
Context-Informed Semantic
Interoperation

A thesis submitted to the

University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy

Alexander O’Connor

Knowledge and Data Engineering Group,

School of Computer Science & Statistics,

Trinity College Dublin,

Ireland.

2010

Declaration

I, the undersigned, declare that this work has not previously been submitted to this

or any other University, and that unless otherwise stated, it is entirely my own work.

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Alexander O’Connor

Dated: July 26, 2010

Acknowledgements

The author would like to acknowledge the invaluable support of his Supervisor, Prof.

Vincent Wade, in undertaking this work. The author wishes to thank Dr. Owen

Conlan & Prof. John O’Leary for their help and advice in the compilation of this

thesis.

This work was funded by the Embark Initiative of the Irish Research Council for

Science, Engineering and Technology, funded by the National Development Plan,

and by the Centre for Next Generation Localisation, Science Foundation Ireland

(Grant 07/CE/I1142).

Alexander O’Connor

University of Dublin, Trinity College

2010

iii

Abstract

A common trend in modern applications is the move towards more mobile, adaptive,

customisable software. The evolution of software from static, invariant tools for

narrow portions of a task to adaptive, open interaction frameworks is embodied in

the use of a variety of technologies for creating a reconfigurable application. The

key challenge to improving application behaviour in response to external knowledge

is in making the representation of that external knowledge compatible with the

application’s representation. This external information, relevant to the user and their

task is commonly known as context information. In the past, context information

has typically been integrated using an a-priori model of context, which constrains

the type of information which can be used as context. This thesis presents a model

for context integration which does not depend on an a-priori model of context.

This thesis presents a novel approach to integrating contextual information through

the use of a context mediator based on ontology mediation. This context-informed

semantic interoperation approach is based on the exchange of both schema and

instance data, in the form of ontologies, between heterogeneous sources of context

and a target application. The mediator represents the collective knowledge of a

contextual situation by linking ontologies in their native form through a shared

semantic view. The approach is innovative in that it combines user-defined and

ontological reasoning to provide a more expressive method for bridging differences in

representations between different sources and their target without an a-priori model.

It demonstrates the use of semantic interoperation as an approach to allowing richer

knowledge exchange between applications and their surroundings.

iv

Contents

Acknowledgements iii

Abstract iv

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Motivating Example . 4

1.2 Challenges to Informing Context . 5

1.3 Research Question . 6

1.3.1 Objectives . 7

1.3.2 Contribution . 7

1.3.3 Technical Approach . 8

1.4 Thesis Outline . 10

Chapter 2 State of the Art in Context Integration 12

2.1 Introduction . 12

2.2 Characterisation of Context in Previous surveys 13

v

2.2.1 Definition of Context Integration 15

2.3 Survey of Selected Context Systems 15

2.3.1 CoBrA & SOUPA . 16

2.3.2 Construct . 21

2.3.3 SOCAM . 24

2.3.4 Analysis of Surveyed Systems 26

2.4 Conclusions & Summary . 31

2.4.1 Summary of findings . 31

Chapter 3 Ontology Mapping & Mediation 33

3.1 Introduction . 33

3.1.1 A Note on Terminology . 34

3.2 What needs to be mapped? . 35

3.3 Survey of Ontology Mapping . 37

3.3.1 COMA++ . 38

3.3.2 OISIN . 41

3.3.3 SUMO . 42

3.3.4 Business Maps . 44

3.3.5 Analysis of Mapping Frameworks & Implications for Mediation 48

3.3.6 Modelling the Relationships between Ontologies 48

3.4 Survey of Mapping Expression . 49

3.4.1 OWL support for Mapping Expression 50

3.4.2 C-OWL . 51

3.4.3 INRIA Align RDF . 53

3.4.4 Semantic Web Rule Language 56

vi

3.4.5 Analysis of Mapping Expressions 57

3.5 Properties of Mediation . 60

3.5.1 Nature of the Articulation . 60

3.5.2 Linguistic independence . 60

3.5.3 Mapping representation . 61

3.6 Survey of Ontology Mediators . 62

3.6.1 WSMO . 63

3.6.2 DRAGO Distributed Reasoner 66

3.7 Additional Properties of Ontology Mediators 70

3.7.1 Nature of the Internal Representation 70

3.7.2 Data Transformation . 70

3.7.3 Knowledge Translation . 71

3.7.4 Mapping Importation . 71

3.8 Conclusion . 72

3.8.1 Summary Table for the Mediators 74

Chapter 4 Design & Architecture of a Context Mediator 75

4.1 Introduction . 76

4.2 Abstract Framework . 76

4.2.1 Context Identification . 78

4.3 Design Goals . 79

4.3.1 Design Assumptions . 80

4.3.2 Context Integration Process 81

4.4 Requirements and Influence from the State of the Art 83

4.4.1 Architectural Requirements 84

vii

4.4.2 Participants - Produces & Consumers of Context 84

4.4.3 Mediator Information Model Requirements 86

4.4.4 Reasoning Requirements . 88

4.5 Operational Requirements . 90

4.5.1 Types of Operations . 90

4.5.2 Discovery Requirements . 91

4.5.3 Privacy Requirements . 92

4.6 Architecture . 92

4.6.1 Overall Architecture . 93

4.6.2 Architecture of the Shared Semantic View Manager 94

4.6.3 Architecture of the Schema Manager 97

4.6.4 Architecture of the Reasoner Manager 97

4.6.5 Information Flow . 98

4.7 Conclusions . 101

Chapter 5 Implementation of the ACP: Adaptive Context Portal 103

5.1 Introduction . 103

5.2 Implementation Scope . 105

5.2.1 Ontologies . 105

5.2.2 Service Registration . 106

5.2.3 Privacy . 107

5.2.4 Abstraction . 108

5.3 Implementation Platform . 108

5.4 Implementation Overview . 109

5.5 Key Aspects of Implementation . 111

viii

5.5.1 Schema Manager . 112

5.5.2 Shared Semantic View Manager 114

5.5.3 Reasoner Manager . 117

5.6 Implementation Walkthrough . 119

5.6.1 Example Scenario . 120

5.6.2 Service Description . 121

5.6.3 Ontology Uplift . 123

5.6.4 Data Transfer . 127

5.6.5 Multiple Sources of Context 129

5.6.6 More Complex Examples . 131

5.7 Analysis of Implementation & Conclusions 133

Chapter 6 Evaluation 136

6.1 Introduction . 136

6.2 Evaluation Methodology . 136

6.3 Case Studies . 140

6.3.1 Case Study: User Model Transfer 141

6.3.2 Case Study: Bibliography Benchmark Ontologies 162

6.3.3 Overall Findings for the Case Studies 176

6.4 Comparison with the State of the Art 180

6.4.1 Comparison of the ACP to other Context Systems Reviewed . 180

6.4.2 Comparison of the ACP to other Semantic Mediators Reviewed184

6.5 Conclusions . 189

Chapter 7 Conclusion 192

7.1 Objectives & Achievements . 192

ix

7.2 Contribution to the State of the Art 195

7.3 Future Work . 197

7.3.1 Supporting Ontology Features 198

7.3.2 Extending the Shared Semantic View 199

7.3.3 Linked Open Data . 200

7.3.4 Further Implementation and Experimentation 203

Bibliography 205

Appendix A Ontology Information 216

A.1 Introduction . 216

A.2 User Model Case Study . 216

A.2.1 LIP Description . 216

A.2.2 Ontology XML files . 218

A.2.3 Properties-Oriented Version of the AE Ontology 218

A.2.4 Class-Oriented Version of the AE Ontology 220

A.2.5 Class-Oriented Version of the LIP Ontology 222

A.2.6 Properties-Oriented Version of the LIP Ontology 232

Appendix B Glossary of Terms 238

x

List of Tables

3.1 Ontology Mapping & Mediation Feature Matrix 74

4.1 Summary of Requirements Drawn from Design 102

5.1 Summary of Requirements Drawn from Design. 134

6.1 Import times for four ontologies in different orders. All times are

in seconds. The import of the first service takes longer because it

includes the time to create the map. 152

6.2 Average Transfer Times (in sec.) where the source of context’s

identifying property was an objecttype property 157

6.3 Average Transfer Times (in sec.) where the source of context’s

identifying property was datatype property 157

6.4 Total Size of Topic Map in number of Topics for different

representations of the Is-A relationship. The number of associations

in the map grows proportionally with the size difference of the maps. 167

6.5 Table showing different ontology combinations which were executed

in the ACP. Instance data was transferred where available. 170

6.6 Feature Matrix comparing the ACP and other Context Systems . . . 184

6.7 Ontology Mediation Systems Compared. 190

xi

List of Figures

2.1 The relationship between SOUPA Extension and SOUPA Core, along

with the different groupings for entities within the overall model.

[Chen et al., 2004c] . 17

2.2 Information model for Construct, showing the ontologies and

application contexts [Clear et al., 2006] 22

2.3 Information model for SOCAM, the upper ontological inheritance and

links to lower application ontologies. [Gu et al., 2005] 25

3.1 COMA++ Match Processing . 40

3.2 Example of SUO-KIF from the Mid-Level Ontology

[Niles and Pease, 2001]. 44

3.3 Basic Topic Map Elements, the Topics are linked by an Association,

and have external Occurrences addressed in other documents. 45

3.4 An example Business Map Association, taken from [de Graauw, 2002] 47

3.5 C-OWL Wine Ontology Bridging. This example is a partial

reproduction from one found in [Bouquet et al., 2003] 53

3.6 Align RDF Example Syntax [Euzenat et al., 2007]. 55

3.7 Example SWRL syntax [Horrocks et al., 2004] 58

3.8 WSMO Modelling layers, with the top item being represented in the

MOF format [Roman et al., 2005]. 64

xii

3.9 DRAGO Architecture [Serafini and Tamilin, 2007] 68

4.1 Abstract Context Mediation Framework. 77

4.2 Shared Semantic View Representation 81

4.3 Overall Architecture Diagram showing the main components of the

system. 93

4.4 Shared Semantic View Manager Component Diagram, with Topic

Map pictures. White dots represent topics, and the arrow represents

a mapping. 95

4.5 Schema Manager Component Diagram. White Dots represent

ontological concepts, and the coloured rectangles represent the loaded

ontologies. 97

4.6 Information Flow Diagram. 99

4.7 Sequence diagram representing the information flow for the first two

steps in the process. 99

4.8 Sequence diagram representing the information flow for the third step

of the process. 100

5.1 Architecture Overview, showing Façade model 110

5.2 Class Diagram Description of the Schema Manager 112

5.3 Class Diagram Description of the Shared Semantic View Manager . . 114

5.4 Class Diagram Description of the Reasoner Manager & the Reasoner

Interface . 117

5.5 The example ontologies. The Target Ontology is boxed in red on the

left, the Source Ontology is boxed in blue on the right. Classes are

represented by the yellow boxes, datatype properties by the green

capsules. The black arrows indicate property data equivalence, while

the pink arrow indicates class equivalence. 122

xiii

5.6 The result of the uplift process. The uplifted topics and the ontologies

are pictures. The Topics representing properties have dashed lines.

Note that additional type information about the service for each topic

is not pictured. 125

5.7 A part of the result of the alignment Import Process, which creates

the Associations, and their metadata topics for each association. . . 126

5.8 Diagram of a more complex example of data relationship resolution.

Dashed, Boxed arrows represent partial mappings. 132

6.1 Diagram relating the findings of the State of the Art and Design to

the Criteria for Evaluation. 139

6.2 The Distribution of the Case Study Tasks over the key aspects of the

Evaluation. 140

6.3 The Property-based version of the LIP ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties. 146

6.4 The Property-based version of the AE ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties. 147

6.5 The Class-based version of the LIP ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties. 147

6.6 The Class-based version of the AE ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties. 148

6.7 Graphical Representation of the Alignment for this Task between

the Property-based AE and the Class-based LIP. Solid boxes

indicate ontology classes, dashed boxes indicate Datatype properties.

Lines indicate alignment mappings, arrows indicate class-property

relationships and callout bubbles indicate attached types in the Topic

Map. 154

6.8 Graphical representation of an example mapping. The full URIs have

been shortened to class names for clarity. 164

xiv

6.9 Topic Map for Separate Classes and Properties. Red Solid Lines

indicate Associations, Classes are Solid Boxes and Properties are

Dashed boxes. 168

6.10 Topic Map for Class:Property Pairs, with the dashed arrows indicating

the Class:Property Relationship . 168

xv

Chapter 1

Introduction

This chapter presents the motivation and objectives for red delivering context to

user applications using semantic techniques. This is followed by an analysis of

the key challenges associated with completing the stated objectives. A technical

approach section describes the process that addressed the challenges associated

context-informed semantic interoperation. Finally, a guide to the following chapters

of the thesis is provided.

1.1 Motivation

The volume of information which a user has to deal with is increasing all the time,

and it is necessary for applications to become better, more intelligent assistants

to users1. As users become more connected, and more mobile, there is a need

for applications to respond to the contextual factors affecting the user and their

activity [Economist, 2003]. In order to achieve this, applications must consider a

wide variety of information about ‘what’ the user intends to achieve, as well as the

‘how’, ‘where’ and ‘why’ of their task [Oh and Woo, 2005]. This need for improved

personalisation is one of the reasons for the considerable research attention in the

1This issue has also been observed in the area of search, where it has been addressed in work

such as [Kruschwitz and Al-Bakour, 2005]

1

area of context-awareness [Chaari et al., 2007, Bolchini et al., 2007].

Contextual information can be acquired from a wide variety of sources, in

a wide variety of forms. It was recognised that while location is a useful,

even typical, contextual axis, merely presenting the user’s co-ordinates to an

application is insufficient[Schmidt et al., 1999]. As the number of sources and

the types of context information expands, it is progressively more difficult to

model context explicitly in each application. The necessary result of this was

that applications were restricted to domains that were often location-driven

[Ratto et al., 2003][Bardram et al., 2003] and therefore unable to account for the

broad spectrum of potential contextual information. While traditional approaches

to context-aware computing began by directly interacting with the infrastructure

through specific protocols [Lonsdale et al., 2004], this began to give way to a more

service oriented approach, for example [Gu et al., 2005, Brønstead et al., 2007] in

order to facilitate a broader model of context.

A service-oriented approach to context makes it more compatible with the Semantic

Web [Shadbolt et al., 2006], specifically Ontologies. “An ontology is an explicit

specification of a conceptualization [sic.]” [Gruber, 1993], that is, a formal set of

rules and definitions for entities modelled by the ontology. Ontologies offer a method

for modelling not only specific data, but also the knowledge associated with that

data. Ontologies offer a ready method for permitting applications to describe, in

an exchangeable manner, the details of their knowledge and the relations associated

with it. An ontology is specifically designed as a means for transferring and sharing

information, and when applications share a common world view, they can effectively

make use of ontologies to transfer information.

However, in the area of context, the underlying assumption of a common world view

is not available. An ontology represents a knowledge perspective on an information

model (i.e. a conceptualisation) and one of the objectives of this work is to present a

method for representing and integrating context which is subject to fewer modelling

constraints and application-domain biases than previous work has demonstrated.

In order to define ‘context’, it is necessary to examine some of the current and

2

earlier work that led to the creation of contextual systems. Context is commonly

thought of as coming from the physical realm through sensors, and characterises

a user’s situation [Dey, 2001]. This definition points to the key feature of context,

which is that it is not information that is generated by the application, nor is

it information that is directly input by the user. Many similar definitions of

context, such as [Chen and Kotz, 2000][Judd and Steenkiste, 2003][Pradhan, 2000],

extend the notion to include histories of context, an extensible device model, or

relative/semantic values for data. The key feature of this work is that the nature

and properties of context exist only relative to the application and the situation. A

effective context integration approach must therefore be focused on the agreement

between the user’s application and its surrounding services.

The use of semantics to represent context, as seen in

[Chen et al., 2004a][Mrissa et al., 2008] allowed applications to address the

issue of context integration as one of knowledge management. This shifted the

objective of designing context systems from a tightly-coupled model-sensor system

to an explicitly separate architecture composed of knowledge and data tiers. A

knowledge-based approach also facilitated the inclusion of information which was

not derived from sensors, but from the information held in other applications.

The realisation that context is by definition situational and that the choice of

contextual information is dependent on the applications, users and domains involved

is the key to understanding context as presented in this work. Context is that

information which, for whatever reason, has not been integrated into an application

a-priori, but which can be usefully gathered and incorporated when the user’s

situation becomes apparent.

In this definition, context can be considered as that information which is situationally

useful to the user, which has not been integrated by the application designer explicitly.

While the advantage to viewing contextual information in this manner is that it

represents the potential to gain from a rich variety of sources, it is also associated

with the difficulty that much of the attributes of the information are unknown.

Furthermore, the objective of integrating data in different representations becomes

3

central to the design of any apparatus for supporting context. In order to address

this, context inclusion will be considered as a case of intelligent interoperation

[Qian, 1993]: the transfer of new knowledge to an application not explicitly designed

for that knowledge.

The motivation of this work is to improve the behaviour of applications by

manipulating their knowledge via context. External information, derived from the

user’s physical and conceptual surroundings, which might be expressed in different

forms or formats, is transferred to a user’s application, based on their situational

need. This is intended as a means to reduce the burden of information management

on users, by uniting information held in disparate systems.

This will be achieved through the use of semantic interoperation, semantically-rich

linking of knowledge, in context integration. By establishing an interoperation

pathway, it is intended to show that information brokered through ontological

descriptions can be leveraged in new ways to provide external information to user’s

applications, thereby improving an application’s knowledge.

1.1.1 Motivating Example

The authors in [Mark, 2002] describe a process for facilitating teams of engineers

from different disciplines in close collaboration. One of the key features of this

‘Extreme Collaboration’ is that the groups are supported by a moderator, who helps

to select relevant support documentation and data based on each team’s assigned

task and expertise. In the paper, this moderator is a human, who needs to be an

expert in each of team members’ skills. It is possible to imagine an application which

attempts to provide a similar service.

The application might operate by looking at the interest profile of each member

of the group and comparing it with the available list of documents which could

be displayed. In its basic operation, this system is a relatively simple document

retrieval service, which can match subject keywords from the group profile to tags in

document collections. However, there are some key design questions that arise:

4

• How does the application recognise a group? What if some of the group

members are attending virtually?

• How does the application correlate a particular user’s interests with the tags

in the document collections?

• What happens if some of the users’ profiles are in a different format?

• How does the application integrate new document collections, or changes to

collections?

All of these considerations are difficult to model completely within a particular

application. Instead, it is desirable to allow this broad, external knowledge to be

delegated to a mediator which can take a higher-level view of all of the participating

parts of the collaboration. In this thesis, this contextual integration is achieved

through the use of ontologies to structure the knowledge in each of the services, and

to find links between those services. The challenges then arise in finding agreement

between those representations in a way that allows the application to provide better

functionality. A particular feature of the approach in this thesis is that it achieves

this without attempting to dictate in advance what information should be considered

contextual – the nature of context depends on the situation.

1.2 Challenges to Informing Context

The issue of context can be divided into a number of challenges [Mitra et al., 2005].

The first challenge is to describe and execute the conceptual relationships between

different ontologies and identify important information that needs to be transferred.

The second challenge is to makeuse of this information: that is, to transfer the

information in a form that can be understood by the user’s application. This

transfer involves accessing the information, structuring it properly and, perhaps

most importantly, ensuring it is in a form that agrees with the semantics of the

destination application. These challenges will be addressed by the structure and

design presented in this thesis.

5

One issue that is not addressed in this work is that of service discovery itself.

There are a number of initiatives in the area of discovering services, beginning

with UDDI2 [OASIS, 2004], and on to the OWL-S [Martin, 2004] annotations for

services. The issue of discovery in the specific domain of context has also been

addressed, for example in [Thomson et al., 2003]. These technologies represent an

approach appropriate to tightly-coupled, orchestrated services, suitable for close

service integration. The approach being undertaken in this thesis is focused on

loosely-coupled information, and so would require a different approach to finding

services with information. The existence of services available at a specific situation is

assumed to have been arranged externally, while the relevance of specific knowledge

within the service is identified by the system.

The key challenge in this work is to be able to take account of a wider variety of

context information, and provide enrichment which allows target applications to alter

their behaviour in response to new types of knowledge as well as new information

from context. Traditional approaches to context have focused on the development

of a broad, pre-existing model of context, often centred on location. This reduces

the flexibility of the system by pre-determining the nature and behaviour of context.

The large fixed model can also be difficult to manage, particularly where systems are

required to interoperate with it. In this work, the representation of context is not

pre-determined, but emerges from the combination of concepts available in context

with the application’s knowledge. This allows the mediator to focus on the concepts

which are directly relevant to a particular context.

1.3 Research Question

Can a Context Mediator3 which uses semantic interoperation instead of an a-priori

general model of context be designed to effectively influence the behaviour of a target

application?

2Universal Description, Discovery and Integration
3A Context Mediator is an application which is able to analyse ontological knowledge and broker

information from sources of context to enrich a target application.

6

1.3.1 Objectives

The aim of this thesis is to establish a theoretical and practical framework for

integrating contextual information into applications. The framework approach is

based on a semantic interoperation, which takes advantage of the extensive work

in ontologies, ontology matching and other metadata formalisations to identify and

translate relevant contextual information. These formalisations are used to establish

access for applications to knowledge held in separate, remote services. This access

is achieved through the use of rich descriptions represented in an overlay semantic

network.

In order to address the research question of the thesis, and to establish an evaluation

for the approach, the following objectives were defined:

1. To undertake state of the art studies both on context, and semantic

interoperation

2. Develop a context mediator infrastructure to allow integration of service

registration and mapping

3. Evaluation of this infrastructure so as to derive an understanding of the

advantages and disadvantages of informing context

1.3.2 Contribution

The major contribution to the state of the art is to apply semantic interoperation to

context using ontology mediation. The framework developed uses a novel approach

to importing, arranging and using alignment descriptions from ontology matching

tools. This approach is novel in that it represents an attempt to approach context as

a problem of information exchange without creating an integrated model of context

in advance. The enrichment of the target application to include both schematic

knowledge enrichment as well as data enrichment is a key advantage of this approach,

and is derived from the direct use of the collective knowledge of the sources of context

and the target application. Systems such as the one presented in this work have also

7

been highlighted in the literature as an important contribution to the state of the

art in semantic interoperation [Euzenat and Schvaiko, 2007]:

In the long term, we also expect substantial progress on the frameworks

for integrating different matching systems. In fact, infrastructures, which

are able to store and provide alignments to those who need it, are still

missing. Such an infrastructure should also match ontologies and process

the alignments on specified data.

The representation of semantic interoperation requires a rich, flexible representation

for the relationship between separate concepts in different ontologies. The minor

contribution of this work is an assessment of the suitability and performance of Topic

Map technology as a medium for representing rich semantic relationships between

different ontological entities. The creation of Topic Maps to express particular

mappings for different contexts is a novel approach to the problem of context, and to

the problem of consuming and using the mappings output by semantic interoperation

utilities.

1.3.3 Technical Approach

Initially, a study of published descriptions of context-aware systems was created to

help establish a set of requirements specific to contextual integration. This helped

to identify particular properties of context-aware and context-informed systems, as

well as the different information modelling and management approaches. A broad

base of systems was analysed, ranging from traditional context-aware systems to

semantic, service-based context systems. The comparison of these systems revealed

the evolutionary steps in creating them, as well as the advantages and disadvantages

of different approaches to modelling and integrating context.

The second study undertaken was designed to give grounding in the area of semantic

interoperation, specifically with regard to ontology mapping and data transfer. While

this project does not specifically address the area of (semi-)automatic ontology

matching per se, a number of these tools were examined so as to be able to decide

8

what their capabilities were from the perspective of integrating their mappings. The

second part of this study focused on mediation tools and mapping repositories, this

study undertook to examine the different approaches to representing mappings, along

with their advantages and disadvantages. In addition, the systems were specifically

analysed from the perspective of understanding how they might interact with the

requirements generated from the previous study on context. This analysis generated

a general set of properties required for a Context Mediator. A Context Mediator is

envisaged as being at the heart of an informing environment, and is responsible for

maintaining the links between the sources of contextual information and the target

of the interoperation, the user’s application.

Having established detailed requirements and challenges for a Context Mediator as

part of a context-informed environment, the next step was to develop detailed design

parameters for the system which incorporated both the requirements from the state

of the art, and the requirements of the novel approach to context interoperation

and enrichment described in the approach. A technology evaluation was performed,

followed by a use case analysis and the establishment of an outline architecture.

An initial implementation was created to integrate the supporting frameworks and

libraries, where available, to form the basis of a functional mediator. The Java

programming language was selected as the implementation language, as well as

a number of XML4 technologies including OWL5 and XTM Topic Maps. The

implementation of an initial framework was extended during the case studies devised

for evaluation.

The research evaluation methodology was based on case studies, drawn from scenarios

found in both the semantic integration and context domains. Specific focus for the

analysis of the evaluation has been put on the kinds of information gains made

possible by different kinds of application and mediator capabilities. Additionally,

different approaches to constructing and importing mappings between ontologies were

assessed for performance and expressiveness. The case studies were supplemented

4eXtensible Markup Language
5Web Ontology Language

9

with a comparative analysis of systems identified in the state of the art studies, so

as to define the novelty of the system presented.

This evaluation led to a set of conclusions which include an assessment of the

advantages and disadvantages of semantic interoperation in support of context, as

well as some areas of possible future work.

1.4 Thesis Outline

• Chapter Two: The design properties of context-aware systems are discussed,

along with some definitions for concepts such as context and informing context.

This chapter analyses and compares context systems and surveys of context to

draw a set of key properties for the context integration approach in this thesis.

• Chapter Three includes a study of semantic interoperation tools and

techniques. The initial part of the study concentrates on the techniques

directly related to establishing links between ontologies, and the representation

of the resulting mappings. The chapter then makes a detailed assessment of

other ontology mediation tools. The analysis of these systems is focused on

creating a list of key properties necessary for an effective ontology mediator.

• Chapter Four describes the design that is the result of the analysis from the

second and third chapters. This chapter presents an abstract framework for

context-informed semantic interoperation, as well a a detailed discussion of

the design goals, requirements and architecture of a context-informed ontology

mediator.

• Chapter Five presents an implementation of the design in the previous

chapter. In particular, this chapter presents the scope of this implementation

and describes key implementation features. The structure of the main interfaces

in the system are discussed along with a functionality walk-though using a

motivating example.

10

• Chapter Six describes the evaluation work undertaken to validate the

contributions in the thesis. This includes two case studies used to evaluate

the system in terms of key properties of a context-informed mediator and

a comparative assessment of the context-informed mediator with respect to

systems surveyed in chapters two and three. These are supplemented by

analysis which describes the key findings across each part of the study.

• Chapter Seven presents the conclusions of the thesis. This includes key

findings on the major and minor contributions of the work, as well as a

description of the successful completion of the objectives defined in chapter

one. The research publications associated with this work are listed, and the

thesis concludes with a discussion of possible future work.

11

Chapter 2

State of the Art in Context

Integration

This chapter begins with a characterisation of the nature of context information, as

defined in the literature. This discussion leads to a definition of context integration.

Three key, semantic context systems are then surveyed, with a particular interest on

the nature of their information model, participants and architecture. The systems are

analysed to identify the best features of each approach, and the important missing

features from current work. The findings are summarised at the end of the chapter.

2.1 Introduction

This chapter presents the issues associated with contextual information, addressing

both the principles and application of context. The chapter includes a discussion of

the definition of context, drawn in particular from a number of selected surveys. The

definition and properties of context which will be used in this thesis are measured in

the light of a context-informed, knowledge-based system. This distinction between

aware and informed context is defined in the course of the chapter.

In order to establish a suitable basis, several surveys of context systems were chosen

to begin this study. The analyses and conclusions of those surveys formed the basis

12

for the analysis which is extended here.

Once an analytical basis was established, the chapter presented several context

systems which include some of the important aspects for distinguishing best practice

for supporting applications and context. There is considerable heterogeneity between

the systems, and the objective of the survey is to identify the requirements for

a context-informed system. These requirements are developed at the end of the

chapter.

2.2 Characterisation of Context in Previous

surveys

The nature of context has evolved over time, and there are many differing

definitions of context in the literature. In order to establish a common basis

for analysing context systems, this section characterises context integration based

on the comparative analysis of three previous context surveys[Baldauf et al., 2007,

Ye et al., 2007, Bolchini et al., 2007]. In addition to the descriptions of systems in

these surveys, each one attempts to establish some common, important features of

context. It is these features which this section addresses.

A common theme in context research is to draw from an early definition

[Abowd et al., 1999],which is extended in [Dey, 2001]. This definition of context can

arguably be considered the seminal one, and offers the following concrete definition:

Context is any information that can be used to characterise the situation

of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including

the user and applications themselves.

This definition points to the notion that context is a ‘command source’

[Bolchini et al., 2007], an external influence which can affect the behaviour of

applications. Context data is by its very nature difficult to quantify, and highly

13

variable. There is an inherent need to be able to accommodate a variety of different

sources and formats [Ye et al., 2007].

In an effort to make the notion of external, highly dynamic contextual data more

concrete, each of the surveys presented has attempted to take on the notion of

contextual axes which itemise the ‘key’ [Ye et al., 2007] properties of context. While

the specifics differ, there is a common theme which arises from pervasive computing,

and which can be summarised by the analysis provided by [Baldauf et al., 2007],

where they take the three entities described in the definition above, and extrapolate

attributes for them. These entities are: places, people and things. The entities

are described by their identity, location, status and timing. The other two studies

mentioned make the addition of an explicit notion of a task, which can be considered

as an event in time with a related goal.

From these entities and attributes, it is possible to derive a notion of how context

is formed in the analysis found in many context-aware systems. Context in these

systems is a set1 of data integrated into an application with the intention of provoking

changes in the behaviour of the system based on the interpretation of that data.

All three surveys decompose the task of making use of context into the representation

of that data and the reasoning of the results. Early systems [Schilit et al., 1994]

used simple key:value pairs to represent the location of a user for context.

Progressive advances have used object-oriented [Hofer et al., 2003], model-driven

[Ceri et al., 2007] and semantic-web [Da and Zhang, 2004] technologies to represent

gathered context. One important issue is the separation between gathered data,

particularly where sensors are used, and the information which might be used to

motivate changes in an application’s behaviour. This distinction is explicitly found

in examples in the surveys, and are highly visible in model-driven systems, such as

FOCALE [Strassner et al., 2008], where different classes are employed to represent

data and information.

1in this case, a set of data is considered as a broader class consisting of both unordered

data points and sequential data points (as in a process, accounting for the history of the data

[Coutaz and Rey, 2002]).

14

This information provides a basis for the translation of the known facts derived from

measuring context into changes in the application: contextual reasoning. Once again,

a variety of techniques are reported in the surveys. Ontologies represent a method for

collecting facts and establishing rules about them [Ye et al., 2007]. They have the

added advantage of granting the system the ability to be extensible and customisable,

by allowing the model itself to be manipulated as required [Chen et al., 2004a].

Two of the surveys [Ye et al., 2007, Bolchini et al., 2007] go into particular detail on

the analysis of the entities and their attributes, listing desirable properties such as

relative time (e.g. ‘Tomorrow’) or relative location (’within 20m of the building’) and

the ability to extend the context model to specific cases. One of the objectives of the

following sections is to show that the argument for extensible contextual modelling

can be extended to the point where explicit axes can be discarded.

2.2.1 Definition of Context Integration

Based on the definitions of context found above, and work in [O’Connor, 2005], the

process of integrating context can be defined as:

The transfer of context information, available from one or more sources,

which fulfils an information need in a target application, and which can

be translated to a level and transformed to a format understandable by

that target.

2.3 Survey of Selected Context Systems

In order to provide a basis for examining a variety of systems, the surveys described

above includes some common approaches. In particular, they examine the reasoning

capabilities, information models and architecture of the context-aware systems.

This survey will examine those properties, and will also attempt to quantify some

information about the requirements which each system places on the applications

which are the sources of context or the target of the integration.

15

Three Systems were selected for detailed analysis in this chapter. The systems

were selected because they represent well-cited examples of ontology based context

integration frameworks. The first two, Cobra and SOCAM, were also selected because

they are analysed in detail in the surveys which form the basis for this chapter.

The third system, Construct is designed by some of the authors of [Ye et al., 2007],

providing an insight into how their analysis was realised.

• Information Model: The systems will be analysed to examine the structure

of the representation they use for the context information. The principal

properties include the type of representation (e.g. semantic, model-driven), a

characterisation of the information which is modelled by default (if any), and

the extensibility of the representation.

• Participants: Context systems are by their nature connected both to sources

of context and to applications which gain contextual knowledge. The systems

presented in this section will be analysed for how they harvest information and

deliver context.

• Architecture: The structure of the context system itself will be described in

this section. An extensive categorisation already exists [Baldauf et al., 2007],

and this will be extended to the systems described.

Three systems are surveyed in this section: CoBrA & SOUPA, Construct and

SOCAM

2.3.1 CoBrA & SOUPA

This section will describe the Context Broker Architecture (CoBrA) and its associated

Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA).

General Description

SOUPA [Chen et al., 2004c] represents an attempt to gain the benefits of knowledge

sharing and ontological reasoning for pervasive and ubiquitous applications. These

16

applications represent, “a natural extension of the existing computing paradigm”.

SOUPA follows the engineering principle of reuse, albeit in an unconventional way.

Figure 2.1: The relationship between SOUPA Extension and SOUPA Core, along

with the different groupings for entities within the overall model. [Chen et al., 2004c]

One approach to ontology authoring is to import external concepts from other

ontologies, where they exist. This allows ontology authors to take advantage of work

that has been done previously to standardise and engineer consistent ontologies,

while retaining the ability to customise for their own demands.

Instead of taking this approach, the SOUPA authors have created entities in SOUPA

which are identical to those found in well-known ontologies, and used the built-in

OWL Ontology Mapping operations to express logical equivalence between the

SOUPA entities and their ancestors in the original ontologies. The authors indicate

that this is in order to improve the performance of the reasoner, by restricting

the number of irrelevant entities which would otherwise be loaded if the original

ontologies were used [Chen et al., 2004a]. The mapping for the entities for SOUPA

has been done during the authoring of the ontology, and is static.

Ontologically, the SOUPA Core itself is organised around nine documents, each

of which corresponds to entities from external ontologies. These can be loaded as

required by the specific application. The Extensions are structured to permit both

17

new application domains, and in order to demonstrate a path for expanding SOUPA

in general. Each entity in a SOUPA ontology document is prefixed with a short

namespace, usually three letters.

Cohesion in the modularity of the SOUPA ontology documents is maintained by

employing a chain of OWL imports, where concepts that cross between different

documents are referenced from their sources. For example, The Agent Document

imports concepts from the Person Document, which itself can import entities from

the Document Extension, as required.

Information Model

The SOUPA model is authored in the OWL ontology language. The authors of

SOUPA chose OWL2 in part because it represents the language of choice for the

W3C3 for the Semantic Web [Chen et al., 2004a]. This choice seems to be aligned

with the notion that the ability for users to exchange and import an ontology easy is

a primary goal, and that OWL in the form of RDF/XML is a medium with a wide

audience.

With the addition of appropriate extensions, SOUPA is intended to represent a shared

ontology standard for new pervasive and ubiquitous applications. The ontology as

presented is divided into two major sections, Core and Extension. The Core portion

of the ontology is intended to support the concepts which are central to pervasive and

ubiquitous computing. Concepts within the SOUPA core are grouped into several

categories:

1. Person: This represents a user’s identity, including their name, gender and

associations such as user IDs.

2. Policy & Action: SOUPA provides for a permit/forbid action enforcement

model using description logic.

2specifically, OWL-DL, which is compatible with Description Logic reasoners.
3World Wide Web Consortium

18

3. Agent & BDI4: This category allows the representation of goals, preferences

and objectives, particularly with regard to planning. It also includes the facility

for expressing conflicts between the entities. In SOUPA, agents can be either

natural persons or applications, and this portion of the model can be used to

represent the goals and desires of either type of agent.

4. Time: Direct representations of points in time are supplemented in SOUPA

with expressions for intervals, relative times and ordering relationships for

events (e.g. tme:startsLaterThan).

5. Space: Bi-directional mapping between Coordinates and semantic location.

Some of the descriptive notions of location include containment relationships,

Geopolitical information and notions of governmental control are also included.

6. Event: These represent an entity with spatial and temporal properties, and

inherit their characteristics from those sections of SOUPA.

The SOUPA Extension is intended as a framework for adding concepts on to the

core ontology as required by specific applications. Some examples provided by the

authors include improved notions of scheduling for a meeting application, and a

document description schema. Other short descriptions of examples are provided in

the literature.

In addition to ontological reasoning, the CoBrA system provides a second tier of

reasoning, based on the integration of the Jena [Carroll et al., 2004] reasoner and a

rule-based engine, which depending on the version of the system is either a Prolog-like

language [Chen et al., 2004a], or a LISP-like one [Chen et al., 2004b]. The need for

additional user-defined reasoning is a recurrent theme in semantic context integration.

Participants

The motivating example for CoBrA, which employs a version of SOUPA to broker

contextual inference between services, provides a demonstration of the sort of

4Belief, Desire, Intention

19

participants which can be used by SOUPA based frameworks. This example, called

EasyMeeting [Chen et al., 2004b], is the result of the integration of the Vigil Pervasive

computing environment and the CoBrA system. The Vigil system consists of a set

of service management systems, which each manage different categories of services,

making them discoverable and available to users depending on certain policies.

The two main participants, systems which exchange contextual knowledge with the

broker, are the MajorDemo Agent, which has control over a meeting room’s services

(heating, lighting, music, etc.) and a Context Sensing agent, which determines the

location of users by their personal devices5. The capabilities of these personal devices

are established through ontological reasoning, for example by the use of inheritance

to discover that a particular mobile phone is a member of the class of phones which

can use Bluetooth.

The status of users is determined via their personal devices, and the Context

Broker reasons the overall state of the meeting room based on the aggregate context

information from the sensing agent and other ontological knowledge. The result of

this reasoning is manifested in changes to the status of the MajorDemo Agent, which

has a variety of states defining different points in a meeting.

In order to exchange information with CoBrA, the Broker requires an ontological

description of the knowledge of the application, possibly derived from SOUPA and

its extensions. Some of the applications communicate with the Broker using semantic

web technologies as a language, while other, heterogeneous participants, which are

not semantically aware, can also be integrated.

Architecture

The most important component of the CoBrA architecture is the Broker itself:

“CoBrA is a broker-centric agent architecture for supporting

context-aware systems in smart spaces. Central to the architecture

is the presence of a Context Broker, an intelligent agent that runs on a

5PDAs, or Mobile Phones

20

resource-rich stationary computer in the space.” [Chen et al., 2004b]

The use of a rules engine points to the need for the Broker to be able to make assertions

beyond those afforded by standard ontological reasoning. In the EasyMeeting system,

there is admittedly relatively little reasoning possible as the ontologies are restricted

to OWL-Lite models. However, even full DL reasoners would be of limited use in

some of the reasoning tasks, such as those related to determining the appropriate

meeting state.

The architecture of the CoBrA is composed of four principal components, the

CoBrA-ONT, which holds ontological knowledge, the Context Inference Engine, which

is responsible for the rule base and ontological inference, the Context Acquisition

Engine, which creates abstractions for the low-level acquisition of information, and

the Module for Privacy Protection, which implements deontic policies to enforce

privacy.

2.3.2 Construct

The Construct system was developed as a framework for the design and evaluation

of context-aware applications, principally in a pervasive computing environment.

General Description

Construct employs semantic web technologies to exchange information, and to

perform some of the reasoning in the system. Several services are connected to

individual nodes, and interact with them through high-level queries. These high

level queries can then be decomposed into lower-level operations, some of which may

depend on the ontology.

Different nodes in the Construct network can interact via the Zerconf protocol

[Guttman, 2001], which facilitates discovery. The individual nodes maintain

independent knowledge, but share overall state by a gossip protocol.

21

Information Model

Like Cobra-Ont, Construct maintains a ‘Core’ set of ontologies, extended as required

by ‘application contexts’ [Clear et al., 2006]. All of the ontologies in both categories

are authored in OWL. The combined ontologies represent a semantic sphere, which

is the knowledge space that can be reasoned about by the system. The specific

context data is introduced into this sphere through instantiation of classes within

the ontologies. This is described by the authors as ‘hooking in’ context. The Core

Figure 2.2: Information model for Construct, showing the ontologies and application

contexts [Clear et al., 2006]

Construct model is composed of three main ontologies:

• The Where Ontology provides concepts which represent points in space,

regions and notions both of co-ordinate and semantic location. An example

hook for this ontology is the co-ordinates reported by a tag worn by a user.

• The When Ontology related temporal considerations, such as points of time

and intervals as well as notions such s ‘Yesterday’. The reasoning of this

ontology includes notions of relating different times as before, after or at the

same time.

• The Who Ontology represents the entity ID of agents ([Ye et al., 2007]),

22

which can identify uniquely agents and be used to correlate the identities in

different ontologies.

The three ontologies presented are grounded in the pervasive area, and represent the

‘key’ contextual axes. The application contexts are data models which are intended

to be written to collaborate with the Core, but are not ontologies themselves, as

they are ‘too specific’ [Clear et al., 2006].

Participants

The participants of the Construct system communicate with the nodes through

the ontology languages and their associated query languages. RDQL and SPARQL

provide a mechanism for asking questions of the system [Dobson et al., 2007]. Of

particular interest is the way that queries are analysed for known and unknown

elements. The known elements are used to construct possible queries to resolve the

unknowns, for example by using the id of an agent to find the knowledge held about it

in the system. The use of query languages allows for the system to take advantage of

transitive and equivalence relationships in the ontologies and data models to resolve

differences of conceptual level in the knowledge in the system. This can be used

to reason about the correlation between a particular point in space and a building

name, for example.

Architecture

The nodes can act together, using the gossip architecture to relay information. For

the purposes of this study, it is more interesting to examine the internal features of

the nodes. All of the information within the system is held in RDF. Provision is

made in the system to transform information which is held within the models into

a form which is useful to the application directly. Queries are created in RDQL or

SPARQL, and passed to a Query Executer, which has representations of real and

virtual sensors. Virtual sensors are logical amalgamations of distinct physical sensors,

used in part to resolve abstraction issues, and to help compensate for disagreement

23

between sensors. The Query Service Reasoner is used to resolve, for example, the

containment of co-ordinates within rooms, within buildings, and so on. Custom

inference is a major component of the reasoning within Construct, in order to provide

the proper levels of abstraction and knowledge to fulfil unknowns.

2.3.3 SOCAM

General Description

SOCAM6 [Gu et al., 2005] describes a set of independent services in which each

perform a portion of the functions required to provide contextual information to

requesting applications. The authors describe four major functions for the services

to perform: acquisition of context, discovery of context, interpretation of contextual

knowledge and dissemination of the resulting information.

One of the stated objectives of SOCAM’s design is to lower the overhead on a user

who wants improved application performance through better integration. This is a

common objective for contextual applications.

Information Model

The internal SOCAM model is designed in OWL, and is split into two tiers. The

upper tier is composed of five central concepts: Context Entity, Computer Entity,

Activity, Location, and Person. The upper concepts all inherit from Context Entity,

and themselves form the super-classes for certain mid-level concepts such as, for

example, IndoorSpace and Network. The structure of the information model as an

upper, generalised model and application-specific lower ontologies is reminiscent of

the upper ontological approach discussed later in this thesis. The authors indicate

that one of their primary goals in using this model is to reduce the conceptual

overhead associated with the large ontologies needed to describe the wide number of

possible contextual sources and concepts.

6Service-Oriented Context-Aware Middleware

24

Figure 2.3: Information model for SOCAM, the upper ontological inheritance and

links to lower application ontologies. [Gu et al., 2005]

In addition to modelling context conceptually, the SOCAM system represents

qualitative classifications for contextual information. The principal delineation is

between Direct and Indirect, or inferred, context. Direct context is further specified

as coming from sensor information (Sensed) and context which was specified in, for

example, a profile (Defined). The nature of these classifications is that they assist in

targeting different types of reasoning, and in describing other inherent properties,

such as the uncertainty associated with sensor measurements. SOCAM defines a new

property relationship for OWL, owl:classifiedAs to represent this classification.

Similarly, in order to assist in certain reasoning, SOCAM defined another new

element rdfs:dependsOn to capture the dependency relationships in the context

model so as to be able to generate a Directed Acyclic Graph from the context.

This assists in the use of user-defined rules-based reasoning, which supplements the

general ontological reasoning in fulfilling application need for context. The need for

user-defined reasoning is a recurring one in the design of context systems, and will

be discussed below.

25

Participants

Context Providers are participants in the SOCAM system which gather information

from one or more sources and provide appropriate interfaces to allow them to connect

their information to the SOCAM ontologies. Providers are registered with a discovery

service, which can then instantiate them as required by different queries using the

‘Service Locating Service’. Context Providers are said to be internal when they

obtain information from a spatially local domain, while they are external if they

obtain the information from remote sources.

Context Aware Services represent the participants which request contextual

information. Services make their requests to the service discovery registry, and

can either listen (push mode) or make explicit requests (pull mode) for contextual

information. Triggers for the push mode can be specified using the user-defined

rules-based reasoning.

Architecture

Each of the SOCAM services is independent, to the extent that they can be located

across separate networks and interact using RMI. The architecture is divided into

spatially local domains, which each have a context database to record historical

contextual information.

A (possibly remote) context interpreter is used to perform ontological reasoning,

principally resolving transitive relationships and model verification, and execute

user-defined rule-based reasoning. The reasoning events are created by queries,

which are sent to the Service Locating Service, which will contact the appropriate

participants and databases based on the service registry which it maintains, and the

content of the query.

A key underlying feature of the architecture is the notion of domains, which define

the internal or external nature of context sources, and which are part of the nature

of the service discovery process.

26

2.3.4 Analysis of Surveyed Systems

This section will draw together the comparative and individual features of the systems

described above in order to identify the best practice amongst context systems. In

addition, specific areas where the systems share features and differ will be examined,

with the objective of locating the properties which a new system might have and

share, and what unfulfilled requirements a new system might benefit from including.

The initial analysis will be undertaken under the descriptive headings used to present

the system profiles above, followed by further discussion of specific issues.

In discussing the motivation for creating context-aware applications, one recurring

theme found in the studies and in the systems presented is the notion that as a user

becomes increasingly connected, the burden of managing that information becomes

more and more significant. This would appear to be a driving reason which should

be considered in the process of designing context systems.

Information models

Initial work in the area of context was in the form of application and source

specific solutions, where the objective was to begin to grasp the potential of using

external information at all. This gave way to more complex solutions, where several

applications might share the same toolkit as a component in their functionality

[Dey, 2001], this toolkit format has more recently become an infrastructure, where a

variety of applications and sources are connected through an independent software

medium [Baldauf et al., 2007].

As the models have become de-coupled from specific applications and sources,

designers have increasingly tended towards the meta-modelling approach associated

with ontologies to provide flexible representations which can be built up with the

foundations of shared ontologies. The use of ontologies appears to be desirable, as it

provides general tools for linking information, model consistency checking and some

limited reasoning through transitivity and other logical relations.

27

Experience in the domain of ontology management7 seems to point to a difficulty

arising with the assumption that shared upper ontologies are a viable means for

establishing a common basis. There is a tendency, as observed directly in the design

of SOUPA, for ontology authors to author their own ontologies, and to adopt concepts

rather than referencing them. There are perfectly good reasons for doing this, but

the fact remains that the ontologies become difficult to share. Similarly, in SOCAM,

the authors went so far as to add several new language features, which are required

in order to be able to do some of the inference in the system, once again limiting the

reusability of existing ontologies from sources of context, and for applications which

could take advantage of the context.

The use of extensions to create application-specific knowledge is present in all three

systems. The need to provide these low-level concepts to accommodate the specifics

of situations is a recurring difficulty in the systems, and arises both from the difficulty

of providing for every possible variation of context, and also due to the computational

limits associated with large ontologies. For example, the authors of CoBrA mention

the high cost of importing thousands of statements from the full CyC Ontology

[Niles and Pease, 2001], and even hint at the use of ontology matching techniques as

a possible method for importing foreign concepts.

The result of the analysis of these systems points to the notion that there is a need to

be as flexible as possible in the representation of context. In particular, the notion of

‘key’ axes such as location arises from the pervasive application domain. In generating

a future context mediator, it would appear desirable for that system to take advantage

of recent developments in ontology alignment and mediation, and furthermore to

seek to do so in a manner which takes advantage of pre-existing ontologies from

participating systems, rather than trying to create a common ontology that needs to

be supplemented with custom extensions to be fully expressive.

7Cf. following chapter

28

Participants

The integration of sources of context and applications which can request context is

the key feature of a context infrastructure. The objective is to be able to find ways of

fulfilling an information need at the abstraction level appropriate to the application,

particularly if that information is drawn from several sources at different conceptual

levels within the sources of context. In examining the three systems, it is clear that

ontologies are a useful part of the solution to finding different levels of abstraction,

but that they do not fulfil all of the requirements.

Increasingly, there is a trend towards applications exposing APIs, and to a much

smaller extent, ontologies describing their knowledge. This trend would appear to

support the notion that it is desirable for participants’ own ontologies to be usable in

the information exchange of context. This is all the more important as participants

become more sophisticated, and where their dependence on context information

forms only a portion of their overall functionality. The notion that applications

might be optionally enriched with context, rather than fully dependent on it, arises

as the application domain moves away form strictly pervasive and into other settings,

or when the applications have a rich, existing model (a large number of knowns)

which can be improved with additional context. This evolution mirrors the process

described above where applications become less dependent on specifics and more

able to take advantage of enrichment of their knowledge.

In these systems, the specification of need for the user’s application arises from queries

formed by that application. For example, in construct this is achieved through RDQL

or SPARQL. This allows the systems to pull information from sources, so long as

they are aware of those concepts.

The functionality of the agents in CoBrA and the nodes in Construct point to the

idea that the context infrastructure might not necessarily have to deal with sensors

directly, but might be able to employ a remote or local filtering process to create

ontologically, or at least schematically compliant models. This notion of abstracting

the low levels of some inputs would appear to be a desirable design decision to make,

29

as it makes the process of designing both ontological and user-defined inference more

tractable. This concern would be all the more significant in the event that a model

without a-priori concepts were to be attempted, as suggested above.

One recurring property of the systems is the notion that context must be queried

for, or listened for. This notion allows for applications to make some domain specific

queries, but it might be possible in a new system to consider a different mechanism

for expressing information need to the context infrastructure, and thereby open the

possibility of the reasoning in the mediator being used to effect more subtle changes

on the knowledge of the system.

Architectures

It appears that the dominant model for designing context systems is through

infrastructural approaches [Baldauf et al., 2007]. The use of a set of services, whether

loosely coupled as in SOCAM, or bound as an integral system as in Construct, embody

the key functionality of a context system, which is to gain a broader knowledge of

the events, properties and preferences in a situation than any single participant can

have. In effect, the mediator gains a comprehensive view of the context, and can

offer that information to the user by means of their agents at an appropriate form

for those agents.

There is broad consensus that the use of ontological reasoning alone is not sufficient

for the execution of most context tasks. Ontological techniques provide a useful

means for standardising the definition and some of the relationships associated with

concepts, but reasoners need to be supplemented with additional tools for the design

and expression of relationships between concepts. The nature of context is that it

can vary between users and between situations, and so it is important to have an idea

that there should be a way to express the different relationships between knowledge.

This expression of a collective view needs to be supplemented with the ability of

the context infrastructure to determine which information is relevant to a particular

participant, and to provide it in a way that it can be useful to that participant.

30

In summary, the architectural task of a context infrastructure is to be able to

identify the information need of the application, semantically translate it from

the representations within the knowledge of the sources of context, and syntactically

transform the new information so that it conforms with the structures usable by

the application to be enriched. This process will form the basis for the focus of the

work in this thesis.

2.4 Conclusions & Summary

This chapter has presented a portion of the wide base of research and literature into

context-aware systems and context research. The key trends which have been found

from this analysis are that context is increasingly being provided as an infrastructural

offering, from some mediator with a comprehensive view of the situation surrounding

the user and their agents. As the design process has matured, and as service-oriented

and semantic techniques have become more widespread in their use, this points to

the notion that applications which participate in the context enrichment process

might themselves have complex information structures, and will need a new method

for accommodating them.

The use of ontological techniques has previously been on the basis of establishing

common or upper ontologies, but as the domain evolves away from location-centric

pervasive scenarios to slightly broader information scenarios, there establishment

of a common set of concepts becomes a possible obstacle. This, combined with the

advances in ontological mediation as a means for transferring information between

different parties, points towards a possible design route for a new system.

2.4.1 Summary of findings

There are several key findings that result from this survey, which indicate what the

best practice for Context systems is. These features are summarised below:

• There is a general trend across many of the systems surveyed that ontological

31

representation of context provides an effective means for dealing with the high

degree of heterogeneity in context information.

• The use of a context mediator, which is a separate system from the sources of

context and the target application is desirable because such a mediator can be

designed to support a variety of participants flexibly.

• The effort of integrating context can be shifted from the Target application to

the context mediator, which can effect change on the behaviour of the target

application by making alterations to models which represent the knowledge of

the target application. These model-based exchanges replace the query-oriented

approach of other systems.

One issue which is not clearly addressed in these systems is the problems associated

with using a pre-existing, integrated model of context in the context mediator.

Creating a model for context requires the designers of the model to consider what

modelled features to include in context. This has implications both for the size of

the model (more general models need larger numbers of concepts), and the range

of possible context which can be included, both in terms of the type of information

and its behaviour. The main approach to solving this challenge in the work surveyed

in this chapter has been to provide for specific extensions to the context model.

However, there are several difficulties with this approach: first, it reduces the value of

having a common model by requiring systems to interoperate with specific extensions,

and secondly it further increases the size and complexity of the resulting shared

model.

The system developed in this thesis will include a novel approach to modelling context,

which creates a composite model of context derived from the concepts in each of the

participants’ ontologies, linked through semantic interoperation. This allows for a

context model which depends on fewer assumptions about what constitutes context,

and which focuses the interoperation effort on the concepts which are directly used

in the system. Of particular interest is the notion that a context mediator might

be able to push knowledge as well as data to an application. This means that the

32

mediator identifies concepts which could be used by the application, and adds them

to the schema for use by the application. This system can therefore be viewed as

providing a meta-model for facilitating context integration and knowledge exchange.

33

Chapter 3

Ontology Mapping & Mediation

This Chapter discusses the state of the art in the different stages of semantic

interoperation. The Chapter begins with a description of the terminology which will

be used to describe the interoperation process. This is followed by an analysis of

ontology mapping tools, which are the first stage in finding links between ontologies.

This is followed by a discussion of the representation of those mappings. Finally, some

key ontology mediators are discussed. The analyses from each of these surveys is

then summarised to create a list of key properties for an effective ontology mediator.

3.1 Introduction

This chapter examines the literature surrounding semantic interoperation with a

view towards understanding where alignment and mapping can be used to exchange

information. The objective of this chapter is to find the strengths and weaknesses

of previous approaches to alignment, as well as to locate the lessons from general

ontological mapping which can be applied to the context domain, as defined in the

previous chapter.

The first section of the chapter provides a set of terminology for use in the remainder

of the thesis when discussing ontology matching and mapping. The nature of

ontology mapping is examined, with the objective of addressing some of the possible

34

relationships that can be established between concepts in different ontologies.

There are many examples of ontology-based applications. However, there are relatively

few examples of systems which perform Ontology Mediation in the specific form

which is envisaged by this work. In order to provide sufficient basis for analysis, this

chapter examines the underlying technologies associated with ontology mapping, the

expression of that mapping, and some techniques related to mediation which fulfil

similar requirements. These are used to draw some conclusions about the important

properties of a suitable ontology mediator.

3.1.1 A Note on Terminology

There is a wide variety of terms is employed in the literature to designate

different processes and procedures for relating ontologies. One survey

[Kalfoglou and Schorlemmer, 2003] mentions six different terms, and notes that the

delineation between them is at best uncertain.

In their paper, the authors of [Kalfoglou and Schorlemmer, 2003] define ontology

mapping as the process of relating symbols and axioms in two ontologies which

share the same ‘domain of discourse’. This process generates a mapping, which is a

functional description that can be used to assign one ontology’s symbols to another.

The authors of [Choi et al., 2006] classify ontology mapping into local and global as

well as examining mapping for the purposes of merging. Local ontologies represent

those which have been authored independently and whose entities do not share a

common reference. This is in contrast to ontologies which are authored with reference

to a ’global’ ontology, also known as an upper ontology, which provides a reference

point for mappings, and can be construed as a pre-determined articulation.

The authors of [Kalfoglou and Schorlemmer, 2003] define ontology alignment as

the process of using relations taken from an external ontology to describe the links

between the symbols in the ontologies. The articulation of two ontologies, describes

and defines the properties of the relations used to express the alignment of the

ontologies. The authors describe several uses for an articulation, such as merging and

35

translation, but the survey in this chapter focuses on the direct use of articulations

for alignment and mediation.

Similarly, Choi et. al. [Choi et al., 2006] define ontological alignment as ‘creating

links between two original ontologies’. This definition preserves the key feature

of alignment, which is that it provides a way to express links between different

ontologies which may not have originally been designed to be compatible.

This thesis employs the terminology and definitions from these two surveys in the

analysis of ontological mapping and alignment. In particular, this work employs

the precise terminology from [Kalfoglou and Schorlemmer, 2003], and borrows the

distinctions in mapping types from [Choi et al., 2006]. The focus of this work is

on supporting information exchange between ontologies, particularly based on the

requirements that arise from the context domain.

Additionally, for the work in this thesis, Ontology Mediation is defined as the

process of loading and aligning ontologies with the objective of transferring knowledge

and information from a set of source ontologies to a target. Unlike ontology merging,

the mediated ontologies remain separate.1

3.2 What needs to be mapped?

This study focuses on three areas in which ontologies can differ. Different mapping

processes handle each to different degrees. The three areas are:

1. Syntactic: The first, and most obvious difference in ontologies can arise where

they are defined using different representational languages. This can have

far-reaching implications, particularly where there is a marked difference in

approach to representing the ontology entities and axioms.

An example of this might be as simple as the difference between what is

1This process is distinct from other forms of ontological application, such as ontology-based

mediation, where the ontology forms a platform for mediation between non-ontological knowledge

sources.

36

valid in different OWL dialects. For example, an assertion of transitivity

for a datatype property, which is valid in OWL-Full, will not be valid in

OWL-DL[McGuinness and van Harmelen, 2002]. There is particular difficulty

in attempting to recognise, let alone preserve, the implications of syntactic

differences between different ontology languages and dialects.

2. Structural: Even where syntactic differences are accounted for, there can

be structural mismatches between ontologies. In many ontology languages,

there is considerable variation in the engineering processes by which ontologies

are constructed, and this can lead to radical differences between ontologies

representing the same things, even when they are written in the same language.

Structural mismatches occur for example where, in OWL, a concept is

represented by a Class in the source ontology and by an instance in a

target ontology. Such differences can have wide-ranging implications for how

information is transported from one ontology to another. Other examples

include differences in the division of concepts, where partially overlapping

concepts arise in different ontologies.

3. Semantic: Once structural and syntactic complications have been overcome,

it is still necessary to realise that, in most cases, ontologies do not specify

completely the semantics of their individuals. This can create a critical semantic

drift, where seemingly-identical concepts are not able to exchange data because

of undocumented representational differences.

One typical example of a semantic mismatch that can introduce a deceptive

error is to imagine a on ontology with a Car concept. In one severe case,

the same ontology schema is used in both the target and the source, one by

a European and one by an American designer. In both cases, the ontology

represents a Fuel Efficiency value. The Semantic mismatch can occur where

the European designer inputs the value (which is an undecorated Integer) as

Litres / Kilometre, while the American designer interprets this value as Miles

/ Gallon. While this specific problem might be addressed by annotating the

37

value with units, but there is little guarantee in the case of ontologies which

are authored independently.

It is highly unlikely that automated mapping processes will be able to examine

these complications, except in certain rare cases, or where the ontology is

designed with an unusual level of explicitness. There are numerous similar

examples, many of which are difficult even for humans to interpret. This

reflects directly the challenge of finding agreement between different semantic

representations: it is dependent on the parameters of the situation which makes

the mapping relevant.

This view has been independently arrived at in literature by other

authors, for example with concepts such as Semantic Distance, as seen in

[Albertoni and De Martino, 2008]

3.3 Survey of Ontology Mapping

From the terminology adopted above, ontology mapping refers specifically to the

process of establishing a set of functions for relating the symbols and axioms contained

in two ontologies that have some relationship2.

This section examines a number of mapping techniques, which feed the alignment

process. The importance of these techniques is that the form the input to the

alignment and mediation process, and so represent the kinds of operations which

need to be performed in order to permit mediation to happen. In examining these

techniques, the objective is to understand & contrast their properties, rather than a

direct comparative evaluation of their merits. With this in mind, the survey is not

limited to individual mapping systems, but includes frameworks for addressing the

mapping problem as a whole, for example OISIN [O’Sullivan, 2006].

1. Brief description of the technology: a short overview of the nature of the

2there is little value apparent in attempting to align ontologies which do not share any overlap —

the null case

38

mapping process, whether it requires populated3 ontologies or not, and how it

approaches different alignment cases.

2. Prerequisites for mapping specifies what information is required to perform

the mappings, such as the format of the ontologies, and any other requirements.

This includes a description of mappings, which specifies what metadata can be

established by the mapping process. A description characterises information

such as the kind of relationships, the confidence interval and any other

information described by the process, as applicable.

3. An Example is provided in order to illustrate the format that is output from

the system, or to describe the nature of the process that the mapping system

employs

In this section, a representative technology has been chosen to demonstrate some

of the different approaches to the mapping problem. They are chosen as indicative

of the approach to ontology mapping which they take. Other systems with similar

properties are discussed as required.

3.3.1 COMA++

The COMA++ system [Aumueller et al., 2005] is representative of a class of systems

which are designed to enable the mapping of ontologies using one or more matching

techniques. COMA++ is an extension of the original COMA system, and is similar

in that it presents a method of iteratively supporting schema mapping using a variety

of matching techniques.

The architectures of COMA and COMA++ have several elements that allow different

matching techniques to be applied automatically, and with manual intervention to

generate the mappings. In addition, mappings can be updated and edited by the

user, as well as combined from different matching sources to improve the value of

mappings, or to generate mappings based on agreement between different techniques.

3with instances

39

A similarity cube is employed, consisting of the set of measures of confidence in the

match, and references to the matched entities for different matching techniques. This

cube is used in the process of assessing the combination and validation of mappings

at the review phase.

COMA++ provides for a variety of mapping strategies, which can be employed in

different scenarios depending on the nature of the ontologies and their mappings.

These strategies include support for partial mappings of large ontologies, called

Fragment-based Matching. Fragment-based matching is intended to provide a

piece-wise approach to matching the overall ontology, by applying the composite

matching techniques at a fragment, rather than overall schema level.

The second strategy related specifically to the reuse of mappings. Mappings discovered

by the automatic and manual processes can be retrieved later for reuse in new mapping

scenarios. One instance where this can be employed is in the process of using a pivot

schema - an intermediary schema to which matches for both schemas has already

been found, creating an indirect, transitive mapping.

The result of sometimes highly complex mapping processes using COMA++ is an

external description of mappings. Mapping descriptions are exportable either in an

XML/RDF format or in CSV [Aumueller et al., 2005]. These can then be used in

other COMA++ processes, or the mappings can be employed for alignment, merger

or mediation processes.

Prerequisites for Mapping

COMA++ supports a variety of traditional schema description languages, such as

SQL. For ontologies, COMA++ is compatible with OWL-Lite. Schemas written in

different languages are converted to an internal acyclic, directed-graph form and

stored in a relational database. This graph form is used for the basis of a variety

of schema and instance [Engmann and Massmann, 2007] matching approaches. In

each case, mappings are reviewed by users and updated.

The system architecture allows for extensions to be made to add a variety of techniques

40

to establish mappings, in order to provide a framework for combining and evaluating

different matching techniques for different models. The nature of the mapping is

dependent on the matcher-specific representation. The confidence interval of the

match is presented on a scale from 0.0 to 1.0.

The format of schemas and ontologies that can be read by the system depends on

the parsers which are attached. This also has an effect on whether the schema- or

instance-level matchers are employed [Engmann and Massmann, 2007].

COMA++ is principally a framework for aggregating the result of different ontology

matches. Because of this, it does not express mappings in full, nor does it provide

an ontology of mapping relations. This means that the result of COMA++ is not a

complete articulation, and therefore an incomplete mapping description, which needs

to be correlated with an articulation that describes specific relations.

However, the description of this system is important, as it represents a widely-followed

approach to generating mappings based on automated and semi-automated

matchers. Other examples of systems include Falcon-AO [Jian et al., 2005] and other

participants in the Ontology Alignment Evaluation Initiative [Euzenat et al., 2007].

Example

As this system does not produce complete mappings, the description below is a

representation of the hybrid matching process as found in the COMA++ system, it

is taken from [Aumueller et al., 2005]

3.3.2 OISIN

OISIN4 [O’Sullivan, 2006] represents a complete mapping framework, including

discovery of ontologies, establishment of mappings, and management of the mapping

representation. While complete tool support does not exist for OISIN, the design of

the process does point to several important considerations for mediation, such as the

4Ontology Interoperability in Support of Semantic Interoperability

41

Figure 3.1: COMA++ Match Processing

need to understand that different types of relationship between various ontologies

might benefit from the use of different techniques.

The OISIN process begins with the characterisation of the relationship between the

ontologies. This includes examining both the modelling and semantic characteristics

of the two ontologies, and results in a decision as to whether the ontologies are

suitable for match analysis. These decision points allow the OISIN process to discard

‘incompatible or low-quality’ candidates at an early stage.

Once the decision to match has been made, the next process is to decide upon

matching algorithms, and execute the matching process. This results in a measure of

amenability, which determines the matching processes that are suitable for application

to the ontologies in question.

The mapping process supports either canonical expert mapping or usage-oriented

mappings by establishing the concept of a committed mapping, one that has been

reviewed by a relevant human and approved as correct.

The committed mappings represent indications of high-confidence relationships

between entities, and can form the basis for further discovery, as well as acting as

evidence in reasoning.

42

Prerequisites for Mapping

Citing its growing prevalence, and noting that the technique offered can be generalised

to other formats, the OISIN framework is principally focused on the use of OWL as

a representative ontology language. One difficulty encountered is that the output of

different matching systems has not been standardised, and there are a number of

competing models for expressing matches and mappings (c.f. following section).

At different stages of the process, different sets of reports and statistics are generated

for the user, such as characterisation and amenability measures. These are combined

with user-defined anchor mappings to generate a query-able interface (based in

XQuery) that can retrieve mapped entities.

There is also provision in the OISIN framework for exporting the mappings in a

variety of formats, including as OWL statements.

3.3.3 SUMO

The Suggested Upper-Model Ontology [Niles and Pease, 2001] is representative of

the ’global ontology’ approach to ontology mapping. In this approach, ontological

concepts are inter-related through a conceptual hierarchy that extends above that

defined in a particular ontology. This means that when a concept is instantiated in a

low-level ontology that expresses specific semantics, it is defined in terms of the upper

level concepts in higher ontologies. By creating a chain of definition up to a shared,

abstract upper ontology, it is possible to take advantage of relations defined in the

upper ontology, and employ them to establish mappings between different ontologies.

This has the effect of allowing for the creation of complete, vertically-integrated

mid-&-low-level ontologies by inheriting concepts from a common upper layer.

The uppermost levels of the SUMO ontology arise from a merger between the Sowa

[Sowa, 2000] and Russell & Norvig [Russell and Norvig, 1995] upper ontologies. In

addition to finding common concepts and linking them, a number of highly abstract

upper concepts were removed.

43

The general concepts found in this uppermost ontology include concepts like

Physical, representing a physical entity, which has child concepts of Object and

Process. These concepts are highly abstract, but different mid- and low- level

ontologies can represent specific domain concepts, such as the Mortgage concept

from the Finance Ontology.

In order to address this, the concept of the MILO5 [Niles and Pease, 2001] was

introduced, which provides a set of intermediary concepts from the highly-abstract

upper ontology. The Mid-Level Ontology can be further supplemented with

domain-specific ontologies that describe broad application domains (such as Economy,

or Military Personnel). Lower level ontologies can be imported individually, as

required, for the definition of specific ontologies.

Prerequisites for Mapping

By aggregating a wide array of general ontologies into a standard merged model, and

then supplementing this model with mid-level and domain ontologies, the objective

of SUMO was to support the authoring of new ontologies based on those concepts,

rather than necessarily attempting to map existing ontologies using SUMO.

This usage model is reinforced by the fact that SUMO and its derivatives are written

in a specific first-order description language, called SUO-KIF [Niles and Pease, 2001].

This language allows for rich semantic descriptions of the concept hierarchy and

instances of each entity in the ontology.

One effort to combat the complexity of approaching the large and diverse set

of concepts has been to create a set of mappings to the WordNet lexicon

[Niles and Pease, 2003]. This is intended to present a somewhat more user-friendly

method for searching for relevant concepts.

While a mapping to RDF does exist for SUMO [Niles and Pease, 2004], it is not

recommended6. This does not seem to encourage the use of OWL or RDF in

5MILO: Mid-level Ontology.
6The information header describes it as ‘very lossy’

44

SUMO-ontology authoring, nor does it encourage the creation of mappings between

existing RDF ontologies and SUMO.

Example

(subclass Paragraph Text)

(documentation Paragraph EnglishLanguage "A

&Text which consists of one or more sentences,

begins with an indented line, and expresses a single topic.")

(=>

(instance ?T Paragraph)

(exists (?S)

(and

(instance ?S Sentence)

(part ?S ?T))))

Figure 3.2: Example of SUO-KIF from the Mid-Level Ontology

[Niles and Pease, 2001].

The SUO-KIF language allows the ontology author to define instance, subclass,

property and domain information for concepts and sub-concepts. Different ontologies

can have different dependency sets, which arise from the choice of enveloping concept.

The example above, fig. 3.2, declares the Paragraph Subclass of Text, provides an

English-language description and then defines the requirement that a Paragraph be

part of a Text and contain instances of sentences.

3.3.4 Business Maps

Business Maps represent an approach to establishing an articulation by means of a

Topic Map. One of the key elements of this approach is that the maps are established

on a bespoke basis: they are mid-level ontologies which are focused on describing

the semantic relationships between the concepts. In that sense the maps produced

resemble a hybrid between an upper ontology and a mapping expression (see below).

45

Topic Maps are an ISO standard technology designed to represent a semantic network

[Pepper, 2000]. Topic Maps are designed with several uses in mind, but in this case

the most important are [JTC1:SC34, 2002]:

• To qualify the content and/or data contained in information

objects as topics to enable navigational tools such as indexes,

cross-references, citation systems, or glossaries.

• To link topics together in such a way as to enable navigation between

them. This capability can be used for virtual document assembly, and

for creating thesaurus-like interfaces to corpora, knowledge bases,

etc.

In terms of these objectives, the Topic Map can be said to be a virtual document

which qualifies and associated concepts contained in the participants’ knowledge

bases.

Figure 3.3: Basic Topic Map Elements, the Topics are linked by an Association,

and have external Occurrences addressed in other documents.

There are three basic components of a Topic Map:

• Topics: Represent conceptual entities in the map. These generally have

a property which points to the entity which the Topic Represents. Topics

can have labels, which are readable names for the topic; they can also have

types, which categorise the Topic based on another Topic in the Map. In this

46

way, it is possible to create closed world representations of concepts and their

categorisations in a Topic Map.

• Associations: Allow two or more topics to be linked conceptually. Topics can

be given role types expressing their role in the association, and the Association

can be given one type, representing its nature.

• Occurrences: Are references to reifications of the Topic Concepts. The typical

example is a URL which points to a resource that is represented by a topic.

Occurrences can be typed.

The intention of Business Maps, and similar technologies, is to model the mappings

between different ontologies semantically, as a Topic Map [de Graauw, 2002]. This

is similar to the creation of an upper ontology, like SUMO, but differs in the sense

that it is intended to link pre-existing ontologies. This structure allows Topics to

represent entities in different ontologies without being bound to semantic restrictions

from within the ontology languages.

The Business Map is very well represented by the notion of an articulation. Topic

Maps can be viewed as an ontology technology, with natural facilities for representing

the linkages to the mapped ontological concepts. However, in their basic form, Topic

Maps are not amenable to ontology-style reasoning, this requires an extension to

assert rules about the Map.

One useful property of Topic Maps that can be exploited in this area is that Topic

Maps can be merged. That means that where partial mappings have been made

between different ontologies, these can be amalgamated to create a broader mapping

view. This has the potential to be extremely useful where different matching methods

produce different parts of an overall mapping.

Prerequisites for Mapping

In this model, where the Topic Map is established as part of the mapping between

the ontologies, the prerequisites for mappings are two-fold. The first requirement is

47

a set of ontologies suitable for mapping. These do not need to be in any particular

format or language, so long as they can be processed, and their entities reflected as

instances within the Topic Map structure.

The second requirement in this approach is the structure of the map itself.

In the Business Maps, this reflects the domain of B2B7 information exchange

[de Graauw, 2002]. In the example, Business Maps are used to represent vocabulary

and other differences between different business modelling languages. This imposes

the requirement to author an ontology that maps the two schemas, and represents

the sorts of mappings required.

Example

The example in fig. 3.3.4 shows the syntax for declaring an association in a Business

Map Topic Map. The Association is an instance of a unidirectional mapping. It

defines the source and destination roles of the mapping, and constrains the scope of

the association to the ‘Gigasellers’, ‘sales’ and ‘europe’ topics.

3.3.5 Analysis of Mapping Frameworks & Implications for

Mediation

From the systems presented so far in this chapter, a number of conclusions can be

drawn about the complete workflow required to deliver ontological mediation. It is

important to understand that there is considerable variation in different technologies,

in their approach to mediation and in the delineation between different parties in

the process. The systems will be described as presented in the literature, and then

attempt to isolate and align the components from each system, so as to obtain a

comparable set of features.

The analysis of technologies that exist earlier in the semantic integration pipeline

yields some indication of the properties and requirements that a mediation system will

7Business to Business

48

<association>

<instanceOf>

<topicRef xlink:href="itm.xtm#unidirectional_mapping"/>

</instanceOf>

<scope>

<topicRef xlink:href="context.xtm#gigasellers"/>

<topicRef xlink:href="context.xtm#sales"/>

<topicRef xlink:href="context.xtm#europe"/>

</scope>

<member>

<roleSpec>

<topicRef xlink:href="itm.xtm#source_item"/>

</roleSpec>

<topicRef xlink:href="bizwords.xtm#name"/>

</member>

<member>

<roleSpec>

<topicRef xlink:href="itm.xtm#destination_item"/>

</roleSpec>

<topicRef xlink:href="gbl.xtm#name"/>

</member>

</association>

Figure 3.4: An example Business Map Association, taken from [de Graauw, 2002]

have. From the analysis of the mapping tools, there is evidence from the COMA++

and OISIN studies that the nature of the ontologies has considerable impact on the

different sorts of techniques that can be used.

3.3.6 Modelling the Relationships between Ontologies

From the systems described in that section, it is also clear that there is considerable

variation in the nature of the mappings that will be reported by apparently similar

49

systems. The output of different processes results in different levels of information

with different applicability to mediation. In the case where the ontologies are being

authored together, then upper ontological techniques such as those demonstrated in

SUMO are able to provide tight, definitive information about how different entities

interact.

However, this integrated approach comes at a cost. In particular, it is unclear

if ontologies authored without reference to the relevant MILO and SUMO upper

ontologies can be made to conform to those ontologies without considerable revision.

In addition, the use of SUO-KIF as a format for specifying ontologies presents a

possible restriction, given the apparent popularity of other technologies, such as

RDF.

In effect, the links between SUMO-derived ontologies are implicit, and are modelled

within the domain language. This means that the relationships appear as part of the

definition of the entities, and is intrinsic to them.

In contrast, the majority of the mapping expression formats attempt to model the

properties of the relationships between the ontologies by establishing or, in the case

of Align, providing a way to express the relationships which the articulation ontology

contains.

3.4 Survey of Mapping Expression

This section will provide a survey of the formats and methods available for defining

an articulation. In particular, it will present descriptions of the ontologies from

which relations can be drawn, and examine how those expressions are represented.

Each of the systems described below contributes a different aspect to the survey:

• The mapping capabilities of the core OWL language demonstrate the baseline

challenge of representing inter-ontology agreement from within the ontology

description.

• C-OWL is of key interest because it was applied in the DRAGO mediator

50

(see below). In addition, it represents an extension to ontology languages to

create a formal description of the relationship between ontologies.

• Align RDF was chosen because it is a common format for output from many

of the mapping tools, and is the standard representation for some evaluation

tasks.

• SWRL was chosen because it includes features relating specifically to data

manipulation and functional mapping.

The significance of these formats is that many of the tools used to generate

ontological mappings are either independent frameworks or complete off-line processes

[Kalfoglou and Schorlemmer, 2003]. This means that they are not themselves

concerned with what use is made the mappings which they discover. Several

interchange formats have been devised, which express different amounts of information

about the mappings depending on the relationships defined by the articulation.

From the literature, some common attributes arise. The mapping expressions need

to be able to:

1. express simple differences such as label differences

2. bridge structural mismatches, such as property - to - class mappings

3. bridge semantic mismatches, such as subsumption and disjointness

4. describe mappings, with mapping confidence metrics and other information

3.4.1 OWL support for Mapping Expression

The Semantic Web Ontology Language, OWL, makes certain affordances for

expressing basic Alignments[Hughes and Ashpole, 2004]. This represents a useful

baseline for the features which are found in other formats. The principal operation

granted by OWL is the owl:SameAs relationship, which can be used to represent

equivalence relationships between OWL properties and classes. However, this

51

relationship is extremely limited as it only expresses a logical equivalence, and

does not allow for any semantic drift8. The exact nature of this relationship can be

discovered from the OWL reference description [Bechhofer et al., 2004]:

The owl:sameAs statements are often used in defining mappings between

ontologies. It is unrealistic to assume everybody will use the same name

to refer to individuals.

In effect, the objective is to account for small drifts such as labels, rather than more

complex structural mismatches. It is clear that these provisions do not make allowance

for bridging complex relationships. In practice relationships are restricted to the

same type using owl:sameClassAs and owl:samePropertyAs. This means that

there is considerable limitation as to the sorts of concepts that can be linked. Within

this restriction, there is limited scope to represent disjointness, and subsumption is

limited to being represented by the canonical subclass relationship.

3.4.2 C-OWL

The authors of this technology present a specific definition for ontological contexts

[Guha, 1991]9, which are local, highly individual views of a domain [Guha, 1991].

The objective of C-OWL is to provide an OWL-like means to represent the links

between a C-OWL context, which is not share-able, and an ontology, which can be

shared. These relationships are expressed in terms of a set of bridge rules.

C-OWL defined five operations which can relate ontological concepts, these are:

1. Equivalence, denoted by ≡

2. Disjointness, denoted by ⊥
8Semantic Drift can be defined as the distance between two concepts that arises between two

representations of similar concepts.
9in the interests of clarity, the term ‘C-OWL contexts’ will be used to refer to the local models

described in the C-OWL literature[Bouquet et al., 2003]. This is in order to maintain a distinction

with the notion of context described previously

52

3. Overlapping, denoted by ∗

4. more specific (inverse subsumption), denoted by w

5. more general (subsumption), denote by v

Directionality is an important feature of bridge rules, as many of the rules defined

are not symmetric.

The format of C-OWL reflects a modification of core OWL semantics. C-OWL is,

to some extent, language independent, in that employs URIs to refer to the source

and target of a bridge rule. This means that the actual format representing the

source and target ontologies can vary so long as it is addressable within C-OWL. In

practice, however, the stringent definitions of the bridge rule operations mean that

there is little room for expressing highly disjoint structural mismatches, many of

these operations are designed to facilitate ontological reasoning.

While there is no format for describing the properties of the link beyond the bridge

rules, this detailed description carries considerable semantics about the nature of the

relationship. However, C-OWL resembles conventional OWL links in the sense that

they are once more logical associations, and tightly defined. There is also no facility

for representing confidence or other properties.

Example Syntax

The syntax shown in fig.3.5 corresponds to the equivalence relationship described by

the arrow that travels from ‘wine’ to ‘vino’.

53

<cowl:mapping>

<rdfs:comment>Example of a mapping of wine into vino</rdfs:comment>

<cowl:sourceOntology rdf:resource="http://onto1/wine.owl"/>

<cowl:targetOntology rdf:resource="http://onto2/vino.owl"/>

<cowl:bridgRule cowl:br-type="equiv">

<cowl:sourceConcept rdf:resource="http://onto1/wine.owl#wine"/>

<cowl:targedConcept rdf:resource="http://onto2/vino.owl#vino"/>

</cowl:bridgeRule>

</cowl:mapping>

Figure 3.5: C-OWL Wine Ontology Bridging. This example is a partial reproduction

from one found in [Bouquet et al., 2003]

3.4.3 INRIA Align RDF

This format presents different levels which define the the relation expressions and

language-independence of the alignment[Euzenat and Schvaiko, 2007].

In particular, levels 0 and 1 are mostly language-independent. The main difference is

that the level 1 alignments align lists of entities rather than pairs. Level 2 provides

for extensive, language-specific embedding of descriptions, and in this case the

relationships require language-specific knowledge to be used.

The Align format is based in the RDF syntax, but is loosely coupled to the standard.

The rdf:resource entity is used to represent concepts in alignment Cells. This

54

permits addressable entities to be mapped without regard to the differences in

structure or language, either by bypassing this issue in levels 0 and 1, or by expressing

them explicitly in level 2. This bridging is more language-independent than in C-OWL

because relations are not defined by the standard.

Provision is made in the ALIGN format for link metadata to be expressed. This

includes information such as relationship confidence (for example, as a value from

0.0 to 1.0, representing the confidence of the matches that produced the mapping).

Align represents an extremely light method of expressing mappings, which is

unburdened by use (this is in particular contrast to languages such as SWRL10, which

express mappings as a set of rules that can encode the purpose of the alignment,

such as ontology merging).

Example Syntax

This example in fig.3.6 is a partial reproduction of an alignment from

the Gold Standard alignments published with the OAEI11 2007 benchmark

[Euzenat et al., 2007]. Note that entity references have been shortened to improve

presentation. It describes the equivalence relationship with confidence value 1 between

the title and hasT itle concepts.

10Semantic Web Rules Language
11Ontology Alignment Evaluation Initiative

55

<rdf:RDF>

<Alignment>

<xml>yes</xml>

<level>0</level>

<type>11</type>

<onto1>

http://oaei.ontologymatching.org/2007/benchmarks/101/onto.rdf

</onto1>

<onto2>

http://oaei.ontologymatching.org/2007/benchmarks/301/onto.rdf

</onto2>

<uri1>

http://101/onto.rdf

</uri1>

<uri2>

http://301/onto.rdf

</uri2>

<map>

<Cell>

<entity1 rdf:resource="http://101/onto.rdf#title"/>

<entity2 rdf:resource="http://301/onto.rdf#hasTitle"/>

<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.0</measure>

<relation>=</relation>

</Cell>

</map>

</Alignment>

</rdf>

Figure 3.6: Align RDF Example Syntax [Euzenat et al., 2007].

56

3.4.4 Semantic Web Rule Language

SWRL inherits from both OWL and RuleML [Horrocks et al., 2004] in order to create

a language for expressing the merger of two OWL ontologies. SWRL is explicitly tied

to OWL. There are two components to a SWRL rule: the antecedent (also called the

head) and the consequent (also called the body). The head and body each contain

one or more atoms, which are related by a rule.

Informally, a rule implies that [Horrocks et al., 2004]:

[...] if the antecedent holds, then the consequent must also hold.

Different interpretations exist where the atoms involved are OWL Classes, Data- or

Object-type Properties or Instances. This method of expressing mappings as rules

has interesting implications for the format of the alignment description. In particular,

it permits the expression of changes to the target ontology which arise from indirect

conditions, in other words, it allows for indirect relationships to be established.

This grants SWRL alignment descriptions the ability to address data concerns, and

structural differences. Structural boundaries are crossed by effecting changes on the

resultant entity, usually a Property or Individual. This makes the SWRL alignment

description the richest of those described here. The nature of these rules is that they

range from the broad to the highly specific. For example, it is possible to assert a rule

that will compare XML schema date values and determine if one is within a certain

range of another. One such rule is swrlb:addYearMonthDurationToDateTime.

However, there are some limitations. The first is that SWRL is, in its default bindings,

extremely closely related to OWL [Horrocks et al., 2004]. This can be altered with

the creation of new bindings, but the process is required for each representation.

The second limitation is that the rules themselves are intended for ontology mergers

[Horrocks et al., 2004]. While this is a valid and useful application of mappings, it

is not the only use and arguably limits the utility of SWRL where other mapping

applications are intended.

57

Example Syntax

This example is taken from the SWRL W3C user submission and represents the

use of functions to compute a discount for a ‘gold-level customer’. It defines the

conditions, such as the gold status of the user and the value of the purchase being

over 500, and applies the 10% discount if the rules are met.

3.4.5 Analysis of Mapping Expressions

The first observation to make about all of the exchange formats, other than OWL

itself, there is a need to go outside of the standard languages in order to represent the

relations between entities in different ontologies. It is evident from the proliferation

of mapping formats that there is a need to express these mappings outside of the

standard OWL format. Perhaps the most serious complications that arise from using

core OWL as the medium for expressing semantic mappings is that it confuses the

definitions of concepts with their relationship to others. There is no clear separation

for external relationships (whose validity might depend on external factors) and

the essential description of the entity in the ontology definition. This presents an

interesting question about the nature of mapping that is particularly relevant in

context as to the degree of independence or separability of mappings from their

ontologies, and how easy it is to share mappings between different contexts.

The second observation to make is that the nature of the relationships defined in the

format are perhaps the defining characteristic of the capabilities of the language. In

the case of Align, despite the fact that no specific relationships are defined, it is clear

from the need for different alignment ‘levels’ that a relationship schema must be

defined externally, and that the degree to which it is tied to the ontology language(s)

defines how mappings can be expressed.

Of the three only SWRL directly approaches the issue of data manipulation. There

is an interesting design decision here, in that the interpretation of the relationship

between concepts is tightly coupled in SWRL. In this sense, the opposite is that

of C-OWL, which provides tight definitions for the logical relationship between

58

<ruleml:imp>

<ruleml:_rlab ruleml:href="#goldDiscount"/>

<owlx:Annotation>

<owlx:Documentation>Gold customers get a 10 percent discount on purchases \

of \$500 or more</owlx:Documentation>

</owlx:Annotation>

<ruleml:_body>

<swrlx:individualPropertyAtom swrlx:property="&ex;#hasStatus">

<ruleml:var>customer</ruleml:var>

<owlx:Individual owlx:name="&ex;#gold"/>

</swrlx:individualPropertyAtom>

<swrlx:datavaluedPropertyAtom swrlx:property="&ex;#hasTotalPurchase">

<ruleml:var>customer</ruleml:var>

<ruleml:var>total</ruleml:var>

</swrlx:datavaluedPropertyAtom>

<swrlx:builtinAtom swrlx:builtin="&swrlb;#greaterThanOrEqual">

<ruleml:var>total</ruleml:var>

<owlx:DataValue owlx:datatype="&xsd;#int">500</owlx:DataValue>

</swrlx:builtinAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:datavaluedPropertyAtom swrlx:property="&ex;#hasDiscount">

<ruleml:var>customer</ruleml:var>

<owlx:DataValue owlx:datatype="&xsd;#int">10</owlx:DataValue>

</swrlx:datavaluedPropertyAtom>

</ruleml:_head>

</ruleml:imp>

Figure 3.7: Example SWRL syntax [Horrocks et al., 2004]

entities, but is not so descriptive on the nature of the data relationship between the

participating ontologies.

The decision as to whether or not specific data transformation operations should be

59

included in mapping descriptions depends on how the mapping descriptions will be

put to use. Leading on from the analysis of mapping tools, and from the definition

of C-OWL ‘contexts, it is clear that mappings arise from a local interpretation of

both the target and source ontologies, which can depend on external factors not

immediately visible to the mapping process.

Some of the technologies described endorse language-independence

[Bouquet et al., 2003], or at least present mechanisms for extending their

format to apply to other bindings [Horrocks et al., 2004]. This demonstrates that,

while language independence is a powerful requirement, it is difficult to accommodate

in the process of describing mappings.

Leading on from this, it is also apparent that the mappings that are presented

here are not complete descriptions. Instead, they follow the properties of mappings

given previously in this chapter. This means that in order to be able to interpret

the mapping descriptions, it is necessary to be able to interpret the participating

ontologies: the target and source as well as the articulation ontology. Note that this

articulation ontology is most explicitly expressed in Align, where it is separate and

not defined by the default standard.

For example, the C-OWL bridge rules define with considerable rigour the nature

of the relationship being established between the entities, but does not model the

domain at all, and the relationships are defined abstractly from the domain.

In effect, this comes down to a question as to what the domain model of the

articulation ontology is, as in the case of SUMO, itself within the domain of the

target ontologies, or whether it is an abstract description of relations. This means

that, for example, if two ontologies at the same level had the wine and vino concepts,

these would be linked in SUMO as instances or subclasses of the same wine class,

integrating them conceptually, while the C-OWL approach would be to describe the

relationship between the concepts as equivalence, without integrating them directly

into the overall ontology.

60

3.5 Properties of Mediation

This section describes the key properties which constitute a description of an ontology

mediator. The purpose of a mediator is to be able to express and execute the

information pathway between different ontologies, with the objective of transferring

information. These properties will form the basis for the analysis of the example

systems in the following section.

3.5.1 Nature of the Articulation

The first characterisation to make of an ontology mediator is to examine the

qualitative aspects of the representation it employs to bridge the ontologies. This

can be of the form of an upper ontology established a-priori, a bespoke external

mapping (such as a Topic Map), or some other form.

Property of Mediation 1: Nature of the Articulation Ontology.

Is the description of the alignments in the mediator generalised or based on the

domain definitions?

3.5.2 Linguistic independence

While there is evidence12 to support the idea that RDF/OWL continues to grow as

an ontology language, several other candidate languages exist, and the process of

providing mediation means that there is a need to pass between different dialects.

This points to it being desirable for a Mediator to have some degree of independence

from the languages which the mediated ontologies are expressed in.

While SWRL and C-OWL are technologies deeply embedded with the OWL

semantics, the Align format is less constrained, providing independent and specific

representations dependent on level.

12The author of [O’Sullivan, 2006] cites a June, 2005 search on Google as reporting ten thousand

entries. In July, 2008 the same query “http://www.google.com/search?q=filetype:owl+owl”

reported in excess of sixty-seven thousand results.

61

Similarly, the OISIN process was implemented with OWL in mind, though the

procedure itself is applicable to a wide variety of ontological language, and indeed

general schema mapping. The Matches found by the COMA++ system have been

shown in a variety of formats, including SQL and XML XSD (Schema).

It is important to know if a contextual mediator is tied to the semantics of the

languages in which the ontology it accepts are represented, and whether this is

extensible.

Property of Mediation 2: Linguistic independence.

Are participating ontologies required to be written in a specific language?

3.5.3 Mapping representation

In importing the mappings and the ontologies which are to be mediated, an ontology

mediator can represent the participating information models in different ways. This

property is reflected in several ways by the expression and mapping technologies. In

order to find agreement between a wide variety of different schema formats, and in

order to be able to apply a variety of techniques to the model, COMA++ represents

all ontologies in an internal graph format. Pure OWL ontologies with external

references mix the definition of the entities and the references to external properties

at the same level.

Where the representation models are extrinsic, the question remains as to how the

representation of the information within the entities is exchanged. Of the systems

described, SWRL makes particularly descriptive provision for data transformation.

Arguably, it is not appropriate for this information to be found in a general exchange

format, but for the purposes of developing an internal representation for a mediator,

there is a clear need to be able to describe the data relationship, as well as the

knowledge relationship between entities, if information is to be transferred. It is also

convenient to store this information in the exchange format, as it would otherwise

need to be represented and correlated to the mappings in any case.

This property can also be seen in business maps. The Topic Map is able to represent

62

associations between entities and the nature of those associations.

Another difference between the intrinsic and extrinsic descriptions of mappings is

that extrinsic mappings often include a notion of the confidence or strength of a link.

OISIN defines committed ontological links, which can be used as a basis for mapping

subclasses. The Align format provides for a measure from 0.0 to 1.0 of confidence,

and COMA++ uses a similar measure.

Property of Mediation 3: Nature of Mapping representation.

Is the representation tied to the definition of the entities or not?

Is there information about the strength of the link?

Is there information about the data relationship of entities?

3.6 Survey of Ontology Mediators

The sections above have described the affordances which the overall semantic

interoperation process can offer to an ontology mediator. These key properties

form the basis for the design of such mediators. This section of the survey analyses

two key examples of ontology mediators from the literature, with the objective of

understanding what practical mediation requires. The first system, WSMO is an

example of a mediator that makes extensive use of functional data transformation

and which can accommodate a variety of different ontological representations. The

second system, DRAGO, was chosen because it represents the formal, ontological

approach to inferring across distributed knowledge bases. These systems demonstrate

the spectrum of design choices which are part of ontology mediation.

Ontology Mediation can take advantage of the results of mappings found using

the techniques described above (c.f.3.3) , rendered in one of the exchange formats

described (c.f.3.4), to transfer knowledge from one or more ontologies to a target. It

is a specific process which keeps the participating ontologies separate.

63

3.6.1 WSMO

The Web Service Modelling Ontology is an upper ontology that is a component of a

complete mediation framework [Feier et al., 2005]. The objective of the framework

is to provide a means for choreographing and orchestrating semantic web services.

This is consistent with the model of web services in general.

In WSMO terminology, a Web Service is an atomic unit of functionality (a service),

which is invoked using web protocols. Semantic Web Services include ontologies

that describe the ‘means to buy and search services’ [Feier et al., 2005]. The WSMO

itself is an ontology for describing semantic web services.

WSMX, the execution environment interprets WSML (Web Service Modelling

Language) annotations to services in the process of discovering, selecting and

mediating semantic web services.

WSMO employs ontologies as sources for domain terminology in the annotation

of web services and goals for the purposes of organising service chains. Ontologies

can be imported directly, or by means of mediators. Two levels of mediator are

described, with the data level mediators being responsible for ontological integration

[Feier et al., 2005].

Mediators are described are categorised in one of four categories. ooMediators are

responsible for aligning two ontologies, so that terminological mismatches and other

alignment tasks are resolved. Other Mediators exist to refine the goal composition

(ggMediators), link Web Services and Goals (wgMediators), and manage integration

at a protocol level between web services (wwMediators [Feier et al., 2005]).

Within the structure of the system, mediators are treated as third-party entities,

and modelled as Web Services with particular properties[Roman et al., 2005]. This

means that the WSMO framework itself does not intervene in the details of how

mappings and alignments are achieved, but is aware of the pre- and post-conditions,

as well as the functionality of different mediators and can choreograph them.

While the focus of the WSMO design is not on ontological interoperation, but

on service choreographing and orchestration, it represents a detailed example of a

64

semantic interoperation framework. WSMO is a semantic broker13, and by relating the

goals of the user, it discovers and sequences web services using semantic descriptions

of their knowledge.

Nature of Articulation

Figure 3.8: WSMO Modelling layers, with the top item being represented in the

MOF format [Roman et al., 2005].

One particularly interesting feature of WSMO is that the designers have separated

the conceptual level at which the knowledge of the services is expressed from the level

at which service interactions are described. Furthermore, the data level is expressed

in a separate modelling layer (fig.3.8). This is an important feature in realising the

orchestration of different services. The expression of data relationships arises from

the fact that mediators must maintain relationships with separate representations,

and so similarity of data values is not guaranteed.

The top-level WSMO concepts are mapped to the web service and goal terminologies

by first importing those ontologies into a broader model that expresses the requisite

entities from each web service. As described above, individual mediators can be

specified at the ‘data level’ to represent ontological alignment, and these can be

composed of multiple individual reasoners.

The top-level entities include general notions such as Relations and Concepts, as

well as more concrete examples such as Web Services. These are the building blocks

13As the term ‘mediator has specific meaning in WSMO’, for the purposes of clarity, ’broker’ can

be taken to mean that it mediates between different services.

65

for the descriptions of the services that will interact.

The specific mappings between the top-level ontology and the participating

web service ontologies is expressed using WSML, which is a set of languages

[Roman et al., 2005] which inherit from first-order and frame logic.

Linguistic Independence

The WSMO itself is derived from MOF14, a meta-language that provides a way to

formally describe the top-level concepts.

Internally, WSML is used to describe the ontologies. The authors note that other

languages are not sufficient for the purposes of choreography and orchestration, and

have therefore defined WSML themselves [Roman et al., 2005].

The use of mediators permits WSMO systems to import ontologies specified in OWL

and other languages. However, given that the semantics of these other languages are

poor, it is possible that there would need to be considerable intelligence on the part

of the mediators used to import concepts to represent them sufficiently.

In treating mediators as services, the WSMO architecture means that mediators

have considerable flexibility. There are few restrictions on their functionality, so

long as they have well-described properties. Provision is made for different levels of

mediator (as discussed above), and mediators can themselves be choreographed for

complex operations.

Mapping Representation

The separation of levels between the entities expressed at the model level in WSML

and the data relationships expressed in process-level mediators (wwMediators) mean

that there are effectively three separate representations of mappings within the

WSMO architecture.

The first level of representation is that which occurs between entities described in

14Meta Object Facility [Roman et al., 2005]

66

ontologies, and is expressed with the full richness of the WSML language. Relations

and Functions can be used to create numerical and non-numerical rules that relate

the concepts, and can be used to check that information is in the correct format.

As this is an ontological language, there is no provision for fuzziness in relationship

specification, though it could perhaps be included in the Non-functional properties

that accompany entities within WSML.

The second level of representation allows process-level mediators to manage protocol

and syntactic differences between the web services themselves at a low level. The

nature of the mediators is not specified by WSMO, as they are independent third

parties, treated as services.

Similarly, the process by which ontologies are mediated using ooMediators is

unspecified. This permits WSMO to import ontologies and employ mappings that

have been created and reviewed externally, and execute them externally while taking

advantage of the results.

In summary, the split approach between mediated and unmediated representation

means that WSMO systems can employ a domain-specific relationship language to

describe the interoperation of web services, and where this is not appropriate, it can

make use of ‘black box’ mediators to provide suitably altered knowledge.

3.6.2 DRAGO Distributed Reasoner

One advantage of the use of ontologies is the option to perform inference

[Bechhofer, 2003]. There are two categories of inference, T-Box (where the

terminology of the ontology is reasoned over) and A-Box (where the assertions,

or instances are reasoned over). It is the combination of A- and T-Box information

that makes an ontology a knowledge base.

DRAGO15 is a distributed reasoner system based on the DDL16 language

[Serafini and Tamilin, 2005], that expressed ontologies as description logic knowledge

15Distributed Reasoning Architecture for a Galaxy of Ontologies [Serafini and Tamilin, 2005]
16Distributed Description Logic

67

bases and represents the mappings between them.

DRAGO is designed to be able to reason over a set of mapped ontologies, located at

different points on a network, via a distributed reasoning algorithm. The topology of

the distributed knowledge base is a peer-to-peer system [Serafini and Tamilin, 2007],

where information can be passed between nodes in the system as required,

Distributed reasoning is performed on the basis of both terminology and assertion

information [Serafini and Tamilin, 2007]. This permits the communication of both

schema and instance information between nodes.

The functionality of the system is achieved by converting conventional DL-compatible

Ontologies into DDL knowledgebases, which are then able to be mapped by

conventional techniques [Serafini and Tamilin, 2005]. The nature of the bridge rules

that are used is such that A-Box and T-Box migrations and rules are orthogonal.

A distributed tableau algorithm is central to the DRAGO architecture. This algorithm

is designed to allow an large, unwieldy ontology to be reasoned in a piece-wise fashion

at a local level through mapping. There are clear advantages of feasibility and

performance in not attempting to reason an entire general upper ontology.

In implementation, C-OWL(c.f.3.4.2) is used as the language for expressing mappings.

Specifically, the following bridge rules exist[Serafini and Tamilin, 2007]:

• i : Cw−→j : D, the into-bridge rule

• i : Cv−→j : D, the onto-bridge rule

• i : a 7→ j : b, for corresponding individuals

In this notation, C and D are concept names, and a and b are individuals.

The three relationships defined are used to relate the concepts and individuals in

distributed ontologies. Because of the inference-based approach, DRAGO can provide

satisfiabillity, subsumption, instantiation and retrieval on distributed ontological

queries.

Implementation of the DRAGO system, pictured in fig. 3.9 is achieved by extending

68

Figure 3.9: DRAGO Architecture [Serafini and Tamilin, 2007]

the Pellet reasoner system with an M-Box, to represent mapping reasoning. Pellet

is an OWL reasoner, and its reasoning is combined with the C-OWL semantics to

express mapped ontologies.

Nature of Articulation

The DRAGO approach is based on adding an M-Box to the reasoning system of a

standard OWL reasoner. This means that the ontology for describing the semantic

links between participating ontologies is restricted to the definitions of the bridge

rules. These are formally defined concepts, and as they are represented in C-OWL,

derive from the OWL semantics and the extensions made to those semantics.

In effect, the objective in DRAGO is to treat the individual ontologies not as

conceptually lower portions of an upper ontology, but rather to consider each separate

ontology as a peer in a distributed, holistic view. This approach has many advantages,

most notable of which is the fact that individual reasoning tasks can be resolved

locally, which has performance and architectural advantages.

69

Linguistic Independence

Many of the linguistic properties of DRAGO derive from the fact that it employs

distributed reasoning to resolve semantic matches. This means that any ontology

subjected to such reasoning must be compatible with the tableau reasoning algorithm,

or convertible to that format. An ontology parser is used to convert the ontology

description files into an internal DL knowledgebase format, suitable for reasoning.

For the most part, this would appear to restrict DRAGO ontologies to ontologies

written in OWL. This is due to the specific properties of OWL that make it amenable

to DL-reasoning.

As DRAGO is a reasoner-oriented technology it appears that there is a particular

benefit from using the OWL-DL dialect. The authors do not indicate whether this is

a requirement, but it would seem likely that OWL-Full would not be fully usable,

due to the use of DL reasoning algorithms.

Mapping Representation

The DRAGO framework does not specify how mappings are themselves achieved.

Mappings are established by external methods, which means that the best techniques

can be selected for specific ontology properties, for example with a framework such

as OISIN.

The mapping representation in DRAGO bears many of the properties of those

discussed for C-OWL. DRAGO mapping comes in one of two forms for the Schema

and also expresses the correspondence between instances. This presents an extremely

limited amount of information about the relationship between the ontological entities.

However, the accounts for experiments in [Serafini and Tamilin, 2007] indicate that

even a low level of information can be useful for operations such as instance migration.

As this is a language that extends from Description Logic, there is no provision for

uncertainty or confidence intervals in the descriptions of the links. There is also no

method to reason about the data relationship of different entities, they information

within must be the same.

70

3.7 Additional Properties of Ontology Mediators

Based on an analysis of example Semantic Mediation systems, it is clear that there

are a number of properties common to these systems that derive uniquely from

their position in the interoperation workflow, and from the particular properties of

mediation, as opposed to alignment or merging.

3.7.1 Nature of the Internal Representation

The first observation is to note that mediators’ features depend heavily on how they

represent internally the ontologies which they are mediating. In the case of WSMO,

this is achieved through the use of a domain specific ontology which is written in a

custom language. This permits WSMO to be highly expressive and detailed as to

the relationships between terms and instances. In the case of DRAGO, there is a

relatively small list of relationships that can be used to express the mappings, but they

permit the mediation to be executed within the semantics of the ontology language.

This relates to the question of the nature of the articulation that is associated with

the mediation. It is clear from both approaches, and from the analysis arising from

the earlier technologies, that there is a need for a semantic representation of the

mappings that exist between ontologies. A semantic representation means that the

mappings are translated into well-defined relationships, which can either be reasoned

or otherwise retrieved as required, based on their properties.

Property of Mediation 4: Nature of the internal representation

Does the mediator convert external ontologies?

Are the converted ontologies merged into a global ontology?

Is the reasoning of the participating ontologies retained?

3.7.2 Data Transformation

WSMO recognises levels of entities and data, and separates them. While both

DRAGO and WSMO import the schema and instance information of the participating

71

ontologies into their internal formats, only WSMO recognises the need to be able

to allow for there to be representational differences in the content of the instance

information. This would seem to be an important feature to support services, that

arises from the application domain of the design. This property can be observed in

SWRL, where extensive functionality is provided, for example in date manipulation.

Property of Mediation 5: Data Transformation.

Is the mediator able to execute transformations on the data that the ontologies hold?

3.7.3 Knowledge Translation

In approaching the issue of data (as opposed to knowledge, which is represented in

the ontology), the WSMO approach is to hand off the detail of how information

is transformed appropriately. The different classes of mediator are called with a

pre-condition of the source and target ontology, and the result is a transformed

ontology. This approach has merit in that it allows the issue to be handled with

considerable flexibility, however it would be useful to be able to reflect more complex

operations in the mediation. For example, this might include accounting for complex

structural gaps at a schema level between ontologies. There are features in WSMO

WSML that represent an example of this capability.

Property of Mediation 6: Knowledge Translation.

Is the mediator able to bridge semantic gaps17 in the ontologies?

3.7.4 Mapping Importation

There is, from a study of the literature, a wide variety of techniques open to perform

ontology mapping. Many of these depend on the aspects of the process that developed

the ontology, and also on the domain in which the ontologies are written. It is a

desirable feature for mediators to be able to import mappings from external formats,

17See definition above.

72

such as those described above. This is necessary because many of the mapping

processes are either manual, or require such time as to be off-line processes.

Property of Mediation 7: Mapping importation.

Is the mediator able to import mappings from external sources, how tied are these to

their representation?

3.8 Conclusion

This chapter has described and analysed the technologies that are directly associated

with Semantic Mediation, as well as the influences and approaches of the technologies

that support mediation. In the process of examining these systems a clear set of

criteria by which mediation can be judged has appeared. What is apparent from the

review of the systems which exist is that there are a number of approaches, and that

each has advantages and disadvantages.

One approach which appears to have some merit is the concept of creating an ontology

mediator which takes a component-based approach. One lesson from the design of

DRAGO is that mapping and local reasoning can be carried out with relatively strong

separation. It might be possible to create a reasoner that takes the separation of

reasoning environment to a logical conclusion. In this case, the mediation is between

interpreted knowledgebases rather than ontologies, and instead of attempting to break

up the ontologies into an internal representation (as WSMO does), or limiting oneself

to a narrow range of possible ontology formats (as in DRAGO).

There appears to promise in the notion, partially presented in business maps, of

overlaying a separate ontology, designed for information linking rather than canonical

description. In taking such an approach, it would be possible to shed the restrictions

of expressing mappings between entities that are greatly dissimilar18. In this case, it

would not be possible to retain a contiguous reasoning approach, but rather it would

18For example, where the representation of an entity in one ontology is fulfilled by a Class

instance, and in another it is fulfilled by a data property.

73

likely be necessary to take an approach similar to that of the mediators found in

WSMO systems.

Neither of the ontology mediators described takes into account the confidence rating

which some mapping tools can produce. These measures of confidence can, in some

cases, contribute to the selection of the correct mappings from a list of possible

candidates. An example of use might be that a mediator might only choose to transfer

using mappings of a particular rating, or with a particular metadata attribute. This

mechanism has particular importance in situational mapping scenarios as highlighted

in the context domain.

In conclusion, there appears to promise in an ontology mediation system that is

designed with the complexities of the alignment workflow in mind. This is particularly

reflected in the notion that there is a need for a system that can accommodate the

richest possible linking, and the widest variety of formats, both for ontologies and

for mappings themselves. However, one area not yet addressed in the systems

described in this chapter is the issue of supporting different levels of knowledge

transfer in mediation. The mediation systems described above address the issue

of transferring instance information between different systems, but the notion of

transferring schematic information is not addressed.

74

3.8.1 Summary Table for the Mediators

The table below summarises the properties of each of the two mediators discussed in

this chapter. The properties are taken from the analysis provided above.

Property WSMO DRAGO

1 Nature of Articulation WSMO Ontology +

WSML mapping

C-OWL Bridging

relationships

2 Linguistic

Independence

Dependent on OWL

and C-OWL

Mediator converts to

internal formats

3 Mapping

Representation

WSML Rules Bridge Rules +

Instance Correspondence

4 Nature of internal

Representation

WSMO Ontology DDL Knowledgebase

5 Data Transformation Mediation + WSML

Rules

None

6 Knowledge

Transformation

Mediation + WSML

Rules

T-Box Reasoning

7 Mapping Importation Mediation OWL-C or converting

parser

Table 3.1: Ontology Mapping & Mediation Feature Matrix

75

Chapter 4

Design & Architecture of a

Context Mediator

This chapter is concerned with the design principles and architectural structure of a

Context Mediator suitable to support context-informed semantic interoperation. The

chapter opens with an abstract description of the contextual environment surrounding

a user, along with a high-level description of the process of context integration which

drives the design of the system. Building on the results of the state of the art chapters

in Ontology Mapping and Context, this chapter then describes the key design goals of

the system, and relates the system described here to the literature. This includes the

key design decisions made in creating the new system. A list of requirements are then

specified for the new context system, which describe the parameters of the design of

a context mediator using semantic interoperation techniques. The major novelty of

this design is that it supports the context-informed approach through a model-based

exchange with semantic interoperation. The architecture of this mediator and its

principal components are then discussed, before a summary conclusion.

76

4.1 Introduction

The objective of this chapter is to describe the basis upon which Context-Informed

Semantic Interoperation is designed. There are key requirements which are drawn

from the State of the Art in both Context and Semantic Interoperation. The

framework is intended to address the challenge of effective context integration

without the need for an a-priori model of context. A semantic network is used to

represent the articulation of the mappings between the sources of context and the

user’s target application.

This chapter will particularly address the process of integration from the perspective of

the changes in knowledge (broadly represented by the ontology schema), information

(broadly represented by instance information in the participating ontologies) and

data (broadly represented by data values within the instances). The system presented

here will address the process of importing and representing the knowledge of the

sources and target, as well as the mappings between them.

4.2 Abstract Framework

In order to provide a theoretical reference point for discussing the approach in this

chapter, this section describes the key components and their relationship to each

other in the contextual frame of reference.

A Participant is an application or service which is a member of the context

space. Participants are either producers or consumers of context. The majority

of participants are Sources of Context. Sources produce contextual information

which can be used to enhance the knowledge and behaviour of the context consumer,

which is called the Target Application. This target application’s knowledge is

enhanced by the Context Integration process.

The context integration process is undertaken by the Context Mediator, which

uses different kinds of inference and reasoning to correlate the information from the

sources of context in a form usable by the target application. The information will be

77

transferred and converted based on links and attributes that describe the differences

between the source and target representations, and which will be collectively known

as the Integration Pathways.

This process can be viewed as being one which is focused on the context mediator

acting as a forum for agreement between different parties to an information exchange.

In particular, the sources of context are aware of relevant information about the user

or their situation. This information would be useful to the target application, if it

were in a form which is understandable by the target (i.e. if it were added to the

target’s ontology correctly).

Figure 4.1: Abstract Context Mediation Framework.

In Fig.4.1 information is gathered by Sources of Context about the User while they

interact with the Target Application. Meanwhile, the Context Mediator transfers

the knowledge from the Sources to the Target Application, based on the mappings

represented in the system and the information in the target’s ontology.

78

4.2.1 Context Identification

The identification of relevant context information is a key challenge in context

mediation. Previous systems have focused on the use of a method where the target

application forms a query about specific information, and integrates the response.

The system presented in this thesis takes a different approach. In order to facilitate

the exchange of knowledge, as well as information and data, the process is one of

model enrichment. At a suitable point in the logic of the Target application1, the

application author can update the ontology which is registered with the context

mediator. A new ontological model is returned to the Target Application, with

changes based on the mappings and the knowledge in each participant’s ontology.

This model is focused on the mediator ‘pushing’ new ontological information to the

Target Application, based on the collective state of the sources and the target. This

is to facilitate the application designer: they do not have to know what information

a context mediator might know, instead the target application should be designed in

an open way that can accommodate new knowledge.

From the push vs. pull, perspective, control rests with the Target Application. It

is the Target application which initiates the exchange, and there is no absolute

requirement for the Target Application to incorporate everything which is returned

by the context mediator.

The design presented here means that the target application need not know about

specific context that might exist. Instead, it needs to be designed with particular

functionality to support a third party (the mediator) adding new knowledge and

information to the application, based on external considerations. This is a highly

flexible solution which facilitates significant changes in behaviour by the Target.

For a mode extensive discussion of the specific properties of context and the

architecture of target applications, please see [O’Connor, 2005].

1For example, where an adaptive application is about to recompose its presentation.

79

4.3 Design Goals

The objective of context mediators in general is to provide a ‘global’ view of

information shared in a particular context, and to communicate the relevant parts of

that information to the user’s application [Gu et al., 2005].

The goal of this design are to construct a context mediator which can create an

informing environment for applications. This means that the mediator maintains a

collective view of the knowledge of both the producers and consumers of context,

and can suggest enriched versions of a Target Application’s knowledge when required

by that application.

Specifically, this goal breaks down into the creation of a system that can

1. Represent and characterise the knowledge held by different participants. This

means that the system represents the contextual knowledge which is represented

in the Sources. The mediator must also be aware of the knowledge which the

Target Application has, in order to be able to reconcile the sources and target’s

knowledge.

2. Represent and characterise the mappings between concepts in the knowledge

held by different participants. This defines the parameters of the agreement

between the sources and the target. The mapping is principally between the

target and several sources.

3. Transfer knowledge from the Sources of Context, at the correct level of

abstraction, to the Target Application, based on the mappings

4. Perform other operations on the representation of the mappings, and the

information held by the participants, in order to make the transfer happen

correctly. One example of this sort of operation is to take advantage of mapping

information from several different tools. This allows the system to choose, for

example, only links which have been rated highly by two of three mapping

tools.

80

These goals are achieved through the use of semantic mediation techniques to express

and execute mappings between ontologies from different participants. The use of

semantic mediation permits this mediator to avoid the need to have a pre-conceived

notion of what elements constitute context. Instead these entities are derived from

the ontologies which take part in the context integration. This has the advantage of

permitting a wide variety of information to become contextual knowledge. Virtually

any information which can be mapped and rendered in the correct form for the target

application can be used for context.

4.3.1 Design Assumptions

The design presented in this thesis depends on a number of assumptions about the

nature of the participants and the representation of the information in the contextual

scenario.

One key assumption is that the nature of the context mediation is a many-to-one

relationship, where one or more sources of context are aligned with one target

application. This assumption allows the system to make use of a variety of

conventional semantic interoperation tools, which are commonly focused on one-to-one

relationships, which may not be symmetrical.

The inherently heterogeneous and varied nature of contextual information means

that it is necessary to address both the representation and the content of context

information to integrate it. It is therefore assumed that all of the information

and knowledge that is exchanged between the sources of context and the target

application will be represented in an ontology.

Similarly, ontologies can be represented using a wide variety of languages. In this

design, the ontologies are manipulated by the native reasoners for that language. It

is therefore assumed that any ontology used in a version of this design will be in

a representation which can be integrated with a suitable native reasoner interface

integrated into the design.

Finally, the requirement that the information be transferred through ontologies

81

imposes the constraint that sources of context must be able to emit information

in an ontological form which includes both schema and instance data. While this

requirement may seem onerous, the nature of semantic interoperation means that

simpler sources of context can emit relatively simple ontological information. In

addition, since the mediator is responsible for loading native inference, this also

relieves the burden of inference from sources of context.

On the Target Application side, it is a necessity for the Target Application to be

able to both emit and receive ontology information. Different types of contextual

enrichment impose different requirements on the Target Application, from being

capable of handling straightforward data updates, up to the inclusion of substantial

schema alteration which facilitates the inclusion of new knowledge in the target. The

default assumption in the design is that the target application can alter its behaviour

in response to some level of ontology enrichment.

4.3.2 Context Integration Process

The context integration workflow can be outlined as beginning with the registration

of participants with the Context Mediator. This registration involves a process of

offering an ontological description of that participant’s knowledge.

Figure 4.2: Shared Semantic View Representation

82

At a high level, the Shared Semantic View can be regarded as being overlaid on the

ontological representations of the knowledge within the sources of context and the

target application. The integration pathways represent links between concepts in the

different participants and information can flow along those pathways. It is important

to note that the pathways can characterise an information or data relationship, for

example to provide for a data transformation operation.

Once participants are registered, a Shared Semantic View can be established. This

is a representation of the integration pathways of the mediator. Initially, this Shared

Semantic View will represent the concepts found in different participants’ ontologies.

These can be found, for example, through a knowledge discovery process whereby

the ontologies are analysed for their entities. The second phase in establishing

the Shared Semantic View is the process of establishing the pathways between the

concepts themselves. This can be done by the use of online mapping techniques, or

through off-line processes, and imported through a description file. Once this and

any additional reasoning is complete, the Shared Semantic View is established.

The transfer process itself is activated when a request arrives from the Target

application for enrichment. One key feature of the informed, rather than the aware

model of context integration, is that the Target does not need to form explicit

requests, but instead offers its knowledge, which is analysed by the Mediator for

enrichment.

Once the Target offers its knowledge in ontology form to the Mediator, reasoners in

the Mediator use the Shared Semantic View in three stages:

1. Identification: where relevant information needs in the Target’s knowledge

are found. One form of this is, for example, where an instance of a class is

known in a source but not in the target.

2. Semantic Transformation: is the process whereby the integration pathways

are used to arrange information to be transferred to the Target into a compatible

semantic form, for example by ensuring that the proper level of abstraction

is expressed. For example, by converting from a percentage measure to an

83

interval, star measure.

3. Syntactic Translation: in this phase, the information which is in the correct

semantic form is added to the Target ontology, complying with the structures

and syntax of the Target’s ontology. For example, by taking information from

a literal in one ontology and representing it as an instance in the target’s

ontology.

Each of the processes outlined above will need to be supported by user-defined

reasoners. These reasoners are required because the expression of the integration

pathways lies outside the characterisations which are possible within the ontological

languages. For example, the OWL structures do not make provision for

supporting certain abstraction-spanning relationships, or the characterisation of

data transformation requirements.

4.4 Requirements and Influence from the State of

the Art

This section describes the decisions that result from the conclusions from the state of

the art. Broadly, the influence of the state of the art in semantic mapping techniques

has helped address some of the key requirements in the method by which ontological

concepts and their mappings are represented and characterised. This system is

dissimilar to the two semantic mediators described in the state of the art in its

approach to representing and executing mappings, and in its approach to identifying

context information for transfer. It facilitates new levels of exchange by making

knowledge transfer possible.

This section is divided into key categories for the description of the requirements

intended to fulfil the design goals of the system. The first area discusses the

architectural approach to the mediator. This is a fundamental decision which

affects the entire design. Requirements are then defined for each component of the

framework.

84

4.4.1 Architectural Requirements

There is some agreement on the advantages of the use of a centralised mediator

architecture for supporting context exchange [Baldauf et al., 2007]. This model is a

natural one for a mediator, as it creates the natural meeting point for the different

knowledge held by each participating service.

Many systems are built on the assumption of the existence of a Smart Space

[Wang et al., 2002], a sensor-enriched physical space which the user inhabits.

Typically, this space would include location technologies, such as Ubisense

[Steggles and Gschwind, 2005]. These devices are usually locally managed sensor

systems, and impose requirements on context systems to be able to interpret

highly-unpredictable physical measurements from sensors.

4.4.2 Participants - Produces & Consumers of Context

One consistent challenge arising from the design of Context Mediators has been that

of attempting to reconcile differing levels of abstraction and dynamicity. The nature

of the producers and consumers of context which the mediator supports has great

impact on the design requirements for the system. This section first examines the

sorts of context-producing services which exist, and then discusses the nature of the

target applications which consume the context.

Sources of Context

The SOCAM [Gu et al., 2005] model of ‘internal’ and ‘external’ context services was

founded on the notion that certain participants would be locally administered and

therefore have different interface requirements to remote, external services. One

example of this is the notion that location would be measured by local sensors and

managed by a local interpretation service.

However, since that time, the advent of GPS2-enabled mobile phones and the

2Global Positioning System

85

Software-as-a-Service (SaaS) approach to service development has altered the validity

of this model. It is now possible to conceive that the majority of the participants

in a context integration will, from the perspective of the mediator, be external and

those few remaining internal services will be able to communicate in such a fashion

as to be indistinguishable from external services3.

The design of CoBrA [Chen et al., 2004b] seems to point to the viability of allowing

for agent or other software methods to be given responsibility for handling the

highly dynamic and uncertain signal processing of sensor management. This further

reinforces the conclusion that the issue of dealing with low-level data such as that

gathered from sensors is not a concern for the context mediator, but can be assumed

to be interpreted by a SaaS offering, or other independent agent.

The requirement which arises from this is that the design of this system will assume

that web-service based communication is possible with the sources of context, and

that they will communicate their knowledge with the mediator through ontologies.

Target Application Specific Requirements

On the side of the Target Application, there is an observable trend towards

customisation and personalisation of applications for users. This can take the

form of templates and plugins4, and permits the application to alter the presentation

and management of its content based on customisations devised by site authors.

A more fundamental and powerful move towards creating personalised user

experiences is evident in the move towards adaptive systems, especially Adaptive

Hypermedia [Brusilovsky, 2001]. Adaptive systems employ a variety of distinct

models to represent key aspects about a user their content and more, and can

choose different strategies to give users access to individually-created information

presentations.

3for an example of the sort of context technology that is becoming available in a SaaS offering,

see Yahoo! FireEagle (http://fireeagle.yahoo.net), where local sensors and remote services

collaborate to provide knowledge.
4such as, for example in popular blog software like Wordpress, http://www.wordpress.org

86

http://fireeagle.yahoo.net
http://www.wordpress.org

Supporting adaptive systems imposes certain requirements on the mediator. Adaptive

systems already contain considerable knowledge about the user and their task, and

are equipped with detailed models. The motivation for adding context in this case

is that it must be information which was previously unknown or unavailable to

the designers of the adaptive system. This means that it is difficult to query for

such information specifically, as in traditional context-aware systems. Instead, the

adaptive system designers can designate contextual ‘hooks’, which are points when

certain relevant models can be enriched by the context mediator. This requires the

context mediator to accept ontological descriptions of adaptive models as the input

from the Target Application, and also requires the mediator to return the enriched

models in the same form.

4.4.3 Mediator Information Model Requirements

The use of semantic web techniques, specifically ontologies for reasoning and

information transfer is widely supported by the systems reviewed, as well as others

[Strang and Linnhoff-popien, 2004]. Ontologies provide a structured medium for

transferring not only data, but also a representation of the knowledge of a participant.

In the case of this system, context lies within the knowledge of the participants - the

sources and target. The key requirement for this system is that it should provide a

medium for transferring information from these sources to the target. In order to

take full advantage of the heterogeneity of potential context sources, the mediator is

required to generate these pathways dynamically, and to be able to express them

from mappings created using established semantic techniques.

The use of this sort of dynamic model of integration imposes additional requirements

on the structure of the mediator. The first implication is in the management of

the participant ontologies themselves. The use of semantic mapping also makes

requirements on the mediator design.

87

Ontology Management

Ontologies related to participants need to be maintained by the Mediator as

Knowledge Bases, that is as active, query-able entities which include both

terminological (T-Box in DL5) and assertion (A-box in DL) information. It is

necessary to be able to access both the schema and instance information from the

ontologies, in order to be able to import and map the ontologies, as well as transfer

information between them.

The Mediator will also need to be able to update parts of the ontology with

information from the participants, or with the results of an integration. This imposes

a requirement for the use of an abstraction layer, which will provide management

functions for a number of ontologies in different languages.

Requirements Arising from the Use of Semantic Mapping

In describing the system as an ontological as well as context mediator, it is necessary

to draw from the results of the survey of semantic interoperation to gain an

understanding of the properties of a semantic mediator which would be suitable for

serving context in the form outlined above.

One observation which has motivated the interest in ontology mapping has

been that there is a need to support multiple ontologies, each with different

focus, in order to be able to support tasks in a distributed environment

[Kalfoglou and Schorlemmer, 2003]. This points to the notion that there are different

ontologies being generated which suit specifically the properties of the systems and

domains that they describe. The lack of a consensus on global ontologies is a key

reason to pursue ontology mapping [O’Sullivan, 2006], which can be used to bridge

the gap between different ontologies at various levels.

The notion of a mapping approach is also appealing from the nature of context itself:

the objective of merging heterogeneous knowledge is present in both problems, and

some of the problems can be naturally addressed by the union of the two approaches.

5Description Logic

88

For example, a key aspect of ontology merging is to be able to deal with differences in

levels of subsumption within different representations. Similarly, one of the key uses

of ontology reasoning in both Construct and SOCAM is to be able to use ontological

reasoning to infer transitive relationships, and to check consistency.

Another advantage to the mapping approach is that mappings can be established

on a ‘contextual’ basis. This means that they can represent relationships that are

not necessarily intrinsic to the definition of an entity (as they would be if they

were expressed within an ontology), but are rather the result of external factors.

The design of this system will include an aspect of mapping management, with

the tool used to represent the mediation pathways needing to be able to express

those pathways and alter them. This points to synergy with the prevalent use of

user-defined reasoning methods, which appear to be important to previous context

systems. These user-defined reasoning issues can be compared closely with the

functions available in, for example in SWRL [Horrocks et al., 2004] and WSMO

[Feier et al., 2005].

Ontology mapping is a complex process which can only be partially automated,

at best [O’Sullivan, 2006, Kalfoglou and Schorlemmer, 2003]. There are many

techniques [Engmann and Massmann, 2007] , and several methods for expressing

the results of those techniques [Bouquet et al., 2003, Euzenat and Schvaiko, 2007].

These technologies can be employed in two means, the first is by providing a direct

method for establishing and communicating mappings, and the second is in helping

to describe the representation which the integration pathways might exist in.

Ideally, the representation of the mediation pathways in this system will be in a

format that can be exchanged, and the system itself will be able to handle a variety

of mapping descriptions.

4.4.4 Reasoning Requirements

Reasoning refers to a number of different functions that can have an impact on the

information in the participants or the mediator itself. Previous systems, such as

89

WSMO, made use of a custom set of reasoners (called mediators) which could be

used to supplement the ontological reasoning of the WSMO upper ontology. In the

model for this system, one of the key features is that there is no upper ontology

a-priori. This means that there needs to be a model for permitting the open-ended

extension of custom inference.

Ontological Reasoning

The DRAGO system is an example of one approach to the use of Ontological

reasoning to fulfil the requirements of a mediator which does not have an a-priori

semantic model. In DRAGO, the C-OWL bindings are used for the basis of a

distributed inference process that permits different knowledge bases to exchange

instance information. This model is effective, but somewhat limited for the purposes

of contextual mediation. The first challenge is to overcome the fact that C-OWL and

DRAGO depend on DL-based OWL reasoning, and so are of somewhat limited

flexibility as far as language goes. The second limitation is that the C-OWL

relationships do not facilitate the alteration of the data before it is passed to the new

instance. Experience from the Context mediators described previously points to the

usefulness of ontology technologies for providing a format for exchanging knowledge

in a structured fashion. This, combined with the DRAGO-like idea of collaborating

knowledge bases forms the approach for the system described here. The objective

is to use an ontology and its inference engine as the participant, and to link those

active knowledge entities within the Shared Semantic View. This design permits the

mediator to take advantage of heterogeneous models by dealing with them natively

as far as is possible.

User-Defined Reasoning

There are several properties of context which make it difficult to model a-priori. The

general issue is that at different points, contextual information, and the inferences

about linking that information, only exist when certain other parameters are also

90

true. Context is a personal model of information, which depends on the state of all of

the participants and the user, as well as even more abstract factors. For this reason,

it is desirable for the context mediator to expose a powerful user-defined reasoning

interface. The different categories of behaviour that pervasive contextual systems

support are not all compatible with one design [Bolchini et al., 2007], but the use of

runtime reasoning, as well as some assumptions about the nature of the participants,

will provide the basis for designing a reasonably flexible mediator. User-defined

reasoning should be able to take advantage of the use of external knowledge itself,

and should be, where possible, reusable. One difficulty associated with not providing

a fixed model is that it is difficult to provide suitable tools for the creation of useful

shared semantic views. However, if the interface for user-defined reasoning is not

only expressive, but composable, some advantages of reuse become feasible.

4.5 Operational Requirements

This section will define some of the operations which might be used to perform context

integration to enrich the knowledge of a target application. While the assumption is

made that an ontology exists to represent the knowledge which a participant has,

the reality is that the majority of sources especially will likely not be fully adaptive

applications.

4.5.1 Types of Operations

One category of integration operation is in the form of altering existing knowledge.

The operations in this category include:

• Addition: where a value which is not known by the Target Application

is known by the sources. This can be considered as the basic operation of

enrichment.

• Deletion: is a stronger assertion, where the Mediator removes one or more

values from a Target’s ontology. An example operation in this case would be

91

to remove some items from a list based on contextual criteria.

• Update: is a combination of the two previous operations, where the knowledge

in the sources overrides the knowledge in the Target.

These operations are compatible, for the most part, with conventional applications.

It is possible for the data values in the Target’s ontology to represent the state of

functional elements of the application. In this case, the addition, or more likely

update of a particular field might result in a behavioural side-effect in the system.

This category of behaviour can be seen in the literature in the management of the

state of the meeting agent in the EasyMeeting application [Chen et al., 2004a].

A second category of integration operations involves the creation of new knowledge

within the Target Application’s models. This differs from the previous category, in

that it is specifically the creation of new concepts within the Target Ontology, in

order to be able to include new information.

The operations involved are similar, but in this case the requirements for the

participants change. Many applications will not be able to inculcate new knowledge

in this form, and it is necessary to consider more semantically aware participants for

this to be useful. At a minimum, however, the knowledge does not have to be totally

new. In fact, totally new information is likely to be extremely difficult to integrate

automatically. On the other hand, one mechanism that is likely to be viable is to

add concepts to the ontology which are not gathered or used, but where provision

has been made for their inclusion by the developers of the Target Application.

4.5.2 Discovery Requirements

Service discovery is the process of finding, configuring and communicating with

other services within an environment [Zhu et al., 2005]. Apart from the process of

discovery itself, there are complex considerations with regard to state management,

invocation and orchestration. Some of these techniques can be automated, and some

are manual.

92

For the purposes of the system presented in this thesis, discovery will be the process of

interrogating participant ontologies for the concepts which they hold, and correlating

them with mapping representations to form integration pathways. The overall process

for the context mediator described in this thesis includes the use of potentially complex

matching processes, which do not operate automatically. A manual service selection

mechanism will be chosen as the initial basis for service management in the context

mediator, with the context integration process being automated where possible.

4.5.3 Privacy Requirements

An ontology mediation approach such as the one defined here does not lend itself

easily to the application of a deontic privacy policy model such as that provided

by CoBrA. This arises principally because the use of ontology matching without

a pre-defined set of concepts means that it is considerably more difficult to decide

what concepts are or are not sensitive.

This design assumes that privacy is managed at the service level: any information

rendered to the context mediator is done so on the basis of it being shared information,

and should be controlled at the source of the information. For an example of this

in practice the FireEagle location service previously mentioned (c.f. Section 4.4.2)

includes extensive methods for defining the way in which location information is

shared with different collaborating services.

4.6 Architecture

This section will define the principal components of the architecture for a

context-informed mediator. The objective of the architecture is to fulfil the design

goals listed above. In summary, these goals include the use of ontologies to describe

participant knowledge, the use of a Shared Semantic View structure to describe the

integration pathways, and supplementing ontological reasoning with user-defined

reasoning.

93

In summary, the design approach of this system is to take the key benefits of

previous approaches: a mediation model, ontological reasoning and knowledge

transfer supplemented with user-defined reasoning. The system described in this

chapter will extend from these systems by employing an ontology mediation approach,

with a novel representation for the mediation pathways. This approach will not

depend on an upper ontology described beforehand, and will employ a representation

that can be altered and exchanged. The system will be targeted on applications

which can include a degree of personalisation or adaptivity.

The design is innovative in the way it is applied to context as a mediator based

on semantic interoperation; it does not require an a-priori model of context. The

minor innovation in the design is that it integrates native ontological reasoning with

user-defined reasoning and that it represents a shared semantic view of the concepts

within the participating ontologies using a separate semantic structure.

4.6.1 Overall Architecture

There overall architecture for this system can be described as having three principal

components:

• The Shared Semantic View Manager which is responsible for the

management of the representation of the articulation of the ontologies. This

component provides access to the mappings which represent the integration

pathways, as well as references to the concepts themselves. The links within

the Shared Semantic View need to be able to represent the different types of

relationship: semantic relationships, such as equivalence and subsumption, as

well as mechanical relationships such as data transformation.

• The Schema Manager is the place where the ontologies from producers

and consumers of context are held. The Schema Manager provides access to

the entities which are represented in the ontologies as well as the information

about particular values within the ontology. This dual role means that the

schema manager is responsible for the ontological reasoning necessary to execute

94

Figure 4.3: Overall Architecture Diagram showing the main components of the

system.

queries against the ontological knowledge base , as well as providing descriptive

information of the knowledge schema. The Schema Manager needs to be able

to represent at least one ontology for each participant, independently and each

with possible different formats.

• The Reasoner Manager is a repository for individual user-defined reasoner

components. These are executable pieces of code which perform different

tasks. Reasoners resemble mediators in the WSMO architecture. There are

several reasoner functions, such as uplifting ontological concepts, transferring

information from one type of concept to another, constructing an enriched

target application ontology and more. The Reasoners are designed to be

95

composable, to allow one reasoner to call another, and can be called at runtime.

4.6.2 Architecture of the Shared Semantic View Manager

Figure 4.4: Shared Semantic View Manager Component Diagram, with Topic Map

pictures. White dots represent topics, and the arrow represents a mapping.

The Shared Semantic View Component of the system is concerned with the creation,

modification and management of instances of Shared Semantic View representations.

In choosing a representation, it is necessary to examine the requirements for that

component. The Shared Semantic View’s function is to express the ontological

links derived from an external mapping process for use in mediation, and to further

characterise those links as required in order to be able to perform identification,

semantic translation and syntactic transformation. These requirements point to

the need for an expressive structure, one which is capable of classifying and linking

ontological concepts.

The use of Topic Maps [JTC1:SC34, 2002], seen in one form in the Business Maps

[de Graauw, 2002] technology, would appear to be a suitable method for attempting

to express a shared semantic view. However, instead of attempting to engineer

a specific map a-priori, the objective in this design will be to establish a map

programatically, based on the alignment, import and other modification tasks

associated with integration.

The intent of using a Topic Map-based approach to representing the ontology is

96

based on a desire to create an articulation between the Target Ontology and several

Source of Context Ontologies. Topic Maps permit the representation of these in a

lightweight form, that is not constrained by the strict requirements of OWL or other

reasoned ontologies. This has the advantage of permitting the Shared Semantic View,

represented as a Topic Map, to express a variety of levels of integration pathway,

with different levels of abstraction, in a unified structure.

Topics, Associations and Occurrences can be used to describe the linkages within

a heterogeneous collection of views — the various participant ontologies. It is

further possible to use the type model in Topic Maps as a medium for recording and

establishing the characteristics of different concepts and their relations, and thus

provide a basis for user-defined reasoning. There are three main components to a

Topic Map [Pepper, 2000]: Topics, Associations and Occurrences.

• Topics represent atomic concepts. The majority of Topics in this system will

be uplifted from the concepts known to different ontologies in the Ontology

Manager. This might include representations of entities, as well as their

attributes (classes and properties in OWL).

• Associations express integration pathways. These represent the relationship,

direct or indirect, between concepts in different ontologies. Different types

can represent different relationships, such as those relationships described in

C-OWL.

• Occurrences are links to external representations of a Topic. These can be

direct, in the form of URNs for OWL Classes, or could in principle represent

more abstract references6.

Each of these can be given a type, which are categorisations formed on the basis

of other topics. This creates the useful property that it is possible to create a

closed-world representation model, where themes and types are also expressed with

the map. By expressing the Shared Semantic View as a Topic Map, or collection

6In general Topic Maps, off-line references have been used as the contents for occurrences.

97

of Topic Maps, the system described here gains some of the benefits of a classical

upper-ontology approach, such as an executable, query-able knowledge structure to

represent the collective knowledge of the system, without the drawback of needing

to establish a specific conceptual framework a-priori.

The structure of the Shared Semantic View component surrounds the Topic Map

Manger, which is a generic tool for creating and using Topic Maps. The specific

Topic Map operations are abstracted somewhat for use by the Reasoners, with the

intention of allowing the reasoners to retrieve and alter the different maps’ contents.

4.6.3 Architecture of the Schema Manager

The Schema Manager forms the layer which communicates with the participants. The

primary responsibility of the Schema Manager is to collect and load the ontologies

offered by the participant services. These ontologies need to be loaded using

appropriate ontological reasoners for their format and type. The Schema Manager

can be used by user-defined reasoners to access ontological schema information

and instance data. The Schema Manager accepts Ontologies from all participants,

and returns enriched ontologies to the Target Application. One of the challenges

Figure 4.5: Schema Manager Component Diagram. White Dots represent

ontological concepts, and the coloured rectangles represent the loaded ontologies.

associated with implementing the schema manager is the degree to which different

ontologies can be abstractly accessed by the user defined reasoners. In practice, it is

98

likely that different reasoners will be needed to deal with the differing capabilities of

each ontology type supported.

4.6.4 Architecture of the Reasoner Manager

The Reasoner Manager maintains the list of available user-defined reasoners, as

well as providing an interface for setting parameters and preferences in different

reasoners. The objective of this architecture is to permit the user to define high level

reasoners, which can be decomposed into lower level operations as required. This is

made possible by the facility for run-time instantiation and execution of reasoners.

User-defined reasoners execute all of the tasks within the system not handled either

by the Topic Map Engine, or the Ontological Reasoners. Reasoners interface with

the Shared Semantic View Manager, and the Schema Manager to execute different

tasks, as required. The reusable nature of individual reasoners makes it possible to

choose specific operations in response to the run-time state of the Shared Semantic

View.

4.6.5 Information Flow

Information flows from the participants to the ontology manager through ontology

files. Reasoners then uplift certain concepts from the ontologies to be represented in

the shared semantic view. The mappings are taken from external files, and another

reasoner represents them in the shared semantic view. Other reasoners process

the Target Ontology to identify its knowledge requirement, and use the links in

the Shared Semantic View to gather the information from the source ontologies,

processing it via other reasoners as necessary. The result is then returned to the

Target Ontology, which is returned to the Target Application.

Fig.4.6 shows the information flow of the system. The ontologies are loaded by the

Schema Manager, with associated inference as required. The sequence is as follows:

1. Reasoner A Imports concepts from the participants’ ontologies, and represents

99

Figure 4.6: Information Flow Diagram.

them in the Shared Semantic View. It also creates types for describing the

concepts.

2. Reasoner B Creates associations between the concept topics, as well as

the type topics needed to describe the relationships, based on the mapping

information which was output from an external mapping tool.

3. Reasoner C Identifies context information to be transferred, based on the

information in the Target’s Ontology, and based on the mappings and their

descriptions. Reasoner C pulls information from the participant ontologies as

required, transforms it, and adds it to the Target Ontology.

This ontology can then be returned to the Target Application.

This process is described diagrammatically in Fig. 4.7 and Fig. 4.8.

100

Figure 4.7: Sequence diagram representing the information flow for the first two

steps in the process.

Figure 4.8: Sequence diagram representing the information flow for the third step

of the process.

101

To give concrete examples of user-defined reasoners of different functions, some

example reasoners might include:

• An ontology importing reasoner, which creates topics which refer to each Class

and Property in an OWL ontology.

• A mapping reasoner, which uses an external vocabulary (such as an ontology)

to generate and characterise links between concepts in different services based

on an RDF-based description file which was generated externally.

• An enrichment reasoner, which has a complete description of the process

of identifying, semantic and syntactic translation and transformation of

participating ontologies. This complete reasoner might be able to reuse other

more specialised reasoners such as those two above.

• A reasoner which alters the description of the alignments and concepts in the

Topic Map, for example by tagging properties in a document ontology with

the languages found in the instances of that service. This is a good example

of the way the ACP can access schema and instance-related data in order to

better describe the shared view represented in the Topic Map.

This thesis does not present a particular taxonomy of functionality for user-defined

reasoners. Different reasoners can be created, some of which are general, and some

of which are specific. Reasoners in the system can be called in sequence, which

facilitates reuse.

4.7 Conclusions

This chapter has presented the process by which the key influences of the states

of the art chapters have helped to defined the design goals of a context-informed

mediator. The mediator acts as a central point for the transfer of knowledge to a

target application from the sources of context, and does so without the use of an

a-priori model for context. The system inherits from and extends current work in

102

semantic mediation, by attempting to deal with the key challenges that context

created, especially those of heterogeneous data and representational differences.

A key feature of the design of the system is that it represents the conceptual mapping

between the sources and the target application separately from the internal ontological

representations and the functional exchange process. The Shared Semantic View

provides a rich type system, which is the basis for the exchange process. Functional

mappings are therefore supported in the system by decomposing them into the

reasoner function, the type and the mapping itself. This allows the system to support

extremely rich interactions, and to draw from several sources (such as mapping tools)

to execute these mappings.

Below is a table which summarises the main requirements drawn from this chapter,

which should be found in the implementation of a suitable mediator system.

Table 4.1: Summary of Requirements Drawn from Design

Description Category

1. Mediator Model of Interaction Architecture

2. Ontology Reasoning Ontology Manager

3. Creation of Knowledge Bases from Ontologies Ontology Manager

4. Representation of Mappings and Concepts Shared Semantic View

5. Expressing syntactic differences between concepts Shared Semantic View

6. Topic Map Manager Shared Semantic View

7. Expressing semantic differences between concepts Shared Semantic View

8. User-defined reasoning Reasoner Manager

9. Run-time calling of reasoners Reasoner Manager

10. Identification of contextual need Reasoner Manager

11. Resolving semantic differences between concepts Reasoner

12. Resolving syntactic differences between concepts Reasoner

13. Import Mapping Descriptions Reasoner

14. Creation of suitable enriched ontology Reasoner

103

Chapter 5

Implementation of the ACP:

Adaptive Context Portal

This chapter discusses the implementation of a context mediator, based on the design

principles laid out in the previous chapter. The chapter begins by discussing the scope

of the implementation, followed by a description of the platform technologies. This

is followed by an overview and discussion of the key features of the implementation.

Finally, an example walkthrough of the operation of the implementation is provided.

5.1 Introduction

The design principles laid down in the previous chapter describe the nature of a

context-informed mediator. The key feature of such a system is that it adopts a

centralised mediation model, where the system can express the Shared Semantic View

of a particular contextual situation. This means that the mediator has the capacity

to combine the knowledge from a set of participants to the context integration, with

the objective of enriching a target application’s knowledge with information from the

sources of context. Contextual information is treated as that information which is

held in external sources, but which could be useful to the Target Application which

is being enriched by the context integration process.

104

The mechanism for transferring knowledge from the sources of context to the target

application is the use of a Topic Map to express integration pathways. Integration

pathways describe the data and knowledge relationship between concepts in different

ontologies. The pathways are expressed as categorised and reified associations

between topics in the Topic Map. By employing a Topic Map structure, the mediator

is able to cross semantic and syntactic boundaries, as well as representing changes

in levels of abstraction between different models. This structure also permits the

system to incorporate several ontologies and link them using descriptions from a

variety of sources.

In order to execute context integration, the system has three key phases:

• Identification of information need of the target. This represents an

understanding of the difference between the available context and what the

target application already knows.

• Semantic Translation of the content from the sources. It is necessary

to amend the data being transferred so that it agrees with the conceptual

representation in the target application, for example by accounting for different

levels of abstraction, or different models.

• Syntactic Transformation of the expression of the concept. In order for the

target application to be able to use the new knowledge, it must be represented

in a structure that is understandable by that target application.

The result of this is process is an enriched ontological description of this is the last

candidate. next esc will revert to uncompleted text. he knowledge which is available

to the Target Application.

A key element of this process is that the use of the Target Application’s ontology as

a means for expressing and fulfilling information needs. This is the most important

part of an informed system: there is no need for the target application to form specific

queries, or to be aware of the nature of the contextual environment in which it exists:

the context-aware environment, through the mediator, informs the application.

105

This chapter will define an implementation of such a context mediator. The chapter

will begin by defining the scope of the implementation, and describe some functional

and non-functional elements of the system. This domain analysis will be followed

by a discussion of the implementation platform. including a description of the key

libraries and supporting technologies upon which the implementation is founded.

Some key aspects of the design will then be described, with particular attention paid

to aspects of the implementation which depart from any standard use of the libraries.

These key implementation aspects are then made concrete through the use of an

example, and a walkthrough of the implemented system.

5.2 Implementation Scope

There are certain aspects of context integration which this implementation will

concentrate on, and others which it will not represent. The objective of this

implementation is to form a basis for the evaluation of context-informed mediation,

and in this regard the central component of the implementation is that mediator.

The principal mediator components are implemented from the design of the system,

including the Reasoner interface, Schema manager and Shared Semantic View system.

5.2.1 Ontologies

The conceptual relationship of the mediator to the ontologies it bridges is a key aspect

of the system. Ontology Engineering is a rich area of research, with considerable

variation in the resulting conceptual representation; there exist a great many models

for engineering ontologies, each with different approaches [Cristani and Cuel, 2005].

It is possible to imagine a spectrum of different ontologies, with different properties,

but the important realisation is that ontological engineering and data modelling

are different[Spyns et al., 2002]. The result of this variation is that some ontologies,

such as ones derived from Cyc [Reed and Lenat, 2002] constitute a knowledge base

of computational background knowledge, which can be used to compile rules that

106

ultimately simulate intelligence. On the other hand, Gruber’s notion of a crystallised

conceptualisation [Gruber, 1993] can be regarded as more focused on the transfer

of knowledge in a more descriptive form than non-semantic representations. In this

case, the value of the ontology is in the fact that the information is accompanied by

a structured description of its conceptual framework, which can be reasoned about to

generate knowledge. This implementation is focused on knowledge transfer, and so

will generally support knowledge-transfer types of ontologies, with more structured

relationships and content, than looser, more AI-oriented structures.

The size of ontology schemas is a second aspect of the nature of ontologies. There are

some common examples of ontologies with thousands of classes1. Very large ontologies

incur substantial cost in processing and storage, and so the general assumption of

this work will be to focus on ontologies with smaller conceptual bases. There are

several ways in which the ACP can approach large ontologies. The first is that the

native ontology reasoner profiles can be varied in response to the requirements of

particular ontologies. This means that, where suitable, a lightweight reasoner profile

can be used in a large ontology to lower the cost of loading. The second support

is that the ACP uses a semantic interoperation approach that builds based on the

concepts required for a particular situation. This means that portions of a large

knowledge base can be targeted for integration into the context scenario.

The development of this implementation will focus on OWL/RDF-based ontologies,

with their associated DL reasoners, where applicable. This technology was chosen

because it appears to be reasonably widely used, and due to the availability of

associated tools.

5.2.2 Service Registration

As discussed in the design chapter, there is no automatic service discovery model

for this system. In the implementation of the ACP, a service registration model is

chosen. All services are assumed to be web-accessible, as are their ontologies. The

1For example, the NCI Human anatomy ontology [Noy et al., 2008] runs to 3304 classes.

107

system allows for services to be registered and identified by their URL. One of the

areas of evaluation of the system will relate to the process of discovering the entities

within an ontology, and properly uplifting them to the Shared Semantic View Topic

Map. The use of topics to represent ontology concepts and the relationship between

them means that there is a wide variety of possible methods to represent different

levels of detail in the Topic Map.

One interesting aspect of context is the notion that two services might share the

same ontology, for example because they are different instances of the same platform,

but not share the same information base. This situation is familiar in particular in

the area of user modelling, and presents one reason why the system is designed not to

make assumptions about the equivalence of entities which have the same ontological

reference. While two instances of a class userid could be the same because they refer

to the same person, it is also possible, indeed likely, that they could differ in value

while still fulfilling all of the consistency of the semantic modelling. The Mediator

design can solve this problem by allowing for separate instances of concepts which

have the same external (ontological) definition. The Topic Map accounts for topics

with the same name by merging the label, but allowing for separate underlying topics

to remain.

This issue is particularly prevalent in the mediation of context, because the context

mediation process involves sharing information across a wide field of participants.

The mediation model addresses the need to be able to express data, as well as

knowledge differences, by virtue of the fact that the participant knowledge is only

merged into a virtual document, rather than a concrete merger of the models.

5.2.3 Privacy

Also following from the design chapter, this implementation will not control access

to data for privacy or security purposes. Part of the objective of this design and

implementation is to create system that provides a flexible toolkit for composable

user-defined reasoning, and in attempting to reach this objective, the semantics of

108

enforcing privacy policies have not been included. It would likely be possible to

create a deontic policy enforcement service as a component reasoner, but that is out

of scope for this research. There is an assumption, therefore, that the contextual

information which has been published has been exposed with the intention of sharing

it.

5.2.4 Abstraction

One of the key difficulties in implementing a system such as this is the abstract

modelling of ontological concepts, particularly the interface between the reasoners and

the different ontologies. There is a distinct challenge in attempting to encapsulate all

of the features and properties of different ontology languages in such a fashion as to

make them equivalent. It is likely that there will be some breach of this abstraction.

This may be an unavoidable consequence of the differences in various ontological

representations.

5.3 Implementation Platform

This section describes the technologies that are used in the implementation of this

system, that were developed externally. The objective of this section is to discuss

some of the advantages of the chosen technologies, as well as some of the complications

that arise from their use.

The primary implementation language for the ACP is the Java programming language.

Java was chosen because of the wide availability of libraries, particularly libraries

arising from academic research. Java 5 [Sun Microsystems, Inc., 2004] is the target

implementation version. This allows for the use of Java Generics, and the expanded

Collections framework, as a means for structuring the encapsulation and instances

of classes and objects in the system. The use of typed collections is a particular

advantage of this implementation, although the many of the supporting platform

libraries discussed below target Java 1.4, which means that they do not support the

109

generics model. Other features of Java 5 which proved useful included the improved

for-each loop construct, and the auto-boxing of primitives.

There are two libraries which are used to provide access to the semantic structures used

in the ACP. There is considerable complexity in the functionality of these libraries,

and their use allowed for the creation of a system which addressed these semantic

structures from a conventional starting point. Ontology management in the ACP,

handled through the Schema Manager, makes use of the Jena [Carroll et al., 2004]

ontology library. Jena provides features for loading, parsing, querying and modifying

ontologies. Different ontological reasoners can be used, including different levels of

rule inference, as necessary. The library provides some tools for managing a number

of ontologies loaded simultaneously, and this functionality is enhanced by the Schema

Manager.

Shared Semantic Views are represented in the design of this system by Topic Maps. In

order to be able to make use of standard Topic Map features, the TM4J [Ahmed, 2004]

library was used. While there is an initiative to standardise programmatic access to

Topic Maps [Heuer and Schmidt, 2008], in this implementation, the native methods

for the library were used, in order to gain full access to the features of the Topic Map

Engine. The TM4J engine provides methods for creating topics, occurrences and

associations, and for copying topics between maps. Of particular note is the fact that

TM4J supports persistent storage of Topic Maps through the use of the Hibernate

[Redhat Middleware, 2004] persistence provider system. This is the mechanism by

which SSV persistence is achieved in the ACP, allowing maps to be preserved between

executions of the reasoners.

5.4 Implementation Overview

The architecture for the ACP is based on the design architecture previously described.

This architecture is based on three main functional components:

• a Schema Manager, which is responsible for handling the ontologies

110

Figure 5.1: Architecture Overview, showing Façade model

describing the participants.

• a Shared Semantic View Manager which maintains the Topic Maps that

represent the Shared Semantic View.

• and, a Reasoner Manager which manages the user-defined reasoners.

The individual components of the system are represented as classes within the

implementation. The implementation is intended to be able to be called in different

ways, for example from a J2EE server, or as a server back-end. With that in mind, a

Façade design pattern was chosen, where the ACP Class represented the externally

accessible functionality of the system, while shielding the internal features of the

components2. The use of this Façade is to provide a simple interface for calling and

managing the deployments of the ACP implementation, it is not a key architectural

requirement, rather it is to help deploy different experimental scenarios easily.

The ACP class includes methods for initialising each of the components, and providing

them with configuration information necessary to launch each component. The ACP

also provides the appropriate methods for querying the state of the Topic Map, for

example there is a method which returns which topics are loaded in a particular

map. Similarly, there are methods associated with loading different ontologies and

2For more information on the Façade pattern, see [Portland Pattern Repository, 2009]

111

services, which are associated with the Schema Manager, and methods for calling

and configuring user-defined Reasoners in the Reasoner Manager. For the most part,

the Façade methods are pass-through methods to the relevant component.

The information flow between the components is largely governed by the user-defined

Reasoners. The Reasoners have access to the SSVs and ontologies, and can query

them and make alterations as required. Reasoners have access to the methods of the

Schema and SSV Managers – this provides a degree of abstraction from the specific

implementation library to the reasoner.

5.5 Key Aspects of Implementation

This section discusses the specific implementation of each of the main components

of the ACP: the Schema Manager, the Shared Semantic View Manager, and the

Reasoner Manager. Each component is discussed from the perspective of the manager

component, as well as the supporting libraries, if any, which are used.

112

5.5.1 Schema Manager

Figure 5.2: Class Diagram Description of the Schema Manager

The Schema Manager is responsible for providing access to the ontologies related to

participant services. The methods provided for access to schema components broadly

follow the OWL semantics, in that they recognise Classes, Properties and Individual

instances3. The Schema Manager identifies services by URL, and associates ontologies

with their URL. This is intended to permit the Schema Manager to represent different

versions of the same ontology in different services. The Schema Manager can import

ontologies from remote URLs, or can make use of a local file specified by the path.

For this implementation, the Schema Manager defaults to the use of in-memory

storage and OWL language. This can be altered in the configuration of the Schema

Manager, on a per-service basis. As with all three of these components, there is an

3Note the semantics of Classes with properties, instantiated by individuals are common to other

ontology languages.

113

initialisation method, separate from the constructor, used to provide setup variables.

This allows the Façade class to load the different components in an order and at a

time when it is best suited.

114

5.5.2 Shared Semantic View Manager

Figure 5.3: Class Diagram Description of the Shared Semantic View Manager

The Shared Semantic View Manager employs TM4J with a Hibernate persistence

back-end. The declaration for Hibernate storage is as follows:

115

SSVManager

1 TopicMapProviderFactory tmpf =

2 new org.tm4j.topicmap.hibernate.TopicMapProviderFactoryImpl();

3 ...

4 topicMapProvider = tmpf.newTopicMapProvider(properties);

the properties file argument specifies a set of database connection properties which

are necessary to start the storage. The use of this storage means that each time the

SSV is initialised, maps must be loaded from the hibernate storage.

One important aspect of the system is that topics & associations in this

implementation are referred to using the ID attribute. This is not strictly in

compliance with the Topic Map standard. The reason for this implementation

decision is that in the programmatic generation of Topic Maps, the selection of

appropriate subject indicators is not always available. By using topicIDs, uniqueness

of reference is guaranteed. In order to make this decision explicit, the system makes

specific reference to IDs in many of the methods which employ them, with the

intention of flagging the ID semantics to the user. This mechanism is also important

in the case where topics have been automatically merged, in order to retain certainty

of reference.

Another factor in the creation of maps is that there are certain functional topics

which are used in order to express the Shared Semantic View. In an attempt to

keep the system’s assumptions as general as possible, Reasoners are required to

create the basic topics for the system. One topic which is common in many of the

Reasoner implementations is the ”Type” topic, which is used to indicate topics that

are descriptive types, rather than ontological concepts, in the map. It is then the

responsibility of each Reasoner which alters the map to ensure that its types exist on

the map, and that it does not create duplicates. For example two types for reasoners

could include the equivalence and subsumption relationships found in a mapping

description, and the OWLClass type, used to designate OWL Class concepts. During

the ontology uplift phase, the Topic Map would likely not include these types, and

so the OWL import reasoner would be responsible for creating the OWLClass type,

116

which would then be used on topics which refer to OWL Classes. The alignment

import reasoner is used to import an alignment description, the alignment reasoner

needs to create the subsumption and equivalence type topics. These reasoners both

have roles in creating the Topic Map state which can then be used by a transfer

reasoner. If the transfer reasoner does not properly look up the type topic associated

with OWL Classes and the relationships, then the transfer reasoner will not be able

to find the appropriate concepts and associations to perform the transfer. In each

map, the specific ID of each topic type is different, but it can be found easily by

looking up the name and/or types of a concept.

Reification of Associations

Early versions of the ACP system design used the association type to designate the

relationship (such as subsumption) between the topics. Topic Maps only permit the

use of a single type with an association. As the system was further developed, it

became desirable to be able to add more information about the properties of a link

to the Topic Map.

The traditional representation of several properties of an association is through

the use of several separate Associations, each with the appropriate type. This was

not satisfactory, given the importance of the metadata associated with semantic

mappings. In consultation with the TM4J Developer, Kal Ahmed, the author of this

thesis were able to decide on the use of reification as a medium for creating topics

which describe the association. This was achieved by the author of this thesis by

using the association ID as a subject indicator in the reifying topic. This topic can

then be used to describe the association’s attributes. Note that in the code below,

which describes the retrieval of the association topic, some extraneous code has been

removed.

117

SSVManager

1 public String getAssociationTopic(String mapName, String associationID){

2 Locator topicSubjectLocator =

3 tm.getLocatorFactory().createLocator("URI", associationID);

4 Topic associationTopic =

5 tm.getTopicBySubject(topicSubjectLocator);

6 topicID = associationTopic.getID();

7 return topicID;

5.5.3 Reasoner Manager

Figure 5.4: Class Diagram Description of the Reasoner Manager & the Reasoner

Interface

This section will describe the Reasoner Manager component of the ACP, and discuss

the implementation of it and the Reasoner interface which is used in common by

all reasoners in the ACP. The Reasoner Manager is designed to be able to load and

run Reasoner instances at runtime. The system uses the Java Classloader to load

instances of classes. Because of this, classes in the Reasoner must be accessible

through the deployment classpath. In order to facilitate discovery, the system

118

configuration file for the Reasoner manager includes a list of available reasoners.

This is a manually maintained list, in order to permit the person deploying the

ACP instance to control which reasoner classes should be able to be loaded. Each

Reasoner can be given a string map of parameters, which is a set of key:value pairs

used in configuring the system, and reasoners can have references to the components

as necessary. Several instances of the same reasoner can be created, with different

parameters, as required.

ReasonerManager

1 public void addReasoner

2 (String reasonerName, String reasonerType, Map reasonerParameters)

3 throws InstantiationException, IllegalAccessException,

4 ClassNotFoundException{

5 Class ReasonerTypeClass = Class.forName(reasonerType);

6 Reasoner reasoner = (Reasoner) ReasonerTypeClass.newInstance();

7 reasoner.initialise(reasonerParameters);

8 reasoner.addSchemaManager(schemaManager);

9 reasoner.addSSVManager(ssvManager);

10 reasoners.put(reasonerName, reasoner);

11 }

The Reasoner Manager, and the Reasoners, access the internal methods of the

components, and do not use the Façade ACP class. The Reasoners themselves are

implemented in Java. This has the advantage that the Reasoners have full access

to the capabilities of Java for engaging in document parsing, string manipulation

or making use of external connections to additional local or remote functionality.

However, there is little security associated with this model, and badly-written

or intentionally malicious reasoner could cause considerable harm in the system.

Reasoners can be loaded and called externally, through the Façade class.

119

Reasoner Interface

The Reasoner Interface is implemented by all Reasoners in the ACP. There are

three methods, which classify the functionality of the reasoner. These methods are

extremely generic, and the design of the reasoner system relies on the Reasoner using

its parameters to specify the details of the operations, where necessary. Each of the

components can be connected to the Reasoner, as necessary. Different Reasoners

will likely need different access to the parts of the system.

Reasoner

1 public interface Reasoner {

2 public void initialise(Map parameters);

3 public String enrichModel (String model);

4 public void buildSSV();

5 public void addSSVManager(SSVManager ssvManager);

6 public void addSchemaManager(SchemaManager schemaManager);

7 public void addReasonerManager(ReasonerManager reasonerManager);

8 }

5.6 Implementation Walkthrough

In order to provide an understating of the operation of the ACP system, this section

will present a simple example scenario of use and demonstrate the action of each of the

parts of the implementation. The section begins by presenting the example use cases,

and describing some of the possible variations that the system can accommodate. The

second section describes the deployment of the participants and the ACP instance.

This includes a discussion of the participants, and the platform of operation for the

context mediator.

120

5.6.1 Example Scenario

The ‘cold-start’ problem describes a situation where a system which is presented

with a new user needs to know information about that user. The traditional, manual

approach is to ask the user to fill out the details themselves, but this can be a tedious

process, particularly if there is a lot of information to communicate. It is desirable

for systems to be able to share information about users. However, this has proved

to be a significant challenge because of the differences in representation between

different systems and institutions.

This scenario envisions a group of students, who are studying computer science. In

the course of their studies, the students travel to a different university, to continue

their studies. Each student has been making use of eLearning systems in his or her

home university to learn about SQL4, and will be continuing their studies at the new

university, which also makes use of eLearning to teach SQL. However, the difficulty

that arises is that the two universities make use of different eLearning systems to

record their student transcripts.

The traditional solution to this problem is to elicit the student’s knowledge through

a questionnaire, or, worse, to make a broad assumption of the student’s level, based

on the level of his classmates in the new university. A better, more personalised

method would be to take the transcript that the student has earned in his home

university, and make use of it in the new university’s eLearning system.

The challenge of this scenario is to be able to create an accurate representation of the

student’s learning experience in terms that the target application can understand.

The profile stored in the previous learning environment holds this information, but it

differs both in terms of the language it uses to describe the topics of learning, and in

the representation of that knowledge. The ACP is designed to be able to overcome

both of these issues5.

4Structured Query Language
5n.b. the issue of User Model interoperation is itself a wide area of research, and this example

solution does not deal with many of the important factors, such as the difficulty associated with

creating suitable ontologies from the participating systems. However, it is a representative example

121

To put this in terms of a context problem, there exists a target application, the new

university’s eLearning system, which could benefit from external knowledge about

the user (their transcript), but which cannot get that information because it is stored

on another, previously unknown system, in a format that is different to the target’s

native format.

This scenario makes several assumptions, these follow:

1. that the two universities trust each other sufficiently to allow each other access

to their student learning data

2. that the students are uniquely identified by a username, which is the same in

both universities

3. that each of the eLearning Systems (from the home university, and the new

university) have an OWL ontology describing their student user models.

4. that there exists a mapping between the two ontologies, which appropriately

describes the semantic relationship between the two ontologies

5. that a table has been created which maps the subject labels from each of the

eLearning systems to each other. This describes the data relationship.

5.6.2 Service Description

The service environment for this scenario is composed of the Target Application,

which is the eLearning system of the new university, and one Source of Context,

which is the user model service of the students’ home university. The new university

IT administrator is able to make use of an ACP instance to transfer the required

information. The information transfer requires the source of context to make its

ontology model accessible, so that it can be loaded by the ACP, while the target

of the sort of information which context must cover: the information is useful, relevant and due

to the wide number of different mapping combinations, extremely difficult to approach within the

participant knowledge architectures.

122

application must be able to share its ontology and also accept the resulting enriched

ontology and make use of it.

The two ontologies in this process are outlined below, along with their alignment. The

main differences are in the naming of the labels of the different parts of the models.

For this example, each ontology has one class, User/Learner, which represents the

Figure 5.5: The example ontologies. The Target Ontology is boxed in red on the

left, the Source Ontology is boxed in blue on the right. Classes are represented

by the yellow boxes, datatype properties by the green capsules. The black arrows

indicate property data equivalence, while the pink arrow indicates class equivalence.

profile of one student. Each Class has three data properties, which contain the

information in the profile. Each student is represented as an instance of the relevant

class in each ontology. The hasUserName property in the Target Ontology is the

only field which is complete initially in the Target Ontology. This username is used to

select the appropriate equivalent instance in the Source Ontology to be transferred.

The bulk of the user model information is held within the hasTranscript property

of the Source ontology. Each Instance will have several values stored in this

123

property, each value being a topic that the student has successfully learned, such as

‘sql.table.create’ for the knowledge of how to create an SQL table.

Two properties, hasGoal, and hasPreferences, do not have equivalents in the other

ontology. hasPreferences is a property which describes the educational preferences

of the user, such as the fact that they have a preference for visual learning materials

over text-based ones. A novel feature of the ACP is that it attempts to make the

existence of this new knowledge available to the target application, which might be

able to make use of it. This is achieved by adding the hasPreferences property to

the Target ontological schema, and transferring the relevant instance information.

The Operation of the overall process will be governed by a UserModelTool reasoner,

which is designed to transfer the information. The UserModelTool implements

the Reasoner Interface, and has explicit methods for the different transfer phases.

This reasoner is supplemented with a Reasoner called SchemaIntegrator, which is

responsible for representing the OWL schema in the Topic Map, and AlignImporter,

which is responsible for representing the mapping description as recorded in an

INRIA Align RDF file.

5.6.3 Ontology Uplift

This section describes the process of creating a representation of the knowledge

of each of the participants’ ontologies in the ACP. The first phase of the context

integration is to import the ontologies themselves, in their native forms, through the

Schema Manager. The Schema Manager can load several ontologies at once, and the

Jena library permits different reasoner specifications and different storage models

to be used. This allows the system to accommodate the different OWL and RDF

dialects available to Jena.

The ACP Facade is instantiated, and the Schema, SSV and reasoner managers are

initialised. The main class which calls the ACP facade then instructs the ACP

to load the Ontology schema files. These are .owl or .rdf files containing the xml

serialisations of the ontologies. It is also possible to load copies of files over the

124

network, if necessary.

Once loaded, the ontologies are accessible to the Reasoners through the

SchemaManager methods. The methods allow the listing of classes and properties,

and accessing instance values. There are also methods for adding and removing

schema and instance elements from the ontology.

In this example, the two ontologies are loaded using the default rule inference profile

and in-memory storage. The Ontologies are now ready to be uplifted to the Topic

Map.

Once the BuildSSVWithReasoner function is called, the UserModelTool Reasoner

loads and initialises the SchemaIntegrator reasoner. This reasoner is given a list of

services to integrate, as well as the details of the SSV Topic Map. If it does not

already exist, the map is created by the SchemaIntegrator, which also creates type

topics used to designate the ontological role of the different entities. These types

include OWLClass, OWLProperty, and a Type Topic.

Beginning with the classes, the SchemaIntegrator gets a list of the URIs for the

classes from the SchemaManager for each Service. The Reasoner creates a Topic

for each Class in the ontology, and adds appropriate type information marking it as

an OWL class. In addition, the reasoner creates an Occurrence in the topic, which

points to the URI. A service Topic also designates the service membership of the

entity.

Once the Classes have been uplifted in this fashion, a similar process occurs for the

Properties. The result of this complete process is a Topic Map which contains a topic

for each class and property in the map, as well as type topics which describe those

entities, and with attached occurrences describing their defining URI. A graphical

representation of the uplifted Topics and their sources is shown in Fig. 5.6. Note that

the complete map would include more type topics (in the middle of the map below)

to represent the service which each topic was uplifted from. The transformation in

this case has been to create the nodes in the semantic knowledge map: this includes

the entities known to the two ontologies, and the type topics necessary to describe

125

Figure 5.6: The result of the uplift process. The uplifted topics and the ontologies

are pictures. The Topics representing properties have dashed lines. Note that

additional type information about the service for each topic is not pictured.

them. URIs are guaranteed to be globally unique, while entity names are not, and

there is the potential for considerable confusion if the short names of the entities were

used, then there is an increased chance of confusion between semantically unrelated

entities.

Alignment Import

Once the base map has been established, an alignment file is used to represent the

mappings which have been found between the ontologies. The align RDF defines the

parties to each mapping, as well as a mapping operation such as = (Equivalence),

and a confidence interval of the mapping (usually 1.0). In this example, the mappings

are all of the Equivalence type.

The UserModelTool calls the AlignImporter reasoner, which loads the map

created by the SchemaIntegrator. It adds its own types to the map, using the

126

previously-established type topic to indicate that these are type topics. The

AlignImporter creates topics to describe the Equivalence, Subsumption and inverse

subsumption relationships. In addition, a five star model is created, which is used to

represent the confidence interval (5 stars = 1.0 confidence).

The AlignImporter Reasoner reads the description file, and for each topic which it

can find both members for, it creates an Association between them. The Association

Type is set to be the type of operation as described in the Align file, and the

Association Topic (the reified description topic) is given the types appropriate to the

metadata about the mapping, including the rating and the fact that it came from

an Align file. A partial diagram of the alignments is shown in Fig.5.7. Fig. 5.6.

Note that the complete map would include more type topics (in the middle of the

map below) to represent the service which each topic was uplifted from. This second

Figure 5.7: A part of the result of the alignment Import Process, which creates the

Associations, and their metadata topics for each association.

import phase completes the initial import process. The SSV Map, which is stored in

the persistent MySQL storage, can be accessed to perform semantic data transfer,

or it can be further added to, for example to add more mapping information, more

ontological entities or to be altered in some other fashion by a different reasoner.

127

Adding New Knowledge

One example of the advantages of this design is in adding new knowledge to the

Target Application. This allows the Context Mediator to add new concepts to the

Target Application which are found in the sources. The Source ontology has entities

which carry information about the learning preferences of the user. This information

could be useful to the target learning application, if the system is appropriately able

to make use of it. In order to perform this addition, the hasPreferences property

is created by the UserModelTool reasoner in the Target Ontology. This expands the

awareness of the system of context, by adding not only new information (such as the

transcript of the student), but also new knowledge (the existence of user preferences,

with the added information about their values). In this example, the UserModelTool

creates a new property with the local name of the source property, and the base url

from the target. In other ontologies, it might be appropriate to retain the URI of

the property.

Once this operation has been completed, then the process of transferring data allows

the system to treat the new property in the same way as those which had been

in the ontology initially. The advantage of this is that the context has expanded

the awareness of the system, and it can therefore take advantage of an improved

representation of the user with more descriptive qualities as well as better data.

5.6.4 Data Transfer

With the Topic Map established, the ontological knowledge in the system remains in

the local ontologies, as held by the SchemaManager. The inter-schema relationships

are represented and characterised in the Topic Map SSV, and are ready to be used to

query the sources of context. In this example, the UserModelTool is called through

the ACP facade class to Enrich the Target Model. This is done in three phases: the

first phase is the identification phase, which is used to locate appropriate information

to transfer to the Target ontology. The second phase is the semantic phase, where

the information is translated from the semantic entities in the source ontology into

128

the semantics of the target ontology. Finally, the syntactic phase is responsible for

translating the data and adding it to the Target Ontology.

Identification Phase

In the UserModelTool parameters, an identifying property is named. This is the

property which allows the reasoner to choose which instance in the source is the

equivalent one to the target’s instance. This permits the system to find corresponding

profiles. The relevant property in this case is ‘hasUserName’ in the Target Ontology,

and upon querying the SSV, the ‘hasUserID’ property is the appropriate equivalent.

In the example, the Target Application’s ontology includes an instance with the

username ‘jsmith’. This value is used to get the Instance URI of the ‘jsmith’ instance

in the Source Ontology. This source instance is then queried, based on the class

information for the ‘Learner’ Class, to get its property values. These values are

recorded, and represent the identified additional information in the source ontology.

For example, the source instance could contain the values ‘programming.java.basic’

and ‘databases.tables.intro’, which provide information on that user’s learning history

with programming and database tables, and can be copied to the target’s equivalent

instance.

With the identification phase complete, the set of information to be transferred has

been identified and aggregated. It must now be translated into the appropriate

properties in the Target ontology.

Semantic Phase

Each of the property value assertions taken from the source ontology is translated as

follows: the equivalent property is located in the Topic Map through the association.

A new aggregation is then created which includes the instance uri in the target (found

by querying the ontology), the property name (found by querying the SSV) and the

property value (which is converted using a lookup table built into the UserModelTool

reasoner). This creates a new aggregated description of the semantically translated

129

information.

The information now just needs to be added to the Target Ontology. In this simple

example, there was no need to look at the metadata for the associations beyond

the operation type. In more extended scenarios, it would be possible to choose

different mappings based on the association metadata, for example choosing a

higher-confidence mapping.

Syntactic Phase

The syntactic phase for this example is relatively simple. The aggregation of

semantically translated values is added to the existing instance in the Target ontology,

one at a time. The result is that the student’s profile has been translated and

transferred between the two systems. The enriched ontology can be written as

a file, and loaded into the New University’s Learning environment. If the Target

Application is appropriately able, it can also make use of the added learning preference

information to further personalise the student’s individual learning experience.

5.6.5 Multiple Sources of Context

In this example, there is one source of context which provides context information to

the target application. However, one of the key requirements of context is to be able

to integrate a variety of sources of context. The ACP supports directly the import,

uplift and alignment of the concepts from several different ontologies from more than

one source.

To demonstrate the way the ACP extends to multiple parties, the example scenario is

altered to include two additional sources of context, which also contain user profiles

relevant to a set of learners. These profiles are from an additional source learning

environment which contains other information about the learning history of the

student.

In order to integrate the additional source of context, an external alignment

130

description is used which describes the integration pathways between the Target

Application and the new Source. The uplift process for adding an additional source

of context is identical to the first, where the ontology concepts are imported by

an uplift reasoner. As part of the uplift process, the concepts are associated with

a service type topic; this type topic is the key to the uniform way in which ACP

reasoners can access different service concepts during the integration process. Sources

of context do not need to be added together, they can be added individually, as

required, at different time intervals.

One approach to incorporating information from several sources would be to call

the UserModelTool repeatedly, each time with a different parameter for the chosen

service. The reasoner is able to transparently include information from each source.

The correct source topics are identified by checking their topic’s types, and ensuring

they have the correct source service type.

The UserModelTool can be extended to take account of more than one service in

a relatively straightforward way by extending its functionality in the identification,

semantic and syntactic phases. In the identification phase, the tool can check each of

the identified associations for each concept, and, depending on their type, and combine

the contents. For example, if the second source service has a hasLearningHistory

property associated with the hasCompetency property of the Target, the result of

the identification phase can include instance and property mapping information

identified in both sources. The semantic transformation phase can take account of

the differences in types between the associations in each source as necessary to create

a set of values to be included in the target at the syntactic phase. In the syntactic

phase, conflicts can be resolved, for example by only including concepts found in

both profiles, or by choosing one profile over another.

An advantage of the ACP architecture is that it places all the concepts from all

participating services together at the same level. The relationships of the topics to

services occurs through the type of the concept topics. This means that reasoners

can access any service’s concepts at each phase of the transfer. This has practical

uses in resolving complex context relationships, for example in a situation where a

131

set of different user IDs can be stored in an identity service, and used to identify

instance mappings between the target and a source of learning data.

5.6.6 More Complex Examples

The approach described here presents a relatively straightforward example of how

the ACP imports ontological information, queries knowledge bases and integrates

contextual information. The system can accommodate more complex scenarios, and

a few examples are presented below.

Complex Data Mappings

More complex data relationships can exist. Instead of a simple lookup table, the

information to be transformed can be handled by complex reasoner functionality,

even to the point of using an external web service call to make the exchange, though

this has an accompanying performance cost. Depending on the complexity of the

Topic Map, it is even possible to combine several pieces of information to integrate

into one new piece of knowledge for the Target Application.

For example, in a more complex user model exchange, there might be a difference of

level of abstraction between the source of context (which operates at a course level)

and the target (which operates at a lower, subject competency level). In this case,

the alignment is described in Fig.5.8 During the mapping import phase, a new type

called ”CourseToSubject” is created. This type indicates that the source is in Course

level descriptions, while the Target is at Subject level. This can be added to the

mapping description after import into the Shared Semantic View. In addition the

”PartialMapping” type is used to describe the relationship between the educational

properties.

Assuming that there is a web service that can convert course codes to competencies,

the transfer process is then altered as follows: the identification phase chooses values

from the ”PartialMapping” relationship, but the a reasoner is added to the semantic

phase which can translate the course list to the subject list. This allows the subject

132

Figure 5.8: Diagram of a more complex example of data relationship resolution.

Dashed, Boxed arrows represent partial mappings.

list from the previous courses in the Qualifications to be added to the Target’s

hasCompetency property. In addition, the current completed subjects from the

hasCourse property can be translated to subject competencies. Finally, the goal of

the current hasCourse can be translated to the Target’s hasGoal.

This might leave significant additional information in the Target Application, if a

user’s full academic competency list were transferred. This can be mitigated in the

reasoner design by limiting the competencies which are transferred. The ACP affords

rich data relationship translation both with internal, reasoner derived functional

mappings, or from external knowledge.

Several Mapping Descriptions

In the situation where there are several different alignment descriptions, the alignment

reasoner can be reused, if the format is applicable. Otherwise, a different alignment

import reasoner can be called, which can incorporate alignment descriptions in

a different format. This second alignment import can happen at any point after

the reasoner concepts have been imported. A key advantage of this is that the

UserModelTool reasoner does not need to be aware of the differences between the

import formats, they are represented identically in the Topic Map.

133

For example, two mapping description files might be created to align the ontologies

in the example above. The first, Description A, maps User to Learner, and

hasUserName to hasUserID, both with high confidence. However, Description A

maps hasCompetency to hasTranscript with low confidence. Description B, on the

other hand, maps only the properties of the two ontologies, and maps hasUserName

to hasUserID, hasCompetency to hasTranscript.

When both of these sets of mappings are imported, the import reasoner assigns type

information which describes which mappings are drawn from which description. The

Transfer Reasoner can therefore choose to transfer property information only where

both A and B agree.

The design presented in this chapter can resolve complex differences in representations

between the structures of the ontologies. An example of this is the process of

transferring a value which is a direct literal related to the class by a data property

in the target, but which is related by an object property in the source.

The ACP reasoners can be structured to resolve this kind of semantic gap by mapping

object property objects to instances and retrieving the property values. This example

is demonstrated in detail in the Evaluation Chapter in the User Model Transfer

case study.

These examples only represent a sample of the possibilities which this approach

provides for. The key advantage to the approach is that the collaboration between

different co-ordinated reasoners means that the system can build a rich semantic view

of the knowledge and information held in both the target and sources of context.

5.7 Analysis of Implementation & Conclusions

This chapter has presented the implementation of the Design of a

semantic-interoperation based context mediator, as defined in the design in the

previous chapter. The key requirements from that chapter were as follows:

While the implementation does include the main requirements, one key issue is

134

Table 5.1: Summary of Requirements Drawn from Design.

Description Implemented in ACP?

1. Mediator Model of Interaction Yes

2. Ontology Reasoning Yesa

3. Creation of Knowledge Bases from Ontologies Yes a

4. Representation of Mappings and Concepts Yes

5. Expressing syntactic differences between concepts Yes b

6. Topic Map Manager Yes c

7. Expressing semantic differences between concepts Yes b

8. User-defined reasoning Yes

9. Run-time calling of reasoners Yes

10. Identification of contextual need Yes d

11. Resolving semantic differences between concepts Yes d

12. Resolving syntactic differences between concepts Yes d

13. Import Mapping Descriptions Yes d

14. Creation of suitable enriched ontology Yes d

a– through Jena
b– using Topic Types and Association Reification
c– using TM4J
d– Using Reasoners

that the SchemaManager is not truly independent of the OWL language. The

implementation is tightly bound to the Jena API, and exposes methods which

represent the semantics of OWL (Classes, Properties, Individuals). There are two

possible paths for resolving this: the first is to accept the notion that the abstract

concepts of class, property and individual are present in many ontology languages,

and use an abstract factory model to create different instances of the SchemaManager,

The second is to remove the methods from the manager, and rely on the reasoners to

ascertain the appropriate methods by reference to the ontology manager within the

SchemaManager, which provides an abstract factory with indicators to the correct

135

implementations. The great addition of complexity that each of these strategies

creates means that both are beyond the scope of this implementation.

One of the key advantages of the system described above is its flexibility. The novel

approach to using a programatically-generated, general semantic network (the Topic

Map) to describe the Shared Semantic View means that the methods described above

for importing and querying the participating ontologies are only one of a wide variety

of possible methods. Individually, or in collaboration with each other, different

reasoners can tailor the representation of the entities, and their categorisation and

description in whatever way best suits their requirements. In addition, because the

reasoners are loaded at run-time, it is possible to form new reasoner compositions

and to delegate functionality. This reuse relieves some of the complexity of authoring

reasoners and using the ACP to achieve context integration.

136

Chapter 6

Evaluation

The Evaluation Chapter of this thesis begins by discussing the methodological

approach to evaluating the design and implementation presented in this thesis. This

is followed by two case studies, and an analysis of the findings from those studies. A

comparative analysis of the ACP with the State of the Art is then presented, followed

by some conclusions.

6.1 Introduction

This chapter presents the evaluation of the context-informed semantic interoperation

approach. The evaluation is based on the performance of the ACP implementation

in two case studies, as well as a comparative evaluation of the approach with similar

systems in the semantic interoperation and context domains.

6.2 Evaluation Methodology

The design of the ACP and of context-informed semantic interoperation is based on

the objective of bringing contextual information from one or more sources of context

and integrating this external knowledge into the information model of the target

application.

137

The approach is based on the use of ontologies because, as seen in Chapter 2 of

this thesis, they appear to describe the shared knowledge space more completely

than other methods. Ontologies include both the instance information, and the

schematic information that describes what concepts exist in the information space.

This means that context integration can become a process of knowledge transfer

as well as information transfer. Unlike conventional XML Schema approaches, for

example, systems which use ontologies can recognise the conceptual space in a more

general way.

By taking the view that context should be integrated without reference to a

pre-existing ontology, the challenge of context integration can be viewed as one

of semantic interoperation. Context integration can be viewed therefore as a specific

case of ontology mediation, where several partially-overlapping ontologies each contain

useful information which needs to be incorporated into a target ontology. An effective

context mediator should be able to support the following:

• Resolution of Differences in Schema and Data: A context mediator

should be able to deal with differences in the schemas of the participants’

ontologies. The mediator should support the resolution of differences between

data in the system. This has two benefits: the first is that it can directly

support the interaction of ontologies which are schematically identical but

which have data differences. The second is that it allows for the resolution of

data level differences which are not conventionally expressible in the schema.

This is evaluated qualitatively in the case studies. For example, the issue of

how to represent concepts in the map so as to minimise conflicts is discussed

in the first cases study1.

• Representation of the Schemas and Alignments: The Context Mediator

and its reasoners need to be able to represent and resolve a variety of different

alignments, schemas and metadata. This aspect includes questions about the

1For example, where concepts are overlapping, but neither subsumes the other. Conventional

first-order ontologies have trouble expressing this, but a system with a suitable data resolution

feature set can express this relationship.

138

representation format of the SSV Topic Map, as well as some questions about

the interaction between the ACP user-defined reasoners and the native ontology

reasoners. One evaluation of this issue is found in the Queries trial of the first

Case Study, which demonstrates a simple alignment and one requiring complex

resolution of schema differences. The performance of both representations is

measured over a small set of instances.

• Inclusion of multiple participants: Many of the semantic interoperation

techniques reviewed focus on mapping two ontologies, one to the other.

Contextual scenarios often depend on interactions between several ontologies

in order to be able to adequately represent the variety of information available.

A suitable context system should be able to handle pairing more than one

ontology with the target. This is principally evaluated in the second case study,

through a qualitative analysis of the representation of multiple parties in case

study two.

These three measures of effectiveness are broad categories which gather together

the requirements and features found in the design and the state of the art surveys

undertaken in this thesis.

The key features identified by the design of the system are:

• the use of ontology mediation

• the use of model-based exchange

• the use of external tools to undertake mapping

The study of context revealed the need for a context mediator that could fulfil the

following functions:

• The transfer of contextual information, and the

• The inclusion of multiple sources of context

• The use of user-defined reasoning to resolve abstraction differences

139

The transfer of contextual knowledge is achieved through an ontology mediator, and

Chapter 3 defines seven properties of mediation. For the purposes of the case studies,

these can be summarised as:

• Related to the articulation

• Related to the information / knowledge transfer

In essence, these properties relate to each other as functional requirements. The

requirements form the design specify the need for a system which does not have an

a-priori model of context, which can take advantage of mapping tools. The context

requirements specify the specific need of a context mediator, and the ontology

mediation properties describe the key properties that must be evaluated for effective

mediation. This is represented graphically in Fig 6.1.

Figure 6.1: Diagram relating the findings of the State of the Art and Design to the

Criteria for Evaluation.

140

6.3 Case Studies

This section outlines the case studies used to evaluate the context-informed approach.

The objectives of this evaluation are derived from the overall thesis objectives. The

evaluation process focuses on two case studies. Each case study comprises several

trials which isolate and evaluate key aspects of the effectiveness of the ACP approach.

Each of these key aspects is covered by different parts of the trials in the case studies.

Some trials cover one aspect, while other aspects are divided between trials (see Fig.

6.2).

Figure 6.2: The Distribution of the Case Study Tasks over the key aspects of the

Evaluation.

• The Representation of the ontology concepts is addressed in two case study

trials. The Naming trial (1.1) investigates some of the possible conflicts and

solutions to representing concepts from different, related ontologies in the

same topic space. The Ontology Reasoning trial (1.3) assesses the value of

trying to import more information from the ontology about the concepts,

which is normally inferred by the ontology reasoner. The import of alignment

descriptions (2.1) also introduces an examination of the representation of the

class-property relationships.

• The resolution of Data and Schema abstraction differences is resolved over four

trials. The Query Trial (1.2) demonstrates the resolution of a schema difference

between the alignment of an object type property and a datatype property.

This means that the user-defined reasoner uses the ontology data to resolve a

141

schema difference. A variety of different structures are then examined in the

External Matching Trial (2.2) in order to show the advantage of using the ACP

as part of an ontology matching workflow. The creation of an alignment import

reasoner was evaluated as part of the alignment import trial (2.1). Finally,

a method for supporting different levels of schema inference capabilities is

discussed in the Schema Alteration trial (2.3).

• Multiple Parties (2.4) are examined by importing a set of ‘real-world’ ontologies

provided externally with their alignments. The expressive capability of the

Topic Map is demonstrated by the ability of the ACP to represent more than

one source of context.

6.3.1 Case Study: User Model Transfer

This section outlines the User Modelling Case Study. Many applications, particularly

those which employ personalisation, employ user models to describe their users.

These models contain information about the users such as their preferences, a record

of their previous interactions with the system and other important information. This

information is used by the system to change its behaviour and state in order to

better suit the user.

One difficulty with User Modelling is that it is desirable to maintain a consistent

user experience across a variety of systems, and there is significant heterogeneity

amongst different applications. This Case Study considers applications which have

ontologically-expressed user models, and attempts to transfer information between

these models, bridging different semantic and syntactic gaps.

Objectives of this Case Study

The objective of this case study concerns the representation of the ontologies &

alignment information in the Shared Semantic View Topic Map. There are a number

of different ways in which this could be achieved. For example, there is a one-to-one

mapping in this system between topics and ontological concepts. It is possible to

142

consider a different scheme, where topics represent the shared concept across different

ontologies. In this model, two related concepts are represented by two topics and

an association between them. There is no single correct representation; one of the

advantages of using a generic and flexible structure such as a Topic Map is that it can

be used in many different ways to express the concepts. This case study attempts to

define some features of a representation scheme which are suitable for the context

integration process.

From an examination of ontologies, there are a few key features which can be included

in the Topic Map, which this case study will investigate. The choice between these

different features will help to create a representation which remains expressive, but

which does not rapidly become too complex to manage effectively. The specific

objectives are:

• To examine the representation of Ontology Classes in the Topic Map, their

naming and how to retain a reference to their originating definition in the

ontology.

• To examine the representation of Ontology Properties in the Topic Map, their

naming and how to retain a reference to their originating definition in the

ontology.

• To evaluate the representation of the Is-A hierarchy in the Topic Map – is

it appropriate to represent the super-class and sub-class relationships in the

Topic Map?

• To evaluate the representation of the Has-A relationships in the Topic Map –

should classes and properties be associated in the Topic Map?

These considerations help to decide the line between what information is stored

in the Topic Map, and what information is retained in the schema manager, and

therefore queried using inference from the ontology reasoner.

143

Methodology & Background of the Case Study

The case study consists of ontologies from two possible eLearning systems. These

systems employ user models to describe the educational history and experience of a

user, including specific subjects which the user has studied. In this case study, the

two models being investigated are based on a model related to the APeLS eLearning

system [Conlan and Wade, 2004] and the IMS LIP Learner Information Package

Specification [IMS Global Learning Consortium, 2005]. These models were chosen

because the APeLS model represents an example of a model in practical use in

eLearning systems, while the LIP model is a well-known international standard

model for learner profiles.

Neither of the user models chosen have official ontological representations. This is

an advantage in this evaluation scenario, as it allowed for the evaluation to include

the examination of different variations in the generation of the ontologies that

described the knowledge in the models. While this does mean that the ontologies

were generated specifically for experimentation with the ACP, this was appropriate

given the objectives of the case study.

Input & Metrics

Two versions of each of the two schemas were examined in the course of this case

study. In each case, the ontologies were derived from the original schemas and

modelled with different features to help assess the considerations associated with a

suitable representation. The ontologies were as follows:

1. One Class, Many Properties – these ontologies represent the learner model in

the form of a class that represents the learner, with attributes represented as

properties of the class instances. This model is schematically simple in the

class domain, but is useful for investigating the nature of property queries. The

properties-oriented LIP ontology is pictured in Fig. 6.3, and the AE ontology

structured in this manner is Fig. 6.4.

144

2. Several Disjoint Classes, with Properties split by category – these ontologies

represents the concept space of the models by translating the attributes of the

model into ontological classes. The values of the attributes are represented

by specific properties, which are bound to those classes. This design creates a

more complex map of classes which need to be accessed and queried by the

reasoners. The class-oriented LIP ontology is pictured in Fig. 6.5, and the

AE ontology structured in this manner is Fig. 6.6.

The evaluation of this case study consists of a set of comparative tests, which examine

different approaches to what is represented in the Topic Map, with the intention of

answering the objectives of the case study. The tests are as follows:

1. Entity Naming – What topic Labels should the topics representing particular

entities have? This test compared full URIs with Local Names

2. Querying Type Hierarchies – is it feasible to attempt to query super/sub-class

and super/sub-property relationships from within the map? This was evaluated

based on the complexity of the queries to the map required by different

representations.

3. Querying Property Values – is it useful to query the Topic Map for the

properties of a Class, or is it better to retain those relationships within the

schema manager?

These issues are evaluated in terms of the metrics described below. These metrics

were chosen to measure the properties of the representation which are suitable for

ontology mediation for context.

1. Minimising Redundancy – the management of mediation is at best a partially

automatic process. This means that it is desirable to make the maps as simple

as possible, so that they are understandable to the administrator who manages

them. Additionally, less redundant maps could be more useful and re-usable.

Redundancy can be assessed qualitatively by comparing the representations

for unnecessarily duplicated information.

145

2. Maximising expressiveness – one of the key requirements is the ability to

address the transformation of information at both a semantic and a syntactic

level in the system. The Topic map scheme needs to be able to retain flexibility

in expressing data and semantic differences. The expressiveness of the system

can be assessed by taking an example which shows a complex difference in

schema representations, and measuring the performance cost as compared to a

simpler transfer, it can also be examined qualitatively by demonstrating that

the system can represent all the necessary features of the concepts and their

relationships.

3. Controlling complexity – The formation of queries should be made relatively

straightforward and as repeatable as possible, to make the design of re-usable

reasoners possible. This can be assessed by measuring the growth of the map

as more concepts are included.

4. Performance Degradation – Performance should ideally not degrade too rapidly,

particularly on the transfer of data. The degradation as model complexity

increases is less important than the degradation as the amount of data passed

increases. This is due to the desire to map relatively small ontologies, rather

than large, complex schemas.

The evaluation was undertaken in several stages, where different ontologies were

loaded into instances of the ACP, and queries were made with the intention of

transferring data from the source ontology to a matched instance in the target

ontology. The ontology structures are outlined below.

An initial version of the ontologies was generated which has a single class that

represents each learner, and the attributes of the learner represented as datatype

property values. Note that in the case of the LIP ontology, some simplifications were

undertaken, such as removing the detailed components for addresses and parts of

names. Details of the eliminated elements can be found in the Appendix to this

thesis.

146

The ontology structures used in this case study were designed to be as small as

possible. There were several reasons to design small schemas: the first is that it lowers

the complexity of the ontology loading and inference phase in the schema manager,

which was not under direct evaluation in this work. The second is that it allowed

the assessment of performance to evaluate the particular cost as the complexity of

the SSV operations was examined.

Figure 6.3: The Property-based version of the LIP ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties.

Evaluation Tasks

In order to evaluate the questions posed for this case study, each of the ontologies was

imported into an ACP Topic Map, and queries were formed. A set of test mappings

were then created, which were used to evaluate the system when using multiple

mapped ontologies. Different combinations of ontologies were evaluated as follows:

147

Figure 6.4: The Property-based version of the AE ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties.

Figure 6.5: The Class-based version of the LIP ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties.

148

Figure 6.6: The Class-based version of the AE ontology. Solid boxes indicate

ontology classes, dashed boxes indicate Datatype properties.

The First Trial was to attempt to import the ontologies and compare different naming

schemes for them. The local name for the entity was used to generate a label for

the topic, which was generated by the schema manager. The four ontologies were

imported in different combinations into the Topic Map, using two different naming

schemes. Analysis of the ontology concepts along with previous literature reviewed

yielded a set of possible naming conflicts. The objective of the first task was to

characterise how the two different naming schemes handled the different naming

clashes, and to gain an overall understanding of how ambiguously-named concepts

behave in the ACP.

The Second Trial involved comparing the system with different ontological

representations. The idea was to show that the system could transfer information

across different types of layers of abstraction. This showed the ability of the system

to deal with differences in ontological representation, and to be able to transfer

information to the Target from ontologies with different structures. A secondary

interest was to assess the performance of the system with different numbers of

instances and alignment relationships.

149

The Third Trial involved an examination of the incorporation of inheritance

information into the Topic Maps. Different query approaches were then evaluated to

determine whether the inclusion of type hierarchy information was useful. The two

strategies in this case were either to use the Topic Map associations or the schema

reasoner to determine type hierarchy information.

In order to test the is-a relationship, the classes were imported and in one version

the Topic Map expressed the has-a relationship, while in the other the ontology

schema was queried for the relevant information. The difference between the two

maps is that in one case, an association was created based on which properties were

associated with the class, based on the domain. In the second case, the reasoner was

used to determine which properties were in a particular class.

Results for Trial 1: Naming

The two naming schemes which were evaluated in this trial were, in the first case,

the use of the concept name (as defined by the schema’s local name), and the full

concept URI. The first case study trial found that there were four main ways in

which two concepts could be related by their names:

• Different Names, Same Concept: is the situation where the names differ,

and the concepts are the same. The conflict in this case arises where the

naming scheme is too specific for the query, and the fact that the concepts

are members of different ontologies leads them to be separated. For example,

where the two ontologies imported are the two LIP-based ontologies, with

the local naming scheme, it is possible to retrieve the concepts related to the

transcript concept in both ontologies merely by looking for that name. This

allows related concepts to be queried for.

A concrete version of this situation arises where a reasoner is designed to

retrieve all of the competency information from several services, all of which

are using LIP-based ontologies. In these cases, the transcript concept is the

same in each of the ontologies, even if the representation is different. The

150

property-based LIP ontology transcript concept has the full URI of http:

//kdeg.cs.tcd.ie/ontologies/LIProp#transcript, while the class-based

LIP ontology concept has the full URI http://kdeg.cs.tcd.ie/ontologies/

LIPClass#transcript. Different queries would be needed to find each of the

different full URIs, even though the concepts are the same. Since the short

name is the same for both ontologies, one query finds both concepts.

• Same Name, Same Concept, Different Data: is where the the names are

the same, and the concepts are semantically equivalent, but contain different

data. The typical example for this might be in where the two participants

in the system use the same ontology, for example, the AE Properties-based

ontology. Each of the services in this system has a different set of user accounts,

identified by the identifier property. For example, the same user named ‘Jane

Smith’ might have the username ‘jsmith’ in one system, and ‘4144025’ in the

other. While conceptually they are similar, the content of the models differs at

a data level.

Neither naming scheme alone is able to resolve this conflict, and it is necessary

to query the association between the topics, if any, to resolve the relationship.

In this case, the difficulty appears when two equivalent participants representing

the same real-world concept in different instances of the same ontology.

For example, both participants use the Properties-based Adaptive Engine

Ontology. The full URI for the identifier concept is http://kdeg.cs.tcd.ie/

ontologies/AEProp#identifier. However, despite using identical software,

the two participants have different user lists, and different user names for

particular individuals. It is necessary to characterise the relationship between

the two at a data level to resolve this problem.

• Same Name, Same Concept, Same Data: The third situation is where

the names are the same, the concepts are the same, and the data is the same.

This situation is the inverse of the first one. In the case of either naming

scheme, it is possible to use the name system to query for related data across

all the ontological concepts which have the appropriate name.

151

http://kdeg.cs.tcd.ie/ontologies/LIProp#transcript
http://kdeg.cs.tcd.ie/ontologies/LIProp#transcript
http://kdeg.cs.tcd.ie/ontologies/LIPClass#transcript
http://kdeg.cs.tcd.ie/ontologies/LIPClass#transcript
http://kdeg.cs.tcd.ie/ontologies/AEProp#identifier
http://kdeg.cs.tcd.ie/ontologies/AEProp#identifier

• Same Name, Different Concept: This fourth situation is perhaps the

most important. In this case, the names are the same but the concepts are

conceptually different. In this case, a query for a particular name will retrieve

concepts which are fundamentally unrelated. The case arises where a word

with multiple meanings is used in different senses in the different ontologies.

A somewhat weak example exists in these ontologies, where the competency

concept in the AE profile can include some features of the competency concept

in the LIP profile, but it is equally possible that they would not overlap. This

arises because the LIP profile has several fields which could represent the

user’s knowledge, while the AE profile aggregates only one. For example, if

the AE competency field includes values such as ‘sql.table.select’, and a value

such as ‘java.intermediate’, which is a broader qualification that would not be

considered a competency in LIP, but rather a transcript value. The use of the

URI scheme is more helpful in this case, as the assumption that word-senses

are universal across ontologies is diminished by using the full URI.

There is a semantic difference between the competency concept expressed in

the Adaptive Engine Ontologies and that of the LIP ontologies. A query

which retrieves concepts named competency will get two concepts with the

same name, but different semantics. This could lead to potential errors as the

Adaptive engine concept of competency is broader than that of the LIP profile.

This risk is somewhat lessened where the two full URIs are used, since they

differ substantially.

The most important conclusion of the examination of names is the need for additional

information to characterise the specific relationship between similarly or differently

named concepts; names alone do not suffice. However, some decisions can be made

about the types of conflict that can occur, and how to avoid difficulties. It seems from

the trial that the use of full URIs makes a stronger statement about what concept the

Topic refers to, and therefore reduces the likelihood of a semantic ambiguity resulting

from a name-based query. One additional advantage of the URI-based scheme is that

this is generally the addressing scheme used to access concepts within the schema

152

reasoners, and therefore the names can be used without having to perform additional

queries.

In order to be able to appropriately query for data, it is necessary to establish the

exact conceptual relationship between the two topics. This must be done using both

the topic metadata(such as the type of the topic describing its ontological type2, and

the association information which characterises the semantic and data relationship.

The performance3 of the system for importing concepts was measured. The four

ontologies were each imported in turn into the same Topic Map. The trial was run

three times, with different ordering for the ontologies, in order to gain a representative

average. The performance was measured on the version of the APC implementation

which included the indexed naming system.

Trial 1st Service 2nd Service 3rd Service 4th Service Total

1 5.892 3.682 4.038 3.642 19.368

2 6.588 4.587 2.933 2.875 18.553

3 6.475 4.006 3.672 3.099 18.933

Table 6.1: Import times for four ontologies in different orders. All times are in

seconds. The import of the first service takes longer because it includes the time to

create the map.

The use of small ontologies means that these statistics represent an estimate of the

minimum time which would be needed to import simple ontologies into the system,

having loaded the schema and SSV infrastructure. From the table, it is possible

to estimate the time taken to initialise the map and load the inference libraries at

approximately two seconds.

2OWL URIs do not distinguish between different property or class concepts.
3Performance is measured as the time output by using the Java Calendar class to record the

epoch time in milliseconds at each stage of the trial. The trials were conducted on a MacBook Pro

with Intel Core Duo 2.6GHz, running a virtualised image of Ubuntu 9.04 64-bit with 1984MB of

RAM allocated.

153

Results for Trial 2: Queries

The objective of this trial was to gain an estimate of the performance and effectiveness

of the system under different model transfer situations. The trial took place

with two ontology combinations. In both cases, the AE ontology was the Target

Application, and the LIP ontology was the source of context. In the first ontology

combination, the property-oriented AE ontology was enriched with knowledge from

the property-oriented LIP ontology. In the second combination, the property-oriented

LIP ontology was enriched with knowledge from the class-oriented LIP ontology.

Instances were generated for the Source ontologies which included information about

the user in the form of concept strings, which approximate the LIP format. An

ontology mapping was created. The trial compared the time taken to transfer 1, 5

and 10 instances for 1, 2 and 3 associations requiring data transfer. Each Instance

contained the same learning information, so as to provide consistent performance

estimates.

In this system, the two ontologies were imported using a SchemaIntegrator Reasoner.

This reasoner operates by listing the classes and properties of each service’s ontology.

Ontology Classes are given the types for OntClass, the service URI. Ontology

Properties are given the type OntProperty and the serviceURI containing them. The

full URI of the class or Property is attached to the ontology is used both for the

BaseName for the Topic, and for the content of the Occurrence, which also has the

OWL type. Alignments for these ontologies were manually generated. The alignment

for the first property-oriented trial is relatively simple and involves associating the

two classes and the equivalent datatype properties. The IDProp type was added to

the topics which represent the unique username field in both services. The alignment

for the class-oriented trial is more complex, and is shown graphically below (Fig.

6.7).

Red lines indicate associations created by the alignment, and callouts represent

additional types added as part of the alignment. This represents one of the advantages

of using a Topic Map structure for representing the mappings: the full map has been

built with different reasoners as needed, with the ability to add metadata for specific

154

purposes as required.

Figure 6.7: Graphical Representation of the Alignment for this Task between the

Property-based AE and the Class-based LIP. Solid boxes indicate ontology classes,

dashed boxes indicate Datatype properties. Lines indicate alignment mappings,

arrows indicate class-property relationships and callout bubbles indicate attached

types in the Topic Map.

The first phase in the context information integration is the identification phase. The

purpose of the identification phase is to locate which parts of the source ontologies

need to be queried to transfer appropriate context information. This includes

identifying both the correct properties and classes through the topic associations, and

the specific instance data. In both trials, an assumption is made that there exists a

property in both service ontologies which uniquely identifies a particular users record

(tagged with IDProp). This property is assumed to be unique and, for this example,

the same in both systems. It would be a simple extension to the functionality of the

reasoner to translate between different usernames. The assumption is also made that

155

the list of blank instances in the target ontology will be filled by the source ontologys

instances, which contain educational information. In the Property-oriented Trial, the

objective is to identify the equivalent instance in the source ontology which correlates

with the instance in the target ontology. This is achieved by looking for the property

in the Target Ontology which has the IDProp type and finding its associations. The

Source ontology is then queried for the instances with the same ID property value as

each of the Targets Ontologies. The educational information is then identified by

finding the appropriate equivalence associations in the Topic Map, and recording

them for each source service. In the case of the Class-oriented trial, the matter

of identifying the correct instance is more complex. The equivalence relationship

established between the classes is between the two profile classes. However, the users

information in this case is split between two separate instances of different classes. It

is necessary to use some extra type information to look up the appropriate instance.

This works by first identifying the correct Learner Information Class instance for

a particular username. This information is then used to find the appropriate LIP

class instance. From this, the system can use the designated educational Property

to find the educational information instance, which can be used to transfer the

educational data. The educational information property identification is similar to

the property-oriented trial.

For example, in the Adaptive Engine Property-based ontology, a user profile

for ‘jsmith’ is contained in the instance with the URI http://kdeg.cs.tcd.ie/

ontologies/AEProp#jsmith. However, in the LIP Class-oriented ontology, the

username information is held in the instance of the Identification class with

URI http://kdeg.cs.tcd.ie/ontologies/LIPClass#idjsmith, and the learner

information for that profile is held in an instance of the LearnerInformation

class with URI http://kdeg.cs.tcd.ie/ontologies/LIPClass#lijsmith. The

relationship between these two instances is held in LIP class instance with URI

http://kdeg.cs.tcd.ie/ontologies/LIPClass#LIPjsmith. In order to find the

learning information held in the QCL, transcript and competency properties of the

LIP Profile, the system:

156

http://kdeg.cs.tcd.ie/ontologies/AEProp#jsmith
http://kdeg.cs.tcd.ie/ontologies/AEProp#jsmith
http://kdeg.cs.tcd.ie/ontologies/LIPClass#idjsmith
http://kdeg.cs.tcd.ie/ontologies/LIPClass#lijsmith
http://kdeg.cs.tcd.ie/ontologies/LIPClass#LIPjsmith

1. identifies the correct Identification instance using the fact that the UID

property has the ‘idProp’ type in the map.

2. finds the LIP instance which points to that identification instance using the

hasIdentification property, which is typed as ‘LearnerInfoProp’.

3. finds the LearnerInformation property value for that LIP instance.

4. identifies the equivalent property associations in the source and maps them to

the target (mapping competency in the Adaptive Engine ontology to transcript,

QCL and competency).

This creates both an instance map and a property map, which can then be used by

the semantic phase to retrieve the information.

The second, semantic phase begins with two sets of information: the mapping between

the instances of the target and the sources, and the mapping between the target

properties and source properties. The system can then iterate through this list and

query the source ontologys instances for each instance and gather the information.

At this point, the information can also be semantically transformed as necessary.

The queries are issued to the schema manager, and so the results come from the

inferred ontology knowledgebase.

Continuing the example, this phase generates a list of tuples which include the

instance, property and value information for each property value retrieved from the

source. The information can be transformed as necessary at this point.

In the final syntactic phase, the list of values for the targets instance properties are

passed to the targets ontology. Any other syntactic restrictions that might emerge

can be inserted here, such as how particular values are asserted, this includes the

choice of property types or the way values are assigned. In regards to the property

information, a reasoner is required to be able to resolve the has-a relationships within

an OWL ontology. This arises because the instance information can define which

classes have what properties. It is therefore similarly difficult to devise a general

means for expressing the has-a relationship in the Topic Map.

157

Finally, the updated ontology is now resident in the schema manager, and can be

returned in serialised form to the Target Application, or otherwise used by the

context system.

One early difficulty in the performance of the system was that the process of finding

the unique identifier from the topic label. There is a many-to-many mapping between

names and topics, and the initial algorithm looped through all of the names of all

of the topics and sought matches. The degradation of performance in this process

was substantial. The implementation of the system was therefore altered to take

advantage of the built-in basename index system. This feature was part of the TM4J

Topic Map library, and provided a substantial saving in time required to locate topics

of a particular name.

Tables 6.2 & 6.3 indicate the average times for the complete process of initialising

the system, loading and importing ontologies, generating alignments, calculating

instance mappings and transferring instances.

of Instances 1 attribute 2 attributes 3 attributes

1 14 14.43 14.15

5 13.91 14.12 15.02

10 14.09 14.63 14.69

Table 6.2: Average Transfer Times (in sec.) where the source of context’s identifying

property was an objecttype property

of Instances 1 attribute 2 attributes 3 attributes

1 13.52 13.66 13.66

5 13.45 13.76 13.90

10 13.49 14.78 14.08

Table 6.3: Average Transfer Times (in sec.) where the source of context’s identifying

property was datatype property

There is no significant trend across the different configurations. This would seem

158

to indicate two things: first, for the small scale ontologies used in this example,

the mediator’s performance does not degrade rapidly either for alignment or

schema complexity, or for number of instances. Secondly, the cost of loading the

infrastructural libraries of the Topic Map and ontologies seems to dominate the

performance cost of the process.

To give a sense of scale of these transfers, they are small by comparison to those more

commonly used in ontology mediation (see the case study below). However, they

are representative of the size of information which might be transferred in context

situations. Context information is usually transferred for particular situations, such

as a small group of learners or a particular user. The amount of information to

transfer is also likely to be small, for similar reasons.

Results for Trial 3: Schema Representation

In order to be able to attempt to resolve the issue of querying super- and sub-

type information within the Topic Map, it was necessary to attempt to establish

an algorithm which would satisfactorily resolve type hierarchy questions. However,

in the absence of the creation of a reasoner for the Topic Map, it does not appear

to be possible to create an appropriate algorithm. There are two difficulties: the

first is that the current associations are non-directed, and this means that it is

difficult to resolve the hierarchy. The second is that it would be necessary to know

in detail the behaviour of the concepts within the map. While ontologies crystallise

conceptual spaces, the specific behaviour of their entities depends on the behaviour

of the reasoners and the languages which they are written in. It does not appear to

be possible to generalise this, particularly within the loose descriptions which Topic

Maps provide.

With the strategy of devising a reasoner for the Topic Map discarded, the remaining

strategy is to query the reasoners themselves and record the information in the map.

However, this is undesirable for two reasons: first because it is a duplication of

information which exists within the schema knowledge bases, and second because

the information could be subject to change with the arrival of new instances, or it

159

could differ between different parties to the same shared semantic view.

For these reasons it was decided that it is preferable to be able to resolve schema

and instance queries within the specific managed knowledge bases within the schema

manager. The Topic Map’s role in the system is to represent the concepts in the

system, their alignments and the metadata needed by the user-defined reasoners.

The internal ontological relationships of the concepts are left to the native ontological

reasoners.

Overall Findings for this Case Study

The analysis of the naming trial indicates that the use of Full URIs for topic naming is

preferable. There is a suitable assumption that the use of the same URI will indicate

that there is a schematic similarity between two entities from different ontologies.

This assumption does not mean that the same data is held in each ontology, but

they can be said to refer to the same notional concept. The use of full URIs also

help with more general problems, such as conflicting local names, where totally

unrelated concepts have the same local name, each a different sense of the same set

of letters. The first trial also supports the need for metadata to describe the service

membership of particular concepts, as well as querying associations as the method

for unambiguously determining the relationship between two topics. Neither naming

scheme provides a sufficient description of the shared semantic space.

The second conclusion is that it is desirable to retain as much information as possible

in the ontologies themselves. The lack of a Topic Map equivalent to the ontological

reasoner meant that it was difficult to be certain that the formation of queries was

correct, unless the reasoners were highly specialised. Attempting to represent this

information in the Topic Map was redundant, and represented a less efficient method

than forming a more appropriate query to the schema manager.

Similarly, the association between properties and classes could be elicited from the

ontology schema, but doing so applied conceptual constraints which do not exist

in the knowledge base itself. The association between properties and classes in

160

OWL depends on the instance information available, and while domains and ranges

provide some assistance, there are other ways of specifying local type restrictions

[Bechhofer et al., 2004] which are not currently queried by the system. For this

reason, it is also preferable to retain the has-a relationship information within the

ontology, and query it at run-time. This has the added advantage of allowing for

change in the event that new instance information appears.

In practice, the only effective way to query for both has-a and is-a relationships in the

ontology is using a reasoner, so the choice of representing the associations in the map

effectively ends up depending on the reasoner either way. This fact reinforces the

desirability of using the schema’s native reasoner to determine ontological reasoning

when needed, especially for the association between classes and properties, because

the use of domains and ranges is entirely optional in specifying properties. This

has the consequence that without using a reasoner, a large proportion of important

class-property relationships could be missed.

With regard to the is-a relationship, creating associations which describe the type

hierarchy in the system greatly increases the complexity of the queries for the map.

Currently, the ACP does not make use of role types to define how each member type

in the association participates in the system. Including this would allow the system

more expressiveness by allowing for identification of which class is the superclass and

which is the subclass in the association. However, this would come at the cost of

needing to provide types to describe the member roles, and require the system to

query those member roles extensively to resolve the type issue. Furthermore, this

fails to address the underlying difficulty of being able to say for certain whether a

query has completely or appropriately resolved the type hierarchy. Attempting to

represent the is-a relationship in the map creates a large number of extra queries

which are not even guaranteed to resolve correctly. Based on this,it was found to

be preferable to be able to resolve questions of type within the native ontological

reasoners, and this can be achieved using the ACP architecture. An added advantage

is that it permits different ontologies to be treated with different reasoners, in the

case that this is desirable (for example, for different OWL dialects).

161

The use of the system, and the various attempts to handle topics with similar names

led to two interesting conclusions. The first is that the use of topic types must

be carefully guarded against unwanted ambiguity. The second is that there was a

need for a richer way to describe the relationship between topics, for example to

characterise more detailed information about the semantic or syntactic relationship.

This led to the development of the reification features which are described in the

Design chapter.

The second trial in this case study has also demonstrated one of the key requirements

for the ACP’s ability to resolve differences of abstraction. The transfer of the

identification information from the hasIdentification object property in the source

is an example of the resolution of an object-to-data property abstraction. The object

property contained an instance of the identification class, which needed to be aligned

with the datatype identifier property in the target. This trial demonstrated that the

ACP can transfer information across a complex difference in schema representation,

using instance data to determine the instance alignment and retrieve the correct

data, and that for small ontologies with few links, there was no significant penalty

for resolving the more complex relationship.

The size of the Topic Map for a particular context situation depends on three factors:

the size of the ontologies, the number of types, and the number of mappings loaded.

On the other hand, the cost of inferring ontologies only depends partially on the

number of entities; the complexity of the logic underlying those entities can create

very slow or even intractable inference. It is therefore likely that, for most cases, the

limiting factor of complexity is the ontological complexity, rather than the Topic

Map.

This points to the desirability of better performance in the loading of ontology and

Topic Map infrastructure. Part of this cost can be deferred in practical use of the

system, because the ACP saves persistent Topic Maps in a database, which means that

the ontologies do not need to be imported each time a query is issued. However, overall

the current performance would not be suitable for high-responsiveness applications.

The high cost of using a reasoner such as Jena, and strategies for selecting other

162

reasoners are beyond the scope of this work, but the issue has been similarly

highlighted by others [Lewis et al., 2006].

6.3.2 Case Study: Bibliography Benchmark Ontologies

Objectives of this Case Study

This case study is designed to evaluate the use of the ACP with high-quality,

independent ontologies and independently-produced mappings. This shows that the

ACP can form part of a mediation workflow that begins with an a-priori mapping

event, and ends with context information integration using mediation. This is an

important advantage of using semantic interoperation because it takes advantage of

existing tools for mapping ontologies and contributes to mapping reuse by taking

advantage of generic mapping descriptions.

The first objective of the case study is to show that the ACP can fulfil the requirements

of a semantic mediator, the ACP must demonstrate the ability to import mapping

information from external tools, resolve a variety of schematic differences, and show

that it can handle a set of sources of context. Two trials in this case study demonstrate

those features on a set of independently-authored ontologies and mappings, one deals

with the method of importing mappings and ontologies, and the second with the

process of transferring information using the same reasoner in different ontology

combinations.

The second objective of the case study is to evaluate, from the perspective of the

context mediator, two of the key features of a context-informed system. The first of

these features is to examine supporting enriching the target application’s schema, in

order to allow a highly-dynamic application to take account of new concepts. The

second trial demonstrates the process of importing more than one source of context

ontology.

163

Methodology

In order to help show that the ACP is reasonably general in its ontological support,

it was decided that a set of independently-authored ontologies and alignment

descriptions should be used. The OAEI4 Workshop provides one of the few

high-quality reference ontology sets which include alignment information and which

can be used to evaluate a system such as the ACP. The OAEI itself is directed more

towards the process of finding and describing ontology matches themselves, so the

ACP is not a direct candidate system. The idea of being able to consume the output

of a matching process for mediation is, however, a powerful advantage of the semantic

interoperation approach.

The subject domain for the OAEI reference ontologies is that of bibliography, and

publications. The ontology instances describe various publications, authors and

publication venues. The key importance of these ontologies is not their specific

subject domain, but rather the fact that they provide an independent test bed for

the ACP.

The OAEI reference ontologies are arranged into a series of alignment tests, where

two ontologies are given a particular alignment, and differ from each other in various

structural ways. The ontology pairs consist of a reference ontology, which is the

target application for the ACP, and a source ontology, which is the source of context.

The context data in this case is the instance information about the publications. Due

to the nature of the OAEI testing, there are several ontology pairs which are not

directly relevant to the ACP evaluation. These include tests such as the one where

there is no alignment between the ontologies, and various tests where only additional

annotations have been removed. The evaluation case study is therefore based on a

partial set of the reference pairs, selected to provide coverage of the required features

of the ACP. The alignment information for the OAEI ontologies is given in the form

of Align RDF description files [Euzenat and Schvaiko, 2007]. These files are sets of

alignment pair descriptions which include the source and target ontologies, as well

as the full concept URIs, a measure of the confidence of the alignment and the type

4Ontology Alignment Evaluation Initiative

164

Figure 6.8: Graphical representation of an example mapping. The full URIs have

been shortened to class names for clarity.

of relationship. The alignment files are the result of a pooling exercise undertaken

by the participants in the workshop [Euzenat et al., 2007], and can be viewed as an

agreed ‘gold standard’ mapping. The mapping RDF files are in Align Level 0 format5.

An example alignment between the title properties in the reference ontology and the

MIT Bibtex ontology6 takes the following form:

Refalign.rdf

<map>

<Cell>

<entity1 rdf:resource="http://oaei.ontologymatching.org/2007/benchmarks/101/onto.rdf#title"/>

<entity2 rdf:resource="http://oaei.ontologymatching.org/2007/benchmarks/301/onto.rdf#hasTitle"/>

<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.0</measure>

<relation>=</relation>

</Cell>

</map>

Each alignment file describes a one-to-one mapping between concepts in the two

ontologies, referenced by their URIs. This means that there is no indication from

the alignment file as to whether it is mapping a Class to a Property, for example. In

fact, the alignments in these trials mapped only classes to classes and properties to

properties. A partial graphical representation of the Book Class and two properties

is shown in Fig. 6.8.

5c.f. Chapter 3 for more detail on the Align Format.
6one of the ’real world’ reference ontologies.

165

Inputs & Metrics of the Case Study

The Evaluation of the case study will therefore depend on four tasks:

1. To develop ACP Reasoners which can import OWL ontologies and Align RDF

mapping descriptions to form a Shared Semantic View. The evaluation of this

task included two key metrics: to show that the system could import all of the

information from the alignment descriptions in a way that could be extended

by other reasoners. Secondly, a question arose about importing class:property

pairs, rather than classes themselves. The key metric in this case was the cost

in terms of size for the map. This task helps to assess the expressiveness and

redundancy of the system.

2. to show that the ACP can effect a variety of different types of context integration,

including bridging different schema representations. The key metric here was

to be able to show that the system could use the same transfer reasoner to

transfer information between different ontology pairs, each with a different

alignment description file. This shows the advantage of being able to use the

Topic Map to represent the alignment information in the Topic Map, creating

more reusable reasoners. The key variations to be covered are:

(a) Concept naming variations: including translated Class and Property

names, labels and comments, changes in spellings, naming conventions

and other variations.

(b) Owl language variations: including the addition and removal of

restrictions, properties and data types.

(c) Hierarchical variations: including hierarchy expansions, hierarchy

flattening (to the point of removing all super-class relationships) and

inclusion of intermediate classes.

These tasks demonstrate the expressiveness of the system, as well as its ability

to handle differences in schema and data.

166

3. to demonstrate the notion that the ACP can support different levels of reasoning

in the target application, by showing a method for transporting schematic

knowledge in the form of new classes or properties to the Target Application’s

ontology. This helps to assess the ability of the system to express complex

knowledge relationships.

4. to import more than one source ontology, to show the ACP can deal with a set

of sources of context. The structure of the context model is that it is focused

on integrating information across a set of sources to one Target Application,

creating a many-sources-to-one-target structure for multiple participants, rather

than a full many-to-many mapping structure. This means that it is not

necessary to have mappings from source-to-source to be a complete description;

source-to-target mappings are sufficient. The key feature in this trial is to show

the expressiveness of the ACP allows for different services to be accessed in

different parts of the integration, as necessary. This is used to show qualitatively

that the ACP can handle multiple parties.

Results of Trial 2.1: Import of Schemas and Mappings

There are two stages to the process of establishing the Shared Semantic View before

it can be used to transfer information. The first stage is to import the ontology

concepts. The ontology import reasoner which was used in the first case study was

reused in this case study, and used the representation schemes which were chosen

during that experiment. During the course of this trial, another representation choice

was considered for the Topic Map. In the previous experiment, one concept was

created for each property and class concept in each ontology, and one association was

made which represented the relationship between all instances of a particular class or

property. This means that the properties and the classes were considered separately,

and the ACP would use the ontology reasoner to determine which properties were

used based on the ontological inference. For example, in the reference ontology7, the

7Note, in this experiment, full URI topic naming was employed, but for clarity in this text, the

short names are used.

167

title property represents the title of both Monograph and Manual class instances.

The mapping to the benchmark test ontology described in the RDF maps title to

title, Monograph to Book, and Manual to Publication. In the current model (Fig

6.9), the system would query for the equivalent class to Monograph, get the property

list, find the equivalent to title and retrieve the information. However, the question

arises as to what to do if the relationship is different in the Monoograph to Book

relationship than the Manual to Publication relationship? This information can be

managed in the Semantic and Syntactic phases of the ACP user-defined reasoner:

data relationships can be encoded in the logic of the reasoner. However, there is no

indication of this distinction in the Topic Map. The cost of this representation is

a map with a greater number of concepts: one for each class:property pair, and an

association for each equivalent class:property pair(Fig 6.10). The evaluation of this

question was therefore based on the increase in the size of the map, as compared to

the model of importing properties and classes separately. The experiment undertaken

was to import three ontologies from the benchmark: the reference ontology and two

of the ’real world’ ontologies provided as part of the benchmark. The class:property

pairs were generated by adding a topic for each of the declared properties associated

with the classes in the ontology, based on the inference from the default Jena reasoner.

Annotation and restriction properties were ignored in both cases. The results can be

seen in table 6.4.

Class and

Property

Separate

Class:Property

Pairs

Reference 104 1137

Ebiquity 46 755

MIT BibTeX 60 361

Table 6.4: Total Size of Topic Map in number of Topics for different representations

of the Is-A relationship. The number of associations in the map grows proportionally

with the size difference of the maps.

168

Figure 6.9: Topic Map for Separate

Classes and Properties. Red Solid Lines

indicate Associations, Classes are Solid

Boxes and Properties are Dashed boxes.

Figure 6.10: Topic Map for

Class:Property Pairs, with the dashed

arrows indicating the Class:Property

Relationship

The result of this trial shows a significant increase in the size and complexity of the

Topic Map in the class:property pair case.

Trial 2.2: Resolving Differences in Abstraction Using External Matching

Tools

The first case study already showed one example of resolving a key difference

in ontological representations: where a difference in class structures meant that

information in an instance of an object property needed to be aligned with information

in a datatype property. This trial involves the use of the benchmark ontologies

from the OAEI alignment set to show that the ACP can resolve other variations

in alignment using external alignment information. For this test, a target ontology

consisting of the reference ontology with part of its instance data removed was

169

the target application, and instance information from the source ontology in each

evaluation test was transferred to show the system’s capability. The alignment

information was imported from the Align RDF gold standard files. Each alignment

test consisted of the reference ontology, a separate test ontology and an associated

alignment file. Each test considered either a different variation in the structure of the

reference ontology, or a different ontology (in the case of the ’real world’ ontologies).

In the trial, 18 ontology alignment tests were performed. The 18 different ontologies

which were aligned and transferred are described in table 6.5.

The result for this trial indicates that the ACP could transfer information using the

same reasoner across a variety of different ontology combinations. While there was

no instance data included in the last four ‘Real’ ontologies, they required different

ontology profiles to load them. This shows an advantage of the ACP model, because

it was able to choose a more complex inference profile for one ontology and not

another.

Trial 2.3: Supporting different levels of Target Application Ontology

Inference

Part of the value of using ontologies to transfer information in the ACP is that they

include both schema and data information. Schema inference allows the system

to load and use a variety of different ontologies, with different concepts. Schema

inference allows the system to answer queries on the nature of the representation of

the data, as well as the value of particular data in the ontology.

The fact that the ACP loads the schema information for the ontologies centrally opens

up the possibility of altering the schema of the enriched ontology which is returned to

the application. This mechanism can, in effect, change the knowledge of the system,

as well as its information. Most current applications are not knowledge-driven, and

would not likely be able to take advantage of new schema information.

The ability of an application to react to changes in knowledge (schema) and

information (instance data) is a measure of its adaptivity. There is a scale of

170

Ontology

Code

Concepts

Imported?

Alignment

Imported?

Instances

Transferred?

Notes

101 Yes Yes Yes Identical Ontologies

103 Yes Yes Yes OWL-Lite Generalisation

104 Yes Yes Yes OWL-Lite Restriction

201 Yes Yes Yes Randomised Names

202 Yes Yes Yes Randomised Names, Labels

204 Yes Yes Yes Altered Labels

205 Yes Yes Yes Synonyms

206 Yes Yes Yes French Ontology

207 Yes Yes Yes French Labels

221 Yes Yes Yes Hierarchy Removed

222 Yes Yes Yes Flattened Hierarchy

223 Yes Yes Yes Expanded Hierarchy

224 Yes Yes No No Instances

226 Yes Yes Yes All Data is String Type

301 Yes Yes No Real:BibTeX/MIT

302 Yes Yes No Real: BibTeX/UMBC

303 Yes Yes No Real: Karlsruhe

304 Yes Yes No Real: INRIA

Table 6.5: Table showing different ontology combinations which were executed in

the ACP. Instance data was transferred where available.

171

different possible levels of adaptivity in applications:

• Non-Dynamic applications work from a fixed schema, and a defined range

of information. The ACP can support these applications by transferring

information from external sources, and transforming the information stored in

those sources as necessary to fit the fixed nature of the target. An example of

this type of transfer is the one shown in the first trial, where missing information

is added to a partial profile of a student.

• Information-Dynamic applications can take advantage of new data about

concepts which they already are aware of. This can be the addition of new

instances to the system, for example expanding the list of known publications.

• Knowledge-Dynamic applications can take advantage of new knowledge to

change their behaviour. In the ontologies, this could mean the addition of new

properties, which assert new facts about a particular instance (for example,

by adding a new property to a class). An even more adaptive system might

be able to take account of new concepts in the ontology, represented by new

classes (for example, the addition of the notion of a Movie to the Karlsruhe

ontology, which covers only printed publications).

There are different methods for recognising the addition of new knowledge to a

schema, depending on the capabilities of the participating systems. Because of this, a

full evaluation of this technique is beyond the scope of this work. However, as a proof

of concept, two changes were shown in the Karlsruhe bibliography ontology, with

the reference ontology as the source. The first was to add the Movie class and its

properties to the ontology by using a reasoner which looked for the ”TransferClass”

type and added it to the target ontology. An equivalence association was then created

between the two classes. The properties of the newly-transferred class can then be

determined by looking for the appropriate equivalent classes in the target ontology,

and adding the new class to their domain8. This creates a whole new concept in the

8This is optional, and depends on the specific structure of the ontology. Class-Property

associations are often inferred from the instance information.

172

target ontology, which has appropriately reused the properties in the target ontology.

Transfer of properties could be achieved in a similar fashion, with the possible Classes

used by particular object properties being recognised using equivalence properties

in the Topic Map. The recognition of possible new classes might be achieved in

future by taking advantage of the structure of the schema itself. For example, if the

Reference classes in two ontologies are equivalent, it might be suitable to query

the Topic Map to find subclasses in the source ontology which do not have direct

equivalents in the target ontology. These could then be transferred to the target

ontology as described above. A similar technique could be applied to properties of

classes which do not have equivalents.

Trial 2.4: Multiple Parties

The Structure of the ACP Schema Manager is that it retains a set of services, which

are recognised by a unique URI. Each service is associated with a separate ontology,

which is stored in and accessed via the schema manager’s methods. In the Topic

Map, each of the concepts from each service ontology is represented by a topic. As

part of the topic metadata, the schema-importing reasoner can attach a type for

the concept’s service. This allows the Topic Map to maintain separate references

to the same concept. For example, one of the benchmark tests imports the default

ontology twice. In the Topic Map, this is represented as two different but identical

sets of concepts, each typed with a different service type. For example, the two topics

representing the Book concept in the combined Topic Map would both have the

‘OntClass’ Type, and each one would have either the ‘http://example.com/service1’

or ‘http://example.com/service2’ type depending on which service they are from.

This method of representing concepts means that the ACP is naturally able to extend

to more than two parties. In practice, each additional ontology is recognised as a

new service type, which has a type topic that is added to the map along with its

concepts. The map can therefore grow incrementally as new ontologies are added,

and can treat new services like other types which are attached to topics in the map.

173

The ACP Shared Semantic View manager provides for persistent storage of different

maps in the system. This allows reasoner functionality to be broken up and reused, as

illustrated with the schema importer and Align RDF importer user-defined reasoners.

This means that these reasoners were able to be used for a service environment with

more than two parties without alteration.

In the experiment, three ontologies were imported into the Topic Map: one target

application and two sources of context. The target application was the benchmark

ontology, while the MIT and Ebiquity ontologies were used as sources of context.

The three ontologies were imported one by one by the default schema importer,

and the alignment reasoner was used to map 296 alignment statements from three

description files.

The layout of the services was derived both from the mediation scenario, where

several sources feed one target application, and by the nature of the mappings, which

were reached by loading the separate one-to-one alignment mapping files for the two

source ontologies to the reference ontology.

This configuration suggests at least two approaches to transferring information: The

first was to call the information transfer reasoner several times, each time choosing

a different source. The second method extended the reasoner to iterate across the

services during the identification phase, creating a combined list of entries. While

the test alignments and data were not differentiated, this shows that in a real-world

system the ACP can gather and compare information from several services and

combine it at will. This simple scenario can easily be extended to more complex

relationships, for example where information in one service is used to select instances

from a second source to be transferred to the Target. A concrete example of this might

be where one bibliographic ontology maintains a list of relevant publications for a

particular subject, but a second, more general ontology contains the full bibliographic

information. The list of entries from the first service could be used to select instances

from the second service to populate a complete bibliography in the target application.

However, due to the fact that the included ontologies did not include instance data,

these approaches were not fully evaluated.

174

Key Findings for the Case Study

The first finding for this case study is that the advantage of separating the alignments

across class:property pairs is that each alignment can then be described differently,

allowing different reasoner behaviour for different sets of classes and properties.

However, the high increase in map size would seem to rule out the use of class:property

pairs. A significant increase in the map size alone would not necessarily be sufficient

reason to avoid this technique. There are several possible ways to avoid a large

increase. For example, the class:property pair technique could be reserved for specific

designated properties which are diversely reused across the ontologies. The main

reasons for distinguishing the properties of different class:property alignments come

either from the differences in the restrictions of the property, or from some property

of the alignments at the data level. The ACP does not currently support property

restrictions, and so it would be preferable not to duplicate that information in the

map. Instead queries about ontology restrictions could be made from the ontology

reasoner, which supports them. The second reason to distinguish alignments is

because of differences at a data level. The alignment and schema information

provided in this test case does not include that distinction.

While there may be example scenarios where this technique could prove important,

for the purposes of this case study and similar scenarios, Classes and Properties were

independently imported and correlated using ontology inference.

The result of the second trial with different ontology pairs showed that using the ACP

as part of a complete semantic mapping workflow yields useful advantages in being

able to reuse ontologies and overcome variations in differences in abstractions. These

differences represent a broad range of the possible variations in related ontologies, and

the fact that the ACP can bridge those gaps, using the same transfer reasoner with

different alignment description, shows the advantage of semantic interoperation as a

basis for creating context integration. This demonstrates the advantage of the use of

semantic interoperation as a process for establishing context integration pathways.

Much of the effort in handling the variation between the different ontologies has been

achieved by the use of an external ontology mapping tool, the alignment data for

175

which is imported into the ACP Topic Map.

The transfer included a small (between one and ten) number of property values,

some object and some data properties. The object property instances were aligned

in the two ontologies.

In this trial, the instance data included in the benchmark ontologies was not extensive,

and so the case study test for information transfer was a relatively straightforward

one. This arose from the fact that the input information was restricted to that which

was provided by the benchmark. The advantage of the ACP, as demonstrated in

the first case study, is that it provides a mechanism for creating complex instance

mappings, and resolving structural differences such as object-to-data mappings,

where necessary.

The third case study objective was fulfilled in trial 2.3, which presented a set of

different ways in which applications can accept changes to information and schema,

and demonstrated how the ACP could support them.

The alteration of the schema in this fashion can take place for a number of different

reasons. The key novelty is the notion that the schema could be altered in this

fashion. One of the advantages of this model is that the reasoner creates a topic and

associations for the new concept as normal, typed as a native concept to the target

ontology. This means that this part of the Identification phase can be constructed

so as not to affect later parts of the integration process.

This notion of altering the schema as well as the data of a participant’s ontology

has the potential to drive complex behavioural changes in an application in response

to changes in the type of context information available, as well as its value. The

model-exchange method used for context-informed interoperation is key to making

this kind of exchange possible.

Finally, from the multi-party trial, the ACP system can be said to be able to support

multiple services in a flexible fashion. The additive nature of the maps means that

reasoners can be developed that handle single tasks in isolation, which can be run

more than once as required, as well as more complex multi-party reasoners which

176

can interact with a variety of types, services and alignments.

6.3.3 Overall Findings for the Case Studies

One of the key features of the ACP is that it permits a wide variety of different

approaches to representing ontological information in the Shared Semantic View.

The comparison of different features in this evaluation is based on a particular set of

criteria, which are derived from the context informed domain.

The need to integrate contextual information provides for certain key assumptions

to be made about what is preferable in representing ontology information in the

ACP. The first and foremost feature is that the system is designed to provide for

context information transfer, this means that the focus is on transferring information.

Other applications, such as ontology mergers, are targeted at creating substantive

expressions of domain knowledge from peer sources.

This difference means that the ACP does sacrifice precise ontological logic in favour

of expressiveness. The assumption is that the Target Application can make use of

some, if not all, of the information returned, and so a wide variety of transformations

and translations of the data are provided for. The evaluation case studies described

above have produced some key findings about the nature of ontology mediation,

particularly with the ACP approach. These are outlined below.

Ontology Reasoning

Much of the behaviour and features of the ACP depend on the relationship between

the Topic Map and the Ontology Reasoners. The retention of the ontological reasoning

features was seen as a key feature in being able to take advantage of the semantic

nature of the data representations, but this came at a complexity cost. Topic Maps

are not usually accompanied by general reasoners of the type which OWL ontologies

enjoy.

The experience of the first case study in particular led to the conclusion that

177

information held within the Topic Map should ideally only be that information which

cannot be held within the native ontology.

There is a significant cost to this, which is that the model consistency cannot be

guaranteed by the system. The use of the Topic Maps means that the data is taken

out of the ontological reasoner’s domain, possibly transformed by some reasoner, and

then placed in a new ontology. The lack of an reasoner means that careful design of

the integration process is required to ensure that the resulting model is valid. This

is even more important when changes are made to the schema, as the capabilities of

the target application itself must be considered.

The Evaluation of this implementation did not include making use of property

cardinality or value restrictions from the OWL reasoner. The extension of the system

to handle these would require a matter of extending the schema manager to provide

appropriate methods for querying such restrictions. This was beyond the scope of

this evaluation of the system, but might provide useful future area for investigation.

To summarise, by using a structure which is not amenable to ontological reasoning,

the advantage is that the system can express the information most useful to the

effective transfer of information between the ontologies. However, this is at the cost

of losing the ability to automatically ensure consistency across the models. This

finding is likely the defining one in choosing whether this approach is appropriate for

a particular contextual scenario.

Ontology reasoning, particularly with more complex reasoner features, can impose a

very high memory cost and time cost on an application using ontologies. This has

been observed in this evaluation, and in other literature [Lewis et al., 2006]. The

ability of the ACP Schema Manager to load different reasoner profiles as required

(for example, full transitive reasoning for case study 1, and the default Jena profile

for most of case study 2), means that a pragmatic approach to reasoning can be

taken, where the correct reasoner profile can be chosen for each ontology based on

the parameters of the integration.

178

Alignment Generation

In the second case study, the alignments were elicited from the pooled findings of

the participating matching algorithms from the alignment workshop. This allowed

the case study to be undertaken using both ontologies and alignment descriptions

which were generated externally, without the ACP’s design in mind.

The combined experience of the two case studies shows that the ACP can take

advantage of independently-created alignments, which can be general alignment

descriptions, or case-specific and rich alignment relationships such as those described

in the user model alignment. It is likely that more complex integration scenarios

would require a combination of both approaches, where a set of case-specific types and

reasoners is able to operate over a variety of different specific ontology combinations

that can be aligned using an external tool.

The process of finding and describing the relationship between ontologies has been

divided into steps which are intended to build from a generic description of relationship

(matching) to a committed conceptual relationship which can be executed. Some of

the properties of the ACP contribute to making this process achievable. The first is

that the use of the Topic Map to represent the mapping and mediation information

means that information from different sources, such as external alignment descriptions,

can be combined into one integrated and persistent structure.

This persistence allows for different information to be contributed by different

reasoners, separating concerns both as regards particular ontologies, but also as

regards different levels of knowledge and abstraction. As shown in the case studies,

this means that the map can represent ontological and data relationships in a variety

of ways and presents a unified method for accessing the information. The cost of

this flexible model is that the structure of the map is dependent on good behaviour

of appropriate reasoners; there is no way to tell if a map is correct or not, except by

inspection.

179

Reasoner Composition & Reuse

The user-defined reasoner interface in the ACP is the means by which the mediation

is executed. The structure of reasoners in the ACP reflects the nature of the system:

they allow for a high degree of freedom to access different levels of abstraction in order

to achieve data integration. In the process of developing the case studies, it became

apparent that there were different categories of use for particular reasoners. Some

reasoners, such as the one used to import OWL ontologies, were able to fulfil the

same role in several different integration scenarios. These utility reasoners benefited

from being generic and self-contained. On the other hand, the specific reasoner

responsible for transferring user model information in the first case study was specific

to that case.

There was an advantage in effort and efficiency in the ability to reuse generic utility

reasoners in the ACP. The architecture was specifically designed to support this.

This is embodied in the ability of reasoners to call each other in a chain, permitting

the system to load different functionality at runtime, and then make use of that

loaded reasoner as necessary. For example, in the second case study, the Align RDF

importer could be reused to import the relationships from the mapping description

file.

The reasoners in the ACP are separated to some extent from the specifics of particular

ontologies or concepts by the use of the type system in the Shared Semantic View.

Reasoners can add and reuse particular types as necessary to build a coherent picture

of the shared semantic view. This is similar to the way which an upper ontology might

be used to fix particular semantics within a shared information space. The advantage

of the ACP model is that different reasoners can act with complete freedom, at the

cost that they do not have a universal agreed set of concepts. The higher integration

cost is offset by the expressiveness.

The ability of ACP reasoners to combine semantic and data knowledge as required

allows the system to execute some powerful features. For example, the instance

alignment discovery process in the User Model case study shows that the system can

180

make use of the power of the mappings it has along with key information to resolve

specific semantic gaps automatically. The highly specific nature of the types in that

relationship would be difficult to express in a generic ontology, and so reducing the

alignment problem to one of local, specific responsibility is appropriate and useful.

6.4 Comparison with the State of the Art

This section will compare the ACP and the context-informed approach as evaluated

above with some of the key systems described in the Literature in previous chapters

of the thesis. Two principle areas were examined: semantic mediation and its

applications in context integration. This section will compare the ACP approach

to the ones described by those systems surveyed in the State of the Art under the

headings which were used for the analysis of those systems.

6.4.1 Comparison of the ACP to other Context Systems

Reviewed

The original intention of the ACP system was to provide a means for integrating

context information from external sources into the knowledge of a target system.

However, the nature and properties of what constitutes context present a difficult

problem, with no likely general solution [Bolchini et al., 2007]. The design of the

ACP had a goal of being general, but the reality is that there are limitations to the

suitability of the ACP as a context system, as well as advantages. In this section,

the ACP is compared with the Context Systems reviewed in Chapter 2, under the

same analysis headings as those systems.

Information Model

The key feature which the ACP does not have that is present in other systems in the

literature is the Context Model. Both Construct [Dobson et al., 2007] and CoBrA

[Chen et al., 2004a] employ upper ontological models which have been created in

181

advance to describe context. These models describe key features for the pervasive

domain, such as representations of users, space or time.

One of the key differences in the ACP approach is that it does not link different

participants through a pre-existing, shared ontology, but rather through the use

of ontology mediation technology it aggregates links and descriptions of concepts

in a Shared Semantic View. Each SSV is different, and is created based on the

requirements of a specific exchange. The advantage to this approach is that the ACP

system is able to handle a wide variety of information and create complex relationships

between different concepts. The ACP system imposes few preconceptions on the

domain or the content of the participating models, and information can be altered

using different chains of reasoners at the knowledge representation, information

content or data value levels. This allows for wide semantic gaps to be bridged by the

system.

The key advantage of the use of a pre-existing upper ontology is that it provides a

clear target for integration, and it allows systems such as CoBrA and Construct to

encode detailed knowledge about the concepts within the ontologies, which improves

reuse and lowers the integration overhead because the known common entities can

be supported by context reasoning information within the context system. However,

the experience of CoBrA in particular seems to point to the need for the creation and

integration of customised extensions to the upper ontology in order to support different

specific applications [Chen et al., 2004b]. The benefit of a pre-shared ontology is

therefore not as clear cut as it initially appears to be.

The final decision on the suitability of the semantic mediation approach to context

depends therefore on the cost of integration: if an upper ontology and its associated

system can appropriately cover the majority of the concept space, and the cost of

extending that concept space in the event of change is low enough, then it might be

the preferred option. On the other hand, where no upper ontology exists, or where

the domain of the system is complex and specific, then the use of the ACP approach

provides a means to offer the same or better integration.

182

Participants

The ACP system is designed to work with participants that can express their

information ontologically. In particular, the ACP requires systems to share both the

schema and the instance information which they can make available for transfer.

For sources of context, this is not necessarily an enormous burden, but for Target

Applications, the requirements can be significantly higher. The need to exchange

schema information arises from the fact that no pre-existing schema has been agreed

between the participants. Conventional query-based exchanges such as those used

by Construct depend on a known schema, and part of the power of the ACP is

that it can alter the schema of the target for improved knowledge. The notion

of extending applications’ knowledge as well as their information is potentially

very powerful, as it can permit substantial changes in the way applications behave

based on their contextual surroundings. The use of multi-model adaptive techniques

[Conlan et al., 2002] in the Target Application is one possible approach which would

allow for this kind of behavioural flexibility.

The ACP allows for systems to bring their own knowledge in its own representation

to the system, and handles that interaction directly through the process of mediation

of ontologies. This is different to the Construct approach, which draws information

from ontological and non-ontological sources.

Architecture

The architecture of the ACP is highly centralised. In particular, the system

loads the ontologies as well as the mapping information for each participant. The

Context-informed approach means that the system is designed to allow the Target

Application not to need to form any queries relating to context, but rather the

centralised mediator is responsible for making the changes appropriate to the system.

It is difficult to see how the ACP could be separated into a distributed architecture,

given the highly integrated nature of the schemas within the system.

The value of distribution in the form of agents or nodes is that it allows for lower-power

183

systems to perform context integration. There is little doubt that the ACP is a

highly resource-intensive architecture. However, it is possible that the distribution

could be achieved by other means: since the ACP takes responsibility for discovery,

integration and querying sources of context, the overhead on a target application is

lower because it does not need to know about context, but merely exchange with the

mediator in its own language. Similarly, if the sources of context are only passing

information to the mediator uni-directionally, then the load on them might not be

great.

Conclusions

The evaluation of the ACP as a context mediator depends on the assertion that

context can be represented ontologically, and that it is desirable for applications to

be able to hand off the process of integrating context to an external party. There

are several key reasons why this might be an advantage. The most prominent reason

to do this is that it allows for a clean separation of concerns for the development of

applications. The definition of context used in this thesis is to perceive contextual

information as highly variable in form and representation, and for its inclusion to be

a matter of sometimes complex transformation and translation. These characteristics

lend themselves naturally to the notion of a context mediator with a global view of

the systems in a particular situation.

The value of the ACP approach as compared to other context mediators and brokers

is then dependent on the nature of the information heterogeneity can accommodate.

The ACP differs from other systems surveyed by not attempting to pre-determine the

nature of contextual information in the system. This has the advantage of permitting

the system integrator total freedom in expressing the nature of the relationship

between different concepts. The attendant cost to this is that there is a need for the

integrator to develop reasoners for specific requirements. The composition and reuse

of reasoners provided for in the ACP goes some way towards addressing this cost.

One advantage of the approach given in the ACP is that the Topic Maps themselves

can be a useful representation of the context which a particular application is being

184

used in. The Maps contain the type an entity information necessary to describe the

context, and can be inspected and manipulated as semantic structures.

The function of the context brokers can be seen as needing to address knowledge and

data, and in this case the ACP does directly support manipulating the information

held within the ontologies, based on the type descriptions in the map and the

functionality of the reasoners. The ACP does act in a similar way to other context

mediators, with the advantage of not prescribing what context ‘is’. This was

shown in the evaluation by the demonstration that the system can handle the key

requirements of context: reconciling differences of abstraction, correlating multiple

parties and translating data semantically. A summary table of the key features of

each architecture is shown in table 6.6.

CoBrA Construct ACP

Information Model SOUPA When, Where, Who Ontologies Topic Map

Participants Agents Services using queries Services using

Model Exchange

Architecture Broker-centric Gossipping Nodes Mediator-Centric

Table 6.6: Feature Matrix comparing the ACP and other Context Systems

6.4.2 Comparison of the ACP to other Semantic Mediators

Reviewed

In attempting to advance the design of context systems, the ACP has been inspired

by the trend in research in ontologies into greater Semantic Interoperation. As

outlined in Chapter 3, initial attempts at universal global ontologies have gradually

given way to mapping expressions and ontology manipulation. Ontology alignment,

merger and mediation arise from the recognition of the fact that it is difficult and

even arguably undesirable for applications to be required to use the same ontology,

and that finding links between those ontologies is a useful approach. In this section,

the ACP is compared with the Semantic Mediators reviewed in Chapter 3, under

185

the same analysis headings as those systems.

Nature of Articulation

The ACP is a novel approach to semantic mediation, in that it generates the ontology

articulation as a semantic structure (the Topic Map) from the alignment descriptions

without a pre-existing model. The approach of using a model to describe the

concepts and entities within the ontologies is similar to that of the WSMO model

[Roman et al., 2005]. WSMO includes more concepts in its ontology because of the

requirements which arise from the web service domain.

Both WSMX9 and the ACP are similar in that they express their articulation in an

external structure which is not the same as the ontology language of the participant.

In WSMX, the participating ontologies are mapped to the upper ontology, while

in the ACP a separate representation is created which reproduces the concepts in

the participant ontologies and maps them. One difference arises from the domain

for WSMX: it is focused on the choreography and planning of web services, and

data relations are expressed in a separate model. The ACP represents data and

conceptual relationships in a unified SSV.

Ontological Linguistic Independence

Of the three mediators, ACP, WSMX and DRAGO, none can be said to be truly

linguistically independent. However, given that the DRAGO reasoning algorithm

depends on the tableau algorithm, it is probably the least linguistically independent.

The ACP’s independence arises from the provision of functionality within the Schema

Manager for the relevant ontology language, while the linguistic independence of

participants in the WSMX environment depends on the provision of a suitable

importer and parser. However, the authors of DRAGO indicate that it is also

possible to import ontologies into the DRAGO environment with an appropriate

parser.

9the execution environment for WSMO.

186

Judging linguistic independence is therefore somewhat unclear. The ACP provides

a way to extend its facility to maintain knowledgebases in their native reasoner

environment, but this depends on integration effort and the availability of suitable

libraries. On the other hand, DRAGO and WSMX import the ontological information,

which may be more independent if the representations in question can be satisfactorily

imported.

Mapping Representation

In the ACP, mappings are represented using the associations between topics in the

map. DRAGO represents mappings using the C-OWL language, while WSMX derives

its mappings from the WSML mappings to WSMO. The DRAGO representation

is probably the most constrained, in that it is restricted to the associations which

conform to the first-order logic of the tableau algorithm. Where WSML cannot

adequately describe a relationship, mediators, which can execute different functions

within the choreography, can be employed to perform data or other alterations. The

ACP has a similar notion of user-defined reasoners to the WSMX mediators, but

they are not directly represented in the SSV, instead they operate on the mapping

types, schema information and data values in the Topic Map and the participating

ontologies.

The ACP sits between the two systems in the spectrum of mapping representation.

It has a single unified view of the semantic relationships, unlike WSMX, but on the

other hand the mapping includes a wide variety of different types and relationships,

while DRAGO has a pure C-OWL representation.

Nature of Internal Representation

The three systems have rather different approaches to the issue of internally

representing participating ontologies within the system. While WSMX imports the

ontological concepts into separate representations, DRAGO retains the distributed

knowledge bases with local reasoning and distributes the integration. The ACP

187

blends the two approaches by importing a representation of the concepts to describe

the mappings, but querying the natively reasoned ontologies for information.

The value of the ACP approach is that it reduces the complexity of the mapping

representation and frees it from constraints of logical reasoning. The unified SSV

can express a wider spectrum of qualities about different mappings because it is tied

to a particular reasoner.

Data Transformation

DRAGO does not express data transformation, or execute such transformations.

WSMX has two approaches: where the information is expressed in WSML, the system

can execute data transformations as described. For information not expressible in

the rule language, mediators can be employed to make other changes.

The ACP takes a different approach, because it does not have the ability to decide

on domain-derived operations, the ACP uses mediator-like user-defined reasoners for

all execution. The only distinctions are in the reasoner interface, which can be seen

to have importation, SSV manipulation and model enrichment functionality. Unlike

WSMX mediators, which are separated, ACP reasoners are not contained in their

functionality. ACP reasoners are also permitted to call one another, to allow them

to chain functionality between different specific reasoners, to lower the complexity

and improve reuse. Rather than a rule language, the ACP reasoners are directly

implemented in Java. This has disadvantages for security and ease-of-authoring but

is significantly more powerful and allows reasoners to perform powerful operations.

Knowledge Transformation

The ACP is different from both of the other systems in the way it addresses

the ontological schemas of the participating ontologies. DRAGO makes use of

conventional T-Box reasoning, which the ACP can take advantage of in the Schema

Manager. WSMX can use WSML importation to reason over the schema. A novel

feature of the ACP and the context-informed approach is the notion that the target

188

application’s schema itself could be manipulated to add new or different concepts

to the system. This is a powerful notion, in that it allows the system not only to

take new information from its surroundings, but also to offer the knowledge of new

concepts to the target application. While the potential for this is substantial, it is

not without cost in that it requires a target application capable of taking advantage

of new schematic knowledge.

Mapping Importation

All three systems are similar, in that they can import different mapping descriptions

into their internal format. The ACP and WSMX can import and modify their

mappings for data concerns, which are not relevant to DRAGO. With regards

to instance mapping, DRAGO imports an external instance mapping description,

while this evaluation has shown that the ACP can determine those mappings

programatically, thanks to its ability to examine data and schema information.

Conclusions

A summary table of the different comparisons made in this section is in table 6.7.

The key advantage of the ACP is that it combines part of the native reasoning of

DRAGO with the flexible custom reasoning of WSMO.

DRAGO’s method for mediation arises from a fully inferred distributed tableaux

algorithm. While this method is highly automated, it is limited because it cannot

make use of information below the schema level. On the other hand, both the ACP

and WSMO need user-defined reasoners/mediators to perform the transfer. The

advantage of this custom reasoning is that it also allows for data transformation.

The key differences between WSMO and ACP lie first in the fact that WSMO uses a

more complete upper ontology, which describes the web service domain principally,

and second in the separation of data an schema. The WSMO ontology is focused

on the schematic information, and using a sequence of mediators to perform the

exchange. On the other hand, the ACP uses its SSV to represent a more complex

189

mix of schema and data information. The advantage to this is in the ability for

different reasoners to co-operate.

Neither of the systems seem to feature schema alteration in the way described in the

ACP.

6.5 Conclusions

This chapter has presented the evaluation of the ACP implementation and the

context-informed approach. Based on the evaluation methodology, there were three

key requirements for a semantic mediator to be able to fulfil for it to be an effective

context mediator. These were: handling representational differences in the participant

ontologies, handling data differences in the participants ontologies and handling

multiple parties in the integration. The nature of the system is that, as a semantic

mediation system, the effectiveness of the system on a particular set of ontology

features is the same, regardless of the specific domain of those ontologies. This means

that if the system is effective for certain features with one set of ontologies, it is

likely to be effective with similarly structured ontologies in another domain. It is this

which allows the conclusion to be drawn about the effectiveness of the ACP based

on the evaluation tasks. The key advantage of the use of Topic Maps is that they

are a flexible and expressive method of creating representations of both the aligned

ontology concepts and all the necessary metadata to describe the alignment at the

schema and data levels. This integrated view means that each reasoner can manage

its own types and can access all the information in the ontology to the reasoners at

any point through the schema manager.

The innovation in the approach therefore arises in two ways: first, the ACP provides

an improved way of exchanging information between the Target Application and the

sources of context. The model based approach has demonstrated in this evaluation

that it can include new information in the schema offered to the target application,

as well as data which has been converted to the representation needed by the target.

The second innovation is in the representation of the shared semantic view, which

190

Property WSMO DRAGO ACP

1 Nature of

Articulation

WSMO

Ontology +

WSML mapping

C-OWL

Bridging

relationships

Topic Map

2 Linguistic

Independence

Dependent

on OWL and

C-OWL

Mediation

provides

conversion

to internal

formats

Dependent on

SchemaManager

integration

3 Mapping

Representation

WSML Rules Bridge Rules

+ Instance

Correspondence

Topic Map

Types &

Associations

4 Nature of

internal

Representation

WSMO

Ontology

DDL

Knowledgebase

SchemaManager

native ontology

reasoner

5 Data

Transformation

Mediation +

WSML Rules

None Reasoner

Interface

allows data

manipulation

6 Knowledge

Transformation

Mediation +

WSML Rules

T-Box

Reasoning

Ontology

Reasoning

and schema

manipulation

through

reasoners

7 Mapping

Importation

Mediation OWL-C or

converting

parser

Converting

parser in form of

reasoner

Table 6.7: Ontology Mediation Systems Compared.

191

allows both data and schema information to be represented separately from the native

ontological inference. This has advantages both in allowing for transferring data

across complex semantic and syntactic differences, and, as shown in the evaluation,

to create user-defined reasoning which is flexible and reusable.

In conclusion, the ACP seems to represent a novel approach to ontology mediation

which supports effectively context-informed semantic interoperation. The solution

is reasonably general, within the constraints described. There is still considerable

exploration potential for this kind of mediator, and it is by no means the best

approach in all cases. However, the notion of new knowledge and model-oriented

exchange seem to hold the potential for justifying the considerable effort which any

context system requires to deploy it by supporting applications in responding to

their external knowledge with substantial behavioural changes.

192

Chapter 7

Conclusion

This chapter presents the conclusions of the thesis. The chapter begins by examining

the original objectives of the work and assesses the degree to which they have been

fulfilled. The contribution of the work, including contribution to the state of the

art, is then listed. The work presented in this thesis on context-informed semantic

interoperation creates significant opportunities for further development, particularly

as semantic technologies mature. Some possible routes for this investigation are

discussed in the Future Work section.

7.1 Objectives & Achievements

The central research question of this thesis asked whether it was possible to use a

semantic interoperation-based context mediator to improve a target application’s

knowledge, and whether such a mediator could support different types of knowledge

enrichment.

The primary objective of the thesis was to design an architecture for providing

innovation in context-informed semantic interoperation. This architecture was

intended to support the notion that contextual information could be gathered from

a wide variety of sources which were not known at the time of design for the

target application. This objective was achieved through the creation of a context

193

mediator which could represent and query ontological knowledge bases and express

richly-described alignments between different concepts. By choosing not to create a

complete model for context in advance, it was proposed that the system was more

flexible, and allowed for a concentration of effort on the specific challenges of a

particular context scenario. Further effort could be saved by the use of general tools

for semantic interoperation, such as ontology matching tools, to undertake parts of

the integration effort.

The Context mediator described in this thesis differs from those that have been

created before by using a lightweight semantic network (a Topic Map) to provide an

active, queryable structure to represent the Shared Semantic View. This structure

supports the semantic interoperation approach by combining information from several

sources to build the shared view, rather than linking a pre-existing ontology. This

design arose from the results of completing the second thesis objective, that of a

state of the art review that reflected both Semantic Interoperation and Context.

Semantic interoperation in this context mediator is based on a view of information

transfer that has three phases:

1. The Identification phase, where appropriate information is discovered in the

sources of context.

2. The Semantic Transformation phase, which executes the query and

performs any alterations to the information to be transferred.

3. The Syntactic Translation phase, which takes the data from the Semantic

Transformation phase and arranges it appropriately for addition to the Target

Ontology.

This model was successfully applied to fulfil the objective of improving the knowledge

within the target application in a variety of different ways. The evaluation of the

ACP1 implementation successfully demonstrated that the framework could bridge a

variety of differences between ontologies and transfer information to a target ontology.

1Adaptive Contextual Portal

194

The data transferred could be selected and arranged on the basis of both schema

and instance data queries in the sources.

The creation of the shared semantic view and the querying and alteration of ontologies

was executed by a set of user-defined reasoners, which were loaded on demand by

the system. These reasoners were reusable, and their operations were based on input

from the schema and the shared semantic view. This allowed some of the reasoners

to function across different integration scenarios (for example, the ontology uplift

reasoner was used in both case studies to import OWL ontologies).

The final objective of the thesis was to gain an understanding of the advantages and

disadvantages of context informed semantic interoperation. The evaluation of the

system showed that the ACP could support different types of target application,

from adding information about known instances in the target application up to

the alteration of the schema to add new classes, properties and instances. This

notion of altering the application’s schematic knowledge, in addition to its instance

information presents a powerful potential for context, by allowing sufficiently dynamic

applications to take account of new types of information made available by context.

The use of the Topic Map for the shared semantic view creates a flexible, expressive

representation of the integration between different ontologies. The shared semantic

view provides user-defined reasoners with access to a collaborative environment to

query and retrieve information at all levels of the transfer (instance data to schema

representation) and to record new metadata as required. This feature makes the

ACP capable of highly complex and rich context integration even for relatively simple

applications, by allowing a chain of reasoners to perform extensive semantic and

syntactic alteration to the data.

The ontological nature of the approach might be considered to have a performance

and modelling complexity disadvantage in comparison to key:value based methods for

managing context. However, there are several features which the ontological approach

provides which cannot be easily reproduced in other methods. The first of these is

the structured description of knowledge and information, which allows for complex

data relationships and for the transfer of schematic knowledge. The second factor

195

is that the use of semantic interoperation means that the participants can control

complexity of their ontologies independently. Simple systems can therefore emit

information in simple ontologies, and more complex ontologies can be used where

they are necessary. This is a particular advantage of the semantic interoperation

approach.

The second key disadvantage of the ACP as a context mediator is that, without

a reference ontology for context, the integration process can be a complex and

difficult one. Not only do the ontology alignments need to be found somehow, but

appropriate reasoners need to be built. This cost is partially reduced by the ability

to reuse reasoners, and the use of external, pre-existing tools to assist in the creation

of the shared semantic view. The second counter-point to this cost arises from

the need for those systems which do employ pre-existing ontologies to provide for

application-specific extensions. The cost of creating new ontological concepts (or

even complete lower-level ontologies) is likely to incur the same or greater effort than

creating the semantic interoperation in the ACP.

In comparison to other Semantic Interoperation tools, the ACP has a key disadvantage

compared to purely ontological approaches because of its low degree of inference.

The use of the Topic Map means that there is a need for user-defined reasoners to

supplement the ontological inference. The counterpoint to this is that there is greatly

increased expressiveness, and the ability to use the data to find things like instance

alignments automatically. The ACP can operate on both the instance information

and schema representation levels, and use any of that information in its custom

reasoning, while the fully ontological approaches are restricted to schema information

reasoning.

7.2 Contribution to the State of the Art

The major contribution of this thesis is Context-informed semantic interoperation, an

approach for managing context without a pre-existing ontology which is specifically

describing what context information. This approach differs from previous work in that

196

it uses semantic interoperation combined with custom reasoning to solve abstraction

differences across different sources of context to enrich the knowledge of the target

application. The approach is also novel in that it uses a whole-model exchange

mechanism, which can expand the schema of appropriate target applications. This

means that the target applications can be enriched with new types of knowledge,

derived from context, as well as improved information about the knowledge that they

already have. This contrasts with traditional context, which has been focused on the

transfer of information from external sources through fixed knowledge representation

models.

The minor contribution of this thesis is a novel approach to the design of a semantic

mediator based on the use of Topic Maps. This is novel in using the Topic Map as a

flexible representation of the content of the ontologies and their relationships, while

retaining native ontological reasoning for queries, as appropriate. This semantic

mediator also differs from previous systems by combining both ontological and

custom reasoning. The use of Topic Map technology is not absolutely required for

this approach to work, but Topic Maps demonstrate the principal capabilities needed

to support the form of ontology mediation provided by the approach.

Evidence of the contribution to the state of the art comes in the form of three

publications:

• O’Connor, A. and Wade, V. (2006) Informing context to support adaptive

services. in AH’06 Proceedings of the Fourth International Conference on

Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 366-369. Springer,

Berlin/Heidelberg

• Dagger, D., O’Connor, A., Lawless, S., Walsh, E., Wade, V. (2007) Service

Oriented eLearning Platforms: From Monolithic Systems to Flexible Services,

IEEE Internet Computing Special Issue on Distance Learning

• O’Connor, A. and Wade, V (2008) Semantic Interoperation to Support

Context in 5th International IEEE Workshop on Management of Ubiquitous

Communications and Services, Held as part of IEEE NOMS 2008, Salvador

197

Bahia, Brazil

These represent the publications so far, but it is intended that the results of the

evaluation and other collaborative research will be published in appropriate venues

in the near future.

7.3 Future Work

There are two likely principal directions for this work. The first deals with the

improvement of the mediator itself, by adding and extending features both to the

ontological and shared semantic view components. These improvements reflect the

advances in the standards and technologies that govern those components, as well as

richer feature sets that arise from experience with the system.

The current ACP implementation in particular is closely associated with OWL, and

significant evolution in the OWL standard, particularly in the new major version,

OWL2. OWL2 has already begun to appear in experimental form in some of the

tools, and the standard is under development in the W3C.

There are several important issues relating to the use and management of mappings

in the ACP. Topic Maps provide several more annotation methods, including role

types for associations, which might be applicable in certain use scenarios.

In terms of applying the technology, the next stage is perhaps to develop some

adaptive applications capable of taking full advantage of enriched models with

improved schema and data from the context environment. One area of application

for this is in the ‘Linked Open Data’ domain, which is a pragmatic approach to

making structured information available on the web.

These areas are only a part of the large set of challenges which remain in this area,

and it is likely that as knowledge of the system, and of semantics in general, improves,

that new avenues will become apparent.

198

7.3.1 Supporting Ontology Features

The first extension which might be desirable in the ACP would be to examine using

reasoners to take account of different annotation properties and restriction properties

in ontologies. In the current OWL ontologies, restrictions can include information

about what class instances a particular object property can refer to, or the cardinality

of instances (how many of a particular thing an instance can have). These properties

allow for the system to check the details of model consistency and coherence between

the instances and the schema.

Model consistency in the ACP is currently a matter for the design of the reasoners.

A richer ability to process property annotations would be of considerable use in the

syntactic phase, in making sure that new additions comply with the consistency

requirements of the model.

In addition to this extension, there are several features of the new OWL2 standard

which point to useful opportunities to improve the ACP. OWL2 includes substantial

additions to the standard, and there are numerous extensions and corrections to

the semantics and structure of OWL2 Ontologies [Grau et al., 2008]. Many of these

changes will likely be handled by the fact that the ACP can load OWL2 ontologies in

an appropriate native reasoner. There are four features of OWL2 that would appear

to have significant impact on semantic interoperation. Two of these relate to the

structure or behaviour of OWL2 schema information, and two relate to the way data

in OWL2 models can be checked and instanced.

The two features of OWL2 that might prove useful for the way reasoners interact

with the schema are the addition of ‘Qualified Cardinality Restrictions’ (Q.C.R.) and

new types of ‘relational expressivity’ for properties. QCR affect the reasoners because

they allow property restrictions to include more complex cardinality requirements

for consistency, which must be accounted for if the ACP reasoners are to be able

to account for model consistency. New relational expressions in OWL2 include

‘part-whole’ property relationships, and properties of properties. Both of these

features could change how information propagates across a shared semantic model,

199

and the mechanism for determining appropriate alignment descriptions for these

relationships will be needed.

On the data side, OWL2 includes two features which mean that the schema provides

a much richer description of data. The first is the ability to specify datatype value

restrictions (for example maximum and minimum values for integer datatypes).

The second feature is inspired by database structures and provides for a particular

property to be designated as a ‘Key’, which uniquely identifies an instance in the

ontology. In both of these cases, there is an opportunity to try and extract some of

the features of a specific ontology automatically as part of the user-defined reasoner

process, which could have great advantage in reusing reasoners (a key property in

particular could be useful in examples such as the first case study of the evaluation

of the system).

The benefit of developing the ACP towards OWL2 will depend on how many of

the new features are used and how they are implemented in real ontologies. The

OWL2 standard includes an attempt to address the problem of large, complex

ontologies inference tasks through the OWL2-EL profile, which aims to provide

consistency, subsumption and expression checking in polynomial time. This could

have a particular advantage in large ontologies. Similarly, there are profile to support

large instance knowledge bases (OWL2-QL) and rule-based inferencing (OWL2-RL)

[Motik et al., 2009]. The use of these profiles in the ACP might provide better

performance in certain cases.

7.3.2 Extending the Shared Semantic View

In the current implementation of the ACP, there is a general assumption that

associations are between two topics. The Topics are described by their types, and

the association is described by its type and its reifying topic. One area of metadata

not explored in the ACP is the notion of different Association Role Types. These

would allow the ACP to describe the different participants in an association using

the type system (ie with Topics to describe each role). The advantage of this model

200

is two-fold. First, it would allow associations to characterise its members depending

on their role in the association, and second it would provide a means for exploring

associations with more than two members. This could be used to create ‘Operator

Topics’, which could describe logical relationships between concepts. One example of

this would be a concatenation operator, where a target concept is associated with

the sum of strings from two source topics. Rich roles would allow the reasoners to

perform operations based on the memberships of those associations.

The second area of interest would be in the use of the map of associations themselves.

The reification process creates a set of topics which describe the articulation of the

ontology. From the map’s perspective, these topics are no different from those which

represent concepts. It might therefore be useful to investigate creating associations

and maps between the reifying topics. One example might be to create dependency

relationships between associations, so that if one association is discarded or changed,

the implications of that change can be propagated across the map.

7.3.3 Linked Open Data

Linked Open Data is concerned with making structured, machine-readable data

available using web technologies and an agreed set of best practices, such as those in

[Bizer et al., 2007]. The data exposed as linked open data has several key properties:

the first is that it is published in an RDF data model, and the second is that the

data is linked to other relevant information through RDF links. A third aspect is

that it is ‘open’, which means that the data is made available over the web using

open, agreed standards.

201

Resources in LOD are identified using URIs, particularly http URIs. A key feature of

Linked Data is that the schema vocabularies used to structure the data should reuse,

to the greatest extent possible, existing terms. The most prominent vocabularies in

LD include:

• Dublin Core, which describes documents. [Nilsson et al., 2008]

• Friend of a Friend, which describes individuals and their friends.

[Brickley and Miller, 2005]

• Semantically Interlinked Online Communities, which describes user-generated

content, such as forum posts. [Breslin et al., 2005]

• An RDF binding of Creative Commons, which is a model for licensing the

distribution and reuse of works. [Abelson et al., 2008]

In general, Linked Data is intended to be data-oriented: the vocabularies used

to structure the data are relatively simple in of themselves, and the focus is on

providing large amounts of data in a highly accessible manner. This notion of a

highly-interlinked, data-oriented web of services would appear to offer significant

opportunities for the context-informed approach, first as an application domain for

the technology, and second in supporting some particular aspects in creating better

Linked Data infrastructures.

There is already a very large body of research into the use cases for the Semantic

Web2. Linked Data provides a rich source of external contextual knowledge which

could be used as a basis for using contextual enrichment of adaptive applications

to solve challenges in these use cases. There are large Linked Data repositories in

the areas of general encyclopædic knowledge (DBPedia [Auer et al., 2007], YAGO

[Suchanek et al., 2007]), Movies (linkedMDB [Hassanzadeh and Consens, 2009]),

and academic publications (DBLP RKB Explorer [Glaser and Millard, 2007]). These

repositories are themselves highly interconnected to each other, and to other Linked

2For example, see the W3C list at http://www.w3.org/2001/sw/sweo/public/UseCases/

202

http://www.w3.org/2001/sw/sweo/public/UseCases/

Data repositories, and the objective of using the ACP is connect this linked, public,

open data with local, specific and possibly private ontological data.

Context-informed systems can take advantage of a blend of the relevant linked

open data, as well as local private knowledge and other sources of context

to create a semantically-rich knowledge representation for the user’s target

application. For example, in an adaptive learning application, a linked-data equipped,

context-informed eLearning application might be able to find rich descriptions of

subject concepts from DBPedia, as well as suggesting relevant additional reading

material from DBLP. Adaptive schema reasoning on the part of the target application

might even make this possible with a low overhead on the part of the adaptive

application developer.

Another area of interest for using linked data with the ACP would be in supporting

federated linked data queries. It is common to use the SPARQL query language

[Prud’Hommeaux et al., 2006] to access the linked data information, normally in

one particular repository per query. The notion of federated SPARQL has been

advanced as a means for combining information from diverse repositories and offering

it as a query endpoint [Prud’hommeaux, 2007]. Some distributed query engines

exist already [Quilitz and Leser, 2008]. There are some interesting applications for

the ACP in this area. The first is as a means for serving federated queries. In

this case, the target application for the ACP might be an ontology representing

the resulting federated concept space. The alignments in the shared semantic view

provide integration pathways between the different linked data repositories.

By representing the integration pathways in an explicit fashion, and by providing

dynamic reasoner support, it might also be possible to explore the notion of federated

write-backs to linked data. At the moment, linked data is principally a read-access

model, with limited support for updating data through the UPDATE SPARQL

command. The ACP architecture might provide a means for writing back the result

of federated reasoning to the sources. This would be an interesting inversion of

the current ACP model: in this case one integrated source would feed a number of

separate targets.

203

These notions combine to suggest the creation of a query-oriented version of the

ACP, where direct schema loading and reasoner access are replaced, at least in part,

by on-demand SPARQL query generation. This has applications in both example

scenarios. In implementation terms, the ACP might load a representation of the

vocabulary of each linked data source into the shared semantic view, but instead of

querying the ontology locally, the schema manager would translate the information

need into a SPARQL query.

For serving federated linked data, the ACP could be as a loosely-coupled method

for saving federation descriptions. Each federation could be saved as a different

Topic Map, created and served on demand. Currently, the performance of the

ACP is not appropriate for this application, but with a more performance-focused

implementation, and with a reduced Topic Map feature set, it might be possible to

achieve satisfactory performance.

SPARQL commands bear a resemblance to the SQL queries used in databases,

and for creating federations it might be useful to consider two new commands,

CREATE, and ALTER. The CREATE command could be used in SPARQL to

specify new vocabularies, while ALTER could be used to add or modify federated

schema concepts in the linked data repository. The current architecture of many

Linked Data repositories would not support this directly, as they are often based on

database export methods [Bizer and Cyganiak, 2006]. However, the ACP supports

the notion that both the schema and data of ontologies are alterable, and might

provide a basis for investigating the effectiveness of this model of a read/write data

web. Federated write-back has typically been a major challenge, so it is likely that

this approach would only work in certain specific cases, but it could nonetheless

prove useful for solving some problems.

7.3.4 Further Implementation and Experimentation

The system presented in this thesis was evaluated on a case-study basis, based on

key properties drawn from both context and ontology mediation requirements. One

204

area of future work would be in designing and deploying the ACP with real services,

in order to examine the practicalities of the context-informed approach.

The key considerations for the creation of such a system are:

1. Ontological Quality: there is a requirement for the sources of context to

expose their knowledge in a useful way as ontological knowledge. The system

can gather information across web service protocols, and can load updates on

demand. However, the nature of the web protocol makes call-back difficult. In

addition, there will need to be a balance for the developer between the cost

of updating ontologies and the likely information gain. It might be preferable

for a source of context to be chosen which exposes location names for a user,

rather than rapidly-moving co-ordinates.

2. Knowledge Structure of the Target Application: designing applications

which can take full advantage of new knowledge from the context mediator

requires the application to have an open knowledge model. Adaptive

applications represent one popular approach to solving open-knowledge

problems, and an effective method for creating strategies for behaviour which

can react to new knowledge. For example, where an adaptive application

operates by comparing user model properties to content model elements, the

addition of new entities, such as language, to both models demonstrates a clear

information gain.

Finally, such systems will likely require better tool support for developing effective

agreement between parties. This can be achieved in part through the use of general

tools for ontology mapping, but a more user-friendly interface would also be a useful

piece of future work.

205

Bibliography

[Abelson et al., 2008] Abelson, H., Adida, B., Linksvayer, M., and Yergler, N. (2008).

ccREL: The Creative Commons Rights Expression Language. Creative Commons

Wiki.

[Abowd et al., 1999] Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M.,

and Steggles, P. (1999). Towards a Better Understanding of Context and

Context-Awareness. LECTURE NOTES IN COMPUTER SCIENCE, pages

304–307.

[Ahmed, 2004] Ahmed, K. (2004). Tm4j developer’s guide. Technical report, The

TM4J Project.

[Albertoni and De Martino, 2008] Albertoni, R. and De Martino, M. (2008).

Asymmetric and context-dependent semantic similarity among ontology instances.

Journal on Data Semantics X.

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,

and Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. Lecture Notes in

Computer Science, 4825:722.

[Aumueller et al., 2005] Aumueller, D., Do, H., Massmann, S., and Rahm, E. (2005).

Schema and ontology matching with COMA++. Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages 906–908.

[Baldauf et al., 2007] Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A survey

on context-aware systems. International Journal of Ad Hoc and Ubiquitous

Computing, 2(4):263–277.

206

[Bardram et al., 2003] Bardram, J., Kjær, R., and Pedersen, M. (2003).

Context-aware user authentication-supporting proximity-based login in pervasive

computing. Lecture Notes in Computer Science, pages 107–123.

[Bechhofer, 2003] Bechhofer, S. (2003). Owl reasoning examples. Technical report,

University of Manchester.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Jim Hendler, J., Horrocks,

I., L. McGuinness, D. L., Patel-Schneider, P. F., and Andrea Stein, L. (2004). Owl

web ontology language reference. Technical report, W3C.

[Bizer and Cyganiak, 2006] Bizer, C. and Cyganiak, R. (2006). D2R

server–publishing relational databases on the semantic web. In 5th International

Semantic Web Conference.

[Bizer et al., 2007] Bizer, C., Cyganiak, R., and Heath, T. (2007). How to publish

linked data on the web. Retrieved June, 20:2008.

[Bolchini et al., 2007] Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A.,

and Tanca, L. (2007). A data-oriented survey of context models. SIGMOD Rec.,

36(4):19–26.

[Bouquet et al., 2003] Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L.,

and Stuckenschmidt, H. (2003). C-owl: Contextualising ontologies. In Proceedings

of the 2nd International Semantic Web Conference.

[Breslin et al., 2005] Breslin, J., Harth, A., Bojars, U., and Decker, S. (2005).

Towards semantically-interlinked online communities. In The 2nd European

Semantic Web Conference (ESWC’05), Heraklion, Greece, Proceedings, LNCS,

volume 3532, pages 500–514. Springer.

[Brickley and Miller, 2005] Brickley, D. and Miller, L. (2005). FOAF vocabulary

specification. Namespace Document, 3.

[Brønstead et al., 2007] Brønstead, J., Hansen, K., and Ingstrup, M. (2007). A

survey of service composition mechanisms in ubiquitous computing. In Second

207

Workshop on Requirements and Solutions for Pervasive Software Infrastructures,

UbiComp 2007 Workshops Proceedings.

[Brusilovsky, 2001] Brusilovsky, P. (2001). Adaptive hypermedia. User modeling

and user-adapted interaction, 11(1):87–110.

[Carroll et al., 2004] Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A.,

and Wilkinson, K. (2004). Jena: implementing the semantic web recommendations.

In Proceedings of the 13th international World Wide Web conference on Alternate

track papers & posters, pages 74–83. ACM New York, NY, USA.

[Ceri et al., 2007] Ceri, S., Daniel, F., Matera, M., and Facca, F. (2007).

Model-driven development of context-aware Web applications. ACM Transactions

on Internet Technology (TOIT), 7(1).

[Chaari et al., 2007] Chaari, T., Ejigu, D., Laforest, F., and Scuturici, V.-M. (2007).

A comprehensive approach to model and use context for adapting applications in

pervasive environments. Journal of Systems and Software.

[Chen and Kotz, 2000] Chen, G. and Kotz, D. (2000). A Survey of Context-Aware

Mobile Computing Research.

[Chen et al., 2004a] Chen, H., Finin, T., and Joshi, A. (2004a). A Context Broker

for Building Smart Meeting Rooms. Technical Report DTIC Research Report

ADA439472, Defense Technical Information Center.

[Chen et al., 2004b] Chen, H., Perich, F., Chakraborty, D., Finin, T., and Joshi, A.

(2004b). Intelligent agents meet semantic web in a smart meeting room. In AAMAS

’04: Proceedings of the Third International Joint Conference on Autonomous Agents

and Multiagent Systems, pages 854–861, Washington, DC, USA. IEEE Computer

Society.

[Chen et al., 2004c] Chen, H., Perich, F., Finin, T., and Joshi, A. (2004c). SOUPA:

standard ontology for ubiquitous and pervasive applications. Mobile and Ubiquitous

Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual

International Conference on, pages 258–267.

208

[Choi et al., 2006] Choi, N., Song, I.-Y., and Han, H. (2006). A survey on ontology

mapping. ACM SIGMOD Record, 35(3).

[Clear et al., 2006] Clear, A., Knox, S., Ye, J., Coyle, L., Dobson, S., and Nixon,

P. (2006). Integrating multiple contexts and ontologies in a pervasive computing

framework. Contexts and Ontologies: Theory, Practice and Applications, Riva Del

Garda, Italy, pages 20–25.

[Conlan and Wade, 2004] Conlan, O. and Wade, V. (2004). Evaluation of APeLS-an

adaptive eLearning service based on the multi-model, metadata-driven approach.

Lecture notes in computer science, pages 291–295.

[Conlan et al., 2002] Conlan, O., Wade, V., Bruen, C., and Gargan, M. (2002).

Multi-model, metadata driven approach to adaptive hypermedia services for

personalized elearning. Lecture Notes in Computer Science, pages 100–111.

[Coutaz and Rey, 2002] Coutaz, J. and Rey, G. (2002). Foundations for a Theory of

Contextors. Computer Aided Design of User Interfaces, Springer Verlag, June.

[Cristani and Cuel, 2005] Cristani, M. and Cuel, R. (2005). A survey on ontology

creation methodologies. International Journal on Semantic Web & Information

Systems, 1(2):49–69.

[Da and Zhang, 2004] Da, T. and Zhang, Q. (2004). A middleware for building

context-aware mobile services. In Vehicular Technology Conference, 2004. VTC

2004-Spring. 2004 IEEE 59th, volume 5.

[de Graauw, 2002] de Graauw, M. (2002). Business maps: Topic maps go b2b!

O’Reilly XML.com.

[Dey, 2001] Dey, A. (2001). Understanding and Using Context. Personal and

Ubiquitous Computing, 5(1):4–7.

[Dobson et al., 2007] Dobson, S., Nixon, P., Coyle, L., Neely, S., Stevenson, G., and

Williamson, G. (2007). Construct: An Open Source Pervasive Systems Platform.

209

In Consumer Communications and Networking Conference, 2007. CCNC 2007.

2007 4th IEEE, pages 1203–1204.

[Economist, 2003] Economist, T. (2003). The sentient office is coming. The

Economist.

[Engmann and Massmann, 2007] Engmann, D. and Massmann, S. (2007). Instance

matching with coma++. In BTW 2007 Workshop: Model Management und

Metadaten-Verwaltung.

[Euzenat et al., 2007] Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P.,

Stuckenschmidt, H., Švàb, O., Svàtek, V., van Hage, W. R., and Yatskevich,

M. (2007). Results of the ontology alignment evaluation initiative 2007. In

Proceedings of ISWC+ASWC Workshop on Ontology Matching.

[Euzenat and Schvaiko, 2007] Euzenat, J. and Schvaiko, P. (2007). Ontology

Matching. Springer.

[Feier et al., 2005] Feier, C., Roman, D., Polleres, A., Domingue, J., Stollberg, M.,

and Fensel, D. (2005). Towards intelligent web services: The web service modeling

ontology (WSMO). International Conference on Intelligent Computing (ICIC).

[Glaser and Millard, 2007] Glaser, H. and Millard, I. (2007). Rkb explorer:

Application and infrastructure. Proceedings of Semantic Web Challenge.

[Grau et al., 2008] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider,

P., and Sattler, U. (2008). Owl 2: The next step for owl. Web Semantics: Science,

Services and Agents on the World Wide Web, 6(4):309 – 322. Semantic Web

Challenge 2006/2007.

[Gruber, 1993] Gruber, T. (1993). A translation approach to portable ontology

specifications. Knowledge Acquisition, 5(2):199–220.

[Gu et al., 2005] Gu, T., Pung, H. K., and Zhang, D. Q. (2005). A service-oriented

middleware for building context-aware services. Journal of Network and Computer

Applications.

210

[Guha, 1991] Guha, R. (1991). Contexts: A Formalization and Some Applications.

University Microfilms.

[Guttman, 2001] Guttman, E. (2001). Autoconfiguration for IP Networking:

Enabling Local Communication. IEEE INTERNET COMPUTING, pages 81–86.

[Hassanzadeh and Consens, 2009] Hassanzadeh, O. and Consens, M. P. (2009).

Linked movie data base. In Proceedings of the WWW2009 workshop on Linked

Data on the Web (LDOW2009).

[Heuer and Schmidt, 2008] Heuer, L. and Schmidt, J. (2008). Tmapi 2.0. In TMRA

2008, Fourth International Conference on Topic Maps Research and Applications.

[Hofer et al., 2003] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G.,

Altmann, J., and Retschitzegger, W. (2003). Context-awareness on mobile

devices-the hydrogen approach. In System Sciences, 2003. Proceedings of the

36th Annual Hawaii International Conference on, page 10.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B., and Dean, M. (2004). Swrl: A semantic web rule language combining

owl and ruleml. Member submission, W3C.

[Hughes and Ashpole, 2004] Hughes, T. C. and Ashpole, B. C. (2004). The semantics

of ontology alignment. In I3CON. Information Interpretation and Integration

Conference.

[IMS Global Learning Consortium, 2005] IMS Global Learning Consortium, I.

(2005). Learner information package. http://www.imsglobal.org/profiles/.

[Jian et al., 2005] Jian, N., Hu, W., Cheng, G., and Qu, Y. (2005). Falcon-ao:

Aligning ontologies with falcon. log, 1:2.

[JTC1:SC34, 2002] JTC1:SC34 (2002). ISO/IEC 13250 topic maps. Technical report,

ISO/IEC.

[Judd and Steenkiste, 2003] Judd, G. and Steenkiste, P. (2003). Providing contextual

information to pervasive computing applications. In Pervasive Computing

211

http://www.imsglobal.org/profiles/

and Communications, 2003.(PerCom 2003). Proceedings of the First IEEE

International Conference on, pages 133–142.

[Kalfoglou and Schorlemmer, 2003] Kalfoglou, Y. and Schorlemmer, M. (2003).

Ontology mapping: the state of the art. The Knowledge Engineering Review,

18(1):1–31.

[Kalyanpur et al., 2006] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B., and Hendler,

J. (2006). Swoop: A web ontology editing browser. Web Semantics: Science,

Services and Agents on the World Wide Web, 4(2):144–153.

[Kruschwitz and Al-Bakour, 2005] Kruschwitz, U. and Al-Bakour, H. (2005). Users

Want More Sophisticated Search Assistants: Results of a Task-Based Evaluation.

JOURNAL-AMERICAN SOCIETY FOR INFORMATION SCIENCE AND

TECHNOLOGY, 56(13):1377.

[Lewis et al., 2006] Lewis, D., Keeney, J., O Sullivan, D., and Guo, S. (2006).

Towards a managed extensible control plane for knowledge-based networking.

Lecture Notes in Computer Science, 4269:98.

[Lonsdale et al., 2004] Lonsdale, P., Baber, C., and Sharples, M. (2004). A context

awareness architecture for facilitating mobile learning. Learning with Mobile

Devices: Research and Development.

[Mark, 2002] Mark, G. (2002). Extreme collaboration. Communications of the ACM,

45(6):89–93.

[Martin, 2004] Martin, D. (2004). OWL-S: Semantic Markup for Web Services.

W3C, http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[McGuinness and van Harmelen, 2002] McGuinness, D. L. and van Harmelen, F.

(2002). Web ontology language (owl lite, owl dl, and owl full) feature synopsis

version 1.0. Technical report, W3C.

[Mitra et al., 2005] Mitra, P., Wiederhold, G., and Decker, S. (2005). Dealing with

212

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

semantic interoperation of data. Local to Global Data Interoperability - Challenges

and Technologies, 2005, pages 134–144.

[Motik et al., 2009] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue,

A., and Lutz, C. (2009). Owl2 profiles. http://www.w3.org/2007/OWL/wiki/

Profiles#OWL_2_EL.

[Mrissa et al., 2008] Mrissa, M., Thiran, P., Ghedira, C., Benslimane, D., and

Maamar, Z. (2008). Using context to enable semantic mediation in web service

communities. In Proceedings of the 2008 international workshop on Context enabled

source and service selection, integration and adaptation: organized with the 17th

International World Wide Web Conference (WWW 2008). ACM New York, NY,

USA.

[Niles and Pease, 2001] Niles, I. and Pease, A. (2001). Towards a standard upper

ontology. In FOIS ’01: Proceedings of the international conference on Formal

Ontology in Information Systems, pages 2–9, New York, NY, USA. ACM.

[Niles and Pease, 2003] Niles, I. and Pease, A. (2003). Linking Lexicons and

Ontologies: Mapping WordNet to the Suggested Upper Merged Ontology.

Proceedings of the IEEE International Conference on Information and Knowledge

Engineering, pages 412–416.

[Niles and Pease, 2004] Niles, I. and Pease, A. (2004). Sumo to owl rdf mapping.

http://www.ontologyportal.org/translations/SUMO.owl.txt.

[Nilsson et al., 2008] Nilsson, M., Powell, A., Johnston, P., and Naeve, A. (2008).

Expressing Dublin Core metadata using the Resource Description Framework

(RDF). DCMI Recommendation.

[Noy et al., 2008] Noy, N. F., de Coronado, S., Solbrig, H., Fragoso, G., Hartel,

F. W., and Musen, M. A. (2008). Representing the nci thesaurus in owl dl:

Modeling tools help modeling languages. Applied Ontology, 3(3):173–190.

[OASIS, 2004] OASIS (2004). Oasis uddi specifications version 3. Technical report,

OASIS, http://uddi.org/pubs/uddi_v3.htm.

213

http://www.w3.org/2007/OWL/wiki/Profiles#OWL_2_EL
http://www.w3.org/2007/OWL/wiki/Profiles#OWL_2_EL
http://www.ontologyportal.org/translations/SUMO.owl.txt
http://uddi.org/pubs/uddi_v3.htm

[O’Connor, 2005] O’Connor, A. (2005). Mechanisms for context-informed adaptive

hypermedia. Master’s thesis, University of Dublin, Trinity College. TCD CS

Technical Report; TCD-CS-2005-15.

[Oh and Woo, 2005] Oh, Y. and Woo, W. (2005). A Unified Application Service

Model for ubiHome by Exploiting Intelligent Context-Awareness. LECTURE

NOTES IN COMPUTER SCIENCE, 3598:192.

[O’Sullivan, 2006] O’Sullivan, D. (2006). The OISIN Framework: Ontology

Interoperation in Support of Semantic Interoperation. PhD thesis, Department of

Computer Science, University of Dublin, Trinity College.

[Pepper, 2000] Pepper, S. (2000). The TAO of Topic Maps. Proceedings of XML

Europe.

[Portland Pattern Repository, 2009] Portland Pattern Repository (2009). Facade

pattern. Portland Pattern Repository.

[Pradhan, 2000] Pradhan, S. (2000). Semantic location. Personal Ubiquitous

Comput., 4(4):213–216.

[Prud’hommeaux, 2007] Prud’hommeaux, E. (2007). Federated SPARQL.

[Prud’Hommeaux et al., 2006] Prud’Hommeaux, E., Seaborne, A., et al. (2006).

SPARQL query language for RDF. W3C working draft, 4.

[Qian, 1993] Qian, X. (1993). Semantic interoperation via intelligent mediation.

Research Issues in Data Engineering, 1993: Interoperability in Multidatabase

Systems, 1993. Proceedings RIDE-IMS ’93., Third International Workshop on,

pages 228–231.

[Quilitz and Leser, 2008] Quilitz, B. and Leser, U. (2008). Querying distributed rdf

data sources with sparql. Lecture Notes in Computer Science, 5021:524.

[Ratto et al., 2003] Ratto, M., Shapiro, R., Truong, T., and Griswold, W. (2003).

The activeclass project: Experiments in encouraging classroom participation. In

Computer support for collaborative learning, pages 477–486. Citeseer.

214

[Redhat Middleware, 2004] Redhat Middleware, L. (2004). Hibernate - relational

persistence for idiomatic java. Technical report, Hibernate.

[Reed and Lenat, 2002] Reed, S. and Lenat, D. (2002). Mapping ontologies into cyc.

In Proc. AAAI Conference 2002 Workshop on Ontologies for the Semantic Web.

[Roman et al., 2005] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,

Stollberg, M., Polleres, A., Feier, C., Bussler, C., and Fensel, D. (2005). Web

service modeling ontology. Applied Ontology, 1(1):77–106.

[Russell and Norvig, 1995] Russell, S. J. and Norvig, P. (1995). Artificial intelligence:

a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Schilit et al., 1994] Schilit, B., Adams, N., and Want, R. (1994). Context-aware

computing applications. In Mobile Computing Systems and Applications, 1994.

Proceedings., Workshop on, pages 85–90.

[Schmidt et al., 1999] Schmidt, A., Beigl, M., and Gellersen, H. (1999). There is

more to context than location. Computers & Graphics, 23(6):893–901.

[Serafini and Tamilin, 2005] Serafini, L. and Tamilin, A. (2005). Drago: Distributed

reasoning architecture for the semantic web. Proc. of the Second European Semantic

Web Conference (ESWC’05), pages 361–376.

[Serafini and Tamilin, 2007] Serafini, L. and Tamilin, A. (2007). Instance migration

in heterogeneous ontology environments. LECTURE NOTES IN COMPUTER

SCIENCE, 4825:452.

[Shadbolt et al., 2006] Shadbolt, N., Hall, W., and Bernes-Lee, T. (2006). The

semantic web revisited. IEEE Intelligent Systems, 21(2):96–101.

[Sowa, 2000] Sowa, J. F. (2000). Knowledge representation: logical, philosophical

and computational foundations. Brooks/Cole Publishing Co., Pacific Grove, CA,

USA.

[Spyns et al., 2002] Spyns, P., Meersman, R., and Jarrar, M. (2002). Data modelling

versus ontology engineering. SIGMOD Rec., 31(4):12–17.

215

[Steggles and Gschwind, 2005] Steggles, P. and Gschwind, S. (2005). The Ubisense

smart space platform. In Adjunct Proceedings of the Third International Conference

on Pervasive Computing, volume 191.

[Strang and Linnhoff-popien, 2004] Strang, T. and Linnhoff-popien, C. (2004). A

context modeling survey. In Workshop on Advanced Context Modelling, Reasoning

and Management, UbiComp 2004 - The Sixth International Conference on

Ubiquitous Computing, Nottingham/England.

[Strassner et al., 2008] Strassner, J., Liu, Y., Jiang, M., Zhang, J., van der Meer, S.,

Foghlu, M., Fahy, C., and Donnelly, W. (2008). Modelling context for autonomic

networking. In Network Operations and Management Symposium Workshops,

2008. NOMS Workshops 2008. IEEE.

[Suchanek et al., 2007] Suchanek, F., Kasneci, G., and Weikum, G. (2007). Yago: a

core of semantic knowledge. In Proceedings of the 16th international conference

on World Wide Web, pages 697–706. ACM New York, NY, USA.

[Sun Microsystems, Inc., 2004] Sun Microsystems, Inc. (2004). Jsr-000176 j2se 5.0

(tiger) release contents. Technical report, Sun Microsystems, Inc.

[Thomson et al., 2003] Thomson, G., Richmond, M., Terzis, S., and Nixon, P. (2003).

An approach to dynamic context discovery and composition. Proceedings of UbiSys,

3.

[Wang et al., 2002] Wang, X., Dong, J., Chin, C., Hettiarachchi, S., and Zhang, D.

(2002). Semantic Space: an infrastructure for smart spaces. Computing, 1(2):67–74.

[Ye et al., 2007] Ye, J., Coyle, L., Dobson, S., and Nixon, P. (2007). Ontology-based

models in pervasive computing systems. The Knowledge Engineering Review,

22(04):315–347.

[Zhu et al., 2005] Zhu, F., Mutka, M., and Ni, L. (2005). Service Discovery in

Pervasive Computing Environments. IEEE PERVASIVE COMPUTING, pages

81–90.

216

Appendix A

Ontology Information

A.1 Introduction

This chapter includes information about the ontologies used to in the evaluation of

the work presented in this thesis.

A.2 User Model Case Study

A.2.1 LIP Description

The IMS LIP Information Model Core Data defines the following categories1:

• Identification: Biographic and demographic data relevant to learning;

• Goal: Learning, career and other objectives and aspirations;

• Qualifications, Certifications and Licenses (qcl): Qualifications, certifications

and licenses granted by recognized authorities;

• Activity: Any learning-related activity in any state of completion. Could be

1These definitions are reproduced from the Specification at http://www.imsglobal.org/

profiles/lipinfo01.html

217

http://www.imsglobal.org/profiles/lipinfo01.html
http://www.imsglobal.org/profiles/lipinfo01.html

self-reported. Includes formal and informal education, training, work experience,

and military or civic service;

• Transcript: A record that is used to provide an institutionally-based summary

of academic achievement. The structure of this record can take many forms;

• Interest: Information describing hobbies and recreational activities;

• Competency: Skills, knowledge, and abilities acquired in the cognitive, affective,

and/or psychomotor domains;

• Affiliation: Membership of professional organizations, etc. Membership of

groups is covered by the IMS Enterprise specification;

• Accessibility: General accessibility to the learner information as defined through

language capabilities, disabilities, eligibilities and learning preferences including

cognitive preferences (e.g. issues of learning style), physical preferences (e.g. a

preference for large print), and technological preferences (e.g. a preference for

a particular computer platform);

• Securitykey: The set of passwords and security keys assigned to the learner for

transactions with learner information systems and services.

• Relationship: The set of relationships between the core components. The core

structures do not have within them identifiers that link to the core structures.

Instead all of these relationships are captured in a single core structure thereby

making the links simpler to identify and manage.

The LIP standard permits the inclusion of the core data models, as well as information

from within those core models. For the purposes of the ontologies designed below,

the accessibility model was not included, and the remaining properties were included

based on finding a representative set of properties from the examples given with the

standard2.

2http://www.imsglobal.org/profiles/

218

http://www.imsglobal.org/profiles/

A.2.2 Ontology XML files

These ontologies were created using the SWOOP ontology tool

[Kalyanpur et al., 2006].

A.2.3 Properties-Oriented Version of the AE Ontology

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY AEProp "http://kdeg.cs.tcd.ie/ontologies/AEProp#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xml:base="http://kdeg.cs.tcd.ie/ontologies/AEProp"

xmlns:AEProp="&AEProp;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->

<owl:Ontology rdf:about=""

rdfs:label="AEProp"

owl:versionInfo="0.1"/>

<!-- Classes -->

<owl:Class rdf:about="#Learner"

rdfs:label="Learner"/>

<!-- Annotation Properties -->

<owl:AnnotationProperty rdf:about="&rdfs;label"/>

<owl:AnnotationProperty rdf:about="&owl;versionInfo"/>

<!-- Datatype Properties -->

<owl:DatatypeProperty rdf:about="#adaptivity"

rdfs:label="adaptivity"/>

<owl:DatatypeProperty rdf:about="#candidate"

rdfs:label="candidate"/>

<owl:DatatypeProperty rdf:about="#competency"

rdfs:label="competency">

<rdfs:subPropertyOf rdf:resource="#adaptivity"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#identifier"

rdfs:label="identifier"/>

<owl:DatatypeProperty rdf:about="#name"

rdfs:label="name"/>

<!-- Instances -->

219

<AEProp:Learner rdf:about="#user1"

rdfs:label="user1">

<AEProp:identifier rdf:datatype="&xsd;string">user1</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user10"

rdfs:label="user10">

<AEProp:identifier rdf:datatype="&xsd;string">user10</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user2"

rdfs:label="user2">

<AEProp:identifier rdf:datatype="&xsd;string">user2</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user3"

rdfs:label="user3">

<AEProp:identifier rdf:datatype="&xsd;string">user3</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user4"

rdfs:label="user4">

<AEProp:identifier rdf:datatype="&xsd;string">user4</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user5"

rdfs:label="user5">

<AEProp:identifier rdf:datatype="&xsd;string">user5</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user6"

rdfs:label="user6">

<AEProp:identifier rdf:datatype="&xsd;string">user6</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user7"

rdfs:label="user7">

<AEProp:identifier rdf:datatype="&xsd;string">user7</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user8"

rdfs:label="user8">

<AEProp:identifier rdf:datatype="&xsd;string">user8</AEProp:identifier>

</AEProp:Learner>

<AEProp:Learner rdf:about="#user9"

rdfs:label="user9">

<AEProp:identifier rdf:datatype="&xsd;string">user9</AEProp:identifier>

</AEProp:Learner>

</rdf:RDF>

220

A.2.4 Class-Oriented Version of the AE Ontology

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY AEClass "http://kdeg.cs.tcd.ie/ontologies/AEClass">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xml:base="&AEClass;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->

<owl:Ontology rdf:about=""

owl:versionInfo="0.1"/>

<!-- Classes -->

<owl:Class rdf:about="#Adaptivity"

rdfs:label="Adaptivity"/>

<owl:Class rdf:about="#Candidate"

rdfs:label="Candidate"/>

<owl:Class rdf:about="#Competency"

rdfs:label="Competency">

<rdfs:subClassOf rdf:resource="#Adaptivity"/>

</owl:Class>

<owl:Class rdf:about="#Learner"

rdfs:label="Learner"/>

<!-- Annotation Properties -->

<owl:AnnotationProperty rdf:about="&rdfs;label"/>

<owl:AnnotationProperty rdf:about="&owl;versionInfo"/>

<!-- Datatype Properties -->

<owl:DatatypeProperty rdf:about="#candidateValue"

rdfs:label="candidateValue"/>

<owl:DatatypeProperty rdf:about="#competencyValue"

rdfs:label="competencyValue"/>

<owl:DatatypeProperty rdf:about="#identifier"

rdfs:label="identifier"/>

<owl:DatatypeProperty rdf:about="#name"

rdfs:label="name"/>

<!-- Object Properties -->

<owl:ObjectProperty rdf:about="#hasAdaptivity"

221

rdfs:label="hasAdaptivity"/>

<owl:ObjectProperty rdf:about="#hasCandidate"

rdfs:label="hasCandidate"/>

</rdf:RDF>

222

A.2.5 Class-Oriented Version of the LIP Ontology

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY LIPClass "http://kdeg.cs.tcd.ie/ontologies/LIPClass#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xml:base="http://kdeg.cs.tcd.ie/ontologies/LIPClass"

xmlns:LIPClass="&LIPClass;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->

<owl:Ontology rdf:about=""

rdfs:label="LIPCLass"

owl:versionInfo="0.1"/>

<!-- Classes -->

<owl:Class rdf:about="#Identification"

rdfs:label="Identification"/>

<owl:Class rdf:about="#LIP"

rdfs:label="LIP"/>

<owl:Class rdf:about="#LearnerInformation"

rdfs:label="LearnerInformation"/>

<!-- Annotation Properties -->

<owl:AnnotationProperty rdf:about="&rdfs;label"/>

<owl:AnnotationProperty rdf:about="&owl;versionInfo"/>

<!-- Datatype Properties -->

<owl:DatatypeProperty rdf:about="#accessibility"

rdfs:label="accessibility"/>

<owl:DatatypeProperty rdf:about="#activity"

rdfs:label="activity"/>

<owl:DatatypeProperty rdf:about="#address"

rdfs:label="address"/>

<owl:DatatypeProperty rdf:about="#affiliation"

rdfs:label="affiliation"/>

<owl:DatatypeProperty rdf:about="#competency"

rdfs:label="competency"/>

<owl:DatatypeProperty rdf:about="#contactinfo"

rdfs:label="contactinfo"/>

<owl:DatatypeProperty rdf:about="#geo"

223

rdfs:label="geo"/>

<owl:DatatypeProperty rdf:about="#goal"

rdfs:label="goal"/>

<owl:DatatypeProperty rdf:about="#interest"

rdfs:label="interest"/>

<owl:DatatypeProperty rdf:about="#name"

rdfs:label="name"/>

<owl:DatatypeProperty rdf:about="#qcl"

rdfs:label="qcl"/>

<owl:DatatypeProperty rdf:about="#relationship"

rdfs:label="relationship"/>

<owl:DatatypeProperty rdf:about="#securitykey"

rdfs:label="securitykey"/>

<owl:DatatypeProperty rdf:about="#transcript"

rdfs:label="transcript"/>

<owl:DatatypeProperty rdf:about="#uid"

rdfs:label="uid"/>

<!-- Object Properties -->

<owl:ObjectProperty rdf:about="#hasIdentification"

rdfs:label="hasIdentification"/>

<owl:ObjectProperty rdf:about="#hasLearnerInformation"

rdfs:label="hasLearnerInformation"/>

<!-- Instances -->

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser1"

rdfs:label="iduser1">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user1</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser1"

rdfs:label="liuser1">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

224

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user1"

rdfs:label="user1">

<LIPClass:hasIdentification rdf:resource="#iduser1"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser1"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser2"

rdfs:label="iduser2">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user2</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser2"

rdfs:label="liuser2">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user2"

rdfs:label="user2">

<LIPClass:hasIdentification rdf:resource="#iduser2"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser2"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser3"

rdfs:label="iduser3">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user3</LIPClass:uid>

225

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser3"

rdfs:label="liuser3">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user3"

rdfs:label="user3">

<LIPClass:hasIdentification rdf:resource="#iduser3"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser3"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser4"

rdfs:label="iduser4">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user4</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser4"

rdfs:label="liuser4">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

226

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user4"

rdfs:label="user4">

<LIPClass:hasIdentification rdf:resource="#iduser4"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser4"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser5"

rdfs:label="iduser5">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user5</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser5"

rdfs:label="liuser5">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user5"

rdfs:label="user5">

<LIPClass:hasIdentification rdf:resource="#iduser5"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser5"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser6"

rdfs:label="iduser6">

227

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user6</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser6"

rdfs:label="liuser6">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user6"

rdfs:label="user6">

<LIPClass:hasIdentification rdf:resource="#iduser6"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser6"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser7"

rdfs:label="iduser7">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user7</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser7"

rdfs:label="liuser7">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

228

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user7"

rdfs:label="user7">

<LIPClass:hasIdentification rdf:resource="#iduser7"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser7"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser8"

rdfs:label="iduser8">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user8</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser8"

rdfs:label="liuser8">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user8"

rdfs:label="user8">

<LIPClass:hasIdentification rdf:resource="#iduser8"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser8"/>

</LIPClass:LIP>

<!-- Instance Begins -->

229

<LIPClass:Identification rdf:about="#iduser9"

rdfs:label="iduser9">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user9</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser9"

rdfs:label="liuser9">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user9"

rdfs:label="user9">

<LIPClass:hasIdentification rdf:resource="#iduser9"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser9"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser10"

rdfs:label="iduser10">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user10</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser10"

rdfs:label="liuser10">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

230

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user10"

rdfs:label="user10">

<LIPClass:hasIdentification rdf:resource="#iduser10"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser10"/>

</LIPClass:LIP>

<!-- Instance Begins -->

<LIPClass:Identification rdf:about="#iduser10"

rdfs:label="iduser10">

<LIPClass:name rdf:datatype="&xsd;string">name</LIPClass:name>

<LIPClass:uid rdf:datatype="&xsd;string">user10</LIPClass:uid>

</LIPClass:Identification>

<LIPClass:LearnerInformation rdf:about="#liuser10"

rdfs:label="liuser10">

<LIPClass:competency rdf:datatype="&xsd;string">competency1</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency2</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency3</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency4</LIPClass:competency>

<LIPClass:competency rdf:datatype="&xsd;string">competency5</LIPClass:competency>

<LIPClass:interest rdf:datatype="&xsd;string">sql</LIPClass:interest>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept1</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept2</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept3</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept4</LIPClass:qcl>

<LIPClass:qcl rdf:datatype="&xsd;string">sql.concept5</LIPClass:qcl>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept1</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept2</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept3</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept4</LIPClass:transcript>

<LIPClass:transcript rdf:datatype="&xsd;string">relational.concept5</LIPClass:transcript>

</LIPClass:LearnerInformation>

<LIPClass:LIP rdf:about="#user10"

rdfs:label="user10">

<LIPClass:hasIdentification rdf:resource="#iduser10"/>

<LIPClass:hasLearnerInformation rdf:resource="#liuser10"/>

231

</LIPClass:LIP>

</rdf:RDF>

232

A.2.6 Properties-Oriented Version of the LIP Ontology

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY LIPProp "http://kdeg.cs.tcd.ie/ontologies/LIPProp#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xml:base="http://kdeg.cs.tcd.ie/ontologies/LIPProp"

xmlns:LIPProp="&LIPProp;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->

<owl:Ontology rdf:about=""

rdfs:label="LIPProp"

owl:versionInfo="0.1"/>

<!-- Classes -->

<owl:Class rdf:about="#LearnerInformation"

rdfs:label="LearnerInformation"/>

<!-- Annotation Properties -->

<owl:AnnotationProperty rdf:about="&rdfs;label"/>

<owl:AnnotationProperty rdf:about="&owl;versionInfo"/>

<!-- Datatype Properties -->

<owl:DatatypeProperty rdf:about="#accessibility"

rdfs:label="accessibility"/>

<owl:DatatypeProperty rdf:about="#activity"

rdfs:label="activity"/>

<owl:DatatypeProperty rdf:about="#address"

rdfs:label="address"/>

<owl:DatatypeProperty rdf:about="#affiliation"

rdfs:label="affiliation"/>

<owl:DatatypeProperty rdf:about="#competency"

rdfs:label="competency"/>

<owl:DatatypeProperty rdf:about="#contactinfo"

rdfs:label="contactinfo"/>

<owl:DatatypeProperty rdf:about="#geo"

rdfs:label="geo"/>

<owl:DatatypeProperty rdf:about="#goal"

rdfs:label="goal"/>

<owl:DatatypeProperty rdf:about="#identification"

233

rdfs:label="identification"/>

<owl:DatatypeProperty rdf:about="#interest"

rdfs:label="interest"/>

<owl:DatatypeProperty rdf:about="#name"

rdfs:label="name"/>

<owl:DatatypeProperty rdf:about="#qcl"

rdfs:label="qcl"/>

<owl:DatatypeProperty rdf:about="#relationship"

rdfs:label="relationship"/>

<owl:DatatypeProperty rdf:about="#securitykey"

rdfs:label="securitykey"/>

<owl:DatatypeProperty rdf:about="#transcript"

rdfs:label="transcript"/>

<owl:DatatypeProperty rdf:about="#uid"

rdfs:label="uid"/>

<!-- Instances -->

<LIPProp:LearnerInformation rdf:about="#user1"

rdfs:label="user1">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user1</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user2"

rdfs:label="user2">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

234

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user2</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user3"

rdfs:label="user3">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user3</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user4"

rdfs:label="user4">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

235

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user4</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user5"

rdfs:label="user5">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user5</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user6"

rdfs:label="user6">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user6</LIPProp:uid>

236

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user7"

rdfs:label="user7">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user7</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user8"

rdfs:label="user8">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user8</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user9"

rdfs:label="user9">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

237

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user9</LIPProp:uid>

</LIPProp:LearnerInformation>

<LIPProp:LearnerInformation rdf:about="#user10"

rdfs:label="user10">

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency1</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency2</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency3</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency4</LIPProp:competency>

<LIPProp:competency rdf:datatype="&xsd;string">sql.competency5</LIPProp:competency>

<LIPProp:interest rdf:datatype="&xsd;string">sql</LIPProp:interest>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept1</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept2</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept3</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept4</LIPProp:transcript>

<LIPProp:transcript rdf:datatype="&xsd;string">relational.concept5</LIPProp:transcript>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept1</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept2</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept3</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept4</LIPProp:qcl>

<LIPProp:qcl rdf:datatype="&xsd;string">sql.concept5</LIPProp:qcl>

<LIPProp:uid rdf:datatype="&xsd;string">user10</LIPProp:uid>

</LIPProp:LearnerInformation>

</rdf:RDF>

238

Appendix B

Glossary of Terms

Articulation: In Semantic Interoperation, the articulation consists of the

representation of the mappings combined with the references to the mapped

ontology concepts.

Context: External information which is relevant to a target application, but which

the application cannot normally access.

Context Mediator: An application which is able to analyse ontological knowledge

and broker information from sources of context to enrich a target application

Participant: A service which is either a Target Application or a Source of Context.

Ontology Mapping: the process of relating symbols and axioms in two ontologies

which share the same domain of discourse. [Kalfoglou and Schorlemmer, 2003]

Ontology Alignment: The process of using relations taken from an external

ontology to describe the links between the symbols in the ontologies.

[Kalfoglou and Schorlemmer, 2003]

Ontology Mediation: The process of transferring information from one ontology

to another, while keeping the ontologies separate.

Schema Manager: The ACP component responsible for loading and providing

access to ontologies in the system. In the ACP, this component is a set of

239

methods which are backed by the Jena Ontology Framework.

Shared Semantic View: The representation of the concepts within the Target

Application and the Sources of Context, along with a description of the links

between them. In the ACP, this is represented by a Topic Map.

Reasoner: The ACP contains custom reasoners, which are Java applications

loaded on demand to perform tasks such as uplifting ontologies, transferring

information between ontologies or altering the Shared Semantic View.

Source of Context: A service or knowledge base which contains some context

information.

Target Application: A service or application which is to be enriched with context

knowledge.

240

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Motivating Example

	Challenges to Informing Context
	Research Question
	Objectives
	Contribution
	Technical Approach

	Thesis Outline

	Chapter State of the Art in Context Integration
	Introduction
	Characterisation of Context in Previous surveys
	Definition of Context Integration

	Survey of Selected Context Systems
	CoBrA & SOUPA
	Construct
	SOCAM
	Analysis of Surveyed Systems

	Conclusions & Summary
	Summary of findings

	Chapter Ontology Mapping & Mediation
	Introduction
	A Note on Terminology

	What needs to be mapped?
	Survey of Ontology Mapping
	COMA++
	OISIN
	SUMO
	Business Maps
	Analysis of Mapping Frameworks & Implications for Mediation
	Modelling the Relationships between Ontologies

	Survey of Mapping Expression
	OWL support for Mapping Expression
	C-OWL
	INRIA Align RDF
	Semantic Web Rule Language
	Analysis of Mapping Expressions

	Properties of Mediation
	Nature of the Articulation
	Linguistic independence
	Mapping representation

	Survey of Ontology Mediators
	WSMO
	DRAGO Distributed Reasoner

	Additional Properties of Ontology Mediators
	Nature of the Internal Representation
	Data Transformation
	Knowledge Translation
	Mapping Importation

	Conclusion
	Summary Table for the Mediators

	Chapter Design & Architecture of a Context Mediator
	Introduction
	Abstract Framework
	Context Identification

	Design Goals
	Design Assumptions
	Context Integration Process

	Requirements and Influence from the State of the Art
	Architectural Requirements
	Participants - Produces & Consumers of Context
	Mediator Information Model Requirements
	Reasoning Requirements

	Operational Requirements
	Types of Operations
	Discovery Requirements
	Privacy Requirements

	Architecture
	Overall Architecture
	Architecture of the Shared Semantic View Manager
	Architecture of the Schema Manager
	Architecture of the Reasoner Manager
	Information Flow

	Conclusions

	Chapter Implementation of the ACP: Adaptive Context Portal
	Introduction
	Implementation Scope
	Ontologies
	Service Registration
	Privacy
	Abstraction

	Implementation Platform
	Implementation Overview
	Key Aspects of Implementation
	Schema Manager
	Shared Semantic View Manager
	Reasoner Manager

	Implementation Walkthrough
	Example Scenario
	Service Description
	Ontology Uplift
	Data Transfer
	Multiple Sources of Context
	More Complex Examples

	Analysis of Implementation & Conclusions

	Chapter Evaluation
	Introduction
	Evaluation Methodology
	Case Studies
	Case Study: User Model Transfer
	Case Study: Bibliography Benchmark Ontologies
	Overall Findings for the Case Studies

	Comparison with the State of the Art
	Comparison of the ACP to other Context Systems Reviewed
	Comparison of the ACP to other Semantic Mediators Reviewed

	Conclusions

	Chapter Conclusion
	Objectives & Achievements
	Contribution to the State of the Art
	Future Work
	Supporting Ontology Features
	Extending the Shared Semantic View
	Linked Open Data
	Further Implementation and Experimentation

	Bibliography
	Appendix Ontology Information
	Introduction
	User Model Case Study
	LIP Description
	Ontology XML files
	Properties-Oriented Version of the AE Ontology
	Class-Oriented Version of the AE Ontology
	Class-Oriented Version of the LIP Ontology
	Properties-Oriented Version of the LIP Ontology

	Appendix Glossary of Terms

