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Abstract

3D object modelling from multiple view images has recently been of

increasing interest in computer vision. Two techniques, Visual Hull

and Photo Hull, have been extensively studied in the hope of devel-

oping 3D shape from multiple views. These early methods have the

advantage that they do not require pre-processing procedures such

as feature selection and matching, which fail when images are of low

resolution. One drawback of these two methods is their discrete for-

mulation, which is demanding of memory and limits the type of opti-

misation methods that can be used. This study proposes a continuous

formulation in contrast to the discrete formulations typical of these

earlier methods, and aims to robustly reconstruct the 3D shape and

colour of an object seen in a multi-view system. The use of a con-

tinuous formulation based on kernel density estimates enables us to

define a gradient ascent algorithm (e.g. a mean shift algorithm) to

recover the 3D shape and colour. Moreover, we propose to include

prior information in this continuous modelling to improve the quality

of the reconstruction. The proposed approach has several advantages:

it is less memory demanding, the resulting algorithm is suitable for

parallel processing, and it recovers concavities that are usually lost

when estimating shape from silhouettes with the standard visual hull

method.
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Chapter 1

Introduction

Modelling an object from multiple views has turned out to be an essential re-

quirement in areas as diverse as 3D photography, automatic modelling or virtual

reality applications. Moreover, in recognition of the limitations of 2D information

from images, there has been an increasing interest in 3D object modelling in the

object recognition domain, especially for face recognition, which has helped to

address difficulties caused by illumination and pose variations.

This thesis aims to automatically estimate a 3D model of an object of interest

as accurately as possible using a multi-view system. Visual Hull has been widely

used to compute a 3D shape of an object of interest from silhouettes of multiple

views, and this concept has been further extended to Photo Hull to encompass

colour information rather than binary silhouettes. Also, the Radon transform has

provided a mathematical basis from which to estimate 3D shapes from 2D views

in medical image processing, and in tomographic projection in particular.

Both Visual Hull and Photo Hull ideas have been proposed more than two

decades ago. However these methods are still very much used today due to their

simplicity because they can give an initial estimate of the 3D shape of the object

in view for more advanced 3D reconstruction algorithms.

Both modellings (Visual Hull and Photo Hull) are formulated in order to

optimise a discrete cost function. The modellings with discrete cost functions

are usually memory demanding and can only be optimised by using extensive

search algorithms. Moreover, Visual Hull provides only a convex approximation

of the shape of an object. This results in a loss of the object’s concavities beyond
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1.1 Ideal Scenario

recovery. This thesis investigates new formulations for Visual Hull and Photo Hull

that can address these limitations and improve the quality of object modelling.

1.1 Ideal Scenario

Figure 1.1: Multi-view system (71). Figure 1.2: Multi-view system (88).

This thesis considers a multi-view system consisting of several synchronised

static cameras over looking the same scene as shown in Figure 1.1 and 1.2. An

object of interest, for instance the head of an individual, is visible from several

camera views at different resolutions. We want to merge the information available

from all cameras to recover the 3D shape of the object. This problem poses

several challenges, including limited visibility (occlusions and different scales),

pose variations, uncontrolled illumination, etc.

Zimmermann et al. (88) propose to track and to update sequentially 3D head

shapes in a multi-view setting. They assume that some part of the head is visible

to at least two cameras. Partial 3D reconstruction is then iteratively performed

using stereo vision matching techniques. As the object moves in the scene, more

views of the head can be merged in the 3D reconstruction model refining both

the reconstruction and the tracking process. It should be noted, however, that

the success of this approach depends on the robustness of the stereo matching

process and the tracking accuracy.
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1.2 Research Questions and Contributions

In the same vein as Zimmermann et al. (88), the ultimate idea explored in

this thesis is the possibility of merging sequential and/or simultaneous images as

recorded by a multi-view system, in order to estimate a more accurate 3D shape

of an object of interest. This system, if applied to the specific case of modelling

facial features, has the potential of helping to identify people. For the sake of

simplicity, we assume that the object to be reconstructed is rigid.

In general, to ensure the robustness of the stereo matching it is necessary

to robustly extract feature points to match. The robustness of local feature

detection was investigated at various scales (Appendix F). This preliminary work

has shown that the local feature-based approach is not sufficiently robust to deal

with objects of low resolution, as local feature detection and matching are not

reliable. This suggests that it is difficult to estimate the 3D shape of an object

based on matching several images with local features at the low resolution.

It is worth noting that this approach (i.e. stereo matching with local feature

points) to recover depth information for 3D shape inference is a popular one, and

leads to high quality reconstructions when the object image has a high resolution,

and the cameras are close to each other such that stereo matching is effective.

Earlier methods for 3D reconstruction, Visual Hull in particular, do not attempt

stereo matching and therefore are not sensitive to its limitations.

1.2 Research Questions and Contributions

1. How can multiple views information be merged without selecting

local features to estimate the 3D shape of an object in view?

Because Visual Hull does not require feature selection and matching, this

method is tested in Chapter 3. However, binary silhouette images are re-

quired as inputs. There are two major drawbacks of this approach:

∙ the modelling is discrete, and

∙ its computation requires a lot of memory.

Therefore, we propose an alternative continuous formulation for Visual Hull

and Photo Hull to recover the 3D shape and colour of an object seen in a
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1.3 Hypotheses in this Thesis

multi-view system (Chapter 4). We can define a gradient ascent algorithm

to estimate the 3D shape of an object from the formulation. The proposed

method has two major advantages:

∙ less memory is required, and

∙ the method is suitable for parallel processing.

2. How can prior information be integrated to estimate a more ac-

curate 3D shape from multi-view images?

In Chapter 5, we investigate how to include prior information in continuous

modelling so that a 3D shape can be more accurately estimated. We propose

a prior that is invariant to scale variations, and show how to deal with

rotations. The method we have used to approximate the prior optimally

is based on the K-nearest neighbour algorithm. Incorporating this prior

in our continuous modelling allows better 3D reconstruction. Particularly

concave regions, which convex approximation methods such as the Visual

Hull can not restore, can be reconstructed by using the proposed continuous

modelling. Even if a small number of cameras is used, this proposed method

of modelling will be able to reconstruct a 3D shape consistently.

1.3 Hypotheses in this Thesis

1. Silhouettes are assumed to be available: The silhouettes are known for 3D

shape estimation based on silhouettes in Chapters 3, 4 and 5.

2. We have assumed an orthographic camera projection model in Chapter 4

and 5. This simplifying assumption has facilitated the statistical modelling

of the likelihood that links the data (pixels) with the latent variable to

be estimated (i.e. the 3D reconstruction). Note that recently, (64) have

successfully extended this modelling to standard pin-hole cameras.

3. We have assumed that the object to reconstruct is rigid (Chapters 3, 4 and

5). This hypothesis is always true for any object when merging images

recorded at the same time but not when sequential images are merged. For
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1.4 List of Publications

instance, a face recorded from multi-view images at the same time could be

regarded as a rigid object. However, the same face, recorded at different

times, would probably appear with different facial expressions. In this case,

the face is a non-rigid object and this is beyond the scope of this thesis.

4. We have assumed a basic knowledge of motion information in Chapter 3, 4

and 5. 3D motion estimation is not the focus of this research.

5. The cameras record synchronised images.

1.4 List of Publications

1. Donghoon Kim and Rozenn Dahyot, Face Components Detection us-

ing SURF Descriptor and SVMs, In International Machine Vision and

Image Processing Conference, 2008.

2. Donghoon Kim and Rozenn Dahyot, 3D Head Reconstruction using

Multi-camera Stream, In Irish Machine Vision and Image Processing

Conference, 2009.

3. Donghoon Kim, Jonathan Ruttle and Rozenn Dahyot, 3D Shape Estima-

tion from Silhouettes using Mean-shift, In IEEE International Con-

ference on Acoustics, Speech and Signal Processing, 2010.

1.5 Summary of Chapters

This thesis is structured as follows:

∙ Chapter 2 provides a state-of-the-art literature review related to our research

topic including 3D surface reconstruction and kernel density estimates. The

3D surface reconstruction in Section 2.1 covers not only shape from silhouettes

and photo-consistency methods but also inverse Radon transform based meth-

ods. The kernel density estimate in Section 2.2 describes the concept of kernel

density estimates with optimisation methods such as the mean shift algorithm

and Newton’s method.
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1.5 Summary of Chapters

∙ Chapter 3 explains how to estimate the 3D shape using voxels and refine it

over time using motion information in multi-view video sequences.

∙ Chapter 4 gives the details of our new smooth kernel density estimates to

reconstruct 3D shapes and illustrates their performance experimentally.

∙ Chapter 5 outlines the methodologies to model new posteriors computed with

the kernel density estimates and a prior for the shape. Also 2D and 3D exper-

imental results are provided to show the performance of the proposed frame-

work.

∙ Chapter 6 concludes this research with a discussion of future research directions.
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Chapter 2

Background and Related Work

The primary goal of this thesis is to automatically infer a 3D reconstruction (i.e.

by volume or surface) of an object of interest when it is seen simultaneously

by many cameras from multiple views. The state-of-the-art of the domain is

presented in Section 2.1.

The proposed new framework, which is presented in Chapter 4, relies on a sta-

tistical modelling method that uses kernel density estimates. These are reviewed

in Section 2.2 along with optimisation methods such as the mean shift algorithm.

2.1 3D Surface Reconstruction

A silhouette image is a binary image where the object of interest (foreground)

is represented by pixels equalling one, whereas all other pixels are set to zero

(background). Silhouette images can be computed using segmentation algorithms

which can be made accurate in a controlled environment (e.g. using a blue-

screen as the background). Shape from silhouettes is a popular technique used

to estimate the 3D volume or surface of the object in view (21; 25). These are

reviewed in Section 2.1.1.

Silhouette images can be difficult to compute in an uncontrolled environment.

As an alternative, colour images that have additional photometric information,

can also be used to infer the 3D shape of the object. Shape from photo-consistency

methods based on this photometric information are described in Section 2.1.2.
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2.1 3D Surface Reconstruction

Section 2.1.3 reviews methods using stereo matching to recover depth infor-

mation from a pair of cameras and consequently merge these depth maps to infer

the 3D surface of the object of interest.

2.1.1 Shape from Silhouettes

Shape from silhouettes methods are popular in computer vision because of their

simplicity and their computational efficiency. The first known Shape from silhou-

ettes method was proposed by Baumgart (2). Figure 2.1 illustrates an example

of the reconstruction based on the intersection of three silhouettes recorded from

different viewpoints (only the reconstruction of a slice of the object is illustrated).

Each silhouette of the object creates a cone in the 3D world (i.e. locations inside

each cone project onto the foreground of the silhouette image using the camera

calibration parameters). The intersections of every cone from all camera views

give an approximation of the 3D object volume.

The reconstructed volume approximates the real 3D shape of the object. The

quality of this reconstruction depends on the number of camera views, their view-

points and the complexity of the object. In particular, concave regions can not be

observed in any silhouette; thus silhouette-based reconstructions are unsuitable

for the reconstruction of object’s concave regions. Laurentini (39) has defined

Visual Hull as the best reconstruction that can be computed using an infinite

number of silhouettes captured from all viewpoints outside the convex hull of the

object.

The inverse Radon transform is another well-known technique in medical

imaging for allowing the reconstruction of 3D volume from several projections.

Section 2.1.1.3 shows how this method can be used to estimate the shape of a 3D

object using silhouettes.

2.1.1.1 Voxel-based approaches

Volume-based approaches focus on the volume of the Visual Hull (39; 48; 59; 75).

This volume is represented by voxels (i.e. volume element). Figure 2.2 illustrates

the underlying concept of the volume-based approach from multiple cameras: the

yellow grid is a horizontal slice of the voxels.
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2.1 3D Surface Reconstruction

Figure 2.1: An example of the volume intersection from three views. The object

(green) is approximated by the area intersected by the three cones.

The world volume can be considered to be composed of voxels each of which

contributes to a pixel on the image planes of the cameras. The size of the cube

defines a spatial enclosure of the voxel. The calibration parameters of each camera

are needed to compute back-projection functions which allow the positions in 3D

space to be mapped to the image planes. An early approach which used this

representation was proposed by Martin and Aggarwal (48) using parallelepipedic

voxels.

Voxel occupancy is the simplest voxel-based approach to estimate 3D shapes.

This is generally a binary decision (e.g. voxel is occupied or unoccupied), though

some methods include a real value of opacity. The set of occupied voxels repre-

sents the 3D volume.

A classic algorithm known as voxel carving computes this intersection by pro-

jecting each voxel to all viewpoints and discarding all voxels which fall outside

any of the silhouettes. Szeliski (77) introduced the octree representation, which
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2.1 3D Surface Reconstruction

Figure 2.2: Shape from silhouettes using four views (Grey images are from

HumanEva-II dataset in (71)).

is a tree of recursively subdivided voxels (Figure 2.3). Using the octree represen-

tation, the occupied voxels can be computed efficiently.

Figure 2.3: Octree representation (77).

In these voxel-based approaches, it is critical to robustly and accurately ex-
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2.1 3D Surface Reconstruction

tract the silhouettes. Errors in the silhouette images lead to artifacts in the

estimated visual hull. To relax the limitation of binary silhouettes, several meth-

ods have been proposed (25; 73). For instance, Snow et al. (73) substitute binary

silhouettes with the difference between the intensity image recorded by the cam-

era and the intensity image recorded by the same camera without the object (i.e.

background image). This can be manifested as fuzzy silhouettes where high val-

ues indicate pixels more likely to be on the object whereas low values indicate

that pixels are probably on the background. They formulate the voxel occupancy

problem as an optimisation problem where the global minimum of an energy func-

tion is computed. The energy function contains a data term and a smoothness

term. The data term specifies the likelihood of the voxel occupancy based on

the fuzzy silhouettes. The smoothness term specifies the degree of smoothness

of the labels in a neighbourhood of voxels. Their formulation can be regarded

as a generalisation of silhouette intersections with two advantages: the silhouette

is no longer a binary map, and a global spatial smoothness can be incorporated

naturally.

A probabilistic representation of the problem has been proposed by Franco

and Boyer (25). Instead of the binary decision of the voxel occupancy, the volume

is represented by a grid of voxel occupancy probabilities.

In general, volume-based approaches are limited by the heavy computation

and memory requirements. In addition, post-processing is required if a mesh

representation of the surface is needed as opposed to a volume representation

wih voxels. The mesh representation can be constructed using the Marching

Cubes algorithm from the reconstructed voxels (45).

2.1.1.2 Surface-based approaches

Surface-based approaches aim to estimate a surface representation of the Vi-

sual Hull rather than a volume representation. The 3D surface of an object

is reconstructed by analyzing the geometric relationship between the silhouette

boundaries and the Visual Hull surface. These methods directly estimate a mesh

representation of the 3D surface by computing the intersection of the cone sur-

faces associated with the silhouette edges (often based on the epipolar constraint)

illustrated in Figure 2.4.
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2.1 3D Surface Reconstruction

Figure 2.4: The face of a single silhouette cone is illustrated by the colour green

(53).

An early attempt at direct polygonal intersection was introduced by Baumgart

(2). Sullivan and Ponce (76) proposed the polygonal Visual Hull to initialize a

triangular spline surface which is then subject to further refinement. However, the

direct intersection of generalized viewing cones is neither efficient nor numerically

stable.

Lazebnik et al. introduced a topological description of the contour generator

for weakly calibrated cameras (40). This description has facilitated the computa-

tion of the Visual Hull polyhedron. Matusik et al. proposed an efficient algorithm

for computing the polyhedral Visual Hull directly from silhouettes (53). Their

algorithm is capable of generating mesh in real time in the case of a few cam-

eras. However, it may still suffer from numerical instability if more cameras are

introduced.

Boyer and Franco proposed a hybrid approach (7). Their algorithm first com-

putes a set of surface points by intersecting the viewing lines in a surface-based

fashion. Then, it subdivides the space into tetrahedrons by applying Delaunay
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2.1 3D Surface Reconstruction

tetrahedrization to those surface points. Finally, the visual hull is reconstructed

by carving tetrahedrons volumetrically. The hybrid algorithm was designed to

avoid artifacts of discretisation by using irregular volumetric cells. In a separate

attempt, Cheung et al. (12) adopted colour information not only to locate exactly

the points tangential to the surface along each viewing edge but also to estimate

rigid motion in video sequences. More recently, Franco and Boyer (25) proposed

an algorithm to compute polyhedral visual hulls based on the observation of the

incidence relationships between primitives on polyhedron.

Surface-based approaches, which approximate the visual hull with polyhe-

drons, outperform the volumetric approaches in terms of accuracy and compu-

tational complexity. However, they lack robustness, because the calculation of

intersections in the 3D space is sensitive to numerical instabilities, especially for

complex objects in a low resolution environment. In addition, the mesh model

they produce is usually composed of irregular triangles.

2.1.1.3 Inverse Radon Transform

Tomographic reconstruction is an important and active research topic in the

field of medical image processing, for example Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI). The context of tomographic reconstruction

is similar to the volume-based approach in the sense that both are back-projection

techniques. However, a 3D medical image is represented in three dimensions as

a stack of two-dimensional images reconstructed from tomographic projections.

Each slice in the stack is calculated by the Inverse Radon transform.

The Radon transform was first introduced by Johann Radon in 1917 and

referred to as the x-ray transform or the projection transform. He showed how

to describe a function in terms of its (integral) projection. Radon transform is

the mapping of a function on to its projection. The inverse Radon transform is

the reconstruction of the function from the projections. The projection can be

expressed as a simple line integral or ray sum of the activity distribution along

a line which passes through the object. For a 2D distribution f(x, y) on a single

cross-sectional plane as shown in Figure 2.5, the line integral at an arbitrary angle
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� is expressed as

g�(t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) �(x cos � + y sin � − t) dx dy, (2.1)

where g�(t) is the ray sum along the line which passes through the object and

reaches detector t at the angle �. The function g�(t) is referred to as the Radon

x

y
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
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Figure 2.5: The Radon transform g�(t) of a distribution f(x, y).

transform of the function f(x, y).

The Fourier slice theorem relates the 1D Fourier transform of projection data

g�(t) to the 2D Fourier transform of the object f(x, y) evaluated along a radial

line in Fourier space. Let F (u, v) be the Fourier transform of f(x, y):

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp−2�(ux+vy) dx dy (2.2)

And let G�(!) be the 1D Fourier transform of g�(t)

G�(!) =

∫ ∞
−∞

g�(t) exp−2�!t dt (2.3)
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2.1 3D Surface Reconstruction

By substituting equation 2.1 into equation 2.3, G�(!) is given by:

G�(!) =

∫ ∞
−∞

(∫ ∞
−∞

∫ ∞
−∞

f(x, y) �(x cos � + y sin � − t) dx dy
)

exp−2�!t dt

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

(∫ ∞
−∞

�(x cos � + y sin � − t) exp−2�!t dt

)
dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp−2�!(x cos �+y sin �) dx dy

= F (u, v) for u = ! cos �, v = ! sin �
≡ F (!, �)

(2.4)

This result is illustrated in Figure 2.6. If F (!, �) denotes the values of F (u, v)

evaluated along a line at the angle � with the u axis in the frequency domain,

then it is equal to the Fourier transform G�(t) of the projection g�(t).

x

y

),( yxf



)(tg

t

t

u
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Fourier transform

Figure 2.6: The Fourier slice theorem: The Fourier transform of the projection

g�(t) at angle � gives the values of F (u, v) evaluated along a line at an angle � in

the uv plane.

Theoretically, the object can be fully reconstructed by a simple inverse 2D

Fourier transform of its 2D Fourier transform if the 1D transform of projection

data is given at enough radial and angular samples. This implies that:

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v) exp2�(ux+vy) du dv (2.5)
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2.1 3D Surface Reconstruction

By converting the Cartesian coordinates (u, v) into polar coordinate (!, �) in the

frequency domain, it follows that:

f(x, y) =

∫ 2�

0

∫ ∞
0

F (!, �) exp2�!(x cos �+y sin �) ! d! d�

=

∫ �

0

∫ ∞
0

F (!, �) exp2�!(x cos �+y sin �) ! d! d�

+

∫ �

0

∫ ∞
0

F (!, � + �) exp2�!(x cos(�+�)+y sin(�+�)) ! d! d�

=

∫ �

0

∫ ∞
−∞

F (!, �) ∣!∣ exp2�!(x cos �+y sin �) d! d�

=

∫ �

0

(∫ ∞
−∞

G�(!) ∣!∣ exp2�!t d!

)
d�

(2.6)

Equation 2.6 can be re-expressed as:

f(x, y) =

∫ �

0

Q�(x cos � + y sin �) d�, (2.7)

where

Q�(t) =

∫ ∞
−∞

G�(!) ∣!∣ exp2�!t d!. (2.8)

In equation 2.8, Q�(t) is the 1D inverse Fourier transform of G�(!)∣!∣ which

is the 1D Fourier transform of the projection g�(t) filtered by ramp filter ∣!∣.
Therefore, Q�(t) is the filtered projection data. Equation 2.7 is a back-projection

process which projects the filtered projection back to the object domain. Back-

projection can be viewed as smearing back the projection data along the ray from

which it came. By using the filtered back-projection (FBP) algorithm, one can

reconstruct the object from the projection data.

An explicit and computationally efficient inversion algorithm exists for 2D

Radon transforms called FBP (47; 61). Tomographic reconstruction reconstructs

3D volume from density data, and silhouette images are a very crude approx-

imation of it. Consequently, similarly to Visual Hull, using the inverse Radon

transform on silhouette images of an object taken from different perspectives,

enables the reconstructions of an approximation of the 3D shape. This has been

proposed by Pintavirooj and Sangworasil for inferring 3D shapes from silhouettes

(58) and it is used for comparison with the new approach in Chapter 4.
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2.1 3D Surface Reconstruction

2.1.2 Shape from Photo-Consistency

Instead of using binary silhouettes, photo-consistency approaches consider pho-

tometric information which compute sets of photo-consistent voxels called Pho-

tohull. This method assumes a Lambertian surface and constant illumination,

which means a valid point on the scene surface appears with the same colour over

all visible images.

Figure 2.7: Left: A candidate surface point visible but not photo-consistent in

the left view (Green colour is back-projected to the image plane of the left view).

Right: A candidate surface point visible and photo-consistent in all three views

(Red colour is back-projected to all image planes).

Figure 2.7 illustrates the photo-consistency of a 3D surface point in a multi-

view system. If the 3D candidate point is not photo-consistent with one of the

camera views, it is discarded. Otherwise (if the 3D point is photo-consistent with

all views), the point is regarded as a surface point. This filtering method is also

known as space carving.

Photo hull uses colour information of the images as constraints and builds

a volumetric model that is photo-consistent with all the input images (38; 68).

The process starts from an initialised 3D volume that contains the scene as an

unknown sub-volume. The volume is generally a large cube and is divided into a

set of small voxels. The photo-consistency-based algorithm iteratively computes

the photo-consistency of each of the surface voxels. Each voxel is projected onto

17



2.1 3D Surface Reconstruction

images which are visible to it and these projections are compared. If these pro-

jections are consistent in colour, this voxel is classified as a true surface voxel

and kept in the Photo hull. The algorithm stops when all surface voxels are

consistent with the input images. Slabaugh et al.(72) provides a detailed survey

on photo-consistency-based reconstruction up to 2001. More recently Anwar and

Ferrie (1) have proposed to improve this approach by taking into account camera

calibration errors and partial emptiness of the surface voxels.

Due to the richer information available, Photo hull constitutes a tighter es-

timate of the actual shape than the Visual Hull, allowing the appearance of

concavities on the reconstructed shape. However, it is impractical for colour

information to be consistent across different cameras due to varying positions

of lighting sources as well as different characteristics of sensing images such as

white balance, exposure time, auto-focus, etc. Therefore, for some voxels, colour

consistency can be ineffective as a means of surface verification.

2.1.3 Multi-view stereo

Multi-view stereo (MVS) methods have received lots of attention recently, produc-

ing a variety of reconstruction algorithms. Multi-view stereo methods calculate

correspondences across images to recover depth maps, then the depth maps are

merged to reconstruct the 3D structure. A general strategy is to divide the re-

construction process into two stages. The first stage consists of the estimation

of a series of depth maps using stereo pairs of the input images. Then the sec-

ond stage features the combination of the depth information into a global surface

estimation, making use of registration and regularisation techniques.

Seitz et al. (67) investigated the state-of-the-art in MVS up to 2006 as well

as creating a website (66) which evaluates various methods in terms of accuracy

and completeness. The latest MVS methods have been introduced in Middle-

bury evaluation (66). In this section, two leading methods (8; 27) used in this

evaluation are described.

Bradley et al. (8) propose a method to produce accurate 3D results based on

depth map estimation and integration with greatly reduced computation time.

The overall flow is described in Figure 2.8. The algorithm has two overall stages:
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2.1 3D Surface Reconstruction

1) binocular stereo on image pairs and 2) surface reconstruction. The binocular

stereo stage creates depth maps from pairs of adjacent viewpoints. The depth

maps calculated by a scaled-window matching technique are converted to 3D

points and merged into a single dense point cloud. Then a hierarchical vertex

clustering approach is used to eliminate some noise points. Finally, the pro-

cessed point cloud is triangulated. The resulting meshes contain holes in regions

occluded from the cameras, and each mesh has a different connectivity.

Figure 2.8: Acquisition flow (8)

Furukawa and Ponce (27) proposed a region growing approach for MVS that

propagates a surface out from initial seed points. Their approach broadly consists

of three stages: 1) a patch-based MVS algorithm, 2) the conversion of the patches

into a polygonal mesh model using Poisson Surface Reconstruction algorithm and

3) the polygonal mesh refinement via an energy minimisation approach regarding

photometric discrepancy and geometric smoothness. The result of 1) a patch-

based MVS algorithm is a dense collection of small oriented rectangular patches.

The collection of the patches is first detected by Harris and difference-of-Gaussian

operators. Expanding and filtering the detected patches are then followed. Each

patch is defined by its centre and unit normal vector to represent a local tangent

plane approximation of a surface shown in Figure 2.9. The patch based method

is limited in its ability to calculate local region correspondences in poor-texture

surfaces or sparse input images.

This is a general outline of some of the disadvantages of the MVS approaches.

Correspondence methods for the depth map calculation may be more effective

when views are close to each other. Additionally, correspondences should be kept
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2.1 3D Surface Reconstruction

Figure 2.9: Definition of a patch (27)

over many views even if there are significant changes in viewpoint. Moreover, it

is difficult to deal with occlusion differences between views.

2.1.4 Remarks

In this section, various 3D surface reconstruction methods have been discussed

including Visual Hull, Photo Hull, inverse Radon transform as well as Multi-view

stereo. The volume-based approach in Section 2.1.1.1 focused on the volume

of the visual hull which is discretised as voxels. In general, this approach is

weakened by a heavy computation and memory requirement. In Section 2.1.1.2,

the surface-based approach reconstructs a surface representation of the visual

hull. This method requires less computation and memory than the volume-based

approach. However, the intersection in the 3D space is sensitive to numerical

instabilities, especially in complicated objects. The Radon transform described

in 2.1.1.3 has a continuous formulation, however its calculation applied to digital

images is discrete.

Section 2.1.2 describes the Photo Hull approach which is based on colour

consistency between images from multiple views. The underlying assumption

regarding the colour consistency may not be practicable in real environments

owing to uncontrolled lighting conditions and different characteristics of sensing

images.

Section 2.1.3 introduces multi-view stereo approaches which require the es-

timation of depth information based on correspondences of stereo pair images.

20



2.2 Kernel density estimates (KDEs)

These approaches need relatively higher quality images and closer adjacent views

to resolve the corresponding problem than aforementioned methods.

These approaches are still very much used at least as an initial step in more

advanced methods. Both Visual Hull and Photo Hull can be understood as

estimating a 3D histogram describing the probability of a point in space being

part of the object. These methods use discrete objective functions, which demand

a memory requirement and optimisation performed with an exhaustive search.

The following section reviews Kernel density estimates that are continuous

functions and Chapter 4 will show how these estimates are used to propose new

continuous objective functions for Visual Hull and Photo Hull.

2.2 Kernel density estimates (KDEs)

A kernel density estimation is conceptually introduced in Section 2.2.1 along with

two optimisation methods for the kernel density estimator and its applications in

computer vision, which are described in Section 2.2.2.

2.2.1 Kernel density estimate of probability density func-

tions

A kernel density estimate, also called Parzen window method (56), is a non-

parametric density estimate for the probability density function of a random

variable. It was first introduced by Rosenblatt (63). If the observation data

points are [x1,x2, ⋅ ⋅ ⋅ ,xN ], which are independently and identically distributed

(i.i.d), then the kernel probability density estimation of a random variable x is

defined as follows:

f̂(x) =
1

Nℎ

N∑
i=1

K

(
x− xi
ℎ

)
(2.9)

where K is a kernel function, ℎ is its bandwidth and
∫
K(t)dt = 1 to ensure that

the estimate of f(x) integrates to 1.

In the kernel density estimation, an optimal approximation has two main re-

quirements: an appropriate kernel function and bandwidth. The most frequently
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2.2 Kernel density estimates (KDEs)

selected kernel function is the Gaussian kernel:

K(u) =
1√
2�

exp

(
−1

2
u2

)
. (2.10)

Table 2.1 also shows several kernel functions.

Table 2.1: Various Kernel Functions

Kernel Functions K(u) Range

Uniform 1
2

for ∣u∣ ≤ 1

Triangle (1− ∣u∣) for ∣u∣ ≤ 1

Epanechnikov 3
4
(1− u2) for ∣u∣ ≤ 1

Quartic(Biweight) 15
16

(1− u2)2 for ∣u∣ ≤ 1

Triweight 35
32

(1− u2)3 for ∣u∣ ≤ 1

Gaussian 1√
2�

exp
(
−1

2
u2
)

Cosinus �
4

cos
(
�
2
u
)

for ∣u∣ ≤ 1

High Order 0.375(3−5u2) for ∣u∣ ≤ 1

Cauchy 1
�(1+u2)

The bandwidth is analogous to the interval of the bins in the histogram es-

timation of density function and it is an empirical choice in practice. If the

bandwidth ℎ is too large, the kernel density function results in over-smoothed es-

timation. It is better to extract a global maxima, but this can lose local details.

Conversely, the density function becomes too rough if the smoothing parameter

ℎ is too small.

2.2.2 Finding Maxima of KDEs

Kernel density estimation methods for computer vision have attracted consider-

able attention within the past decade. Two approaches to find maxima of KDEs
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2.2 Kernel density estimates (KDEs)

have been proposed and both are discussed here: the mean shift algorithm (Sec-

tion 2.2.2.1) and the Newton-style algorithm (Section 2.2.2.2).

2.2.2.1 Mean shift algorithm

The mean shift algorithm is a non-parametric mode-seeking algorithm widely

used in pattern recognition and computer vision. Fukunaga and Hostetler (26)

developed the general form of the kernel gradient estimates and derived con-

ditions on the kernel functions to assure that the estimates are asymptotically

unbiased and consistent. They proposed the procedure of the mean shift based on

seeking the density mode (peak). Cheng (11) later provided an appropriate gen-

eralisation of the mean shift algorithm. More recently, the mean shift has been

applied to image segmentation (e.g. Figure 2.10), visual tracking (e.g. Figure

2.11), nonparametric density analysis, etc. (13; 14; 15; 28). The kernel density

estimation can be efficiently combined with the mean shift algorithm to optimise

for Gaussian kernel (11) and for any kernels with a convex and monotonically

decreasing profile, such as the Epanechnikov kernel (14).

The mean shift is originally designed to find local modes. However, in many

situations the global mode of a density function is the mode of interest. Shen et

al. (70) proposed a novel global mode seeking mean shift with multi-bandwidths,

termed annealed mean shift. Their algorithm converges to the global mode of the

density function, regardless of the initialisation point. The annealed mean shift

improves on the standard mean shift algorithm’s accuracy and execution time.

When the density has multiple modes, the annealed mean shift has better results.

Also the annealed mean shift has a small number of iterations to convergence

comparing to the standard mean shift algorithm.

2.2.2.2 Newton’s method

Newton’s method approximates roots of a function using the iteration formula

x(m+1) = x(m) − f(x(m))

f ′(x(m))
. (2.11)

Therefore x(m+1) is the x-intersection of the tangent line to the function f(x)

at x(m). Under the condition, Newton’s method can be guaranteed to converge
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2.2 Kernel density estimates (KDEs)

Figure 2.10: Kernel-based image segmentation using the mean shift algorithm

(14).

Figure 2.11: Real-time kernel-based colour tracking using the mean shift algo-

rithm (15).

quickly to a root xr of f(x), as long as x0 is sufficiently close to xr. This approach

can be used to find the roots of the derivatives of the kernel density estimate. In

the multi-dimensional case as follows, starting from an initial guess, the iterative

process is written as:

x(m+1) = x(m) −H−1∇f(x(m)), (2.12)

where H is the Hessian matrix of f at x(m) and ∇f(x(m)) is the gradient of f at

x(m).

Hager et al. (31) proposed a tracking method using multiple kernels to address

invariance to rotation and scaling. The tracking equation is linearised and solved

by the Newton-style iteration to simplify the optimisation procedure. It makes

the tracking process faster. Fan et al. (24) further extend the multiple kernels

to enhance the kernel-observability for articulated objects and complex motions.

The SSD tracker was improved by using the observability theorem in (60).

24



2.3 Conclusion

Quasi-Newton gradient descent algorithms for finding maxima of KDEs have

also been proposed (30; 43; 70). Liu and Chen (43) proposed a visual tracking

technique using the Quasi-Newton algorithm which has better accuracy than

mean shift optimisation. The Quasi-Newton algorithm was also used for kernel-

based template alignment (30). This optimisation has been shown to be about

twice as fast as the standard mean shift for data clustering (70).

2.2.3 Suitability of KDEs, Mean shift and Newton algo-

rithms for parallel computing

Parallel implementations of the mean shift algorithm have been proposed on a

Graphics Processing Unit (GPU) (23; 42; 74; 87). Li and Xiao (42) developed

a parallel mean shift tracking on the GPU using CUDA, and Exner et al. (23)

presented efficient GPU implementations for a continuously adaptive mean shift

(CAMShift) algorithm. A parallel mean shift algorithm was implemented for 3D

medical volume segmentation (87). Srinivasan et al. (74) provide a library (called

GPUML) which is for a C/C++ and MATLAB interface for speeding up the

computation of the weighted kernel summation and kernel matrix construction

on GPU. From these implementations, it is possible to improve hugely the speed

of the mean shift-based approaches.

2.3 Conclusion

In Section 2.1 we presented a review of Visual Hull and Photo Hull for 3D recon-

struction among others. Both methods are in frequent use today, whether alone

or as a pre-processing step to more advanced techniques. These two methods,

the former using silhouette images and the latter using unsegmented colour im-

ages, have a formulation that models a discrete objective function similar to a

3D histogram. To limit the memory consumption of Visual Hull and Photo Hull,

a reformulation of the problem is proposed in Chapter 4 using Kernel density

estimates (KDEs). KDEs has been discussed in Section 2.2 along with several

iterative optimisation techniques that are appropriate for parallel architecture.
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Chapter 3

Voxel-based 3D reconstruction

using sihouettes

This chapter presents a method of reconstructing a 3D shape from a sequence

of images recorded by a multi-view system1. Indeed by combining silhouettes

recorded at different points in time, more projections are available for the esti-

mation of Visual Hull. This strategy has been used in Zimmermann et al. (88)

to refine the 3D reconstruction of an object over time. This concept and its

repercussions are discussed in this chapter under the following assumptions:

∙ The cameras are fixed standard cameras and their calibration parameters

are known.

∙ The object of interest to be reconstructed is assumed to be rigid.

∙ The object of interest is in motion. This means that new views of the object

can be captured from the cameras over time.

∙ The motion of the object of interest in the 3D space is assumed to be known.

Standard motion tracking techniques can help to extract this information

(19; 65).

1Part of this chapter was published in (36).
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3.1 3D Voxel Reconstruction

∙ All recorded images have been segmented (automatically or by hand) such

that nearly perfect silhouettes are available. Various automatic techniques

for background subtraction can be used to help this pre-process (44).

Firstly, section 3.1 presents in detail the algorithm to compute a voxel-based

volume reconstruction from a set of silhouettes recorded at the same time. Section

3.2 explains how this initial estimate of the volume can be refined over time. The

bulk of the description of this method, however, is featured in section 3.3, which

presents two sets of results illustrating the approach:

∙ The first set is computed from the images available in the Middlebury

database (as outlined in section 3.3.1). This database contains high res-

olution images of a rigid object recorded using a rotating platform and a

digital camera, in a well controlled lighting environment.

∙ The second set of results has been computed using the Humaneva database

(section 3.3.2). The object of interest is the head of a person (assumed to be

rigid) who is walking around indoors and being filmed by four cameras. The

resolution of the head in the images is low and this situation would be quite

similar to what is recorded in video surveillance scenarios. Indeed voxel-

based approaches to 3D reconstruction are more stable than surface-based

approaches for low resolution images (see section 2.1.1.2).

3.1 3D Voxel Reconstruction

A voxel is a 3D cube used as a block element (or brick). The world volume

can be considered to be composed of voxels, each of which contributes to a pixel

(or pixels) in the images produced by cameras. The size of the cube defines a

spatial enclosure of the voxel. The camera calibration parameters of each camera

are required for computing back-projection functions which allow the positions

in 3D space to be mapped to 2D images. A standard voxel-based 3D shape

reconstruction algorithm is summarised in Table 3.1.

The world volume is split into voxels and classified into two categories: occu-

pied or unoccupied. The set of the occupied voxels is an approximation of the
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3.1 3D Voxel Reconstruction

Table 3.1: The voxel-based 3D shape reconstruction algorithm. I =

{I1, I2, ⋅ ⋅ ⋅ , IC} is a set of colour images recorded at the same time, S =

{S1, S2, ⋅ ⋅ ⋅ , SC} is the corresponding set of silhouettes, and C is the number

of cameras.

Step 1. Initialisation: Divide the world volume observed by cameras

into N ×N ×N voxels, vn, n = 1, ⋅ ⋅ ⋅N3.

Step2. Iteration:

FOR n = 1 to N3

counter = 0

FOR c = 1 to C

PROJECT the voxel vn onto the Ic image plane of camera c

IF the projected point is inside the silhouette Sc

then increment counter by 1

END IF

END FOR

IF counter = C then

MARK vn as occupied

END IF

END FOR

visual hull of an object. In general, the estimated voxel based reconstruction is

significantly larger than the actual size. This is one of the disadvantages of using

voxels to represent a 3D shape.

The binary 3D array computed by the algorithm shown in Table 3.1 is indexed

by the voxels {vn}n=1,⋅⋅⋅ ,N3 and labelled occupied (1) or unoccupied (0). It can

be interpreted as an estimate of a probability density function of the 3D spatial

position x = (x, y, z) to be in the volume of the object of interest, or not.

P (x) ∝
{

1 if ∃n ∈ [1 : N3] such that x ∈ vn and vn is occupied;
0 otherwise,

(3.1)

This representation is discrete and can be understood as a 3D histogram.
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3.2 Refining the 3D reconstruction over time

3.2 Refining the 3D reconstruction over time

Now we consider that sequences of images {I t1, ⋅ ⋅ ⋅ , I tC}t=1,⋅⋅⋅ ,T are collected from C

cameras over the time period t = 1 to t = T . The silhouettes {St1, ⋅ ⋅ ⋅ , StC}t=1,⋅⋅⋅ ,T

are segmented and at each time t, an estimate of the histogram Pt(xt) can be

computed using the algorithm in Table 3.1. Before these T estimates can be

summed, the object motion that has occurred between different points in time

needs to be compensated for refining the 3D reconstruction. We choose a reference

time tref and the motion between any time t and tref is compensated for Pt(xt).

Once all estimates are motion compensated, each gives an estimate of the volume

occupancy at time tref and the refinement is performed by averaging these T

estimates. The algorithm used for refinement is summarised in Algorithm 1.

Algorithm 1 Refinement of the voxel-based reconstruction.

Initialisation: select reference time tref ∈ [1 : T ]. The reference 3D array is set

to zeros Ptref (xref ) = 0.

for t = 1→ T do

Compute Pt(xt) from silhouettes {St1, ⋅ ⋅ ⋅ , StC} using algorithm in Tab. 3.1.

Given the motion transformation Mt(⋅) between time t and tref : xt =

Mt(xref ), compute the motion compensated array Pt(Mt(xref ))

Refine Ptref (xref ) := Ptref (xref ) + Pt(Mt(xref ))

end for

Compute Ptref (xref ) := 1
T
Ptref (xref )

The model for the 3D motion Mt(⋅) is explained in Section 3.2.1, and some

information about the calculation of Pt(Mt(xref )) is given in Section 3.2.2

3.2.1 Affine motion Mt(⋅)

The object of interest is assumed to be rigid and the motion transformation

between time t and tref , xt = Mt(xref ), is modelled with a 3× 3 rotation matrix

Rt and translation vector ��� t as follows:

Mt(xref ) = Rtxref + ��� t, (3.2)

29



3.2 Refining the 3D reconstruction over time

The rotation matrix consists of three matrices with respect to the X, Y, Z axes,

RX ,RY ,RZ defined as follows,

RX =

⎡⎣ 1 0 0
0 cos � − sin �
0 sin � cos �

⎤⎦ ,
RY =

⎡⎣ cos� 0 sin�
0 1 0

− sin� 0 cos�

⎤⎦ ,
RZ =

⎡⎣ cos' − sin' 0
sin' cos' 0

0 0 1

⎤⎦ , (3.3)

where �, �, ' are the rotation angles around the X, Y, Z axes. If there is no

motion, then the visual hulls are the same as the one computed at the reference

time and the refinement does not improve the volume estimate over time. If there

is motion, the estimated visual hull Pt at time t, should be rotated and translated

back onto the same grid as the 3D histogram of the reference Ptref .

3.2.2 Computation details

The motion compensated histogram Pt(Mt(xref )) is computed using trilinear in-

terpolation of Pt onto the 3D reference grid. For each position xref on the refer-

ence grid, the transformed position Mt(xref ) may not directly index the array Pt

but fall in between several cells of the array Pt. This is illustrated in Figure 3.1

where the point A indicates the position Mt(xref ) and the values of Pt are only

available on the nearest eight corners {a1, a1, ⋅ ⋅ ⋅ , a8}. Therefore, the probability

Pt(A) of the point A can be computed using the probabilities of the eight corner

points as follows:

Pt(A) =
8∑
i=1

!iPt(ai), (3.4)

where the weights {!i}i=1,⋅⋅⋅ ,8 are calculated by the distance ratio between point

A and point ai.
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3.3 Experimental Results

Figure 3.1: Eight corner points on a cube surrounding the point A.

3.3 Experimental Results

The method proposed here is evaluated using the Middlebury (67) and HumanEva-

II datasets (71). The Middlebury dataset provides high resolution images and

exact motion information. On the other hand, rough motion information has

been extracted by hand for the HumanEva-II dataset. This dataset contains low

resolution images which is a more realistic means of assessing the method as it will

be used in genuine situations. More detail of the database is shown in Appendix

A.

The evaluation measurement is based on the variation of the number of voxels

as updating new views. In general, the lower the number of views, the bigger

reconstruction results having a higher number of voxels. Therefore, the variation

of the number of voxels is analysed to investigate how closely the reconstruction

results are carved to be similar to the actual volume.

3.3.1 Middlebury Dataset

Experiments are carried out on real images from the Middlebury dataset to inves-

tigate the feasibility of this approach. 48 views are located horizontally around

an object of interest, of which 40 are picked up. It is assumed that these 40 views
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3.3 Experimental Results

Figure 3.2: Different views of experimental results from Middlebury dataset (Top-

row: a dinosaur result from (t = 0), bottom-row: a final dinosaur result from

(t = 10)).

Figure 3.3: The final results with various thresholds and the voxels number from

left [0.975, 0.925, 0.875, 0.8] and [85326, 107474, 124285, 150907].

have been recorded sequentially by 4 cameras from t = 1 to t = 10. The motion

information is calculated using the locations of the cameras that take these 40

views. A reconstruction result from only 4 views (t = 0) is illustrated in the top
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row, Figure 3.2. The refinment is performed until (t = 10), at which all 40 views

have been merged, and the final result is shown in the bottom row of Figure 3.2.

There is no dedicated colour assignment procedure for voxels, and hence only the

shape should be assessed. Several results computed with different thresholds are

shown in Figure 3.3. It should be noted that this method is not unduly sensitive

to the selection of threshold.

Figure 3.4: One of the dinosaur images (left) and the final reconstruction result

from the threshold = 0.95 (right). The bottom right of the result is poorly

reconstructed due to the error of the silhouette extraction. Indeed, shadows on

the object makes the silhouette extraction hard.

The final result has 97966 voxels (the optimal threshold for the voxel proba-

bility = 0.95) carved from 158278 voxels illustrated in the right of Figure 3.4.

Figure 3.5 shows the comparison between results obtained using the proposed

method, and those obtained by merging all 40 views as if they were recorded

at the same time. Both results are very similar, and therefore this experiment

illustrates the feasibility of estimating a 3D shape when 3D motion information

is available.
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3.3 Experimental Results

Figure 3.5: Comparison results from 40 simultaneous views (left) and the pro-

posed method with threshold= 0.95 (right).

3.3.2 Humaneva-II Dataset

HumanEva-II dataset (71) is generated using a hardware synchronised system

with four colour video cameras. This dataset is selected because it is more realistic

for applications such as video surveillance, where images on the object of interest

are in low resolution, and there are pose variations of the object over time. For

example, even the OpenCV face detector (9), which has shown promise in the

field of face detection, does not work well on these images because of the low

resolution of the faces in the dataset (the size of faces roughly varies from 35×30

to 20 × 20). Figure 3.6 shows some images and the configuration of the data

capture. The dataset is calibrated using the Matlab camera calibration toolkit

(6), and contains two test sequences of different people with several actions:

walking, jogging, boxing, and so on.

The walking part is used here to reconstruct the 3D head of the person in

view. 16 frames are used, picked up from around 400 frames containing walking

motion. These are illustrated in Figure 3.7. In selecting these 16 frames, the

computation time is limited but the selected set is shown to represent various

viewing angles of the head.

Figure 3.8 shows the variation of the voxel number labelled as a head when
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3.3 Experimental Results

Figure 3.6: Plot for each camera and captured images in HumanEva-II.

accumulating information over time. The volume of the head is shown to decrease

and then stabilise around time t = 8. This is because the recorded images from

t = 1 to t = 8 are quite similar to the frames recorded between times t = 9 and

t = 16. In other words, the images recorded from cameras C3 and C4 between

t = 1 and t = 8 are similar to the images recorded by cameras C1 and C2 between

times t = 9 amd t = 16 (see Figure 3.7). The volume increases slightly after the

8tℎ frame and decreases slightly after the 12tℎ frame, due to inaccuracies in the

estimated motion information and the silhouette extraction. Although variation

is minor after the 8tℎ frame, the final result at t = 16 is more realistic than any

previous estimate (see Figure 3.9). Figure 3.9 illustrates a voxel representation

of different views for comparing between frames including the reference of a 3D

head at (t = 1) and the final result of a 3D head at (t = 16). In terms of the

realism of the shape created, the voxel representation of the final result is well
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3.3 Experimental Results

Figure 3.7: Walking footprints in the HumanEva-II (71).
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carved and much more natural than the reference.

Figure 3.9: Voxel representation of top view (the first row) and side view (the

second row) along with time t.

Figure 3.10 and 3.11 illustrate a comparison between a 3D head of the ref-

erence frame and a final 3D head result updated by 16 frames. The volume of

the final head is much more condensed than the reference 3D head. There is no

colour update, hence the texture of the head model has some artifacts.

Figure 3.12 illustrates the distribution of the voxel number along with its

probability in the final head. The threshold is set between 0.6 and 0.7 and is an

optimal choice in our experiments.

These values are comparatively smaller than the Middlebury dataset test in

Section 3.3.1 due to less accurate motion and silhouette information. Voxels which

have low probability are discarded by the threshold. The variation of the number

of voxels with different threshold is shown in Figure 3.13. The point clouds of

the 3D head models of the reference and final result are shown in Figure 3.14.

Red (black) points correspond to occupied voxel centres of the reference frame,

and green (grey) points come from the final result which is generated from the

probability threshold, 0.65.
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3.4 Conclusion

Figure 3.10: Side-view comparison between references (left column) and final

results (right column).

Figure 3.11: Frontal-view comparison between a reference and a final result.

3.4 Conclusion

This chapter has presented in further detail the shape from silhouette approach

that estimates the visual hull using voxel-based representation. This approach

can be viewed as the estimation of a discrete 3D histogram that is thresholded

to find the estimated volume of the object of interest. When the motion of the
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3.4 Conclusion

Figure 3.12: The distribution of the voxel number according to the voxel proba-

bility. This graph shows the actual volume is located between 0.7 and 1
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3.4 Conclusion

Figure 3.14: Plot of occupied voxel centres: red and green points come from the

reference 3D head and the final result, respectively.

object is known in the 3D world, this approach can be refined up to the point

where an infinite number of silhouettes is available and the estimate converges

toward the true visual hull. Several disadvantages of this approach are:

1. The discrete nature of the histogram means that this approach places a

high demand on memory;

2. The methods require silhouettes as inputs that can be difficult to compute

automatically without error;

3. In practice, computer-aided methods for motion estimation will provide

some rough 3D motion estimations, and these errors will also impact on the

quality of the reconstruction.

The next chapter proposes to address the first two of these limitations: an explicit

continuous formulation is introduced and colour information from the images is

also used to remove the need for silhouettes as inputs.
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Chapter 4

Kernel Density Estimate for 3D

Shape Reconstruction

Having already discussed voxel-based 3D construction using silhouettes in Chap-

ter 3, the purpose of this chapter is to give further detail on the proposed method

being put forward in this thesis as an alternative to such voxel-based methods.

In the previous chapter we alluded to the potential disadvantages of the shape-

from-silhouette approach, highlighting the high memory demand placed by the

discrete nature of the histogram, and the difficulty of accurately computing sil-

houette inputs. This chapter aims to address these limitations by discussing the

possibility of introducing an explicit continuous formulation, and the use of colour

information from the images to remove the need for silhouettes as inputs. In it,

we propose explicit smooth functions that will first estimate the visual hull from

silhouette images; this process will be outlined in Sections 4.1 and 4.2. 4.3 will

then estimate the photo hull from unsegmented colour images.

It is assumed that multiple synchronised cameras capture images of a 3D

object from different point of views (see Figure 4.1). For the sake of simplicity,

the cameras are assumed to be orthographic cameras. Note however that the

framework presented in this chapter is not limited to orthographic cameras, and

has indeed recently been extended to apply to standard cameras as well (64).

Four new smooth kernel density estimates are introduced to reconstruct a

3D shape of interest in this chapter. First, like Pintavirooj and M. Sangworasil

(58), we consider that a 3D object volume can be reconstructed by a stack of 2D
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Figure 4.1: Multi-camera system.

slices. In this case the 3D reconstruction problem is reduced to the reconstruction

of a 2D shape in each slice (Section 4.1)1. This kernel density estimate is then

extended in order to carry out the 3D reconstruction directly without considering

2D slices. This is described in Section 4.2.

The first two kernel density estimates use silhouette images as inputs. Section

4.3 extends this framework to use colour information and infer the photo hull. In

this case, colour images no longer need to be segmented and are used directly as

inputs.

Mean shift algorithm is now a well known method for finding the maxima of

kernel density estimates. An explanation is provided for the combination of the

mean shift algorithm with the proposed kernel density estimates to find a 3D

shape and its colour.

The rest of this chapter is organised as follows: The respective algorithms for

the estimation of the most likely positions for the surface of the object in the 3D

space are presented in Sections 4.1, 4.2 and 4.3. Section 4.4.1 proposes to use a

simulated annealing approach for the bandwidth used as a temperature in order

to avoid local maxima in the kernel density estimates. Section 4.5 illustrated

1 This new method has been published in 2010 in the International Conference on Acoustics,

Speech and Signal Processing (ICASSP) (37).
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4.1 2D Kernel Density Estimate for Shape from Silhouettes

experimentally how well these methods perform, and a conclusion is provided in

Section 4.6.

4.1 2D Kernel Density Estimate for Shape from

Silhouettes

4.1.1 Hypotheses

Figure 4.2: 3D head shape and 2D slices of the head (Green line illustrates a

selected 2D slice).

A 3D shape is recovered by first reconstructing the 2D slices of an object

from each line of the silhouette images. Each 2D slice is estimated and the 3D

shape is represented by the set of the 2D slices. To record the 3D shape and

define the 2D slices along the Z-axis, cameras are horizontally located around

the 3D object (see Figure 4.15). A 2D slice of a 3D head is illustrated in Figure

4.2. For simplification purposes, the camera matrix is chosen as an orthographic

projection: each foreground pixel on the 2D silhouette images is projected from

the 2D image plane to 3D space as a ray using orthographic projection, as shown

in Figure 4.3. Orthographic projection is an acceptable model for cameras when
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4.1 2D Kernel Density Estimate for Shape from Silhouettes

the object is close to the optical axis and the object’s dimension is small in

comparison to its distance to the camera.

Figure 4.3: Orthographic projection and Di(x).

4.1.2 Kernel Density Estimate Function

Figure 4.4: � and � to define a ray from 2D image plane to 3D space.
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4.1 2D Kernel Density Estimate for Shape from Silhouettes

We use a polar coordinate system to define the ray created by the foreground

pixel i:

�i = x cos �i + y sin �i (4.1)

The concept of � and � is illustrated in Figure 4.4. All parameters {(�i, �i)}i=1,⋅⋅⋅ ,n

are known: for all foreground pixels (n) in all image silhouettes from all camera

views. Having only one ray (�i, �i), our proposal is to model the probability den-

sity function of the random variable x = (x, y), representing the spatial position

of the object in the 2D slice. If we want all possible positions to be exactly on

the ray generated by (�i, �i), then we could select the Dirac kernel as follows:

p̂(x∣(�i, �i)) ∝ � (�i − x cos �i − y sin �i) (4.2)

Instead, the Gaussian kernel is used:

p̂(x∣(�i, �i)) ∝
1√
2�ℎ

exp

(
−(�i − x cos �i − y sin �i)

2

2ℎ2

)
(4.3)

This choice of the Gaussian kernel facilitates consideration of the positions close

to the ray as potential positions for the object with a probability non-zero. Each

foreground pixel now creates a fuzzy cylinder representing the object’s possible

positions, instead of a single line.

When considering the set of all rays generated by foreground pixels, {(�i, �i)}i=1,⋅⋅⋅ ,n

and assuming them equiprobable, then the following kernel estimate for x can be

proposed:

p̂(x) ∝ 1

n

n∑
i=1

1√
2�ℎ

exp

(
−(�i − x cos �i − y sin �i)

2

2ℎ2

)
(4.4)

where n is the total number of foreground pixels in all camera views. Figure 4.5

illustrates the probability density generated by the equation (4.4) for a slice of a

spherical object (e.g. soccer ball) reconstructed using 36 equally and horizontally

spaced camera views, and compared with that estimated by the Inverse Radon

transform approach. The Inverse Radon transform reconstructs a surface (or

empty object), whereas the p̂(x) models a volume object (or full object). We

want now to recover the positions x which maximize p̂(x). This will be performed

using the mean shift algorithm.
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4.1 2D Kernel Density Estimate for Shape from Silhouettes

Figure 4.5: Probability density p̂(x) (left), the Inverse Radon transform (right).

4.1.3 Mean-shift Algorithm

The mean shift algorithm is performed by differentiating the kernel density esti-

mate and equating the result to zero. The gradient of p̂(x) is:

∇p̂(x) =⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂p̂(x)

∂x
∝ 1√

2�nℎ3

n∑
i=1

Di(x) cos �i exp

(
−D2

i (x)

2ℎ2

)

∂p̂(x)

∂y
∝ 1√

2�nℎ3

n∑
i=1

Di(x) sin �i exp

(
−D2

i (x)

2ℎ2

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

where, Di(x) = (�i−x cos �i−y sin �i) illustrated in Figure 4.3. Using the equation

(4.5), starting from an initial position x(0), the mean-shift iteration to converge

towards the nearest local maximum, is then:

x(t+1) =
(
L(x(t))

)−1 ⋅M(x(t)). (4.6)

where L(x) is a 2× 2 matrix:

L(x) =
n∑
i=1

exp

(
−D2

i (x)

2ℎ2

)
×
[

cos2 �i sin �i cos �i
cos �i sin �i sin2 �i

]
(4.7)

and M(x) is the 2× 1 vector:

M(x) =
n∑
i=1

exp

(
−D2

i (x)

2ℎ2

)
×
[
�i cos �i
�i sin �i

]
. (4.8)
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From the starting position x(0), the iteration in equation (4.6) is repeated until

convergence. Figure 4.6 shows the mean-shift iterations from several starting

points towards their closest maxima of the probability density.

Figure 4.6: Mean-shift iteration in the case of 36 camera views (green: routes of

iteratively moving the initial points towards the surface of the object by using

the mean-shift equation, red: final estimated locations).

4.2 3D Kernel Density Estimate for Shape from

Silhouette

In this section, a method to estimate 3D shapes from 2D silhouette images using

a 3D ray and the mean shift algorithm is proposed. This method enables the esti-

mation of a 3D shape directly, using any kind of camera settings (e.g. horizontal

camera and spherical camera locations shown in Figure 4.15 and 4.16).
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P
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x

xi

Figure 4.7: 3D ray modelled by two orthogonal planes. x = (x, y, z) is a random

variable and xi is one particular point (pixel position) belonging to P, P1, and P2.

Di(x) is the shortest distance from the 3D ray.

4.2.1 Hypotheses and Notations

In order for the full 3D space to be considered for the 3D shape estimation, the

image plane P is first defined in terms of its normal vector ni and �i. �i is the

shortest distance from origin to the plane.

P : �− n⃗x = 0, x ∈ P. (4.9)

where, x is the 3D pixel coordinate. Then, the 3D ray, which is generated by

an orthographic projection, is defined by two orthogonal planes P1 and P2 which

have normal vectors n1i and n2i as seen in Figures 4.7.

n⃗i =

⎡⎣cos �i cos�i
sin �i cos�i

sin�i

⎤⎦ , n⃗1i =

⎡⎣− sin �i
cos �i

0

⎤⎦ , n⃗2i =

⎡⎣cos �i sin�i
sin �i sin�i
− cos�i

⎤⎦ ,
where �i and �i are defined in the spherical coordinates of the plane shown in

Figure 4.8. The ray projected from the foreground pixel can now be defined as

the intersection of these two planes P1 and P2. All parameters {�i, �i,xi}i=1,⋅⋅⋅ ,n
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4.2 3D Kernel Density Estimate for Shape from Silhouette

Figure 4.8: �, � and �

are known for all foreground pixels (n) in all image silhouettes from all camera

views.

4.2.2 3D Kernel Density Estimate with Mean-shift

A probability density function of a random variable x = [x, y, z], which represents

the spatial position of the object in the 3D space, is calculated by the shortest

distance Di(x) shown in Figure 4.7 combining with a Gaussian kernel as follows:

p̂(x∣ni) ∝
1√
2�ℎ

exp

(
−Di(x)2

2ℎ2

)
(4.10)

with

Di(x)2 = d2
1 + d2

2

=
(
nT1i (x− xi)

)2
+
(
nT2i (x− xi)

)2

= (x− xi)
Tn1in

T
1i(x− xi) + (x− xi)

Tn2in
T
2i(x− xi)

= (x− xi)
T (n1in

T
1i + n2in

T
2i)(x− xi)

= (x− xi)
T Ai (x− xi)

(4.11)

where

Ai = n1in
T
1i + n2in

T
2i

=

⎡⎣ sin2 �i+cos2 �i sin2 �i − sin �i cos �i+sin �i cos �i sin2 �i − cos �i sin�i cos�i

− sin �i cos �i+sin �i cos �i sin2 �i cos2 �i+sin2 �i sin2 �i − sin �i sin�i cos�i

− cos �i sin�i cos�i − sin �i sin�i cos�i cos2 �i

⎤⎦
(4.12)
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The probability density function in the equation (4.10) can be generated when

considering the set of all 3D rays as follows:

p̂(x) ∝ 1

n

n∑
i=1

1√
2�ℎ

exp

(
−Di(x)2

2ℎ2

)
∝ 1

n

n∑
i=1

1√
2�ℎ

exp

(
−(xi − x)TAi(xi − x)

2ℎ2

)
,

(4.13)

where n is the number of whole foreground pixels in the selected camera views.

A mean-shift iteration can be computed to estimate the 3D shape. From an

initial point, x(0), the mean-shift algorithm is computed until the nearest local

maximum is reached:

x(t+1) =
(
L(x(t))

)−1 ⋅M(x(t)), (4.14)

where L(x) is a 3× 3 matrix:

L(x) =
n∑
i=1

exp

(
−(xi − x)TAi(xi − x)

2ℎ2

)
Ai

and M(x) is the 3× 1 vector:

M(x) =
n∑
i=1

exp

(
−(xi − x)TAi(xi − x)

2ℎ2

)
Aix

T
i .

4.3 Kernel Density Estimate for Shape from colour

images

In this section, the 2D and 3D kernel density estimates described in the previous

sections are extended to consider colour information. This concept is basically

motivated by Photo Hull described in Section 2.1.2. Colour information is com-

bined with the likelihood terms of the kernel density estimates and will help to

improve accuracy performance 1.

1This work has been conducted in collaboration with Jonathan Ruttle.
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4.3 Kernel Density Estimate for Shape from colour images

4.3.1 Shape and Colour for Kernel Density Estimate

In this section, the extension of the 2D and 3D kernel density estimates is for-

mulated to use colour information. In order to take colour into account, full

RGB colour of the pixels is converted to chromaticity values because chromatic-

ity red and green are more invariant to lighting conditions (4; 20). The converting

equation is as follows:

r =
R

R +G+B
, g =

G

R +G+B
(4.15)

Two additional Gaussian probabilities of chromaticity red r and green g are added

in the likelihood of the kernel density estimates. The colour kernel density esti-

mate is then generalised as:

p̂(x, r, g) ∝ 1

N

N∑
i=1

1

(2�)
3
2 ℎsℎrℎg

Ei(x, r, g) (4.16)

where, (ℎs, ℎr, ℎg) are the bandwidths of the Gaussian kernels for the spatial and

colour domains. Ei(x, r, g) is given by:

Ei(x, r, g) = exp

(
−Di(x)2

2ℎ2
s

)
exp

(
− (ri − r)2

2ℎ2
r

)
exp

(
− (gi − g)2

2ℎ2
g

)
(4.17)

where, Di(x) of the 2D and 3D kernel density estimates are described in equations

4.5 and 4.11 respectively, and (ri, gi) are the (chromaticity-red and -green) of the

foreground pixels.

4.3.2 Mean-shift Algorithm

Mean-shift iteration is operated by differentiating the kernel density estimate in

equation 4.16 and equating the result to zero as follows:

(x, r, g)(t+1) =
(
L((x, r, g)(t))

)−1 ⋅M((x, r, g)(t)). (4.18)

In the case of the 2D kernel density estimate, L(x, r, g) is a 4× 4 matrix:

L(x, r, g) =
n∑
i=1

Ei(x, r, g)

⎡⎢⎢⎣
cos2 �i sin �i cos �i 0 0

cos �i sin �i sin2 �i 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.19)
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and M(x, r, g) is the 4× 1 vector:

M(x, r, g) =
n∑
i=1

Ei(x, r, g)

⎡⎢⎢⎣
�i cos �i
�i sin �i
ri
gi

⎤⎥⎥⎦ . (4.20)

In the case of the 3D kernel density estimate, L(x, r, g) is a 5× 5 matrix:

L(x, r, g) =
n∑
i=1

Ei(x, r, g)

⎡⎣ [Ai] 0 0
0 1 0
0 0 1

⎤⎦ (4.21)

and M(x, r, g) is the 5× 1 vector:

M(x, r, g) =
n∑
i=1

Ei(x, r, g)

⎡⎣ [Aixi]
ri
gi

⎤⎦ , (4.22)

where Ai is defined in equation (4.12).

(x, r, g)(m) is the current point with its colour and the point is moved to

(x, r, g)(m+1) as finding a higher probability.

4.4 Computational details

4.4.1 Bandwidths for Mean-shift

If only a small number of cameras is used, it is possible that the probability

density is noisy (see Figure 4.9), and may have many spurious modes. In this

case, the ordinary mean shift algorithm may get trapped in meaningless local

maxima. To overcome this problem, we propose to use the mean shift algorithm

with a simulated annealing scheme such as that used by Shen et al. (69).

Initially, the bandwidth starts relatively wide which results in a smoother

probability density function with fewer local maxima. As the mean-shift point

approaches the global maximum, the bandwidth is decreased in order to achieve

the greatest possible accuracy. Such an approach allows this method to converge

both robustly and quickly. The rate at which the bandwidth decreases from ℎmax

to ℎmin = 1 is based on a geometric rate (18):

ℎt = �tℎmax until ℎt = ℎmin with � = 0.98, (4.23)
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Figure 4.9: 2D KDE probability density variations of the selected slice in Figure

4.2 as changing the number of cameras.

The minimum bandwidth reflects the uncertainty on the pixel resolution ℎmin = 1.

ℎmax = 10 has been chosen experimentally. In the case of fewer cameras being

used, the mean-shift iteration may be trapped in a local maximum even if the

simulated approach described above is used. These local maxima can be avoided

by re-increasing the bandwidth, since the value of the density on the object

max p̂(x) is a known value, which can be calculated by the number of maximum

intersecting rays.

Several guess points are randomly created in the spatial domain around the

object, and these are moved using the simulated mean shift algorithm until con-

vergence. The contour of the object is then inferred by connecting the closest

points.
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4.4.2 Alternative Method to Meanshift

As an alternative to the mean shift iterations used to infer the shape when com-

puter memory is available, the kernel density estimates can be computed on a

regular grid spanning the 3D space. Positions on the grid having a density value

above a certain threshold are then kept, giving a likely indication of where the

object is located. It is then possible to place the point around the outside of

the object as illustrated in Figure 4.10. The more points that are sampled, the

more computation time and memory are required. However, if the sampling is

too sparse, then there is a risk of only areas of low probability being covered,

and the object being missed. Figure 4.11 shows a set of result points which are

sampled densely to estimate 180 points with threshold=0.8 and 36 camera views.
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Figure 4.10: Using a regular sampling grid to reconstruct the object: result (red),

initial points (cyan), sampled points (green), and ground-truth (blue).

4.5 Experiments

Section 4.5.1 presents the experimental settings to evaluate the methods. Qual-

itative and quantitative assessments are presented respectively in sections 4.5.2

and 4.5.3.

54



4.5 Experiments

−60 −40 −20 0 20 40 60

−20

0

20

40

60

80

X

Y

Figure 4.11: Final result (red) (using threshold=0.8 and 36 camera views) and

ground-truth (blue).

4.5.1 Database

Figure 4.12: 3D objects in the database.

To test our methods, a database with a ground truth was generated using Au-

todesk 3ds Max (see examples Figure 4.12). The database consists of ten mesh

objects (barrel, bulb, head, house, hydrant, lamp, push-pin, sculpture, service

bell and warning marker). Each object was orthographically projected into 360

image planes equally spaced horizontally around the object (equivalent setting

as a turning table in Pintavirooj and Sangworasil (58)) as well as spaced spheri-

cally. Different views of a head from the horizontal and spherical camera settings

are illustrated in Figure 4.13 and 4.14. The camera locations are illustrated in

Figure 4.15 and 4.16. The proposed 2D kernel density estimates and the Inverse
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Radon transform are tested using the database of horizontal different views. The

proposed 3D kernel density estimates are validated using both horizontal and

spherical views.

Figure 4.13: Horizontal different views of a head [0∘, 45∘, 90∘, 135∘, 180∘].

Figure 4.14: Spherical different views of a head.
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Figure 4.15: Horizontal camera locations(blue: x ≧ 0, green: x < 0).

Figure 4.16: Spherical camera locations(blue: x ≧ 0, green: x < 0).
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4.5.2 Qualitative evaluations

The four kernel density estimates are carried out using silhouettes and colour in-

formation from different camera settings. The number of horizontal and spherical

cameras varies from 4 to 36 and from 6 to 38, respectively.

2D kernel density estimates, as described in Section 4.1, use horizontally lo-

cated cameras. Initial 2D points (x, y) in the 2D slices are randomly created

around the object of interest and then iteratively move toward the contour of the

2D slice of the 3D object using the mean shift algorithm. Figure 4.17 presents the

Figure 4.17: Slice reconstruction of a head (using 36 views).

contour of a head estimated by the 2D kernel density estimate (green) and the

Inverse Radon Transform (blue) in a slice of a 3D head compared to the ground

truth (red). Both estimates are convex approximation to the reference and the

Meanshift reconstruction is closer to the ground truth. Figure 4.18 presents sev-

eral 3D objects and their reconstructions using the 2D kernel density estimate

with the Meanshift from 36 camera views of the horizontal camera setting (the

3D reconstruction is computed by stacking all 2D slices along the Z-axis).
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Figure 4.18: Ground-truth models (top row) and its reconstruction results using

2D kernel density estimates with 36 horizontal cameras(bottom row).

For the 3D kernel density estimate presented in Section 4.2, each object is

reconstructed using two different camera settings of the horizontally and spheri-

cally located. Initial 3D points (x, y, z) are randomly scattered around an object

of interest and then converged toward the contour of the 3D object using the

Meanshift. The resultant 3D reconstruction is shown in Figure 4.19.

The extensions of 2D and 3D kernel density estimates to include colour infor-

mation presented in Section 4.3 are computed using the same settings as previous

2D and 3D kernel density estimates. The estimated colour only contains rg chro-

maticity information, and therefore artificial intensity information is added to

visualise the 3D reconstructions shown in Figure 4.20. Further 3D reconstruction

results can be found in Appendix B.

4.5.3 Quantitative Evaluation

For the purpose of validation, these reconstructions must be compared with those

computed using the inverse Radon transform. The 3D surface of each object in

the database is estimated from the silhouette images using the methods proposed
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Figure 4.19: 3D kernel density estimate results from silhouettes of 36 horizon-

tal cameras (left column) and 38 spherical cameras (right column). One of the

silhouettes used for the reconstructions is illustrated in the bottom row.

here and the inverse Radon transform (computed by the function iradon in Matlab

and associated with the canny edge detector for finding the maxima), as described

in Pintavirooj and Sangworasil (58). The filtered back-projection algorithm in

Kak and Slaney (34) is used for iradon function (cubic interpolation and ramp

filter used in the back projection) to operate the inverse Radon transform. The

original mesh object is used as the ground truth.

Radial distance is used to assess the quality of the reconstruction between

the reconstructed 3D point clouds and their ground truth. Figure 4.21 shows

these distances computed for several sets of cameras (4 - 36) of cameras, which

are both horizontally and spherically located. The plot (in Figure 4.21) shows

the average radial distance computed over 10 objects. It should be noted that

for each camera (abscissa in Figure 4.21), the experiment is repeated several

times on each object by randomly selecting equally spaced camera views. This

is done to remove any effect caused by some particular camera views being more

informative than others. As can be seen in Figure 4.21, the reconstruction of the
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Figure 4.20: The results of the colour extensions from left to right using 2D

KDE using (silhouettes+colour) and (36 horizontal cameras), 3D KDE using

(silhouettes+colour) and (36 horizontal cameras) and 3D KDE using (silhou-

ettes+colour) and (38 spherical cameras).

proposed kernel density estimates outperforms the inverse Radon transform-based

one (the distance to the reference is smaller) and as expected for those methods,

the distance decreases up to a point as more camera views are available. All

graphs have a similar pattern as the number of cameras changes. However, the

methods presented here are more accurate, and when the distance is close to

nearly 0.8, the addition of more cameras does not improve the accuracy. This

indicates the estimate calculated in this reconstruction is very close to the true

visual hull (that is a convex approximation to the true shape). Reconstructions

using our proposed methods are slightly better when silhouettes only are used

without adding any colour information. This is because the colour initialisation

is not entirely accurate, even if the results are very close. Details of how colour

information can help this modelling process will be presented in Chapter 5.

More experiments are carried out using noisy images to test noise effects
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Figure 4.21: Radial distance plots using all objects (2DS: 2D KDE using silhou-

ettes, 3DS: 3D KDE using silhouettes, 2DC: 2D KDE using (silhouettes+colour),

3DC: 3D KDE using (silhouettes+colour), Radon: the inverse Radon transform-

based approach using silhouettes, Horizon: a horizontal camera setting and

Sphere: a spherical camera setting).

in terms of the robustness of the estimation method (3D kernel density esti-

mate). Four objects were used (barrel, hydrant, sculpture and head) and variable

amounts of ‘salt and pepper’ noise were added to the silhouette images. 1, 5, 10,

15 and 20% of the noise was added in advance of the reconstruction, and 20%

noise is illustrated in Figure 4.23. The results show that while the performance

decreases with increasing noise, the method that uses the 3D kernel density esti-

mate still manages to produce accurate reconstructions. This indicates that the

method proposed in this chapter is robust to noise (see Figures 4.22).
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Figure 4.22: Radial distance plot from noisy silhouettes using Meanshift with a

3D kernel density estimate.

Figure 4.23: 20% ‘salt and pepper’ noise.
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4.6 Conclusion

This chapter has presented four modellings to estimate 3D shapes from the images

of multiple views by using 2D silhouette images and colour information. This

approach is based on a new kernel density estimate of the density function of

the spatial position with colour information and its corresponding mean shift

algorithm for finding its maxima.

Experimental results show that these new statistical approaches are more

accurate than the Radon transform-based approach where the inverse transform is

computed using the filtered back-projection algorithm. The experimental results

also indicate that the methods are robust to noise, as they still produces solid

reconstructions even if the silhouettes are contaminated with up to 20% ‘salt and

pepper’ noise.

For the purposes of testing, it is assumed that the cameras were orthographic

leading to a modelling by kernel density estimates that can be optimised using the

Meanshift. The framework presented in this chapter has recently been extended

to the use of pin-hole cameras. In this case, the Newton-Raphson algorithm is

used (64). One important benefit of this framework is that the resulting iterative

algorithms are suitable for parallel architectures (see Section 2.2.3) and have low

memory requirements.

The modellings introduced in this chapter do not take into account any prior

information about the object in view. Indeed inference is performed using only

the observations available from the cameras, and our modellings can be considered

to be likelihoods. In the case of using only silhouette information, concave regions

cannot be recovered with our kernel-based modelling. The following chapter will

go on to investigate the benefit of adding a prior information regarding the object

in view, to further improve the reconstruction process.
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Chapter 5

Prior for Kernel Density

Estimates

Chapter 4 introduced several kernel density estimates (KDEs) to reconstruct a

photo-realistic 3D model using silhouettes and colour information recorded from

a multi-view system. These modellings can be assumed to be likelihood functions

since no prior information about the object in view is taken into consideration.

Relying on observation alone can produce poor results when the recorded images

are of low resolution, or when only a small number of views are available (such as

when observations are scarce and/or low quality). Furthermore, when using only

silhouettes, the object concavities are not recovered. Hence, in order to improve

the reconstruction, we extend the kernel density estimates from Chapter 4 to take

into account a prior for the shape.

Prior information for shape or texture has been proposed with, for instance,

3D morphable models that contain 3D surface shape or texture or both (5; 16;

17; 22; 51). Most recent methods of 3D face reconstruction (10; 52; 82) using

morphable models analyse high quality face images where 2D feature points rep-

resenting face components (eyes, nose, mouth, face contour, etc.) can be well

extracted to facilitate the process of matching with the morphable template. As

a consequence of this fitting process, these methods are not well applied to lower

quality images directly (see Appendix F).

In section 5.1 we describe a novel shape description in 2D slices that will be

used as prior information for accurately reconstructing 3D rigid objects. The
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prior is created by adaptively updating a k-nearest neighbour-based method. A

posterior function is then proposed by combining the prior with the likelihoods

defined in Chapter 4 (see Section 5.1.3). Inference from this posterior is per-

formed using the mean shift algorithm and a Gaussian shape stack to avoid local

solutions. The results from the k-nearest neighbour method are compared to the

Principal Components Analysis (PCA)-based method (described in section 5.2).

The results of multiple experiments in 2D and 3D reconstructions are presented

in Section 5.3 and summarised in Section 5.4.

5.1 A Prior for Shapes

A descriptor for 2D shapes is presented in Section 5.1.1. In Section 5.1.2, com-

parison between shapes is then performed using the absolute distance (L1 norm)

between descriptors and, we propose to reconstruct any new shape as a linear

combination of the K-nearest neighbours (as defined with the chosen metric).

The prior is modelled using this descriptor, and the adaptive k-nearest neighbour

algorithm is introduced for reconstruction (Section 5.1.3). The prior is combined

with the likelihood, and the posterior is optimised using the mean shift algorithm

(see section 5.1.4). To avoid local solutions, a Gaussian stack (Section 5.1.5) was

introduced.

5.1.1 Shape Descriptor

This section introduces a shape descriptor along with the metric used compare

shapes. In 2D, a shape consists of a sequence of points that define a connected

contour, as shown in Figure 5.1. To describe the shape, the points are chosen

uniformly along the contour in an anti-clockwise direction, as illustrated in Figure

5.2. The shape descriptor presented here contains not only the list of 2D points

{(xi, yi)}, but also the angles {�i} calculated at each location with its two nearest

neighbour points (see Figure 5.3).

The shape descriptor of each point xi = (xi, yi) has �i computed by a function
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Figure 5.1: Original point set from ALOI

database (29).
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Figure 5.2: Sampled point set (M = 180

points).

i xi

1xi

1xi

x

y

Figure 5.3: 2D points and angles for the shape descriptor.

f as follow:

f(X) =

⎡⎢⎢⎢⎢⎢⎣
�1

�2

�3
...
�M

⎤⎥⎥⎥⎥⎥⎦ with X =

⎡⎢⎢⎢⎢⎢⎣
x1

x2

x3
...

xM

⎤⎥⎥⎥⎥⎥⎦ (5.1)

where M is the number of points sampled to describe the shape. X and f(X) are

not invariant to rotation i.e. choosing a different starting point x1 = (x1, y1) on

the shape will lead to other vectors X′ and f(X′) that will be cyclic permutation
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of X and f(X). Note that the representation f(X) is however invariant to scale

changes on X.

5.1.2 Shape Prior Approximation based on K-nearest neigh-

bours Method

Having a new shape X and a training database ofN shape exemplars {Xe
1,X

e
2, ⋅ ⋅ ⋅ ,Xe

N},
the next step is to find the best K exemplars to define a prior for X. Note that

exemplar shapes are normalised by subtracting their respective mean of point

coordinates, and by dividing by their respective variance. This is a standard

pre-processing step before a representation invariant to translation and scale in

the exemplar set.

We define the following distance metric between two shapes X and Y both

represented by M points:

d(X,Y) =
M∑
i=0

∣�X
i − �Y

i ∣
�s

(5.2)

where �s is positive scalar for the normalisation. This metric is a weighted ab-

solute distance between f(X) and f(Y). We define our prior by selecting the K

exemplars of the training database that will be at the shortest distance of a shape

X. To be insensitive to rotation, we also consider all cyclic permutation of the

exemplars. For instance, considering the first exemplar available in the training

database noted Xe
1 we find its cyclic permutation m (noted X

e(m)
1 ) having the

minimum distance d(X,X
e(m)
1 ) defined by:

m̂1 = arg min
m
{d(X,X

e(m)
1 )} (5.3)

Having computed all best distances between X and the N exemplars:

{d(X,X
e(m̂1)
1 ), d(X,X

e(m̂2)
2 ), ⋅ ⋅ ⋅ , d(X,X

e(m̂N )
N )} (5.4)

The K exemplars with the shortest distances are then selected. Assuming the

indexes {i1, i2, ⋅ ⋅ ⋅ , iK} indicates the K nearest neighbours, then X can be recon-

structed efficiently by X̂ as follows:

X̂ =
K∑
k=1

!k X
e(m̂ik

)

ik
, (5.5)
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where {!k}k=1,⋅⋅⋅ ,K are the weights and {Xe(m̂ik
)

ik
}k=1,2,⋅⋅⋅ ,K are the selected K-

nearest neighbours. The weight is calculated as follows:

!k =
1

(K − 1)

(
1− dk

dsum

)
. (5.6)

where dsum =
∑K

k=1 d(X,X
e(m̂ik

)

ik
) and dk = d(X,X

e(m̂ik
)

ik
). Note that by defini-

tion, the weights sum to 1,
∑K

k=1 !k = 1. X̂ will be used as a prior to update a

current estimate of the observed shape X.

Figure 5.4 shows an example of reconstruction: the test image (corresponding

to the angle 75∘) is reconstructed using the two nearest exemplars (K = 2) at

angles 60∘ and 90∘ (see the database used in Figure 5.25).

Figure 5.4: An example of the prior approximation using k-nearest neighbours

(K = 2). The nearest neighbours illustrated by blue and green colours are selected

by the distance metric (equation 5.2). Distances are calculated between an input

test shape (75∘) and a set of exemplars as shown in Figure 5.25. The exemplars

60∘ and 90∘ ( from the training set Sprior = [1∘, 30∘, 60∘, 90∘] are chosen in this

example and the prior (red colour) is approximated by the weighted summation

in equation 5.5.
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5.1.3 Shape Prior Modelling

Having a current guess of the shape noted X(t), which can be estimated using one

of the likelihood estimates p̂lik defined with kernel mixtures in Chapter 4, we can

compute a reconstruction X̂(t) using the training database of exemplars Sprior.

We model a prior using X̂(t) to allow for the estimation of a refined shape noted

X(t+1) =
[
x

(t+1)
1 ,x

(t+1)
2 , ⋅ ⋅ ⋅ ,x(t+1)

M

]
. Each of the M points is updated individually.

Consider the first point x
(t+1)
1 . From Chapter 4, the likelihood p̂lik is modelled

using the kernel density estimates, and the prior for x
(t+1)
1 is modelled given both

the points {x(t)
2 ,x

(t)
3 , ⋅ ⋅ ⋅ ,x(t)

M } and the reconstruction points {x̂(t)
1 , x̂

(t)
2 , ⋅ ⋅ ⋅ , x̂(t)

M }.
Similarly to the likelihood, the prior is modelled using a kernel density estimate.

The reconstruction X̂(t) is converted into angles {�m} such that �m corresponds

to the slope of the line defined by (x̂
(t)
1 , x̂

(t)
m ) (i.e. �m is the orientation of the

unitary vector n⃗m such that n⃗Tm(x̂
(t)
1 − x̂

(t)
m ) = 0 ). We assume that (x

(t+1)
1 ,x

(t)
m )

follows the same equation:

n⃗Tmx
(t+1)
1 = n⃗Tmx(t)

m (5.7)

with n⃗m = (cos(�m), sin(�m))T , and the point x
(t)
m is used to define the constant

necessary to define the line.
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Figure 5.5: Illustration for p̂prior(x
t+1
1 ). Left: current shape observation X(t),

right: current reconstruction X̂(t) for X(t). The yellow arrow in the left means

the direction of high prior probability.

Therefore given X̂(t) and {x(t)
m }m=2,⋅⋅⋅ ,M the probability of x

(t+1)
1 is modelled
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Figure 5.6: Kernel density estimate for the prior of xi (blue and star marker) in

X (yellow and triangle marker) generated by equation (5.10) with ℎp = 3 and

M = 12. The approximated shape prior X̂ is plotted by red and circle markers.

as follows:

p̂prior(x
(t+1)
1 ∣X̂(t), {x(t)

m }m=2,⋅⋅⋅ ,M) ∝ 1√
2�(M − 1)ℎp

M∑
m=2

exp

(
−(n⃗Tm(x

(t+1)
1 − x

(t)
m ))2

2ℎ2
p

)
,

(5.8)

where ℎp is the bandwidth of the Gaussian kernel. The concept of p̂prior(x
(t+1)
1 )

is illustrated in Figure 5.5. x
(t+1)
1 is then updated by taking the max of the

posterior:

p̂post(x
(t+1)
1 ) ∝ arg max

{
p̂lik(x

(t+1)
1 )× p̂prior(x(t+1)

1 )
}

(5.9)

The mean shift algorithm is used to maximise the posterior ppost (see Section

5.1.4). The prior for x
(t+1)
i is generalised by:

p̂prior(x
(t+1)
i ∣X̂(t), {x(t)

m }m=1,⋅⋅⋅ ,M,m∕=i) ∝

1√
2�(M − 1)ℎp

M∑
m=1,m ∕=i

exp

(
−(n⃗Tm(x

(t+1)
i − x

(t)
m ))2

2ℎ2
p

)
. (5.10)
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We use only slopes from the reconstruction and therefore this method is in-

variant to scale difference between the observed shape X(t) and the normalised

reconstruction X̂(t). Also, the method is invariant to translation because we use a

point, x
(t)
m from the current shape observation to define the line equation. Figure

5.6 shows the p̂prior(xi) generated by equation (5.10).

Remark. A simpler prior centred on the intersection of the (M − 1) rays could

have been modelled using a simple Gaussian distribution. However the chosen

KDE is more robust to the noisy data in X(t).

5.1.4 Mean Shift Iteration

The posterior is optimised using a mean shift algorithm to find its maxima rep-

resenting the estimate X(t+1). The mean shift algorithm is performed by differ-

entiating the posterior and equalling the result to zero. Detailed equations with

respect to the mean shift iteration are described in Appendix C.1 and C.2.

Overall system flow is summarised in Figure 5.7. From initial point set X(0),

the iteration is repeated until all points in X(t) have converged. If there is no

difference between X(t) and X(t+1), the iteration is stopped. The prior X̂(t) to

estimate X(t+1) is approximated by the k-nearest method using a current obser-

vation X(t) (see Section 5.1.2). Through the iteration across time (t) the prior is

adaptively updated. Then X(t+1) is estimated by maximising the posterior.

One of the important advantages of the method presented here is that the

prior is adaptively updated. It enables more accurate and intelligent estimation

of a shape of interest by reconstructing it onto its nearest neighbours instead of

using a fixed basis of functions (e.g. as computed by PCA).

Our proposed method requires the setting of five bandwidths, which are for the

likelihood (ℎs, ℎr, ℎg), the priors (ℎp) and a Gaussian convolution (ℎe) to smooth

the shape curvatures of the training database. A minimum bandwidth of ℎs, ℎr,

ℎg and ℎp was used to achieve the greatest accuracy possible, and hence those

were set ℎs = ℎr = ℎg = ℎp = 1 reflecting the uncertainty on the pixel resolution.

These bandwidths can be relaxed if the images are not of great quality. The

following section will now explain Gaussian convolution ℎe.
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Figure 5.7: System flow for refining a shape estimate using a prior.

5.1.5 Gaussian Shape Stack

The shape of the initial point set X(0), which can be the result of the estima-

tion using only likelihoods, as proposed in Chapter 4, is quite different from the

exemplars in the training database. In order to converge iteratively towards a

satisfactory solution, even if the starting guess X(0) is far from it, care must be

taken in the prior approximation process, as already outlined in section 5.1.2. In

particular, the selection of the K nearest neighbours may not be the best initial

basis of reconstruction functions. Indeed, finding the best cyclic permutation

could create a mismatch. To avoid this problem, a Gaussian shape stack, whose

concept is introduced in Lefebvre and Hoppe (41), is constructed. The Gaussian

stack is constructed by smoothing the shapes in the prior sets using increasing

bandwidths (noted ℎ
(t)
e ) without downsampling the shapes as it is usually done in

Gaussian pyramids. This stack is computed using the convolution with a Gaus-

sian (with bandwidth ℎ
(t)
e ) on all exemplars {Xe

i}i=1,⋅⋅⋅ ,N in the training database

from large to small bandwidth as a smoothing factor, then the best cyclic per-

mutations {Xe(m̂i)
i }i=1,⋅⋅⋅ ,N are chosen. This procedure allows the achievement of
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a coarse-to-fine strategy, as shown in Figure 5.8. The reconstruction at time t,

t =1, h=13 t =5, h=8

t =10, h=5 t =15, h=2 t =20, h=1

t =3, h=11e e e

e e e

Figure 5.8: The variations of one of the exemplars Xe(t) in ALOI training database

along the iteration t, smoothed using ℎ
(t)
e .

X̂(t), that is approximated from the selected exemplars in the training database,

is then iteratively refined to get more accurate shape estimation results. The

bandwidth ℎ
(t)
e decreases at each iteration of the mean shift algorithm as follows:

ℎ(t)
e = �t ℎmax until ℎe = ℎmin with � = 0.9 (5.11)

where, ℎmax = 13, ℎmin = 1, ℎmax is selected experimentally to be as similar as

possible to the optimal initial point set. Figure 5.9 shows the shape estimation

results and the approximated shape prior across time t.

5.1.6 Considering Colour Information

Consider for a moment the shape descriptor in Section 5.1.1. This descriptor

can be extended to take colour information into account. For instance, a 2D

head slice and its sampled points containing colour information are illustrated in

Figure 5.10 and 5.11. The shape descriptor of each point xi = (xi, yi, ri, gi) is
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(t)

Figure 5.9: Shape estimation results along the iteration t (Green: X(t), Red:

X̂(t) approximated by the k-nearest neighbours method (K = 2) for which the

exemplars are smoothed using ℎ
(t)
e ).

Figure 5.10: 2D head slice from 3D Basel

face database (57)

Figure 5.11: Sampled 2D head slice with

colour information Xe

(�i, ri, gi), which constitutes its angle and colour information (chromaticity -red

and -green) interpolated by two nearest points. This is computed by a function

f as follow:

f(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

r1

g1
...
�M
rM
gM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with X =

⎡⎢⎣ x1
...

xM

⎤⎥⎦ (5.12)
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where, M is the number of sampled points to describe the shape. Then, the

distance metric in equation 5.2 can be replaced by:

d(X,Y) =
M∑
i=0

∣�X
i − �Y

i ∣
�s

+
∣rXi − rYi ∣+ ∣gXi − gYi ∣

�c
, (5.13)

where (�s, �c) are normalisation factors. Using the same reconstruction method

as that shown in equation 5.5, the reconstruction X̂ is computed with its colour

information. When using likelihood functions that include colour information, the

colours of the initial points are assigned using the colour of the reconstruction

X̂(0) (e.g. see Figure 5.12). The Gaussian shape stack is also constructed with

Figure 5.12: Colour assignment to the reconstruction X̂(0) compared to the

ground-truth.

colour information as illustrated in Figure 5.13.

5.2 PCA-based Method

We compare our method based on the k-nearest neighbours algorithm with the

Prinicipal Component Analysis (PCA)-based method. The PCA-based represen-

tation has been widely used to model shapes such as 3D faces called 3D eigenfaces

(33; 85) and Active Appearance Model or Active Shape Model (16; 17; 22; 51).
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Figure 5.13: The variations of one of the exemplars (Xe(t)) in 3D Basel face

database (57) along the iteration t smoothed using ℎ
(t)
e .

PCA enables approximation of the shape by a linear combination of eigen-

vectors calculated from the covariance matrix computed with the exemplars

{Xe(m̂1)
1 ,X

e(m̂2)
2 , ⋅ ⋅ ⋅ ,Xe(m̂N )

N }. The eigenvectors can be regarded as a set of fea-

tures characterising the variation between the shapes. The feature vector of the

shape consists of the sequence of points and its colour information {Xe(m̂i)
i }i=1,2,⋅⋅⋅ ,N

to represent the contour of an object of interest. The spatial coordinate (x, y)

and chromaticity values (r, g) are used to create the feature vector, and therefore

the dimension of the feature vector is 4×M , where M is the number of points.

In the training database, the 3D heads are translated to the origin and scaled for

normalisation, then the hair and ears are removed to concentrate on only different

frontal face shapes as shown in Figure 5.14.

Let the selected slices of the 3D heads be represented by {Xe(m̂i)
i }i=1,⋅⋅⋅ ,N ,

where N is the number of the 3D heads in the training database and {Xe(m̂i)
i } is

the best cyclic permutation of the slice Xe
i . The mean shape,  , is calculated by:

77



5.2 PCA-based Method

Figure 5.14: Examples of training database from the 3D Basel face model (57).

(Red: a selected 2D slice)

 =
1

N

N∑
i=1

X
e(m̂i)
i (5.14)

Figure 5.15 shows the mean shape and colour (to visualise colour, full RGB is

used instead of chromaticity values). M = 180 points are sampled from the slice

contour to compute the mean shape. Then, the covariance matrix is computed

by:

C =
1

N

N∑
i=1

(X
e(m̂i)
i −  )(X

e(m̂i)
i −  )T = AAT (5.15)

where A = [X
e(m̂1)
1 −  ,X

e(m̂2)
2 −  , ⋅ ⋅ ⋅ , Xe(m̂N )

N −  ]. The dimension of the

covariance matrix is 4M × 4M . The first K eigenvectors associated with the K

biggest eigenvalues are computed with singular value decomposition in Turk and

Pentland (78). Let �i, i = 1, ⋅ ⋅ ⋅ , K be the eigenvectors of C. Assuming that the

contour shapes are representative of the feature space, the resulting eigenvectors

are sufficient to represent the subspace so that an arbitrary contour X can be

represented by a linear combination of the eigenvectors (a weighted sum of the

eigenvectors),

X̂ ≈  +
K∑
i=1

!i �i (5.16)
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Figure 5.15: The mean shape of 35 head slices (from N = 35 individuals) and

M = 180 points are used.

where !i is the weight of the eigenvector �i computed by:

!i = (X−  )T�i (5.17)

The reconstruction X̂ is used to model the shape prior pprior as presented in

Section 5.1.3 as an alternative to our k-nearest neighbours algorithm. The dis-

advantage of the PCA-based method is that the normalisation step to remove

the effects of translation and scaling is required for the current observation X

to become as similar as possible to the training database {Xe(m̂i)
i }i=1,2,⋅⋅⋅ ,N . In

practice, accurate normalisation and alignment are very important to create the

feature vectors for PCA, and this is not an easy problem to solve because accurate

detection of the eyes, nose and mouth are required for a good alignment between

faces. Note that our proposed method based on the k-nearest neighbours method

and our shape descriptor does not require these normalisation steps between the

observation and training database.
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5.3 Experiments

Two sets of experiments were carried out to evaluate the proposed method:

∙ Section 5.3.1 presents reconstructions of faces in the 3D space. Note that

the 3D faces are decomposed into a stack of horizontal 2D slices, and each

slice has its own 2D prior.

∙ Section 5.3.2 presents additional results using an image database of objects

captured on a turning table. The (colour) contours of the object are used in

the experiment, and the observations (colour silhouettes) are computed by

orthogonal projection of the coloured contours. This experiment is equiv-

alent to the process carried out for one slice in the first experiment. This

second database has more variability in the exemplars used.

5.3.1 Faces

Section 5.3.1.1 presents the database used in the experiment. Section 5.3.1.2

compares both approaches based on KNN and PCA. Section 5.3.1.4 explains how

the full 3D face is reconstructed while inference has been performed independently

on each 2D slice.

5.3.1.1 Database

We used the 3D Basel face model (57) which is composed of 200 registered faces,

acquired with a structured light scanner shown in Figure 5.16. In addition, syn-

thetic faces can be generated from random model coefficients as proposed by

Paysan et al. (57). For our experiments, a total of 44 heads are created from the

3D Basel face model and translated to the origin. 9 heads are used for the test

set Stest shown in Figure D.1 and 35 heads (N = 35) are for the training set Sprior

of both k-nearest neighbours and PCA-based methods illustrated in Figure D.2.

To create silhouettes in multiple views, the 3D heads are projected in several

directions using an orthographic projection. The silhouettes have foreground and

background pixels as well as colour information on the foreground. This opera-

tion corresponds to computing the Radon transform from several directions (i.e.

camera views) and thresholding these projections to produce binary silhouettes.
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Figure 5.16: Examples in the Basel face models (57).

5.3.1.2 PCA vs KNN (2D)

The experiments described here investigate how well a prior and colour infor-

mation may help to estimate concave regions, compared to methods which use

only the likelihood. In order to do this, the kernel density estimates of the like-

lihood in Chapter 4 are first tested. The posteriors, which are formulated from

the likelihoods and the approximated priors of k-nearest neighbours (KNN) and

PCA-based methods, are then assessed. Remember that several likelihoods have

been proposed and these can be divided into two categories: the ones using only

silhouettes (shapes) (Section 4.1.2) and, the ones using both silhouettes (shapes)

and colour information (Section 4.3.1). Combining these likelihoods with the two

priors (PCA and KNN), the posteriors can be classified into four categories (two

types of likelihoods combined with two types of priors). We defined the following

methods below:

∙ likelihood using only silhouettes noted ℒsℎape,

∙ likelihood using silhouettes and colour noted ℒsℎape+colour,

∙ posterior with the likelihood using silhouettes and a shape prior approxi-

mated by the KNN method (K = 23), noted:

Postsℎape,knns ∝ ℒsℎape × Priorknns

∙ posterior with the likelihood using silhouettes and colour, and a shape prior

approximated by the KNN method (K = 23)

Postsℎape+colour,knns ∝ ℒsℎape+colour × Priorknns
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Figure 5.17: Comparison of the reconstructions. The distance between the esti-

mates and the ground truth is computed with respect to the number of cameras.

∙ posterior with the likelihood using silhouettes with the shape prior approx-

imated by the PCA-based method (K = 3)

Postsℎape,pcas ∝ ℒsℎape × Priorpcas

∙ posterior with the likelihood using silhouette and colour with a shape prior

approximated by the PCA-based method (K = 3)

Postsℎape+colour,pcas ∝ ℒsℎape+colour × Priorpcas

Figure 5.17 shows a comparison of these methods. The shape distances (see

equation 5.2) between the ground-truth and the estimated shapes in the 2D slices

82



5.3 Experiments

are computed. The average distance shown in Figure 5.17. The experiment is

repeated for different numbers of cameras. From Figure 5.17, we can see that:

∙ The methods that use the posteriors are superior to only using the likeli-

hoods. This result supports that the proposed priors help to produce a good

reconstruction of the shape and improve the accuracy of the likelihoods even

when few cameras are used.

∙ Comparing the results of the likelihoods ℒsℎape and ℒsℎape+colour, colour

information also helps to improve the overall accuracy.

∙ The posteriors using PCA have a slightly better result than the one using

KNN. In addition, PCA is using K = 3 eigenfaces for the reconstruction

whereas KNN uses K = 23 nearest neighbours. The selection of K is

explored in more detail in Section 5.3.1.3.

The 3D faces have been split into 70 horizontal slices and the horizontal slice

representation is described in more detail in Section 5.3.1.4. The results of the

reconstruction of the 45tℎ slice is shown in Figure 5.18. Some of the exemplars

used to model the prior are shown in Figure D.5. The likelihood using only

silhouettes leads to a convex reconstruction, but the likelihood using silhouettes

and its colour information can reconstruct a part of the concave regions (see the

second row of Figure 5.18). In the third and fourth row of Figure 5.18, posterior

functions are able to restore nearly perfect concavities. More results for the slices

37tℎ and 53tℎ are shown in Appendix D.2.

5.3.1.3 Selection of K

The two posteriors based on the KNN prior are analysed with respect to the

number of neighbours K in Figure 5.19. For comparison, the distance for the

two posteriors using PCA with K = 3 is also represented (see horizontal lines in

Figure 5.19). The distance gradually decreases while more K neighbours are used

indicating that the reconstruction gets closer to the ground truth. When K ≥ 23,

the KNN posteriors have better performance than the PCA-based one for which

three eigenvectors are used. The eigenvalues of the PCA for the posterior using
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Figure 5.18: Reconstruction of the 45tℎ slice using 36 camera views.

shape and colour information are shown in Figure 5.20 and 5.21. In Figure 5.21,

the top three eigenvectors have a variance of nearly 90%.

5.3.1.4 3D Reconstruction

Complete 3D faces are reconstructed using the modellings listed in Section 5.3.1.2.

A 3D reconstruction is computed by stacking the estimated horizontal 2D slices

along the Z-axis. Here 36 camera views are used and faces have been split into

70 horizontal slices. The shape descriptor is redefined as follows for both KNN
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Figure 5.19: KNN performance: distance to the ground truth with respect to the

number K of neighbours.
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descending order.
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Figure 5.21: The corresponding eigen-

value spectrum.

and PCA priors:

X = [S1; S2; ⋅ ⋅ ⋅ ; Ss] (5.18)
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where Si is the point set in the 2D itℎ slice and s is the total number of the 2D

slices (here s = 70). The order of the 2D slices to create the feature vector is

from top to bottom and the sequence of the points for the slice is in an anti-

clockwise direction illustrated in Figure 5.22. All the 3D faces in both the test

Figure 5.22: 3D head with oriented slices.

set Stest (9 heads) and the training set Sprior (35 heads) (see Figures D.1 and

D.2) have this same representation (i.e. having s = 70 horizontal slices Figure

D.3). To estimate the prior for the 3D faces, the distance metric in equation 5.2

is used with the descriptors as defined in equation 5.18. Then the reconstruction

is computed using equation 5.5 (hence the reconstruction for the 3D face consists

of 70 horizontal slices altogether).

Note that in this experiment only the face is considered; the back of the head

is discarded. Hence all 3D heads have a flat surface at the back side whose

colour is uniformly grey. It makes the rotational alignment (permutation) of

the shape descriptor relatively easy in this case. However, Section 5.3.2 presents

additional results using a different database of more complicated 2D shapes where

the rotational alignment is not anymore trivial.
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Figure 5.23 presents some 3D reconstruction results with their shape error

surfaces. All these 3D face reconstruction results are computed using K = 23 for

KNN and K = 3 eigenvectors for the PCA. The shape error surface is computed

using the Euclidean distance between the point clouds of the ground-truth and

the reconstruction surface. The average height of the 3D heads in the database

is 150mm, and the error ranges from 0mm to 20mm in the error plots. Note that

most of the error surface is blue (low error) indicating that the reconstruction is

very accurate. However the low cheek region is not as well reconstructed as other

parts of the head. This may be due to the limitations caused by the number of

3D heads used in the training database (i.e. the test face variability is not well

represented in the training set) and by the linear approximations (i.e. number

of components K used in KNN and PCA) in the prior. If more 3D heads are

available in the training database which are more similar to the input 3D head,

a better reconstruction results may be produced.

Figure 5.24 shows the estimated colour textures on the 3D reconstructed

surface results. The texture error surface is also shown. Note that since only

chrominance information is estimated in our algorithm, we use the intensities

of the approximated prior to convert the chromaticity -red and -green into the

RGB colour space for visualisation purposes only. Then the RGB colour differ-

ences between the ground truth and the reconstruction results are calculated to

visualise the error plots. The maximum difference is 1 in the error surfaces. In

Figure 5.24, the colour textures are well estimated globally and well matched

with the estimated shapes. However it is more difficult for the methods to esti-

mate colour information in some tiny regions with more complicated shapes and

colour patterns such as a part of the mouth and the upper eye. To deal with the

problem, more initial points in the Meanshift algorithm for the inference of the

colour surface would be required and this would result in greater computation

time.

Further results from the experiments are provided in Appendix D.3. The mesh

reconstruction is operated using the Rapidform-XOR software (62). The methods

proposed here are successfully applied to the 3D reconstruction problem in terms

of overall 3D face shapes and textures. It is worth paying particular attention to
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the fact that concave parts and their colours can be well reconstructed using the

proposed methods.
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Figure 5.23: 3D Face reconstruction: ground truth (left column), the esti-

mates (middle) and the distance between the estimates and the ground truth

in mm (right column). From top to bottom, reconstructions using Postsℎape,knns,

Postsℎape+colour,knns, Postsℎape,pcas and Postsℎape+colour,pcas.
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Figure 5.24: 3D Face reconstruction with texture mapping (middle column) and

its texture error surfaces (right column). Ground-truth, (top-left), reconstruc-

tion with Postsℎape+colour,knns with its distance to the ground truth (top row)

and reconstruction with Postsℎape+colour,pcas with its distance to the ground truth

(bottom row).
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5.3.2 Other Experiments with ALOI

More complicated 2D shapes are tested in this section using the ALOI database

(29). The database is presented in Section 5.3.2.1 and the posteriors computed

with KNN is compared with the likelihoods (Section 5.3.2.2).

5.3.2.1 Database used

The ALOI database (29) is a colour image collection (1000 small objects) with

different settings such as illuminations or viewpoints. A rotating table is used

to record 72 aspects of the objects in the plane at 5 degree resolution. Six ob-

jects are selected and each object class has seven images of different viewing

angles [0∘, 15∘, 30∘, 45∘, 60∘, 75∘, 90∘] illustrated in Figure 5.25 and Appendix E.

The contours of the objects in the images have been extracted using the Canny

edge detector. All images are translated to the origin. The seven images are

Figure 5.25: One object used in the ALOI database. From left to right view-

ing angles of the exemplars are [0∘, 15∘, 30∘, ⋅ ⋅ ⋅ , 90∘]. The three images at an-

gles [15∘, 45∘, 75∘] are in the test set Stest, whereas the other 4 images at angles

[0∘, 30∘, 60∘, 90∘] are for the training set Sprior. Five other objects are in this

database and presented in appendix E.

divided into two classes: test database (three images [15∘, 45∘, 75∘]) and training

database (four images [0∘, 30∘, 60∘, 90∘]). To create the silhouettes (i.e. observa-

tions for the likelihood), the 2D images in the test database are back-projected

using orthographic projection. Note that the silhouettes correspond now to 1D

binary signals. The training database Sprior is used to approximate the prior for

the shape in the k-nearest neighbours method. The total number of exemplars

in the training set Sprior is 24 (N = 6× 4 = 24). The exemplar Xe is sampled in

M = 360 points to represent the contour in the training database. K = 2 is used

for the k-nearest neighbours method.
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5.3.2.2 Reconstruction with KNN

The following methods are compared here:

∙ likelihood using only silhouettes noted ℒsℎape,

∙ posterior with the likelihood using silhouettes and a shape prior approxi-

mated by the KNN method (K = 2), noted:

Postsℎape,knns ∝ ℒsℎape × Priorknns

∙ posterior with the likelihood using silhouettes and colour, and a shape prior

approximated by the KNN method (K = 2)

Postsℎape+colour,knns ∝ ℒsℎape+colour × Priorknns

using this database containing six objects chosen from ALOI (29).

Two metrics (the Euclidean distance and shape distance in equation 5.3) are

used to measure the distance between the ground-truth and the estimated shapes.

Figure 5.26 shows the mean Euclidian distance and standard error computed using

the objects in Stest with respect to the number of projections (i.e. camera views)

available. Firstly, the proposed prior allows the recovery of concave regions,

thereby reducing the distance between the ground truth and the estimated shape.

By comparison, the distance for ℒsℎape can only decrease up to a point where the

convex visual hull is recovered. The standard errors for the posterior Postsℎape,knns

is quite large when very few cameras are used. Indeed, if the shape can not

be well discriminated from different viewing angles using only the silhouettes

information, then it is hard to choose the optimal exemplars (the K neighbours)

to compute the prior. Also, there are sometimes problems in finding the best

cyclic permutation of an exemplar Xe(m̂) which is misleading when creating the

prior for the shape. However we note that the performance of the posterior

Postsℎape,knns is better than the likelihood ℒsℎape when more than 7 cameras are

used. The posterior Postsℎape+colour,knns, which includes colour information, is

overall the best method, regardless of the number of cameras used. Figure 5.27

shows the shape distance (equation 5.3) for the two posteriors. It should be
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Figure 5.26: Euclidean distance plot with standard error w.r.t. the number of

camera views: ℒsℎape ( blue) , Postsℎape,knns (red), Postsℎape+colour,knns (green).

noted that the result of the posterior using colour is more stable compared to

that which does not, particularly when less than 10 cameras are used. Even

in the case of a small number of camera views, Postsℎape+colour,knns consistently

achieves accurate results. In the first experiment, no big differences were observed

in performances with the 3D reconstruction (as shown in Figure 5.17), whether

colour information was used or not. However, in this experiment, the results on

more complex objects showed how much colour information can help to obtain

consistently accurate results.

The 2D estimates are shown in Figure 5.28. Concavities are well recovered

using the posteriors compared to the likelihood. The top left result of the posterior

Postsℎape,knns (see Figure 5.28(a)) illustrates a special case where the algorithm

leads to a non optimal solution. The estimated shapes depend on which exemplars

are selected for designing the prior. This case is difficult for choosing optimal

exemplars because the silhouettes from different viewing angles are similar for

both the ground truth and the solution found. Consequently, there are not enough
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Figure 5.27: Shape distance with standard error w.r.t. the number of camera

views: Postsℎape,knns (red) and Postsℎape+colour,knns (blue).

clues (in the observations) to guide the selection of the best exemplars.

5.4 Conclusion

The likelihoods using silhouette information proposed in Chapter 4 were not able

to recover concavities. This chapter proposed that the likelihoods can be com-

plemented with a shape prior to improve the 3D reconstruction. Inference using

the mean shift algorithm is performed with posterior kernel density estimates.

The proposed prior is updated iteratively so that concavity information can be

introduced progressively by using a Gaussian stack; in other words, the prior is

updated with a coarse-to-fine strategy.

The proposed prior is also refined at each step by choosing the nearest neigh-

bours of the current estimate (KNN approach). This strategy differs from stan-

dard PCA where the reconstruction is computed as a linear combination of fixed
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(a) Results from 36 camera views

(b) Results from 3 camera views

Figure 5.28: ALOI results: Ground-truth (red), likelihood ℒsℎape (green), poste-

rior Postsℎape,knns (blue) and posterior Postsℎape+colour,knns (yellow).

pre-selected components. Our KNN-based approach on the contrary refines the

selection of these components iteratively in our estimation process. The frame-

work is extended so that colour information is also taken into account. Experi-

mental results have shown how well the proposed posteriors are able to recover

concave regions thanks to both prior and colour information even only if a small

number of cameras are capturing the scene.

Our prior was designed for 2D slices, and the 3D reconstruction of a 3D surface

is performed by considering several slices simultaneously. As a consequence, there

is a reconstruction artifact in the 3D face results: discontinuous circular bands

appear on the surface of the faces. However, simple post-processing filtering can

easily remove these discontinuities, for instance by smoothing the surface along

the vertical direction (orthogonal direction to the plane containing the slice).
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Chapter 6

Conclusions and Future Work

This thesis focused on merging images recorded from multiple camera views to

reconstruct an object’s 3D colour surface. A variety of methods to estimate 3D

models in multi-view systems were presented based on the Visual Hull, Photo

Hull and inverse Radon transform. In contrast to these approaches, however, we

proposed continuous modelling methods using binary silhouettes and colour in-

formation from multiple views. Several kernel density estimates for the likelihood

were proposed to improve discrete formulations. Moreover, it was suggested that

posteriors combining the likelihood with a prior for the shape can obtain bet-

ter reconstructions, which recover the object concavities. In this chapter, we

summarise the findings of this thesis, and discuss possible directions for future

research in this area.

6.1 Achievements

Chapter 3 presented an experiment conducted to evaluate a method designed to

recover an accurate 3D shape by merging estimated visual hulls reconstructed

at different times, given motion information for a rigid object. The experiment

illustrated the concept that multiple views captured a number of times can be

merged efficiently to refine the 3D shape. This approach was found to be practical

in application when a small number of cameras are in use, but capture the object

of interest simultaneously. The visual hulls were estimated using 3D histograms:
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a discrete representation that is memory demanding and computationally expen-

sive when searching for maxima. In addition, visual hulls were estimated from

the silhouettes of the objects that need to be segmented from the images. In

Chapter 2, it was established that silhouette information is not necessary when

inferring the photo hull which uses both pixel location and colour information to

reconstruct a coloured surface.

Drawing on these findings, Chapter 4 proposed the following:

∙ kernel density estimates of the visual hull, and

∙ kernel density estimates of the photo hull.

These modellings give smooth cost functions that can be optimised by gradient

ascent methods. For the sake of simplicity, volume is taken to be a stack of 2D

surfaces (slice). 3D reconstruction is then simplified to 2D shape reconstruction

in each slice (Section 4.1). Two kernel density estimates (for Visual Hull and

Photo Hull) are modelled for each slice and the mean shift algorithm is proposed

to recovered the contour of the volume in each slice.

The kernel is then extended for inference in the 2D slice, to be defined in the

3D space, eliminating the need to decompose the 3D space into slices (Section

4.2). In Section 4.3, we went on to propose that these 3D modelling methods can

be extended to consider colour information. Section 4.4.1 describes a simulated

annealing approach for the bandwidth used as a temperature to avoid local max-

ima in the kernel density estimates. Section 4.5 demonstrates empirical how well

the proposed methods perform.

The kernel density estimates proposed in Chapter 4 take only the observations

into account and do not include any prior information, and can thus be viewed as

likelihoods. To improve this method’s accuracy, the kernel density estimates

of the visual hull and photo hull are extended to take into account a

prior for the shape in Chapter 5. A posterior density function is then modelled

by combining the likelihood with a prior. The prior is approximated by the k-

nearest neighbours method. It is refined and updated to create a coarse-to-fine

process implemented by a Gaussian shape stack. The results from the k-nearest

neighbours are compared to the PCA-based method for comparison.
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6.2 Future Work

Both the likelihoods and the priors are modelled using kernel mixtures. Con-

sequently the resulting posteriors are also kernel density estimates that

can be optimised using the mean shift algorithm. Experimental results

show that concavities can be well recovered when a prior is used, even if only a

small number of cameras are available.

6.2 Future Work

There are five broad potential directions for future research.

1. Extension to pinhole camera: Our proposed kernel density estimates to re-

construct shapes of interest are based on an orthographic camera model.

Recently, this limitation has been solved by Ruttle et al. (64). They have

defined a kernel density estimate for the pin-hole camera, and optimisa-

tion is performed using a Newton-Raphson algorithm as an alternative to

Meanshift.

2. Extension to 3D prior: To reconstruct a 3D shape of interest, our prior for

the 3D shape consists of an accumulation of all 2D priors from the 2D slices.

Therefore, a 2D slice representation of the 3D shape is required to apply

the prior when estimating the 3D shape. An alternative approach would be

for a 3D prior to infer the 3D shape reconstruction directly.

3. Motion estimation: The methods presented in this study assume that 3D

motion information of an object of interest is available. In multi-view video

streams, 3D motion estimation needs to be performed to restore the 3D

shape. Therefore, implementation of 3D motion estimation for compensa-

tion of movements between frames is essential for 3D reconstruction using

sequential images.

4. Non-rigid object (face): In this study, 3D faces are assumed to be a rigid

object. Although this is true when considering multiple images recorded at

the same time, the 3D face is deformable when viewed over a period of time

and facial expressions appear. This problem can be overcome by compen-

sating facial expression when sequential images from multi-view cameras
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6.2 Future Work

are merged together to estimate a 3D reconstruction, though further work

is necessary before this can be achieved.

5. Uncertainty in temporal data: It is assumed in this study that the network

of cameras used to capture the scene was well synchronised. In practice

this may not be the case and the images may be recorded with a small

temporal lag. One solution that may be explored in the future is to extend

the modelling of the spatial random variable x to a spatio-temporal ran-

dom variable (x, t) so that uncertainty about the time can be taken into

account explicitly. The observations would then be the pixel positions in

the silhouettes and their time of recording.
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Appendix A

Database used in Chapter 3

This appendix shows the information used to estimate the 3D reconstructions in

Chapter 3.

Figure A.1 and A.2 present the recorded images of the head as seen by four

cameras in the HumanEva-II database (71) and the corresponding silhouettes

that have been manually created. Figure A.3 and A.4 show the segmented heads

that have been used for reconstructing 3D head results. Some example silhouettes

used to reconstruct the dinosaur in the Middlebury database (67) are also shown

in Figure A.5.
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Figure A.1: Four views of a head in HumanEva-II datasets and its silhouettes

(71).
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Figure A.2: Four views of a head in HumanEva-II datasets and its silhouettes

(71).
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Figure A.3: Silhouette examples of a head (head images in each column are

recorded by one of four cameras, and four images in each row is used to reconstruct

3D head at time (t)).
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Figure A.4: Silhouette examples of a head (head images in each column are

recorded by one of four cameras, and four images in each row is used to reconstruct

3D head at time (t)).
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Figure A.5: Left images illustrate captured images from different views in the

Middlebury database (67), and its silhouettes segmented by a background sub-

traction method are shown in the right. The silhouettes are not perfect due to

shadows on the dinosaur.
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Appendix B

Estimation Results in Chapter 4

Figure B.1 illustrates examples of the reconstructions of 2D KDE using silhouettes

of 36 horizontal cameras.

Figure B.1: Ground-truth models (top row) and its reconstruction results using

2D KDE with 36 horizontal cameras (bottom row).
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The variations of 2D KDE results with changing the number of cameras are

shown in Figure B.2.

Figure B.2: 2D KDE results (lamp, head, house and bulb) in the horizontal

camera settings. The results from left to right column are estimated using from

4 to 36 cameras.
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The variations of 3D KDE results with changing the number of cameras are

shown in Figure B.3.

Figure B.3: 3D KDE results (head, barrel, lamp and hydrant) in the spherical

camera settings. The results from left to right column are estimated using from

6 to 38 cameras.
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Reconstructions from noise images are shown in Figure B.4.

Figure B.4: 3D KDE results with 20% noise.
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Appendix C

Derivation of Posteriors

C.1 Posterior using Only Shape

The likelihood of the point xi = (xi, yi)
T , {xi}i=1,⋅⋅⋅ ,M ∈ X is described in Section

4.1.2 as follows:

p̂lik(xi) ∝
1

N

N∑
j=1

1√
2�ℎs

exp

(
−Dj(xi)

2

2ℎ2
s

)
, (C.1)

where Dj(xi) = �j−xi cos �j−yi sin �j, N is the number of foreground pixels and

ℎs is the bandwidths of the Gaussian kernels for the spatial domains.

The prior probability (p̂prior) of xi is given using the approximated shape prior

{x̂m}m=1,⋅⋅⋅ ,M ∈ X̂ in Section 5.1.3:

p̂prior(xi) ∝
1√

2�(M − 1)ℎp

M∑
m=1,m ∕=i

exp

(
−Dm(xi)

2

2ℎ2
p

)
. (C.2)

where ℎp is the bandwidth of the Gaussian kernel, M is the number of points

and
Dm(xi) = n⃗Tm(xi − xm)

= �m − xi cos �m − yi sin �m.
(C.3)

�m is given by the angle of the line passing through the points (x̂i, x̂m) and �m is

calculated by xm.

Finally, the resulting posterior is given by the likelihood and prior:

p̂post(xi) ∝ p̂lik(xi)× p̂prior(xi) (C.4)
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C.2 Posterior using Shape and Colour

The posterior is optimised using a mean shift algorithm to find its maxima

representing the final estimate X. The mean shift algorithm is performed by

differentiating the posterior and equating the result to zero as follows:

x
(n+1)
i =

(
L(x

(n)
i )
)−1

⋅Q(x
(n)
i ). (C.5)

where x
(n)
i is the current point and x

(n+1)
i is the next iteration step result of x

(n)
i

which has higher probability than the probability of x
(n)
i . x is defined as a vector

concatenating x = (x, y) in one column vector. L is 2× 2 matrix:

L = [L1,1, L1,2;L2,1, L2,2]

L1,1 =
∑
j

cos2 �jA
∑
m

B +
∑
m

cos2 �mB
∑
j

A

L1,2 =
∑
j

sin �j cos �jA
∑
m

B +
∑
m

sin �m cos �mB
∑
j

A

L2,1 =
∑
j

sin �j cos �jA
∑
m

B +
∑
m

sin �m cos �mB
∑
j

A

L2,2 =
∑
j

sin2 �jA
∑
m

B +
∑
m

sin2 �mB
∑
j

A

(C.6)

Q is 2× 1 matrix:

Q =

⎡⎢⎢⎣
∑
j

�j cos �jA
∑
m

B +
∑
m

�m cos �mB
∑
j

A∑
j

�j sin �jA
∑
m

B +
∑
m

�m sin �mB
∑
j

A

⎤⎥⎥⎦ (C.7)

where A = exp

(
−Dj(x

(n)
i )2

2ℎ2
s

)
and B = exp

(
−Dm(x

(n)
i )2

2ℎ2
p

)
.

C.2 Posterior using Shape and Colour

In Section 4.3.1, the likelihood of the point and colour xi = (xi, yi, ri, gi)
T ,

{xi}i=1,⋅⋅⋅ ,M ∈ X is formulated as:

p̂lik(xi) ∝
1

N

N∑
j=1

1

(2�)
3
2 ℎsℎrℎg

exp

(
−Dj(xi, yi)

2

2ℎ2
s

)
× exp

(
− (rj − ri)2

2ℎ2
r

)
× exp

(
− (gj − gi)2

2ℎ2
g

)
(C.8)
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C.2 Posterior using Shape and Colour

where Dj(x, y) = �j − x cos �j − y sin �j, N is the number of foreground pixels,

and ℎs, ℎr and ℎg are the bandwidths of the Gaussian kernels for the spatial and

colour domains.

The prior and the posterior formulation are same as Equation C.2 and C.4

respectively. The mean shift iteration to find maxima of the posterior is operated

by:

x
(n+1)
i =

(
L(x

(n)
i )
)−1

⋅Q(x
(n)
i ). (C.9)

where x
(n)
i is the current point and x

(n+1)
i is the next iteration step result of x

(n)
i

which has higher probability than the probability of x
(n)
i . x is defined as a vector

concatenating (x, y, r, g)T in one column vector. Equation C.9 is extracted from

differentiating the posterior and equating the result to zero.

L is 4× 4 matrix: ⎡⎢⎢⎣
L1,1 L1,2 0 0
L2,1 L2,2 0 0

0 0 L3,3 0
0 0 0 L4,4

⎤⎥⎥⎦ (C.10)

L1,1 =
∑
j

cos2 �jACD
∑
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j

ACD
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∑
j

sin �j cos �jACD
∑
m

B +
∑
m

sin �m cos �mB
∑
j

ACD

L2,1 =
∑
j

sin �j cos �jACD
∑
m

B +
∑
m

sin �m cos �mB
∑
j

ACD
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∑
j

sin2 �jACD
∑
m

B +
∑
m

sin2 �mB
∑
j

ACD

L3,3 =
∑
j

ACD
∑
m

B

L4,4 =
∑
j

ACD
∑
m

B

(C.11)
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C.2 Posterior using Shape and Colour

Q is 4× 1 matrix:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j

�j cos �jACD
∑
m

B +
∑
m

�m cos �mB
∑
j

ACD∑
j

�j sin �jACD
∑
m

B +
∑
m

�m sin �mB
∑
j

ACD∑
j

rjACD
∑
m

B∑
j

gjACD
∑
m

B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.12)

whereA = exp

(
−Dj(x

(n)
i , y

(n)
i )2

2ℎ2
s

)
, B = exp

(
−Dm(x

(n)
i , y

(n)
i )2

2ℎ2
p

)
, C = exp

(
−(rj − r(n)

i )2

2ℎ2
r

)

and D = exp

(
−(gj − g(n)

i )2

2ℎ2
r

)
.
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Appendix D

Face surface reconstruction

This appendix gives additional information to the experiments done in Chapter

5 using the face database.

D.1 3D Heads Database

Figure D.1 presents the 9 faces used for testing, and Figure D.2 shows 12 faces

out of 35 that have been used for designing the priors.

The 3D faces are split in to 70 horizontal slices (Figure D.3). Figures D.4,

D.5 and D.6 show the variations of the slices 37tℎ, 45tℎ and 53tℎ of the 3D faces

respectively. Note that the meshing of the point cloud is performed using the

Rapidform-XOR software (62).
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D.1 3D Heads Database

Figure D.1: 3D heads in the test set Stest (9 heads) generated from the 3D Basel

face model (57).
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D.1 3D Heads Database

Figure D.2: Some examplar 3D heads from the training set Sprior (12 heads shown

out of a total N = 35 heads) generated from the 3D Basel face model (57).
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D.1 3D Heads Database

Figure D.3: 70 slices from the 3D Basel face model (57).

117



D.1 3D Heads Database
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Figure D.4: The 37tℎ horizontal slice variations of 21 different 3D heads amongst

the 35 in Sprior.

118
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Figure D.5: The 45tℎ horizontal slice variations of 21 different 3D heads amongst

the 35 in Sprior.
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D.1 3D Heads Database
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Figure D.6: The 53tℎ horizontal slice variations of 21 different 3D heads amongst

the 35 in Sprior.
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D.2 Experimental Results in 2D

D.2 Experimental Results in 2D

Figures D.7 and D.8 present the additional results of slice reconstructions with

the methods tested in section 5.3.1.2.
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Figure D.7: Reconstruction of the 37tℎ slice using 36 camera views.
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D.2 Experimental Results in 2D
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Figure D.8: Reconstruction of the 53tℎ slice using 36 camera views.

122



D.3 Experimental Results in 3D

D.3 Experimental Results in 3D

Figures D.9 and D.10 show additional 3D face surface reconstructions (see Section

5.3.1.4). Figures D.11 and D.12 shows the results when both the shape and the

colour are estimated.
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D.3 Experimental Results in 3D

Figure D.9: 3D Face reconstruction: ground truth (left column), the esti-

mates (middle) and the distance between the estimates and the ground truth

in mm (right column). From top to bottom, reconstructions using Postsℎape,knns,

Postsℎape+colour,knns, Postsℎape,pcas and Postsℎape+colour,pcas.
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D.3 Experimental Results in 3D

Figure D.10: 3D Face reconstruction: ground truth (left column), the esti-

mates (middle) and the distance between the estimates and the ground truth

in mm (right column). From top to bottom, reconstructions using Postsℎape,knns,

Postsℎape+colour,knns, Postsℎape,pcas and Postsℎape+colour,pcas.
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D.3 Experimental Results in 3D

Figure D.11: 3D Face reconstruction with texture mapping (middle column) and

its texture error surfaces (right column). Ground-truth, (top-left), reconstruc-

tion with Postsℎape+colour,knns with its distance to the ground truth (top row)

and reconstruction with Postsℎape+colour,pcas with its distance to the ground truth

(bottom row).
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D.3 Experimental Results in 3D

Figure D.12: 3D Face reconstruction with texture mapping (middle column) and

its texture error surfaces (right column). Ground-truth, (top-left), reconstruc-

tion with Postsℎape+colour,knns with its distance to the ground truth (top row)

and reconstruction with Postsℎape+colour,pcas with its distance to the ground truth

(bottom row).

127



Appendix E

2D slices in ALOI database

In this appendix, we show the 2D shapes used for the experimental results using

ALOI database (29) in Section 5.3.2. Six objects have been used for these ex-

periments and each object has 7 images captured from different viewing angles

[0∘, 15∘, 30∘, 45∘, 60∘, 75∘, 90∘]. The test set Stest collects the three images at an-

gles [15∘, 45∘, 75∘] for each object and the other 4 images [0∘, 30∘, 60∘, 90∘] are for

the training set Sprior (total number of exemplars N = 6× 4 = 24). The training

set corresponds to the exemplars to approximate a prior. Figures E.1, E.2, E.3,

E.4, E.5 and E.6 present five objects with their contours in Sprior and Stest. The

sixth object is presented in Figure 5.25.
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Figure E.1: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.

Figure E.2: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.
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Figure E.3: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.

Figure E.4: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.
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Figure E.5: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.

Figure E.6: Top row: 2D slices [15∘, 45∘, 75∘] in the test set Stest, bottom row:

2D slices [0∘, 30∘, 60∘, 90∘] in the training set Sprior.
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Appendix F

Face Components Detection

In this appendix1 local descriptors are assessed for their ability to detect faces in

images, and to label the individual components-thereof (eyes, nose and mouth).

In the case of multiple camera systems such as video surveillance, faces can appear

at a low resolution and be viewed from different angles. For the sake of simplicity,

and to stay within the scope of this thesis, this section will focus solely on how

to address the issue of low resolution images, and will assume that only views of

the front of the face are of interest

F.1 Feature description

Finding correspondences between two images of the same scene or object is a

part of many computer vision applications such as camera calibration, 3D recon-

struction, and object recognition. In particular, object detection and recognition

in cluttered scenes require local features that are unaffected by nearby clutter or

partial occlusion. Therefore, the features have to be robust to noise, detection

errors and, geometric and photometric variations. On the other hand, the fea-

tures must be sufficiently distinctive to identify specific objects. In addition, the

operating speed has to be considered.

Several interest point detectors have been proposed such as the Hessian de-

tector, Harris detector (32), Hessian/Harris-Laplacian/Affine detector based on

1This research has been published in Kim and Dahyot (35).
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F.1 Feature description

affine normalisation around Harris and Hessian points (54), MSER (Maximally

Stable Extremal Regions) detector (50), SIFT (Scale Invariant Feature Trans-

form) detector (46), and SURF (Speeded Up Robust Features) detector (3) since

the first corner detector, which uses the Moravec corner detection algorithm, was

developed in the late 1970.

In general, the search for discrete image correspondences can be divided into

three main steps: 1) detection, 2) description, 3) matching. Feature points are

first selected using interest point detectors. Once the feature points have been

detected, the neighbourhood of every feature point is represented by a feature

vector as a descriptor. Finally, the descriptors are matched between different

images. The process of matching is often based on the distance between vectors

using the Mahalanobis or Euclidean distance. The dimension of the descriptor

has a direct impact on the operating time, so the fewer the dimensions, the better.

In the next section, two representative methods, SIFT in Lowe (46) and SURF

in Bay et al. (3), will be introduced. This is because, according to Mikolajczyk

and Schmid (55), the SIFT descriptor has been shown to outperform others, and

SURF is the most recently proposed descriptor, demonstrating a comparatively

fast operating speed and a reasonably distinctive performance. The following

section will now go on to describe each of these descriptors in further detail.

F.1.1 Scale Invariant Feature Transform (SIFT)

SIFT is invariant to image translation, scaling, and rotation, and partially invari-

ant to illumination changes. The computation of SIFT is divided into four stages,

scale-space extrema detection, keypoint localization, orientation assignment, and

keypoint descriptor.

The first stage involves the detection of interest points (called keypoints in

the SIFT framework), which is accomplished by searching the scale space. The

scale space is given by

L(x, y, �) = G(x, y, �) ∗ I(x, y) (F.1)

where ∗ is the convolution operation and I(x, y) is an input image. G(x, y, �) is
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F.1 Feature description

a variable-scale Gaussian, defined by

G(x, y, �) =
1

2��2
e−(x2+y2)/2�2

. (F.2)

DoG (Difference of Gaussians) is used for detecting interest points by taking ex-

trema (maxima and minima) in the scale space. The DoG, D(x, y, �) is computed

by the difference between two images, one with scale k times the other. D(x, y, �)

is given by

D(x, y, �) = L(x, y, k�)− L(x, y, �) (F.3)

Figure F.1 illustrates the procedure of creating the scale space by the DoG. For

each octave of scale space, the initial image is repeatedly convolved with Gaussian

to produce the set of scale space images shown in the left of Figure F.1. Adjacent

Gaussian images are subtracted to produce the DoG images in the right of Figure

F.1 to create the scale space.

Figure F.1: The construction procedure of the scale space (46).

In Figure F.2, maxima and minima of the scale space are detected by compar-

ing a pixel (marked with X) to its 26 neighbours in 3× 3 regions at the current
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F.1 Feature description

and adjacent scales (marked with circles). If the pixel is a local maximum or

minimum, it is selected as a candidate keypoint.

Figure F.2: Finding maxima and minima of the scale space (46).

The second stage is keypoint localization. Extrema detection in the scale

space produces a number of candidate keypoints, some of which are unstable.

The purpose of this stage, therefore, is attempt to eliminate points from the

candidates which have low contrast or are poorly localized on an edge. This

is achieved by some conditions based on a contrast threshold and the ratio of

principal curvatures in the scale space.

The third stage is orientation assignment. At each keypoint, an orientation

is selected by determining the peak of a histogram of local image gradient orien-

tation. The gradient orientation histogram is calculated in the neighbourhood of

the keypoint. The contribution of each neighbouring pixel is weighted by the gra-

dient magnitude and a Gaussian window with a � that is 1.5 times the scale of the

keypoint. Peaks in the orientation histogram correspond to dominant directions

of local gradients.

The final stage is keypoint description. The gradient information of the neigh-

bour keypoints is used to obtain a descriptor. The descriptor is computed as a

set of orientation histograms on 4 × 4 sub-patches. Each orientation histogram

has 8 bins and forms a single feature vector. This leads to a SIFT feature vector

with 4×4×8 = 128 elements. Figure F.3 (left) illustrates that the gradient mag-

nitudes and orientations are sampled around the keypoint location. These are

weighted by a Gaussian window, indicated by the overlaid circle. These samples

are then accumulated into orientation histograms summarising the contents over

135



F.1 Feature description

a 4 × 4 sub-region, as shown in Figure F.3 on the right, as the length of each

arrow corresponding to the sum of the gradient magnitudes near the direction

within the region.

Figure F.3: SIFT keypoint description procedure (46).

F.1.2 Speeded Up Robust Features (SURF)

Figure F.4: Approximated second order derivatives with box filter (3).

One of the main advantages of SURF is to be able to compute distinctive de-

scriptors quickly. In addition, the SURF descriptor is invariant to common image

transformations including image rotation, scale changes, illumination changes,

and small changes in viewpoint. This section provides a brief summary of its

construction process which is broken into 2 steps: interest point localization and

interest point description.

In the interest point localization step, an interest point detection method is

based on the Hessian matrix. Given a point X = (x, y) in an image I, the Hessian
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matrix H(X, �) at X and scale � is defined as

H(X, �) =

[
Lxx(X, �) Lxy(X, �)
Lxy(X, �) Lyy(X, �)

]
, (F.4)

where Lxx(X, �) is the convolution of the Gaussian second order derivative
∂2

∂x2
g(�) with the image I at point X, and similarly for Lxy(X, �) and Lyy(X, �).

The convolution of the Gaussian second order derivative, L, is approximated by

box filters (mean or average filter) shown in Figure F.4. Also, the calculation

of the box filters is operated on integral images which allow fast operation. The

location and scale of interest points are selected by relying on the determinant

of the Hessian matrix. Interest points are localized in scale and image space by

applying non-maximum suppression in a 3×3×3 neighbourhood, using a similar

approach to SIFT.

Figure F.5: SURF descriptor (3).

In the description step, a unique orientation of each descriptor is first assigned

in order to achieve invariance to image rotations. The orientation is computed

by accumulating Haar wavelet responses in a circular region around the detected

interest points. The Haar wavelets can be quickly computed using integral im-

ages. When the dominant orientation is estimated, SURF descriptors are con-

structed by extracting square regions around the interest points. The windows

are split up into 4 × 4 sub-regions shown in Figure F.5. The intensity pattern
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(first derivatives) of each sub-region is described by a vector containing 4 ele-

ments, v = [
∑
dx,
∑
dy,
∑
∣dx∣

∑
∣dy∣]. The length of the SURF descriptor is

therefore 4× 4× 4 = 64 dimensions.

F.2 Context

Automatic salient feature extraction is an essential task for the analysis of video

streams in video surveillance systems. Of particular interest for the purpose of

this study is the specific case of determining the features of faces (around 30×30

pixels) in a low resolution environment using multiple camera views, where the

general face detectors proposed (79; 80; 81; 86) do not perform well. Recent

developments in the field of face detection involve the use of local informative

descriptors such as Haar wavelets in Viola and Jones (81), SIFT (Scale Invariant

Feature Transform) in Lowe (46) and SURF (Speeded Up Robust Feature) in

Bay et al. (3). The use of local descriptors versus global ones usually ensures

the system a certain natural robustness to partial occlusion. Moreover, adequate

normalisation of the descriptors allows them to be invariant to some geometrical

transformations like rotation, scale changes or illumination. These are interesting

properties for the detection of an object appearing at different scales or orienta-

tions in the images.

Once the sets of representative descriptors are available to train both the

target object and its complement (non-object), object detection is performed by

classifying new observations between those two classes. Boosting and SVMs are

classifiers that have been applied to face detection and have provided comparable

results. However, there are still several challenges to be dealt with in order to

get a reliable face feature detector. Low resolution images, partial occlusion,

variation in lighting conditions or head-pose changes are all difficulties to be

overcome. As the environment becomes more complex, the process of reliable

feature extraction becomes more important than the performance of classifiers.

In particular, in such a complex environment, it is necessary to extract salient

features which are able to steadily discriminate each different class (e.g. face and

non-face).
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The goal of this appendix is to robustly detect face components such as a nose,

mouth, and eyes in those problems based on a local feature descriptor (SURF)

with a SVMs classifier.

F.3 Methodology

In the varied and complex environment of images or video sequences, defining

salient features able to steadily discriminate plays a major role in target object

detection. The latest technologies of feature extraction, SIFT and SURF features,

are assessed for classification of faces and non-faces. SURF is found to perform

better in terms of discrimination performance between faces and non-faces, as

illustrated in Figure F.6. This is because SURF features are more densely and

consistently located around facial components, as shown in Figure F.7. SURF

features are also faster to compute.
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Figure F.6: Confidence distribution computed by SVMs.

For classification, the AdaBoost algorithm has two drawbacks: the length of

training time required is long, and a large quantity of training images is required.

On the other hand, SVMs have faster training times and also generalise well on

smaller training sets.

In this chapter, a feature-based method is proposed not only to classify salient

points between two classes (face and background(non-face)) but also to detect

facial components. A SURF descriptor is used to generate informative feature
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Figure F.7: SURF and SIFT features on faces and eyes (Top: SURF results,

bottom: SIFT results).

vectors, and SVMs are used as classifiers. The proposed system consists of a two-

level hierarchy of SVMs classifiers. On the first level, a single classifier checks

whether feature vectors belong to facial images or not. On the second level,

component labelling is operated using component classifiers for the eye, mouth,

and nose. This approach is time-efficient since no additional window-scanning is

needed. An outline of the proposed system is illustrated in Figure F.8.

F.4 Step1: Skin Region Segmentation

This approach begins with the segmentation of skin areas using the YCbCr (Lu-

minance, chrominance-blue, chrominance-red) colour space. A luminance element

largely depends on the variation of illumination, and therefore thresholds are only

defined in relation to Cb and Cr, which are more robust to the variation of illu-

mination. A result of the skin region segmentation is shown in Figure F.9. SURF

descriptors are then computed on the skin region.
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Input color image

Step1: Skin region segmentation

Compute SURF descriptor

Step2: Classify face/non-face

Step3: Face components labelling

Step4: Geometrical constraints

Figure F.8: Overview of the proposed system.

F.5 Step2: Classification Face/Non-face

The next step is for two layer SVMs classifiers to check the SURF descriptors.

A linear SVM classifier of the first layer is trained using SURF descriptors as

feature vectors from faces and non-faces(not containing faces) shown in Figure

F.10. 251 points from faces and 340 from non-faces SURF descriptors are used to

train SVMs for the first classifier. Figure F.11 shows the result of the first layer

classifier: green points are classified as a face. Most of the facial features are

located on the face region of the image, however some false alarms also appear

on the window and the corners on the wall. This first result is promising, but

shows that a further is needed to disqualify false alarms.
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Figure F.9: Skin colour segmentation results.

Figure F.10: Example images (faces and non-faces) in training database for

SVMs.

F.6 Step3: Face Components Labelling

The second layer classifiers are to assign component labels to the descriptors

refined by the first layer classifier. In other words, for each feature point classified

as a face in the previous step, another label corresponding to the subclasses left
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Figure F.11: The result of the first layer classifier.

eye, right eye, nose, or mouth, must be added. A linear SVM classifier for each of

these subclasses is trained, resulting in the creation of four classifiers, illustrated

in Figure F.12. For example, a left eye classifier is computed by training it to use

the descriptors extracted from the left eye as positive examples, and the mouth

and nose images as negative examples. The right eye subclass is excluded from

the negative samples in the training since this is too similar to the target left

eye subclass. Also, the mouth classifier is trained by all the other subclasses

containing the nose, and right and left eyes, as negative examples. Training data

images are manually cropped at high resolution 130 × 140 to have a maximum

number of selected features: 100 from left eyes, 126 from right eyes, 149 from

mouths and 61 from noses SURF descriptors are used for training.

F.7 Step4: Geometrical Constraints

This final step is to eliminate the wrongly classified descriptors and also to esti-

mate the position and scale of the facial components using their label (subclass)

and geometrical information. To use geometrical information, an eye pairing

process is first performed owing to the fact that the most robust classification

results are obtained from the left and right eye descriptors in facial components.

Once eye features have been localized on the basis of the spatial distance between

the two eyes, the coordinates of the other facial descriptors are rotated until a

frontal view of the face is reached, where both eyes have the same y value. This
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1st layer

2nd layer
classifiers

Figure F.12: The second layer classifier (Red colour: left eye, Green colour: right

eye, Blue colour: nose, Yellow colour: mouth).

facilitates interpretation of each facial component using geometrical constraints.

When the eye pairing procedure has finished, the position of the nose and mouth

can be estimated through label information and geometrical constraints. This

process also eliminates falsely classified features. For instance, in Figure F.13,

the condition of the nose position is such that the descriptors of the labelled nose

have to exist in the triangle region. The condition can eliminate some labelled

nose descriptors.
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Figure F.13: Geometrical constraint for a nose position.

F.8 Experimental Results

The test database for faces consists of three subsets which contain high, lower

and lowest resolution images (test database dose not contain training images.).

The purpose of the subsets is to evaluate the performance with respect to the

scaling factor. The high resolution 130× 140 subset of the faces comprises of 100

face images randomly selected and cropped from the AR face database (49) and

Caltech face database (84). The other subsets, the lower resolution 65× 70 and

the lowest resolution 43 × 46 subsets of the faces, are created by resizing high

resolution images. The example and results are shown in Figure F.14.

Figure F.14: Examples in face database (Left: a high resolution image, Centre:

a lower resolution image, Right: a lowest resolution image). The green, red,

blue and yellow circles correspond to the right eye, left eye, nose, and mouth,

respectively.

To investigate the performance of the proposed approach, two sets of experi-

ments were conducted, with the following aims:
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1. To calculate detection rates using true positives and error rates using false

positives of each classifier in the face dataset.

2. To calculate error rates using false positives of each classifier in the non-face

dataset.

In the first experiment, true positives and false positives from the face dataset

were counted according to whether a labelled descriptor existed in the correct

region taken from the coordinate data file (ground-truth) or not. For example,

if a detected descriptor labelled as a left eye is in the region of the left eye, the

case is a true positive; if not, the case is a false positive. The detection rates are

computed based on the true positives of the detected descriptors. The number of

the false positives is divided by the total number of the detected descriptors to

calculate the error rates.

In the second experiment, false positives from the non-faces are counted. All

detected descriptors become false positives, and then the error rates are calculated

by using the same method to the first experiment. The result is shown in Table

F.1 and Figure F.15.

Table F.1: Detection accuracy (%) of the subclass classifiers.

DB∖Classifier Left eye Right eye Mouth Nose No.images No. total descriptors

Face high res. Detection rate 97 97 93 72 100 9095

Error rate 6.4 8.2 4.7 0.57

Face lower res. Detection rate 88 93 56 28 2914

Error rate 3.0 3.7 2.4 0.68

Face lowest res. Detection rate 43 49 5 1 1218

Error rate 0.65 0.98 0 0.16

nonFace Error rate 6.7 6.7 6.7 0.87 242 18012

In the test database of high and lower resolutions, classification results were

extremely accurate for the eyes and mouth, but not for the nose. However,

at the lowest resolution, detection results were unreliable (below 50%) for all

components . This method depends on the salient point descriptors. Although a

SURF descriptor is invariant to scales, the system does not perform well at small

faces. This is because, in small faces, there are a few features extracted from a
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Figure F.15: Detection accuracy(%) of the subclass classifiers.

SURF descriptor, reducing the performance (see the rightmost column in Table

F.1). For comparison, at the lowest resolution using 100 face images, the detection

rate of the OpenCV face detector (81) is just 25%, even if the classifier of the

face detector is trained on 20× 20 face and non-face images. The OpenCV face

detector is highly dependent on eye region features, calculated by Haar-wavelet

function, rather than mouth and nose regions especially in the low resolution

images. The mouth and nose are too small to extract at the lowest resolution,

and therefore it may be ignored. In terms of eye detection performance, the

method proposed here is better (eye detection rates of the proposed method are

nearly 50% in Figure F.15). All processes (skin detection, first layer classifier,

second layer classifiers and geometrical constraints) have been applied for these

results.

Further experiment results of different resolutions are shown in Figure F.16.

Red , green , blue, and yellow colour correspond to left eye, right eye, nose, and

mouth, respectively.
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(a) High-res. results (130× 140)

(b) Low-res. results( 65× 70)

(c) Lowest-res. results (43× 46)

Figure F.16: Detection results.

F.9 Conclusion

This appendix has presented a two layer classifier to perform face component

detection (using frontal views) and has shown how performance deteriorates when

considering low resolution images. One main problem with the point descriptor

such as a SURF and SIFT is that they are not well detected at low resolution

images. This may also pose problems when matching points between stereo pairs
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or multiple views for 3D reconstruction in Furukawa and Ponce (27), Vu et al.

(83) and Bradely et al. (8) which are the top rankers of the Middlebury challenge

(66).
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