
Social Grid Agents

by

Gabriele Pierantoni

A Thesis submitted to

The University of Dublin
for the degree of

Doctor of Philosophy

Department of Computer Science,
University of Dublin,

Trinity College

 ��

September, 2008

Declaration

This thesis has not been submitted as an exercise for a degree at any other University.
Except where otherwise stated, the work described herein has been carried out by
the author alone. This thesis may be borrowed or copied upon request with the
permission of the Librarian, University of Dublin, Trinity College. The copyright
belongs jointly to the University of Dublin and Gabriele Pierantoni.

Signature of Author .
Gabriele Pierantoni September, 2008

Abstract

The problem of resource allocation in Grid computing has been actively tackled by

the scientific community for some years; its complexity is in meeting the expectations

of different actors with different concepts of optimality within an environment divided

into geographically dispersed and different administrative domains and thus unsuited

to supporting centralized management systems. The complexity of the problem is

further increased by the fact that the scientific community produced different Grids

with different standards, focuses and technologies.

This problem closely resembles that of an economy and has consequently been

investigated with economic paradigms, leading to models that are often tailored to

one or more specific situation.

This thesis speculates that an approach reflecting the social structures that sup-

port economic models could allow different models to co-exist as they do in the real

world; this thesis also speculates that a successful solution should be able to encom-

pass different Grids both present and future.

In order to achieve this, the modelling of the different actors and their behaviour

is inspired by some behaviours that are common in societies; to encompass different

grids, the environment of the actors is modelled as a metagrid : a conceptual space

divided into three regions: the different existing middlewares, the metagrid region

and border regions at the intersection of the two where interoperability issues are

tackled by a combination of abstraction and translation.

This thesis proposes that resource allocation be modelled as the intersection of dif-

ferent topologies where actors interact with each other to enforce different allocation

philosophies. These actors are modelled with agents termed Social Grid Agents.

2

The proposed model is based on four different kinds of topologies: a Production

Topology where services are performed, a Social Topology where agents that control

the production process engage in social and economic processes, a Control Topol-

ogy where the agents belonging to the Social Topology control those belonging to

the Production Topology, and a Value and Price Topology that connects social and

production agents to determine the value and price of a resource.

Social Grid Agents communicate with messages and their behaviour is defined

by sets of policies that determine how they relate to each other. The need for an

efficient and expressible native language with which the agents express policies and

messages led to the decision to use a functional language as a base for the agent’s

native language.

An architecture is defined at an abstract and concrete level and a prototype that

can encompass different social relationships has been implemented and tested in a

series of experiments to evaluate the efficiency, scalability and behaviour of the Social

Grid Agents.

3

Acknowledgements
I would like to dedicate this thesis to ”no frills” flying which allowed me to pursue
this research in Trinity College Dublin while still being able to bask (at times)
under the plentiful light of my native sky becoming what, for long, I longed for: a
European citizen. But, much more importantly and much more gratefully, I dedicate
this work to Gaia that, in these years, flew ”without frills” over and over and over
with the loving and rocky stubbornness of her people to join me and gaze at the
stars under Dobbblin’s cloudless sky.

The person I own more for this research is Dr.Brian Coghlan, my supervisor,
whom I thank most sincerely not only for being always of help and guidance in the
often hazy routes of this research but especially for demonstrating me that truly
admirable work ethics are not just abstract ideas but can be found in real people.
His support and help, always generously offered even at the latest hours and from
the remotest corners of this little, blue planet, has been a balsm for a cynical and
mildly disillusioned Italian such as myself.

I would like to thank sincerely John Walsh who desperately tried (unfortu-
nately often failing) to teach me the very basics of system administration and always
volunteered his time to help me in both practical and theoretical matters. But I
especially want to thank John for two more things: for being a friend in these years
and for his most peculiar musical inclinations which strengthened my tolerance and
acceptance of diversity.

I want to thank Dr.Eamonn Kenny, the research manager, for his help in
mathematics and for the unpredictable paths of our conversations that, oscillating
between graph theory to theology, rendered much less boring waiting at airport
gates. I want to thank Dr.Stephen Childs, Dr.David O Callaghan, Dr.John Ryan
and Dr.Geoffrey Quigley for their help in setting up the experimental testbed. I
want to thank Dr.Keith Rochford for the time, always profitable and entertaining,
in which we carried out the joint part of this research. I want to thank all the
present and past people of the Computer Architecture Group: Kathryn Cassidy,
Dr. Soha Maad, Peter Lavin, Simon O’Neil, Dr. Stuart Kenny, Stephan Dudzinky,
Ronan Watson and Oliver Lyttleton who where always kind to me, helped whenever
was possible and even went through the pains of throwing me a heartening surprise
party.

I want to thank my family that had the wiseness (or madness) to support
me practically and emotionally in going back to be a student when I had a stable
job.

I want to thank HEA, ISF and the Irish Government for funding this re-
search. I finally want to thank Trinity College Dublin and all the people that made
it alive for these years that, despite the despicable weather and the soaring price of
a pint, have been some of the most pleasant of my life.

Contents

1 Introduction 1

1.1 Foreword . 2

1.2 Grids, Stakeholders and Societies . 2

1.3 Description of this work . 7

1.4 Main Contributions . 8

2 A look at the landscape 10

2.1 Introduction . 11

2.2 Resource Allocation Mechanisms . 11

2.2.1 Classical Resource Allocation Mechanisms 12

2.2.2 Socially and Economically Inspired Resource Allocation Systems 18

2.3 Interoperability . 28

2.3.1 Major current interoperability approaches 29

2.4 Social Grid Agents . 31

2.4.1 Optimization . 32

2.4.2 Diversity and Interactions . 33

2.4.3 Complexity . 34

2.5 Motivations . 34

3 Methods 36

3.1 Introduction . 37

3.2 Social Grid Agents Main Concepts 37

3.2.1 Production . 37

3.2.2 Ownership and Control . 41

i

3.2.3 Social Topologies . 44

3.2.4 Exchange . 44

3.2.5 Value and Price . 48

3.2.6 Policies and Modalities . 50

3.2.7 Additional Social Dimensions 54

3.2.8 Limitations . 56

3.3 Topologies . 56

3.4 Production Topologies . 57

3.4.1 Simple Producer . 57

3.4.2 Service Rental . 57

3.4.3 The Company . 58

3.4.4 The Market . 58

3.4.5 Complex production topologies 59

3.5 Social Topologies . 60

3.5.1 Simple Relationship . 60

3.5.2 Tribe . 61

3.5.3 Pub . 62

3.5.4 Keynesian Scenario . 62

3.6 Control and Ownership Topologies 62

3.7 Value and Price Topologies . 63

3.8 Additional Social Dimensions . 67

3.8.1 Banking Dimensions . 67

3.8.2 Indexing Dimensions . 68

3.8.3 Trusting Dimensions . 69

3.9 Complex Topologies . 69

3.10 A Metagrid Paradigm . 71

3.10.1 An abstract view . 72

3.10.2 A concrete view . 75

3.11 Social Grid Agents and Metagrids . 77

3.11.1 Border Agents . 77

ii

3.11.2 Native Agents . 78

3.11.3 Discussion . 78

3.12 Architecture . 79

3.13 Abstract Architecture . 80

3.14 Types of agents . 81

3.15 Agent anatomy . 82

3.15.1 Messages . 83

3.15.2 Service Providers . 85

3.16 Topologies . 93

3.16.1 Simple Purchase . 94

3.16.2 Pub Topology . 95

3.16.3 Tribe Topology . 95

3.16.4 Keynesian Scenario . 96

3.17 Appropriate Technologies . 97

3.18 Behaviour Policies . 97

3.18.1 The Native Language . 98

3.18.2 ClassAd and Agents . 101

3.18.3 Policy Enforcement . 113

4 Implementation and Experiments 116

4.1 Introduction . 117

4.2 Past Implementations . 117

4.2.1 First Implementation . 117

4.2.2 Second Implementation . 118

4.2.3 Third Implementation . 118

4.2.4 Fourth Implementation . 119

4.3 The current prototype . 119

4.3.1 A metagrid implementation 120

4.3.2 Implemented Prototypes of Social Grid Agents 122

4.3.3 An example topology . 141

4.3.4 An example of Policy Enforcement 145

iii

4.4 Experiments . 156

4.4.1 Reliability and Efficiency . 156

4.4.2 Scalability . 160

4.4.3 Agent behaviour . 168

4.4.4 First behaviour experiment 168

4.4.5 Second behaviour experiment 173

4.4.6 Conclusion . 178

5 Conclusions 184

5.1 Evaluation versus core criteria . 185

5.2 Evaluation of the technologies used 185

5.2.1 Jar Wars . 186

5.3 Evaluation of the architecture . 187

5.3.1 Flexible policies . 188

5.3.2 Support for multiple middlewares 188

5.3.3 Awareness of self and surroundings 188

5.4 Evaluation of the Prototype . 189

5.4.1 Do SGAs degrade the performance of the resources they control ?189

5.4.2 How scalable are SGAs ? . 190

5.4.3 How do SGAs behave ? . 190

5.4.4 Other questions about the prototype 191

5.4.5 How do SGAs fit into the surveyed Taxonomies ? 192

5.4.6 Relation with related work . 193

5.5 Contributions . 194

5.6 Future Work . 195

5.6.1 Deployment on a Production Infrastructure 195

5.6.2 Additional Services . 196

5.6.3 Negotiation Protocols and Service Level Agreements 196

5.6.4 Advanced decision systems . 197

5.6.5 Large scale indexes . 197

5.6.6 Advanced Social, Economic and Financial Models 197

iv

5.6.7 Trust . 198

5.6.8 Service Level Agreements . 199

5.7 Acknowledgements . 199

5.8 Conclusions . 200

A Detailed Metrics of Reliability Experiment 201

B Detailed Metrics of the Scalability Experiment on the Concrete

Testbed 205

C Detailed Metrics of the Scalability Experiment on the Synthetic

Testbed 208

D Detailed Metrics of First Behavioural Experiment 213

E Detailed Metrics of Second Behavioural Experiment 217

v

List of Figures

1-1 In the beginning, It’s hard to see all the bumps. 1

2-1 Hoy, hoy, hoy ! Digital land ahead ! 10

2-2 A simplified view of the resource allocation architecture in the gLite

middleware. 14

2-3 Simple Resource Allocation architecture in the Condor middleware. . 18

2-4 Multiple Resource Allocation architecture in the Condor middleware. 19

3-1 Social Non-Grid Agents exchanging information. 36

3-2 Representation of a grid service as a micro-economic supply chain . . 38

3-3 Detail of a grid service production chain 38

3-4 Example of the production paradigm 39

3-5 Example of the production paradigm 40

3-6 Demands and Supplies. 45

3-7 Demands and Supplies are disjoint sets 46

3-8 Abundance, Needs are completely covered 46

3-9 Scarcity, Needs cannot be covered . 47

3-10 Agent’s topologies . 48

3-11 Value and price . 50

3-12 Information flows . 51

3-13 Policies and modalities . 53

3-14 Simple Producer. 57

3-15 Service Rental. 58

3-16 A simple company. 58

vi

3-17 A company with outsourced services. 59

3-18 A Market. 59

3-19 A complex production topology. 60

3-20 Simple Relationships. 61

3-21 Tribe. 61

3-22 A pub model. 62

3-23 Keynesian Scenario. 63

3-24 Example of control topology: simple use. 64

3-25 Example of control topology: rent and simple use. 64

3-26 Metrics, Value and Price in the different layers. 65

3-27 Different approaches to the computation of value and price. 66

3-28 A banking extension of an exchange. 67

3-29 An indexing extension of an exchange. 68

3-30 Different approaches to the computation of value and price. 69

3-31 Open and closed economies. 70

3-32 A closed, synthetic economy. 71

3-33 Connection between a synthetic and real economy. 72

3-34 Abstract view of a metagrid. 73

3-35 A concrete view of the metagrid . 76

3-36 Abstract architecture of the agents. 82

3-37 Taxonomy of grid agents. 83

3-38 Social and production agents. 84

3-39 Agent Architecture. 85

3-40 Architecture of the outsourcing mechanism. 86

3-41 Different messages exchanged by agents. 87

3-42 Different messages exchanged by agents. 88

3-43 Agent Behaviour Engine Architecture. 89

3-44 Mapping a message to a processor. 90

3-45 Example of steps performed by a synchronous processor. 91

3-46 Behaviour of a synchronous processor. 92

vii

3-47 Behaviour of an asynchronous processor. 93

3-48 The manager. 94

3-49 A Pub Topology. 96

3-50 A Keynesian Topology. 97

3-51 Policies and modalities. 108

3-52 Policies and modalities abstraction. 110

3-53 Policies and modalities enforcement. 113

4-1 It’s a dirty job but someone has to do it. 116

4-2 Architecture of the second prototype. 118

4-3 Architecture of the example. 120

4-4 Topology of the example. 121

4-5 Architecture of the gLite-wms-pga agent. 124

4-6 Actions performed by the Asynchronous Job Submission Processor. . 126

4-7 Actions performed by the Policies Processor. 127

4-8 Architecture of the gt4-gram-pga agent. 129

4-9 Interaction architecture among SGA and Grid4C agents. 132

4-10 Architecture of the gLite-wms-sga agent. 135

4-11 Actions performed by the Asynchronous Job Purchase Processor. . . 136

4-12 Actions performed by the Policies Processor in the gLite Wms Social

Agent. 137

4-13 Architecture of a bank agent. 139

4-14 Architecture of an indexing agent. 140

4-15 Architecture of the example topology. 142

4-16 Agent’s interaction under conditions of light workload. 143

4-17 Agent’s interactions in a pub topology. 144

4-18 Agent’s interactions during the outsourcing process. 144

4-19 Policies and modalities enforcement. 145

4-20 Subspace defined by the modalities requested by the Client. 146

4-21 ClassAd Expression defining the modalities requested by the Client. . 149

4-22 ClassAd expression after the social policies mapping. 150

viii

4-23 Subspace defined by the social policies. 151

4-24 ClassAd expression after the social policies enforcement. 152

4-25 ClassAd expression after the production policies mapping. 153

4-26 ClassAd expression after the production policies enforcement. 154

4-27 Subspace defined by the production policies. 154

4-28 Subspace defined by the execution policies. 155

4-29 Abstract view of the reliability and efficiency experiments. 157

4-30 Abstract view of the reliability and efficiency experiments. 159

4-31 Testbed for the scalability experiment. 160

4-32 Creation Times for a Large Scale ClassAd Map. 166

4-33 Query Times for a Large Scale ClassAd Map. 167

4-34 Testbed for the behaviour experiment. 168

4-35 Relations among the different metrics of the first behaviour experiment.179

4-36 Main metrics of the first behaviour experiment. 180

4-37 Testbed for the second behaviour experiment. 181

4-38 Relations among the different metrics of the second experiment. . . . 182

4-39 Main metrics of the behaviour experiment. 183

5-1 It’s time to take a look back. 184

A-1 Submission reliability of the gLite border. 201

A-2 Submission time of the gLite border. 202

A-3 Submission efficiency of the gLite border. 203

A-4 Execution reliability of the gLite border. 204

B-1 Dispatch time of the scalability experiment. 205

B-2 Execution time of the scalability experiment. 206

B-3 Return time of the scalability experiment. 206

B-4 Total time of the scalability experiment. 207

C-1 Dispatch time of the small-scale scalability experiment on the synthetic

testbed. 208

ix

C-2 Execution time of the small-scale scalability experiment on the syn-

thetic testbed. 209

C-3 Return time of the small-scale scalability experiment on the synthetic

testbed. 209

C-4 Total time of the small-scale scalability experiment on the synthetic

testbed. 210

C-5 Dispatch time of the large-scale scalability experiment on the synthetic

testbed. 210

C-6 Execution time of the large-scale scalability experiment on the syn-

thetic testbed. 211

C-7 Return time of the large-scale scalability experiment on the synthetic

testbed. 211

C-8 Total time of the large-scale scalability experiment on the synthetic

testbed. 212

D-1 Workload. 213

D-2 Endowment of SGA1. 214

D-3 Endowment of SGA3. 215

D-4 Execution tokens granted by PGA2 to SGA1. 216

E-1 Workload. 217

E-2 Endowment of SGA1. 218

E-3 Endowment of SGA3. 219

E-4 Endowment of SGA4. 220

E-5 Execution tokens granted by PGA2 to SGA1. 221

x

List of Tables

3.1 ClassAd extension of the Boolean AND function. 114

4.1 Action to Provider map in the Job Asynchronous Processor. 126

4.2 Actions to Providers map for the Policies Processor. 127

4.3 Metrics for gLite Workload Management System. 133

4.4 Action to Provider map in the Job Purchase Asynchronous Processor. 137

4.5 Actions to Providers map for the Policies Processor in the gLite Wms

Social Agent. 138

4.6 Degradation of service on the gLite border (10 consecutive jobs re-

peated 5 times). 158

4.7 Degradation of service on the gLite border (50 consecutive jobs re-

peated 5 times). 158

4.8 Degradation of service on the gLite border (100 consecutive jobs re-

peated 5 times). 158

4.9 Parameters of the scalability experiment. 161

4.10 Results of the scalability experiment. 162

4.11 Parameters of the large scalability experiment on the synthetic testbed. 163

4.12 Parameters of the scalability experiment on the ClassAd Mapper. . . 165

xi

List of Acronyms

CE Computing Element

CPU Central Processor Unit

EERM Economic Enhanced Resource Manager

GA Grid Agent

GMD Grid Market Directory

GRAM Grid Resource Allocation Manager

GT4 Globus Toolkit 4

JVM Java Virtual Machine

OGSA Open Grid Service Architecture

OGSI Open Grid Service Infrastructure

OO Object Oriented

OOA Object Oriented Architecture

JVM Java Virtual Machine

PGA Production Grid Agent

RB Resource Broker

RMS Resource Management System

RUS Resource Usage Service

SE Storage Element

SGA Social Grid Agent

SLA Service Level Agreeement

SOAP Simple Object Access Protocol

SOA Service Oriented Architecture

WMS Workload Management System

xii

Chapter 1

Introduction

Figure 1-1: In the beginning, It’s hard to see all the bumps.

1

The secret of a good sermon is to have a good beginning and a good ending, then

having the two as close together as possible.

George Burns

1.1 Foreword

One of the first scientific essays I have read describes in its foreword the sense of awe

and, at times, even despair that the author felt in discovering the limitless vastitude

of its field of enquiry: a cubic millimeter of a turtle’s retina, a truly minuscule

entity. Nevertheless, the investigation of that microscopic cube unravelled a universe

of unforeseen complexity, a treacherous ford that the author managed at the very

end to cross, but just.

Only now can I really understand those words. This enquiry does not even have a

cubic millimeter of wonderful, menacing matter to stand upon, nevertheless, travers-

ing its maze was difficult.

This voyage starts from the simple wish to improve resource allocation in Grid

infrastructures, sets sail to the distant shores of social and economic behaviour and

returns at last to the concrete implementation with a still slightly blurred idea of

how to make things a bit better.

Is this not, after all, the purpose of every journey ?

1.2 Grids, Stakeholders and Societies

Grid Computing [39, 38] is a rapidly developing field of research both in the academia

and the industry. Although there are many different definitions of Grid Computing

ranging from very technical to more descriptive, as a first approximation, we can say

that Grids are a way to decouple the administrative domains of the resource and

the jobs, or, more precisely: Grids are a solution that allows resource owners and

job owners to belong to different administrative domains. This apparently simple

decoupling opens great freedoms and, concurrently, great challenges. The process

is similar in nature to the evolution of societies from little, isolated self-sufficient

2

structures to more complex and interconnected ones.

If users and resources are under the same administrative domain, security re-

quirements and allocation mechanisms can be defined and enforced directly by the

administrator. This arrangement has its strengths in its simplicity but its weakness

resides in the fact that the resources of the group must suffice for all possible de-

mands of its members. Using again a social example, we can model a department of

a university (or a company) under a single administrative domain as a self-sufficient

tribe which has to provide all the needed resources; these are shared among their

members under the rule of an chieftain. The chieftain of the tribe is analogous to

the system administrator (or whoever the system administrator takes orders from)

and the resources are not food or shelter but digital resources such as computational

time or storage space.

A self-sufficient system can either acquire vast amounts of resources (if it can at

all) to cope with all foreseen peaks in demand or else accept that some requirements

may not be fulfilled (possibly even threatening survival). An obvious way to overcome

such limitations is to share resources among different groups allowing a more stable

distribution. One way to do this is by trading resources. Trade allows acquisition

of resources but also allows specialization. If actors can trade, they need not bother

any more to provide themselves all the possible goods and services because they can

be found elsewhere. Trading actors can now concentrate at doing what they are best

at and trade for all the rest.

In this model a Grid is a trading and sharing platform among tribes. As a matter

of fact, Grids define ”Virtual Organizations” (that encompass different administra-

tive domains) where resources can be shared under a common security framework.

Within a Virtual Organization (often referred to as a VO for the sake of brevity),

resources are usually distributed following arrangements among the administrators

of the various domains. This might be modelled as a form of centralized trade based

on the negotiation of the administrators of the different societies, i.e. an alliance

of societies where the various leaders agree on sharing mechanisms under the aegis

of a trade organization. This form of trade allows more flexibility, resilience and

3

specialization.

Farmers might produce corn and exchange it with fish caught by those living on

the shores; fish and corn might be exchanged with game hunted by the tribes of the

hills. The department of Astrophysics might have to bother no longer with cumber-

some tasks of system administration which might be dealt with by the experts of the

Computer Science group. The leaders of the Astrophysics and the Computer Scien-

tists might meet and arrange compensation for the Computer Scientists in exchange

for the provided services.

In the simplest case, in a Grid there are three main kind of stakeholders: those

who own the resources, those who want to use them and those who are in control of

the Virtual Organization that encompasses the first two. The stakeholders owning

resources are usually named Resource Owners, the stakeholders that use the resources

are usually named Clients or Users while the last are usually named VO Managers.

All these stakeholders (or actors) have different and, at times, conflicting goals. In

most cases and in absence of other constraints, the clients will be mainly interested

in having their jobs run in the fastest possible time, the resource owners will try

to have their resources idle for the least possible time and the VO Managers will

try to satisfy the requirements of both the resource and job owners that belong to

the Virtual Organization. This consideration leads to a first important distinction

between the functionalities that are performed and the policies with which they are

executed. A request of the execution of a job on a grid specifies as functionalities

the executable, inputs, outputs and other parameters while it may specify as policies

additional constraints to define time and/or budget for the execution.

Grids traditionally support three different topologies for the scheduling systems

that are in charge for the distribution of computational resources. There are central-

ized, decentralized and hierarchical schedulers. Each of these solutions are particu-

larly suited to fulfill the requirements of users or resource owners. In a centralized

scheduling system, all execution requests are submitted to a single service that, in

turn, forwards the jobs to the resource that suits best its selection algorithm. In this

case, the preferences of the users to have their jobs fulfilled are easy to meet. In a

4

de-centralized scheduling system, the execution requests are submitted to different

services, each controlled by a resource owner, these systems are best suited to fulfill

the preferences of the resource’s users. By combining different systems in multi-

layered architectures, it is possible to create hierarchical structures that allow the

resource owners to define local allocation policies and the users to avail themselves

of the advantages of a centralized system.

The different scheduling approaches reflect the fact that having multiple actors

negotiating the allocation and sharing of resources poses a major problem: any one

of these actors will have its own (quite often selfish) idea of ”how” resources should

be shared, a concept of ”optimality” that is frequently clashing with that of others.

This is the very heart of an economy in its broader understanding: ”The ad-

ministration of the concerns and resources of any community or establishment with

a view to orderly conduct and productiveness”1, or better still: ”The science which

studies human behaviour as a relationship between ends and scarce means which have

alternative uses” 2.

This view of the resource allocation problem in Grid Computing is nothing new.

The scientific community already investigated and still investigates many ways in

which economics could be used to optimize and regulate the way actors with different

ideas of ”optimality” share their resources. Economy can be used to describe the

theoretical basis of sharing mechanisms and can also be used to investigate how

effective a sharing mechanism is. In recent years the scientific community produced

both theoretical investigations on the best economic models for the Grid problem

and also real systems that use economic principles for resource allocation.

In this thesis I speculate that this economic approach, while profitable and invalu-

able, has a shortcoming. Most of these economically inspired systems are tailored

to a particular economic perspective: some have centralized planners, others rely en-

tirely on free markets, others use economically driven optimization for scheduling. I

believe that, as it is in the real world, there is no ”optimal” economic model able to

encompass efficiently all the bewildering variety of relations and allocation schemes

1Oxford English Dictionary - http://dictionary.oed.com/cgi/entry/50071995?
2Lionel Robbins, An Essay on the Nature and Significance of Economic Science

5

of a Grid. It is my belief that a high-level allocation system in Grid computing should

allow a variety of allocation philosophies to co-exist and allow transactions that range

from competitive to cooperative, from selfish to empathic.

As a matter of fact, the exchange and sharing of computational resources already

encompass many different economic philosophies. From charitable empathy-based

computation platforms to business-oriented distributed computing (often referred to

as Cloud Computing); one may argue that the full spectrum and complexity of society

and economics is already present in Grid Computing.

The second argument is slightly more subtle. I argue that economies are a product

of societies and that they could not exist at all without all the other characteristics of

a society. I speculate that economically based solutions will eventually have to face

this truth and ”open” themselves both to a larger variety of allocation philosophies

and build stronger links to all the other aspects of Grid computing such as user,

provider, charitable and miscreant behaviours that constitute the ”other tiles” of

the Grid social canvas. In fact, a system capable of encompassing different allocation

philosophies must be capable of selecting the type of allocation philosophy depending

to its social relations.

For these reasons I define a Social Paradigm to analyze the problem of resource

allocation and as an abstract theoretical ground to design prototypical solutions

capable of testing, in the experimental sense, different sharing philosophies in different

Grid environments.

To tackle the problem posed by the existence of different middlewares I define the

environment as a metagrid, a conceptual space encompassing different middlewares.

A metagrid space is divided into three different regions.

• Grid and Workflow regions that host different existing middlewares

• The metagrid region where social and economic interactions take place

• Border regions at the intersection of the two where interoperability issues are

tackled by a combination of abstraction and translation.

In this, this thesis is a beginning and a work in progress.

6

1.3 Description of this work

The structure of this thesis reflects the path from these abstract concepts to a pro-

posed prototypical implementation and the experiments thereon.

Chapter 1, Introduction , introduces the basic concepts and the aims of this

research. It also describes the architecture of the thesis and summarizes its achieve-

ments and contributions.

Chapter 2, A look at the landscape, briefly overviews the work of the scien-

tific community relevant to this research: the concept of resource allocation in Grid

computing from an abstract and concrete perspective and the different approaches

to the problem of interoperability. The chapter introduces the concept of Social

Grid Agents, an agent-based system for high-level brokerage in Grid computing and

it explains how this paradigm relates to economic concepts such as production and

exchange and to social concepts such as selfishness and empathy.

Chapter 3, Methods, is devoted to the description of the methods followed in

this thesis. Firstly it details the social and economic paradigm, then it describes the

different topologies in which the agents can be arranged and how different social and

economic models can be described in such a way. The problem of interoperability is

tackled in a section devoted to the concept of metagrid a candidate environment for

SGAs. The architecture of the agents is described in a dedicated section and, finally,

a section explains the information flows that regulate the behaviour of the agents and

how a functional language, ClassAd, is used for this purpose.

Chapter 4, Use Cases and Implementation , details the implementation

of the Social Grid Agents prototype from different perspectives: the implemented

topologies, the implemented agents and an example of policies. The chapter is con-

cluded with a section devoted to experiments that were performed to assess the

reliability, scalability and correctness of the agent’s behaviour.

Chapter 5, Conclusions and Future Work , concludes this enquiry and

briefly explores possible future research directions.

Chapters 3 and 4 are divided into sections that cover the topologies in which the

agents are arranged, the architecture of the agents and the nature of the language

7

used by the agents both internally and externally. The two chapters describe each of

these topics with an increasing level of detail starting from an abstract perspective

to implementation examples.

1.4 Main Contributions

The main aim of this research is a resource allocation system for Grid computing ca-

pable of encompassing different allocation philosophies across different middlewares.

To design a system capable of encompassing different allocation philosophies I used

a social paradigm to try to mimic, in the Grid, some of the social behaviours that, in

the real world, allow to humans to act according to different economic philosophies

that depend on their social context.

To design a system capable of harnessing different middlewares I used a concept

of a metagrid that embraces three different domains: the existing middlewares, bor-

der regions where agents act as intermediators and a native metagrid region where

agents that belong to different topologies, engage in social and economic relations.

The need to deal with both functionalities and policies in a distinct albeit closely

intertwined fashion, the impossibility to know at design time which agent will be

making a final decision and the infeasibility of the assumption that all the informa-

tion will be available to all actors suggested to base the native language of the agents

on a functional language to allow delayed evaluation. A functional language widely

used in Grid computing called ClassAd was selected as a basis to define a native

language that agents use both internally and to communicate among each other.

The prototype allowed to test this solution in an environments encompassing three

middlewares and to experiment with agents capable of enforcing different, co-existing

allocation mechanisms.

The main contribution of Social Grid Agents can be summarized in three broad,

different areas

• Social Grid Agents can be seen as economy-agnostic (and this, in fact, has

been one of my strongest beliefs in these years) and offer a system capable of

8

implementing different, and possibly co-existing, allocation mechanisms that

can range from cooperation to competition, from unregulated economic-based

systems to centralized planning. This agnostic view of the allocation problem

allows Social Grid Agents to offers the possibility to instruct agents to expose

different behaviours depending on their social context.

• Thanks to the metagrid approach, Social Grid Agents, are capable of harnessing

different middlewares; the definition of border regions where interoperability

issues that regard both functionalities and policies are tackled by a combination

of translation and abstraction performed by border agents allows for the design

of stable and flexible interoperability infrastructure

• The use of a functional language such as ClassAd as a basis for the agent’s lan-

guage allows the definition of functionalities and policies that can be evaluated

in different, potentially unknown a priori, steps and this is a useful feature as it

allows the definition of policies that can be enforced in a structure that is not

known a priori.

• Finally, the architecture allows the implementation of agents whose behaviour

can be easily defined and modified by writing behavioural instructions based

on the same functional approach and language.

9

Chapter 2

A look at the landscape

Figure 2-1: Hoy, hoy, hoy ! Digital land ahead !

10

It is not from the benevolence of the butcher, the brewer, or the baker that we expect

our dinner, but from their regard to their self-love, and never talk to them of our

own necessities but of their advantages

Adam Smith

If you knew what I know about the power of giving, you would not let a single meal

pass without sharing it in some way

Buddha

The reason that the invisible hand often seems invisible is that it is often not there

Joseph E. Stiglitz

The real voyage of discovery consists not in seeking new landscapes but in having

new eyes.

Marcel Proust

2.1 Introduction

This chapter overviews the related work on the topics investigated in this thesis: the

problem of resource allocation and interoperability in Grid computing followed by

the motivations and the beliefs that underline this research.

2.2 Resource Allocation Mechanisms

The problem of resource allocation in Grid computing has been actively investigated

by the scientific community and consequently the literature regarding this issue is

both extremely vast and rich in content.

In its simplest form, this problem can be described as the dilemma faced by

an actor looking for the resources it needs in an environment under a given set of

constraints. In a Grid environment the agent looking for resources (often referred

to as a Client, User, or Requester) uses different services (either directly offered by

one or more Grid middlewares) to discover the available resources (thus exploring its

environment), connect to them and eventually use them. The resources encompass

hardware resources, access to simple Grid services (such as job submission and data

11

storage), software services (optionally accessed through licenses) and more complex

services such as workflow engines. The environment comprises one or more Grid

middlewares and in future might be expected to include a plethora of additional

services (indexes, markets and banks) that should eventually connect the user to the

resources it needs.

This problem is further complicated by the scarcity of resources (and the conse-

quent need of their optimal use) and by the need to meet the user’s satisfaction. This

leads to different and often clashing optimization concepts that have to co-exist in

the same environment.

Although the various solutions[29],[40] envisaged by the scientific community to

tackle the complexities of resource brokerage and allocation in Grids encompass ge-

netic algorithms, simulated annealing and hybrid solutions[20], we focus this survey

on classical resource allocation approaches as well as on those that are economy-based,

ranging from competitive liberalism to cooperation, from uncontrolled markets[29][85]

to centralized controlled economies[42][35].

The first part of this literature survey encompasses some ”classic” allocation

systems; the second, some based on economic paradigms.

2.2.1 Classical Resource Allocation Mechanisms

A proposal for a taxonomy of resource allocation systems in Grid Computing is

described in [49]. This paper concisely describes issues, context and functions of

resource allocation systems and offers a taxonomy based on the concepts of grid

type, namespace organization, resource dissemination protocols, resource discovery,

scheduling model, state estimation and scheduling policy.

Another taxonomy is proposed in [52]. This analysis is based on the definition of

an abstract model for a Resource Management System (RMS) and also uses actors

that cover the roles of resource requesters, resource providers and resource controllers.

RMSs are categorized along different dimensions:

• Machine Organization: the topology in which the various actors are arranged.

The following categories are proposed: flat, cells and hierarchical

12

• Resources: how the RMS is related to the resources it manages. This dimension

is further decomposed in the following sub-dimensions:

– Resource Model : that can be either based on Schemas (where the de-

scription of the resource is expressed in a description language) or Object

Models (where the description of the resource also comprises the actions

that can be performed on the resource), both of which can be either fixed

or extensible.

– Organization of the Resource’s namespace: that can be relational, hierar-

chical or graph-based.

– Quality of Service: that can be either be absent, soft (where attributes of

the request can be expressed but not enforced directly by the RMS) and

hard (where the attributes of the request are guaranteed to be met).

– Organization of the store for the resource information: that can either be

implemented through Network Directories (such as LDAP [18]) or Dis-

tributed Objects (such as CORBA [6]).

– Resource discovery : that is performed either through queries or agents.

– Resource dissemination: that can be either periodic or on demand.

• Scheduling philosophy : that can be centralized, hierarchical or distributed.

• State estimation: that can be either predictive or non predictive.

gLite

In the gLite middleware, the action of matching jobs and resources is performed by

the Workload Management System (WMS) [23, 27] where the information on the

available resources is matched against the job description.

The gLite middleware encompasses two main types of resources: Computational

Elements (CEs) [27] and Storage Elements (SEs) [27]. The middleware allows a form

of combined matching where it is possible for a user to specify a preference for the

Storage Element that is most close to a defined Computational Element. In gLite the

13

ClassAd language [80, 79, 81, 56] is used to define a Job Description Language named

JDL [68, 69] that is employed to specify both the requirements of the job owners and

the preferences of the resource owners. The description of the jobs and those of the

resources are matched in a component of the Workload Management System called

the Resource Broker [27, 43].

While the description of the jobs is directly determined by the user, the de-

scription of the resources and their status is the result of a gathering and filtering

process performed by a multi-layered hierarchical architecture of elements known as

BDII [27]. Mutual trust mechanisms between those responsible for the resources and

those responsible for the various BDII servers minimize the likelihood of malicious

tampering with the information.

Figure 2-2: A simplified view of the resource allocation architecture in the gLite

middleware.

To access resources users must possess a valid User Certificate [27] issued by

a Certificate Authority [27] that is accepted by the resource providers. With this

certificate a user can issue a Proxy Certificate [27] that will be accepted by the

resources that are enabled to do so.

The user can define the requirements of its job as a Boolean function (known as

Requirements) that must evaluate to true for the resource allocation to be successful.

14

The user can also specify a Rank function to rate different resources. The same

can be done by the resource’s owners. Hence gLite can choose resources and jobs

that respect the requirements (expressed with the Requirements function) and the

preferences (expressed with the Rank functions) of both the resource and job owners.

The user can query the gLite services for a list of available resources through a

matchmaking operation and then target specifically that resource by specifying it in

the requirements field or it can ask the WMS system to find and use an ”optimal”

resource by invoking a one-step submit operation.

It is worth noting that the Requirements function defines a sub-space in the space

of the parameters where the requirements of both the user and the resources are met

while the Rank function defines an ordering in the parameter space.

gLite also allows a certain degree of a site-level, VO-based fair-share scheduling

as those responsible for the schedulers can implement fair-share policies on systems

such as MAUI [15].

Fair-share scheduling [35, 42] entails that all users belonging to the VOs encom-

passed in a Grid can receive the services that were agreed upon when they joined the

Grid. Although simple in principle this concept is difficult to implement because of

the unpredictable and volatile nature of the workloads submitted by the users. An a

priori allocation will fail in presence of heavy concurrent requests of resources. Let’s

imagine an allocation system where all users are granted the right to consume a given

amount of computation over a period of time, if all users concentrate their requests in

the same time frame, then it is possible, if not probable at all, that a system will not

be able to cope with the demand peak and, consequently, the users will not be able

to avail themselves of the share of resources they were granted. The implementation

of fair-share policies is further complicated in Grids by the autonomy of the resource

owners in the definition and enforcement of local allocation policies.

In gLite, MAUI implements a fair-share policy by setting the amount of waiting

time that is then propagated through the BDII hierarchy to the WMS.

gLite’s approach to resource allocation gives the user a significant latitude: on

one hand, the description of the job may be minimal, omitting any resource spec-

15

ification (thus leaving the WMS to take into account only the requirements of the

resource owners). On the other hand the job description may contain very detailed

requirements and even target a specific resource.

The taxonomy of [52] describes the gLite middleware with the following char-

acteristics: a hierarchical architecture, a hierarchical namespace with an extensible

schema model, a network directory store, no explicit QoS support, discovery via dis-

tributed queries, periodical push dissemination of the information, and a hierarchical

scheduler with extensible policies.

Globus

The Globus GRAM [91] (part of the Globus Toolkit [92]) has a different approach to

resource allocation: it offers a sophisticated level of abstraction capable of harnessing

different schedulers with an integrated staging system for the job sandboxes1 but it

offers no direct brokerage facility.

Jobs are described with the RSL language [93] where the requirements are directly

expressed as key-value pairs for parameters. This is a significant difference from the

gLite approach where the parameters are indirectly defined as the sub-space where

the requirements function evaluates to true.

The Globus approach explicitly defines a point in the space of the parameters:

p1 = v1 (2.1)

pn = vn (2.2)

pN = vN (2.3)

The gLite approach is to define a subspace:

Requirements = f(p1, pn, pN) (2.4)

1While the gLite system requires that all the sandbox files be present on the User Interface

machine, the Globus GRAM allows for the files to be staged automatically. The locations of the

source and destination are directly specified in the job description.

16

The two solutions coincide if the gLite Requirements is composed of equivalences,

such as:

Requirements = (p1 == v1)&&(pn == vn)&&(pN == vN) (2.5)

The taxonomy of [52] describes the Globus middleware with the following char-

acteristics: a cell architecture, a hierarchical namespace with an extensible schema

model, a network directory store, soft QoS support, periodical push dissemination of

the information and a decentralized scheduling infrastructure where the schedulers

are provided externally.

Condor

The Condor middleware has an approach that is similar to that of gLite. In fact the

ClassAd language used by gLite was originally developed for Condor. One difference

between the Condor and gLite middleware is the way in which the information is

gathered and published by the resources and the users. While the gLite middleware

delegates both the steps of matching and binding the requester and the provider to

the WMS component, the Condor architecture is more flexible, allowing the two steps

to be separated. This is achieved by specifying different protocols.

A simple allocation scenario in a Condor system is described in Figure 2-3. Firstly

the Provider and the Requestor advertise the description of requests and resources to

the Matchmaker. This communication is regulated by a specific advertisement pro-

tocol. Once the matchmaker has found a compatible pair of ClassAd advertisements

it communicates the match to the requestor and the provider with the notification

protocol. Finally, the requestor and the provider may engage in the final binding step

through a third protocol known as the binding protocol.

Because of this flexible architecture and the functional nature of the ClassAd

language that allows partial evaluations, this solution can be extended to cope with

situations where requests can only be satisfied by bundles of resources such as CPUs

and licenses. This extension to the match-making architecture, called gang-matching,

is represented in Figure 2-4 and is the focus of a Ph.D thesis [81].

17

Figure 2-3: Simple Resource Allocation architecture in the Condor middleware.

The taxonomy of [52] describes the Condor middleware with the following charac-

teristics: a flat architecture, a hybrid namespace with an extensible schema model, a

network directory store, no QoS support, discovery via distributed queries, periodic

push dissemination of the information and a centralized scheduler.

2.2.2 Socially and Economically Inspired Resource Alloca-

tion Systems

Chapter 1 introduced the concept that the problem of resource allocation in Grid

computing closely resembles the definition of an economy. In fact economic-inspired

solutions both at theoretical and practical level are actively investigates and proposed

by the Grid community.

Although not specifically focused on Grids, Sharpe’s The Economics of Comput-

ers [84] offers a comprehensive application of the General Equilibrium Theory [61]

to the domain of computers. The book was written in 1972 and, consequently, it

deals with a scenario that has some significant differences from that of these days;

18

Figure 2-4: Multiple Resource Allocation architecture in the Condor middleware.

nevertheless it offers a theoretical and practical approach to understanding the eco-

nomics of computers and, although written in a period in which computers were

large mainframes, the discussion on pricing models could be extended to the modern

scenarios.

In [96] and [97] there is an attempt to analyze the problem of economic-based

resources (only cpu and disk space are taken in account) allocation in Grid computing

(at times referred to as Computational Economies) both at a theoretical and practical

level through simulations. A set of assumptions to use Computational Economics

are defined and two main pricing mechanisms: Commodity Market and Auctions

are analyzed in different market conditions. The conclusion of the authors is that,

although auction-based systems are widely used (the authors suggest that this is

due to the relative simplicity of the implementation of auction-based systems), the

commodity market models performs better in most market conditions.

Although most of the economic-based solutions and analysis [28], [29], [33] and [36]

of the problem of resource allocation in Grid computing rely, implicitly or explicitly

to the believes that the General Equilibrium Theory is useful to describe real life

economics and that, by extension, it is useful to tackle similar problems in Grid com-

19

puting, the study conducted in [63] contradicts these believes on different counts.

The main problems raised by the authors are of different kinds: first General Equi-

librium Theory does not offer any explanation for cases in which the markets fail,

secondly they highlight the differences between real and computational markets that

may result in an even higher probability of failure, lastly the authors point out that

General Equilibrium Theory does not take into account aspects such as the role of

government policies, the necessity of trust between the agents that are relevant in

Grid computing.

[28] and [29] survey the market models that could be possibly be applied to Grid

computing. These are deemed to be:

• Commodity Market Model : In such a model the price of a resource is set directly

and solely by the owner of the resource. This model encompasses different

strategies and algorithms for the definition of the price that can reflect the

amount of resources used (that can be frequently adjusted in time to reflect

demand and supply or that can be flat and thus remain constant for a period

of time).

• Posted Price Model : This model is similar to the Commodity Market with the

extension of special offers that a resource provider can post to attract new

costumers. Both models are characterized by the fact that the price is set by

only one party: the resource owner. In the real world this model is found in

supermarkets where the price of each item is defined by the management of the

supermarket and remains constant over a reasonable length of time.

• Bargaining Model : In this model the price is defined by a negotiation of two

parties: the resource owner and the party requiring the resource (e.g. a user

or a broker). The two parties engage in a negotiation based on their object

functions. If the negotiation protocol is effective then the resulting price is a

compromise of the expectations of both parties. In the real world such a model

can be found in a bazaar where the price is defined on a per purchase basis by

the seller and the client.

20

• Tendering/Contract-Net Model : In this model the party requesting a resource

publishes its requirements and collects offers from the resource owners. It can

then rank the offers and choose the one that is most suitable. This model is

used in the real world as a way to find and choose contractors.

• Auction Model : The auction model defines a one-to-many negotiation where

a party offers resources to many possible buyers. The price that is set during

the auction depends on the utility functions of the different actors involved but

also depends heavily on the auction rules that are defined and enforced by a

third party: the auctioneer. The rules define the auction protocols. Among the

most common auction models are:

– English Auction: where all buyers can out-bid each other until only one

offers remains.

– First price sealed bid : where all buyers submit their offer just once, without

knowing those of the others, and the highest offer is selected.

– Vickery : where all buyers submit their offer just once without knowing

those of the others; the winner is the bidder who offered the highest price

but the price is the one offered by the second highest bidder.

– Dutch Auction: where a high starting price is set by the auctioneer, who

lowers the price until one of the bidders accepts it.

• Community and Coalition Models: In such models the resources are shared

among the members of a community from a common pool.

• Bid-based proportional sharing models: In such models the percentage of a

resource that each requester can get is a proportion of the price it offered

during the bidding process.

• Monopoly, Oligopoly : Where the price is set by one or few resource owners that

can define prices without competition.

21

DGAS

gLite includes a distributed accounting system called DGAS [21] that is based on a

network of accounting units that keep information on groups of users and resources.

Classic records (CPU time and memory) are managed by the system, which also

supports a limited form of economic accounting for economic brokering.

DGAS implements Resource Usage Service (RUS) [74, 94], which is an OGF [17]

initiative to define an accounting system capable of encompassing different middle-

wares (gLite using DGAS, SweGrid using SGAS [35, 42], and Unicore[77]) to achieve

accounting interoperability.

An extensive survey of accounting in Grid Computing can be found in [70].

SweGrid and SGAS

Globus can be extended with economy-based resources allocation using the SGAS [35,

42] system developed at the Department of Computing Science and HPC2N of Umea

University. The SGAS system focuses on interoperability and fair-share allocation.

Interoperability is achieved by offering plugin-points for adapters specific to different

environments.

SGAS is somehow inspired by a socialist perspective where great importance is

attributed to the fairness of the allocation. To achieve this, SGAS implements a

centralized economic model where a central authority grants different amounts of

credits to the various users of the system.

This solution allows a fair allocation of resources (provided that the central au-

thority is fair) in the sense that all users may be given a fair amount of credits;

unfortunately, in the absence of a correcting mechanism, there is no guarantee that

the credits can be really converted into services.

SGAS successfully tackles this problem by time-stamping the allocation credits

and by reducing their validity to a certain time-frame. This discourages clients from

hoarding credits and the possibility that they are used all at once.

A key component of SGAS is a highly-scalable banking system. This is achieved

by virtualizing the bank and by partitioning it across different servers (named branch

22

servers).

SORMA

The SORMA project [19, 64, 65] attempts to adopt self-organization. First it postu-

lates three different reasons that prevent effective implementation of market mech-

anisms [19]: insufficiencies in the design of Grid markets, poor client support and

inadequate connection with existing middleware. The project proposes an economic

model called Decentralized Local Greedy Mechanism inspired by the neo-liberist belief

that a population of agents acting in the pursuit of their exclusive self-interest will

eventually reach an equilibrium of economic efficiency that no single agent planned

for at the beginning.

The model is further enriched in [78] to take SLA agreements into account. An

Economic Enhanced Resource Manager (EERM) uses a predictive model to foresee

the impacts on the resources it manages of accepting a certain task. The model uses

the concepts of Revenue (the amount of credits that are to be paid if SLA terms are

met), Penalty (the amount of credits that are to be paid if SLA terms are not met)

and Gain (the difference between Revenue and Penalty). The EERM will decide

whether to violate or not SLA terms, basing its decisions on the foreseen effects on

resources and the financial outcome.

SORMA proposes an architecture where a Grid application will connect to a

set of intelligent tools. These tools will use the economic knowledge provided by

the Open Grid Market (contracts management, billing, security and monitoring) to

optimize the Grid resources offered by an Economic Grid Middleware that connects

the intelligent tools with the existing resources and enriches the information with

economic-specific data.

SORMA implements an economic model that adjusts the amount to be paid

according to the effective Quality of Service received by the user. In fact, each time

a job is rescheduled, an amount of credits is paid to compensate for the jobs that are

delayed.

The connections of SORMA’s approach with the concepts of Service Oriented

23

Architecture and Autonomic Computing link this project philosophy with that of

CATNETS discussed in 2.2.2.

ASSESS Grid

The ASSESS Grid project also focuses on solving the issues that arise in the im-

plementation of SLAs in Grids. In [2] the shortcomings of SLAs (unwillingness of

providers to agree on SLAs knowing that a penalty will have to be paid in case of

violation and the uncertainty of users on the real enforcement of SLAs) is mitigated

and taken into account in the decision mechanism with the concept of the Proba-

bility of Failure (PoF) that describes the likelihood of a SLA to be violated. This

information is published with the SLAs and allows for more complex and effective

decision-making mechanisms by all the parties involved: users, resource owners and

resource brokers.

CATNETS

CATNETS [4, 37] offers a theoretical analysis and simulation experiments of a market

model based on the concept of a self-organizing population of agents. This approach

is tightly linked to the concept of Service Oriented Architectures (SOA).

The agents used in the simulation are:

• Resource Agents that act as proxies for aggregation of Grid resources.

• Basic Service Agents that provide the Complex Service Agents with the basic

service they need.

• Complex Service Agents that provide unspecialized entry points to Grids (they

accept any request for a Complex Service) that compose the basic services into

ones of higher complexity.

CATNETS implements a two-step economic model whereby a call-for-proposals

is followed by a negotiation.

24

The simulation also encompasses two different types of markets for resources and

services. This approach allows the evaluation of a free market allocation topology

where no central broker exists.

GESA

The book ”A Networking approach to Grid Computing” [57] devotes a chapter to the

description of an OGSA-based architecture that supports Grid economic services:

the Grid Economic Services Architecture (GESA). The proposal is not tailored to

any specific economic model but offers an OGSA-compliant architecture to support

different economic models and to build effective, standardized economic-based appli-

cations in Grids. The architecture is harmonized with the architectural proposals of

several OGF [8] working groups on Resource Usage Services, Grid Resource Alloca-

tion Agreement Protocol and Usage Record.

GESA proposes a set of standardized metadata built on top of the OGSA Grid

Service interface that describe Service Data Elements (service-specific advertising

elements) that enrich the description of a Grid service with economic information

such as pricing, currency and payment methods.

GESA architecture is flexible and comprehensive, it describes resources as well as

complex payment issues such as compensation, refunding and support for multiple

currencies.

The GridBus Project

The GridBus [12] project is the continuation of the Grid Economy Project [9] that

produced an economic-aware infrastructure sitting on top of existing middlewares.

The overall architecture is composed of five different layers

• A Grid application layer that hosts the software applications that are executed

on the GridBus middleware.

• A User-level middleware layer that hosts tools such as workflow engines and

economy-aware brokers used by the applications to discover, negotiate, select

and manage resources.

25

• A Core Grid middleware layer that hosts existing Grid middlewares such as

Globus or Unicore alongside economy-specific services such as markets and

banks.

• A Grid-Fabric Software layer that hosts Operating Systems (OSs), schedulers

such as Condor [5] and the native Libra [14], and other technologies such as the

Java Virtual Machine (JVM).

• A Grid-Fabric Hardware layer that hosts physical resources.

Native, economy-aware components are present in all layers except the bottom

(Grid-Fabric Hardware) and top (Grid application layer). These are:

• Nimrod-G [16] that allows the economy-aware management of the execution of

parameter-sweep applications across distributed computational resources.

• An economy-aware broker [11] that allows the discovery and selection of re-

sources on the basis of budget constraint and time-constraint policies.

• A Grid Market Directory (GMD)[10] that allows the providers to publish their

services and the related costs to the public. It permits the retrieval of informa-

tion through its portal, a SOAP interface or specific APIs.

• A Grid bank that allows accounting, payments and authentication.

• Libra[14] that allows quality-of-service-aware and economic-aware scheduling,

execution and monitoring of sequential and parallel jobs on a homogeneous

Linux cluster. The job description is enriched by information regarding the

allocated budget and the deadline required. This additional information allows

the Libra scheduler to implement economy-driven time and budget optimization

algorithms whilst respecting the QoS requested by the user.

The architecture of GridBus allows for the implementation of economic models

that are mainly QoS, budget and time driven at every level from low-level scheduling

with Libra to high level interactions with markets, banks and workflow engines.

26

It is worth noticing that, although the current implementation highlights time and

budget constrained allocation modalities, its paradigm and the philosophy underlying

its architecture is inspired by a broader analysis of many different economic models,

see [28] and [29].

ArguGRID

Although it relies on Peer to Peer computing-oriented resources rather that Grid mid-

dleware, the ArguGrid [1, 90] (funded by the European Commission under Framework

Programme 6) proposes an interesting agent-based approach. Its design is inspired by

Service Oriented Architecture and is based on a set of agents capable of argumentation

to cope with incomplete knowledge and conflicting information for decision-making.

The proposed architecture contains five layers: the topmost consists of user appli-

cations that connect with dynamically formed Virtual Organizations of agents hosted

in the fourth level. The third level contains middleware and web-services to connect

to the second level, which contains the P2P computing networks. The level at the

bottom hosts the network.

The most innovative aspect of ArguGrid is in the fourth level where intelligent

agents use argumentation to negotiate with each other to produce contracts that

describe task allocations and workflow descriptions.

A Trust-aware Economic-based Scheduling Model

The relation between trust and economic models is analyzed in [98] in the domain of

economic models for scheduling. The relevance of the problem of trust in the sharing

of resources is highlighted and a formal model is proposed to allow trust issues to be

taken into account in economic models. A mathematical abstraction of trust is defined

as a function of the relation between two parties and the reputation that the party has

among its peers. This mathematical figure is taken into account in a cost optimization

algorithm that considers constraints in time and budget. Theoretical analysis and

simulations show how the additional information regarding trust improves efficiency.

27

Price Elasticity

[55] speculates that time-division based pricing mechanisms, where resources are

priced depending on the average use through the day, are not used by the Grid users

to their full advantage. To overcome this an economic model is proposed that affects

both the behaviour of the user and the provider by introducing a function based on

the price-elasticity concept that is used to adjust resource prices. An architecture

based on OGSA is then proposed, where components hosted on the user and on

the provider adjust pricing mechanisms and object-functions to maximize the user’s

satisfaction.

2.3 Interoperability

The scientific community has long sought ways to cope with the challenges of using

heterogeneous hardware, operating systems and application-specific software. One of

the solutions was the concept of Metacomputing, ultimately leading to Grid Comput-

ing.

In this chapter I have detailed how the Grid concept has given rise to many dif-

ferent implementations. Each of these different approaches has particular strengths

and weaknesses. It is becoming increasingly important in the Grid community to find

solutions capable of harnessing the different capabilities of multiple implementations.

Each Grid middleware offers solutions based on different philosophies for basic com-

mon services such as job submission, file storage, information systems and security

whilst some offer extended services such as sophisticated resource brokerage systems

or innovative workflow execution systems capable of executing complex workflows

based on different computational models. There are a number of workflow engines

that are being developed independently of Grid middlewares and are already able

to interoperate with one or more Grid middlewares. In addition each Grid and/or

workflow engine is managed with different policies and rules that must be respected.

Ironically the proliferation of differing Grid middlewares is nowadays posing the

same set of problems and challenges it intended to solve, just at a higher level. In the

28

never-ending game of coping with the complexities generated by previous solutions,

the Grid community is trying to address these new issues with a field of research,

known as Grid Interoperability, that focuses on enabling different Grid middlewares

to inter-operate with each other, and enabling combined usage of heterogeneous grid

middleware.

For one Grid middleware to be able to use the capabilities of another, it must be

extended to interface either directly with the other middleware, or with third-party

middleware. While it is easier to just support the common services, it may actually

be those very Grid-specific extended services that make interoperability desirable.

2.3.1 Major current interoperability approaches

P-Grade

The Hungarian P-GRADE (Parallel Grid Run-time and Application Development

Environment) [54, 22, 26] offers an extensive toolset for creating workflows, and

with the associated PROVE [75] provides for debugging and monitoring the execu-

tion and performance of applications. P-GRADE is based on GridSphere, a grid-

enabled portal construction framework from Poznan. In recent times the support of

P-GRADE for different Grid technologies has extended to include Condor, Globus

and LCG/EGEE. One of the design goals here was to make it possible for a user to

develop a workflow for the Grid without knowing the particulars of the underlying

Grid technology and to be able to move the work to other Grids without altering the

workflow. The focus is on allowing a user to work at a workflow level and interoperate

with multiple middlewares.

GridLab

A European project led by Poznan produced GridLab [83], a spiritual descendant of

Cactus, a set of application-oriented Grid services and toolkits providing capabilities

such as dynamic resource brokering, monitoring, data management, security, infor-

mation, adaptive services and more. Services are accessed using the Grid Application

Toolkit (GAT). The GAT provides applications with access to various services, re-

29

sources, specific libraries, tools, etc. Applications use the GAT through a fixed GAT

API. The GAT is designed in a modular plug-and-play manner, such that tools de-

veloped anywhere which conform to the GAT API will be inter-operable. In this

context, GAT is a third-party middleware through which other middlewares may

interoperate.

WLCG

For each pair of Grids, the worldwide WLCG [89] identifies common elements in

the software stacks, and develops extra glue components to connect compatible ele-

ments. Currently, interoperability between EGEE and OSG is the most developed:

bi-directional job submission is possible, OSG sites appear in the EGEE information

system and are tested using EGEE test suites. It should be noted that many of the

issues involved in providing ongoing interoperation between Grids are administrative

rather than technical.

While pragmatic, WLCG’s approach is not scalable, since for N Grids it leads to

≈ N2 extra glue components, i.e. ≈ N 2 interoperability solutions.

Grid Interoperability Now (GIN)

OGF’s Grid Interoperability Now (GIN) [86] has identified four interoperability ser-

vices that they would like to realise in the short term: authentication/authorization,

a resource schema, job submission, and data management. In the longer term, work-

flow, co-scheduling and accounting are also envisaged. The GIN group aims to tackle

interoperation, which they define as ‘what needs to be done to get grids working

together’, using existing software only. In contrast they consider interoperability to

be the more general ability of software and hardware from various vendors to com-

municate.

30

2.4 Social Grid Agents

Chapter 1 postulated similarities between Grids and societies, in this thesis I explore

a high level resource allocation system based on social behaviour and I do so by

proposing a social and economic paradigm as an abstract platform upon which an

experimental implementation can be constructed.

Grids allow computational resources to be shared in a relatively secure environ-

ment. In this respect Grids allow users and resource owners to belong to different

administrative domains. The separation of these domains poses many challenges:

firstly, there must be a security infrastructure that connects the domains; secondly,

(and more importantly for this research) there must be a way to find suitable re-

sources across domains. Better still, there ought to be a way to find ”optimal”

resources and, conversely, an ”optimal” way to use resources. When resources and

users are in the same administrative domain it is relatively easy to define allocation

algorithms aiming at the optimization of some metrics but in a system where these

domains are disjoint it is even difficult to define what optimal means. These diffi-

culties stem from different reasons: firstly, if the preferences of all the actors are to

be taken into account by one or more actors when they make their decisions, there

must be a homogeneous way of defining them, secondly all the information to be

available to all the relevant decision makers and this is hard to achieve on a both

practical and theoretical accounts. Information can be outdated when it reaches the

relevant decision maker, the amount of information can result far too conspicuous to

be handles and, finally, it cannot be assumed that all the involved actors will always

be willing to share all their preferences to all the other actors.

Societies and economies are the solutions that mankind devised to solve similar

problems: the allocation of limited resources among actors with incomplete knowl-

edge, different aims and goals and the need of a relatively stable structure. Societies

allow groups of individuals to co-exist in relative stability and provide grounds to

implement different allocation philosophies for scarce resources. I hope that, by re-

flecting social behaviours in a Grid, I will be able to provide similar levels of flexibility

in the allocation of resources. In fact, both allocation problems have many points

31

in common and it is reasonable to assume that solutions devised for one might also

prove profitable for the other. This consideration is at the very base of the desired

paradigm.

This thesis speculates that Grids might be seen as ”societies in a digital envi-

ronment” where goods and services are exchanged and where actors, either directly

controlled by humans or of entirely automatic behaviour, expose social behaviours.

I see the potential similarities between human and grid societies as multi-faceted:

optimization, diversity and complexity.

2.4.1 Optimization

Mankind has developed societies supporting a variety of philosophies of sharing and

allocation. How the different actors concur in the definition of the allocation mecha-

nism appears to depend on the nature of the society itself: in some all the members

contribute almost equally to decisions on allocation parameters, while in more ”auto-

cratic” ones only few or even only one of the members will decide (sometimes to their

own advantage). The author cannot claim any special expertise in the subject, but

to cite John Kenneth Galbraith in his ”History of Economics” [50] and ”The Affluent

Society” [41], the allocation mechanisms appear to be based on the current ”common

wisdom” of that society. Although the research of important pundits (as for example

Stiglitz [87, 88]) points out many failures and shortcomings, in one ”common wis-

dom” it is believed that ”free market” economics can approach optimal allocations

in many (if not most or even all) scenarios.

The debate on the validity and shortcomings of different economic models is also

present in Grids as presented in Section 2.2.2, there is no strong consensus on the best

model for resource allocation. The theory of General Equilibrium Analysis fails to

explain failure in the market system and ignores aspects such as trust and government

intervention that are particularly important in Grids.

While competitive, free-market allocation mechanisms appear to be able to reach

allocations that are a reasonable compromise among many members of a society

it also appears that co-operative behaviours are best suited for others. Finally, in

32

many scenarios, it seems that free-market allocation cannot even approach optimality

without the intervention of a regulatory entity often referred to as the government.

Governments are also key players for their capacity in investing in infrastructure that

are of common benefit for the entire society. This behaviour of governments, often

referred to as Keynesian Investments, will inspire one social topology investigated

in this thesis. Investment in public infrastructures is a particularly important topic

because many Grid infrastructures are publicly funded.

Human societies appear to have the capability of simultaneously encompassing al-

location behaviours based on different (and possibly even contradictory) philosophies

and being relatively stable and resilient at the same time.

For the time being, Grids are, fortunately, much simpler than human societies;

they nevertheless face a very similar problem: the need to find a resource allocation

philosophy that takes into account the different criteria of optimality of the various

members. A job owner’s idea of ”optimal execution” will probably differ from that of

a resource owner and a Grid that consistently ignores the needs of users or resource

owners would soon be deserted by one of the two parties and collapse. As it is in

human scenarios, ”free market” economics might approach optimal allocations in

some scenarios while co-operative behaviours might be best suited for others. For

these reasons I believe that in a Grid actors should be able to concurrently implement

a large variety of allocation philosophies in a stable environment.

2.4.2 Diversity and Interactions

The social paradigm can also help us in understanding yet another grid characteris-

tics: diversity. Human societies differ from each other in many aspects: behaviours,

philosophies, values and consequently priorities. History is both nursery and grave-

yard to a myriad of concepts and implementations of the abstract concept of society.

Although with much less beauty and complexity, the different grids that have been

proposed and implemented show the same tendency to variety and originality. All

these many different solutions to the same problem are in competition but also co-

exist and could potentially interact with each other as human societies do.

33

2.4.3 Complexity

There are cases of human societies where the emergence of a stable environment

for a significant time coincided with an explosive increase in the complexity of the

society itself and its products. In its beautiful book Jared Diamond, Arms, Germs

and Steel [34], postulates causality: that whenever humans can rely on sufficient

resources and social stability, they have the potential to engage in a momentous

increase in the complexity of their social structure and of the complexity of their

products.

An analogous coincidence is now happening in Grids: stable Grid environments

have emerged, and now they are offering services of ever-increasing complexity. The

first Grid middlewares offered limited services for job execution and data storage, then

workflow engines followed, and currently highly sophisticated services even include

semantic descriptions of themselves and complex metadata management.

Moreover, the possibility of harnessing multiple different middlewares (e.g. us-

ing P-Grade) allows the creation of even more complex tasks or workflows. The

CrossGrid [46] flooding management system [47] is just one enlightening example of

a complex and sophisticated system in Grid computing. Examples such as this en-

compass and orchestrate many different services that can be arranged in hierarchies

of different complexities.

A society-based approach to grid interoperability that yields the concept of a

metagrid is detailed in Section 3.10.

2.5 Motivations

In Grid computing, the economic perspectives and beliefs used to investigate the

resource allocation problem are as vast and diverse as those used to interpret real

life. This consideration suggests an economic-agnostic approach based on a social

paradigm capable of encompassing different economic philosophies to give allocation

systems the flexibility to change its behaviour depending on the social context.

The fact that many different implementations of the concept of Grid are already

34

present and the belief that full interoperability defined through standardization will

not achieved in a short time combined with the increasing complexity of the Grids

suggests an technological-agnostic approach based on a metagrid, a conceptual view

of interoperability based on the concept of border agents that act as translators and

mediators at a technological and logical level.

I propose a solution (detailed in Chapter 3 and Chapter 4 capable of enforcing

different allocation philosophies across different Grid middlewares).

35

Chapter 3

Methods

Figure 3-1: Social Non-Grid Agents exchanging information.

36

Geometry is not true, it is advantageous

Jules H. Poincare I prefer drawing to talking. Drawing is faster, and leaves less

room for lies.

Charles-douard Jeanneret-Gris dit ”Le Corbusier”

3.1 Introduction

This chapter begins with the explanation of the main concepts on which Social Grid

Agents are based, it then describes the abstract architecture at three different levels:

the topologies I used to model the different allocation philosophies, the architecture

of the agents and the agent’s native language.

3.2 Social Grid Agents Main Concepts

3.2.1 Production

Production in grids can be described using the concept of a production chain that

goes from the basic goods, or factors, to intermediate commodities and, in the end, to

the final service, or produced commodity. This conception of grid jobs and workflows

as supply chains is illustrated in Fig. 3-2 while Fig. 3-3 shows a more detailed view

in which the factors are divided into three main categories:

37

Figure 3-2: Representation of a grid service as a micro-economic supply chain

Figure 3-3: Detail of a grid service production chain

• primary factors with no semantic value: CPU time, memory storage and net-

work connection offered directly (e.g. through a scheduler);

• primary factors having semantic value: data;

• existing grid resources: such as job submission, information systems and file

management services; these are, in reality, produced commodities but are mod-

elled as factors because their internal production chain is not explicitly consid-

ered even though the price at which they are sold may reflect the consumptions

of primary factors.

38

Figure 3-4: Example of the production paradigm

The distinction between data and primary factors, although not directly used in

this first approach to the problem, may turn out to be quite important as the real

economic value of a data set can be represented by its meaning or semantic.

At each step of the production chain services are combined into higher level ones

by one or more actors. Let us call these actors Grid Production Agents or, more

concisely, Production Agents, reflecting society’s conception of an agent, viz a free

agent, without implying any sense of Agent Technology [25] as understood in Com-

puter Science. In this way we can represent grid services ranging from simple to

complex. For example, a job spawning multiple grids and necessitating different grid

services can be decomposed and described into lower level factors, that can be further

decomposed until a service provider capable of performing them is found.

39

Figure 3-5: Example of the production paradigm

Fig. 3-4 illustrates an example with a job encompassing different middlewares for

execution and storage. The final service consists of a job that needs different services

orchestrated in a workflow. As a first step we can see that the only service needed

to execute the job J is a workflow engine W able to understand the language in

which the workflow is described. The workflow engine, in turn, will need to execute

jobs and save and retrieve data using the execution services E1 and E2 and the data

storage service S1. When unfolding the production chain of the job in an abstract

fashion there is thus far no consideration of which real services in the grid would be

capable of fulfilling the requirements or whether they are available on the market.

The next step consists of finding real and available Grid services capable of ex-

ecuting the needed services. In the example, the workflow can be executed by a

WebCom middleware [60], the job executions are compatible with the gLite [27] and

GT4 [92] middlewares while the storage needs can be fulfilled both by the gLite

and GT4 middlewares. Eventually, all these real Grid services will consume primary

factors such as CPU time, storage space and bandwidth.

This paradigm considers the composition of the various grid services as a supply

chain. Not all scenarios can be dealt with in such a reductionist fashion. It does

not deal with problems such as ownership of the services or their compatibility with

each other; therefore it can only be useful and implementable in the real grid world

if the job’s owner can access all the needed services and if all the needed services can

interoperate with each other. As this is very often not the case, the paradigm needs

to be further expanded.

40

3.2.2 Ownership and Control

To describe the concepts of ownership and control let us add a new layer: the social

layer. Now the paradigm is composed of two interacting layers, one where production

takes place and another that hosts agents owning and/or controlling the production

entities. Each layer can be complex or even hierarchical, but the production layer

does not have social properties, whereas the social layer does. Henceforth let us call

the agents that reside in the social layer Social Grid Agents or, for the sake of brevity,

Social Agents. This is shown in Fig. 3-5.

Agents in the social layer can own or control or use none, one or more production

agents. A social agent should also be able to exchange and trade the use of, or the

services produced by, the production agents it controls. This allows our social and

economic paradigm to exhibit behaviour such as the purchase of services, the rent of

production agents and the exchange of ownership of one or more related production

agents. Let us propose that these relations between social and production agents can

be of ownership, control or usage:

• Ownership: when social agents own production agents they have complete con-

trol over them; they can sell, rent or donate them; they can set access rights

for controllers and users and they can set policies to regulate the production

process.

• Control : when social agents control production agents, they have partial control

over them (that may have been delegated by an owner); they can set access

rights for users and set (possibly a sub-set) of production policies.

• Usage: when social agents use production agents they can access only the

services that they were granted by a controller or an owner.

Multi-modal relations

To better understand, design and implement transactions such as rent, purchase and

donations it is useful to propose different modalities in which the above mentioned

relations can relate both to time and the space of the resources.

41

Relations might have different time modalities such as:

• Absolute: Either true or false, especially as a logical attribute of ownership

relationships.

• Token-based : to allow the submission of a certain number of requests to a pro-

duction agent, especially for simple service rental scenarios where a social agent

buys (or receives) a given amount of service execution rights on a production

agent that it does not control or own.

• Deadline-based : to allow the control of a production agent for a given amount

of time, especially for more complex service rental scenarios where a social

agent acquires temporary control of other production entities to engage in the

execution of a complex service.

• Time slot-based : to allow the use of the services of another agent until the

allowed amount of time has been used, especially for reserving processing and

storage services.

• Combined : to allow modalities to be combined together: e.g. token-based and

deadline-based modality might be combined to obtain a modality where tokens

have expiry dates while time slot-based and deadline-based modalities might

be combined to obtain a ”perishable” reservation on computational and storage

services.

Relations might also be allowed with regard of the controlled resources. These

concepts relate to the allocation modalities examined further in section 3.2.6. They

can be roughly divided into:

• Complete: give ownership and control over all resources controlled by the agent

over the specified period of time.

• Partial : give ownership and control over a part of all the resources.

It is clear that some form of constraint has to be provided over the modalities with

which each of the actors sets the rights of the others. If no such control is provided

42

there may be cases in which agents gain control of other agents in an unforeseen

way. As an example, let us suppose that an owner O grants control to an agent C

to one of his production agents P , with a deadline modality that expires at a date

T . As the controller can set any kind of access rights for the user it is possible for

the controller to set absolute rights to a user U . These rights, being absolute, will

outlive the range of time in which C is allowed to control P . To avoid such problems

one might constrain the setting of the access rights as follows.

• For owners: owners might be allowed to set any kind of access rights and they

might be enforced directly.

• For controllers: the access rights that controllers enforce might depend on the

access rights they have, for example:

– Absolute modality: enforced directly.

– Deadline modality: If the controller has Deadline modality access rights,

its commands change in the following way.

∗ Absolute modality → Deadline modality.

∗ Deadline modality → Deadline modality with an expiry date that is

the minimum between the controller’s and the target’s settings.

∗ TimeSlot modality → TimeSlot and Deadline modality.

∗ Token modality → Deadline and Token modality.

– Token modality: token modality is a way for controllers to grant execution

rights to users, and thus is usually granted to users and not controllers.

Should the case arise of tokens being granted to controllers they are treated

as if they are users: Token modality → Token modality.

• For users: users might not be able to set any access rights.

The above simple modalities are powerful enough to describe some interesting

basic topologies of ownership and control.

43

3.2.3 Social Topologies

In Production Topologies, Social Agents control Production Agents. A similar process

is possible among Social Agents, thereby forming Social Topologies, see Figure 3-10.

Both topologies are explored further in Chapter 3.3. Although more complex, the

possible control topologies amongst the social agents are similar in nature to those

between social and production agents. Owners can set policies and access rights

for controllers, controllers can set policies for clients. Such policies can encompass,

among other information, the nature of the social behaviour of the agents such as

the type of purchase to which an agent is entitled, e.g. purchase for free, special

prices, full price or the maximum credit/debt it is entitled to. These forms of social

control, along with the concept of exchange modalities explained in the following

section (3.2.4) describe the social behaviour of the agents.

3.2.4 Exchange

At each production steps an actor (either human or program) assembles factors and,

possibly, intermediate commodities to create a produced commodity. If at any given

time an actor has not enough factors to produce the commodities he wants, he may

engage in social or economic transactions so as to obtain the commodities he needs.

To model this behaviour concepts and terminology may be borrowed from microeco-

nomics to define Endowments as the set of commodities owned by the actor, Needs

as the set of commodities needed by the actor, Supplies as the set of commodities

that the actor has in abundance and can be traded or donated, Demands as the set of

commodities that the actor cannot cover with its endowment and Satisfied Needs as

the set of commodities that the actor can cover with its endowment. An actor owns

an Endowment set of commodities and faces a Needs set of commodities. Demands

and Supplies are obtained from Endowment and Needs as illustrated in Fig. 3-6.

In this case, the Endowment and the Needs sets partially overlap. Where they

overlap, that part of the Needs has been satisfied by the Endowment. The actor will

be able to trade or donate the remaining part of its Endowment, and will also need

to trade for the unsatisfied part of the set of its Needs:

44

Figure 3-6: Demands and Supplies.

Supplies = Endowment ∩ Needs (3.1)

Demands = Needs ∩ Endowment (3.2)

SatisfiedNeeds = Endowment ∩ Needs (3.3)

Besides this general case there are some particular configurations worthy of inter-

est:

• Disjoint sets : In this configuration, illustrated in Fig. 3-7 the Needs and En-

dowment sets are completely disjoint:

Endowment ∩ Needs = {} (3.4)

Supplies = Endowment (3.5)

Demands = Needs (3.6)

SatisfiedNeeds = {} (3.7)

• Abundance : In this configuration, illustrated in Fig. 3-8 the Needs are com-

pletely satisfied by the Endowment:

Needs ⊆ Endowment (3.8)

45

Figure 3-7: Demands and Supplies are disjoint sets

Figure 3-8: Abundance, Needs are completely covered

Supplies = Endowment ∩ Needs (3.9)

Demands = {} (3.10)

SatisfiedNeeds = Needs (3.11)

• Scarcity : In this configuration, illustrated in Fig. 3-9 the Needs cannot be

satisfied by the Endowment:

Endowment ⊆ Needs (3.12)

Supplies = {} (3.13)

Demands = Needs ∩ Endowment (3.14)

SatisfiedNeeds = Endowment (3.15)

If an actor owns an Endowment set of resources and faces a Needs set of resources,

the result is two disjoint sets: Demands and Supplies, that will be traded, donated or

46

Figure 3-9: Scarcity, Needs cannot be covered

acquired in the societies that the actor is joining. In order to do this, actors engage

in relations, both competitive and empathic, to fulfill their Needs sets. These types

of relations could be:

• Co-operative relations: such relations involve access to resources without the

need of a balancing transaction representing a payment. These relations can

be of the following nature:

– donations

– lending and borrowing ,

– Keynesian investments1

– common goods

• Self-interested non-monetary economic relations such as bartering.

• Monetary economic relations that involve payments and monetary transactions.

1We term Keynesian investment, in honour of the economist John Maynard Keynes, a relation-

ship where an Institution invests in Grid resources binding their use, partially or fully, to a certain

user or usage

47

Figure 3-10: Agent’s topologies

3.2.5 Value and Price

As yet there has been no definition of what kind of information the agents exchange

with each other or on the paradigms that are at the base of their behaviour. Two

basic concepts in the social and economic paradigm are value and price. These

concepts can be very loosely borrowed from economics and used in a similar fashion

but without the strictness and formality of economics.

Price is a mathematical entity expressed in a unit (a currency that has to be

recognized by all parties involved) on which two parties agree for an economic trans-

action. Almost everything has a price, from tomatoes in a supermarket to human

lives in an insurance company. It is easy to define the concept of price for digital

goods. One hour of computation at a given time on that CPU at certain conditions

will have a certain cost. One month of 1 megabyte of space accessible at given condi-

tions will have another cost. As a matter of fact, digital services such as computation

and storage are already sold in real markets against real currencies.

Unfortunately it is difficult to define strategies solely based on price when not

entirely economic behaviours arise. In grid computing there are social behaviours

that cannot be easily described with a mere economic explanation. Cooperation may

require decisions entailing financial losses to maintain social relations. It is difficult

48

to give a monetary price to a social relation. Offering a pint to a friend in a pub is an

action with a very clear financial outcome (loosing the price of a pint) but involves

reasoning that is not easy to model in mere monetary terms. Giving a Euro away in

charity, again, has a financial outcome (the amount of money given away) that can be

clearly measured in a currency but a benefit (the moral well-being, or the temporary

easing of the sense of guilt, depending on how inclined you are to cynicism) that

can hardly be measured in financial terms. As informal cooperation and “charity”

mechanisms are present in Grid computing it is necessary to find another, more

private, metric to describe how an individual agent perceives the “worthiness” of a

resource, a service or an action. Let us call this value, an entity to be used both to

define prices and to help the decision-making process.

One useful simplification is to say that the production layer is only aware of value.

The value of services and resources could be either inferred or directly set by the social

layer. In the paradigm a production agent could be constrained to make decisions

only on value. It would be possible, as an example, for a production agent to perform

a service up to a certain value or to report to its owners or controllers the value of

a performed service. The value of a service could be defined or it could be inferred

from metrics through a defined function.

On the other hand, the social layer might not only define the value of the services

it controls but might also infer a price from it. A social agent may map values into

prices without considering the buyer’s identity as done in super-markets or instead it

might define a price depending on the value and the identity like a seller who decides

to offer a discount to a good costumer or, finally, it might decide to donate services

up to a given value because the social relation is deemed worthy of such financial

sacrifice.

Fig. 3-11 illustrates this concept in more detail. Here the production agents P1,

P2 and P3 define a value for their services based on metrics or on the control decisions

made by their controllers S1 and S2. On the social layer, S1 and S2 engage in social

exchanges. The social decisions made by S1 and S2 are made on the basis of both

value and price. The economic transactions between S1 and S2 are defined only in

49

Figure 3-11: Value and price

prices as the unit must be recognized by both parties. Value is a private entity, price

on the contrary is shared.

3.2.6 Policies and Modalities

So far, the paradigm is capable of describing production systems composed of various

agents. This system is flexible because the production process can be re-arranged

and it should be able to cope with disjoint administrative domains as the production

agents can be owned and controlled by different agents. Finally, it should be able

to cope with the social complexity of the grid as it allows for a reasonable variety

of topologies. The paradigm describes a two-layered environment where agents act

and define topologies of different kinds: production, control/ownership, social and

value/price, as described in Fig. 3-12. The information must also be able to express

both the functionalities required and the policies with which the functionalities must

be performed. Functionalities and policies are closely intertwined as policies can con-

strain functionalities and different policies can be applied to different functionalities.

Thus far there has been no consideration of the nature of these information flows.

Agents exchange information in the form of messages. The way in which the

50

Figure 3-12: Information flows

51

messaging is conducted does not need to be considered yet. The important point is

that these messages should be able to express concepts such as: “Execute this task

with these modalities” or “Is it possible to execute this job with these modalities in

that environment ?” or “What would be the cost of executing this task with these

modalities ?”. An analysis of these messages enables one to see that the information

of a message must at least contain:

• A subject that often is the sender of the message.

• An action describing what must be done. An action might be an execution, a

request for information, the definition of behavioural patterns of the agent or

the cancellation of some action.

• An object : describing the object of the action. An object could be an action

itself in the case of complex actions.

• A set of modalities: describing how the action has to be carried out.

• Optionally The identity of the beneficiary (i.e. the ultimate requester): de-

scribes the identity of the agent that initially requested the action.

The agents that process these messages must take decisions based on their rela-

tionship with the subject of the message. A request of the type “Execute job j with

modalities m” should be accepted or rejected on the basis of the compatibility of

the actions and their modalities with the status of the agents and especially how it

wishes to handle such requests, i.e. its policies.

Generic Policies and Modalities

The “common wisdom” of a society often is embedded with a generic set of beliefs

that govern policy, and an analogous provision would benefit the proposed paradigm.

Hence generic policies and modalities could define behavioral parameters that are

common both to the production and to the social layer and are defined by the relation

that links two agents. An example is illustrated in Figure 3-13. Every agent supports

a set of policies, the set SP which encompasses all the possible policies that can be

52

Figure 3-13: Policies and modalities

enforced during the execution of a certain action. The nature of the relation between

the agents defines a subset GP of policies that can be granted. Finally, the modalities

with which the action is to be executed define a final subset EP of policies that will

be enforced. If the subset of enforced policies is empty the action cannot and will

not be executed by the agent.

The policies could consist of:

• Authentication policies: that define how authentication is to be executed.

• Authorization policies: that define if and how the actions specified in a message

are to be executed. It would not be unusual for authorization policies to be

defined in terms of other policies.

Production Policies and Modalities

For the individual production agent, production policies and modalities could define

different aspects of how a service is to be executed. They might cover:

• Allocation policies that describe allocation parameters that define the execution

of a certain task.

• Execution policies that describe specific execution parameters such as timeouts.

• Value policies that describe what is the value of the services offered by the

production agents.

53

• Accounting policies that describe if and how an action is to be accounted for.

Social Policies and Modalities

Similarly, for the individual social agent, social policies could define parameters of

the social behaviour of the agents. They might cover.

• Pricing policies that describe how resources and services are priced with regard

of the relationships with the other social agents.

• Selection policies that describe how resources and services must be selected.

• Billing policies that describe how credit transactions are to be performed and

if they must be performed through a bank or a simple transfer of credit is

sufficient.

3.2.7 Additional Social Dimensions

In paragraph 1.2 we have stressed our belief of a close integration of the concept of

economies and societies. We have described how social interactions can encompass

many different economic models and how economic models can be influenced by

social relations. We now propose to describe this as the different Social Dimensions

of a relation; this concept is tightly bound to those of Optimization, Diversity and

Interactions. In fact, a Social Dimension is the equivalent of finding in the social layer

a set of Social Services capable of fulfilling needs that an agent cannot meet alone.

Even if in real life the complexity of the analogous concepts is far beyond the reach of

this investigation, we can nevertheless try to isolate some of these dimensions within

the paradigm proposed by this thesis. Let us consider an actor that has complete

knowledge, perfect memory, perfect ”honesty” and full mutual trust with other actors

with the same characteristics. Then this actor will not need any market as it will

know with absolute precision where and how to find all the needed services. It will

not need any legal system or law for the protection of the consumer as it will be able

to rely on the perfect honesty of all its social parties. Finally it will not need any

bank as all transactions may be based on complete trust; having perfect memory,

54

each agent will remember how many credits it will own and will simply subtract or

add it at every transaction2.

Sadly, this is unlikely to be practical. Agent behaviours will be defined by their

human programmers. Among humans mischievous behaviour is so common that even

the tiniest of societies do not last long without rules and laws to control ”wrong”

behaviours (as an example, spam and hacking). Knowledge is limited at best, trust

is a wonderfully rare (and lavishly squandered) social commodity and even the most

gifted in memory will fail to keep track of all the economic transactions that happen

even in a single day.

Faced with its own shortcomings an agent must seek in its social layer whatever it

lacks. We try here to define three social dimensions that compensate for incomplete

memory, incomplete knowledge and incomplete trust.

A Banking Dimension is a social dimension where actors delegate a second party

(a Bank) to keep track of their endowment and economic transactions. This dimen-

sion is also where, in future, more sophisticated scenarios, the computation of the

overall amount of wealth and therefore the overall amount of credits of a society will

be computed either through the connection to the real economy or through a mint

authority that issues credits depending on the amount of resources available.

An Indexing Dimension is a social dimension where actors rely to a second party

(an Index, or a Market) to discover previously unknown parts of the society, the

actors therein and the services they offer.

A Trusting Dimension is a social dimension where actors rely to other parties

to determine how much and if at all a third party has to be trusted. Trust can be

based on a combination of three different factors: experience, authority or shared

knowledge. The first is based on the recognition of behavioural patterns through

time, the second is based on the authority of a party and the third is based on the

opinion of other other parties, whom we trust. Currently only the approach based on

the authority has been explored to define trust-based topologies (for the definition of

prices) in this thesis.

2We do not consider here the services that a bank offers regarding security, investment or interests

55

3.2.8 Limitations

The paradigm described in this chapter should be flexible and powerful enough to

allow the Social Grid Agents to mimic in the Grid world some behaviours that con-

stitute the bare basis of social and economic interactions. Agents can arrange in

arbitrarily complex structures to engage in the production of services. These pro-

duction structures are defined depending on the social interactions among the social

agents. This will allow for the definition of allocation philosophies of different na-

ture. This paradigm allows the implementation of testbeds for the evaluation of

different allocation strategies. The paradigm also offers an initial support for the

implementation of the concept of value and price and their use for decision making.

This paradigm allows the description and implementation of a broad range of sim-

ple social and economic models and it also allows their coexistence for experimental

purposes.

Although the paradigm is flexible enough to describe a large variety of social

and economic behaviours, the current architecture and implementation of the agents

(detailed in Chapters 3.12 and 4) is not rich enough to allow the description of very

complex social and economic systems. In particular, behaviours that need complex

self-aware actions such as stock and futures markets cannot be modelled with the

current architecture and implementation. The flexibility of the paradigm, on the

other hand, should allow encapsulation of such advanced behaviours in new but

backwardly compatible agents that can be interfaced with the current ones in a

relatively seamless fashion. We will return to this subject in Chapter 10.

3.3 Topologies

In Section 2.4 we have described the Social Grid Agents paradigm intended as the

basis of flexible allocation systems in Grid Computing. These agents can be seen

as having four types of topologies: production, control/ownership, social and val-

ue/price. This chapter is devoted to the description of these topologies

56

3.4 Production Topologies

3.4.1 Simple Producer

The simplest of these topologies is the Simple Producer shown in Figure 3-14, where

a client contacts a Social Agent and negotiates the acquisition of a grid service.

When the social or economic transaction is accepted by the two parties the Social

Agent gives instructions to the Production Agent it controls to execute the required

service. Then the service is performed and the results are sent back to the client.

Even such a simple example can be implemented in many different ways. From a

social and economic perspective there may be or not a payment required for the

service, depending on the relationship between the agents. There can be different

payment policies such as pay beforehand, pay after the service is executed, pay only

if the service is successfully executed, etc. All these different ways are defined by

the policies that control the agents behavior and by the modalities that define how

services are to be executed.

Figure 3-14: Simple Producer.

3.4.2 Service Rental

A slightly more complex control topology is the Service Rental as shown in Figure 3-

15. Here two Social Agents exchange the services of one or more Production Agents.

After the social or economic agreement, the grantor Social Agent S1 instructs the

Production Agent P1 to accept requests from the grantee agent S2 with a certain

modality (e.g. token modality, time slot modality, deadline modality or combined

modalities). The grantee is now capable of directly using the Production Agent.

57

Figure 3-15: Service Rental.

3.4.3 The Company

We call a Company the control topology where a Social Agent controls one or more

Production Agents. The control exerted by the Social Agent lets it define the topology

of the production flow, as illustrated in Figure 3-16. As the ownership and the control

of the Production Agents can be absolute (if described by the absolute modality) or

relative to tokens or time (if described by other modalities), a company can avail

itself of the services of Production Agents it does not control directly, provided that

it can either obtain partial control of them or be able to purchase their services from

their Social Agents. This second scenario, which we term outsourcing is described in

Figure 3-17.

Figure 3-16: A simple company.

3.4.4 The Market

When the Production Agents are controlled by different Social Agents, their services

and/or partial control can be exchanged in a market. In this case, already partially

58

Figure 3-17: A company with outsourced services.

illustrated in Figure 3-17, a Social Agent engages in exchange with other Social Agents

to create the production topology it needs for the services it wishes to produce. This

control topology is illustrated in Fig. 3-18.

Figure 3-18: A Market.

3.4.5 Complex production topologies

Finally, the two control capabilities, absolute and relative, described in sections 3.4.1,

3.4.2, 3.4.3 and 3.4.4 can be combined in topologies of a higher complexity. In Fig 3-

19 a client S1 asks for a complex service, the execution of which requires different

grid resources (P1, P2, P3 and P4). These resources can represent different job

submission systems and a work-flow engine or, in other cases, storage devices and

computational power. The Social Agent interacting with the client directly controls

59

only grid resource P1 through one of its Production Agents. When the Social Agent

receives the request from the client it checks if the other Social Agents, with which

it has a relation, are able to fulfill the needed services. If so, a social arrangement

is made to allow the Social Agent to gain control of the Production Agents for the

necessary time. The Social Agent then instructs its Production Agent about the other

different Production Agents it can use for the completion of the complex service. The

service is then executed and the result is sent back to the client.

Figure 3-19: A complex production topology.

3.5 Social Topologies

In production topologies Social Agents control Production Agents. A similar process

happens between Social Agents. We term these Social Topologies. Whereas in the

production topologies above the issue of pricing does not arise, in social topologies it

does.

3.5.1 Simple Relationship

In this social topology (also termed as Simple Purchase), see Figure 3-20, an owner or

controller sets the pricing policies of a Social Agent. The Social Agent then responds

to the requests of its clients accordingly.

60

Figure 3-20: Simple Relationships.

This topology can be extended along the three additional dimensions described

in 3.2.7. Payments between the two social agents can be performed through a bank,

the requester may find the provider through an indexing agent and, finally, trust

between the two can be achieved through the delegation of the price’s definition to a

third party, the arbitrator that is trusted by both as detailed in 3.7.

3.5.2 Tribe

In a tribe, shown in Figure 3-21, the Social Agents accept the pricing and access

policies of the tribe (usually free or discounted prices for all the members of the

tribe). Then all Social Agents can use part of the resources of the tribe to fulfill their

needs. I call this topology a Tribe as its allocation mechanism is similar to that of a

Tribe where all active members to the society share part of their resources with the

other members in compliance of the rules dictated by an authority.

Figure 3-21: Tribe.

61

3.5.3 Pub

In a pub social topology, see Figure 3-22, two or more Social Agents agree to share

part of their resources. This topology is similar to the tribe but it is not centralized

as the agents can define private sharing modalities that do not need to be approved

or defined by the other members. I call this topology a Pub Topology as its allocation

mechanism is similar to that of the behaviour of friends that go regularly to a Pub.

If one of the friends lacks the money the others will gladly pay for his consumption

under the assumption that the same would be done for them. If one of the parties

consistently fails to help the others for a certain period it is usually not granted help

any more.

Figure 3-22: A pub model.

3.5.4 Keynesian Scenario

In a Keynesian scenario, such as that in Figure 3-23, the Social Agents accept pricing

and access policies from an authority; these pricing and access policies usually refer

to a subset of all the clients of the Social Agents. I call this topology a Keynesian

scenario in a loose fashion without implying any direct link with the work or theory of

John Maynard Keynes to describe a scenario where one of the actors (The Keynesian

Authority)

3.6 Control and Ownership Topologies

Figures 3-24 and 3-25 describe two of the most common examples of ownership and

control topologies. In Figure 3-24 social agent S3 owns production agent P3; following

62

Figure 3-23: Keynesian Scenario.

a social transaction with social agent S1, certain usage rights are transferred to social

agent S1 that is now capable of using P3. Figure 3-25 describes a slightly more

complex example where agent S3 grants control rights on P3 to S2. Now S2 can grant

usage rights to S1.

In the example of Figure 3-24, the owner S3 will be able to set any modality to

the usage relation granted to S1 while in the example of Figure 3-25 the owner S3

will be able to set any modality to the control relation granted to S2. S2 will, in

turn, be able to grant usage modalities to S3 that are compatible to its own control

modalities.

3.7 Value and Price Topologies

The information flows required for price and value determination follow their own

topology. Figure 3-26 illustrates where the concepts of value and price are used:

price is used in the social layer, value is used both in the social and production layer

while metrics encompass all layers. The value and price topologies define which agent

determines those figures (and how). Figure 3-26 also describes the simplest of those

topologies where all values and prices are determined by agents that belong to the

same ownership and control topology.

This simple, “vertical topology” can be further divided into top-down and bottom-

up depending on the main direction of the flow of information. Figure 3-27 describes

these two different approaches. In the top-down approach described in the left part

63

Figure 3-24: Example of control topology: simple use.

Figure 3-25: Example of control topology: rent and simple use.

64

Figure 3-26: Metrics, Value and Price in the different layers.

of the figure, the Social Grid Agent determines arbitrarily the value of the production

resources it controls and their price. This can be formalized as:

value = vk (3.16)

price = pk (3.17)

where vk and pk are fixed parameters determined by the Social Grid Agent.

The bottom-up approach is more complex and flexible. In it the Social Grid Agent

determines the function to compute the price from the value and the metrics and the

function to compute the value from the metrics in a top-down fashion but there then

occurs an opposite bottom-up flow of information that provides the parameters of the

functions. This is described in the right part of the figure and can be formalized as:

value = vf({m}) (3.18)

price = pf(vf ({m}), {m}) (3.19)

65

where {m} is a set of metrics originated by the existing Grid resource and func-

tions pf and vf are determined by the Social Agent.

Figure 3-27: Different approaches to the computation of value and price.

A more flexible way to compute the value of a service is to define it as a function

of two different sets of metrics:

• Service Metrics - These metrics provide information on the abstract service.

• Resource Metrics - These metrics provide information on the resources that

have been used by a specific execution of a service.

Chapter 4 discusses how metrics can be combined to determine the value of a

gLite job submission system.

In the simplest case, when trusted direct messaging exists between agents and

resources, the functions are determined directly by the controlling agents, but more

complex topologies arise when there is no trusted direct messaging between agents

and resources, see 3.8.3 below.

66

3.8 Additional Social Dimensions

In section 3.2.7 we introduced the Social Dimensions of Banking, Indexing and Trust-

ing. The following sections describe possible expansions in dimensionality to the

topologies we have already introduced in this chapter.

3.8.1 Banking Dimensions

An exchange topology can be extended along the banking dimension if the involved

parties delegate to a Bank agent the management of the financial part of their trans-

action. This extension is represented in Figure 3-28.

Figure 3-28: A banking extension of an exchange.

A bank extends a transaction between two agents by offering two main set of

simple operations:

• Account management that allows agents to create accounts, and to define sets

of agents that have the right to lodge and/or retrieve credits.

• Transaction management that allows agents (if they have the proper rights) to

lodge and/or retrieve credits from an account.

This is a brutal simplification but it allows for the extension of exchange through

simple steps:

67

• The Requester sets up an account and allows the provider to retrieve a certain

sum of credits.

• The Provider retrieves the credits through a transaction.

3.8.2 Indexing Dimensions

A social topology can be extended along the indexing dimension if a party uses an

indexing agent to discover which provider is capable of offering the needed services.

This extension is represented in Figure 3-29.

Figure 3-29: An indexing extension of an exchange.

An index can extend a relation between two agents by offering two main set of

simple operations:

• Publish in which the Provider publishes part or all of its description (how

providers describe themselves and their services is detailed in Section 3.18) in

an index.

• Query that allows a Requester to find a suitable Provider.

68

3.8.3 Trusting Dimensions

A social topology can also be extended along the trusting dimension to supply trust

where it is lacking. For example, in the specific case of value and price let us consider

agents between which there is no direct trust link, then problems such as the per-

ception of the “fair price” of a service or the need of arbitration in case of disputes

arise. Clients may not be willing to pay for the execution of failed jobs while service

providers may require that the resources being used are to be paid for in any case.

If a third party called the arbitrator, shown in Figure 3-30 is trusted by both the

client and the service provider, then it can conduct an independent analysis (e.g. it

can define value and prices and enquire into the status of jobs) to resolve the dispute.

In this case, we say that there is an implicit trust link between the clients and the

service providers through the arbitrator.

Figure 3-30: Different approaches to the computation of value and price.

3.9 Complex Topologies

By introducing the additional social dimensions detailed in 3.2.7 we allow the imple-

mentation of more Complex Policies. The first problem we must try to solve with

69

these complex policies concerns how to ”close” the loop of a Grid economy shown

in Figure 3-31. Some examples proposed so far are (excluding co-operative relation-

ships), in fact, open economic systems where two different flows cross each other: that

of services and that of credits. If in such an open economy the agents that provide

services also consume services and thus providers are also consumers the original

credits keep circulating in the topology. But if there are pure providers and pure

consumers the credits will accumulate somewhere and, eventually, the entire system

will cease to function.

Let us consider two possible solutions to this: a Synthetic Macroeconomic Topology

(illustrated in Figure 3-32) and a Connection Topology (illustrated in Figure 3-33)

that connects the Grid economy with the real one.

Figure 3-31: Open and closed economies.

In a synthetic economy the circulation of credits can be ensured by three social

actors: an index, a mint and a bank. All production agents sign to an index and

publish information on the resources they control. This information is used by the

mint agent that issues and distributes credits in the different bank accounts. Finally,

these accounts may be used for the micro-economic transactions.

Another possibility (as yet just a theoretical approach) to redistribute credits

among the different agents is to link the Grid bank with the real economy, allowing

exchange of real currency and Grid credits. In this case the resource owners will be

able to exchange the Grid credits into real currency that will be in turn be granted

to the requesters for exchange into Grid credits.

Of the two, this thesis focuses on the first as the ramifications, the feasibility and

70

Figure 3-32: A closed, synthetic economy.

even desirability of directly3 connecting a Grid economy to a real economy (and, if

the scale become significant, even the reverse) are yet to be investigated.

3.10 A Metagrid Paradigm

Although the concept of interoperability could have different interpretation in the

Grid Community, I use the term interoperability in two different senses. The first and

more strict one is the capability of a system to interface and use different middlewares,

in this sense the metagrid prototype implements this view of interoperability. A

broader acception of interoperability as the possibility of different middlewares to

use each other seamlessly is at the basis of the metagrid abstraction but is not fully

implemented as of now.

This thesis explores a metagrid abstraction for interoperability, and exploits this

as an example environment for SGAs.

3Grid economies and real economies are already indirectly but strongly connected as hardware,

electricity, wages and rents have to be paid for in real currencies.

71

Figure 3-33: Connection between a synthetic and real economy.

If we imagine that the different Grids occupy segments of a space, then the re-

maining space can be conceived of as a generic interoperability space. Since some

workflow engines are users of Grids, not an intrinsic element of any one Grid, it

is useful to conceive of these as distinctly different entities, yielding three distinct

spaces: Grids, workflow engines and an interoperability space. This chapter proposes

a metagrid paradigm that is an attempt to put the user at the centre of such an

interoperability space, the metagrid space. This means that each user should have

access to all available Grids and workflow engines.

3.10.1 An abstract view

A metagrid may be simply represented as a Venn diagram as in Figure 3-34. Let

us define a region as a set of resources available to the user. Let S be the set of all

the possible resources available to the user where Rm ⊆ S is the metagrid region.

Rw is the family of workflow regions. Ra is the family of ancillary regions containing

services such as banking or accounting that, although not necessarily directly linked

72

Figure 3-34: Abstract view of a metagrid.

to a specific grid middleware, might be needed by the metagrid services. And, finally,

Rg is the family of Grid regions. Of course, unless so provided, none of these regions

are capable of interoperation. One insight is that each Grid or workflow region

may be extended with dual-mandate resources that interface to the metagrid region.

Resources that serve one mandate only are within internal regions. Resources that

serve two or more mandates are within border regions. While they need not be, it

is helpful to think of these resources as machines. Thus an internal region might be

a set of machines that host a homogeneous set of either metagrid, workflow or Grid

technologies. Rm is a pure metagrid region where only metagrid technology exists.

Rw is a pure workflow region (WebCom, for example), Rg is a pure Grid region

(gLite, for example). Border regions not only separate technology domains but also

policy domains; therefore border regions must also cope with policy compatibility in

addition to technology compatibility.

Communication between the metagrid and a Grid or workflow middleware flows

through the border regions, where two or more technologies coexist. Where only two

technologies coexist these are called simple borders. Where three or more technologies

coexist these are called complex borders.

The abstraction of border regions is very useful. For instance, when communicat-

73

ing between two technologies, each of which has simple borders to the metagrid, the

communication is said to traverse an extended border, e.g. extended border supports

traversal from the workflow region via a simple border to the metagrid region and

thence via another simple border to the Grid region. On the other hand, with complex

borders, communication between any two of the technologies hosted by one complex

border is said to traverse a collapsed border, e.g. collapsed border supports traversal

directly from the workflow region via a complex border to the metagrid region and

to the Grid region. The advantage of the former is simplicity, while the advantage of

the latter is traversal via only one complex border rather than two simple borders.

The metagrid region Rm could, in the first place, offer a friendly and flexible

interface towards the user, and could allow relatively uniform access to different Grid

and workflow middlewares and services. If the user I/O is moved from other spaces to

the metagrid space, then the Grids could be enabled to focus on their strengths in pure

computation and storage, and likewise the workflow engines to focus on their specific

strengths. Each interface to a user could conceivably serve all Grids and workflow

engines. The net effect would be that for N Grids, any particular I/O model would

need just one implementation within a metagrid, rather than N implementations,

one per Grid.

A set of views can encapsulate the underlying ideas and assumptions of a metagrid.

The first of these is of the metagrid as a “Grid of Grids and Services”. This view is

implicit to the discussion above.

A second view is that of a metagrid supporting different computational models.

While it is not possible for the metagrid to change the computational model of Grid

and workflow middleware, it should in principle be able to encompass middlewares

that support different computational models and, especially, to be able to express the

orchestration and interaction of middlewares with different workflow models. Special

attention would need to be given to those workflow engines (such as WebCom [60])

that are able to execute complex workflows that embed multiple computational mod-

els.

A third view is of a metagrid as a bridge between the different standards employed

74

by the multiple Grid and workflow middlewares. The choice is a challenging and

interesting dilemma: abstract or translate; to translate a standard into another or

to create an abstraction layer able to understand all the other standards. Both

approaches have advantages and disadvantages. A translation approach forces one

to write a large number of modules to translate each standard into another while an

abstraction layer is often an excessively complex generality. The solution this thesis

proposes is an hybrid: an exchange approach, that adopts an official standard (that

may already exist); exchange services can then translate from the official standard

to the different supported standards. An optimization is clearly available if the

middlewares are already interoperable.

The final view is that of a scalable metagrid. The exchange approach allows the

number of translators to grow linearly rather than quadratically with the number

of standards supported, and thereby simplifies the design and implementation of the

abstraction layer. Similarly, moving the I/O to the metagrid space allows the number

of I/O solutions to grow linearly rather than as a product M×N for M I/O models

and N Grids. These two attributes guarantee that a metagrid is scalable.

3.10.2 A concrete view

Figure 3-35 illustrates a concrete example of a metagrid architecture that has been

implemented as an experimental prototype.

The communication among all the metagrid components is provided by the Meta-

grid Transport Layer. This component of the architecture is composed from two

sub-layers: the Control Transport Layer, which conveys all lightweight information,

and the Data Transport Layer, which conveys all other information. We use the term

lightweight to mean all the information that does not need a file to be communi-

cated; an example of lightweight communication is the information passed between

web services in a distributed architecture.

The Metagrid Transport Layer allows the communication between three main

groups of metagrid services. The first group is the Metagrid Border Services, in-

terfacing all the existing middlewares that are to be encompassed by the metagrid

75

Figure 3-35: A concrete view of the metagrid

architecture. As in Section 3.10.1, these middlewares are divided into two regions:

workflow middleware regions Rw such as WebCom, and Grid middleware regions Rg

such as gLite and GT4. Each of these regions is extended with a border region

Rmw or Rmg that hosts border services that allow communication with the metagrid

transport services.

The second group is the Native Metagrid Services that comprises those services

that were developed to tackle specific metagrid issues. Thus far only one of these

services has been implemented: the metagrid Job Exchange (MJX) service that en-

ables any supported middleware to target job-related actions to any other middleware

supported by the metagrid environment.

The Transport Layer

The present Control Transport Layer is based on Globus GT4. Both extended and

collapsed borders have been successfully created using GT4 technology.

The Job Exchange

The Metagrid Job Exchange (MJX) enables any supported middleware to target

job-related actions to any other supported middleware. These actions include job

submission and status requests. The actions are invoked via the appropriate border

76

region. It is the duty of this service to try to submit a job, described in the job

description language of one middleware, to any other middleware. This is likely to

involve a translation from one language and format to another. As an example, the

MJX may be requested to submit a job described in gLite’s JDL [68] to a GT4 Grid

that requires a description in RSL [93]. As not all job description languages have

the same functionalities some translations are impossible if all the information must

be preserved. But a translation is possible provided that it is acceptable that some

information is lost during the translation process. As an example, consider a job

expressed in the JDL language that explicitly defines computational requirements

and ranking criteria for finding an optimal resource. If it is acceptable that this

ranking information is lost, this job description can be successfully translated into a

less expressive job description language and the job executed in a grid middleware

different from the one it was designed for.

3.11 Social Grid Agents and Metagrids

Social Grid Agents and metagrids are mutually beneficial paradigms: in a metagrid

SGAs can, amongst other things, perform two major roles: border agents or native

metagrid agents.

3.11.1 Border Agents

In borders the SGA capability of expressing and enforcing different policies helps

to allow the co-existence of different middlewares. SGAs prove their usefulness in

two main respects: they can act as standards bridges and they can act as policy

enforcement points for those responsible for the existing middlewares. Border agents

can translate different standards. While these translation capabilities of the agents

are mostly useful at a production level, the social level of the agents is useful in

describing the ownership and control topologies of the different middlewares allowing

those responsible to define suitable policies to reflect the agreed co-operation levels.

As an example, a middleware requiring complete traceability of the issuer of the job

77

will instruct its border agents with appropriate authorization and delegation policies

whilst middlewares with a different security policy might allow border agents to

submit jobs without bothering to fully trace back the delegation chain. In this case,

a control topology of a production border agent can be used to trace areas in the

metagrid space where different security policies co-exist.

3.11.2 Native Agents

On the other hand, inside the metagrid space, Social Grid Agents can be used to

enforce the policies required by the border agents and to control ancillary services

such as indexes, markets and exchanges. The metagrid space presents obvious op-

portunities for exploring the subject of this thesis.

3.11.3 Discussion

The use of a metagrid paradigm as a candidate environment for Social Grid Agents

offers mutual benefits: as a way to tackle the problems of interoperability (that,

although it is not the focus of this thesis, is a closely related issue) and as a meaningful

and natural environment for testing the behaviour of Social Grid Agents.

The generic nature of SGAs finds a natural complement in a metagrid environment

where its native language (see Section 3.18) can be translated into different dialects

of grid middlewares by border agents. This capability allows for the definition of

policies (and resulting behaviours) that are not tied to any particular middleware

but that can be translated (sometimes accepting the loss of some information) into

the specific languages. The adoption of a native language implies that the number of

translating agents grows with N , where N is the number of supported middlewares,

and not with N2.

Social Grid Agents also allow the implementation of higher level functionalities

in the metagrid space, both for pure interoperability purposes such as the Metagrid

Job eXchange (see section 3.10.2), and for supporting different social and economic

models across different middlewares.

An interesting feature of this view is that the production layer is a border region

78

with the existing middlewares, and Production Grid Agents are wrappers of the

different services; this allows for scalable expansion of the encompassed middlewares

as well as a single point of translation.

However, the essential point is that a metagrid is a good candidate environment

for SGA prototyping.

This chapter is devoted to the description of the architecture of Social Grid

Agents. The chapter starts with an Introduction (section 3.12) describing features

and constraints; a taxonomy of the agents is in section 3.14, and a general description

of the overall architecture of the agents is in section 3.15.

3.12 Architecture

In order to implement the features described in Section 2.4, the agents will have

to compose services arranged in a production chain. This production process must

be defined in a flexible way to allow the creation of different supply chains depend-

ing on different optimality criteria and social and economic relationships with other

agents. Agents act as nodes that connect different information flows (production,

control/ownership, social and price/value) and react to their changes; they must

manage and compose services and they must interface with existing ancillary ser-

vices such as accounting or banking systems. Agents must also manipulate and react

to social information flows that describe their relationships.

As grids are developing apace and yet, despite the efforts of the scientific commu-

nity, a clear framework for standardization is still to be defined, it is important for

the agents to be able to inter-operate with other technologies, and even be capable

(at least at a theoretical level) of inter-operation with services that are still to be

developed or even designed.

As all but an initial set of agents have yet to be developed, tested and deployed,

there also is a very strong need for a flexible and simple architecture and the possibil-

ity to develop the code in small, incremental steps to control the overall complexity of

the solution. The necessity for simplicity rules out traditional software agent technol-

ogy. These considerations, although not directly related to functional specifications,

79

play a significant role in the design of the architecture.

These constraints can be met by a lightweight architecture based on associative

relations and agents that expose some plug and play behaviour. Agents should be

able to manage information relating to the association with other agents, they should

be able to find “optimal” configurations of services based on a flexible set of data

and, finally, they should be able to have some degree of “self consciousness” by which

to make decisions based on historical records.

3.13 Abstract Architecture

An abstract view of the architecture is as a set of Message Transformers that com-

municate and compose services. The message transformer is defined as an entity

which exposes a minimal interface. Transformers can be further sub-divided into

sub-entities:

• Providers that simply process a message; they constitute the simplest tile of

our architecture. We use a provider interface each time we want to wrap the

message-based SGA architecture around a service. An example of a provider

can be a wrapper around a job submission system or a piece of code capable of

performing some clearly defined operation.

• Processors: that map messages into sequences of messages that unfold in time;

a simple example of a processor is a workflow engine. Using a very informal

description we say that processors map messages to messages in time.

• Managers: that map messages to providers in space; managers are basically

indexing services.

Let us define input and output messages as min and mout and the provider’s

transforming function as fpv(...). We can describe a transformer as a transforming

function such that :

mout = fpv(min) (3.20)

80

If we define a sequence of messages in time as M = {m0, m1, ..., mi} and the

processor’s transforming function as fpr(...), we can describe a processor as a trans-

forming function such that: M = fpr(min).

M = fpr(min) (3.21)

Finally, if we define a transformer as t, then we can describe a manager as a

transforming function such that:

t = fm(min) (3.22)

These three sub-entities: providers, processors and managers are composed to

create structures of the required complexity and sophistication. A fourth concept,

the agent, describes a set of message transformers that share an identity as described

in Figure 3-36. Agents themselves are transformers and expose the same behaviours:

processing agents behave as workflow engines orchestrating complex services, man-

aging agents offer indexing services such as markets or yellow pages whilst agents

wrapping existing services such as simple job submission are pure provider agents.

3.14 Types of agents

Social Grid Agents can be divided into three main groups along two dimensions.

The first dimension relates to the connection with existing grid services, where there

are two groups of agents: Border Agents and Native Agents. The second dimension

relates to the nature and role of the agents; here we identify Social Grid Agents and

Production Grid Agents. This two dimensional taxonomy of the agents is represented

in Figure 3-37.

As illustrated in Figure 3-38, social agents of both border and native nature

share the same architecture and are therefore grouped together. On the other hand,

production agents are divided into different border and native architectures depending

whether they produce a service based on existing grid services or not. Existing grid

81

Figure 3-36: Abstract architecture of the agents.

services are interfaced with the agents via what is termed a Service Provider and

constitute what we term a Grid Body.

3.15 Agent anatomy

A high level view of the architecture of the agents is described in Figure 3-39. It is

composed of two or three main entities.

Agents are surrounded by a Native Service which enables them to be invoked

through a Native Service Port. If a link exists between an agent and an existing

grid service it usually consists of API invocations but can also be performed with

system calls if an API is lacking. All other agents contain a Native Skeleton that

consists of the services offered by the Native Service. Finally, an Agent Behaviour

Engine implements the production or social behavior. Agent Behaviour Engines are

software infrastructures that host Agent Behaviour Policy. The behaviour and the

82

Figure 3-37: Taxonomy of grid agents.

decision mechanisms of the agents are expressed in a Native Language detailed in

Chapter 3.18. Finally, all agents and service providers expose a minimal interface

composed of a single method process(message) that returns another message. The

agents are simple message transformers, where the transformation is defined in their

native language. This design decision was made in order to reduce to an absolute

minimum the complexity of the agent’s skeleton and to allow all agents to expose the

same stub.

This architectural feature also facilitates the outsourcing mechanism that is the

very foundation of most of the agent’s behaviour; so that an agent may use the grid

services it directly controls (see Figure 3-39) or it may access them through another

agent willing to allow this (see Figure 3-40). In the latter case agents a and b can

use the services offered by both service providers provided that the agent in control

allows so, and the very simplicity of the agent architecture expressly facilitates this.

3.15.1 Messages

Agents communicate through messages; in order to understand the agent’s architec-

ture it is important to understand that of the messages. Messages are classes that

83

Figure 3-38: Social and production agents.

implement a Serializable interface in order to be sent and received through the Native

Service Port. Messages reflect the division into layers as described in Figure 3-41. So-

cial agents communicate with each other through Social Messages, production agents

accept and send Production Messages and, finally, service providers communicate

through Service Provider Messages or, for the sake of conciseness, Execution Mes-

sages. Messages contain a description expressed in the native language and possibly

attached data in a service-specific format.

As production agents control service providers and social agents control produc-

tion agents, the messages they exchange reflect this structure as illustrated in Fig-

ure 3-42.

Execution Messages can contain the information needed to execute the various

services, either by native agent code or by existing grid services or can convey in-

formation regarding the Service Provider to the Production Layer. This information

can be condensed, filtered and enriched by additional production information when

it is exchanged by production agents. Finally, production messages can join social

84

Figure 3-39: Agent Architecture.

information in social messages. In every layer there can also be messages that contain

only information pertaining to that level like pure social messages, pure production

messages and social messages containing pure production messages.

3.15.2 Service Providers

Service providers can be interfaces to existing grid services or to native services for

the grid agents. In the first category there are interfaces to job submission systems

such as the Workload Management System of gLite or the GT4 GRAM, or work-

flow engines such as WebCom [60][58]. Messages received by the service providers

are usually simple wrappers containing necessary information for the execution of a

service. Service provider messages for a job submission system, for example, will con-

tain information regarding the executable, input, output and other data regarding

the job submission. On the other hand messages regarding work-flow submissions

will contain the representation of the workflow to be executed.

85

Figure 3-40: Architecture of the outsourcing mechanism.

Behaviour Engines

Service providers are managed by a component called the Agent Behaviour Engine

described in detail in Figure 3-43. When a message is received by an Agent Behaviour

Engine, its Manager checks whether there is any Processor (Pk in Figure 3-43) able

to manage it. A processor is a class that contains the “knowledge“ of what to do

with one or more messages. The processor will execute a series of actions that can

use other processors or service providers.

The manager is capable of match-making a processor to a message through a

mapping function:

Prk = F (MIN , {p})

where Prk is the kth processor, F (...) is the mapping function performed by the

manager and {p} are additional parameters.

The processor then analyzes the message and engages in a series of steps; when it

needs external providers, it requests them from the manager (SPA and SPB in Figure

3-43) that instantiates them using the same mechanism as that which was used to

obtain the processor. In this case: Pvl = F (MIN , {p}) where Pvl is the service

provider (possibly including processors), F (...) is the mapping function performed by

the manager and {p} are additional parameters.

86

Figure 3-41: Different messages exchanged by agents.

The processor executes all the necessary steps and returns a message MOUT . This

we describe through processing functions:

MOUT = GPrk
(MIN , F (MIN), {p})

where GPrk
is the processing function implemented by Pk (the kth processor), F

is the mapping function of the manager and {p} are additional parameters.

The description of the overall behaviour then becomes:

MOUT = GPrk
(MIN , F (MIN), {p}) (3.23)

Pvl = F (MIN , {p}) (3.24)

Prk = F (MIN , {p}) (3.25)

Where equation 3.23 describes the processing function returning the output mes-

sage MOUT and equations 3.25 and 3.24 are the mapping functions.

These maps are used to describe relations that link message types and message

values including the identity of the requester (and sometimes the beneficiary) to

policies and processors capable of handling them.

A possible implementation of this mapping technique is described in Figure 3-44.

Firstly a message m is received by the agent from a sender s. The first step in the

mapping process is to link the sender and the beneficiary to a relationship (s, b) → r.

87

Figure 3-42: Different messages exchanged by agents.

Then the action requested in the message and the relationship are mapped to the

set of granted policies: (a, r) → {gpi}. Then the modalities requested for the action

and the set of granted policies are mapped to an enforced policy: (m, {gpi}) → ep.

Finally the requested action and the enforced policy are mapped to a processor:

(a, ep) → processor.

Agents must take different actions depending on the sender’s identity (and pos-

sibly the beneficiary’s identity) and the message; for example an agent may accept

service execution requests for free from an agent it has a cooperative relationship

with, but may ask for a standard price for a different set of agents and also have

a particular set of prices for a third set of agents with whom it has a particular

economic relationship.

Processors

Processors are a key component of the Agent Behaviour Engines, they must be able

to perform sequences of actions in response to received messages and they must also

be able to react to messages whilst performing actions. In order to do so processors

88

Figure 3-43: Agent Behaviour Engine Architecture.

contain a map based on the native language, which itself must be capable of map-

ping the current action, parts of the status of the processor and messages eventually

received into the next step action, for example as in Figure 3-45. This map can be

expressed as: (Ai, m, s) → Ai+1 where Ai is the current action, m is the message

received (if any) and s is a subset of the status of the processor s ⊆ S. In order to

be able to react to messages whilst performing actions, processors are divided into

two categories, synchronous and asynchronous.

Synchronous Processors

Synchronous processors react to messages with a pre-defined sequence of actions and

return results at the end of this sequence. This behaviour is shown in Fig. 3-46.

Once the processor receives the message M1 it triggers one of the two chains of

events A1 → A2 → A4 or A1 → A2 → A3 → A3 → . . . → A3 → A4. Only at the end

of these events is a message returned.

89

Figure 3-44: Mapping a message to a processor.

Obviously this behaviour is acceptable only if the sequence of actions can be

executed in a short and predictable amount of time. Actions such as lengthy job

submissions should not be implemented with a synchronous processor as the caller

processes will have to wait (possibly for a significant time) until the processor has

completed its sequence. This is already a good reason not to rely solely on syn-

chronous processor but there are also two other reasons to develop asynchronous

processors: timeouts and topologies. The native skeleton can exhibit timeouts that

can easily expire if an invocation is not returned in due time; also, if agents wait long

times for responses, they lock in chains of invocations that prevent the creation of

many topologies. For these three reasons another type of processor, the asynchronous

processor, is supported by the agents.

90

Figure 3-45: Example of steps performed by a synchronous processor.

Asynchronous Processors

Asynchronous processors inherit their behaviour from a threading model but they

extend it with a synchronous sequence of actions at startup. This design feature is to

allow rapid, predictable sequences of actions to be performed in a synchronous fashion

before starting the thread. In the example of a job submission this allows checking

whether the job can be performed before starting the submission. The behaviour of

an asynchronous processor is described in Fig. 3-47.

This processor has two sequences of actions. The synchronous sequence is A1 →

A2 → A3 at the end of which message M2 is returned. After this synchronous sequence

the asynchronous part is triggered. This sequence could be A4 → A4 → . . . → A6, or

A4 → A4 → . . . → A5 → A6 depending if message M3 is received. Finally message

M5 will enquire about the current status of the processor. The asynchronous part of a

processor has three characteristics that make it preferable for lengthy or unpredictable

events:

91

Figure 3-46: Behaviour of a synchronous processor.

• It has an asynchronous behaviour that allows the safe implementation of lengthy

or unpredictable processes,

• its status can be queried by other processes, and

• it has a reactive behaviour that allows other processes to change the sequence

of its actions.

Managers

Processors, either synchronous and asynchronous, are managed by Managers. The

purpose of these components is to provide the right processors upon the reception of

a message. They do this by mapping processors and messages in maps. While syn-

chronous processors are easily managed, asynchronous processors need to be managed

more carefully in order to allow them to be retrieved when necessary. To allow this

a Processor Manager stores both types and instances of an asynchronous processor.

This is illustrated in Figure 3-48.

Message M1 is compatible with key K1. When the processor manager receives it,

92

Figure 3-47: Behaviour of an asynchronous processor.

it creates an instance of Processor P1 (by instantiating an object of class C1). The

processor performs its synchronous part and then returns a message. The Manager

then adds the instance P1 of the processor to its map with a different key K2. Now

the instance of the processor can be contacted through messages compatible with

the key K2, such as M3, but the manager will also be ready to instantiate as many

processors as necessary. For job submission, as an example, the manager will create

an instance of the processor each time a job can be executed successfully but will

also map each request regarding already running jobs to the appropriate instance of

a processor.

3.16 Topologies

The previous sections were devoted to the description of the internal architecture of

Social Grid Agents and their components. This section describes how the agents are

connected in some of the topologies listed in section 3.3.

93

Figure 3-48: The manager.

3.16.1 Simple Purchase

A Simple Purchase topology (introduced in section 3.4.1) is used to cover three

possible scenarios: a Selfless Charitable relationship, a Commodity Market and a

Posted Price Model (the latter two economic models are described in section 2.2.2).

The three different behaviours are achieved by simply setting the Pricing Policy (see

section 3.2.6) as follows:

• Charity. To model a charitable behaviour, the agent providing the service sets

to zero the Pricing Policy that determines the prices applied to the agents

it intends to benefit. The agent can also describe more complex conditions

to constrain the charitable donation by setting conditions on the Allocation,

Execution and Value Policies (see section 3.2.6)

• Commodity Market. In a Commodity Market the Pricing Policy is set to be the

same for all the clients.

94

• Posted Price Model. In a Posted Price Model, different Pricing Policies can

be set as special offers. The model can be further extended by the possibil-

ity of defining specific Pricing Policies for particular users to model common

commercial practices such as a Loyalty Program.

3.16.2 Pub Topology

In a Pub Topology (see section 3.5.3) two or more agents are involved in a sharing

mechanism whereby a social agent may accept requests from another social agent

provided that the requester is granted enough tokens.

Figure 3-49 shows a simple Pub Topology involving four agents: two social agents

(SGA A and SGA B) that control two production agents (PGA A and PGA B). Let

us suppose that at a given time SGA A decides to avail itself of the services of PGA

B through the Pub Topology, then SGA A will send a request for a service to PGA

B, if the request is granted (meaning that SGA B previously granted enough tokens

to SGA A), then SGA A will instruct the production agent it controls (PGA A) to

increase accordingly the number of tokens that are to be granted to SGA B.

This offers a very simple, self-adjusting load balancing system that can encompass

any number of agents. This simple scenario can be expanded along many dimensions

through the definition of appropriate policies: the value (and/or service metrics)

of the required service can be limited by setting appropriate Allocation and Value

Policies; tokens can also be granted to other pub parties on different conditions (at

service request, upon completion of the service or upon successful completion of the

service).

Two interesting aspects of the Pub Topology are its simplicity and its self-adjusting

characteristics: in fact, if one party consistently fails to meet the requirements asked

by the other it will simply not be granted any more tokens.

3.16.3 Tribe Topology

A Tribe Topology (shown in section 3.5.2) is similar to the Pub Topology with a

meaningful difference: the policies (or part of them) that control if, how and when

95

Figure 3-49: A Pub Topology.

the agents grant tokens to each other are defined by a Chieftain. The Chieftain is

granted the authorization to set policies in the various agents by setting a proper

Authorization Policy (see section 3.2.6) that controls the privileges granted to the

messages received from the Chieftain.

3.16.4 Keynesian Scenario

A Keynesian Topology (shown in section 3.5.4) is a social structure where a Keynesian

Authority grants special privileges to one or more agents. This topology aims at

modelling scenarios where one or more authorities invest in public infrastructures

to sustain projects of public interest. In a certain sense it is similar to the Tribe

as in both cases Social Agents grant to an Authority the possibility of setting and

modifying parts of their internal policies.

In its simplest form (shown in Figure 3-50) a Keynesian topology encompasses

four agents: a Client (Client), a Keynesian Authority (Authority), a Social Agent

(SGA A) and a Production Agent (PGA A).

If both Client and SGA A accept the authority of the Authority then they belong

to a Keynesian Topology. The Client is granted by SGA A particularly favourable

conditions that are described by policies defined by the Authority and accepted by

SGA A; the most common policy affected in a Keynesian scenario is the Pricing

Policy stating that Client is to be granted a lower price than the other costumers.

These policy settings can model a scenario in which part or all the resources controlled

96

Figure 3-50: A Keynesian Topology.

by SGA A are partially or fully funded by the Authority.

But there is also the possibility that the Keynesian Authority decides to fully or

partially fund the activities of Client by covering part or all the price requested by

SGA A. In this case it will modify the Billing Policies of SGA A to allow a third

party (in this case itself) to cover, partially or entirely, the costs.

3.17 Appropriate Technologies

This architecture has been realized and refined in various guises in a series of experi-

mental prototypes. For the last of these, the software technology is JavaTM, the native

service and skeleton technology is Globus GT4 Web Services (WSRF) [32], whilst the

native language is Condor ClassAd. The latter is discussed in Chapter 3.18. It hardly

needs to be said that the technological choices are just that, and that the architecture

is an abstraction valid whatever the choices.

3.18 Behaviour Policies

In Section 3.12 we have introduced the concept of an ”Agent Behaviour Policy”

hosted in a Agent Behaviour Engine. Agents have to make decisions driven by exter-

nal elements and their own behavioural characteristics. They must decide whether

97

to accept or reject requests from other agents depending on their social relations,

they must assess the price of a service, they must execute actions in order to perform

services. The architecture described in Section 3.12 implements a software infras-

tructure capable of mapping messages into policies and a sequence of actions. As yet

there has been no explanation of how these decisions are described and memorized

in the agents.

This Section is devoted to this topic.

3.18.1 The Native Language

The earliest experimental prototypes used the JavaTMLanguage to implement both

the Behavour Engine infrastructure of the agents and their behaviour policies. As

this proved to have too many shortcomings, the policies, maps and action sequences

were re-expressed in a native language. The earlier work indicated than an efficient

and expressible language was needed. Side-effect freedom was considered important

for (future) provability, and the Haskell language[13] was considered. The current

choice is the ClassAd language[80, 79, 81, 56].

This choice was based on four major considerations.

• The ClassAd language is widely used and understood in the Grid community.

• The ClassAd language is used by the gLite and Condor middlewares.

• The ClassAd language is specifically designed to associatively matchmake en-

tities.

• The ClassAd language is a functional language in which the evaluation order

and the priority of operators are specifically designed to allow the matchmaking

of partly defined data structures.

It is not the focus of this thesis to describe in detail the ClassAd language and

it should suffice here that the ClassAd Language is a strongly-typed, side-effect-free

functional language whose main characteristic is its ability to support matchmaking

of different entities.

98

The two ClassAd expressions ClassAd A and ClassAd B can be matchmaked

against each other using the combined namespaces of both expressions. This means

that we can define if and how much ClassAd A and ClassAd B are compatible.

This is achieved by two particular functions of the ClassAd Language: the Re-

quirements function and the Rank Function.

If we define V as the set of all the possible ClassAd Values and V × V as the

Cartesian Product of V , we can define the Requirements and Rank functions as :

Requirements(V × V) → V (3.26)

Rank(V × V) → V (3.27)

The Requirements function is a special function the range of which is either a

Boolean or one of the two specific ClassAd values UNDEFINED and ERROR. We

can describe in more detail the Requirement functions as:

Requirements(V × V) → Q (3.28)

Q = {true, false, UNDEFINED, ERROR} (3.29)

Q ⊂ V (3.30)

The Rank function, on the other hand, is a special function the range of which is

either a natural number or one of the two specific ClassAd values UNDEFINED and

ERROR. We can describe in more detail the Rank functions as:

Rank(V × V) → K (3.31)

K = N
⋃

{UNDEFINED, ERROR} (3.32)

K ⊂ V (3.33)

99

For example, let there be two ClassAd expressions, where the first, ClassAd A, is:

[

a = 1;

b = 4;

Requirements = (a == 1) && (other.b == 2);

Rank = a + other.b;

]

The second, ClassAd B, is:

[

a = 3;

b = 2;

Requirements = (a == 3) || (other.b <= 10);

Rank = other.a;

]

In this case ClassAd A and ClassAd B match. The rank of the match is 3 for

ClassAd A and 1 for ClassAd B.

Both functions can use the value UNDEFINED internally to cope with values

that are not defined in the current scope or evaluate to UNDEFINED when such

values are met. For example, take the two following ClassAd expressions:

[

a = 1;

b = 4;

Requirements = (other.c is undefined) || (other.c == 2);

Rank = a + other.b;

]

100

[

a = 3;

b = 2;

Requirements = (other.c == 2);

Rank = other.a;

]

The Requirement function of the first ClassAd will evaluate to true while the

second will evaluate to UNDEFINED.

3.18.2 ClassAd and Agents

The prototype implementation of Social Grid Agents uses the ClassAd Language

extensively. Agents often map entities to other entities: actions are mapped to other

actions, messages are mapped to processors, messages, relationships and modalities

are mapped to policies and actions.

These mapping actions are defined in ClassAd in a component called a ClassAd

Mapper ; a ClassAd Mapper is a HashMap that links keys expressed in the ClassAd

Language to JavaTMobjects (that can also be String representations of yet other

ClassAd expressions). The ClassAd Mapper is used in Social Grid Agents to perform

three basic mapping operations:

• mapping messages to service providers,

• mapping actions to actions, and,

• mapping policies and modalities to enforced policies.

Messages and providers

Chapter 3.12 described how agents map messages to providers, either simple service

providers or more complex processors. This operation is performed inside Managers,

which are based on ClassAd mappers. An Asynchronous Processor capable of man-

aging a gLite job submission can be mapped as follows:

101

[

...

ProcessorManager prManager = new ProcessorManager();

...

String key = "

[Requirements =

(other.modality == \" asynchronous\") &&

(other.action == \" job execution\") &&

(other.action.object.type == \" lcg2\");

]";

...

prManager.add(key , JSAsyncProcessor.class);

...

];

Now the manager will be able to map messages such as:

[

...

modality = \" asynchronous\";

...

action =

[

name = \"job execution\";

object =

[

type == \" lcg2\");

...

];

...

];

...

];

102

Actions

Processors are engines capable of executing sequences of actions. They can perform

this either in synchronous or asynchronous mode. The abstract architecture of pro-

cessors is described in Chapter 3.12. The ClassAd language is used both to define

the single actions and their sequences.

[

...

name = \" submission\";

type = \" prepare \";

execution = \" remote \"];

...

];

This describes the submission step of a job execution:

• The field name is used as an identifier of the action.

• The field type defines prepare actions that are to be performed during a syn-

chronous run of the processor or execution actions that will be performed during

an asynchronous run.

• The field execution defines remote actions that will be executed by other Service

Providers or local actions that will be performed locally by the processor. A

processor in which all the actions are defined as remote acts as a pure execution

engine that invokes other Service Providers in the correct order.

[

...

name = \" status check\";

type = \"run\";

execution = \" local\"];

...

];

103

This describes the status check action in which the current status of the job is

investigated and analyzed.

Every processor has a description in ClassAd which contains the current action

and some data related to its status. The engine of the processor will use this infor-

mation to determine the next action.

...

String key_submission_ok = "[Requirements =

((other.current.action.name == \" submission\")

&&

(other.current.status.result == \" success \"))

;];";

String action_status_check = "[

...

name = \" status check\";

type = \"run\";

execution = \" local\"];

...

];"

...

actions.add(key_submission_ok , actions_status_check);

...

This case maps the sequence submission → status check.

Information Structure and Flows

As we have seen, ClassAd expressions are used to describe all information that is

exchanged among the agents and the behaviour and status of the agents. This infor-

mation is structured in a uniform way so that sets of parsers present in every agent

are able to treat it in a semantically consistent fashion. The information is structured

as follows:

Messages

104

Agents communicate through messages which are ClassAd RecordExpr expressions

containing:

• A Content that is the content of the message. The content can either be an

Object or an Action.

• A Sender that is the Agent Identity of the agent who sent the message.

Agent Identity

Agent’s identities are described through ClassAd RecordExpr expressions that

contain different fields that may have different ways to be Authenticated. This is to

allow agents to implement and accept different Security Policies depending on the

relations they are currently engaged in.

• A Distinguished Name that is an X509 distinguished name

• An SGA NAME that is an agent-specific identifier.

• The Date of Birth of the agent.

• A Domain to which the agent belongs.

Object

Objects are ClassAd RecordExpr expressions that describe either local or remote

objects. They consist of:

• A Description that describes the type of the object and its location if it is not

local to the expression.

• A Value that is defined only if the object is local to the expression.

Actions

Actions are ClassAd RecordExpr expressions that contain the following informa-

tion:

105

• A Description that contains the information listed in 3.18.2 and the Status of

the action.

• An Input that can be either an Action or an Object .

• An Output that can be either an Action or an Object .

• A set of Modalities. If it is defined, this is a ClassAd RecordExpr expression

that describes the Set Of Constraints that is requested by the agent requesting

the action, the Requester .

• A set of Policies. If it is defined, this is a ClassAd RecordExpr expression that

describes the Set Of Constraints that is applied by the agent performing the

operation for the Requester .

• A set of EnforcedPolicies that is a ClassAd RecordExpr expression that de-

scribes the Set Of Constraints that is a subset common to both Policies and

Modalities.

• A set of Data that can be used to describe data relevant to the action that can

be not easily handled as Input .

• A Requester, that is the identity of the agent requesting the action.

• A Beneficiary, that is the identity of the agent that is ultimately the beneficiary

of the action.

A Set of Constraints

Policies, modalities and EnforcedPolicies are all described as sets of Constraints.

A Constraint

A Constraint describes ”how and if” an action is to be executed. It consists of:

• A Data expression that contains any data specific to the constraint.

• A Clause, a Boolean expression that evaluates to either true or false.

106

Information Models

The information structure illustrated allows the agents to exchange information

with a certain degree of flexibility. Depending on how the information flows are

structured it is possible to implement two main computation models: side effect free

and with side effects. Currently agents use mainly the side effect free model ; where

actions are composed through their input and output fields. We illustrate this with

an example of the steps that usually arise in the handling of a message in an agent.

• The Acceptance Action is always the first action performed when a message is

received (m0) by an Agent. It accepts as Input the message itself and returns

one that has been modified (m1) in the fields relating to the Authentication of

the sender (the sender must have a valid X509 certificate in order to have its

message accepted by the GT4 container that hosts the agent) and the status of

the message.

m1 = facc(m0) (3.34)

• The Action contained in the message is then extracted from the accepted mes-

sage and a suitable processor (if any) is found in the manager.

a1 = (m1).content (3.35)

• The Action is then mapped to a set of Policies by a Policies Mapping Provider.

a2 = fmap(a1) (3.36)

• The Action with the constraints represented by the Policies is then usually pro-

cessed by a Policies Enforcement Provider that defines the subset of constraints

defined by the Policies and Modalities.

a3 = fenforcer(a2) (3.37)

• The Action with the constraints represented by the Enforced Policies is then

usually passed again to the manager to find a suitable provider; this operation

can yield yet another action or an object.

e = fexe(a3) (3.38)

107

.

Policies and Modalities

Agents receive, assess and possibly accept messages requesting execution of services.

These requests are detailed with modalities. On the other hand, agents providing

the services define a set of policies. If these two sets overlap, then the service can be

executed. This is shown in Fig. 3-51.

Figure 3-51: Policies and modalities.

108

The following snippets of code show this concept applied to a generic job submis-

sion. The request will be of the form:

[

...

subject = agent A

action = "job execution";

...

Requirements = ... (other.cputime >= 10000) ...;

]

Here agent A requests the execution of a job with the maximum duration of 10000

seconds. On the service provider side there will be a set of policies that are applied

to agent A:

[

...

Requirements = ... (cputime <= 20000) ...;

...

];

In this case, agent A is entitled to a maximum of 20000 seconds of CPU time.

The request is acceptable as both the requirements evaluate to true and the service

request can be executed with this set of enforced policies:

[

...

Requirements = ... (cputime >= 10000) && (cputime <= 20000)

...;

...

];

This example covers only a simple case in which the namespaces of both ClassAd

expressions allow a complete evaluation. However, the architecture of the Social Grid

Agents is multi-layered and it cannot be assumed that every layer has a perfectly

overlapping namespace. In fact, the various layers of the architecture share only

109

subsets of their namespaces and this forces two evaluation strategies: abstraction

and delegation

Policy abstraction

Agents are arranged in topologies that define production systems and social struc-

tures. To do this, they exchange information regarding the status of the resources

they control, the production they perform and the societies they belong to. To man-

age this complex flow of information it is necessary for the agents to manage only the

subset of information that really pertains to the decisions they have to make. Agents

use two abstractions: Value and Price. This flow of information runs through the

control chain of agents. Here policies are defined at different level of abstractions.

This is described in the example of Fig. 3-52.

Figure 3-52: Policies and modalities abstraction.

Let pi be the set of parameters that defines the ith level. Then, at the (i + 1)th

level a set of parameters pi+1 can be defined which can be based entirely or partially

110

on the lower level i.

As a very simple example let us define value and price at the Production and

Social level as functions of a metric that defines the number of free CPUs.

[

...

free_cpus = 2;

...

]

Part of this information is used in the Production Layer to define the value of the

resource. It is possible, for example, that the value of the resource is defined, among

other parameters, as the inverse of the number of available CPUs.

[

execution =

[

...

free_cpus = 2;

...

]

...

value = ... (1/ execution.free_cpus + 1) ...;

...

]

111

At the Social level, part of the information of the Production Layer and part

of the information of the Execution Layer is used to define a policy that has to be

applied to define the minimal price at which a job submission is to be sold to agent

A:

[

...

production =

[

execution =

[

...

free_cpus = 2;

...

]

...

value = ... (1/(execution.free_cpus + 1) +1) ...;

...

]

...

price = production.value +1;

...

Requirements = (other.price >= price) && (other.free_cpus

<= production.execution.free_cpus);

...

]

In this case the request of agent A will be accepted if and only if the price offered

is greater than the (production value + 1) and the number of requested CPUs is

available.

112

Figure 3-53: Policies and modalities enforcement.

3.18.3 Policy Enforcement

The complementary process is the enforcement of policies described in Fig.3-53. Let

us describe an arbitrary level i. The requester will define its request and modalities

with the ClassAd expression expri
req that defines a set of values pi

r, a Requirement

and a Rank function:

Requirements = f i
r(V × V) → Q (3.39)

Rank = gi
r(V × V) → K (3.40)

Conversely, the provider will define its services and policies with the ClassAd

expression expri
p that defines a set of values pi

p, a Requirement and a Rank function:

Requirements = f i
p(V × V) → Q (3.41)

Rank = gi
r(V × V) → K. (3.42)

At level i, the matchmaking process will have two possible outcomes: it can eval-

113

− TRUE FALSE ERROR UNDEFINED

TRUE TRUE FALSE ERROR UNDEFINED

FALSE FALSE FALSE ERROR UNDEFINED

ERROR ERROR ERROR ERROR ERROR

UNDEFINED UNDEFINED UNDEFINED ERROR UNDEFINED

Table 3.1: ClassAd extension of the Boolean AND function.

uate or not. Unless the Requirements and Rank functions use directly the function

is defined to handle cases in which values are undefined, they will evaluate to UN-

DEFINED if any of the used expressions are not defined in the Cartesian product

of the namespaces of expri
p and expri

r: pi
p × pi

r. In the latter case at least one of

the functions will evaluate to UNDEFINED, so the agent will not be able to make a

decision and will have to delegate it to a lower level.

The provider at level i will then act as a requester of level i− 1, issuing a request

that defines a set of values pi−1
r (that contains all the needed values of the level i and

i − 1), a Requirements and a Rank function:

Requirements = f i−1

r (V × V) → Q (3.43)

Rank = gi−1
r (V × V) → K. (3.44)

where:

f i−1
r = f i

p&&f i
r (3.45)

gi−1

r = F (gi
r, g

i
p) (3.46)

Where F is any function that combines the ranking functions and where &&

is the implementation offered by ClassAd to the Boolean AND function. This im-

plementation also supports the ERROR and UNDEFINED values as described by

Table 3.1

114

Partial Evaluation

At each step the requirements and rank functions are to be partially evaluated. A

ClassAd function evaluates to UNDEFINED if any of its parts is UNDEFINED (and

this possibility is not taken into account with the is undefined special function as

described in section 3.18). This makes it impossible to perform a detailed partial

evaluation in which only the values defined at each step are evaluated and all the

others are propagated to the other steps. This problem has been solved by writing a

Partial Evaluation Parser that parses a ClassAd expression and substitutes only the

values that are defined.

115

Chapter 4

Implementation and Experiments

Figure 4-1: It’s a dirty job but someone has to do it.

116

”A bad craftsman blames his tools, an even worse one blames the nail”

Anonymous

No amount of experimentation can ever prove me right; a single experiment can

prove me wrong.

Albert Einstein

A theory is something nobody believes, except the person who made it. An

experiment is something everybody believes, except the person who made it.

Albert Einstein

4.1 Introduction

While chapter 3 was devoted to the generic description of paradigm, abstract meth-

ods and abstract architecture of the agents, this chapter covers the details of the

implemented prototypes. A brief description of the different prototypes implemented

during this enquiry is followed by five main sections: the description of a metagrid

prototype, the implementation details of different Social Grid Agents, the details of

a prototype of a complex topology, the definition and enforcement of a set of policies

and, at the end of the chapter, the experiments that were performed on Social Grid

Agents.

4.2 Past Implementations

Four different prototypes have been developed during this research. This section will

briefly describe them, their shortcomings and the design decisions that prompted the

next implementation.

4.2.1 First Implementation

The first prototype of Social Grid Agents was based on the WebCom technology

that provided both the communication platform among the agents and one of the

middlewares encompassed by the prototype (the other two being LCG2 and GT4).

117

The purpose of this prototype was to to prove the feasibility of a platform able to

submit jobs to multiple middlewares and to use Condensed Graphs to represent the

dependencies among different jobs.

4.2.2 Second Implementation

The second prototype of Social Grid Agents [73] was shown and peer-reviewed at

the WebCom-G project review held in Cork in October 2005. It had two major

differences from the first prototype: communication among the various components

was based on GT4 technology and a File Staging mechanism was implemented. This

mechanism is based on the use of a central repository for files, which were moved to

the agents only when needed in order to reduce the overhead caused by file staging.

The architecture of the second prototype is shown in Figure 4-2.

Figure 4-2: Architecture of the second prototype.

4.2.3 Third Implementation

The third prototype of Social Grid Agents extended the second implementation with

the concepts of maps, messages, policies and modalities. Maps were based on hash

maps while messages, policies and modalities were expressed as hierarchies of classes.

118

This design solution proved to be poor. It yielded an architecture that was both hard

to understand and maintain. These difficulties were the main factors that led to the

research of yet another language for the expression of policies.

4.2.4 Fourth Implementation

The decision to adopt the ClassAd language as the native language led to the fourth

and last prototype.

4.3 The current prototype

The section on the last prototype describes its most important aspects:

• A prototype of the metagrid environment

• The implementation details of different Social Grid Agents

– A production agent (gLite-wms-pga), a production agent that wraps the

gLite Workload Management System

– A production agent (gt4-gram-pga), a production agent that wraps the

GT4 GRAM System

– A production agent (webcom-pga), a production agent that wraps the We-

bcom workflow engine

– A social agent (gLite-wms-sga), a social agent that controls gLite-wms-pga

– A bank

– An indexing agent

• A complex topology that supports different, coexisting allocation mechanisms

• An example of a description and enforcement of policies with the ClassAd

language

119

4.3.1 A metagrid implementation

Figure 4-3 describes a prototype implementation of a metagrid that encompasses

three different Grids: gLite, GT4 and WebCom, and the native Metagrid Job eX-

change [71, 72]. In this implementation, the Metagrid Job eXchange and WebCom

are directly controlled by the same social agent while gLite and GT4 service provi-

sion is controlled by two separate social agents with which social and/or economic

exchange is to be established to gain the necessary services.

Figure 4-3: Architecture of the example.

The social topology is described by the upper part of Figure 4-4. The control/own-

ership relations are drawn with vertical lines. The production topology is represented

in the lower part of Figure 4-4.

The behaviour of the system is as follows:

1. Job submission: The user submits a complex job (to a very simple metagrid user

interface), the execution of which requires gLite, GT4 and WebCom resources.

2. Execution planning : The social agent (SGAMJX) that controls the Metagrid

Job eXchange Service decides whether to accept to try to submit the job or not

120

Figure 4-4: Topology of the example.

3. Needs evaluation: SGAMJX assesses the needs for the successful submission of

the job: gLite, GT4 and WebCom resources. It then checks this list against

the resources it directly controls. This results in a list of the resources that are

needed and that must be obtained through social exchange

4. Social and Economic arrangements: SGAMJX checks if in the list of other so-

cial agents it knows there is any that offers the resources it needs. If so it

contacts the agents and asks what is the cost of such resources, where this cost

can be zero for social agents with which SGAMJX has cooperative relation-

ships. If the social and economic arrangements can provide enough resources

for job execution then the social agents that control the gLite and GT4 re-

sources (SGAgLite and SGAGT4) instruct their production agents (PGAgLite

and PGAGT4) to accept the requests coming from SGAMJX . The job is then

passed to the production agent (PGAMJX) with the list of the other production

agents that will be needed (PGAWebCom, PGAgLite and PGAGT4).

5. Job execution: PGAMJX submits the job to the production agent that controls

the WebCom resource. WebCom unfolds the workflow graph that represents

the job and starts executing it. When a node representing an operation that

needs a gLite or a GT4 resource is encountered, the job description (JDL or

121

RSL) is sent to the production agents that control these resources (PGAgLite

and PGAGT4).

6. Job termination: When the complete job has been executed the results are

passed to the Metagrid Job eXchange and then passed back to the user.

4.3.2 Implemented Prototypes of Social Grid Agents

We have seen in Section 3.10 how agents ”live” in a metagrid environment that en-

compasses different middlewares. Usually border agents are production agents that

interface to services that are specific to the middleware. Section 4.3.2 details the

production agent that resides on the border with the gLite middleware and offers its

services of job submission. Section 4.3.2 details the production agent that resides on

the border with the GT4 middleware and offers its services of job submission. Sec-

tion 4.3.2 details the production agent that resides on the border with the WebCom

middleware and offers its services of workflow engine. Section 4.3.2 details a social

agent that controls a production agent. Section 4.3.2 details a bank and section 4.3.2

details an agent with indexing capabilities.

A production agent: GLITE-WMS-PGA

The gLite Wms Production Agent, or gLite-wms-pga for the sake of brevity, is a

production agent that wraps the gLite Job Submission System accessing it through

an instance of the gLite UI. It is an border agent that connects the metagrid regions

with the Grid region hosting gLite.

The agent reacts to two main sets of messages: action-related messages and

control-related messages: the first concern job-submission related actions and the

second concern control and management actions. The architecture of gLite-wms-pga

is shown in Fig. 4-5; it comprises a manager, four processors and several providers,

two of which are connected to external services: the gLite UI and the Grid4C agents.

The GLITE-WMS-PGA processors

The processors are :

122

• The JSSyncProcessor, a synchronous interface to the job submission system.

• The JSAsyncProcessor, an asynchronous interface to the job submission system

• The Policy Processor, a synchronous processor that checks and enforces all the

policies related to the job submission

• The Control Processor, a synchronous processor that checks the authorization

of messages that request modifications in the overall policies of the agent

The GLITE-WMS-PGA providers

The providers are :

• The Acceptance provider performs some standard operations at the reception

of the message, such as logging the event and filling the implicit authentication

data.

• The Job Submission provider constitutes the main interface to the Job submis-

sion system.

• The Job Availability provider checks if a job can be submitted without per-

forming the submission operation.

• The Policies Mapper maps messages, sender id and modalities into a set of

policies.

• The Allocation Expert enforces the policies that define the allocation of re-

sources.

• The Value Expert enforces the allocation policies that are described as functions

of value.

• The Logger manages the log

• The Billing Expert updates and queries the consumption records of the agent.

It may be interfaced with Grid4C agents as described in section 4.3.2

123

Figure 4-5: Architecture of the gLite-wms-pga agent.

The GLITE-WMS-PGA behaviour

Although PGAs are deliberately kept simple in concept, their behaviour can be

complex. Let us examine the most common behaviour of this particular agent. A

message similar to the one below will map to an Asynchronous Job Submission Pro-

cessor.

124

[

...

modality = \" asynchronous\";

...

action =

[

name = \"job execution\";

object =

[

type == \" lcg2\");

...

];

...

];

...

];

The initial sequence of actions defined by the JSAsyncProcessor can be performed

synchronously as they are of short and predictable duration while the submission itself

is performed asynchronously as it is not possible to predict the duration of the job.

The sequence of actions of the asynchronous job submission processor is illustrated

in Fig. 4-6. It comprises:

• Acceptance: a preliminary step that writes in ClassAd format the data that is

implicit by the fact that the message has been accepted by the GT4 Container.

These are: date and time of the reception of the message and the X509-based

authentication of the sender of the message.

• Map Policies: this step defines the sets of policies that must be enforced for the

job submission.

• Policies enforcement: this step enforces the set of policies defined in the previous

step.

125

Figure 4-6: Actions performed by the Asynchronous Job Submission Processor.

Action Processor Provider

Acceptance - Acceptance

Map Policies - Policies Mapper

Enforce Policies Policy Processor -

Job Submission and execution - JS Provider

Billing - Billing

Table 4.1: Action to Provider map in the Job Asynchronous Processor.

• Job Submission and execution: these steps perform the usual actions needed

for an execution of a job such as submission, status check, logging and out-

put retrieval. The submission of the job is the last action performed in the

synchronous part.

• Billing: this step updates the consumption records.

All these actions are marked as external ; when they are to be performed then the

manager attempts to find a proper provider. Table 4.1 shows the mapping performed.

All but the Policy Processor are simple providers that perform atomic actions.

126

Action Processor Provider

Authentication - Authentication Provider

Allocation - Resource Expert

Value - Value Expert

Authorization - Authorization Expert

Table 4.2: Actions to Providers map for the Policies Processor.

The policy processor, on the other hand, can enforce policies in a flexible order that

can describe different priorities and inter-dependencies. The current behaviour of

this policy processor is shown in Figure 4-7.

Figure 4-7: Actions performed by the Policies Processor.

Again, as all the actions of this processor are defined as external, the manager is

responsible for finding a suitable provider. Table 4.2 shows the mapping performed.

Some of these providers such as the Value Expert and the Authorization Expert

avail themselves of other providers. The Value Expert uses remote Grid4C agents

for the assessment of the value of resources while the Authorization Expert uses the

Job Submission provider to test the current availability of resources. Finally, many

if not all providers use the Logger service.

127

A production agent: GT4-GRAM-PGA

The GT4 Gram Production Agent, or gt4-gram-pga for the sake of brevity, is a pro-

duction agent that wraps the GT4 Grid Resource Allocation and Management service

accessing it through an instance of the WS-GRAM grid service hosted in the same

GT4 container of the agent. It is an border agent that connects the metagrid regions

with the Grid region hosting Globus.

As for the gLite-wms-pga, the agent reacts to two main sets of messages: action-

related messages and control-related messages.

The architecture of gt4-gram-pga is shown in Fig. 4-8; as for its gLite counterpart

it comprises a manager, four processors and several providers. Differently from gt4-

gram-pga only one provider is connected to an external service: the WS-GRAM, while

there is not a G4C agent for GT4-Gram available yet.

The GT4-GRAM-PGA processors

The processors are the same of the gLite-wms-pga agent, they are:

• The JSSyncProcessor, a synchronous interface to the job submission system.

• The JSAsyncProcessor, an asynchronous interface to the job submission system

• The Policy Processor, a synchronous processor that checks and enforces all the

policies related to the job submission

• The Control Processor, a synchronous processor that checks the authorization

of messages that request modifications in the overall policies of the agent

The GLITE-WMS-PGA providers

The providers are :

• The Acceptance provider performs some standard operations at the reception

of the message, such as logging the event and filling the implicit authentication

data.

• The Job Submission provider constitutes the main interface to the Job submis-

sion system.

128

• The Job Availability provider checks if a job can be submitted without per-

forming the submission operation.

• The Policies Mapper maps messages, sender id and modalities into a set of

policies.

• The Allocation Expert enforces the policies that define the allocation of re-

sources.

• The Value Expert enforces the allocation policies that are described as functions

of value.

• The Logger manages the log

• The Billing Expert updates and queries the consumption records of the agent.

Figure 4-8: Architecture of the gt4-gram-pga agent.

The GT4-GRAM-PGA behaviour

The behaviour of agent gt4-gram-pga are the same of that of agent glite-wms-pga

described in section 4.3.2.

129

WebCom-PGA agent

Another middleware that is encompassed by the Social Grid Agents architecture is

WebCom [60].

It is connected to the metagrid space through the WebCom Production Agent, or

wcg-pga for the sake of brevity, a production agent that wraps the WebCom workflow

engine. It is an border agent that connects the metagrid regions with the workflow

region hosting WebCom.

Although it is much more, WebCom can be considered a fledgling grid-enabled

workflow engine. It offers a non-Von-Neumann programming model that automati-

cally handles task synchronization (load balancing, fault tolerance, and task alloca-

tion at the system level) without burdening the application writer[59].

In WebCom, applications are specified as Condensed Graphs (CGs), in a manner

which is independent of the execution architecture, thus separating the application

and execution environments. Condensed Graphs are a mathematical abstraction

capable of representing different computational models in a unified way. They consist

of nodes with arcs connecting them. The nodes can be atomic nodes consisting in a

single operation, or condensed graphs themselves. Thus a condensed graph consists of

a series of atomic nodes that describe atomic operations and a topology that describes

the relations among the different nodes.

The WebCom characteristics allow for two possible interactions with Social Grid

Agents. In the first, WebCom is just yet another middleware controlled by a Produc-

tion Agent that accepts jobs expressed as Condensed Graphs. A second and more

interesting way to integrate Social Grid Agents and WebCom is to describe Metagrid

Jobs as Condensed Graphs and then use WebCom as a workflow engine.

While not the only possible solution, the Unified Computational Model [60] known

as Condensed Graphs [58] is ideal for expressing such workflows, where its implemen-

tation (WebCom [60, 48, 67]) allows its execution with a range of evaluation policies,

e.g. eagerly or lazily.

To represent a metagrid job we can use the mathematical model of condensed

graphs and the grid job description languages. In this case the representation of a

130

metagrid job can encompass two different layers: a topology layer that describes the

dependencies among the various grid jobs (expressed in Condensed Graphs) and a

grid layer that describes the grid jobs. The WebCom production agent can then be

used as a workflow engine that executes a metagrid job in the metagrid environment.

Assessment of value and price

To implement a flexible framework for price and value determination, a WSDM [66]

based grid management framework, Grid4C [82], has been employed. Grid4C is the

subject of a thesis by Keith Rochford within my host research group in Trinity College

Dublin, and this section is joint work.

Grid4C [82] is intended for command and control of grids. At this time, Grid4C

agents have been developed solely for the gLite WMS service. This section therefore

applies only to this type of middleware.

The interoperability between Social Grid Agents and Grid4C management end-

points allows a two-way exchange of commands and information. Grid4C endpoints

can be used by Social Grid Agents as both sensors and actuators on the Grid fabric.

They provide Social Grid Agents with information describing the production param-

eters of the various resources such as average waiting time, success rate and the like.

The value, and ultimately the price, of the resources can then be extrapolated from

these measured parameters.

The flexibility of Social Grid Agents in implementing complex social topologies

also allows for trusted third parties to perform these measurements so that the price

of the resources can be accepted by all those who trust the measurements actor.

The architecture of the interaction between SGA agents and Grid4C agents is

shown in Figure 4-9. The different agents access the underlying Grid Services through

different interfaces. SGAs access the gLite WMS functionalities through the JAVATM API

interfaces while Grid4C Management Endpoints employ agents residing on the man-

aged resources for data collection and resource administration.

SGA agents employ Grid4C endpoints in order to take advantage of their man-

agement functionalities and the information they are able to obtain from the Grid

131

Figure 4-9: Interaction architecture among SGA and Grid4C agents.

Services. SGA agents have limited interfaces to the Grid Resources (in the gLite-

WMS case the interface is currently limited to the UI API) and can make exten-

sive use of the information provided by the Grid4C agents that, on the contrary,

have much richer interfaces to the Grid services. The information obtained via the

Grid4C agents is used to assess the quality of the services and define a value both of

the service provider and the specific service being performed.

As discussed in Section 3.7 the value of a service can be defined as a function of two

different sets of metrics: service metrics that provide information on the service and

resource metrics that provide information on the resources that have been used by a

specific execution of a service. The value of a service is described as V = f(ms, mr)

where ms represent the metrics of the service and mr are the metrics representing

the actual resource consumption. For the specific case of the gLite WMS (that is the

testbed for the SGA-Grid4C interaction) the metrics are described in Table 4.3:

A social agent: GLITE-WMS-SGA

The gLite Wms Social Agent, or gLite-wms-sga for the sake of brevity, is a social agent

that uses and/or controls one or more gLite Wms Production Agents, its architecture

132

ServiceMetrics ResourceMetrics

Operational Status and TCP response time The Exit Status for a given job ID

Average Waiting Time for last n Jobs The Wall-clock Time for a given job ID

Average Waiting Time since a given date The CPU count for a given job ID

Average Match Time for last n Jobs

Average Match Time since a given date

Average Clear Time for last n Jobs

Average Clear Time since a given date

Percentage of the last n jobs aborted

Table 4.3: Metrics for gLite Workload Management System.

and functionalities are identical to Social Grid Agents that control other production

agents such as the Gt4 Gram Production Agents. It is a native metagrid agent as it

resides in the metagrid region.

As for a production agent, it reacts to action-related messages and control-related

messages.

The architecture of gLite-wms-sga is shown in Fig. 4-10; it comprises a man-

ager, three processors and several providers, some of which are connected to external

Production Agents.

The GLITE-WMS-SGA processors

The processors are :

• The JPSyncProcessor, a synchronous service that performs the purchase of

synchronous execution of jobs.

• The JPAsyncProcessor, an asynchronous service that performs the purchase of

asynchronous execution of jobs.

• The Policy Processor, a synchronous processor that checks and enforces all the

policies related to the job submission

• The Control Processor, a synchronous processor that checks the authorization

of messages that request modifications in the overall policies of the agent

133

The GLITE-WMS-SGA providers

The providers are :

• The Acceptance provider performs some standard operations at the reception

of the message, such as logging the event and filling the implicit authentication

data. As in all agents, in the case of a standard GT4 security context, the

sender of the message is authenticated by default using its X509 certificate.

• The DC provider constitutes the interface to all Production Agents which are

directly controlled.

• The PUB provider constitutes the interface to all Production Agents which are

reachable through a Pub topology.

• The SP provider constitutes the interface to all Production Agents the services

of which can be purchased through a Simple Purchase mechanism.

• The Policies Mapper maps messages, sender id and modalities into a set of

policies.

• The Price Expert defines the price as a function of value and social relations.

• The Logger manages the log

• The Endowment Manager manages the endowment of the Agent. This provider

may be connected to an external service as a bank.

• The Discovery Service searches in Markets and Indexes.

The GLITE-WMS-SGA behaviour

As for PGAs, SGAs are deliberately simple in concept but their behaviour can be

complex. Let us examine the most common behaviour of this particular agent.

A message similar to the one below will map to an Asynchronous Job Purchase

Processor.

134

Figure 4-10: Architecture of the gLite-wms-sga agent.

[

...

action =

[

...

name = \" simple purchase \";

action =

[

modality = \" asynchronous\";

name = \"job execution\";

object =

[

type == \" lcg2\");

...

...

];

135

The initial sequence of actions defined by the JPAsyncProcessor can be performed

synchronously as they are of short and predictable duration.

Figure 4-11: Actions performed by the Asynchronous Job Purchase Processor.

The sequence of actions of the asynchronous job submission processor is illustrated

in Fig. 4-11. It comprises:

• Acceptance: a preliminary step that writes in ClassAd format the data that is

implicit by the fact that the message has been accepted by the GT4 Container.

These are: date and time of the reception of the message and the X509-based

authentication of the sender of the message.

• Map Policies: this step defines the sets of policies that must be enforced for the

job submission.

• Policies enforcement: this step enforces the set of policies defined in the previous

step.

• Discovery: this step finds a suitable resource for the execution of the service.

The candidate Service Providers are determined and ranked by ”Selection Poli-

cies” that are specific to the Social Layer. The discovery step can be simple

136

Action Processor Provider

Acceptance - Acceptance

Map Policies - Policies Mapper

Enforce Policies Policy Processor -

Job Execution - DC Provider or Pub Provider or SP Provider

Billing - Billing

Table 4.4: Action to Provider map in the Job Purchase Asynchronous Processor.

when it involves only the Production Agents that are already known to the

manager or more complex and involve external indexing agents and a market.

• Execution: controls the execution of the service on the provider that was chosen

in the discovery step.

All these actions are marked as external ; when they are to be performed then the

manager attempts to find a proper provider. Table 4.4 shows the mapping performed.

All but the Policy Processor are simple providers that perform atomic actions.

The policy processor, on the other hand, can enforce policies in a flexible order that

can describe different priorities and inter-dependencies. The current behaviour of

this policy processor is shown in Figure 4-12.

Figure 4-12: Actions performed by the Policies Processor in the gLite Wms Social

Agent.

Again, as all the actions of this processor are defined as external, the manager is

responsible for finding a suitable provider. Table 4.5 shows the mapping performed.

137

Action Processor Provider

Authentication - Authentication Provider

Allocation - Resource Expert

Price - Price Expert

Authorization - Authorization Expert and Endowment Manager

Table 4.5: Actions to Providers map for the Policies Processor in the gLite Wms

Social Agent.

The Endowment manager shown if Figure 4-10 may use a remote bank agent. The

discovery service shown in the same figure may use external indexing services.

The Bank

The Bank is a social agent that maintains accounts for different Social Agents. This

may be required when there is no direct trust link between agents or when there is

need of a centralized authority that manages the amount of credits available.

The Bank is a native metagrid agent as it resides in the metagrid region.

The architecture of the bank is shown in Fig. 4-13; it comprises a manager, three

processors and several providers.

While a bank can have many different ways in which transfers are executed and

accounts are managed, the current SGA bank supports only one simple policy. Any

user can create an account that is defined by an amount of credits and by a list of

other agents that can lodge or retrieve credits through transactions.

The Bank processors

The processors are :

• The Transaction Processor, a synchronous service that manages the transaction

being requested.

• The Policy Processor, a synchronous processor that checks and enforces all the

policies related to banking

138

• The Control Processor, a synchronous processor that checks the authorization

of messages that request modifications in the overall policies of the agent

The Bank providers

At present, the only provider that is specific to a Bank agent is the Account man-

ager that keeps track of the different accounts and performs the requested, authorized

transactions.

Figure 4-13: Architecture of a bank agent.

Indexing agent

Indexing agents are flexible entities that offer, as the name suggests, an indexing

service. An indexing service may vary depending on the policies it is defined by. A

yellow page indexing service will list all service providers whose description matches

that of the query. By adding price policies and ranges to the description of the service

and to the queries a yellow page indexing service can be transformed into a market

where services can be ranked by their price.

The Indexing Agent is a native metagrid agent as it resides in the metagrid region.

139

The architecture of an indexing agent is shown in Figure 4-14; it comprises a

manager, three processors and several providers, some of which are connected to

external Social Agents.

Figure 4-14: Architecture of an indexing agent.

The Indexing Agent processors

The processors are :

• The Enquiry Processor, a synchronous processor that receives, performs and

returns the result of the queries submitted to the agent.

• The Policy Processor, a synchronous processor that checks and enforces all the

policies related to indexing.

• The Control Processor, a synchronous processor that checks the authorization

of messages that request modifications in the overall policies of the agent.

The Indexing Agent providers

At present, indexing agents have one specific provider: the Service Manager that

maintain the map of the services and their descriptions.

140

4.3.3 An example topology

Previous sections (4.3.2, 4.3.2, 4.3.2, 4.3.2) described the implementation of some

agents; this section is devoted to the description of an example topology that will be

later used in Section 4.4.

This topology is described by Figure 4-15; it encompassed two sets of social and

production agents and supports three different allocation philosophies: direct control,

Pub and Simple Purchase. Social Agent SGA1 is in control of Production Agent

PGA1, and similarly for SGA2, PGA2, SGA3 and PGA3. SGA1 and SGA2 have a

pub relationship in which they both allow each other to access part of their resources.

Each time SGA1 is granted access to a resource controlled by SGA2 (which, in this

case, is PGA2), it increases the amount of resources that SGA2 can access in the

production agents that SGA1 is in control of (in this case, PGA1). Finally, Client,

SGA1 and SGA3 can engage in Simple Purchase transactions where a given amount

of credits is exchanged in return for the services executed.

The following three sections describe in detail the messages that orchestrate the

behaviour of these agents under three different conditions: light workload, pub avail-

ability and outsourcing.

In the first step (step a in 4-16, 4-17 and 4-18), that is common to all the scenarios,

a Simple Purchase request from agent Client is received by SGA1. SGA1 maps this

message to a set of enforced policies that specify:

• The price Penforced that is to be charged to Client.

• The price Poutsource that is to be paid to SGA3.

• How and on which data authentication is to be performed: specifically how and

which agent’s identities are to be authenticated. In this example it is considered

that only the identity of the sender of the message has to be authenticated and

that the level of authentication offered by the GT4 container is sufficient.

• How the payment is to be performed: specifically if it must be performed with

the involvement of a bank and under what conditions the payment is to be

141

executed. In this example the payment does not involve a bank and it has to

be executed upon the successful submission of a job.

• How to choose the resources to perform the request: specifically which require-

ments must be satisfied by the resources and in which order they must be

queried. In this example, requests from Client will be satisfied with resources

chosen in the following order:

– Directly Controlled resources.

– Resources available through a Pub topology.

– Resources purchased though a Simple Purchase topology.

Given these policies, the behaviour of the system can be categorized in the fol-

lowing scenarios.

Figure 4-15: Architecture of the example topology.

Light workload

Figure 4-16 shows the interactions of the agents if the resource that is directly con-

trolled is currently under a light workload and complies with the required execution

142

policies. In this case SGA1 queries the availability of PGA1 (step b), performs the

execution (step c) and returns the result (step d).

Figure 4-16: Agent’s interaction under conditions of light workload.

Pub availability

Figure 4-17 shows the interactions of the agents if the resource that is directly con-

trolled is does not comply with the required execution policies. After querying the

availability of PGA1 (step b), SGA1 queries PGA2 and, if the submission is suc-

cessful instructs the resource it controls PGA1 that in exchange there are additional

resources that can be granted to SGA2 in future exchanges.

Simple Purchase

Figure 4-18 shows the interactions of the agents if both the directly controlled re-

sources (step b) and the pub resources (step c) fail. Then the execution of the service

is outsourced with a simple purchase transaction to SGA3. This is described in step d

to step i.

143

Figure 4-17: Agent’s interactions in a pub topology.

Figure 4-18: Agent’s interactions during the outsourcing process.

144

4.3.4 An example of Policy Enforcement

This section illustrates an example of policies enforcement. It encompasses three

agents (Social Grid Agents Client and SGA and the Production Grid Agent PGA)

that control the access to a Grid resource (the Service Provider SP).

This example encompasses the five different steps illustrated in Figure 4-19.

Figure 4-19: Policies and modalities enforcement.

Step a: Social Request

In step a, agent Client requests that SGA1 executes a service with two modalities:

• A Social Modality (4.2) stating that the maximum price that the Client is

willing to pay is 100 units

• An Execution Modality (4.1) stating that metric 2 (in Figures it is referred to

as m2 for the sake of brevity) must be greater than 50 units

Metric2 ≥ 50 (4.1)

Price ≤ 100 (4.2)

These modalities (4.1 and 4.2) define the subspaces illustrated in Figure 4-20 and

are described by the ClassAd expression of Figure 4-21.

Step b: Mapping of Social Policies

In step b, agent SGA1 maps this request to the following set of policies:

• A Social Policy (4.3) stating that the pricing policy that is applied to agent

Client consists of a Gain of 5% of the price (a profit margin).

145

Figure 4-20: Subspace defined by the modalities requested by the Client.

• A Social Policy (4.4) stating that the price is to be calculated as the value plus

the gain.

Gain = 0.05 ∗ Price (4.3)

Price = V alue + Gain (4.4)

The ClassAd expression resulting from the mapping of the Social Policies in Agent

SGA1 is described in Figure 4-22.

Step c: Enforcement of Social Policies

In step c, agent SGA1 enforces a set of policies that are a combination of the modal-

ities requested by the Client and the policies that SGA1 applies to Client.

• A Social Policy (4.6) stating that the enforced price is the one that was re-

quested by the Client

• A Social Policy (4.7) stating that the price is to be computed according to the

policies defined by SGA1

• A Social Policy (4.7 and 4.8) stating that the price must comply to the policies

defined by SGA1

146

These policies (4.5, 4.6, 4.7 and 4.8) define the subspace illustrated in Figure 4-23

and constitute the modalities with which SGA1 requests the services of agent PGA1.

The ClassAd expression describing this is illustrated in Figure 4-24.

Metric2 ≥ 50 (4.5)

Price ≤ 100 (4.6)

Gain = 0.05 ∗ Price (4.7)

Price = V alue + Gain (4.8)

Step d: Mapping of Production Policies

In step d, agent PGA1 receives a request from agent SGA1 and maps this request to

the following set of policies:

• A set of Production Policy (4.9 and 4.10) stating bounding metrics a and b to

be less than 10 and 100 units.

• A Production Policies (4.11) that define how the value must be computed from

the metrics.

• A Production Policy (4.12) that define how the value of the service must be

computed from the metrics.

• A Production Policies (4.13) that define a clause (independent from that in-

ferred from price) on the maximum value that can be allocated.

metric1 ≥ 10 (4.9)

metric2 ≥ 100 (4.10)

value = 10 ∗ metric1 + 2 ∗ metric2 + valueservice (4.11)

valueservice = 10 + metric3 (4.12)

value ≤ 200 (4.13)

These policies are described in the ClassAd expression of Figure 4-25.

147

Step e: Enforcement of Production Policies

In step e, agent PGA1 enforces a set of policies that are a combination of the modal-

ities requested by agent SGA1 and the policies that PGA1 applies to SGA1.

• An Allocation Policy that enforces the allocation policies requested by PGA1.

• A Value Policy stating that both value modalities and value policies must be

respected.

These policies define the subspaces illustrated in Figure 4-27. The ClassAd ex-

pression describing this is shown in Figure 4-26

Finally all the policies are combined together to define the Execution Modalities

that describe the execution request that agent PGA1 forwards to the Service Provider

SP it is in control of.

metric2 ≥ 50 (4.14)

Price ≤ 100 (4.15)

Gain = 0.05 ∗ Price (4.16)

Price = V alue + Gain (4.17)

metric1 ≤ 10 (4.18)

metric2 ≤ 100 (4.19)

value = 10 ∗ metric1 + 2 ∗ metric2 + valueservice (4.20)

valueservice = 10 + metric3 (4.21)

metric1 ≤ 200 (4.22)

These modalities define the subspace of Figure 4-28.

148

Figure 4-21: ClassAd Expression defining the modalities requested by the Client.

149

Figure 4-22: ClassAd expression after the social policies mapping.

150

Figure 4-23: Subspace defined by the social policies.

151

Figure 4-24: ClassAd expression after the social policies enforcement.

152

Figure 4-25: ClassAd expression after the production policies mapping.

153

Figure 4-26: ClassAd expression after the production policies enforcement.

Figure 4-27: Subspace defined by the production policies.

154

Figure 4-28: Subspace defined by the execution policies.

155

4.4 Experiments

The most immediate research questions that should be answered can be informally

stated as: Do Social Grid Agents degrade the performance of resources they control

? How scalable are Social Grid Agents ? and, finally How do they behave ? In order

to answer these questions, three experiments will now be described.

4.4.1 Reliability and Efficiency

The reliability and efficiency experiments aim at answering the first set of research

questions. To assess the level of degradation of the service induced by the agents

I set up an experiment with the abstract testbed described in Figure 4-29. Here a

Tester submits workload to a resource through three different paths:

• The Direct Submission where the workload is submitted directly to the resource.

• The Production Access where the workload is submitted through a Production

Agent.

• The Complete Topology where the workload is submitted through a Social and

a Production Agent.

For each of the submission paths, four different metrics are gathered:

• The Submission Reliability that is the percentage of jobs successfully submitted.

• The Submission Time that is the average time it takes to submit a job.

• The Submission Efficiency that is the percentage submission time relative to

the submission time for direct submission, calculated as Direct Submission T ime
Actual Submission T ime

• The Execution Reliability that is the percentage of jobs successfully executed.

These set of experiments were run on the gLite border.

Figure 4-30 shows the real testbed that was used to evaluate the gLite border. The

Workload was submitted from a machine (tgui.testgrid) that hosts the User Interface

of the TestGrid [31] infrastructure available in my host research group.

156

Figure 4-29: Abstract view of the reliability and efficiency experiments.

The agents were hosted in the GT4 containers of two different XEN [24] virtual

machines (lcg2-b1 and gt4-b1) hosted on a machine called tg18 (a Tyan Tomcat

motherboard with a 2.4 GHz Intel P4 CPU, 2GByte of memory, and 1Gbps network

interface).

Tables 4.6, 4.7 and 4.8 recapitulate the data showing that the degradation intro-

duced by the Social Grid Agents is acceptable for a prototype.

Appendix A contain detailed graphs of the experiments in Figures A-1, A-2, A-3

and A-4.

Submission and Execution Reliability are both unaffected and only the Submission

Efficiency was degraded by up to 10%.

The reason the Submission Efficiency linearly degrades with the number of con-

secutive jobs is that new threads for managers and processors are issued each time a

job is received and at least one processor thread runs until the job is completed. Con-

secutive submissions thus result in a linearly increasing workload responsible for the

degradation of the service. This characteristic is also responsible for the degradation

of the Efficiency in the experiment in section 4.4.2.

It is worth noticing that the result of 98% ± 4% referred to in Table 4.8 obtained in

the 100 jobs experiment with the direct submission was due to a temporary problem

in the TestGrid middleware.

157

Metrics Direct Submission Production Complete Topology

Submission Reliability 100% ± 0% 100% ± 0% 100% ± 0%

Submission Time 7.79 ± 0.23 sec 8.21 ± 0.19 sec 8.35 ± 0.23 sec

Submission Efficiency 100.00% 94.89% 93.36%

Execution Reliability 100% ± 0% 100% ± 0% 100% ± 0%

Table 4.6: Degradation of service on the gLite border (10 consecutive jobs repeated

5 times).

Metrics Direct Submission Production Complete Topology

Submission Reliability 100% ± 0% 100% ± 0% 100% ± 0%

Submission Time 7.92 ± 0.30 sec 8.40 ± 0.32 sec 8.78 ± 0.08 sec

Submission Efficiency 100.00% 94.25% 90.84%

Execution Reliability 100% ± 0% 100% ± 0% 100% ± 0%

Table 4.7: Degradation of service on the gLite border (50 consecutive jobs repeated

5 times).

Metrics Direct Submission Production Complete Topology

Submission Reliability 100% ± 0% 100% ± 0% 100% ± 0%

Submission Time 7.85 ± 0.15 sec 8.62 ± 0.58 sec 8.99 ± 0.67 sec

Submission Efficiency 100.00% 91.05% 87.35%

Execution Reliability 98% ± 4% 100% ± 0% 100% ± 0%

Table 4.8: Degradation of service on the gLite border (100 consecutive jobs repeated

5 times).

158

Figure 4-30: Abstract view of the reliability and efficiency experiments.

159

4.4.2 Scalability

These scalability experiments aim at demonstrating how well the current of Social

Grid Agents can be scaled with regard with: the number of concurrent clients, number

of agents and number of resource.

The current implementation consists in a one-to-one mapping of a production

agent to a resource, thus the main question to be addressed is the scalability of one

agent with regard to the numbers of concurrent requests it receives from other agents

(modelled as clients).

The experiments consists of the same experiment run in two different testbeds:

a Real Testbed consisting of a complete agent with its GT4 skeleton and a Synthetic

Testbed that tests only the architecture of the agent’s brain.

Real Testbed

The abstract experiment testbed is shown in Figure 4-31.

Figure 4-31: Testbed for the scalability experiment.

The agent capability to service requests is tested through the analysis of reliability

(percentage of failed actions) and efficiency (time needed to perform actions) metrics.

160

Parameter V alue

Experiment duration 300 seconds

Average of client delay 2 seconds

Standard Deviation of client delay 1 second

Average of test agent execution time 2.5 seconds

Standard Deviation of test agent execution time 2.5 seconds

Workload From 0 to 100 concurrent clients

Table 4.9: Parameters of the scalability experiment.

As the only technology common to all agents is their GT4 skeleton, this experiment

utilizes a test agent that does not rely on any additional technology. The test agent

performs an action that has a random duration. The testbed consists of a client load

that simulates a population of other independent agents trying to connect to the

test agent. Each of these clients is an independent thread that will connect to the

test agent; it will delay for a time that is a parameter of the experiment and then it

will connect again. The delay time for each client is computed randomly to ensure

a uniform workload; the average and standard deviation of this delay are two of the

parameters of the example.

One of these clients is an instrumented client that keeps track of reliability and

efficiency of each call and then saves the related data to files.

The experiment was executed with the parameters in Table 4.9:

The execution time ranging from 0 to 10 seconds cover the execution time of

most actions taken by SGAs, the duration of the experiment (300 seconds) is long

enough to gather data with statistical relevance. The Client delay ranging from 1 to

3 seconds allows for a workload with reasonable statistical characteristics.

The experiments results are summarized in Table 4.10. Appendix B details the

experiment metrics in graphs B-1, B-2, B-3 B-4.

These results highlight that the efficiency with which the agents react to the

increasing number of clients degrades linearly and it is mainly due to the dispatch

time (the time that it takes for the message to reach the service). The reliability was

161

Number of Clients Execution T ime Total T ime

1 2.26 ± 1.42 seconds 1.51 ± 1.43 seconds

10 2.20 ± 1.21 seconds 3.04 ± 3.23 seconds

50 2.31 ± 1.26 seconds 13.03 ± 2.85 seconds

100 2.62 ± 1.42 seconds 26.32 ± 9.54 seconds

Table 4.10: Results of the scalability experiment.

not affected by the increasing number of parallel clients as all messages were replied

to.

The degradation of execution time is relatively small (15% for 100 concurrent

accesses); this shows that the native agent architecture copes reasonably well with

an increasing parallel workload. On the other hand, the dispatch time is severely

degraded. This is mainly due to three reasons: the startup time of the concurrent

threads of the managers and processors, the operations that are performed by the

GT4 container each time a message is received, and the increased workload given

by the threads that are already running. To investigate which one of these three

reasons is the most relevant, another experiment run without the GT4 container is

detailed in Section 4.4.2. This effect is related to that of experiment 4.4.1 but the

overload caused by the selection and startup of the processors and by the operations

performed by the GT4 container is more severe than the overload caused by those

threads that are already running, thereby resulting in a greater degradation of the

response time.

As the current implementation of Social Grid Agents is composed of a small

number of agents this is not a severe problem but it will certainly be much more

problematic in larger topologies and has thus to be further investigated and solved.

Synthetic Testbed

In order to confirm that the degradation is mainly caused by the GT4 container, a

synthetic testbed was created that excluded GT4. As for the experiment on the Real

Testbed (see section 4.4.2), the agent capability to service requests is tested through

162

Parameter V alue

Experiment duration 600 seconds

Average of client delay 2 seconds

Standard Deviation of client delay 1 second

Average of test agent execution time 2.5 seconds

Standard Deviation of test agent execution time 2.5 seconds

Workload From 100 to 1000 concurrent clients

Table 4.11: Parameters of the large scalability experiment on the synthetic testbed.

the analysis of reliability (percentage of failed actions) and efficiency (time needed to

perform actions) metrics.

Two sets of experiments were executed to assess the scalability of the agent’s

brain: a small scale experiment with the same parameters as for the real testbed

experiment (see table 4.9) and a larger scale experiment with the parameters shown

in Table 4.11.

The synthetic testbed was implemented in the Eclipse [7] development platform

hosted on a 1400 Mhz IntelTMPentiumTMM processor with 1 GB of memory running

Windows XP Professional.

Detailed results for the small scale experiment results are shown in the graphs C-

1, C-2, C-3 C-4 of Appendix C.

These results show how at a small scale of accesses (1 to 100 concurrent clients)

the Execution Time remains almost constant; the Dispatch Time increase with the

number of concurrent accesses is present but much smaller than for the real testbed

and the Return Time is negligible. In the synthetic testbed the increase is much

smaller because it lacks all the additional operations performed by the GT4 container

at the reception of messages.

The Return Time is negligible in the synthetic environment because it just consists

of function returns and in the serialization/deserialization of the message.

Detailed results for the larger scale experiment results are shown in graphs C-

5, C-6, C-7 C-8 of Appendix C.

163

They show how the Dispatch Time increases significantly in the scale from 100

to 1000 concurrent clients. This highlights that the current architecture is capable of

supporting up to a few hundred concurrent messages without too much degradation

of its response time.

164

Parameter V alue

Minimum Size 1000

Maximum Size 100000

Number of Iterations 10

Table 4.12: Parameters of the scalability experiment on the ClassAd Mapper.

Large Scale ClassAd Maps

A key component of Social Grid Agents is the ClassAd Mapper (see section 3.18.2).

As this component is used extensively it is important to assess its scalability. The

testbed of this experiment is the same as for section 4.4.2

This experiment uses a test ClassAd Mapper that maps simple RecordExpr ex-

pression that contain a single value to a simple object (an instance of a String class).

[

key = 12345;

Requirements = true;

Rank = 1;

]

The map is filled with keys ranging from 0 to the maximum map size and is

queried with a RecordExpr expression that matches one key.

[

Requirements = other.key == 12345;

Rank = 1;

]

The metrics of the experiment are the time that is needed to create the entire

ClassAd Mapper and the time needed to retrieve a random entry. The parameters of

the experiment are shown in Table 4.12

The results of the experiment are shown in Figure 4-32 and 4-33; both the creation

and the query time remain reasonable in the explored range. The longest time needed

to create a map with 100,000 entries was 9.033 seconds and the longest time needed

165

to retrieve an entry was 2.524 seconds. The linear increase of the creation time is due

to the loop needed to insert all the entries into the map whilst the linear increase in

the query time is due to the fact that a match-make operation is to be performed on

each key of every entry until a match is found.

The ClassAd RecordExpr composing each key was, in this experiment, very sim-

ple; the behaviour of ClassAd Mappers of higher complexity will combine the linear

behaviour highlighted with this experiment with a characteristic of the ClassAd lan-

guage: the fact that ”... a (ClassAd) expression can be evaluated in time proportional

to the size of the expression” [56].

Figure 4-32: Creation Times for a Large Scale ClassAd Map.

166

Figure 4-33: Query Times for a Large Scale ClassAd Map.

167

4.4.3 Agent behaviour

The behaviour experiments aim at demonstrating how different topologies of Social

Grid Agents can enforce various resource allocations. This set of experiments is

focused on three different topologies: the Simple Producer, the Pub and the Simple

Purchase.

4.4.4 First behaviour experiment

A workload is submitted to an agent that belongs to all three topologies. The agent’s

behaviour is determined by a policy that states which resource is to be chosen first

and, consequently, which topology is to be preferred under different conditions.

The abstract testbed for the experiment is illustrated in in Figure 4-34. The

testbed is composed of six agents of which three are Production Agents (PGA1,

PGA2 and PGA3) and three are Social Agents (SGA1, SGA2 and SGA3).

Figure 4-34: Testbed for the behaviour experiment.

168

Experiment Topologies

The agents are arranged in four different topologies:

• the Simple Producer relationship consists of a Social Agent in control of a

Production Agent. If this is the only relationship an agent belongs to, then the

agent can only face a workload less or equal to the resources it is in control of. In

the testbed there are three of these Simple Producer relationships encompassing

SGA1 with PGA1, SGA2 with PGA2 and SGA3 with PGA3 .

• the Pub relationship consists of a set of social agents, SGA1 and SGA2, that

”lend” to each other part of their resources PGA1 and PGA2. Each of the actors

allow for a certain ”credit” to each of the other ”pub friends”. This topology

that allows load balancing when the different workloads do not synchronously

encompass the four agents SGA1, SGA2, PGA1 and PGA2 .

• the Simple Purchase consists in the purchase of the needed services, an economic

scenario that entails the transfer of credits. This topology allows leverage of

heavy workloads only in the case that the agent that is purchasing the resources

has a sufficient endowment. This relation encompasses two couples of agents:

Client with SGA1 and SGA1 with SGA3 .

Agent Policies

Social Grid Agent 1

Agent SGA1 chooses between its resources (PGA1 which it directly controls,

PGA2 which can be reached through a Pub agreement and PGA3 which can be

purchased) as dictated by the following policies.

• Price Policy : states that the resource can be used by anybody provided that

the offered price is sufficient (10 credits per submission).

• Execution Policy enforced on Production Agent PGA1 : this policy states that

the resource can be used on the condition that at least one job slot is left

available.

169

• Selection Policy enforced on Social Agent SGA1 : this policy states that the

first resource to be used is the one that is directly controlled (PGA1), then the

one that is accessible through pub relations and finally, as a last resort, it can

be purchased.

Production Grid Agent 2

Agent PGA2 accepts or not jobs from SGA1 based on the following policies:

• Execution Policy : states that the resource can be used on the condition that

at least one job slot is left available.

• Authorization Policy : states that the resource can be used by SGA1 only if the

‘Pub Credits‘ are greater than zero. Each time it performs a job on behalf of

SGA1 the amount of its tokens is decreased by a unit.

Social Grid Agent 3

Agent PGA2 accepts or not jobs from SGA1 based on the following policies:

• Price Policy : states that the resource can be used by anybody provided that

the offered price is sufficient (10 credits per submission).

Experiment Initial Conditions

The experiment was performed using the TestGrid [31] infrastructure available in my

host research group. The initial condition of the testbed were :

• SGA1 Endowment was set to 100 credits.

• SGA3 Endowment was set to 0 credits.

• PGA2 Tokens1 was set to 5 units.

1Tokens are introduced in 3.2.2, they represent the number of job submissions that an agent is

granted in a Pub topology

170

This set of initial condition was chosen to explore all the possible behaviours of

the agents. The Direct Control execution policies was set to always leave a free slot

so that on average it would not suffice, Pub tokens were set to a low number (and

not zero) so that they could be used but not suffice for heavy workload leaving the

Simple Purchase as the last viable choice.

Experiment Results

The results of the experiment are recapitulated in Figure 4-35 that shows the four sets

of metrics that were collected during the experiment and in Figure 4-36, a graphical

summary of the behaviour of the entire topology during the experiment. There are

three main phases of the experiment: Appendix D contains Figures D-1, D-2, E-

2 and D-4 that describe in greater detail the various metrics gathered during the

experiment.

Figure 4-35 shows the four sets of metrics that were collected during the experi-

ment.

• The workload 2 is represented by the graph on the left of the image.

• The endowment of agent SGA1 is represented by the graph that is immediately

right to the workload.

• The endowment of agent SGA3 is represented by the graph on the bottom of

the image.

• The number of tokens granted to agent SGA1 by agent PGA2 is represented by

the graph on the top of the image.

Figure 4-36 is a graphical summary of the behaviour of the entire topology during

the experiment. There are three main phases of the experiment:

• In phase A the workload of agent SGA1 can be met entirely by the resource

(Production Agent PGA1) it is in control of. As specified by its Selection Policy

all jobs are then executed by this resource until one job slot remains free.

2The workload represents the overall amount of job submissions that the agent copes with

171

• During phase B the directly controlled resource PGA1 does not match any more

the execution policy of having one free job slot. The Selection Policy dictates

that, in this case, the Production Agent PGA2 that can be reached through a

Pub topology has to be used. This behaviour is sustainable until the number

of tokens granted is greater than zero.

• During Phase C the pub resource is not available any more and the Selection

Policy dictates that a Simple Purchase topology is to be used. As the price

paid to perform the execution to agent SGA3 is the same that the Client paid

to SGA1 the endowment of SGA1 remains constant while the endowment of

SGA3 increases.

This experiment showed how SGAs can be part of different topologies character-

ized by different social rules and that they behave accordingly to policies that define

execution modalities, social and economic parameters.

Agent SGA1 is part of three different topologies: Direct Control, a socially inspired

Pub topology and a market-driven Simple Purchase topology.

It is possible to analyze the advantage of belonging to different topologies (so-

cieties) by considering what would have happened had SGA1 belonged to only one

topology

• Direct Control. Had SGA1 belonged to just a Direct Control topology and

thus able to submit jobs only to the resources it directly controls it would have

had to either relax its execution policies either allowing the complete use of its

resources and/or the queueing of more jobs (accepting longer submission times)

or it would have had to renounce the execution of some of its jobs.

• Pub: Had SGA1 been part of only a Pub topology it would have been able

to submit jobs only if granted enough tokens by SGA2. This case happens

when the workloads of the different agents encompassed in the pub topology

are out of sync so that the pub credits accumulated during the peak of one

of the workloads can be claimed during the other. Clearly, if the workloads

happen at the same time the pub topology is not of help.

172

• Simple Purchase: Had SGA1 been part of only a Simple Purchase topology,

then it would have been able to submit its jobs if and only if its endowment

was sufficient.

By being able to encompass different topologies and thus expose different social

behaviours SGA1 can take advantage of its ”social relations” and its capability of

coping with unexpected workloads grows with the richness of its social environment.

4.4.5 Second behaviour experiment

The testbed is similar to that of section 4.4.4 with the difference that there are two

simple purchase relations. The latter, being more expensive, is used only as a last

resort resource.

The abstract testbed for the experiment is illustrated in in Figure 4-37. The

testbed is composed of eight agents of which four are Production Agents (PGA1,

PGA2, PGA3 and PGA4) and four are Social Agents (SGA1, SGA2, SGA3 and

SGA4).

Experiment Topologies

The agents are arranged in four different topologies:

• the Simple Producer relationship encompasses SGA1 with PGA1, SGA2 with

PGA2, and SGA3 with PGA3 .

• the Pub relationship encompasses the four agents SGA1, SGA2, PGA1 and

PGA2 .

• the Simple Purchase encompasses three couples of agents: Client with SGA1,

SGA1 with SGA3, and SGA1 with SGA4

Agent Policies

Social Grid Agent 1

173

Agent SGA1 chooses between its resources (PGA1 which it directly controls,

PGA2 which can be reached through a Pub agreement and PGA3 which can be

purchased) as dictated by the following policies.

• Price Policy : states that the resource can be used by anybody provided that

the offered price is sufficient (10 credits per submission).

• Execution Policy enforced on Production Agent PGA1 : this policy states that

the resource can be used on the condition that at least one job slot is left

available.

• Selection Policy enforced on Social Agent SGA1 : this policy states that the first

resource to be used is the one that is directly controlled (PGA1), then the one

that is accessible through pub relations, then it can be purchased at the same

price for which it was bought and finally, as a last resort, it can be purchased

from the more expensive resource but on the condition that the endowment be

above a certain threshold.

Production Grid Agent 2

Agent PGA2 accepts or not jobs from SGA1 based on the following policies:

• Execution Policy : states that the resource can be used on the condition that

at least one job slot is left available.

• Authorization Policy : states that the resource can be used by SGA1 only if the

‘Pub Credits‘ are greater than zero. Each time it performs a job on behalf of

SGA1 the amount of its tokens is decreased by a unit.

Social Grid Agent 3

Agent PGA2 accepts or not jobs from SGA1 based on the following policies:

• Price Policy : states that the resource can be used by anybody provided that

the offered price is sufficient (10 credits per submission).

174

Social Grid Agent 4

Agent SGA4 accepts or not jobs from SGA1 based on the following policies:

• Price Policy : states that the resource can be used by anybody provided that

the offered price is sufficient (12 credits per submission).

Experiment Initial Conditions

The experiment was performed using the TestGrid infrastructure [31]. The initial

condition of the testbed were:

• SGA1 Endowment was set to 100 credits.

• SGA3 Endowment was set to 0 credits.

• SGA4 Endowment was set to 0 credits.

• PGA2 Tokens3 was set to 5 units.

This set of initial condition was chosen to explore all the possible behaviours of

the agents. The Direct Control execution policy was set to always leave a free slot

so that on average it would not suffice, Pub tokens were set to a low number (and

not zero) so that they could be used but not suffice for heavy workload, leaving the

two Simple Purchase relations as the last viable solutions. These settings are similar

to those of 4.4.4 with two differences: firstly the workload is incremented so that the

topology of 4.4.4 which is a subset of this one, is not sufficient. Secondly a fourth

agent (SGA4) with resources that are kept ready is connected through a Simple

Purchase relation that offers them at a higher price (12 credits per submission). This

is to allow SGA1 to sort the purchase with regard of cost, thus using the services of

SGA4 as a last resort.

3Tokens are introduced in 3.2.2, they represent the number of job submissions that an agent is

granted in a Pub topology

175

Experiment Results

The results of the experiment are recapitulated in Figure 4-38 that shows the four sets

of metrics that were collected during the experiment and in Figure 4-39, a graphical

summary of the behaviour of the entire topology during the experiment. There are

three main phases of the experiment: Appendix E contains Figures E-1, E-2, E-3,

E-4 and E-5 that describe in greater detail the various metrics gathered during the

experiment.

• The workload4 is represented by the graph on the left of the image.

• The endowment of agent SGA1 is represented by the graph that is immediately

right to the workload.

• The endowment of agent SGA3 is represented by the graph on the top of the

image.

• The endowment of agent SGA4 is represented by the graph on the bottom-right

of the image.

• The number of tokens granted to agent SGA1 by agent PGA2 is represented by

the graph on the bottom-left of the image.

Appendix E contains Figures E-1, E-2, E-3 and E-5 that describe in greater detail

the various metrics gathered during the experiment.

Figure 4-39 is a graphical summary of the behaviour of the entire topology during

the experiment. There are three main phases of the experiment:

• In phase A the workload of agent SGA1 can be met entirely by the resource

(Production Agent PGA1) it is in control of. As specified by its Selection Policy

all jobs are then executed by this resource until one job slot remains free.

• During phase B the directly controlled resource PGA1 does not match any more

the execution policy of having one free job slot. The Selection Policy dictates

4The workload represents the overall amount of job submissions that the agent copes with

176

that, in this case, the Production Agent PGA2 that can be reached through a

Pub topology has to be used. This behaviour is sustainable until the number

of tokens granted is greater than zero.

• During Phase C the pub resource is not available any more and the Selection

Policy dictates that a Simple Purchase topology is to be used. As the price

paid to perform the execution to agent SGA3 is the same that the Client paid

to SGA1 the endowment of SGA1 remains constant while the endowment of

SGA3 increases.

• During Phase D the cheap simple purchase resource is not available and the

Selection Policy dictates that a last resort Simple Purchase topology is to be

used provided that the endowment is above a certain threshold (that, in this

case, is the initial endowment - 100 credits).

The results of this second behaviour experiment show how SGA1 is able to sort its

economic-driven relations with regard to their cost and to make decisions accordingly.

In this case the decision criteria was to use cheaper resources first and to use the

more expensive only as a last resort and only if the endowment is above a certain

threshold. The set of policies of the agent allowed for the definition of an opportunistic

behaviour where the endowment was to be increased or, at least, kept constant and

where the agent preferred to use it’s own resources, those accessible through Pub

relationships and only as a last resort those accessible through a market. Obviously

different policies in the management (Execution Policies) of its own resources and

in the ordering of the resource reachable through social topologies result in different

behaviours. An agent may be instructed to use Simple Purchase resources (provided

that its endowment allows it) first and leave it’s own free as a last resort or rely firstly

on Pub topologies if the timing of the workloads allows for load balancing with this

solution. The main result of this experiment is that SGAs can provide this flexibility.

177

4.4.6 Conclusion

The reliability experiments (detailed in 4.4.1) showed that Social Grid Agents pose

an acceptable overhead to access resources and do not show particular problems of

reliance. This implies that border regions of the metagrid will be stable and reliable

and that offering to users access of resources through an SGA topology will not result

in a perceivable degradation of the quality of service in term of submission times and

successful execution percentages.

The scalability experiments (detailed in 4.4.2, 4.4.2 and 4.4.2) show that the

performance of Social Grid Agents remains acceptable with numbers in the range

of hundreds but rapidly increases with greater numbers. This behaviour is mainly

due to the technology that hosts the agents (the GT4 container). Two other sets

of experiments show that the agents allow to execute in a synthetic environment

(and thus without the overhead imposed by the GT4 container) can scale in their

thousands with an acceptable (although significant) overhead.

The behaviour experiments showed how the agents can implement different, co-

existing allocation philosophies and that these behaviours were those specified by

their behaviour policies. The behaviour experiments were performed on a complex

topology where three different allocation modalities were present: one where the re-

source where directly controlled, one where two parties shared part of their resources

and an economic-based relationship where monetary credits where asked in exchange

of the execution of jobs. The experiments highlighted that the main feature for

which SGAs were developed (to implement an allocation mechanism capable of en-

compassing different allocation philosophies) was successfully achieved but they also

highlighted limits in the number of concurrent transactions that agents, with the

current technology, are capable of executing.

178

Figure 4-35: Relations among the different metrics of the first behaviour experiment.

179

Figure 4-36: Main metrics of the first behaviour experiment.

180

Figure 4-37: Testbed for the second behaviour experiment.

181

Figure 4-38: Relations among the different metrics of the second experiment.

182

Figure 4-39: Main metrics of the behaviour experiment.

183

Chapter 5

Conclusions

Figure 5-1: It’s time to take a look back.

184

The first thing God created was the journey; then came doubt and nostalgia.

Theodoros Angelopoulos

All endings are also beginnings. We just don’t know it at the time.

Mitch Albom

In the beginning of this journey we set the aim of this research at the creation of a

set of software agents capable of enforcing different co-existing sharing and allocation

methodologies in Grid computing. We also decided to use a social paradigm in the

hope that mimicking behaviours that were useful in human history to tackle the

problems of resource sharing and allocation would also be helpful in Grids. It is now

time to try to re-examine the results obtained during this journey, the successes and

the shortcomings.

5.1 Evaluation versus core criteria

The core criteria that the agents must be capable of encompassing different co-existing

allocation philosophies has been proved by behavioural experiments that show how

different policies of the agents result in different allocation philosophies. The fact

that these policies can be expressed in terms of metrics, values and prices allows the

definition of behaviours from economic to social. The latent assertion that this is

better can be seen to be true when one recognizes that Grid is becoming a means to

distribute computational power in an increasing number of scenarios and that some

of the challenges posed by this expansion (coexistence of actors with different aims)

can clearly be tackled with the SGA paradigm, although it is equally clear that this

is a work in progress.

5.2 Evaluation of the technologies used

The last prototype of Social Grid Agents is implemented using the JavaTMlanguage,

the ClassAd language and the GT4 container as a hosting environment. This bundle

of technologies had major advantages and one important shortcoming.

185

• The GT4 container allowed the implementation of the agents as WRSF Com-

pliant Grid Services; in addition to this, the GT4 container provided a hosting

environment that has been specifically designed for Grid Computing. Finally,

the GT4 container directly hosts grid services, such as the GRAM submission

system, that are used by the Border Agents.

• The JavaTMlanguage allowed the implementation of the prototype with all the

advantages and features of an Object Oriented language and offered the possi-

bility of using APIs whenever they were available. Unfortunately, the different

releases and versions of libraries gave rise to a frustrating problem nicknamed

Jar Wars to which no definitive solution has been found yet. Section 5.2.1 is

devoted to this topic.

• The ClassAd language allowed the definition of policies and their enforcement

across different middlewares and across the different layers of the Social Grid

Agents architecture. To express its full potential, the JavaTMAPI to the Clas-

sAd language has been enriched by specific functions that allow for partial

evaluation of a ClassAd expression as detailed in section 3.18.3. With the pos-

sibility to selectively evaluate only the part of each expression that is defined

by the current scope the ClassAd language has proven to be a valuable and

effective tool for the expression of Actions, Objects and Constraints. On the

other hand, ClassAd expressions proved to be all but terse with consequent dif-

ficulties in reading and debugging the code. This shortcomings may well justify

further research for an alternative functional-style language.

5.2.1 Jar Wars

Someone once said that the ”Advantage of sitting on a border is that you can be shot

from two sides”; this facetious statement describes well a Jar War : a conflict that

arises whenever two application that have to interact are built with incompatible sets

of libraries (that, in JavaTM, are implemented in archive files known as jar files).

As described in Sections 3.10 and 3.12 agents may depend on one, two or even

186

more technologies; whenever any of these technologies depend on incompatible sets

of jar files there is a Jar War. There are different ways to cope with these conflicts

but none of them has proven yet to be completely satisfying:

• Class harmonization: if two jar files have a conflict but they have a high degree

of compatibility it is sometimes possible to build a third jar file from the subset

of classes that are compatible to both. This was the first solution that was tried

to solve a conflict between the GT4 container and WebCom libraries.

• Jar switching : consists in switching the System Context of the Java Virtual

Machine (JVM) before and after each invocation of the API calls that cause

the conflict.

• System invocation decoupling : consists in decoupling the two applications that

are in conflict and letting them interact through system calls instead than API

invocations. Jar files are then switched, controlling environment variables. This

solution has the major disadvantage of disrupting the interoperability design

based on API invocation and forcing all information to be expressed in strings

as this data type is the only one directly supported by a system call.

The current prototype uses a combination of the above-mentioned solutions with

a reasonable degree of efficiency but a unified and more formal solution based on

the jar switching technique would certainly be greatly advantageous and justify the

effort of some further investigation.

5.3 Evaluation of the architecture

The architecture of Social Grid Agents was designed to allow the implementation of

different features: the expression and enforcement of policies in a flexible way, the

possibility to interface with different middlewares, the possibility for the agents to

expose a certain degree of “awareness” of themselves and their surroundings. We

will now evaluate how well the implemented architecture served these purposes and

complied to the design constraints and specifications.

187

5.3.1 Flexible policies

The description of policies through ClassAd expressions that are partially evaluated

through the different steps proved to be suitably flexible. It allowed the description

of policies that may depend on the identities of the sender and/or the beneficiary

of an action, the current status of resources, and other policies. The description of

these constraints as modalities defined by the requester and policies defined by the

provider, that combine in enforced policies, lets all parties involved describe their

needs and preferences.

The architecture also allowed the expansion of basic topologies along three addi-

tional dimensions (trust, banking and discovery).

5.3.2 Support for multiple middlewares

The example metagrid environment, based on common language and translation ser-

vices, allowed Social Grid Agents to interoperate successfully with services offered

by different middlewares. Furthermore the ClassAd based description of messages,

actions, object and constraints allows for the definition of inter-dependent sets of

actions that can model complex interdependent job flows that span multiple mid-

dlewares. An important challenge posed by the simultaneous harnessing of different

middlewares resides in their different security requirements and policies. Being able

to harness services from different middlewares can be useless if the requirements de-

manded by those cannot be met by the agents. This has been achieved with a reason-

able degree of success, allowing the agents to implement different security modalities

(specified by policies) and by describing the agent’s identity with structures that host

heterogeneous identity-related information.

5.3.3 Awareness of self and surroundings

One last feature that was required by the agents was the capability of being “aware“

of themselves and their surrounding both in space and time. This has been achieved

by a fundamentally associative design. Information regarding the agent itself and

188

its environment is memorized in maps that can be queried through keys. Keys are

expressed in ClassAd and are searched with the Requirements function. Information

covers time through logs. This system proved successful in memorizing the informa-

tion needed by the agents. No thorough assessment on the scalability of this solution

has being performed yet. At present information is not categorized with respect of

relevance or age and it is all treated uniformly. This approach will not be able to

scale both in time and space as logs and indexes will grow to the point of being

un-manageable and too slow to be queried. A hierarchical, cache-like approach that

handles information with respect of age and relevance might be worth investigation.

Additional information could be easily added as additional fields in the ClassAd de-

scription of the keys and in the search criteria defined in the Requirements function.

5.4 Evaluation of the Prototype

To properly evaluate the prototype and its results it is necessary to analyze the results

of the experiments from the perspective of the research questions that were stated at

the beginning of this investigation, i.e. as stated in 4.4:

• Do Social Grid Agents degrade the performance of resources they control ?

• How scalable are Social Grid Agents ?

• How do they behave ?

5.4.1 Do SGAs degrade the performance of the resources

they control ?

Two main considerations apply to the question of whether SGAs degrade or not the

resources they control: one based on the architecture of SGAs and another based on

experimental data.

From an architectural perspective SGAs are users of resources and they do not

interfere in their internal working; in fact, production agents connect to resources

189

through their user interfaces (e.g. the UI for gLite and the GRAM service for GT4).

SGAs thus cannot degrade the performance of a resource more than any other user.

On the other hand, the experiments in sections 4.4.1 and 4.4.2 show degradation

in the way resources are accessed. This is mainly due to the overhead of multiple

threads that are spawned, and the GT4 operations that are performed, for each

received message.

5.4.2 How scalable are SGAs ?

This topic is closely related to that of section 5.4.1. Experiment of section 4.4.2

showed how the response time of SGAs degrades severely with the growing number

of concurrent accesses. The influences on scalability of SGAs have been assessed

by the experiments of sections 4.4.2 and 4.4.2. These results imply that the main

scalability problem resides in the interactions between the GT4 container and the

thread management of SGAs that severely slows down the access to the services of the

agents, rather than the scalability of the agents themselves. In fact, the experiments

on the scalability of the agent’s brains (see section 4.4.2) show how the architecture

of the agents (without the GT4 container) has better scalability characteristics that

allows to manage up to a few hundred concurrent messages.

5.4.3 How do SGAs behave ?

One important aim of this investigation was the possibility of the definition of different

allocation philosophies within the same framework. In this regard the Social Grid

Agents model proved to be capable of defining diverse allocation philosophies ranging

from the altruistic social behaviour of the pub model to the selfish market-driven

purchase mechanism.

Chapter 4.4 describes in detail a behaviour experiment where three allocation

topologies co-existed. The experiments detailed in 4.4.3 shows how an agent that

belongs to different topologies can be instructed to rank and choose services and

resources availing itself of relations that span from direct control to service purchase,

from a social-based model to an economic one.

190

The behaviour experiments showed that SGAs behaved as would be expected from

their policies: they managed the resources they where in direct control of and those

that could be reached through social topologies with respect of their internal policies.

The allocation of resources that were directly controlled by Production Agents was

successfully tuned by execution policies that described how much of each resource

could be used and if queueing was to be allowed. The economic endowment (e.g.

the number of credits) and the social endowment of the agents (e.g. the number

of tokens granted in pub topologies) were successfully described and enforced. This

allowed the overall behaviour of the agents to be selfish (thus trying to maximize or

keep constant their endowment) or not.

It is worth noticing that all this diversity of behaviour was obtained by orches-

trating basic tiles (the service providers) and by defining policies, modalities and

actions, thus proving how SGAs can be easily configured and assembled in complex

topologies.

Although the agents behaved according to their policies there are weaknesses that

were not shown in the experiments. The most important of all is due to the latency

times with which the resources publish their status. In the experiments the average

length of the jobs was enough to allow the resources to publish their correct status

but shorter jobs may result in the agents taking decisions based on out-of date data.

This latency problem is common to all distributed systems. SGAs cope with it by

keeping and updating a local copy of the information regarding the status of jobs.

This solution allows a more accurate behaviour but bears the disadvantage of the

increasing workload of the job controller thread and its communication to perform

polling.

5.4.4 Other questions about the prototype

• Is it simple ? Although SGAs are conceptually simple, the prototype implemen-

tation is far from that. Policies definition and description is hard to implement

and the resulting ClassAd code is often long and very hard to understand and

debug.

191

• Did a single-stub approach simplify outsourcing ? Yes it did. This design

decision to have SGAs expose a single method allowed for the composition of

services without the additional complexities brought by the need to discover

the characteristics of an interface each time a new agent is contacted. On the

other hand, this approach makes it much more difficult for SGAs to interface

with systems such as OGSA that rely on richer interfaces.

• What are the least satisfactory features of the prototype ? There a number of

issues:

– How agents get to exist : at present this information is statically defined

in the GT4 container.

– How initial relations are established : at present they are statically defined

and there is no mechanism for new relationships to begin.

– How topologies are composed : at present they are statically defined and,

although the policies of a single topology may change, there is no mecha-

nism for creation of new topologies.

– How namespaces are established : at present namespaces are managed with

ClassAd scopes, but this proves to be often unreadable and hard to main-

tain.

5.4.5 How do SGAs fit into the surveyed Taxonomies ?

An interesting question is where SGAs fit into the Taxonomy of Resource Allocation

Systems in [52]. On one hand, the architecture can be described as hierarchical as it

defines two distinct layers (the social and production layers) with a clear hierarchy -

the social layer controls the production layer; on the other hand, it is also true that

the architecture is cell-based as the relationships and information between the agents

can be configured to define domains across the hierarchical structure.

The schema is extensible provided that all agents have an updated version of the

processors. Soft QoS support is implemented with the use of modalities, policies and

enforced policies.

192

The information is stored by each agent locally in files and there is no database

support; the information is updated with a pull policy each time an agents requests

information to another, although push policies may govern the interactions with

indexes. Finally, scheduling is provided by external services through existing middle-

ware.

With reference to the economic models surveyed in [28] and [29], SGAs offer

support for Commodity Markets and Posted Price Models in addition to Charita-

ble donations, non-monetary based Pub Models and Tribe Models, and third-party

funding with Keynesian Models.

It is worth noticing that by providing the agents with the proper processors it

should (at least at a theoretical level) be possible to allow SGAs to behave according

to other economic models.

5.4.6 Relation with related work

This section describes what are the relations, the commonalities and the differences

with the related work surveyed in Chapter 2.

The gang-matching system proposed in [81] and described in Section 2.2.1 ex-

tends the match-making mechanism to more than two parties; although no explicit

match-making mechanism is implemented yet in Social Grid Agents there are strong

commonalities. Firstly, they both use the ClassAd language to convey information

and base their decision mechanisms on the match-making mechanism, secondly the

delayed evaluation of policies of Social Grid Agents allows for a form of implicit multi-

step gang-matching as all the different actors that manipulate the ClassAd message

participate in the final decision.

The solutions proposed by Buyya in his GridBus project described in Section 2.2.2

are related to Social Grid Agents in the sense that they support different economic

mechanisms. The main difference with Social Grid Agents is that Buyya’s approach is

strongly economical and does not extend to social behaviours that cannot be modelled

in economic terms while Social Grid Agents aim at encompassing different economic

models within a larger view as just one of the possible allocation philosophies that

193

an actor can follow. GridBus, on the other, hand is in a much more advanced

implementation state and is already a ”ready to use” solution while Social Grid

Agents are still in a prototypical stage.

Finally, Social Grid Agents relate to gLite (described in 2.2.1) and Globus (2.2.1)

allocation mechanisms by using their allocation mechanisms for the resource alloca-

tion within their domains; border production agents, in fact, invoke the resource

allocators of gLite and Globus in the border regions between these two middlewares

and the metagrid region.

For what regards the description and enforcement of policies, the paper [95] offers

a similar view of the relationships between collaboration models (very similar to the

topologies of Social Grid Agents), behaviour and policies. The paper offers both a

conceptual model and a formal specification for a policy language.

5.5 Contributions

Social Grid Agents where designed to be economic-agnostic and technology-agnostic

so to encompass both different allocation philosophies (defined by their social context)

and different Grid middlewares.

The capability of encompassing different, co-existing middlewares was tackled

with the concept of a metagrid that allowed the creation of a flexible system har-

nessing different Grids. The contribution of the metagrid concept is beneficial as it

allows to include new middlewares localizing the issues of interoperability to a set of

border agents that act as translators both from the definition of functionalities and

policies, thus allowing interoperability both at a technological and logical level.

Social Grid Agents prove to be beneficial on the following counts:

They allow to model in the Grid a variety of social relations that exist among its

different stakeholders; topologies can be set to allow co-operation and competition

depending on the social context of the Grid actors.

They allow for different allocation philosophies to co-exist so that an actor can

fully avail himself of all the social relations it has in a Grid without being constrained

in just one topology.

194

They will allow in the future for Social Grid Agents to encompass types of middle-

wares that are based on different allocation philosophies such as commercial Clouds

and volunteer-based computing such as BOINC [3], this interesting possibility is of-

fered by their agnosticism with regard to economy and technology.

A feature that was not foreseen in the beginning, the functional characteristics of

its language, proved beneficial as it allows the definition of functionalities and policies

that take into account the needs of all the actors involved and define abstract patterns

where functionalities, policies and behaviours of the agents interact without the need

of designing a priori the entire decision process.

5.6 Future Work

Although the current implementation of Social Grid Agents yielded some useful re-

sults, its full potential may yet to be fully discovered. Future directions of research

will move along different dimensions.

5.6.1 Deployment on a Production Infrastructure

If SGAs were to be deployed in real production infrastructures with their stricter

quality standards, then the following issues must be successfully tackled.

• Scalability : the scalability issues referred to in 4.4.2, 4.4.1 and especially in 4.4.2

are the most important issues that prevent SGAs being deployed in a realis-

tically large and complex production infrastructure. The degradation of the

quality of service for numbers of concurrent accesses that are normal in a pro-

duction infrastructure is unacceptable and, as long as this issue is not solved,

SGAs will not be usefully deployed in real production infrastructures.

• Startup: at startup SGAs have a pre-defined set of topologies they belong to

and this information is coded in the ClassAd policies that describe the agent.

Obviously this solution lacks scalability and must be replaced by a startup

procedure that uses default indexes to allow the agent to insert themselves in

existing societies when they awake or when they are born.

195

• User Interface: the prototype of SGAs has a minimal text-based interface to the

user. This is unacceptable if the agents are to be deployed in a real production

infrastructure; SGAs need usable graphical user interfaces that allows user to

instruct their agents on execution and behavioural policies and resource owners

to describe the behaviour of the agents controlling the resources. These GUIs

must be easy to use and must not require their users to have any knowledge

of the ClassAd language. HyperGraphs [51, 53, 62] and related work on e-

Learning conducted by Kathryn Cassidy of my host research group [30] could

be interesting avenues in this regard.

• Packaging : SGAs would of course require packaging for use by the fabric man-

agement tools used for deployment of Grid software components.

5.6.2 Additional Services

To enhance the usefulness of SGAs more middlewares of different nature should be

encompassed. Effort should especially be focused on middlewares based on different

philosophies such as commercial-based platforms like the IBM cloud and volunteer-

based platforms like BOINC.

In addition to this it would be profitable to encompass more services of the middle-

wares that are already party of the system; specifically file storage and information

services which will provide both a more realistic and useful platform and a much

richer and diverse environment in which to study the outcome of different social and

economic models.

Early prototypes included a File Closet, but future implementations may simply

include a SRM [45] interface so that they can employ file catalogs like LFC [44]

and/or file system interfaces like STORM [76].

5.6.3 Negotiation Protocols and Service Level Agreements

In SGAs actions are described with the use of modalities and a rather primitive,

one-step form of negotiation is offered by the intersection of policies and modalities

196

that will define how the action is really executed. Social Grid Agents will certainly

be much more interesting if they had a more advanced approach yielding to formal

Service Level Agreements and Negotiation Protocols. For the latter it could be

feasible and profitable to encompass some existing technology and to delegate the

act of negotiation to it.

5.6.4 Advanced decision systems

For now, SGAs take most decisions based on thresholds and other simple algorithms.

It would be an interesting field of enquiry to develop more complex and realistic

decision system based on the metrics of both the agents and the resources they are

in charge of.

5.6.5 Large scale indexes

The lack of scalability that characterize the management of internal information of

the agents is also present in the topologies of the agents (see Section 4.4.2). Although

the scalability of the main component of Banking and indexing agents, the ClassAd

Mapper, was the topic of the experiment in section 4.4.2, their overall behaviour has

not being tested for scalability. Banking should be scalable and it could be wise to

abandon the current, prototypical banking agent and interface the system directly

with an existing banking technology (e.g. that of SGAS).

Indexing agents should also take into account larger amounts of more sophisti-

cated data about the services they index, accepting only that information that could

prove profitable. It could also be interesting to investigate multi-layered hierarchical

indexing services.

5.6.6 Advanced Social, Economic and Financial Models

As yet, only relatively simple social topologies and their policies have been developed

for the agents. In the future, research should embrace more complex topologies. At a

micro-economic level, the existing solutions may be be enriched by insurance agents

197

that compensate with credits when middlewares fails; for trust reasons, these agents

could be controlled by the arbitrator agent described in section 3.7.

Currently agents define prices based only on the data from the supply side without

taking into account demand. This doesn’t allow the definition of realistic price models

and thus some mechanism capable of gathering demand-related information would

prove very profitable for the implementation of more sophisticated agents.

A much more advanced topic that is still to be tackled is the relation between

the credit system used by the agents and the real economy. For the present there

is no direct connection between the credits that are used among the agents and real

currencies. This is a serious limitation that prevents agent’s societies from being

connected to the real economy. Whether a connection between these two economies

would yield positive or negative outcomes for one or both is a very open questions

that, in my opinion, could constitute a proficuous field for future enquiries.

5.6.7 Trust

As of now, Social Grid Agents, support only one concept of trust (Discussed in

Section 3.2.7 and Section 3.8.3) based on the authority of one agent that the other

parties can accept or not. This is a very limited view of the concept of trust and a

more articulated approach to this topic would be beneficial to Social Grid Agents.

The two other views of trust, the one based on the recognition of behavioural patterns

through time and the one based on the opinion of other other trusted parties, should

be encompassed in Social Grid Agents in a relatively easy way. Social Grid Agents,

in fact, keep records of events written in ClassAd records by their logging service and

queries of patterns of events can be performed through matchmaking queries of these

records; level of trust can than be inferred from this information. The exchange

of ”opinions” that the different agents have of each other can be achieved in two

possible ways: an agent may share part of its logs to its parties and allow them to

infer trust level from this information or they can directly their ”opinion” on the

trustworthiness of a party. This latter solutions implies that all the involved party

use the same algorithm and the same metrics to infer the trustworthiness from the

198

logs.

On the other end, once trust becomes a reliable information metric on Social Grid

Agents it could be taken into account in a large variety of policies and decisions. As

an example, trustworthy parties can be alloted greater resources, they can be granted

lower prices or they can be granted larger shared resources in a pub model or, finally,

only parties whose trust level is above a certain threshold may be given access to

resource controlled by a Keynesian authority.

5.6.8 Service Level Agreements

As of now, Social Grid Agents, allow for very limited implementation of Service Level

Agreements. They consist only in the data that specify both the functionalities and

policies for the execution of jobs. On the other end, the functional characteristics of

the native agents language should allow more sophisticated implementation of Service

Level Agreements as modalities requested by the agents a should allow a flexible way

to define the behaviour of the agents accordingly.

As an example, a requested deadline requested for the completion for a job may

not only influence the resource allocated but also the modality with which the status

of the job is queried. Theoretically, the homogeneous nature of the agent’s internal

and external language allow for the creation of arbitrarily complex mappings between

action, policies, modalities and behaviours; the difficulty of reading and debugging

the ClassAd code may represent, on the other hand, a strong constrain to the level

of complexity of these patterns.

5.7 Acknowledgements

Funding for this work was provided in the main by the SFI WebCom-G project, and

latterly by the HEA PRTLI4 e-INIS project. My thanks to both organizations, to

Trinity College Dublin and the Irish Government for this support.

199

5.8 Conclusions

The journey that was introduced in the foreword comes here to a stop. As all other

journeys it yielded more questions than answers and it ended in a place that is not

precisely the one decided in the beginning. Some parts proved much harsher and

more difficult than foreseen while unexpected and welcome surprises compensated

for some of the most frustrating parts of the path. Is this not, after all, the very

nature of every journey ?

200

Appendix A

Detailed Metrics of Reliability

Experiment

Figure A-1: Submission reliability of the gLite border.

201

Figure A-2: Submission time of the gLite border.

202

Figure A-3: Submission efficiency of the gLite border.

203

Figure A-4: Execution reliability of the gLite border.

204

Appendix B

Detailed Metrics of the Scalability

Experiment on the Concrete

Testbed

Figure B-1: Dispatch time of the scalability experiment.

205

Figure B-2: Execution time of the scalability experiment.

Figure B-3: Return time of the scalability experiment.

206

Figure B-4: Total time of the scalability experiment.

207

Appendix C

Detailed Metrics of the Scalability

Experiment on the Synthetic

Testbed

Figure C-1: Dispatch time of the small-scale scalability experiment on the synthetic

testbed.

208

Figure C-2: Execution time of the small-scale scalability experiment on the synthetic

testbed.

Figure C-3: Return time of the small-scale scalability experiment on the synthetic

testbed.

209

Figure C-4: Total time of the small-scale scalability experiment on the synthetic

testbed.

Figure C-5: Dispatch time of the large-scale scalability experiment on the synthetic

testbed.

210

Figure C-6: Execution time of the large-scale scalability experiment on the synthetic

testbed.

Figure C-7: Return time of the large-scale scalability experiment on the synthetic

testbed.

211

Figure C-8: Total time of the large-scale scalability experiment on the synthetic

testbed.

212

Appendix D

Detailed Metrics of First

Behavioural Experiment

Detailed results of the second behaviour experiment (described in Section 4.4.4) are

shown in Figures D-1, D-2, D-2 and D-4.

Figure D-1: Workload.

213

Figure D-1 shows the number of jobs submitted to agent SGA1.

Figure D-2: Endowment of SGA1.

Figure D-2 shows the number of credits available to agent SGA1. Credits grow

during the first two batches (phase A and phase B, detailed in Section 4.4.4) of jobs

according to the policies that determine its behaviour (described in Section 4.4.4),

in fact agent SGA1 receives a payment for each job but it bears no costs for its

execution as the first batch is performed by agent PGA1 which is directly controlled

while the second batch of jobs is executed through a Pub Topology that links agent

SGA1 with agent PGA2 ; in this case no credit is consumed in agent SGA1 but

tokens granted to it decrease in agent PGA2 (detailed in Figure D-4). During phase

C of the experiment, agent SGA1 purchases job execution rights from agent SGA3

(whose credits are detailed in Figure E-3) at the same price it receives, accordingly

the amount of credits available to agent SGA1 remains constant while the credits of

agent SGA3 grows.

Figure D-3 shows the number of credits available to agent SGA3. Credits remain

214

Figure D-3: Endowment of SGA3.

constant during the first two batches (phase A and phase B, detailed in Section 4.4.4)

as the agent is not involved in the execution of any job. During phase C of the

experiment, agent SGA3 executes jobs for agent SGA1 (whose credits are detailed

in Figure D-2) accordingly the amount of credits available to agent SGA3 grows.

Figure D-4 shows the number of tokens granted to agent SGA1 The number of

tokens remain constant during the first batch (phase A detailed in Section 4.4.4)

as the agent is not involved in the execution of any job. During phase B of the

experiment, agent PGA2 executes jobs for agent SGA1 accordingly the amount of

tokens granted to agent SGA1 decreases. During phases C of the experiment, agent

PGA2 is not involved in production and the amount of tokens granted to agent SGA1

remains zero.

215

Figure D-4: Execution tokens granted by PGA2 to SGA1.

216

Appendix E

Detailed Metrics of Second

Behavioural Experiment

Detailed results of the second behaviour experiment (described in Section 4.4.5) are

shown in Figures E-1, E-2, E-3, E-4 and E-5.

Figure E-1: Workload.

217

Figure E-1 shows the number of jobs submitted to agent SGA1.

Figure E-2: Endowment of SGA1.

Figure E-2 shows the number of credits available to agent SGA1. Credits grow

during the first two batches (phase A and phase B, detailed in Section 4.4.5) of jobs

according to the policies that determine its behaviour (described in Section 4.4.5),

in fact agent SGA1 receives a payment for each job but it bears no costs for its

execution as the first batch is performed by agent PGA1 which is directly controlled

while the second batch of jobs is executed through a Pub Topology that links agent

SGA1 with agent PGA2 ; in this case no credit is consumed in agent SGA1 but

tokens granted to it decrease in agent PGA2 (detailed in Figure E-5). During phase

C of the experiment, agent SGA1 purchases job execution rights from agent SGA3

(whose credits are detailed in Figure E-3) at the same price it receives, accordingly

the amount of credits available to agent SGA1 remains constant while the credits

of agent SGA3 grows. During phase D of the experiment, agent SGA1 purchases

job execution rights from agent SGA4 (whose credits are detailed in Figure E-3) at

218

a higher price, accordingly the amount of credits available to agent SGA1 decreases

while the credits of agent SGA4 (detailed in Figure E-4) grows.

Figure E-3: Endowment of SGA3.

Figure E-3 shows the number of credits available to agent SGA3. Credits remain

constant during the first two batches (phase A and phase B, detailed in Section 4.4.5)

as the agent is not involved in the execution of any job. During phase C of the

experiment, agent SGA3 executes jobs for agent SGA1 (whose credits are detailed

in Figure E-2) accordingly the amount of credits available to agent SGA3 grows.

During phase D of the experiment, agent SGA3 is not involved in production and

the amount of its credits remain constant.

Figure E-4 shows the number of credits available to agent SGA4. Credits remain

constant during the first three batches (phase A, phase B and phase C, detailed in

Section 4.4.5) as the agent is not involved in the execution of any job. During phase

D of the experiment, agent SGA4 executes jobs for agent SGA1 (whose credits are

detailed in Figure E-2), accordingly the amount of credits available to agent SGA4

219

Figure E-4: Endowment of SGA4.

grows while the amount of credits of agent SGA1 decreases because the price paid

by agent SGA1 to agent SGA4 is greater to the price paid to agent SGA1.

Figure E-5 shows the number of tokens granted to agent SGA1 The number of

tokens remain constant during the first batch (phase A detailed in Section 4.4.5)

as the agent is not involved in the execution of any job. During phase B of the

experiment, agent PGA2 executes jobs for agent SGA1 accordingly the amount of

tokens granted to agent SGA1 decreases. During phases C and D of the experiment,

agent PGA2 is not involved in production and the amount of tokens granted to agent

SGA1 remains zero.

220

Figure E-5: Execution tokens granted by PGA2 to SGA1.

221

Bibliography

[1] ArguGRID Project webpage. http://www.argugrid.eu/, Last visited on April

2009.

[2] Assess grid project webpage. http://www.assessgrid.eu/, Last visited on April

2009.

[3] The Boinc Project. http://boinc.berkeley.edu/, Last visited on April 2009.

[4] CATNETS project webpage. http://www.catnets.uni-bayreuth.de/, Last visited

on April 2009.

[5] Condor Project webpage. http://www.cs.wisc.edu/condor/, Last visited on April

2009.

[6] Corba webpage. http://www.corba.org/, Last visited on April 2009.

[7] Eclipse Project webpage. http://www.eclipse.org/, Last visited on April 2009.

[8] Global Grid Forum webpage. http://www.globalgridforum.org/, Last visited on

April 2009.

[9] Grid Economy Project webpage. http://www.buyya.com/ecogrid/, Last visited

on April 2009.

[10] Grid Market Directory webpage. http://www.gridbus.org/gmd/, Last visited on

April 2009.

[11] Grid Service Broker webpage. http://www.gridbus.org/broker/, Last visited on

April 2009.

222

[12] GridBus Project webpage. http://www.gridbus.org/, Last visited on April 2009.

[13] Haskell Project webpage. http://www.haskell.org/, Last visited on April 2009.

[14] Libra webpage. http://www.gridbus.org/libra/, Last visited on April 2009.

[15] Maui documentation webpage. http://www.dcsc.sdu.dk/docs/maui/mauidocs.html,

Last visited on April 2009.

[16] Nimrod-G webpage. http://www.csse.monash.edu.au/˜davida/nimrod/, Last

visited on April 2009.

[17] Open Grid Forum webpage. http://www.ogf.org/index.php, Last visited on

April 2009.

[18] Open LDAP webpage. http://www.openldap.org/, Last visited on April 2009.

[19] SORMA Project webpage. http://www.sormaproject.eu/, Last visited on April

2009.

[20] Ajith Abraham, Rajkumar Buyya, and Biakunth Nath. Nature Heuristics for

Scheduling jobs on Computational Grids. In Proc. 8th IEEE International Con-

ference on Advanced Computing and Communications (ADCOM 2000), pages

45–52, Cochin, India, December 2000.

[21] A.Guarise, G. Patania, and R.M.Piro. DGAS User’s Guide.

https://edms.cern.ch/file/571271/1/EGEE-DGAS-HLR-Guide.pdf, Last visited

on April 2009.

[22] Vassil N. Alexandrov, Ashish Thandavan, and Péter Kacsuk. Using P-GRADE

for Monte Carlo Computations in a Distributed Environment. In Bubak et al.

[26], pages 475–482.

[23] Fabrizio Bacini and Stefano Baco. WP1 - WMS Software Administrator and

User Guide. https://edms.cern.ch/file/335068/0.2/DataGrid-01-TEN-0118-0 2-

Document.pdf, January 2002.

223

[24] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualiza-

tion. In Proc. SOSP ’03: 19th ACM symposium on Operating systems principles,

Bolton Landing, New York, USA, pages 164–177. ACM, October 2003.

[25] Jeffrey M. Bradshaw. An Introduction to Software Agents. Software Agents,

MIT Press, Cambridge, MA, USA, pages 3–46, 1997.

[26] Marian Bubak, G. Dick van Albada, Peter M. A. Sloot, and Jack Dongarra,

editors. Computational Science - ICCS 2004, 4th International Conference,

Kraków, Poland, June 6-9, 2004, Proceedings, Part IV, volume 3039 of Lecture

Notes in Computer Science. Springer, 2004.

[27] Stephen Burke, Simone Campana, Antonio Delgado Peris, Flavia Donno, Patri-

cia Mendez Lorenzo, Roberto Santinelli, and Andrea Sciaba. gLite Users Guide.

https://edms.cern.ch/document/722398/1.2, April 2008.

[28] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic Models for

Resource Management and Scheduling in Grid Computing. Special Issue on

Grid Computing Environments, The Journal of Concurrency and Computation,

Practice and Experience (CCPE), Wiley Press, pages 1507–1542, May 2002.

[29] Rajkumar Buyya. Economic-based Distributed Resource Management and

Scheduling for Grid Computing. PhD thesis, Univ. Melbourne, Australia, Last

visited on April 2009.

[30] K. Cassidy, J. Walsh, B. Coghlan, and D. Dagger. Using Hyperbolic Geometry

for Visualisation of Concept Spaces for Adaptive e-Learning. In Proc. 4th Inter-

national Conference on Adaptive Hypermedia and Adaptive Web-Based Systems

(AH2006), Dublin, Ireland, pages 421–426, June 2006.

[31] S. Childs, B. Coghlan, J. Walsh, and D. OCallaghan. A virtual TestGrid, or how

to replicate a national Grid. In Proc. ExpGrid workshop at HPDC2006, 15th

IEEE International Symposium on High Performance Distributed Computing,

Paris - France, pages 47–54, February 2006.

224

[32] K. Czajkowski, F. D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,

D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource framework,

version 1.0. http://www.oasis-open.org/committees/download.php/6796/ws-

wsrf.pdf, March 2004.

[33] Antony Davies. Computational intermediation and the evolution of computation

as a commodity. Applied Economics, 36(11):1131–1142, June 2004.

[34] Jared Diamond. Guns, Germs, and Steel: The Fates of Human Societies. W.

W. Norton & Company, April 1999.

[35] Erik Elmroth and Peter Gardfjall. Design and Evaluation of a Decentralized

System for Grid-wide Fairshare Scheduling. In Proc. E-SCIENCE ’05: 1st In-

ternational Conference on e-Science and Grid Computing, pages 221–229, Wash-

ington, USA, May 2005. IEEE Computer Society.

[36] Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. Economic

Scheduling in Grid Computing. In Scheduling Strategies for Parallel Process-

ing, pages 128–152. Springer, 2002.

[37] Torsten Eymann, Werner Streitberger, and Sebastian Hudert. CATNETS - Open

Market Approaches for Self-organizing Grid Resource Allocation. In Jorn Alt-

mann and Daniel Veit, editors, Proc. GECON’07, Rennes, France, volume 4685

of Lecture Notes in Computer Science, pages 176–181. Springer, August 2007.

[38] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integra-

tion. www.globus.org/alliance/publications/papers/ogsa.pdf, Last visited on

April 2009.

[39] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of High Perfor-

mance Computing Applications, 15(3):200–222, August 2001.

225

[40] Jan Foster, Carl Kasselman, Craig Lee, Bob Lindell, Klara Nahrsted, and Alain

Roy. A Distributed Resource Management Architecture that Supports Advanced

Reservations and Co-Allocation. In Proc. 7th International Workshop on Quality

of Service, London, UK, pages 27–36, April 1999.

[41] John K. Galbraith. The Affluent Society. Mariner Books, October 1998.

[42] P. Gardfjll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sand-

holm. Scalable Grid-wide Capacity Allocation with the SweGrid Ac-

counting System (SGAS). Concurrency and Computation: Practice

and Experience, published on line: http://www3.interscience.wiley.com/cgi-

bin/fulltext/119816803/PDFSTART, June 2007.

[43] Francesco Giacomini and Francesco Prelz. Definition Of Architecture, Techni-

cal Plan And Evaluation Criteria For Scheduling, Resource Management, Secu-

rity And Job Description. https://edms.cern.ch/file/332413/1/datagrid-01-d1.2-

0112-0-3.pdf, Last visited on April 2009.

[44] gLite Project. Official Documentation for LFC and DPM.

https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation/,

Last visited on April 2009.

[45] gLite Project. Storage Management Group webpage. http://sdm.lbl.gov/srm-

wg/, Last visited on April 2009.

[46] J. Gomes, M. David, J. Martins, L. Bernardo, J. Marco, R. Marco, D. Rodrguez,

Jos Salt, S. Gonzalez, Javier Snchez, A. Fuentes, Markus Hardt, A. Garca, P. Ny-

czyk, A. Ozieblo, Pawel Wolniewicz, M. Bluj, Krzysztof Nawrocki, Adam Padee,

Wojciech Wislicki, C. Fernndez, J. Fontn, A. Gmez, I. Lpez, Yannis Cotronis,

Evangelos Floros, George Tsouloupas, Wei Xing, Marios D. Dikaiakos, Jn Asta-

los, Brian A. Coghlan, Elisa Heymann, Miquel A. Senar, G. Merino, C. Kanel-

lopoulos, and G. Dick van Albada. First Prototype of the Crossgrid Testbed. In

F. Fernndez Rivera, Marian Bubak, A. Gmez Tato, and Ramon Doallo, editors,

Proc European Across Grids Conference, Santiago de Compostela, Spain, volume

226

2970 of Lecture Notes in Computer Science, pages 67–77. Springer, February

2003.

[47] Ladislav Hluch, Ondrej Habala, Martin Maliska, Branislav Simo, Viet D. Tran,

Jn Astalos, and Marian Babik. Grid Based Flood Prediction Virtual Organi-

zation. In Proc. e-Science’06, Washington, DC, USA, page 4. IEEE Computer

Society, October 2006.

[48] James J. Kennedy John P. Morrison, David A. Power. An Evolution of the

WebCom Metacomputer. J. Math. Model. Algorithms, 2:263–276, 2003.

[49] Chaitanya Kandagatla. Abstract Survey and Taxonomy of Grid Resource Man-

agement systems. http://arxiv.org/pdf/cs/0407012, Last visited on April 2009.

[50] John Kenneth Galbraith. A History of Economics (The Past as the Present).

Penguin, Harmondsworth Eng., 1991.

[51] Jens Kenschik. Hypergraph webpage. http://hypergraph.sourceforge.net/, Last

visited on April 2009.

[52] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy

and survey of grid resource management systems for distributed computing.

Software Practice and Experience, (2):135–164, 2002.

[53] John Lamping and Rao Ramana. Visualizing Large Trees Using the Hyper-

bolic Browser. In Proc. Conference on Human Factors in Computing Systems,

Vancouver, Canada, pages 388–389. ACM, April 1996.

[54] Gareth J. Lewis, Gergely Sipos, Florian Urmetzer, Vassil N. Alexandrov, and

Péter Kacsuk. The Collaborative P-GRADE Grid Portal. In Proc. ICCS’05, 5th

International Conference on Computational Science, Atlanta, USA, Part III,

volume 3516 of Lecture Notes in Computer Science, pages 367–374. Springer,

May 2005.

[55] Lijuan Lu and Yuhui Deng. A Time division pricing based economic model to

enhance qos and resources utilization of grid services. Proc. ChinaCom ’06. 1st

227

International Conference on Communications and Networking in China, Beijing,

China, pages 1–4, October 2006.

[56] Solomon M. The ClassAd Language Reference Manual.

http://www.cs.wisc.edu/condor/classad/, Last visited on April 2009.

[57] Daniel Minoli. A Networking Approach to Grid Computing. Wiley-Interscience,

2004.

[58] J. P. Morrison. Condensed Graphs: Unifying Availability-Driven, Coercion-

Driven, and Control-Driven Computing. PhD thesis, Technische Universiteit

Eindhoven, October 1996.

[59] J. P. Morrison, Power D, and Kennedy J. Load balancing and fault tolerance

in a condensed graphs based metacomputer. Journal of Internet Technologies,

Special Issue on Web based Programming, (3):221–234, December 2002.

[60] J. P. Morrison, J. J. Kennedy, and D. A. Power. WebCom: A Web Based

Volunteer Computer. The Journal of Supercomputing, 18:47–61, 2001.

[61] Anjan Mukherji. Walrasian and Non-Walrasian Equilibria: An Introduction to

General Equilibrium Analysis. Oxford University Press, USA, 1990.

[62] T. Munzner and P. Burchard. Visualizing the structure of the world wide web in

3d hyperbolic space. In Proc. VRML 1995 Symposium, San Diego, California,

USA, pages 33–38, December 1995.

[63] J. Nakai and R. F. Van Der Wijngaart. Applicability of Markets to Global

Scheduling in Grids. pages 1–37, February 2003.

[64] Dirk Neumann, Jochen Ster, Arun Anandasivam, and Nikolay Borissov. Sorma -

building an open grid market for grid resource allocation. In Jorn Altmann and

Daniel Veit, editors, Proc. GECON’07, Rennes, France, volume 4685 of Lecture

Notes in Computer Science, pages 194–200,. Springer, August 2007.

228

[65] Jens Nimis, Arun Anandasivam, Nikolay Borissov, Garry Smith, Dirk Neumann,

Niklas Wirstrom, Erel Rosenberg, and Matteo Villa. Sorma - business cases for

an open grid market: Concept and implementation. In Jorn Altmann, Dirk Neu-

mann, and Thomas Fahringer, editors, Proc. GECON’08, Las Palmas, Spain,

volume 5206 of Lecture Notes in Computer Science, pages 173–184. Springer,

August 2008.

[66] Organization for the Advancement of Structured Information Stan-

dards OASIS. MUWS 1.1 Part 1 Specification. http://www.oasis-

open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf,

Last visited on April 2009.

[67] David O’Callaghan and Brian Coghlan. Bridging Secure WebCom and European

DataGrid Security for Multiple VOs over Multiple Grids. In Proc. ISPDC 2004,

pages 225–231, Cork, Ireland, July 2004. IEEE Computer Society.

[68] Francesco Pacini and Peter Kunszt. JDL Attributes Specification (submission

through Network Server). https://edms.cern.ch/file/555796/1/EGEE-JRA1-

TEC-555796-JDL-Attributes-v0-4.pdf, Last visited on April 2009.

[69] Francesco Pacini and Alessandro Maraschini. Job Description Lan-

guage (JDL) Attributes Specification (Submission through the WMProxy

Service). https://edms.cern.ch/file/590869/1/EGEE-JRA1-TEC-590869-JDL-

Attributes-v0-4.pdf, Last visited on April 2009.

[70] M. A. Pettipher, A. Khan, T.W. Robinson, and X. Chan.

Review of Accounting and Usage Monitoring Final Report.

http://www.jisc.ac.uk/publications/publications/accountingusagereport.aspx,

Last visited on April 2009.

[71] G. Pierantoni, E. Kenny, and B. Coghlan. An Agent-based Architecture for

Grid Societies. In Proc. PARA’06, Applied Parallel Computing. State of the Art

in Scientific Computing, 8th International Workshop, Ume̊a, Sweden, Revised

229

Selected Papers, volume 4699/2008 of Lecture Notes in Computer Science, pages

830–839. Springer, June 2006.

[72] G. Pierantoni, E. Kenny, B. Coghlan, O. Lyttleton, D. O’Callaghan, and

G. Quigley. Interoperability using a Metagrid Architecture. In Proc. HDPC’06,

Paris, France, pages 23–30, June 2006.

[73] G. Pierantoni, O. Lyttleton, D. O’Callaghan, G. Quigley, E. Kenny, and B. Cogh-

lan. Multi-Grid and Multi-VO Job Submission based on a Unified Computational

Model. In Proc. Cracow Grid Workshop (CGW05), pages 341–349, Kracow,

Poland, November 2005.

[74] Rosario M. Piro, Michele Pace, Antonia Ghiselli, Andrea Guarise, Eleonora

Luppi, Giuseppe Patania, Luca Tomassetti, and Albert Werbrouck. Tracing

Resource Usage over Heterogeneous Grid Platforms: A Prototype RUS Inter-

face for DGAS. In Proc. E-SCIENCE ’07: 3rd IEEE International Conference

on e-Science and Grid Computing, pages 93–101, Washington, DC, USA, 2007.

IEEE Computer Society.

[75] P-Grade portal project. PROVE Presentation.

http://www.lpds.sztaki.hu/pgrade/p grade/pgrade/sld018.html, Last visited

on April 2009.

[76] EGRID Project. STORM webpage. http://www.egrid.it/about/collaborations/

storm description/, Last visited on April 2009.

[77] Unicore Project. Unicore webpage. http://www.unicore.eu/index.php, Last vis-

ited on April 2009.

[78] Tim Puschel, Nikolay Borissov, Mario Macas, Dirk Neumann, Jordi Guitart,

and Jordi Torres. Economically Enhanced Resource Management for Internet

Service Utilities. In Boualem Benatallah, Fabio Casati, Dimitrios Georgakopou-

los, Claudio Bartolini, Wasim Sadiq, and Claude Godart, editors, WISE, volume

4831 of Lecture Notes in Computer Science, pages 335–348,. Springer, December

2007.

230

[79] Raman Rajesh, Livny Miron, and Solomon Marvin. Matchmaking: Distributed

Resource Management for High Throughput Computing. In Proc. 7th IEEE

International Symposium on High Performance Distributed Computing, Chicago,

Illinois, USA, pages 28–31, July 1998.

[80] Raman Rajesh, Livny Miron, and Marvin Solomon. Policy Driven Heterogeneous

Resource Co-Allocation with Gangmatching. In Proc. 12th IEEE International

Symposium on High Performance Distributed Computing (HPDC-12 ’03), Seat-

tle, Washington, USA, pages 80–89, June 2003.

[81] Rajesh Raman. Matchmaking Frameworks for Distributed Resource Manage-

ment. PhD thesis, The University of Wisconsin, Last visited on April 2009.

Supervisor: Miron Livny.

[82] Keith Rochford, John Walsh, Eamonn Kenny, and Brian Coghlan. A Standards-

Based Architecture for Grid Service Management. In Proc. ISPDC ’07, 6th

Parallel and Distributed Computing, Hagenber, Austria, page 24, USA, July

2007. IEEE Computer Society.

[83] Ed Seidel, Gabrielle Allen, André Merzky, and Jarek Nabrzyski. Gridlab: a grid

application toolkit and testbed. Future Gener. Comput. Syst., 18(8):1143–1153,

2002.

[84] William F. Sharpe. The Economics of Computers. Columbia University Press,

New York, NY, USA, 1972.

[85] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and Rajku-

mar Buyya. Libra: a computational economy-based job scheduling system for

clusters. Software Practice and Experience, 34(6):573–590, 2004.

[86] A. Sim and V. Natarajan. OGF — Grid Interoperability Now (GIN) webpage.

https://forge.gridforum.org/projects/mgi/, Last visited on April 2009.

[87] Joseph Stiglitz. Globalization and its discontents. Penguin, London, 2002.

231

[88] Joseph E. Stiglitz. The Roaring Nineties: Why We’re Paying the Price for the

Greediest Decade in History. Penguin Books Ltd, June 2004.

[89] PJ Strange, T Antoni, F Donno, H Dres, G Grein, G Mathieu, A Mills, D Spence,

T Min, and M Verlato. Global GRID User Support : The Model and Experience

in LHC Computing GRID. http://epubs.cclrc.ac.uk/work-details?w=35266,

Last visited on April 2009.

[90] Francesca Toni. E-business in ArguGRID. In Proc. GECON’07, Rennes, France,

pages 164–169, August 2007.

[91] Globus Toolkit Project. Globus GRAM webpage.

http://www.globus.org/toolkit/docs/2.4/gram/, Last visited on April 2009.

[92] Globus Toolkit Project. Globus Toolkit webpage.

http://www.globus.org/toolkit/, Last visited on April 2009.

[93] Globus Toolkit Project. Resource Specification Language webpage. http://www-

fp.globus.org/gram/rsl spec1.html, Last visited on April 2009.

[94] Sven van de Berghe, Gilbert Netzer, Rosario Piro, Morris Riedel, and Davy

Virdee. JRA1 Accounting Milestone: Preliminary design documents. omii-

europe.com/OMIIEurope/News/OMIIEuropeMJRA1.4.pdf, April 2009.

[95] Maoguang Wang, Zhongzhi Shi, and Shifei Ding. Hierarchical policy for agent

grid collaboration. In GCC ’07: Proceedings of the Sixth International Con-

ference on Grid and Cooperative Computing, pages 236–241, Washington, DC,

USA, 2007. IEEE Computer Society.

[96] R. Wolski, J. Brevik, J. S. Plank, and T. Bryan. Grid Resource Allocation and

Control Using Computational Economies. pages 747–772, 2003.

[97] Rich Wolski, James S. Plank, John Brevik, and Todd Bryan. Analyzing Market-

Based Resource Allocation Strategies for the Computational Grid. International

Journal High Performamce Computing Application, 15(3):258–281, 2001.

232

[98] Chunling Zhu, Xiaoyong Tang, Kenli Li, Xiao Han, Xilu Zhu, and Xuesheng Qi.

Integrating Trust into Grid Economic Model Scheduling Algorithm. In Proc.

OTM Confederated International Conference, Montpellier, France, volume 2,

pages 1263–1272. Springer Berlin, October 2006.

233

