
A Framework For Instrument Monitoring On The Grid

Stuart Kenny

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

July 2006

Declaration

This thesis has not been submitted as an exercise for a degree at any other University. Except

where otherwise stated, the work described herein has been carried out by the author alone.

This thesis may be borrowed or copied upon request with the permission of the Librarian,

University of Dublin, Trinity College. The copyright belongs jointly to the University of

Dublin and Stuart Kenny.

Stuart Kenny

Dated: July 21, 2006

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Stuart Kenny

Dated: July 21, 2006

Acknowledgements

Firstly I must thank my parents for supporting me, in every way, throughout all my years

at college. I would also like to thank my supervisor Brian Coghlan, and all those in the

Computer Architecture Group, for their help, input and guidance. This research could not

have taken place without the assistance of all the R-GMA developers, who kindly allowed me

to work with them, and provided significant help when needed. Much of this research was

funded by CrossGrid, and I would like to thank all the CrossGrid members who helped me

during the three years of that project.

Stuart Kenny

University of Dublin, Trinity College

July 2006

iv

Contents

Acknowledgements iv

List of Figures ix

List of Tables xii

List of Abbreviations xiii

Summary xvi

Chapter 1 INTRODUCTION 1

1.1 OVERVIEW . 1

1.2 OBJECTIVES . 3

1.3 PROJECT INTERACTIONS . 5

1.4 THESIS STRUCTURE . 8

Chapter 2 STATE OF THE ART 10

2.1 DISTRIBUTED MONITORING TOOLS . 11

2.1.1 Network Weather Service . 11

2.1.2 Ganglia . 12

2.1.3 NetLogger . 13

v

2.2 GRID INFORMATION SYSTEMS . 15

2.2.1 Globus Monitoring and Directory Service 15

2.2.2 GridICE . 17

2.2.3 Legion . 18

2.2.4 Discussion . 19

2.3 DISTRIBUTED INTRUSION DETECTION 20

Chapter 3 R-GMA 24

3.1 THE GRID MONITORING ARCHITECTURE 24

3.2 THE R-GMA . 25

3.2.1 Query types and Producer types . 26

3.2.2 Architecture . 28

Chapter 4 THE SANTA-G MONITORING FRAMEWORK 31

4.1 FRAMEWORK PURPOSE . 31

4.2 THE CANONICAL PRODUCER . 32

4.3 FRAMEWORK ARCHITECTURE . 35

Chapter 5 NETTRACER DESIGN AND ARCHITECTURE 39

Chapter 6 NETTRACER IMPLEMENTATION 46

6.1 THE PUBLISHING MODULE . 46

6.1.1 The Sensor . 46

6.1.2 The QueryEngine . 53

6.1.3 The Viewer module . 62

6.2 TESTING . 69

6.2.1 Test Deployment . 69

6.2.2 Performance Testing . 70

vi

Chapter 7 EXAMPLE EXPERIMENTS 74

7.1 TCP THROUGHPUT MEASUREMENTS 74

7.1.1 Configure the SANTA-G system . 75

7.1.2 Write the Consumer code . 77

7.1.3 Run the experiment . 82

7.2 MPI RING MEASUREMENTS . 86

7.2.1 Configure the SANTA-G system . 86

7.2.2 Write the Consumer code . 87

7.2.3 Run the experiment . 88

7.3 ONE-WAY LATENCY MEASUREMENTS 95

7.3.1 Configure the SANTA-G system . 95

7.3.2 Write the Consumer code . 95

7.3.3 Run the experiment . 96

7.4 SCI TRACE ANALYSIS . 110

7.4.1 Configure the SANTA-G system . 110

7.4.2 Write the Consumer code . 111

7.4.3 Run the experiment . 111

Chapter 8 GRID-WIDE INTRUSION DETECTION 122

8.1 GRID-WIDE INTRUSION DETECTION . 122

8.1.1 Snort . 123

8.1.2 NetTracer Snort Sensor . 124

8.1.3 GIDS Design . 126

8.2 INTRUSION DETECTION EXAMPLE . 131

8.2.1 Test Deployment . 132

8.2.2 Example Analysers . 132

8.2.3 Example Intrusion Detection . 137

vii

8.3 GRID-IRELAND DEPLOYMENT . 142

Chapter 9 FUTURE WORK 150

9.1 FUTURE WORK . 150

9.1.1 Sensors and QueryEngines (Instruments) 150

9.1.2 Postprocessors (Analysers) . 154

9.2 CONCLUSION . 157

Bibliography 158

viii

List of Figures

1.1 The grid monitoring system . 7

3.1 Grid Monitoring Architecture . 24

3.2 A possible topology of R-GMA components 28

3.3 Relational Grid Monitoring Architecture . 30

4.1 CanonicalProducer servlet communication . 33

4.2 Monitoring framework . 35

4.3 Example structure of user-implemented CanonicalProducer code 36

4.4 Ranglia query processing . 38

5.1 NetTracer publishing module . 40

5.2 Example NetTracer deployment . 41

6.1 Dynamic Tcpdump Sensor startup sequence 48

6.2 Sensor class diagram . 49

6.3 Remote file server . 51

6.4 QueryEngine startup sequence . 53

6.5 QueryEngine query processing sequence . 55

6.6 QueryEngine class diagram . 58

ix

6.7 EthernetFilter class diagram . 60

6.8 SCIFilter class diagram . 61

6.9 Viewer query submission sequence . 63

6.10 Ethernet packet display process . 64

6.11 Viewer GUI, packet view panel . 65

6.12 Viewer GUI, query view panel . 66

6.13 Viewer GUI, sensor information panels . 67

6.14 Viewer GUI, query builder . 68

6.15 Viewer GUI, Snort alerts panel . 68

6.16 Test deployment . 70

6.17 Average times for retrieval . 72

7.1 Throughput measurements deployment . 76

7.2 TCP throughput Consumer components . 78

7.3 Throughput Consumer sequence diagram . 80

7.4 Direction of MPI ring . 87

7.5 Captured MPI packets in Viewer GUI . 90

7.6 MPI Ring and NetTracer effective bandwidth distributions 92

7.7 MPI Ring and NetTracer latency distributions 93

7.8 Overhead per site . 94

7.9 Towl measurements for single application execution 98

7.10 Toffset measurements for single application execution 99

7.11 Mean Towl values, series 1 . 100

7.12 Towl minimum, maximum and standard deviation, series 1 101

7.13 Towl measurements, series 2 . 102

7.14 Towl measurements, series 3 . 104

7.15 Mean Towl values over 72 hour measurement period 105

x

7.16 Toffset measurements, series 1 . 107

7.17 Toffset measurements, series 2 . 108

7.18 Mean Toffset values, series 3 . 109

7.19 Mean Toffset values over 72 hour measurement period 109

7.20 SCI trace analysis deployment . 111

7.21 SCI trace analysis tool . 112

7.22 SCI transaction . 113

7.23 Packet inter-arrival time PDF . 114

7.24 Packet size PDF . 114

7.25 Throughput in bytes/sec . 115

7.26 Throughput in bytes/sec, start and end of trace 117

7.27 Packet inter-arrival time series . 118

7.28 Packet inter-arrival time PDF, 2-d torus . 119

7.29 Distribution of accesses versus source and target IDs 121

8.1 Snort architecture . 123

8.2 NetTracer Snort monitoring . 124

8.3 Multiple sites stream alerts to the R-GMA . 126

8.4 Archiver collects alerts to grid-wide intrusion log 127

8.5 Intrusion log analysis by alert Consumers . 128

8.6 GIDS test deployment . 133

8.7 Distribution of alerts by site, excluding the SNMP alerts at NUIM 144

8.8 SSH alert viewed using Viewer GUI . 148

9.1 Secure NetTracer prototype structure . 152

xi

List of Tables

6.1 Average times for retrieval . 71

7.1 Sample throughput values obtained . 80

7.2 Throughput values obtained during query submission 83

7.3 Connections and the API calls associated with them 84

7.4 SQL query transmission measurement . 84

7.5 Summary of calculated times (ms) . 85

7.6 Data collected by sensors for single ring transmission 91

7.7 Average overhead per site . 94

7.8 Collected dataset series . 100

7.9 Distribution of target address accesses . 120

8.1 Snort alerts table schema . 125

8.2 Sample of TCP traffic gathered by sensor during attack on TestGrid 138

8.3 Positive responses to port scan on TestGrid 139

8.4 Sample of alerts logged to TestGrid grid-wide intrusion log 139

8.5 Distribution of alerts by Grid-Ireland site . 143

8.6 MS SQL alert pattern . 143

8.7 Distribution of alert types . 146

xii

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

AI Artificial Intelligence

AIDE Advanced Intrusion Detection Environment

API Application Programming Interface

CE Computing Element

CERN European Centre for Nuclear Research

CIMA Common Instrument Middleware Architecture

CSR Control and Status Register

DIDS Distributed Intrusion Detection System

DoS Denial of Service

DDoS Distributed Denial of Service

EDG European DataGrid

EGEE Enabling Grids for e-Science

FSA Fingerprint Sharing Alliance

GDS Grid Data Service

GGF Global Grid Forum

GIIS Grid Index Information Service

GLUE Grid Laboratory Universal Environment

GMA Grid Monitoring Architecture

GOC Grid Operations Centre

GPS Global Positioning System

xiii

GRIS Grid Resource Information Service

GIS Grid Security Infrastructure

GUI Graphical User Interface

HIDS Host-based Intrusion Detection System

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

JIMS JMX-based Information Monitoring System

JMX Java Management Extensions

JVM Java Virtual Machine

LCG LHC Computing Grid Project

LCFGng Local ConFiGuration System next generation

LDAP Lightweight Directory Access Protocol

LHC Large Hadron Collider

MAC Media Access Control

MDS Monitoring and Directory Service

MPI Message Passing Interface

MPICH Portable implementation of MPI

MPICH-G2 Grid-enabled MPI implementation

NFS Network File System

NIDS Network-based Intrusion Detection System

NREN National Research and Education Network

NWS Network Weather Service

OCM OMIS Compliant Monitoring system

OCM-G Grid-enabled OMIS Compliant Monitoring system

OGSA-DAI Open Grid Services Architecture Data Access Integration

OS Operating System

PBS Portable Batch System

xiv

PCI Peripheral Component Interconnect

PDF Probability Density Function

PHP Hypertext Preprocessor

QoS Quality of Service

RDBMS Relational Database Management System

R-GMA Relational Grid Monitoring Architecture

RIPE NCC Reseaux IP European Network Coordination Center

RRD Round Robin Database

RSL Resource Specification Language

RST TCP Reset Packet

RTT Round Trip Time

SAN System Area Network

SANTA System Area Networks Trace Analysis

SANTA-G Grid-enabled System Area Networks Trace Analysis

SCI Scalable Coherent Interface

SE Storage Element

SQL Structured Query Language

TCP Transmission Control Protocol

TTM Test Traffic Measurements

UDP User Datagram Protocol

UI User Interface

ULM Universal Logger Format

UML Unified Modeling Language

VCR Virtual Control Room

VO Virtual Organisation

WN Worker Node

XDR External Data Representation

XML Extensible Markup Language

xv

Summary

Grid computing enables the selection and aggregation of a wide variety of geographically

distributed resources as a single unified computing resource, for solving large scale compute

and data intensive computing applications.

As with any computer system an important task within a grid is monitoring. The abil-

ity to monitor distributed resources is crucial to high performance computation. Amongst

other things, it allows one to evaluate behaviour, optimize behaviour, discover and diagnose

problems or faults.

The objective of this research was to design a framework that would provide a generic

template to allow for ad-hoc monitoring experiments with external instruments in a grid

environment. The template allows for the information captured by external instruments,

either hardware or software, to be accessed through a grid information system. Monitoring

instruments, in general, create a huge amount of monitoring data that is often stored in raw

log files. The sheer size of the data generated makes it unsuitable for direct insertion into an

information system. The idea of the framework is to make this data accessible through an

information system, whilst allowing the data to remain in-situ.

A demonstrator of the framework was also to be implemented as part of this research.

To accomplish this, first the central component of the framework, the interface to the grid

information system, in this case R-GMA, which is a relational implementation of the Global

Grid Forum’s Grid Monitoring Architecture, developed within the EU DataGrid project, had

xvi

to be designed and implemented. This resulted in the development of a new type of R-GMA

producer, the Canonical Producer.

The proposed framework demonstrator was a network tracer, NetTracer, that would allow

access to monitoring data obtained from a set of example network monitoring instruments

through R-GMA. The instruments chosen support the tracing of two network interconnect

technologies, Ethernet using Tcpdump, a software network packet capture application, and

SCI (Scalable Coherent Interface), using a (hardware) SCI trace instrument.

An additional, and valuable, contribution was the initial design and implementation of

a Grid-wide Intrusion Detection System, the design of which evolved from the extension

of NetTracer to support a third network monitoring tool, Snort, a network-based intrusion

detection system.

The research was successful in its objectives. The framework, SANTA-G, was designed,

and NetTracer, the framework demonstrator, shows that is a viable concept. The research has

contributed to three major grid projects. The Canonical Producer, the enabling technology

for the framework, is now part of the R-GMA system. The initial implementation of Net-

Tracer was developed within the EU CrossGrid project, and forms part of its grid monitoring

system. NetTracer, and a prototype of the Grid-wide Intrusion Detection System, are also

being used by Grid-Ireland, the national computational grid of Ireland, in order to monitor

network activity on, and the state of security of, its sites.

xvii

Chapter 1

INTRODUCTION

1.1 OVERVIEW

In order to cope with the increasing amount of processing power required by modern appli-

cations, processors have been becoming ever more powerful and fast. Eventually, however,

single processor systems, and even multiprocessor systems, will reach a limit defined by such

factors as cost and physics. Although supercomputers can be used to achieve improved per-

formance, they are extremely expensive and this makes their use prohibitive, especially in

research. A solution to this is cluster systems, which provide close to supercomputer perfor-

mance but at a fraction of the cost. Clusters use many interconnected, ‘off the shelf’, PCs to

provide ‘a single unified computing resource’ [42].

Although the use of cluster systems is common in universities, in many cases the average

computing environment still remains inadequate for large scale compute and data intensive

applications [21]. Computational grids are intended to provide a solution to this. [21] defines

a computational grid as ‘a hardware or software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high-end computational capabilities’. They

do this by sharing geographically distributed resources such as single computers, clusters,

1

supercomputers, data or instruments. Several projects are currently developing grid environ-

ments. The DataGrid project, a very influential project that completed in March 2004, was

created to tackle the problem of how to store, move and analyse the huge amounts of data

created by the latest high energy physics experiments, such as the Large Hadron Collider

(LHC) [44] at CERN. The aim of the CrossGrid project, which ended in April 2005, was to

create tools and services that support interactive applications in the grid environment, i.e.,

applications with which users will be able to interact and obtain results in real time.

An essential task within the Grid, as in any large scale distributed system, is monitoring.

The ability to monitor distributed resources is crucial to high performance computation. It

allows one to:

• find the cause of performance problems

• tune system parameters in order to optimise resource usage

• detect and diagnose problems or faults

• optimise job scheduling

• perform billing and accounting

Moreover, if a timestamp is added to any item of information, a grid monitoring framework

can become a general purpose grid information system.

A grid information system is used to provide information on the current state of the

Grid’s resources. Some examples of grid information systems currently in use are Globus

MDS, GridICE, the Legion Resource Directory Service, and the DataGrid R-GMA. The

Relational Grid Monitoring Architecture (R-GMA) is the information system used for this

research. It is based on the Global Grid Forum’s (GGF) [20] Grid Monitoring Architecture

(GMA) [5], a general architecture for grid monitoring systems.

2

1.2 OBJECTIVES

The motivation for this research came from the Computer Architecture Group’s (CAG) (lo-

cated at Trinity College Dublin) efforts to ‘systematize the collection and analysis of inter-

connect traces via relational database technologies’, referred to as SANTA (System Area

Networks Trace Analysis). The work carried out by CAG, within the SCIEurope project,

resulted in the development of an SCI (Scalable Coherent Interface) tracer/analyser and a

set of software tools for the acquisition and analysis of deep, non-invasive, SCI interconnect

traces. The aim of this research is to extend this concept to the Grid.

The novel approach taken here, to integrating instruments with the Grid, is to leverage

existing grid infrastructure, in the form of the grid information system, to provide access

to data collected by external instruments. The difficulty with this approach is that, the

typical grid information system model of information providers periodically inserting data is

not suitable for all types of instrument monitoring. When dealing with information sources

that produce large amounts of data, the SCI tracer for example, it may be inefficient, or

impossible, to insert all of the data into the information system. It would be better to

leave the data where it was created, and to only transfer selected subsets of the data when

specifically requested by a user.

The objectives of the research were as follows:

1. Define a framework that allows for ad-hoc monitoring experiments with ex-

ternal instruments in the grid environment

The idea of the framework, known as SANTA-G (Grid-enabled SANTA), is to provide

access to monitoring data collected by external instruments through the grid informa-

tion system, whilst allowing the data to remain in-situ. The requirements for the

framework were:

Relational model: This was considered as a key requirement, in order to remain

3

faithful to the SANTA concept.

Pull model: The idea central to the framework is that data should only be transferred

when requested by a user, this implies the use of a pull, rather than a push model

where data is sent to a central or higher level as it is produced.

Support for dynamic instruments: In order to allow for ad-hoc monitoring exper-

iments, the framework must support the easy and transparent addition, and re-

moval, of instruments from the system.

Dynamic information schema: To support the dynamic addition of instruments it

must also be possible to dynamically extend the schema of available information

to include that produced by a new information source (i.e., an instrument).

Support for multiple instruments: It should be possible to query data held by mul-

tiple distributed instruments transparently, as if the data were contained in a single

data resource.

Consistent interface: The interface to the data should be consistent, regardless of

the instrument that produces the data and the form in which the data is stored.

2. Design and implement a demonstrator of SANTA-G

This demonstrator, developed within the EU CrossGrid project, is known as Net-

Tracer. NetTracer demonstrates SANTA-G by providing access to log files created by

network monitoring instruments through the R-GMA information system. R-GMA was

chosen, amongst other reasons, for its use of the relational model, and hence its compat-

ibility with the original SANTA concept. The enabling technology for the framework

(developed as part of this research as a component of R-GMA) is known as the Canon-

ical Producer [8]. The example instruments supported by NetTracer are: Tcpdump,

a software instrument for Ethernet network tracing; Snort, a software-based network

intrusion detection system; and the SCI tracer, a hardware instrument, as described

above.

4

3. Test the SANTA-G hypothesis with a series of example experiments

The acquisition of the monitoring data represents only the first stage in the SANTA-G

framework. The use of R-GMA allows for the analysis of the raw data gathered by

NetTracer through the use of custom R-GMA Consumers, which can be used to obtain

subsets of the available data with SQL SELECT statements, as if querying a relational

database. As part of this research several example analysers of NetTracer logs were

developed, for example, analysers that calculate throughput and one-way latency times

from Tcpdump logs of TCP/IP traffic. Analysers of Snort logs were used to create a

grid-wide intrusion detection system, the initial design and implementation of which

was also carried out as part of this research.

The SANTA-G framework, and the CanonicalProducer, which together provide a novel

method for the integration of instruments with the Grid, are the main contribution of this

research. The example implementation of the framework, NetTracer, is also considered an

additional contribution. The example experiments that make use of this tool show its poten-

tial usefulness for network monitoring in the Grid. The development of NetTracer also led to

the final contribution of the research, the initial design and implementation of a novel Grid

Intrusion Detection System. Although this system was not considered as part of the research

objectives, as outlined above, it has come to be recognised as a major contribution of the

research, and an important area of future work.

1.3 PROJECT INTERACTIONS

This thesis describes work that was conducted within two EU projects, DataGrid and Cross-

Grid, in a highly productive cross-project collaboration. The CanonicalProducer was devel-

oped within DataGrid, while NetTracer was developed within CrossGrid, both efforts being

funded from CrossGrid.

The main goal of the DataGrid project (led by CERN, the European Organisation for

5

Nuclear Research) was to develop and test a technological infrastructure that would enable

the storage, movement and analysis of the huge amounts of data created by the latest class

of scientific experiments, such as the Large Hadron Collider (LHC) at CERN. The project

considered applications from three areas: high energy physics, led by CERN; biology and

medical imaging, led by CNRS France; and earth observations led by the European Space

Agency. The project had 21 partners from 11 countries.

The project was organised as four separate working groups, comprised, in total, of 12

workpackages, one of which was responsible for ‘Grid Monitoring’ (WP3). This workpackage

was to develop R-GMA, within which the CanonicalProducer was developed as a fundamental

component of R-GMA.

The CrossGrid project [43] was a major European collaboration involving 21 institutions

from 11 different countries. The purpose of the project was to develop applications that

allow for the real-time interaction of a person with the application. The example set of

applications developed by the project includes, interactive simulation and visualisation for

surgical procedures, flooding crisis team decision support systems, distributed data analysis

in high-energy physics, and air pollution combined with weather forecasting.

To allow for the development of these applications, extensions to the grid environment

were required. These include tools for verification of parallel source code, performance pre-

diction, performance evaluation and monitoring. The project was divided into 5 different

workpackages, one of which was ‘New Grid Services and Tools’ (WP3), responsible for pro-

viding the services and tools required to support the applications and tools developed within

the other workpackages.

NetTracer was developed as a part of the ‘Grid Monitoring’ task, a subtask of the ‘New

Grid Services and Tools’ workpackage.

The monitoring services developed within the ‘Grid Monitoring’ task, are intended to serve

the needs of automatic and interactive performance analysis tools. Their primary function

is to deliver low-level data to these tools. During the design and implementation phases the

6

key requirements were system scalability, flexibility and ease of configuration.

For the grid monitoring task it was decided to extend existing grid services (for monitoring

instruments and infrastructure), and add new grid services (for applications monitoring), see

Figure 1.1.

Infrastructure

Instruments

Static Info
 MDS

(Globus)

SANTA-G

+

NetTracer

(3.3.2 - TCD)

JIMS

(3.3.3 - Cyfronet)

Information Service

Database

Applications
 OCM-G

(3.3.1 - Cyfronet)

Infrastructure

JIMS Info

MDS Info

R-GMA Info

Application Info

Infrastructure Monitoring

Application Monitoring

Task 3.3

Figure 1.1: The grid monitoring system

The instrument monitoring services are provided by the monitoring framework and Net-

Tracer demonstrator described in this thesis. These services are a specialized non-invasive

complement to other more intrusive monitoring services. The application of these services is

in the validation and calibration of both intrusive monitoring systems and systemic models,

and also for performance analysis.

An infrastructure monitoring system that collects static and dynamic information about

7

grid components, such as hosts or network connections, was developed by Cyfronet in Poland.

It is based on the Java Management Extensions (JMX) architecture, and is referred to as

the JMX-based Infrastructure Monitoring System (JIMS). The information gathered by this

system is intended for basic grid activities such as resource allocation or load balancing.

Often this type of information has not only immediate, but also historic value. Thus it is

often stored in a database for later analysis (e.g. statistical forecasting, etc.). In many ways

JIMS replicates the functionality of R-GMA, but was developed as a ‘what if’ alternative to

explore the solution space.

Application monitoring was provided by the OCM-G, a grid-enabled version of the OCM,

also developed by a group at Cyfronet. OCM-G aims at observing a particular execution of

an application. The collected data is useful for tools for application development support.

These tools are used to detect bugs, find bottlenecks, or visualize the applications behaviour,

and will be most appreciated by software developers.

1.4 THESIS STRUCTURE

The thesis first provides some background to the research. It then goes on to describe the

framework, and also the design and implementation of NetTracer, the framework demonstra-

tor. Some example experiments that utilise NetTracer are then given. The initial design and

implementation of the Grid-wide Intrusion Detection System is then discussed, along with

an example of its use in a grid environment. This is followed by some suggestions for further

work.

Chapter 2 provides a state of the art review of monitoring tools, grid information systems,

and distributed intrusion detection. A description of R-GMA is given in Chapter 3. Chap-

ter 4 introduces the framework that is the subject of the thesis. The design of NetTracer is

presented in Chapter 5. Chapter 6 describes the implementation, and testing, of NetTracer.

Some example NetTracer experiments are described in Chapter 7. Chapter 8 contains a de-

8

scription of the initial work carried out on the design and implementation of the intrusion

detection system, along with some initial testing and results. A discussion of possible future

work is given in Chapter 9.

9

Chapter 2

STATE OF THE ART

This chapter provides a macroscopic description of the state of the art for three separate areas:

distributed monitoring tools, grid information systems, and distributed intrusion detection.

The first section deals with distributed monitoring tools, with a particular emphasis on those

used for network and resource monitoring. The tools described are the Network Weather

Service, Ganglia, and NetLogger.

The second section describes some of the current systems used as grid information systems.

The Globus Monitoring and Directory Service, the GridICE Information System, and the

Legion Resource Directory Service are described. A fourth important system, R-GMA, is

described in Chapter 3.

To provide some background to the work carried out on the Grid-wide Intrusion Detection

System, a brief description of intrusion detection systems is given in the third section.

A more detailed description of the state of the art is not appropriate, as this thesis

describes the creation of a framework for ad-hoc, non-invasive monitoring with external in-

struments in a grid environment, not the monitoring or grid information system, nor the

instruments. No such framework existed, and as yet the framework is unique. Here I de-

scribe the important background, not the prior art.

10

2.1 DISTRIBUTED MONITORING TOOLS

2.1.1 Network Weather Service

In a distributed system being utilised by a large number of users it is important that users

have the ability to choose resources that are the most lightly loaded when submitting their

applications. When making this decision it is not the current load that should be used, but the

estimated load in the near future, i.e., when they will submit their application to be executed.

The Network Weather Service (NWS) [53] provides a system that can be used to generate, or

forecast, short-term performance measurements of network and computing resources in large

scale distributed systems. In order to deal with the difficulties of monitoring and performance

measurement in these types of systems, the NWS uses adaptive programming techniques,

distributed fault-tolerant control algorithms, and an extensible system architecture.

The NWS is composed of four component processes:

persistent storage process: used to store and retrieve data from persistent storage. Data

is stored persistently as a text string, which can be associated with a timestamp. Be-

cause the NWS is used to provide short-term forecasts, data is not stored permanently.

Instead the data is managed as a circular queue of files. If the queue fills, older data

will be lost. Any data to be stored indefinitely must be retrieved and stored externally.

name server: the name server provides a directory service, used to map human readable

process and data name text strings to low-level addresses in the form of a TCP/IP

address and port number. An NWS process registers its address with the Name Service,

contacted by way of a well known address, the only one used by the system. This is

done periodically so that processes that disappear can be removed from the directory.

sensor: the sensor process runs on the resource to be monitored, gathering the required

performance measurements. A timestamp is appended to every measurement taken.

11

Examples of the sensors provided by the NWS are the CPU Sensor and the Network

Sensor. The Network Sensor uses active network probes to obtain measurements such

as small-message round-trip time, large message throughput, and TCP socket connect-

disconnect time.

forecaster: in order to generate a forecast, the forecaster process obtains the relevant data

from a persistent state process. This will be the most recent data available due to the

way in which the persistent state process manages the data, i.e., as a circular queue.

Also, because each measurement is associated with a timestamp, it may be treated as

a time series. Instead of applying a single forecasting model, a set of models is used to

generate a prediction given the values contained in the series, and an error measure is

calculated for that model. The model with the lowest error can then be dynamically

chosen as the model to use.

If one wished to classify the usage of NWS in the community, one could say that NWS is

used where prediction is required.

2.1.2 Ganglia

Ganglia [36] was originally developed for monitoring clusters. Its scalable design has allowed

it to evolve into a distributed monitoring system that is in widespread use. Distribution

is provided by using a multicast-based listen/announce protocol. In order to aggregate the

state of multiple clusters Ganglia uses a hierarchical design. Data from multiple clusters

is brought together by using a tree of point-to-point connections. Ganglia provides built-in

metrics for node state and also allows for user-defined metrics. Examples of built-in metrics

are: number of CPUs, CPU clock speed, load (1, 5, and 15 minute averages), total and free

memory, total and running number of processes, total and free swap space, and operating

system information such as name, version and architecture. User-defined metrics can be used

to provide arbitrary application-specific state.

12

Ganglia is composed of two main components:

gmond: the Ganglia monitoring daemon is used to monitor nodes within a single cluster.

The daemon runs on each node of the cluster and provides monitoring data to clients by

publishing on a well-known multicast channel. The daemon also listens on this channel

for data broadcast from other nodes. Data is stored in memory in a hierarchical hash

table. The daemon accepts client requests and responds to them by publishing the

metrics requested in a multicast XDR format.

gmetad: in order to collect metrics from multiple clusters Ganglia provides the Ganglia

Meta Daemon. This daemon periodically polls a set of data sources, specified in a

configuration file, to obtain data. It then publishes this aggregated data in XML format

to clients. The data sources can be gmond daemons, to aggregate data from nodes in

a single cluster, or other gmetad daemons, in order to aggregate data from multiple

clusters. The gmetad daemon can also store data for historical analysis using a Round

Robin Database, managed by the RRDtool. This tool stores data to constant size

databases, and also generates graphs of metrics versus time, which are published using

a PHP web-front end.

Ganglia also provides a command line program, gmetric, that can be used to publish

application specific metrics, and a client side library. Generally Ganglia is used to present

views of past and present metrics via web-pages.

2.1.3 NetLogger

The Networked Application Logger [52], NetLogger, provides a system for network, host, and

application-level monitoring, in order to allow for real-time diagnosis of performance prob-

lems. The interactions between components in a high performance system, i.e., applications,

operating systems, network components, network adapters, can be very complex, and can

13

therefore make determining the cause of performance problems, such as low throughput, or

high latency, very difficult. NetLogger provides tools for end-to-end instrumentation of all of

these components, to allow for an overall view of the system during operation.

The NetLogger toolkit provides a number of components to do this:

Common Log Format: NetLogger produces timestamped logs of events, in either an ASCII

or binary message format, that occur in the system. The IETF (Internet Engineering

Task Force) ULM (Universal Logger Format) is used for the logging of the messages,

and also for the exchange of messages. These messages are composed of a list of key-

value pairs, separated by whitespace. The binary format allows for much faster logging

than the ASCII format.

NetLogger API: to produce logs when an interesting event occurs in an application, the

NetLogger API is used to link the application to the NetLogger library. Calls to the

API, such as NetLogger write(), are placed at critical points in the application code.

The API provides automatic timestamping and logging of events, to either memory, a

local file, or a remote host.

netlogd: netlogd is a daemon that allows for the collection of event logs from distributed

applications. The daemon receives the log entries from the application and logs them

to a single host and port.

Monitoring tools: as well as application monitoring using the API, NetLogger can also

be used for host and network monitoring by using standard Unix system and network

monitoring tools, such as netstat, vmstat, iostat, and snmpget. A NetLogger wrapper

converts the output of these tools to NetLogger formatted event messages.

Visualisation: the NetLogger visualisation tool can be used to analyse the event logs gen-

erated by NetLogger. Three types of graph primitives are used by the visualisation

tool:

14

lifeline: represents the ‘life’ of an object as it travels through a distributed system.

The slope of the line indicates the latencies in the system.

loadline: a continuous segmented curve of scaled values that represents the changes

in system resources such as CPU load.

point: shows single occurrences of events. These would usually be error or warning

messages.

NetLogger is most used for instrumentation of a distributed application in order to un-

derstand its behaviour.

2.2 GRID INFORMATION SYSTEMS

2.2.1 Globus Monitoring and Directory Service

In large scale distributed systems it is necessary to have access to accurate and up-to-date

information on the state of available resources, in order to allow for both selection and con-

figuration [18]. The Globus Monitoring and Directory Service (MDS) [18] provides a uniform

interface to this information, which can be collected from diverse information sources. The in-

formation sources can be any data collection service, such as Ganglia, producing either static

or dynamic data. Developers can also use the MDS to provide new information providers. The

MDS provides a consistent interface to both applications accessing data and the information

services providing the data.

The MDS has three main components, organised in a hierarchical structure:

Information Providers (IPs): these form the lowest level of the hierarchy, running on the

resource about which information is to be provided. The IP can be used to collect data

from any local data collection service. MDS provides a core set of information providers

that collect information such as CPU configuration, CPU load, operating system type,

15

and file system and memory information. In MDS, resources, such as organisations,

people, networks, or computers, are represented by objects. Instances of these objects

then form entries in the MDS in order to represent a specific resource. These entries

store information about the resource as attributes.

Grid Resource Information Service (GRIS): the GRIS also runs on the resource, and

provides the gateway to the information provided by the IPs. It forms the second level in

the MDS hierarchy. Clients can access aggregated data from the IPs by using the GRIS

interface. For example, in a cluster system being monitored using the Ganglia tool an

IP can be run on each node, collecting data from the ganglia monitoring daemon. Each

IP then registers with a single GRIS for the resource (i.e., compute node). Aggregated

information for that node can then be obtained by querying the GRIS.

Grid Index Information Service (GIIS): the GIISes form the higher layers in the hi-

erarchy, forming an aggregate directory of lower-level data [18]. Each GRIS registers

with a higher level GIIS. The GIIS then requests information from the GRIS. Clients

can then obtain aggregate information by querying the GIIS. It is also possible for a

GIIS to register with a further higher level GIIS. For example, if a site had several

clusters a site-level GIIS could be used to aggregate information from these. Another

project-level GIIS could then be used to aggregate information from multiple site-level

GIISes.

Originally MDS used a push model, but quickly changed to the present pull model.

MDS uses the API and data representations defined by the Lightweight Directory Access

Protocol (LDAP) directory service. Because of this, information produced by the MDS can

be viewed by using any LDAP browser. A set of PHP scripts have also been provided to

allow web-based browsing of data. However MDS is constrained to the LDAP hierarchical

representations of information (schema), although multiple parallel hierarchies representing

the same information are allowed. Also a hierarchy is statically defined, not dynamic.

16

2.2.2 GridICE

GridICE [4] is a monitoring infrastructure developed for use with a Grid Operations Centre

(GOC). A GOC is a term defined in the LCG and EGEE grid projects for an organisation

that can monitor and control a multi-institutional grid. GridICE was designed to be easily

integrated with existing grid middleware.

The GridICE architecture consists of five layers:

Measurement Service: The measurement service forms the base layer of the architecture,

used to collect data from the resources. The set of metrics defined are represented

by the well-established Grid Laboratory Universal Environment (GLUE) schema [3],

which has also been extended to include metrics related to a computer system. In the

GridICE architecture a computer system is considered to have a role in a grid, e.g. a

broker, that is defined by a set of processes that provide the functionality of that role.

For a particular role, therefore, metrics can be obtained from this set of processes.

Publisher Service: The purpose of this layer is to aggregate the data obtained by the

measurement service, and to provide access to the data for consumers. This is done by

using MDS. For example, in a cluster, data would be collected to a single edge node

with internet access, and then published to consumers through MDS.

Data Collector Service: A problem with MDS is that it does not provide persistent storage

of monitored data. It only holds the latest value for a given metric. This does not allow

for historical analysis of the data. The data collector service layer provides this. The

service periodically scans MDS to determine if a new source of information has been

registered and determines the metrics available from the registered sources. Values are

obtained for these metrics and persistently stored.

Detection and Notification and Data Analyzer Services: This is the fourth layer of

17

the architecture and allows for users to be notified when specific events occur. Perfor-

mance analysis, statistics and reports can be obtained from the Data Analyzer service.

Presentation Service: The final layer provides a graphical interface to users to allow them

to visualise the available information. The interface is web-based and provides three

different types of view:

GOC view: information from the entire set of resources being monitored by the GOC

Site view: information from the resources of a particular site

Virtual Organisation (VO) view: information from the set of resources to which

the members of a particular VO have access.

GridICE is essentially a very extended MDS.

2.2.3 Legion

Legion [26] was designed to provided a complete metacomputing environment. It is based on

an object-oriented design that has evolved since circa 1994. The functionality of the system

is provided by a set of core objects. The information system used in Legion is contained

in what is referred to in the Legion architecture as service objects, a set of objects that lie

between the core objects and users. The information system is a component of the resource

management infrastructure. The information system has two main components, the basic

resources and the information database.

Resources: Resources in Legion are considered to be of two types, hosts and vaults. Both

are represented by core objects. The host object is used to encapsulate machine infor-

mation [26] (such as processor and memory information), whereas the vault objects are

used to represent storage. All objects in Legion have persistent state associated with

them, a vault object is used to store this. The host objects also contain a number of

18

management functions, both for object and resource management, such as scheduling.

Information is stored by all Legion objects as attributes. These form what is referred

to as an attribute database. The host object refreshes these attributes periodically in

order to accurately reflect the current state of the resource.

Collections: The collection performs much the same function in the Legion infrastructure

as the GRIS in the Globus MDS. It collects information from the host objects, by

either the push or pull model. The collection queries the host to collect information

on its current state, this is the pull model. Hosts, however, can also push data to the

collections of which they are aware. The collection stores the data as a set of Legion

object attributes. Users can then access data on resources by querying the collection.

Legion defines its own collection query language for this. The query language allows

for field matching, semantic comparisons, and boolean combinations of terms [26]. All

collections are capable of both sending and receiving data from other collections. This

allows for the combination of collections within other collections.

2.2.4 Discussion

The decision to use an information system for the framework was based on the similarity

between the requirements of an information system, and those of the framework, as given in

Chapter 1. An information system must support: multiple, distributed information sources;

the failure and addition of information sources; and uniform access to diverse information

sources. It was the additional requirements of a relational model, and a dynamic information

schema, that dictated the choice of R-GMA.

The relational approach of R-GMA compares favourably to the hierarchical model of

LDAP-based systems such as MDS and GridICE. R-GMA allows for a dynamic information

schema, where users can define and publish their own data, something that is not possible in

centrally organised LDAP directory information trees (DIT). R-GMA can provide a global

19

view of the Grid by using automatic registry and schema replication mechanisms, whereas in

LDAP systems heirarchies of intermediaries must be set up manually [12] (it is also necessary

to optimise these DITs for popular queries as the LDAP query language is limited). The

proprietary Legion system, although not LDAP-based, defines its own query language as

opposed to relying on a well-known standard.

Although the R-GMA was chosen for this research, it does not preclude the use of other in-

formation systems. The SANTA-G framework is intended as a generic template for accessing

data collected by monitoring instruments through a grid information system. Implementa-

tions for other information systems, such as MDS, may be possible. Due to the use of the

pull model of data access by MDS, it would be possible to develop information providers that

could return dynamically generated information as requested. An implemented example of

this [13], is an information provider that passes received requests to the NWS, which then

accesses cached data, or performs a measurement, to obtain the required data.

2.3 DISTRIBUTED INTRUSION DETECTION

An important if somewhat unexpected result of this research has been a Grid Intrusion De-

tection System. This section provides some background to intrusion detection in expectation

of further discussion later in the thesis.

Detecting attacks on computers or networks, and computer misuse from either inside

or outside a network, is known as intrusion detection. Intrusion detection systems (IDS)

provide three main functions: monitor, detect, and respond [25]. Policies are defined by the

IDS administrator in the negative, i.e., those events that should NOT be seen on the network.

The IDS monitors the network, or individual computers, and if one of the defined events is

detected then the system responds by issuing an alert to the responsible higher-level system

or person.

There are two main types of IDS, host-based, and network-based.

20

Host-based IDS (HIDS) will only protect the host system. This is done by either moni-

toring the network traffic received/sent by the host, or by monitoring the services and system

files. By monitoring system files it is possible for host-based systems to detect unauthorised

file modification (e.g. using Tripwire [48]) that could indicate a compromised system, or an

attempted unauthorised activity from a user. Host-based systems can also analyse the net-

work traffic for the host by collecting only packets addressed to the host, or sent by the host.

This allows for the IDS to be configured to look for traffic specific to the services running on

the host.

Network-based IDS (NIDS) will monitor the network traffic seen on the entire network seg-

ment they are connected to, rather than only the traffic addressed to a specific host. Packet-

sniffing is used to collect all the network packets seen. These packets are then checked against

the IDS policies for the network to determine whether they are acceptable. Alerts are gener-

ated for any packets that match the signature of possible malicious activity. Network-based

systems can be used to detect attacks such as denial of service originating from outside the

network. Whereas a host-based system will be effective at detecting a successful compromise

of a system, a network-based system will detect the initial access attempt.

A third type of IDS is a Distributed Intrusion Detection System (DIDS) [16]. In these

systems, multiple IDS distributed across different networks will co-operate to report detected

alerts to a centralised location.

A drawback with NIDS is that they can only see traffic on the network segment that

they are connected to. This can make it difficult, if not impossible, to detect large scale

attacks on an infrastructure that spans multiple networks. Having separate IDS installed at

each site also implies the need for a separate analysis team at each site, increasing cost and

complexity. It can also slow down the detection and response to an attack. The collection

of dispersed information is vital in intrusion detection. In order to detect a new attack or

exploit effectively the analysts must have access to the data as quickly as possible. DIDS has

been developed to solve these issues.

21

There are currently several systems deployed that implement a DIDS. All these systems

follow a similar architecture of multiple distributed IDS reporting detected alerts to a central

server. The IDS deployed can be either a NIDS or HIDS, or more commonly both. The alerts

can be sent to the central server using either an automated system or manually uploaded by

the site administrator. The alerts can be sent in ‘real time’ as they are detected, or possibly

collected and uploaded as a batch job at regular intervals. At the central server usually some

aggregation of the alerts and analysis is then done in order to generate some statistics on

the types of alerts being detected and to identify any threats. This information is then made

available to the sites participating in the system in the form of either further alerts or often

through a web interface.

As stated there are currently several examples of this approach. DShield is an internet

based system that collects logs from firewalls in order to try and detect ‘trends in activity

and to develop better firewall rules’ [15]. Logs can be submitted by any registered user, using

either client software to automate the process, or manually via a web form. Reports of attacks

are sent to the ISP from which the attack originated. A recent system (at time of writing) is

the Fingerprint Sharing Alliance (FSA) [2]. This ‘is a coalition of telecommunications com-

panies around the globe that are stamping out cyber attacks that cross company boundaries,

continents and oceans’ [2]. The FSA uses proprietary software to collect traffic on a service

provider’s network. Whenever activity is detected that is abnormal (this is determined by

comparing the activity to previous ‘normal’ traffic patterns) the service provider is alerted.

The provider can then decide whether the activity is malicious. If so then a ‘fingerprint’ of

the activity is generated that is then shared in order that the other members of the alliance

can detect any further occurrences of that activity.

In [32] a system is proposed that utilises a ‘grid’ model for performing intrusion detection.

The main goal of the system is to detect denial of service (DoS) and distributed denial of

service attacks (DDoS). They argue that a single NIDS could lose its detection capabilities

during attacks such as these due to the high volumes of network traffic experienced, since

22

a NIDS could begin dropping packets if the load became such that it could not process the

traffic quickly enough. Also the load on the host, in terms of CPU usage, could become

very high and ultimately the machine could be rendered unresponsive. The solution they

describe is to use a group of other nodes to perform the intrusion detection analysis. The

role of a NIDS is replaced with that of a dispatcher. One or more dispatchers use Tcpdump

to continuously collect short periods (2 seconds) of network traffic into log files. Once a file

is created the dispatcher contacts a scheduler in order to be assigned a detection node, i.e., a

node that will do the analysis. The scheduler chooses the ‘best’ detection node to perform the

analysis and also ensures the load is distributed evenly across the group of detection nodes.

The dispatcher then transfers the file to the selected node using Globus GridFTP and starts

the detection process by using ‘globus-job-run’, hence the ‘grid’ orientation. Upon receiving

a trace file the detection node analyses the packets contained in the file using custom attack

detection algorithms to determine if an attack is taking place. If an attack is detected an

entry is made in a ‘Block List Table’ that is stored in a central database. A record for any

suspect packets that may indicate an attack are stored in a ‘Suspect Table List’. A second

phase of detection is performed on these tables by a ‘chronic detector’. The chronic detector

uses the same detection algorithms as the first phase of detection but looks for attacks over

a longer duration, 10 to 20 seconds, as opposed to the initial 2 seconds analysed in the first

phase, i.e., it looks for chronic attacks. Although this system is aimed at using a grid model

for intrusion detection, rather than providing an intrusion detection system for the Grid, it

could be adapted for the latter purpose.

23

Chapter 3

R-GMA

[The description of the R-GMA contained in this chapter is an updated extract from a paper

(see [7]) of which I was a named author]

3.1 THE GRID MONITORING ARCHITECTURE

The Grid Monitoring Architecture (GMA)[5] of the GGF, as shown in Figure 3.1, consists of

three components: Consumers, Producers and a directory service, which is referred to in the

R-GMA as a Registry.

Producer

Consumer

Registry
Transfer

Data

Store location

Lookup location

Figure 3.1: Grid Monitoring Architecture

24

In the GMA Producers register themselves with the Registry and describe the type and

structure of information they want to make available to the Grid. Consumers can query the

Registry to find out what type of information is available and locate Producers that provide

such information. Once this information is known the Consumer can contact the Producer

directly to obtain the relevant data. By specifying the Consumer/Producer protocol and the

interfaces to the Registry one can build inter-operable services. The Registry communication

is shown on Figure 3.1 by a dotted line and the main flow of data by a solid line.

The current GMA definition also describes the registration of Consumers, so that a Pro-

ducer can find a Consumer. The main reason to register the existence of Consumers is so

that the Registry can notify them about changes in the set of Producers that interests them.

Although the GMA architecture was devised for monitoring, the R-GMA uses it as a basis

for a combined information and monitoring system. The case for this was argued in [11]; that

the only thing which characterises monitoring information is a time stamp, so in the R-GMA

there is a time stamp on all measurements, saying that this is the time when the measurement

was made, or equivalently the time when the statement represented by the tuple was true.

The GMA does not constrain any of the protocols nor the underlying data model, so

the implementation of the R-GMA was free to adopt a data model which would allow the

formulation of powerful queries over the data.

3.2 THE R-GMA

R-GMA is a relational implementation of the GMA, developed within the European DataGrid

(EDG), which harnesses the power and flexibility of the relational model. R-GMA creates the

impression that you have one RDBMS per Virtual Organisation (VO). However it is important

to appreciate that the system is a way of using the relational model in a grid environment

and not a general distributed RDBMS with guaranteed ACID properties. All the producers

of information are quite independent. It is relational in the sense that Producers announce

25

what they have to publish via an SQL CREATE TABLE statement and publish with an SQL

INSERT and that Consumers use an SQL SELECT to collect the information they need. For

a more formal description of R-GMA see [12].

3.2.1 Query types and Producer types

There have so far been defined not just a single Producer but four different types: a DataBase-

Producer, a StreamProducer, a LatestProducer and a CanonicalProducer. All appear to be

Producers as seen by a Consumer, but they have different characteristics.

The producers are instantiated and given the description of the information they have

to offer by an SQL CREATE TABLE statement and a WHERE clause expressing a predicate

that is true for the table. Currently this is of the form WHERE (column 1=value 1 AND

column 2=value 2 AND ...). To publish data, in all but the CanonicalProducer, a method

is invoked which takes the form of a normal SQL INSERT statement. The CanonicalProducer,

though in some respects the most general, is somewhat different due to the absence of a user

interface to publish data via an SQL INSERT statement; instead, it triggers user code to

answer an SQL query. For more detail see Section 4.2.

Three kinds of query are supported: History, Latest and Continuous. The history query

might be seen as the more traditional one, where you want to make a query over some

time period, including ‘all time’. The latest query is used to find the current value and a

continuous query provides the client with all results matching the query as they are published.

A continuous query is therefore acting as a filter on a published stream of data.

The DataBaseProducer supports history queries. It writes each record to an RDBMS.

This is slow (compared to a StreamProducer) but it can handle joins. The StreamProducer

supports continuous queries and writes information to a memory structure where it can be

picked up by a Consumer. The LatestProducer supports latest queries by holding only the

latest records in an RDBMS.

26

Each record has a time stamp, one or more fields of which define what is being measured

(e.g. a hostname), and one or more fields which are the measurement (e.g. the 1 minute

CPU load average). The time stamp and the defining fields are close to being a primary key,

but as there is no way of knowing who is publishing what across the Grid, the concept of

primary key (as something globally unique) makes no sense. The LatestProducer will replace

an earlier record having the same defining fields, as long as the time stamp on the new record

is more recent, or the same as the old one.

Producers, especially those using an RDBMS, may need cleaning from time to time.

R-GMA provides a mechanism to specify those records of a table to delete by means of a

user-specified SQL WHERE clause which is executed at intervals that are also specified by the

user. For example it might delete records more than a week old, or it may only hold the

newest one hundred rows, or it might just keep one record from each day.

Another valuable R-GMA component is the Archiver which is a combined Consumer-

Producer and probably should have been called a republisher. An Archiver works by taking

over control of an existing Producer and instantiating a Consumer for each table it is asked

to archive. This Consumer then connects to all suitable Producers and data starts streaming

from those Producers, through the Archiver and into the new Producer. The inputs to

an Archiver are always streams from a StreamProducer. It will re-publish to any kind of

Insertable. This allows useful topologies of components to be constructed such as the

one shown in Figure 3.2, which shows a number of StreamProducers (labelled SP) and a

layer of Archivers (A) publishing information via other StreamProducers. Finally there is an

Archiver to a LatestProducer (LP) and an Archiver to a DataBaseProducer (DP) to answer

both Latest and History queries.

The R-GMA, uniquely, includes a mediator (a kind of broker that is hidden behind the

Consumer interface) specifically to make the R-GMA easy to use. The mediator knows that

Producers are associated with views on a virtual database. Currently views have the form:

27

Figure 3.2: A possible topology of R-GMA components

SELECT * FROM <table> WHERE <predicate>

This view definition is stored in the Registry. When queries are posed, the Mediator uses

the Registry to find the right Producers and then combines information from them.

3.2.2 Architecture

R-GMA is currently based on servlet technology (although it is currently being converted

to web services). Each component has the bulk of its implementation in a servlet. Multiple

APIs in Java, C++, C, Python and Perl are available to communicate with the servlets.

Figure 3.3 shows the communication between the APIs and the servlets. When a Producer is

created its registration details are sent via the Producer Servlet to the Registry (Figure 3.3a).

The Registry records details about the Producer, which include the description and view of

the data published, but not the data itself. The description of the data is actually stored as a

reference to a table in a separate Schema servlet. In practise the Schema is co-located with

the Registry. Then when the Producer publishes data, the data are transferred to a local

Producer Servlet (Figure 3.3b).

28

When a Consumer is created its registration details are also sent to the Registry, although

this time via a Consumer Servlet (Figure 3.3c). The Registry records details about the type

of data that the Consumer is interested in. The Registry then returns a list of Producers

back to the Consumer Servlet that match the Consumers selection criteria.

The Consumer Servlet then contacts the relevant Producer Servlets to initiate transfer of

data from the Producer Servlets to the Consumer Servlet as shown in Figures 3.3d-e.

The data is then available to the Consumer on the Consumer Servlet, which should be

close in network terms to the Consumer (Figure 3.3f).

As details of the Consumers and their selection criteria are stored in the Registry, the

Consumer Servlets are automatically notified when new Producers are registered that meet

their selection criteria.

The system makes use of soft state registration to make it robust. Producers and Con-

sumers both commit to communicate with their servlet within a certain time. A time stamp

is stored in the Registry, and if nothing is heard by that time, the Producer or Consumer is

unregistered. The Producer and Consumer servlets keep track of the last time they heard

from their client, and ensure that the Registry timestamp is updated in good time.

29

Figure 3.3: Relational Grid Monitoring Architecture

30

Chapter 4

THE SANTA-G MONITORING

FRAMEWORK

4.1 FRAMEWORK PURPOSE

The purpose of the framework is to provide a generic template to allow for ad-hoc moni-

toring experiments with external instruments in a grid environment. The framework allows

for the information captured by an external instrument to be integrated into a grid informa-

tion system. Here the information system used is R-GMA. The term ‘Ad-hoc’ monitoring

experiments refers to experiments that are potentially one-time, and in which the set of con-

tributing information sources, and the data they provide, has been specifically tailored to the

experiment.

The external instruments referred to could be anything. Examples of such devices are

logic analysers or oscilloscopes. The difficulty with this class of device is that they generally

create a massive amount of data at a very fast rate. To cope with these rates the monitoring

data is often stored by the instrument into binary log files. Data stored in this way is not

very compatible with the R-GMA model however. When dealing with a large volume of data

31

it may not be practical to convert it all to a tabular storage model. Moreover, it may be

inefficient to transfer the data to a Producer servlet with SQL INSERT statements. It may

be judged better to leave the data in its raw form at the location where it was created.

In order to allow for this a slightly different form of R-GMA producer was necessary, one

that did not publish data using the Insertable interface, as with the other producer types,

but that allows a user to instead custom-code the way in which the producer responds to a

user’s request for data. This producer is the CanonicalProducer. The CanonicalProducer is

able to cope with large volumes of data by accepting SQL queries and using user-supplied

code to return selected information in tabular form when required. The CanonicalProducer

forms the central component of the framework.

4.2 THE CANONICAL PRODUCER

As described in Section 3.2 the R-GMA is built using Java servlet technology. In order to

implement the CanonicalProducer both a servlet and an API had to be conceived.

In general the R-GMA producers are sub-classes of the Insertable class, the class that

provides the insert method that is used by the producers to send data to the servlets as an SQL

INSERT string. The CanonicalProducer is different however; it is a subclass of the Declarable

class. This means that it inherits the methods for declaring tables, but not inserting data.

Figure 4.1 shows the communication between the servlets for a CanonicalProducer. When

the other producer types publish data, the data is transferred to a local producer servlet via

a SQL INSERT. The CanonicalProducer Servlet, however, is never sent raw data, which is

instead retained local to the user’s CanonicalProducer code.

A CanonicalProducer is instantiated by calling the API constructor method:

CanonicalProducer myProducer =

new CanonicalProducer(8998, CanonicalProducer.HISTORY);

32

CanonicalProducer

API

User's Canonical

Producer Code

Consumer

API

User's Consumer

Code

Registry

API

Producer

API

Registry

API

Canonical

Producer

Servlet
 Registry

Servlet

select data

select data

transfer

data

transfer

data
 select data

register Consumers,

and select Producers

Consumer

Servlet

Figure 4.1: CanonicalProducer servlet communication

This creates a new CanonicalProducer object, which registers itself with the Canonical-

Producer servlet. The first parameter is a port number. The CanonicalProducer servlet

expects to be able to connect back, by way of a socket connection, to the CanonicalProducer

code on this port in order to satisfy SQL queries. The second parameter describes the type

of query that this producer code can satisfy, HISTORY or LATEST.

The table, or tables, that this producer publishes are then declared using the declareTable

method.

myProducer.declareTable

("cpuLoadUsage", # table name.

" WHERE (ipAddress=’" + this.ipAddress + "’)", # predicate.

"CREATE TABLE cpuLoadUsage(" + # create table

"ipAddress VARCHAR(50) NOT NULL PRIMARY KEY, " + # statement.

"cpuLoad REAL)"

)

When the servlet receives a query it opens a socket connection on the given port number

to the CanonicalProducer code and forwards the SQL SELECT query to the producer code.

33

The producer code must then execute the query, in whatever way it likes, and return a

ResultSet to the servlet. The servlet can then return this ResultSet to the consumer. With

the other producer types the producer is never aware of the SQL SELECT queries, they

simply push the data to the servlet, and it is the servlet that carries out the SQL query.

With a CanonicalProducer, however, the servlet has only the very minimum functionality,

hence its name. To satisfy the query, it simply acts as an intermediary, forwarding the query

to the correct CanonicalProducer instance and waiting for results to be returned.

Results should be returned to the servlet as XML ResultSets. The form of these is as

follows:

<?xml version = ’1.0’ encoding=’UTF-8’ "standalone=’no’?>

<edg:XMLResponse xmlns:edg=’http://www.edg.org’>

<XMLResultSet>

<rowMetaData>

<colMetaData>ColumnName

</colMetaData>

</rowMetaData>

<row><col>ColumnValue</col></row>

</XMLResultSet>

</edg:XMLResponse>

One important issue with the CanonicalProducer is the following. For the other producer

types one can estimate how often the producer will contact the servlet, as it should be regu-

larly inserting data. This is not the case with the CanonicalProducer. Because the Canoni-

calProducer never actually inserts data, the servlet will never be informed as to whether the

producer is still alive, and therefore will not inform the Registry. Hence, after the R-GMA

termination interval the CanonicalProducer would be presumed to be dead and its details

would be removed from the Registry. To avoid this a CanonicalProducer implementation

should ensure that it regularly sends a sign of life to the servlet. This can be achieved by a

34

thread that periodically, at intervals less than the termination interval, contacts the servlet.

Because the user must write the code to parse and execute the query, the CanonicalPro-

ducer can be used to carry out any type of query on any type of data source.

4.3 FRAMEWORK ARCHITECTURE

The framework architecture can be divided into three main parts: the device used to capture

the monitoring data from the resource, i.e., the external instrument; the user-implemented

code for accessing and searching the monitoring data; and the interface to the information

system, i.e., the CanonicalProducer API used by the code to register with the R-GMA and

to declare the tables that the code publishes, see Figure 4.2.

Grid Resource

Monitoring Instrument

Captured Data

User-implemented Code

Information System

Interface

Information System

Monitoring

Figure 4.2: Monitoring framework

In the framework the user-implemented CanonicalProducer code, which makes use of the

CanonicalProducer API, provides the bridge between the raw data and the R-GMA system.

A typical implementation of CanonicalProducer code would consist of several components,

35

as shown in Figure 4.3. Although the figure shows the data being collected by an instrument

and stored in log files the data source could be anything. For example, the code could be

used to trigger a script to collect the required data in response to a received query.

Device

Monitoring

Instrument

Log File
 Search

Class

SQLParser

Processing

Thread

Listener

User's

Canonical

Producer Code

CP

API
 Canonical

Producer

Servlet

Register,

declare tables

ServerSocket

ResultSet

Connection

query

data
seek

Implemented

by user

Figure 4.3: Example structure of user-implemented CanonicalProducer code

Producer Code: this would be the main class implemented by the user, which would use

the CanonicalProducer API to instantiate a producer object and declare the tables that

the producer publishes. It would then start a Listener to wait for connections from the

servlet.

Listener: this would be created by the main class. It would need to create a ServerSocket

and then listen on this socket for connections from the servlet. When a connection is

obtained it would be passed to a processing thread to execute the query. The Listener

would then continue listening for new connections.

36

Processing Thread: a new processing thread would receive the connection to the servlet

from the Listener. The processing thread would read the SQL SELECT query from the

socket connection, and process it over the available data. When the results had been

accumulated they can then be returned to the servlet, over the same socket connection.

SQL Parser: some additional utility classes would be needed by the processing thread, for

example, a class to parse the SQL SELECT statement received from the servlet.

Search Class: a class would also be needed to search the available data for results that

satisfy the query. This class might, for example, perform seek operations on a binary

log file to find the data, or possibly invoke a script to collect the data. Obviously many

optimizations are possible.

The process of developing CanonicalProducer code would involve the following steps:

1. Map data produced by the information source (e.g., instrument, log files, script) to a

set of relational tables

2. Define the necessary level of SQL support

3. Implement code to retrieve data from the information source

4. Implement search code to process queries on data retrieved from the information source

The complexity of the CanonicalProducer code will depend on that of the data source to

be accessed, and on the required level of SQL support. In order to illustrate the development

process, the following describes an example implementation that provides access to data

collected by Ganglia (see Section 2.1.2). This example of CanonicalProducer code is known

as Ranglia, and was implemented by the R-GMA developers.

The Ganglia Meta Daemon stores data using constant size round robin databases (RRD).

Mapping the data to a set of relational tables is, therefore, a relatively simple task. The

37

complexity in this example comes from the required level of SQL support. As the data is

contained in a large number of tables, where each table represents a file of which the RRD

is composed, the queries necessary to extract data will possibly be quite complex, and will

require the use of JOINS. Implementing this level of SQL support in the CanonicalProducer

code would require significant effort. Therefore a different approach is used here.

Upon receiving a query only some very simple initial parsing is performed. The names of

the tables contained in the query are obtained, and passed to the code used to retrieve data

from the information source. Data is retrieved by reading those files that match the table

names contained in the SQL SELECT statement. Rather than providing additional code to

then process the query over the retrieved data, the data is instead inserted to an in-memory

database, created using Hsqldb [22]. The in-memory database is then used to process the

query. Results retrieved from the database are translated to the required format, as defined

above, and returned to the consumer. Figure 4.4 summarises the query process.

Listener
Processing

Thread

Search

Class

Ganglia Data Files

In-Memory

Database

1. Receive query

2. Spawn service

thread

3. Extract table

names

4. Read in reqd

data files

5. Store data in

database

6. Submit query

to database

7. Translate and return

results

8. Return results

Figure 4.4: Ranglia query processing

This example provides an interesting design alternative, which alleviates the necessity to

provide complex query processing code, and therefore significantly decreases the effort which

would otherwise have been required to implement the CanonicalProducer code. It does,

however, require that the relevant data can be extracted to form the in-memory database.

38

Chapter 5

NETTRACER DESIGN AND

ARCHITECTURE

The following chapter describes the design and architecture of NetTracer. NetTracer imple-

ments the framework described in the previous chapter; it was designed by the author, within

the EU CrossGrid project, as the demonstrator of this concept. As stated the framework is

comprised of three main components:

1. an external monitoring instrument, to obtain monitoring data from the resource

2. user-implemented code for accessing and searching the monitoring data

3. the interface to the information system, i.e., the CanonicalProducer API

The NetTracer was designed to provide three main functions:

1. Allow a user to initiate tracing of grid resources, collect the monitoring data, and

provide access to the data through the grid information system

2. Allow a user to select the required subset of data, by way of the grid information system

39

3. Provide the information required by dependent subsystems within the CrossGrid grid

services and tools system

NetTracer can be broken down into two main modules that provide these functions: a

publishing module and a viewer module.

The purpose of the publishing module is to monitor the log files created by the external

monitoring instrument, and to provide access to the data contained in these log files through

the grid information system. Once the data is available through the system, users (including

dependent tasks of the CrossGrid project) can access it for further analysis by using other R-

GMA components such as Consumers and Archivers. The Viewer module is provided to allow

users to visualise the data, and to serve as an example of the use of the R-GMA Consumer

API to access the monitoring data. The Viewer module consists of a Java Swing GUI that

uses the Consumer API to collect subsets of the available data, which are then presented to

users graphically or in a table.

The publishing module is composed of a further two components, the QueryEngine and

the Sensor, as can be seen in Figure 5.1.

Log Files

Trace Directory

Sensor

LatestProducer

API

CanonicalProducer

API

QueryEngine

Sensor and

log file

information

From R-GMA

To R-GMA

Figure 5.1: NetTracer publishing module

40

The reason the functionality is separated into two components is that there may be many

sensors for each QueryEngine. The sensor works in conjunction with the external instru-

ment(s) to monitor the log files of data created. The QueryEngine provides the remaining

two elements of the framework: it implements the CanonicalProducer code that accesses the

data gathered, and it also makes use of the CanonicalProducer API in order to register with

the R-GMA system.

It is intended in the design, for a sensor to be deployed on each of the nodes to be

monitored. The QueryEngine would then be hosted on a single machine to which the R-

GMA host and each of the monitored nodes has access. It is possible for the QueryEngine

host and the R-GMA host to be the same machine. The NetTracer could be deployed as

shown in Figure 5.2.

Sensor

Monitored

Node 1

Sensor

Monitored

Node 2

Sensor

Monitored

Node n

QueryEngine

NetTracer

host

Tomcat

CanonicalProducer

Servlet

LatestProducer

Servlet

R-GMA host

Figure 5.2: Example NetTracer deployment

The Sensor, in this demonstrator, as it will run on the node to be monitored, must

be as lightweight and as easy to install as possible. For this reason the majority of the

processing and data storage should be handled by the QueryEngine. In order for a user

to be able to query NetTracer they must be able to obtain information about the available

sensors and the log files stored on the nodes hosting these sensors. The task of storing

41

the file information is performed by the QueryEngine. The situation is analogous to the

R-GMA, where the QueryEngine becomes a registry, storing information on the available

sensors, and the sensor becomes a producer, publishing information on available log files to

the QueryEngine. Sensors register with the QueryEngine on start-up. The QueryEngine

records the sensor details and publishes them to the R-GMA. Also the sensor sends updates

to the QueryEngine when new log files are detected, which are again stored and published to

the R-GMA by the QueryEngine. If a sensor is shutdown the QueryEngine is informed and

its details are removed.

The Sensor provides for two example data sources, Tcpdump [50] and Snort [6]. Tcpdump

captures network packets from a node’s network interface card and stores the packet data into

raw binary log files. Snort is a network intrusion detection system that can log alerts, and

the packet that triggered the alert, to a Tcpdump-compatible logfile, when suspect packets

are detected.

The QueryEngine is the central component of the publishing module. It is the QueryEngine

that provides the interface from NetTracer to the R-GMA by using the CanonicalProducer

API. It implements the components described in Section 4.3. It is the QueryEngine that

receives queries submitted to the R-GMA. It maps the query to a specific log file, or set of

log files, maintained by a sensor, or set of sensors, accumulates the required data from the

files to satisfy the query, and returns the resulting data set to the R-GMA.

The QueryEngine is designed to be extensible, i.e., the core functionality, the R-GMA

interface, query parsing, etc., can be re-used for multiple data sources. This is achieved

through the use of an abstract Filter class and a XML schema file. The Filter class can be

extended to allow for data stored in different log file formats. The Filter class describes the

required methods for accessing the log files, loading a packet contained in the log file, and

obtaining fields from the packet.

42

abstract class F i l t e r {

/∗∗

∗ Tests to see i f the cu r r en t l y loaded packet occupies

∗ a row in the t a b l e i d e n t i f i e d by t a b l e I d .

∗/

abstract boolean checkTableConstra ints (int t ab l e Id) ;

/∗ Closes the current l o g f i l e . ∗/

abstract void c l o s e F i l e () throws IOException ;

/∗∗

∗ Trans la tes a va lue g iven in a WHERE pred i ca t e in to a va lue t ha t can

∗ be used during query execu t ion .

∗/

abstract Object decodeWhereValue (int tab le Id , int f i e l d I d , S t r ing toDecode) ;

/∗∗

∗ Extrac t s a f i e l d from the cu r r en t l y loaded packet

∗ f o r i n c l u s i on in a r e s u l t s e t .

∗/

abstract St r ing ge tRe su l tF i e l d (int tab le Id , int f i e l d I d) ;

/∗∗

∗ Extrac t s a f i e l d from the cu r r en t l y loaded packet

∗ f o r comparison with a WHERE pred i ca t e va lue .

∗/

abstract Object ge tSea rchF i e ld (int tab le Id , int f i e l d I d) ;

/∗ Loads a l o g f i l e . ∗/

abstract int l o adF i l e (RemoteFile f i l e) ;

/∗ Loads the next network packet from the current l o g f i l e . ∗/

abstract int loadNextPacket () ;

}

In order to create a new QueryEngine for a specific log file format a new Filter must

be written that implements each of these methods. The Filter class is used to access a log

43

file, by using the loadFile() method, and to read network packets from this file, using

the loadNextPacket() method. The tables of data that the QueryEngine is to publish are

described in a XML schema file. The schema file defines a mapping from table and column

names, to unique table and column ID values, which are used internally by the QueryEngine.

A negative ID value indicates a component of the primary key. The schema file is parsed

by the QueryEngine on startup, and the required ‘CREATE TABLE’ statements needed to

register the tables in the R-GMA are generated. Each table is described in the file in the

following way:

<table id="0" name="TableName">

<field id="-4" key="primary" type="VARCHAR(100)">siteId</field>

<field id="-3" key="primary" type="VARCHAR(100)">sensorId</field>

<field id="-2" key="primary" type="INT">fileId</field>

<field id="-1" key="primary" type="INT">packetId</field>

<field id="0" type="VARCHAR(100)">column1</field>

<field id="1" type="VARCHAR(100)">column2</field>

.

.

</table>

Each table, and each column within the table, is assigned a unique ID and a name. The

four components of the primary key are: siteid, which identifies the site on which NetTracer

is running; sensorId, which is the identifier of the sensor that is running on a node within

the site; fileId, which identifies a particular log file on a sensor node; and packetId, which

identifies a packet within the log file, are required in every table.

Each table also contains two time fields, MeasurementDate and MeasurementTime. These

fields are required by the R-GMA system to be present in every table published. As the

MeasurementTime field only has a resolution of seconds, it is not possible to use these fields

to store the time the measurement was made, i.e., the time the packet was captured. The

time of measurement is, instead, recorded and published in each table as separate second

and microsecond fields. The MeasurementDate and MeasurementTime fields are set to the

44

current date and time, representing the time the tuple enters the R-GMA system.

The QueryEngine when parsing a SQL query translates fields into (tableId, fieldId) pairs,

as defined by the schema. These values are then used in the Filter class to obtain the required

field from the currently loaded network packet. Two methods must be implemented for this,

getSearchField() and getResultField(). getSearchField() should read a field from the

packet in a form that can be used in comparisons during query execution, for example, in the

EthernetFilter, fields are read from the Tcpdump log file as long values. getResultField()

obtains the values as they should appear in a result set, for example, again with the Eth-

ernetFilter, IP addresses read from the file as long values are converted by this method to

IP addresses in the form iii.jjj.kkk.lll. The final method decodeWhereValue() is necessary

when values specified as part of a WHERE predicate need to be converted prior to query

execution. For example, if searching for a specific IP address, the IP address must be first

converted by this method into the same data type as is returned by the getSearchField()

method.

Two example filters and their associated XML schema files have been implemented, an

EthernetFilter for use with Tcpdump format logfiles (i.e., Ethernet tracing), and a SCIFil-

ter for use with trace files collected by the Computer Architecture Group’s SCI [1] trace

instrument [34].

For the demonstrator, the Viewer module provides a custom consumer and graphical user

interface (GUI) to allow users to browse the data obtained by NetTracer. The Viewer GUI

allows users to view full packets from the log files of sensors or to submit a SQL query in

order to obtain subsets of the available data. Certain other utilities are also provided, such

as a query builder to construct complex queries.

The design of the Viewer module is reasonably straightforward. A Java Swing GUI is

provided which makes use of the Consumer API to submit SQL queries to the R-GMA and

to receive result sets in response. The individual fields of these result sets are then extracted

and displayed either graphically or in a tabular form.

45

Chapter 6

NETTRACER

IMPLEMENTATION

6.1 THE PUBLISHING MODULE

As described in Chapter 5, the NetTracer publishing module is composed of two components,

the Sensor and the QueryEngine.

6.1.1 The Sensor

In the NetTracer system, for network monitoring, two main sensor types have been imple-

mented, Tcpdump and Snort. The Tcpdump Sensor can be operated in one of two modes,

dynamic and static. The static mode is used to publish details of a set of pre-acquired

log files, principally for testing purposes. The startup and shutdown sequence for both the

Tcpdump and Snort Sensor is the same. It is the functionality of the sensors whilst they are

running that distinguishes the sensor types. The Snort Sensor type is described in detail in

Chapter 8.

A sensor’s configuration is stored in a file, generated by a configuration script. This file

46

contains: the type of sensor to start (i.e., Tcpdump or Snort), contact information for the

QueryEngine (i.e., hostname and port number), the DN of the authorised QueryEngine’s

host certificate, and the trace directory (i.e., the directory that contains the log files), as well

as information specific to the sensor type.

A sensor registers with the specified QueryEngine at startup, and upon successful regis-

tration receives an ID in response, which is then used in all future communications with the

QueryEngine. A sensor unregisters at shutdown by sending a message to the QueryEngine

informing it that the sensor is closing, and that its details should be removed from the sensor

information tables.

The Tcpdump Sensor type, when operating in dynamic mode, is used to both invoke

Tcpdump, to collect network traffic, and to then monitor the log files of network packet

data generated. The sensor invokes Tcpdump, using the arguments contained in the sensor’s

configuration file. These arguments specify the directory into which Tcpdump should write

(i.e., the trace directory), and also the maximum size of a log file. When a log file reaches

this maximum size, Tcpdump closes the file and begins writing to a new log file. The sensor

monitors the trace directory, waiting for new log files to be created. Upon detection of a new

log file the sensor informs the QueryEngine, which records this event. The sensor maintains

the log files in a queue, the maximum length of which is stored in the sensor’s configuration.

When a new file is detected it is added by the sensor to the head of the queue, and if by so

doing the maximum queue length is exceeded, the oldest file is removed and either deleted

or archived, i.e., compressed and moved to an archive directory.

Figure 6.1 shows the startup sequence for a dynamic Tcpdump Sensor.

47

Tcpdump

Tcpdump

Sensor

QueryEngine

register

assign sensorId

invoke

Log Files

monitor

network

monitor log files directory

detect new log file

send new file update

store sensor

details

store file

details

Figure 6.1: Dynamic Tcpdump Sensor startup sequence

48

It was intended to keep the Sensor as simple and lightweight as possible. The structure

of the Sensor component is shown in Figure 6.2.

getTableType()

tableType : String

fields : Vector

TableRow

getSocket()

run()

sendMessage()

sendNotify()

sensorId : String

UpdateQuery

EngineThread

notifyUpdater()

parseAlert()

readAlert()

run()

sendSnortAlertUpdate()

alertMode : int

alertFile : File

SnortMonitor

archive()

notifyUpdater()

run()

sendFileUpdate()

sendNewFileUpdate()

pollInterval : int

queueFilesDirectory : String

FileMonitor

startTCPdump()

stopTCPdump()

verifyArgs()

TCPdump : process

traceDirectory : String

TCPdumpInvoker

close()

startStaticSensor()

startTcpdumpSensor()

startSnortSensor()

invoker: TCPDumpInvoker

fm : FileMonitor

sm : SnortMonitor

sfm : SnortFileMonitor

Sensor

run()

archiveDirPath : String

fileToZip : File

ArchiveFile

notifyUpdater()

run()

sendFileUpdate()

pollInterval: int

snortFilesDirectory: String

Snort
FileMonitor

Figure 6.2: Sensor class diagram

The following describes the classes and their function:

Sensor: the main class of the Sensor component.

TCPdumpInvoker: used by the dynamic Tcpdump Sensor to invoke a Tcpdump process.

49

Tcpdump is started using the arguments specified during configuration of the sensor.

Also specified in the sensor’s configuration are the trace directory, the directory into

which Tcpdump will create the log files, and the maximum log file size, the size at

which Tcpdump will close the current log file and create a new file. The filename is

composed from the hostname of the machine followed by a number, which is increased

with each file created, e.g. hostname, hostname2, hostname3.

FileMonitor: used by the dynamic Tcpdump Sensor to periodically poll the trace directory

to check if a new file has been created. The FileMonitor is also responsible for managing

the queue of log files.

ArchiveFile: when the maximum number of log files are being maintained in the queue and

a new log file is detected by the FileMonitor class, then the oldest file in the queue is

removed and passed to the ArchiveFile class. If the archive variable is set to ARCHIVE

in the sensor’s configuration, then this class will compress the file and move it to the

archive directory, otherwise the file is deleted.

SnortMonitor: used by the Snort Sensor type to monitor the Snort alerts log file. When a

new alert is entered into the file, the SnortMonitor reads the alert, and sends an update

message that encapsulates the alert to the QueryEngine.

SnortFileMonitor: monitors the packet log files generated by Snort. Updates are sent to

the QueryEngine when new log files are detected.

UpdateQueryEngineThread: used by the sensor to send update messages to the QueryEngine.

The Sensor component also provides access to the log files stored in the trace directory

on the host machine, by implementing a simple file server that listens for file access requests

from the QueryEngine. A class diagram for the file server is shown in Figure 6.3(a).

50

close()

listenSocket()

run()

server : SSLServerSocket

SSLFileServer

checkClientTrusted()

checkServerTrusted()

getAcceptedIssuers()

trustedDN : String

tm : TrustManager

QECertTrustManager

cleanUp()

isCorrectFileName()

listFiles()

process()

run()

serveFile()

write()

writeByte()

writeInt()

in : BufferedReader

out : DataOutputStream

client : SSLSocket

ClientThread

(a) Server

exists()

getHost()

getName()

getPath()

getPort()

isRemote()

isSensorRemote()

list()

file : String

host : String

Path : String

RemoteFile

available()

close()

createSSLSocket()

mark()

markSupported()

read()

skip()

in : DataInputStream

out : PrintWriter

socket : SSLSocket

RemoteFileInputStream

(b) Client

Figure 6.3: Remote file server

The SSLFileServer class instantiates a QECertTrustManager in order to create an SSLServer-

Socket, on which it listens for connections from the QueryEngine. The QECertTrustManager

makes use of the EDG Java security package [54] in order to validate the certificates pre-

sented to it by a client during the SSL handshake. The client’s DN is checked to ensure that

it matches that of the trusted QueryEngine, which is stored in the sensor’s configuration file.

The ClientThread class is responsible for serving the requested file to the client. It reads

the filename from the socket and accesses the requested file. The required number of bytes are

read from the file by the ClientThread, and sent back to the client over the SSL connection.

The sensor’s file server is also used to solve an issue that arose with the implementation of

the log file queue mechanism described above. When the log file queue is full and a new file is

added to the head of the queue, the oldest file is removed (and possibly deleted), and the IDs

of the remaining files are updated to reflect this. Should this occur during the execution of a

51

query the results would be invalidated, as the query would now be carried out on a different

file, or possibly on a file which was just deleted. To avoid this a file locking mechanism was

added. Upon execution of a query the files currently stored in the sensor’s queue are locked

by sending a lock request to the sensor’s file server. The sensor is prevented from deleting

a locked file if a queue change occurs, until the file is unlocked upon query completion. A

timeout is used to prevent files remaining locked indefinitely should a query fail.

Figure 6.3(b) shows the client side of the remote file server. This has two classes, Re-

moteFile and RemoteFileInputStream. These classes are intended to mimic the interface of

the standard Java File and FileInputStream classes. When the QueryEngine tries to access

a log file a RemoteFile object is created and passed to the RemoteFileInputStream. The Re-

moteFileInputStream is then used in the same way as the standard FileInputStream to read

the remote file. When instantiated the RemoteFileInputStream attempts to connect to the

file server running on the remote host by creating an SSLSocket, again using the EDG Java

security packages. The host certificate of the machine is used in making this connection. If a

connection cannot be made then an IOException is thrown, otherwise the number of available

bytes that can be read from the remote file is returned. Subsequent calls to read the file now

read in from the socket connection.

52

6.1.2 The QueryEngine

The QueryEngine has three main functions: it provides the interface to the R-GMA through

the CanonicalProducer API, it executes queries received from the R-GMA and returns the

result sets, and it publishes information on the currently connected sensors to the R-GMA.

Canonical

QueryEngine

read in

config file

Canonical

Producer

create CanonicalProducer

CanonicalProducer

Servlet

register

declare tables

declare tables

FileManager

SensorHandler

listen on

Socket

Figure 6.4: QueryEngine startup sequence

To provide the interface the QueryEngine creates a new CanonicalProducer object. This

object contacts the CanonicalProducer Servlet, which in turn registers the CanonicalProducer

instance in the R-GMA registry. The QueryEngine uses the CanonicalProducer object to

declare the tables of information that it provides. The QueryEngine also maintains a set

of sensor information tables. There are two main sensor information tables, sensors and

sensorFiles. Sensors stores the basic sensor information, such as the sensor’s ID, type,

and host. The sensorFiles table holds information on the log files currently stored on

53

the sensor’s node, the file ID, and the file name. An extra table, snortAlerts, is used to

store and publish the alerts detected by a Snort Sensor (see Chapter 8). When creating

the CanonicalProducer the QueryEngine specifies a port number, and then begins listening

on this port. This sequence is shown in Figure 6.4. When the CanonicalProducer Servlet

receives a query bound for this producer instance, it forwards the query to the QueryEngine

by creating a socket connection to this port. The QueryEngine reads the query from the

socket, executes the query, and returns the results to the servlet through the same socket

connection.

Figure 6.5 shows the sequence of events that occur when the QueryEngine receives a

query. When the QueryEngine detects a socket connection being made by the servlet it

creates a new EngineThread instance to handle the query, and then returns to listening for

new connections. The EngineThread reads the SQL query from the socket and passes it to

the SQLParser. The parser ensures the query is valid, and then breaks the query into a form

suitable for the Search class. It is the Search class that collects the data that satisfies the

query from the raw log file by performing seek operations. At present there is no optimization

of the search algorithm, which uses a simple linear scan. The data is collected into a ResultSet.

Communication between components in the R-GMA is in XML, so the ResultSet is returned

to the servlet by way of the Responder class, which converts the ResultSet to an XML format.

54

QueryEngine

listen on

Socket

CanonicalProducer

Servlet

receive

query

send query on socket

detect socket

connection

socket connection

EngineThread

read query

Search

execute(query)

SQLParser

query

SelectQuery

query

parsed query

search

log file

accumulate

ResultSet

Responder

ResultSet

XML ResultSet

Figure 6.5: QueryEngine query processing sequence

55

The subset of SQL currently supported by the QueryEngine is as follows:

SELECT {* | [Table.]column_name [, [Table.]column_name...]}]

FROM Table

[WHERE [Table.]column_name { = | < | > | != | <= | >= } value

[AND [Table.]column_name { = | < | > | != | <= | >= } value,

...]]

The SQLParser class ensures that all received queries are of this form before it attempts

to parse the query. Any malformed, or unsupported, queries received, result in an exception

being returned to the servlet. Otherwise the SQLParser breaks the query into a series of

lists, a select list that contains the fields to be obtained from the log files, the table that the

fields belong to, and the where predicates that must be matched. For example the following

query for Ethernet data from a Tcpdump format log file:

SELECT destination_address, source_address, packet_type

FROM Ethernet

WHERE siteId = ’csTCDie’

AND sensorId = ’cagnode19.cs.tcd.ie:0’

AND fileId = 5

AND packetId < 100

would return the destination address, source address, and packet type of the first 100

packets contained in log file assigned ID 5, stored on the sensor with ID 0 that is hosted on

cagnode19.cs.tcd.ie.

To do this the SQLParser parses the query as described above, and then passes it to the

Search class. The Search class checks to see if a sensor is currently connected with the ID

0 specified in the where clause. If so, the file ID 5 is mapped to the directory and filename

of the log file on the sensor host machine cagnode19.cs.tcd.ie. The Search class can then

access the log file required. An offset into the file is calculated for each of the fields needed.

56

The size of each field in bytes is known, so the Search class offsets into the file the required

amount and reads the bytes from the file. In some cases the bytes that represent the field

need to be converted. For example in the case above the destination and source addresses are

converted from byte values into MAC addresses. This is done for each packet which matches

the where clauses, in this case the first 100 packets in the file. The resulting data set is then

accumulated. In order to return the data to the servlet it must first be converted into an

XML resultset as described above. This is done by the Responder class. The XML result set

that would be generated in response to the example query given above would be of the form:

<?xml version = ’1.0’ encoding=’UTF-8’ "standalone=’no’?>

<edg:XMLResponse xmlns:edg=’http://www.edg.org’>

<XMLResultSet>

<rowMetaData>

<colMetaData>destination_address</colMetaData>

<colMetaData>source_address</colMetaData>

<colMetaData>packet_type</colMetaData>

</rowMetaData>

<row>

<col>00:30:ax:40:19</col>

<col>00:30:b4:12:0f</col>

<col>0x800</col>

</row>

<row>

<col>00:30:ax:40:19</col>

<col>00:30:b4:12:0f</col>

<col>0x800</col>

</row>

.

.

</XMLResultSet>

57

</edg:XMLResponse>

The QueryEngine is composed of several classes, as shown in the class diagram, Figure 6.6.

addMetaDataInformation()

addResult()

addSelectEntry()

addWhereEntry()

clear()

dumpResults()

isQueryValid()

setQueryValid()

selectQuery : String

SelectQuery

createNewSelectQuery()

isQuerySupported()

addSelectEntry()

constructSelectList()

constructWhereList()

fm : FileManager

schemaParser :

XMLSchemaParser

SQLParser

accumulateResult()

compareValues()

doAllFilesSearch()

doDirectorySearch()

doFileSearch()

execute()

getExpression()

getLongExpression()

getOperation()

getStringExpression()

returnNullResultSet()

searchFiles()

fm : FileManager

queryParser : SQLParser

logger : Logger

Search

getResultField()

getSearchField()

checkTableConstraints()

closeFile()

decodeWhereValue()

loadFile()

loadNextPacket()

RAF: BufferedInputStream

Filter

checkMessageType()

cleanUp()

run()

socket : Socket

clientId : int

searchEngine : Search

logger : Logger

EngineThread

close()

listenSocket()

cp: CanonicalProducer

fm : FileManager

sensorHandler : SensorHandler

logger : Logger

serverSocket : ServerSocket

schemaParser : XMLSchemaParser

Canonical

QueryEngine

addNewLogFile()

addNewSensor()

connectedSensorIds()

getASeachFile()

getAllSearchFiles()

getFileIds()

getQueueState()

getSchemaFile()

initialise()

isSensorConnected()

noSearchFiles()

removeSensor()

connectedSensors :

Hashtable

fileStore : Hashtable

schemaFile : File

sensorInfo : Hashtable

FileManager

assignSensorId()

execute()

recover()

recoverFile()

recoverSensor()

SensorHandler

close()

deleteOldInfo()

insert()

run()

update()

sensorInfo : LatestProducer

UpdateSensor

TablesThread

getTableType()

tableType : String

SensorTables

Row

getCreateTables()

getFieldId()

getFieldName()

getTableId()

findAllFieldNames()

createCreateTable()

parseXMLSchema()

schemaMap : Hashtable

tableMap : Hashtable

XMLSchemaParser

Figure 6.6: QueryEngine class diagram

58

Two implementations of the QueryEngine for different network interconnect technologies

have been provided, Ethernet and SCI. Ethernet packets can be divided into a series of

network protocols. Each layer in the network protocol appends its own header to the packet.

The Ethernet schema was designed therefore so that each table in the schema relates to a

particular network protocol, from the internet protocol down to the transport protocol. This

means there have to be five tables; Ethernet, IP4 (the four indicates IP version 4), TCP,

UDP, and ICMP. The header information from each packet can then be taken and inserted into

these tables. For example the header information of a TCP packet would occupy a row in

three of the tables, Ethernet, IP4, and TCP. A further table, Data was added, in order to

allow for the payload of the packet to be obtained. Each column in this table represents sixty

four bytes of the packets payload. Two additional tables are needed, File and Packet. Each

log file created by Tcpdump has a file header appended to the start of the file. It contains

information on the version of Tcpdump used to create the file and additional information on

the log file, such as the type of link Tcpdump was capturing packets from and the maximum

number of bytes of a packet that was captured, and this is inserted into the File table.

Tcpdump also appends a header to each packet captured. This header contains the size

of the packet and a timestamp of when it was captured. This information is stored in the

Packet table. This schema was described in an XML file and an EthernetFilter class was

created. This class accesses the Tcpdump format log files and loads network packets from

them. Figure 6.7 shows the structure of the EthernetFilter.

A similar approach was taken for the SCIFilter. The SCI QueryEngine provides an

example of using the SANTA-G framework with a hardware instrument. The SCI trace

instrument allows for non-invasive deep tracing of SCI interconnect traffic. The instrument is

connected via trace probes to the output link of an SCI interconnect. SCI packets traced from

the target node are stored by the instrument to a text format log file. It is from this log file

that the SCIFilter loads the raw packet data. With the original SANTA tools a second stage

of instrumentation was used to decode the trace file to separate database table files, suitable

59

getResultField()

getSearchField()

checkTableConstraints()

closeFile()

decodeWhereValue()

loadFile()

loadNextPacket()

RAF: BufferedInputStream

Filter

fieldToLong()

getValue()

noBytesReqd()

toHex()

Gen_Hdr

getField()

getValue()

Tcp_Hdr

getField()

getValue()

Udp_Hdr

getField()

getValue()

Icmp_Hdr

getField()

getValue()

IP4_Hdr

getField()

getValue()

Eth_Hdr

getField()

getValue()

Data_Hdr

getResultField()

getSearchField()

checkTableConstraints()

closeFile()

decodeWhereValue()

loadFile()

loadNextPacket()

RAF: BufferedInputStream

EthernetFilter

Figure 6.7: EthernetFilter class diagram

for importation to a RDBMS, each table representing a field in the SCI packet header. The

database schema has been retained in the SCIFilter, having been translated to the XML

format required by the QueryEngine. Figure 6.8 shows the structure of the SCIFilter.

The QueryEngine must also process messages received from sensors. When the QueryEngine

reads a message from a socket connection the message is parsed to see if it is a SQL query

from the servlet, or a message from a sensor. Messages sent from the sensors are of the form,

message header;message. The QueryEngine checks for the presence of one of the known

message headers, and if found the message is passed to the SensorHandler class, otherwise

it is sent to the SQLParser. For example, when a sensor is first started a new sensor mes-

sage is sent to the QueryEngine, newsensor;sensorhost;sensortype, where sensorhost is

the hostname of the machine hosting the sensor, and sensortype is the type of sensor. The

60

getResultField()

getSearchField()

checkTableConstraints()

closeFile()

decodeWhereValue()

loadFile()

loadNextPacket()

RAF: BufferedInputStream

Filter

getResultField()

getSearchField()

checkTableConstraints()

closeFile()

decodeWhereValue()

loadFile()

loadNextPacket()

RAF: BufferedInputStream

SCIFilter

getResultField()

getSearchField()

AddressOffset

getResultField()

getSearchField()

BlinkTable

getResultField()

getSearchField()

CmdEchoTable

getResultField()

getSearchField()

CmdTable

getResultField()

getSearchField()

ControlTable

getResultField()

getSearchField()

Data000_015_Table

getResultField()

getSearchField()

Data016_063_Table

getResultField()

getSearchField()

Data064_127_Table

getResultField()

getSearchField()

ExtTable

getResultField()

getSearchField()

FlowControl

getResultField()

getSearchField()

PacketsTable

getResultField()

getSearchField()

StatusTable

getResultField()

getSearchField()

TraceTable

Figure 6.8: SCIFilter class diagram

SensorHandler class parses this message, and uses the information to build a row of the sen-

sor table, which it then inserts into the sensor information tables by using a R-GMA Latest

Producer. The QueryEngine stores two tables of information relating to sensors, as described

above. Through these tables, users can determine how many sensors are currently running,

and the number of log files currently stored by them.

In the first NetTracer implementation an independent Database Producer was used to

store the sensor information. There were a number of reasons for choosing to alter this.

In order to use the Database Producer, a MySQL database had first to be created for the

producer to use. This complicated the configuration of NetTracer for users. In order to

configure the system a user required an account on the MySQL RDBMS with create privileges.

A setup script was provided that created the required sensor database, however, this would

61

not work if it was executed on a machine that did not have remote access to the MySQL

database. Also a Database Producer is intended to be used to persistently store the history

of a published stream of information for historical analysis. The sensor information stored

by the QueryEngine is dynamic, and of no historical significance. Furthermore, in order to

update the information, or to delete information when a sensor was closed, it was necessary

to open a direct connection to the database, as the R-GMA would not except ‘DELETE’

or ‘UPDATE’ SQL statements. The R-GMA installation guide, however, recommends that

remote management of the MySQL database should not be allowed, and that the port for this

be blocked by a firewall. For these reasons the implementation was altered to use a Latest

Producer bound to the QueryEngine. A Latest Producer only stores the most recent tuple

for a given primary key. When a tuple is inserted with the same primary key as an existing

tuple, the older tuple is replaced. This simplifies updates of the information, as all that is

required is to insert the new row, and the old row will be removed automatically. In order

to remove information on closed sensors the Latest Producer’s clean-up predicate mechanism

was used. This allows for a producer to be created that will periodically remove the rows that

match the clean-up predicate from its published tables. For the sensor tables an additional

column, status was added, which indicates whether a sensor is currently running or not. A

clean-up predicate is specified as a WHERE clause, so to remove stopped sensors the clean-

up predicate specified was ‘WHERE status = “closed”’. When a sensor is shutdown the

QueryEngine updates the sensor’s status to ‘closed’. When the clean-up thread is executed

any row in which the status is set to ‘closed’ is removed.

6.1.3 The Viewer module

The Viewer provides a Java Swing GUI that allows users to collect and view data published

by NetTracer. The Viewer GUI has two main panels, the packet view and the query panel.

The packet view displays a packet from the selected log file. Currently only the Ethernet

62

QueryEngine is supported. The query panel allows a user to submit a SQL query to collect

subsets of the available data.

The packet view panel provides a number of controls that allow the user to specify the

packet to view. Two drop-down boxes and a textfield allow the user to choose the sensor, file,

and packet ID. These are used by the Viewer to construct a SQL query to collect the packet’s

data from the log file. The Viewer, by using the Consumer API, will contact a Consumer

Servlet, which in turn contacts a R-GMA registry in order to locate the required producers

of the information. The information is returned by the same mechanisms to the Viewer in

the form of a result set. The sequences of events that occur when a query is submitted from

the Viewer are shown in Figure 6.9.

Viewer

Consumer

query

start()

Consumer

Servlet

start()

R-GMA

Registry

find relevant producers

producers URI

Canonical

Producer

Servlet

execute(query)

QueryEngine

send query on socket

XML ResultSet

XML ResultSet

ResultSet

pop()

ResultSet

display

ResultSet

Figure 6.9: Viewer query submission sequence

63

In order to display an Ethernet packet the packet’s type must first be determined by

querying the Ethernet table (see Figure 6.10), which contains the packet type field. The type

can then be decoded. Currently only IP version 4 packets are supported. If this type of

packet is detected then the IP4 table can be queried to obtain the IP header information for

the packet. From this result set we can obtain the data protocol of the packet. Currently

TCP, UDP, and ICMP type packets are supported. The rest of the packet data can then

be obtained by querying the required data protocol table. Once this is done the display is

constructed for the type of packet found. Figure 6.11 shows the packet view panel displaying

a TCP packet.

SELECT *

FROM Ethernet

Is IP4

packet?

No
 Yes

Display Error

Message

SELECT *

FROM IP4

Data

protocol?

SELECT *

FROM UDP

SELECT *

FROM TCP

SELECT *

FROM ICMP

Is UDP?
 Is TCP?
 Is ICMP?

Display

Figure 6.10: Ethernet packet display process

64

Figure 6.11: Viewer GUI, packet view panel

65

The query panel is quite straightforward (see Figure 6.12). A text area allows the users to

enter a SQL query. The query is submitted to the R-GMA by pressing the execute button.

When the query completes and a result set is returned to the Viewer, the individual fields

are extracted and displayed in a table under the text area. The full packet from which the

fields in a row are taken can then be displayed in the packet view by double clicking a row in

the table. The table resulting from a SQL query can also be printed by clicking the print

button.

Figure 6.12: Viewer GUI, query view panel

A number of additional windows can be opened from the query panel. A sensor informa-

tion panel provides a summary of the currently running sensors (see Figure 6.13). By clicking

on a particular sensor the full information on that sensor can be viewed, such as the sensor’s

host and type, and the log files currently stored. A query builder allows the user to construct,

save, and load SQL SELECT statements (see Figure 6.14). The Snort alerts panel displays

66

Figure 6.13: Viewer GUI, sensor information panels

any alerts that have been logged to the snortAlerts table by a Snort Sensor (see Figure 6.15).

An alert can be selected and either the full text of the alert, as it would appear in the Snort

alert file, or the full header data of the packet that triggered the alert can then be viewed.

Very obviously this can be extended; this is just a demonstrator.

67

Figure 6.14: Viewer GUI, query builder

Figure 6.15: Viewer GUI, Snort alerts panel

68

6.2 TESTING

NetTracer testing was divided into two stages. The first was carried out continuously during

the development phase. This took the form of functional testing, i.e., ensuring the basic

functionality of the system was correct and that any changes to the code did not result

in a defined test failing. The second phase was that of performance testing. This was to

discover how the system performed in a proper test environment. To do this the system was

deployed on the CrossGrid testbed cluster located in TCD, and a series of predefined tests

were performed.

6.2.1 Test Deployment

The testbed cluster was installed using the LCFGng system, initially developed by the Uni-

versity of Edinburgh [19]. This cluster is comprised of seven nodes: four worker nodes (WN),

a computing element (CE), a storage element (SE), and a user interface (UI). In addition to

these a further node was needed to host and run the R-GMA Registry and Schema.

Computing Element: The computing element forms the entry point to the grid site. It is

this node that receives jobs submitted to the Grid, dispatches them for execution, and

also returns the output.

Worker Node: These nodes are where the jobs submitted are actually run. The computing

element dispatches received jobs to these nodes for execution. In TCD this is done

using the Portable Batch System (PBS) software.

Storage Element: The storage element is used to hide the details of the backend storage

systems. These could be disk arrays, or mass storage systems, etc. [19]

User Interface: This node provides the entry point to the Grid for users. It provides the

client software necessary to allow users to submit jobs to the Grid, and to retrieve the

output from these jobs.

69

For the test deployment a NetTracer Tcpdump Sensor was installed on each worker node.

The QueryEngine was installed on the storage element. As stated, the R-GMA Registry and

Schema services were installed on a separate node. The SE was also used to host the R-GMA

producer servlets. Figure 6.16 summarises the test deployment.

Sensor

Worker Node

Sensor

Worker Node

Sensor

Worker Node

Sensor

Worker Node

QueryEngine

Storage Element
 R-GMA Server

Canonical

Producer

Servlet

Figure 6.16: Test deployment

6.2.2 Performance Testing

In order to obtain an indication of the performance of NetTracer in the test environment, a

simple test was performed that measures the amount of time taken to return a set number

of tuples (or packets) beginning at the start of a test Tcpdump logfile, containing 100,000

packets (8Mb), using the following simple SQL query:

SELECT * FROM Packet

WHERE sensorId = ’cagnode33.cs.tcd.ie:0’

AND fileId = 0

AND packetId < x

where x is 2,000, 4,000, 6,000, 8,000 or 10,000.

70

A simple consumer was written to execute the test. This consumer submits the above

SQL query to the R-GMA and records the time before a result set is received in response.

Prior to performing the test, a number of queries were first submitted to ensure that the

system was fully initialised.

The query was submitted 1,000 times for each result set size, and the average response

time, i.e., the time from submission of the query until the result set was received, and standard

deviation were calculated. The average time taken by the QueryEngine to complete the query,

obtained from the QueryEngine log file, was also recorded. The difference between these times

represents the time spent in the R-GMA system. Table 6.1 shows the average times recorded

for each of the five result set sizes.

Tuples Total Time (ms) Std. Dev. QueryEngine (ms) Std. Dev R-GMA (ms)
2000 4447 158 1250 60 3197
4000 9177 493 2056 120 7121
6000 16061 314 2815 82 13246
8000 23350 323 2960 131 20390
10000 35071 511 3490 154 31581

Table 6.1: Average times for retrieval

Figure 6.17 shows a graph of the average times for the retrieval of the different sizes of

result set, from 2,000 to 10,000 tuples.

The graph clearly shows that the most important factor in determining the length of

time a query will take to execute is the size of the returned result set. It can be seen from

the graph that the QueryEngine scales quite well as the result set size increases, at least

for the relatively small sizes used in this test. The results also clearly show that the other

major factor is the performance of the R-GMA. The average total query time for a result

set containing 10,000 tuples was 35,071ms, although the QueryEngine in fact completed the

query in 3,490ms, i.e., 90% of the overall time was spent in transferring the result set from

the Producer servlet to the Consumer.

71

Figure 6.17: Average times for retrieval

The time spent in the R-GMA is largely due to the Consumer servlet, since the Canonical-

Producer servlet simply acts as an intermediary between the QueryEngine and the Consumer

servlet. As soon as the CanonicalProducer servlet begins receiving the XML format result set

from the QueryEngine, the result set is forwarded directly to the Consumer servlet. When

the Consumer servlet receives the result set, in XML format, it is converted to an R-GMA

ResultSet object and stored in the Consumer servlet’s queue. In order to return the result set

to the Consumer object, the servlet must extract the result set from its queue and convert it

back to XML for transmission to the Consumer. The Consumer receives this XML result set

and then performs a futher conversion from XML to a ResultSet object. There is therefore

a total of three conversions between XML and ResultSet objects. Each of these conversions

72

is quite expensive, particularly when dealing with large result sets. This is clearly an area

where some optimization would benefit R-GMA.

73

Chapter 7

EXAMPLE EXPERIMENTS

The purpose of a SANTA-G system is to allow for ad-hoc monitoring experiments in the

grid environment. In any experiment involving a SANTA-G system there are four steps that

would need to be followed:

1. Define the experiment.

2. Configure the SANTA-G system to acquire the required monitoring data.

3. Write the software for a Consumer to select subsets of the data and to calculate the

required metrics from this data.

4. Run the experiment.

This chapter describes example experiments that utilise NetTracer.

7.1 TCP THROUGHPUT MEASUREMENTS

The first example experiment is to obtain throughput measurements using the network moni-

toring data obtained from NetTracer, in order to observe the flow of data through the R-GMA

74

system during a query submission. A test Consumer that submits a query to the R-GMA will

be run on a node, whilst a Tcpdump Sensor will be used to acquire the traffic between the

appropriate servlets in the R-GMA system. A second custom Consumer (described below)

will be used to calculate throughput values from the data acquired.

7.1.1 Configure the SANTA-G system

There are two components that need to be configured, the SANTA-G system itself (NetTracer

in this example) and the external instrumentation being used.

In the case of NetTracer, the external instrumentation is the network packet capture

application Tcpdump. Tcpdump is configured by specifying the arguments to be used by

NetTracer sensors when invoking the Tcpdump application. The arguments to be passed to

Tcpdump are entered in the sensor configuration file. The sensor is installed on the node to

be monitored, i.e., the node hosting the R-GMA Consumer Servlet under test. By running

on this host the sensor will be able to acquire all traffic sent between the Consumer Servlet

and the CanonicalProducer Servlet, as well as that sent from the test Consumer code’s host.

In this experiment we wish to determine the TCP throughput in order to visualise the

flow of data through the R-GMA system. To do this the TCP traffic on the network must

be acquired by the sensor. In order to minimise the amount of data collected only the traffic

of interest should be acquired. Tcpdump is therefore configured to collect only TCP packets

sent between the two servlets in the R-GMA system, and the test Consumer host.

The nodes involved in the experiment are as follows (see Figure 7.1):

cagnode46.cs.tcd.ie: hosts the test consumer.

bordeaux.cs.tcd.ie: hosts the Consumer Servlet, and the Tcpdump Sensor.

cagraidsvr15.cs.tcd.ie: hosts the CanonicalProducer Servlet, along with the other R-GMA

servlets.

75

cagnode47.cs.tcd.ie: hosts the QueryEngine, along with the throughput Consumer.

Test

Consumer

Consumer

Servlet

Canonical

Producer

Servlet

Query

Engine

Throughput

Consumer

Tcpdump

Sensor
Log

Files

bordeaux

(R-GMA Mon Box)

cagnode46

cagraidsvr15

(R-GMA Server)

cagnode47

Figure 7.1: Throughput measurements deployment

The Tcpdump Sensor running on bordeaux must acquire the traffic received from the

node hosting the test consumer, as well as that sent and received from the CanonicalProducer

Servlet host. In the R-GMA system all communication is done via http on port 8080 (or port

8443 if using HTTPS). Therefore, the appropriate Tcpdump arguments are:

(tcp src port 8080 or dst port 8080) and

(src host (bordeaux.cs.tcd.ie or cagnode46.cs.tcd.ie

or cagraidsvr15.cs.tcd.ie) and dst host (bordeaux.cs.tcd.ie

or cagnode46.cs.tcd.ie or cagraidsvr15.cs.tcd.ie))

When configuring NetTracer itself, it is important to carefully configure the size of both

the log files and the log file queue. If the files and the queue are too large the performance of

the system will be too slow for realtime calculations. If, however, the log files and queue are

too small, and a large amount of traffic is generated, the data will not be maintained in the

76

queue long enough to perform the calculations. The optimum settings for log file and queue

size must be determined through trial and error.

7.1.2 Write the Consumer code

In order to access the data acquired by NetTracer a custom R-GMA Consumer must be writ-

ten that makes use of the Consumer API. The following code extract shows how a consumer

is created in order to submit a SQL query to the R-GMA and to retrieve results:

Consumer consumer = new Consumer("SELECT * FROM Ethernet", Consumer.HISTORY);

ResultSet resultSet = null;

if(!consumer.isExecuting()){

consumer.start();

}

while(consumer.isExecuting()){

Thread.currentThread().sleep(1000L);

}

if(consumer.hasAborted()){

throw new Exception("Consumer has aborted the query");

}

resultSet = consumer.popIfPossible();

consumer.close();

A Consumer is created by calling the Consumer constructor, passing in the SQL query

and the query type. NetTracer publishes the Ethernet packet data as a HISTORY producer.

The only type of query that can be answered therefore is a HISTORY query.

Consumer consumer = new Consumer("SELECT * FROM Ethernet", Consumer.HISTORY);

This creates a Consumer that will select all the available data from the Ethernet table.

To start the Consumer the start() method is called:

77

consumer.start();

The code then enters a loop that waits for the Consumer to finish collecting the data.

This is done by polling the isExecuting() method.

When the Consumer completes, the result set can be obtained by calling one of the

Consumer’s pop() methods. popIfPossible() will return a result set if available, or null if no

result set was returned.

The Consumer API is available in a number of languages, C, C++, Perl, and Python, as

well as Java.

For this experiment a Consumer calculates throughput values, in bytes per second, from

the acquired TCP traffic data. This is done by calculating and publishing two tables of

throughput values, TCPThroughput and AverageTCPThroughput. The throughput is cal-

culated for each unique TCP connection seen. The TCPthroughput table stores the final

throughput values when a connection is closed, whereas AverageTCPThroughput stores the

average throughput values seen during the lifetime of the connection (i.e., total bytes seen

divided by the duration of the connection so far).

TCPDataFilter

TCPFilterTask

TCPProcess

Thread

Connection

Packet

Figure 7.2: TCP throughput Consumer components

The throughput consumer is composed of five separate classes (see Figure 7.2): TCPDataFilter,

TCPFilterTask, TCPProcessThread, Connection and Packet. TCPDataFilter is the main

class, used to instantiate the DatabaseProducer that both stores and publishes the results of

the calculations, and also creates and starts a Java Timer object and the processing thread.

78

The Timer object runs the TCPFilterTask thread at regular intervals. The TCPFilterTask

thread uses a Consumer object to obtain the required subset of the data needed to perform

the throughput calculations. The ResultSets obtained by the TCPFilterTask are then passed

to the TCPProcessThread, which calculates the TCP throughput values and inserts them

into the DatabaseProducer.

The data required to perform the throughput calculations is published by NetTracer in

two separate tables, the IP4 and TCP tables. Since the R-GMA does not support joins, the

TCPFilterTask must perform two separate queries on these tables to obtain the data from

the TCP packets acquired during the required interval. The SELECT statements used to

obtain the IP and TCP data are as follows:

SELECT sensorId, fileId, source_ip, destination_ip,

packet_length, header_length, data_protocol

FROM IP4

WHERE timestamp_Secs > startTime and timestamp_Secs < stopTime

SELECT sensorId, source_port, destination_port, header_length,

sequence_number, acknowledge_number, code

FROM TCP

WHERE timestamp_Secs > startTime and timestamp_Secs < stopTime

where stopTime is the current time, and startTime is the current time minus the re-

quired interval. The ResultSets obtained in response to these queries are then passed to the

TCPProcessThread. Figure 7.3 shows a sequence diagram for this.

When the process thread receives the ResultSet, each row is used to construct a Packet

object. The packet object encapsulates all the data needed from the TCP packet in order to

calculate the throughput values. Each packet object is checked against the set of currently

open Connection objects to see if it belongs to that connection. Each TCP connection is

uniquely identified by the source host and port and destination host and port. These values

79

R-GMA
 TCPDataFilter

TCPFilterTask

TCPProcessThread

getTCPData()

TCP Data

TCP Data

processPackets()

publishThroughputValues()

Figure 7.3: Throughput Consumer sequence diagram

are used to match a packet to a connection. If a packet does belong to an existing connection

it is added to it, and the connection’s current throughput values are updated. If it does

not, the packet is checked to see if it is a SYN packet (the TCP packet used to open a new

connection), and if so, a new Connection object is created to represent this TCP connection.

The new Connection object is then added to the list of currently open connections. Each time

a packet is added to a connection the average throughput seen so far is calculated and a row

published in the AverageThroughput table. When a connection is closed the final throughput

values are calculated and a row published in the TCPThroughput table. The throughput is

calculated and published for both directions in the connection, i.e., host A to host B and

host B to host A.

Throughput
HostA HostB AtoB BtoA

cagnode33.cs.tcd.ie:35556 cagraidsvr09.cs.tcd.ie:80 19026 24022
cagnode33.cs.tcd.ie:35560 cagraidsvr09.cs.tcd.ie:80 19450 24557
cagnode33.cs.tcd.ie:35565 cagnode34.cs.tcd.ie:22 277 341

Table 7.1: Sample throughput values obtained

80

The output from the Consumer has been validated using the program Tcptrace. Tcptrace

is an open source application that analyses Tcpdump format log files and produces statistics

from them, including throughput values. Table 7.1 shows a sample of results published

dynamically during testing of the throughput Consumer whilst acquiring packet data with

NetTracer from a single test host (in this case cagnode33.cs.tcd.ie).

The following shows the results obtained when the log file acquired on the test host was

analysed with the Tcptrace application.

TCP connection 2:

host c: cagnode33.cs.tcd.ie:35556

host d: cagraidsvr09.cs.tcd.ie:80

complete conn: yes

first packet: Tue Apr 6 11:00:46.118738 2004

last packet: Tue Apr 6 11:00:46.128146 2004

elapsed time: 0:00:00.009408

total packets: 10

filename: /opt/santag/examples/traces/tptest/cagnode33_1.log

c->d: d->c:

total packets: 5 total packets: 5

throughput: 19026 Bps throughput: 24022 Bps

TCP connection 8:

host o: cagnode33.cs.tcd.ie:35560

host p: cagraidsvr09.cs.tcd.ie:80

complete conn: yes

first packet: Tue Apr 6 11:06:47.185818 2004

last packet: Tue Apr 6 11:06:47.195021 2004

elapsed time: 0:00:00.009203

total packets: 10

filename: /opt/santag/examples/traces/tptest/cagnode33_1.log

81

o->p: p->o:

total packets: 5 total packets: 5

throughput: 19450 Bps throughput: 24557 Bps

TCP connection 13:

host y: cagnode33.cs.tcd.ie:35565

host z: cagnode34.cs.tcd.ie:22

complete conn: yes

first packet: Tue Apr 6 11:13:48.705799 2004

last packet: Tue Apr 6 11:13:56.792011 2004

elapsed time: 0:00:08.086211

total packets: 72

filename: /opt/santag/examples/traces/tptest/cagnode33_1.log

y->z: z->y:

total packets: 42 total packets: 30

throughput: 277 Bps throughput: 341 Bps

As can be seen the Tcptrace output agrees with that obtained by the throughput Con-

sumer. Then why use NetTracer rather than Tcptrace? Because NetTracer enables multiple

real-time acquisitions at geographically dispersed sites, and consequent calculations to be

performed in a grid-enabled fashion, in contrast to a single off-line local equivalent.

7.1.3 Run the experiment

The final step is to run the experiment. To do this a test sensor must be started on a node

in the testbed. The Tcpdump Sensor must be started on the Consumer Servlet’s host node.

The throughput consumer must also be started. The test consumer, which submits a query

for 1000 tuples from the test sensor’s logfile, should then be started.

The table below (Table 7.2) shows the throughput values published by the throughput

consumer during the query processing, where:

82

ID: identifies a unique connection seen.

AtoB: is the throughput from host A to host B in bytes/sec.

BtoA: is the throughput from host B to host A in bytes/sec.

timestamp: corresponds to the timestamp of the last packet in the connection.

Throughput
ID HostA HostB AtoB BtoA Timestamp
1 cagnode46.cs.tcd.ie:33370 bordeaux.cs.tcd.ie:8080 26355 18985 12:12:51.532487
2 cagnode46.cs.tcd.ie:33371 bordeaux.cs.tcd.ie:8080 17630 26888 12:12:51.547510
3 cagnode46.cs.tcd.ie:33372 bordeaux.cs.tcd.ie:8080 21402 37216 12:12:51.561563
5 cagnode46.cs.tcd.ie:33373 bordeaux.cs.tcd.ie:8080 27396 41656 12:12:51.572828
6 cagnode46.cs.tcd.ie:33374 bordeaux.cs.tcd.ie:8080 16507 25100 12:12:52.595250
7 cagnode46.cs.tcd.ie:33375 bordeaux.cs.tcd.ie:8080 9959 15188 12:12:53.653846
8 cagnode46.cs.tcd.ie:33376 bordeaux.cs.tcd.ie:8080 20724 31657 12:12:53.669331
9 cagnode46.cs.tcd.ie:33377 bordeaux.cs.tcd.ie:8080 235 242015 12:12:54.636282
10 cagnode46.cs.tcd.ie:33378 bordeaux.cs.tcd.ie:8080 17723 32701 12:12:55.061768
4 bordeaux.cs.tcd.ie:34226 cagraidsvr15.cs.tcd.ie:8080 249 285529 12:12:57.968999

Table 7.2: Throughput values obtained during query submission

It is possible to match each of these connections to a call in the code of the test Con-

sumer, used to submit a query to the R-GMA system, see Table 7.3. The code used is the

same as that outlined in Section 7.1.2. The duration of the connection is obtained from the

AverageTCPThroughput table, which stores the throughput seen during the lifetime of the

connection.

The remaining connection (connection ID 4) is between the Consumer Servlet and the

CanonicalProducer Servlet. It can be seen from Table 7.2 that the connection is not closed

until after the call to close the Consumer API object. The connection is initially opened

by the Consumer Servlet, in order to send the SQL query to the CanonicalProducer Servlet.

This can be seen from the connection’s entries in the AverageTCPThroughput table. Table 7.4

shows the first measurement for the connection. This corresponds to the transmission of the

SQL query.

83

Connection ID API Call Duration (secs)
1 new Consumer(...) 0.017909
2 if(!consumer.isExecuting()) 0.012942
3 consumer.start() 0.010560
5 while(consumer.isExecuting()) 0.007994
6 while(consumer.isExecuting()) 0.013453
7 while(consumer.isExecuting()) 0.024611
8 if(consumer.hasAborted())) 0.011282
9 consumer.popIfPossible() 0.961396
10 consumer.close() 0.012018

Table 7.3: Connections and the API calls associated with them

Throughput
HostA HostB Duration AtoB BtoA Timestamp

bordeaux.cs.tcd.ie:34226 cagraidsvr15.cs.tcd.ie:8080 0.001168 294521 0 12:12:51.564081

Table 7.4: SQL query transmission measurement

From the AverageTCPThroughput table the last packet transmitting the SQL query was

sent at 12:12:51.564081. Although the connection was not in fact closed until 12:12:57.968999

it was seen from the AverageTCPThroughput table that the last data packet on the connection

was received on the Consumer Servlet host at 12:12:52.945843. The time from completion

of transmission of the SQL query, until completion of reception of the result set from the

CanonicalProducer servlet was therefore 1381.76ms. It is known, from the QueryEngine

logs that it took 938ms for the QueryEngine to complete the query. This implies the Canon-

icalProducer Servlet, not taking into account network delays, added an additional 443.76ms.

The final stage in the flow of data through the R-GMA system is the return of the result

set to the Consumer API object. As stated the Consumer Servlet received the last data packet

of the result set from the CanonicalProducer Servlet at 12:12:52.945843. The Consumer

Servlet completed transmitting this result set to the Consumer API at 12:12:54.636282,

a delay of 1690.44ms, which corresponds to approximately 55% of the total 3072ms (as

calculated from the connection times) taken to answer the query. Table 7.5 summarises the

84

times observed:

Measurement Time
time from query transmission
by Consumer Servlet until
resultset reception at Consumer
Servlet 1381.8
time from resultset reception
at Consumer Servlet until
completion of resultset transmission
to Consumer API 1690.4
time from query transmission
by Consumer Servlet until
completion of resultset transmission
to Consumer API 3072.2
implied time for XML
to ResultSet conversion 427
total query time as
measured by test Consumer 3449

Table 7.5: Summary of calculated times (ms)

The additional time measured by the test Consumer (the difference between 3449ms and

3072ms, i.e., 427ms) can be explained by the fact that the time measurement was taken in

the code after the call to popIfPossible() had returned, thus taking into account the final

conversion from XML to ResultSet object performed by the Consumer API.

The implication is that the majority of the time is taken up by transmission of the

ResultSet, and that despite its simple linear search algorithm the QueryEngine does not

greatly degrade performance. It also justifies the premise of the CanonicalProducer and

SANTA-G, to query information in place, and thereby not move bulk raw data across the

network.

85

7.2 MPI RING MEASUREMENTS

In this experiment NetTracer is used to trace MPI packets generated by an application

running across several sites in a grid. The application used is a simple MPI ring program

that sends packets of a configurable length around a ring of MPI processes. Each process

will run in a separate Grid-Ireland site, communicating with each other directly using Globus

I/O. It is these inter-site communications that we wish to collect using NetTracer sensors.

The purpose is to calculate the latency (i.e., the total time taken to travel around the MPI

ring) and effective bandwidth (i.e., the total time divided by the total bytes sent in that time)

for the traced packets.

Although the output from the MPI ring program does include the total time and the

effective bandwidth for each packet sent by the application, these measurements include the

time spent processing the packet at each site, i.e., the time between a process receiving a

packet and the time that it sends the packet to the next process in the ring. This time could

be referred to as the ‘host overhead’. By analysing the traffic collected at each site by the

Tcpdump Sensors it is possible to calculate this overhead, and to therefore exclude these from

the time and bandwidth calculations so that the measurements obtained are based purely on

time spent on the network links. Ranking sites based on the host overhead experienced also

provides a means of selecting the optimum set of sites for an application run.

Again the three steps described above must be carried out in order to run the experiment.

7.2.1 Configure the SANTA-G system

For the experiment 4 Grid-Ireland sites are chosen, TCD (Trinity College Dublin), DCU

(Dublin City University), ITC (Institute of Technology, Carlow), and QUB (Queens Univer-

sity Belfast). Once the MPI application is submitted, an MPI process will be started on a

single node at each of the selected sites.

As stated the processes communicate using Globus I/O. Globus I/O uses a range of ports

86

TCD

DCU

ITC

QUB

Figure 7.4: Direction of MPI ring

defined in a site’s configuration, usually 20000 to 25000. The application source code has

also been modified so that the packets generated contain the word ‘RING’ within the data

payload. This information can be used to identify the traffic generated by the application,

therefore, the appropriate Tcpdump arguments used in the configuration of the sensors are:

((tcp[0:2] >= 20000 and tcp[0:2]<= 25000) and

(tcp[2:2] >= 20000 and tcp[2:2] <= 25000)) and

(tcp[32:4] = 0x52494e47)

These arguments tell Tcpdump to collect all packets with a source and destination port

between 20000 and 25000 (the Globus port range), and that contain the value ‘0x52494e47’

(the hex ASCII value of the word ‘RING’) in the data payload.

7.2.2 Write the Consumer code

We wish to calculate the total time taken by a packet to traverse the ring, not including the

time spent processing the packet on a node. To do this the consumer must query for all packets

collected by each of the sensors. The packet timestamps must be extracted from the returned

result sets and converted from seconds and microseconds fields to a single microsecond value.

87

The time spent processing a packet at a site, ∆Tpi , where i is the MPI process number from

1 to 3, is calculated as the time between a packet being received by a process, Tr, and the

time the packet is sent to the next process in the ring, Ts:

∆Tpi = Ts − Tr

The total time taken is given by ∆Tp0 , as any packet received by process 0 will have

traversed the entire ring of MPI processes, where:

∆Tp0 = Tr − Ts

By using relative times we may ignore clock offsets between sites. The time without host

overheads can therefore be calculated as follows:

∆Tnettracer = ∆Tp0 −
∑3

i=1 Tpi

The effective bandwidth is then given by:

∆Bwnettracer =
(packetLength ∗ noOfProcesses)

∆Tnettracer

The latency and effective bandwidth calculated from the application traffic by the con-

sumer is then compared to the output of the MPI application. Plots of the bandwidth and

latency distributions are generated by the consumer, as well as distributions of the differences

between the two sets of results (i.e., those obtained from the MPI application and those from

the consumer).

7.2.3 Run the experiment

To run the experiment first a sensor, configured as described above, must be started on each

node that will host an MPI process. The MPI application is submitted to the 4 chosen sites

using a Globus Resource Specification Language (RSL) file of the following form:

+

(&(resourceManagerContact="gridgate.cs.tcd.ie:2119/jobmanager-lcgpbs")

(queue=test)

(count=1)

(label="subjob 0")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)

88

(LD_LIBRARY_PATH /opt/globus/lib/))

(executable=$(GLOBUSRUN_GASS_URL) # "mpitest")

(arguments=1000 1000)

(stdout=$(GLOBUSRUN_GASS_URL) # mpioutput.0)

)

(&(resourceManagerContact="gridgate.besc.ac.uk:2119/jobmanager-lcgpbs")

(queue=test)

(count=1)

(label="subjob 1")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1)

(LD_LIBRARY_PATH /opt/globus/lib/))

(executable=$(GLOBUSRUN_GASS_URL) # "mpitest")

(arguments=1000 1000)

(stdout=$(GLOBUSRUN_GASS_URL) # mpioutput.1)

)

(&(resourceManagerContact="gridgate.itcarlow.ie:2119/jobmanager-lcgpbs")

(queue=test)

(count=1)

(label="subjob 2")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 2)

(LD_LIBRARY_PATH /opt/globus/lib/))

(executable=$(GLOBUSRUN_GASS_URL) # "mpitest")

(arguments=1000 1000)

(stdout=$(GLOBUSRUN_GASS_URL) # mpioutput.2)

)

(&(resourceManagerContact="gridgate.dcu.ie:2119/jobmanager-lcgpbs")

(queue=test)

(count=1)

(label="subjob 3")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 3)

(LD_LIBRARY_PATH /opt/globus/lib/))

(executable=$(GLOBUSRUN_GASS_URL) # "mpitest")

(arguments=1000 1000)

(stdout=$(GLOBUSRUN_GASS_URL) # mpioutput.3)

)

89

The application will send 1,000 packets of 1,000 bytes in size around the ring of processes.

This is specified in the arguments field of the RSL file, (arguments=1000 1000). An MPI

process starts on a single node at each of the sites to which the application was submitted:

21/07/2005 10:33:26 Process 1 is alive on gridmon.besc.ac.uk

21/07/2005 10:33:26 Process 2 is alive on gridmon.itcarlow.ie

21/07/2005 10:33:26 Process 3 is alive on gridmon.dcu.ie

21/07/2005 10:33:27 Process 0 is alive on gridmon.cs.tcd.ie

Once the application completes it is possible to query for the packets collected during the

application run using the Viewer GUI (see Figure 7.5).

Figure 7.5: Captured MPI packets in Viewer GUI

Table 7.6 shows the data obtained for a single packet traversing the ring of MPI processes.

The data payload of the packet is published by NetTracer in the data table. By querying

this table we can see the ‘RING’ tag that was introduced into the packet payload in order to

90

allow for the packets sent by the application to be identified and traced.

Src Dst Src Time Dst Time Data
gridmon.cs.tcd.ie gridmon.dcu.ie 10:33:27.235229 10:33:27.236349 ...fc675b352494e470016...
gridmon.dcu.ie gridmon.itcarlow.ie 10:33:27.236671 10:33:27.240061 ...fc675b352494e470016...

gridmon.itcarlow.ie gridmon.besc.ac.uk 10:33:27.240411 10:33:27.247640 ...fc675b352494e470016...
gridmon.besc.ac.uk gridmon.cs.tcd.ie 10:33:27.247853 10:33:27.254634 ...fc675b352494e470016...

Table 7.6: Data collected by sensors for single ring transmission

Figure 7.7(a) shows the latency as measured by the MPI application, and that calculated

by the consumer from the raw network traffic. The effective bandwidth calculated from the

measured latencies is shown in Figure 7.6(a). The distribution of the loss (i.e., the difference

between the values including the host overheads and those without) is shown in Figures 7.6(b)

and 7.7(b). On average there is approximately a 13 kB/sec bandwidth decrease (v6%) and a

1200µs increase in latency (v6.5%) due to host overheads such as TCP/IP stack processing,

Xen virtualisation (the nodes upon which the MPI application was executed are virtual

machines), etc.

The effects of geographical distance between sites are very clear. The short hop from

TCD to DCU takes little time, while the long hops to Carlow and on to QUB and back to

TCD take correspondingly, more time. The effects of competition for bandwidth utilization

are less clear. The National Research and Education Network (NREN) backbone links are

overprovisioned for QoS, and mostly the network paths are 1 Gbps (but see the next experi-

ment) through routers, switches, and firewalls. The low effective bandwidth (approximately

0.21 MBytes/sec) should be a reality check to those wishing to execute message passing pro-

grams across geographically dispersed sites, whatever the performance of the network and

site resources.

91

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

Fr
eq

ue
nc

y

Bandwidth (MBytes/sec)

NetTracer Bandwidth Distribution
MPI Bandwidth Distribution

(a) Effective bandwith

 0

 50

 100

 150

 200

 250

 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

Fr
eq

ue
nc

y

Loss (Mbytes/sec)

Bandwidth Loss Distribution

(b) Effective bandwidth loss

Figure 7.6: MPI Ring and NetTracer effective bandwidth distributions

92

 0

 100

 200

 300

 400

 500

 600

 700

 12000 14000 16000 18000 20000 22000 24000 26000 28000

Fr
eq

ue
nc

y

Latency (uSecs)

NetTracer Latency Distribution
MPI Latency Distribution

(a) Latency

 0

 50

 100

 150

 200

 250

 300

 350

 400 600 800 1000 1200 1400 1600 1800 2000

Fr
eq

ue
nc

y

Increase (Mbytes/sec)

Latency Increase Distribution

(b) Latency increase

Figure 7.7: MPI Ring and NetTracer latency distributions

93

It is possible to calculate the average time spent processing packets at each site by av-

eraging the overhead experienced by each packet as it traverses the ring, see Table 7.7. As

can be seen QUB performs significantly better than either TCD, DCU or ITC. Using this

approach it would be possible to optimise the performance of an application by choosing sites

with the lowest overhead when submitting the application to the Grid.

Site Overhead (µs)
TCD 334.97
DCU 343.76
ITC 353.77
QUB 183.62

Table 7.7: Average overhead per site

Figure 7.8: Overhead per site

94

7.3 ONE-WAY LATENCY MEASUREMENTS

The aim of this experiment is to measure the one-way latency for packets sent between two

Grid-Ireland sites in a similar fashion as is done by RIPE equipment [39], but at a finer grain,

and without the associated fees, and also with unrestricted access to the raw data. The MPI

application described in the previous experiment is again used in order to generate traffic for

the measurements. An MPI ring is created with only two processes, sending packets back and

forth for a specified number of iterations. By using NetTracer Tcpdump Sensors this traffic

can be traced, and the latencies experienced by packets between sites can be calculated by

subtracting the send time of a packet from the receive time. Remember that for NetTracer

Tcpdump is unmodified, so its behaviour is well understood.

7.3.1 Configure the SANTA-G system

For this experiment the TCD and QUB Grid-Ireland sites were chosen. Each site must host a

NetTracer Tcpdump Sensor. A similar configuration of NetTracer as was used in the previous

experiment is again required. Packets sent by the MPI application will again be within the

Globus port range of 20000 to 25000. Here the source code has been modified so that the

MPI packets contain the tag ‘SANTAG’ (0x53414e544147 in hex), therefore, the Tcpdump

arguments needed are the following:

((tcp[0:2] >= 20000 and tcp[0:2]<= 25000) and

(tcp[2:2] >= 20000 and tcp[2:2] <= 25000)) and

(tcp[32:4] = 0x53414e54 and tcp[36:2] = 0x4147)

7.3.2 Write the Consumer code

The time taken for a packet to travel from site A to site B, ∆Tfwd, can be expressed as

follows, where Towl is the one-way latency, and Toffset is the offset between the host clock at

95

site A and the host clock at site B:

∆Tfwd = Towl + Toffset

The one-way latency in the reverse direction, i.e., site B to site A, ∆Trev, is therefore

given by:

∆Trev = Towl − Toffset

Hence, the average one-way latency and offset for the forward and reverse journey, as-

suming the offset is the same in both directions, can be calculated as:

Towl =
(Tfwd + Trev)

2
, Toffset =

(Tfwd − Trev)
2

The consumer uses these equations to calculate the average one-way latencies for packets

sent between the two sites. Packets collected by the sensors are matched by source, destina-

tion, and datagram ID, and their timestamps subtracted. The consumer generates plots of

the average one-way latencies, as well as the calculated offsets. Plots of the distribution of

these values are also generated.

7.3.3 Run the experiment

We wish to determine how the one-way latency varies between the TCD and QUB sites over

time. To do this measurements must be made at regular intervals. A dataset is collected once

every hour. Each dataset represents a single run of the MPI application. The application

sends 1,000 packets of 100 bytes in size during each execution (the packet size is as for RIPE).

Once the application completes, the consumer queries the R-GMA for the packets generated

by the application and calculates the average one-way latencies as described above. For each

dataset the consumer generates the following output, which is stored for later analysis:

• Timestamps of all packets generated

• Minimum and maximum Towl and Toffset

• Mean and standard deviation of Towl and Toffset

96

• Towl time series and distribution plots

• Toffset time series and distribution plots

Figure 7.9(a) shows the values of Towl obtained for a typical dataset from a single appli-

cation execution using the TCD and QUB sites. Figure 7.10(a) shows the values of Toffset

calculated for the same dataset. Figures 7.9(b) and 7.10(b) show the distribution of the

values obtained. The consequent effects of competition for bandwidth are visible, as is the

consequent discretisation resulting from traversing alternate routes.

97

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

To
wl

 (u
Se

cs
)

Time (uSecs)

Towl Time Series

(a) Time series

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1800 1900 2000 2100 2200 2300 2400 2500 2600

Fr
eq

ue
nc

y

Time (uSecs)

Towl Distribution

(b) Distribution

Figure 7.9: Towl measurements for single application execution

98

-42100

-42000

-41900

-41800

-41700

-41600

-41500

-41400

-41300

-41200

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

To
ffs

et
 (u

Se
cs

)

Time (uSecs)

Toffset Time Series

(a) Time series

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-42000 -41900 -41800 -41700 -41600 -41500 -41400

Fr
eq

ue
nc

y

Toffset (uSecs)

Toffset Distribution

(b) Distribution

Figure 7.10: Toffset measurements for single application execution

99

Series Start End
1 2005-08-09 09:00 2005-08-10 09:00
2 2005-08-10 09:00 2005-08-11 09:00
3 2005-08-11 09:00 2005-08-12 09:00

Table 7.8: Collected dataset series

Datasets were collected over a continuous 72 hour period, from 09:00 on the 9th of August,

until 09:00 on the 12th of August 2005. The datasets were divided into separate series, each

corresponding to consecutive 24 hour periods, as shown in Table 7.8.

Figure 7.11 plots the mean Towl values for the first day (series 1). Figure 7.12 plots the

minimum, maximum and standard deviation of Towl for series 1.

 2170

 2180

 2190

 2200

 2210

 2220

 2230

 2240

 2250

 2260

 2270

 2280

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight, 9th August 2005

Mean Latency

Figure 7.11: Mean Towl values, series 1

The mean latency over the first 24 hour period was 2235µs, with a standard deviation of

25µs. The minimum latency values were experienced around midnight, with the minimum

100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight, 9th August 2005

Min Towl
Max Towl

Standard Deviation

Figure 7.12: Towl minimum, maximum and standard deviation, series 1

mean value of 2176µs occurring at 01:00 on the 10th of August. The maximum value of

2272µs was seen at 09:00 on the 10th of August.

Figure 7.13(a) plots the mean latency values of both series 1 and series 2. The minimum,

maximum, and standard deviation of series 2 are shown in Figure 7.13(b).

101

 2160

 2180

 2200

 2220

 2240

 2260

 2280

 2300

 2320

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight

Series 1
Series 2

(a) Mean, series 1 and 2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight, 10th August 2005

Min Towl
Max Towl

Standard Deviation

(b) Minimum, maximum, and standard deviation

Figure 7.13: Towl measurements, series 2

102

For the second day (series 2) the mean latency was 2247µs, with a standard deviation

of 32µs. There was no repeat of the reduction in latency values experienced at midnight in

series 1. The minimum mean value for series 2, of 2200µs, was experienced at 20:00 on the

10th of August. For the third day the mean latency was 2248µs, with a standard deviation

of 29µs (see Figures 7.14(a) and 7.14(b)). Figure 7.15 shows mean latencies for the full 72

hour measurement period.

103

 2200

 2220

 2240

 2260

 2280

 2300

 2320

 2340

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight, 11th August 2005

Mean Latency

(a) Mean

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-15 -10 -5 0 5 10

To
wl

 (u
Se

cs
)

Hours from midnight, 11th August 2005

Min Towl
Max Towl

Standard Deviation

(b) Minimum, maximum, and standard deviation

Figure 7.14: Towl measurements, series 3

104

 2160

 2180

 2200

 2220

 2240

 2260

 2280

 2300

 2320

 2340

-40 -30 -20 -10 0 10 20 30 40

To
wl

 (u
Se

cs
)

Hours from midnight, 10th August 2005

Mean Latency

Figure 7.15: Mean Towl values over 72 hour measurement period

105

Figure 7.16(a) shows the mean Toffset values of series 1. As can be seen the offset between

the clocks of the hosts involved was initially quite high. It was discovered that the clocks

were diverging over time during this period as NTP was not functioning correctly on the host

located at TCD (the exact reason for this is unknown). Between 16:00 and 17:00 on August

10th the clock on the affected host was resynchronised with the NTP server, and the NTP

daemon was restarted. This is shown in Figure 7.16(a) by the sudden change in the graph at

-7 hours from midnight. Between approximately -7 and +5 hours from midnight the clocks

remain synchronised, as can be seen in more detail in Figure 7.16(b). At the end of the first

24 hour period, however, the clocks began to diverge once again. This divergence can be seen

to continue in the initial measurements of series 2, shown in Figure 7.17(a), until -10 hours

from midnight (14:00), at which point the NTP daemon was once again restarted. From this

hour until the end of series 2 the clocks remained reasonably synchronised as shown again in

more detail in Figure 7.17(b). This continued for the start of series 3 until 15:00 (-9 hours)

on the 11th of August, at which point the clock on the second host, located at QUB, lost

synchronisation with the NTP server. The two clocks then continued to diverge for the rest

of series 3, as seen in Figure 7.18. Figure 7.19 shows how the offset of the clocks varied over

the full 72 hour period.

Clearly this bears investigation. Grid-Ireland are in the process of installing GPS-disciplined

clocks at all their grid gateways, but they do need to establish why their NTP clients lose

synchronisation.

106

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

-15 -10 -5 0 5 10

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 9th August 2005

Mean Offset

(a) Entire series

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

-8 -6 -4 -2 0 2 4 6

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 9th August 2005

Mean Offset

(b) After NTP restart

Figure 7.16: Toffset measurements, series 1

107

-200000

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

-15 -10 -5 0 5 10

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 10th August 2005

Mean Offset

(a) Entire series

-20000

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

-10 -8 -6 -4 -2 0 2 4 6 8 10

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 10th August 2005

Mean Offset

(b) After NTP restart

Figure 7.17: Toffset measurements, series 2

108

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

-15 -10 -5 0 5 10

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 11th August 2005

Mean Offset

Figure 7.18: Mean Toffset values, series 3

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

-40 -30 -20 -10 0 10 20 30 40

To
ffs

et
 (u

Se
cs

)

Hours from midnight, 10th August 2005

Mean Offset

Figure 7.19: Mean Toffset values over 72 hour measurement period

109

7.4 SCI TRACE ANALYSIS

The aim of this experiment is to carry out statistical analysis on data obtained from non-

invasive monitoring of the traffic generated by a SCI node in a cluster system. The traces

to be analysed were taken from two SCI systems with different topologies, a 1-d two node

ring and a 2-d torus with six SCI ringlets. The first trace was acquired using the SCI trace

instrument developed in the Computer Architecture Group at Trinity College Dublin [34],

whilst SCILAB’s SCITRAC SCI trace instrument was used to obtain the second trace.

The purpose of the analysis is to generate statistics suitable for use with SCI simulation

models. In [35] it was demonstrated how through the analysis of non-invasively obtained

interconnect trace data, interconnect simulation models can be verified, and their parameter-

isation tuned, in order to ensure that they are an accurate representation of the real system.

This was shown for a SCI node model developed by the University of Oslo [45]. By driving

the node model with realistic load descriptions, derived through analysis of traces collected

by the SCI trace instrument from real SCI systems, the model output could be compared

with the output of the real system under study. Any mismatch observed would therefore

allow for the fine tuning of the model parameters.

This experiment serves as an example of using the SANTA-G framework with a hardware

instrument, and also demonstrates the SCI QueryEngine.

7.4.1 Configure the SANTA-G system

The deployment for the experiment is as shown in Figure 7.20. The SCI trace instrument

will be used to collect the SCI traffic from one node in the SCI cluster into a raw trace

file. Because the trace instrument generates a single trace file, rather than a dynamically

generated set of files, a NetTracer Static Sensor can be used. Here the sensor’s only purpose

is to inform the QueryEngine of the file’s existence, and to provide access to the file through

its file server. The QueryEngine used is the SCI QueryEngine, as described in Chapter 6.

110

SCI

Node

SCI

Cluster

Trace

File

SCI Trace

Instrument

Static

Sensor

SCI

QueryEngine

NetTracer

R-GMA
Samba

Figure 7.20: SCI trace analysis deployment

7.4.2 Write the Consumer code

The consumer is a modified version of a statistics tool (see Figure 7.21) developed by the

author as part of [28]. The tool has been modified to use R-GMA Consumers to gather the

trace data published to R-GMA by the SCI QueryEngine.

The consumer generates statistics for packet inter-arrival time, packet size, output through-

put (bytes leaving a node’s output buffer), bypass throughput (bytes leaving a node’s bypass

buffer), and node throughput (sum of output and bypass throughput). In [28] the inter-arrival

time and packet size probability density functions (PDF) created by the tool were used to

drive the University of Oslo’s SCI model. The throughput statistics obtained from the real

trace were then compared to the simulated output in order to verify the model.

7.4.3 Run the experiment

To run the experiment first the trace file must be ‘published’ by starting an appropriately

configured Static Sensor. The SCI traffic contained in the file can then be analysed by

querying R-GMA using the modified statistics tool.

111

Figure 7.21: SCI trace analysis tool

1-d 2-node ringlet

For this experiment traffic was generated on the SCI links by scibench, a PCI-SCI performance

tool. The SCI trace to be analysed covers a very short period of time, approximately 1.8ms.

In this time 5,817 packets were collected and stored in the trace file by the trace instrument.

The majority of the packets seen in the trace were either ‘request-send-packets with 64 bytes

of data’ (v 52%) or ‘response-echo-packets’ (v 42%). The remainder were sync packets, used

in the SCI protocol both during initialisation and normal operation to allow the receiver of

the sync packet to check and adjust its circuit timing [1]. Because this trace was taken from

the output link of an SCI node the request-echo and response packets generated by the second

node are not seen, as these are absorbed by the target node (see Figure 7.22).

Figure 7.23 shows the probability density function calculated by the consumer for the

112

Node 1

Node 2

1. Request Send

2. Request Echo

3. Response Send

4. Response Echo

SCI Trace

Instrument

Figure 7.22: SCI transaction

inter-arrival time of packets generated by the target node. As can be seen the main peak

in the graph is located from 0.6µs to 0.8µs. This means we can expect the majority of the

inter-arrival times to be in this range, and this should be reflected in the model. A second

peak can be seen from approximately 0.45µs to 0.5µs.

As stated the majority of the packets seen in the trace were request-send-packets with 64

bytes of data. These packets have a total packet size of 80 bytes, the SCI header (16 bytes)

with 64 bytes of data. This is verified by the packet size PDF shown in Figure 7.24. The

peak located at 6 bytes corresponds to the response-echo packets.

113

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 200000 300000 400000 500000 600000 700000 800000 900000

Pr
ob

 D
en

sit
ie

s

Time (pSecs)

Inter-Arrival Times PDF

Figure 7.23: Packet inter-arrival time PDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90

Pr
ob

 D
en

sit
y

Packet Size (bytes)

Packet Size PDF

Figure 7.24: Packet size PDF

114

The graphs of output, bypass, and node throughput obtained during execution of the

scibench benchmark are given in Figure 7.25. The mean output and bypass thoughput over

the full trace were 136 Mbytes/sec and 8 MBytes/sec respectively. As this is a two node ring

the bypass throughput is calculated purely from the echo packets, as although these packets

are generated by the target node they are placed in the bypass buffer for transmission. The

mean node throughput, the total throughput of the target node, was approximately 142

MBytes/sec (the full available SCI bandwidth of 500 Mbytes/sec was therefore not used).

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

Time (secs)

Output Throughput
Bypass Throughput

Node Throughput

Figure 7.25: Throughput in bytes/sec

As can be seen in Figure 7.25 the throughput was not constant over the entire trace.

The mean throughput at the start of the trace was approximately 112 MBytes/sec (see

Figure 7.26(a)). Towards the end of the trace, however, the throughput can be seen to

increase to a maximum of 224 MBytes/sec (see Figure 7.26(b)), before falling briefly, and

then increasing once again. Figure 7.27 plots the relative times for packets contained in the

115

trace, i.e., the time between subsequent packets sent by the traced node. This graph clearly

shows the two areas where the rate of packet generation increased (indicated by a decrease in

packet inter-arrival times), thereby accounting for the two peaks seen in the node throughput.

116

 1.1e+08

 1.105e+08

 1.11e+08

 1.115e+08

 1.12e+08

 1.125e+08

 1.13e+08

 1.135e+08

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

O
ut

pu
t T

hr
ou

gh
pu

t (
by

te
s/

se
c)

Time (Secs)

Output Throughput(bytes/sec)

(a) Start of trace

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2.2e+08

 2.4e+08

 0.0011 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018

O
ut

pu
t T

hr
ou

gh
pu

t (
by

te
s/

se
c)

Time (Secs)

Output Throughput(bytes/sec)

(b) End of trace

Figure 7.26: Throughput in bytes/sec, start and end of trace

117

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

Re
la

tiv
e

Ti
m

es
 (p

Se
cs

)

Time (secs)

Relative Times

Figure 7.27: Packet inter-arrival time series

118

2-d 9-node torus

For this experiment the cluster system used was the Computer Architecture Group’s virtual

reality engine (VREngine), an OpenGL engine that uses Chromium [10], a software system

for interactive rendering on clusters of graphics workstations, to render 3-D graphical scenes

generated by an application for display. The VREngine is composed of 9 nodes, connected

using SCI interconnects, configured as a 2-dimensional torus with six SCI ringlets.

The SCI trace obtained covers a period of approximately 12 seconds, and contains 1,052

packets. Figure 7.28 shows the probability density function calculated by the consumer for

the inter-arrival time of packets generated by the target node in this time.

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

Pr
ob

 D
en

sit
ie

s

Time (pSecs)

Inter-Arrival Times PDF

Figure 7.28: Packet inter-arrival time PDF, 2-d torus

One of the most questionable (but almost universal) assumptions of the University of

Oslo’s SCI model was that of a uniform (0th order polynomial) distribution of addresses.

Clearly this is untrue, as any reference to virtual memory working sets will confirm. The

119

consumer was extended to generate statistics of the SCI address distribution. The distribu-

tion of target address accesses for the obtained trace is given in Table 7.9. Obviously each

application will exhibit a different distribution.

Target Address Frequency
0x00040000ff9a0140 179
0x0004fffff000ff80 45
0x2000fffff0000000 13
0x2100fffff0000000 14
0x2200fffff0000000 13

Table 7.9: Distribution of target address accesses

SCI uses 64 bit addressing, where the most significant 16 bits of the address specify the

target node ID, and the remaining 48 bits give the offset of the memory address to access

within the target node [1]. For the 2-d torus, table routing is used, where the upper half of the

target ID is used to index the routing table. The 4 most significant bits select the routing table

Control and Status Register (CSR), and the remaining 4 bits select one of the CSR’s 16 bits,

the value of which determines whether the packet is to be switched or not [47]. Figure 7.29

shows the distribution of accesses versus source and target IDs as observed on the traced

link. Only four non-zero values exist (representing five addresses) and while the reason is not

known, one may speculate that this task farming application uses message passing between

master 2104 and worker 0004 via a single message buffer at 0x0000FF9A0140, with some

control exchanges at the other four addresses.

These are useful results for those directly concerned, and their usefulness is such that it is

easy to lose sight of the fact that their acquisition is enabled by SANTA-G. It hardly needs to

be said that these techniques are equally applicable to Myrinet and Infiniband interconnects,

and their associated models, and that accurate modelling is extremely valuable for exploring

large scale configurations for very large clusters that are too expensive to build and test.

120

Figure 7.29: Distribution of accesses versus source and target IDs

121

Chapter 8

GRID-WIDE INTRUSION

DETECTION

A major application of NetTracer arose from within Grid-Ireland. Firstly there was a desire

to instrument all sites to detect attempted security intrusions. Secondly it was felt necessary

that all security alerts generated at sites within Grid-Ireland be visible at the Grid-Ireland

Operations Centre (OpsCentre). This was to provide the OpsCentre with an overall picture

of the state of security of the entire Grid-Ireland infrastructure at any time, starting with

intrusion detection. This model of grid-wide, non-invasive instrumenting and monitoring

closely matches that of the SANTA-G framework. Consequently, NetTracer was extended for

the Snort network intrusion detection system. This work led to the design of the Grid-wide

Intrusion Detection System (GIDS) [29][30] that is described in this chapter.

8.1 GRID-WIDE INTRUSION DETECTION

Intrusion detection is a vital task for those administering the Grid. A grid is a large scale

distributed system with sites in many organisations and geographic regions. Each site will

122

have its own security policies and procedures. The Grid will only be as secure as its weakest

link. To secure the Grid it is important that security information be available to site ad-

ministrators in a timely and efficient way. Relying on individual site administrators to share

information would introduce critical delays in the process and hence a coordinated approach

is preferable. This section describes the design of a Grid-wide Intrusion Detection System

(GIDS) using NetTracer and Snort.

8.1.1 Snort

Snort is an open source network intrusion detection system capable of performing real-time

traffic analysis and packet logging on IP networks [6]. Snort has become the de-facto standard

for intrusion detection and prevention [46]. It was designed to be lightweight and compatible

with multiple operating systems, with 4 main components (see Figure 8.1):

Network

Packet

Sniffer
 Preprocessor
 Detection

Engine

Alert

Packet

Packets

Output

Rule Set

Figure 8.1: Snort architecture

A packet sniffer to trace packets from the network.

A preprocessor to determine if a packet requires further analysis and to format it for the

detection engine, e.g. to normalise a HTTP request string in a packets data payload.

A detection engine that compares each packet passed to it from the preprocessor against

a set of defined security rules.

123

An output module that generates an alert if a match is found by the detection engine (i.e.,

a suspect packet has been found). The output module can be used to output the alert

in several different ways, e.g. to a log file, a SQL database, a Windows Popup, a UNIX

socket. The full packet that triggered the alert can also be logged, again in a number

of formats, including a Tcpdump compatible binary log file.

8.1.2 NetTracer Snort Sensor

In the GIDS, Snort is to be used to monitor nodes in the system. Snort will be configured

to log alerts to a log file as they are detected. The packet that triggered the alert will also

be logged in a separate log file. This packet log file follows the same format as Tcpdump, so

the log files created by Snort are compatible with NetTracer. In order to extend NetTracer

for Snort an additional sensor type had to be added, the Snort Sensor (see Figure 8.2).

Packet log

file

Trace Directory

Snort

Sensor

LatestProducer

API

CanonicalProducer

API

QueryEngine

Sensor and

log file

information

R-GMA

SNORT

monitor

Register,

log file info,

alerts

Sensor ID

Consumer

API

Viewer

Alerts

StreamProducer

API

Figure 8.2: NetTracer Snort monitoring

124

The Snort Sensor monitors the alerts file, and when a new alert is detected its details are

sent to the QueryEngine, which records the alert, and then publishes it to the R-GMA using

a StreamProducer. Users can view these alerts by using the NetTracer Viewer GUI, or by

querying the R-GMA directly. The schema for the Snort alerts table is shown in Table 8.1

(where PRI denotes a component of the primary key).

Field Key Description
siteId PRI Site ID
sensorId PRI Sensor ID
fileId PRI Log file ID
alert timestamp PRI Timestamp of when the event was logged
alert type Type of event
generator id Specifies the generator that detected the alert
signature id Identifies the rule that was used by the generator
revision Specifies the revision of the rule used
message Alert message
classification Alert classification name
priority Alert priority
source ip Source IP address
destination ip Destination IP address
source port Source port
destination port Destination port
protocol Packet protocol
data Packet header data
info Any additional information included in the alert

Table 8.1: Snort alerts table schema

The full packet data of the packet that triggered the alert can then be viewed by querying

the packet log file generated by Snort. This is accomplished using the same mechanisms as

for querying the log files generated by Tcpdump (described in Chapter 6).

125

8.1.3 GIDS Design

It is intended in the design of the Grid-wide Intrusion Detection System that each site within

the Grid will run a set of Snort Sensors that will publish any logged alerts to the R-GMA

as described above. This will result in each site streaming alerts into the information system

(see Figure 8.3).

SNORT

+

SENSOR

SiteB

SNORT

+

SENSOR

SiteA

SNORT

+

SENSOR

SiteC

SNORT

+

SENSOR

SiteD

R-GMA

snortAlerts,

where siteId = ‘SiteA’

snortAlerts,

where siteId = ‘SiteB’

snortAlerts,

where siteId = ‘SiteC’

snortAlerts,

where siteId = ‘SiteD’

Figure 8.3: Multiple sites stream alerts to the R-GMA

In order for these alerts to be collected at the OpsCentre a second R-GMA component,

an Archiver, will be used. An Archiver aggregates streams from multiple Consumers and

stores the information into a MySQL database. It then republishes this information using

its own Producer. By running an Archiver at the OpsCentre that will query for the alerts

being published by the Snort Sensors, all the alerts can be aggregated to form a ‘grid-wide

intrusion log’ (Figure 8.4).

To create the Archiver for the intrusion log, first a producer must be instantiated that

can republish the aggregated alerts. Because it is required that all the alerts be stored

persistently, a DataBaseProducer is used:

DataBaseProducer alertsDB = new DataBaseProducer(

"jdbc:mysql://localhost/intrusionLog",

126

Grid Operations Centre

MySQL DB

Archiver

R-GMA

Alerts

Alerts

Alerts

Alerts

Figure 8.4: Archiver collects alerts to grid-wide intrusion log

"user", "passwd");

This producer is then passed to an Archiver:

Archiver intrusionLog = new Archiver(alertsDB);

The table to be archived is specified by calling the Archiver’s declareTable method:

intrusionLog.declareTable("snortAlerts", "",

"CREATE TABLE snortAlerts (" +

"siteId VARCHAR(100) NOT NULL, "

...

Once this is done the Archiver will create a Consumer that will continuously query all

registered producers of the snortAlerts table. The Consumer will also be informed if new

producers of the table, i.e., new Snort Sensors, become available. Alerts received by the

Consumer are passed by the Archiver to its DataBaseProducer, which will both store and

republish them.

The intrusion log in itself forms a valuable source of information to the analysts at the

OpsCentre. As well as allowing for the tracing of attacks across the entire grid infrastructure,

it also allows for common analysis tasks, such as aggregation, to be carried out simply by

127

submitting SQL queries. Aggregation is the task of grouping alerts together using various

parameters such as source IP or destination port.

The intrusion log represents the first level of the GIDS, the raw data collected from the

sites that make up the grid infrastructure. The next level will filter and analyse the alerts

published in order to detect patterns that would signify an attempted distributed attack

on this infrastructure. Because it is expected that a significant number of alerts will be

generated and logged it is intended to automate this analysis as much as possible. To do

this a high-level incident detection, tracking and response platform will be created by using

custom coded Consumers (as shown in Figure 8.5) and Archivers. These Consumers and

Archivers will query the log for specific predetermined alert patterns. This can be done

using a Continuous query. This means that after submitting the query the Consumer or

Archiver will continue to receive the results as they are published by the grid-wide intrusion

log’s Producer. They will then analyse the alerts, possibly by using AI techniques such as

adaptive neural nets and category theory, to determine if they represent a possible malicious

attack. If so they will then generate their own alerts that will be issued to the responsible

person or higher-level system.

Grid Operation Centre

Grid-wide

Intrusion Log

Archiver

Alert Analysis

Consumer

Grid-wide

Intrusion alerts

Query for

snort alerts

R-GMA

Alert Analysis

Consumer

Alert Analysis

Consumer

Figure 8.5: Intrusion log analysis by alert Consumers

128

The work on the alert Consumers is in its preliminary stages and is expected to represent

the majority of the future effort on the system. An initial, very basic, example implementation

is discussed in the following chapter in order to illustrate the structure of the analysis process.

It is intended to complement the Snort data with information from other security compo-

nents. Work is currently underway creating new sensor types and query engines for use with

such tools as Tripwire and AIDE (Advanced Intrusion Detection Environment) [17] and Na-

gios [14]. It is also proposed to investigate more active security measures, i.e., measures that

track grid interactions and respond to unwanted security events in an adaptive way. This will

require both extended security monitoring and tracking, and the automatic coordination of

this across a number of security tools and all sites involved in the events. A minimum set of

recognised events can be derived from the proactive filtering of log files resulting from normal

grid activity, the regular probing of the grid infrastructure by tools such as the HostCheck

test suite developed by the CrossGrid project, the Site Functional Tests (SFT) [51] developed

by the LCG/EGEE projects, and the standard and custom Grid-Ireland checks done for Na-

gios, and also from node-specific security measures such as Tripwire and AIDE. Auditing of

relevant actions will be integral. The intent is to track and resolve security issues as they

occur. While resolutions can be added in an ad-hoc manner, it is better that they be based

on a unified management model. The management model can, for example, be based on the

concepts of event, condition, action, where actions are conditioned by policies. Particular

attention will need to be paid to formally defining this model to ensure that consistent local

and global policies are easily attained.

The system described above, has a number of benefits, many of which are derived from the

use of a grid information system as the underlying transport mechanism. By using R-GMA

there is no need to construct communication channels between the remote sensors and the

central management server at the OpsCentre, as would be necessary with other approaches,

and futhermore the characteristics of the streaming mechanisms of R-GMA closely match the

desired alert channel properties. Once the alerts are published by the QueryEngines to the

129

R-GMA they are automatically available to the Grid. Secure communications between the

sensors and the OpsCentre can be accomplished by configuring the R-GMA to use HTTPS.

Collecting alerts at the OpsCentre from the distributed sensors is also a simple task thanks to

the use of the Archiver component. This has the added benefit of being backed by a RDBMS

which allows for data analysis and persistent storage. Another issue in existing systems is

that the central server presents a single failure point, and also a possible target for attack. It

is possible with GIDS to provide redundancy and replication of the intrusion log by running

an Archiver at one or more other locations. Once started these Archivers will automatically

begin aggregating published alerts. The addition of new sensors, or new sites to the system

is also handled by the underlying R-GMA mechanisms. New producers of alerts will register

with the R-GMA at start-up and begin publishing alerts. The Archiver gathering the alerts

will be notified of the new producers and will immediately begin collecting alerts from them,

with no change to the Archiver code.

The system also provides near to real-time logging of alerts to the OpsCentre. There will

be only a minimal delay between the detection of the alert at a site and the appearance of

the alert in the intrusion log at the OpsCentre. This allows for the immediate sharing of

data and collaborative analysis. This will significantly reduce the time from alert logging to

attack detection.

How does GIDS compare with the existing state of the art, e.g. the system described in [32]

by Fang-Yie Leu et al. Firstly, GIDS is explicitly designed for grid-wide operation whereas

the latter is intended for a single ‘network management unit (NMU)’, e.g. an enterprise’s

intranet or college campus. The GIDS Snort Sensors are analogous to the combination of

dispatchers to collect traffic, detection nodes to perform the intrusion detection analysis, and

a scheduler to assign detection nodes and to balance the load across them. The system

described by Fang-Yie Leu et al does not include a centralised database and as such there is

no direct comparison with the grid-wide intrusion log of GIDS. As the result of the analysis

for each NMU is stored in a separate database local to the NMU, one could replace each

130

database with a single centralised database, but this would result in the system suffering

from the same drawbacks as those for other DIDS. Communication channels would have to

be created between the detection nodes and the central database server, which in turn again

becomes a single point of failure (whereas the GIDS grid-wide log can easily be replicated

using the R-GMA). It is also unlikely to be economically acceptable to dedicate groups of

nodes at each site purely for the purposes of intrusion detection. Another major factor that

limits its effectiveness is the use of custom analysis code for the detection of attacks. Whereas

GIDS uses Snort, a well-supported and proven public domain IDS with an active community

constantly developing new rules to detect new threats, to perform the detection analysis,

Fang-Yie Leu et al have developed custom filters and algorithms for detecting attacks. The

system is also heavily biased towards the detection of denial of service type attacks. In reality

there are a vast number of other attacks that an IDS needs to be capable of detecting in order

to be effective.

8.2 INTRUSION DETECTION EXAMPLE

An attack often has two phases, a reconnaissance phase, followed by the actual exploit. The

reconnaissance phase can itself have two parts, network mapping and host mapping [41][40].

Network mapping is an attempt by the attacker to determine the hosts that are available

within a network. By doing this they can exclude the IP addresses of hosts that do not exist

from the network address range they are targeting. Once the host addresses are known the

next stage is to obtain information about the hosts, such as the OS type and the services

the host is running. This allows the attacker to target the host with an exploit known to

work against a particular OS or service. Because the time between the reconnaissance phase

and the launching of an exploit against a vulnerable service can be short, it is important to

monitor and detect these reconnaissance attempts.

As described in the previous chapter the GIDS has two levels. The first level gathers

131

the alerts from the sites in the Grid to form the grid-wide intrusion log. The second level

analyses the intrusion log to detect attacks on the grid infrastructure and generates alerts

when attacks are detected. The following describes three example intrusion log analysers

that each use a different method to detect one form of attempted reconnaissance of the grid

infrastructure, systematic multi-site port scanning.

8.2.1 Test Deployment

In order to test the GIDS in a grid environment TCD’s TestGrid infrastructure was used.

TestGrid makes use of virtual machine and networking technology to provide a complete and

faithful replica of the Grid-Ireland national infrastructure. Replicas of three Grid-Ireland

sites were used for the test: csTCDie, giDITie, and giDCUie. A replica of the central Grid-

Ireland R-GMA registry was used by the QueryEngine deployed on each replica site, as well

as by the Archiver used to collect the alerts published by each site. The R-GMA server also

hosted the intrusion log analysers. Figure 8.6 summarises the test deployment.

8.2.2 Example Analysers

Port scanning is an attempt to determine the services that are active on a host. To perform

a port scan an attacker sends packets to the ports of interest on a host and collects the

responses. From the responses received the accessible services on the host can be identified.

A set of rules along with a preprocessor module for detecting port scans have been defined

for Snort by members of its user community. The majority of attempted port accesses in a

port scan will result in a negative response from the targeted host, i.e., no service is available

on that port. A large amount of negative responses in a short period of time is therefore

used by the sfPortscan preprocessor to detect a port scan. When a portscan is detected

the preprocessor generates an alert and logs a pseudo packet to the packet log file. The

payload of the pseudo packet is used to store information about the detected scan, such as

132

R-GMA

Registry

+

Archiver

+

Analysers

Query

Engine

Snort

+

Sensor

Query

Engine

Snort

+

Sensor

Query

Engine

Snort

+

Sensor

csTCDie
 giDITie
 giDCUie

Figure 8.6: GIDS test deployment

connection count, port count etc. The example intrusion log analysers described below each

use a different analysis method to detect an attempt to map the grid infrastructure.

Any intrusion log analyser needs to perform the following basic operations:

1. Log filtering

2. Pattern Matching

3. Alerting

First the log is filtered for the alerts of interest. This can be done using continuous

consumers as described in the previous chapter. With a continuous consumer the alerts that

satisfy the query are pushed to the consumer as soon as they are published. Some form of

pattern matching must take place in order to determine if the alert stream indicates a possible

133

attack. If so then an alert will be generated.

Simple Pattern Matching Analyser

The first analyser is an example of very simple pattern matching. This method is comparable

to the most basic approach used by Snort, where a ‘signature’ that identifies an attack is

defined, packets are examined to determine if they contain the signature, and if so an alert

is logged. The benefits of this approach is that it is relatively simple to implement and also

reliable, in that it will always alert if a defined signature is detected. The difficulty is that

only attacks for which a signature has been defined can be detected. Also it may be possible

to evade detection by modifying the attack so that it no longer matches the signature.

The analyser uses this approach to detect a portscan across multiple hosts and/or sites

in the Grid. To do this first the grid-wide intrusion log must be filtered for portscan alerts.

All alerts logged by Snort contain signature information. This information describes the

generator that detected the alert, the specific rule that was used, and the revision of the

rule used. This information is published by the QueryEngine in the snortAlerts table

as three separate columns, generator id, signature id, and revision. This allows for

the searching of alerts based on the preprocessor that generated them. In the case of the

sfPortscan preprocessor the generator ID used is 122. This can be used to filter the logged

alerts. The filtering of the log in this case is very simple. A continuous Consumer is used to

query the log for any published port scan alerts.

Consumer portScanConsumer = new Consumer("SELECT *

FROM snortAlerts

WHERE generator_id = 122",

Consumer.CONTINUOUS");

The above statement creates a Consumer that will return any alert generated by the

sfPortscan preprocessor published to the intrusion log.

134

When an alert is received its details are extracted from the result set and sent to a pattern

matcher to determine if an alert should be generated. Again the pattern is very simple. If we

see a portscan alert at more than 1 site from the same source IP then a ‘grid infrastructure

portscan alert’ should be generated. Once the alert is triggered a ‘grid alert’ email is created

and sent.

Obviously a portscan alert at a single site would warrant further investigation in itself.

Single site alerts can, however, be seen by directly querying the intrusion log. The purpose

here is to illustrate how patterns of alerts across sites can be detected.

Heuristic-based Analyser

In this example, rather than looking for a specific pattern of alerts, an algorithmic logic [49] is

applied to determine whether an alert should be triggered. The Snort portscan preprocessor,

described above, is an example of this approach. If a host is seen to generate reset (RST)

packets above a certain threshold, within a fixed period of time, then the preprocessor decides

that a portscan is occurring. This type of approach allows for the detection of activity that

does not have an identifiable signature. It may also detect new types of attacks for which

a signature has not yet been defined. The difficulty with this approach is in setting the

threshold at the correct level, such that false positives are minimised, whilst still retaining

the sensitivity required to detect possible attacks.

The analyser being considered here bases the decision to generate an alert on a specific

characteristic of the intrusion log, alert inter-arrival time, i.e., the time between alerts being

published to the log. An attacker may attempt to mask their activity by flooding a network

with packets known to trigger Snort alerts. Tools, such as Snot and Stick, can be used to

generate such packets from a Snort ruleset. The large amount of false positives generated

make it difficult to detect or trace actual attacks. The assumption with this analyser is that

a sudden increase in the rate of alerts published to the log within a certain period could

135

indicate that a hidden attack is taking place. Again a continuous consumer is used to collect

alerts as they are published. Here, because a specific pattern is not being searched for, no

filtering is applied. The consumer stores the time that the alert was received as the ‘detect

time’ of the alert. At regular intervals the consumer then calculates the average inter-arrival

time of alerts since the last sample. If the time calculated is below a specified threshold

then an alert should be generated. The intention is to tune the threshold value and sample

interval based on observation of the intrusion log over time. Possibly an adaptive constant

false alarm rate (CFAR) loop might be used to automate the tuning.

Anomaly-based Analyser

The final example uses an ‘anomaly-based’ approach. With this method the goal is to generate

an alert whenever activity is detected that deviates from the normal. The heuristic-based

approach above could also be described as anomaly-based, where normal activity is described

by the discrete threshold and sample period. Here though, the idea is to determine anomalous

behaviour through comparison with previously observed activity. Again, as with the heuristic

approach, the benefit is that this method will be capable of detecting attacks for which

signatures do not exist. Alerts when generated, however, will only indicate that some unusual

activity has occurred, not that a specific attack has taken place. What the activity represents

would not be immediately known, and would require further investigation. It can be difficult

to accurately model ‘normal’ activity.

The idea of the anomaly analyser is to try to obtain a measure of how unusual an alert

is in relation to those previously logged. A further alert is triggered if this value is above a

certain threshold. To determine this measure a weight is calculated for each alert based on

the relative frequencies of individual alert features (i.e., source, destination, destination port,

alert type) within the intrusion log. The alert weight, WA, is calculated as follows:

WA =
1∑
WF

136

Where WF is the relative frequency of each feature. The higher the WA value the more

unusual an alert is considered, the assumption being that if in the intrusion log there are a

large number of alerts containing certain features, such as a specific source or destination,

then they can be assumed to be false positives, or at least that they have been explained and

are considered to be of a low priority. It should, however, be reported when an alert that

deviates from this normal activity is detected.

8.2.3 Example Intrusion Detection

To run the test, Snort and the Snort Sensor were started at each of the test sites. The

analysers were started on the R-GMA server. NMap, a network mapping tool, was used to

simulate the actions of an attacker attempting to scan the grid infrastructure by running a

’SYN stealth’ scan against a node in each of the test sites.

Snort detected the port scan on all nodes scanned and alerts were created and logged,

along with pseudo port scan packets of the following form:

[**] [122:1:0] (portscan) TCP Portscan [**]

07/05-09:36:53.783140 134.226.53.60 -> 134.226.53.59

PROTO255 TTL:0 TOS:0x0 ID:0 IpLen:20 DgmLen:163 DF

A Tcpdump Sensor was run on a node being scanned, so that the traffic that triggered

the alert could be collected with the following query:

SELECT sensorId, source_port, destination_port,

timestamp_Secs, timestamp_uSecs

FROM TCP

Table 8.2 shows some of the packets collected by the sensor running on one of the targeted

nodes during the scan. It shows a large number of TCP SYN packets (code 0x02) being

137

sensorId source port destination port code timestamp Secs timestamp uSecs
gridmon.cs.tcd.ie:1 37456 5001 0x02 1120554368 256635
gridmon.cs.tcd.ie:1 5001 37456 0x14 1120554368 256672
gridmon.cs.tcd.ie:1 37456 574 0x02 1120554368 256773
gridmon.cs.tcd.ie:1 574 37456 0x14 1120554368 256786
gridmon.cs.tcd.ie:1 37456 839 0x02 1120554368 256790
gridmon.cs.tcd.ie:1 839 37456 0x14 1120554368 256802
gridmon.cs.tcd.ie:1 37457 1418 0x02 1120554368 569340
gridmon.cs.tcd.ie:1 1418 37457 0x14 1120554368 569375
gridmon.cs.tcd.ie:1 37457 4557 0x02 1120554368 569381
gridmon.cs.tcd.ie:1 4557 37457 0x14 1120554368 569393
gridmon.cs.tcd.ie:1 37457 280 0x02 1120554368 569398
gridmon.cs.tcd.ie:1 280 37457 0x14 1120554368 569408
gridmon.cs.tcd.ie:1 37457 2021 0x02 1120554368 569411
gridmon.cs.tcd.ie:1 2021 37457 0x14 1120554368 569422
gridmon.cs.tcd.ie:1 37457 498 0x02 1120554368 569425
gridmon.cs.tcd.ie:1 498 37457 0x14 1120554368 569435
gridmon.cs.tcd.ie:1 37457 26208 0x02 1120554368 569440
gridmon.cs.tcd.ie:1 26208 37457 0x14 1120554368 569450

Table 8.2: Sample of TCP traffic gathered by sensor during attack on TestGrid

directed at various ports on the target machine in a very short space of time. It also shows

the response from the host machine to these packets. The majority of these responses will be

RST packets (code 0x14), indicating to the source that no service is listening on this port.

As described earlier it is this large number of negative responses that triggers the portscan

alert. We can check for positive responses to the scan by querying for [SYN,ACK] packets

(code 0x12). These will indicate to the attacker that a service is listening.

SELECT sensorId, source_port, destination_port, code,

timestamp_Secs, timestamp_uSecs

FROM TCP WHERE code = ’0x12’

Table 8.3 shows that there were in fact only three positive responses sent during the port

scan. Port 111 is the RPC portmapper process. It maps the RPC services available on a

host to the ports they are using. In reality external access to this port should be blocked

138

sensorId source port destination port code timestamp Secs timestamp uSecs
gridmon.cs.tcd.ie:1 32771 37456 0x12 1120554370 829720
gridmon.cs.tcd.ie:1 111 37457 0x12 1120554371 149155
gridmon.cs.tcd.ie:1 22 37456 0x12 1120554374 823236

Table 8.3: Positive responses to port scan on TestGrid

by a firewall as it can be used to provide a large amount of reconnaissance information to

attackers. Port 32771 corresponds to another RPC service. Port 22 is the SSH daemon.

The portscan alert logged by each node is then sent to the QueryEngine, which in turn

then streams the alert to the snortAlerts table. The alerts were collected at the R-GMA

server by the Archiver (see Table 8.4). The various SNMP alerts seen in the log are triggered

by the portscan sending packets to the default ports for various SNMP services. For example,

the ‘SNMP AgentX/tcp request’ alert is caused by the attempted access to port 705, the

default SNMP AgentX port. The ‘SNMP trap tcp’ alert is triggered when an attempt is

made to access the default port of the SNMP Trap daemon, port 162.

SELECT siteId, sensorId, alert_timestamp, message, MeasurementTime

FROM snortAlerts

siteId sensorId alert timestamp message MeasurementTime
giDCUie gridmon.dcu.ie:0 07/05-09:41:57.075509 (portscan) TCP Portscan 08:42:08
giDCUie gridmon.dcu.ie:0 07/05-09:41:56.755491 SNMP request tcp 08:42:07
giDCUie gridmon.dcu.ie:0 07/05-09:41:21.876372 SNMP AgentX/tcp request 08:41:25
giDCUie gridmon.dcu.ie:0 07/05-09:40:55.936382 (portscan) TCP Portscan 08:40:57
giDITie gridmon.dit.ie:0 07/05-09:39:22.636994 (portscan) TCP Portscan 08:39:25
giDITie gridmon.dit.ie:0 07/05-09:39:22.636988 SNMP request tcp 08:39:24
giDITie gridmon.dit.ie:0 07/05-09:38:49.016974 SNMP AgentX/tcp request 08:38:53
giDITie gridmon.dit.ie:0 07/05-09:38:47.097249 SNMP trap tcp 08:38:51
giDITie gridmon.dit.ie:0 07/05-09:38:23.417710 (portscan) TCP Portscan 08:38:25
csTCDie gridmon.cs.tcd.ie:0 07/05-09:36:53.783140 (portscan) TCP Portscan 08:37:25
csTCDie gridmon.cs.tcd.ie:0 07/05-09:33:33.490563 SNMP AgentX/tcp request 08:34:04
csTCDie gridmon.cs.tcd.ie:0 07/05-09:33:32.847380 (portscan) TCP Portscan 08:34:02
csTCDie gridmon.cs.tcd.ie:0 07/05-09:33:33.163119 SNMP request tcp 08:34:03

Table 8.4: Sample of alerts logged to TestGrid grid-wide intrusion log

139

The port scan was detected by each of the example analysers. Each analyser generated

its own ‘grid alert’ in response. Each grid alert is sent as an email, and also published to two

R-GMA tables, gridAlerts and gridAlertTriggers. These tables store details of the grid

alert, and details of the snort alerts that triggered the grid alert respectively. Archiving these

tables provides a persistent record of all grid alerts published, and also provides an index into

the snortAlerts table so that the full alerts can be found.

The pattern matching analyser was set to generate an alert as soon as a portscan alert

was detected at more than one site. Once detected the analyser generated an alert email of

the following form:

Grid Alert: Grid Infrastructure Portscan

From:

<root@cagraidsvr17.cs.tcd.ie>

To:

stuart.kenny@cs.tcd.ie

Date:

05/07/2005 09:39:53

[**] 07/05-09:39:53.946 Grid Infrastructure Portscan [**]

Source: gridui.cs.tcd.ie (134.226.53.60)

Site: giDITie

07/05-09:39:22.636994 (portscan) TCP Portscan gridmon.dit.ie (147.252.15.28)

Site: giDCUie

07/05-09:39:50.802392 (portscan) TCP Portscan gridmon.dcu.ie (136.206.111.5)

Site: csTCDie

07/05-09:36:53.783140 (portscan) TCP Portscan gridmon.cs.tcd.ie (134.226.53.59)

For the heuristic analyser the threshold for alert inter-arrival time was set at 10,000ms,

and the sample interval at 5 minutes. The portscan attempt, although not generating a large

140

number of alerts, did produce alerts with an average inter-arrival rate below this value. As

such a grid alert of the following form was generated:

Subject: Grid Alert: Alert Frequency Threshold Reached

From:

<root@cagraidsvr17.cs.tcd.ie>

To:

stuart.kenny@cs.tcd.ie

Date:

05/07/2005 09:39:47

[**] 07/05-09:39:47.114 Alert Frequency Threshold Reached [**]

Sample Interval: 07/05-09:34:46.710 -> 07/05-09:39:47.113

Average Alert Inter-Arrival Time (msecs): 9895

The anomaly analyser also detected the portscan. The initial portscan alert published

to the log was assigned a weight of 0.98942834. The threshold for the test was set at 0.6.

The weight was reasonably high as the source, gridui.cs.tcd.ie, and the alert type, had not

frequently been seen previously in the log. The alert email generated was of the following

form:

Grid Alert: Possible Malicious Activity

From:

<root@cagraidsvr17.cs.tcd.ie>

To:

stuart.kenny@cs.tcd.ie

Date:

05/07/2005 09:37:33

141

[**] 07/05-09:37:33.139 Possible Malicious Activity [**]

Source: gridui.cs.tcd.ie (134.226.53.60)

Alert weight: 0.98942834

Site (csTCDie): 0.012267511

Source (gridui.cs.tcd.ie , 134.226.53.60): 0.0043529877

Destination (gridmon.cs.tcd.ie , 134.226.53.59): 0.007518797

Port (-1): 0.9845667

Alert Type ((portscan) TCP Portscan): 0.001978631

8.3 GRID-IRELAND DEPLOYMENT

An early prototype of GIDS has been deployed on Grid-Ireland. Snort, along with a Snort

Sensor, was started on a single node at 15 sites. Over a 4 week period 25,378 alerts were

collected to the intrusion log by an archiver running on the central Grid-Ireland R-GMA

server. Table 8.5 gives the distribution of alerts by site.

As can be seen there is significant variation in the number of alerts published. This is

mainly due to differences in firewall and network configurations and the services running on

the networks within the sites. NUIM, for example, (National University of Ireland, Maynooth)

accounted for approximately 70% of the total alerts, the majority of which (∼ 97%) were

triggered by hosts within the NUIM network. 85% of these were SNMP alerts. All of the

alerts logged for the site located in Armagh (obsARMuk) were generated by only two distinct

hosts within the local network. Clearly these are examples of where the Snort rules must be

tailored for the services, and configuration, of the site at which it is to be run (see Chapter 9).

Figure 8.7 shows the distribution of alerts excluding the SNMP alerts generated by hosts

within the NUIM network.

Table 8.7 shows the distribution of alert types seen over the 4 week period. As already

stated the majority of the alerts are SNMP related (due to the large number of alerts generated

142

Site ID No Of Alerts
cpDIASie 957
csQUBuk 25
csTCDie 194
csUCCie 124
giAITie 326
giDCUie 2352
giDITie 2
giITCie 13

giITTAie 41
giITTRie 13
giNUIMie 17070
giRCSIie 1012
giULie 17

obsARMuk 2157
scgNUIGie 1075

Table 8.5: Distribution of alerts by Grid-Ireland site

by hosts within NUIM). A significant number of alerts (approximately 17% of the total)

related to Microsoft SQL Server (MS SQL) were also recorded. Table 8.6 shows an alert

pattern that was often repeated in the intrusion log:

Time Alert Source Destination
07/14-02:16:06.855078 MS-SQL Worm propagation attempt 61.185.142.14 136.206.111.7
07/14-02:16:06.855078 MS-SQL Worm propagation attempt 61.185.142.14 136.206.111.7

OUTBOUND
07/14-02:16:06.855078 MS-SQL version overflow attempt 61.185.142.14 136.206.111.7

Table 8.6: MS SQL alert pattern

All of these alerts had a destination port of 1434, the MS SQL Monitor port, one of

the top ten target ports as listed by DShield. This pattern is most likely caused by the

SQL Slammer [9] worm, which targets a vulnerability in this service that allows for a buffer

overflow exploit. As none of the nodes host MS SQL Server this is another example of how

the Snort rules require tailoring to the grid environment. The remaining alerts are mostly

143

Figure 8.7: Distribution of alerts by site, excluding the SNMP alerts at NUIM

various types of low priority scanning and reconnaissance alerts.

Alert Type No Of Alerts

(http inspect) BARE BYTE UNICODE ENCODING 156

(portscan) TCP Distributed Portscan 1

(portscan) TCP Portscan 91

(portscan) TCP Portsweep 27

(portscan) UDP Portscan 13

(portscan) UDP Portsweep 729

(snort decoder) WARNING: TCP Data Offset is less than 5! 1

(spp rpc decode) Incomplete RPC segment 176

144

Alert Type No Of Alerts

(spp rpc decode) Multiple RPC Records 1718

ATTACK-RESPONSES 403 Forbidden 6

ATTACK-RESPONSES id check returned userid 293

BAD-TRAFFIC tcp port 0 traffic 1

BAD-TRAFFIC udp port 0 traffic 21

DNS named version attempt 1

DNS SPOOF query response with TTL of 1 min. and no authority 301

ICMP Destination Unreachable 201

ICMP L3retriever Ping 313

ICMP Large ICMP Packet 26

ICMP PING CyberKit 2.2 Windows 181

ICMP PING NMAP 2039

ICMP redirect host 1

ICMP redirect net 1060

ICMP superscan echo 4

ICMP webtrends scanner 2

MS-SQL ping attempt 52

MS-SQL probe response overflow attempt 18

MS-SQL version overflow attempt 999

MS-SQL Worm propagation attempt 999

MS-SQL Worm propagation attempt OUTBOUND 999

RPC mountd UDP unmount request 1

RPC portmap listing TCP 111 1

RPC portmap mountd request UDP 2

RPC portmap proxy attempt UDP 70

RPC portmap rusers request UDP 49

RPC portmap ypserv request UDP 58

SCAN FIN 181

145

Alert Type No Of Alerts

SCAN nmap XMAS 6

SCAN SSH Version map attempt 1

SNMP Broadcast request 126

SNMP broadcast trap 20

SNMP missing community string attempt 1

SNMP private access udp 24

SNMP public access udp 7074

SNMP request udp 7314

SNMP trap udp 20

WEB-MISC PCT Client Hello overflow attempt 1

Table 8.7: Distribution of alert types

In the 4 week period a portscan of multiple Grid-Ireland sites from a single source was

detected by the portscan analyser (described above). The following ‘grid-alert’ email was

generated in response to this:

Grid Alert: Grid Infrastructure Portscan

From:

<root@cagraidsvr17.cs.tcd.ie>

To:

stuart.kenny@cs.tcd.ie

Date:

Yesterday 00:26:05

[**] 08/04-00:26:05.244 Grid Infrastructure Portscan [**]

Source: 59.44.51.80 (59.44.51.80)

Site: giULie

08/04-00:17:56.418485 (portscan) TCP Portscan gridmon.grid.ul.ie (193.1.96.134)

146

Site: giRCSIie

08/04-00:26:04.005235 (portscan) TCP Portscan gridmon.rcsi.ie (193.1.229.24)

Site: giAITie

08/04-00:13:41.395764 (portscan) TCP Portscan 192.168.32.154 (192.168.32.154)

As can be seen from the alert email the source IP, 59.44.51.80, scanned 3 hosts at 3

different sites, giULie (University of Limerick), giRCSIie (Royal College of Surgeons, Dublin)

and giAITie (Institute of Technology, Athlone). The source had not appeared previously in

the intrusion log, and no further activity was seen from it. The source IP is contained in the

DShield (see Chapter 8) database however. At the time of writing 370 records, spanning a

4 day period, had been collected involving this host from monitored networks. According to

the reports 5 ports were scanned: 80, 2301, 3128, 8000, and 8080. The purpose of the scan

seems to be to identify active web proxies, as the host is scanning a set of ports frequently

used by these (e.g. 3128 is the default port for the SQUID proxy server). Attackers frequently

tunnel intrusions through vulnerable web proxies to hide their identity. As these scans were

part of a larger scan there is no evidence of active targeting of Grid-Ireland sites, and this

can be considered a false positive.

The ‘SCAN SSH Version map attempt’ alert published by the Snort Sensor on the node

located at the giITTAie (Institute of Technology, Tallaght) site did however warrant further

investigation (see Figure 8.8). The reason this alert can be considered a higher priority is that

it is targeting a service that is known to be running on the node being scanned. Vulnerabilities

in the SSH daemon could lead to a node being compromised. Logs on the targeted node did

show several attempted attacks on the SSH daemon, including the scan that triggered the

Snort alert:

Jul 12 13:15:33 gridmon sshd[16120]: scanned from 128.252.74.67

with SSH-1.0-SSH_Version_Mapper. Don’t panic.

Jul 12 13:15:33 gridmon sshd[16119]: Did not receive

147

identification string from 128.252.74.67

Figure 8.8: SSH alert viewed using Viewer GUI

The attacker attempted to determine the version of SSH running on the host, presumably

to see if it was a version for which there are known exploits. Earlier in the log evidence of

further attacks from other source IPs could be seen. These were examples of ‘brute force’

attacks where random account names and passwords were used to try to gain access to the

node:

Jul 12 11:53:50 gridmon sshd[15926]: Illegal user anna from 66.71.194.64

Jul 12 11:53:50 gridmon sshd(pam_unix)[15926]: check pass; user unknown

Jul 12 11:53:50 gridmon sshd(pam_unix)[15926]: authentication failure;

logname= uid=0 euid=0 tty=NODEVssh ruser= rhost=

h64.r194.clarion-limestone.iu6.usachoice.net

Jul 12 11:53:52 gridmon sshd[15926]: Failed password for illegal user anna

148

from 66.71.194.64 port 58518 ssh2Jul 12 11:53:54 gridmon sshd[15928]:

Illegal user ani from 66.71.194.64

Jul 12 11:53:54 gridmon sshd(pam_unix)[15928]: check pass; user unknown

Jul 12 11:53:54 gridmon sshd(pam_unix)[15928]: authentication failure;

logname=uid=0 euid=0 tty=NODEVssh ruser=

rhost=h64.r194.clarion-limestone.iu6.usachoice.net

Jul 12 11:53:56 gridmon sshd[15928]: Failed password for illegal user ani

from 66.71.194.64 port 58921 ssh2

Jul 12 11:53:58 gridmon sshd[15930]: Illegal user anca from 66.71.194.64

Jul 12 11:53:58 gridmon sshd(pam_unix)[15930]: check pass; user unknown

Jul 12 11:53:58 gridmon sshd(pam_unix)[15930]: authentication failure;

logname=uid=0 euid=0 tty=NODEVssh ruser=rhost=

h64.r194.clarion-limestone.iu6.usachoice.net

Jul 12 11:54:00 gridmon sshd[15930]: Failed password for illegal user anca

from 66.71.194.64 port 59305 ssh2

Jul 12 11:54:01 gridmon sshd[15932]: Illegal user oana from 66.71.194.64

Jul 12 11:54:01 gridmon sshd(pam_unix)[15932]: check pass; user unknown

Jul 12 11:54:01 gridmon sshd(pam_unix)[15932]: authentication failure;

logname=uid=0 euid=0 tty=NODEVssh ruser=rhost=

h64.r194.clarion-limestone.iu6.usachoice.net

No successful logins were recorded. To prevent this type of attack access to the ssh port

could be restricted to known IP ranges, such as just the local site and the Grid-Ireland

OpsCentre.

Again, as for Chapter 7, such is the interest of these results that it is easy to lose sight of

the fact that their acquisition is enabled by the SANTA-G framework, and that this chapter

simply represents an example usage of this very generic RGMA-based framework.

149

Chapter 9

FUTURE WORK

9.1 FUTURE WORK

There is significant scope for future work in expansion of SANTA-G. SANTA-G is a framework

that is designed to allow a variety of sensor types, QueryEngines (i.e., instruments), and

postprocessors (i.e., analysers).

9.1.1 Sensors and QueryEngines (Instruments)

The NetTracer described in this thesis is a demonstrator of both a SANTA-G software (Tcp-

dump and Snort) and hardware (SCI trace hardware) instrument. With regard to the Eth-

ernet NetTracer, the schema, although quite complete, can be extended quite easily. There

is data logged by Tcpdump that is not yet utilized, for example the options fields of the IP,

TCP and UDP headers. An essential future extension is to provide support for IPv6 packets.

Currently only IPv4 is supported.

The version of R-GMA used during development of NetTracer, and described in this

thesis, is the version included in the LCG [38] 2.3 grid middleware release, upon which

the final release of the CrossGrid middleware is based. As part of the refactoring effort

150

taking place within the EGEE project there have been several subsequent LCG and R-

GMA releases. Major changes include the preparations for moving from a servlet based

system to web-services, and the introduction of a new API. The various producer types,

Stream, Latest and DataBase, are now referred to as Primary Producers, with Archivers

becoming Secondary Producers, as they republish the information published by a Primary.

The Canonical Producer is now the OnDemand Producer. Producers are created by producer

factories, with producer properties specifying the required behaviour of the producer to create.

An essential future task is the migration of NetTracer to the new API. This will affect both the

QueryEngine and Viewer components. The majority of the changes will be minor, involving

a change in the API calls. Certain operations will require further effort, such as the method

used to remove closed sensors from the sensor information tables (see Section 6.1.2). In the

new API the concept of ‘clean-up predicates’ that specify tuples to remove, has been replaced

by ‘retention periods’ that specify the amount of time for which a producer should retain

a tuple. To allow for this the QueryEngine will need to republish the information for the

currently running sensors at regular intervals less than the retention period. Any tuple older

than the retention period can be assumed to be for a sensor that has since been closed and

can therefore be removed.

A major issue yet to be addressed is that of security. NetTracer badly needs a method for

authorisation of users attempting to retrieve data from the system. This would have to be

based on the standard grid security mechanisms such as GSI using certificates. Because the

system publishes network data it is important that only users that should be allowed view

the data are given access. R-GMA does provide a simple authentication mechanism that

requires a user to have a valid grid certificate in order to connect to the Consumer Servlet.

This does not, however, provide the means to decide whether a user should be allowed access

to particular tables of data once they have connected. Future R-GMA releases will provide

for the authorisation of users. Another requirement is for the remote management of sensors.

This is important for scalability. This feature relies on authorisation being present, as only

151

users with the correct access privileges should be allowed to control sensors.

A secure NetTracer prototype that includes some of these features has been developed.

A management module has been added that provides a simple authorisation scheme and

also remote management of sensors. The module comprises a management servlet, a sensor

daemon, and a client API. Figure 9.1 shows the structure of the prototype.

SANTA-G

Client API

R-GMA

Consumer

Consumer

Servlet

Canonical

Producer

Servlet

Management

Servlet

QueryEngine

Sensor

Daemon

SSL/

HTTPS

SSL/

HTTPS
SSL

HTTPS
 HTTPS

HTTPS

SANTA-G Viewer/

User Code

Figure 9.1: Secure NetTracer prototype structure

The ManagementServlet is used to authorise users, and to inform the QueryEngine when

a new user has been successfully authorised. Authorisation is performed by an authorisation

filter, developed by the EDG project as part of its Java security package. The client API

allows a user to interact with the ManagementServlet. When sending an authorisation re-

quest, a key is generated for the user by the client API. If authorisation is successful the key

is accepted and forwarded to the QueryEngine. The key is then included in the WHERE

predicate of submitted queries, e.g.:

SELECT * FROM Ethernet

WHERE authorised_key=

’/C=IE/O=Grid-Ireland/OU=cs.tcd.ie/L=RA-TCD/CN=Stuart P. Kenny

2402e21f621397f6beb1cdeff317bad6b54ca744’

Results are only returned for queries containing keys known to the QueryEngine. The

152

API and servlet also provide methods for both starting and stopping sensors on remote hosts.

Requests to control sensors, from users with the correct access privileges, are routed by the

servlet through the QueryEngine to the correct sensor daemon. The sensor daemon invokes

the sensor on the host machine using the configuration contained in the request. It is hoped

to include some of these features in the deployed NetTracer release in the near future.

The QueryEngine examples described in this thesis support libpcap format log files and

also the SCI trace files created by the original SANTA tools. It is possible to create new sensor

types and QueryEngine implementations to support other instruments and log file formats.

The Grid contains many possible sources of information. Grid services, such as the Globus

Gatekeeper and the PBS queue manager, produce large volumes of log file data. Although this

allows for detailed tracking and analysis of resource usage, finding the relevant information

amongst the verbose output can be difficult. This is an area where the SANTA-G approach

would be beneficial. A SANTA-G implementation capable of searching system log files such

as these would provide a powerful means of debugging the grid middleware and of tracing

individual job submissions. Complementing the information published in libpcap format by

Snort with that obtained from other security components would also be useful. Snort is a

network intrusion detection system, which means it is incapable of detecting activity that

takes place on the host machine itself, such as unauthorised access of system files. Providing

additional querying of the logs of a host-based system, such as Tripwire, would allow for the

detection of both attempted intrusions (by Snort) and the tracking of successful intrusions

(by Tripwire). This is the topic of an impending Msc thesis. It is also intended to investigate

other IDS such as Bro [23], a ‘Globus-aware’ NIDS. This system is capable of tracking GSI

connections and so could be used to verify and track ‘legitimate’ resource usage. With regard

to additional instruments, NetTracer can be extended for other interconnect technologies by

making use of existing hardware trace instruments. IBTracer [24], for example, is a protocol

analyser capable of tracing traffic from an InfiniBandTM link.

153

9.1.2 Postprocessors (Analysers)

Perhaps the most basic of the SANTA-G postprocessors is that which filters NetTracer logs for

one-way transit times, as described in Chapter 7. The one-way transit time is, however, one of

many simple yet very desirable metrics that otherwise may only be obtained through the Test

Traffic Measurements (TTM) [31] service offered by RIPE NCC [39], a service organisation

for Internet Service Providers. Availing of this service involves purchasing a RIPE ‘test box’.

The transit time metric may be used to optimise file transfers, messaging behaviour, and

even distributed shared memory systems. Grid-Ireland intend to use it to log an audit trail

of site time offsets, and to use this for auditing of security intrusion detection timestamps.

The Grid-wide Intrusion Detection System described in this thesis is a demonstrator of a

SANTA-G analyser of NetTracer logs. The issue of grid security is becoming an increasingly

important consideration in recent grid projects. As a large scale distributed computing

infrastructure a grid will be vulnerable to the same threats as traditional networks, at both

network and individual host level. There are also some grid specific issues. In order to

provide access to sites across organisations trust relationships must exist between hosts.

These relationships can be exploited, particularly in the case of stolen user credentials, which

would give an attacker access to sites that would be extremely difficult to trace as it would

appear as legitimate usage. The recent shift in grid middleware to a web-services based

infrastructure also brings new security threats. There are several well known exploits for

web-services, all of which the Grid will inherit, such as WSDL scanning, SQL injection, and

Replay Attacks [33]. Also because most sites will tend to have similar infrastructures in

terms of operating systems and services, a successful attack at one site could very quickly be

repeated at another [37]. All of this will lead to the need for stringent security monitoring,

with the ability for fine-grained analysis of inter-site security incidents. It is expected that

the work started in this thesis on the Grid-wide Intrusion Detection System will play a role

in this, and that the majority of my future work in the near future will be in this area.

154

The initial steps for this work has begun with the deployment of an early prototype of

GIDS on Grid-Ireland. It will be useful to run the system over a period of time in order that

a baseline of ‘normal’ activity can be gathered. For example certain alerts can be triggered

by everyday grid tasks such as updating the RPMs on hosts. The use of NFS by LCFG for

this triggers several RPC Snort alerts. False alarms such as these will need to be understood

and filtered in order that malicious activity can be detected amongst the alert ‘noise’. Alerts

that fall outside the expected patterns could be considered as being part of an attack.

Once a baseline model has been obtained it could be used to develop a custom set of Snort

rules specifically tailored to a grid. Rulesets for host types, such as Computing Elements and

User Interfaces, could be developed for exploits particular to the services found on those

hosts. This work would have the benefit of significantly reducing the rates of ‘false positives’

and therefore increasing the chances of detecting actual attempted exploits. As well as

developing rule sets it may be necessary, and beneficial, to develop new Snort preprocessors,

again tailored to detecting exploits of known, or predicted, grid vulnerabilities.

The intention of the work described above is to improve the detection of alerts at the

host/site level, in terms of reducing the false positive rate by tailoring the alerts more to the

grid environment. This needs to be done in order to reduce the load on the analyst/analysis

software that is examining the detected alerts. In the case of GIDS this analysis will be

carried out by custom code that uses R-GMA to filter the grid-wide intrusion log to detect

patterns signifying attempted attacks. The development of this code will form the bulk of my

effort in the near future. Again the initial steps will involve a detailed analysis of the expected

attacks that could be leveraged against a grid infrastructure. Some work has already been

undertaken in this area by the EGEE project (see [27]), however it will not be until grids

become more prevalent, and security incidents more frequent, that grid exploits will become

more widely known. Once the patterns, or signatures, of these attacks have been determined,

then the code to detect them can be developed.

Clearly detection is a pattern matching process, with the probability of false positives

155

and negatives depending on the sample size and the autocorrelation function of the pattern,

amongst other things. The creation of a grid-wide log increases the sample size and therefore

should increase the confidence level for the resulting alerts. The pattern matching process is

very likely to benefit from a statistical approach such as Bayesian filtering. Bayes’ formula

allows for the expression of the probability of an event as a combination of the probabilities

of other independent events. This approach is frequently used in the identification of spam

email. In order to do this a filter must first be trained. In the case of spam detection

training is carried out on two sets of email, one known to be spam and one known to be

legitimate. This approach could be applied to the classification of alerts contained in the

grid-wide log. Training sets could be created by adding alerts from the intrusion log that

are known to be malicious, or that are unexplained, to an incident database. This incident

database forms the ‘malicious activity’ set, whereas any alert contained in the intrusion log,

but not in the incident database, can be considered a member of the ‘false positive’ set. A

Bayesian filter could then be trained using this data to classify alerts, based on features (e.g.

source, destination, alert type) contained in the alert, in a similar way as words contained in

an email are used for spam identification. The probability of an alert being malicious, given

the features in the alert, can be expressed using Bayes’ formula as follows:

P (malicious|features) =
P (features|malicious)P (malicious)

P (features)
If it is determined that an alert has a high probability of being malicious then a further

‘grid alert’ can be triggered. This approach could be used in the relatively simplistic case

of classifying single alerts as either possibly malicious or false positive. For more detailed

analyses, such as recognising patterns of activity across sets of alerts contained in the log, more

complex pattern classification systems, possibly using AI techniques and category theory,

would be required.

Although in initial implementations it is expected that upon detection of an attack the

response will be to generate and deliver further alerts, another area of future work will be in

developing more ‘active’ responses to threats. Although it is hoped that the time between

156

attempted attack and attack detection/notification will be significantly reduced by the GIDS

described here, stopping the attack will still depend on the response time of the person

alerted. Alerts may not be checked, or may be delayed if systems such as email or SMS are

relied upon. To preclude this an automated response will be attempted. For example in the

simple port scan case described in the previous chapter the source IP could be added to a

firewall block list, and immediately denied access through the firewall. Care would have to

be taken with this type of approach, however, to ensure that it was not itself exploited. In

the above, spoofing an IP address would lead to an innocent party being denied access to

services, effectively a DoS attack on the spoofed system.

In terms of scaling, it seems sensible that there be national GIDSs, as for Grid-Ireland,

that publish derived alerts in an international hierarchy such as the federated hierarchy of

EGEE.

9.2 CONCLUSION

Overall the research has been a success. It has achieved the goals set out at the beginning.

As stated the results of the research have been exploited by three major grid projects. I have

learnt a great deal from my involvement in these projects, as well as in the process of designing

and implementing NetTracer. This includes new technologies such as R-GMA and LCFGng,

and also project management tasks, such as writing Software Requirement Specifications,

Software Design Documents, and providing detailed user documentation, installation and

developer guides. It has also allowed me to learn how to move from academic notions, to a

proof of concept, to approximately 16,000 lines of production quality code. The necessity to

provide system and unit tests, and to adhere to strict developer guidelines and testing and

validation procedures, has been very beneficial. It seems likely too that conception of the

grid-wide intrusion detection has opened up a whole new, if specialised, research area, and

this is very satisfying.

157

Bibliography

[1] IEEE 1596, IEEE standard for scalable coherent interface, IEEE std 1596-1992, IEEE

Computer Society, August 1993.

[2] Fingerprinting Sharing Alliance, http://www.arbornetworks.com/

fingerprint-sharing-alliance.php, April 2005.

[3] Sergio Andreozzi, Stephen Burke, Laurence Field, Steve Fisher, Balazs Konya,

Marco Mambelli, Jennifer M. Schopf, Matt Viljoen, and Antony Wilson, GLUE

schema specification version 1.2 final specification, http://infnforge.cnaf.infn.it/

glueinfomodel/uploads/Spec/GLUEInfoModel 1 2 final.pdf, December 2005.

[4] Sergio Andreozzi, Natascia De Bortoli, Sergio Fatinel, Antonia Ghiselli, Gennaro Tor-

tone, and Cristina Vistoli, GridICE: a monitoring service for the Grid, Proc. 3rd Grid

Workshop, Cracow, October 2003.

[5] Ruth Aydt, Dan Gunter, Warren Smith, Martin Swany, Valerie Taylor, Brian Tierney,

and Rich Wolski, A grid monitoring architecture, Tech. Report GWD-GP-16-3-1, GGF

Performance Working Group, August 2002.

[6] Jay Beale, James C. Foster, Jeffrey Posluns, and Brian Caswell, Snort 2.0 intrusion

detection, Syngress Publishing Inc., 2003.

158

[7] Rob Byrom, Brian Coghlan, Andrew Cooke, Roney Cordensoni, Linda Cornwall, Ari

Datta, Abdeslem Djaoui, Laurence Field, Steve Fisher, Stuart Kenny, James Magowan,

Werner Nutt, David O’Callaghan, Manfred Oevers, Norbert Podhorski, John Ryan,

Manish Soni, Paul Taylor, Antony Wilson, and Xiaomei Zhu, R-GMA: A relational grid

information and monitoring system, Proc. 2nd Cracow Grid Workshop, December 2002.

[8] Rob Byrom, Brian Coghlan, Andrew Cooke, Roney Cordensoni, Linda Cornwall, Ari

Datta, Abdeslem Djaoui, Laurence Field, Steve Fisher, Stuart Kenny, James Magowan,

Werner Nutt, Manfred Oevers, David O’Callaghan, Norbert Podhorski, John Ryan,

Manish Soni, Paul Taylor, Antony Wilson, and Xiaomei Zhu, The CanonicalProducer:

an instrument monitoring component of the Relational Grid Monitoring Architecture,

Scientific Programming 13 (2005), no. 2, 151–158.

[9] CERT, http://www.cert.org/advisories/CA-2003-04.html, July 2005.

[10] Chromium, http://chromium.sourceforge.net, August 2005.

[11] Brian Coghlan, Abdeslem Djaoui, Steve Fisher, James Magowan, and Manfred Oevers,

Time, information services and the Grid, BNCOD 2001 - Advances in Database Systems

(K D Oneill and B J Read, eds.), RAL-CONF, no. RAL-CONF-2001-003, BNCOD, 2001.

[12] A. Cooke, A. Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks,

J. Leake, M. Soni, A. Wilson, R. Cordenonsi, L. Cornwall, A. Djaoui, S.M. Fisher,

N. Podhorszki, B. Coghlan, S. Kenny, and D. O’Callaghan, R-GMA: An information

integration system for grid monitoring, Proc. of the Tenth International Conference on

Cooperative Information Systems, 2003.

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid information services

for distributed resource sharing, Proc. 10th IEEE International Symposium on High-

159

Performance Distributed Computing, IEEE Computer Society Press, August 2001,

p. 181.

[14] Nagios Project Documentation, http://www.nagios.org/docs/, April 2006.

[15] DShield, http://www.dshield.org, April 2005.

[16] Nathan Einwechter, An introduction to distributed intrusion detection systems, InFocus

Security Focus Article, http://www.securityfocus.com/infocus/1532 (2001).

[17] Advanced Intrusion Detection Environment, http://www.cs.tut.fi/∼rammer/aide.

html, April 2006.

[18] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke, A

directory service for configuring high-performance distributed computations, Proc. 6th

IEEE Symp. on High Performance Distributed Computing, IEEE Computer Society

Press, 1997, pp. 365–375.

[19] Vangelis Floros, Christos Markou, and Nikos Mastroyiannopolous, Cluster installation in

CrossGrid LCFGng for dummies (v1.0b2), http://cgi.di.uoa.gr/∼xgrid/cgfiles/

LCFGng v1.0.pdf, January 2004.

[20] Global Grid Forum, http://www.ggf.org/About/ggf abt overview.php, April 2006.

[21] I. Foster and C. Kesselman, The Grid: Blueprint for a future computing infrastructure,

Morgan Kaufmann Publishers, 1998.

[22] Hsqldb, http://sourceforge.net/projects/hsqldb, April 2006.

[23] Bro IDS, http://www.bro-ids.org, June 2005.

[24] LeCroy Infiniband Tracer, http://www.lecroy.com/tm/products/

ProtocolAnalyzers/ib.asp?menuid=62, July 2005.

160

[25] Paul Innella and Oba McMillan, An introduction to intrusion detection systems, InFocus

Security Focus Article, http://www.securityfocus.com/infocus/1520 (2001).

[26] Steve J. Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw, Re-

source management in Legion, Future Generation Computer Systems 15 (1999), no. 5-6,

583–584.

[27] EGEE JRA3, Grid Security Incident Description And Exchange Format, https://edms.

cern.ch/file/501422/1.2/EGEE-JRA3-TEC-501422-Grid-Security-Incident-v-1.

2.pdf, October 2005.

[28] Stuart Kenny, Statistical analysis of non-invasive scalable coherent interface trace data,

final year project report, Computer Science Department, Trinity College Dublin, June

2001.

[29] Stuart Kenny and B. A. Coghlan, Towards a grid-wide intrusion detection system, Proc.

European Grid Conference, LNCS 3470 (Amsterdam, The Netherlands), February 2005,

pp. 275–285.

[30] Stuart Kenny and Brian Coghlan, Grid-wide intrusion detection, Proc. 3rd Cracow Grid

Workshop (Cracow, Poland), December 2004, pp. 331–337.

[31] Olaf Kolkman and Henk Uijterwaal, Internet delay measurements using test traffic,

http://www.ripe.net/test-traffic, May 1997.

[32] Fang-Yie Leu, Jia-Chun Lin, Ming-Chang Li, Chao-Tung Yang, and Po-Chi Shih, Inte-

grating grid with intrusion detection, Proc. AINA 2005 (Taipei, Taiwan), vol. 1, March

2005, pp. 304–309.

[33] Pete Lindstrom, Attacking and defending web services, Spire Research Report, http:

//forumsystems.com/papers/Attacking and Defending WS.pdf (2004).

161

[34] Manzke M. and Coghlan B.A, Non-intrusive deep tracing of SCI interconnect traf-

fic, Proc. SCIEurope’99, no. ISBN82-14-00014-9, SINTEF Electronics and Cybernetics,

September 1999, pp. 53–58.

[35] M. Manzke, S. Kenny, B. Coghlan, and O. Lysne, Tuning and verification of simulation

models for high speed interconnect fabrics, Proc. PDPTA 2001, June 2001.

[36] Matthew L. Massie, Brent N. Chun, and David E. Culler, The Ganglia distributed mon-

itoring system: Design, implementation and experience, Parallel Computing 30 (2004),

no. 5-6, 817–840.

[37] Andrew McNab, Security monitoring boxes, http://agenda.cern.ch/askArchive.

php?base=agenda&categ=a053292&id=a053292s1t10/transparencies, GridPP De-

ployment Board Meeting, Glasgow, June 2005.

[38] LCG Grid Middleware, http://lcg.web.cern.ch/LCG/activities/middleware.

html, July 2005.

[39] RIPE NCC, http://www.ripe.net/info/ncc/index.html, July 2005.

[40] Stephen Northcutt, Mark Cooper, Matt Fearnow, and Karen Frederick, Intrusion sig-

natures and analysis, New Riders Publishing, 2001.

[41] Stephen Northcutt and Judy Novak, Network intrusion detection, 3rd edition, New Rid-

ers Publishing, 2002.

[42] G. Pfister, In search of clusters, 2nd edition, Prentice Hall PTR, NJ, 1998.

[43] EU CrossGrid Project, http://www.eu-crossgrid.org, June 2005.

[44] Large Hadron Collider project, http://lcg.web.cern.ch/LCG/, April 2006.

162

[45] Gunnar Ronneberg and Olav Lysne, An Opnet-based simulation model of SCI-nodes,

Proc. SCI Europe 1999, no. ISBN82-14-00014-9, SINTEF Electronics and Cybernetics,

1999, pp. 101–112.

[46] Snort, http://www.snort.org, April 2005.

[47] Dolphin Interconnect Solutions, Link Controller 3 specification D666 - LC-3, http:

//www.dolphinics.com/products/hardware/lc3.html, v1.9 ed., June 2002.

[48] Open source Tripwrire, http://sourceforge.net/projects/tripwire/, April 2006.

[49] Cisco Systems, The science of intrusion detection system attack identification, white pa-

per, http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/prodlit/idssa wp.

pdf.

[50] Tcpdump, http://www.tcpdump.org, April 2005.

[51] Site Functional Tests, http://goc.grid.sinica.edu.tw/gocwiki/Site Functional

Tests, April 2006.

[52] Brian Tierney and Dan Gunter, NetLogger: A toolkit for distributed system performance

tuning and debugging, Tech. Report LBNL-51276, Lawrence Berkeley National Labora-

tory, 2002.

[53] Rich Wolski, Neil T. Spring, and Jim Hayes, The Network Weather Service: A dis-

tributed resource performance forecasting service for Metacomputing, Future Generation

Computer Systems 15 (1998), no. 5-6, 757–768.

[54] DataGrid WP2, EDG Java security, http://edg-wp2.web.cern.ch/edg-wp2/

security/edg-java-security.html, September 2005.

163

