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ABSTRACT iii

ABSTRACT

The Internet in its current form lacks an adequate identity infrastructure. Every rel-
evant application must provide its own solution to the problem of authenticating and
naming people. Many of these applications share common goals and duplicate this
functionality. Compounding the problem is that for every application a person uses

they acquire a new identifier and set of authentication credentials.

In some cases people come to depend on these names to be reachable online. When
these identifiers change or become unavailable people lose contact with one another.
The reliance on these identifiers also encourages provider lock-in. Regulators of the
telephone system realised some time ago that mobility of identifiers is important as a
means of encouraging competition between providers. Yet on the Internet no system

exists to provide this functionality.

The lack of a means to authenticate people on the Internet means that people often
communicate with one another insecurely; without the ability to know for sure who
they are communicating with and having no means to ensure the confidentiality of their
communications. Public Key Infrastructures were once thought to be the solution to
this problem, but have so far failed to live up to this promise. They are costly to
maintain and are not suitable for all applications where authentication is required.
The area of identity management has sought to rectify the authentication problem in

recent years, but generally ignores the identifier mobility issue.

In our solution, Sobriquet, we propose a global naming system for people that
allows for identifier mobility, and an identity management system that aims to provide

a means of authenticating people. Our solution recognises that there is in all likelihood
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ABSTRACT iv

no general solution to the problem of authenticating people. We propose a system
of authentication we call "history based authentication" that authenticates a person
as being the same individual as was present in a previous communications session.
Authentication happens with respect to an identifier, and the history of interactions
an entity has with the person that identifier represents influences the notions of identity
that this entity ascribes to that identifier.

We argue that this is an adequate level of authentication for many types of online
interactions. Our solution also addresses the issue of bootstrapping trust between
people who have never met. We do this by reducing the economic incentives for people

to engage in undesirable behaviour.
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1. INTRODUCTION

The original use of the Internet infrastructure was rather limited by today’s standards
existing mainly to share resources, such as expensive mainframe computers, across re-
search and military organisations by connecting their individual local networks into one
large global network or "internetwork". These resources were located across heteroge-
neous networks with convenient protocol layer abstractions allowing each endpoint to
be accessed across the network using the TCP/IP protocol suite regardless of its mode
of attachment to the network. The different layers of abstraction are depicted in Fig.
1.1. The type of link layer may be different at two endpoints, but the network layer will
ensure that data between them is routed to the proper destination. According to the
end to end principle [107], which heavily influenced the design, the transport layer at
each end point must look after ensuring proper data delivery itself. Individual applica-
tions will typically transmit data according to their own protocols. These applications

are typically referred to as the application layer.

At each of these layers of abstraction identifiers are used to refer to an endpoint at
that layer. At the link level this may be an Ethernet address, the network layer will
generally use an IP address, the transport layer a port number, and the application layer
identifier will depend on the individual application. We will use the term Application
Specific Identifiers (ASIs) to refer to identifiers at this layer generically with examples
including email addresses, usernames in web applications, and URIs (Uniform Resource

Identifiers).

The most widely deployed name system at the application layer is the Domain Name

System (DNS) and is used by most applications in some form or another. Names used
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1. INTRODUCTION 2

‘ Network

I
P

Fig. 1.1: The network protocol abstractions used in the Internet infrastructure.

in this system are referred to as Domain Names and often map to an IP address through
a process known as name resolution, which is analogous to a lookup in a directory!.
Domain names are often used by an application either as an ASI or in the creation of
various ASIs. An example of this is the email address, which is often comprised of the

concatenation of a username, the "@" symbol, and a domain name.

Since its explosion in popularity in the early to mid 1990’s the Internet has been used
by more and more people as a communication platform. Many applications that use
the Internet provide a means for people to communicate with one another, or facilitate
interaction between people and applications. This is increasingly the case nowadays
as web applications have taken over the role of desktop applications. Examples of
this include web based desktop office suites, finance applications, email clients, website
builders, etc. Many of these applications include a social element to provide information
sharing. The increase in the popularity of web applications is just one factor that has

led to a situation where many people have accumulated lots of different ASIs. Managing

! In actual fact the uses of DNS have increased since its original inception, and continue to do so.
We will discuss some of these further in the next chapter.
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these has become a real problem.

1.1 Problem Statement

The population of the Internet has grown significantly since its early days and there
are now many more applications in widespread use. The infrastructure has arguably
become critical to day to day communication for many people, but the way they com-
municate using this infrastructure is still fragmented. People may establish connections
via one type of application, e.g. email, but if they then wish to communicate using,
say, an Internet Telephony system each needs to communicate their Internet Telephony
identifier to the other out of band. Furthermore, the level of authentication each can
rely on varies from application to application, and is often inadequate. In a practi-
cal sense this means that people who are communicating across the infrastructure are
trusting insecure services like DNS to reliably provide the correct destination for their
messages, and application service providers such as email service providers to ensure

the delivery of their emails.

Kim Cameron, Microsoft’s Identity Architect, summarises the problem in his article
The Laws of Identity [43] as follows: "The Internet was built without a way to know
who and what you are connecting to. This limits what we can do with it and exposes
us to growing dangers. If we do nothing, we will face rapidly proliferating episodes of

theft and deception that will cumulatively erode public trust in the Internet”.

In this thesis we will argue that there is currently no adequate solution to the
problem of naming and identifying people, such that people communicating across
different applications on the Internet can know who they are "connecting to". This
implies providing a unified view of a person’s identity across the different applications
that they use, and this is indeed the problem we are trying to solve in this work. We

will now highlight the need for this with a use case.

Ph.D Thesis



1.2 USE CASE 4

1.2 Use Case

A typical scenario that demonstrates a need for our system can be illustrated by way
of talking about problems with email. We’ve chosen this particular communication
system because it is used in the large and is familiar to most people. The problems we

outline here also apply to other systems that use ASIs to identify people.

Over the lifetime of an email account a person, Alice say, may provide the corre-
sponding email address to a relatively large number of entities. Her family, friends,
and acquaintances may use her email address as a means of contacting her, she might
provide it as a contact address when signing up to online services, and she may partic-
ipate on various mailing lists under that identifier. She may wish to communicate with
each of these entities in different ways. For instance, she may wish to communicate

using telephony with her friends and family, but not with the mailing list participants.

The problem however is that access to her chosen email address may not persist
for her lifetime. There are a number of reasons for this. For example, the domain
hosting her account may expire, the organisation that provides the service to her may
terminate her account, she may decide to retire the email account due to excessive

spam or to access a better service at a different provider.

Once her email address ceases to be used by her its future is uncertain. Another
entity may acquire the expired domain and eavesdrop on email sent to her account,
the organisation providing the account may reallocate it to somebody else, or she may
choose not to forward mail from it so that her spam problem does not plague her
at her next account. Optimally she would have a mechanism for allowing those with
whom she communicates to know that her email address has changed, while remaining

consistently identifiable as Alice so that she remains contactable by them.

Since Alice’s email address can change at any point she should be able to assure
those with whom she is communicating that any given message came from her. How-

ever, it is undesirable for this to be done in a way that could infringe upon her privacy.
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For instance, if Alice identifies a message as coming from her to a recipient, Bob say,
then that is for Bob’s benefit only and it should not be possible for a third party to

determine unequivocally that this message came from Alice.

1.3 Requirements

We believe that any solution that seeks to identify people will need to meet the following

requirements:

1.3.1 Provide a way to identify people

Had Alice a way to consistently identify herself no matter what her email address then
she could change email address and still be identifiable as Alice to her contacts. Our
first requirement is to provide such a way for Alice to be identifiable as she changes
the Application Specific Identifiers, such as email addresses, that she uses. This way,

no matter where she emails from she will be recognisable as Alice.

1.3.2 No Trusted Third Parties for Name Allocation

Alice’s email address is tied to a domain name and an account she has with the owner
of that domain. If this domain owner decides to cease providing service to her then
she loses access to that identifier. This is true of any identifier that is provisioned by
a third party. In order to be able to provide a consistent name for Alice, relying on

third parties to identify her will always have this problem.

1.3.3 Allow Changing of ASls

Further to being identifiable as Alice, people she communicates with also need to be
made aware of her new email address if she is to be able to continue to be contactable

after she changes it.
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1.3.4 Privacy

If Alice is to be given a global name, under which she communicates then this shouldn’t
be a way for all her actions to be linkable as this would be a privacy violation. A solution
to this problem should ensure that it allows Alice to prove who she is uniquely and
unambiguously to whomever she is communicating with, but does not provide third

parties with a means of tracking her.

1.3.5 Bootstrapping Secure Communications

If two people Alice and Bob do not have a means of communicating then they should
be able to bootstrap one. If creating identities is cheap then there needs to be a way
to provide assurance to one another that the identity they are claiming is not just one

of many, but is tied to some real world attribute.

1.4 Contributions

The main contributions of this thesis are:

1. An analysis of the identity issue on the Internet infrastructure, with an identifi-
cation of the issues involved and the requirements that a solution to this problem

must fulfill.

2. A naming system designed for allocating names to people, storing and resolving
mappings between the allocated names and a set of Application Specific Identi-

fiers, and providing a means of managing these mappings.

3. An identity management and authentication infrastructure that prioritises the

privacy of its users.

4. A novel set of authentication protocols that allow a person to authenticate them-

selves anonymously while preventing abuse of anonymity.
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5. A novel approach to preventing the misuse of anonymity that relies on reducing
the economic incentives to engage in malicious behaviour, such as spamming for

example.

1.5 Dissertation Overview

The rest of this dissertation is structured as follows.

The second chapter provides an overview of the state of the art of identity man-
agement, authentication, and naming systems. We will analyse where they contribute
ideas to solving the problem we wish to solve and where we feel they are lacking. This
analysis informs our design. We will also outline existing technology that is used in

our design.

Chapter three outlines the design of our system, which details its functionality and
high level operation. We begin by performing a detailed analysis of the problem before
outlining our design. This chapter will give the reasons for decisions we have made

based on our observations in the preceding chapter.

The fourth chapter then addresses implementation specific issues. We give a de-

scription of our proof of concept implementation.

Finally, the fifth chapter concludes the dissertation and provides a direction for

future work.
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2. RELATED WORK

Our solution to the problem discussed in Chapter 1, which we call Sobriquet, includes
two main components: one that provides a naming service suitable for assigning names
to people and mapping those names to a set of results, and a component that pro-
vides identity management and authentication to Internet systems used for personal

communications.

This chapter will first look at global naming systems that are in use today and will
outline why these are inappropriate for the task of naming people. By showing how
these systems are unsuitable for the task we will demonstrate a need for a new naming
system. We will then examine the two main components of any naming system: the
name resolution and name allocation components, devoting a section to discussion of
each. We will first examine the type of name resolution systems in use today in Section
2.1, before progressing to debating the merits of a number of alternatives that have
been proposed in Section 2.2, while Section 2.3 will explore a number of different name
allocation systems. Finally we will conclude our round up of the naming issue with a
look at systems that have attempted to address the issue of Personal Mobility, where
naming is used as a way of allowing people to be mobile across different systems and

devices.

The rest of the chapter will deal with issues pertaining to identity management,
and authentication. We will examine existing approaches to these issues and where
we believe they are ripe for improvement. This discussion will divide into three sec-
tions. Section 2.5 will discuss Identity Management, the area of research we feel is most

relevant to this discussion. The following section (2.6) will discuss cryptography and
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technologies from that area that have attempted to solve the issue of global authenti-
cation. Finally, since an important requirement of our solution is to prioritise privacy,
we will examine some Privacy Enhancing Technologies and discuss how we feel they

may contribute towards solving our problem.

2.1 Naming Systems

Lampson defines a naming system (name service) to be that which “maps a name of
an individual, organization, or facility into a set of labelled properties, each of which is
a string” [82]. This set of labelled properties is often referred to as the results, or the
result set, and the process of mapping from the name to the results as name resolution.
The purpose of most naming systems is to allow the result set to change over time,
while allowing it to be accessed through use of a constant identifier, the name. Most

naming systems can be reduced to the following components:

1. the facility to store names in a database and map them to their corresponding

result sets (name resolution),
2. means to store and control updates to the result sets (access control),

3. support for policies in relation to governance of the namespace (name allocation).

Each of these functions are typically influenced by the structure of the namespace.
In the literature we have encountered two main structures: the hierarchical, and flat
namespaces. A hierarchical namespace is comprised of multiple levels of logical "sub-
namespaces". FEach of these sub-namespaces can be considered as a leaf in a tree
structure that spans from the root or the top level of the namespace. They each form a
logical partition within the namespace. This allows hierarchical namespaces to scale in
terms of the number of names the namespace can support while keeping the depth and

breadth of the namespace tree at manageable levels. Partitioning of the namespace
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allows delegation of responsibility for governance of different parts of the namespace

to different entities.

The partitioning of names also provides a logical way of separating the physical
storage of name to result set mappings. Just as sub-namespaces may be administered
by different entities, their mappings may also be physically stored on different machines.
As we look at different implementations of hierarchical namespaces we will see the

advantages and disadvantages of this method of partitioning the data in a namespace.

In contrast to hierarchical namespaces a flat namespace contains no such partition-
ing. Each name is atomic and belongs to the same namespace as every other name.
These types of namespace are typically administered by a single entity, as no means
of delegation of governance exists. We will look at some implementations of both of

these types of naming system in the following sections.

2.1.1 The Domain Name System

The Domain Name System (DNS) came into existence in order to replace the existing
Internet naming scheme, which consisted of a single text file known as the hosts.tzt
file [91]. This was stored centrally and downloaded periodically to individual machines
via FTP. Eventually the number of hosts in the network grew to such a size that
administration of the file became impractical [92]. Furthermore, since the file was
centralised there was no way for network administrators to easily allocate names local to
a given network. DNS specifies a hierarchical distributed database of global names such
as www.example.com.. Since the original specification was released in 1983 [93] [94] DNS
has become the global naming system of the Internet infrastructure, and has undergone
several extensions in its lifetime, including changes to the message format [116], support
for dynamically updating entries [117] [120], and extensions for authenticating DNS

results |20, 22, 21].

Domain names, like most hierarchical names, are allocated top-down, in a manner
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that reflects how administrative entities in the hierarchy delegate control over a sub-
set of the namespace to other entities starting from the root and moving down the

)

hierarchy. The root node, represented by a ‘.” appended to domain names but often
omitted in actual use, can create domains under the root node, for example .com. and
.te., and delegate responsibility for maintaining that subset of the namespace to third
parties. The entity that is allocated responsibility for administering that portion of
the namespace may in turn choose to delegate responsibility for administration of a
portion of its subset of the namespace to other parties and so on. Domains in the first
level of hierarchy under the root do not form full domain names by themselves and
are referred to as top-level domains (TLDs). The domain names that are available to
the public for purchase will generally live in the third level or lower of the hierarchy,
i.e. customers will generally purchase domains under a TLD. Parts of the namespace
that are under administrative control of a single entity are referred to as zones. The
root zone is administered by the Internet Assigned Numbers Authority, which in turn
is operated by the Internet Corporation for Assigned Names and Numbers (ICANN).
Top-level domains are maintained by a mixture of public entities such as government

owned organisations, and private entities such as Verisign, which are responsible for

administering the .net and .com domains.

There is a separation between responsibility for governance of the DNS namespace
and responsibility for infrastructure. Mapping between names and their corresponding
result sets, known as Resource Records (RRs) in DNS, can be assigned to entities other
than those responsible for governance of the allocation procedures. Since the namespace
can be carved up at each point in the hierarchy, these subsets may be physically stored
on any number of different servers in any number of different geographic locations.
DNS operates as a single database, though its distributed nature allows for replication

to mitigate failures of any one part.

Each RR has a specified type including A records, NS records, and MX records,

which specify an IP address, a name server, and a mail server respectively. When a

Ph.D Thesis



2.1 NAMING SYSTEMS 13

/
® © &

Fig. 2.1: The domain namespace hierarchy

name lookup (resolution) is performed, a query will specify the type of record that
is to be returned. Many other RR types exist and new types are defined as needed.
For example, to support the mapping of domain names to URIs (Uniform Resource
Identifiers), the NAPTR record has been introduced. DNS can therefore be used as
a directory or database for a variety of purposes and has grown beyond its original
intended purpose of just mapping domain names to IP addresses. Some naming systems
have used this functionality to take advantage of the infrastructure provided by DNS;

we will outline some of these systems in Sections 2.1.4 and 2.3.1.

Resolution of a name such as ezample.com?, begins at the root and follows a path of
name servers specified at each point in the hierarchy as the next one to query by an NS
record. So, for example, querying the root for example.com will result in an NS record
for at least one .com top-level domain name server, which in turn will return an NS
record that specifies at least one name server responsible for answering authoritatively

for records for that domain.

The distributed database of DNS is made up of a number of nodes called name

servers. These name servers may be authoritative, which means that they have been

! Assuming no caching,.
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configured to store and return results for a certain domain or zone. These name servers
may be replicated through a master and slave setup where the master will be updated
by an administrator and the slaves will periodically update themselves from the master.

Each server may answer queries thereby achieving redundancy.

Typically a device connected to the Internet will have some software known as a
resolver that is capable of talking to name servers. A name server will perform the
actual queries on behalf of the resolver. To answer a query authoritatively the name
server will perform a recursive resolution where it starts by querying at the root, and
will continue to progress down the hierarchy of name servers specified by each NS
record it receives. When the record type it is querying for is returned the name server

will stop and return that as its result to the client.

Due to the fact that each of these queries may take a relatively large amount of time,
a name server may answer non-authoritatively. This is where a result is returned for a
server that is not authoritative for that domain. This allows caches to be deployed to
store results and allow commonly queried names to be resolved more quickly. Results
may be cached for a period of time specified by a TTL (Time To Live) value in the
result of a query, which indicates the maximum length of time for which the results

should be considered valid.

Since its original specification a number of extensions have been made to the DNS
protocol. These have been necessary as more and more functionality has been de-
manded of the infrastructure. For instance the UPDATE function has been added in
order to support dynamic updates of the result records [117]. This is needed to allow
hosts that do not have static IP addresses to update their address as it changes. One
of the original design goals for DNS was that both queries and replies should be small
enough to fit in a single UDP packet, though TCP could be optionally used for queries.
Since then the number of different types of RRs has increased and fitting results into
a single packet may no longer be viable. For this reason EDNS [116] was proposed in

1999 which allowed larger packets to be used.
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Fig. 2.2: An example DNS query

DNSSEC

For some time now the need for authenticated DNS results has been recognised. Cur-
rently most DNS results are unauthenticated and name servers are trusted to report
results correctly. This leaves the name system vulnerable to a man in the middle attack
where an attacker supplies a false result for a given query. This type of attack is trivial
to perform when the attacker is on the same local network as their target. Since DNS
is so extensively relied upon it should be secured against these attacks. DNSSEC is a
set of extensions to DNS [20, 22, 21| that aim to bring security to the naming system.
The extensions provide three key pieces of functionality: authentication of data stored
in the database, protection of the integrity of DNS data in transit, and authenticated

denial of existence of a record.

DNSSEC essentially creates a Public Key Infrastructure? on top of DNS. The au-
thentication of results relies on a chain of trust. The public key of the root servers is
distributed by platform vendors. The root domain may be queried for the public key
record of a TLD, say, the .com domain. Each record type is signed and so the public

key for the .com domain may be verified by the resolver. This will continue until the

2 We will discuss PKIs in Section 2.6.3
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resolver has verified the authentication chain of public keys that lead from the root to

the domain it wishes to query. The result of a query may then be verified.

DNSSEC brings support for public keys to be stored within the database and au-
thenticated to a domain name DNSSEC. Assuming it is eventually fully deployed, it

will allow for authenticated distribution of public keys.

Identifiers using DNS

Other naming systems have been built on top of systems such as DNS as a result of

its popularity. We will now look at two of those.

The first is the Uniform Resource Identifier [29]. This is the generic name for
three different types of identifier, the Uniform Resource Name (URN), the Uniform
Resource Locator (URL), and Uniform Resource Characteristics (URC). These different
identifiers perform different functions; the URN acts as a unique identifier for an object,
while the URL and URC specify the location and characteristics (metadata) of the
object respectively. The decoupling of the location and characteristics of the object
from the naming of it allows these details to change while not affecting the way the
object is referred to. This information may instead be retrieved by resolving the URN

into either a URL or a URC.

While these three different identifiers have different functions, they are linked by
a common syntax. The general form of the URI is scheme:scheme-specific-identifier.
The scheme of a URI defines the namespace in which that name is valid. For example,
the URI sip:user@ezxzample.com specifies that the identifier is a SIP specific identifier,
of the form user@example.com. The scheme specific component can, in theory, take on
any form it wishes. The scheme names are taken from a well known list of identifiers
that is allocated by the IANA, though numerous unofficial schemes have been seen in
common usage. Since each operating system typically maintains a list of applications

that support specific schemes and the default application associated with it, in theory
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an application can register itself as supporting any scheme it wishes.

Of the three types of URI, the URL is most familiar to people as HT'TP URLs such
as hitp://www.example.com/index.html. There is no resolution architecture for URNs
in common use and as such it is not possible to persistently name and locate objects in
the current Internet architecture. One way to achieve this would be to use the Domain
Name System. In this way a query could be made by appending a specific domain to
the URN and resolving in the usual way. The result set would then include NAPTR
records (90|, used to return a URL from a query, that point to the location of the
resource. The working group for URCs concluded without ever producing a standard
for URN resolution. Since then the need for URCs has largely been made obsolete by

other metadata standards such as the Resource Description Framework [9].

Typically URIs such as those used in the web or SIP systems use the DNS to locate
the host of the data. Arguably they have been one of the driving forces that has
ensured the popularity of the DNS as the global name system. The rest of the URL
will consist of the protocol to be used to get access to this data and the path, relative
to some base path configured on that host, that the data can be accessed at. URLs
are familiar to most web users as they are used to uniquely identify all resources in the

system.

Perhaps more universally recognised than the URL is the email address. They
generally take the form of user@domain. The email address is specified for use in
SMTP, which is defined in the standards RFC 5321 [80] and 5322 [103]. The email
address is essentially a less complex version of a URL, since it specifies a location that
a person may be contacted at, while the scheme and port are assumed to remain static
or be obtained from the context in which the identifier is used. The simplicity of the
email address is a usability boon and a recent usability comparison between the URI
and email addresses conducted by Yahoo! suggests that people may find the email

address less confusing [15].
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2.1.2 Global Name Service

In [82] Lampson describes his design for a global name service that is designed to
facilitate resource location, mail addressing, and authentication in a large scale dis-
tributed system. This system was designed as a successor to the name service used in
the Grapevine system [32] and formed the basis for the name service used in the Open
Software Foundation’s (now The Open Group) Distributed Computing Environment

(DCE) [12]. The goals for the system were as follows:

e Scalability - the system should support a very large number of names and ad-

ministrative organisations.

e Longevity - the system should be designed to be around for a long time with
changes to the individual components and organisation of the namespace occur-

ring over its lifetime.

e High availability - the name service is critical infrastructure and as such should

be available for use.
e Fault isolation - local failures shouldn’t cause the entire system to fail.

e Tolerance of mistrust - not every component will be trusted by every client; the

system should accommodate this.

Like DNS, the global name service is distributed and hierarchical. In this way
large scale growth could be accommodated, while accommodating failures in individual
components. The client sees the system as a tree of directories much like a file system.
Each directory is identified uniquely by a directory identifier (DI) and a name which
can be reached from its parent. For instance the name ANSI/DEC/SRC names the
root as ANSI and the directory DEC/SRC relative to it. There is support for links
between directories, such that if for instance the directory ANSI/DEC/SRC was linked

to ANSI/DEC/SOURCE then both directories are considered equivalent.
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Fig. 2.3: An example of a namespace hierarchy.

Names are mapped to values, much like domain names are resolved to result sets in
DNS. Values in the global name service are themselves a tree. The value returned may
be a single string as is the case for "Lampson/Password" in Fig. 2.3, a set of strings
such as Zin, Cab, Ries, Pinot as is the case for "Lampson/Mailboxes", or a subtree as

would be returned for "Lampson".

The name service supports access control. Each update to the namespace is tagged
with a timestamp. If the timestamp in the update is a larger value than that of the
value it is updating then the existing one is overwritten. Each value has a master copy,
which may be replicated on slave nodes. By pushing updates to the master copy only,
and from there to the slaves, the directory can be updated from a number of different
places without requiring synchronisation. The master performs periodic sweeps which

update all the slave servers.

Access control is provided as a function of each directory. Each principal, i.e
each entity that interacts with the directories, proves its identity to the directory by
proving knowledge of an encryption key. Principals are identified by a name, and the
corresponding encryption key is stored in the directory in a specified value assigned to

that name. Each directory stores a mapping between an entity’s name, its identification
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key, and a set of access rights for a given path in the directory. Every time a principal
wants to access the directory, the access rights are consulted, and proof of identity may

be required.

To the client, the system should appear to be a single name service, which is shielded
from the implementation details. Each directory however may be administered by a
different entity. Again the hierarchical nature of the namespace makes this possible by
delegating control from the top down. Each administrative entity on the other hand
sees their individual directories as separate components to be administered. A directory
may also exist as a set of copies, for redundancy purposes. Updates to a replicated
directory are performed by updating first one of the directories using the timestamp
method outlined above. At a designated time interval a sweep of the replicated copies
is performed and the various updates are resolved to the most current version, as

designated by the most up to date timestamp.

Just like DNS, caching may be deployed to reduce the need for queries to the
root. Servers cache their own location with respect to the root. So if for example the
ANSI/DEC/SRC server is queried for ANSI/DEC/SRC/Lampson it knows where it
is in the hierarchy and may answer the query directly. Each record within the name
service is assigned an expiration time and a result is considered valid until that time.

This means that cached records may be considered valid until such time as they expire.

2.1.3 X.500

X.500 is a set of standards jointly defined by the ISO and the CCITT, now the ITU (In-
ternational Telecommunication Union), that aims to provide a global directory capable
of storing information about a large number of objects, while allowing responsibility
for administration of the directory to be shared among a large number of administra-
tive organisations [44]. This is necessary since each organisation participating in the

global directory would be responsible for maintaining and updating the information in
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their part of the directory and should do so whenever the information changes. The
type of information stored in the directory would not in theory be restricted, but the
aim for the directory was that it should be consulted by people and applications when
they needed to obtain information about a person, application, or entity. The directory
should serve a similar function to the type of printed directories that are distributed by
telephone companies around the world to their subscribers. However, being electronic

and not printed, the information contained within it would be more up to date.

The user will typically access the directory using software known as a Directory
User Agent according to the Directory Access Protocol (DAP). These are computer
processes that provide an interface to the user and handle requests to the directory
on their behalf. Individual entries are stored by nodes known as Directory System
Agents (DSAs). The directory itself is comprised entirely of DSAs. These may be
located anywhere and are interconnected to allow the information in the database to
be accessed by any user. Each DSA stores a reference to a small number of other DSAs.
Queries for information in the directory is propagated through the DSAs. If a DSA

cannot fulfill a query they will forward it on to one of the other DSAs it knows about.

The Directory Information Base is the set of all information contained within the
directory. Typically this will not be viewable nor of interest to all users of the direc-
tory. Entries within the DIB are stored hierarchically in a tree structure known as the
Directory Information Tree (DIT). This hierarchical model allows for an intuitive dis-
tribution of both the administration of the namespace and the storage of the individual
entries. From an administrative point of view, control over the maintenance directory
is delegated from the top down to various Directory Management Domains (DMDs),
which are individual administrative entities. Such an entity will maintain at least one
subtree of the DIT, known as an autonomous administrative area. The root of this
subtree is known as an administrative point and will contain a type of directory entry

called an administrative entry that denotes its existence.

The directory is comprised of entries, which consist of a set of attribute value pairs.
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Some attributes refer to information stored within the directory, while others pertain
to the operation of the directory itself. An example of the latter are access control

attributes. These are referred to as directory operation attributes.

Entries are identified by a unique identifier, the Distinguished Name (DN), which
is allocated in a hierarchical fashion and reflects the path of the entry in the DIT. DNs
consist of a sequence of Relative Distinguished Names, which are names that share the
same root node in the hierarchy. As each RDN is unique within its subtree, so too
is each DN. Distinguished Names may be aliases for other entries. Aliases function

as pointers to entries and allow the same entries to be obtained under a number of

different DNs.

An entry’s attributes are of a certain type and a number of standard types are
defined, such as "telephone number". In addition there is a type system that allows for
new objects to be defined and existing object types to be subclassified. Objects may
also be compared according to a set of matching rules. These rules allow attributes
to be compared with criteria provided by the user and are necessary for facilitating

queries and propagating requests between DSAs.

Routing of requests occurs according to the DIT. When a user queries a DSA
the request is recursively sent up the hierarchy until it reaches a level where it is
either fulfilled or it will descend the hierarchy until it reaches the required entry. One
of the goals of the directory is to allow distribution of its contents, not just among
administrative entities but also among the DSAs that store the information. A single
administrative entity may have many DSAs each storing a part of its portion of the
directory. The subtree that this entity is responsible for may be partitioned among

different DSAs and each partition replicated any number of times.

Since the information in the directory is distributed, security becomes an issue. The
X.509 portion of the standard describe how distinguished names should be certified to
public keys and how public key certificates are incorporated into the directory infras-

tructure [74]. We will discuss this further in a later section when we discuss Public

Ph.D Thesis



2.1 NAMING SYSTEMS 23

WORLD

TCD

MATHS Ccs

C
Fig. 2.4: The X.500 system.
Key Infrastructures (PKIs). However, we will just note that this functionality allows

for authentication of users of the directory to the DSAs and users to verify the identity

of a person they are communicating with as well as authentication of the results of a

query.

Access control within the directory is provided using Access Control Lists; that is
there is a list of users that are allowed access to an entry which indicates the type of
access they have to that entry. By default access to entries are denied to users; that
is they need to be granted explicit permission to access entries. Access rules are given
a numerical precedence value, where precedence is used to resolve conflicts between
rules. Conflicts can also be resolved by their specificity. That is if for example a rule
exists that a user, Alice, can’t read any attributes, but another rule exists that says
she can read telephone number attributes, then the second rule will overrule the first

since it is more specific.

These days the Lightweight Directory Access Protocol (LDAP) [124] is more often
used as a directory system than X.500. One reason for this is due to LDAP not requiring
the deployment of an OSI stack, while providing the same functionality as the X.500

directory services.
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2.1.4 E.164

The E.164 recommendation from the International Telecommunications Union specifies
the numbering plan for the telephone system |73]. The plan details which country codes
are to be assigned to which country. Regulatory bodies in these countries then decide
their own numbering plan for their country according to the constraints set down by

the E.164 standard.

The recommendation specifies the maximum length for a telephone number at 15
digits, and the format of the number, namely <country code><national code/area
code><destination code>. A national code and a destination code together form a
nationally significant number. The country code is needed to contact international
numbers. By far the bulk of the numbers used are geographic numbers, that is numbers
that are tied to a geographic location by their country or area code. Often the area
code is used to allocate a further set of numbers to an individual service provider. This
creates a second level of the naming hierarchy. Traditionally this meant that since your
phone number contained a component that was service provider specific, if you moved
to another provider you had to change your telephone number. Now, however, there
are a few specifications for number portability systems and a number of countries have

since mandated its use and adopted one of these standards.

Number portability is normally achieved through the use of a centralised database.
This database may be stored centrally by the regulatory body or a list of numbers
that have been ported may be stored by the original assignee. This database may be
queried either at the beginning of a call or after a service provider has, through the
signalling protocols, indicated that the number is no longer serviced by them. There
are four different types of service provider number portability that operate using some
combinations of these actions. A review of these methods is provided in [67]. However,
each of these solutions still constrains number portability to service providers within a

certain geographic area. The I'TU has proposed Universal Personal Telecommunications
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[115] as a means of providing global number portability.

ENUM

ENUM is a system for resolving telephone numbers to URLs using the Domain Name
System. The E.164 hierarchy is moved into the DNS hierarchy. Phone numbers are
translated into domain names, resolved in the usual way, and a set of Resource Records
is returned as a result of the resolution function. This allows for routing of calls between
the regular telephone network and Internet based systems. This allows the use of
telephone numbers as identifiers in Internet telephony systems, for example, thereby

linking the telephone numbering system with the Internet naming system.

The resolution process is illustrated in the figure below. A new zone, el64.arpa,

was allocated for use by ENUM. Resolution is performed as follows [37]:

1. Take an E.164 number in full international format, for example 435312345678

and remove the '+’
2. Insert full stops between each of the numbers giving 3.5.3.1.2.3.4.5.6.7.8
3. Reverse the order of the resulting string leaving 8.7.6.5.4.3.2.1.3.5.3
4. Append the top level domain ".e164.arpa" to obtain 8.7.6.5.4.3.2.1.3.5.3.e164.arpa

5. Perform a regular DNS lookup treating each of the numbers as its own domain.

The result of the query is a DNS record, typically of type NAPTR, which allows for
a URL to be returned. This allows E.164 identifiers to be resolved to obtain identifiers
for Internet based systems. Thus, ENUM can form part of a telephony-convergence

architecture.

In the example above the resolution takes at least 11 queries, one for each of the
digits in the phone number. This number of queries would make resolution very ineffi-

cient. However, due to the way that E.164 numbers are allocated, there should only be
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a very small number of administrative entities involved, which can be used to reduce
the number of queries necessary. The individual name servers will return the result
for the longest query they can answer. In this case the root node could return the
authoritative name server responsible for answering queries for 353, the Irish country

code.

The NAPTR record type also supports the use of regular expressions on the result.
So, for example, a regular expression could specify that a part of the number being
queried should end up in the result; e.g. if a SIP provider allocates identifiers based
on E.164 numbers, then the destination code or a part of it could be tagged onto a
SIP identifier and returned by regular expression. The regular expression would be

evaluated on the client side.

There are a number of ways ENUM can be deployed. One way, Public ENUM,
describes an infrastructure much like the way DNS functions, where each person con-
trols the results for their own identifier (phone number). This would allow for E.164
numbers to be used as global identifiers while a person could specify whatever they
wanted in the result set. People contacting them could first query the ENUM database
to obtain the most up to date identifier for that person. E.164 numbers have the ad-
vantage of being used widely as identifiers already and people are used to dealing with
them and remembering them. Under this means of deployment ENUM could form the
basis for a global number portability system. So long as a person can control the map-
ping between their phone number and its result set then they can use their telephone
number, for as long as it has been allocated to them, as a unique identifier that can
be resolved to obtain their real phone number or other identifiers. An example of this

type of deployment is E164.org.

Another possibility is that individual providers use ENUM within their own net-
works, and potentially as a means of facilitating peering with other providers [84]. In
this scenario the provider would maintain control over updating results for each iden-

tifier. The primary use of ENUM in this case would be call routing and the individual
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carriers could also use ENUM as the basis for routing with other networks that they
peer with. So far public ENUM hasn’t seen major deployment, but the area of Internet

telephony is still in its infancy and it may yet be successful.

2.1.5 Discussion

The question remains whether these name systems, or elements of them, would be
suitable for solving the naming problem we wish to solve. The main point of com-
monality with each of these naming systems is their use of the hierarchical structure
of the namespace as a means of partitioning storage and administration responsibili-
ties. This provides an attractive way to scale up the namespace to a large number of
users. The choice of namespace structure was influenced by this requirement. However
these namespaces don’t address the issue of providing a scalable namespace for people
that retains high mnemonic value very well. The set of names that are memorable is
not that large, and systems such as DNS have experienced a land rush for the most
popular names when their value was realised. This problem is hard to address in a
hierarchical system as although the number of names possible in a hierarchical system
is theoretically limitless, people’s capacity to remember them is not. With over 6 bil-
lion people worldwide we fail to see a satisfactory way to address this problem while
adhering to the design of a hierarchical namespace. Telephone numbers have addressed
this issue to some extent as people have become used to memorising the 6-8 digit com-
binations. However, phone numbers are only easy to remember when localised and
when the number of digits to remember is low. Many people who use mobile phones
for communication arguably do not remember these numbers, but rather assign names
locally within their address book and select people to call based on a name they can

remember.

All of these name systems use distributed databases to store mappings between
names and their results. Their replicated nature provides a useful level of robustness for

infrastructure that is critical to the proper functioning of a distributed communications
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system. This is an attractive property for a naming system, and new naming systems
could take advantage of the widely deployed infrastructure of DNS to achieve the same
properties. Generally public DNS servers provide read access to all results for domains
they host, and there is no way to authenticate the origin of a query. Since one of our
goals is to protect the privacy of results, and so only have them shared with those that
the user wishes, we do not see an easy way to add a layer of access control based on the
identity of a user of DNS without major modifications to the protocol. For this reason
we do not use DNS infrastructure as the basis for our resolution mechanism. However,
we believe that DNS has value for the dissemination of data, and when DNSSEC sees
wide deployment it will be all the more useful. Neither the Global Name Service nor
the X.500 directory have provided usable global infrastructure. This is despite being
arguably more suitable to the task of acting as generic global directories, for instance

due to their support for access control.

Though we find the hierarchical model of name allocation and resolution unsuitable
for use in a personal naming system, each of these systems have contributed ideas
towards our design. We think it is important for replication to be used as a means of
providing robustness in the face of failure. The simplicity of the replication mechanisms
in DNS, the Global Name Service, and X.500 appeal to us. We think this is a strength
of each of the systems. The idea that each entity should be able to use a name server of
their choosing is also an important point. In DNS this allows large organisations that
have more heavily loaded name servers to implement appropriate scaling mechanisms,
and ensures that the mapping between name and results is fully controlled by the owner
of that name. The hierarchical model is an important part of the state of the art of
Internet naming systems, but there are other solutions that have their own advantages,
some of which seek to correct issues with systems such as DNS. We shall now look at

some of these.
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2.2 Name Resolution Systems

DNS came about as a replacement for the existing method of a flat file of names,
which became impractical to administer once it grew beyond a reasonable size. The
old method relied on individual network administrators to find ways of transferring the
entire file of name mappings from one machine to each machine within their network.
This is obviously not a scalable means of resolution. Today as the .com zone file is of
the order of gigabytes in size it is even less so, and given that most people will only need
to access a relatively small number of results from this zone it would also be grossly
inefficient. The hierarchical model of resolution is not without its problems however.

In this section we will look at some systems that perform resolution in a different way.

2.2.1 Main Name System

The Main Name System [53] is a proposal to fix some of the perceived shortcomings,
according to the authors, of the DNS infrastructure, namely latency of lookups and
updates, complexity of administration, vulnerability to denial of service, and the lack
of authentication of responses. The proposal is to "recentralise" the naming system,
with a small number of high performance servers serving data for the entire naming
system, like a content distribution network. The existing top-level DNS servers could
be used to host the new system, avoiding the need to modify existing client software.
They argue that with fewer than 100 servers each strategically placed around the globe
they could serve DNS data at a much lower latency and at a higher scale to the entire

Internet.

Since all requests would be fulfilled in a single hop, this would reduce the latency
of queries significantly, while update latency could be reduced by eliminating the TTL
caching mechanism i.e. by returning a TTL of 0 for all records. They argue that
since people wouldn’t have to run their own DNS servers, the system would be a lot

simpler to maintain and a more user-friendly interface could be presented to users of the
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system. The proposal does alter the IP-based model of authentication that DNS uses
however, but recognises that other proposals such as those in the DNSSEC protocols
could address those issues, since DNSSEC allows the separation of the authentication
of records from the manner in which they are stored. While centralisation of the DNS
architecture may be possible and a good idea, since DNS makes more than enough
money to be self-sufficient, other naming systems may benefit from a more centralised

approach too.

The authors of the Main Name System proposal argue for the benefits of a cen-
tralised approach. When failure occurs at a single DNS server during resolution of a
query this impacts the system as a whole. They explain that these failures are often
due to misconfiguration of the servers, which is a problem that could be solved by

centralising the infrastructure.

However while the centralisation of the DNS infrastructure would be sustainable
due to the fact that the DNS system as a whole is financially solvent, this may not be
the case for other types of naming system. The centralisation of this important piece
of Internet infrastructure would make the maintainer of that infrastructure a target
for attackers, would put too much power in the hands of one entity, and would create
privacy concerns. We will now look at some systems that advocate a more decentralised

approach based on overlay networks.

2.2.2 Overlay Networks

An Overlay network is a virtual network that is layered on top of an existing network
infrastructure. Application-layer overlay networks have, for example, been used in re-
source location and discovery to provide a decentralised resolution infrastructure. Some
of these have the goal of being able to function without the need for a centralised entity,
with the advantage of being more resilient to attack than a centralised infrastructure.

In this section we will outline the operation of a number of such overlay networks. Of
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the systems we will look at, there are two main categories, namely flooding networks
and distributed hash tables (DHTs). Flooding networks are simpler in design, but do
not provide any guarantees about the number of hops required for resolution and may
require a large number of messages to be exchanged in order to respond to a query.
On the other hand, DHTs are generally more complex, but provide significantly better

performance guarantees i.e. a bounded number of hops to resolve a query.

2.2.3 Gnutella

Gnutella is a flooding style network. Its protocol and operation is described in [16].
Each node is connected to a relatively small number of neighbours or peers. To join
the network, a joining node must know the IP address of a bootstrap node, one that
is already in the network. The joining node will query the bootstrap node for a list of
other nodes in the network, randomly select a number of them, and connect to them
as neighbours. When a node wishes to query for a resource it will query each of its
neighbours, who will forward the query their neighbours, and so on. Since this form of
query is exponential, potentially a large percentage of the nodes in the network may
be queried. A node that has the requested resource can reply to the origin of the query
directly. To avoid sending too many messages, each query will include a counter called
the time-to-live (TTL) value. As a node forwards a query they decrement this counter,

discarding any requests that reach zero.

In later versions of Gnutella, to achieve better scalability, the concept of ultrapeers
(or supernodes) was introduced [108]. A regular node could promote itself to the status
of supernode if it met certain requirements, such as adequate CPU speed, high-speed
connectivity, etc. Each node would maintain a connection to a number of supernodes
and would route queries through the supernodes. The supernodes would then route
queries to other supernodes and regular nodes they peered with. This two level hierar-
chy reduced the number of messages that needed to be exchanged, but placed a larger

burden on the supernodes.

Ph.D Thesis



2.2 NAME RESOLUTION SYSTEMS 32

ZRN
lilil%

2

|
v ¥ W

Fig. 2.5: Illustration of query propagation in Gnutella. The black arrows depict the
query path, with the red arrows showing the path of the matched query.

2.2.4 Skype

Skype uses a Gnutella style network with supernodes to store information about its
users. Although the precise operation of the Skype network is unavailable, due to
its proprietary nature, a number of studies have been undertaken, such as [28], [71],
and [35], that give an insight into the operation of the network and its protocols. In
addition to its decentralised Gnutella network, the Skype software uses a centralised
login server. This server ensures that usernames are unique and authenticates peers on
login. On successful authentication of a username and password pair, the login server
issues the client with digital certificates that allow them to prove their identity to other
peers with a public key. These certificates are stored in the Gnutella-style network by

the individual Skype clients and may be returned as the result of queries.

Skype also uses peers in the network to provide NAT traversal for nodes in the
network that need it, presumably using some variant of the STUN (Session Traversal
Utilities for NAT') protocol [105]. Skype is also one of the first Internet Telephony
systems to include encryption by default. An analysis of the implementation of the

cryptography protocols was undertaken by Tom Berson of Anagram Laboratories in
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Fig. 2.6: The Skype system. Boxed nodes like Donal and Gonzo are NAT ’ed nodes and
rely on Supernodes such as Bob to route traffic on their behalf. Authentication
happens by contacting the Login Server directly

2005 on a snapshot of the Skype code. He concluded that the implementation of the

various protocols were correct and that the security architecture of Skype was well

designed [30].

2.2.5 Chord

Chord is a distributed hash table that was developed at MIT [112]. The DHT has been
subsequently used in the design of a number of distributed systems, such as the DHash
block storage system and the Cooperative File System (CFS). The basic structure
of the DHT is a ring, where each node in the ring maintains a connection with its
successor. Each node in the ring is assigned a number, which determines its location
within the ring. A node’s number in the ring is assigned based on the hash of some key.
Consistent hashing is used to assign keys to nodes. Typically a secure hash function,

such as SHA-1 [96], would be used as the base hash function for this purpose.

The maximum number of nodes allowed in a given hash table is some value n = 2.
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In order to achieve O(logn), or m steps, worst case lookup a finger table is maintained.
A node’s finger table consists of a list of nodes that are distances of successive powers of
2 from that node. For example, say we have a node n, then the finger table will contain
information about nodes that are at a distance n+2*"2 mod 2™ for 1 < k < m—1 away
from the node in the ring. Traversing the network to find a given key thus involves
locating the nearest node to that key in the ring. The first node chooses either a node
from its finger table or its successor depending on which node is closest to the key and
forwards the query there. Each node the query is forwarded to recursively forwards

queries in this fashion until the destination node is reached.

O O

Fig. 2.7: The chord topology.

This method assumes that the hash table is full, as each node in the network requires
a successor and a full finger table in order to achieve the O(logn) lookup time. In the
case where the table isn’t full, which is generally assumed to be the case, nodes will
take over the function of those missing in the following manner. When the node joins
the network it will attempt to locate its successor. If that fails then it will locate the
nearest node to its successor. The joining node will then take over the duty for all
nodes between it and its successor. When other nodes attempt to query a missing

node, that node will respond on its behalf, and thus queries get routed either to their
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destination node further down the chain or that node responds that the query doesn’t

exist.

2.2.6 Manifold

Manifold [60] is a decentralised resource location and discovery system, that is de-
signed for use in a dynamic ad hoc environment, where there is no fixed infrastructure.
Manifold defines two overlay networks, one to perform exact searching, while the other
supports inexact queries. Exact search is performed by a DHT known as Manifold-g,

while inexact search is performed by the Gnutella style network Manifold-b.

The systems supports exact search on a global scale, where people will typically
want to obtain specific resources, such as a certain document, or the identifiers. The
topology of the network is based on an N-dimensional hypercube. A hypercube is a
general abstract shape of which, for example, a square and a cube are instantiations
in two and three dimensions respectively. Taking the example of a cube, we can easily
verify empirically that each of the corners (nodes) is at most three nodes away from any
other node in the cube. This property holds in N dimensions. Also a hypercube may
be labelled algorithmically in a way that defines a Gray code. So transitioning from
one node in the cube to another requires the flipping of a single bit. In this way routing
can be performed using an XOR and a bit rotation at each node. The search performed
is done on the exact search query. This is due to the way that resources are named in
the DHT. Each of the nodes in the network use a pre-decided hash function to decide
the addresses of nodes in the overlay. The name of a resource is then named according
to the hash of the query string that is used to identify it. So for example the Trinity
College homepage would be addressed in the networks as H(http://www.tcd.ie), where
H is the hash function used in the network. Since a slight variation on the address
would give a different hash value it is not possible to perform inexact search using
Manifold-g. Like Chord the Manifold-g routing algorithm, as outlined above, assumes

that the hash table is complete. In order to facilitate routing in an incomplete network
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the idea of shadow nodes is introduced. These nodes take over the routing function for

missing nodes.
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Fig. 2.8: Manifold queries follow a path along a hypercube. This figure depicts a query
showing a complete hypercube.

For this reason a TTL-controlled flooding network based on the Gnutella overlay,
known as Manifold-b, was defined. This is used for queries that may for example be
based on the properties of the resource being sought, e.g. "any colour printer". This
also allows partial matches of objects to be returned. For example, the query "colour
printer" might return black and white printers if no colour ones are available. The
node that performed the query could then decide, upon receiving no results for colour
printers, that the black and white printer will suffice. Clearly if inexact search can be
performed by Manifold-b, so could exact search. However, Manifold-g exchanges far
fewer messages during resolution and so the two overlays are used in conjunction with

each other to achieve the best of both worlds.
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2.2.7 DNS over P2P

Cox et al. [50] investigate the feasibility of using a distributed hash table to serve
DNS data using a system they call DDNS (Distributed DNS), not to be confused with
Dynamic DNS that also uses this abbreviation. They argue that the DNS security
extensions proposed by the DNSSEC effort separate the authentication of the result set
from the storage and serving of the data. They propose using a decentralised solution
for a number of reasons. Firstly, in [52] the authors conclude that the reason for a
large number of DNS failures is due to the complexity of maintaining servers. Their
proposal would reduce this complexity as instead of each organisation or individual
having to maintain their own server or procure one from an ISP or elsewhere they
would simply run the DDNS software, which would contribute resources to the global
DHT with presumably more or less similar configuration across each of the hosts in the
network. Secondly, a distributed solution should more evenly distribute traffic among
the participating nodes rather than the current situation where it has been shown
that up to 18% of traffic goes to the root nodes [76]. The decentralised nature of the
infrastructure would also make it less susceptible to denial of service attacks, since data
could be replicated across a large number of nodes thereby increasing the number of
nodes that would need to be attacked. While DHTs provide a low number of hops in
comparison to the number of nodes that the network can scale to, usually logn, the
number of hops is still usually too large for latency sensitive applications. Cox et al.
[50] conclude, therefore, that serving DNS over a DHT would be bad for latency, and
since name lookups should have low latency this would make such a system impractical

without some kind of replication mechanism.

2.2.8 Beehive and CoDoNs

Beehive [101] is a proactive replication mechanism for distributed hash tables that

seeks to reduce the latency for name lookups by reducing the number of hops needed
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for resolution in the average case for DHTs based on prefix routing, such as Chord [112],
Pastry [106], Kademlia [89], and the Manifold-g component of the Manifold overlay [60].
In these systems nodes that provide shared storage are addressed according to a fixed
length bit string. Data to be inserted is also given an address, which may for example
be determined by the hash of its name or contents. This address is then stored at the
node whose address shares the longest prefix in common with the address of the data.
When a lookup is to be performed, the current address is changed bit by bit from left
to right at each hop, with the query being forwarded all the while, to get the next hop
until the node that stores the data is reached. This style of routing makes use of the
fact that each additional bit doubles the possible number of addresses in the network,

while increasing the number of hops by one.

The replication algorithm makes use of the fact that if a result is replicated by all
possible previous hops then the number of hops to get to that data is reduced by one on
average. Clearly replicating all the data would be inefficient if the data set is large since
that would mean all nodes in the network would need a large proportion of storage.
However, if the popularity of files in the data set follows a power law distribution then
the most popular data may be replicated with a relatively small overhead to reduce
the number of hops for a large amount of the queries. Beehive allows the degree of
replication to be configured but seeks to provide a one hop lookup on average. The
system figures out which data is the most popular at any given time and proactively
replicates it across the network. This allows it to handle flash crowds, where large
numbers of requests are made for a certain resource in a relatively small time frame,

and adapt to distribute the load caused by such events across the network.

CoDoNs [102], the Cooperative Domain Name System, is a system that resolves
DNS queries using Beehive and the Pastry overlay. The system has been proposed as
an alternative resolution mechanism to the current DNS system. The authors claim
that it would be more resilient to attack, quicker to resolve queries on average, would

update changes more quickly, and would distribute the load more fairly across the
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different storage nodes. Additionally the overhead of maintaining a server would be
reduced as just a CoDoNs node would need to be maintained, which would eliminate

the need to, for example, deploy a DNS cache.

2.2.9 Freenet

Freenet is a peer to peer distributed storage system developed originally by Ian Clarke
and outlined in [47]|. The motivation for Freenet was to develop an anonymising network
which is resistant to censorship. While the main function of Freenet is to store files, a
working email system has been developed on it also. Currently there are two modes of
operation of Freenet, one called opennet and the other darknet. Opennet is the global
Freenet network and allows anyone to access the data stored by it. Darknet on the
other hand requires that people be manually added to the network and is designed
for small-scale networks, where the participants generally belong to the same social
network. Anonymity in the network is maintained by putting chains of nodes between
the source and destination endpoints, while each node in the chain knows only the IP

address and Freenet identifier of the node prior to and after it in the chain.

Files are stored in the network according to a key, which is based on the hash
of either a persistent identifier for that file or the file contents itself. Routing in the
network initially takes place as a random walk. Each node upon joining will obtain a list
of possible neighbours, which will be a subset of the total nodes in the network, and will
initiate a connection with a small number of them. When that node then wants to query
a key it will select a random neighbour and forward the query to them. If the query
comes back negative it will forward the query to a different node. Nodes can detect
recent duplicate queries and all queries contain a time to live, which when it expires
causes the query to be returned false if it hasn’t already matched a result. Queries
are recursively forwarded through the network in this fashion. Results that come back
along a certain path are replicated at each node in that path in order to increase the

availability of that file, with popular queries becoming highly replicated and thus more
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likely to be found quickly. Additionally nodes remember which neighbour responded
positively to previous queries and forwards similar queries down that path. Thus,

clusters of files which have similar keys should cluster together in the network.

2.2.10 Discussion

The centralised approach of the Main Name system offers clear performance benefits
over the large numbers of hops typical in a DHT. If the infrastructure is centralised then
load balancing can be performed on a more deterministic and fine-grained level. The
decentralised nature of P2P means that the resources on the network are heterogeneous
and unknown. The overlay network itself must take into consideration that some nodes
may be slower than others, and existing approaches, such as the supernodes in Gnutella,
rely on the nodes themselves to determine their suitability for certain operations within
the network. This is undesirable as it increases the burden on certain nodes and may

have real implications for their ability to use resources.

We also find the security of the P2P approach to be lacking. In [23]| we performed a
threat analysis of overlay networks, including the ability for nodes within the network to
subvert the routing process and intercept large numbers of queries. These issues are not
addressed in any existing systems we are aware of, though there are attempts to solve
some of these problems in the literature. The ad hoc nature of these networks would
make robust solutions to these problems difficult to engineer. While these systems
are suitable for certain applications where these security issues are deemed to be an
acceptable trade off for the benefits of a decentralised name lookup infrastructure, we

do not feel that they are suitable for our solution.

2.3 Name Registration Systems

In the previous section we took a look at alternative name lookup systems. This

section will outline another aspect of naming systems by detailing different types of
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name registration mechanisms. Each of these differ from the hierarchical approach

taken by the systems outlined in the first section.

2.3.1 Host Identity Protocol

The Host Identity Protocol (HIP) [95] seeks to provide a means to identify hosts as
they move between different physical points of attachment to the network, and there-
fore different IP addresses. To achieve this HIP introduces a new layer between the
transport and network layer with its own namespace based on cryptographic identifiers.
The transport layer is decoupled from the network layer and uses the host identifier,
known as the Host Identity Tag (HIT), instead of an IP address. The HIT is stored
in the host’s DNS entry and is obtained on resolution. Since the HIT is the hash of a

public key, end points may be authenticated and HIP provides this functionality.

When HIP is deployed a client application will resolve the domain name of the
target to obtain its HIT. The client application will then attempt to send information
to the HIT. The HIP layer may use a rendezvous service, i.e. a third party that serves
as an initial point of contact for clients |75], to obtain the IP address associated with
that HIT. They will then perform the authentication function and continue. At the
end of the authenticated key establishment protocol each client will know the other’s
HIT and a session key will have been established. When one of the hosts changes its IP
address, the rendezvous service will facilitate the transition from one IP to the other
with each endpoint’s HIP layer ensuring this happens transparently at the application

layer.

Apart from mobility, multihoming is another service offered by the HIP. This is
possible since the HIP layer is responsible for determining the destination of packets.
The resolution of a HIT can also return a set of IP addresses. The HIP layer will then

send data to each of the hosts in the result set.
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2.3.2 Semantic Free Referencing

Semantic Free Referencing (SFR) as outlined by Balakrishnan et al. [119] seeks to pro-
pose an alternative way for referring to and locating objects on the web. Citing DNS
issues that have impacted the web such as legal challenges to domain name ownership,
lack of faith in the governance of the namespace, and the lack of persistent identifiers
for objects, they propose a naming solution based on names with low mnemonic value.
They propose removing all semantic information about the object from the name in
order to decouple information such as location in the network from its identifier. Fur-

thermore a resolution architecture is proposed.

The proposal is to base the namespace on flat identifiers, known as SFRTags, which
resolve to o-records, which contain the location and metadata for an object. The
resolution architecture is based on a DHT, in this case Chord [112], and a storage
system that layers on top of it known as DHash [51]. The authors propose that the
resolution infrastructure could either be maintained by a not for profit organisation such
as a governmental body, or be a commercial offering where different providers compete

with each other, with updates being propagated between the different providers.

The name service has the property that each record is self-certifying. Since the
SFRTag is a hash of the public key of the provider of the object, the record itself may
be signed with the corresponding private key. The public key is then distributed as
part of the o-record. In this way, when a person resolves a given SFRTag they are

assured that only the person who knows the private key can update its location.

Two issues that the authors have identified with a DHT based infrastructure, rather
than a DNS style infrastructure are those of fate-sharing and latency. Fate-sharing
deals with the question of who is affected by outages. For instance in DNS when an
organisation’s Internet connection goes down then it is desirable that local machines
are still accessible. In a DHT, if a node fails and it’s responsible for serving information

about other nodes, then this is not possible. To remove this issue SFR specifies that a
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separate cache for records specific to an organisation should be put in place. Latency on
the other hand is an issue associated with the relatively large number of hops to perform
resolution using a DHT. To reduce this latency the authors propose two mechanisms.
First, records are cached in the DHT along the query path. This should result in
popular records being distributed throughout the DHT, thus reducing the number of
hops needed to access them. Secondly, caching is proposed on an organisational level.
The same cache that handles caching to avoid the fate-sharing issues would cache
popular records. Records are given an associated time to live value. Once this is
expired the record is purged from the cache. In this model organisations provide a

SEFR server for the organisation, similar to the way they run a DNS server today.

2.3.3 Layered Naming Architecture

The Layered Naming Architecture [27] is a proposal to provide three features to the
Internet infrastructure, namely the ability to persistently name objects, support for mo-
bility and multihoming, and the problems that middleboxes, devices such as NAT boxes
that perform routing or policy enforcement at the transport layer thereby breaking the
end to end principle, cause in the current architecture. Seeing the core infrastructure as
untouchable, citing the fact that IPv6 still has not been successfully deployed after more
than a decade as evidence of this, the authors of the Layered Naming Architecture pro-
posal have instead elected to tackle these issues by altering the naming infrastructure.
They propose replacing the current two namespace model, where domain names are
mapped directly to IP addresses, with a model that has four types of namespace. Their
work builds on that undertaken by HIP and SFR, which we discuss in sections 2.3.1
and 2.3.2 respectively, and the Internet Indirection Infrastructure, which is outlined in

[113].

The first type of name is called the user-level descriptor (ULD). This corresponds
to any type of application specific identifier, such as email addresses, SIP URIs, search

terms, etc that a user currently encounters while using Internet services. These iden-
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tifiers may then be resolved to a service identifier (SID) using any method deemed
appropriate. The SID remains persistent for each object, so for example a specific file
may have its own SID and that SID will always act as a locator for that specific file.

This addresses the first goal for the architecture.

In a typical use case scenario the SID corresponds to an application layer identifier,
such as an URI. Applications will still need to resolve this to a network layer identifier
in order to be able to route to the endpoint that the resource is located at. When a
SID is resolved, another new identifier the endpoint identifier (EID) is returned. This
identifier is used by the transport layer as a handle that it can send packets to and as
a level of abstraction for the network layer so that the address of the endpoint may
change. The EID must thus resolve to at least one network layer identifier. If in the
middle of a session the destination host changes its network layer address then the EID

may be resolved to obtain the new identifier.

Resolution of the EID may result in multiple IP addresses being returned. In
this way multihoming may be achieved. The EIP abstraction also allows hosts to
change TP address in the middle of a communications session. The IP layer can detect
the change through timeouts or ICMP error messages and resolve the EIP again to
obtain the host’s new address. To handle middleboxes the authors propose allowing
the EIP to point to a source route. Since the issue with middleboxes is that the
IP addresses behind the middlebox are usually private IP addresses, they cannot be
addressed globally. A source route would solve this issue, as the path through the

middlebox to the destination would be specified.

Since all of the identifiers used in the Layered Naming Architecture are based on a
flat namespace, the obvious choice for resolution of these names is a Distributed Hash
Table, which we will discuss further in a later section, and that is the approach that
the authors have opted for. The authors don’t address the latency issue with their
choice of DHT, but suggest that the latency issues can be addressed in other ways, for

example by aggressive caching.
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2.3.4 INS

The Intentional Naming System [19] is a resource location and discovery system, where
resources are named by their attributes. The goal is to allow queries for resources such
as "least busy printer in the building". INS integrates the naming of resources with
message routing, using a default late-binding mechanism, where the location of the
resource isn’t specified until time of message delivery. This allows the node to change
its network address at any time. The routing system allows for multicast as well as
unicast of messages, so that messages may be routed to all nodes that match a given
request, e.g. "all printers in the building". The system uses an application layer routing

system that pushes its deployment requirements to the edges of the network.

Names in INS are specified as a hierarchal structure of attribute-value pairs. The
attribute specifies the category that an object belongs to, while the value specifies its
type within that category, e.g. "shape=circle" specifies a shape of type circle. The
hierarchy is structured such that child nodes are dependent on their parent nodes. The
final node in each branch of the hierarchy points to a name record that satisfies that
query. To resolve a name each of the attribute value pairs in the query are located in

the hierarchy and the intersection of the name records below them is returned.

Resolution in INS is performed by a number of resolvers, known as Intentional Name
Resolvers (INRs) that arrange themselves, within a local network, in a spanning tree
overlay topology. The overlay network is tolerant to failures and individual INRs may
leave or join the network at any time. Services advertise their names periodically and
INRs listen on a well known port for these advertisements. These advertisements also
serve to refresh information stored in the INR, which may expire after a given length
of time. This allows nodes to recover from failures and alleviates the requirement
that they maintain state between reboots. INRs also share information about services

between themselves.

The Intentional Name System is of interest because of its query based naming
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design. This allows for a single object to potentially be located according to a number
of different criteria. This approach is interesting from the point of view of naming
people since different people have different and often incomplete information about a
person when they try to locate them. For instance, one person might know a person’s
first name, surname, and country of residence, while another may only know their

surname and the area they live in.

2.3.5 Semantic Email Addressing

The goal of semantic email addressing |79] is to provide an infrastructure that can route
email based on semantic information rather than a particular address. For instance,
a person could choose to send an email to a particular person as described by their
position and place of work. SEA also allows a "recipient" to be a group of people with
a common interest, such as "people who like film noir". People can specify topics they
are willing to receive email about and the SEA system will route email that matches

those topics to them accordingly.

People opt in to receiving email from the SEA system by specifying their email
address, their place of work, job title, interests, etc. in a document using a semantic web
standard, such as FOAF (Friend of a Friend) [41]. They make this information public
in their FOAF document, which may for example, be linked to from their website. The
SEA system then indexes this information and stores it centrally in a database. They
may update this document to remove or add information as it becomes obsolete, which

will then be updated in the database whenever the system indexes it.

When a person wants to send email using SEA they use a special SEA aware server
known as a SEAmail server. This will be hosted by the same entity that has indexed
the semantic information. They will then construct a semantic email address. This is
a query that matches information about a subset of the people indexed by the system.

The queries match on the semantic information contained within the document and
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the email address specified within is used to deliver the email. The SEA provider will

then deliver the email address to the appropriate recipients.

The SEA system provides a novel way to deliver email and because it uses semantic
information rather than a particular address to route messages it separates the delivery
of a message from the way it is addressed. This could be used to provide identifier
portability since a semantic description could be used as a person’s persistent identifier,
while their actual address may change. However, the SEA system does not address
privacy issues. The authors do not provide a way for people to filter based on sender.
They argue that this guarantee is not provided by the current system and so SEA
provides more flexibility than the legacy system. However they acknowledge that SEA
could be abused to send untargeted email by specifying an address that matches a
large number of people. Also, since a person’s FOAF data is made public it would be

possible for a spammer to index their email address without much difficulty.

2.3.6 Discussion

This section saw discussion of three different approaches to naming that each advo-
cated names that lacked mnemonic value. None of these systems rely on a centralised
authority to perform name allocation thereby requiring little or no financial cost to be
incurred in the running of such an authority. Names are allocated in a way that allows
claims of ownership to be proven. For instance, an identifier in the form of a hash of a
file name can be used to verify that, when located, the file hashes to the correct value

and is therefore the correct one.

Names of this form are not memorable, but they do not always need to be used or
seen by people. Many URLSs used on the Web today are long and unmemorable, but
they are not meant to be remembered. Instead they are only used to locate resources.
Other ways of exchanging and storing these URLs may be used such that people don’t

have to. For instance, most browsers available today store bookmarks, which are es-
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sentially memorable names for unwieldy URLs, Google is an efficient method of finding
resources when needed, and many social bookmarking sites aim to index interesting

content.

The approach taken in the latter two systems, SEA and INS, is based on attributes
of the resource or person being named. While it is true that a person’s characteristics
may identify them uniquely, this approach is not appropriate for a personal naming
system. Systems such as SEA and INS require these attributes to be searchable and
only function if they are. Thus participation in the naming system requires information
about a person to be shared. While some people may want to share this information it
may not be an appropriate way to identify all people and doesn’t address our require-
ment of protecting privacy. An example of this is that parents may not, for instance,

want information such as their children’s email address to be public.

The Layered Naming Architecture explicitly supports and recognises the need for
middleboxes. Middleboxes break the end to end principle [107], but are often required
to add functionality missing from the existing Internet infrastructure, where neither
modifying client software nor core infrastructure is possible. One example of the need
for middleboxes is in Network Address Translation where the middlebox is responsible
for mapping private network addresses to a global one. There are a number of strate-
gies for doing this, and they are covered in some depth in [110]. Middleboxes have
been advocated by personal mobility solutions, and it would seem that they are an

unavoidable part of the infrastructure.

2.4 Personal Mobility and Naming

2.4.1 Unmanaged Internet Architecture

The goal of the Unmanaged Internet Architecture [65] (UIA) is to enable zero-configuration

connectivity between mobile devices. In UIA each person maintains and runs their own
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namespace, from which they assign names to their devices and people they know [66].
When people meet they engage in an introduction protocol where they share their
namespaces with each other. In this way they can each refer to devices in each other’s
namespaces, providing an intuitive way to access them. For instance Bob might want
to access Alice’s iPod. Since Alice probably only has one she might name it ipod.alice.
As Alice’s devices move to different points of the network she will distribute changes in
the mapping between their UTA names and their locations using a gossip protocol [54],
where changes are sent to all devices Alice’s device encounters. During the introduction
process Alice will have suggested to Bob that he refer to her by the name alice. Bob
may choose to accept this name if it is appropriate for him and doesn’t conflict with

another entry in his namespace.

These names act as a memorable identifier for people like Alice and Bob to refer
to one another. In reality each device will identify itself with a public key, and each
person maintains an SPKI (as defined in Section 2.6.4) infrastructure for authentication
purposes. These namespaces are hierarchical as a natural hierarchy emerges from a the

relationships between the devices, their owners, and the people they communicate with.

The UIA also allows a person to form groups of devices. In this case each device
will ensure replication of the namespace across each of the other members in the group.
This is again achieved using a gossip protocol, where devices share updates with each
other opportunistically. There is a merge protocol that specifies how devices are to be

added to the same group.

Groups are used to simplify management of who has access to what device. For
instance, if Bob has a laptop and an iPod he might choose to merge the two into a
group. Then when Alice meets Bob they both introduce their laptops to each other.
This process allows Alice implicit access to Bob’s iPod since it is in the same group as
the laptop. UIA also allows for the concept of shared groups where two or more people
can add people and devices to the group, allowing Alice and Bob to create a shared

group for some of their devices.
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Resolution of UIA names results in an Endpoint Identifier (EID), similar in function
to the EID in HIP. The EID represents a device identifier separated from its location in
the network. The EID may then be resolved in order to obtain the current location of
the device. Unlike in HIP this takes pla