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Abstra
tIn
reasing tra�
 
ongestion levels are 
ausing high worldwide e
onomi
, environmental and so
ial
osts. E�
ient urban tra�
 
ontrol (UTC) is part of the solution to the tra�
 
ongestion problem.However, UTC optimization is a 
hallenging task. Urban tra�
 is 
hara
terized by 
onstantly �u
tu-ating tra�
 patterns. Daily variations in tra�
 volume and dire
tion, driver behaviour, unexpe
tedemergen
y situations and tra�
 a

idents all result in tra�
 �u
tuations. Consequently, urban tra�
networks exhibit non-stationary behaviour and UTC systems are 
omplex. Furthermore, any lo
altra�
 
ontrol de
isions 
arried out at a given signalized jun
tion 
ontroller may a�e
t both upstreamand downstream jun
tions. Hen
e, un
oordinated or poor lo
al de
isions 
an negatively impa
t on thetra�
 network. Modelling UTC as an optimization problem is also 
ompli
ated by the heterogeneousinterlinked layouts of signalized jun
tions and the s
ale of the system.UTC has been a widely studied problem for a long time. Numerous systems and methodolo-gies have been proposed to address it over the last four de
ades. Classi
al UTC systems are either
ontrolled by a dedi
ated 
entral server or in a distributed manner. The majority rely on 
omplexmathemati
al and predi
tive models to optimize spe
i�
 settings of a given tra�
 
ontroller. Withthe in
reasing 
osts of 
ongestion, the performan
e of these systems, whi
h are still in servi
e in themajor 
ities of the world, have prompted questions 
on
erning their e�e
tiveness and adaptivenessin saturated tra�
 
onditions. Other approa
hes range from rule-based systems and those modelledusing fuzzy/heuristi
 and dynami
 optimization te
hniques, to evolutionary game theory and geneti
programming based approa
hes. However, these approa
hes are still 
hallenged to provide s
alableand yet real-time adaptive and responsive performan
e. In addition, reinfor
ement learning (RL) andnumerous de
entralized RL methods are being in
reasingly studied for UTC optimization. The natureof RL as an unsupervised learning approa
h, and parti
ularly Q-Learning, as a model-free learningstrategy, allows for in
omplex problem modelling and 
ontrol of the exploration pro
ess towards anear optimal solution. Su
h 
hara
teristi
s are advantageous for developing a real-time adaptive andresponsive UTC solution. v



The un
ertainty present in UTC environments makes the optimization task more 
hallenging. Oneof the major sour
es of that un
ertainty is the non-stationary nature of tra�
. An RL approa
h toUTC optimization must be designed in a manner through whi
h it is �rstly 
apable of distinguishingbetween stable situations and se
ondly able to e�
iently optimize for ea
h. Moreover, the perfor-man
e of existing RL-based UTC approa
hes is often evaluated using simpli�ed grid-like maps. Someapproa
hes use model-based RL and partially observable markov de
ision pro
esses (POMDPs) thatadd unjusti�able 
omplexity. When trying to handle the non-stationary nature of tra�
 while usingRL, stri
t assumptions are needed, e.g., that a small number of stationary tra�
 
onditions re
ur,that tra�
 patterns 
hange infrequently and the independen
e of su
h 
hanges from tra�
 
ontrollerde
isions. In addition, some of these approa
hes presume the availability of knowledge that is key totheir operation but impra
ti
al to obtain from the real world.Our 
ontribution is a de
entralized multi-agent RL UTC strategy that models heterogeneous sig-nalized jun
tions and optimizes UTC in an adaptive and responsive manner. It is motivated bythe la
k of a model-free de
entralized RL approa
h for UTC optimization that 
an deal e�
ientlywith the non-stationary nature of tra�
 without limiting assumptions and the possibility of tak-ing advantage of the in
reasing availability of �oating vehi
le data (FVD). The growing adoption ofvehi
le-to-vehi
le/infrastru
ture 
ommuni
ation and the pervasiveness of di�erent positioning systemsboth motivate the 
onsideration of FVD as a means of providing a ri
h view of lo
al tra�
 
ondi-tions. We have designed a UTC optimization s
heme based on RL that deploys an adaptive roundrobin 
ontroller agent paired with a non-parametri
 tra�
-pattern 
hange-dete
tion me
hanism persignalized jun
tion, namely, a Soilse agent. The Soilse agent optimizes phase timings using RL in anon-
ollaborative manner. The agent is referred to as SoilseC when it also 
ollaborates with neigh-bours. It adapts to lo
al tra�
 
onditions and responds to di�erent tra�
 patterns when required. Inorder to provide for su
h responsiveness, it quanti�es the degree of 
hange per jun
tion using informa-tion about lo
al tra�
 on in
oming lanes and its lo
al performan
e. Essentially, our design allows foragents to relearn upon dete
ting a persistent lo
al tra�
 pattern 
hange. The relearning parametersare mainly based on an average sample of the relevant degree of pattern 
hange. An evaluation ofour approa
h shows its e�e
tiveness against a non-adaptive �xed-time UTC system and a satura-tion balan
ing algorithm that emulates the Sydney Coordinated Adaptive Tra�
 System (SCATS).The evaluation is based on simulations of real Dublin maps of di�erent s
ale and near-realisti
 tra�
volumes and �u
tuations dedu
ed from publi
ations by the National Roads Authority in Ireland.
vi
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Chapter 1
Introdu
tion
This thesis presents a new de
entralized approa
h to online optimization of urban tra�
 
ontrol (UTC)using Reinfor
ement Learning (RL). In our approa
h, ea
h RL agent learns to 
ontrol a spe
i�
signalized jun
tion through environmental feedba
k and potential 
ollaboration with neighbouringagents. Agents adapt to lo
al tra�
 
onditions by learning a sequen
e of tra�
 light phases to beused. They respond to �u
tuating tra�
 patterns or unsatisfa
tory performan
e by relearning basedon a lo
al non-parametri
 tra�
-pattern 
hange-dete
tion me
hanism. The novelty of our approa
hstems from its online de
entralized UTC optimization s
heme using RL without a priori knowledge oftra�
 models in an adaptive and responsive manner that deals with �u
tuating tra�
. Essentially, byproviding su
h an adaptive and responsive UTC s
heme we aim to redu
e 
ongestion in urban areas.This 
hapter introdu
es RL in
luding 
entralized and de
entralized RL s
hemes. It also provides ahistori
al ba
kground 
on
erning UTC and introdu
es the relevant fa
ts and 
hallenges in the domain.An emerging sour
e of data for UTC optimization namely, �oating vehi
le data (FVD) is introdu
ed aswell as the 
ommon UTC 
on
epts and 
urrent trends in UTC optimization. Furthermore, we presentour hypothesis whi
h is based on a number of arguments 
on
erning the de
entralization of UTC onlineoptimization using RL and on the viability of lo
al non-parametri
 tra�
-pattern 
hange-dete
tion.We also present our 
ontribution that provides a s
heme for UTC optimization using RL while dealingwith �u
tuating urban tra�
 in a de
entralized and online manner. Finally, the organization of therest of this thesis is presented. 1



1.1. Reinfor
ement Learning1.1 Reinfor
ement LearningThe essen
e of RL 
an be tra
ed to the manner by whi
h nature's intelligent elements 
an learn byintera
ting with the surrounding environment. Sutton & Barto (1998) de�ne RL as �learning howto map situations to a
tions so as to maximise a numeri
al reward signal�. RL is an unsupervisedlearning approa
h in the sense that an agent does not rely on a knowledgeable master that might havespe
i�
 domain knowledge. On the 
ontrary, agents explore their environment by sensing di�erentsituations stimuli and then exe
uting some sele
ted a
tion(s) whi
h result in a feedba
k in the formof a reward.Any RL solution is based on two basi
 elements, namely, a reward fun
tion and a value fun
tion.Optionally, some RL solutions make use of a model of the environment to predi
t the reward and nextstate after taking an a
tion in a given state. The reward fun
tion is meant to provide an immediategoodness measure for a 
ertain a
tion in a given state. The value fun
tion, as opposed to the rewardfun
tion, tries to indi
ate the long-run goodness of a given a
tion, i.e., the expe
ted rewards that 
anbe a

umulated over the future starting from the 
urrent state. Intera
tion with the environmenteventually provides the RL agent with a poli
y, i.e., a mapping between all states and their respe
tivebest a
tions at any given time. Moreover, a
tion sele
tion 
an o

ur using exploratory strategies, (e.g.,
ǫ-greedy or Boltzmann (Sutton & Barto, 1998)) or non-exploratory strategies, (e.g., greedy). Findingthe limit to whi
h exploration should last is known as the exploration versus exploitation dilemma.Exploitation is the phase during whi
h the agent puts the previously learnt poli
y into 
ontrol. Theessen
e of the dilemma is in the fa
t that an agent 
annot run purely on exploration or exploitationotherwise it will be learning forever without a
tually putting the learnt poli
y into 
ontrol or it willallow a given poli
y to 
ontrol forever, hen
e a balan
e is needed. Q-Learning (Watkins & Dayan,1992) is a well-established model-free o�-poli
y (explained below) RL strategy based on the 
on
eptof dis
ounted expe
ted rewards. An RL agent that uses Q-Learning usually learns with a spe
i�
 rate
α : 0 ≤ α < 1 and a 
ertain dis
ount rate γ : 0 ≤ γ < 1 through a Markov De
ision Pro
ess (MDP)representation of the environment. It is a model-free approa
h in the sense that it does not requiresome a priori likelihood model for the a
tions that 
ould be exe
uted on the environment. Q-Learningis 
onsidered an o�-poli
y strategy as it learns and updates the agent's knowledge even while takinga
tions that 
ould prove to be non-optimal in the future (Abdulhai et al., 2003). Being an o�-poli
ylearning strategy, as well as allowing for short period knowledge updating per a
tion taken, Q-Learningis an ideal 
andidate for UTC optimization given the non-stationary nature of tra�
 (Abdulhai et al.,2003). 2



Chapter 1. Introdu
tion1.1.1 De
entralized Reinfor
ement LearningClassi
al RL is a 
entralized optimization approa
h. This makes problem modelling more di�
ult asthe system's 
omplexity in
reases due to the in
rease in the number of system's states that need tobe represented whi
h 
ould be also a

ompanied by an in
rease in the number of de
isions/a
tions.The UTC problem, for example, deals with numerous inter
onne
ted signalized jun
tions with someof a heterogeneous road layout. For a relatively small 
ity like Dublin, the 
ity 
entre has roughly ∼250signalized jun
tions that need to be simultaneously 
ontrolled. A distributed/de
entralized versionof RL 
an be useful (Abdulhai & Pringle, 2003) for su
h a system while a 
lassi
al (
entralized)RL view poses problem modelling 
omplexity as the network of signalized jun
tions in
reases insize. Many de
entralized RL approa
hes where no single RL agent models and 
ontrols the globalproblem have been proposed. They provide optimization approa
hes of a distributed manner thatbreaks the global optimization problem into manageable sub-problems. Ea
h RL agent deals withits assigned sub-problem lo
ally with the possibility of 
ollaboration, (i.e., knowledge ex
hange) withother agents. This 
ould be seen as a spe
ialized Multi-Agent System (MAS) where agents use RLfor optimization (Bu³oniu et al., 2008; Panait & Luke, 2005). Furthermore, several 
ollaborative RLapproa
hes (Dowling et al., 2006; Kok & Vlassis, 2006; Hoen et al., 2006; Goldman & Zilberstein,2004; Tesauro, 2003; Guestrin et al., 2002; Ahmadabadi et al., 2001; Abul et al., 2000; Tan, 1998; Hu& Wellman, 1998; Claus & Boutilier, 1997; Littman, 1994) have been proposed and we will dis
ussthem later in Chapter 2. Dowling et al. (2006) they use the term CRL to refer to a spe
i�
 form ofCollaborative Reinfor
ement Learning. We adopt the term CRL only in des
ribing our frameworkimplementation in Chapter 4, however, our CRL view is di�erent than theirs. We use the term CRLto refer to a s
heme where RL agents 
an 
ollaborate, i.e., ex
hange knowledge of any nature that 
anbe used in updating the agent's lo
al knowledge besides the use of its lo
al rewards.1.2 Urban Tra�
 ControlThe history of tra�
 management arguably extends ba
k to the Roman era. It is interesting to notethat the proverb �all roads lead to Rome� is based on the fa
t that a referen
e point, in the form of agolden milestone, was positioned in the Forum in the an
ient 
ity of Rome. Road builders in Rome,in their turn, used milestones as a form of primitive means to inform road users about their relativelo
ation to the golden milestone in Rome (Mueller, 1970). These distributed milestones worked asindi
ators or signals of reassuran
e for road users that they were on the right route towards Rome.Although they were stati
, they were su�
ient for road users of that era. Sin
e then, the means to3



1.2. Urban Tra�
 Control

Figure 1.1: Sket
h of the world's �rst tra�
 signal that was installed on the jun
tion of George andBridge streets in London in 1868 (Mueller, 1970)inform and even 
ontrol tra�
 
reated by the in
reasing number of road users have indeed 
hangeddramati
ally.As roads be
ame wider and tra�
 grew heavier, the need to manage movement within 
ities andthe in
reasing number of road fatalities be
ame an urgent issue with whi
h to deal. It was in theBritish parliament in the late eighteenth 
entury that it was �rst suggested to borrow a methoddeployed in railways to be used in 
ontrolling tra�
 on roads. A tra�
 superintendent from thesouth eastern British railway named J. P. Knight had suggested to Earl Granville that the 
on
eptof a railway semaphore signal 
ould be ported onto the road network to allow for tra�
 
ontrol(Ishaque & Noland, 2006). The British parliament agreed to Earl Granville's suggestion and installedthe world's �rst tra�
 signal (see Figure 1.1) on De
ember 1868 on a jun
tion near the Houses ofParliament in London. That tra�
 signal was paradoxi
ally put in pla
e to ease road a

ess formembers of parliament rather than improve pedestrians' safety. The tra�
 signal fun
tioned in a waythat 
ombined red and green gas lights with semaphore arms. The arms extended horizontally todenote a stop signal and on a 45o angle to denote 
aution. At night, the stop sign was a

ompaniedby a red light on the top while the 
aution signal was a

ompanied by a green one. The reader isreferred to (Mueller, 1970) for a more in depth history of tra�
 signals. Hen
eforth, the terms �tra�
signal� and �tra�
 light� are used inter
hangeably.Early tra�
 signals were 
ontrolled by poli
emen whi
h be
ame in
reasingly impra
ti
al as widerdeployment took pla
e in di�erent 
ities. A greater number of jun
tions had to be 
ontrolled ina manner that was intended to provide better tra�
 �ow within 
ities. The ultimate goal would4



Chapter 1. Introdu
tionbe to provide what is known as a �green wave� or a series of go signals along a desired path of
ontrolled jun
tions. Advan
es in ele
troni
s and 
omputer s
ien
e have made it possible to devise
omputerized UTC systems that 
an manage tra�
, in terms of e�
ient automated operation andperforman
e optimization, on a larger number of 
ontrolled jun
tions, i.e., signalized jun
tions. Su
ha system was �rst deployed in Toronto in 1959 using an IBM 650 
omputer to 
ontrol nine signalizedjun
tions (Gazis, 1971). Early UTC systems were 
entrally 
ontrolled and relied on dete
tors su
has magneti
 loops, radar and sonar. The main fun
tionalities provided by the 
ontrol software wereele
tri
al a
tuation of jun
tion 
ontrollers, tra�
-light state monitoring and dete
tor data pro
essing.The latter data was typi
ally stored for potential o�ine analysis while some sele
ted data was usedfor better online 
ontrol strategies. Su
h 
ontrol strategies were mainly based on the 
on
ept ofsyn
hronizing a line of jun
tions, usually an arterial road, in order to allow for vehi
les to travel ata 
onstant speed with minimal stops. However, those strategies were �xed for 
ertain situations and
onstrained by the number of 
ontrolled jun
tions. Moreover, with the in
reasing number of vehi
les onroads and the growing s
ale of urban road networks, the UTC problem has be
ome more 
hallenging.Consequently, the need for more sophisti
ated and 
oordinated UTC systems to provide e�
ient tra�

ontrol strategies has arisen. The ultimate goal for su
h 
omputerized UTC systems is to provide ane�
ient tra�
 
ontrol strategy that runs in an optimal manner in order to minimize road 
ongestion.This optimality is dire
tly related to a
hieving minimum vehi
le delay, less-interrupted tra�
 �ow ora minimum number of vehi
le stops and in
reased vehi
le velo
ity. Details on the progression of earlyUTC systems 
an be found in (Gazis, 1971).1.2.1 UTC Fa
ts and ChallengesUrban tra�
 is an evolving problem 
losely related to population growth and world e
onomi
 fa
tors.Many 
ountries are seeing an in
rease in vehi
les per 
apita with ea
h passing year. As far as theOrganisation for E
onomi
 Co-operation and Development (OECD) 
ountries are 
on
erned, roadmotor vehi
les per thousand inhabitants have in
reased over the period from 1990 until 2006 in allstudied 
ountries ex
ept the United States (OECD, 2008) for no 
lear reason but possibly due to itsmature status and in
reasing environmental publi
 awareness programs. Considerable in
reases werenoti
ed in 
ountries like Portugal, I
eland, Gree
e and Poland (see Figure 1.2).As urbanization is in
reasing, road networks in di�erent 
ountries are expanding as well. Forexample, in the European Union (EU), more than 60% of the population are living in urban areas
hara
terized by many more than 10, 000 residents (European Commission, 2007b). The rate at whi
hroad networks are expanding varies from one 
ountry to another given that some 
ountries already5
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CountryFigure 1.2: Road motor vehi
les per thousand inhabitants in sele
ted OECD 
ountries (OECD,2008)have mature road networks. The annual growth in road network size 
an vary from 6% in 
ountrieslike Korea, Poland, Portugal, Ireland and Gree
e to a lower rate of 2% in 
ountries with matureroad networks like the United States, Germany, Canada, the Russian Federation and the Netherlands(OECD, 2008).As the network of signalized jun
tions grew along with the in
reasing number of vehi
les on roads,the problem of providing an e�
ient UTC system be
ame naturally more 
omplex. Evidently, theproblem has not yet been solved, for instan
e, the United States has roughly 330, 000 tra�
 signals ofwhi
h 75% 
an be adjusted to be made more e�
ient using, but not ex
lusively, di�erent timing plans(United States DOT, 2007). However, the s
ale is not the sole issue, road users also exhibit di�erenttravelling routines while unexpe
ted emergen
y and a

ident situations make tra�
 networks non-stationary in nature. Su
h tra�
 
hara
teristi
s in
rease the UTC optimization 
hallenge. Anothermodelling and 
ontrol 
hallenge that fa
es UTC systems is the heterogeneous stru
ture of interlinkedsignalized jun
tions. The e�e
ts of 
ontroller de
isions 
arried out at one jun
tion will propagate inthe road network a�e
ting the performan
e of others, espe
ially, their immediate neighbours. Conse-quently, the need for a well-designed 
ollaboration s
heme is vital in providing e�
ient UTC systems(Bazzan, 2004).The negative impa
t of poor UTC systems is massive and 
an be essentially summed up in oneword �
ongestion�. It is true that better and more e�
ient UTC systems 
annot alone solve thisin
reasing problem but they 
an surely help to redu
e it (European Commission, 2007a; United StatesDOT, 2007). Congestion 
auses worldwide environmental, e
onomi
 and so
ial problems. In the EUalone, 
ongestion annually 
osts around 1% of the member 
ountries' Gross Domesti
 Produ
t (GDP)(European Commission, 2007b) and an estimated ∼AU$20.4 billion by 2020 in Australia (Cosgrove6
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tion& Gargett, 2007). In 2007, 
ongestion 
ost the United States ∼US$87.2 billion in 439 urban areas
al
ulated based on wasted time and fuel (S
hrank & Lomax, 2009). As far as the environment is
on
erned, 
ongestion is a major 
ause of air and noise pollution. Urban mobility in the EU 
ontributes
40% of the overall CO2 emissions 
aused by road transportation while this per
entage in
reases to
70% of all other pollutants (European Commission, 2007a). These 
onsiderable per
entages are due toin
reasing tra�
 growth and to the stop-go nature of driving in 
ities despite the advan
es in vehi
leemission redu
tion te
hnologies (European Commission, 2007b). Furthermore, a re
ent survey by theDepartment of Transportation in the United States has shown that 47% of Ameri
ans agree that delay
aused by tra�
 
ongestion is a top 
ommunity 
on
ern (United States FHWA, 2001).Part of the solution to tra�
 
ongestion is evidently better and more e�
iently responsive UTCsystems (European Commission, 2007b,a; United States DOT, 2007). Adaptive and responsive UTCsystems have proved to be promising in many 
ases in the United States. Compared to previouslydeployed systems, a

ording to (United States DOT, 2007) for example, a new Texas Light Syn
hro-nization program managed to redu
e tra�
 delay by 24.6%, fuel 
onsumption by 9.1% and the numberof vehi
le stops by 14.2%, all through signal timing optimization and equipment update. In Califor-nia, a new fuel-e�
ient tra�
 signal management program managed to redu
e fuel 
onsumption by
8%. Los Angeles' Adaptive Tra�
 Control System (ATCS) whi
h operates as the 
ity's main tra�

ontrol system, managed to diminish average delay by 21.4% and vehi
le average number of stopsby 31% through real-time response (signal timing adjustment) to tra�
 demands. The results aboveen
ouraged further resear
h in providing more e�
ient UTC systems in the US through dedi
atedFederal and State funding programs (United States DOT, 2007). The above advan
es might havebeen the result of a long awaited improvement in the poor performan
e of lega
y UTC systems. Re-
ently, new approa
hes are being 
onsidered to 
ome up with �smarter� UTC solutions to deal withthe in
reasing 
ongestion problems, for instan
e, a re
ent 2009 governmental report on �Australia'sDigital E
onomy: Future Dire
tions� has identi�ed the use of Arti�
ial Intelligen
e (AI) and moreadvan
ed tra�
 sensor te
hnologies for developing better UTC systems as a strategi
 resear
h goal(Commonwealth of Australia, 2009).The enabling te
hnologies to design and deploy an e�
ient UTC system that ta
kles these 
hal-lenges are in
reasingly be
oming pervasive. The domain that en
ompasses su
h te
hnologies is referredto as Intelligent Transportation Systems (ITS) where information pro
essing and 
ommuni
ation te
h-nologies are being applied to the transportation domain (Yang & Wang, 2007). This ranges fromdevising better UTC optimization s
hemes to navigation systems and real-time tra�
 monitoring. Animportant driver of ITS appli
ations is �oating vehi
le/
ar data (FVD/FCD) and its 
ommuni
ation7



1.2. Urban Tra�
 Controlmeans. They provide a ri
h real-time view of tra�
 status in 
ities that 
an be exploited for severalappli
ations in
luding UTC optimization.In summary, it is 
lear that tra�
 
ongestion is a worldwide problem that has been 
learly 
aus-ing e
onomi
, environmental and so
ial problems (see statisti
s above). This problem is worseningwith the in
rease in urbanization, vehi
le numbers, population and the possible ine�
ien
y of lega
yUTC systems. Di�erent e�orts are being exerted to develop more e�
ient UTC systems that aremore adaptive and responsive to tra�
 
hanges. However, innovative and �smart� UTC optimizations
hemes that make use of progressive tra�
 management te
hnologies like FVD and AI have onlyre
ently 
ame into fo
us.1.2.2 Floating Vehi
le DataThe 
ore idea behind FVD (European Commission, 2003) is to provide di�erent means to 
ommuni
atevarious data asso
iated with vehi
les in a more pervasive and 
ost-e�e
tive manner using vehi
le-to-infrastru
ture (V2I) or vehi
le-to-vehi
le (V2V) 
ommuni
ation. Su
h data is usually spatio-temporal,for example, the lo
ation of an anonymous (or possibly known) vehi
le at a given point of time onthe road network. Furthermore, with the in
reasing availability of in-vehi
le sensors, data 
ouldrange from air pressure levels in tires to fuel 
onsumption and a

urate speed data at a given time.Standardization e�orts are also playing a major role in helping the spread and adoption of FVD-based te
hnologies and solutions. The International Standards Organization (ISO) and the EuropeanCommittee for Standardization (CEN) are leading the e�orts in providing standards for V2V and V2I
ommuni
ation te
hnologies. Most notably, the Dedi
ated Short Range Communi
ations (DSRC) (Bai& Krishnan, 2006) and the Continuous Air-interfa
e, Long and Medium Range (CALM) (Williams,2004) standards that make use of the wireless a

ess in vehi
ular environments (WAVE) enabling IEEEproto
ol, namely, IEEE 802.11p (Ei
hler, 2007). The latter aims at providing a wide platform of di�er-ent 
ommuni
ation te
hnologies working seamlessly together in
luding, for example, DSRC, GeneralPa
ket Radio Servi
e (GPRS), Global System for Mobile 
ommuni
ations (GSM) and InternationalMobile Tele
ommuni
ations-2000 (IMT-2000) or 3G.Traditionally, tra�
 demand data is gathered through sensors embedded in the road infrastru
turesu
h as indu
tive loop dete
tors or 
ameras. With the standardization of FVD te
hnologies and thein
reasing pervasiveness of wireless positioning systems, e.g., Global Position System (GPS), as wellas the 
onsiderable investments in V2I and V2V 
ommuni
ation te
hnologies; it is now possible toestablish a FVD enri
hed environment with a signi�
antly lower 
ost 
ompared to the traditionalapproa
hes (European Commission, 2003). Moreover, e�orts at better positioning systems su
h as8



Chapter 1. Introdu
tionthose of the European Union, have resulted in a promising satellite positioning proje
t namely, Galileo(European Commission, 2001), whi
h is expe
ted to be more a

urate than 
urrent GPS te
hnology.This will potentially have a positive impa
t on tra�
 management solutions (Kuhne, 2003).Moreover, there has been a re
ent fo
us on enri
hing the set of typi
al FVD information, e.g.,position, speed and time (Messelodi et al., 2009). Through dealing with vehi
les as moving sensors,e.g., 
ameras and tra�
 level analyzers, typi
al FVD is enri
hed with information resulting fromvehi
le surroundings analysis, e.g., road 
onstru
tion noti�
ation and tra�
 level. The reader isreferred to the survey by (Luo & Hubaux, 2004) for more information on FVD.1.2.3 Common UTC Con
eptsThere are a number of 
on
epts that are used in des
ribing the fun
tionality within a UTC system.An introdu
tion to some 
ommon UTC 
on
epts is provided in this subse
tion.� Signalized jun
tion: a jun
tion that is 
ontrolled by a tra�
 light.� Phase: a phase is 
hara
terized by the ex
lusive set of tra�
 dire
tions allowed to pro
eed at agiven signalized jun
tion from 
ertain approa
hes at a given time. Only one phase 
an be a
tiveat a time where all its approa
hes have a green signal to go.� O�set (time): the time di�eren
e between the start of some phase on a given signalized jun
tionand the start of a di�erent phase on an adja
ent signalized jun
tion. Typi
ally relevant whenadja
ent jun
tions need to 
oordinate their phase a
tivation that may a�e
t 
onne
ting links.� Cy
le (time): the time needed to 
omplete a sequen
e of phases on a given signalized jun
tionin
luding o�sets.� Split: the proportioned green time allo
ated per phase for all phases in a 
y
le.� Oversaturation: a situation where links 
onne
ting signalized jun
tions rea
h their maximum
apa
ity in terms of number of vehi
les.Certain 
lassi
al UTC systems, as dis
ussed in Chapter 2, base their optimization methodology ontuning signalized jun
tions timing parameters su
h as the o�set, the 
y
le time and the split. Somenon-
lassi
al approa
hes, however, follow di�erent optimization methodologies based on phase a
tiva-tion de
isions and split 
al
ulation. 9



1.3. Hypothesis1.2.4 UTC Optimization TrendsSeveral UTC systems have been proposed over the past four de
ades. Spe
i�
ally, two systems, theSydney Coordinated Adaptive Tra�
 System (SCATS) (Sims & Dobinson, 1980; Lowrie, 1982) and theSplit Cy
le O�set Optimisation Te
hnique (SCOOT) (Hunt et al., 1982) have been deployed in manymajor 
ities. These systems are based on 
omplex mathemati
al models to optimize spe
i�
 timingsettings of a tra�
 
ontroller, namely, the o�set, split and 
y
le time. However, tra�
 
ontrol strategiesin su
h systems are either 
entrally or hierar
hi
ally formulated. Numerous other approa
hes havebeen proposed as 
omputational problem solving methodologies have evolved. Su
h approa
hes mainlyuse Dynami
 Programming, evolutionary game theory and geneti
 programming or a 
ombination ofthose. Others simply use fuzzy/heuristi
 models and rule-based methods with possible integration withevolutionary approa
hes. However, RL has emerged as a promising approa
h for UTC optimizationin whi
h true adaptiveness 
an be a
hieved (Abdulhai & Pringle, 2003; Abdulhai et al., 2003). We
on
entrate on de
entralized RL that spe
i�
ally uses Q-Learning for UTC optimization given itss
alability and appli
ability to online (re)learning that allows for the adaptiveness and responsivenessneeded by UTC.1.3 HypothesisOur hypothesis is based on the following arguments 
on
erning an e�
ient UTC system:� Lo
al tra�
 signals 
ontrolled by RL agents that 
an adapt and respond to 
hanging tra�
 areadvantageous 
ompared to �xed-time and SCATS-inspired tra�
 light 
ontrollers.� Designing an RL agent using an adaptive round-robin s
heme based on phases to 
ontrol a giventra�
 signal is possible.� De
entralization through assigning a 
ontrolling RL agent per signalized jun
tion that 
ollabo-rates with neighbouring agents 
an a
hieve better global performan
e.� Dete
ting tra�
 
hanges as they o

ur is possible based on tra�
 �ltering per lane and theperforman
e of the assigned RL agent without a priori tra�
 models.� Responsiveness 
an be a
hieved by relearning based on a quanti�ed lo
al degree of tra�
 
hange.� The proposed design does not presume spe
i�
 sour
es of sensor information but rather exposesa generi
 interfa
e. 10



Chapter 1. Introdu
tionWe evaluate our 
ombined hypothesis using a mi
ros
opi
 simulator that takes as inputs varyingtra�
 patterns simulated on di�erent real maps of Dublin 
ity. The evaluation in
ludes di�erents
enarios 
hara
terized by map s
ale, 
hanging tra�
 and 
ollaboration. Comparisons are madeagainst s
enarios using �xed-time 
ontrollers and against a SCATS-inspired algorithm, namely, SAT(Ri
hter, 2006).1.4 Prin
ipal ContributionThis thesis provides a de
entralized UTC optimization approa
h using RL and 
ollaboration s
hemes,that is e�
ient, adaptive and yet responsive to the non-stationary nature of urban tra�
. Ourprin
ipal 
ontribution is a s
alable s
heme in whi
h ea
h signalized jun
tion is 
ontrolled by an RLagent that is autonomously 
apable of dete
ting unsatisfa
tory performan
e and lo
al tra�
-pattern
hange to whi
h it responds by relearning based on the degree of 
hange observed. The RL agent
an potentially 
ollaborate with neighbouring agents in order to provide better global performan
e.With all their 
hara
teristi
s, we name our agents as �Soilse� whi
h means tra�
 lights in the Irishlanguage. Hen
eforth, a Soilse agent is RL-based where a SoilseC agent uses RL and 
ollaborates withits neighbours. Furthermore, the approa
h does not assume any domain knowledge nor prede�nedmodels of tra�
.1.5 Thesis OrganizationThe remaining 
hapters of this thesis are organized as follows. Chapter 2 presents the state-of-the-art in UTC in
luding 
lassi
al widely deployed de fa
to systems, as well as RL and non-RLapproa
hes. The 
hapter also dis
usses RL and de
entralized RL in
luding the main learning anda
tion sele
tion strategies. In Chapter 3 we detail the design of our UTC optimization agents, namely,Soilse and SoilseC in
luding the pattern 
hange dete
tion me
hanism and the relearning strategy. InChapter 4 we present our implementation using a CRL framework that we built as a C++ libraryand we des
ribe the intera
tion between the UTC simulator and the Soilse and SoilseC instan
es ofthat framework. Chapter 5 presents our evaluation results based on di�erent axises su
h as s
ale,
ollaboration, responsiveness and a
tion sele
tion strategies. We �nally 
on
lude and dis
uss futurework in Chapter 6.
11



Chapter 2
State of the ArtThe thesis merges between signi�
antly wide domains, i.e., reinfor
ement learning (RL) and urbantra�
 
ontrol (UTC) optimization. This thesis addresses RL-based optimization of UTC, therefore inthis 
hapter we introdu
e the ba
kground ne
essary for understanding our approa
h as well as relatedwork to position our 
ontribution and distinguish our approa
h from existing approa
hes. In this
hapter, we introdu
e Markov De
ision Pro
esses (MDPs) and dis
uss the essentials of RL and mostpopular learning and a
tion sele
tion strategies. We also dis
uss the de
entralization of RL. As well,we review di�erent 
lassi
al, (i.e., 
urrently deployed and de fa
to) approa
hes to UTC along with therelated work in non-RL-based and RL-based UTC optimization te
hniques.2.1 Reinfor
ement LearningIn this se
tion we introdu
e RL. We begin by des
ribing MDPs given their 
lose relation to modellingRL problems. We also introdu
e some well-known approa
hes to solving MDPs in the sense of seekingan optimal poli
y.2.1.1 Markov De
ision Pro
essesOften, RL problems are modelled using MDPs. An agent or any entity that per
eives and a
ts withinan environment 
ould 
ause a new underlying state. Su
h a state 
ould be the dire
t result of theagent's a
tions or due to other fa
tors su
h as other agents' a
tions or the natural dynami
s of theenvironment, e.g., the popular prey and predator or multiple predators problem (Kok & Vlassis, 2004).An MDP allows for the modelling of an agent's view of the environment and its intera
tion with it12



Chapter 2. State of the Artthrough:� S : a dis
rete set of states representing the possible environmental settings� A : a dis
rete set of a
tions available to the agent� R(st, at) : a reward fun
tion that returns a reward for taking a
tion a in state s at time t� T (st, at, st+1) : a transition probability model known a priori that provides the probability
p(st+1| st, at) of transiting to state st+1 if a
tion at is taken from state stAny problem modelled as an MDP must naturally satisfy the Markov property, i.e., the future be-haviour depends on the 
urrent state st but not on the past states. Su
h a property ensures that agiven state 
aptures the e�e
t of a previously taken 
hain of a
tions, whi
h allows simpler rules to solvethe MDP's optimal poli
y π∗, where π∗ is a mapping from the states to the best a
tions. It is possiblein this 
ase to write one-step formulas that 
an be, in some form, iterated upon in order to dis
over

π∗. An immediate reward rt+1 gives a goodness measure for the a
tion at exe
uted in state st. It 
anbe 
al
ulated based on the reward fun
tion R(st, at) or sometimes using R(st) whi
h returns a rewardfor being in st. Su
h a reward, however, might be insu�
ient to 
apture the expe
ted future e�e
t orthe long-term usefulness of taking a given a
tion unless it is 
ombined with future rewards. Hen
e,the 
on
ept of future dis
ounted rewards emerges. Naturally an agent will not be likely to wait foreverin order to a
quire a very high reward, however, it makes sense for it to in
lude future rewards whilede
reasing their importan
e as they o

ur further away in time. Su
h a behaviour 
an be a
hievedusing a de
reasing dis
ount rate known as γ ∈ [0...1]. The Bellman optimality equation (2.1) isa well-known optimality equation based on the 
on
ept of dis
ounted rewards and states' expe
tedutility. It is used to �nd the optimal utility U∗ for all states whi
h in many 
ases is referred to as
V ∗ as well. The Bellman equation aims at optimizing the value-fun
tion V / U that gives a goodnessmeasure for being in a 
ertain state, or alternatively, the state-a
tion value-fun
tion Q(st, at) whi
hprovides su
h a measure per a
tion per state.

U∗(st) = R(st) + γ maxa∈A(st+1)

∑

st+1

T (st, at, st+1)U∗(st+1) (2.1)Several 
lassi
al methods have been proposed to solve MDPs. The majority are 
onsidered tofall into the Dynami
 Programming (DP) paradigm (Sutton & Barto, 1998). Two well-known DPmethods for solving MDPs are the value and poli
y iteration methods. Although the DP paradigmassumes a perfe
t world model as in MDPs, it is an important basis for understanding RL whi
h doesnot require su
h a rigorous assumption. 13



2.1. Reinfor
ement Learning2.1.1.1 Value IterationAs the name implies, this method iterates through ea
h state in an MDP using the Bellman optimalityequation (2.1) as an update rule in order to rea
h an optimal poli
y. The stopping rule for su
h aniteration is usually based on the maximum di�eren
e between subsequent state utility approximations.If that di�eren
e is less than ǫ(1−γ)/γ then it is guaranteed that the error is less than some value of ǫ.Su
h an approa
h relies on an MDP with 
learly prede�ned transition model and state rewards. Themethod returns the �nal optimal utility for all states U∗. An algorithm des
ribing the value iterationmethod is shown in Algorithm (1).Algorithm 1 The value iteration DP methodV_I(S,A,T,R,γ,ǫ)
Ut ← 0Do
λ← 0For s ∈ S

Ut+1(s)← R(st) + γ maxa

∑
st+1

T (st, at, st+1)Ut(st+1)

λ← max(|Ut+1(s)− Ut(s)|, λ)EndUntil λ < (ǫ (1− γ)/γ)Return U∗The optimal utility for all states U∗ 
an then be used to devise an optimal poli
y π∗ by sele
tingthe a
tion with the maximum expe
ted utility for ea
h state, denoted as Q∗(s, a), based on equation(2.2).
Q∗(st, at) = R(st) + γ

∑

st+1

T (st, at, st+1)U∗(st+1) (2.2)
π∗(s) = argmaxa∈A(s)Q

∗(s, a) (2.3)The optimal poli
y π∗ 
an hen
e be formulated by �nding the set of a
tions of maximum utilityfor all states, see equation (2.3). 14



Chapter 2. State of the Art2.1.1.2 Poli
y IterationThe poli
y iteration method 
onsists of two parts through whi
h an agent �rstly produ
es a givenpoli
y using the Bellman update equation (2.1) and se
ondly tries to ameliorate that poli
y if possible.In essen
e, the method runs as a sequen
e of produ
ing poli
ies and testing their stability until anoptimal stable poli
y is found. An algorithm des
ribing the poli
y iteration method is shown inAlgorithm (2).Algorithm 2 The poli
y iteration DP methodP_I(S,A,T,R,γ,ǫ)Initialize U, π

1Do
λ← 0For s ∈ S

Ut+1(s)← R(s) + γ
∑

T (st, at, st+1)Ut(st+1)

λ← max(|Ut+1(s)− Ut(s)|, λ)EndUntil (λ < (ǫ (1− γ)/γ))For s ∈ S

temp← π(s)

π(s)← argmaxa∈A(s) [R(st) + γ
∑

T (st, at, st+1)U(st+1)]If temp 6= π(s)Then goto 1EndReturn π∗

The value iteration method is a 
ompa
t version of the poli
y iteration method. The latter it-eratively 
he
ks the stability of the resulting poli
y after a number of value fun
tion updates on allstates seeking exa
t 
onvergen
e. On the other hand, the value iteration method ignores su
h a ruleand a
ts greedily on the value fun
tion updates without seeking exa
t 
onvergen
e but still resultingin an optimal poli
y. 15



2.1. Reinfor
ement Learning2.1.1.3 Partially Observable MDPsIn 
ertain situations an agent may not be able to determine the state whi
h it is 
urrently in. Su
ha 
ase is often the result of dealing with an un
ertain environment where sensor inputs, fusion andinferen
e te
hniques are unable to dedu
e a given state with 
ertainty. Consequently, MDPs 
anbe extended in order to en
ompass a belief model that 
an provide a probability distribution overthe possible set of agent states, namely Partially Observable MDPs (POMDPs) (Kaelbling et al.,1998). For example, an agent 
an potentially be in three states with a belief state distributionof < B(s0) = 0.5, B(s1) = 0, B(s2) = 0.5 >, meaning that the agent 
an never be in s1 buthas an equal 
han
e of being in either s0 or s2 at a given time. As the agent intera
ts with theun
ertain environment, it will naturally need to update its belief model, hen
e an observation model
O(s, o) is used to inform the agent about the probability of an expe
ted observation in a givenstate. Consequently, the belief model 
an be determined a

ording to equation (2.4) where α is anormalization fa
tor.

∀st+1Bt+1(st+1) = αO(st+1, o)
∑

s

T (s, a, st+1)B(st) (2.4)Regardless of the inde�nite number of states resulting from the 
ontinuous values in the beliefmodel and the intra
tability of �nding an optimal solution in su
h a 
ase, some approa
hes have beenproposed under assumed 
onstraints in order to provide approximate solutions (Murphy, 1999). .2.1.2 Reinfor
ement Learning Stru
tureReinfor
ement Learning (Sutton & Barto, 1998; Kaelbling et al., 1996) is an extensively studiedapproa
h to solving a wide range of optimization problems. RL is an unsupervised learning approa
hthat aims at arriving to a setting through whi
h states are optimally mapped to a
tions, i.e., in amanner that maximizes the long-term expe
ted rewards re
eived after exe
uting a 
ertain a
tion in agiven state at a given time. Su
h a setting a
hieved by an RL agent 
onstitutes the agent's optimalpoli
y. An RL agent typi
ally dis
overs its environment through intera
tion, more spe
i�
ally, by trialand error. Hen
e, the learning pro
ess through whi
h an RL agent eventually tries to rea
h an optimalpoli
y, o

urs by exe
uting an a
tion in a given environmental state and 
onsequently evaluating theutility asso
iated with that a
tion in that state using the re
eived reward and next state information.Su
h an RL approa
h is normally referred to as a model-free approa
h in the sense that it has no apriori environmental model that spe
i�es the probability distribution on the set of a
tions allowed in16



Chapter 2. State of the Artea
h state, i.e., a transition model. The 
ontrary is naturally referred to as a model-based approa
h,whi
h in 
ertain 
ases predi
ts/estimates the out
ome, in terms of new state and reward. A typi
alRL agent, see Figure (2.1), represents its lo
al environment through a state-a
tion spa
e in the formof an MDP.
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Figure 2.1: A typi
al RL agent intera
ting with the underlying environments : state, r : reward, a : a
tionThe reward model in RL 
an be dis
rete or 
ontinuous. One 
ould design a dis
retized rewardmodel where a 
onstant value is returned based on some goodness 
onditions. For example, in agrid-world problem, an agent is required to navigate a grid to rea
h a goal state/square by takinga series of a
tions from a set of a
tions Agrid = {Left, Right, North, South}. The agent re
eivesa high positive reward rgoal = 100 when an a
tion a ∈ Agrid leads to the goal state. On the otherhand, any other a
tion a that does not lead to the goal state re
eives a negative reward r = −1. AnRL agent trying to �nd all optimal paths leading to the goal state will try to maximize the expe
tedfuture rewards in order to a
hieve its task. Indeed, the agent 
an re
eive hints (positive rewards)on the way to its goal square if the problem was modelled in su
h a way as to hasten a
hieving anoptimal poli
y. That model will allow for squares positioned one a
tion away from the goal state toreturn a high positive reward but relatively lower than the goal reward, r = 50 per example. Otherreward models 
an be 
ontinuous in the sense that they 
an fall in a given range of values. Forinstan
e, an RL-based tra�
 light 
ontroller that tries to arrive to an optimal 
ontrol poli
y, whi
hallows for the maximum number of vehi
les to pass through, 
ould have a reward model su
h that
r = number of vehicles passed through after a given lights setting. In that 
ase, the range of r isrelative to the in
oming tra�
 volume. De
iding on whether to use a dis
rete or a 
ontinuous rewardmodel is a domain spe
i�
 design 
hoi
e whi
h depends on the nature of the optimization problem.17



2.1. Reinfor
ement LearningEssentially an RL agent would model the underlying environment as an MDP. However, in 
omplexdynami
 problems su
h as UTC, it is often very di�
ult to obtain a de�nite probabilisti
 transitionmodel for the MDP to be solved assuming that the resulting state is based on tra�
 for instan
e.The same argument applies to obtaining a reward predi
tion model. However, it is possible to designa reward model that translates environmental feedba
k. Q-Learning is one of the learning strategiesthat allows an RL agent, through its value fun
tion, to arrive to an optimal poli
y without the needfor a transition model or a reward predi
tion model.For an RL agent to fun
tion, it relies on a learning strategy, an a
tion sele
tion strategy, a rewardmodel and, vitally, a representation of the underlying environment. We dis
ussed reward models andMDPs as the environmental representation. Onwards we dis
uss di�erent learning and a
tion sele
tionstrategies.2.1.2.1 Learning StrategiesA learning strategy allows the RL agent to gradually build its knowledge on how to optimally dealwith the surrounding environment. That knowledge is 
umulatively built through in
orporating sensorinformation in a manner that a�e
ts the RL agent's view on the environment. In
orporation is mainlydone through a value or a state-a
tion value fun
tion update rule of some form.Q-LearningQ-Learning was �rst introdu
ed in the 1989 in Watkins' Ph.D. thesis (Watkins, 1989). Sin
e then,it has been gaining more popularity as a model-free RL te
hnique. Q-Learning falls in the 
ategoryof o�-poli
y Temporal Di�eren
e (TD) learning strategies (Sutton & Barto, 1998). Those strategiesare model-free and 
an update a 
ertain RL agent's poli
y estimate based on the estimates of otherelements in the poli
y as well as on the in
oming rewards. Convergen
e is assured regardless of thea
tion sele
tion strategy or exploration te
hnique as long as updating all state-a
tion value pairs is
ontinuous. Q-Learning typi
ally behaves in an o�-poli
y manner, whi
h means that it learns evenwhile taking a
tions that might prove to be non-optimal in the future.Q-Learning 
ontrols the RL agent's learning pa
e through a learning rate variable α : (0 ≤ α < 1)and the level by whi
h it dis
ounts future rewards through a dis
ount rate variable γ : (0 ≤ γ < 1).The Q-Learning update equation is presented in (2.5).
Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)] (2.5)18



Chapter 2. State of the Art
rt+1 : reward received after executing atA high learning rate implies that the agent is more eager to adopt ongoing 
hanges denoted by rt+1and the future e�e
ts of a
tion at denoted by maxaQ(st+1, a) in its updated poli
y. The RL agentbe
omes more near-sighted the lower its dis
ount rate is by minimizing the future e�e
t of a
tion atdenoted by maxaQ(st+1, a).Algorithm 3 Generi
 Q-LearningInitialize lookup table ∀Q(s, a)QL(S,A,α,γ)Forall episodes

st ← sinitialFor ea
h step in the episode DoSele
t_Exe
ute at : at ∈ A(st) using some a
tion sele
tion strategyRe
eive st+1, rt+t

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)]

st ← st+1Until st == sterminalEndAn RL agent using Q-Learning normally keeps a lookup table for all possible 
ombinations ofstate-a
tion pairs based on the MDP representation of its environment. Its MDP is built without atransition model for a
tion o

urren
e likelihood nor a reward predi
tion model. Su
h a transitionmodel is essentially learnt through intera
tion with the environment and 
an be dedu
ed from thestate-a
tion values lookup table using some a
tion sele
tion strategy. A generi
 Q-Learning algorithmis presented in (3). An episode, for example, in a grid-world s
enario, 
ould last until the agentarrives to a prede�ned goal state/square after starting from a di�erent state. The number of learningepisodes needed naturally depend on some form of 
onvergen
e test where the agent terminates if theresult of that test is satisfa
tory. However, in an in�nite horizon problem, i.e., a problem that has nospe
i�
 goal/terminal state, the notion of an episode disappears. In su
h a 
ase, it is more likely touse a gradually de
reasing learning rate paired with a biased a
tion sele
tion strategy that balan
esbetween exploration and exploitation, e.g., ǫ-greedy or Boltzmann (see Se
tion (2.1.2.2)).19



2.1. Reinfor
ement LearningSARSAThe SARSA RL algorithm gets its name from the knowledge update manner it follows as an on-poli
y approa
h. Learning progresses in SARSA from a given state-a
tion pair to another state-a
tionpair and hen
e the name SARSA, i.e., State-A
tion Reward State-A
tion. The learning update rulein SARSA depends on sele
ting the next a
tion at+1 for the next state st+1 using a 
ommon a
tionsele
tion strategy. In 
ontrary, Q-Learning uses the best next a
tion in st+1. A generi
 SARSAalgorithm is presented in (4).Algorithm 4 Generi
 SARSAInitialize lookup table ∀Q(s, a)SARSA(S,A,α,γ)Forall episodes
st ← sinitialChoose at : at ∈ A(st) using some a
tion sele
tion strategyFor ea
h step in the episode DoExe
ute atRe
eive st+1, rt+tChoose at+1 : at+1 ∈ A(st+1) using some a
tion sele
tion strategy

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ Q(st+1, at+1)−Qt(st, at)]

st ← st+1 , at ← at+1Until st == sterminalEndSARSA tends to be a more safe approa
h as opposed to Q-Learning in the sense that it sele
ts thenext a
tion based on a given strategy while Q-Learning risks it by taking a
tions that might not beoptimal but still learns. As a result, Q-Learning is possibly able to rea
h the optimal poli
y with lessa

umulated rewards while SARSA will 
onverge to a near optimal one (Takadama & Fujita, 2005;Sutton & Barto, 1998). Indeed, the design of the reward model is essential in that 
ase.2.1.2.2 A
tion Sele
tion StrategiesThe RL 
y
le 
annot be 
omplete without a�e
ting the underlying environment through sele
teda
tions. For an RL agent to learn by re
eiving a possibly new environmental state and a reward, it20



Chapter 2. State of the Arthas to e�
iently explore, (i.e., visit di�erent states and try di�erent a
tions) the spa
e-a
tion spa
e,i.e., the MDP. Naturally, and often in the 
ase of an in�nite optimization problem, an RL agent shouldbe able to gradually swit
h from exploring for an (optimal) poli
y to exploiting that poli
y. The role ofa biased, (i.e., allows for 
ontrolling the exploration period) a
tion sele
tion strategy, (e.g., Boltzmannand ǫ-greedy) hen
e be
omes essential.Greedy & ǫ-GreedyThe most natural short-sighted strategy that an agent 
an be following is to always sele
t thea
tion with the maximum positive out
ome. Su
h a strategy is referred to as being greedy given its
ontinuous preferen
e for a
tions with maximum estimated goodness. However, this type of a strategyalone is problemati
 for e�
ient exploration in RL as other possibly less favourable 
urrent a
tions
ould result in better performan
e in the long run. To over
ome that problem, a randomly greedya
tion sele
tion strategy was devised, namely, ǫ-greedy. In su
h a strategy, the 
urrent best a
tion isonly sele
ted with a probability (1− ǫ) where ǫ : 0 ≤ ǫ ≤ 1. The greediness of the RL agent is hen
ede�ned by the value of ǫ. Moreover, this strategy is independent from the state-a
tion value estimates
Q(s, a) in terms of the probability distribution used for sele
ting the a
tions.BoltzmannThe Boltzmann a
tion sele
tion strategy is a 
ustomization of the softmax approa
h (Sutton &Barto, 1998) where the Boltzmann (also known as Gibbs) probability distribution is used to modelthe a
tion sele
tion strategy. A
tions are sele
ted based on a Boltzmann probability distribution builtusing their Q(s, a) values, see equation (2.6).

P (a) =
eQ(a)/τ

∑
forall b∈A eQ(b)/τ

(2.6)The extent of Boltzmann exploration is 
ontrolled by the temperature parameter τ : 0 < τ . Thehigher the value of τ is, the more explorative the RL agent is, i.e., a
tions tend to have nearly equal
han
es of being sele
ted. As the temperature 
ools down, the shift towards exploitation be
omesgreater and the RL agent be
omes more greedy. However, de
iding on the best initial value of τ isnot a straightforward task and 
ould be more of a human intuition.21



2.1. Reinfor
ement Learning2.1.3 De
entralized Reinfor
ement LearningAs optimization problems be
ome more 
omplex in terms of s
ale, problem modelling in a 
lassi
al
entralized RL manner be
omes more di�
ult and the solution might be
ome intra
table. Hen
e,the need for RL de
entralization emerged. Su
h a de
entralization is partially realized through theMulti-Agent RL (MARL) realm. The latter has resulted in a 
onsiderable amount of literature.An important 
lassi
al di�erentiation between MARL implementations is presented in (Claus &Boutilier, 1997) between what they refer to as independent learners, where agents learn based ontheir pure intera
tion with the environment without realizing the existen
e of other agents, and jointa
tion learners, where an agent learns a so-
alled joint a
tion by observing other agents a
tions andinterpreting their lo
al e�e
ts. Moreover, an interesting 
lassi
al study by (Tan, 1998) shows that
ooperation among RL agents, if done intelligently, may result in better performan
e than indepen-dent learning. Cooperation there in
ludes 
ommuni
ating agent's lo
al information su
h as, learningepisodes, poli
ies, sele
ted a
tions, rewards and sensor information. The views presented by (Claus &Boutilier, 1997; Tan, 1998) form the foundations of modern RL de
entralization where the single RLagent world has been transformed into a world of RL agents either trying to 
ompete or 
ollaborate.Con
entrating on 
ompetitive behaviour, the minimax-Q-Learning algorithm (Littman, 1994),where an agent learns to win as a result of other agent's loss has emerged. An extension to thatapproa
h is presented in (Hu & Wellman, 1998). A MARL s
heme where 
oordination among agentsis based on having a notion of other agents in
orporated in the lo
al state des
riptions is presentedin (Abul et al., 2000). They 
on
entrate on problems with large state-a
tion spa
es where they usegeneralization and fun
tion approximation (Sutton & Barto, 1998). In a 
oordinated RL s
heme(Guestrin et al., 2002), 
oordination among RL agents is based on 
oordination graphs where agentssele
t an optimal joint a
tion with one-hop neighbours without sear
hing the large joint a
tion spa
e.A similar Q-Learning spe
i�
 approa
h is presented in (Kok & Vlassis, 2006, 2004). Following theidea of learning from the best, a 
ooperative learning approa
h for agents using Q-Learning withweighted agent expertness is des
ribed in (Ahmadabadi & Asadpour, 2002; Ahmadabadi et al., 2001).Furthermore, a distributed value fun
tion learning s
heme is presented in (Je� S
hneider, 1999) wherean RL agent ex
hanges its value fun
tion estimations with neighbouring agents. An agent in thats
heme 
an learn a value fun
tion based on the sum of all other agents' dis
ounted expe
ted rewards.Cooperation through sharing rewards among RL agents is rationalized in (Miyazaki & Kobayashi,1999) where they provide a minimum pre
ondition to preserve that rationality. On the other hand,an alternative approa
h to in
orporating other agents' rewards or Q-values is presented in (Tesauro,2003). They present �Hyper-Q� through whi
h an RL agent using Q-Learning 
an form mixed strate-22



Chapter 2. State of the Artgies and predi
t other agents' strategies through Bayesian inferen
e (Berger, 1993). In a partiallyobservable problem, Goldman & Zilberstein (2004) propose a group of NEXP and P problems whereagents share a 
ommon de
entralized POMDP and try to maximize a global goal through di�erent
ommuni
ation manners.
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Figure 2.2: A de
entralized RL stru
tureWe see the de
entralization of RL as a means to break down a global problem into manageablelo
al RL problems. As a result, lo
al RL agents try to a
t (
ollaboratively) towards a (near) optimalsolution for the 
ommon global problem, see Figure (2.2). In (Hoen et al., 2006) a study of thedi�erent behaviours (
ooperative vs 
ompetitive) of learning agents in a multi-agent system (MAS) isprovided. As far as the latter study is 
on
erned, we are interested in what they de�ne as 
on
urrentlearning where ea
h agent learns using a dedi
ated learning pro
ess. Overall, we refer the reader tothree surveys (Bu³oniu et al., 2008; Yang & Gu, 2005; Panait & Luke, 2005) that 
ould provide awider view on multi-agent (reinfor
ement) learning approa
hes.2.2 Un
ertainty in UTCThe nature of a UTC system is 
omplex and often hard to predi
t. Numerous fa
tors 
ould shapethe unpredi
tability in a UTC system. Humans' varying behavioural patterns, equipment wearingout and 
ommuni
ation noise 
ould all be seen as sour
es of un
ertainty in UTC systems. Consider�u
tuating 
ity tra�
 over di�erent periods of time and the resulting di�
ulty in adapting 
ontrolde
isions. Su
h de
isions might not only have instantaneous e�e
ts but also long-term ones makingpredi
tability harder. If we hypothesise the possibility of obtaining 100% a

urate 
ommuni
ationand tra�
 information we would still however be unsure about predi
ting 
hanges in tra�
 mainly23



2.2. Un
ertainty in UTCdue to humans, a

idents, road works and nature. Interestingly, (Satyanarayanan, 2003) elaborateson un
ertainty holisti
ally as in; �it is ironi
 that in today's all-digital world, un
ertainty reappears asa major 
on
ern at a higher level of representation�. In (Viti, 2006), a thorough study is provided onthe un
ertainty and dynami
s of road users' travelling and delay times. It is argued that un
ertaintyin a transportation network originates from the variability in supply and demand (Viti, 2006). This
ould be of a 
y
li
 nature or sporadi
, (e.g., hosting world football 
hampionship or possibly railwayworkers strike).As far as un
ertainty is 
on
erned, we are mainly interested in �u
tuating urban tra�
 and themeans to generi
ally dete
t tra�
 
hanges online and respond adequately using de
entralized RL.2.2.1 Tra�
 PatternsAs (Visser & Molenkamp, 2004) put it when dis
ussing the identi�
ation of tra�
 patterns:�Determining the daily and weekly patterns is a bit of an art, more than a s
ien
e: results are partlydependent on every individual's own frame of referen
e (e.g., Is the Thursday before Easter a regularweekday as far as tra�
 is 
on
erned?).�Most 
ommon approa
hes to determining tra�
 patterns are o�ine approa
hes that require theanalysis of massive histori
al data and engineering expertise (Venkatanarayana et al., 2007). Further-more, a question arises 
on
erning the 
onstituents of a tra�
 pattern. Volume and dire
tionality
ould be intuitively seen as important 
hara
teristi
s of a given tra�
 pattern. Several approa
hesin
luding in
ident and tra�
 pattern or state dete
tion have been proposed upon the introdu
tionof Floating Vehi
le Data (FVD) te
hnologies (Kerner et al., 2005; Kamran & Haas, 2007; Mats
hke,2004; Chen et al., 2007). Most of these approa
hes 
entrally pro
ess 
ommuni
ated FVD su
h as traveltime and velo
ity in order to provide a global image of tra�
 status, or in 
ertain 
ase, tra�
 a

idents(Kamran & Haas, 2007). Also, they mainly rely on road segmentation where spe
i�
 segments of theroad network are individually assigned spe
i�
 
hara
teristi
s. In (Mats
hke, 2004) however, tra�
state is estimated using data fusion at the jun
tion level from existing infrastru
ture sour
es, (e.g.,indu
tive loop dete
tors) and signal timings where FVD is only used to help 
orre
t su
h estimations.Another dimension being explored for general tra�
 state information gathering is not based onFVD but rather �oating phone data (FPD) (Ramm & S
hwieger, 2007). Their argument is based onthe availability of the GSM infrastru
ture and on the undesired introdu
tion of additional 
osts. Theyrely on mat
hing mobile phones signal strength to signal strength maps provided by GSM networkproviders. However, we are interested in online tra�
 pattern 
hange dete
tion that runs lo
ally24



Chapter 2. State of the Artwithout relying on a priori models of tra�
.2.3 Classi
al UTC Approa
hesIn this se
tion we present 
lassi
al UTC approa
hes. By 
lassi
al we mean de fa
to adaptive UTCsystems that have been widely deployed over the last four de
ades in major 
ities in the world. Miller(1963) was arguably the �rst to introdu
e the notion of adaptive tra�
 
ontrol (Bernhard, 2002). Thenotion of adaptability there was based on basi
 models to 
al
ulate wins and losses from delayingde
isions to swit
h among di�erent tra�
 light phases. We present two well-known (Klein, 2001)adaptive UTC systems that are still in servi
e in a number of major 
ities worldwide, namely, SCATS(de
entralized) and SCOOT (
entralized).2.3.1 SCATSSCATS was introdu
ed in the late 1970s after it had been developed by the New South Wales roadsand tra�
 authority in Sydney, Australia (Sims & Dobinson, 1980; Lowrie, 1982). The system was anurgently needed response to the in
reasing 
ongestion 
osts in Sydney during that time. Results fromits initial deployment showed signi�
ant improvement of 35− 39% in performan
e 
on
erning journeytime 
ompared to optimized �xed-time signal plans (Sims & Dobinson, 1980). SCATS runs in manymajor Asian and Australasian 
ities, su
h as Sydney, Melbourne, Au
kland, Hong Kong, Singapore,Tehran, Doha and Shanghai, as well as, in Ameri
an 
ities su
h as Detroit, Las Vegas, Delaware andMinneapolis. However, it has only been 
onservatively adopted in Europe, for instan
e, in Dublin andother 
ities in Ireland and in Rzeszów in Poland.SCATS follows a hierar
hi
al hardware 
ontrol ar
hite
ture 
omposed of:� Lo
al 
ontrollers: these are mi
ro
omputers situated at ea
h signalized jun
tion in order to
olle
t and pro
ess data gathered from lo
al sensors, (e.g., loop dete
tors, usually 5 meters long,or 
ameras) on every lane per approa
h. Data pro
essing in
ludes the 
al
ulation of headwaytime, loop o

upan
y time, spa
e time between vehi
les and speed. See Figure (2.3) for a visualexplanation of the 
al
ulated information. Spa
e time is key to the lo
al 
ontroller fun
tionalityas it 
hara
terizes 
urrent tra�
 �ow.� They are responsible for the ta
ti
al 
ontrol part in the system. Su
h 
ontrol takes de
isionsto adjust split timings based on analysed data from lo
al sensors but still maintains thesame 
y
le length at ea
h 
ontroller. 25



2.3. Classi
al UTC Approa
hes� Regional masters: ea
h is a 
omputer that 
ontrols a network of independent subsystems. Asubsystem 
an be 
omposed of one up to ten lo
al jun
tion 
ontrollers. On the software level,the regional 
omputer sees the subsystems grouped into several systems.� They are responsible for the strategi
 
ontrol part in system. Su
h 
ontrol take de
isions tooptimize subsystems' di�erent parameters in
luding, 
y
le time, splits and o�sets in orderto respond to existing tra�
 demand.� Control 
entre: the supervisor 
entral 
omputer that 
onne
ts all regional master 
omputers. Itallows for overall tra�
 monitoring in
luding systems, subsystems and lo
al 
ontrollers, as wellas, data storage and image ba
kups of regional 
omputers. Also, it allows tra�
 engineers tomanually tune or override system settings.
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Figure 2.3: SCATS lo
al 
ontroller data (Sims & Dobinson, 1980)Very few algorithmi
 details are available about SCATS (Head & Sheppard, 1992). However, it isunderstood that the algorithm mainly relies on the degree of saturation (DS) metri
 on whi
h it basesadjustment de
isions for di�erent 
y
le, o�set and split timings. The DS is based on the e�
ien
yof using the green time at a spe
i�
 phase. It is 
al
ulated by determining the ratio of e�e
tivelyused green time to the available green time at a given approa
h. A

ording to (Klein, 2001), �thee�e
tively used green time is the length of green that is just su�
ient to pass the platoon of vehi
lesat the approa
h had they been travelling at optimum headways under saturation �ow 
onditions.�The di�eren
e between the e�e
tively used green time and the available one is dedu
ed from thesum of no-load instan
es on sensors during the green time period 
ompared to that under saturatedtra�
 
onditions. Typi
ally, the goal of SCATS is to try to keep the DS to near 90% on the lanewith the maximum saturation level. Furthermore, depending on tra�
 
onditions, SCATS allows for26



Chapter 2. State of the Artneighbouring subsystems en
ountering similar or near similar 
y
le times to unite and form biggersystems or one large system. When the opposite o

urs and united subsystems start to en
ounterdi�erent DS levels, they 
onsequently disengage (Head & Sheppard, 1992).The performan
e of SCATS is however poor under saturated tra�
 
onditions (Wolshon & Taylor,1999; United States FHWA, 2008). In a small-s
ale study in South Lyon 
ity, the overall waiting time,(i.e., delay) in the system was redu
ed more e�
iently under low tra�
 
onditions than under hightra�
 
onditions. Compared to simulated �xed-time 
ontrol, SCATS average delay per signalizedjun
tion was higher under saturated tra�
 
onditions (Klein, 2001).2.3.2 SCOOTSCOOT is a 
entralized UTC system that was developed at the British Transport and Road Resear
hLaboratory (TRRL) (Robertson & Bretherton, 1991). Early prototypes of SCOOT were initially triedin the late seventies in Glasgow and Coventry. Compared against �xed-time plans generated by theTra�
 Network Study Tool (TRANSYT) (Robertson, 1969), results have shown an approximate 11%and 16% improvements in terms of delay time under peak and o�-peak situations respe
tively (Klein,2001). The main di�eren
e between TRANSYT and SCOOT is that the �rst produ
es optimized �xed-time 
ontrol plans through o�ine software simulations while the latter is the hardware realization ofa real-time UTC optimization version of TRANSYT (Klein, 2001). SCOOT has been deployed onvarious s
ales in numerous 
ities worldwide. In the UK, it is used for instan
e, in London, Bristol,Southampton and Edinburgh. It has also been in use in Madrid and in Cyprus. SCOOT has a
onsiderable share of Northern and Southern Ameri
an deployed UTC systems su
h as in, Toronto,Santiago and Sao Paulo. Other 
ities in the world like, Beijing, Dubai, Bahrain, Cape Town andBangkok also use SCOOT of various s
ales.SCOOT uses loop dete
tors situated upstream from a given jun
tion stop line, normally justdownstream from the previous jun
tion. SCOOT bases its performan
e on three optimization 
riteria,namely, bandwidth of green waves, average queues and vehi
le stops. Green waves are 
hara
terized bya series of green signals on a given route where a platoon of vehi
les 
an pass through inter
onne
tedjun
tions without stopping. SCOOT's goal is mainly minimizing the average sum of vehi
le queuesin a given area and the number of times vehi
les need to stop. Consequently, it maintains an on-linemodel for vehi
le queues that is updated periodi
ally in order to determine optimization de
isionsneeded for adjusting split, 
y
le and o�set timings.SCOOT's optimization routine (Robertson & Bretherton, 1991) is as follows. Shortly before ev-ery phase 
hange, the split optimizer de
ides whether this 
hange should be advan
ed or postponed27



2.4. Non-RL UTC Approa
hesby four se
onds or otherwise left to o

ur without alteration. The o�set optimizer is invoked every
y
le to evaluate the general performan
e at a given jun
tion. Similar to the split adjustment, o�setoptimization de
isions di
tate four se
onds addition or dedu
tion from the 
urrent o�set or its unal-teration. Usually, every �ve minutes the 
y
le optimizer de
ides whether to alter the 
urrent 
y
letime by a few se
onds or not. However, SCOOT was reported to degrade in performan
e under thesaturated tra�
 
onditions (Papageorgiou et al., 2003).2.4 Non-RL UTC Approa
hesThis se
tion dis
usses UTC optimization approa
hes that do not follow the RL s
heme. These ap-proa
hes are grouped a

ording to the design of their 
ontrol ar
hite
ture, i.e., 
entralized, hierar
hi
aland de
entralized. The literature available on non-RL UTC is vast, however, we try to 
over a sampleof representative approa
hes. An analysis is provided at the end. Furthermore, in Katwijk (2008),a taxonomy is provided of a number of UTC systems based on their ar
hite
ture, de
ision makingpro
ess (e.g., online/o�ine), tra�
 predi
tion model, optimization frequen
y and their horizon. Onthe other hand, in (Lin, 1999), UTC systems are dis
ussed based on whether they use o�ine or onlineoptimization. We dis
uss non-RL UTC systems grouped by their ar
hite
ture.We brie�y introdu
e evolutionary geneti
 algorithms (Mit
hell, 1998) as they are mentioned whiledis
ussing some of the systems below. A geneti
 algorithm is a programming te
hnique that mim-i
s biologi
al evolution as a problem-solving strategy. In general, these algorithms 
onsist of 
y
lesof initializing the population of possible solutions, evaluating ea
h solution a

ording to a �tnessfun
tion, re
ombining sele
ted solutions, mutating them and �nally evaluating new solutions. Thisapproa
h enables evolutionary geneti
 algorithms to seek global optimal performan
e by tuning theirown parameters and adapting to 
hanging 
ir
umstan
es in 
omplex environments.2.4.1 CentralizedIn this se
tion we review 
entralized UTC approa
hes, i.e., those where all information pro
essing andgeneration of timings for signal settings for all tra�
 light 
ontrollers is performed at a single 
entralsystem point.2.4.1.1 TUCOne of the main and relatively re
ent 
entralized UTC approa
hes is the tra�
-responsive urban
ontrol (TUC) strategy (Dinopoulou et al., 2006; Diakaki et al., February 2002; Bielefeldt et al.,28



Chapter 2. State of the Art2001). It aims at dealing with saturated tra�
 
onditions in real-time. TUC is based on a store-and-forward model for an urban tra�
 network that is represented as a dire
ted graph. Essentially, in su
ha model, vehi
les exhibit �xed travel times and are stored at the end of a given link if the in
omingtra�
 is higher than the outgoing tra�
. Depending on the signal 
ontrol de
isions, vehi
les areforwarded to the next link. TUC's model allows for the use of di�erent programming approa
hes su
has, linear, quadrati
 and nonlinear programming in order to optimize 
y
le, o�set and split timingsper jun
tion. TUC translates the store-and-forward UTC model into a linear-quadrati
 optimizationproblem that aims at avoiding tra�
 spill-ba
k in oversaturated 
onditions through split tuning. Italso tries to maintain a high 
apa
ity per jun
tion through 
y
le time alteration de
isions based ona saturation level feedba
k loop. The o�set 
ontrol de
isions in TUC aims ultimately at providinggreen-waves along arterial roads.2.4.1.2 DISCOThe Dynami
 Interse
tion Signal Control Optimization (DISCO) (Lo et al., 2001) approa
h uses a
entralized evolutionary geneti
 algorithm to solve a 
ell-transmission model (CTM) of the tra�
network in an o�ine manner. The CTM is based on the hydrodynami
 theory whi
h models therelationships between density, �ow and speed on a ma
ros
opi
 level.2.4.1.3 MOTIONMOTION (Bus
h & Kruse, 2001) is a 
entralized UTC optimization approa
h built by Siemens AG,Muni
h. It optimizes for di�erent signal timings as well as providing in
ident dete
tion and publi
transport prioritization. Its optimization algorithm is a multi-step one that �rstly gathers tra�
volumes and o

upan
y data, se
ondly, it models that data on the network level. The third andfourth step are 
on
erned with lo
al jun
tion optimized signal timings and with determining if thesetimings 
ould serve the global aim of minimizing stops and delays. If found suitable, a slow transitionto the new timings is performed. MOTION is proprietary hen
e details are s
ar
e about the a
tualoptimization algorithm.2.4.1.4 OthersA 
entralized UTC approa
h that models the tra�
 network using hybrid petri nets (HPNs 
omposedof dis
rete and 
ontinuous PNs) is presented by (Di Febbraro et al., 2004). They propose a 
ontrolstru
ture through whi
h a supervisor modelled as a HPN 
oordinates all signalized jun
tions. Ea
hsignalized jun
tion is 
omposed of two 
ontrollers, namely, a lo
al and a priority 
ontroller. The latter29



2.4. Non-RL UTC Approa
hesdeals with situations where emergen
y or publi
 tra�
 is to be prioritized while the �rst operates undernormal tra�
 
onditions. The lo
al 
ontroller aims at minimizing the number of waiting vehi
les at agiven jun
tion and at equalizing all queue lengths. Moreover, the priority 
ontroller at a downstreamjun
tion reevaluates its phase timings depending on 
ost heuristi
 fun
tions upon being noti�ed byan in
oming emergen
y or a publi
 transport vehi
le.2.4.2 Hierar
hi
alIn this se
tion we review hierarhi
al UTC approa
hes, i.e., systems where tra�
 information pro
essingand de
ision on tra�
 signal timings is performed on several hierarhi
al layers, e.g., on lo
al 
ontrollers,regional managers and single 
entral system point.2.4.2.1 RHODES/COPThe Real-time, Hierar
hi
al, Optimized, Distributed and E�e
tive System (RHODES) is one of themain hierar
hi
al UTC systems that purely relies on DP algorithms (Mir
handani & Head, De
ember2001). RHODES has a three-level 
ontrol ar
hite
ture; network load 
ontrol, network �ow 
ontroland, at the bottom, jun
tion 
ontrol. A parallel three level data ar
hite
ture feeds ea
h 
ontrol levelwith network load predi
tions, (e.g., 
apa
ities, travel times, disruptions), network �ow predi
tions,(e.g, platoon �ow) and jun
tion �ow predi
tions, (e.g, vehi
le �ow). RHODES is able to use dataprovided by loop dete
tors, or any form of similar sensors, lo
ated upstream from the stop line. It isoptionally possible to use data provided by stop-line sensors if available for better queue estimations.The network load 
ontroller passes its estimated 
hanges in tra�
 load to the network �ow 
ontrollerwhi
h determines the target signal timings (based on optimization for minimal stops and/or delay)per jun
tion 
ontroller. The latter is integral to RHODES fun
tionality and it uses the ControlledOptimization of Phases (COP) (Sen & Head, 1997) model for lo
al jun
tion 
ontrol optimization.COP is a DP-based algorithm that tries to optimize a sequen
e of phase timings.2.4.2.2 UTOPIAThe Urban Tra�
 OPtimization by Integrated Automation (UTOPIA) (Mauro, 1990) is an ItalianUTC system developed at FIAT's resear
h 
entre in the early 1980s. UTOPIA uses the rolling horizonoptimization s
heme at the lo
al jun
tion level 
ontroller. The lo
al 
ontroller keeps a mi
ros
opi
model of lo
al tra�
 
onditions that allows for an optimization based on di�erent weighted 
osts forvehi
les waiting time, number of stops and queues. Publi
 tra�
 
an also be prioritized using thats
heme. On the area level 
ontrol, groups of signalized jun
tions are assigned 
ommon stage spe
i�
s.30



Chapter 2. State of the Art2.4.2.3 PRODYN-HPRODYN-H (Farges, et al., 1983) stands for the Fren
h �programmation dynamique� in its hierar
hi
alversion. PRODYN-H is 
omposed of two 
ontrol levels that use an improved forward DP algorithm forminimizing delays based on predi
ted demand. Limited details are available 
on
erning the hierar
hi
alversion but more on its de
entralized version is dis
ussed later.2.4.2.4 OthersNot proposing dire
tly a UTC system but motivated by the in
reasing number of di�erent tra�
�instruments� and espe
ially in the Netherlands, (Katwijk R., O
tober 2002) propose a layered ar
hi-te
ture through whi
h tra�
 instruments are modelled as intelligent agents. These agents 
oordinateon di�erent levels to form a 
ontroller supervision ar
hite
ture. This ar
hite
ture 
omprises a groupof network agents on the highest level, followed by route agents and �nally a group of measurementagents.2.4.3 De
entralizedIn this se
tion we review de
entralized UTC approa
hes, i.e., systems where tra�
 information pro-
essing and de
ision on tra�
 signal timings is distributed on individual tra�
 
ontrollers and thatdoes not involve 
entralized elements.2.4.3.1 PRODYN-DThe de
entralized version of PRODYN is referred to as PRODYN-D (Farges, et al., 1983). It usesa rolling horizon optimization approa
h using an improved forward DP. The horizon is typi
allysegmented into �ve se
ond se
tions known as sample time. PRODYN-D makes use of two loopdete
tors on the upstream and near the stop line in order to gather information 
on
erning vehi
les'arrival and queue estimation. This information is used to optimize timings for a given signalizedjun
tion for the next seventy-�ve se
onds (horizon duration). The main optimization 
riterion isminimizing the sum of delays over the horizon. Moreover, neighbouring signalized jun
tions (usuallyseparated by no more than 200 meters of distan
e) exhibit 
oordination by sending 
ontrol informationgathered over the horizon from upstream jun
tions to downstream jun
tions. The latter use thisinformation in order to have better vehi
le arrival fore
asts and hen
e better optimization of signaltimings. 31



2.4. Non-RL UTC Approa
hes2.4.3.2 ALLONS-DThe Adaptive Limited Lookahead Optimization of Network Signals - De
entralized (ALLONS-D)(Por
he & Lafortune, 1997) uses a rolling horizon DP method to optimize for minimum delay persignalized jun
tion. It uses vehi
le arrival information gathered from upstream loop dete
tors in orderto 
hoose the suitable phase to be green with prede�ned limits on maximum and minimum green timefor any phase. For instan
e, a signalized jun
tion that has two phases has a de
ision spa
e in the formof a binary tree. ALLONS-D assumes the existen
e of impli
it 
oordination between its 
ontrolledjun
tions given the lo
ation of its loop dete
tors on the upstream and the rolling horizon DP design.However, it provides also a hierar
hi
al ar
hite
ture version of two levels. The �rst level is the networklevel that expli
itly 
ommuni
ates 
ertain 
oordination requirements to the lo
al 
ontrol. A similarapproa
h to ALLONS-D is the Optimized Poli
ies for Adaptive Control (OPAC) (Gartner, Transp.Res. Re
ord 906, 1983) where the latter uses a di�erent delay 
al
ulation model for its optimizations
heme.2.4.3.3 SuRJEA simulation based approa
h that uses swarm intelligen
e for modelling tra�
 dynami
s, i.e., repre-senting vehi
les as ants, is presented in (Hoar et al., 2002). This simulation environment is knownas SuRJE. In SuRJE, 
ommuni
ation among vehi
les is done through stigmergy where ea
h vehi
leleaves a tra
e of s
ents known as pheromones that gradually disappear as time passes. Vehi
le speed
an hen
e be determined a

ording to the density of s
ent tra
es. Other types of s
ent tra
es 
oulddenote a de
elerating or 
hanging lanes vehi
le. Ea
h tra�
 light in SuRJE uses an evolutionary ge-neti
 algorithm to optimize for the minimum 
umulative waiting time relative to the 
urrent journeytime for all 
ars.2.4.3.4 OthersAn adaptive tra�
 light s
heme that bene�ts from V2V 
ommuni
ation through vehi
ular ad-ho
networks (VANETs) is presented in (Gradines
u et al., 2007). The adaptive tra�
 light uses vehi
ledemand information gathered through 
ommuni
ation with vehi
les. The lo
al goal is then set tominimize delay by allo
ating the minimum theoreti
al optimum 
y
le time, 
omputed using Webster'sequation (Gradines
u et al., 2007). Consequently, the green splits for ea
h phase are 
al
ulated in away that allows for equal saturation levels on all of a jun
tion's approa
hes.A reservation-based system for UTC is presented in (Dresner & Stone, 2004). The system assumesea
h vehi
le to be 
ontrolled independently by a rule-based driver agent and ea
h tra�
 light with a32
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ontroller agent. Hen
e, the tra�
 light 
ontroller re
eives vehi
le requests that 
omprise information
on
erning vehi
le arrival velo
ity (in
luding minimum and maximum velo
ity limits), arrival time,dire
tion and vehi
le dimensions. A

ordingly, the tra�
 light 
ontroller simulates a given vehi
le'sjourney and de
ides whether to a

ept or reje
t the vehi
le's request. This de
ision depends on theavailability of slots in the 
ontroller's reservation system. The ultimate goal in su
h a system is tominimize delay. Furthermore, an improved version of the tra�
 
ontrol part is presented in (Dresner& Stone, 2005) and a study for possible multi-agent learning is provided in (Dresner & Stone, 2006).A distributed game theory-based approa
h for 
oordination between tra�
 light 
ontroller agentsis presented in (Bazzan, 2004). Controller agents are modelled as �individually-motivated� agents thattry to balan
e between their lo
al interest and the global one. Ea
h agent is assigned a set of prede�nedstrategies with whi
h to play the game. Furthermore, the approa
h is applied to an arterial road often signalized jun
tion agents. A 
omparison of their distributed 
oordination approa
h against a
entralized syn
hronization plan shows better performan
e in 
ertain s
enarios of nearly equal tra�
in di�erent dire
tions.A de
entralized logi
 programming based approa
h for tra�
 
ontrol is presented in (Feli
i et al.,2006). This approa
h uses a logi
 programming solver, namely, the Leibniz System (Ortega & Planas-Bielsa, 2004) in order to �e�
iently� solve the logi
 problem per signalized jun
tion. A transition graphis used to present the sequen
e of phases per jun
tion. Transitions are triggered by logi
al rules thatevaluate predi
ates of 
ongestion levels and phase maximum time per signalized jun
tion. Moreover,in (De S
hutter, 1999) a single jun
tion 
ontroller is designed to provide near optimal swit
hing s
hemeby solving a heuristi
ally de�ned model for the evolution of queue lengths as 
ontinuous variables.2.4.4 SummaryEssentially, 
entralized approa
hes to the in
reasingly 
omplex UTC problem are often of a limitedsu

ess, espe
ially as providing a s
alable responsive UTC behaviour is vital (Bazzan, 2004; Bielliet al., 1994). The general trend is towards the distribution of UTC systems in a hierar
hi
al butin
reasingly towards a fully de
entralized manner. Furthermore, hierar
hi
al UTC systems tend torely on a DP s
heme that uses the rolling horizon te
hnique. Su
h systems 
ould have limitationswhen applied on a larger s
ale given the in
reasing 
omputational 
omplexity while running in real-time for more than one jun
tion (Cai et al., 2009). As de
entralization of UTC is more likely tos
ale up performan
e, however, lo
al algorithms need to ensure that better global performan
e 
an bea
hieved, possibly through 
ollaboration. Some of the studied de
entralized UTC approa
hes still relyon the rolling horizon DP whi
h poses questions 
on
erning their e�
ien
y in responding to tra�
33



2.5. RL-Based UTC Approa
hes
hanges in real-time given the lo
al mi
ropro
essor limitations. Others are in�exible when it 
omesto the sour
e of information needed for optimization. Some also assume the availability of 
ertaininformation that might be unrealisti
 to obtain a

urately. Moreover, 
ertain designs of jun
tion
ontrollers using rule-based heuristi
s and logi
al programming seem to require human expertise ona jun
tion level. Indeed, su
h designs have a room for error and their performan
e 
ompared to thebest performan
e that 
ould be possibly a
hieved in a given real life s
enario is un
ertain.2.5 RL-Based UTC Approa
hesThis se
tion presents and dis
usses relevant approa
hes to UTC that use RL in some form. A num-ber of these approa
hes use hybrid modelling te
hniques su
h as the use of geneti
 programming orfuzzy neural networks along with RL while others are purely RL-based. In a re
ent survey (Bazzan,2009), UTC approa
hes were 
lassi�ed into three 
ategories; 
lassi
al (e.g., SCATS), a
tuated (traf-�
 responsive) and new te
hnologies (e.g., autonomous guided vehi
les). Most of the de
entralizedlearning-based UTC approa
hes where 
lassi�ed as tra�
 responsive depending on their s
ale, (i.e., anisolated interse
tion or more than two interse
tions) and their support for 
oordinated optimization.We present several RL-based UTC approa
hes 
lassi�ed based on the type of te
hnology used.We brie�y introdu
e fuzzy neural networks (Fullér, 2000) as they are mentioned while dis
ussingsome of the systems below. These networks are naturally the result of 
ombining fuzzy systems andneural networks. A fuzzy system is typi
ally a set of parameterized fuzzy rules that are used asan inferen
e engine through intera
ting with a given knowledge base. On the other hand, a neuralnetwork is implemented based on 
hara
teristi
s of biologi
al neurons in order to apply their problemsolving te
hniques to 
omputer learning problems. Neural networks are adaptive, as they learn howto do tasks and 
reate their own 
onne
tions based on input in a learning phase. Neural networks
an be trained using various adaptation and learning algorithms. Hen
e, a fuzzy neural network isoriginally a fuzzy system that has been enabled to learn using an algorithm based on neural networktheory to determine the parameters of its fuzzy rules by pro
essing a set of observations.2.5.1 Q-Learning-Based Approa
hesIn (Abdulhai et al., 2003), whose authors are strong advo
ates of using Q-Learning for UTC optimiza-tion (Abdulhai & Pringle, 2003), results from using Q-Learning for an isolated tra�
 light 
ontrollerare shown to outperform a pre-timed s
heme by 38− 44% for variable tra�
 �ows. Q-Learning eitherslightly outperformed or was equal to the pre-timed 
ontrol s
heme when tra�
 �ows were uniform34
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onstant. The reward model used is based on penalization of in
reasing delay proportional to thequeue lengths on all approa
hes. The jun
tion states are identi�ed through di�erent queue lengthsand elapsed phase time. Moreover, an a
tion is 
hara
terized by the de
ision on the length of thenext phase time, within pra
ti
al limits. Noti
eably, they do not model the optimization problem asan MDP, instead they use a version of the Cerebellar Model Arti
ulation Controller (CMAC) (Albus,1975). CMAC is similar to a neural network representation where sensor inputs are mapped to so-
alled asso
iation 
ells (states) with varying weights. Q-values are used as weights for the state-a
tionpairs and any update on a given pair's Q-value results in an update to the nearby pairs' Q-values.The use of some version of CMAC 
ould be problemati
 e�
ien
y-wise as jun
tion size and numberof states in
reases. Moreover, no results have been reported about larger s
ale experiments usingmulti-agent s
hemes. A similar approa
h has been used, in an extended work, for 
ontrolling so-
alled�variable message signs� for the purpose of better ramp metering on a freeway 
orridor (Ja
ob &Abdulhai, 2005).A simple pair of 
onne
ted tra�
 light jun
tions ea
h running a Q-Learning-based agent is pre-sented in (Camponogara & Werner, 2003) where they model and 
ontrol a small tra�
 network usinga sto
hasti
 game s
heme. Their results showed that Q-Learning outperformed random and best-e�ortpoli
ies. The reward model is a penalty based on the number of vehi
les waiting at a given jun
tion.Moreover, the average number of waiting vehi
les was redu
ed by 30% when both agents were usingQ-learning as opposed to it being used by one agent at a time.Pendrith (2000) proposes a distributed Q-Learning s
heme in whi
h an o�ine optimization aimsat 
ontrolling vehi
le speed. The basi
 model used is a 3×3 grid of mobile vehi
les where the learningagent (vehi
le) is positioned in the middle. Vehi
les are presumed to be equipped with radar sensorsthat enable a given vehi
le to determine the states of the surrounding vehi
les if any. No tra�
 
ontrolstrategy was proposed there and the assumption of pervasive radar sensors is quite unrealisti
.More 
omplex RL te
hniques were used in (Ri
hter et al., 2007). They exploited the NaturalA
tor-Criti
 (NAC) (Peters et al., 2005) algorithm that is based on four di�erent RL methods, i.e.,poli
y gradient, value estimation, natural gradient and least-squares temporal di�eren
e Q-Learning.In their simpli�ed simulation they had �ve s
enarios and every jun
tion on the grid had four phases.NAC managed to outperform a SCATS inspired te
hnique (namely, SAT) in a 10× 10 jun
tion gridsimulation while optimizing for vehi
le average travel time. However, NAC needed approximatelythree days of real world time in order to be on par with SAT.35



2.5. RL-Based UTC Approa
hes2.5.2 Evolutionary Programing & RLA 
ombination of evolutionary geneti
 programing and a Learning Classi�er System (LCS) is used inthe so-
alled Organi
 Tra�
 Control (OTC) (Prothmann et al., 2008) approa
h. We 
onsider OTCin this se
tion given the 
lose similarity of LCS to RL. In LCS, a rule-based system 
omposed of
lassi�ers, i.e., a set of (
ondition, a
tion, value) triplets is used. The system learns by re
eivingrewards from the environment. A group of 
lassi�ers whose 
onditions mat
h a given environmentalstimulus form what is referred to as a �mat
h set�. The average values of similar a
tions are 
al
ulatedand the a
tion with the maximum average value is exe
uted. Consequently, the reward re
eived fromthe environment is used in updating the values of mat
hing 
lassi�ers 
omprising the exe
uted a
tion.Furthermore, The OTC ar
hite
ture per jun
tion is 
omposed of three layers. The top layer uses anevolutionary algorithm in an o�ine manner that intera
ts with a given simulator in order to providenew 
lassi�ers. The latter 
ould be some geneti
ally enhan
ed o�spring 
lassi�ers or those that suitnew tra�
 
onditions. The middle layer 
omprises an LCS that makes tra�
 
ontrol de
isions and anobserver that feeds the LCS with tra�
 �ows, all in an online manner. The bottom layer is a tunabletra�
 light 
ontroller that 
an relay tra�
 sensor data to the upper layer. As far as their evaluation is
on
erned, they have simulated two signalized jun
tions of di�erent sizes with a �ow of tra�
 of onepeak on three di�erent days. The referen
e baseline they 
ompare against is a �xed-time 
ontroller.Their results show 10− 12% improvement in average delay distributed among the three days for thebigger jun
tion while it was 6 − 8% for the smaller jun
tion. However, on the smaller jun
tion, asigni�
ant di�eren
e was only noti
eable during the peak period. The opposite was true on the biggerjun
tion. Furthermore, it transpires (Ro
hner et al., 2006) that the OTC ar
hite
ture top layer usesan o�ine model-based mi
ros
opi
 simulation. Given the in
urred 
omputational 
omplexity andinfeasibility of installation per jun
tion, it was suggested to be deployed in a hierar
hi
al manner fora group of jun
tions. As an extension of the OTC work, 
oordination among OTC 
ontrollers wasadded (Tomforde et al., 2008). Interestingly, there was no signi�
ant improvement 
on
erning averagetravel time and delay while the number of vehi
le stops was redu
ed. Their simulated experimentswere based on an arterial road of �ve three-phased jun
tions and on a Manhattan-like grid of six four-phased jun
tions. Moreover, a 
ommon 
ritique of the OTC approa
h and its 
oordinated versionwould be the use of a model-based simulation as a key layer that 
ould a�e
t responsiveness. Su
h a
hoi
e might result in a s
alability problem and possible 
omplex 
oordination s
hemes. Given theirsmall s
ale experiments that problem might not have been dis
overed yet. In addition, it is not 
learhow the a
tual learning is happening in the LCS layer. Furthermore, (Cao et al., 1999) also proposea form of RL 
lassi�er system to build a distributed learning 
ontrol s
heme for tra�
 light jun
tions.36



Chapter 2. State of the ArtThere was no signi�
ant improvement in their approa
h against a random tra�
 
ontrol s
heme in asmall four-jun
tion s
enario.In order to provide �intelligent� 
ooperation s
hemes among RL-based tra�
 
ontrol agents, di�er-ent forms of RL s
hemes have been 
oupled with 
entrally exe
uted geneti
 algorithms in several 
ases(Mikami & Kakazu, 1994) (Yang et al., 2005). The geneti
 algorithms are used to tune the learningparameters of lo
al 
ontrollers in order to provide better global performan
e where RL is used at thelo
al level. However, the experimental s
enarios used were based on a small-s
ale simulation of fourto �ve jun
tions.2.5.3 Fuzzy Neural Networks & RLA 
ombination of fuzzy neural networks and a form of RL is used to build the hierar
hi
al real-timetra�
 
ontrol ar
hite
ture presented in (Choy et al., 2003). The ar
hite
ture is divided into jun
tion
ontroller agents, zone 
ontroller agents and regional 
ontroller agents. Information �ows in a bottom-up manner where jun
tion 
ontroller agents pass on tra�
 state, lo
al signal poli
y and somethingreferred to as a �
ooperative fa
tor�. The latter determines the level of 
ollaboration needed basedon lo
al tra�
 
onditions. Zone 
ontroller agents pass on similar types of information as the lowerlevels to the regional 
ontroller. The zone 
ontroller fuzzy-neural model determines the signal poli
yand the 
ooperative fa
tor based on an assigned inferen
e engine. These inferen
e engines translate adis
retized 
ombination of o

upan
y, tra�
 �ow, rate of tra�
 
hange and lo
al 
ooperative fa
torsthrough multiple �ltering layers of dis
retized tra�
 load and 
ooperation levels into a �nal zone signalpoli
y and 
ooperation fa
tor. All pro
essing layers' out
omes (or neurons' out
omes) are assignedvarying weights. An RL module built using a similar fuzzy-neural approa
h runs in a multistageonline manner. This module estimates the state of tra�
 using some delay estimates and 
al
ulates areward based on 
urrent, next and best state. A

ording to the ba
k-propagated reward, neurons altertheir output weights using a 
ertain topologi
al update formula, and all agents adapt their learningrates. This work has simulated a tra�
 network based on a se
tion of Singapore's business distri
t
omprising twenty-�ve 
ontrolled jun
tions. They have reported good results in terms of averagestoppage and delay time in two s
enarios of single and dual peak(s). Further similar work is presentedin (Srinivasan et al., 2006; Srinivasan & Choy, 2006). However, the RL approa
h they follow is ofpartial signi�
an
e and dependant on the nature of the fuzzy neural network representation, whi
his a 
omplex one in that 
ase. In the typi
al sense of RL, they do not follow a 
lear learning nor ana
tion sele
tion strategy, nor do they model RL as an MDP.37



2.5. RL-Based UTC Approa
hes2.5.4 Model-Based Vehi
le-Centri
 RLIn a vehi
le-
entri
 approa
h, (Wiering, 2000; Wiering et al., 2004) resear
hed the bene�ts of usingmulti-agent model-based RL for tra�
 
ontrol. Their approa
h is vehi
le-
entri
 in the sense thatea
h 
ar estimates its waiting time and 
ommuni
ates it to the nearest tra�
 light. The tra�
-light
ontrollers are RL-based agents that implement a value-iteration DP algorithm. The approa
h isbased on maintaining probability estimates of waiting time per vehi
le's destination, and its pla
e atevery tra�
 light 
ontroller in
luding the state of that tra�
 light (green or red). More probabilityestimates are maintained for the status of ea
h tra�
 light given a vehi
le waiting to go to a parti
ulardestination at a given pla
e on the signalized jun
tion. The ultimate goal is to minimize the waitingtime for vehi
les at all jun
tions. These probability estimates are used in the tra�
 light's agentvalue iteration algorithm to update the value fun
tion for expe
ted waiting time. Moreover, theyexperiment with di�erent lo
al and global 
ommuni
ation s
enarios where tra�
 light agents 
anex
hange knowledge for better de
ision making. In (Steingröver et al., 2005), a very similar approa
his presented, where they take into a

ount 
ongestion levels at neighbouring jun
tions in the lo
alde
ision making pro
ess. It is noti
eable, that the last two approa
hes dis
ussed pla
e some seriousassumptions on the type of information that is needed and might not be possible to a
quire realisti
ally,espe
ially, if tra�
 patterns are 
hanging.2.5.5 Spe
i�
 RL-Based UTC Approa
hes for Non-Stationary Environ-mentsWe dis
uss the most signi�
ant work in RL that dire
tly addresses the non-stationary nature of tra�
from a purely RL perspe
tive. In (Oliveira, et al., 2006), an RL approa
h to optimizing UTC whileresponding to tra�
 volume 
hange and driver behaviour, (i.e., de
eleration) is presented. They followa mi
ros
opi
 simulation approa
h given that it provides more 
ontrol of individual driver behaviourwhi
h allows the introdu
tion of additional dynami
ity in tra�
. The driver behaviour model usedfollows the Nagel-S
hre
kenberg model (Nagel & S
hre
kenberg, 1992) that allows for a

elerationand probabilisti
 de
eleration (whi
h 
ould hint at overrea
tion in breaking) on roads broken into
ells of �ve meters length in an urban setting. The main design is divided into two stages, �rstly,learning for a given tra�
 pattern and, se
ondly, dete
ting 
hanges in tra�
 patterns. For learning,they assume that every stationary situation 
an be de�ned by a so 
alled �partial model�. In su
h amodel, two fun
tions are de�ned; a transition fun
tion that estimates the transition probabilities anda reward fun
tion for reward estimation. These two fun
tions are updated for a given partial model38



Chapter 2. State of the Artbased on the number of times n some a
tion a was 
arried out in state s. Hen
e, a trun
ated n isanalogous to the learning rate for the transition and reward fun
tions. Any typi
al model-based RL
an be used to lo
ally optimize for a given partial model, su
h as Prioritized Sweeping (PS) (Sutton& Barto, 1998). The dete
tion of 
hanges in tra�
 is based on how well a given partial model 
anrepresent the 
urrent tra�
 
ondition. Hen
e, an error value is 
al
ulated for ea
h partial model thatdetermines its suitability for the 
urrent situation. This error value is updated proportionally to n andto the dis
ounted transition and reward fun
tions values for the relevant partial model. Consequently,a group of predi
tion error estimates are updated for ea
h partial model based on the pre
al
ulatederror values. An a
tive partial model is de
lared unsuitable for the 
urrent situation if its predi
tederror estimate be
omes higher than a preset threshold. As a result of su
h a situation, the partialmodel with the lowest predi
ted error estimate than the given threshold is a
tivated, otherwise a newpartial model is 
reated for that situation.The experimental setup in (Oliveira, et al., 2006) is based on a 3 × 3 Manhattan road networkof varying link speed limits (54, 36, 18 km/h) where di�erent types of tra�
 patterns are inserted.An agent is assigned to 
ontrol ea
h of the nine signalized jun
tions in the network. Dependingon a dis
retized set of tra�
 volumes, ea
h agent has nine states showing an empty, regular orfull tra�
 
onditions on two in
oming approa
hes. Ea
h agent 
an sele
t between three prede�nedsignal plans that determines �xed phase timings for tra�
 travelling spe
i�
ally from east to westand north to south. They have experimented with s
enarios of varying de
eleration probabilities;
[zero, 0.1, 0.2, 0.3] where the number of stopped vehi
les throughout the experiment duration wasused as a metri
. As 
omparison baselines, they have used �xed-signal plans, greedy 
ontrollers, andQ-Learning and PS RL methods. Only in one single s
enario, (i.e., where de
eleration probabilitywas set to 0.1) their approa
h outperformed the baselines. In the s
enario where the de
elerationprobability was set to zero, their approa
h performed on a par with most of the baselines. In the twos
enarios with de
eleration probability 0.2 and 0.3, their approa
h failed against the greedy baseline. Itappears that there is a major issue with their approa
h's responsiveness to 
hanging tra�
 situations.They argue that on higher de
eleration probabilities, learning agents would only be able to re
ognizeone state and hen
e the poor performan
e. If we assume the latter was true, then one would wonderwhy their approa
h failed to outperform the baselines under a zero de
eleration probability (theirideal s
enario). Moreover, regardless of the simplisti
 simulation s
ale 
ondu
ted and the use ofan advantageous Manhattan road layout, results on how e�
ient their approa
h was in su

essfullydete
ting tra�
 pattern 
hanges were not provided and other metri
s su
h as vehi
le average waitingand travelling times were not measured. 39



2.6. Summary2.6 SummaryThis 
hapter provided the ba
kground required for understanding our approa
h and related work. Itpresented RL and its di�erent 
onstituents in
luding popular learning and a
tion sele
tion strategies.Also, the de
entralization of RL was dis
ussed. Moreover, we dis
ussed the un
ertainty in UTC andidenti�ed tra�
 �u
tuations as a main sour
e of un
ertainty in UTC, therefore identifying the needto provide a tra�
 pattern 
hange dete
tion me
hanism. We believe, this me
hanism should not relyon a priori tra�
 models and should dete
t 
hanges in tra�
 patterns in an online manner.Two 
lassi
al UTC systems, i.e., SCATS and SCOOT were presented. Although these systemsare deployed in many 
ities, they have also shown 
ertain limitations in their performan
e. SCATSperforms poorly under saturated tra�
 
onditions (Wolshon & Taylor, 1999; United States FHWA,2008) despite its adaptive nature, while SCOOT was reported to degrade in performan
e under thesame 
onditions as well (Papageorgiou et al., 2003).Various non-RL-based UTC approa
hes 
ategorized by their ar
hite
ture, i.e., 
entralized, hierar
hi
aland de
entralized, were dis
ussed. Given the in
reasing problem modelling 
omplexity, the su

ess of
entralized UTC approa
hes is limited. Several de
entralized and hierar
hi
al UTC approa
hes thatuse DP were also dis
ussed. These approa
hes mainly use the rolling horizon DP approa
h. The latterposes limitations when used in a de
entralized manner as lo
al mi
ropro
essors might not be able to
ope in real-time with �u
tuating tra�
, espe
ially using the rolling horizon DP (Cai et al., 2009).Moreover, 
ertain approa
hes using rule-based heuristi
s and logi
al programming seem to requirehigh expertise and it is not 
lear how that 
an s
ale.A number of hybrid modelling te
hniques that 
ombine RL with, for example, geneti
 programmingor fuzzy neural networks were presented. UTC approa
hes using Q-Learning have shown promisingresults in terms of redu
ing vehi
le waiting time. More 
omplex RL-based approa
h, i.e., NAC,needed approximately three days of real world time in order to be on a par with a SCATS-inspiredalgorithm, whi
h poses a problem for providing real-time adaptiveness in UTC. Some of the otherRL-based approa
hes assumed the pervasiveness of unrealisti
 sour
es of sensor information whileothers did not use real life maps but rather small-s
ale simulation of a limited number of jun
tions.Other model-based UTC approa
hes that use RL do not take into a

ount the fa
t that using a prioritra�
 models given the un
ertain behaviour of urban tra�
 is a strong assumption (Spall, 2003).A 
ommon 
ritique for most of the RL-based, whether hybrid or not, approa
hes is that they donot show signi�
antly better performan
e that is based on real life maps and do not support onlineUTC optimization under �u
tuating urban tra�
 
onditions. An approa
h that dire
tly addresses the�u
tuating (non-stationary) tra�
 nature was presented in (Oliveira, et al., 2006) whi
h we dis
ussed40



Chapter 2. State of the Artearlier. Mainly, the approa
h is model-based and it does not show signi�
ant performan
e improvementon the baselines they used even on a simple Manhattan-like road network while also not evaluatingfor basi
 metri
s su
h as vehi
le waiting time.After reviewing the related work, it appears that there is a gap/need for model-free de
entralizedRL approa
hes for UTC optimization that 
ould respond to tra�
 �u
tuations and adapt to newtra�
 
onditions e�
iently. We present the Soilse approa
h in the following 
hapter.

41



Chapter 3
Soilse
This 
hapter des
ribes the Soilse approa
h to optimization of urban tra�
 
ontrol (UTC). The Soilseapproa
h models individual tra�
 light 
ontrollers as adaptive RL agents 
apable of responding to
hanging tra�
 patterns that might adversely impa
t their performan
e. These agents 
an makeuse of 
ollaboration with their neighbours to improve performan
e. In 
ontrast to previous workon Reinfor
ement Learning (RL) in UTC (see Se
tion (2.5)), Soilse provides a �exible RL agentdesign that supports optimization for di�erent tra�
 patterns using a pattern 
hange dete
tion (PCD)me
hanism that 
auses an agent to relearn based on the degree of pattern 
hange dete
ted. Ina non-
ollaborative setting, ea
h signalized jun
tion is 
ontrolled by a dedi
ated Soilse agent thatoperates independently. However, in a 
ollaborative setting ea
h signalized jun
tion is 
ontrolled by adedi
ated agent, whi
h we refer to as a SoilseC agent, that operates in 
ollaboration with neighbouringSoilseC agents. Both Soilse and SoilseC agents make use of a lo
al PCD me
hanism to provide forresponsiveness in the fa
e of �u
tuating tra�
 patterns. A version of Soilse that did not supportpattern 
hange dete
tion was published in (Salkham et al., 2008).The 
hapter is organized as follows. First, we des
ribe a set of requirements that should besatis�ed by an e�
ient RL-based UTC optimization s
heme. We then provide the motivations for andan overview of the overall design. The PCD me
hanism is des
ribed in
luding the quanti�ed degree ofpattern 
hange (DPC) used as a metri
 for 
hange. We then des
ribe the signalized jun
tion phasesused in the overall design. Finally, the design of the Soilse and SoilseC agents are presented alongwith the relearning strategy used. 42



Chapter 3. Soilse3.1 RequirementsAs a 
onsequen
e to the state-of-the-art dis
ussion, a set of four requirements are identi�ed that serveas guidelines toward the design of our RL-based UTC approa
h. While some approa
hes are designedto support a 
ertain requirement they 
ompromise on other essentials. An e�
ient RL-based UTCsystem must address 
ertain design requirements simultaneously. However, the obje
tives used toassess the performan
e of su
h a system are identi�ed and evaluated in Chapter (5). The identi�eddesign requirements are as follows.Requirement 1 (Req1): responsiveness; an e�
ient RL-based UTC system has to be responsive to
hanging tra�
 
onditions in a reasonable duration. This requires an ability to analyse tra�
patterns in real-time while assessing their impa
t on performan
e and 
onsequently adapting ifneeded.Requirement 2 (Req2): adaptiveness; in order to respond to some dete
ted 
hange in tra�
 pat-tern that is adversely a�e
ting overall performan
e, an e�
ient RL-based UTC system must beadaptive. This adaptiveness is 
hara
terized by the availability of a �exible 
ontrol model that
an be re
on�gured to meet the demands of the new tra�
 situation.Requirement 3 (Req3): openness, an e�
ient RL-based UTC system should provide a degree ofopenness when it 
omes to the sour
e of tra�
 sensor information. Depending ex
lusively onloop dete
tors or 
ameras as sensor inputs for de
ision making is unne
essarily limited. Emerg-ing FVD te
hnologies su
h as global positioning systems and vehi
le-to-vehi
le/infrastru
ture
ommuni
ation may provide a more detailed lo
al view of the tra�
 situation that 
ould beemployed for better RL-based UTC optimization.Requirement 4 (Req4): 
ollaborative; an e�
ient RL-based UTC system should support 
ollabo-ration among signalized jun
tion 
ontrollers. Carefully designed 
ollaboration s
hemes in RL-based UTC systems have shown promising results as opposed to operating without 
ollaborationin terms of providing better system-wide (global) performan
e (Duspari
 & Cahill, 2009a).The aforementioned requirements will be referred to individually as we address ea
h in the designpresented in the rest of this 
hapter. This in
ludes the design of the PCD me
hanism, as well as thedesign of the Soilse and SoilseC agents. 43



3.2. Overview and Motivations3.2 Overview and MotivationsThe approa
h to UTC optimization that we follow is an RL-based one. A number of RL-based UTCoptimization approa
hes were dis
ussed in Se
tion (2.5). Originally, the 
hoi
e of using RL for UTCoptimization stems from its support for model-free learning that also provides o�-poli
y learningstrategies like Q-Learning. The latter has been proved to be bene�
ial for the optimization of UTC(Abdulhai et al., 2003). Hen
e, an RL-based approa
h should learn a near-optimal mapping of statesto a
tions, as opposed to having an a priori model for that mapping, through feedba
k and intera
tionwith the environment. This is advantageous in su
h a 
omplex problem as UTC given the non-stationary behaviour of tra�
. This aligns with what Spall (2003) argues in relation to providing atra�
 
ontrol s
heme based on models of tra�
 �ow: �whi
h, given the highly nonlinear and un
ertainaspe
ts of human behaviour, is a virtually hopeless task in 
omplex multiple-interse
tion networks.�An approa
h to RL-based optimization of UTC in a non-stationary environment is provided in(Oliveira et al., 2006) and was dis
ussed in Se
tion (2.5.5). The approa
h that they provide triesto optimize for a given stationary tra�
 situation using a model-based RL approa
h based on whatthey refer to as �partial models�. The latter are 
hara
terized by a transition-probability and reward-estimation fun
tion for a given stationary tra�
 situation. The manner (referred to as 
hange dete
-tion) through whi
h they try to handle the non-stationary behaviour of tra�
 is by swit
hing amonglearnt partial models depending on a suitability test that is based on their model error 
al
ulation.However, even in small-s
ale simulations on a simple Manhattan road network, it is not 
lear thattheir approa
h outperformed the baselines used. Essentially, the approa
h that they provide is amodel-based one with a 
hange dete
tion me
hanism interleaved with what they refer to as partialmodels. In addition, their approa
h responds to 
hanges in tra�
 in an abrupt manner that repla
esa given partial model by another. In 
ontrast, the approa
h that we follow is a model-free one thatminimizes fun
tional interdependen
y between lo
al UTC optimization and tra�
 PCD. In addition,our approa
h responds to dete
ted 
hanges in a 
ontinuous learning manner that does not requirestoring or swit
hing between learnt models.In order to provide an e�
ient RL-based UTC system that addresses all of the requirements pre-sented in Se
tion (3.1) we divided the signalized jun
tion 
ontrol problem into two main 
onstituents,an RL-based UTC optimization agent and a separate PCD me
hanism, see Figure (3.1). In the restof this se
tion an RL-based UTC optimization agent is referred to as an agent.Both 
onstituents 
ombined satisfy all the requirements presented in Se
tion (3.1). Parti
ularly, aPCD me
hanism 
ontributes to the satisfa
tion of the responsiveness requirement (Req1) by providingthe means of dete
ting lo
al tra�
 
hanges that adversely a�e
t the performan
e of the 
ontroller agent44



Chapter 3. Soilse

Figure 3.1: Design overviewat some signalized jun
tion. The PCD should quantify the 
hange as it o

urs in a way that allows theagent to respond adequately by adapting to the new tra�
 situation and hen
e satisfy Req2. The PCDme
hanism should operate using various sour
es of sensor information that des
ribes the underlyingtra�
 situation as spe
i�ed in Req3. It also should not rely on a priori models of tra�
 as thismay limit its online/real-time responsiveness. Given these 
hara
teristi
s, an online nonparametri

hange dete
tion me
hanism that quanti�es the degree of tra�
 pattern 
hange a�e
ting the agent'sperforman
e 
an be used. Su
h a me
hanism is nonparametri
 in the sense that it does not rely ona spe
i�
 distribution (distribution-less) for in
oming tra�
 on a given signalized jun
tion. Variousnonparametri
 statisti
al tests were assessed in this 
ase, e.g., Kolmogorov-Smirnov and Cramér-vonMises (S
huma
her, 1984). These tests work in way that 
ompares two given samples of data andprodu
e a value, namely, 0 ≤ P_value ≤ 1 that determines the a

eptan
e or reje
tion of the nullhypothesis when 
ompared against some signi�
an
e level. The null hypothesis typi
ally suggests thatthe two samples are drawn from the same distribution. However, after assessing the aforementionednonparametri
 statisti
al tests, it appeared that they were not suitable for the online representationof lo
al tra�
 pattern 
hanges. They have also shown to be sensitive lo
ally espe
ially given thenature of urban tra�
 data. Consequently, we refo
ussed our attention towards an analogous (tosome extent) area to urban tra�
 that is 
omputer network tra�
 and espe
ially anomaly dete
tion(atta
ks or intrusions of a 
ertain type) (Thottan & Ji, 2003) in 
omputer networks. This suggesteda te
hnique for PCD that is based on sequential analysis of data series, namely, 
umulative sum ofsquares (CUSUM) (Oh et al., 2005) that 
an identify 
hange points in data varian
e (σ2). CUSUM isa nonparametri
 
hange dete
tion te
hnique that has been shown to be a

urate in helping to dete
t45



3.2. Overview and Motivations�ooding atta
ks in a short duration (Thottan & Ji, 2003; Wang et al., 2002; Siris & Papagalou, 2006).Flooding atta
ks represent a 
hange in the network tra�
 pattern where, for example, an unusualnumber of requests 
an be dire
ted to a given server. This is seen as analogous to 
hange in tra�
 onroad networks. We hen
e adopted CUSUM in developing our PCD.The agent has to satisfy all of the requirements spe
i�ed in Se
tion (3.1) in 
onjun
tion with PCD.Espe
ially, in order to provide for the adaptiveness spe
i�ed in Req2, the agent, being RL-based,must be designed in a way that allows it to adapt to a new tra�
 situation. This normally happensafter the PCD initiates a need to respond when some tra�
 
hange that is adversely a�e
ting theagent's performan
e is dete
ted. A natural fair design we follow is based on an adaptive round-robinthat learns a sequen
e of phases of di�erent durations suitable for the new tra�
 situation. Theadaptiveness is enhan
ed by allowing agents to learn to skip unne
essary phases whi
h saves thewasted time as opposed to SCATS, for instan
e, that has to give all phases a 
ertain durations. Also,by avoiding free phase sele
tion from a group of phases in no parti
ular order, we minimize the riskof starvation.A 
ru
ial part needed for adaptiveness is the ability of the agent to relearn and hen
e adopt adi�erent 
ontrol poli
y given a new tra�
 situation. As relearning is naturally expensive, 
ontrollingthe extent and duration of the agent's relearning is important. Given that the agent is RL-based,this 
an be done through its learning and a
tion sele
tion strategies, e.g., Q-Learning and ǫ-greedyrespe
tively, whose parameters 
an then be 
ontrolled in a manner that spe
i�es the relearning/ex-ploration duration and their initial exploration related parameter values, e.g., learning rate α and ǫof the ǫ-greedy. In addition, PCD provides a degree that quanti�es the tra�
 pattern 
hange alongwith the agent's performan
e. The agent 
an then use this degree to 
al
ulate new exploration-relatedparameters, relevant to the learning and a
tion sele
tion strategies in use, in order to initiate relearn-ing. Being responsive and adaptive on the lo
al level is important however, in order to satisfy Req4,
ollaboration is needed. Hen
e, the agent supports ex
hanging knowledge with neighbours and allowsfor its lo
al in
orporation. Both PCD and the agent expose generi
 interfa
es for re
eiving sensorinformation about tra�
 hen
e satisfying openness needed by Req3. Regardless of the manner sensorinformation is gathered or a
tuation is done, these interfa
es guarantee that the agent will 
ontinueto fun
tion as long as they are implemented. 46
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������Figure 3.2: Example - CUSUM samples3.3 Pattern Change Dete
tionThis se
tion presents PCD me
hanism that helps satisfy Req1 for an e�
ient RL-based UTC. Themotivations behind the design 
hoi
es were dis
ussed in the previous se
tion. The proposed PCDme
hanism is used to dete
t varian
e (σ2) 
hange points on ea
h lanes' in
oming tra�
 (data) usingCUSUM and also in
orporates knowledge of the agent's performan
e with that 
hange at ea
h signal-ized jun
tion. We 
hoose jun
tion lanes as the level of granularity at whi
h to identify 
hanges sin
elanes represent not only the tra�
 load but also its presumed dire
tionality. Therefore, this approa
h
aptures not only 
hanges in tra�
 load but also 
hanges in tra�
 dire
tionality. The performan
eof an RL agent 
ontroller 
an be naturally assessed based on its re
ent rewards as they represent thegoodness of its lo
al behaviour. Hen
e, we use re
ent rewards history to provide a metri
 for theoverall near past agent performan
e.3.3.1 DesignThe design is based on multistage lane-
entri
 �ltering, see Figure (3.3). The in
oming tra�
 
ountper lane on a given jun
tion is sampled and �ltered using a moving average �lter in order to produ
ea smoother input (sin
e we assume a �ne-grained initial input as low as a reading per se
ond over aminute time) for the se
ond stage. The output is then passed to the CUSUM (Oh et al., 2005) �lterthat identi�es 
hanges in tra�
 varian
e (σ2) on a given lane. CUSUM is a well-known sequentialanalysis te
hnique that 
an indi
ate 
hange points in data varian
e, see Equation (3.1). CUSUM isadvantageous in this 
ase as it is a nonparametri
 sequential 
hange dete
tion te
hnique that does notrequire a prede�ned tra�
 model.
CUSUMk,n(Lanea) =|

∑k
i=1 X2

a i∑n
j=1 X2

a j

−
k

n
|; for 1 ≤ k < n (3.1)The time series Tcounts = {Xa 1, Xa 2, ..., Xa n} is formed from the outputs of the �rst �lteringstage, i.e., a series of size n of smoothed tra�
 
ounts for lane a. The value of k represents the laggingsample size, see Figure (3.2). Essentially, CUSUM works by 
omparing the sum of squares of a portion47



3.3. Pattern Change Dete
tion
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Figure 3.3: Jun
tion PCD high-level s
hemeof a given sample against the sum of squares of the whole sample. This allows it to �gure out whatis the proportional relevan
e of the smaller sample of size k on the whole sample of size n. Thiste
hnique has proven to be a

urate in identifying 
hange points in data varian
e (Oh et al., 2005).Another moving average �lter is applied on the CUSUM �lter outputs and the mean of these is then
al
ulated as the �nal representation of the degree of pattern 
hange (DPC) in in
oming tra�
 for agiven jun
tion.The DPC at this level does not in
lude a notion of how the possible 
hange is a�e
ting the
ontroller agent performan
e at a given jun
tion. Therefore, as we are interested in 
hanges thata�e
t the agent's performan
e, we need to in
orporate the 
ontroller agent's performan
e in the DPC,whi
h 
an be then used in the reparameterization pro
ess of the agent for relearning. Consequently,this will allow for agent responsiveness (see Req1). A natural metri
 for the agent performan
e is themoving average of rewards (MAR) over a given time window. As rewards are an intrinsi
 indi
atorof RL agents performan
e in the �rst pla
e, we bene�t from their availability without introdu
ingan extra arti�
ial metri
 of performan
e. In order to produ
e a �nal 
ombined 
hange degree thatin
orporates the agent performan
e as well as the pattern 
hange degree, the produ
t (MAR × DPC)is used. Furthermore, in order to 
on�ne (squash) that degree to a known range we apply a sigmoidfun
tion, see Equation (3.2), that has a known range of [−1, 1].
DPCsquashed = tanh((MAR × DPC)/ PerFactor) (3.2)48



Chapter 3. SoilseParameter Des
riptionCUSUM: n The size of the full CUSUM sample of tra�
 
ounts per lane.CUSUM: k The size of the sub-sample whose sum of squares is 
ompared against that of the 
omplete sample of size n.Tra�
 
ounts sample size First layer of sensitivity 
ontrol in the PCD on the raw data, i.e., the moving average of tra�
 
ounts per lane.CUSUM output sample size Se
ond level of sensitivity 
ontrol in the PCD, i.e., on the CUSUM output per lane.
MAR sample size Determines the PCD's sensitivity to the agent's performan
e.

P erF actor S
ales down the input data for the DPC's sigmoid fun
tion. Relative to the range of (MAR × DP C).JCT Holds the threshold value used in dete
ting 
hanges in the tra�
 pattern.Persisten
e sample size Determines how sensitive the PCD is to the genuineness of a given 
hange.Table 3.1: PCD parametersWe use DPC to refer to DPCsquashed for simpli
ity. PerFactor is used to s
ale down the sigmoidfun
tion (tanh()) input data in order for the fun
tion to give sensible output, i.e., that represents the
ombined 
hange degree on the range of [−1, 1]. Determining PerFactor is dependant on the rangeof performan
e to be measured for the 
ontroller agent. We are only 
on
erned when the �nal DPCis negative, i.e., the agent is not performing well while the lo
al tra�
 pattern is 
hanging. This isbe
ause an agent should not relearn unless its performan
e is adversely a�e
ted by the possible tra�
pattern 
hange. At this stage, DPC will have a negative value only if the in
orporated MAR wasnegative as the result of CUSUM is always positive. Hen
e, we 
hose the �nal DPC value to be inthe range of [0, 1] where DPC = 1 − abs(DPC[−1,0]). Moreover, the 
loser DPC is to 0, the moresevere the negative 
hange is, given the original (MAR × DPC) value. At a later stage, we dete
t aso 
alled genuine 
hange upon a situation where a sample of DPCs are persistently 
rossing a givenjun
tion 
hange threshold (JCT) �xed for all signalized jun
tions. The sampling of DPC starts whena single DPC value 
rosses the JCT and 
ontinues until the so 
alled persisten
e sample is ready,(i.e., its size is met). That sample's mean is then 
ompared against the JCT where a genuine pattern
hange is dete
ted if this sample mean 
rosses the JCT, however, this is dependent of the thresholdingte
hnique used.3.3.2 Sensitivity and ParametersThe sensitivity of any 
hange dete
tion me
hanism, i.e., how representative of the 
hange it is andwhat 
onstitutes a 
hange for it, 
an naturally be 
ontrolled through di�erent means. In PCD, anumber of de
isions determine the overall sensitivity, see Table (3.1). These are divided into twogroups; the �ltering parameters group and the squashing and thresholding group.A given moving average �lter is 
hara
terized by the sample size s. The larger s is, the less sensitivethe output of that �lter be
omes to the input. We use three moving average �lters that require a49
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tion
Fixed threshold value

Possible change

Time

DPC

Figure 3.4: Fixed thresholding te
hniquepreset sample size for tra�
 
ounts per lane, CUSUM �lter outputs and agent rewards. In addition,the CUSUM �lter requires preset k and n where k is the smaller moving sample size and n is the sizeof the whole moving sample. The values of k and n determine the sensitivity of the CUSUM �lterand are typi
ally determined empiri
ally (explained below) as the 
hoi
e depends on the nature of theinput data.On the other hand, PerFactor and the JCT are the two parameters that are 
losely related todetermining the a
tual PCD sensitivity. PerFactor is �xed based on the range of data fed to thesigmoid fun
tion in order to help the fun
tion produ
e a representative output data on the sigmoidrange [−1, 1]. In order to dete
t a genuine 
hange, a given JCT is needed to determine the DPCthat is 
onsidered the beginning of a possible 
hange (dis
ussed later). Moreover, the preset valuesof all the above mentioned sensitivity parameters 
an be determined empiri
ally as they are domaindependant espe
ially given the granularity of the original inputs.A 
ertain thresholding te
hnique should be used in PCD. Figure (3.4) shows a �xed thresholdingte
hnique, whi
h is a 
lassi
al way were a de�ned threshold value remains stati
 throughout the pro
essof 
hange monitoring. Other thresholding te
hniques 
an be used in PCD, for instan
e, dynami
ally
hanging thresholds but this is dis
ussed as future work.Regardless of the thresholding te
hnique used, the notion of persisten
e is introdu
ed as the 
rite-rion to distinguishing a genuine 
hange. The latter is determined by 
omparing the mean of a DPCsample of a preset size (persisten
e sample size), 
olle
ted after a single DPC value 
rosses the �xedJCT, against the JCT value. If the DPC sample's mean is lower than the JCT value, the 
hange isde
lared genuine. The persisten
e sample size is also 
onsidered relevant to the sensitivity; the largerthe sample the less sensitive the design is and vi
e versa.By empiri
ally in this se
tion it is meant that a small s
ale simulation study, typi
ally on singlesignalized jun
tion, was 
arried out for the sole purpose of 
hoosing suitable parameter values. A set50



Chapter 3. Soilseof 
andidate PCD parameter values, mainly for the �rst six parameters in Table (3.1), were evaluatedand the resulting DPC is monitored throughout the simulation that in
ludes di�erent tra�
 patterns.The JCT and the persisten
e sample size parameters were 
onsequently determined after analyzingthe series of DPC values throughout the simulation.3.3.3 AlgorithmThe PCD pro
ess runs 
ontinuously as long as the agent is running. The main task for it is todetermine if the agent needs to relearn upon the dete
tion of a persistent 
hange. The di�erentsample sizes, Perfactor and the JCT needed for the PCD pro
ess have to be determined empiri
allyand are then initialized as 
ommon values for all signalized jun
tions. For a given jun
tion, the PCDpro
ess 
an be des
ribed as in Algorithm (6). It 
ontinuously invokes the DPC 
al
ulation pro
ess(see Algorithm (5)) while dete
ting genuine 
hanges.The DPC 
al
ulation pro
ess updates the di�erent samples needed by PCD and 
al
ulates a DPCvalue. By updating a sample, it is meant that a new reading is added to the sample whi
h is in asliding window form, so whenever the sample is full the oldest reading is removed and a new one isadded. The DPC 
al
ulation pro
ess starts by updating the samples of tra�
 
ounts per lane and
al
ulates the moving average for all. These averages are used to update the samples fed as inputto the CUSUM �lter. The CUSUM values are then 
al
ulated for all inputs and are used to updatethe CUSUM output samples. These samples are then passed to �nal moving average �lter that storesthe resulting sample average per lane identi�er, (e.g., MA_CUSUM[Lane_ID℄). At the same time,the agent reward sample is updated and its moving average is stored in MAR. In order to 
al
ulatethe �nal DPC, steps 5a and 5b in Algorithm (5) that were dis
ussed earlier in the design se
tion areexe
uted.The PCD pro
ess starts by initializing the sizes of samples needed and other parameters su
h as
PerFactor and JCT. A boolean variable that determines when the PCD pro
ess is 
olle
ting a DPCsample after a given DPC has 
rossed the �xed JCT (DPC sampling for persisten
e status) is alsoinitialized. The PCD then tries to obtain a DPC value, if it did, it 
he
ks whether this DPC 
rossesthe JCT. If so, the DPC sampling for persisten
e status be
omes true on the 
ondition that the agentis not already learning. Consequently, while the DPC sampling for persisten
e status is true, the DPCsample for persisten
e is 
ontinuously updated until it meets the required sample size. The mean ofthat sample is then 
ompared against the JCT and the agent is asked to relearn if the mean is equalto or less than the �xed JCT. In that 
ase, the DPC sampling for persisten
e status be
omes falseand the DPC sample for persisten
e is 
leared. If the agent is asked to relearn, it is passed the mean51



3.3. Pattern Change Dete
tion
Algorithm 5 PCD - 
al
ulate DPC1. calcDPC = false2. Update SamplesofT rafficCountsPerLane3. If (SamplesofT rafficCountsPerLane are full⋆)(a) Update CUSUM_InputSamplesPerLane usingCal
ulateMovingAVG(SamplesofT rafficCountsPerLane)(b) If (CUSUM_InputSamplesPerLane are full)i. Update CUSUM_OutputSamplesPerLane usingCal
ulateCUSUM(CUSUM_InputSamplesPerLane) eq(3.1)ii. If (CUSUM_OutputSamplesPerLane are full)A. MA_CUSUM [Lane_ID]←Cal
ulateMovingAVG(CUSUM_OutputSamplesPerLane)B. Update AgentRewardSample by querying for the last agent rewardC. If (AgentRewardSample is full)

MAR←Cal
ulateMovingAVG(AgentRewardSample)
calcDPC = trueD. EndIfiii. EndIf(
) EndIf4. EndIf5. If (calcDPC)(a) DPC ← tanh((MAR × mean(MA_CUSUM))/ PerFactor)(b) DPC ← (1 − abs(DPC[−1,0]))6. EndIf

⋆By �full� it is meant that all the slots in the sample are o

upied
52



Chapter 3. Soilse
Algorithm 6 The PCD pro
ess for a single signalized jun
tion1. Initialize(a) Sizes of all samples required, Perfactor and JCT(b) SamplingDPCforPersistence = false(
) DPC_PersistenceSample.clear()(d) DPC = null2. DPC ←Algorithm (5)3. While ( agent is running ) do(a) If (FixedThresholding && (DPC ≤ JCT )&& Agent.isNotLearning())i. If (! SamplingDPCforPersistence) SamplingDPCforPersistence = true(b) EndIf(
) If (SamplingDPCforPersistence && DPC_PersistenceSample is not full⋆)i. Update DPC_PersistenceSampleii. If (DPC_PersistenceSample is full&& (mean(DPC_PersistenceSample) ≤

JCT ))A. SamplingDPCforPersistence = falseB. Agent.relearn(true, mean(DPC_PersistenceSample))C. DPC_PersistenceSample.clear()iii. EndIf(d) EndIf(e) DPC ←Algorithm (5)4. EndWhile
⋆By �full� it is meant that all the slots in the sample are o

upied
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3.4. Phases
Phase A Phase BFigure 3.5: Two phases of a four-approa
h signalized jun
tion

Phase A Phase B Phase C Phase DFigure 3.6: Complete set of phases for a T-shaped jun
tionof the DPC sample that determined the existen
e of a genuine 
hange. Agent relearning is des
ribedin the Soilse and SoilseC design se
tions later in this 
hapter where new learning and a
tion-sele
tionparameter 
al
ulations based on the DPC sample mean are also presented.3.4 PhasesAn integral part of the 
ontrol of a signalized jun
tion is the spe
i�
ation of the available tra�
phases. Phases 
an vary in their number and 
hara
teristi
s depending on the signalized jun
tion'slayout (i.e., geometry), pedestrian priority and other pure tra�
 engineering de
isions. A given phaseallows tra�
 on spe
i�ed approa
hes to 
ross the jun
tion towards permissible outgoing links. Phasesare mutually ex
lusive in the sense that a given jun
tion will only have a single phase a
tive at agiven time in order to avoid 
on�i
ting tra�
. Here, we present some possible phase design 
hoi
esand then spe
ify how we de�ne the set of phases we adopted in the Soilse approa
h.A design 
omprising two phases for a four-approa
h signalized jun
tion is presented in Figure (3.5).In this design, turning tra�
 (dotted arrows) is assumed to be infrequent and of less importan
e.Hen
e, turning tra�
 
an wait for the opportunity to pro
eed when the absen
e of opposing tra�
permits. Although this a straightforward design 
hoi
e, it has 
lear safety issues given that thepotentially risky 
hoi
e of turning in any dire
tion is solely the driver's responsibility.Now 
onsider a simpler T-shaped jun
tion. A 
omplete set of phases 
an be de�ned as the setof all phases representing all non-
on�i
ting tra�
 dire
tions at a given time, see Figure (3.6). This54
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Phase A Phase B Phase CFigure 3.7: Simplisti
 set of phases for a T-shaped jun
tion
Phase A Phase B Phase CFigure 3.8: Con
ise set of phases for a T-shaped jun
tiondesign results in a large number of phases per signalized jun
tion, whi
h is an unfavoured result bytra�
 engineers.On the other hand, a simplisti
 design would be to allow tra�
 only for a single approa
h to 
rossper phase, see Figure (3.7). However, this design 
hoi
e misses the natural opportunity of letting non-
on�i
ting tra�
 to 
ross. As a 
ompromise, a phase design 
hoi
e should result in a small numberof phases and also serve non-
on�i
ting tra�
. This design 
hoi
e eliminates 
ertain phases from the
omplete set of phases by 
ross mat
hing with the simplisti
 set, i.e., only phases in the 
ompleteset that in
lude a simplisti
 phase are 
onsidered. This results in a so 
alled 
on
ise set of phases,see Figure (3.8). The 
on
ise set hen
e 
omprises fewer phases than the 
omplete set and still allowless restri
tive phases 
ompared to the simplisti
 set. Usually, tra�
 engineers favour sele
ting theminimum number of phases spe
i�
ally engineered for better tra�
 �ow on jun
tions. Consequently,we use the 
on
ise set of phases with our approa
h.3.5 Signalized Jun
tion Model - Soilse and SoilseCHaving des
ribed the PCD me
hanism in Se
tion (3.3), we now des
ribe the design of both Soilse andSoilseC signalized-jun
tion 
ontroller agents and show how PCD �ts into the overall design. A Soilseagent is de�ned as an independent agent that 
ontrols a signalized jun
tion using a poli
y rea
hedby RL-based optimization in a responsive (see Req1) and adaptive (see Req2) manner. A SoilseCagent is de�ned as an agent that 
ontrols a signalized jun
tion using a poli
y rea
hed by RL-based55



3.5. Signalized Jun
tion Model - Soilse and SoilseC
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Figure 3.9: Soilse agent stru
tureoptimization in 
ollaboration (see Req4) with neighbouring SoilseC agents also in a responsive (see
Req1) and adaptive (see Req2) manner. The responsiveness of both Soilse and SoilseC agents issupported by a PCD me
hanism that dete
ts genuine tra�
 pattern 
hanges that adversely a�e
t theagent's performan
e.3.5.1 SoilseA Soilse agent, see Figure (3.9), is 
omposed of an RL agent and a PCD module. The RL agent
omprises a representation of the environment, i.e., a state-a
tion spa
e, strategies for a
tion sele
tionand learning as well as a reward model. A
tuation and sensing are provided through generi
 interfa
es(see Req3).The PCD module intera
ts with the RL agent by enquiring about the agent's performan
e, (i.e.,rewards) as well as triggering relearning when required. It periodi
ally polls the sensing interfa
e fortra�
 
ounts per lane on the given jun
tion in order to 
arry out the PCD pro
ess. If a genuine tra�
pattern 
hange is dete
ted, the PCD me
hanism passes the resulting DPC value to the RL agent. TheDPC is used by the RL agent to 
al
ulate new learning parameters in
luding both the learning anda
tion sele
tion strategies (assuming that the a
tion sele
tion strategy is not pure greedy).Through the sensing interfa
e, the RL agent is able to re
eive information about the environmen-tal situation. Su
h information 
ould be, but is not ex
lusively, the amount of tra�
 that 
rossedthe jun
tion during a given phase as well as the 
urrent tra�
 
ounts on a given phase's in
omingapproa
hes. The sour
e of that information 
an vary from 
lassi
al tra�
 
ameras or indu
tive loopsto re
ent FVD te
hnologies. Consequently, the RL agent knows its 
urrent state and is able to sele
t56
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Figure 3.10: Soilse agent state-a
tion spa
e for a signalized jun
tion with three phasesthe next a
tion using its a
tion sele
tion strategy, 
al
ulate a reward using a given reward model afterthe a
tion is exe
uted, update its poli
y using its learning strategy and, �nally, update its new state.Moreover, the RL agent 
an 
hange its environment through the a
tuation interfa
e that allows, forinstan
e, 
hanging of the signalized jun
tion's phase setting.The learning strategy that is used in Soilse is a Q-Learning one. The 
hoi
e of using Q-Learningstems from it being a well-established model-free o�-poli
y RL strategy. It is a model-free approa
hin the sense that it does not require some a priori likelihood model for the a
tions that 
an beexe
uted on the environment. It is also an o�-poli
y RL strategy as it learns and updates the agent'sknowledge even while taking a
tions that might prove to be non-optimal in the future (Abdulhaiet al., 2003). Being an model-free o�-poli
y learning strategy, as well as allowing for short periodknowledge updating per a
tion taken, Q-Learning is an ideal 
andidate for UTC optimization giventhe non-stationary nature of tra�
 (Abdulhai et al., 2003; Abdulhai & Pringle, 2003).In terms of a
tion sele
tion, Boltzmann, ǫ-greedy and greedy are supported. The state-a
tion spa
erepresentation is based on an adaptive round-robin design of all 
on
ise phases and their possibledi�erent timings (see Se
tion (3.2)). The state-a
tion spa
e varies in size depending on the numberof phases available per signalized jun
tion. Figure (3.10) depi
ts the state-a
tion spa
e of a signalizedjun
tion with three phases available.In a Soilse agent, a given signalized jun
tion's state-a
tion spa
e is modelled based on everyavailable phase and its status, (i.e., busy/not busy). A given phase's status depends on all the in
oming57
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tion Model - Soilse and SoilseC
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ount - used to determine phase statusapproa
hes of that phase, see Figure (3.11). A pair of a phase and its status is 
onsidered a state,(e.g., sy =⇒ (Phasex is busy)) in the model, see Figure (3.10). A given phase's status is determinedby 
omparing the total number of vehi
les within queueing range on its in
oming approa
hes against aspe
i�
 threshold value. A Soilse agent provides a number of a
tions, (i.e., 
andidate phase durationsin
luding a zero-se
ond duration a
tion) that 
ould possibly be 
hosen in a given state. Given that wefollow a round-robin style over n phases, after any a
tion we take in any state of phase Pi, the nexta
tion will be in a state of phase P(i+1) mod n depending on lo
al tra�
 
onditions. The availability ofa zero-se
ond duration a
tion allows the Soilse agent to skip unne
essary phases while exploring forpoli
y optimization.3.5.1.1 Lo
al Reward ModelThe design of any RL agent 
ru
ially relies on the reward model. The lo
al reward model de�nes theoptimization 
riteria pursued by a signalized jun
tion. These 
riteria 
ould be to minimize overallvehi
le waiting time or number of stops, or to maximize throughput. However, in UTC the interrelationof metri
s is inevitable, for example, redu
ing vehi
le waiting time a�e
ts the number of stops andvi
e versa. Also, optimizing for in
reased throughput 
ould a�e
t both vehi
le waiting time andnumber of stops. Consequently, the lo
al reward model needs to be fair in 
apturing the e�e
t of anexe
uted a
tion, for example, in 
apturing the number of waiting vehi
les after a given a
tion as wellas the number of vehi
les that have 
rossed the jun
tion due to that a
tion. Moreover, better lo
althroughput should naturally lower vehi
le waiting time as it en
ourages vehi
le movement as well aslower the number of stops that vehi
les su�er en-route to their destinations. As a result, we provide58



Chapter 3. Soilsea design for the lo
al reward model that we refer to as R1 as follows:R1: this reward model aims at 
apturing the tra�
 that has 
rossed the jun
tion during a givenphase duration and the remaining waiting tra�
 on all approa
hes on the jun
tion. The rewardwill result in a negative reinfor
ement if a given a
tion (timing) on a given phase results in moretra�
 waiting on the jun
tion as a whole 
ompared to the tra�
 that has 
rossed. Otherwise, itis a positive reinfor
ement. Consequently, this reward model optimizes for fair lo
al throughput,whi
h aims at enhan
ing lo
al performan
e in terms of vehi
le waiting time and number ofvehi
le stops.
R1 = (number of vehicles crossed − number of vehicleswaiting on the junction )R1 is motivated by the 
ontinuous (as opposed to dis
rete) form of reinfor
ements it naturally provideswhile 
apturing the possible negative e�e
t that a given a
tion might 
ause on the jun
tion as a whole.Besides being fair to waiting vehi
les, it also reinfor
es a
tions resulting in better tra�
 �ow. R1's
ontinuous nature is more informative to the learning pro
ess as opposed to a dis
rete nature, (e.g,positive reinfor
ement = 1 , negative reinfor
ement = -1) given the 
omplex nature of the UTCoptimization problem.3.5.1.2 RelearningThe need for relearning stems from the requirements of responsiveness and adaptiveness (see Req1, 2).Under a non-stationary urban tra�
 environment, an RL agent with a sole poli
y learnt for a giventra�
 pattern 
annot be expe
ted to 
ope with new tra�
 patterns unless it relearns for ea
h. Hen
ethe need arises for relearning.We propose an agent relearning strategy that is based on the DPC value passed from the PCDmodule when a genuine tra�
 pattern 
hange is dete
ted. The relearning pro
edure allows for respon-siveness in the Soilse and SoilseC design. Based on that DPC value, new learning and a
tion sele
tionstrategy parameters are 
al
ulated as follows:Learning rate (α): given that the lower the DPC value, the more severe is the tra�
 pattern 
hangethat is adversely a�e
ting the agent performan
e, a higher learning rate is needed in these 
asesin order to 
ope with the severe 
hange. Sin
e DPC has a range of [0, 1] the mapping be
omessimpler.

αnew = (1 −DPC) (3.3)59



3.5. Signalized Jun
tion Model - Soilse and SoilseCEpsilon in ǫ-greedy: like the new learning rate 
al
ulation, the need for higher exploration in 
aseof a lower DPC value is needed. The epsilon in ǫ-greedy needs to be higher for the a
tionsele
tion to be more exploratory.
ǫnew = (1 −DPC) (3.4)Boltzmann temperature (τ): the temperature degree in a Boltzmann a
tion sele
tion strategydetermines the degree of exploration and is proportional to the latter. The higher τ is, themore exploratory the agent using a Boltzmann a
tion sele
tion is. Hen
e, a new τ is 
al
ulatedproportionally to the poli
y model size (number of state-a
tion pairs) and the DPC value. Theproportional relation 
an also be 
ontrolled using a so-
alled exploration fa
tor (ExpFactor).The higher is the ExpFactor, the more weight is given to the poli
y model size relative to theDPC value.

τnew = (PolicyModelSize/DPC)× ExpFactor (3.5)For example, if a state-a
tion spa
e has two states where ea
h has two a
tions, the PolicyModelSizefor that state-a
tion spa
e would be (1× 2) + (1× 2) = 4.In order to determine the duration of the relearning, a de
ay rate needs to be 
al
ulated per relearningparameter. The de
ay should be exponential using a generi
 formula (3.6) as we need the relearningparameters to de
ay in a manner that is proportional to their value but that redu
es explorationgradually.
valuenew = (e−(valuedecay rate)×time step)× valueinitial (3.6)A natural logarithmi
 fun
tion is then used to 
al
ulate de
ay rates that are proportional to theDPC, (i.e., the higher is DPC value the faster the relearning/exploration should �nish) but inverselyproportional to the PolicyModelSize and the ExpFactor, (i.e., the larger the PolicyModelSize andthe ExpFactor the slower the relearning/exploration should �nish). The 
al
ulation is 
arried out asfollows:Under ǫ-greedy: when using ǫ-greedy as an a
tion sele
tion strategy, the de
ay rate for α and ǫ is
ommon given their 
ommon relearning initial value, i.e., (1−DPC) .
αdecay rate = ǫdecay rate =

loge(1/(1−DPC))

PolicyModelSize× ExpFactor
(3.7)Under Boltzmann: when using Boltzmann as an a
tion sele
tion strategy, a 
ommon de
ay ratebased on αdecay rate and τdecay rate is used.

τdecay rate =
|loge(1/τInitial)|

PolicyModelSize× ExpFactor60



Chapter 3. SoilseAlgorithm 7 Soilse initializationInitialize α, αdecay rate, γ, policy ∀Q(s, a), PCD.JCT, PCD.PersistenceSampleSizeSet Initial State/A
tion st ∈ S : {all agent states}, at ∈ At : {all actions for st}Set A
tion Sele
tion AS ∈ [Boltzmann, ǫ− greedy, greedy]Initialize ((τ, τdecay rate, commondecay rate) or (ǫ, ǫdecay rate)) depending on ASSet Lo
al Reward Model Rx ∈ Local Rewards

commondecay rate = (αdecay rate + τdecay rate)/2 (3.8)The αdecay rate in equation (3.8) is 
al
ulated as in the situation under ǫ-greedy. The commondecay rateis hen
e used for the de
ay of both τ and α in the Boltzmann 
ase. The value of the ExpFactor isdetermined empiri
ally (des
ribed in Se
tion (3.3.2)).3.5.1.3 Soilse AlgorithmThe Soilse agent uses Q-Learning as its learning strategy and 
an 
hoose the a
tion sele
tion strategyto be Boltzmann, ǫ-greedy or greedy. All Soilse agents in a given deployment use the same a
tionsele
tion type. In Algorithm (8) the Soilse pro
ess is presented.The Soilse agent starts by initializing the needed parameters relevant to its PCD, learning anda
tion sele
tion strategies (see Algorithm (7)). The agent then exe
utes an a
tion, re
eives its nextstate and 
al
ulates its lo
al reward. The agent then uses its lo
al reward for its poli
y update usingQ-Learning and sele
ts a next a
tion using a given a
tion sele
tion strategy. The agent then updatesits state and the a
tion to take. Furthermore, the agent 
he
ks whether it was asked to relearn byits PCD, if so, it reparameterizes itself using the DPC value passed by the PCD. Naturally, the agentde
ays its learning and a
tion-sele
tion related parameters as long as it is exploring. The Soilse agentwill 
ontinue exploration as long as its learning parameters have not rea
hed their preset minimumvalues where exploitation then begins. The preset minimum values are when τ = 1 and α ≈ ǫ ≈ 0.3.5.2 SoilseCHaving detailed the design of a Soilse agent that operates independently, the 
ollaborative version isnow des
ribed. A SoilseC agent has the same design of a Soilse agent with an added element thatallows for 
ollaboration, i.e., an advertisement strategy, see Figure (3.12). In addition, a 
ollaborativereward model is used as opposed to the lo
al reward model in Soilse agents. That 
ollaborative reward61



3.5. Signalized Jun
tion Model - Soilse and SoilseCAlgorithm 8 Soilse pro
essInitialize Soilse Algorithm (7)While (Soilse is running)Exe
ute at ; Re
eive st+1Cal
ulate Reward rt+1 based on Rx

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)]Sele
t at+1 ∈ At+1 : {all actions for st+1} using AS

st ← st+1 , at ← at+1If (relearn) #Relearn status is updated by PCD Algorithm (6) where it passes the DPC tobe used in reparameterizationReparameterize(AS, DPC) #Algorithm (9)EndIfIf (Soilse.exploration == true)De
ay α and (τ or ǫ depending on AS) using eq(3.6)EndIfEndWhile
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Figure 3.12: SoilseC agent stru
turemodel in
ludes an impli
it lo
al reward model similar to the Soilse agent design but also allows forthe in
orporation of ex
hanged information.The advertisement strategy determines the 
ollaboration mode for ea
h SoilseC agent. The modedes
ribes whi
h other SoilseC agent(s) to send and re
eive to/from. Ex
hanged information provides62



Chapter 3. Soilse

Algorithm 9 Reparameterize per a
tion sele
tion strategySwit
h(AS)
ase(Boltzmann):{
τ ← eq(3.5); α← eq(3.3)
αdecay rate ← τdecay rate ← commondecay rate eq(3.8)}break
ase(ǫ-greedy):{
α← (3.3); ǫ← eq(3.4)
αdecay rate ← ǫdecay rate ← eq(3.7)}break
ase(greedy):{
α← eq(3.3)
αdecay rate ← eq(3.7)}breakEndSwit
h

63



3.5. Signalized Jun
tion Model - Soilse and SoilseC
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Figure 3.13: NPV examplea metri
 for the sending agent's re
ent performan
e. Su
h information in
ludes a series of rewardsordered by age. The older the reward value is, the less important it is. Ex
hanging information o

ursat a prede�ned frequen
y for all 
ollaborating SoilseC agents (CollFreq > 0). The ex
hanged rewardsare dis
ounted using a Net Present Value (NPV) (Lin & Nagalingam, 2000) inspired Equation (3.9)that is a well-known method used in e
onomi
s for dis
ounting a series of values based on age. TheNPV equation diminishes the signi�
an
e of older rewards based on a given disc_rate value. An rtis the reward obtained at index t in the ex
hanged reward ve
tor. The most re
ent reward has thehighest t value while the �rst has t = 0, hen
e, 0 ≤ t < rv_size and rv_size is the reward ve
torsize. See Figure (3.13) for an NPV example with two di�erent disc_rate values.
NPV (rt) =

rt

(1 + disc_rate)(rv_size=(t+1))
(3.9)The 
ollaborative reward model (des
ribed in subse
tion (3.5.2.2)) is able to use the 
a
hed, (i.e.,simply stored) ex
hanged rewards and dis
ount them a

ording to the proposed pro
edure from theadvertisement strategy, i.e., the NPV in this 
ase. Determining the values of the CollFreq and theNPV's disc_rate parameters is a matter of design 
hoi
e that is dire
tly related to the nature of the
ollaboration sought. The more frequent the 
ollaboration is, the less reward history is ex
hanged andvi
e versa. Hen
e, a value is needed that depends on to the a
tion durations available to the agentsas a reward is re
eived after ea
h a
tion. For example, if the maximum a
tion duration available is

40 seconds, then a 
ollaboration frequen
y of 240 seconds would guarantee at least a reward historyof size 6 if the agent would 
hoose to exe
ute the maximum duration a
tion 
ontinuously.64
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	���Figure 3.14: Neighbours example3.5.2.1 NeighboursThe set of neighbours for any SoilseC agent 
omprises all one-hop SoilseC agents whether upstreamor downstream ignoring any non-signalized jun
tions in the way. Consequently, the advertisementstrategy suggests three possible modes of 
ollaboration.Mode one allows for a given SoilseC agent to re
eive information only from upstream neighboursand send information only to the downstream ones.Mode two allows for a given SoilseC agent to re
eive information only from downstream neighboursand send information only to the upstream ones.Mode three allows for a given SoilseC agent to send and re
eive information from upstream anddownstream neighbours.For example, 
onsider the tra�
 network layout in Figure (3.14). The neighbourhood of SoilseC agents
ould be des
ribed as in Table (3.2). Depending on the the mode of 
ollaboration, a given SoilseCagent sele
ts other SoilseC agents from its neighbourhood whi
h it sends to, re
eives from informationor both. In the SoilseC design, information about the distan
e between signalized jun
tions is notmodelled in the agents given that RL, by its nature, is an unsupervised learning approa
h. Addingsu
h information is 
onsidered a form of supervision while SoilseC agents are expe
ted to learn thedynami
s of the shared environment through information ex
hange and lo
al intera
tion.65



3.5. Signalized Jun
tion Model - Soilse and SoilseCNeighbours/SoilseC agent A B C DUpstream B,D A,C - A,BDownstream B,D A,D B -Table 3.2: SoilseC neighbourhood3.5.2.2 Collaborative Reward ModelThe 
ollaborative reward model is formed from the 
ombination of a lo
al reward model and ex
hangedinformation. Su
h a model makes use of the advertisement strategy by a

essing re
eived information.Assuming that the re
eived information is a ve
tor of rewards per sender, the 
ollaborative rewardmodel uses the NPV method in the advertisement strategy in order to dis
ount the re
eived/
a
hedrewards by age. A normalization pro
edure follows per number of senders and the size of rewardve
tors for ea
h.
CollStatus =

∑
∀n∈sending neighbours

Pt=rv_sizen−1

t=0 NPVn(rt)
rv_sizen

number of sending neighbours
(3.10)

rcoll ← (rlocal + CollStatus) (3.11)Consequently, a single value (CollStatus, see Equation (3.10)) denoting the overall re
ent per-forman
e of all sending SoilseC agents is 
al
ulated. The in
orporation step is a
hieved by adding
CollStatus to the 
urrent lo
al reward value, see Equation (3.11).3.5.2.3 SoilseC AlgorithmThe SoilseC algorithm is similar to the non-
ollaborative Soilse algorithm with the addition of infor-mation ex
hange depending on the mode and the in
orporation of this information lo
ally. Algorithm(11) des
ribes the SoilseC pro
ess.The SoilseC agent starts by initializing the required parameters relevant to its PCD, learning anda
tion sele
tion strategies (see Algorithm (10)). The agent then exe
utes an a
tion, re
eives its nextstate and 
al
ulates its lo
al reward. The latter is added to its lo
al reward history whi
h is usedfor its performan
e information ex
hange. If it is time for 
ollaboration (depending on a prede�nedfrequen
y) and the lo
al reward history is not empty, the agent advertises its lo
al reward history toa prede�ned set of neighbours. The agent then 
al
ulates its 
ollaborative reward, whi
h is used forits poli
y update using Q-Learning. It then sele
ts the next a
tion using the given a
tion sele
tionstrategy and updates its state and the a
tion to take. Furthermore, the agent 
he
ks whether it66



Chapter 3. SoilseAlgorithm 10 SoilseC initializationInitialize
CollFreq, NPV.disc_rate, LocalRewardsHist, α, αdecay rate, γ, policy ∀Q(s, a)

PCD.JCT, PCD.PersistenceSampleSizeSet Initial State/A
tion st ∈ S : {all agent states}, at ∈ At : {all actions for st}Set A
tion Sele
tion AS ∈ [Boltzmann, ǫ− greedy, greedy]Initialize ((τ, τdecay rate, commondecay rate) or (ǫ, ǫdecay rate)) depending on ASSet Collaborative Reward Model CRx #Impli
itly assigns a lo
al reward modelChoose Collaboration Mode CM #See Subse
tion (3.5.2.1)Build Neighbourhood N : {SendToN} ∪ {ReceiveFromN} given CMwas asked to relearn by its PCD, if so, it reparameterizes itself using the DPC value passed by thePCD. Naturally, the agent de
ays its learning and a
tion-sele
tion related parameters as long as it isexploring. The SoilseC agent will 
ontinue exploration while its learning parameters have not rea
hedtheir preset minimum values where exploitation then begins. The preset minimum values are when
τ = 1 and α ≈ ǫ ≈ 0.3.6 SummaryThis 
hapter des
ribes the design for a non-parametri
 PCD te
hnique that 
an be deployed lo
ally.The PCD presented does not rely on any a priori tra�
 model but rather dete
ts 
hanges in tra�
and quanti�es the 
hange, i.e., the DPC. Two types of RL-based UTC agents were presented, Soilseand SoilseC, where the latter is 
ollaborative. These agents make use of the DPC value upon a given
hange in order to 
al
ulate their relearning parameters. O

urren
es of su
h a 
hange are determineddepending on a �xed thresholding te
hnique.Both the Soilse and SoilseC agent designs follow an adaptive round-robin RL optimization s
hemein the 
ore. This allows for a near optimal setting of a 
on
ise set of phases to be rea
hed whereunsuitable phases for a given tra�
 pattern 
an be skipped and others 
an be assigned adequatetimings. Soilse and SoilseC agents are able to use di�erent reward models, however, a reward modelthat balan
es between in
reasing lo
al throughput and the number of waiting vehi
les is provided.They use Q-learning as the learning strategy and 
ould run using either Boltzmann, ǫ-greedy or greedyas an a
tion sele
tion strategy. The three di�erent types of a
tion sele
tion strategies are assessed67



3.6. Summary
Algorithm 11 SoilseC pro
essInitialize SoilseC Algorithm (10)While (SoilseC is running)Exe
ute at ; Re
eive st+1Cal
ulate Lo
al Reward rlocal ← CRx.CalcLocalReward();Lo
alRewardsHist.push_ba
k(rlocal)If ((((t + 1)modCollFreq) == 0)&& (LocalRewardsHist.empty() 6= true))Advertise (Lo
alRewardsHist, SendToN)Lo
alRewardsHist.
lear()EndIf

CollStatus← eq(sending neighbours← ReceiveFromN)(3.10)
rcoll ← (rlocal + CollStatus) #eq(3.11)
Qt+1(st, at)← Qt(st, at) + α [rcoll + γ maxaQ(st+1, a)−Qt(st, at)]Sele
t at+1 ∈ At+1 : {all actions for st+1} using AS

st ← st+1 , at ← at+1If (relearn) #Relearn status is updated by PCD Algorithm (6) where it passes the DPC tobe used in reparameterizationReparameterize(AS, DPC) #Algorithm (9)EndIfIf (SoilseC.exploration == true)De
ay α and (τ or ǫ depending on AS) using eq(3.6)EndIfEndWhile
68



Chapter 3. Soilsein the evaluation Chapter (5) where also their suitability for UTC optimization under non-stationaryurban tra�
 is dis
ussed. In a SoilseC setting, neighbouring agents 
an 
ollaborate following a 
ommonadvertisement strategy and depending on one of the three supported modes whi
h de�ne senders andre
eivers (see Req4). Su
h a 
ollaboration has shown promising results in terms of better globalperforman
e by taking into a

ount neighbours' performan
e (Salkham et al., 2008). A 
ollaborativereward model in the SoilseC agent uses the advertisement strategy to 
al
ulate a metri
 for sendingneighbours status through dis
ounting and normalizing 
ommuni
ated rewards.Moreover, this 
hapter provided a de
entralized RL s
heme through whi
h adaptive and responsiveRL-based UTC agents 
an be deployed. Adaptiveness (see Req2) is provided through learning in a fairround-robin state-a
tion spa
e design that is based on a 
on
ise set of phases per RL agent. Con
isephases and their timing are used as the means to 
ontrol the setting of a tra�
 light given their
oarse granularity that allows for a more 
ompa
t state-a
tion spa
e. Responsiveness (see Req1) issupported through relearning based on new parameters 
al
ulated relative to the DPC value resultingfrom the non-parametri
 PCD te
hnique upon a genuine lo
al tra�
 pattern 
hange. Moreover,Soilse and SoilseC in
luding the PCD satisfy Req3 by not relying on a spe
i�
 sour
e of tra�
 sensorinformation but rather exposing generi
 sensing and a
tuation interfa
es.
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Chapter 4
ImplementationThis 
hapter des
ribes the implementation of our Collaborative Reinfor
ement Learning (CRL) frame-work whi
h is a generi
 C++ framework that allows for the instantiation of CRL-based appli
ations.It also des
ribes the AgentsGenerator library that is used to 
reate a Soilse or a SoilseC agent forea
h signalized jun
tion and de�ne the interfa
e with the UTC simulator. The latter is des
ribed inChapter (5).4.1 The CRL frameworkThe use of a framework enables us to experiment with di�erent appli
ation designs in a more stru
turedand �exible manner. The CRL framework is a C++ library that provides the programmer with allthe 
omponents needed to build an RL appli
ation, e.g., agents, learning strategies, a
tion sele
tionstrategies, states, a
tions, Markov De
ision Pro
ess (MDP) representation and model. By model inthe CRL framework we mean the stru
ture in whi
h the learnt values are stored and indexed by somekey, for instan
e, a key in our implementation takes the form of (state_ID, action_ID) if we areusing Q-Learning. A KeyV aluePair is des
ribed as in the stru
ture pair < Key∗, Key_V alue >. Ahigh-level 
lass diagram for the CRL framework is presented in Figure (4.1).The framework also supports 
ollaborative appli
ation development by providing, in addition to the
ommon RL appli
ation needs, a feedba
k or an advertisement strategy, neighbourhood managementand 
a
hing. In that 
ase, the model used has 
a
hing support for the information 
ommuni
atedfrom neighbouring agents. A 
ertain advertisement strategy followed by every CRL agent supportsagents in updating their lo
al knowledge from their neighbours and de
ides on what informationshould be 
ommuni
ated to them. The remainder of this se
tion des
ribes the 
onstituents of the70



Chapter 4. Implementation

M D P

S t a t e Action

Agent

RLAgent

CRLAgent

Learn ingStra tegyActionSelect ion

QLearning SarsaBol tzmann Greedy

E-Greedy

Mode l

CRLModel CacheNeighbour Neighbours

Adver t ismentSt ra tegy

RewardMode l

Figure 4.1: The CRL framework high-level 
lass diagram
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4.1. The CRL framework

Boltzmann

+ MIN_BOLTEMP : double
- init_temp : double
- c_temperature : double
- BOL_TempDecayRate : double
- step : int
+ Boltzmann()
+ ~ Boltzmann()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*
+ setTemperature(tmp : double)
+ getTemperature() : double
+ setInitTemperature(init_tmp : double)
+ getInitTemperature() : double
+ setBOL_TempDecayRate( : double)
+ getBOL_TempDecayRate() : double
+ decayBOLTemp((* funTempDecay)( double , double , double ) : double)
+ getExplStep() : int
- probSum(v_k_v_p : vector< KeyValuePair * >, probs : double*) : double

Greedy

+ Greedy()
+ ~ Greedy()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

ActionSelection

+ ActionSelection()
+ ~ ActionSelection()
+ selectNextAction(mdp : MDP*) : AbstractAction*
# calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

EpsilonGreedy

- m_epsilon : double
- m_initepsilon : double
- m_epsilonDecayR : double
- m_minepsilon : double
- step : int
+ EpsilonGreedy( : double)
+ ~ EpsilonGreedy()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*
+ getEpsilon() : double
+ getEpsilonDecayRate() : double
+ getMinEpsilon() : double
+ getInitEpsilon() : double
+ setEpsilon(E : double)
+ setInitEpsilon(E : double)
+ setEpsilonDecayRate(edr : double)
+ decayEpsilon((* funTempDecay)( double , double , double ) : double)
+ getExplStep() : int

QLearning

+ MIN_ALPHA : double
- alpha : double
- gamma : double
- AlphaDecayRate : double
- init_alpha : double
- step : int
+ QLearning()
+ ~ QLearning()
+ setAlpha( : double)
+ setGamma( : double)
+ setInitAlpha( : double)
+ setAlphaDecayRate( : double)
+ getAlpha() : double
+ getGamma() : double
+ getInitAlpha() : double
+ getAlphaDecayRate() : double
+ getExplStep() : int
+ update(mdp : MDP*, r_v : Reward_Value)
+ decayAlpha((* funTempDecay)( double , double , double ) : double)
- maxQV(kv_v : vector< KeyValuePair * >, max_Qvalue : double&)

LearningStrategy

+ LearningStrategy()
+ ~ LearningStrategy()
+ update( : MDP*, : Reward_Value)

Figure 4.2: LearningStrategy and A
tionSele
tion 
lassesCRL framework.4.1.1 LearningStrategyThe LearningStrategy 
lass provides the interfa
e to whi
h any learning strategy must implement. AQ-learning implementation is provided in the CRL framework but it is possible to add other strategiesas needed, e.g., SARSA. The LearningStrategy 
lass, see Figure (4.2), mainly spe
i�es that anyimplementation of a given learning strategy must provide an update fun
tion whi
h updates the agentpoli
y.The QLearning 
lass inherits from the LearningStrategy 
lass and implements the update purevirtual fun
tion exposed by the LearningStrategy 
lass to suit the Q-learning logi
, see Listing (4.1).It also has a number of additional fun
tions and variables needed for its operation as 
an be seen inFigure (4.2). 72
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void QLearning : : update (MDP* mdp, Reward_Value r ) {State * 
urrent_State = mdp−>getCurrentState ( ) ;State * next_State = mdp−>getNextState ( ) ;Abstra
tA
tion * 
urrent_A
tion = mdp−>getCurrentA
tion ( ) ;Model * 
urrent_Model = mdp−>getModel ( ) ;double max_Qvalue = 0 . 0 ;/*Find the maximum Q−va lue ( over the po s s i b l e a
t ions ) for the next s t a t e */ve
tor<KeyValuePair*> ns_a_qvalue = mdp−>
onstru
tKeyValuePair s ( next_State ) ;i f ( ! ns_a_qvalue . empty ( ) ) {/*Get the maximum Q−va lue*/maxQV(ns_a_qvalue , max_Qvalue ) ;ve
tor<Key*> 
s_
a_key ;/*Only needs one pair to be re t r i eved */Key 
s_
a_k ( 
urrent_State , 
urrent_A
tion ) ;
s_
a_key . push_ba
k(&
s_
a_k ) ;ve
tor<KeyValuePair*> 
urrent_s_a_qvalue = 
urrent_Model−>getValues ( 
s_
a_key ) ;/*Main update ru l e*/
urrent_s_a_qvalue [0℄−>se
ond +=( alpha * ( r + (gamma*max_Qvalue) − 
urrent_s_a_qvalue [0℄−>se
ond ) ) ;}} Listing 4.1: Q-learning update fun
tion4.1.2 A
tionSele
tionAnalogous to the LearningStrategy 
lass, the A
tionSele
tion 
lass provides the interfa
e, see Figure(4.2), with whi
h any implemented a
tion sele
tion strategy should 
onform. Three types of a
tionsele
tion strategies are provided by the CRL framework, i.e., Boltzmann, greedy and ǫ-greedy. Thelatter is a spe
ial 
ase of the greedy a
tion sele
tion and hen
e is a sub
lass of greedy.The Boltzmann 
lass implements the calculateNextAction pure virtual fun
tion exposed by theA
tionSele
tion 
lass. The selectNextAction fun
tion typi
ally 
alls the calculateNextAction for thenext set state. The Boltzmann calculateNextAction implementation is shown in Listing (4.2) as itshows the vital fun
tional part of any a
tion sele
tion strategy.73
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Abstra
tA
tion * Boltzmann : : 
a l
u lateNextA
t ion ( ve
tor<KeyValuePair*> v_k_v_p){double * p = new double [ ( int )v_k_v_p. s i z e ( ) ℄ ;double sum = probSum (v_k_v_p, p ) ;double ran_num = ((double ) rand ( ) / RAND_MAX) ;double normalised_p = 0 .0 ;for ( int i = 0 ; i < ( int )v_k_v_p. s i z e ( ) ; ++i ) {/*Normalise and a

umulate the p r o ba b i l i t i e s */normalised_p += (p [ i ℄ / sum ) ;i f ( normalised_p >= ran_num) {delete [ ℄ p ;return (v_k_v_p[ i ℄−> f i r s t −>getA
t ion ( ) ) ;}}/* Return some a
t ion as a d e f au l t behaviour*/return ( (v_k_v_p. ba
k())−> f i r s t −>getA
t ion ( ) ) ;}double Boltzmann : : probSum ( ve
tor<KeyValuePair*> v_k_v_p, double * p) {int p_size = ( int )v_k_v_p. s i z e ( ) ;double q = 0 .0 , sum = 0 . 0 ;for ( int i = 0 ; i < p_size ; ++i ) {q = v_k_v_p[ i ℄−>se
ond ;/*Cal
u late Boltzmann ' s f a
 to r */p [ i ℄ = exp ( q / 
_temperature ) ;sum += p [ i ℄ ;}return sum ;} Listing 4.2: Boltzmann 
al
ulateNextA
tion
The Greedy and EpsilonGreedy 
lasses also implement the calculateNextAction fun
tion, seeListing (4.3). 74
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Abstra
tA
tion * Greedy : : 
a l
u lateNextA
t ion (ve
tor<KeyValuePair*> v_k_v_p){double max_q_value = 0 . 0 ;int max_q_index = 0 ;int p_size = ( int )v_k_v_p. s i z e ( ) ;for ( int i = 0 ; i < p_size ; ++i ) {i f ( i == 0 ) {max_q_index = i ;max_q_value = v_k_v_p[ i ℄−>se
ond ;} else i f ( max_q_value < v_k_v_p[ i ℄−>se
ond ) {max_q_index = i ;max_q_value = v_k_v_p[ i ℄−>se
ond ;}}return (v_k_v_p[max_q_index℄−> f i r s t −>getA
t ion ( ) ) ;}Abstra
tA
tion * Epsi lonGreedy : : 
a l
u lateNextA
t ion (ve
tor<KeyValuePair*> v_k_v_p){double r = ( (double ) rand ( ) / RAND_MAX) ;int index = 0 ;int s i z e = 0 ;i f ( r >= getEps i l on ( ) ) {return Greedy : : 
a l
u lateNextA
t ion ( v_k_v_p ) ;}else { s i z e = ( int )v_k_v_p. s i z e ( ) ;index = rand ( ) % s i z e ;return (v_k_v_p[ index℄−> f i r s t −>getA
t ion ( ) ) ;}} Listing 4.3: Greedy and EpsilonGreedy 
al
ulateNextA
tion4.1.3 RLAgentThe most basi
 
omposition that 
an be instantiated from the framework is an RLAgent, see Figure(4.4). It 
ombines the needed elements in order to have a fun
tional RL agent that uses some a
tionsele
tion and learning strategies in
luding a Model and an MDP representation of the environment. Itis also asso
iated with a RewardModel for a given optimization 
riteria. The RLAgent 
lass implements75



4.1. The CRL framework
RLAgent MDP ActionSelection AbstractActionLearningStrategy

setNextState(State*)
receiveSR(State_ID, Reward_Value, MDP_ID)

selectNextAction(MDP*)

AbstractAction*

setNextAction(AbstractAction*)

update(MDP*, Reward_Value)

stateTransition()

execute()

Figure 4.3: RLAgent re
eiveSR fun
tion sequen
e diagram

an Agent interfa
e that de�nes the basi
 stru
ture of an agent. The Agent 
lass requires that a virtual
receiveSR fun
tion is implemented where it also allows for the reward model and the learning anda
tion sele
tion strategies to be set. See Figure (4.3) for a typi
al receiveSR behaviour.

The RLAgent 
annot fun
tion until its implementer builds an MDP for its environment and ini-tializes its Model as well as 
ustomizes a given RewardModel. The MDP 
lass provides a stru
-ture (see Listing (4.4)) to store the desired state-a
tion spa
e and exposes a pure virtual fun
tion
constructStateActionSpace() that has to be implemented in order to instantiate a given MDP. It alsokeeps tra
k of the 
urrent a
tion and state as well as the next ones given that they are needed for thelearning pro
ess. 76
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State_Action_Space

RLAgent
# mdp : MDP*
+ RLAgent( : Agent_ID)
+ ~ RLAgent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setMDP( : MDP*)
+ getMDP() : MDP*

Model
# model_kv_p : M_kv_p
+ Model()
+ ~ Model()
+ getValues( : vector< Key * >) : vector< KeyValuePair * >
+ getAllValues() : vector< KeyValuePair * >
+ setValue( : KeyValuePair*)
+ updateExistingValue( : KeyValuePair*)
+ write_Model(location : string, agent_ID : Agent_ID)
+ read_Model(location : string, agent_ID : Agent_ID)
+ reset_Model()
+ size() : int

Agent
# a_LearningStrategy : LearningStrategy*
# a_ActionSelection : ActionSelection*
# a_Reward : RewardModel*
# agent_ID : Agent_ID
+ Agent( : Agent_ID)
+ ~ Agent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setLearningStrategy( : LearningStrategy*)
+ setActionSelection( : ActionSelection*)
+ setReward(r_m : RewardModel*)
+ getLearningStrategy() : LearningStrategy*
+ getActionSelection() : ActionSelection*
+ getReward() : RewardModel*
+ getID() : Agent_ID
# setID( : Agent_ID)

Agent::ActionSelection

+ ActionSelection()
+ ~ ActionSelection()
+ selectNextAction(mdp : MDP*) : AbstractAction*
# calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

LearningStrategy

+ LearningStrategy()
+ ~ LearningStrategy()
+ update( : MDP*, : Reward_Value)

RewardModel
# reward : Reward_Value
+ Reward()
+ ~ Reward()
+ setReward( : Reward_Value)
+ calcReward()
+ getReward() : Reward_Value

0..1#mdp

#s_a_space

1

#model

MDP

# mdp_ID : MDP_ID
# current_State : State*
# next_State : State*
# start_state : State*
# current_Action : AbstractAction*
# next_Action : AbstractAction*
# s_a_space : State_Action_Space
# model : Model*
+ MDP(mdp_ID : MDP_ID)
+ MDP(mdp_ID : MDP_ID, : ModelType)
+ ~ MDP()
+ setNextAction(n_action : AbstractAction*)
+ setNextState(n_state : State*)
+ setCurrentState(s : State*)
+ setCurrentAction(c_action : AbstractAction*)
+ getID() : MDP_ID
+ getModel() : Model*
+ setModel( : Model*)
+ getCurrentState() : State*
+ getCurrentAction() : AbstractAction*
+ getNextState() : State*
+ getNextAction() : AbstractAction*
+ getState(s : State_ID) : State*
+ getAvailableActions(s : State*) : vector< AbstractAction * >
+ constructKeyValuePairs(s : State*) : vector< KeyValuePair * >
+ addToStateSpace(s : State*, aa : AbstractAction*, ns : State*)
+ removeActions(v_A : vector< AbstractAction * >)
+ addAction(s : State*, aa : AbstractAction*, ns : State*)
+ stateTransition()
+ setStartState(s_s : State*)
+ getStartState() : State*
+ terminate()
+ constructStateActionSpace()

Figure 4.4: RLAgent 
lass diagram
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s t ru 
 t 
ompare_states {bool operator ( ) ( State * s1 , State * s2 ) 
onst{ return ( s1−>getID ( ) < s2−>getID ( ) ) ;}} ;s t ru 
 t 
ompare_AA {bool operator ( ) ( Abstra
tA
tion * aa1 , Abstra
tA
tion * aa2 ) 
onst{ return ( aa1−>getA
tionID ( ) < aa2−>getA
tionID ( ) ) ;}} ;typede f map< State * , map< Abstra
tA
tion * , ve
tor<State *>, 
ompare_AA >,
ompare_states > State_A
tion_Spa
e ;Listing 4.4: State-a
tion spa
e stru
ture in the MDP 
lassThe Model 
lass provides a stru
ture to hold the values asso
iated with all possible state-a
tionspa
e keys. The sub
lass implementing an RLAgent has the responsibility to build/instantiate itsModel. It also has to provide an implementation for the pure virtual fun
tion calcReward(). Theimplementation determines the reward 
al
ulation logi
 depending on a 
ertain optimization 
riteria.4.1.4 CRLAgentThe basi
 CRLAgent is similar in stru
ture to the RLAgent with the addition of a neighbourhoodmanagement 
lass, namely, Neighbours, an AdvertisementStrategy 
lass and a Model with a Ca
he,namely, the CRLModel. Figure (4.5) represents the CRLAgent 
lass and its relation to the other
onstituents.The main fun
tion that the CRLAgent implements is the re
eiveSR where it spe
i�es the stepstaken upon re
eiving a new state and a given reward value. The sequen
e diagram in Figure (4.6)
lari�es the pro
ess.The Ca
he 
lass supporting the CRLModel holds 
ommuni
ated information per neighbouringagent. This information will typi
ally be the CRLModel 
ontents of neighbours but 
ould be any otherkind of information sent from those neighbours. This is true as long as the information sent is in theform of a ve
tor of KeyV aluePair stru
tures. For example, a neighbour 
an send a group of its re
entreward values with a key representing their order in time. Furthermore, the AdvertisementStrategy
lass provides the basi
 sending and re
eiving fun
tionality. It also allows for the 
ustomization of the78
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Agent

# a_LearningStrategy : LearningStrategy*
# a_ActionSelection : ActionSelection*
# a_Reward : RewardModel*
# agent_ID : Agent_ID
+ Agent( : Agent_ID)
+ ~ Agent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setLearningStrategy( : LearningStrategy*)
+ setActionSelection( : ActionSelection*)
+ setReward(r_m : RewardModel*)
+ getLearningStrategy() : LearningStrategy*
+ getActionSelection() : ActionSelection*
+ getReward() : RewardModel*
+ getID() : Agent_ID
# setID( : Agent_ID)

Neighbours
# send_to_neighbours : vector< Neighbour * >
# receive_from_neighbours : vector< Neighbour * >
# parent_Agent : Agent*
+ Neighbours(p_agent : Agent*)
+ ~ Neighbours()
+ removeNeighbour( : Neighbour_ID, n_cat : N_CAT) : bool
+ isNeighbour( : Agent*, n_cat : N_CAT) : Neighbour*
+ addNeighbour( : Neighbour*, : vector< KeyValuePair * >, n_cat : N_CAT)
+ getNeighbours(n_cat : N_CAT) : vector< Neighbour * >*
+ setParentAgent( : Agent*)
+ getParentAgent() : Agent*

#neighbours

#mdp #s_a_space
State_Action_Space

CRLModel
- crl_cache : Cache*
+ CRLModel()
+ ~ CRLModel()
+ removeCachedValues( : Neighbour_ID, : vector< Key * >)
+ updateCachedValues( : Neighbour_ID, : vector< KeyValuePair * >)
+ setCache( : Cache*)
+ getCache() : Cache*

CRLAgent
# mdp : MDP *
# c_AdvertismentStrategy : AdvertisementStrategy*
# neighbours : Neighbours*
- coll_freq : int
+ CRLAgent( : Agent_ID)
+ ~ CRLAgent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ neighbourHood() : Neighbours*
+ setAdvertisementStrategy( : AdvertisementStrategy*)
+ getAdvertisementStrategy() : AdvertisementStrategy*
+ setMDP(mdp : MDP*)
+ getMDP() : MDP*

Neighbour
- n_id : Neighbour_ID
- active_agent : Agent*
+ Neighbour( : Agent*)
+ ~ Neighbour()
+ setNeighbourID( : Neighbour_ID)
+ getNeighbourID() : Neighbour_ID
+ setAgent( : Agent*)
+ getAgent() : Agent*

-crl_cache

Cache
- cached_n_kv_p : cache
- decay_thrs : int
- decay_rate : double
+ Cache()
+ ~ Cache()
+ updateValues( : Neighbour_ID, : vector< KeyValuePair * >)
+ removeValue( : Neighbour_ID, : Key*)
+ getValues( : Neighbour_ID) : vector< KeyValuePair * >
+ deleteNeighbour( : Neighbour_ID)
+ addNeighbour( : Neighbour_ID, : vector< KeyValuePair * >)
+ decayCache()
+ setDecayThrs( : int)
+ getDecayThrs() : int
+ setDecayRate( : double)
+ getDecayRate() : double
+ getCacheMap() : cache*
+ size() : int

MDP

AdvertisementStrategy
- local_agent : CRLAgent*
+ AdvertisementStrategy( : CRLAgent*)
+ ~ AdvertisementStrategy()
+ receiveAdvert( : CRLAgent*, : vector< KeyValuePair >)
+ sendAdvert()
+ constructKeys( : CRLModel*) : vector< KeyValuePair * >
+ setLocalAgent( : CRLAgent*)
+ getLocalAgent() : CRLAgent*

Model

-local_agent

Figure 4.5: CRLAgent 
lass diagram
CRLAgent MDP ActionSelection AbstractActionLearningStrategy

setNextState(State*)
receiveSR(State_ID, Reward_Value, MDP_ID)

selectNextAction(MDP*)

AbstractAction*

setNextAction(AbstractAction*)

update(MDP*, Reward_Value)

stateTransition()

execute()

Advert ismentStrategy

getAdvert isementStrategy()->sendAdvert()

Depending on coll_freq (collaboration frequency) Figure 4.6: CRLAgent re
eiveSR fun
tion sequen
e diagram79



4.2. Soilse and SoilseC Agent Generator
constructKeys virtual fun
tion in order to determine what should be 
ommuni
ated to the neighbours.The default constructKeys implementation sends the entire 
a
he 
ontents unaltered.
4.2 Soilse and SoilseC Agent GeneratorThe Soilse and SoilseC agent-generator is a 
ustomized instan
e of the CRL framework with theaddition of the PCD te
hnique. It 
ontains a set of 
lasses that inherit and implement from di�erentCRL framework 
lasses. It also provides an interfa
e 
lass that a
ts as the 
onne
ting layer betweenthe generated agents and the UTC simulator, i.e., the Sim_ENV 
lass. Figure (4.7) presents the 
lassdiagram of the Soilse and SoilseC agents generator.Although it is not expli
itly shown in the agent-generator 
lass diagram that 
ertain 
lasses inheritfrom the CRL framework, the relation is presented in Figure (4.8).The high-level relation between the Soilse and SoilseC agent-generator, the UTC simulator and theCRL framework is depi
ted in Figure (4.9). The agent-generator instantiates a Soilse or a SoilseC agent(depending on the type of the agent-generator) for ea
h signalized jun
tion. These agent sub
lassesare an implementation for the RLAgent and CRLAgent 
lasses in the CRL framework. The agent-generator enquires about the signalized jun
tions and their phases through the Sim_ENV 
lass inorder to use this information in the instantiation of Soilse or SoilseC agents. It also uses the providedlearning and a
tion sele
tion strategies from the CRL framework in order to 
reate su
h for ea
hSoilse or SoilseC agent. On
e the Soilse or SoilseC agents are 
reated they 
an then intera
t with thesimulator dire
tly through the Sim_ENV interfa
e.4.2.1 PCDThe PCD implementation is en
apsulated in a 
lass that keeps tra
k of the samples needed for itsdete
tion me
hanism fun
tionality. It provides the asso
iated Soilse or SoilseC agent with a fun
tionto monitor the DPC. This fun
tion, namely, monitorPatternChange() tests the 
urrent DPC againsta prede�ned threshold and 
he
ks its persisten
e if it 
rosses that threshold. Upon dete
tion of apersistent DPC, the monitoring fun
tion returns a newly 
al
ulated DPC to the Soilse or SoilseCagent that is used to determine its relearning parameters. Listing (4.5) presents the monitoringfun
tion. 80



Chapter 4. Implementation
AgentsGenerator

map

map_phases

AgentsGenerator()

~AgentsGenerator()

getJunctions()

getPhasesVector()

getSimENV()

create_ActionSel_LearningStr()

The constructor determines

whether Cache for the Model

is needed or not depending

on the agent type, i.e.,

Soilse or SoilseC

PCD

basic_PCD_movAvgSampleSize

basic_PCD_SamplePerLane

CUSUMsqr_InputSample_nSize

CUSUMsqr_InputSamplePerLane

CUSUMsqr_outputSamplePerLane

CUSUMsqr_movAvgSampleSize

Rewards_Sample

Rewards_movAvgSampleSize

perFactor

persistence

changeThreshold

PCD()

~PCD()

updateVehsCountPerLane()

updateCUSUMsqr()

updateRewardsSample()

calcJunctionDPC()

monitorPatternChange()

setPerFactor()

setPersistence()

Soilse_Action

phases

m_Xs

Soilse_Action()

~Soilse_Action()

execute()

setSoilse_Agent()

Soilse_Reward

mdp

Soilse_Reward()

Soilse_Reward()

~Soilse_Reward()

setJunctionID()

setMDP()

getJunctionID()

getMDP()

calcReward()

Soilse_Reward_1

Soilse_Reward_1()

~Soilse_Reward_1()

calcReward()

calcReward()

SoilseC_Reward_1

crl_agent

SoilseC_Reward_1()

~SoilseC_Reward_1()

calcLocalReward()

calcReward()

getMDP()

Soilse_AgentsGenerator

m_seconds

Soilse_AgentsGenerator()

~Soilse_AgentsGenerator()

buildAgents()

SoilseC_AdvStrategy_1

discount_rate

SoilseC_AdvStrategy_1()

~SoilseC_AdvStrategy_1()

receiveAdvert()

getNormalisedCacheValue()

sendAdvert()

constructKeys()

SoilseC_CRLAgent

SoilseC_CRLAgent()

~SoilseC_CRLAgent()

wakeup()

Soilse_RLAgent

Soilse_RLAgent()

~Soilse_RLAgent()

wakeup()

SoilseC_AdvStrategy

interimRseq

SoilseC_AdvStrategy()

~SoilseC_AdvStrategy()

addInterimReward()

resetInterimRs()

SoilseC_AgentsGenerator

m_seconds

SoilseC_AgentsGenerator()

~SoilseC_AgentsGenerator()

buildAgents()

linkNeighbours()

addINCs()

addOUTs()
sim_env

sim_env

mdp

sim_env

m_agent

sim_env

Sim_ENV

map

map_phases

State_Threshold

Sim_ENV()

~Sim_ENV()

getVehiclesCount()

getVehsOnJunc()

getVehsOnPhase()

getVehsPerLane()

getWTimeVehsOnPhase()

getWTimeVehsJunc()

getAllVehsCountOnLanes()

getAllPhases()

getNumofTLJunctions()

getVehiclesCountOnPhase()

getVehiclesCrossedCount()

getMap()

getJunctionCurrentPhase()

switchPhase()

scheduleAgentWakeUp()

determineJuncState()

setPhaseThreshold()

Soilse_MDP

m_junction

phases_v

seconds

m_states

m_congestion_thresholds

Soilse_MDP()

~Soilse_MDP()

getJunction()

constructStateActionSpace()

buildModel()

terminate()

getActions()

Soilse_Agent

wakeup_in

pcd

Soilse_Agent()

~Soilse_Agent()

wakeup()

setSimENV()

getSimENV()

Relearn()

isLearning()

updatePCDsamples()

Figure 4.7: Soilse and SoilseC agents generator 
lass diagram
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AbstractAction

AbstractAction()

getActionID()

~AbstractAction()

execute()

MDP

MDP()

MDP()

~MDP()

setNextAction()

setNextState()

setCurrentState()

setCurrentAction()

getID()

getModel()

setModel()

getCurrentState()

getCurrentAction()

getNextState()

getNextAction()

getState()

getAvailableActions()

constructKeyValuePairs()

addToStateSpace()

removeActions()

addAction()

stateTransition()

setStartState()

getStartState()

terminate()

constructStateActionSpace()

Reward

Reward()

~Reward()

setReward()

calcReward()

getReward()

CRLAgent

CRLAgent()

~CRLAgent()

getAllDOPs()

receiveSR()

neighbourHood()

setAdvertisementStrategy()

getAdvertisementStrategy()

addDOP()

getDOP()

setActiveDOP_ID()

getActiveDOP_ID()

AdvertisementStrategy

AdvertisementStrategy()

~AdvertisementStrategy()

receiveAdvert()

sendAdvert()

constructKeys()

setLocalAgent()

getLocalAgent()

RLAgent

RLAgent()

~RLAgent()

receiveSR()

setDOP()

getDOP()

Soilse_Action

phases

m_Xs

Soilse_Action()

~Soilse_Action()

execute()

setSoilse_Agent()

SoilseC_CRLAgent

SoilseC_CRLAgent()

~SoilseC_CRLAgent()

wakeup()

Soilse_Reward

mdp

Soilse_Reward()

Soilse_Reward()

~Soilse_Reward()

setJunctionID()

setMDP()

getJunctionID()

getMDP()

calcReward()

SoilseC_AdvStrategy

interimRseq

SoilseC_AdvStrategy()

~SoilseC_AdvStrategy()

addInterimReward()

resetInterimRs()

Soilse_RLAgent

Soilse_RLAgent()

~Soilse_RLAgent()

wakeup()

Soilse_MDP

m_junction

phases_v

seconds

m_states

m_congestion_thresholds

Soilse_MDP()

~Soilse_MDP()

getJunction()

constructStateActionSpace()

buildModel()

terminate()

getActions()

Figure 4.8: Soilse and SoilseC 
lasses relation to the CRL framework 
lasses
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bool monitorPatternChange (double& new_DPC) {stat i
 int s t ep s = 0 ;stat i
 bool sampling = fa l se ;stat i
 double sum_p
d = 0 ;double DPC = 
al
Jun
tionDPC ( ) ;i f ( (DPC <= 
hangeThreshold ) && ! sampling )sampling = true ;i f ( sampling && ( s t ep s < p e r s i s t e n 
 e ) ) {sum_dp
 += DPC;s t ep s++;i f ( s t ep s == pe r s i s t e n 
 e ) {s t ep s = 0 ;i f ( ( sum_dp
 / p e r s i s t e n 
 e ) <= 
hangeThreshold ) {// New DPC based on DPC sample averagenew_DPC = (sum_dp
 / p e r s i s t e n 
 e ) ;sum_dp
 = 0 ;sampling = fa l se ;return true ; // Per s i s t en t 
hange}sum_dp
 = 0 ;sampling = fa l se ; // I t was a non−p e r s i s t e n t 
hange}}return fa lse ;} Listing 4.5: PCD - monitor pattern 
hange fun
tionUpdating the samples needed to 
al
ulate the DPC is done through a dedi
ated fun
tion. The
updateV ehsCountPerLane() fun
tion updates the basi
 sample per lane whi
h 
onsists of vehi
le
ounts. Consequently, the updateCUSUMsqr() updates the input samples needed to 
al
ulate theCUSUM of squares using the moving average of basi
 samples (vehi
les 
ounts per lane). The samefun
tion updates the CUSUM of squares output sample per lane after the required 
al
ulations. Sim-83



4.3. Summaryilarly, the updateRewardsSample() updates the rewards sample. All the update fun
tions mentionedare invoked by the asso
iated Soilse or SoilseC agent through a single fun
tion, updatePCDsamples().In order to 
al
ulate the �nal DPC, a dedi
ated fun
tion, calcJunctionDPC() 
al
ulates both, themean of all lane moving averages from the CUSUMsqr_outputSamplePerLane and the moving aver-age of the Rewards_Sample. Furthermore, any sample size must meet the prede�ned 
orrespondingsample size to 
arry out any 
al
ulation on the sample. The DPC 
al
ulation pro
ess was detailed inSe
tion (3.3).4.2.2 RelearnUpon the wakeup() fun
tion of a given Soilse or SoilseC agent being 
alled, the fun
tion invokes p
d ->monitorPatternChange() and the isLearning() fun
tions. If the agent was not in a learning status anda new DPC is returned as a result of a persistent pattern 
hange, it 
alls the Relearn() fun
tion. Thisfun
tion is 
hara
terized by the 
al
ulation of new learning and a
tion sele
tion parameters suitablefor the dete
ted 
hange and based on the returned DPC value. The latter is passed to the Relearn()fun
tion whi
h, depending on the learning and a
tion sele
tion strategies types, sets new learningand a
tion sele
tion parameters. The 
al
ulation of these parameters was des
ribed in Subse
tion(3.5.1.2).4.3 SummaryThis 
hapter presented the implementation of our approa
h in terms of the CRL framework developedto provide the basi
 
onstituents needed for building Soilse and SoilseC agents. Indeed, our CRLframework 
an be used to build other optimization approa
hes as it is generi
 in nature. For instan
e,our CRL framework was extended and used to build a multi-poli
y optimization s
heme for large-s
aleautonomi
 systems in (Duspari
 & Cahill, 2009a). Both, a Soilse or SoilseC agent-generator 
ustomizesand instantiates the CRL framework as well as in
ludes PCD support for all 
reated agents. It alsoprovided an interfa
e that allows for 
ommuni
ation with the UTC simulator. The latter is des
ribedin the evaluation 
hapter.
84



Chapter 5
EvaluationThis 
hapter details the evaluation of our RL-based approa
h to optimization of UTC by meansof simulation. Our simulations are based on a UTC simulator that was built in the DistributedSystems Group at Trinity College Dublin (TCD). We brie�y introdu
e the possible approa
hes toUTC simulation and introdu
e the UTC simulator that we use. We des
ribe the experimental setupin terms of the maps and tra�
 patterns used, the Soilse and SoilseC learning and a
tion sele
tionsettings used as well as the baselines for 
omparison. The performan
e metri
s we use to evaluateour approa
h in terms of average vehi
le waiting time and average number of vehi
le stops are alsopresented. We experiment with two s
enarios of di�erent s
ale; the �rst uses a map of TCD and itssurroundings and the se
ond, uses a larger map of Dublin inner 
ity 
entre. We analyse the resultsobtained from these s
enarios and 
ompare them against results from the best-performing baselines.We also evaluate how Soilse and SoilseC s
ale.5.1 UTC SimulationApproa
hes to tra�
 simulation have evolved to mainly use one of three models, i.e., mi
ros
opi
,ma
ros
opi
 and mesos
opi
 (Hoogendoorn & Bovy, 2001). The main di�eren
e among these modelsis in the level of granularity at whi
h the tra�
 dynami
s are modelled. We brie�y introdu
e thesemodels:Mi
ros
opi
: in this model, the granularity is very �ne through assigning every vehi
le a spe
i�
model of intera
tion. Usually, a group of vehi
les of a given type, e.g., 
ars, follow the samemodel. Su
h a model spe
i�es the vehi
le's behaviour in terms of a

eleration, de
eleration,85



5.1. UTC Simulation
ar-following, lane-
hanging and possibly other aspe
ts.Ma
ros
opi
: in this model, the granularity is 
oarse where tra�
 �ow is modelled based on 
on
eptsinspired by �uid dynami
s. It deals with vehi
les 
olle
tively and on homogeneous basis, i.e.,does not di�erentiate between di�erent vehi
le types. A group of vehi
les are seen as one entitythat 
an be 
hara
terized by a given �ow-rate, velo
ity or density.Mesos
opi
: this model bridges the mi
ros
opi
 and ma
ros
opi
 models. It does not di�erentiatebetween di�erent vehi
les but rather spe
i�es their behaviour usually probabilisti
ally. Tra�
is modelled as small groups of vehi
les of given 
hara
teristi
s su
h as density. Driving relatedde
isions of a given vehi
le are relatively a�e
ted by the small group of vehi
les it belongs to.The 
oarse nature of the ma
ros
opi
 model makes it di�
ult to represent real-life situations and rather
on
entrates on providing a less 
omputationally demanding model. On the other hand, mi
ros
opi
and mesos
opi
 models seem to be more a

urate in des
ribing the low-level dynami
s of tra�
 whi
hmakes them more representative of real-life situations. Consequently, we use a mi
ros
opi
 urbantra�
 simulator.5.1.1 The UTC SimulatorThe UTC simulator (Reynolds et al., 2006) that we use follows a mi
ros
opi
 model. Its input is aset of XML �les des
ribing the road network to be simulated and the valid phases for ea
h signalizedjun
tion. This in
ludes the number of lanes per road, the maximum allowed speed on a given road,and the distan
es between 
onne
ted jun
tions. Moreover, tra�
 
an be generated between spe
i�
jun
tions or among user-de�ned zones where the sour
e/destination jun
tions are sele
ted randomlywithin the sour
e/destination zones. The resulting tra�
 data is represented in a tra
e �le fed to thesimulator whi
h in
ludes all vehi
les insertion times along with ea
h vehi
le's respe
tive path, i.e., thesequen
e of jun
tion identi�ers to 
ross. A snapshot of the UTC simulator's viewer is presented inFigure (5.1).The tra�
 data generated by the tools available in the UTC simulator does not provide variabilityin the tra�
 tra
e, i.e., the same input data is produ
ed given the same tra�
 duration and spe
i�
vehi
le paths. This 
an be seen as an evaluation limitation. However, we examine, but not statisti
ally,the e�e
t of varying di�erent parameters su
h as the ExpFa
tor and the 
ollaboration frequen
ywhere other parameters are automati
ally 
omputed by the Soilse and SoilseC algorithms. The onlyun
ertainty in Soilse and SoilseC originates from the randomness in the RL a
tion sele
tion strategiesused with the ex
eption of pure greedy a
tion sele
tion.86



Chapter 5. Evaluation

Figure 5.1: UTC simulator - viewer snapshotIn the UTC simulator, vehi
les exhibit di�erent behaviours su
h as 
ar-following, a

eleration,de
eleration and lane-swit
hing. They also abide by the speed limits on the di�erent roads they travelon. Throughout simulation, the UTC simulator logs vehi
les' waiting time and total number of stopsand it also provides the throughput at the end represented by the number of vehi
les that arrived attheir destinations. The UTC simulator was also used in (Duspari
 & Cahill, 2009b,a) for evaluatingmulti-poli
y optimization s
hemes in de
entralized autonomi
 systems.5.2 Experimental SetupThis se
tion spe
i�es the 
ommon experimental setup used in the two evaluation s
enarios based onthe Trinity map and the Dublin inner 
ity 
entre map. We des
ribe the maps used for ea
h s
enarioand the tra�
 patterns used for ea
h. We also present the learning and a
tion sele
tion parametersfor Soilse and SoilseC. The baselines we use to 
ompare Soilse and SoilseC against are also presentedas well as the metri
s used to evaluate the performan
e.5.2.1 Maps and Tra�
 PatternsTwo di�erent maps are used for the two di�erent s
enarios. Ea
h s
enario also uses a di�erent seriesof tra�
 patterns. The tra�
 patterns used are based on tra�
 
ounts dedu
ed from the Dublin87
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Figure 5.2: Trinity mapFrom To ULP Tra�
 MPP Tra�
 UHP Tra�
 EPP Tra�
F A 100 2000 1050 xF I 100 500 1050 500H C 100 500 1050 500H G 100 500 1050 500J K 100 500 1050 500B I 100 500 1050 1500I A 100 1500 1050 500F C 100 500 1050 500E G 100 1500 1050 xD A 100 500 1050 500H A x 500 x 500E A x 500 x 500E I x 500 x 500B F x x x 2000H E x x x 1500Table 5.1: Trinity s
enario tra�
 patternsTransportation O�
e Road Users Monitoring Report (Dublin Transportation O�
e, 2008).Trinity s
enario: this s
enario uses a map (see Figure (5.2)) that represents the real road network ofTCD and its surroundings (Trinity map). It 
onsists of 104 jun
tions, 30 of whi
h are signalizedjun
tions that need to be 
ontrolled. The overall tra�
 duration is ∼ 19 hours 
omprising fourdi�erent patterns:Uniform low pattern (ULP): tra�
 is generated over ∼ 4 hours following a uniform pattern88



Chapter 5. Evaluationof low tra�
 load 
onsisting of 1000 vehi
les. It is uniform in the sense that tra�
 isgenerated in equal proportions from all possible sour
es (see the From 
olumn in Table(5.1)) to all possible exits (see the To 
olumn in Table (5.1)). Cases where a given sour
eis also an exit are avoided. See Table (5.1).Morning peak pattern (MPP): tra�
 is generated over ∼ 4 hours following a pattern thatre�e
ts high tra�
 loads on main roads 
omprising 10, 000 vehi
les. See Table (5.1).Uniform high pattern (UHP): tra�
 is generated over ∼ 7 hours following a uniform pat-tern of high tra�
 tra�
 load 
onsisting of 10, 500 vehi
les. See Table (5.1).Evening peak pattern (EPP): tra�
 is generated over ∼ 4 hours following a pattern thatre�e
ts high tra�
 loads on main roads 
onsisting of 10, 000 vehi
les but generally opposingin dire
tion to the morning peak pattern. See Table (5.1).Dublin inner 
ity 
entre s
enario: this s
enario uses a map (see Figure (5.3)) that represents thereal road network of a 
onsiderable portion of Dublin 
ity 
entre. In this s
enario, 62 signalizedjun
tions need to be 
ontrolled out of the overall total of 270 jun
tions. This size is 
omparableto a 
ity 
entre, ∼ 62.6% of the size of Cork 
ity 
entre, whi
h has 99 signalized jun
tions
ontrolled by SCOOT (personal 
ommuni
ation). The overall tra�
 duration is ∼ 19 hours
omprising four di�erent patterns:ULP: tra�
 is generated over∼ 4 hours following a uniform pattern of low tra�
 load 
onsistingof 2000 vehi
les. Indeed, 
ases where a given sour
e is also an exit are avoided.MPP: tra�
 is generated over ∼ 4 hours following a pattern that re�e
ts high tra�
 loads onmain roads 
onsisting of 20, 000 vehi
les.UHP: tra�
 is generated over ∼ 7 hours following a uniform pattern of low tra�
 load 
on-sisting of 21, 000 vehi
les.EPP: tra�
 generated over ∼ 4 hours following a pattern that re�e
ts high tra�
 loads onmain roads 
onsisting of 20, 000 vehi
les but generally opposite in dire
tion to the morningpeak pattern.Tra�
 patterns used for the Dublin inner 
ity 
entre s
enario are analogous to those used for theTrinity s
enario. However, mu
h higher tra�
 volumes are used and parking spa
e areas are in-trodu
ed (see Figure (5.3)) in order to be used for generating morning and evening peak patterns.These parking spa
e areas are 
hosen in realisti
 lo
ations around Dublin inner 
ity 
entre. For theULP and UHP tra�
 patterns for the Dublin inner 
ity 
entre s
enario, tra�
 is generated in both89



5.2. Experimental Setup
������ ������ ������ �����	

�����


������

������

�����


������

������

������������

�

�

�

Figure 5.3: Dublin inner 
ity 
entre mapdire
tions from all opposing edges of the map uniformly. To 
larify, tra�
 in
oming from di�erentsour
es in zones {A, B, C, D} is destined for di�erent exits on zones {I, K, L, J} and vi
e versa.Also, tra�
 in
oming from di�erent sour
es in zones {A, E, G, I} is destined for di�erent exits on
zones {D, F, H, J} and vi
e versa. The di�eren
e between ULP and UHP is only in the tra�
 loadand in the pattern duration. For the MPP tra�
 pattern in Dublin inner 
ity 
entre s
enario, twotypes of tra�
 are generated, the �rst is heavy tra�
 destined for the di�erent parking spa
es andthe se
ond is light uniform tra�
 similar to the ULP. In
oming heavy tra�
 in that 
ase arrives to agiven parking spa
e from all remote zones, for example, parking space A would re
eive heavy tra�
from all zones ex
ept near zone E (as vehi
les will arrive almost immediately) and so on. Su
h heavytra�
 amounts to nearly 6324 vehi
les per parking spa
e area over the MPP duration. The oppositehappens in the EPP where heavy tra�
 leaves form the parking spa
e areas to all remote zones.Tra�
 loads leaving the parking spa
es are similar in load to those in the MPP. As well, light uniformtra�
 similar to the ULP is generated simultaneously.Both s
enarios presented are simulated with the 
ombined set of their respe
tive patterns. To
larify, the Trinity s
enario would run for the joint series of its patterns, i.e., ULP → MPP →

UHP → EPP for a duration slightly more than 19 hours to allow for the most re
ent tra�
 to 
learthe map. The same is the 
ase for Dublin inner 
ity 
entre s
enario using its respe
tive patterns.Spe
i�
ally, ULP starts the simulation, MPP follows at ∼ 14400sec, then UHP follows at ∼ 2900secand �nally EPP follows at ∼ 54000sec in the simulation.90



Chapter 5. Evaluation5.2.2 Soilse and SoilseC Spe
i�
sPivotal 
onstituents of the Soilse and SoilseC agents are the learning and a
tion sele
tion strategies aswell as the Pattern Change Dete
tion (PCD) me
hanism. In our s
enarios, Soilse and SoilseC agentsshare the following 
ommon learning, a
tion sele
tion, and PCD spe
i�
s (listed also in Table (5.2)):Learning strategy: Q-learning is used as the learning strategy with α (learning rate) initially setto a high 0.99 and gradually de
reasing based on an initial αdecay rate = 0.03. This allows αto rea
h the minimum value of 0.001 after ∼ 115 minutes. Two dis
ount fa
tors (γ) are �xedto either 0.3 or 0.7 throughout the s
enario simulation whi
h are representative of mid-low andmid-high γ values respe
tively.A
tion sele
tion strategy: three strategies 
an be used; ǫ−greedy, greedy or Boltzmann. Con
ern-ing ǫ−greedy, its initial ǫ value is set to a high 0.99 and gradually de
reases based on an initial
ǫdecay rate = 0.03. Analogous to Q-learning's α, ǫ rea
hes the minimum value of 0.001 after
∼ 115 minutes. In 
ase of Boltzmann, the initial temperature τ is set to 1000 and it gradually
ools down to the minimum value of 1 based on a temperature de
ay rate τdecay rate = 0.03 after
∼ 115 minutes. In 
ase of using greedy a
tion sele
tion strategy, only Q-learning's α is a�e
ted.PCD: Con
erning the sample size needed for the CUSUM of squares on a lane, n = 30 and k = 15are used. The moving average �lter on ea
h lane's tra�
 has a moving sample size of 60 tra�

ounts 
olle
ted every se
ond. Con
erning the smoothing moving average �lter on the CUSUMof squares output, a sample size of 10 is used. Also, the reward moving average �lter uses amoving sample of 10 rewards. A �xed thresholding te
hnique is used with a jun
tion 
hangethreshold set to 0.85. A PerFactor of 10 is used to squash the resulting Degree of PatternChange (DPC) while the persisten
e sample has a size of 10. See Se
tion (3.3.2) for details onhow these values are sele
ted.In both Soilse and SoilseC, relearning is evaluated with three values of ExpFactor (exploration fa
tor,see Se
tion (3.5.1.2)) ∈ {1, 2, 5}. The latter set of ExpFactor values was 
hosen as agents wouldspend a long time when relearning if the ExpFactor ex
eeds the value 5, whi
h 
onsequently makesthem unresponsive to possible genuine 
hanges in tra�
. Given that the ExpFactor value a�e
ts therelearning period, a set of values (≤ 5) were 
al
ulated to assess its e�e
t on the overall performan
e.The threshold used to determine a phase's busy status is set to 1. The a
tion set used is 
omposedof 0, 20 and 30 se
ond available for ea
h state in the Soilse or SoilseC state-a
tion spa
e. A Soilseagent uses R1 (see Equation (5.1), refer to Se
tion (3.5.1.1) for details) while a SoilseC agent uses91



5.2. Experimental SetupParameter Value(s)Initial α, ǫ 0.99Initial αdecay rate, ǫdecay rate, τdecay rate 0.03

γ {0.3, 0.7}Initial τ 1000CUSUM k, n 30, 15CUSUM (input, output) sample sizes (60, 10)Jun
tion 
hange threshold 0.85PerFa
tor 10Persisten
e sample size 10Rewards history length 10ExpFa
tor {1, 2, 5}Durations of the three a
tions used (0, 20, 30)secPhase threshold 1NPV dis
ount rate 0.1Collaboration frequen
y {120, 240}secTable 5.2: Experimental parametersa 
ollaborative reward model that in
orporates R1 as lo
al reward model (see Equation (3.10) andSe
tion (3.5.2.2) for details).
R1 = (number of vehicles crossed − number of vehicleswaiting on the junction ) (5.1)Every SoilseC agent follows an advertisement strategy of Net Pro�t Value (NPV) dis
ount rate 0.1while we experiment with two 
ollaboration frequen
ies of 120 or 240 se
onds (see Se
tion (3.5.2) fordetails on how these values are sele
ted). We also evaluate the three modes of 
ollaboration formingthe neighbours to send to and those to re
eive rewards from as des
ribed in Se
tion (3.5.2.1). Thetype of phases ea
h signalized jun
tion uses are 
on
ise phases and are des
ribed in Se
tion (3.4).Finally, all agents' initial learning o

urs on the ULP where this learning lasts for ∼ 115 minutes.5.2.3 Baselines for ComparisonWe use two baselines for 
omparison to 
ompare Soilse and SoilseC performan
e against:Round robin (RR): this baseline simply allows every signalized jun
tion 
ontroller to 
y
le throughthe available phases while giving an equal amount of time to ea
h. We use 20, 30 and 40 se
ondsin our s
enarios. For example, RR20s running on a signalized jun
tion of 3 phases would havea 
y
le time of 3× 20 se
onds. This means that the time given to ea
h phase is �xed and hen
eRR represents a �xed-time UTC plan. 92



Chapter 5. EvaluationSAT: an algorithm (Ri
hter, 2006) that emulates the behaviour of SCATS by trying to a
hieve a
90% saturation level at signalized jun
tions. The saturation level in this sense depends on thee�
ien
y of using the available green time. We set the minimum phase time to 20 se
onds andthe SAT 
ontrollers determine the maximum 
y
le length based on [minimum phase time ×

max_cycleL_factor × number of phases]. The max_cycleL_factor we 
hoose for our s
e-narios are 1.1 and 1.5 and the number of phases depends on the jun
tion being 
ontrolled.The SAT 
ontrollers try to adapt a

ording to the saturation level by in
rementing or de
re-menting phase durations at the beginning of ea
h 
y
le depending on information from theprevious 
y
le. The de
rement or in
rement amount is a �xed number (DIM). We 
hooseto experiment with 2 and 5 se
onds in that 
ase whi
h were found to provide better perfor-man
e in SAT 
ompared to other tried values. Hen
eforth, a SAT 
ontroller is des
ribed as in
SAT_{DIM}_{max_cycleL_factor}, e.g., SAT_2_1.5.The above baselines are representative of two UTC s
hemes, namely, RR's �xed-time 
ontrol andSAT's adaptive 
ontrol. Both present reasonable 
ompetitiveness depending on the s
enario on whi
hthey are deployed as the results dis
ussed further on will show.5.2.4 Performan
e Metri
sWe rely on two metri
s to assess the performan
e of Soilse and SoilseC against the baselines in thetwo s
enarios des
ribed before.Waiting time: for a given vehi
le, the waiting time (also known as delay) represents the amount oftime that the vehi
le is motionless throughout the journey to a given destination. Intuitively,UTC optimization aims at redu
ing that time.Number of vehi
le stops: for a given vehi
le, the number of stops represents the instan
es at whi
hits velo
ity rea
hed zero throughout the journey to a given destination. Intuitively, UTC opti-mization aims at redu
ing the number of stops per vehi
le.As we are dealing with tra�
 
onsisting of many vehi
les, we need a 
olle
tive metri
. Hen
e, theaverage waiting time (AWT) and the average number of vehi
le stops (AvgStops) per arrived vehi
leare used as 
olle
tive metri
s. As metri
s for the ongoing performan
e, we monitor the (a

umulated)total number of stopped vehi
les and the (a

umulated) total waiting time of all vehi
les present at agiven time throughout a given simulation s
enario. The number of arrived vehi
les is also presentedwhi
h represents the overall throughput. 93



5.2. Experimental SetupBetter performan
e in terms of the aforementioned metri
s is 
ru
ial to UTC performan
e. They
onvey the degree to whi
h the ultimate goal of de
reasing 
ongestion is met. They are also 
ommonmetri
s in the UTC optimization literature. As argued in (Klein, 2001), vehi
le delay or waitingtime and the number of stops vehi
les su�er are important measures of tra�
 
ongestion and tra�
�ow. Parti
ularly, they are important for studying the environmental e�e
t of tra�
 su
h as fuel
onsumption and emissions.We use, Soilse or SoilseC to refer to a deployment where every signalized jun
tion in a givens
enario is 
ontrolled by a Soilse or a SoilseC agent respe
tively, unless there is an expli
it use ofSoilse agent(s) or SoilseC agent(s). Performan
e results are presented with the pre�x (∼ −) or (∼ +)to indi
ate an approximate lower or higher value respe
tively, for example, if a given Soilse deploymentoutperforms the RR20s baseline by ∼ −x% in terms of AWT, this implies that Soilse provides ∼ x%lower AWT than RR20s.Plots and graphs showing AWT, AvgStops and the ongoing performan
e based on total waitingtime and total number of stops do not in
lude a measure of un
ertainty su
h as standard deviation.The reason is due to a limitation in the UTC simulator (see Se
tion (5.1.1)) whi
h does not supportthe variability of input data for same tra�
 patterns that 
an be used for di�erent runs.5.2.5 Evaluation Obje
tivesThe evaluation that we 
arried out addresses whether our approa
h meets the following obje
tives.Obje
tive one (Obj1): assess the bene�ts of relearning in our approa
h against a situation whereinitial learning is only used. In addition to assessing the performan
e of our approa
h using theavailable a
tion sele
tion strategies.Obje
tive two (Obj2): assess the relearning behaviour in our approa
h.Obje
tive three (Obj3): assess the viability of our approa
h for UTC by 
omparing Soilse andSoilseC performan
e against the baselines performan
e.Obje
tive four (Obj4): assess how 
ollaboration using SoilseC 
an provide better global perfor-man
e against non-
ollaborative Soilse. In addition to assessing available 
ollaboration modes.Obje
tive �ve (Obj5): assess how our approa
h s
ales in terms of map size and tra�
 loads.We refer to the above obje
tives individually as we address ea
h in the evaluation of our approa
husing two s
enarios of di�erent s
ales. In addition, the same obje
tives are addressed in both s
enarios.94
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Figure 5.4: Trinity - RR total vehi
le waiting time throughout the simulation time5.3 Trinity S
enarioThe map used for this s
enario and the series of 
ombined patterns were des
ribed in Se
tion (5.2.1).First we introdu
e the results from the baselines evaluation and then 
ompare their performan
e inorder to obtain the best performing baseline settings. The latter's performan
e are used for further
omparison against the performan
e of Soilse and SoilseC agents. Also, Soilse is 
ompared againsta situation where an initial learning is only used. For this s
enario, we also provide di�erent levelsof 
omparison between di�erent parameters of Soilse and SoilseC. Spe
i�
ally, we study the e�e
t ofusing di�erent exploration fa
tors on the relearning behaviour. The latter is also dis
ussed for Soilseand SoilseC. Furthermore, we study the e�e
t of the 
ollaboration mode in use as well as the frequen
yat whi
h SoilseC agents 
ollaborate. Finally, we 
ompare the results of the best performing baselinesettings against the best Soilse and SoilseC performan
e.5.3.1 Baseline Performan
eWe present the performan
e of the di�erent baselines as a basis for sele
ting the best performingbaselines for further 
omparison against Soilse and SoilseC.Figures (5.4) and (5.5) show the total waiting time for all vehi
les in the simulation at a given timefor all RR and SAT settings respe
tively. It is evident that RR20s outperforms RR30s and RR40sin terms of total vehi
le waiting time throughout the simulation time. Given the in�exibility of RRin terms of 
hanging phase timings or avoiding 
ertain unne
essary phases for a given tra�
 pattern,it appears that for high phase times su
h as 30 or 40 se
onds, a 
onsiderable portion of the phase95
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Figure 5.5: Trinity - SAT total vehi
le waiting time throughout the simulation timetime is wasted. This 
auses vehi
le queues to build up on 
ertain busy lanes as they are obliged towait for their turn (phase) in order to be allowed to 
ross after the previous phase time elapses. Ifa lane is served by a given phase at a signalized jun
tion with 3 phases that runs RR40s, it wouldneed to wait 2 × 40 se
onds for its turn to be served. Given that RR20s allows for 
y
ling phasesto end relatively faster, it allows vehi
les on more approa
hes to 
ross more frequently resulting inbetter performan
e than RR30s and RR40s in this s
enario. As far as SAT is 
on
erned, di�erent SATsettings, namely, SAT_2_1.1, SAT_2_1.5, SAT_5_1.1 and SAT_5_1.5 perform approximately ona par in terms of total vehi
le waiting time throughout the simulation time. In 
omparison to RRperforman
e, Figure (5.6) shows the AWT results for di�erent RR and SAT settings. In terms of AWT,RR20s (∼ 34s) slightly outperforms the best performing SAT, i.e., SAT_2_1.5 (∼ 37.88s). RR30sand RR40s perform the worst in terms of AWT. Con
erning the performan
e in terms of AvgStops(see Figure (5.7)), most of SAT experiments perform nearly on par with the best performing RR20s(AvgStops =∼ 4.78) with the ex
eption of SAT_2_1.1.As far as the number of vehi
les that arrived over the simulation duration is 
on
erned, Figure(5.8) shows the performan
e of all baselines with their di�erent settings. SAT_2_1.5 performs bestby allowing 30, 162 vehi
les to arrive as opposed to the best performing RR, i.e., RR20s that allowedonly 29, 128 vehi
les to do so. This represents ∼ 3.2% better performan
e is terms of the number ofarrived vehi
les.Based on these results, RR20s and SAT_2_1.5 represent the best performing baselines. The di�er-en
e between the sele
ted baselines for this s
enario in terms of total vehi
le waiting time throughoutthe simulation time is presented in Figure (5.9). It shows that both sele
ted baselines perform simi-96
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Figure 5.9: Trinity - RR20s vs SAT_2_1.5 - total vehi
le waiting time throughout the simulationtimelarly with respe
t to the total vehi
le waiting time but with slightly lower performan
e by SAT_2_1.5under the MPP (see Figure (5.9)). However, RR20s a

umulates less vehi
le waiting time after theULP fades away (see Figure (5.10)). Figure (5.11) presents the sele
ted baselines' performan
e interms of the total number of stopped vehi
les at a given time during the simulation. The di�eren
eis not 
lear, however, SAT_2_1.5 exhibited a higher number of stopped vehi
les towards the end ofthe simulation.The sele
ted baselines are 
ompared against all others in terms of AWT as a representative metri
in Table (5.3) whi
h presents a per
entage 
omparison in terms of AWT between the sele
ted baselines98
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Figure 5.10: Trinity - RR20s vs SAT_2_1.5 - a

umulated total vehi
le waiting time
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5.3. Trinity S
enarioAWT %⋆ RR20s SAT_2_1.5RR 30s -42% -36%RR 40s -59% -55%SAT_2_1.1 -11% -1%SAT_5_1.1 -12% -2%SAT_5_1.5 -14% -4%SAT_2_1.5 -10% x
⋆The negative sign (-) implies lower AWTTable 5.3: Trinity - sele
ted baselines AWT performan
e 
omparison - Trinity mapand all others.It is 
lear that in terms of AWT, RR20s outperforms all SAT experiments while the best performingSAT_2_1.5 outperforms all other SAT as well as RR30s and RR40s.5.3.2 SoilseIn this se
tion we evaluate the performan
e results of Soilse deployment in the Trinity s
enario wherea dedi
ated Soilse agent is assigned to 
ontrol every signalized jun
tion. We analyse the e�e
t ofdi�erent a
tion sele
tion strategies in Soilse. Moreover, we analyse the e�e
t of the ExpFactor onthe relearning. In addition to 
omparing the performan
e of Soilse against the performan
e of thesele
ted baselines, we also 
ompare the performan
e of Soilse against the performan
e of SoilseInitthat is a situation where initial learning without relearning is only used. This is done in order to showthe validity of relearning as a means to provide for responsiveness and adaptiveness in Soilse. It isworth mentioning that all metri
 results for AWT and AvgStops provided for Soilse are based on thesimulation period only after the initial learning has �nished and on the averaged results of three runs.The variability in these runs originates solely from the random fun
tions used in the deployed a
tionsele
tion strategy apart from pure greedy (see Se
tion (5.1.1)). Plots of (a

umulated) total vehi
lewaiting time and number of stopped vehi
les throughout the simulation period are based on the bestrun from the three runs.5.3.2.1 Initial Learning vs. RelearningWe �rst 
ompare the performan
e of Soilse using di�erent a
tion sele
tion strategies against the
orresponding SoilseInit (see Obj1). Table (5.5) shows the best performan
e of Soilse in terms ofAWT for ea
h a
tion sele
tion strategy against SoilseInit. We �rst dis
uss the results from Soilseusing di�erent a
tion sele
tion strategies. 100



Chapter 5. Evaluation SoilseInit Soilse Soilse Performan
e∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

ǫ-greedy 35.606 29422 4.38 30.484 30152 4.37 -14.38% +2.42% -0.228%Greedy 36.603 29540 4.47 33.345 29651 4.47 -8.90% +0.37% 0%Boltzmann 47.812 29297 5.97 44.864 29448 5.74 -6.16% +0.51% -3.69%
⋆Numbers are in se
onds.Table 5.4: Trinity - Soilse vs. SoilseInit based on best AWT performan
e per a
tion sele
tion strategySoilse ǫ-greedyPerforman
e∓ ∼AWT% ∼AvgStops% ∼#AV%Greedy -8.57% -2.23% +1.66%Boltzmann -32.05% -23.86% +2.33%
∓The negative sign (-) indi
ates lower AWT, AvgStops or #Arrived Vehi
les (AV), otherwise (+) is used.Table 5.5: Trinity - best AWT Soilse performan
e per a
tion sele
tion strategyFrom the results presented in Table (5.5), it transpires that Soilse using ǫ-greedy a
tion sele
tionstrategy outperforms Soilse using Boltzmann and Soilse using greedy by ∼ −32.05% and ∼ −8.57%respe
tively in terms of AWT. Furthermore, results in terms of AvgStops show that using ǫ-greedy inSoilse also results in better performan
e 
ompared to using Boltzmann and greedy by ∼ −23.86% and
∼ −2.23% respe
tively. Con
erning the number of vehi
les that arrived at their destinations, Soilseusing ǫ-greedy has marginally outperformed both Soilse using Boltzmann and Soilse using greedy byallowing ∼ +2.33% and ∼ +1.66% more vehi
les to arrive respe
tively.Furthermore, addressing Obj1 in terms of relearning bene�ts, results based on best AWT perfor-man
e for Soilse against SoilseInit presented in Table (5.4) show that in all the 
ases Soilse, by relearn-ing when a genuine tra�
 pattern 
hange o

urs, performed better espe
ially in terms of AWT againstSoilseInit. In terms of AWT, Soilse outperformed SoilseInit by providing ∼ −14.38%, ∼ −8.90% and
∼ −6.16% better performan
e in 
ases where ǫ-greedy, greedy and Boltzmann were used respe
tively.Figures (5.12)(5.13) rea�rm the results 
on
erning the di�erent a
tion sele
tion strategies used inSoilse in terms of AWT. Using Boltzmann in Soilse resulted in poor vehi
le waiting time performan
e inthis s
enarios as opposed to using ǫ-greedy or greedy. This is 
lear in the previous �gures as Soilse usingBoltzmann does not manage to learn or relearn better poli
ies 
ompared to Soilse using ǫ-greedy andgreedy. It is also noti
eable in Figure (5.12) that surges in the total waiting time o

ur as some Soilseagents relearn. This o

urs in all a
tion sele
tion strategies, on di�erent signalized jun
tions and atdi�erent levels of relearning, (i.e., due to di�erent reparameterization). Monitoring the a

umulation of101
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Figure 5.13: Trinity - Soilse using Boltzmann vs. (ǫ-)greedy - a

umulated total waiting timethroughout the simulation time
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Figure 5.14: Trinity - Soilse using Boltzmann vs. (ǫ-)greedy - number of stopped vehi
les throughoutthe simulation timetotal vehi
le waiting time (see Figure (5.13)) 
lari�es how Soilse using Boltzmann performan
e 
annot
ope adequately in this s
enario as opposed to its ǫ-greedy and greedy 
ounterparts. Furthermore,Soilse's performan
e in terms of the number of stopped vehi
les is presented in Figure (5.14). It is 
learthat Soilse using Boltzmann 
aused a higher number of stopped vehi
les over most of the simulationas opposed to Soilse using ǫ-greedy and greedy. This performan
e is reminis
ent of the total waitingtime performan
e throughout the simulation time.In summary, Obj1 is satis�ed in this s
enario as we showed how Soilse, by relearning, outperformsSoilseInit in all a
tion sele
tion strategy 
ases. Better performan
e was a
hieved in Soilse using ǫ-greedy against its SoilseInit 
ounterpart in terms of AWT, i.e., ∼ −14.38%. In addition, an assessmentfor Soilse using di�erent a
tion sele
tion strategies is provided whi
h also satis�es Obj1.As far as Soilse's a
tion sele
tion strategy is 
on
erned, ǫ-greedy's overall performan
e in thiss
enario is better than other a
tion sele
tion strategies in terms of AWT and AvgStops. We believethis is due to the e�
ient manner in whi
h ǫ-greedy relearns. This normally o

urs with minimalrelearning 
ost, (i.e., in terms of total vehi
les time and number of stopped vehi
les) that does notleave a severe negative e�e
t on the overall system in addition to rea
hing better poli
ies after ea
hrelearning. The nature of ǫ-greedy's exploration does not rely heavily on the underlying poli
y, whi
his a good feature when trying to relearn a di�erent poli
y for some emerging tra�
 pattern. On the
ontrary, Boltzmann's exploration pro
ess is a�e
ted by the 
urrent poli
y whi
h makes it harder torelearn a di�erent one in a short period of time when a new tra�
 pattern emerges. Hen
e, Soilseusing Boltzmann 
annot rea
h better poli
ies after relearning that 
an be 
onsidered better than ǫ-103



5.3. Trinity S
enarioExpFa
tor 1 ExpFa
tor 2 ExpFa
tor 5
∼AWT⋆ ∼AvgStops ∼AWT⋆ ∼AvgStops ∼AWT⋆ ∼AvgStops

ǫ-greedy 32.364 4.33 31.765 4.17 30.484 4.37Greedy 35.151 4.67 33.345 4.47 33.963 4.58Boltzmann 45.401 5.63 45.204 5.76 44.864 5.74
⋆Numbers are in se
ondsTable 5.6: Trinity - best AWT Soilse performan
e per exploration fa
tor (ExpFa
tor)greedy. Furthermore, Soilse using greedy performs better than using Boltzmann in terms of AWTand AvgStops but does not outperform Soilse using ǫ-greedy. This is due to the exploration 
ontrolparameter(s) whi
h in the 
ase of Soilse using greedy is only α while in ǫ-greedy, ǫ whi
h determinesthe randomness of a
tion sele
tion has shown to be bene�
ial. Upon the dete
tion of a tra�
 pattern
hange, Soilse using greedy would only relearn based on the sole greedy a
tion sele
ted. The latter'sreward value is used to update the poli
y only to the extent de�ned by the newly 
al
ulated butde
aying α. On the other hand, ǫ-greedy allows for non-greedy but randomly (to a 
ertain ǫ degree)sele
ted a
tions to be explored, whi
h often results in better overall performan
e in the near futureduring the emerging tra�
 pattern than sele
ting pure greedy a
tions during exploration.5.3.2.2 Relearning BehaviourSoilse's relearning behaviour is analysed here in order to address Obj2. The e�e
t of the explorationfa
tor value on relearning as well as relearning o

urren
es and the ratio of relearning time to thesimulation time are dis
ussed. Table (5.6) presents the best performing Soilse results in terms of AWTper ExpFactor and a
tion sele
tion strategy. It also in
ludes the 
orresponding AvgStops results.Di�erent ExpFactor values a�e
t Soilse's performan
e in terms of AWT and AvgStops under alla
tion sele
tion strategies to di�erent extents. Soilse using greedy under ExpFactor 2 performed
∼ −2.41% and ∼ −4.28% moderately better in terms of AvgStops than under ExpFactor 5 and
ExpFactor 1 respe
tively. The suitability of ExpFactor 2 in that 
ase is due to a relearning behaviourthat balan
ed between the relearning 
ost and overall performan
e. Consequently, Soilse using greedyunder ExpFactor 2 provided ∼ −1.81% and ∼ −5.13% lower AWT than under ExpFactor 5 and
ExpFactor 1 respe
tively. On the other hand, Soilse using ǫ-greedy and Boltzmann showed a steadyimprovement in AWT performan
e as the ExpFactor value in
reased. For example, a ∼ −5.80% lowerAWT resulted from Soilse using ǫ-greedy at ExpFactor 5 as opposed to the 
ase at ExpFactor 1. Itwas noti
eable that an improvement in AWT was not always a

ompanied by an improvement inAvgStops. Soilse using ǫ-greedy and Boltzmann performed best at ExpFactor 2 and ExpFactor 1104



Chapter 5. Evaluationrespe
tively in terms of AvgStops. However, Soilse using greedy performed best at ExpFactor 2 interms of both AWT and AvgStops. It transpires that there is no guarantee of obtaining simultaneousbest performan
e in terms of AWT and AvgStops under all ExpFactor values for Soilse in this s
enario.This may be due to the nature in whi
h relearning o

urs at di�erent signalized jun
tions espe
iallywith di�erent DPCs and no 
ollaboration.We sele
ted signalized jun
tion #1226 (Pearse street and Lombard/Westland Row street 
rossing)to show the relearning periods for Soilse using ǫ-greedy under di�erent ExpFactor values. Figure(5.15) presents the progress of lo
al tra�
 pattern 
hange on that signalized jun
tion depi
ted asvarying DPC values, whi
h also in
orporate the lo
al Soilse agent's performan
e. As a response togenuine persistent 
hanges in the DPC value, relearning periods are initiated as seen in Figure (5.16)that represents the 
hanges in ǫ of the Soilse agent at jun
tion #1226. Q-learning's α uses the sameinitial value and de
ay rate as ǫ during relearning and hen
e is not plotted.Based on Figures (5.16) and (5.15), it is 
lear that the Soilse agent on jun
tion #1226 dete
tedthe emergen
e of all patterns under all ExpFactor values ex
ept for ExpFactor 5 as it had a longerrelearning period for the MPP, whi
h 
aused it to miss the emergen
e of UHP. Naturally, the new
ǫ value de
ayed at di�erent rates depending on the ExpFactor value and the DPC of every 
hange.Moreover, using ExpFactor 1 
aused the Soilse agent to relearn twi
e more after the initial relearningwas 
ompleted for the MPP and the start of the relearning period 
aused by the emergen
e of UHP.This is due to the agent's poor performan
e after the initial relearning period given ExpFactor 1,whi
h 
aused a further need to relearn. This was 
aused by persistent low DPC values. The situationunder ExpFactor 2 appears to be good sin
e relearning o

urred as the Soilse agent responded atea
h tra�
 pattern emergen
e, however, this might not have been a good situation for other agents.The use of ExpFactor 2 for this spe
i�
 Soilse agent resulted in relatively stable high DPC valuesduring the MPP. Under ExpFactor 5, the Soilse agent relearnt for longer periods per genuine tra�
pattern 
hange. The �rst relearning task lasted long enough to miss the 
han
e to relearn for thenext emerging pattern UHP. However, the poli
y that was rea
hed, whi
h might have been a�e
tedby parts of the emerging UHP on a low exploratory rate, did not severely a�e
t the lo
al Soilse agentperforman
e under UHP and hen
e there was no further relearning until a new genuine 
hange wasdete
ted due to the emergen
e of the EPP.Furthermore, 
ertain signalized jun
tions (ea
h 
ontrolled by a Soilse agent) have relearnt duringthe simulation time. Figure (5.17) shows the start and end times of relearning periods for all Soilseagents in
luding the initial learning period (please note from now on that jun
tion ID 50 
orrespondsto jun
tion#1226 presented earlier). It 
an be observed that all Soilse agents have started and ended105
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Figure 5.17: Trinity - Soilse using ǫ-greedy (re)learning start and end times - best AWT performan
ethe initial learning at the same time. In total, four Soilse agents have relearnt at di�erent times. ThreeSoilse agents have experien
ed major relearning periods while another single Soilse agent (jun
tionID 20) have experien
ed little relearning. It 
an be noti
ed that not all agents start relearning at agiven time and this is due to a 
ombination of sensitivity and the varying degree of pattern 
hange atthe 
ontrolled jun
tions. Bearing in mind that the ExpFactor of this best Soilse performan
e using
ǫ-greedy was 5, the relearning periods espe
ially at jun
tions IDs 50 and 160 were lengthy taking intoa

ount the degree of genuine tra�
 
hange at ea
h as well. Soilse agent at jun
tion ID 50 was 
learlya�e
ted by the MPP and EPP while that on jun
tion ID 250 only was a�e
ted by the EPP. However,Soilse at jun
tion ID 160 was a�e
ted the most by the MPP, the UHP and the EPP. Figure (5.18)shows the time spent in relearning in 
omparison to the simulation duration for the a�e
ted Soilseagents. Soilse agents at jun
tion ID 50 and ID 160 spent ∼ 38% and ∼ 43% of the simulation timerespe
tively in relearning. However, during relearning, the exploration is gradually de
reased towardsmore exploitation so the ratio of relearning time to the simulation time indeed in
ludes a 
ontinuouslyin
reasing exploitation.In summary, this se
tion has addressed Obj2 in analysing the relearning behaviour of Soilse. The
ExpFactor plays an important role in determining the behaviour, i.e., relearning period and the de
ayrate, by whi
h lo
al Soilse agents respond upon dete
ting genuine tra�
 pattern 
hanges. This dire
tlya�e
ts the overall performan
e of Soilse in terms of AWT and AvgStops where best performan
e of the�rst does not guarantee a 
orresponding best performan
e of the latter. In addition, it is observed that107
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Figure 5.18: Trinity - Soilse using ǫ-greedy ratio of relearning time to simulation time - best AWTperforman
e
ertain Soilse agents are a�e
ted by lo
al o

urren
es of genuine tra�
 pattern 
hanges at di�erentstages. Hen
e, ea
h a�e
ted Soilse agent relearns di�erently.5.3.3 SoilseCUnlike a Soilse agent, a SoilseC agent allows for 
ollaboration through information ex
hange amongneighbouring agents in a given 
ollaboration mode (see Se
tion (3.5.2.1)). Here, we analyse the e�e
tof 
ollaboration by 
omparing the best performan
e of SoilseC against Soilse's best performan
e. Wealso study the e�e
t of multiple 
ollaboration modes on the overall performan
e in terms of AWT andAvgStops. We also analyse the e�e
t of the frequen
y at whi
h 
ollaboration o

urs in a given mode.Overall, this se
tion is presented to address Obj4.5.3.3.1 SoilseC vs. SoilseThe e�e
t of 
ollaboration in SoilseC on the overall performan
e in terms of AWT and AvgStops isstudied against non-
ollaborative Soilse (see Obj4). Collaboration in SoilseC implies that ea
h SoilseCagent is in�uen
ed by its neighbours' performan
e depending on the 
ollaboration mode in e�e
t.Table (5.7) summarizes the best performan
e of SoilseC versus Soilse in terms of AWT. SoilseCusing di�erent a
tion sele
tion strategies varied in their performan
e 
ompared to their Soilse 
oun-terparts. SoilseC using Boltzmann showed the best improvement in terms of AWT by redu
ing thelatter by ∼ −4.78% as opposed to its Soilse 
ounterpart. This is due to the nature of Boltzmannthat bases its a
tion sele
tion on a probability model built using the poli
y's di�erent Q-values. Thelatter in the 
ase of SoilseC are more well-informed about the 
onsequen
es of their asso
iated a
tionsthrough the ex
hanged history of dis
ounted and normalized rewards of 
ertain neighbours. However,108



Chapter 5. Evaluation Soilse SoilseC SoilseC Performan
e∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

e-greedy 30.484 30152 4.37 30.009 30347 3.91 -1.58% +0.64% -10.5%Greedy 33.345 29651 4.47 32.287 29570 4.75 -3.17% -0.27% +5.89%Boltzmann 44.864 29448 5.74 42.719 29466 5.47 -4.78% +0.06% -4.70%Table 5.7: Trinity - SoilseC vs. Soilse for best performan
e based on AWTSoilse SoilseC SoilseC Performan
e∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

e-greedy 31.765 29597 4.17 30.009 30347 3.91 -5.52% +2.47% -6.23%Greedy 33.345 29651 4.47 33.712 30128 4.41 +1.08% +1.58% -1.34%Boltzmann 45.369 29285 5.59 43.725 29384 5.44 -3.62% +0.33% -2.68%
⋆Results are in se
onds.
∓The negative sign (-) indi
ates lower AWT, AvgStops or #Arrived Vehi
les (AV) , otherwise (+) is used.Table 5.8: Trinity - SoilseC vs. Soilse for best performan
e based on AvgStopsanalogous to the Soilse situation, SoilseC using Boltzmann regardless of its enhan
ed performan
ethrough 
ollaboration, did not provide 
ompetitive AWT performan
e against SoilseC using othera
tion sele
tion strategies. Furthermore, SoilseC using ǫ-greedy and greedy provide ∼ −1.58% and
∼ −3.17% better performan
e in terms of AWT as opposed to their Soilse 
ounterparts. These AWTperforman
e results are not notable, however, the e�e
t of 
ollaboration was 
lear in terms of theAvgStops metri
 in the 
ase of the best performing SoilseC using ǫ-greedy, spe
i�
ally, ∼ −10.52%better performan
e in terms of AvgStops as opposed to Soilse using ǫ-greedy. The overall di�eren
ein terms of the number of arrived vehi
les was minimal in all SoilseC 
ases 
ompared to Soilse.Table (5.8) summarizes the best performan
e of SoilseC vs. Soilse in terms of AvgStops. It isnoti
eable that the best AvgStops performan
e for SoilseC using ǫ-greedy is also the best performan
ein terms of AWT. Collaboration has resulted in a balan
e between SoilseC's performan
e in termsof both metri
s as opposed to Soilse using ǫ-greedy 
ase. As far as the best performan
e of SoilseCusing ǫ-greedy is 
on
erned, a ∼ −5.52% and ∼ −6.23% better performan
e in terms of AWT andAvgStops results respe
tively 
ompared to Soilse. Moreover, an adverse e�e
t of 
ollaboration for thebest AvgStops performan
e for SoilseC using greedy in terms of AWT is noti
ed, i.e., ∼ +1.08% higherAWT than in the 
ase of Soilse. Similar adverse e�e
t of 
ollaboration 
an be noti
ed in SoilseC usinggreedy in terms of AvgStops as it resulted in ∼ +5.89% more AvgStops that the 
ounterpart 
aseof Soilse. It appears that in both 
ases of best performing SoilseC using greedy, ea
h 
ase providesbetter performan
e than the respe
tive Soilse solely on one main metri
 (AvgStops or AWT) at a time.This implies that SoilseC using greedy 
annot balan
e between a
hieving best performan
e in terms109



5.3. Trinity S
enarioBest AvgStops Performan
e Best AWT Performan
eExpFa
tor γ ExpFa
tor γ

e-greedy 2 0.7 5 0.7Greedy 2 0.3 2 0.3Boltzmann 2 0.7 5 0.3Table 5.9: Trinity - key parameters of best performing SoilseBest AvgStops Performan
e Best AWT Performan
eExpFa
tor CollFreq (se
onds) CM⋆ γ ExpFa
tor CollFreq (se
onds) CM⋆ γ

e-greedy 2 240 Three 0.3 2 240 Three 0.3Greedy 2 240 Two 0.7 2 240 Tow 0.3Boltzmann 2 120 Three 0.7 2 240 Tow 0.3
⋆Collaboration Mode Table 5.10: Trinity - key parameters of best performing SoilseCof AWT and AvgStops simultaneously.Table (5.9) provides key parameters for the experimental setup of Soilse's best performan
e. Itappears that the AvgStops performan
e is dire
tly a�e
ted by the amount of exploration in Soilse as itperforms best in terms of that metri
 under ExpFactor 2 for all a
tion sele
tion strategies. We believethis is due to the sensitivity of that metri
 (due to breaking propagation to following vehi
les) where itis more adversely a�e
ted (as opposed to AWT) by exploratory a
tions taken over longer explorationdurations. On the other hand, Soilse using ǫ-greedy, whi
h has the best AWT performan
e, requiredmore exploration, i.e., ExpFactor 5 in order to perform best. Soilse using Boltzmann had also a similarsituation. However, Soilse using greedy, having a non-exploratory a
tion sele
tion (only Q-learning's
α 
ontrols the exploration) performed best in terms of AWT and AvgStops under ExpFactor 2 and
γ = 0.3. In terms of γ, Soilse using ǫ-greedy performed best by being more farsighted under γ = 0.7while in the 
ase of greedy, as expe
ted, nearsightedness using γ = 0.3 performed best.Con
erning SoilseC, Table (5.10) provides key parameters for SoilseC's best performan
e experi-mental setup. It is noti
eable that best SoilseC performan
e in terms of AWT and AvgStops usingdi�erent a
tion sele
tion strategies required lower exploration periods given ExpFactor 2. This high-lights the advantage of 
ollaboration in SoilseC in terms of less required relearning durations in itsoutperforman
e of Soilse (see Figures (5.18)(5.23)). Furthermore, given that the best performan
e interms of AWT and AvgStops was for the same SoilseC using ǫ-greedy, naturally the same parametersare shared. The majority of SoilseC using di�erent a
tion sele
tion strategies performed best undera 
ollaboration frequen
y of 240s as opposed to more frequent 120s. This is due to more informative(longer) ex
hanged history using CollFreq = 240s.110
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e
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5.3. Trinity S
enarioGraphs presented in Figure (5.19) rea�rm SoilseC using ǫ-greedy's generally better performan
e interms of AWT and AvgStops against Soilse as dis
ussed earlier. It appears that SoilseC in that 
ase had
ertain expensive relearning tasks during the MPP that resulted in a relatively lower performan
e interms of total vehi
le waiting time during the se
ond half of the MPP. However, SoilseC 
onsiderablyoutperformed Soilse during the EPP in terms of AWT and AvgStops as it exhibited an e�
ientrelearning manner that rea
hed a better poli
y than Soilse's. The a

umulation of total waiting timein SoilseC against Soilse 
on�rms that observation as Soilse's a

umulated total waiting time surgesbeyond SoilseC's at the beginning of the EPP.As far as SoilseC using Boltzmann is 
on
erned, the graphs presented in Figure (5.20) 
on�rm itsoverall better performan
e against Soilse using Boltzmann in terms of AWT and AvgStops. SoilseCmaintained a lower total waiting time and lower relearning 
ost (
hara
terized by the absen
e of severesurges in total waiting time) than Soilse in the EPP. This is rea�rmed through the lower a

umulationof total vehi
le waiting time. Con
erning the number of stopped vehi
les throughout the simulation,SoilseC maintained a lower number of stopped vehi
les espe
ially during the MPP and the EPP.Observing the graphs of SoilseC using greedy against the 
orresponding Soilse do not reveal majordi�eren
es in performan
e as presented in Figure (5.21). This rea�rms the 
omparison between theirbest AWT and AvgStops results that was dis
ussed earlier. However, it appears that SoilseC performedbetter in terms of the number of stopped vehi
les espe
ially during the EPP.In summary, the performan
e of SoilseC versus Soilse performan
e was assessed (see Obj4). SoilseCusing ǫ-greedy (under best AWT performan
e) 
learly outperformed the Soilse 
ounterpart in termsof AvgStops while this was the 
ase in both terms of AWT and AvgStops under the best AvgStopsperforman
e. On the other hand, SoilseC using Boltzmann outperformed the Soilse 
ounterpart inall 
ases while generally there was no improvement in SoilseC using greedy performan
e against theSoilse 
ounterpart. Essentially, the e�e
t of 
ollaboration on SoilseC's performan
e against Soilse wasmoderate given this s
enario's s
ale.5.3.3.2 Collaboration ModeHere we study the e�e
t of the 
ollaboration mode (CM) on SoilseC's performan
e (see Obj4). We
hoose SoilseC using ǫ-greedy to 
ompare among its best AWT performan
e per 
ollaboration mode,see Table (5.11).The best performing SoilseC deployments under all 
ollaboration modes used a 
ollaboration fre-quen
y of 240 se
onds while the ExpFactor value varied to 1 in CM one, 5 in CM two and 2 inCM three. It appears that CM three performed best in terms of AWT, AvgStops and the number of112
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Chapter 5. Evaluation
ǫ-greedy / Collaboration Mode ∼AWT (se
onds) #Arrived Vehi
les ∼AvgStopsOne 30.338 29574 4.07Two 31.038 30076 4.27Three 30.009 30347 3.91Performan
e % Collaboration Mode Three

∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%Collaboration Mode One -1.08% +2.54% -3.93%Collaboration Mode Two -3.31% +0.89% -8.43%Table 5.11: Trinity - SoilseC best AWT performan
e per 
ollaboration mode - ǫ-greedyvehi
les arrived. Its approa
h of allowing all neighbours, regardless of being upstream of downstream,to share their re
ent performan
e with a given SoilseC agent appears bene�
ial in this s
enario. Itperformed better against CM two in terms of AvgStops by providing ∼ −8.43% less AvgStops. How-ever, in terms of AWT the di�eren
e between CM three and CM two was a moderate ∼ −3.31% lowerAWT from the CM three side. The latter performed also moderately better against CM one in termsof AWT and AvgStops by providing ∼ −1.08% and ∼ −3.93% better performan
e respe
tively. Interms of the number of arrived vehi
les, CM three provided ∼ +2.54% more vehi
les against CM onewhile the di�eren
e was minimal against CM two.In summary, the e�e
t of the 
ollaboration mode on SoilseC was assessed given this s
enario's s
aleas required in Obj4. In addition, it is di�
ult at this stage given the 
urrent s
enario's s
ale to seea noti
eable di�eren
e in the overall performan
e of di�erent CMs. However, CM one and CM threeappeared to have a 
lose performan
e.5.3.3.3 Relearning BehaviourThis se
tion addresses Obj2 
on
erning relearning in SoilseC. The best performing SoilseC using ǫ-greedy is 
onsidered. The ratio of the relearning time to the simulation time (see Figure (5.23)) andrelearning o

urren
es (see Figure (5.22)) are presented.It 
an be observed that only two SoilseC agents 
ontrolling signalized jun
tions ID 50 and ID160 have relearnt. Bearing in mind that this SoilseC best performan
e is at ExpFactor = 2 , therelearning periods are relatively shorter than the ones seen in the Soilse 
ase where ExpFactor = 5.It is 
lear that SoilseC at jun
tion ID 50 was 
ontinuously a�e
ted by genuine tra�
 pattern 
hangesduring the MPP and towards the beginning of the UHP. On the other hand, SoilseC at jun
tion ID160 was a�e
ted during the MPP and during the EPP. Moreover, SoilseC agents at jun
tions ID 50and ID 160 have spent ∼ 17% and ∼ 25% of the simulation time relearning respe
tively. In summary,115
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Chapter 5. Evaluation Soilse⋆ SoilseC⋆ RR20s SAT_2_1.5
e-greedy Greedy Boltzmann e-greedy Greedy Boltzmann

∼AWT (se
onds) 30.484 33.338 44.864 30.009 32.287 42.719 34.031 37.885#Arrived Vehi
les 30152 29561 29448 30347 29570 29466 29128 30162
∼AvgStops 4.37 4.42 5.74 3.91 4.75 5.47 4.78 4.9Performan
e% Soilse⋆Against (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%

e-greedy (-10.42%, -19.53%) (+3.39%, -0.03%) (-8.57%, -10.81%)Greedy (-2.03%, -12.00%) (+1.76%, -1.99%) (-7.53%, -9.79%)Boltzmann (+24.14%, +15.55%) (+1.08%, -2.36%) (+16.72%, +14.63%)Performan
e% SoilseC⋆Against (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%
e-greedy (-11.81%, -20.78%) (+4.01%, +0.60%) (-18.20%, -20.20%)Greedy (-5.12%, -14.77%) (+1.49%, -1.96%) (-0.627%, -3.061%)Boltzmann (+20.33%, +11.31%) (+1.14%, -2.30%) (+12.61%, +10.42%)

⋆Soilse and SoilseC results are 
al
ulated after the initial learning has elapsed.(Best Soilse and SoilseC results are in bold font.)Table 5.12: Trinity - best AWT performan
e of Soilse and SoilseC against the sele
ted baselinesthese are 
onsiderably lower ratios in 
omparison to the Soilse 
ase and yet SoilseC outperformedSoilse in terms of AWT and AvgStops. In addition, two SoilseC agents experien
ed relearning periodsas opposed to four in the Soilse 
ase.5.3.4 Comparison Against BaselinesThis se
tion presents a 
omparison between the best performing Soilse and SoilseC using ea
h a
tionsele
tion strategies for the Trinity s
enario against the previously sele
ted baselines, i.e., RR20s andSAT_2_1.5. This aims at addressing Obj3. The performan
e 
omparison is presented in Table (5.12).Results show that best performing Soilse and SoilseC using ǫ-greedy 
learly outperform both base-lines. While Soilse provides ∼ −10.42% and ∼ −19.53% better performan
e in terms of AWT againstRR20s and SAT_2_1.5 respe
tively, SoilseC ex
eeds this performan
e by providing ∼ −11.81% and
∼ −20.78% lower AWT as opposed to RR20s and SAT_2_1.5 respe
tively. In terms of AvgStopsperforman
e, Soilse outperforms RR20s and SAT_2_1.5 by ∼ −8.57% and ∼ −10.81% less AvgStopsrespe
tively. On the other hand, SoilseC performan
e in terms of AvgStops is approximately twi
emore notable than Soilse's performan
e against the baselines, i.e., ∼ −18.20% and ∼ −20.20% lessAvgStops against RR20s and SAT_2_1.5 respe
tively. Furthermore, Soilse and SoilseC performan
ein terms of the number of arrived vehi
les was not 
lear against SAT_2_1.5 (bear in mind that the117



5.3. Trinity S
enariometri
 is based on the number of vehi
les inserted after the initial learning has �nished). However,against RR20s, Soilse allowed ∼ +3.39% more vehi
les to arrive while SoilseC allowed ∼ +4.01% morevehi
les to do so.Con
erning Soilse and SoilseC using greedy, their overall performan
e in terms of AWT andAvgStops was not as good when 
ompared to the 
ases where both used ǫ-greedy. Soilse using greedyredu
ed the AWT and AvgStops by ∼ −2.03% and ∼ −7.53% respe
tively against RR20s. However,its performan
e was better against SAT_2_1.5 as it redu
ed the AWT and AvgStops by ∼ −12.00%and ∼ −9.79% respe
tively. The di�eren
e in the number of arrived vehi
les between Soilse usinggreedy and both baselines was marginal but better against RR20s. As far as SoilseC using greedy is
on
erned, it outperformed its Soilse 
ounterpart in terms of AWT against RR20s and SAT_2_1.5,i.e., ∼ −5.12% and ∼ −14.77% respe
tively. However, SoilseC's performan
e using greedy in termsof AvgStops was poorer than its Soilse 
ounterpart against both baselines. Similar to Soilse's per-forman
e, the di�eren
e in the number of arrived vehi
les between SoilseC using greedy and bothbaselines was marginal but better against RR20s.Soilse and SoilseC using Boltzmann as an a
tion sele
tion strategy in this s
enario did not outper-form the baselines. However, SoilseC using Boltzmann provided better performan
e than its Soilse
ounterpart in general but still remained insu�
ient against the baselines. Both Soilse and SoilseCusing Boltzmann only managed to provide a marginally better performan
e in terms of the numberof arrived vehi
les against RR20s. It appears that Boltzmann did not manage to relearn given theperiod of time determined by some pattern 
hange a suitable poli
y for the emerging pattern. This isbelieved to be due to the demanding nature of Boltzmann when it 
omes to the amount or explorationrequired to a
hieve a near optimal poli
y and to its seemingly expensive 
ost of relearning. In addition,this stems from the nature of Boltzmann that sele
ts its a
tions based on a probability model builtusing the underlying poli
y. As a result, upon a pattern 
hange dete
tion, the a
tion sele
tion pro
essis adversely a�e
ted by the existing poli
y until it is gradually overridden. This situation does noto

ur while using ǫ-greedy or greedy, given that the latter uses a �xed non-exploratory greedy a
tionsele
tion while ǫ-greedy follows a random a
tion sele
tion upon relearning relative to its newly set ǫvalue. Also, ǫ-greedy's relearning 
ost is not as a�e
ted by the existing poli
y as Boltzmann giventhat it only sele
ts a greedy a
tion based on the probability of 1 − ǫ whi
h is independent from theexisting poli
y.Soilse and SoilseC using ǫ-greedy are sele
ted, given their best overall performan
e against thebaselines, for further 
omparison in terms of the ongoing (a

umulated) total vehi
le waiting timeand the (a

umulated) number of stopped vehi
les against the baselines. Figure (5.24) 
learly shows118
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Figure 5.24: Trinity - SoilseC ǫ-greedy vs. (RR20s and SAT_2_1.5) - total vehi
le waiting timethroughout the simulation time - best AWT performan
ethe di�eren
e between the performan
e of SoilseC against both baselines in terms of total vehi
lewaiting time throughout the simulation time. SoilseC maintains a 
onsiderably lower total vehi
lewaiting time nearly all the time with brief ex
eptions during some relearning periods. Similarly, Soilseusing ǫ-greedy, see Figure (5.25), shows a 
lear lower total vehi
le waiting time through the simulationagainst both baselines with the ex
eption of the performan
e during the EPP in the 
ase of 
omparisonagainst SAT_2_1.5 where it maintains slightly similar performan
e. To a 
ertain degree this is trueagainst RR20s but with better performan
e from the Soilse side at several points in time during theEPP. For more 
lari�
ation on the ongoing performan
e of Soilse, SoilseC and the baselines, Figure(5.26) shows a 
omparison for the a

umulation of the total vehi
le waiting time. It is 
lear thatSAT_2_1.5 performs poorly in this s
enario against the other sele
ted baseline and both Soilse andSoilseC. The di�eren
e in performan
e starts to get 
learer in terms of the a

umulated total vehi
letime against RR20s mainly towards the end of the MPP. SoilseC maintains a lower trend in that 
aseuntil the end as it relearned adequately while Soilse slightly deteriorates in performan
e towards theend as its relearning did not result in 
ompetitive poli
y taking into a

ount the 
ost in
urred.In terms of the number of stopped vehi
les throughout the simulation time, Figure (5.27) showsa 
omparison in that regard for SoilseC using ǫ-greedy against both baselines in addition to thegraphs of the a

umulation of the number of stopped vehi
les. It 
an be observed that peaks in thenumber of stopped vehi
les are more frequent in RR20s and SAT_2_1.5 
ases as opposed SoilseC.This 
an be seen more 
learly in the 
omparison of the a

umulated number of stopped vehi
les inthe a

ompanying graphs. SoilseC maintained a lower trend against SAT_2_1.5 almost all the timewhile in the 
ase of RR20s it appeared more notably after the MPP.In the 
ase of Soilse using ǫ-greedy, Figure (5.28) shows a 
omparison in terms of the number119
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Figure 5.25: Trinity - Soilse ǫ-greedy vs. (RR20s and SAT_2_1.5) - total vehi
le waiting timethroughout the simulation time - best AWT performan
e
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Figure 5.28: Trinity - Soilse ǫ-greedy vs. (RR20s and SAT_2_1.5) - (a

umulated) number ofstopped vehi
les throughout the simulation time - best AWT performan
eof stopped vehi
les throughout the simulation time against both baselines in addition to the graphsof the a

umulated number of stopped vehi
les. It appears that Soilse maintains a 
onsistently lowtrend against SAT_2_1.5 as far as the a

umulation of the number of stopped vehi
les is 
on
ernednearly all the time. However, Soilse against RR20s maintains a lower trend given the a

umulatednumber of stopped vehi
les, but appears to deteriorate in performan
e in that regard during the EPPas it approa
hes RR20s performan
e towards the end. This is due to an expensive relearning period(noti
e surges towards the end in the number of stopped vehi
les in Figure (5.28)) that Soilse initiatesnear the simulation end (without prospe
ts of exploitation) as a response to the fading away of EPP.This situation is reminis
ent of Soilse's performan
e in terms of the a

umulated vehi
le waiting timedis
ussed earlier.In summary, Soilse and SoilseC using ǫ-greedy as an a
tion sele
tion strategy have outperformedboth RR20s and SAT_2_1.5 in terms of AWT and AvgStops hen
e satisfying Obj3. Notably, SoilseC122



Chapter 5. Evaluationusing ǫ-greedy provided approximately twi
e as good performan
e in terms of AvgStops as opposedto Soilse when 
ompared to both baselines' performan
e (see Obj4). Soilse using greedy provided abetter performan
e against SAT_2_1.5 in terms of AWT and AvgStops as opposed to its performan
eagainst RR20s. However, SoilseC using greedy outperformed the Soilse 
ounterpart in terms of AWTagainst both baselines. Con
erning the number of arrived vehi
les, Soilse and SoilseC using ǫ-greedyprovided a better performan
e against RR20s. However, the di�eren
es in other 
ases were marginalin that respe
t. In addition, SoilseC and Soilse using Boltzmann as an a
tion sele
tion strategy didnot outperform both baselines in this s
enario. However, SoilseC provided better performan
e thanSoilse in that 
ase in general but still remained insu�
ient against the baselines. The reason behind,as we explained earlier, is mainly due to the nature of the a
tion sele
tion pro
ess in Boltzmann thatwas adverse under the 
onditions of this s
enario.5.3.5 SummaryWe presented and analysed the performan
e results from the Trinity s
enario. The latter used a realworld map of the surroundings of Trinity College Dublin and 
onsisted of 30 signalized jun
tions. Thesimulation was based on ∼ 19 hours of tra�
 representing four di�erent tra�
 patterns representingtwo uniform tra�
 situations of di�erent loads and two peak situations for the morning the eveningrush hours. Con
erning the baselines for 
omparison, we sele
ted the two best performing RR andSAT settings, namely, RR20s and SAT_2_1.5.Firstly, Soilse's performan
e given its relearning behaviour was 
ompared against a situation wereonly an initial learning was used (see Obj1). In addition, Soilse's performan
e was dis
ussed where anevaluation for Soilse using di�erent a
tion sele
tion strategies was presented (see Obj1). It was 
learthat Soilse using ǫ-greedy outperformed the 
ases where Boltzmann or greedy were used. We 
lari�edthe reasons for that whi
h are mainly due to the e�
ient nature ǫ-greedy exhibits in relearning betterpoli
ies. We also 
lari�ed the e�e
t of the ExpFactor value and the overall relearning behaviour andpresented details of su
h on a sele
ted signalized jun
tion (see Obj2). Furthermore, Soilse's perfor-man
e was 
ompared against SoilseC's where the latter had an overall better performan
e espe
iallywhile using ǫ-greedy in terms of the AvgStops (see Obj4). Interestingly, while Soilse did not manageto provide a simultaneous best performan
e in terms of AWT and AvgStops, SoilseC was su

essfulin doing so as it balan
ed its best performan
e for both metri
s (see Obj4). The parameters for thebest performan
e were also presented and dis
ussed. The e�e
t of the 
ollaboration mode on SoilseC'sbest performing ǫ-greedy was presented where CM three performed best but 
losely to CM one (seeObj4). 123



5.4. Dublin Inner City Centre S
enarioFinally, a 
omparison between the best performing Soilse and SoilseC against the sele
ted baselineswas presented (see Obj3). It transpires that Soilse and SoilseC using ǫ-greedy as an a
tion sele
tionstrategy have 
learly outperformed both RR20s and SAT_2_1.5 by in terms of AWT and AvgStops.Soilse using ǫ-greedy provided ∼ −10.42% and ∼ −19.53% better performan
e in terms of AWTagainst RR20s and SAT_2_1.5 respe
tively. While SoilseC provided ∼ −11.81% and ∼ −20.78% bet-ter performan
e in terms of AWT against RR20s and SAT_2_1.5 respe
tively. In terms of AvgStops,Soilse and SoilseC outperformed RR20s by ∼ −8.57% and ∼ −18.20% respe
tively. When 
omparedto SAT_2_1.5 in terms of AvgStops, Soilse and SoilseC provided ∼ −10.81% and ∼ −20.20% betterperforman
e respe
tively. On the other hand, Soilse using greedy as an a
tion sele
tion strategy per-formed well in 
ertain 
ases espe
ially against SAT_2_1.5 while the SoilseC 
ounterpart outperformedthat performan
e in terms of AWT against both baselines. Results from both Soilse and SoilseC usingBoltzmann against the baselines were poor in this s
enario. The reasons behind su
h a performan
ein this s
enario were dis
ussed earlier.5.4 Dublin Inner City Centre S
enarioThis se
tion evaluates the performan
e of Soilse, SoilseC and the baselines in the Dublin Inner CityCentre S
enario (DublinICC) s
enario. This s
enario is of a bigger s
ale than the Trinity s
enarioand we aim at assessing how Soilse and SoilseC 
an s
ale while maintaining better performan
ethan the baselines (see Obj5). We �rst present the performan
e of the baselines in order to sele
tthe best performing baselines for further 
omparison against the best performing Soilse and SoilseCdeployments. We dis
uss the e�e
t of relearning on the performan
e of Soilse by 
omparing it againsta situation where an initial learning was only used. The relearning behaviour in Soilse and SoilseCis dis
ussed as well. We also dis
uss SoilseC's performan
e per 
ollaboration mode. In addition, we
on
entrate on the performan
e of exploratory a
tion sele
tion strategies hen
e the performan
e ofSoilse and SoilseC using greedy are not dis
ussed in this s
enario.5.4.1 Baselines Performan
eSAT and RR are used as the baselines in this s
enario as well. Table (5.13) shows their performan
eunder di�erent settings in terms of AWT, AvgStops and the number of arrived vehi
les.RR using all settings (20s, 30s, 40s) provides 
learly poor performan
e 
ompared to all SATperforman
e. It is evident that RR does not 
ope with the s
ale and the tra�
 loads this s
enarioexhibits. RR20s appeared to perform the best against RR30s and RR40s. However, SAT_2_1.5124



Chapter 5. Evaluation RRSe
onds ∼AWT⋆ #Arrived Vehi
les ∼AvgStops20s 622.736 47895 151.5330s 1396.943 41940 208.4940s 1821.550 34110 226.04 SAT
∼AWT⋆ #Arrived Vehi
les ∼AvgStops2_1.5 111.889 56337 28.242_1.1 112.554 55374 40.355_1.5 114.253 56601 31.085_1.1 149.586 53976 64.03

⋆Results are in se
onds(Best performan
e results are in bold font)Table 5.13: DublinICC - baselines performan
e - RR and SATSoilseInit Soilse Soilse Performan
e∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

ǫ-greedy 130.190 55043 38.95 71.918 56385 16.94 -44.75% +2.38% -56.50%Boltzmann 153.202 54576 46.86 106.141 55519 28.25 -30.71% +1.69% -39.71%
⋆ Numbers are in se
onds
∓The negative sign (-) indi
ates lower AWT, AvgStops or #Arrived Vehi
les (AV), otherwise (+) is used.Table 5.14: DublinICC - SoilseInit vs. Soilse - best AWT performan
ebeing the best performing SAT deployment in terms of AWT and AvgStops, outperformed RR20s by
∼ −82.03% and ∼ −81.36% in terms of AWT and AvgStops respe
tively. This is due to the fa
tthat RR la
ks any form of adaptiveness and responsiveness whi
h has 
learly resulted in 
learly poorperforman
e at this larger s
ale. On the other hand, SAT in its di�erent settings proved to be amore 
ompetitive baseline espe
ially SAT_2_1.5. Hen
e, we sele
t RR20s and SAT_2_1.5 to be thebaselines for further 
omparisons against Soilse and SoilseC.5.4.2 Initial Learning vs. RelearningHere we address Obj1 by 
omparing against Soilse that naturally relearns and a situation wherean initial learning is only used (SoilseInit). Table (5.14) presents a 
omparison between Soilse andSoilseInit.It is 
learly observed that Soilse by relearning in both 
ases using ǫ-greedy and Boltzmann havenotably outperformed the SoilseInit 
ounterparts in terms of AWT and AvgStops. The di�eren
e interms of the number of arrived vehi
les was marginal however Soilse performed better in that senseas well. Soilse using ǫ-greedy has remarkably outperformed its SoilseInit 
ounterpart by ∼ −44.75%and ∼ −56.50% lower AWT and AvgStops respe
tively. A similar 
ase is with Soilse using Boltzmannwhere ∼ −30.71% and ∼ −39.71% lower AWT and AvgStops resulted respe
tively in 
omparison toits SoilseInit 
ounterpart. Consequently, Obj1 is strongly satis�ed in this s
enario.125
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Figure 5.29: DublinICC - Soilse using ǫ-greedy (re)learning start and end times - best AWT perfor-man
e5.4.3 Relearning BehaviourThis se
tion addresses Obj2 of analysing the relearning behaviour in the DublinICC s
enario. We
on
entrate on dis
ussing relearning o

urren
es and the ratio of relearning time to the simulationtime. Both Soilse and SoilseC using ǫ-greedy are 
onsidered in their best AWT performan
e.As far as Soilse is 
on
erned, Figure (5.29) depi
ts the start and end times of learning and relearningperiods for all Soilse agents 
ontrolling all signalized jun
tions. Two Soilse agents were more a�e
tedthat the others in terms of relearning, namely, those 
ontrolling jun
tions ID 180 and ID 330. Theyneeded to relearn on di�erent points throughout the simulation period and during di�erent tra�
patterns. All of the a�e
ted Soilse agents appear to start relearning at the beginning of the MPP,however, only some (jun
tions IDs 180, 330 and 400) start relearning for the EPP and others (jun
tionsIDs 180, 330 and 30) for the UHP. It 
an be noti
ed as well that some Soilse agents also relearn126
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Figure 5.30: DublinICC - Soilse using ǫ-greedy ratio of relearning time to simulation time - bestAWT performan
e
during some tra�
 patterns espe
ially the Soilse agents at jun
tions IDs 180 and 330. This is due to
ontinuous 
hanges in their performan
e given their lo
al tra�
 patterns. In Figure (5.30), the ratioof the relearning time to the simulation time for the eight a�e
ted Soilse agents is presented. It 
anbe noti
ed that Soilse agents at jun
tions ID 330 and ID 180 have spent a 
onsiderable amount oftime relearning relative to the simulation time, i.e., ∼ 53% and ∼ 46% respe
tively. However, it isworth mentioning again that relearning periods are not purely for exploration so the aforementionedrelearning ratios indeed in
lude an in
reasing exploitation by time.As far as SoilseC is 
on
erned, Figure (5.31) depi
ts the start and end times of learning andrelearning periods for all Soilse agents 
ontrolling all signalized jun
tions. It is noti
eable that moreSoilseC agents were a�e
ted as opposed to the number of a�e
ted Soilse agents. However, theseSoilseC agents appear to relearn less frequently, whi
h may be due to 
ollaboration that providedthem with better poli
ies resulting in better performan
e (see Se
tion (5.4.4)). Figure (5.32) presentsthe ratio of relearning time to the simulation time per a�e
ted SoilseC agent. Thirteen SoilseC agentshave experien
ed some relearning at di�erent times. SoilseC agents at jun
tion IDs 330, 180, 410and 50 have relearnt the most showing ∼ 41%, ∼ 28%, ∼ 28% and ∼ 19% ratios of relearning timeto simulation time respe
tively. These are overall 
onsiderably lower ratios when 
ompared to thesituation under Soilse. 127
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e
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Figure 5.32: DublinICC - SoilseC using ǫ-greedy ratio of relearning time to simulation time - bestAWT performan
e Soilse SoilseC SoilseC Performan
e∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% ∼#AV% ∼AvgStops%

e-greedy 71.918 56385 16.94 63.471 56470 12.83 -11.74% +0.15% -24.26%Boltzmann 106.141 55519 28.25 94.045 54853 24.91 -11.39% -1.19% -11.82%
⋆Results are in se
onds.
∓The negative sign (-) indi
ates lower AWT, AvgStops or #Arrived Vehi
les (AV) , otherwise (+) is used.Table 5.15: DublinICC - SoilseC vs. Soilse best performan
e5.4.4 Soilse and SoilseC vs. BaselinesWe �rst dis
uss the performan
e of SoilseC against Soilse (see Obj4) by providing a 
omparison interms of the AWT, AvgStops and the number of arrived vehi
les. Table (5.15) presents the results ofthe best performing Soilse and SoilseC in this regard.In this s
enario, it was observed that both the Soilse and SoilseC that performed best in termsof AWT also performed the best in terms of AvgStops. Hen
e, the results presented in this s
enariofor both Soilse and SoilseC re�e
t best performan
e in both AWT and AvgStops terms. It appearsthat SoilseC maintains a better overall performan
e than Soilse in both 
ases of the a
tion sele
tionstrategies. SoilseC using ǫ-greedy 
learly outperforms the Soilse 
ounterpart by providing ∼ 11.74%and ∼ −24.26% lower AWT and AvgStops respe
tively. As far as SoilseC using Boltzmann as an a
tionsele
tion strategy is 
on
erned, it provided ∼ 11.39% and ∼ −11.82% lower AWT and AvgStops asopposed to its Soilse 
ounterpart respe
tively. Furthermore, that the di�eren
e in performan
e interms of the number of arrived vehi
les between SoilseC and Soilse is marginal. SoilseC rea
hed129



5.4. Dublin Inner City Centre S
enarioPerforman
e% SoilseAgainst (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%
e-greedy (-88.45%, -35.72%) (+15.05%, +0.08%) (-88.82%, -40.01%)Boltzmann (-82.95%, -5.13%) (+13.73%, -1.45%) (-81.53%, -0.035%)Performan
e% SoilseCAgainst (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%
e-greedy (-89.80%, -43.27%) (+15.18%, +0.23%) (-91.53%, -54.56%)Boltzmann (-84.89%, -15.94%) (+12.68%, -2.63%) (-83.56%, -11.79%)Table 5.16: DublinICC - Soilse and SoilseC best performan
e against baselines' best performan
ebetter poli
ies (hen
e the better performan
e) on the larger s
ale as opposed to Soilse 
omparedto the performan
e of SoilseC against Soilse in the smaller s
ale Trinity s
enario. This shows thebene�ts of 
ollaboration as the s
ale grow larger where the positive e�e
t of 
ollaboration be
omesmore notable.A performan
e 
omparison of Soilse and SoilseC against the sele
ted best performing baselines (seeObj3) is presented in Table (5.16). Soilse and SoilseC has notably outperformed RR20s on this largers
ale s
enario in terms of all metri
s. Soilse using ǫ-greedy provided a 
learly ∼ −88.45% lower AWTwhere SoilseC in that 
ase provided ∼ −89.80% against RR20s. Similarly, Soilse and SoilseC usingBoltzmann provided ∼ 82.95% and ∼ −84.89% lower AWT against RR20s respe
tively. Soilse andSoilseC using ǫ-greedy also provided a notably better performan
e against RR20s in terms of AvgStops,i.e., ∼ −88.82% and ∼ −91.53% respe
tively. Similarly, Soilse and SoilseC using Boltzmann provided

∼ −81.53% and ∼ −83.56% lower AWT against RR20s respe
tively. In terms of the number ofarrived vehi
les, Soilse and SoilseC allowed more vehi
les to arrive to their destinations in 
omparisonto RR20s. Spe
i�
ally, Soilse and SoilseC using ǫ-greedy allowed ∼ +15.05% and ∼ +15.18% morevehi
les to arrive to their destinations respe
tively when 
ompared to RR20s. When it 
omes to Soilseand SoilseC using Boltzmann in that regard, they allowed ∼ +13.73% and ∼ +12.68% more vehi
lesto arrive to their destinations respe
tively when 
ompared to RR20s.The best-performing SAT deployment, i.e., SAT_2_1.5 provided a more 
ompetitive baselinethan RR20s. However, Soilse and SoilseC also outperformed SAT_2_1.5 
learly in terms of bothAWT and AvgStops but di�eren
es in the number of arrived vehi
les were generally marginal againstSAT_2_1.5. Soilse using ǫ-greedy and Boltzmann provided ∼ −35.72% and ∼ −5.13% lower AWTas opposed to SAT_2_1.5 respe
tively. On the other hand, SoilseC using ǫ-greedy and Boltzmannprovided ∼ −43.27% and ∼ −15.94% lower AWT as opposed to SAT_2_1.5 respe
tively. Further-more, Soilse's performan
e in terms of AvgStops was more 
lear in the ǫ-greedy 
ase, i.e., ∼ −40.01%130
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Figure 5.33: DublinICC - Best Soilse (ǫ-greedy and Boltzmann) performan
e vs. SAT and RR20s -total vehi
le waiting time and total number of stopped vehi
les throughout the simulation timewhile in the 
ase of Soilse using Boltzmann it was marginal against SAT_2_1.5. Con
erning SoilseC'sperforman
e in terms of AvgStops, it provided a notable ∼ −54.56% and ∼ −11.79% less AvgStopsas opposed to SAT_2_1.5 in 
ases of ǫ-greedy and Boltzmann respe
tively.SAT_2_1.5 provided 
learly better performan
e than RR20s overall and is a more 
ompetitivebaseline to 
ompare against in this s
enario in terms of plots. Hen
e, we only show the performan
eof RR20s in the graphs presented in Figure (5.33) but ex
lude RR20s from further graphs given itsout of s
ale performan
e. RR20s poor performan
e in terms of vehi
le waiting time and number ofstopped vehi
les is 
lear in Figure (5.33). It 
aused a large total vehi
le waiting time 
ompared to bestperforming Soilse and SoilseC and SAT_2_1.5 that rendered theirs indistinguishable on the graph.Similarly the same adverse performan
e was noti
eable in the number of stopped vehi
les graph.In order to 
ompare the performan
e throughout the simulation time, Figure (5.34) presents thetotal vehi
le waiting time and the total number of stopped vehi
les graphs. These graphs 
ompareagainst best Soilse and SoilseC performan
e in both ǫ-greedy and Boltzmann 
ases against SAT_2_1.5and rea�rm the results dis
ussed in Table (5.16). It 
an be observed that Soilse using ǫ-greedy showeda higher relearning 
ost (see surges in the �rst graph in Figure (5.34)) in terms of total vehi
le waitingtime and to a 
ertain extent in terms of the total number of stopped vehi
les as opposed to itsSoilseC 
ounterpart. A

ordingly, 
ollaboration in SoilseC resulted in a lower relearning 
ost andprovided better performan
e than non-
ollaborative Soilse. Moreover, Soilse using Boltzmann did notprovide a notably di�erent performan
e than SAT_2_1.5. However, its SoilseC 
ounterpart 
learlyoutperforms SAT_2_1.5 during the MPP. Also, it appears that SoilseC using ǫ-greedy maintainsa lower total vehi
le waiting time and total number of stopped vehi
les throughout the simulationagainst SAT_2_1.5 and SoilseC using Boltzmann. In addition, Soilse and SoilseC using Boltzmann131
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Figure 5.34: DublinICC - Soilse and SoilseC best performan
e vs. SAT - total vehi
le waiting timeand total number of stopped vehi
les throughout the simulation time
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Figure 5.35: DublinICC - Soilse and SoilseC best performan
e vs. SAT - a

umulated total vehi
lewaiting time and a

umulated total number of stopped vehi
les throughout the simulation timedo not rea
h a poli
y that allows them to perform notably better than SAT_2_1.5 during the EPPin terms of the total waiting time. This is in 
ontrary to the 
ases where Soilse and SoilseC ea
h use
ǫ-greedy.For a 
learer view on the di�erent performan
e throughout the simulation time, Figure (5.35)presents 
omparison graphs for the a

umulated total vehi
le waiting time and the a

umulated totalnumber of stopped vehi
les regarding the best performing Soilse and SoilseC using ǫ-greedy againstSAT_2_1.5. It is 
lear that SoilseC, regardless of the a
tion sele
tion strategy used, always maintainslower a

umulated total vehi
le waiting time and total number of stopped vehi
les. Also, it 
an benoti
ed that the di�eren
e in both a

umulations between SoilseC using ǫ-greedy against SAT_2_1.5is bigger to the advantage of SoilseC than in the 
ase where SoilseC uses Boltzmann. Con
erning Soilseusing ǫ-greedy, the relearning 
ost in terms of total vehi
le waiting time that was exhibited in Figure133



5.4. Dublin Inner City Centre S
enario
ǫ-greedy / Collaboration Mode ∼AWT (se
onds) #Arrived Vehi
les ∼AvgStopsOne 63.471 56470 12.83Two 81.000 56419 22.60Three 76.137 56450 18.81Performan
e % Collaboration Mode One

∼AWT% ∼#Arrived Vehi
les% ∼AvgStops%Collaboration Mode Two -21.64% +0.09% -43.23%Collaboration Mode Three -16.63% +0.03% -31.79%Table 5.17: DublinICC - SoilseC best performan
e per 
ollaboration mode - ǫ-greedy(5.34) is also 
learly re�e
ted on the a

umulated total vehi
le waiting time. On the other hand,SoilseC showed a more stable relearning, (i.e., without 
ausing severe surges) in both total vehi
lewaiting time and total number of stopped vehi
les a

umulation. Moreover, as far as the performan
eof Soilse using Boltzmann in terms of AWT and AvgStops is 
on
erned, it appears that it maintaineda 
lose a

umulation trend to SAT_2_1.5 in terms of total vehi
le waiting time and total number ofstopped vehi
les.In summary, Soilse and SoilseC, both in 
ases of using ǫ-greedy and Boltzmann, have notably out-performed RR20s whi
h performed poorly under this larger s
ale s
enario. This result was expe
tedgiven the in�exibility of RR to s
ale up and its la
k of adaptiveness and responsiveness. On the otherhand, best performing SAT, i.e., SAT_2_1.5 provided a more 
ompetitive baseline performan
e 
om-pared to RR20s. However, Soilse and SoilseC espe
ially using ǫ-greedy as an a
tion sele
tion strategyhave notably outperformed SAT_2_1.5 in all measured terms. Moreover, the overall performan
eof Soilse using Boltzmann against SAT_2_1.5 did not provide a notable di�eren
e. In addition, thedi�eren
es between di�erent Soilse and SoilseC performan
e in terms of the number of arrived vehi
lesagainst SAT_2_1.5 were marginal however notable against RR20s.5.4.4.1 SoilseC's Collaboration ModeThe e�e
t of the 
ollaboration mode (CM) on SoilseC's performan
e using ǫ-greedy is assessed (seeObj4). Table (5.17) presents a performan
e 
omparison for SoilseC using di�erent CMs. All best-performing SoilseC using ǫ-greedy and di�erent CMs were using a 
ollaboration frequen
y CollFreq =

240s. This appears to be a suitable frequen
y given the larger depth of performan
e history informationex
hanged as opposed to the 
ase where CollFreq = 120s.It appears that the best SoilseC performan
e is for SoilseC using CM one where a given SoilseCagent only sends its re
ent performan
e history to its downstream neighbours and re
eives su
h infor-134



Chapter 5. Evaluationmation from the upstream ones. This is a logi
al way of 
ollaboration given the tra�
 �ow dire
tionfrom the upstream jun
tion towards the downstream jun
tion that aligns with the logi
 of CM one.Su
h a logi
 serves as an early noti�er to downstream jun
tions of a di�erent possible patterns ofin
oming tra�
 through performan
e information sent from the upstream jun
tion. The results fromSoilseC using CM one are likely to be due to the extensive one-way streets system followed withinDublin inner 
ity 
entre whi
h aligns with the nature of CM one. Moreover, SoilseC using CM oneoutperformed SoilseC using CMs two and three by providing ∼ −21.64% and ∼ −16.63% lower AWTrespe
tively. In terms of AvgStops, SoilseC using CM one outperformed SoilseC using CMs two andthree by providing ∼ −43.23% and ∼ −31.79% lower AvgStops respe
tively.Essentially, the underlying road network and the nature of tra�
 a�e
t the performan
e resultingfrom the use of di�erent CMs in SoilseC. In this s
enario, it was 
lear that CM one performed best,while in the smaller s
ale s
enario, i.e., Trinity s
enario, it was not 
learly evident.5.4.5 SummaryThis s
enario presented results and 
omparisons 
on
erning the performan
e of Soilse and SoilseCon the s
ale of Dublin inner 
ity 
entre (see Obj5). A real map was used 
omprising 62 signalizedjun
tions from an overall 270 jun
tions. The size of this map is 
omparable to the size of a 
ity 
entre
∼ 62.6% the size of Cork 
ity 
entre.Baselines performan
e analysis showed that RR20s and SAT_2_1.5 perform best among the dif-ferent baselines settings. However, RR20s failed notably to s
ale up in this s
enario as 
an be 
learlyseen in Figure (5.33). In addition, SAT_2_1.5 provided 
learly better performan
e in all measuredterms against RR20s and hen
e was used in 
omparison graphs against Soilse and SoilseC. Soilseby relearning has 
learly outperformed SoilseInit hen
e satisfying Obj1. For example, Soilse using
ǫ-greedy has remarkably outperformed its SoilseInit 
ounterpart by ∼ −44.75% and ∼ −56.50% lowerAWT and less AvgStops respe
tively. In addition, the relearning behaviour under Soilse and SoilseCwas analysed (see Obj2).Results from best performing Soilse and SoilseC from both a
tion sele
tion strategies have 
learlyoutperformed both RR20s and SAT_2_1.5 in terms of AWT and AvgStops with the single ex
eptionof Soilse using Boltzmann in terms of AvgStops against SAT_2_1.5 (see Obj3). For example, SoilseCusing ǫ-greedy outperformed RR20s in terms of AvgStops by ∼ −91.53% and SAT_2_1.5 by ∼
−54.56% hen
e satisfying Obj3. Moreover, Soilse and SoilseC using Boltzmann have generally provideda 
learly better performan
e as opposed to the sele
ted baselines in 
ontrary to the situation under theTrinity s
enario (taking into a

ount the single ex
eption mentioned earlier). In terms of the number135



5.5. Summaryof arrived vehi
les, performan
e di�eren
es between Soilse and SoilseC using both a
tion sele
tionstrategies against SAT_2_1.5 were marginal however 
lear against RR20s.Furthermore, a performan
e 
omparison among the di�erent 
ollaboration modes used in SoilseCwas provided (see Obj4). It is noti
ed that the 
ollaboration mode performan
e depends on the s
aleand nature of the s
enario and its spe
i�
s. Collaboration mode one transpires to perform best underthis s
enario as it is believed to align with the extensive one-way streets nature of Dublin inner 
ity
entre.Essentially, results from this higher s
ale s
enario showed how both Soilse and Soilse s
ale andprovide notably better performan
e against the baselines when 
ompared to the smaller s
ale Trinitys
enario and hen
e satisfying Obj5.5.5 SummaryIn this 
hapter we provided an evaluation based on two s
enarios of di�erent s
ales, Trinity CollegeDublin and the surroundings and Dublin inner 
ity 
entre through whi
h all the obje
tives mentionedin Se
tion (5.2.5) were addressed individually. All signalized jun
tions in both s
enarios used eitherSoilse or SoilseC agents at a time. For ea
h s
enario, two best performing baselines were sele
ted tobe 
ompared against Soilse and SoilseC performan
e. These baselines were RR20s and SAT_2_1.5 inboth s
enarios. Performan
e results showed that Soilse and SoilseC s
ale while also providing notablybetter performan
e in terms of AWT and AvgStops when 
ompared to best performing baselines.An ex
eption to that was Soilse using Boltzmann in the Trinity s
enario. Di�eren
es in terms ofthe number of arrived vehi
les from Soilse and SoilseC in the both s
enarios against the baselineswere generally marginal, however, they were 
lear against RR20s in the DublinICC s
enario. In boths
enarios, SoilseC performed better than Soilse in terms of AWT and AvgStops and notably so in theDublinICC s
enario were it exhibited a lower relearning 
ost as well.Essentially, the use of Soilse and SoilseC has proved to provide an adaptive and responsive opti-mization s
heme for UTC in a de
entralized manner. In addition, a better global performan
e wasa
hieved through 
ollaboration as 
an be seen from SoilseC's results when 
ompared against Soilse.Both Soilse and SoilseC were responsive by dete
ting genuine 
hanges in the lo
al tra�
 pattern that
onsequently initiate a relative relearning pro
ess. Also, Soilse and SoilseC were adaptive by relearninga di�erent poli
y to optimize for a new tra�
 pattern.
136



Chapter 6
Con
lusions and Future WorkIn this 
hapter we �rst summarize 
ontributions of this thesis work and then dis
uss possible futurework.6.1 Thesis ContributionThis thesis des
ribes a de
entralized approa
h to urban tra�
 
ontrol (UTC) optimization usingReinfor
ement Learning (RL) and agent 
ollaboration, that is e�
ient, adaptive and yet responsiveto the non-stationary nature of urban tra�
.Chapter (1) provided an overview of the RL and de
entralized RL approa
hes to optimizationby intera
ting with the environment and learning from reinfor
ements. A histori
al ba
kground forUTC was provided and the 
hallenges that motivated the need for an e�
ient approa
h to UTC werepresented. The trends in UTC optimization were also dis
ussed in
luding the emerging te
hnologiesthat 
an be exploited for better UTC systems su
h as �oating vehi
le data (FVD). RL and espe
iallyQ-Learning was identi�ed as a promising approa
h for e�
ient UTC systems. Our resear
h hypothesiswas presented where and argues for the possibility of designing an adaptive and responsive UTC systemusing de
entralized RL and 
ollaboration.In Chapter (2) we reviewed existing Markov De
ision Pro
ess (MDP) and RL optimization te
h-niques supporting di�erent learning and a
tion sele
tion strategies. Di�erent elements that 
ontributeto un
ertainty in UTC systems su
h as �u
tuations in tra�
 were also dis
ussed in addition to tra�
pattern identi�
ation. Three groups of UTC approa
hes where dis
ussed, i.e., 
lassi
al systems su
has SCATS and SCOOT, non-RL based UTC approa
hes and RL-based approa
hes. We identi�ed thepossible bene�t of a de
entralized RL-based UTC optimization approa
h that is model-free and that137



6.1. Thesis Contribution
an optimize without an a priori model for tra�
 as well as being able to 
ope with the �u
tuatingnature of urban tra�
 in an adaptive and responsive manner.In Chapter (3) we �rst outlined a set of requirements for e�
ient RL-based UTC systems resultingfrom the analysis of existing RL-based UTC systems in Chapter (2). After presenting the motivationsbehind our design 
hoi
es, the design of the Soilse approa
h to UTC in
luding its non-parametri
Pattern Change Dete
tion (PCD) me
hanism was presented. This 
overed the type of phases, therelearning strategy used, the reward model used as well as the 
ollaboration spe
i�
s in the 
ase ofSoilseC. Both the Soilse and SoilseC agent algorithms were detailed as well as the PCD algorithm.In Chapter (4) the implementation of our design was presented. The generi
 CRL frameworkthat provides the basi
 
onstituents needed for building Soilse and SoilseC agents was presented. Inorder to build Soilse and SoilseC agents, an agent generator was implemented by 
ustomizing andinstantiating the CRL framework. The PCD implementation was also des
ribed.In Chapter (5) we des
ribed the evaluation of our approa
h through UTC simulation. The perfor-man
e of deployments of Soilse and SoilseC using available a
tion sele
tion strategies was 
omparedagainst the performan
e of �xed-time UTC, (i.e., round-robin (RR)) and SAT (an algorithm that emu-lates the behaviour of SCATS) baseline deployments in two s
enarios. These s
enarios are of a di�erents
ale and di�erent tra�
 patterns were used to represent uniform-low, morning-peak, uniform-highand evening-peak tra�
 in both s
enarios. The relearning behaviour in our approa
h was also dis-
ussed. The performan
e of a situation where only initial learning o

urred (SoilseInit) was 
omparedagainst the performan
e of Soilse. In addition, di�erent 
ollaboration modes for SoilseC deploymentswere evaluated. The performan
e of SoilseC deployments were also 
ompared against the performan
eof Soilse deployments in both s
enarios.Performan
e results show that deployments of Soilse and SoilseC using ǫ-greedy as an a
tionsele
tion strategy outperformed those using Boltzmann and greedy. In the Trinity s
enario, Soilseusing ǫ-greedy outperformed both baselines, RR and SAT, in terms of Average Waiting Time (AWT)by ∼ −10.42% and ∼ −19.53% respe
tively. On the other hand, SoilseC provided slightly betterperforman
e (
ompared to Soilse) in terms of AWT against RR and SAT in the Trinity s
enario byproviding ∼ −11.81% and ∼ −20.78% lower AWT respe
tively. Soilse and SoilseC using ǫ-greedy havealso outperformed the baselines in terms of average number of stops (AvgStops), however, SoilseCprovided better performan
e than Soilse against the baselines in that 
ase, i.e., ∼ −18.20% and
∼ −20.20% less AvgStops against RR and SAT respe
tively.In the larger-s
ale s
enario, Soilse and SoilseC using ǫ-greedy and Boltzmann deployments haveproved to s
ale and provide a notably better performan
e in terms of AWT and AvgStops against138



Chapter 6. Con
lusions and Future Workthe baselines deployments. A single ex
eption was in the 
ase of Soilse using Boltzmann againstSAT_2_1.5 in terms of AvgStops. Remarkably, SoilseC using ǫ-greedy has outperformed RR20s andSAT_2_1.5 by ∼ −91.53% and ∼ −54.56% in terms of AvgStops respe
tively and by ∼ −89.80%and ∼ −43.27% in terms of AWT respe
tively. In addition, Soilse using ǫ-greedy also outperformedSoilseInit by providing ∼ −44.75% and ∼ −56.50% lower AWT and less AvgStops respe
tively.The performan
e of Soilse and SoilseC deployments in the larger-s
ale s
enario was 
learly betterthan their performan
e in the Trinity s
enario against the baselines. In addition, ǫ-greedy as an a
tionsele
tion strategy showed better performan
e against other a
tion sele
tion strategies as it relearns ina manner that does not rely on the poli
y model in 
ontrast to Boltzmann. Moreover, SoilseC de-ployments, through 
ollaboration, resulted in better performan
e against the non-
ollaborative Soilsedeployments in the larger-s
ale s
enario 
ompared to its performan
e in the Trinity s
enario. SoilseCagents showed lower ratios of relearning time to the simulation time 
ompared to Soilse agents inboth s
enarios. For example, these ratios for the most-a�e
ted Soilse agents using ǫ-greedy rangedfrom ∼ 46% to ∼ 53% 
ompared to only ∼ 19% to ∼ 41% for the most-a�e
ted SoilseC agents using
ǫ-greedy in the larger-s
ale s
enario. The performan
e of SoilseC depends on the 
ollaboration modeused and on the s
ale of the s
enario.The above performan
e analysis shows that the Soilse approa
h 
an potentially provide an ef-�
ient de
entralized RL-based UTC optimization approa
h that is adaptive and responsive to thenon-stationary nature of urban tra�
. Moreover, 
ertain limitations have arisen in terms of evalua-tion given the nature of the simulator used. The tools available in the UTC simulator did not supportvariability in di�erent input tra�
 data for a given tra�
 pattern. Hen
e, un
ertainty on that level
ould not be measured. The initialization pro
ess of PCD parameters, being dependant on small s
alepreliminary experiments, 
ould also be seen as a limitation however, it is a one-o� e�ort.6.2 Future WorkDuring the design and evaluation of our approa
h and after analysing the state of the art relevant toour approa
h a number of possible areas of future work were identi�ed.In the PCD me
hanism used by Soilse and SoilseC agents, a �xed thresholding te
hnique was usedfor all agents in a given deployment. It 
ould be interesting to explore other thresholding te
hniquesand evaluate their e�e
t on the overall performan
e, for example, dynami
 thresholding te
hniqueswhere the value of the threshold used 
an 
hange per agent. For example, this dynami
 threshold
an 
hange based on the performan
e of the agent and the previous history of genuine tra�
 pattern139



6.2. Future Work
hanges. A model for 
al
ulating su
h a threshold is needed. In addition, a 
ollaborative thresholdingte
hnique might be designed where a group of Soilse or SoilseC agents 
an negotiate a given valuefor the threshold to be used. Moreover, an automati
 (possible 
ollaborative) tuning te
hnique that
ontrols the sensitivity of the PCD me
hanism per agent 
ould be investigated.Given that SoilseC agents all 
ollaborate using a given 
ollaboration mode and frequen
y as well asuse a �xed dis
ount rate on the ex
hanged rewards, a possibility arises to investigate the potentials for
hanging these parameters dynami
ally. This 
ould be through a 
onsensus-based proto
ol among one-hop neighbours or possibly on a regional level. In addition, a metri
 that 
ombines the performan
e andthe degree of tra�
 pattern 
hange of involved agents 
an then be used for group reparameterization.Soilse and SoilseC 
ould be extended to deal with multi-obje
tive optimization (also known asmulti-poli
y optimization) where a group of di�erent priority obje
tives need to be optimized simulta-neously for. For example, prioritizing publi
 transport or emergen
y tra�
 su
h as ambulan
es while
ontrolling usual urban tra�
 simultaneously. Also, Soilse and SoilseC 
ould be generalized in orderto deal with other 
ontrol optimization problems that has a non-stationary environment.The Soilse approa
h should possibly support a 
ertain level of fault-toleran
e, espe
ially, in aSoilseC deployment where SoilseC agents might fail. In su
h a 
ase, 
ollaboration 
ould be adverselya�e
ted and hen
e the performan
e as well. The sensor information reliability 
ould also be addressed.
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