUse, LightUse, FrequentUse and InfrequentUse. The trial also showed

that the performance of the SWOB policy depends primarily on whether the user is LightUse or

HeavyUse. Hence, the study is focused on these two user types. The sample selection for the trial

was designed to choose as diverse a range of users as possible from the set of potential candidates,

in order to capture as broad a range of device usage and office environments as possible. This was

done by generating a list of office users that could feasibly be approached to conduct the trial. The

list included the academic, administrative and postgraduate staff of Trinity College and several office

users from outside the college. There were four sets of hardware available to enable running the user

trials in parallel. However, each user trial took one hour to setup, normally 9 days to collect 5 days

of data and there were invariably problems encountered along the way. Due to the time constraints

and effort needed for conducting the trials, the sample size was set at 20 users. The criteria used for

selection from the list of potential users were:

1. Random, even spread from different job functions.

2. Random, even spread from different office environments.

3. Random, even spread from single office users and open plan office users.

The constraining requirements were that the potential candidates had to have a relatively new PC

(less than 5 years old) running Windows XP, a single display unit, and they had to be the sole user

115

Table 5.1: Sample selection

User Job Office type Location

A lecturer single O’Reilly

B lecturer single Lloyd

C administration open-plan O’Reilly

D postgrad open-plan O’Reilly

E manager open-plan Westland row

F technician open-plan Lloyd

G technician open-plan Lloyd

H administration single O’Reilly

I lecturer single O’Reilly

J administration single O’Reilly

K postgrad open-plan Lloyd

L lecturer single O’Reilly

M administration open-plan O’Reilly

N system admin single O’Reilly

O postgrad open-plan Lloyd

P lecturer single Lloyd

Q programmer open-plan Digital hub

R lecturer single Parson’s building

S administration open-plan Merrion square

T postgrad single Westland row

of the PC. From the list of 33 candidates approached, 13 of them were rejected because they did not

meet the requirement; 5 did not have Windows XP, 2 used laptops, 2 were not comfortable with being

monitored, one was busy moving office and 3 of the PCs had software conflicts with the monitoring

services1. Table 5.1 details the spread of people that were selected for the trial based on job function,

office type and location.

The trial length was set to run for 5 working days. Based on initial results, we believed this would

give enough data for training and simulation of the policies. Idle period data was collected for several

weeks after each trial to enable evaluation of any side affects from the trial.
1The PCs’ remotely-managed anti-virus detection software shutdown the monitoring services when it started its

daily execution.

116

In order to compare a range of sensors and policies for each user’s usage trace it was necessary to

collect all sensor data simultaneously as the user was using the PC during the trial and subsequently

run policy simulations on the real usage data. Hence, the trial is broken into a data collection and

processing phase, and a subsequent simulation phase.

5.3 Data collection and processing

As described in Section 4.4.1 the data was collected for all sensors every 5 seconds; each value was

date stamped and stored to file. Furthermore, all idle periods of 30 seconds or more and all power

events were logged to the Windows event log. The most difficult data to collect was the actual usage

of the display and PC, i.e., when the user was actually using or not using these devices. To measure

the actual usage, the not using service attempts to power off the user’s display if the PC has been

idle for greater than 60 seconds. The 60-second period of time attempts to balance accuracy against

the experiment causing excessive user disruption. A message box appears asking the user if they are

still using the PC; if they are the message box disappears by simply moving the mouse. This short

mouse input will be removed in the data processing as it would not have happened during normal

deivce usage. To reduce disruption further the service checks if a face is detected before displaying

the message box. If a face is detected consistently during this period we assume the user is using the

PC and the idle period extends until the face is not detected (i.e., no message box will be displayed

until the face is not detected). It is possible that the face detection is identifying some object other

than a face, but this is unlikely as, (i) the reliability of the face detection was estimated at 1.58%,

(ii) the PCs are single user, and (iii) the user had been inputting 60 seconds before.

We imagined the affect that the not using service may have on the users’ behaviour was that

they would tend to make more inputs than normal to stop the monitor being powered off. This would

lead to a higher frequency of short idle periods than usual occurring in the usage trace. For this

reason, idle period data was collected for several weeks after each trial. The evaluation of this affect

is detailed in Section 5.7.

The event logs are processed to create the measured device-usage trace, of when the user was

using and not using the display or PC. Such a trace is graphed in Figure 5.1 where the line at

level 8 represents using and level 1 represents not using the PC. The line at level 7 represents idle

periods that occurred when using the PC. There are periods in every trace where we don’t know

whether the user was using the PC or not. These are the idle periods before the service attempts

to power down the monitor. The user may or may not be using the device at this time. These idle

117

0

1

2

3

4

5

6

7

8

9

10

1
5:

0
0

:0
0

1
5:

0
1

:3
2

1
5:

0
3

:0
4

1
5:

0
4

:3
6

1
5:

0
6

:0
8

1
5:

0
7

:4
0

1
5:

0
9

:1
2

1
5:

1
0

:4
4

1
5:

1
2

:1
6

1
5:

1
3

:4
8

1
5:

1
5

:2
0

1
5:

1
6

:5
2

1
5:

1
8

:2
4

1
5:

1
9

:5
6

1
5:

2
1

:2
8

1
5:

2
3

:0
0

1
5:

2
4

:3
2

1
5:

2
6

:0
4

1
5:

2
7

:3
6

1
5:

2
9

:0
8

1
5:

3
0

:4
0

1
5:

3
2

:1
2

1
5:

3
3

:4
4

1
5:

3
5

:1
6

1
5:

3
6

:4
8

1
5:

3
8

:2
0

1
5:

3
9

:5
2

1
5:

4
1

:2
4

1
5:

4
2

:5
6

1
5:

4
4

:2
8

1
5:

4
6

:0
0

1
5:

4
7

:3
2

1
5:

4
9

:0
4

1
5:

5
0

:3
6

1
5:

5
2

:0
8

1
5:

5
3

:4
0

1
5:

5
5

:1
2

1
5:

5
6

:4
4

1
5:

5
8

:1
6

1
5:

5
9

:4
8

Figure 5.1: Measured device usage

periods are scanned for face detection events. If a face is detected, we assume the state is using (i.e.,

the user was looking at the display during this idle period). If a face is not detected, a don’t know

state is inserted to indicate that we don’t know whether the user was using the PC or not at this

time. This don’t know state is represented by a line at level 6.

5.4 Simulation of policy traces

All of the policy traces are generated from the measured usage trace. We assume the behaviour of all

the users is good in that they power down their PC when leaving the office for the evening. So, for

all traces the device is switched to off for the night time period. For all policies, the policy is allowed

to power down in the don’t know and not using states; attempting to power down when the user

is still using represents a false power down.

From the measured trace, it is straightforward to generate the estimated Oracle policy trace and

the AlwaysOn trace. The Oracle policy trace is generated by placing the device in its standby state for

all not using periods that are greater than the device break-even time. The solid line in Figure 5.2

represents the power downs and power ups of the Oracle policy and the dashed line is the measured

device usage. The AlwaysOn trace is generated by leaving the device on for the duration of the day.

The SWOB policy was generated by running through the measured trace at a 5 second time step.

The policy attempts to power down if the Bluetooth tag is not detected more than 5 times and the

118

0

1

2

3

4

5

6

7

8

9

10

15
:0

0
:0

0

15
:0

1
:3

2

15
:0

3
:0

4

15
:0

4
:3

6

15
:0

6
:0

8

15
:0

7
:4

0

15
:0

9
:1

2

15
:1

0
:4

4

15
:1

2
:1

6

15
:1

3
:4

8

15
:1

5
:2

0

15
:1

6
:5

2

15
:1

8
:2

4

15
:1

9
:5

6

15
:2

1
:2

8

15
:2

3
:0

0

15
:2

4
:3

2

15
:2

6
:0

4

15
:2

7
:3

6

15
:2

9
:0

8

15
:3

0
:4

0

15
:3

2
:1

2

15
:3

3
:4

4

15
:3

5
:1

6

15
:3

6
:4

8

15
:3

8
:2

0

15
:3

9
:5

2

15
:4

1
:2

4

15
:4

2
:5

6

15
:4

4
:2

8

15
:4

6
:0

0

15
:4

7
:3

2

15
:4

9
:0

4

15
:5

0
:3

6

15
:5

2
:0

8

15
:5

3
:4

0

15
:5

5
:1

2

15
:5

6
:4

4

15
:5

8
:1

6

15
:5

9
:4

8

Figure 5.2: Oracle versus Measured

current idle time is greater than 60 seconds. If the measured usage is still in the using state a false

power down is reported, otherwise the policy powers down the device. The policy powers up when it

detects the Bluetooth tag (see Figure 5.3).

The range of Threshold policy traces were generated by running through the measured trace at

a 5 second time step. If the current idle time was greater than the given threshold, then the policy

attempts to power down. There is no automated power up for the Threshold policies. Figure 5.4

shows the Threshold 5 policy powering down 5 minutes after an idle period begins.

The Bayesian policies require a learning stage and a simulation stage. To be rigorous, we employed

a five-fold cross-validation strategy to the learning and simulation of the policies [18]. This involves

training the model on one day of data and simulating for the other four days, and repeating this five

times, training on each of the days. The resulting values are then estimated as the average of the

five simulation results, giving a more robust analysis of the policies. It also enables us to look at

variability of performance across training days and simulation days.

The Bayesian models we chose to compare, were idle time (IT), IT-Bluetooth (IT-BT), IT-object

range (IT-OR), IT-BT-OR, IT-BT-face detect (IT-BT-FD), IT-BT-OR-FD and IT-BT-OR-FD-voice

activity (IT-BT-OR-FD-VA). This selection of models gives an increasing order of sensor granularity

to enable comparison of each sensor’s affect on the CAPM policy. Idle time was included in every

model as it is also used in the SWOB and Threshold policies, and Bluetooth was included in all but

one model as it gives the coarse-grained user presence, which is the basis of the SWOB policy. We

119

0

1

2

3

4

5

6

7

8

9

10

15
:0

0
:0

0

15
:0

1
:3

2

15
:0

3
:0

4

15
:0

4
:3

6

15
:0

6
:0

8

15
:0

7
:4

0

15
:0

9
:1

2

15
:1

0
:4

4

15
:1

2
:1

6

15
:1

3
:4

8

15
:1

5
:2

0

15
:1

6
:5

2

15
:1

8
:2

4

15
:1

9
:5

6

15
:2

1
:2

8

15
:2

3
:0

0

15
:2

4
:3

2

15
:2

6
:0

4

15
:2

7
:3

6

15
:2

9
:0

8

15
:3

0
:4

0

15
:3

2
:1

2

15
:3

3
:4

4

15
:3

5
:1

6

15
:3

6
:4

8

15
:3

8
:2

0

15
:3

9
:5

2

15
:4

1
:2

4

15
:4

2
:5

6

15
:4

4
:2

8

15
:4

6
:0

0

15
:4

7
:3

2

15
:4

9
:0

4

15
:5

0
:3

6

15
:5

2
:0

8

15
:5

3
:4

0

15
:5

5
:1

2

15
:5

6
:4

4

15
:5

8
:1

6

15
:5

9
:4

8

Figure 5.3: SWOB versus Measured

0

1

2

3

4

5

6

7

8

9

10

15
:0

0:
00

15
:0

1:
28

15
:0

2:
56

15
:0

4:
24

15
:0

5:
52

15
:0

7:
20

15
:0

8:
48

15
:1

0:
16

15
:1

1:
44

15
:1

3:
12

15
:1

4:
40

15
:1

6:
08

15
:1

7:
36

15
:1

9:
04

15
:2

0:
32

15
:2

2:
00

15
:2

3:
28

15
:2

4:
56

15
:2

6:
24

15
:2

7:
52

15
:2

9:
20

15
:3

0:
48

15
:3

2:
16

15
:3

3:
44

15
:3

5:
12

15
:3

6:
40

15
:3

8:
08

15
:3

9:
36

15
:4

1:
04

15
:4

2:
32

15
:4

4:
00

15
:4

5:
28

15
:4

6:
56

15
:4

8:
24

15
:4

9:
52

15
:5

1:
20

15
:5

2:
48

15
:5

4:
16

15
:5

5:
44

15
:5

7:
12

15
:5

8:
40

Figure 5.4: Threshold 5 versus Measured

120

0

1

2

3

4

5

6

7

8

9

10

15
:0

0
:0

0

15
:0

1
:3

2

15
:0

3
:0

4

15
:0

4
:3

6

15
:0

6
:0

8

15
:0

7
:4

0

15
:0

9
:1

2

15
:1

0
:4

4

15
:1

2
:1

6

15
:1

3
:4

8

15
:1

5
:2

0

15
:1

6
:5

2

15
:1

8
:2

4

15
:1

9
:5

6

15
:2

1
:2

8

15
:2

3
:0

0

15
:2

4
:3

2

15
:2

6
:0

4

15
:2

7
:3

6

15
:2

9
:0

8

15
:3

0
:4

0

15
:3

2
:1

2

15
:3

3
:4

4

15
:3

5
:1

6

15
:3

6
:4

8

15
:3

8
:2

0

15
:3

9
:5

2

15
:4

1
:2

4

15
:4

2
:5

6

15
:4

4
:2

8

15
:4

6
:0

0

15
:4

7
:3

2

15
:4

9
:0

4

15
:5

0
:3

6

15
:5

2
:0

8

15
:5

3
:4

0

15
:5

5
:1

2

15
:5

6
:4

4

15
:5

8
:1

6

15
:5

9
:4

8

Figure 5.5: BN IT-BT versus Measured

selected IT-OR as a special case to investigate the affect of only having the near presence information.

Within the Bayesian models, there are two variations, normal Bayesian network (BN) and dynamic BN

(DBN). Parameter learning of the models was carried out using the standard Spiegelhalter Lauritzen

algorithm [61].

The set of BN policy traces were generated by running through the measured usage at a 10-second

time step in the power-down cycle and a 5-second time step for the power-up cycle. The power-down

cycle operates when the device is on waiting to be powered down and the power-up cycle operates

when the device is in standby. The shorter 5-second time step is used as the device needs to be

powered up as quickly as possible (this is the limit as the sensor data were recorded at 5-second

intervals). At each time step sensor values from the sensor records are applied to the BN power-down

or power-up model and the model is updated to give the new probability of not using or about

to use. If the probability exceeds the threshold the policy attempts to power down or power up the

device. Figure 5.5 shows the IT-BT BN policy powering down soon after the idle period begins.

The time step for each DBN simulation depends on the break-even time of the device. For the

display with break-even time of 1 minute the time step is 10 seconds (i.e., 6 time slices x 10 seconds),

and for the PC with break-even time of 5 minutes the time step is 50 seconds (i.e., 6 time slices x 50

seconds).

The 14 Bayesian models plus the Oracle, SWOB, six Threshold policies and AlwaysOn policy

resulted in 23 different policies to compare in total for each of the devices.

121

5.5 Evaluation metrics

For each user trial the set of simulated policy traces were analysed according to a set of evaluation

metrics. The metrics chosen were the total energy consumption, delta energy consumption from

Oracle per day, percentage from Oracle per day, number of false power downs (FPDs) per day,

number of manual power ups (MPUs) per day and the number of standby periods less than the

break-even time (SBEs) per day.

The total energy consumption gives the total energy consumed by a particular policy for a par-

ticular user trace. Total energy consumption of a policy cannot be compared across different users

as it is affected by how long each user used the device over the period. In order to compare the

performance of policies across user traces we use the delta energy consumption from Oracle metric.

This is the difference in energy consumption of a particular policy from the Oracle policy for that

user trial.

User-perceived performance is estimated by the number of false power downs the user experienced

in a day and the number of times the user had to manually power up the device. The SBE metric

counts the number of standby periods that were less than the device’s break-even time. It is a measure

of how often a policy powers down for periods that are not worth powering down for. A high number

of SBEs is a concern if the device’s lifetime degrades significantly with many power state transitions.

5.6 Results

The 20 user trials were labelled from A to T, of which 18 were selected for analysis. Both user trial

A and N were omitted due to problems with the face detection data. In case A the camera failed to

detect the face as the angle from the camera to the user’s face was too acute to get a front elevation

image of the face when it was looking at the display. In case N the face detection failed due to difficult

lighting conditions in the office; the user’s face was in shadow with light coming from the window

behind. This is a significant issue for face detection as many computer users work with the lights

switched off in their office.

The 18 users were divided into the two types LightUse and HeavyUse by calculating the percentage

of time they were not using the PC when the Bluetooth tag was detected. A small percentage

indicates the user is a heavy user of the PC when they are in the vicinity and a large percentage

indicates they are a light user. We note here that if a user left their BT tag in the office for an

extended period while absent, they could be misclassified as LightUse. To avoid this users were asked

to attach the tag to something they always take with them such as keys or a mobile phone. A figure

122

User % Not Using User % Not Using

Q 1.3 K 16.9

S 5.8 L 18.3

D 7.4 M 19.3

T 8.9 F 19.4

I 10.6 C 24.5

O 11.1 E 26.2

G 13.1 H 26.7

P 28.2

B 29.0

J 39.9

R 42.9

Table 5.2: LightUse and HeavyUse users

of 15% was chosen as the cut-off giving 7 HeavyUse and 11 LightUse users. 15% was chosen as there

is a significant gap of 3.8% between users G and K and it gives a reasonably balanced number of

users in each type. Table 5.2 below shows this split of LightUse and HeavyUse users.

Results for the Oracle, SWOB, Always On and Threshold policies for the display are presented

first and compared with the results from the initial experimental trial. This larger set of results verify

the conclusions that were made from the initial experimental trial. The potential extra energy that

could be saved from the SWOB policy is then presented and also the estimated energy consumption

of the sensors. Next the results for the BN policies for the display and PC are presented. Finally,

results for the DBN policies for the display and PC are presented.

5.6.1 Oracle, SWOB, Always On and Threshold policies

To compare the results with the initial experimental trials we look at the pattern of total energy

consumption for the LightUse and HeavyUse users and their percentage from the Oracle. Figure 5.6

shows the same pattern for the Oracle, SWOB and Threshold policies as we saw in the initial trial

(the Always On policy is included for completeness). Again, it shows the SWOB policy doing well

for HeavyUse users coming close to Oracle (average 12.2%) and poorly for LightUse users (average

40.6% from Oracle). The initial trials reported around 8% for HeavyUse and greater than 50% for

LightUse users. The standard deviation for HeavyUse is small at 3.7% but quite large for LightUse

123

users at 16.9%, showing there is a large range of usage within the LightUse users.

Figure 5.6 also shows the variability of energy consumption between the users. For example, user

I consumes much less energy (around 500Wh) than user Q (around 2100Wh) because user I spent

less time per day in their office. This variance is why we use the delta energy from Oracle metric

when comparing the energy performance of policies across a set of users.

The user-perceived performance of the policies is estimated by the number of FPDs per day and

the number of MPUs per day. The number of FPDs per day for both LightUse and HeavyUse is

shown in Figure 5.7. The box plots show the median, inter quartile range, range and any outliers in

the data. Some outliers exist in the data as the NotUsing service, which recorded when the user was

using and not using the PC did not work perfectly for all PCs. In a small number of cases the service

appears to have hung for a period of minutes thereby marking small parts of a trace as using when

the person may well not have being using the PC. These small number of outliers are accounted for

in the box plots and do not affect the overall results.

The SWOB policy has no FPDs for both LightUse and HeavyUse, which is sensible as the policy

only powers down when the user is not in the vicinity. We were surprised by the results of FPDs

for the Threshold policies, as the Threshold 5 has very few FPDs (median 0, range 0 to 2). We also

graphed FPDs for Thresholds 1, 2, 3 and 4, which show a steep decline from median 20 per day to

the Threshold 5 median of 0 per day. We are confident that the usage was recorded and analysed

correctly and it suggests that when a user is using their PC there are very few idle periods of greater

than 5 minutes. One possible side effect from the experiment was that the NotUsing service caused

the user’s to make more frequent inputs. This is evaluated in Section 5.7, which indicates that there

was no significant affect to the users’ behaviours.

The number of MPUs per day are shown in Figure 5.8. The SWOB policy has very few MPUs

for both LightUse and HeavyUse (median 0, range 0 to 2), whereas the Threshold policies show more

MPUs for LightUse users than for HeavyUse users, median 8 compared to median 5 for the Threshold

5 policy. Both results intuitively make sense. The SWOB policy only powers down when the user

leaves the vicinity and will power up again when they return. A manual power up will only occur

if the power-up policy does not sense the BT tag in time. For the Threshold policies, there is no

power-up policy and LightUse users will allow the device to power down more often, hence incurring

more MPUs.

We next estimate the extra energy that can potentially be saved by using a more sophisticated

policy than the SWOB policy.

124

0

500

1000

1500

2000

2500

Oracle SWOB Threshold
5

Threshold
10

Threshold
15

Threshold
20

Threshold
25

Threshold
30

AlwaysOn

W
h

B

C

F

H

J

K

L

M

P

R

E

(a) Light Use

0

500

1000

1500

2000

2500

Oracle SWOB Threshold
5

Threshold
10

Threshold
15

Threshold
20

Threshold
25

Threshold
30

AlwaysOn

W
h

D

G

I

O

Q

S

T

(b) Heavy Use

Figure 5.6: SWOB total energy comparison

125

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1SWOBOracle

403020100
(a) LightUse

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1SWOBOracle

403020100
(b) Heavy Use

Figure 5.7: False power downs per day

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5SWOBOracle

20151050
(a) Light Use

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5SWOBOracle

20151050
(b) Heavy Use

Figure 5.8: Manual power ups

5.6.2 Potential extra energy from SWOB

The potential extra energy that can be saved if we can do better than the SWOB policy is simply the

delta energy consumption of the SWOB policy from the Oracle policy. Figure 5.9 shows box plots of

delta energy consumption per day for both LightUse and HeavyUse users of the display and PC.

The box plots show there is significantly more energy to be saved for LightUse users and also there

is a larger variance in their energy consumption. For LightUse of the display, the median potential

energy to be saved is 78Wh, range 20Wh to 185Wh. The equivalent median percentage from Oracle is

31.1%, standard deviation 28.5%. Similarly, for LightUse of the PC, the median potential energy to be

saved is 59Wh, range 5Wh to 150Wh (22.1% from Oracle, standard deviation 21.6%). Furthermore,

126

W
h

HeavyUse PCHeavyUse DispLightUse PCLightUse Disp

200

150

100

50

0

Figure 5.9: Potential extra energy from SWOB

the potential energy is less for the PC as its break-even time is relatively long compared to the

display (5 minutes compared to 1 minute). This effectively means there are less opportunities for

saving energy for the PC as the not using period must be greater than 5 minutes.

For HeavyUse of the display, the median potential energy to be saved is 22Wh, range 5Wh to

80Wh (9.0% from Oracle, 10.0% standard deviation). For HeavyUse of the PC, the median potential

energy is 13Wh, range 0 to 30Wh (5.7% from Oracle, standard deviation 8.4%). Trying to do better

than the SWOB policy for HeavyUse users is therfore difficult.

We next estimate the energy consumption of the sensors used by the CAPM policies.

5.6.3 Energy consumption of sensors

Figure 5.10 shows the estimated energy consumption per day for each of the sensors. The assumption

made is that the sensors run constantly for the duration of the user’s working day at the 5 second

sensor sample rate. So, the sensor energy consumption is calculated as the estimated power of

the sensor (at the sample rate) times the number of hours for the user day. The median energy

consumption per day for the sensors is BT 3.4Wh, OR 0.6Wh, FD 20.2Wh and VA 6.4Wh.

FD and VA consume a significant amount compared to the potential savings from the SWOB

policy for the PC and display (LightUse - 59Wh and 78Wh, HeavyUse - 13Wh and 22Wh). The

energy consumption of OR is significantly lower as there is no data processing needed. The most

significant part of sensor energy consumption is due to the increased CPU cycles for processing the

127

Wh

VAFDORBT

302520151050
Figure 5.10: Estimated sensor energy consumption per day

face detection and voice activity data. It may be possible to decrease the sensor energy consumption

by employing some form of power management for the sensors, but this is not explored in the thesis.

We next examine how the more sophisticated Bayesian CAPM policies compare to the SWOB

and Threshold policies for both LightUse and HeavyUse users.

5.6.4 BN models for power management of the display

The energy consumption of the display unit is 45.8W when on and 1.8W in standby. The transition

energy is assumed to be negligible. Its estimated break-even period is 1 minute and its resume time

is 2 seconds. Figure 5.11 shows a box plot of the delta energy from Oracle per day of each policy for

LightUse and HeavyUse users (the estimated sensor energy is not included). The LightUse SWOB

policy’s median energy consumption is 78Wh above the Oracle and ranges from 20Wh to 185Wh

depending on the particular user and day. The equivalent median percentage from Oracle is 31.1%

with standard deviation 28.5%. The inner box of the box plot, which covers the median shows the

95% confidence interval for the median. This signifies the true median lies within this range with 95%

probability. Policies where the confidence interval boxes do not overlap have a significant difference

in their medians. Therefore we can conclude that the BN policies IT-OR, IT-BT-FD, IT-BT-OR,

IT-BT-OR-FD and IT-BT-OR-FD-VA do similarly well energy wise for LightUse users. They do

better energy wise than SWOB with their medians between 32Wh to 42Wh and range from about

15Wh to 120Wh. The equivalent median percentages from Oracle are 13.4% to 17.5% from Oracle

128

and standard deviation 12.7% to 18.6%. They are similar in energy consumption to the Threshold 5

policy with median 46Wh and range 25Wh to 90Wh (median 19.5% from Oracle, standard deviation

13.9%).

The energy consumption for HeavyUse users contrasts dramatically with the LightUse users.

Overall the policies are closer to the Oracle and they have less variance. The SWOB policy performs

similarly well energy wise (median 22Wh, range 5Wh to 80Wh, median 9.0 % from Oracle, standard

deviation 10.0%) to the BN policies IT-BT, IT-OR, IT-BT-FD, IT-BT-OR, IT-BT-OR-FD and IT-

BT-OR-FD-VA. Their medians are between 16Wh to 22Wh and their range is from 5Wh to 65Wh.

The equivalent median percentages from Oracle are 7.2% to 9.0% from Oracle with standard deviation

4.1% to 6.0%. The Threshold 5 policy is also similar with median 29Wh (13.1% from Oracle, standard

deviation 4.8%).

However, when the estimated sensor energy consumption is included there appears a bigger dif-

ference between the BN policies. Figure 5.12 shows the delta energy consumption including the

estimated energy consumption of the sensors for LightUse and HeavyUse. It highlights the energy

consumption of the face detection sensor as being very significant compared to the amount of energy

that can be saved. After taking sensor energy into consideration the lowest consuming policies for

LightUse are IT-OR 40Wh, IT-BT-OR 46Wh and Threshold 5 46Wh (median 17.3% to 19.5% from

Oracle, standard deviation (STD) 13.9% to 18.6%). For HeavyUse the lowest consuming policies are

IT-OR 21Wh, IT-BT-OR 21Wh, SWOB 25Wh, IT-BT 25Wh and Threshold 5 30Wh (median 8.9%

to 13.1% from Oracle, STD 4.7% to 10.1%).

The number of false power downs is shown in Figure 5.13. The SWOB is the best of the CAPM

policies with no false power downs for both LightUse and HeavyUse users. The BN policies for

LightUse are similar with median of 0.5 to 1.25 per day and range of 0 to 3 FPDs per day. There is

no significant difference for HeavyUse users with median 0.25 to 0.75 and range of 0 to 5. One possible

reason why the BN policies perform slightly worse than the Threshold 5 policy (median 0, range 0

to 2) is because the learning of the idle time parameters for the BN models is too aggressive and

perhaps a fixed, more conservative set of parameters would reduce the FPDs to near zero. Further

experimentation would need to be done to achieve close to zero FPDs.

Figure 5.14 shows the number of manual power ups for each policy per day. The best CAPM

policy for LightUse users is SWOB with median 0, then IT-BT (median 2) and IT-BT-OR (median

4.75) next. Since the power-up policy for all BN policies was limited to only powering up on BT, the

more times the device was powered down when the user was in the vicinity, the more MPUs were

incurred.

129

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(a) Light Use

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(b) Heavy Use

Figure 5.11: Delta energy

130

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(a) Light Use

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(b) Heavy Use

Figure 5.12: Delta energy including sensor energy

131

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure 5.13: False power downs

The simple power-up policy was adopted because powering up based on OR and FD caused many

false power ups. The power-up policy cannot use the same counting technique for its sensors as the

power down, as it needs to power the device up on time (it cannot wait around to become more

certain of the reading). Therefore a false object detection or face detection will cause the device to

falsely power up. This caused particularly poor results if the object range values for using and not

using were close or mixed (see Section 4.1.5).

The MPUs are less for HeavyUse users. This intuitively makes sense as HeavyUse users do not

allow the device to power down as often, therefore requiring less power ups (SWOB median 0, IT-BT

median 0.25, IT-BT-OR median 1).

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure 5.14: Manual power ups

132

Figure 5.15 shows the number of standby periods that were less than the break-even time for

LightUse and HeavyUse users. The SWOB is similar for both (LightUse - median 1, range 0 to 5;

HeavyUse - median 1, range 0 to 6) and the BN policies have similar medians (LightUse - 1 to 2.25;

HeavyUse - 0.25 to 2.0) and similar range 0 to 7, 0 to 9. The HeavyUse Threshold policies have

slightly less SBEs than for LightUse (LightUse - Threshold1 6, Threshold5 1; HeavyUse - Threshold1

4, Threshold5 1).

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(a) Light Use

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(b) Heavy Use

Figure 5.15: Standby break-even periods

From these results it is clear that the best policy for HeavyUse users is the SWOB policy perform-

ing well both energy wise and user-perceived performance wise. On average the energy consumption

is 9.0% from the Oracle per day, there are median 0 FPDs and median 0 MPUs, resulting in very

good user-perceived performance. The BN CAPM policies did not save significantly more energy and

caused additional FPDs and MPUs. The median 1 standby break-even is relatively small.

For LightUse users the SWOB energy consumption is not as good and varies considerably across

the users. It is equivalent to the Threshold 15 to 20 policies and on average within 31.1% of Oracle.

To do better energy wise, it seems we must accept some performance penalties in terms of false power

downs and manual power ups. Of the BN policies, the IT-BT-OR policy is one of the lowest energy

policies with the least MPUs and FPDs. The IT-OR policy has similar low energy but worse user-

perceived performance as it does not have the BT sensor for automated power ups. We believe that

with further experimentation with the BN model parameters the number of FPDs could be reduced

to the Threshold 5 level. This is important for the display device as FPDs are more annoying than

MPUs as the resume time is relatively quick.

133

5.6.5 BN models for power management of the PC

The next set of results show the performance of the BN policies for power managing the PC, which

has a longer break-even period of 5 minutes and a resume time of 7 seconds. This break-even time

is difficult to measure and was estimated from the given lifetime on-hours and start-stop cycles for a

standard PC hard disk, which was calculated at 2 minutes (see Section 3.1.5). We multiplied this by

2.5 to give an estimated upper bound for break-even time due to lifetime decay. The BN models have

the same structure as before but the parameters are trained differently as periods where the user was

not using for less than 5 minutes are considered as using cases. The energy consumption of the PC

is 63.0W onidle, 60.0W on and 2.8W in standby. The transition energy was measured to be 0.19Wh

per transition.

Figure 5.16 shows the delta energy consumption including sensor energy consumption. Again,

the pattern is similar to the display device with large variance in the LightUse SWOB policy, which

consumes median 59Wh, range 5Wh to 150Wh (22.1% from Oracle, standard deviation 21.6%), and

Threshold 5 24Wh, IT-OR 27Wh and IT-BT-OR 30Wh consuming the least energy (9.4% to 12.0%

from Oracle, standard deviation 6.6% to 10.9%). In general, all policies are closer to the Oracle than

for the display device because the Oracle does not power down the PC for as many periods.

Similarly, the delta energy consumption for HeavyUse of the PC has a similar pattern to the energy

consumption for the display. The SWOB policy consumes median 13.3Wh, range 0 to 30Wh (5.7%

from Oracle, standard deviation 8.4%) and performs similarly well to the IT-OR 10Wh, IT-BT-OR

14Wh, Threshold 5 14Wh and IT-BT 18Wh policies, range 0 to 40Wh (5.5% to 7.9% from Oracle,

standard deviation 3.8% to 5.7%).

The number of false power downs for LightUse and HeavyUse of the PC are not significantly

different to that of the display (see Figure 5.17). The SWOB policy has no FPDs for both LightUse

and HeavyUse. The BN policy medians for LightUse are 0.25 to 0.5 and HeavyUse are 0.25 to 0.5

compared to LightUse 0.5 to 1.25 and HeavyUse 0.25 to 0.75 FPDs per day for the display.

Again, the MPUs for the PC are not significantly different to the display device. For LightUse

the median MPUs are SWOB 0, IT-BT 2, IT-BT-OR 3.75 and IT-BT-FD 4.0. For HeavyUse the

MPUs are less with SWOB 0, IT-BT 0.25, IT-BT-OR 1.0 and IT-BT-FD 1.0. Though the number

of MPUs are similar to the display, the resume time for the PC is significantly longer so less MPUs

will be tolerated by the user.

It was expected that the PC would have significantly more standby break-even periods than the

display due to the break-even being 5 minutes. The LightUse SWOB (median 2, range 0 to 11)

compares with the display values of (median 1, range 0 to 5) where the medians are similar but the

134

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(a) Light Use

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(b) Heavy Use

Figure 5.16: Delta energy including sensor energy

135

FPDs

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure 5.17: False power downs

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure 5.18: Manual power ups

136

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(a) Light Use

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(b) Heavy Use

Figure 5.19: Standby break-evens

range is significantly larger for the PC. The HeavyUse SWOB (median 4, range 0 to 10) compares

with the display values of median 1, range 0 to 6, where both the median and range are significantly

larger (see Figure 5.19). The BN policies for LightUse and HeavyUse have similar medians (LightUse

2 to 5.5, HeavyUse 1.0 to 4.0) but the range is slightly more for LightUse. Also, for the Threshold

policies the LightUse have slightly more standby break-even periods than for HeavyUse (LightUse -

Threshold1 14, Threshold5 4; HeavyUse - Threshold1 7, Threshold5 1).

To summarise, the overall pattern of results for power management of the PC are similar to that

of the display. For HeavyUse the SWOB policy is again the clear choice with both low delta energy

consumption 13Wh (5.7% from Oracle) and no FPDs and few MPUs. The fact that the break-even

time is longer means the policies achieve percentages closer to the Oracle policy. The number of

standby break-even periods would be a concern for the lifetime decay of this PC with median 4

standbys per day less than the 5 minute break-even period.

For LightUse the IT-BT-OR policy has one of the lowest delta energy consumptions 30Wh (12%

from Oracle) with the least FPDs and MPUs (FPDs median 0.5, MPUs median 3.75 per day). The

number of MPUs is significant as the resume time of 7 seconds will cause significant user annoyance.

The SWOB policy delta energy consumption for LightUse is 59Wh (22.1% from Oracle), which

appears to be the best overall policy due to it having no false power downs and very few manual

power ups (median 0).

137

5.6.6 DBN models for power management of the display

We experimented with dynamic Bayesian models to see if they could improve the predictive accuracy

of the policies, in particular, reduce the number of FPDs, MPUs and SBEs for the Bayesian policies.

The DBN for the display consists of six time slices with a 10 second interval between time slices. This

gives a prediction for not using that is 1 minute in the future.

Overall the performance of the DBN for power management of the display was very similar to

the standard BN. Figure 5.20 shows the delta energy consumption to be very similar to the standard

BN with the same policies performing the best. For LightUse IT-OR and IT-BT-OR are the best

energy-wise with medians 42Wh and 52Wh compared to 40Wh and 46Wh for the BN versions. For

HeavyUse the best DBN policies are IT-OR, IT-BT-OR and IT-BT with medians 16Wh, 25Wh,

26Wh compared with 21Wh, 21Wh, 25Wh for the BN versions.

The user-perceived performance figures are shown in Appendix A. The FPDs for the DBN policies

are in fact slightly worse than the BN policies with LightUse IT-BT-OR having median 0.75, range

0 to 5 and HeavyUse median 0.75, range 0 to 4. This compares to LightUse for the IT-BT-OR BN

having median 0.75, range 0 to 3 and HeavyUse median 0.5, range 0 to 2. The MPUs are similar to

the BN policies for the display, which is expected as the power-up policies for both are the same. The

SBE periods are also similar to the BN policies with LightUse medians from 1 to 2.5 and HeavyUse

from 1 to 1.5. The BN policies for the display have medians LightUse 1 to 2.25 and HeavyUse 0.25

to 2.0.

Overall there is no significant difference between the BN and DBN models for power management

of the display.

5.6.7 DBN models for power management of the PC

The DBN model for power management of the PC has 6 time slices with 50 second time intervals,

giving a prediction of not using that is 5 minutes into the future. Figure 5.21 shows the energy

consumption of the DBN policies to be significantly higher than the SWOB policy for both LightUse

and HeavyUse users. The user-perceived performance is an improvement on the BN polices (see

Figures in Appendix A).

The reason for the significant increase in energy consumption and improvement in user-perceived

performance is that the DBN policies take a long time for the not using probability to reach the

threshold and power down. Figure 5.22 shows the DBN IT-BT policy powering down 15 minutes

from the point of not using. From these results, it seems that the DBN models give no better

performance than the BN models.

138

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(a) Light Use

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(b) Heavy Use

Figure 5.20: DBN display delta energy including sensor energy

139

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(a) Light Use

Wh

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

200150100500
(b) Heavy Use

Figure 5.21: DBN PC delta energy including sensor energy

140

0

1

2

3

4

5

6

7

8

9

10

15
:0

0:
00

15
:0

1:
28

15
:0

2:
56

15
:0

4:
24

15
:0

5:
52

15
:0

7:
20

15
:0

8:
48

15
:1

0:
16

15
:1

1:
44

15
:1

3:
12

15
:1

4:
40

15
:1

6:
08

15
:1

7:
36

15
:1

9:
04

15
:2

0:
32

15
:2

2:
00

15
:2

3:
28

15
:2

4:
56

15
:2

6:
24

15
:2

7:
52

15
:2

9:
20

15
:3

0:
48

15
:3

2:
16

15
:3

3:
44

15
:3

5:
12

15
:3

6:
40

15
:3

8:
08

15
:3

9:
36

15
:4

1:
04

15
:4

2:
32

15
:4

4:
00

15
:4

5:
28

15
:4

6:
56

15
:4

8:
24

15
:4

9:
52

15
:5

1:
20

15
:5

2:
48

15
:5

4:
16

15
:5

5:
44

15
:5

7:
12

15
:5

8:
40

Figure 5.22: Example DBN policy trace

5.7 Evaluation of the affect of monitoring on users

It was necessary to evaluate if the user’s behaviour was affected by the monitoring of the using and

not using periods during the trial. We assumed that if there was an affect it would be that the

users would make more frequent inputs due to the message box popping up. For example, when

the user was prompted to confirm they were using the PC, they would change from what they were

doing to use the mouse or keyboard and hence create a short idle period of less than 1 minute. If

they just tipped the mouse to signify they were using the PC and continue their activity (for example

reading from the display), the measured idle period is longer. This is because the short mouse input is

removed from the measured trace during the data processing. So, if the monitoring affected the user’s

behaviour there would be significantly more short idle periods of duration 30 seconds to 1 minute.

To evaluate this we compared the frequency of idle periods in 1 minute bins (from 0 to < 1 minutes

to >= 30 minutes) for the trial week and 5 normal weeks when just the idle periods were recorded.

The measured trace for the trial week was processed to leave just the idle periods, so it could be

compared with the traces of the 5 normal weeks. The analysis was done for a random sample of 8 of

the users.

Figure 5.23 shows graphs of idle period frequencies for 6 of these users for the trial week and the

5 normal weeks. The trial week is the thicker line with the circle markers. The graphs show that

the idle period frequencies for the trial week do not vary significantly outside of the normal weekly

variability for each user. This suggests that the monitoring of the trial week did not have a significant

effect on the users’ frequency of input.

141

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period

fre
qu

en
cy

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period
fre

qu
en

cy

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period

fre
qu

en
cy

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period

fre
qu

en
cy

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period

fre
qu

en
cy

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

idle period

fre
qu

en
cy

Figure 5.23: Idle traces for 6 of the users

142

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(a) Light Use

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(b) HeavyUse

Figure 5.24: Bluetooth parameters given the user is not using

5.8 Evaluation of BNs for device power management

Bayesian networks were used to implement the CAPM power-down policies. The supervised param-

eter learning captured the probability of each sensor value inferring not using and the network

combined these to give an overall not using probability. Figure 5.24 shows the learned BT param-

eters given the user is not using, for a LightUse and HeavyUse user. For the LightUse user, the

presence of the BT tag has a greater probability of not using than for the HeavyUse user. Therefore

for a LightUse user in the vicinity of the PC, the probability of not using will be reached more

quickly as their presence is not a good indication of them using the PC.

However, there were some issues with the BN models. A rule had to be put into the model (the

IdleTimeZero node) to infer using if the idle time was less than 1 minute. This avoided a significant

number of false power downs as the BN models could infer not using too quickly. This would occur

when the learned sensor parameters were stronger than the learned IdleTime parameter for 0 to 1

minute idle time and hence were too quick to predict a high probability of not using.

The parameter learning for sensor values can be irregular if some of the sensor values are only

lightly sampled. The parameter learning algorithm needs sufficient samples of a parameter value

to give an accurate probability estimate for that value. This was in particular a problem for the

IdleTime sensor where in most cases the probability of not using fluctuated when the idle time

became greater than about 9 minutes, as there were few samples for idle times greater than this. One

possible solution discussed in Section 4.1.1 is to apply a smoothing function to the idle time CPTs

to reduce the fluctuation in the not using probability. Another possible solution could be to use a

more conservative fixed parameter for the IdleTime to avoid the false power downs suffered by the

143

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(a) Bluetooth given Not Using

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

Bluetooth count

pr
ob

ab
ili

ty

(b) Bluetooth given Using

Figure 5.25: Variance in BT parameters for the 5 training days

BN policies.

The learning of the power-down policy parameters was based on supervised data as we fully

measured when the user was using and not using the PC using the pop-up message box. It would

not be practical to do this in a deployment CAPM situation as it causes user annoyance to ask the

user if they are using the PC or not after every minute of idleness. So, a semi-supervised method of

learning the parameters would have to be developed. This method would only detect the user not

using the PC when it is powered down and using the PC when the idle time is close to zero, say

less than ten seconds. The other intervening cases would not be known.

Also, by looking at the parameter learning for each of the cross-fold training days, some of the

LightUse users show significant variability in the parameter learning depending on which day was

chosen (see Figure 5.25). This can significantly affect the outcome performance of the policies. Figure

5.26 shows the corresponding variability in policy energy consumption depending on the day it was

trained on. The IT, IT-BT and IT-BT-FD policies have large variability for this LightUse user. For

these variable use users, parameter learning over a longer period will produce an average parameter

but the user’s usage will vary significantly from this average.

Finally, the learning of the power-up policies was not successful as the learned about to use

probabilities were very variable across the users. For example, with the simple IT-BT model, the

probability of about to use when the BT tag was detected varied from around 40% to 80% for each

of the users. A simple rule-based policy was more appropriate where the device always powered up

when the BT tag was detected.

144

W
h

IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTIT

1300125012001150110010501000
Figure 5.26: Variance in energy consumption per training day

5.9 Summary

The results show clearly that for HeavyUse (<= 15% not using when in the vicinity) users of the

display and PC, the SWOB policy does as well as the BN policies energy-wise, 22Wh (9%) from

Oracle per day for the display and 13Wh (6%) from Oracle per day for the PC. Furthermore, the

user-perceived performance of the SWOB policy is better with no FPDs and median 0, range 0 to 2

MPUs. The BN policies incur a number of FPDs (median 0.25 to 0.75, range 0 to 5) and on average

one MPU per day. The Threshold 5 policy performs similarly well energy-wise and has median

0 FPDs, however has significant MPUs (median 5 per day). Therefore, we can conclude that for

HeavyUse users the SWOB policy is the most appropriate for power management of the display and

PC.

For LightUse (> 15% not using when in the vicinity) users there is potential to do better than

the SWOB policy. On average the potential extra energy that can be saved beyond the simple SWOB

policy for LightUse users of the display is 78Wh (31%) from Oracle per day and for the PC is 59Wh

(22%) from Oracle per day. However, the results show that it is difficult to do significantly better

energy-wise than the SWOB policy without incurring performance penalties of false power downs and

manual power ups.

For LightUse users of the display the best BN policy is IT-BT-OR with energy consumption of

46Wh (19%) from Oracle and from 0 to 3 FPDs (median 0.75) per day and on average 4.75 MPUs

145

per day. The Threshold 5 policy does similarly energy-wise (46Wh) and has less FPDs (median 0,

range 0 to 2) but more MPUs (median 8). We believe that with further tuning of the BN model, the

FPDs could be improved for IT-BT-OR. Therefore we recommend the IT-BT-OR policy as the most

suitable policy for power management of LightUse usage of the display.

For LightUse users of the PC, the best BN policy is again IT-BT-OR with energy consumption

of 30Wh (12%) from Oracle and 0 to 2 FPDs (median 0.5) per day and on average 3.75 MPUs.

The Threshold 5 policy does similarly energy-wise (24Wh), has fewer FPDs (median 0, range 0 to

2) but again more MPUs (median 8). While the performance of the IT-BT-OR policy might be

acceptable for power management of the display, as the resume time is quick, we believe it would

be unacceptable for the PC and hence the SWOB policy should also be recommended for power

management of LightUse usage of the PC.

In all cases the face detection sensor consumes significantly more energy than the object range

detection sensor and does not provide significantly better information. The voice activity sensor

information does not improve the IT-BT-OR-FD policy at all as the quality of its information for

determining not using is very weak.

For the recommended policies for power management of the display (LightUse - IT-BT-OR;

HeavyUse - SWOB) the SBE periods are relatively low (median 2, range 0 to 5; median 1, range

0 to 5) per day. However, for the PC the recommended SWOB policy incurs a significant number of

SBEs (LightUse - median 2, range 0 to 11; HeavyUse - median 4, range 0 to 10). This would be a

concern for power management of devices that incur a significant lifetime decay from switching on

and off frequently. Possibly the inclusion of time of day information may help to reduce the number

of short standby periods, or failing this knowledge of the user’s distributed location may be needed

to predict longer break-even periods. For example, if the user has gone to the bathroom they may be

back soon but if they have left the building it is likely they will be back later.

The DBN policies did not perform better than the BN policies and in the case of the PC performed

significantly worse energy wise due to the long delay before powering down.

It is possible that more tailor made rule-based policies could do better than the BN policies,

achieving similar energy consumption but reducing the number of FPDs. However, we believe the

number of manual power ups will remain similar due to the difficulty of automatically powering up

in time when the user is in the vicinity. Therefore, the conclusions would still remain the same for

the power management policies. For HeavyUse users, user presence (BT tag) is sufficient, whereas for

LightUse users, user presence and near presence (OR detection) do better for the display, but incur

too many MPUs for the PC which has a long resume time.

146

Chapter 6

Conclusions

This thesis began by outlining the motivation for device power management in buildings. There is

a pressing need to reduce overall energy consumption, however, in spite of this there has been a

steady rise in the energy consumed by electrical devices in buildings. Pervasive computing could

further exacerbate the building energy problem, but on the other hand it could provide a solution by

enabling more intelligent context-aware power management of devices.

Chapter 2 reviewed the current state of the art in dynamic power management and context-aware

power management. The review concluded that current dynamic power management techniques are

primarily focused on management of mobile, battery-powered devices and are not suitable for power

management of stationary devices, which have longer break-even and resume times. Furthermore, it

is necessary to obtain context from the user-level (e.g., user location) for effective power management

of stationary devices. There have been several research projects in this area of CAPM, which have

focused on developing techniques for inferring context from sensors. However, there has been no

detailed study into what are the potential energy savings of CAPM and what granularity of context

is appropriate.

6.1 Contribution

The initial experimental trial explored the use of location as a key piece of context for power man-

agement of desktop PCs in an office environment. The resulting SWOB policy powers down the PC

when the user’s presence (Bluetooth phone) is not detected and powers up again when the phone

is detected again. The trial demonstrated that user behaviour is the key factor to the SWOB pol-

icy’s performance. For heavy users, the SWOB policy performs well both in terms of energy and

147

user-perceived performance and for light users it performs badly energy-wise but maintains good

user-perceived performance.

A large user study was carried out to evaluate whether additional, finer-grained context could

do better than the SWOB policy and at what extra cost. The sensors explored were idle time (IT),

Bluetooth presence (BT), face detection (FD), object range detection (OR), and voice activity (VA).

A Bayesian network was used to combine the multi-modal data to infer the contexts not using and

about to use.

The user study revealed the potential extra energy that could be saved beyond that of the SWOB

policy was relatively small for heavy users (6-9% from Oracle). The BN policies with additional

sensors did no better energy-wise and had worse user-perceived performance (median 1 MPU per

day) because these policies power down when the user is still in the vicinity of the device. Therefore,

the SWOB policy is recommended for heavy users of displays and PCs. For light users the SWOB

policy does not perform as well energy-wise (22-31% from Oracle) and the best performing CAPM

policy is IT-BT-OR (12-19% from Oracle). However, there are a significant number of manual power

ups (median 4 to 5 per day) for IT-BT-OR. Therefore, we believe this policy would only be suitable

for power management of displays, which have a short resume time.

The energy consumption of the face detection and voice activity sensors was found to be significant

(FD 20.2Wh, VA 6.4Wh median per day) compared to the potential extra energy that can be saved

for light users (PC 59Wh and display 78Wh median per day). The large energy consumption is due

to the significant amount of CPU processing of the video and audio data. Furthermore, we found

the voice activity sensor did not provide a good cue of the contexts not using and about to use.

Although, the face detection sensor provided valuable information, the energy cost of the sensor

resulted in it performing worse overall than the coarser-grained object-range sensor.

The technique of Bayesian networks did not perform as well as we expected with the BN policies

having a significant number of false power downs, more than the Threshold 5 policy. We believe

that some hand-crafting of the BN parameters would be needed to reduce the number of FPDs to

an acceptable level. Furthermore, the dynamic Bayesian network was not an improvement over the

standard BN. Given the IT-BT-OR policy has relatively few sensors, it is possible that a simple

rule-based policy could do as well, if not better than the BN technique.

148

6.2 Future work

This thesis focused on the off-line evaluation of the BN policies. These policies were trained with

supervised data gathered from the measurement of the users’ usage. Currently the runtime CAPM

framework does not incorporate on-line learning of the CPTs. In the on-line case it is not practical to

fully measure when the user is using and not using the device, as this would cause significant user

annoyance. Therefore, there is a need to develop a semi-supervised approach to learning of the CPTs,

where it is possible to learn the CPTs based on a partial set of observed using and not using cases.

Furthermore, given the results from the evaluation, it would also be necessary to explore techniques

to avoid false power downs occurring.

Another finding from the evaluation is that user behaviour could vary significantly. For some of

the light users, their behaviour changed from day to day, with some days being light use and others

more heavy use. Therefore, another issue to deal with is learning for users with variable behaviour.

Finally, the requirements of distant prediction and distributed sensing were not implemented

in the CAPM framework. These requirements could be addressed by inclusion of CAPM into the

sentient object model. This would enable inclusion of data from distributed sensors, for example,

the location of a user in other parts of the building. This could enable the prediction of longer idle

periods necessary to reduce the number of standbys that are less than the break-even time for devices

with long break-even times (5 minutes and greater). In addition, mobility prediction could be used

for distant prediction to offset delays in sensor response and long device resume times.

149

Appendix A

Additional Evaluation Figures

150

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure A.1: DBN display false power downs

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure A.2: DBN display manual power ups

151

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(a) Light Use

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(b) Heavy Use

Figure A.3: DBN display standby break-evens

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

FPD

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure A.4: DBN PC false power downs

152

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(a) Light Use

MPU

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

302520151050
(b) Heavy Use

Figure A.5: DBN PC manual power ups

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(a) Light Use

Standby <
 Breakeven

AlwaysOnThreshold 30Threshold 25Threshold 20Threshold 15Threshold 10Threshold 5Threshold 4Threshold 3Threshold 2Threshold1IT-BT-OR-FD-VAIT-BT-OR-FDIT-BT-ORIT-BT-FDIT-ORIT-BTITSWOBOracle

20151050
(b) Heavy Use

Figure A.6: DBN PC standby break-evens

153

Bibliography

[1] Kolmogorov A. Grundbegriffe der warhscheinlichkeitsrechnung.

Springer Verlag, 1933.

[2] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey

of design techniques for system-level dynamic power management. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

8(3):299-316, June 2000.

[3] Gregory Biegel. A Programming Model for Mobile, Context-Aware

Applications. PhD thesis, University of Dublin, Trinity College,

2004.

[4] Gregory Biegel and Vinny Cahill. A framework for developing mobile,

context-aware applications. In Proceedings of the 2nd IEEE

International Conference on Pervasive Computing and Communications

(PerCom 2004), pages 361-365. IEEE Computer Society, March 2004.

[5] BlueLon. Bodytag bt-002. http://www.bluelon.com/.

[6] Gary Bradski, Adrian Kaehler, and Vadim Pisarevsky. Learning-based

computer vision with intel’s open source computer vision library.

Compute-Intensive, Highly Parallel Applications and Uses, 09(01),

2005.

[7] Matthew Brand and Vera Kettnaker. Discovery and segmentation of

activities in video. IEEE Trans. Pattern Anal. Mach. Intell.,

22(8):844-851, 2000.

[8] Jennifer Bray and Charles F Sturman. Bluetooth Connect Without

Cables. Prentice Hall, 2001.

154

[9] B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project.

Addison-Wesley, 1984.

[10] Victor Callaghan. The intelligent dormitory homepage.

http://cswww.essex.ac.uk/Research/iieg/idorm.htm.

[11] Suan Khai Chong, Shonali Krishnaswamy, and Seng Wai Loke. A

context-aware approach to conserving energy in wireless sensor

networks. In First International Workshop on Sensor Networks and

Systems for Pervasive Computing, 2005.

[12] Michael H. Coen. Design principles for intelligent environments. In

AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth

conference on Artificial intelligence/Innovative applications of

artificial intelligence, pages 547-554, Menlo Park, CA, USA, 1998.

American Association for Artificial Intelligence.

[13] European Comission. Towards a european strategy for the security of

energy supply, 2000.

http://europa.eu.int/comm/energy_transport/en/lpi_lv_en1.html.

[14] European Comission. Towards a european strategy for the security of

energy supply (technical document), 2000.

http://europa.eu.int/comm/energy_transport/en/lpi_lv_en1.html.

[15] European Comission. 5e in universities, 2003.

http://www.copernicus-campus.org/sites/5EinUniversities.html.

[16] Diane J. Cook. Mavhome smart home project. http://mavhome.uta.edu/.

[17] Anind K. Dey and Gregory D. Abowd. Towards a better understanding of

context and context-awareness. Technical Report GIT-GVU-99-22,

Georgia Institute of Technology, 1999.

[18] T. Dietterich. Statistical tests for comparing supervised

classification learning algorithms. Technical report, Department of

Computer Science, Oregon State University, 1996.

[19] Faiyaz Doctor, Hani Hagras, and Victor Callaghan. An adaptive fuzzy

learning mechanism for intelligent. agents in ubiquitous computing

155

environments. In 6th Biannual World Automation Conference, pages

101-106. TSI Press Series, 2004.

[20] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the

power-hungry disk. In USENIX Winter, pages 292-306, 1994.

[21] Robot Electronics. Srf08 ultra sonic range finder technical

specification.

http://www.robot-electronics.co.uk/htm/srf08tech.shtml.

[22] Carla Ellis. The case for higher-level power management. In The

Seventh Workshop on Hot Topics in Operating Systems, Rio Rico,

Arizona, pages 162-167, March 28 - 30 1999.

[23] Jason Flinn, Eyal de Lara, Mahadev Satyanarayanan, Dan S. Wallach,

and Willy Zwaenepoel. Reducing the energy usage of office

applications. In Middleware 2001: Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms Heidelberg,

pages 252-272, London, UK, 2001. Springer-Verlag.

[24] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for

mobile applications. In Symposium on Operating Systems Principles,

pages 48-63, 1999.

[25] Oliver Gassmann and Hans Meixner. Sensors in Intelligent Buildings.

Wiley, 2001.

[26] Colin Harris and Vinny Cahill. Exploiting user behaviour for

context-aware power management. In International Conference On

Wireless and Mobile Computing, Networking and Communications, pages

122-130. IEEE, August 2005.

[27] Edwin O. Heierman and Diane J. Cook. Improving home automation by

discovering regularly occurring device usage patterns. In ICDM ’03:

Proceedings of the Third IEEE International Conference on Data

Mining, page 537, Washington, DC, USA, 2003. IEEE Computer Society.

[28] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced

configuration and power interface. http://www.acpi.info/.

[29] Intel. Integrated performance primitives.

156

http://www.intel.com/cd/software/products/asmo-

na/eng/perflib/ipp/index.htm.

[30] Intel. Opencv. http://sourceforge.net/projects/opencvlibrary/.

[31] Ravi Jain and John Wullert, II. Challenges: environmental design

for pervasive computing systems. In Proceedings of the 8th Annual

International Conference on Mobile Computing and Networking, pages

263-270. ACM Press, 2002.

[32] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan S.

Owicki. Competitive randomized algorithms for nonuniform problems.

In Algorithmica, volume 11, pages 542-571, 1994.

[33] Kaoru Kawamoto, Jonathan G. Koomey, Bruce Nordman, Richard Brown,

Mary Ann Piette, and Alan K. Meier. Electricity used by office

equipment and network equipment in the u.s. In Proceedings of the

2000 ACEEE Summer Study on Energy Efficiency in Buildings. ACEEE,

2000.

[34] Jerzy Kolinsky, Ram Chary, Andrew Henroid, and Barry Press. Building

the power-efficient PC. Intel Press, 2001.

[35] Kevin Korb and Ann Nicholson. Bayesian Artificial Intelligence.

Chapman and Hall/CRC Press UK, 2004.

[36] Robin Kravets and P. Krishnan. Application-driven power management

for mobile communication. Wireless Networks, 6(4):263-277, 2000.

[37] Y. Lu, T. Simunic, and G. De Micheli. Software controlled power

management. In IEEE Hardware/Software Co-Design Workshop, pages

157-161, May 1999.

[38] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli.

Operating-system directed power reduction. In International

Symposium on Low Power Electronics and Design, pages 37-42. Stanford

University, July 2000.

[39] Yung-Hsiang Lu, Eui-Young Chung, Tajana Simunic, Luca Benini, and

Giovanni De Micheli. Quantitative comparison of power management

algorithms. In Design Automation and Test in Europe, pages 20-26.

Stanford University, March 2000.

157

[40] Ren C. Luo and Michael G. Kay. Multisensor integration and fusion in

intelligent systems. In Transactions on Systems, Man, and

Cybernetics, volume 19, pages 901-931. IEEE, September 1989.

[41] Anant Madabhushi and J. K. Aggarwal. A bayesian approach to human

activity recognition. In VS ’99: Proceedings of the Second IEEE

Workshop on Visual Surveillance, page 25, Washington, DC, USA, 1999.

IEEE Computer Society.

[42] Michael Mozer. Adaptive house project.

http://www.cs.colorado.edu/ mozer/nnh/.

[43] Michael Mozer. Smart environments: Technologies, protocols, and

applications, chapter 12, pages 273-294. J. Wiley and Sons, November

2004.

[44] Kevin Murphy. Software packages for graphical models.

http://www.cs.ubc.ca/ murphyk/Bayes/bnsoft.html.

[45] United Nations. Kyoto protocol to the united nations framework

convention on climate change.

http://unfccc.int/essential_background/kyoto_protocol/items/1678.php.

[46] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall,

April 2003.

[47] The Chartered Institution of Building Services Engineers. Energy

consumption guide 19, 2000.

[48] N. Oliver, E. Horvitz, and A. Garg. Layered representations for

human activity recognition. In Fourth IEEE Int. Conf. on Multimodal

Interfaces, pages 3-8, 2002.

[49] Nuria Oliver and Eric Horvitz. S-seer: Selective perception in a

multimodal office activity recognition system. In MLMI, pages

122-135, 2004.

[50] Nuria Oliver and Eric Horvitz. A comparison of hmms and dynamic

bayesian networks for recognizing office activities. In User

Modeling, pages 199-209, 2005.

[51] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy

optimization for dynamic power management. In Proceedings of the

158

35th annual conference on Design automation conference, pages

182-187. ACM Press, 1998.

[52] Matthai Philipose, Kenneth P. Fishkin, Mike Perkowitz, Donald J

Patterson Dirk Hahnel, Dieter Fox, and Henry Kautz. Inferring

Activities from Interactions with Objects. In IEEE Pervasive

Computing: Mobile and Ubiquitous Systems, volume 3, pages 50-57.

IEEE, 2004.

[53] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech

recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[54] J. Rissanen. Modelling by shortest data description. Automatica,

14:465-471, 1978.

[55] Abhishek Roy, Soumya K. Das Bhaumik, Amiya Bhattacharya, Kalyan Basu,

Diane J. Cook, and Sajal K. Das. Location aware resource management

in smart homes. In IEEE International Conference on Pervasive

Computing and Communications, page 481. IEEE, March 2003.

[56] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, second edition, 2003.

[57] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end

arguments in system design. ACM Transactions on Computer Systems,

2(4):277-288, November 1984.

[58] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE

Personal Communications, pages 10-17, August 2001.

[59] Paul A. Shirley. An introduction to ultrasonic sensing. The Journal

of Machine Perception, 6(11), 1989.

[60] Tajana Simunic, Luca Benini, Peter W. Glynn, and Giovanni De Micheli.

Dynamic power management for portable systems. In Mobile Computing

and Networking, pages 11-19, 2000.

[61] D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of

conditional probabilities on directed graphical structures.

Networks, 20:579-605, 1990.

[62] Carl Steinbach. A reinforcement-learning approach to power

159

management. Technical report, Artificial Intelligence Laboratory,

MIT, 2002.

[63] Eino Tetri. Profitability of switching off fluorescent lamps:

Take-a-break. In RIGHT LIGHT 4, volume 1, pages 113-116, 1997.

[64] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001.

[65] von Mises R. Probability, Statistics, and Truth. Allen and Unwin,

1957.

[66] Mark Weiser. The computer for the 21st century. Scientific American,

265(3):94-104, September 1991.

[67] Mark Weiser, Brent Welch, Alan J. Demers, and Scott Shenker.

Scheduling for reduced CPU energy. In Operating Systems Design and

Implementation, pages 13-23, 1994.

[68] Robert Yarham. Natural Ventilation in Non-Domestic Buildings. CIBSE,

1997.

[69] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy: Unifying

policies for resource management. Technical Report CS-2002-09, Duke

University, Computer Science, May 2002.

[70] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat.

ECOSystem: Managing energy as a first class operating system

resource. In Tenth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS X), October

2002.

160

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Listings
	Chapter Introduction
	Motivation
	Dynamic Power Management
	Pervasive Computing
	Context-aware computing
	Context-aware Power Management
	Thesis contribution
	Road map

	Chapter State of the Art
	Dynamic power management
	The oracle and threshold policies

	Dynamic power management policies
	Device-driver-level policies
	Operating system-level policies
	Application-level policies
	User-level policies
	Discussion

	Context-aware computing
	Context-aware computing model
	Properties of sensors and multi-sensory information
	Granularity versus cost

	Context-aware power management review
	A context-aware approach to saving energy in wireless sensor networks
	Analysis

	Location aware resource management in smart homes
	Analysis

	Improving home automation by discovering regularly occurring device usage patterns
	Analysis

	An adaptive fuzzy learning mechanism for intelligent agents in ubiquitous computing environments
	Analysis

	Lessons from an Adaptive House
	Analysis

	User activity monitoring review
	Inferring Activities from Interactions with Objects
	Analysis

	Discovery and Segmentation of Activities in Video
	Analysis

	Layered Representations for Human Activity Recognition
	Analysis

	Summary

	Chapter CAPM Framework Design
	Initial experimental results
	SOB policy energy performance
	SOB policy user-perceived performance
	SWOB policy energy performance
	SWOB user-perceived performance
	Conclusions

	CAPM requirements
	CAPM framework design
	Data capture and feature extraction
	Context inference
	Decision

	Selection of inference technique
	Probability and Bayesian networks
	Bayesian networks
	Dynamic Bayesian networks

	Parameter learning for Bayesian networks
	Parameter learning for binary variables
	Learning multinomial variables

	Choice of sensors for CAPM
	Design of BNs for CAPM
	Initial models
	Not using
	About to use

	Final BN models
	Not using
	About to use

	DBN models
	Not using
	About to use

	Summary

	Chapter Implementation
	Sensors
	System idle time
	Bluetooth presence
	Face detection
	Voice activity detection
	Object range detection
	Sensor power consumption

	BN software selection
	Requirements
	Tool selection
	Netica

	Runtime (on-line) CAPM implementation
	Evaluation (off-line) CAPM implementation
	Data collection
	Simulation of policies

	Summary

	Chapter Evaluation
	Objectives
	Design of the CAPM user study
	Data collection and processing
	Simulation of policy traces
	Evaluation metrics
	Results
	Oracle, SWOB, Always On and Threshold policies
	Potential extra energy from SWOB
	Energy consumption of sensors
	BN models for power management of the display
	BN models for power management of the PC
	DBN models for power management of the display
	DBN models for power management of the PC

	Evaluation of the affect of monitoring on users
	Evaluation of BNs for device power management
	Summary

	Chapter Conclusions
	Contribution
	Future work

	Appendix Additional Evaluation Figures
	Bibliography

